WorldWideScience

Sample records for hydrocarbon ah receptor

  1. Aryl Hydrocarbon Receptor (AhR Modulates Cockroach Allergen-Induced Immune Responses through Active TGFβ1 Release

    Directory of Open Access Journals (Sweden)

    Yufeng Zhou

    2014-01-01

    Full Text Available Background. Aryl hydrocarbon receptor (AhR, a multifunctional regulator that senses and responds to environmental stimuli, plays a role in normal cell development and immune regulation. Recent evidence supports a significant link between environmental exposure and AhR in the development of allergic diseases. We sought to investigate whether AhR plays a role in mediating cockroach allergen-induced allergic immune responses. Methods. AhR expression in human lung fibroblasts from asthmatic and healthy individuals and in cockroach extract (CRE treated human lung fibroblasts (WI-38 was examined. The role of AhR in modulating CRE induced TGFβ1 production was investigated by using AhR agonist, TCDD, antagonist CH122319, and knockdown of AhR. The role of latent TGFβ1 binding protein-1 (LTBP1 in mediating TCDD induced active TGFβ1 release was also examined. Results. AhR expression was higher in airway fibroblasts from asthmatic subjects as compared to healthy controls. AhR in fibroblasts was activated by TCDD with an increased expression of cyp1a1 and cyp1b1. Increased AhR expression was observed in CRE-treated fibroblasts. Importantly, CRE induced TGFβ1 production in fibroblasts was significantly enhanced by TCDD but inhibited by CH122319. Reduced TGFβ1 production was further confirmed in fibroblasts with AhR knockdown. Moreover, AhR knockdown inhibited CRE induced fibroblast differentiation. Furthermore, TCDD induced active TGFβ1 release was significantly inhibited by LTBP1 knockdown. Conclusion. These results provide evidence for the role of AhR in modulating cockroach allergen-induced immune responses through controlling the active TGFβ1 release, suggesting a possible synergistic effect between exposure to allergens and environmental chemicals on the development of allergic diseases.

  2. Binding Mode and Structure-Activity Relationships of ITE as an Aryl Hydrocarbon Receptor (AhR) Agonist.

    Science.gov (United States)

    Dolciami, Daniela; Gargaro, Marco; Cerra, Bruno; Scalisi, Giulia; Bagnoli, Luana; Servillo, Giuseppe; Fazia, Maria Agnese Della; Puccetti, Paolo; Quintana, Francisco J; Fallarino, Francesca; Macchiarulo, Antonio

    2018-02-06

    Discovered as a modulator of the toxic response to environmental pollutants, aryl hydrocarbon receptor (AhR) has recently gained attention for its involvement in various physiological and pathological pathways. AhR is a ligand-dependent transcription factor activated by a large array of chemical compounds, which include metabolites of l-tryptophan (l-Trp) catabolism as endogenous ligands of the receptor. Among these, 2-(1'H-indole-3'-carbonyl)thiazole-4-carboxylic acid methyl ester (ITE) has attracted interest in the scientific community, being endowed with nontoxic, immunomodulatory, and anticancer AhR-mediated functions. So far, no information about the binding mode and interactions of ITE with AhR is available. In this study, we used docking and molecular dynamics to propose a putative binding mode of ITE into the ligand binding pocket of AhR. Mutagenesis studies were then instrumental in validating the proposed binding mode, identifying His 285 and Tyr 316 as important key residues for ligand-dependent receptor activation. Finally, a set of ITE analogues was synthesized and tested to further probe molecular interactions of ITE to AhR and characterize the relevance of specific functional groups in the chemical structure for receptor activity. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Essential oils of culinary herbs and spices display agonist and antagonist activities at human aryl hydrocarbon receptor AhR.

    Science.gov (United States)

    Bartoňková, Iveta; Dvořák, Zdeněk

    2018-01-01

    Essential oils (EOs) of culinary herbs and spices are used to flavor, color and preserve foods and drinks. Dietary intake of EOs is significant, deserving an attention of toxicologists. We examined the effects of 31 EOs of culinary herbs and spices on the transcriptional activity of human aryl hydrocarbon receptor (AhR), which is a pivotal xenobiotic sensor, having also multiple roles in human physiology. Tested EOs were sorted out into AhR-inactive ones (14 EOs) and AhR-active ones, including full agonists (cumin, jasmine, vanilla, bay leaf), partial agonists (cloves, dill, thyme, nutmeg, oregano) and antagonists (tarragon, caraway, turmeric, lovage, fennel, spearmint, star anise, anise). Major constituents (>10%) of AhR-active EOs were studied in more detail. We identified AhR partial agonists (carvacrol, ligustilide, eugenol, eugenyl acetate, thymol, ar-turmerone) and antagonists (trans-anethole, butylidine phtalide, R/S-carvones, p-cymene), which account for AhR-mediated activities of EOs of fennel, anise, star anise, caraway, spearmint, tarragon, cloves, dill, turmeric, lovage, thyme and oregano. We also show that AhR-mediated effects of some individual constituents of EOs differ from those manifested in mixtures. In conclusion, EOs of culinary herbs and spices are agonists and antagonists of human AhR, implying a potential for food-drug interactions and interference with endocrine pathways. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Aryl hydrocarbon receptor (AhR) inducers and estrogen receptor (ER) activities in surface sediments of Three Gorges Reservoir, China evaluated with in vitro cell bioassays

    NARCIS (Netherlands)

    Wang, J.; Bovee, T.F.H.; Bi, Y.; Bernhöft, S.; Schramm, K.W.

    2014-01-01

    Two types of biological tests were employed for monitoring the toxicological profile of sediment cores in the Three Gorges Reservoir (TGR), China. In the present study, sediments collected in June 2010 from TGR were analyzed for estrogen receptor (ER)- and aryl hydrocarbon receptor (AhR)-mediated

  5. Aminoflavone, a ligand of the Aryl Hydrocarbon Receptor (AhR), inhibits HIF-1α expression in an AhR-independent fashion

    Science.gov (United States)

    Terzuoli, Erika; Puppo, Maura; Rapisarda, Annamaria; Uranchimeg, Badarch; Cao, Liang; Burger, Angelika M.; Ziche, Marina; Melillo, Giovanni

    2010-01-01

    Aminoflavone (AF), the active component of a novel anticancer agent (AFP464) in phase I clinical trials, is a ligand of the aryl hydrocarbon receptor (AhR). AhR dimerizes with HIF-1β/ARNT, which is shared with HIF-1α, a transcription factor critical for the response of cells to oxygen deprivation. To address whether pharmacological activation of the AhR pathway might be a potential mechanism for inhibition of HIF-1, we tested the effects of AF on HIF-1 expression. AF inhibited HIF-1α transcriptional activity and protein accumulation in MCF-7 cells. However, inhibition of HIF-1α by AF was independent from a functional AhR pathway. Indeed, AF inhibited HIF-1α expression in AhR100 cells, in which the AhR pathway is functionally impaired, yet did not induce cytotoxicity, providing evidence that these effects are mediated by distinct signaling pathways. Moreover, AF was inactive in MDA-MB-231 cells, yet inhibited HIF-1α in MDA-MB-231 cells transfected with the SULT1A1 gene. AF inhibited HIF-1α mRNA expression by approximately 50%. Notably, actinomycin-D completely abrogated the ability of AF to down-regulate HIF-1α mRNA, indicating that active transcription was required for the inhibition of HIF-1α expression. Finally, AF inhibited HIF-1α protein accumulation and the expression of HIF-1-target genes in MCF-7 xenografts. These results demonstrate that AF inhibits HIF-1α in an AhR-independent fashion and they unveil additional activities of AF that may be relevant for its further clinical development. PMID:20736373

  6. Aromatic hydrocarbons upregulate glyceraldehyde-3-phosphate dehydrogenase and induce changes in actin cytoskeleton. Role of the aryl hydrocarbon receptor (AhR)

    International Nuclear Information System (INIS)

    Reyes-Hernandez, O.D.; Mejia-Garcia, A.; Sanchez-Ocampo, E.M.; Castro-Munozledo, F.; Hernandez-Munoz, R.; Elizondo, G.

    2009-01-01

    Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is a multifunctional enzyme involved in several cellular functions including glycolysis, membrane transport, microtubule assembly, DNA replication and repair, nuclear RNA export, apoptosis, and the detection of nitric oxide stress. Therefore, modifications in the regulatory ability and function of GAPDH may alter cellular homeostasis. We report here that 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) and β-naphthoflavone, which are well-known ligands for the aryl hydrocarbon receptor (AhR), increase GAPDH mRNA levels in vivo and in vitro, respectively. These compounds fail to induce GAPDH transcription in an AhR-null mouse model, suggesting that the increase in GAPDH level is dependent upon AhR activation. To analyse the consequences of AhR ligands on GAPDH function, mice were treated with TCDD and the level of liver activity of GAPDH was determined. The results showed that TCDD treatment increased GAPDH activity. On the other hand, treatment of Hepa-1 cells with β-naphthoflavone leads to an increase in microfilament density when compared to untreated cultures. Collectively, these results suggest that AhR ligands, such as polycyclic hydrocarbons, can modify GAPDH expression and, therefore, have the potential to alter the multiple functions of this enzyme.

  7. Aryl hydrocarbon receptor (AhR and its endogenous agonist – indoxyl sulfate in chronic kidney disease

    Directory of Open Access Journals (Sweden)

    Tomasz Kamiński

    2017-07-01

    Full Text Available The indoxyl sulfate (IS, indoxyl sulphate is the end product of dietary tryptophan degradation by indole pathway and significantly higher serum and tissue concentrations of this compound is observed in patients with impaired renal function. Despite the high albumin binding affinity, the remaining free fraction of IS has a number of biological effects related to the generation of oxidative stress andactivation of signaling pathways related to NF-кB, p53 protein, STAT3, TGF-β and Smad2/3. IS induces the inflammatory process, exerts nephrotoxic activity and is also a factor impairing the cardiovascular system.Its high concentrations are associated with the occurrence of cardiovascular incidents, whose frequency is significantly higher in patients with chronic kidney disease. Evaluation of the mechanisms that underlie the high reactivity of indoxyl sulfate and its biological effects showed that this compound is an agonist of the aryl hydrocarbon receptor (AhR. This receptor plays an important role in maintaining homeostasis Moreover, AhR exerts high transcriptional activity, so ligands of obciążethis receptor may exert different biological effects. The following paper describes the role of indoxyl sulfate as AhR ligand in the context of the excessive accumulation, which appears as one of the symptoms associated with chronic kidney disease.

  8. Fibroblast growth factor (Fgf) 21 is a novel target gene of the aryl hydrocarbon receptor (AhR)

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Xingguo, E-mail: chengx@stjohns.edu [Department of Pharmaceutical Sciences, St. John' s University, 8000 Utopia Parkway, Queens, NY 11439 (United States); Vispute, Saurabh G. [Department of Pharmaceutical Sciences, St. John' s University, 8000 Utopia Parkway, Queens, NY 11439 (United States); Liu, Jie [Department of Internal Medicine, University of Kansas Medical Center, 3901 Rainbow Boulevard, Kansas City, KS 66160 (United States); Cheng, Christine; Kharitonenkov, Alexei [Lilly Research Laboratories, Division of Eli Lilly and Co., Indianapolis, IN 46285 (United States); Klaassen, Curtis D., E-mail: curtisklaassenphd@gmail.com [Department of Internal Medicine, University of Kansas Medical Center, 3901 Rainbow Boulevard, Kansas City, KS 66160 (United States)

    2014-07-01

    The toxic effects of dioxins, such as 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), mainly through activation of the aryl hydrocarbon receptor (AhR) are well documented. Fibroblast growth factor (Fgf) 21 plays critical roles in metabolic adaptation to fasting by increasing lipid oxidation and ketogenesis in the liver. The present study was performed to determine whether activation of the AhR induces Fgf21 expression. In mouse liver, TCDD increased Fgf21 mRNA in both dose- and time-dependent manners. In addition, TCDD markedly increased Fgf21 mRNA expression in cultured mouse and human hepatocytes. Moreover, TCDD increased mRNA (in liver) and protein levels (in both liver and serum) of Fgf21 in wild-type mice, but not in AhR-null mice. Chromatin immunoprecipitation assays showed that TCDD increased AhR protein binding to the Fgf21 promoter (− 105/+ 1 base pair). Fgf21-null mice administered 200 μg/kg of TCDD died within 20 days, whereas wild-type mice receiving the same treatment were still alive at one month after administration. This indicates that TCDD-induced Fgf21 expression protects against TCDD toxicity. Diethylhexylphthalate (DEHP) pretreatment attenuated TCDD-induced Fgf21 expression in mouse liver and white adipose tissue, which may explain a previous report that DEHP pretreatment decreases TCDD-induced wasting. In conclusion, Fgf21 appears to be a target gene of AhR-signaling pathway in mouse and human liver. - Highlights: • TCDD induced Fgf21 expression at both mRNA and protein levels. • Fgf21 induction by TCDD is AhR-dependent. • DEHP attenuated TCDD-induced Fgf21 expression.

  9. Fibroblast growth factor (Fgf) 21 is a novel target gene of the aryl hydrocarbon receptor (AhR)

    International Nuclear Information System (INIS)

    Cheng, Xingguo; Vispute, Saurabh G.; Liu, Jie; Cheng, Christine; Kharitonenkov, Alexei; Klaassen, Curtis D.

    2014-01-01

    The toxic effects of dioxins, such as 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), mainly through activation of the aryl hydrocarbon receptor (AhR) are well documented. Fibroblast growth factor (Fgf) 21 plays critical roles in metabolic adaptation to fasting by increasing lipid oxidation and ketogenesis in the liver. The present study was performed to determine whether activation of the AhR induces Fgf21 expression. In mouse liver, TCDD increased Fgf21 mRNA in both dose- and time-dependent manners. In addition, TCDD markedly increased Fgf21 mRNA expression in cultured mouse and human hepatocytes. Moreover, TCDD increased mRNA (in liver) and protein levels (in both liver and serum) of Fgf21 in wild-type mice, but not in AhR-null mice. Chromatin immunoprecipitation assays showed that TCDD increased AhR protein binding to the Fgf21 promoter (− 105/+ 1 base pair). Fgf21-null mice administered 200 μg/kg of TCDD died within 20 days, whereas wild-type mice receiving the same treatment were still alive at one month after administration. This indicates that TCDD-induced Fgf21 expression protects against TCDD toxicity. Diethylhexylphthalate (DEHP) pretreatment attenuated TCDD-induced Fgf21 expression in mouse liver and white adipose tissue, which may explain a previous report that DEHP pretreatment decreases TCDD-induced wasting. In conclusion, Fgf21 appears to be a target gene of AhR-signaling pathway in mouse and human liver. - Highlights: • TCDD induced Fgf21 expression at both mRNA and protein levels. • Fgf21 induction by TCDD is AhR-dependent. • DEHP attenuated TCDD-induced Fgf21 expression

  10. Aryl hydrocarbon receptor (AhR agonists suppress interleukin-6 expression by bone marrow stromal cells: an immunotoxicology study

    Directory of Open Access Journals (Sweden)

    Schlezinger Jennifer J

    2003-12-01

    Full Text Available Abstract Background Bone marrow stromal cells produce cytokines required for the normal growth and development of all eight hematopoietic cell lineages. Aberrant cytokine production by stromal cells contributes to blood cell dyscrasias. Consequently, factors that alter stromal cell cytokine production may significantly compromise the development of normal blood cells. We have shown that environmental chemicals, such as aromatic hydrocarbon receptor (AhR agonists, suppress B lymphopoiesis by modulating bone marrow stromal cell function. Here, we extend these studies to evaluate the potential for two prototypic AhR agonists, 7,12-dimethylbenz [a]anthracene (DMBA and 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD, to alter stromal cell cytokine responses. Methods Bone marrow stromal cells were treated with AhR agonists and bacterial lipopolysaccharide (LPS to mimic innate inflammatory cytokine responses and to study the effects of AhR ligands on those responses. Steady state cytokine RNA levels were screened by RNAse protection assays (RPA and quantified by real-time PCR. Cytokine (IL-6 protein production was measured by ELISA. NF-κB EMSAs were used to study IL-6 transcriptional regulation. Results RPAs indicated that AhR+ bone marrow stromal cells consistently up-regulated genes encoding IL-6 and LIF in response to LPS, presumably through activation of Toll-like receptor 4. Pre-treatment with low doses of DMBA or TCDD selectively abrogated IL-6 gene induction but had no effect on LIF mRNA. Real-time-PCR indicated a significant inhibition of IL-6 mRNA by AhR ligands within 1 hour of LPS challenge which was reflected in a profound down-regulation of IL-6 protein induction, with DMBA and TCDD suppressing IL-6 levels as much as 65% and 88%, respectively. This potent inhibitory effect persisted for at least 72 hours. EMSAs measuring NF-κB binding to IL-6 promoter sequences, an event known to induce IL-6 transcription, indicated a significant decrease in

  11. Polycyclic Aromatic Hydrocarbons (PAHs) Mediate Transcriptional Activation of the ATP Binding Cassette Transporter ABCB6 Gene via the Aryl Hydrocarbon Receptor (AhR)*

    Science.gov (United States)

    Chavan, Hemantkumar; Krishnamurthy, Partha

    2012-01-01

    Liver is endowed with a mechanism to induce hepatic cytochromes P450 (CYP450s) in response to therapeutic drugs and environmental contaminants, leading to increased detoxification and elimination of the xenobiotics. Each CYP450 is composed of an apoprotein moiety and a heme prosthetic group, which is required for CYP450 activity. Thus, under conditions of CYP450 induction, there is a coordinate increase in heme biosynthesis to compensate for the increased expression of CYP450s. ABCB6, a mitochondrial ATP binding cassette transporter, which regulates coproporphyrinogen transport from the cytoplasm into the mitochondria to complete heme biosynthesis, represents a previously unrecognized rate-limiting step in heme biosynthesis. However, it is not known if exposure to drugs and environmental contaminants induces ABCB6 expression, to assure an adequate and apparently coordinated supply of heme for the generation of functional cytochrome holoprotein. In the present study, we demonstrate that polycyclic aromatic hydrocarbons (PAHs), the widely distributed environmental toxicants shown to induce porphyrin accumulation causing hepatic porphyria, up-regulate ABCB6 expression in both mice and humans. Using siRNA technology and Abcb6 knock-out mice, we demonstrate that PAH-mediated increase in hepatic porphyrins is compromised in the absence of ABCB6. Moreover, in vivo studies in aryl hydrocarbon receptor (AhR) knock-out mice demonstrate that PAH induction of ABCB6 is mediated by AhR. Promoter activation studies combined with electrophoretic mobility shift assay and chromatin immunoprecipitation assay demonstrate direct interactions between the AhR binding sites in the ABCB6 promoter and the AhR receptor, implicating drug activation mechanisms for ABCB6 similar to those found in inducible cytochrome P450s. These studies are the first to describe direct transcriptional activation of both mouse and human ABCB6 by xenobiotics. PMID:22761424

  12. An endogenous aryl hydrocarbon receptor (AhR) ligand, ITE induces regulatory T cells (Tregs) and ameliorates experimental colitis.

    Science.gov (United States)

    Abron, Jessicca D; Singh, Narendra P; Mishra, Manoj K; Price, Robert L; Nagarkatti, Mitzi; Nagarkatti, Prakash S; Singh, Udai P

    2018-04-19

    Inflammatory bowel disease (IBD) is a chronic intestinal inflammatory condition that affects millions of people with high morbidity and health-care cost. The precise etiology of IBD is unknown, but clear evidence suggests that intestinal inflammation is caused by an excessive immune response to mucosal antigens. Recent studies have shown that activation of the aryl hydrocarbon receptor (AhR) induces regulatory T cells (Tregs) and suppresses autoimmune diseases. In the current study, we investigated if nontoxic ligand of AhR, 2-(1'H-indole-3'-carbonyl)-thiazole-4-carboxylic acid methyl ester (ITE), can attenuate dextran sodium sulphate (DSS)-induced colitis. Our studies demonstrated that in mice that received ITE treatment, in-vivo colitis pathogenesis, including a decrease in body weight, was significantly reversed along with the systemic and intestinal inflammatory cytokines. ITE increased the expression of Tregs in spleen, mesenteric lymph nodes (MLNs) and colon lamina propria lymphocytes (cLPL) of mice with colitis when compared to controls. This induction of Tregs was reversed by AhR antagonist treatment in-vitro. ITE treatment also increased dendritic cells (DCs; CD11c+) and decreased F4/80+ (macrophage) from the spleen, MLNs and cLPL in mice with colitis. ITE also reversed the systemic and intestinal frequency of CD4+T cells during colitis and suppressed inflammatory cytokines including IFN-γ, TNF-α, IL-17, IL-6 and IL-1 as well as induced IL-10 levels. These findings suggest that ITE attenuates colitis through induction of Tregs and reduction in inflammatory CD4+ T cells and cytokines. Thus, our work demonstrates that the nontoxic endogenous AhR ligand ITE, may serve as a therapeutic modality to treat IBD.

  13. Characterizing the role of endothelin-1 in the progression of cardiac hypertrophy in aryl hydrocarbon receptor (AhR) null mice

    International Nuclear Information System (INIS)

    Lund, Amie K.; Goens, M. Beth; Nunez, Bethany A.; Walker, Mary K.

    2006-01-01

    The aryl hydrocarbon receptor (AhR) is a ligand-activated transcription factor characterized to play a role in detection and adaptation to environmental stimuli. Genetic deletion of AhR results in hypertension, and cardiac hypertrophy and fibrosis, associated with elevated plasma angiotensin II (Ang II) and endothelin-1 (ET-1), thus AhR appears to contribute to cardiovascular homeostasis. In these studies, we tested the hypothesis that ET-1 mediates cardiovascular pathology in AhR null mice via ET A receptor activation. First, we determine the time courses of cardiac hypertrophy, and of plasma and tissue ET-1 expression in AhR wildtype and null mice. AhR null mice exhibited increases in heart-to-body weight ratio and age-related expression of cardiac hypertrophy markers, β-myosin heavy chain (β-MHC), and atrial natriuretic factor (ANF), which were significant at 2 months. Similarly, plasma and tissue ET-1 expression was significantly elevated at 2 months and increased further with age. Second, AhR null mice were treated with ET A receptor antagonist, BQ-123 (100 nmol/kg/day), for 7, 28, or 58 days and blood pressure, cardiac fibrosis, and cardiac hypertrophy assessed, respectively. BQ-123 for 7 days significantly reduced mean arterial pressure in conscious, catheterized mice. BQ-123 for 28 days significantly reduced the histological appearance of cardiac fibrosis. Treatment for 58 days significantly reduced cardiac mass, assessed by heart weight, echocardiography, and β-MHC and ANF expression; and reduced cardiac fibrosis as determined by osteopontin and collagen I mRNA expression. These findings establish ET-1 and the ET A receptor as primary determinants of hypertension and cardiac pathology in AhR null mice

  14. Aryl hydrocarbon receptor (AhR-mediated perturbations in gene expression during early stages of CD4+ T-cell differentiation

    Directory of Open Access Journals (Sweden)

    Diana eRohlman

    2012-08-01

    Full Text Available Activation of the aryl hydrocarbon receptor (AhR by its prototypic ligand, 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD, mediates potent suppression of T-cell dependent immune responses. The suppressive effects of TCDD occur early during CD4+ T-cell differentiation in the absence of effects on proliferation and have recently been associated with the induction of AhR-dependent regulatory T-cells (Treg. Since AhR functions as a ligand-activated transcription factor, changes in gene expression induced by TCDD during the early stages of CD4+ T-cell differentiation are likely to reflect fundamental mechanisms of AhR action. A custom panel of genes associated with T-cell differentiation was used to query changes in gene expression induced by exposure to 1 nM TCDD. CD4+ T-cells from AhR+/+ and AhR-/- mice were cultured with cytokines known to polarize the differentiation of T-cells to various effector lineages. Treatment with TCDD induced expression of Cyp1a1, Cyp1b1 and Ahrr in CD4+ T-cells from AhR+/+ mice under all culture conditions, validating the presence and activation of AhR in these cells. The highest levels of AhR activation occurred under Th17 conditions at 24 hours and Tr1 conditions at 48 hours. Unexpectedly, expression levels of most genes associated with early T-cell differentiation were unaltered by AhR activation, including lineage-specific genes that drive CD4+ T-cell polarization. The major exception was AhR-dependent up-regulation of Il22 that was seen under all culture conditions. Independent of TCDD, AhR down-regulated the expression of Il17a and Rorc based on increased expression of these genes in AhR-deficient cells across culture conditions. These findings are consistent with a role for AhR in down-regulation of inflammatory immune responses and implicate IL-22 as a potential contributor to the immunosuppressive effects of TCDD.

  15. Phytomonitoring and phytoremediation of agrochemicals and related compounds based on recombinant cytochrome P450s and aryl hydrocarbon receptors (AhRs).

    Science.gov (United States)

    Shimazu, Sayuri; Inui, Hideyuki; Ohkawa, Hideo

    2011-04-13

    Molecular mechanisms of metabolism and modes of actions of agrochemicals and related compounds are important for understanding selective toxicity, biodegradability, and monitoring of biological effects on nontarget organisms. It is well-known that in mammals, cytochrome P450 (P450 or CYP) monooxygenases metabolize lipophilic foreign compounds. These P450 species are inducible, and both CYP1A1 and CYP1A2 are induced by aryl hydrocarbon receptor (AhR) combined with a ligand. Gene engineering of P450 and NADPH cytochrome P450 oxidoreductase (P450 reductase) was established for bioconversion. Also, gene modification of AhRs was developed for recombinant AhR-mediated β-glucronidase (GUS) reporter assay of AhR ligands. Recombinant P450 genes were transformed into plants for phytoremediation, and recombinant AhR-mediated GUS reporter gene expression systems were each transformed into plants for phytomonitoring. Transgenic rice plants carrying CYP2B6 metabolized the herbicide metolachlor and remarkably reduced the residues in the plants and soils under paddy field conditions. Transgenic Arabidopsis plants carrying recombinant guinea pig (g) AhR-mediated GUS reporter genes detected PCB126 at the level of 10 ng/g soils in the presence of biosurfactants MEL-B. Both phytomonitoring and phytoremediation plants were each evaluated from the standpoint of practical uses.

  16. Activation of aryl hydrocarbon receptor (AhR leads to reciprocal epigenetic regulation of FoxP3 and IL-17 expression and amelioration of experimental colitis.

    Directory of Open Access Journals (Sweden)

    Narendra P Singh

    Full Text Available Aryl hydrocarbon receptor (AhR, a transcription factor of the bHLH/PAS family, is well characterized to regulate the biochemical and toxic effects of environmental chemicals. More recently, AhR activation has been shown to regulate the differentiation of Foxp3(+ Tregs as well as Th17 cells. However, the precise mechanisms are unclear. In the current study, we investigated the effect of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD, a potent AhR ligand, on epigenetic regulation leading to altered Treg/Th17 differentiation, and consequent suppression of colitis.Dextran sodium sulphate (DSS administration induced acute colitis in C57BL/6 mice, as shown by significant weight loss, shortening of colon, mucosal ulceration, and increased presence of CXCR3(+ T cells as well as inflammatory cytokines. Interestingly, a single dose of TCDD (25 µg/kg body weight was able to attenuate all of the clinical and inflammatory markers of colitis. Analysis of T cells in the lamina propria (LP and mesenteric lymph nodes (MLN, during colitis, revealed decreased presence of Tregs and increased induction of Th17 cells, which was reversed following TCDD treatment. Activation of T cells from AhR(+/+ but not AhR (-/- mice, in the presence of TCDD, promoted increased differentiation of Tregs while inhibiting Th17 cells. Analysis of MLN or LP cells during colitis revealed increased methylation of CpG islands of Foxp3 and demethylation of IL-17 promoters, which was reversed following TCDD treatment.These studies demonstrate for the first time that AhR activation promotes epigenetic regulation thereby influencing reciprocal differentiation of Tregs and Th17 cells, and amelioration of inflammation.

  17. Genetic variability of aryl hydrocarbon receptor (AhR)-mediated regulation of the human UDP glucuronosyltransferase (UGT) 1A4 gene

    Energy Technology Data Exchange (ETDEWEB)

    Erichsen, Thomas J; Ehmer, Ursula; Kalthoff, Sandra; Lankisch, Tim O; Mueller, Tordis M [Department of Gastroenterology, Hepatology and Endocrinology, Hannover, Medical School, Hannover (Germany); Munzel, Peter A [Department of Toxicology, Institute of Pharmacology and Toxicology, University of Tubingen, Tubingen (Germany); Manns, Michael P [Department of Gastroenterology, Hepatology and Endocrinology, Hannover, Medical School, Hannover (Germany); Strassburg, Christian P. [Department of Gastroenterology, Hepatology and Endocrinology, Hannover, Medical School, Hannover (Germany)], E-mail: strassburg.christian@mh-hannover.de

    2008-07-15

    UDP glucuronosyltransferases (UGTs) play an important role for drug detoxification and toxicity. UGT function is genetically modulated by single nucleotide polymorphisms (SNPs) which lead to the expression of functionally altered protein, or altered expression levels. UGT1A4 activity includes anticonvulsants, antidepressants and environmental mutagens. In this study the induction of the human UGT1A4 gene and a potential influence of genetic variation in its promoter region were analyzed. SNPs at bp - 219 and - 163 occurred in 9% among 109 blood donors reducing UGT1A4 transcription by 40%. UGT1A4 transcription was dioxin inducible. Reporter gene experiments identified 2 xenobiotic response elements (XRE), which were functionally confirmed by mutagenesis analyses, and binding was demonstrated by electromobility shift assays. Constitutive human UGT1A4 gene expression and induction was aryl hydrocarbon receptor (AhR)-dependent, and reduced in the presence of SNPs at bp - 219 and - 163. AhR-mediated regulation of the human UGT1A4 gene by two XRE and a modulation by naturally occurring genetic variability by SNPs is demonstrated, which indicates gene-environment interaction with potential relevance for drug metabolism.

  18. Genetic variability of aryl hydrocarbon receptor (AhR)-mediated regulation of the human UDP glucuronosyltransferase (UGT) 1A4 gene

    International Nuclear Information System (INIS)

    Erichsen, Thomas J.; Ehmer, Ursula; Kalthoff, Sandra; Lankisch, Tim O.; Mueller, Tordis M.; Munzel, Peter A.; Manns, Michael P.; Strassburg, Christian P.

    2008-01-01

    UDP glucuronosyltransferases (UGTs) play an important role for drug detoxification and toxicity. UGT function is genetically modulated by single nucleotide polymorphisms (SNPs) which lead to the expression of functionally altered protein, or altered expression levels. UGT1A4 activity includes anticonvulsants, antidepressants and environmental mutagens. In this study the induction of the human UGT1A4 gene and a potential influence of genetic variation in its promoter region were analyzed. SNPs at bp - 219 and - 163 occurred in 9% among 109 blood donors reducing UGT1A4 transcription by 40%. UGT1A4 transcription was dioxin inducible. Reporter gene experiments identified 2 xenobiotic response elements (XRE), which were functionally confirmed by mutagenesis analyses, and binding was demonstrated by electromobility shift assays. Constitutive human UGT1A4 gene expression and induction was aryl hydrocarbon receptor (AhR)-dependent, and reduced in the presence of SNPs at bp - 219 and - 163. AhR-mediated regulation of the human UGT1A4 gene by two XRE and a modulation by naturally occurring genetic variability by SNPs is demonstrated, which indicates gene-environment interaction with potential relevance for drug metabolism

  19. A rapid and reagent-free bioassay for the detection of dioxin-like compounds and other aryl hydrocarbon receptor (AhR) agonists using autobioluminescent yeast.

    Science.gov (United States)

    Xu, Tingting; Young, Anna; Marr, Enolia; Sayler, Gary; Ripp, Steven; Close, Dan

    2018-02-01

    An autonomously bioluminescent Saccharomyces cerevisiae BLYAhS bioreporter was developed in this study for the simple and rapid detection of dioxin-like compounds (DLCs) and aryl hydrocarbon receptor (AhR) agonists. This recombinant yeast reporter was based on a synthetic bacterial luciferase reporter gene cassette (lux) that can produce the luciferase as well as the enzymes capable of self-synthesizing the requisite substrates for bioluminescent production from endogenous cellular metabolites. As a result, bioluminescent signal production is generated continuously and autonomously without cell lysis or exogenous reagent addition. By linking the expression of the autobioluminescent lux reporter cassette to AhR activation via the use of a dioxin-responsive promoter, the S. cerevisiae BLYAhS bioreporter emitted a bioluminescent signal in response to DLC exposure in a dose-responsive manner. The model dioxin, 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), could be detected within 4 h with a half maximal effective concentration (EC 50 ) of ~ 8.1 nM and a lower detection limit of 500 pM. The autobioluminescent response of BLYAhS to other AhR agonists, including 2,3,7,8-tetrachlorodibenzofuran (TCDF), polychlorinated bisphenyl congener 126 (PCB-126) and 169 (PCB-169), 1,2,3,6,7,8-hexachlorodibenzo-p-dioxin (HxCDD), 1,2,3,4,6,7,8-heptachlorodibenzo-p-dioxin (HpCDD), benzo[a]pyrene (BaP), and β-naphthoflavone (bNF), were also characterized in this study. The non-destructive and reagent-free nature of the BLYAhS reporter assay facilitated near-continuous, automated signal acquisition without additional hands-on effort and cost, providing a simple and cost-effective method for rapid DLC detection.

  20. Perturbation effect of reduced graphene oxide quantum dots (rGOQDs) on aryl hydrocarbon receptor (AhR) pathway in zebrafish.

    Science.gov (United States)

    Zhang, Jing-Hui; Sun, Tai; Niu, Aping; Tang, Yu-Mei; Deng, Shun; Luo, Wei; Xu, Qun; Wei, Dapeng; Pei, De-Sheng

    2017-07-01

    Graphene quantum dots (GQDs) has been widely used in enormous fields, however, the inherent molecular mechanism of GQDs for potential risks in biological system is still elusive to date. In this study, the outstanding reduced graphene quantum dots (rGOQDs) with the QY as high as 24.62% were successfully synthesized by the improved Hummers method and DMF hydrothermal treatment approach. The rGOQDs were N-doped photoluminescent nanomaterials with functional groups on the surface. The fluorescent bio-imaging was performed by exposing zebrafish in different concentrations of the as-prepared rGOQDs, and the distribution of rGOQDs was successfully observed. Moreover, the developmental toxicity and genotoxicity were evaluated to further investigate the potential hazard of rGOQDs. The result indicated that rGOQDs were responsible for the dose-dependent abnormalities on the development of zebrafish. Since the real-time polymerase chain reaction (RT-PCR) results showed that the expression of cyp1a was the highest expression in the selected genes and significantly up-regulated 8.49 fold in zebrafish, the perturbation of rGOQDs on aryl hydrocarbon receptor (AhR) pathway was investigated by using the Tg(cyp1a:gfp) zebrafish for the first time. The results demonstrated that rGOQDs significantly increased the green fluorescent protein (GFP) expression promoted by cyp1a in a dose-dependent manner, which was also further confirmed by the western blotting. This study offered an opportunity to reveal the potential hazards of in vivo bio-probes, which provided a valuable reference for investigating the graphene-based materials on the disturbance of AhR pathway in biological organisms. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Antioxidant Functions of the Aryl Hydrocarbon Receptor

    Directory of Open Access Journals (Sweden)

    Cornelia Dietrich

    2016-01-01

    Full Text Available The aryl hydrocarbon receptor (AhR is a transcription factor belonging to the basic helix-loop-helix/PER-ARNT-SIM family. It is activated by a variety of ligands, such as environmental contaminants like polycyclic aromatic hydrocarbons or dioxins, but also by naturally occurring compounds and endogenous ligands. Binding of the ligand leads to dimerization of the AhR with aryl hydrocarbon receptor nuclear translocator (ARNT and transcriptional activation of several xenobiotic phase I and phase II metabolizing enzymes. It is generally accepted that the toxic responses of polycyclic aromatic hydrocarbons, dioxins, and structurally related compounds are mediated by activation of the AhR. A multitude of studies indicate that the AhR operates beyond xenobiotic metabolism and exerts pleiotropic functions. Increasing evidence points to a protective role of the AhR against carcinogenesis and oxidative stress. Herein, I will highlight data demonstrating a causal role of the AhR in the antioxidant response and present novel findings on potential AhR-mediated antioxidative mechanisms.

  2. A human intervention study with foods containing natural Ah-receptor agonists does not significantly show AhR-mediated effects as measured in blood cells and urine

    NARCIS (Netherlands)

    Waard, de W.J.; Peijnenburg, A.A.C.M.; Baykus, H.; Aarts, H.J.M.; Hoogenboom, L.A.P.; Schooten, van F.J.; Kok, E.J.

    2008-01-01

    Binding and activation of the aryl hydrocarbon receptor (AhR) is thought to be an essential step in the toxicity of the environmental pollutants dioxins and dioxin-like PCBs. However, also a number of natural compounds, referred to as NAhRAs (natural Ah-receptor agonists), which are present in, for

  3. Ah receptor mediated suppression of the antibody response in mice is primarily dependent on the Ah phenotype of lymphoid tissue

    International Nuclear Information System (INIS)

    Silkworth, J.B.; Antrim, L.A.; Sack, G.

    1986-01-01

    Halogenated aromatic hydrocarbons act through the aromatic hydrocarbon (Ah) receptor in mice to produce a series of toxic effects of the immune system. The receptor protein is a product of the Ah gene locus. Ah responsive (Ahb/Ahb) mice express a high affinity receptor in both lymphoid and nonlymphoid tissues whereas nonresponsive Ahd/Ahd mice express a poor affinity receptor. To determine the role of the Ah receptor of lymphoid tissue relative to that of nonlymphoid tissue in the induction of immune impairment, bone marrow was used to reconstitute lethally irradiated mice of the same or opposite Ah phenotype. All mice were given 3,3',4,4'-tetrachlorobiphenyl (35 and 350 mumol/kg) ip 2 days before immunization with sheep erythrocytes (SRBC). The immune response to this T dependent antigen and organ weights were determined 5 or 7 days later in normal or chimeric mice, respectively. Monoclonal Lyt 1.1 and Lyt 1.2 antibodies were used to establish the origin of the cells which repopulated the chimeric thymuses. The immune responses of both BALB/cBy (Ahb/Ahb) and the BALB/cBy X DBA/2 hybrid, CByD2F1 (Ahb/Ahd), were significantly suppressed but DBA/2 mice were unaffected. The immune responses of chimeric BALB/cBy----BALB/cBy and BALB/cBy----DBA/2 (donor----recipient) mice were also significantly suppressed and thymic atrophy was observed in both cases. The serum anti-SRBC antibody titers of DBA/2----BALB/cBy chimeras were also significantly decreased although not to the same extent as in BALB/cBy----DBA/2 mice. Chimeric DBA/2----DBA/2 mice were not affected. These results indicate that the sensitivity to Ah receptor mediated suppression of the antibody response is primarily determined by the Ah phenotype of the lymphoid tissue

  4. Distinct roles for aryl hydrocarbon receptor nuclear translocator and ah receptor in estrogen-mediated signaling in human cancer cell lines.

    Directory of Open Access Journals (Sweden)

    Mark P Labrecque

    Full Text Available The activated AHR/ARNT complex (AHRC regulates the expression of target genes upon exposure to environmental contaminants such as 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD. Importantly, evidence has shown that TCDD represses estrogen receptor (ER target gene activation through the AHRC. Our data indicates that AHR and ARNT act independently from each other at non-dioxin response element sites. Therefore, we sought to determine the specific functions of AHR and ARNT in estrogen-dependent signaling in human MCF7 breast cancer and human ECC-1 endometrial carcinoma cells. Knockdown of AHR with siRNA abrogates dioxin-inducible repression of estrogen-dependent gene transcription. Intriguingly, knockdown of ARNT does not effect TCDD-mediated repression of estrogen-regulated transcription, suggesting that AHR represses ER function independently of ARNT. This theory is supported by the ability of the selective AHR modulator 3',4'-dimethoxy-α-naphthoflavone (DiMNF to repress estrogen-inducible transcription. Furthermore, basal and estrogen-activated transcription of the genes encoding cathepsin-D and pS2 are down-regulated in MCF7 cells but up-regulated in ECC-1 cells in response to loss of ARNT. These responses are mirrored at the protein level with cathepsin-D. Furthermore, knock-down of ARNT led to opposite but corresponding changes in estrogen-stimulated proliferation in both MCF7 and ECC-1 cells. We have obtained experimental evidence demonstrating a dioxin-dependent repressor function for AHR and a dioxin-independent co-activator/co-repressor function for ARNT in estrogen signalling. These results provide us with further insight into the mechanisms of transcription factor crosstalk and putative therapeutic targets in estrogen-positive cancers.

  5. Detection and characterization of Ah receptor in tissue and cells from human tonsils

    International Nuclear Information System (INIS)

    Lorenzen, A.; Okey, A.B.

    1991-01-01

    Ah receptor was identified and characterized in cytosol and nuclear extracts from human tonsils obtained at surgery from children 2 to 6 years of age. Ah receptor was found in cytosol prepared from whole-tonsil homogenates as well as in cytosol and nuclear fractions prepared from tonsil lymphocytes or tonsil fibroblasts grown in primary culture. Cytosolic Ah receptor was detectable in tonsillar tissue with either halogenated (2,3,7,8-[3H]tetrachlorodibenzo-p-dioxin (TCDD)) or nonhalogenated (3-[3H]methylcholanthrene and [3H]benzo[a]pyrene) aromatic hydrocarbons and sedimented at approximately 9 S after velocity sedimentation on sucrose gradients. The apparent binding affinity (Kd) of [3H]TCDD for Ah receptor ranged from 3 to 12 nM in cytosols from seven different donors. The same analyses indicated a concentration of Ah receptor in human tonsils of approximately 100-300 fmol/mg cytosolic protein. Incubation of either tonsil lymphocytes or tonsil fibroblasts with [3H]TCDD resulted in transformation of cytosolic Ah receptor to a nuclear binding form which could be detected as a specifically labeled peak sedimenting at approximately 6 S on sucrose gradients. These data demonstrate the existence of Ah receptor in human tonsils and suggest that this immune organ may be an appropriate model for further studies on the mechanism and manifestation of aromatic hydrocarbon-induced immunotoxicity in man

  6. Promiscuous ligand-dependent activation of the Ah receptor: chemicals in crude extracts from commercial and consumer products bind to and activate the Ah receptor and Ah receptor-dependent gene expression

    Energy Technology Data Exchange (ETDEWEB)

    Denison, M.; Rogers, W.; Bohonowych, J.; Zhao, B. [Dept. of Environmental Toxicology, Univ. of California, Davis (United States)

    2004-09-15

    2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD, dioxin) and related halogenated and polycyclic aromatic hydrocarbons (HAHs and PAHs) produce a variety of toxic and biological effects, the majority of which are mediated by their ability to bind to and activate the Ah receptor (AhR) and AhR-dependent gene expression. While previous studies suggested that the physiochemical characteristics of AhR ligands (i.e. HAH and PAH agonists) must meet a defined set of criteria, it has recently become abundantly clear that the AhR can be bound and activated by structurally diverse range of synthetic and naturally occurring chemicals. Based on the spectrum of AhR ligands identified to date, the structural promiscuity of AhR ligands is significantly more diverse than that observed for other liganddependent nuclear receptors. However, a detailed understanding of the structural diversity of AhR ligands and their respective biological and toxicological activities remains to be established and could provide insights into the identity of endogenous ligands. Over the past several years we have developed and utilized several AhR-based in vitro and cell-based bioassay systems to screen pure chemicals and chemical libraries as well as mixtures of chemicals with the goal of defining the spectrum of chemicals that can bind to and activate/inhibit the AhR and AhR-dependent gene expression. In addition, demonstration of the presence of AhR agonists/antagonists in extracts containing complex mixtures of chemicals from a variety of biological and environmental samples, coupled with AhR bioassay-based fractionation procedures, provides an avenue in which to identify novel AhR ligands. In previous preliminary screening studies we demonstrated the presence of AhR agonists in extracts of commercial and consumer products using an in vitro guinea pig hepatic AhR DNA binding and mouse gene induction assays. Here we have extended these studies and have examined the ability of crude DMSO and ethanol extracts

  7. The interplay of the aryl hydrocarbon receptor and beta-catenin alters both AhR-dependent transcription and Wnt/beta-catenin signaling in liver progenitors

    Czech Academy of Sciences Publication Activity Database

    Procházková, Jiřina; Kabátková, Markéta; Bryja, Vítězslav; Umannová, Lenka; Bernatík, O.; Kozubík, Alois; Machala, M.; Vondráček, Jan

    2011-01-01

    Roč. 122, č. 2 (2011), s. 349-360 ISSN 1096-6080 R&D Projects: GA ČR(CZ) GD204/09/H058 Grant - others:GA ČR(CZ) GA524/09/1337 Program:GA Institutional research plan: CEZ:AV0Z50040507; CEZ:AV0Z50040702 Keywords : dioxin * beta-catenin * AhR Subject RIV: BO - Biophysics Impact factor: 4.652, year: 2011

  8. Identification and analysis of novel flavonoid agonists and antagonists for the AH and estrogen receptor

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, B.; Nagy, S.; Rogers, J.; Denison, M. [Dept. of Environmental Toxicology, Univ. of California, Davis (United States); Nantz, M.; Kurth, M.; Springsteel, M. [Dept. of Chemistry, Univ. of California, Davis (United States)

    2004-09-15

    The aryl hydrocarbon receptor (AhR) is a ligand-activated transcription factor that mediates many of the biological and toxicological effects in a diverse range of species, tissues, and cell types. The most studied effect is induction of gene expression, and, the majority of AhR responsive genes, such as cytochrome P4501A1 (CYP1A1), utilize AhR dependent mechanism of action. While halogenated aromatic hydrocarbons (HAHs) and polycyclic aromatic hydrocarbons (PAHs) are the prototypical ligands of the Ah receptor, it has recently identified that the AhR is activated by a structurally diverse array of hydrophobic natural and synthetic chemicals. Given the structural diversity in AhR ligands, the physiochemical characteristics for high and low affinity ligands seems to be established. Environmental contaminants that can disrupt the endocrine homeostasis of an organism have also gained widespread attention in recent years and numerous chemicals have been identified as having either hormone or anti-hormone properties. However, like the AhR, the structural diversity and characteristics of endocrine disrupters that exert their action via nuclear receptors also seems to be depended on the estrogen receptor (ER). The flavonoids are a diverse family of chemicals commonly found in fruits and vegetables. Members of this family exert cytostatic, apoptotic, anti-inflammatory and anti-angiogenic activities. In addition, several flavonoids are potent modulators of both the expression and activities of specific cytochrome P450 genes/proteins and somel others have estrogenic and antiestrogenic activity. Accordingly flavonoids have attracted attention as possible chemoprotective or chemotherapeutic agents. We have previously developed and analyzed a novel chemical library of flavonoids which contained {proportional_to}200 compounds. The ability of these compounds to activate and/or inhibit AhR- and ER- dependent gene expression was examined by using our recently developed AhR- and ER

  9. Interaction of Diuron and Related Substituted Phenylureas with the Ah Receptor Pathway

    Science.gov (United States)

    Zhao, Bin; Baston, David S.; Hammock, Bruce; Denison, Michael S.

    2011-01-01

    The aryl hydrocarbon receptor (AhR) is a ligand-dependent transcription factor that mediates many of the biological and toxicological actions of structurally diverse chemicals, including the ubiquitous environmental contaminant 2,3,7,8-tetrachlorodibenzo-p-dioxin. Here, we have examined the ability of diuron, a widely used herbicide, and several structurally related substituted phenylureas to bind to and activate/inhibit the AhR and AhR signal transduction. Diuron induced CYP1A1 mRNA levels in mouse hepatoma (Hepa1c1c7) cells and AhR-dependent luciferase reporter gene expression in stably transfected mouse, rat, guinea pig, and human cell lines. In addition, ligand binding and gel retardation analysis demonstrated the ability of diuron to competitively bind to and stimulate AhR transformation and DNA binding in vitro and in intact cells. Several structurally related substituted phenylureas competitively bound to the guinea pig hepatic cytosolic AhR, inhibited 2,3,7,8-tetrachlorodibenzo-p-dioxin-induced AhR-dependent luciferase reporter gene expression in a species-specific manner and stimulated AhR transformation and DNA binding, consistent with their role as partial AhR agonists. These results demonstrate not only that diuron and related substituted phenylureas are AhR ligands but also that exposure to these chemicals could induce/inhibit AhR-dependent biological effects. PMID:16788953

  10. Aryl hydrocarbon receptor and intestinal immunity.

    Science.gov (United States)

    Lamas, Bruno; Natividad, Jane M; Sokol, Harry

    2018-04-07

    Aryl hydrocarbon receptor (AhR) is a member of the basic helix-loop-helix-(bHLH) superfamily of transcription factors, which are associated with cellular responses to environmental stimuli, such as xenobiotics and oxygen levels. Unlike other members of bHLH, AhR is the only bHLH transcription factor that is known to be ligand activated. Early AhR studies focused on understanding the role of AhR in mediating the toxicity and carcinogenesis properties of the prototypic ligand 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). In recent years, however, it has become apparent that, in addition to its toxicological involvement, AhR is highly receptive to a wide array of endogenous and exogenous ligands, and that its activation leads to a myriad of key host physiological functions. In this study, we review the current understanding of the functions of AhR in the mucosal immune system with a focus on its role in intestinal barrier function and intestinal immune cells, as well as in intestinal homeostasis.

  11. Activation of the Ah receptor by extracts of dietary herbal supplements, vegetables and fruits

    NARCIS (Netherlands)

    Jeuken, A.; Keser, B.J.G.; Khan, E.; Brouwer, A.; Koeman, J.; Denison, M.S.

    2003-01-01

    The aryl hydrocarbon receptor (AhR) is a ligand-dependent transcription factor that can be activated by a structurally diverse range of synthetic and natural chemicals, and it mediates the toxic and biological effects of environmental contaminants such as 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD).

  12. Activation of the Ah receptor by extracts of dietary herbal supplements, vegetables, and fruits

    NARCIS (Netherlands)

    Jeuken, A.; Keser, B.J.G.; Khan, E.; Brouwer, A.; Koeman, J.H.; Denison, M.S.

    2003-01-01

    The aryl hydrocarbon receptor (AhR) is a ligand-dependent transcription factor that can be activated by a structurally diverse range of synthetic and natural chemicals, and it mediates the toxic and biological effects of environmental contaminants such as 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD).

  13. Bioassay directed identification of natural aryl hydrocarbon-receptor agonists in marmalade

    NARCIS (Netherlands)

    Ede, van K.I.; Li, A.; Antunes Fernandes, E.C.; Mulder, P.P.J.; Peijnenburg, A.A.C.M.; Hoogenboom, L.A.P.

    2008-01-01

    Citrus fruit and citrus fruit products, like grapefruit, lemon and marmalade were shown to contain aryl hydrocarbon receptor (AhR) agonists, as detected with the DR CALUX® bioassay. This is of interest regarding the role of the Ah-receptor pathway in the adverse effects of dioxins, PCBs and other

  14. Influence of TCDD and natural Ah receptor agonists on benzo[a]pyrene-DNA adduct formation in the Caco-2 human colon cell line

    NARCIS (Netherlands)

    Waard, de W.J.; Kok, de T.M.C.M.; Maas, L.M.; Peijnenburg, A.A.C.M.; Hoogenboom, L.A.P.; Aarts, H.J.M.; Schooten, van F.J.

    2008-01-01

    Several compounds originating from cruciferous vegetables and citrus fruits bind to and activate the aryl hydrocarbon receptor (AhR). This receptor plays an important role in the toxicity of the known tumour promoter and potent AhR-agonist 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). However,

  15. Role of the Aryl Hydrocarbon Receptor in Colon Neoplasia

    Energy Technology Data Exchange (ETDEWEB)

    Xie, Guofeng, E-mail: gxie@medicine.umaryland.edu; Raufman, Jean-Pierre [Division of Gastroenterology and Hepatology, Veterans Administration Maryland Health Care System, University of Maryland School of Medicine, Baltimore, MD 21201 (United States)

    2015-07-31

    For both men and women, colorectal cancer (CRC) is the second leading cause of cancer death in the United States, primarily as a consequence of limited therapies for metastatic disease. The aryl hydrocarbon receptor (AhR) is a ligand-dependent transcription factor with diverse functions in detoxification of xenobiotics, inflammatory responses, and tissue homeostasis. Emerging evidence indicates that AhR also plays an important role in regulating intestinal cell proliferation and tumorigenesis. Here, we review both the pro- and anti-carcinogenic properties of AhR signaling and its potential role as a therapeutic target in CRC.

  16. Craniofacial form is altered by chronic adult exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD in Han/Wistar and Long–Evans rats with different aryl hydrocarbon receptor (AhR structures

    Directory of Open Access Journals (Sweden)

    Sabrina B. Sholts

    2015-01-01

    Full Text Available Mammalian bone has shown a variety of responses to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD exposure in experimental and wildlife studies. Although many responses have been well characterized in the postcranial skeleton, dioxin-induced effects on the cranium are largely unknown. In this study, we investigated the effects of chronic adult exposure to TCDD on cranial size and shape in dioxin-resistant Han/Wistar (H/W and dioxin-sensitive Long–Evans (L–E rat strains. Three-dimensional landmark configurations for the face, vault, and base of the cranium were recorded and analyzed using geometric morphometrics (GM and dose–response modeling. The strongest effects were shown by L–E and H/W rats with daily exposures of 100 and 1000 ng TCDD/kg bw/day, respectively, resulting in significant reductions in centroid size (CS in all three cranial modules for both strains except for the vault in H/W rats. Consistent with previous evidence of intraspecific variation in TCDD resistance, the benchmark doses (CEDs for cranial size reduction in L–E rats were roughly 10-fold lower than those for H/W rats. For both strains, the face showed the greatest size reduction from the highest doses of TCDD (i.e., 3.6 and 6.3% decreases in H/W and L–E rats, respectively, most likely related to dose-dependent reductions in limb bone size and body weight gain. However, intrinsic morphological differences between strains were also observed: although the control groups of H/W and L–E rats had vaults and bases of comparable size, the face was 6.4% larger in L–E rats. Thus, although H/W rats possess an altered aryl hydrocarbon receptor (AhR that appears to mediate and provides some resistance to TCDD exposure, their smaller reductions in facial size may also relate to strain-specific patterns of cranial development and growth. Future research will be aimed at understanding how ontogenetic factors may modulate toxic effects of prenatal and lactational exposure on

  17. Identification of benzothiazole derivatives and polycyclic aromatic hydrocarbons as aryl hydrocarbon receptor agonists present in tire extracts.

    Science.gov (United States)

    He, Guochun; Zhao, Bin; Denison, Michael S

    2011-08-01

    Leachate from rubber tire material contains a complex mixture of chemicals previously shown to produce toxic and biological effects in aquatic organisms. The ability of these leachates to induce Ah receptor (AhR)-dependent cytochrome P4501A1 expression in fish indicated the presence of AhR active chemicals, but the responsible chemicals and their direct interaction with the AhR signaling pathway were not examined. Using a combination of AhR-based bioassays, we have demonstrated the ability of tire extract to stimulate both AhR DNA binding and AhR-dependent gene expression and confirmed that the responsible chemicals were metabolically labile. The application of CALUX (chemical-activated luciferase gene expression) cell bioassay-driven toxicant identification evaluation not only revealed that tire extract contained a variety of known AhR-active polycyclic aromatic hydrocarbons but also identified 2-methylthiobenzothiazole and 2-mercaptobenzothiazole as AhR agonists. Analysis of a structurally diverse series of benzothiazoles identified many that could directly stimulate AhR DNA binding and transiently activate the AhR signaling pathway and identified benzothiazoles as a new class of AhR agonists. In addition to these compounds, the relatively high AhR agonist activity of a large number of fractions strongly suggests that tire extract contains a large number of physiochemically diverse AhR agonists whose identities and toxicological/biological significances are unknown. Copyright © 2011 SETAC.

  18. Evodiamine as a novel antagonist of aryl hydrocarbon receptor

    International Nuclear Information System (INIS)

    Yu, Hui; Tu, Yongjiu; Zhang, Chun; Fan, Xia; Wang, Xi; Wang, Zhanli; Liang, Huaping

    2010-01-01

    Research highlights: → Evodiamine interacted with the AhR. → Evodiamine inhibited the specific binding of [ 3 H]-TCDD to the AhR. → Evodiamine acts as an antagonist of the AhR. -- Abstract: Evodiamine, the major bioactive alkaloid isolated from Wu-Chu-Yu, has been shown to interact with a wide variety of proteins and modify their expression and activities. In this study, we investigated the interaction between evodiamine and the aryl hydrocarbon receptor (AhR). Molecular modeling results revealed that evodiamine directly interacted with the AhR. Cytosolic receptor binding assay also provided the evidence that evodiamine could interact with the AhR with the K i value of 28.4 ± 4.9 nM. In addition, we observed that evodiamine suppressed the 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) induced nuclear translocation of the AhR and the expression of CYP1A1 dose-dependently. These results suggested that evodiamine was able to bind to the AhR as ligand and exhibit antagonistic effects.

  19. Role of the Ah locus in suppression of cytotoxic T lymphocyte activity by halogenated aromatic hydrocarbons (PCBs and TCDD): Structure-activity relationships and effects in C57Bl/6 mice congenic at the Ah locus

    International Nuclear Information System (INIS)

    Kerkvliet, N.I.; Baecher-Steppan, L.; Smith, B.B.; Youngberg, J.A.; Henderson, M.C.; Buhler, D.R.

    1990-01-01

    Previous studies have shown that the generation of cytotoxic T lymphocytes (CTL) following allogeneic tumor challenge is suppressed in Ah-responsive C57Bl/6 mice treated with a single oral dose of the toxic, Ah receptor-binding 3,4,5,3',4',5'-hexachlorobiphenyl (HxCB). The present studies have examined the specific role of the Ah receptor in this immunotoxic response by utilizing HxCB isomers of known, varied affinity for the Ah receptor as well as by comparing effects of high-affinity Ah receptor ligands (3,4,5,3',4',5'-HxCB and 2,3,7,8-tetrachlorodibenzo-p-dioxin [TCDD]) on the CTL response of mice that differ only at the Ah locus, that is, Ah-responsive (Ahbb) and Ah-nonresponsive (Ahdd) congenic C57Bl/6 mice. Correlative changes in thymic weight, serum corticosterone (CS) levels, and spleen cellularity were also measured. The potency of HxCB congeners (3,4,5,3',4',5'-; 2,3,4,5,3',4'-; 2,4,5,2',4',5'-) and 2,3,7,8-TCDD to suppress the CTL response, to reduce spleen cellularity, to cause thymic atrophy, and to elevate serum CS levels was directly correlated with the binding affinity of the congener for the Ah receptor. Furthermore, these parameters of immunotoxicity in Ahdd C57Bl/6 mice were significantly more resistant to alterations induced by either 3,4,5,3',4',5'-HxCB or 2,3,7,8-TCDD as compared to Ahbb C57Bl/6 mice. These results strongly support an Ah receptor-dependent immunotoxic mechanism in suppression of the CTL response following acute exposure to halogenated aromatic hydrocarbons

  20. Oculomotor deficits in aryl hydrocarbon receptor null mouse.

    Directory of Open Access Journals (Sweden)

    Aline Chevallier

    Full Text Available The Aryl hydrocarbon Receptor or AhR, a ligand-activated transcription factor, is known to mediate the toxic and carcinogenic effects of various environmental pollutants such as 2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD. Recent studies in Caenorhabditis elegans and Drosophila melanogaster show that the orthologs of the AhR are expressed exclusively in certain types of neurons and are implicated in the development and the homeostasis of the central nervous system. While physiological roles of the AhR were demonstrated in the mammalian heart, liver and gametogenesis, its ontogenic expression and putative neural functions remain elusive. Here, we report that the constitutive absence of the AhR in adult mice (AhR-/- leads to abnormal eye movements in the form of a spontaneous pendular horizontal nystagmus. To determine if the nystagmus is of vestibular, visual, or cerebellar origin, gaze stabilizing reflexes, namely vestibulo-ocular and optokinetic reflexes (VOR and OKR, were investigated. The OKR is less effective in the AhR-/- mice suggesting a deficit in the visuo-motor circuitry, while the VOR is mildly affected. Furthermore, the AhR is expressed in the retinal ganglion cells during the development, however electroretinograms revealed no impairment of retinal cell function. The structure of the cerebellum of the AhR-/- mice is normal which is compatible with the preserved VOR adaptation, a plastic process dependent on cerebellar integrity. Finally, intoxication with TCDD of control adults did not lead to any abnormality of the oculomotor control. These results demonstrate that the absence of the AhR leads to acquired central nervous system deficits in the adults. Given the many common features between both AhR mouse and human infantile nystagmus syndromes, the AhR-/- mice might give insights into the developmental mechanisms which lead to congenital eye disorders.

  1. Evidence of the aryl hydrocarbon receptor in chemosynthetic mussels from the Gulf of Mexico

    International Nuclear Information System (INIS)

    Willett, K.; Thomsen, J.; Wilson, C.; McDonald, S.; Safe, S.

    1995-01-01

    The aryl hydrocarbon receptor (AhR) is a ligand-activated transcription factor that controls expression of various genes including cytochrome P450. Polynuclear aromatic and halogenated aromatic hydrocarbons are agonists for the AhR in fish and mammalian species. Previously, a homologous AhR has not been identified in marine invertebrate species. Chemosynthetic mussels were collected from gas and petroleum seeps in the Gulf of Mexico to investigate the presence of the AhR and the induction of the cytochrome P450 system. Aryl hydrocarbon hydroxylase and glutathione S-transferase activities in the gill and hepatopancreas were elevated in the petroleum seep mussels relative to those from the gas seep. A nuclear AhR in the hepatopancreas was detected in both mussel populations after treatment with [ 3 H]-tetrachlorodibenzo-p-dioxin (tcdd) followed by sucrose density gradient analysis. Gel mobility shift assays using a labeled dioxin responsive element (DRE) oligonucleotide and tcdd-transformed mussel cytosol showed a retarded band which could be competed with excess unlabeled DRE. Results from gel shifts indicated specific binding of the tcdd-mussel AhR complex to its responsible element. Finally, PCR primers designed to amplify a 700 base pair region of the human AhR detected AhR mRNA in both mussel populations. The sequence of this PCR product is being determined. The presence of the AhR in marine invertebrates has important implications in the evolutionary age of the AhR

  2. Enantiospecific effects of ketoconazole on aryl hydrocarbon receptor.

    Directory of Open Access Journals (Sweden)

    Aneta Novotna

    Full Text Available Azole antifungal ketoconazole (KET was demonstrated to activate aryl hydrocarbon receptor (AhR. Since clinically used KET is a racemic mixture of two cis-enantiomers (2R,4S-(+-KET and (2S,4R-(--KET, we examined the effects of KET enantiomers on AhR signaling pathway. (+-KET dose-dependently activated AhR in human gene reporter cell line AZ-AHR, and displayed 5-20× higher agonist activity (efficacy, as compared to (--KET; both enantiomers were AhR antagonists with equal potency (IC50. Consistently, (+-KET strongly induced CYP1A1 mRNA and protein in human HepG2 cells, while (--KET exerted less than 10% of (+-KET activity. In primary human hepatocytes, both enantiomers preferentially induced CYP1A2 over CYP1A1 mRNA and protein, and the potency of (+-KET was slightly higher as compared to (--KET. Ligand binding assay with guinea pig liver cytosols revealed that both (+-KET and (--KET are weak ligands of AhR that displaced [3H]-TCDD with comparable potency. Similarly, both enantiomers weakly transformed AhR to DNA-binding form with similar potency, as showed by EMSA, in guinea pig liver cytosolic extracts and nuclear extracts from mouse Hepa-1 cells. We also examined effects of KET on glucocorticoid receptor (GR, a regulator of AhR activity. Both KET enantiomers antagonized GR with similar potency, as revealed by gene reporter assay in AZ-GR cell line and down-regulation of tyrosine aminotransferase mRNA in human hepatocytes. Finally, we demonstrate enantiospecific antifungal activities of KET enantiomers in six Candida spp. strains. In conclusion, the significance of current study is providing the first evidence of enatiospecific effects of cis-enantiomers of ketoconazole on AhR-CYP1A pathway.

  3. Increased aryl hydrocarbon receptor expression in patients with allergic rhinitis.

    Science.gov (United States)

    Wei, P; Hu, G-H; Kang, H-Y; Yao, H-B; Kou, W; Liu, H; Hong, S-L

    2014-02-01

    A predominant Th17 population is a marker of allergic rhinitis (AR). As a ligand-activated transcription factor, the aryl hydrocarbon receptor (AhR) plays a vital role in promoting or inhibiting the development of specific Th cells. However, its role in AR remains undefined. To analyze the potential role of AhR in the pathogenesis of AR. In total, 30 AR patients and 13 healthy controls were recruited for this study and AR patients had clinical features, as demonstrated by rhinoconjunctivitis quality of life questionnaires, total symptom scores and visual analog scale scores. The expression of AhR, IL-17 and IL-22 and the presence of Th17 cells in peripheral blood mononuclear cells were measured before and after treatment with the nontoxic AhR ligand 2-(1'H-indole-3'-carbonyl)-thiazole-4-carboxylic acid methyl ester (ITE). Pretreatment ITE studies revealed that all AR patients had a significant increase in AhR expression compared with controls and AhR expression positively correlated with clinical parameters. After ITE intervention, a severe reduction in the differentiation of Th17 cells and the production of IL-17 and IL-22 was noted in both AR patients and normal subjects. Simultaneously, a dramatic enhancement of AhR expression was also observed in all healthy controls, but not in AR patients. The results suggested that the AhR may be one of the mechanisms underlying the Th17 response during the pathogenesis of AR and AhR levels were closely related to clinical severity in all AR patients. Additionally, ITE may represent a new drug candidate in the treatment of AR.

  4. Airborne polycyclic aromatic hydrocarbons trigger human skin cells aging through aryl hydrocarbon receptor.

    Science.gov (United States)

    Qiao, Yuan; Li, Qiang; Du, Hong-Yang; Wang, Qiao-Wei; Huang, Ye; Liu, Wei

    2017-07-01

    Accumulating evidence suggests that polycyclic aromatic hydrocarbons (PAH) which adsorbed on the surface of ambient air particulate matters (PM), are the major toxic compound to cause cardiovascular and respiratory diseases, even cancer. However, its detrimental effects on human skin cell remain unclear. Here, we demonstrated that SRM1649b, a reference urban dust material of PAH, triggers human skin cells aging through cell cycle arrest, cell growth inhibition and apoptosis. Principally, SRM1649b facilitated Aryl hydrocarbon receptor (AhR) translocated into nucleus, subsequently activated ERK/MAPK signaling pathway, and upregulated aging-related genes expression. Most important, we found that AhR antagonist efficiently revert the aging of skin cells. Thus our novel findings firstly revealed the mechanism of skin aging under PAH contamination and provided potential strategy for clinical application. Copyright © 2017. Published by Elsevier Inc.

  5. Activation of aryl hydrocarbon receptor reduces carbendazim-induced cell death

    International Nuclear Information System (INIS)

    Wei, Kuo-Liang; Chen, Fei-Yun; Lin, Chih-Yi; Gao, Guan-Lun; Kao, Wen-Ya; Yeh, Chi-Hui; Chen, Chang-Rong; Huang, Hao-Chun; Tsai, Wei-Ren; Jong, Koa-Jen; Li, Wan-Jung; Su, Jyan-Gwo Joseph

    2016-01-01

    Carbendazim inhibits microtubule assembly, thus blocking mitosis and inhibiting cancer cell proliferation. Accordingly, carbendazim is being explored as an anticancer drug. Data show that carbendazim increased mRNA and protein expressions and promoter activity of CYP1A1. In addition, carbendazim activated transcriptional activity of the aryl hydrocarbon response element, and induced nuclear translocation of the aryl hydrocarbon receptor (AhR), a sign the AhR is activated. Carbendazim-induced CYP1A1 expression was blocked by AhR antagonists, and was abolished in AhR signal-deficient cells. Results demonstrated that carbendazim activated the AhR, thereby stimulating CYP1A1 expression. In order to understand whether AhR-induced metabolic enzymes turn carbendazim into less-toxic metabolites, Hoechst 33342 staining to reveal carbendazim-induced nuclear changes and flow cytometry to reveal the subG 0 /G 1 population were applied to monitor carbendazim-induced cell apoptosis. Carbendazim induced less apoptosis in Hepa-1c1c7 cells than in AhR signal-deficient Hepa-1c1c7 mutant cells. Pretreatment with β-NF, an AhR agonist that highly induces CYP1A1 expression, decreased carbendazim-induced cell death. In addition, the lower the level of AhR was, the lower the vitality present in carbendazim-treated cells, including hepatoma cells and their derivatives with AhR RNA interference, also embryonic kidney cells, bladder carcinoma cells, and AhR signal-deficient Hepa-1c1c7 cells. In summary, carbendazim is an AhR agonist. The toxicity of carbendazim was lower in cells with the AhR signal. This report provides clues indicating that carbendazim is more potent at inducing cell death in tissues without than in those with the AhR signal, an important reference for applying carbendazim in cancer chemotherapy. - Highlights: • Carbendazim induced transcriptional activity of the aryl hydrocarbon response element. • Carbendazim induced nuclear translocation of the aryl hydrocarbon

  6. Activation of aryl hydrocarbon receptor reduces carbendazim-induced cell death

    Energy Technology Data Exchange (ETDEWEB)

    Wei, Kuo-Liang [Division of Gastroenterology and Hepatology, Department of Internal Medicine, Chang Gung Memorial Hospital, Chiayi 61363, Taiwan, ROC (China); College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan, ROC (China); Chen, Fei-Yun; Lin, Chih-Yi [Department of Biochemical Science and Technology, National Chiayi University, Chiayi 60004, Taiwan, ROC (China); Gao, Guan-Lun [Department of Biochemical Science and Technology, National Chiayi University, Chiayi 60004, Taiwan, ROC (China); Department of Biological Resources, National Chiayi University, Chiayi, 60004, Taiwan, ROC (China); Kao, Wen-Ya [Department of Biochemical Science and Technology, National Chiayi University, Chiayi 60004, Taiwan, ROC (China); Yeh, Chi-Hui [Department of Environmental Engineering, College of Engineering, Da-Yeh University, Dacun, Changhua 51591, Taiwan, ROC (China); Chen, Chang-Rong [Department of Biochemical Science and Technology, National Chiayi University, Chiayi 60004, Taiwan, ROC (China); Huang, Hao-Chun [Division of Gastroenterology and Hepatology, Department of Internal Medicine, Chang Gung Memorial Hospital, Chiayi 61363, Taiwan, ROC (China); Tsai, Wei-Ren [Division of Applied Toxicology, Taiwan Agricultural Chemicals and Toxic Substances Research Institute, Council of Agriculture, Executive Yuan, Taichung 41358, Taiwan, ROC (China); Jong, Koa-Jen [Department of Biological Resources, National Chiayi University, Chiayi, 60004, Taiwan, ROC (China); Li, Wan-Jung [Department of Biochemical Science and Technology, National Chiayi University, Chiayi 60004, Taiwan, ROC (China); Su, Jyan-Gwo Joseph, E-mail: jgjsu@mail.ncyu.edu.tw [Department of Biochemical Science and Technology, National Chiayi University, Chiayi 60004, Taiwan, ROC (China)

    2016-09-01

    Carbendazim inhibits microtubule assembly, thus blocking mitosis and inhibiting cancer cell proliferation. Accordingly, carbendazim is being explored as an anticancer drug. Data show that carbendazim increased mRNA and protein expressions and promoter activity of CYP1A1. In addition, carbendazim activated transcriptional activity of the aryl hydrocarbon response element, and induced nuclear translocation of the aryl hydrocarbon receptor (AhR), a sign the AhR is activated. Carbendazim-induced CYP1A1 expression was blocked by AhR antagonists, and was abolished in AhR signal-deficient cells. Results demonstrated that carbendazim activated the AhR, thereby stimulating CYP1A1 expression. In order to understand whether AhR-induced metabolic enzymes turn carbendazim into less-toxic metabolites, Hoechst 33342 staining to reveal carbendazim-induced nuclear changes and flow cytometry to reveal the subG{sub 0}/G{sub 1} population were applied to monitor carbendazim-induced cell apoptosis. Carbendazim induced less apoptosis in Hepa-1c1c7 cells than in AhR signal-deficient Hepa-1c1c7 mutant cells. Pretreatment with β-NF, an AhR agonist that highly induces CYP1A1 expression, decreased carbendazim-induced cell death. In addition, the lower the level of AhR was, the lower the vitality present in carbendazim-treated cells, including hepatoma cells and their derivatives with AhR RNA interference, also embryonic kidney cells, bladder carcinoma cells, and AhR signal-deficient Hepa-1c1c7 cells. In summary, carbendazim is an AhR agonist. The toxicity of carbendazim was lower in cells with the AhR signal. This report provides clues indicating that carbendazim is more potent at inducing cell death in tissues without than in those with the AhR signal, an important reference for applying carbendazim in cancer chemotherapy. - Highlights: • Carbendazim induced transcriptional activity of the aryl hydrocarbon response element. • Carbendazim induced nuclear translocation of the aryl

  7. Activation of the aryl hydrocarbon receptor reduces the number of precursor and effector T cells, but preserves thymic CD4(+)CD25(+)Foxp3(+) regulatory T cells

    NARCIS (Netherlands)

    Schulz, V.J.; Smit, J.J.; Bol-Schoenmakers, M.; van Duursen, M.B.M.; van den Berg, M.; Pieters, R.H.H.

    2012-01-01

    Aryl hydrocarbon receptor (AhR) activation suppresses immune responses, including allergic sensitization, by increasing the percentage of regulatory (Treg) cells. Furthermore, AhR activation is known to affect thymic precursor T cells. However, the effect of AhR activation on intrathymic

  8. Common commercial and consumer products contain activators of the aryl hydrocarbon (dioxin receptor.

    Directory of Open Access Journals (Sweden)

    Bin Zhao

    Full Text Available Activation of the Ah receptor (AhR by halogenated aromatic hydrocarbons (HAHs, such as 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD, dioxin, can produce a wide variety of toxic and biological effects. While recent studies have shown that the AhR can bind and be activated by structurally diverse chemicals, how widespread of these AhR agonists are in environmental, biological and synthetic materials remains to be determined. Using AhR-based assays, we demonstrate the presence of potent AhR agonists in a variety of common commercial and consumer items. Solvent extracts of paper, rubber and plastic products contain chemicals that can bind to and stimulate AhR DNA binding and/or AhR-dependent gene expression in hepatic cytosol, cultured cell lines, human epidermis and zebrafish embryos. In contrast to TCDD and other persistent dioxin-like HAHs, activation of AhR-dependent gene expression by these extracts was transient, suggesting that the agonists are metabolically labile. Solvent extracts of rubber products produce AhR-dependent developmental toxicity in zebrafish in vivo, and inhibition of expression of the metabolic enzyme CYP1A, significantly increased their toxic potency. Although the identity of the responsible AhR-active chemicals and their toxicological impact remain to be determined, our data demonstrate that AhR active chemicals are widely distributed in everyday products.

  9. Birth defects and aplastic anemia: differences in polycyclic hydrocarbon toxicity associated with the Ah locus. [Mice

    Energy Technology Data Exchange (ETDEWEB)

    Nebert, D.W.; Levitt, R.C.; Jensen, N.M.; Lambert, G.H.; Felton, J.S.

    1977-01-01

    The balance between cytochrome(s) P/sub 1/-450 and other forms of P-450 in the liver, and probably many nonhepatic tissues as well, appears to be important in the toxicity, carcinogenicity, mutagenicity, and teratogenicity of numerous compounds. Thus, allelic differences in a single gene--the Ah locus-- can have profound effects on the susceptibility of mice to drug toxicity and cancer. There is evidence for the Ah lous in the human. Striking increases in the incidence of stillborns, reorptions,and malformations caused by 3-methylcholanthrene or 7,12-dimethylbenz(a)anthracene were observed in the aromatic hydrocarbon responsive C57BL/6N,C3H/HeN, and BALB/cAnN inbred strains, compared with the genetically nonresponsive AKR/N. These data suggest that an association exists between the Ah locus and teratogenesis. Although numerous teratogenic differences among inbred mouse strains have been previously reported, this study is unique in that the genetic differences in teratogenicity observed were predicted in advance, on the basis of known differences in polycyclic hydrocarbon metabolism regulated by the Ah locus.

  10. Prostate tumor progression in the TRAMP mouse. Protective effects of the aryl hydrocarbon receptor

    Energy Technology Data Exchange (ETDEWEB)

    Fritz, W.; Lin, T.M.; Peterson, R. [Wisconsin Univ., Madison, WI (United States)

    2004-09-15

    The developing male reproductive system is highly sensitive to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). TCDD binds to the aryl hydrocarbon receptor (AhR), a ligand-activated transcription factor, to produce sustained alterations in gene expression. Mice lacking the AhR (AhRKO, Ahr{sup -/-}) have permitted further characterization of the role of the AhR in mediating TCDD effects and revealed a physiological role for the AhR in normal development. We previously demonstrated that in utero and lactational TCDD exposure significantly reduced ventral, dorsolateral and anterior prostate weights, and that these effects were dependent on the AhR5. However, reductions in prostate lobe weights in untreated, AhRKO mice compared to wild-type counterparts at various ages demonstrated that the AhR signaling pathway is involved in normal development of the dorsolateral and anterior prostates, but apparently not the ventral prostate. Unaltered serum testosterone concentrations and modest reduction in serum 5{alpha}-androstane-3{alpha},17{beta}a-diol concentrations could not account for reductions in prostate weights in mice lacking AhR (Ahr{sup -/-}). Normal histology and lack of alteration in androgen receptor mRNA levels further indicate that the reduction in prostate weights is not a result of reduced androgen action in AhRKO mice. The observation that regulation of early prostate growth in mice occurs following AhR activation by TCDD, as well as by loss of AhR, suggests that the AhR may also regulate aberrant prostate growth that results from ''reawakening'' of the prostate growth regulatory signals later in life. Our objective was to determine if the AhR signaling pathway has an effect on prostate cancer development.

  11. Flavonoids and resveratrol as regulators of Ah-receptor activity: protection from dioxin toxicity.

    Science.gov (United States)

    Tutel'yan, V A; Gapparov, M M; Telegin, L Yu; Devichenskii, V M; Pevnitskii, L A

    2003-12-01

    In 2002 FAO and WHO published a joint appeal to state and public organizations and scientific community to take every effort to control the contents of dioxin and related biphenyls in the environment and food products. The toxic effects of dioxin are realized via its interaction with the Ah-receptor. Here we reviewed modern notions about the structure and functions of Ah-receptor. Particular attention was given to antagonists and agonists of the Ah-receptor, including various flavonoids and resveratrol.

  12. Tissue distribution of aryl hydrocarbon receptor in the intestine: Implication of putative roles in tumor suppression

    International Nuclear Information System (INIS)

    Ikuta, Togo; Kurosumi, Masafumi; Yatsuoka, Toshimasa; Nishimura, Yoji

    2016-01-01

    Intestinal homeostasis is maintained by complex interactions between intestinal microorganisms and the gut immune system. Dysregulation of gut immunity may lead to inflammatory disorders and tumorigenesis. We previously have shown the tumor suppressive effects of aryl hydrocarbon receptor (AhR) in intestinal carcinogenesis. In the present study, we investigated AhR distribution in the mouse and human intestine by histochemical analysis. In the normal intestine, AhR was mainly localized in the stroma containing immune cells in the lamina propria and lymphoid follicles. On the other hand, in the tumor tissue from human colon cancer and that developed in Apc"M"i"n"/"+mice, AhR expression was elevated. AhR immunostaining was found in both stromal and tumor cells. Although AhR was localized in the cytoplasm of tumor cells in most cases, nuclear AhR was also observed in some. AhR knockdown using siRNA resulted in significant promotion of cell growth in colon cancer cell lines. Furthermore, AhR activation by AhR ligands supplemented in culture medium suppressed cell growth. Our study results suggest that tumor suppressive roles of AhR are estimated in two distinct ways: in normal tissue, AhR is associated with tumor prevention by regulating gut immunity, whereas in tumor cells, it is involved in growth suppression. - Highlights: • In the normal intestine, AhR was mainly localized in stroma containing immune cells. • In the tumor tissue, AhR expression was found in both stromal and tumor cells. • AhR knockdown promoted cell growth in colon cancer cell lines.

  13. Tissue distribution of aryl hydrocarbon receptor in the intestine: Implication of putative roles in tumor suppression

    Energy Technology Data Exchange (ETDEWEB)

    Ikuta, Togo, E-mail: togo@cancer-c.pref.saitama.jp [Department of Cancer Prevention, Research Institute for Clinical Oncology, Saitama Cancer Center, 818 Komuro, Ina-machi, Kitaadachi-gun, Saitama 362-0806 (Japan); Kurosumi, Masafumi, E-mail: mkurosumi@cancer-c.pref.saitama.jp [Division of Pathology, Saitama Cancer Center, 780 Komuro, Ina-machi, Kitaadachi-gun, Saitama 362-0806 (Japan); Yatsuoka, Toshimasa, E-mail: yatsuoka-gi@umin.ac.jp [Division of Gastroenterological Surgery, Saitama Cancer Center, 780 Komuro, Ina-machi, Kitaadachi-gun, Saitama 362-0806 (Japan); Nishimura, Yoji, E-mail: yojinish@cancr-c.pref.saitama.jp [Division of Gastroenterological Surgery, Saitama Cancer Center, 780 Komuro, Ina-machi, Kitaadachi-gun, Saitama 362-0806 (Japan)

    2016-05-01

    Intestinal homeostasis is maintained by complex interactions between intestinal microorganisms and the gut immune system. Dysregulation of gut immunity may lead to inflammatory disorders and tumorigenesis. We previously have shown the tumor suppressive effects of aryl hydrocarbon receptor (AhR) in intestinal carcinogenesis. In the present study, we investigated AhR distribution in the mouse and human intestine by histochemical analysis. In the normal intestine, AhR was mainly localized in the stroma containing immune cells in the lamina propria and lymphoid follicles. On the other hand, in the tumor tissue from human colon cancer and that developed in Apc{sup Min/+}mice, AhR expression was elevated. AhR immunostaining was found in both stromal and tumor cells. Although AhR was localized in the cytoplasm of tumor cells in most cases, nuclear AhR was also observed in some. AhR knockdown using siRNA resulted in significant promotion of cell growth in colon cancer cell lines. Furthermore, AhR activation by AhR ligands supplemented in culture medium suppressed cell growth. Our study results suggest that tumor suppressive roles of AhR are estimated in two distinct ways: in normal tissue, AhR is associated with tumor prevention by regulating gut immunity, whereas in tumor cells, it is involved in growth suppression. - Highlights: • In the normal intestine, AhR was mainly localized in stroma containing immune cells. • In the tumor tissue, AhR expression was found in both stromal and tumor cells. • AhR knockdown promoted cell growth in colon cancer cell lines.

  14. Cobaltous chloride and hypoxia inhibit aryl hydrocarbon receptor-mediated responses in breast cancer cells

    International Nuclear Information System (INIS)

    Khan, Shaheen; Liu Shengxi; Stoner, Matthew; Safe, Stephen

    2007-01-01

    The aryl hydrocarbon receptor (AhR) is expressed in estrogen receptor (ER)-positive ZR-75 breast cancer cells. Treatment with 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) induces CYP1A1 protein and mRNA levels and also activates inhibitory AhR-ERα crosstalk associated with hormone-induced reporter gene expression. In ZR-75 cells grown under hypoxia, induction of these AhR-mediated responses by TCDD was significantly inhibited. This was not accompanied by decreased nuclear AhR levels or decreased interaction of the AhR complex with the CYP1A1 gene promoter as determined in a chromatin immunoprecipitation assay. Hypoxia-induced loss of Ah-responsiveness was not associated with induction of hypoxia-inducible factor-1α or other factors that sequester the AhR nuclear translocation (Arnt) protein, and overexpression of Arnt under hypoxia did not restore Ah-responsiveness. The p65 subunit of NFκB which inhibits AhR-mediated transactivation was not induced by hypoxia and was primarily cytosolic in ZR-75 cells grown under hypoxic and normoxic conditions. In ZR-75 cells maintained under hypoxic conditions for 24 h, BRCA1 (an enhancer of AhR-mediated transactivation in breast cancer cells) was significantly decreased and this contributed to loss of Ah-responsiveness. In cells grown under hypoxia for 6 h, BRCA1 was not decreased, but induction of CYP1A1 by TCDD was significantly decreased. Cotreatment of ZR-75 cells with TCDD plus the protein synthesis inhibitor cycloheximide for 6 h enhanced CYP1A1 expression in cells grown under hypoxia and normoxia. These results suggest that hypoxia rapidly induces protein(s) that inhibit Ah-responsiveness and these may be similar to constitutively expressed inhibitors of Ah-responsiveness (under normoxia) that are also inhibited by cycloheximide

  15. Interleukin-24 as a target cytokine of environmental aryl hydrocarbon receptor agonist exposure in the lung

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Yueh-Hsia; Kuo, Yu-Chun; Tsai, Ming-Hsien; Ho, Chia-Chi; Tsai, Hui-Ti; Hsu, Chin-Yu; Chen, Yu-Cheng; Lin, Pinpin, E-mail: pplin@nhri.org.tw

    2017-06-01

    Exposure to environmental aryl hydrocarbon receptor (AhR) agonists, such as halogenated aromatic hydrocarbons and polycyclic aromatic hydrocarbons (PAHs), has great impacts on the development of various lung diseases. As emerging molecular targets for AhR agonists, cytokines may contribute to the inflammatory or immunotoxic effects of environmental AhR agonists. However, general cytokine expression may not specifically indicate environmental AhR agonist exposure. By comparing cytokine and chemokine expression profiles in human lung adenocarcinoma cell line CL5 treated with AhR agonists and the non-AhR agonist polychlorinated biphenyl (PCB) 39, we identified a target cytokine of environmental AhR agonist exposure of in the lungs. Thirteen cytokine and chemokine genes were altered in the AhR agonists-treated cells, but none were altered in the PCB39-treated cells. Interleukin (IL)-24 was the most highly induced gene among AhR-modulated cytokines. Cotreatment with AhR antagonist completely prevented IL-24 induction by AhR agonists in the CL5 cells. Knockdown AhR expression with short-hairpin RNA (shRNA) significantly reduced benzo[a]pyrene (BaP)-induced IL-24 mRNA levels. We further confirmed that gene transcription, but not mRNA stability, was involved in IL-24 upregulation by BaP. Particulate matter (PM) in the ambient air contains some PAHs and is reported to activate AhR. Oropharyngeal aspiration of PM significantly increased IL-24 levels in lung epithelia and in bronchoalveolar lavage fluid of mice 4 weeks after treatment. Thus, our data suggests that IL-24 is a pulmonary exposure target cytokine of environmental AhR agonists. - Graphical abstract: (A) Cytokine and chemokine gene expressions were examined in CL5 cells treated with AhR and non-AhR agonists. Thirteen cytokines and chemokines genes were altered in the AhR agonist-treated cells, but not in the non-AhR agonist-treated cells. IL-24 was the most highly induced gene among the AhR-modulated cytokines. (B

  16. A human intervention study with foods containing natural Ah-receptor agonists does not significantly show AhR-mediated effects as measured in blood cells and urine.

    Science.gov (United States)

    de Waard, Pim W J; Peijnenburg, Ad A C M; Baykus, Hakan; Aarts, Jac M M J G; Hoogenboom, Ron L A P; van Schooten, Frederik J; de Kok, Theo M C M

    2008-10-22

    Binding and activation of the aryl hydrocarbon receptor (AhR) is thought to be an essential step in the toxicity of the environmental pollutants dioxins and dioxin-like PCBs. However, also a number of natural compounds, referred to as NAhRAs (natural Ah-receptor agonists), which are present in, for example, fruits and vegetables, can bind and activate this receptor. To study their potential effects in humans, we first investigated the effect of the prototypical AhR agonist 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) on gene expression in ex vivo exposed freshly isolated human lymphocytes, and compared the resulting gene expression profile with those caused by the well-known NAhRA indolo[3,2-b]carbazole (ICZ), originating from cruciferous vegetables, and by a hexane extract of NAhRA-containing grapefruit juice (GJE). Only ICZ induced a gene expression profile similar to TCDD in the lymphocytes, and both significantly up-regulated CYP1B1 and TIPARP (TCDD-inducible poly (ADP-ribose) polymerase) mRNA. Next, we performed a human intervention study with NAhRA-containing cruciferous vegetables and grapefruit juice. The expression of the prototypical AhR-responsive genes CYP1A1, CYP1B1 and NQO1 in whole blood cells and in freshly isolated lymphocytes was not significantly affected. Also enzyme activities of CYP1A2, CYP2A6, N-acetyltransferase 2 (NAT2) and xanthine oxidase (XO), as judged by caffeine metabolites in urine, were unaffected, except for a small down-regulation of NAT2 activity by grapefruit juice. Examination of blood plasma with DR CALUX showed a 12% increased AhR agonist activity 3 and 24 h after consumption of cruciferous vegetables, but did not show a significant effect of grapefruit juice consumption. We conclude that intake of NAhRAs from food may result in minor AhR-related effects measurable in human blood and urine.

  17. An endogenous aryl hydrocarbon receptor ligand inhibits proliferation and migration of human ovarian cancer cells.

    Science.gov (United States)

    Wang, Kai; Li, Yan; Jiang, Yi-Zhou; Dai, Cai-Feng; Patankar, Manish S; Song, Jia-Sheng; Zheng, Jing

    2013-10-28

    The aryl hydrocarbon receptor (AhR), a ligand-activated transcription factor mediates many biological processes. Herein, we investigated if 2-(1'H-indole-3'-carbonyl)-thiazole-4-carboxylic acid methyl ester (ITE, an endogenous AhR ligand) regulated proliferation and migration of human ovarian cancer cells via AhR. We found that AhR was widely present in many histotypes of ovarian cancer tissues. ITE suppressed OVCAR-3 cell proliferation and SKOV-3 cell migration in vitro, which were blocked by AhR knockdown. ITE also suppressed OVCAR-3 cell growth in mice. These data suggest that the ITE might potentially be used for therapeutic intervention for at least a subset of human ovarian cancer. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  18. The AhR Ligand, TCDD, Regulates Androgen Receptor Activity Differently in Androgen-Sensitive versus Castration-Resistant Human Prostate Cancer Cells

    Directory of Open Access Journals (Sweden)

    Maryam Ghotbaddini

    2015-07-01

    Full Text Available The reported biological effects of TCDD include induction of drug metabolizing enzymes, wasting syndrome and tumor promotion. TCDD elicits most of its effects through binding the aryl hydrocarbon receptor (AhR. TCDD induced degradation of AhR has been widely reported and requires ubiquitination of the protein. The rapid depletion of AhR following TCDD activation serves as a mechanism to modulate AhR mediated gene induction. In addition to inducing AhR degradation, TCDD has been reported to induce degradation of hormone receptors. The studies reported here, evaluate the effect of TCDD exposure on androgen receptor (AR expression and activity in androgen-sensitive LNCaP and castration-resistant C4-2 prostate cancer cells. Our results show that TCDD exposure does not induce AhR or AR degradation in C4-2 cells. However, both AhR and AR are degraded in LNCaP cells following TCDD exposure. In addition, TCDD enhances AR phosphorylation and induces expression of AR responsive genes in LNCaP cells. Our data reveals that TCDD effect on AR expression and activity differs in androgen-sensitive and castration-resistant prostate cancer cell models.

  19. Polymorphism of the aryl-hydrocarbon receptor gene in intron 10 of human cancers

    Directory of Open Access Journals (Sweden)

    M. Rocas

    2011-11-01

    Full Text Available Polychlorinated dibenzo-p-dioxins (PCDDs and related halogenated aromatic hydrocarbons (e.g., PCDFs, often called "dioxins", are ubiquitously present environmental contaminants. Some of them, notably 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD, are among the most toxic synthetic compounds known. The biological effects of dioxins are mediated via the aryl hydrocarbon receptor (AhR. Mutations in the AhR transactivation domain are linked to sensitivity to the acute lethality of TCDD. We present here a study of AhR gene polymorphism in normal and cancer human tissues affecting pre-mRNA splicing in the AhR gene-coding transactivation domain region (exon 10, intron 10, exon 11 region, previously shown to be associated with AhR dysfunction. We tested 126 pairs of normal and cancer tissue samples from liver, lung, stomach, kidney, mucous, breast, and pancreas of 49 males and 77 females (45-70 years of age. We used in vitro splicing assay, RT-PCR and sequencing methods. Our results showed that in an in vitro system it is possible to reconstitute cellular pre-mRNA splicing events. Tested cancer tissues did not contain mutations in the AhR transactivation domain region when the DNA sequences were compared with those from normal tissues. There were also no differences in AhR mRNA splice variants between normal and malignant breast tissues and no polymorphisms in the studied regions or cDNA.

  20. Lactobacillus bulgaricus OLL1181 activates the aryl hydrocarbon receptor pathway and inhibits colitis

    Science.gov (United States)

    Takamura, Takeyuki; Harama, Daisuke; Fukumoto, Suguru; Nakamura, Yuki; Shimokawa, Naomi; Ishimaru, Kayoko; Ikegami, Shuji; Makino, Seiya; Kitamura, Masanori; Nakao, Atsuhito

    2011-01-01

    Increasing evidence suggests that the aryl hydrocarbon receptor (AhR) pathway has an important role in the regulation of inflammatory responses. Most recently, we have shown that the activation of the AhR pathway by a potent AhR agonist inhibits the development of dextran sodium sulfate (DSS)-induced colitis, a model of human ulcerative colitis, by the induction of prostaglandin E2 (PGE2) in the large intestine. Because several strains of probiotic lactic acid bacteria have been reported to inhibit DSS-induced colitis by unidentified mechanisms, we hypothesized that particular strains of lactic acid bacterium might have the potential to activate the AhR pathway, thereby inhibiting DSS-induced colitis. This study investigated whether there are specific lactic acid bacterial strains that can activate the AhR pathway, and if so, whether this AhR-activating potential is associated with suppression of DSS-induced colitis. By using AhR signaling reporter cells, we found that Lactobacillus bulgaricus OLL1181 had the potential to activate the AhR pathway. OLL1181 also induced the mRNA expression of cytochrome P450 family 1A1 (CYP1A1), a target gene of the AhR pathway, in human colon cells, which was inhibited by the addition of an AhR antagonist, α-naphthoflavon (αNF). In addition, mice treated orally with OLL1181 showed an increase in CYP1A1 mRNA expression in the large intestine and amelioration of DSS-induced colitis. Thus, OLL1181 can induce activation of the intestinal AhR pathway and inhibit DSS-induced colitis in mice. This strain of lactic acid bacterium has therefore the potential to activate the AhR pathway, which may be able to suppress colitis. PMID:21321579

  1. Inhibition of the MEK-1/p42 MAP kinase reduces aryl hydrocarbon receptor-DNA interactions

    International Nuclear Information System (INIS)

    Yim, Sujin; Oh, Myoungsuk; Choi, Su Mi; Park, Hyunsung

    2004-01-01

    2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) induces expression of the cytochrome P450 1A1 gene, cyp1a1, by binding to its receptor, aryl hydrocarbon receptor (AhR). TCDD-bound AhR translocates to the nucleus and forms a heterodimer with its partner protein, AhR nuclear translocator (Arnt). The AhR/Arnt heterodimer then binds to the dioxin-response elements (DREs) in the cyp1a1 enhancer and stimulates transcription of cyp1a1. We tested whether kinase pathways are involved in this process by treating Hepa1c1c7 cells with kinase inhibitors. The MEK-1 inhibitor PD98059 reduced TCDD-induced transcription of cyp1a1. TCDD treatment results in phosphorylation of p44/p42 mitogen-activated protein kinase (MAPK), a substrate of MEK-1. Overexpression of dominant negative form of p42 MAPK suppressed TCDD-dependent transcription of a reporter gene controlled by dioxin-response elements (DREs), and pretreatment with PD98059 also blocked this transcription. PD98059 pretreatment also inhibited TCDD-induced DRE binding of the AhR/Arnt heterodimer. Together these results indicate that TCDD activates the MEK-1/p44/p42 MAPK pathway, which in turn activates AhR and so facilitates binding of AhR to the cyp1a1 DRE

  2. Aryl Hydrocarbon Receptor Activation Reduces Dendritic Cell Function during Influenza Virus Infection

    Science.gov (United States)

    Jin, Guang-Bi; Moore, Amanda J.; Head, Jennifer L.; Neumiller, Joshua J.; Lawrence, B. Paige

    2010-01-01

    It has long been known that activation of the aryl hydrocarbon receptor (AhR) by ligands such as 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) suppresses T cell–dependent immune responses; however, the underlying cellular targets and mechanism remain unclear. We have previously shown that AhR activation by TCDD reduces the proliferation and differentiation of influenza virus–specific CD8+ T cells through an indirect mechanism; suggesting that accessory cells are critical AhR targets during infection. Respiratory dendritic cells (DCs) capture antigen, migrate to lymph nodes, and play a key role in activating naive CD8+ T cells during respiratory virus infection. Herein, we report an examination of how AhR activation alters DCs in the lung and affects their trafficking to and function in the mediastinal lymph nodes (MLN) during infection with influenza virus. We show that AhR activation impairs lung DC migration and reduces the ability of DCs isolated from the MLN to activate naive CD8+ T cells. Using novel AhR mutant mice, in which the AhR protein lacks its DNA-binding domain, we show that the suppressive effects of TCDD require that the activated AhR complex binds to DNA. These new findings suggest that AhR activation by chemicals from our environment impacts DC function to stimulate naive CD8+ T cells and that immunoregulatory genes within DCs are critical targets of AhR. Moreover, our results reinforce the idea that environmental signals and AhR ligands may contribute to differential susceptibilities and responses to respiratory infection. PMID:20498003

  3. Divergent Ah Receptor Ligand Selectivity during Hominin Evolution.

    Science.gov (United States)

    Hubbard, Troy D; Murray, Iain A; Bisson, William H; Sullivan, Alexis P; Sebastian, Aswathy; Perry, George H; Jablonski, Nina G; Perdew, Gary H

    2016-10-01

    We have identified a fixed nonsynonymous sequence difference between humans (Val381; derived variant) and Neandertals (Ala381; ancestral variant) in the ligand-binding domain of the aryl hydrocarbon receptor (AHR) gene. In an exome sequence analysis of four Neandertal and Denisovan individuals compared with nine modern humans, there are only 90 total nucleotide sites genome-wide for which archaic hominins are fixed for the ancestral nonsynonymous variant and the modern humans are fixed for the derived variant. Of those sites, only 27, including Val381 in the AHR, also have no reported variability in the human dbSNP database, further suggesting that this highly conserved functional variant is a rare event. Functional analysis of the amino acid variant Ala381 within the AHR carried by Neandertals and nonhuman primates indicate enhanced polycyclic aromatic hydrocarbon (PAH) binding, DNA binding capacity, and AHR mediated transcriptional activity compared with the human AHR. Also relative to human AHR, the Neandertal AHR exhibited 150-1000 times greater sensitivity to induction of Cyp1a1 and Cyp1b1 expression by PAHs (e.g., benzo(a)pyrene). The resulting CYP1A1/CYP1B1 enzymes are responsible for PAH first pass metabolism, which can result in the generation of toxic intermediates and perhaps AHR-associated toxicities. In contrast, the human AHR retains the ancestral sensitivity observed in primates to nontoxic endogenous AHR ligands (e.g., indole, indoxyl sulfate). Our findings reveal that a functionally significant change in the AHR occurred uniquely in humans, relative to other primates, that would attenuate the response to many environmental pollutants, including chemicals present in smoke from fire use during cooking. © The Author 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  4. Characterization of MCF mammary epithelial cells overexpressing the Arylhydrocarbon receptor (AhR)

    International Nuclear Information System (INIS)

    Wong, Patrick S; Li, Wen; Vogel, Christoph F; Matsumura, Fumio

    2009-01-01

    Recent reports indicate the existence of breast cancer cells expressing very high levels of the Arylhydrocarbon receptor (AhR), a ubiquitous intracellular receptor best known for mediating toxic action of dioxin and related pollutants. Positive correlation between the degree of AhR overexpression and states of increasing transformation of mammary epithelial cells appears to occur in the absence of any exogenous AhR ligands. These observations have raised many questions such as why and how AhR is overexpressed in breast cancer and its physiological roles in the progression to advanced carcinogenic transformation. To address those questions, we hypothesized that AhR overexpression occurs in cells experiencing deficiencies in normally required estrogen receptor (ER) signaling, and the basic role of AhR in such cases is to guide the affected cells to develop orchestrated cellular changes aimed at substituting the normal functions of ER. At the same time, the AhR serves as the mediator of the cell survival program in the absence of ER signaling. We subjected two lines of Michigan Cancer Foundation (MCF) mammary epithelial cells to 3 different types ER interacting agents for a number of passages and followed the changes in the expression of AhR mRNA. The resulting sublines were analyzed for phenotypical changes and unique molecular characteristics. MCF10AT1 cells continuously exposed to 17-beta-estradiol (E2) developed sub-lines that show AhR overexpression with the characteristic phenotype of increased proliferation, and distinct resistance to apoptosis. When these chemically selected cell lines were treated with a specific AhR antagonist, 3-methoxy-4-nitroflavone (MNF), both of the above abnormal cellular characteristics disappeared, indicating the pivotal role of AhR in expressing those cellular phenotypes. The most prominent molecular characteristics of these AhR overexpressing MCF cells were found to be overexpression of ErbB2 and COX-2. Furthermore, we could

  5. Regulation of mouse small heat shock protein αb-crystallin gene by aryl hydrocarbon receptor.

    Directory of Open Access Journals (Sweden)

    Shuang Liu

    2011-04-01

    Full Text Available The stress-inducible small heat shock protein (shsp/αB-crystallin gene is expressed highly in the lens and moderately in other tissues. Here we provide evidence that it is a target gene of the aryl hydrocarbon receptor (AhR transcription factor. A sequence (-329/-323, CATGCGA similar to the consensus xenobiotic responsive element (XRE, called here XRE-like, is present in the αBE2 region of αB-crystallin enhancer and can bind AhR in vitro and in vivo. αB-crystallin protein levels were reduced in retina, lens, cornea, heart, skeletal muscle and cultured muscle fibroblasts of AhR(-/- mice; αB-crystallin mRNA levels were reduced in the eye, heart and skeletal muscle of AhR(-/- mice. Increased AhR stimulated αB-crystallin expression in transfection experiments conducted in conjunction with the aryl hydrocarbon receptor nuclear translocator (ARNT and decreased AhR reduced αB-crystallin expression. AhR effect on aB-crystallin promoter activity was cell-dependent in transfection experiments. AhR up-regulated αB-crystallin promoter activity in transfected HeLa, NIH3T3 and COS-7 cells in the absence of exogenously added ligand (TCDD, but had no effect on the αB-crystallin promoter in C(2C(12, CV-1 or Hepa-1 cells with or without TCDD. TCDD enhanced AhR-stimulated αB-crystallin promoter activity in transfected αTN4 cells. AhR could bind to an XRE-like site in the αB-crystallin enhancer in vitro and in vivo. Finally, site-specific mutagenesis experiments showed that the XRE-like motif was necessary for both basal and maximal AhR-induction of αB-crystallin promoter activity. Our data strongly suggest that AhR is a regulator of αB-crystallin gene expression and provide new avenues of research for the mechanism of tissue-specific αB-crystallin gene regulation under normal and physiologically stressed conditions.

  6. Decreased Expression of the Aryl Hydrocarbon Receptor in Ocular Behcet’s Disease

    Directory of Open Access Journals (Sweden)

    Chaokui Wang

    2014-01-01

    Full Text Available Recent studies show that the aryl hydrocarbon receptor (AhR is involved in immune responses. AhR is activated following interaction with its ligands, such as 6-formylindolo[3,2-b]carbazole (FICZ and 2-(1′H-indole-3′-carbonyl-thiazole-4-carboxylic acid methyl ester (ITE. In this study, we investigated the role of AhR activation by its endogenous ligands in the pathogenesis of ocular Behcet’s disease (BD. The expression of AhR was significantly decreased in active BD patients as compared to inactive BD patients and normal controls. Both FICZ and ITE inhibited Th1 and Th17 polarization and induced the expression of IL-22 by PBMCs and by CD4+T cells in active BD patients and normal controls. Stimulation of purified CD4+T cells with FICZ or ITE caused a decreased expression of RORC, IL-17, IL-23R, and CCR6 and an increased phosphorylation of STAT3 and STAT5. The present study suggests that a decreased AhR expression is associated with disease activity in BD patients. The activation of AhR by either FICZ or ITE was able to inhibit Th1 and Th17 cell polarization. Further studies are needed to investigate whether modulation of AhR might be used in the treatment of BD.

  7. Decreased expression of the aryl hydrocarbon receptor in ocular Behcet's disease.

    Science.gov (United States)

    Wang, Chaokui; Ye, Zi; Kijlstra, Aize; Zhou, Yan; Yang, Peizeng

    2014-01-01

    Recent studies show that the aryl hydrocarbon receptor (AhR) is involved in immune responses. AhR is activated following interaction with its ligands, such as 6-formylindolo[3,2-b]carbazole (FICZ) and 2-(1'H-indole-3'-carbonyl)-thiazole-4-carboxylic acid methyl ester (ITE). In this study, we investigated the role of AhR activation by its endogenous ligands in the pathogenesis of ocular Behcet's disease (BD). The expression of AhR was significantly decreased in active BD patients as compared to inactive BD patients and normal controls. Both FICZ and ITE inhibited Th1 and Th17 polarization and induced the expression of IL-22 by PBMCs and by CD4(+)T cells in active BD patients and normal controls. Stimulation of purified CD4(+)T cells with FICZ or ITE caused a decreased expression of RORC, IL-17, IL-23R, and CCR6 and an increased phosphorylation of STAT3 and STAT5. The present study suggests that a decreased AhR expression is associated with disease activity in BD patients. The activation of AhR by either FICZ or ITE was able to inhibit Th1 and Th17 cell polarization. Further studies are needed to investigate whether modulation of AhR might be used in the treatment of BD.

  8. Aryl hydrocarbon receptor protects lung adenocarcinoma cells against cigarette sidestream smoke particulates-induced oxidative stress

    International Nuclear Information System (INIS)

    Cheng, Ya-Hsin; Huang, Su-Chin; Lin, Chun-Ju; Cheng, Li-Chuan; Li, Lih-Ann

    2012-01-01

    Environmental cigarette smoke has been suggested to promote lung adenocarcinoma progression through aryl hydrocarbon receptor (AhR)-signaled metabolism. However, whether AhR facilitates metabolic activation or detoxification in exposed adenocarcinoma cells remains ambiguous. To address this question, we have modified the expression level of AhR in two human lung adenocarcinoma cell lines and examined their response to an extract of cigarette sidestream smoke particulates (CSSP). We found that overexpression of AhR in the CL1-5 cell line reduced CSSP-induced ROS production and oxidative DNA damage, whereas knockdown of AhR expression increased ROS level in CSSP-exposed H1355 cells. Oxidative stress sensor Nrf2 and its target gene NQO1 were insensitive to AhR expression level and CSSP treatment in human lung adenocarcinoma cells. In contrast, induction of AhR expression concurrently increased mRNA expression of xenobiotic-metabolizing genes CYP1B1, UGT1A8, and UGT1A10 in a ligand-independent manner. It appeared that AhR accelerated xenobiotic clearing and diminished associated oxidative stress by coordinate regulation of a set of phase I and II metabolizing genes. However, the AhR-signaled protection could not shield cells from constant oxidative stress. Prolonged exposure to high concentrations of CSSP induced G0/G1 cell cycle arrest via the p53–p21–Rb1 signaling pathway. Despite no effect on DNA repair rate, AhR facilitated the recovery of cells from growth arrest when CSSP exposure ended. AhR-overexpressing lung adenocarcinoma cells exhibited an increased anchorage-dependent and independent proliferation when recovery from exposure. In summary, our data demonstrated that AhR protected lung adenocarcinoma cells against CSSP-induced oxidative stress and promoted post-exposure clonogenicity. -- Highlights: ► AhR expression level influences cigarette sidestream smoke-induced ROS production. ► AhR reduces oxidative stress by coordinate regulation of

  9. Aryl hydrocarbon receptor protects lung adenocarcinoma cells against cigarette sidestream smoke particulates-induced oxidative stress

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Ya-Hsin [Graduate Institute of Basic Medical Science, School of Medicine, China Medical University, Taichung 40402, Taiwan, ROC (China); Huang, Su-Chin; Lin, Chun-Ju; Cheng, Li-Chuan [Division of Environmental Health and Occupational Medicine, National Health Research Institutes, Zhunan, Miaoli 35053, Taiwan, ROC (China); Li, Lih-Ann, E-mail: lihann@nhri.org.tw [Division of Environmental Health and Occupational Medicine, National Health Research Institutes, Zhunan, Miaoli 35053, Taiwan, ROC (China)

    2012-03-15

    Environmental cigarette smoke has been suggested to promote lung adenocarcinoma progression through aryl hydrocarbon receptor (AhR)-signaled metabolism. However, whether AhR facilitates metabolic activation or detoxification in exposed adenocarcinoma cells remains ambiguous. To address this question, we have modified the expression level of AhR in two human lung adenocarcinoma cell lines and examined their response to an extract of cigarette sidestream smoke particulates (CSSP). We found that overexpression of AhR in the CL1-5 cell line reduced CSSP-induced ROS production and oxidative DNA damage, whereas knockdown of AhR expression increased ROS level in CSSP-exposed H1355 cells. Oxidative stress sensor Nrf2 and its target gene NQO1 were insensitive to AhR expression level and CSSP treatment in human lung adenocarcinoma cells. In contrast, induction of AhR expression concurrently increased mRNA expression of xenobiotic-metabolizing genes CYP1B1, UGT1A8, and UGT1A10 in a ligand-independent manner. It appeared that AhR accelerated xenobiotic clearing and diminished associated oxidative stress by coordinate regulation of a set of phase I and II metabolizing genes. However, the AhR-signaled protection could not shield cells from constant oxidative stress. Prolonged exposure to high concentrations of CSSP induced G0/G1 cell cycle arrest via the p53–p21–Rb1 signaling pathway. Despite no effect on DNA repair rate, AhR facilitated the recovery of cells from growth arrest when CSSP exposure ended. AhR-overexpressing lung adenocarcinoma cells exhibited an increased anchorage-dependent and independent proliferation when recovery from exposure. In summary, our data demonstrated that AhR protected lung adenocarcinoma cells against CSSP-induced oxidative stress and promoted post-exposure clonogenicity. -- Highlights: ► AhR expression level influences cigarette sidestream smoke-induced ROS production. ► AhR reduces oxidative stress by coordinate regulation of

  10. Cell specific effects of PCB 126 on aryl hydrocarbone receptors in follicular cells of porcine ovaries

    Energy Technology Data Exchange (ETDEWEB)

    Wojtowicz, A.; Augustowska, K.; Gregoraszczuk, E. [Lab. of Physiology and Toxicology of Reproduction, Dept. of Animal Physiology, Inst. of Zoology, Jagiellonian Univ., Krakow (Poland)

    2004-09-15

    Polychlorinated biphenyles (PCBs) like other endocrine disrupters could interfere with natural hormones by binding to their receptors and thus mimicking the cellular response to them. They are known to possess either estrogenic or antiestrogenic properties. In our previous papers we demonstrated that PCBs are able to disrupt ovarian steroidogenesis. We found that the coplanar PCB 126 caused the decrease in estradiol secretion in whole cultured pig ovarian follicles. PCB 126 congener is structurally related to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). Since TCDD effects are known to be mediated by aryl hydrocarbone receptors (AhRs), we decided to determine if PCB 126 affects signal transduction pathway activated by these receptors. It has been reported that the functional AhR is present in ovary including oocytes, granulosa and theca cells of rat, mouse, rhesus monkey and human ovary. Moreover, the expression of AhR in the rat ovary appeared to be estrous cycle-dependent, thus suggesting that AhR expression may be regulated by fluctuating hormone levels. This study was designed to investigate the effects of the non-ortho-substituted 3,3',4,4',5-pentachlorobiphenyl (PCB126) on the AhR activation, localization and protein level in pig ovarian follicle cells.

  11. Tissue-specific expression of aryl hydrocarbon receptor and putative developmental regulatory modules in Baltic salmon yolk-sac fry

    Energy Technology Data Exchange (ETDEWEB)

    Vuori, Kristiina A. [Centre of Excellence in Evolutionary Genetics and Physiology, Department of Biology, University of Turku, FI-20014 Turku (Finland)], E-mail: kristiina.vuori@utu.fi; Nordlund, Eija [Department of Information Technology, University of Turku, and Turku Centre for Computer Science (TUCS), FI-20014 Turku (Finland); Kallio, Jenny [Centre of Excellence in Evolutionary Genetics and Physiology, Department of Biology, University of Turku, FI-20014 Turku (Finland); Salakoski, Tapio [Department of Information Technology, University of Turku, and Turku Centre for Computer Science (TUCS), FI-20014 Turku (Finland); Nikinmaa, Mikko [Centre of Excellence in Evolutionary Genetics and Physiology, Department of Biology, University of Turku, FI-20014 Turku (Finland)

    2008-04-08

    The aryl hydrocarbon receptor (AhR) is an ancient protein that is conserved in vertebrates and invertebrates, indicating its important function throughout evolution. AhR has been studied largely because of its role in toxicology-gene expression via AhR is induced by many aromatic hydrocarbons in mammals. Recently, however, it has become clear that AhR is involved in various aspects of development such as cell proliferation and differentiation, and cell motility and migration. The mechanisms by which AhR regulates these various functions remain poorly understood. Across-species comparative studies of AhR in invertebrates, non-mammalian vertebrates and mammals may help to reveal the multiple functions of AhR. Here, we have studied AhR during larval development of Baltic salmon (Salmon salar). Our results indicate that AhR protein is expressed in nervous system, liver and muscle tissues. We also present putative regulatory modules and module-matching genes, produced by chromatin immunoprecipitation (ChIP) cloning and in silico analysis, which may be associated with evolutionarily conserved functions of AhR during development. For example, the module NFKB-AHRR-CREB found from salmon ChIP sequences is present in human ULK3 (regulating formation of granule cell axons in mouse and axon outgrowth in Caernohabditis elegans) and SRGAP1 (GTPase-activating protein involved in the Slit/Robo pathway) promoters. We suggest that AhR may have an evolutionarily conserved role in neuronal development and nerve cell targeting, and in Wnt signaling pathway.

  12. Tissue-specific expression of aryl hydrocarbon receptor and putative developmental regulatory modules in Baltic salmon yolk-sac fry

    International Nuclear Information System (INIS)

    Vuori, Kristiina A.; Nordlund, Eija; Kallio, Jenny; Salakoski, Tapio; Nikinmaa, Mikko

    2008-01-01

    The aryl hydrocarbon receptor (AhR) is an ancient protein that is conserved in vertebrates and invertebrates, indicating its important function throughout evolution. AhR has been studied largely because of its role in toxicology-gene expression via AhR is induced by many aromatic hydrocarbons in mammals. Recently, however, it has become clear that AhR is involved in various aspects of development such as cell proliferation and differentiation, and cell motility and migration. The mechanisms by which AhR regulates these various functions remain poorly understood. Across-species comparative studies of AhR in invertebrates, non-mammalian vertebrates and mammals may help to reveal the multiple functions of AhR. Here, we have studied AhR during larval development of Baltic salmon (Salmon salar). Our results indicate that AhR protein is expressed in nervous system, liver and muscle tissues. We also present putative regulatory modules and module-matching genes, produced by chromatin immunoprecipitation (ChIP) cloning and in silico analysis, which may be associated with evolutionarily conserved functions of AhR during development. For example, the module NFKB-AHRR-CREB found from salmon ChIP sequences is present in human ULK3 (regulating formation of granule cell axons in mouse and axon outgrowth in Caernohabditis elegans) and SRGAP1 (GTPase-activating protein involved in the Slit/Robo pathway) promoters. We suggest that AhR may have an evolutionarily conserved role in neuronal development and nerve cell targeting, and in Wnt signaling pathway

  13. Estrogen receptor α and aryl hydrocarbon receptor independent growth inhibitory effects of aminoflavone in breast cancer cells

    International Nuclear Information System (INIS)

    Brinkman, Ashley M; Wu, Jiacai; Ersland, Karen; Xu, Wei

    2014-01-01

    Numerous studies have implicated the aryl hydrocarbon receptor (AhR) as a potential therapeutic target for several human diseases, including estrogen receptor alpha (ERα) positive breast cancer. Aminoflavone (AF), an activator of AhR signaling, is currently undergoing clinical evaluation for the treatment of solid tumors. Of particular interest is the potential treatment of triple negative breast cancers (TNBC), which are typically more aggressive and characterized by poorer outcomes. Here, we examined AF’s effects on two TNBC cell lines and the role of AhR signaling in AF sensitivity in these model cell lines. AF sensitivity in MDA-MB-468 and Cal51 was examined using cell counting assays to determine growth inhibition (GI 50 ) values. Luciferase assays and qPCR of AhR target genes cytochrome P450 (CYP) 1A1 and 1B1 were used to confirm AF-mediated AhR signaling. The requirement of endogenous levels of AhR and AhR signaling for AF sensitivity was examined in MDA-MB-468 and Cal51 cells stably harboring inducible shRNA for AhR. The mechanism of AF-mediated growth inhibition was explored using flow cytometry for markers of DNA damage and apoptosis, cell cycle analysis, and β-galactosidase staining for senescence. Luciferase data was analyzed using Student’s T test. Three-parameter nonlinear regression was performed for cell counting assays. Here, we report that ERα-negative TNBC cell lines MDA-MB-468 and Cal51 are sensitive to AF. Further, we presented evidence suggesting that neither endogenous AhR expression levels nor downstream induction of AhR target genes CYP1A1 and CYP1B1 is required for AF-mediated growth inhibition in these cells. Between these two ERα negative cell lines, we showed that the mechanism of AF action differs slightly. Low dose AF mediated DNA damage, S-phase arrest and apoptosis in MDA-MB-468 cells, while it resulted in DNA damage, S-phase arrest and cellular senescence in Cal51 cells. Overall, this work provides evidence against the

  14. Retinoids repress Ah receptor CYP1A1 induction pathway through the SMRT corepressor

    International Nuclear Information System (INIS)

    Fallone, Frederique; Villard, Pierre-Henri; Seree, Eric; Rimet, Odile; Nguyen, Quock Binh; Bourgarel-Rey, Veronique; Fouchier, Francis; Barra, Yves; Durand, Alain; Lacarelle, Bruno

    2004-01-01

    CYP1A1 isoform is mainly regulated by the transcription factor AhR and to a lesser extent by the nuclear receptor RAR. The effect of a coexposure with 3MC, a AhR ligand, and RA, a RAR ligand, which are, respectively, strong and weak CYP1A1 inducers, is poorly known. We showed in Caco-2 cells that addition of RA significantly decreased 3MC-induced CYP1A1 expression by -55% for mRNA level and -30% for promoter and enzymatic activities. We further showed that RA decreased AhR protein level. Moreover, a physical interaction between AhR and the RAR-corepressor SMRT has been described in vitro. Using the corepressor inhibitor TSA, transfected-cells with SMRT cDNA, and coimmunoprecipitation experiments, we demonstrated that RA addition repressed AhR function through a marked AhR/SMRT physical interaction. This interaction explains the decrease of 3MC-induced CYP1A1 expression. This new mechanism involving the repression of AhR-induced CYP1A1 expression by retinoids allows better knowledge of the CYP1A1 regulation

  15. Toxicological implications of polymorphisms in receptors for xenobiotic chemicals: The case of the aryl hydrocarbon receptor

    International Nuclear Information System (INIS)

    Okey, Allan B.; Franc, Monique A.; Moffat, Ivy D.; Tijet, Nathalie; Boutros, Paul C.; Korkalainen, Merja; Tuomisto, Jouko; Pohjanvirta, Raimo

    2005-01-01

    Mechanistic toxicology has predominantly been focused on adverse effects that are caused by reactive metabolites or by reactive oxygen species. However, many important xenobiotics exert their toxicity, not by generating reactive products, but rather by altering expression of specific genes. In particular, some environmental contaminants target nuclear receptors that function as regulators of transcription. For example, binding of xenobiotic chemicals to steroid receptors is a principle mechanism of endocrine disruption. The aryl hydrocarbon receptor (AHR) mediates toxicity of dioxin-like compounds. In mice, a polymorphism in the AHR ligand-binding domain reduces binding affinity by about 10-fold in the DBA/2 strain compared with the C57BL/6 strain; consequently, dose-response curves for numerous biochemical and toxic effects are shifted about one log to the right in DBA/2 mice. In the Han/Wistar (Kuopio) (H/W) rat strain, a polymorphism causes a deletion of 38 or 43 amino acids from the AHR transactivation domain. This deletion is associated with a greater than 1000-fold resistance to lethality from 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). Genes in the conventional AH gene battery (e.g. CYP1A1, CYP1A2, CYP1B1, ALDH3A1, NQO1 and UGT1A1) remain responsive to TCDD in H/W rats despite the large deletion. However, the deletion may selectively alter the receptor's ability to dysregulate specific genes that are key to dioxin toxicity. We are identifying these genes using an expression array approach in dioxin-sensitive vs. dioxin-resistant rat strains and lines. Polymorphisms exist in the human AH receptor, but thus far they have not been shown to have any substantial effect on human responses to AHR-ligands

  16. Are styrene oligomers in coastal sediments of an industrial area aryl hydrocarbon-receptor agonists?

    Science.gov (United States)

    Hong, Seongjin; Lee, Junghyun; Lee, Changkeun; Yoon, Seo Joon; Jeon, Seungyeon; Kwon, Bong-Oh; Lee, Jong-Hyeon; Giesy, John P; Khim, Jong Seong

    2016-06-01

    Effect-directed analysis (EDA) was performed to identify the major aryl hydrocarbon receptor (AhR) agonists in sediments collected from a highly industrialized area (Lake Shihwa, Korea). Great AhR-mediated potencies were found in fractions containing aromatic compounds with log Kow values of 5-8, and relatively great concentrations of styrene oligomers (SOs) and polycyclic aromatic hydrocarbons (PAHs) were detected in those fractions. Until now, there was little information on occurrences and toxic relative potencies (RePs) of SOs in coastal environments. In the present study; i) distributions and compositions, ii) AhR binding affinities, and iii) contributions of SOs to total AhR-mediated potencies were determined in coastal sediments. Elevated concentrations of 10 SOs were detected in sediments of inland creeks ranging from 61 to 740 ng g(-1) dry mass (dm), while lesser concentrations were found in inner (mean = 33 ng g(-1) dm) and outer regions (mean = 25 ng g(-1) dm) of the lake. Concentrations of PAHs in sediments were comparable to those of SOs. 2,4-diphenyl-1-butene (SD3) was the predominant SO analogue in sediments. SOs and PAHs were accumulated in sediments near sources, and could not be transported to remote regions due to their hydrophobicity. RePs of 3 SOs could be derived, which were 1000- to 10,000-fold less than that of one representative potent AhR active PAH, benzo[a]pyrene. Although concentrations of SOs in sediments were comparable to those of PAHs, the collective contribution of SOs to total AhR-mediated potencies were rather small (coastal environment. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. The aryl hydrocarbon receptor ligand ITE inhibits TGFβ1-induced human myofibroblast differentiation.

    Science.gov (United States)

    Lehmann, Geniece M; Xi, Xia; Kulkarni, Ajit A; Olsen, Keith C; Pollock, Stephen J; Baglole, Carolyn J; Gupta, Shikha; Casey, Ann E; Huxlin, Krystel R; Sime, Patricia J; Feldon, Steven E; Phipps, Richard P

    2011-04-01

    Fibrosis can occur in any human tissue when the normal wound healing response is amplified. Such amplification results in fibroblast proliferation, myofibroblast differentiation, and excessive extracellular matrix deposition. Occurrence of these sequelae in organs such as the eye or lung can result in severe consequences to health. Unfortunately, medical treatment of fibrosis is limited by a lack of safe and effective therapies. These therapies may be developed by identifying agents that inhibit critical steps in fibrotic progression; one such step is myofibroblast differentiation triggered by transforming growth factor-β1 (TGFβ1). In this study, we demonstrate that TGFβ1-induced myofibroblast differentiation is blocked in human fibroblasts by a candidate endogenous aryl hydrocarbon receptor (AhR) ligand 2-(1'H-indole-3'-carbonyl)-thiazole-4-carboxylic acid methyl ester (ITE). Our data show that ITE disrupts TGFβ1 signaling by inhibiting the nuclear translocation of Smad2/3/4. Although ITE functions as an AhR agonist, and biologically persistent AhR agonists, such as 2,3,7,8-tetrachlorodibenzo-p-dioxin, cause severe toxic effects, ITE exhibits no toxicity. Interestingly, ITE effectively inhibits TGFβ1-driven myofibroblast differentiation in AhR(-/-) fibroblasts: Its ability to inhibit TGFβ1 signaling is AhR independent. As supported by the results of this study, the small molecule ITE inhibits myofibroblast differentiation and may be useful clinically as an antiscarring agent. Copyright © 2011 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  18. Effect of dioxins on regulation of tyrosine hydroxylase gene expression by aryl hydrocarbon receptor: a neurotoxicology study

    Directory of Open Access Journals (Sweden)

    Akahoshi Eiichi

    2009-06-01

    Full Text Available Abstract Background Dioxins and related compounds are suspected of causing neurological disruption. Epidemiological studies indicated that exposure to these compounds caused neurodevelopmental disturbances such as learning disability and attention deficit hyperactivity disorder, which are thought to be closely related to dopaminergic dysfunction. Although the molecular mechanism of their actions has not been fully investigated, a major participant in the process is aryl hydrocarbon receptor (AhR. This study focused on the effect of 2, 3, 7, 8-tetrachlorodibenzo-p-dioxin (TCDD exposure on the regulation of TH, a rate-limiting enzyme of dopamine synthesis, gene expression by AhR. Methods N2a-Rβ cells were established by transfecting murine neuroblastoma Neuro2a with the rat AhR cDNA. TH expression induced by TCDD was assessed by RT-PCR and Western blotting. Participation of AhR in TCDD-induced TH gene expression was confirmed by suppressing AhR expression using the siRNA method. Catecholamines including dopamine were measured by high-performance liquid chromatography. A reporter gene assay was used to identify regulatory motifs in the promoter region of TH gene. Binding of AhR with the regulatory motif was confirmed by an electrophoretic mobility shift assay (EMSA. Results Induction of TH by TCDD through AhR activation was detected at mRNA and protein levels. Induced TH protein was functional and its expression increased dopamine synthesis. The reporter gene assay and EMSA indicated that AhR directly regulated TH gene expression. Regulatory sequence called aryl hydrocarbon receptor responsive element III (AHRE-III was identified upstream of the TH gene from -285 bp to -167 bp. Under TCDD exposure, an AhR complex was bound to AHRE-III as well as the xenobiotic response element (XRE, though AHRE-III was not identical to XRE, the conventional AhR-binding motif. Conclusion Our results suggest TCDD directly regulate the dopamine system by TH gene

  19. γ-Tocotrienol upregulates aryl hydrocarbon receptor expression and enhances the anticancer effect of baicalein

    Energy Technology Data Exchange (ETDEWEB)

    Yamashita, Shuya; Baba, Kiwako; Makio, Akiko; Kumazoe, Motofumi; Huang, Yuhui; Lin, I-Chian; Bae, Jaehoon; Murata, Motoki; Yamada, Shuhei; Tachibana, Hirofumi, E-mail: tatibana@agr.kyushu-u.ac.jp

    2016-05-13

    Previous studies have identified biomolecules that mediate the physiological actions of food factors, such as amino acids, vitamins, fatty acids, minerals, plant polyphenols, and lactobacilli, suggesting that our bodies are equipped with an innate system that senses which food factors are required to maintain our health. However, the effects of environmental factors on food factor sensing (FFS) remains largely unknown. Tocotorienols (T3s), which belongs to the vitamin E family, possess several physiological functions, including cholesterol lowering and neuroprotective effects. Here, we investigated the effects of naturally abundant γ-T3 on FFS-related gene expressions in melanoma using a DNA chip. Our results showed that γ-T3 increased the expression level of aryl hydrocarbon receptor (AhR), a sensing molecule to plant polyphenol baicalein. The co-treatment with γ-T3 and baicalein enhanced the anti-proliferative activity of baicalein, accompanied by the downstream events of AhR-activation induced by baicalein. These data suggest that γ-T3 upregulates AhR expression and enhances its sensitivity to baicalein. - Highlights: • γ-T3 upregulated the expression of AhR in mouse melanoma. • Promotion of the binding activity of Sp1 is associated with the increasing effect of γ-T3 on AhR expression. • γ-T3 enhanced the anti-proliferative activity of baicalein that has an AhR ligand activity. • γ-T3 enhanced the inducing activity of baicalein on the expression of AhR target genes.

  20. Harman induces CYP1A1 enzyme through an aryl hydrocarbon receptor mechanism

    International Nuclear Information System (INIS)

    El Gendy, Mohamed A.M.; El-Kadi, Ayman O.S.

    2010-01-01

    Harman is a common compound in several foods, plants and beverages. Numerous studies have demonstrated its mutagenic, co-mutagenic and carcinogenic effects; however, the exact mechanism has not been fully identified. Aryl hydrocarbon receptor (AhR) is a transcription factor regulating the expression of the carcinogen-activating enzyme; cytochrome P450 1A1 (CYP1A1). In the present study, we examined the ability of harman to induce AhR-mediated signal transduction in human and rat hepatoma cells; HepG2 and H4IIE cells. Our results showed that harman significantly induced CYP1A1 mRNA in a time- and concentration-dependent manner. Similarly, harman significantly induced CYP1A1 at protein and activity levels in a concentration-dependent manner. Moreover, the AhR antagonist, resveratrol, inhibited the increase in CYP1A1 activity by harman. The RNA polymerase inhibitor, actinomycin D, completely abolished the CYP1A1 mRNA induction by harman, indicating a transcriptional activation. The role of AhR in CYP1A1 induction by harman was confirmed by using siRNA specific for human AhR. The ability of harman to induce CYP1A1 was strongly correlated with its ability to stimulate AhR-dependent luciferase activity and electrophoretic mobility shift assay. At post-transcriptional and post-translational levels, harman did not affect the stability of CYP1A1 at the mRNA and the protein levels, excluding other mechanisms participating in the obtained effects. We concluded that harman can directly induce CYP1A1 gene expression in an AhR-dependent manner and may represent a novel mechanism by which harman promotes mutagenicity, co-mutagenicity and carcinogenicity.

  1. Aryl hydrocarbon receptor-dependent regulation of miR-196a expression controls lung fibroblast apoptosis but not proliferation

    International Nuclear Information System (INIS)

    Hecht, Emelia; Zago, Michela; Sarill, Miles; Rico de Souza, Angela; Gomez, Alvin; Matthews, Jason; Hamid, Qutayba; Eidelman, David H.; Baglole, Carolyn J.

    2014-01-01

    The aryl hydrocarbon receptor (AhR) is a ligand-activated transcription factor implicated in the regulation of apoptosis and proliferation. Although activation of the AhR by xenobiotics such as dioxin inhibits the cell cycle and control apoptosis, paradoxically, AhR expression also promotes cell proliferation and survival independent of exogenous ligands. The microRNA (miRNA) miR-196a has also emerged as a regulator of proliferation and apoptosis but a relationship between the AhR and miR-196a is not known. Therefore, we hypothesized that AhR-dependent regulation of endogenous miR-196a expression would promote cell survival and proliferation. Utilizing lung fibroblasts from AhR deficient (AhR −/− ) and wild-type (AhR +/+ ) mice, we show that there is ligand-independent regulation of miRNA, including low miR-196a in AhR −/− cells. Validation by qRT-PCR revealed a significant decrease in basal expression of miR-196a in AhR −/− compared to AhR +/+ cells. Exposure to AhR agonists benzo[a]pyrene (B[a]P) and FICZ as well as AhR antagonist CH-223191 decreased miR-196a expression in AhR +/+ fibroblasts concomitant with decreased AhR protein levels. There was increased proliferation only in AhR +/+ lung fibroblasts in response to serum, corresponding to a decrease in p27 KIP1 protein, a cyclin-dependent kinase inhibitor. Increasing the cellular levels of miR-196a had no effect on proliferation or expression of p27 KIP1 in AhR −/− fibroblasts but attenuated cigarette smoke-induced apoptosis. This study provides the first evidence that AhR expression is essential for the physiological regulation of cellular miRNA levels- including miR-196a. Future experiments designed to elucidate the functional relationship between the AhR and miR-196a may delineate additional novel ligand-independent roles for the AhR. - Highlights: • The AhR controls proliferation and apoptosis in lung cells. • The AhR regulates the expression of the microRNA miR-196a independent of

  2. Aryl hydrocarbon receptor-dependent regulation of miR-196a expression controls lung fibroblast apoptosis but not proliferation

    Energy Technology Data Exchange (ETDEWEB)

    Hecht, Emelia [Department of Medicine, McGill University, Montreal, Quebec (Canada); Zago, Michela [Research Institute of the McGill University Health Centre, McGill University, Montreal, Quebec (Canada); Sarill, Miles [Department of Medicine, McGill University, Montreal, Quebec (Canada); Rico de Souza, Angela [Research Institute of the McGill University Health Centre, McGill University, Montreal, Quebec (Canada); Gomez, Alvin; Matthews, Jason [Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON (Canada); Hamid, Qutayba; Eidelman, David H. [Department of Medicine, McGill University, Montreal, Quebec (Canada); Research Institute of the McGill University Health Centre, McGill University, Montreal, Quebec (Canada); Baglole, Carolyn J., E-mail: Carolyn.baglole@McGill.ca [Department of Medicine, McGill University, Montreal, Quebec (Canada); Research Institute of the McGill University Health Centre, McGill University, Montreal, Quebec (Canada)

    2014-11-01

    The aryl hydrocarbon receptor (AhR) is a ligand-activated transcription factor implicated in the regulation of apoptosis and proliferation. Although activation of the AhR by xenobiotics such as dioxin inhibits the cell cycle and control apoptosis, paradoxically, AhR expression also promotes cell proliferation and survival independent of exogenous ligands. The microRNA (miRNA) miR-196a has also emerged as a regulator of proliferation and apoptosis but a relationship between the AhR and miR-196a is not known. Therefore, we hypothesized that AhR-dependent regulation of endogenous miR-196a expression would promote cell survival and proliferation. Utilizing lung fibroblasts from AhR deficient (AhR{sup −/−}) and wild-type (AhR{sup +/+}) mice, we show that there is ligand-independent regulation of miRNA, including low miR-196a in AhR{sup −/−} cells. Validation by qRT-PCR revealed a significant decrease in basal expression of miR-196a in AhR{sup −/−} compared to AhR{sup +/+} cells. Exposure to AhR agonists benzo[a]pyrene (B[a]P) and FICZ as well as AhR antagonist CH-223191 decreased miR-196a expression in AhR{sup +/+} fibroblasts concomitant with decreased AhR protein levels. There was increased proliferation only in AhR{sup +/+} lung fibroblasts in response to serum, corresponding to a decrease in p27{sup KIP1} protein, a cyclin-dependent kinase inhibitor. Increasing the cellular levels of miR-196a had no effect on proliferation or expression of p27{sup KIP1} in AhR{sup −/−} fibroblasts but attenuated cigarette smoke-induced apoptosis. This study provides the first evidence that AhR expression is essential for the physiological regulation of cellular miRNA levels- including miR-196a. Future experiments designed to elucidate the functional relationship between the AhR and miR-196a may delineate additional novel ligand-independent roles for the AhR. - Highlights: • The AhR controls proliferation and apoptosis in lung cells. • The AhR regulates the

  3. A role of aryl hydrocarbon receptor in the antiandrogenic effects of polycyclic aromatic hydrocarbons in LNCaP human prostate carcinoma cells

    Energy Technology Data Exchange (ETDEWEB)

    Kizu, Ryoichi; Okamura, Kazumasa; Toriba, Akira; Hayakawa, Kazuichi [Graduate School of Natural Science and Technology, Kanazawa University, 13-1 Takara-machi, Kanazawa 920-0934 (Japan); Kakishima, Hiroshi [Research Planning Department, Eiken Chemical Co. Ltd., 5-26-20 Oji, Kita-ku, Tokyo 114-0002 (Japan); Mizokami, Atsushi [School of Medicine, Kanazawa University, 13-1 Takara-machi, Kanazawa 920-8641 (Japan); Burnstein, Kerry L. [Department of Molecular and Cellular Pharmacology, University of Miami School of Medicine, FL 33101, Miami (United States)

    2003-06-01

    The role of aryl hydrocarbon receptor (AhR) on the antiandrogenic effects of polycyclic aromatic hydrocarbons (PAHs) was studied in LNCaP cells. The PAHs used in this study were chrysene (Chr), benzo[k]fluoranthene (BkF), benzo[a]pyrene (BaP), anthracene (Ant) and pyrene (Pyr). Chr, BkF and BaP acted as AhR agonists in LNCaP cells, while Ant and Pyr did not. The antiandrogenic effects of the PAHs were evaluated on the basis of regulation of prostate-specific antigen (PSA) mRNA and protein levels by 5{alpha}-dihydrotestosterone (DHT). Chr, BkF and BaP exhibited an antiandrogenic effect, but Ant and Pyr did not. {alpha}-Naphthoflavone ({alpha}-NF), an AhR antagonist, reversed the antiandrogen action of Chr, BkF and BaP, suggesting a requirement for activated AhR. The antiandrogenic PAHs did not significantly decrease androgen receptor (AR) levels or cellular DHT concentrations. Gel mobility shift assays revealed that Chr, BkF and BaP inhibited the binding of AR in nuclear extracts to oligonucleotide probes containing the AR-responsive element (ARE), whereas Ant and Pyr had no effect. The antiandrogenic PAHs elevated mRNA levels of c-fos and c-jun. Since activator protein-1 (AP-1), a heterodimer of c-jun and c-fos proteins, is known to inhibit binding of AR to ARE by protein-protein interaction with AR, the findings in the present study suggest a possible involvement of AP-1 in the antiandrogenic effects of PAHs acting as AhR agonists. These results suggest that AhR can stimulate AP-1 expression resulting in inhibition of the binding of AR to ARE in the transcription regulatory region of target genes such as PSA. (orig.)

  4. Association of aryl hydrocarbon receptor-related gene variants with the severity of autism spectrum disorders

    Directory of Open Access Journals (Sweden)

    Takashi X. Fujisawa

    2016-11-01

    Full Text Available Exposure to environmental chemicals, such as dioxin, is known to have adverse effects on the homeostasis of gonadal steroids, thereby potentially altering the sexual differentiation of the brain to express autistic traits. Dioxin-like chemicals act on the aryl hydrocarbon receptor (AhR, polymorphisms and mutations of AhR-related gene may exert pathological influences on sexual differentiation of the brain, causing autistic traits. To ascertain the relationship between AhR-related gene polymorphisms and autism susceptibility, we identified genotypes of them in patients and controls and determined whether there are different gene and genotype distributions between both groups. In addition, to clarify the relationships between the polymorphisms and the severity of autism, we compared the two genotypes of AhR-related genes (rs2066853, rs2228099 with the severity of autistic symptoms. Although no statistically significant difference was found between autism spectrum disorder (ASD patients and control individuals for the genotypic distribution of any of the polymorphisms studied herein, a significant difference in the total score of severity was observed in rs2228099 polymorphism, suggesting that the polymorphism modifies the severity of ASD symptoms but not ASD susceptibility. Moreover, we found that a significant difference in the social communication score of severity was observed. These results suggest that the rs2228099 polymorphism is possibly associated with the severity of social communication impairment among the diverse ASD symptoms.

  5. Activation of the aryl hydrocarbon receptor is the major toxic mode of action of an organic extract of a reference urban dust particulate matter mixture: The role of polycyclic aromatic hydrocarbons

    International Nuclear Information System (INIS)

    Andrysik, Zdenek; Vondracek, Jan; Marvanova, Sona; Ciganek, Miroslav; Neca, Jiri; Pencikova, Katerina; Mahadevan, Brinda; Topinka, Jan; Baird, William M.; Kozubik, Alois; Machala, Miroslav

    2011-01-01

    Highlights: → SRM1649a extract and its fractions are potent activators of AhR in a model of epithelial cells. → AhR-dependent effects include both induction of CYP1 enzymes and disruption of cell proliferation control. → Polycyclic aromatic hydrocarbons present in the neutral SRM1649a fraction are major contributors to the AhR-mediated toxic effects. → Activation of AhR and related nongenotoxic effects occur at significantly lower doses than the formation of DNA adducts and activation of DNA damage response. → More attention should be paid to the AhR-dependent nongenotoxic events elicited by urban particulate matter constituents. - Abstract: Many of the toxic and carcinogenic effects of urban air pollution have been linked to polycyclic aromatic hydrocarbons (PAHs) adsorbed to airborne particulate matter (PM). The carcinogenic properties of PAHs in complex organic mixtures derived from PM have been chiefly attributed to their mutagenicity. Nevertheless, PAHs are also potent activators of the aryl hydrocarbon receptor (AhR), which may contribute to their nongenotoxic effects, including tumor promotion. As the genotoxicity of carcinogenic PAHs in complex mixtures derived from urban PM is often inhibited by other mixture constituents, the AhR-mediated activity of urban PM extracts might significantly contribute to the carcinogenic activity of such mixtures. In the present study, we used an organic extract of the urban dust standard reference material, SRM1649a, as a model mixture to study a range of toxic effects related to DNA damage and AhR activation. Both the organic extract and its neutral aromatic fraction formed a low number of DNA adducts per nucleotide in the liver epithelial WB-F344 cells model, without inducing DNA damage response, such as tumor suppressor p53 activation and apoptosis. In contrast, we found that this extract, as well as its neutral and polar fractions, were potent inducers of a range of AhR-mediated responses, including induction

  6. Aryl Hydrocarbon Receptor Antagonists Mitigate the Effects of Dioxin on Critical Cellular Functions in Differentiating Human Osteoblast-Like Cells

    Directory of Open Access Journals (Sweden)

    Chawon Yun

    2018-01-01

    Full Text Available The inhibition of bone healing in humans is a well-established effect associated with cigarette smoking, but the underlying mechanisms are still unclear. Recent work using animal cell lines have implicated the aryl hydrocarbon receptor (AhR as a mediator of the anti-osteogenic effects of cigarette smoke, but the complexity of cigarette smoke mixtures makes understanding the mechanisms of action a major challenge. 2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD, dioxin is a high-affinity AhR ligand that is frequently used to investigate biological processes impacted by AhR activation. Since there are dozens of AhR ligands present in cigarette smoke, we utilized dioxin as a prototype ligand to activate the receptor and explore its effects on pro-osteogenic biomarkers and other factors critical to osteogenesis using a human osteoblast-like cell line. We also explored the capacity for AhR antagonists to protect against dioxin action in this context. We found dioxin to inhibit osteogenic differentiation, whereas co-treatment with various AhR antagonists protected against dioxin action. Dioxin also negatively impacted cell adhesion with a corresponding reduction in the expression of integrin and cadherin proteins, which are known to be involved in this process. Similarly, the dioxin-mediated inhibition of cell migration correlated with reduced expression of the chemokine receptor CXCR4 and its ligand, CXCL12, and co-treatment with antagonists restored migratory capacity. Our results suggest that AhR activation may play a role in the bone regenerative response in humans exposed to AhR activators, such as those present in cigarette smoke. Given the similarity of our results using a human cell line to previous work done in murine cells, animal models may yield data relevant to the human setting. In addition, the AhR may represent a potential therapeutic target for orthopedic patients who smoke cigarettes, or those who are exposed to secondhand smoke or other

  7. Aryl hydrocarbon receptor-dependent retention of nuclear HuR suppresses cigarette smoke-induced cyclooxygenase-2 expression independent of DNA-binding.

    Science.gov (United States)

    Zago, Michela; Sheridan, Jared A; Nair, Parameswaran; Rico de Souza, Angela; Gallouzi, Imed-Eddine; Rousseau, Simon; Di Marco, Sergio; Hamid, Qutayba; Eidelman, David H; Baglole, Carolyn J

    2013-01-01

    The aryl hydrocarbon receptor (AhR), a ligand-activated transcription factor that responds to man-made environmental toxicants, has emerged as an endogenous regulator of cyclooxygenase-2 (Cox-2) by a mechanism that is poorly understood. In this study, we first used AhR-deficient (AhR(-/-) ) primary pulmonary cells, together with pharmacological tools to inhibit new RNA synthesis, to show that the AhR is a prominent factor in the destabilization of Cox-2 mRNA. The destabilization of Cox-2 mRNA and subsequent suppression of cigarette smoke-induced COX-2 protein expression by the AhR was independent of its ability to bind the dioxin response element (DRE), thereby differentiating the DRE-driven toxicological AhR pathway from its anti-inflammatory abilities. We further describe that the AhR destabilizes Cox-2 mRNA by sequestering HuR within the nucleus. The role of HuR in AhR stabilization of Cox-2 mRNA was confirmed by knockdown of HuR, which resulted in rapid Cox-2 mRNA degradation. Finally, in the lungs of AhR(-/-) mice exposed to cigarette smoke, there was little Cox-2 mRNA despite robust COX-2 protein expression, a finding that correlates with almost exclusive cytoplasmic HuR within the lungs of AhR(-/-) mice. Therefore, we propose that the AhR plays an important role in suppressing the expression of inflammatory proteins, a function that extends beyond the ability of the AhR to respond to man-made toxicants. These findings open the possibility that a DRE-independent AhR pathway may be exploited therapeutically as an anti-inflammatory target.

  8. beta-TrCP inhibition reduces prostate cancer cell growth via upregulation of the aryl hydrocarbon receptor.

    Directory of Open Access Journals (Sweden)

    Udi Gluschnaider

    2010-02-01

    Full Text Available Prostate cancer is a common and heterogeneous disease, where androgen receptor (AR signaling plays a pivotal role in development and progression. The initial treatment for advanced prostate cancer is suppression of androgen signaling. Later on, essentially all patients develop an androgen independent stage which does not respond to anti hormonal treatment. Thus, alternative strategies targeting novel molecular mechanisms are required. beta-TrCP is an E3 ligase that targets various substrates essential for many aspects of tumorigenesis.Here we show that beta-TrCP depletion suppresses prostate cancer and identify a relevant growth control mechanism. shRNA targeted against beta-TrCP reduced prostate cancer cell growth and cooperated with androgen ablation in vitro and in vivo. We found that beta-TrCP inhibition leads to upregulation of the aryl hydrocarbon receptor (AhR mediating the therapeutic effect. This phenomenon could be ligand independent, as the AhR ligand 2,3,7,8-Tetrachlorodibenzo-p-Dioxin (TCDD did not alter prostate cancer cell growth. We detected high AhR expression and activation in basal cells and atrophic epithelial cells of human cancer bearing prostates. AhR expression and activation is also significantly higher in tumor cells compared to benign glandular epithelium.Together these observations suggest that AhR activation may be a cancer counteracting mechanism in the prostate. We maintain that combining beta-TrCP inhibition with androgen ablation could benefit advanced prostate cancer patients.

  9. Identification of amino acid residues in the ligand-binding domain of the aryl hydrocarbon receptor causing the species-specific response to omeprazole: possible determinants for binding putative endogenous ligands.

    Science.gov (United States)

    Shiizaki, Kazuhiro; Ohsako, Seiichiroh; Kawanishi, Masanobu; Yagi, Takashi

    2014-02-01

    Omeprazole (OME) induces the expression of genes encoding drug-metabolizing enzymes, such as CYP1A1, via activation of the aryl hydrocarbon receptor (AhR) both in vivo and in vitro. However, the precise mechanism of OME-mediated AhR activation is still under investigation. While elucidating species-specific susceptibility to dioxin, we found that OME-mediated AhR activation was mammalian species specific. Moreover, we previously reported that OME has inhibitory activity toward CYP1A1 enzymes. From these observations, we speculated that OME-mediated AhR target gene transcription is due to AhR activation by increasing amounts of putative AhR ligands in serum by inhibition of CYP1A1 activity. We compared the amino acid sequences of OME-sensitive rabbit AhR and nonsensitive mouse AhR to identify the residues responsible for the species-specific response. Chimeric AhRs were constructed by exchanging domains between mouse and rabbit AhRs to define the region required for the response to OME. OME-mediated transactivation was observed only with the chimeric AhR that included the ligand-binding domain (LBD) of the rabbit AhR. Site-directed mutagenesis revealed three amino acids (M328, T353, and F367) in the rabbit AhR that were responsible for OME-mediated transactivation. Replacing these residues with those of the mouse AhR abolished the response of the rabbit AhR. In contrast, substitutions of these amino acids with those of the rabbit AhR altered nonsensitive mouse AhR to become sensitive to OME. These results suggest that OME-mediated AhR activation requires a specific structure within LBD that is probably essential for binding with enigmatic endogenous ligands.

  10. Hypoxia perturbs aryl hydrocarbon receptor signaling and CYP1A1 expression induced by PCB 126 in human skin and liver-derived cell lines

    Energy Technology Data Exchange (ETDEWEB)

    Vorrink, Sabine U. [Interdisciplinary Graduate Program in Human Toxicology, The University of Iowa, Iowa City, IA (United States); Department of Radiation Oncology, The University of Iowa, Iowa City, IA (United States); Severson, Paul L. [Department of Pharmacology and Toxicology, The University of Arizona, Tucson, AZ (United States); Kulak, Mikhail V. [Department of Surgery, The University of Iowa, Iowa City, IA (United States); Futscher, Bernard W. [Department of Pharmacology and Toxicology, The University of Arizona, Tucson, AZ (United States); Domann, Frederick E., E-mail: frederick-domann@uiowa.edu [Interdisciplinary Graduate Program in Human Toxicology, The University of Iowa, Iowa City, IA (United States); Department of Radiation Oncology, The University of Iowa, Iowa City, IA (United States); Department of Surgery, The University of Iowa, Iowa City, IA (United States)

    2014-02-01

    The aryl hydrocarbon receptor (AhR) is an important mediator of toxic responses after exposure to xenobiotics including 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) and dioxin-like polychlorinated biphenyls (PCBs). Activation of AhR responsive genes requires AhR dimerization with the aryl hydrocarbon receptor nuclear translocator (ARNT), a heterodimeric partner also shared by the hypoxia-inducible factor-1α (HIF-1α) protein. TCDD-stimulated AhR transcriptional activity can be influenced by hypoxia; however, it less well known whether hypoxia interferes with AhR transcriptional transactivation in the context of PCB-mediated AhR activation in human cells. Elucidation of this interaction is important in liver hepatocytes which extensively metabolize ingested PCBs and experience varying degrees of oxygen tension during normal physiologic function. This study was designed to assess the effect of hypoxia on AhR transcriptional responses after exposure to 3,3′,4,4′,5-pentachlorobiphenyl (PCB 126). Exposure to 1% O{sub 2} prior to PCB 126 treatment significantly inhibited CYP1A1 mRNA and protein expression in human HepG2 and HaCaT cells. CYP1A1 transcriptional activation was significantly decreased upon PCB 126 stimulation under conditions of hypoxia. Additionally, hypoxia pre-treatment reduced PCB 126 induced AhR binding to CYP1 target gene promoters. Importantly, ARNT overexpression rescued cells from the inhibitory effect of hypoxia on XRE-luciferase reporter activity. Therefore, the mechanism of interference of the signaling crosstalk between the AhR and hypoxia pathways appears to be at least in part dependent on ARNT availability. Our results show that AhR activation and CYP1A1 expression induced by PCB 126 were significantly inhibited by hypoxia and hypoxia might therefore play an important role in PCB metabolism and toxicity. - Highlights: • Significant crosstalk exists between AhR and HIF-1α signaling. • Hypoxia perturbs PCB 126 induced AhR function and

  11. Impact of culture medium on maturation of bone marrow-derived murine dendritic cells via the aryl hydrocarbon receptor.

    Science.gov (United States)

    Ilchmann, Anne; Krause, Maren; Heilmann, Monika; Burgdorf, Sven; Vieths, Stefan; Toda, Masako

    2012-05-01

    The aryl hydrocarbon receptor (AhR) plays a role in modulating dendritic cell (DC) immunity. Iscove's modified Dulbecco's medium (IMDM) contains higher amounts of AhR ligands than RPMI1640 medium. Here, we examined the influence of AhR ligand-containing medium on the maturation and T-cell stimulatory capacity of bone marrow-derived murine dendritic cells (BMDCs). BMDCs generated in IMDM (BMDCs/IMDM) expressed higher levels of co-stimulatory and MHC class II molecules, and lower levels of pattern-recognition receptors, especially toll-like receptor (TLR) 2, TLR4, and scavenger receptor class A (SR-A), compared to BMDCs generated in RPMI1640 medium (BMDCs/RPMI). Cytokine responses against ligands of TLRs and antigen uptake mediated by SR-A were remarkably reduced in BMDCs/IMDM, whereas the T-cell stimulatory capacity of the cells was enhanced, compared to BMDCs/RPMI. The enhanced maturation of BMDCs/IMDM was attenuated in the presence of an AhR antagonist, indicating involvement of AhR in the maturation. Interestingly, BMDCs/IMDM induced Th2 and Th17 differentiation at low and high concentrations of antigen respectively, when co-cultured with CD4(+) T-cells from antigen-specific T-cell receptor transgenic mice. In contrast, BMDCs/RPMI induced Th1 differentiation predominantly in the co-culture. Taken together, optimal selection of medium seems necessary when studying BMDCs, depending on the target receptors on the cell surface of DCs and type of helper T-cells for the co-culture. Copyright © 2012 Elsevier Ltd. All rights reserved.

  12. Aryl hydrocarbon receptor expression is associated with a family history of upper gastrointestinal tract cancer in a high-risk population exposed to aromatic hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Roth, M.J.; Wei, W.Q.; Baer, J.; Abnet, C.C.; Wang, G.Q.; Sternberg, L.R.; Warner, A.C.; Johnson, L.L.; Lu, N.; Giffen, C.A.; Dawsey, S.M.; Qiao, Y.L.; Cherry, J. [NCI, Bethesda, MD (United States)

    2009-09-15

    Polycyclic aromatic hydrocarbon (PAH) exposure is a risk factor for esophageal squamous cell carcinoma, and PAHs are ligands of the aryl hydrocarbon receptor (AhR). This study measured the expression of AhR and related genes in frozen esophageal cell samples from patients exposed to different levels of indoor air pollution, who did or did not have high-grade squamous dysplasia and who did or did not have a family history of upper gastrointestinal tract (UGI) cancer. 147 samples were evaluated, including 23 (16%) from patients with high-grade dysplasia and 48 (33%) from patients without dysplasia who heated their homes with coal, without a chimney (a 'high' indoor air pollution group), and 27 (18%) from patients with high-grade dysplasia and 49 (33%) from patients without dysplasia who did not heat their homes at all (a 'low' indoor air pollution group). Sixty-four (44%) had a family history of UGI cancer. RNA was extracted and quantitative PCR analysis was done. AhR gene expression was detectable in 85 (58%) of the samples and was >9-fold higher in those with a family history of UGI cancer (median expression (interquartile range), -1,964 (-18,000, -610) versus -18,000 (-18,000, -1036); P = 0.02, Wilcoxon rank-sum test). Heating status, dysplasia category, age, gender, and smoking were not associated with AhR expression (linear regression; all P values {ge} 0.1). AhR expression was higher in patients with a family history of UGI cancer. Such individuals may be more susceptible to the deleterious effects of PAH exposure, including PAH-induced cancer.

  13. Induction of a chloracne phenotype in an epidermal equivalent model by 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) is dependent on aryl hydrocarbon receptor activation and is not reproduced by aryl hydrocarbon receptor knock down.

    Science.gov (United States)

    Forrester, Alison R; Elias, Martina S; Woodward, Emma L; Graham, Mark; Williams, Faith M; Reynolds, Nick J

    2014-01-01

    2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) is a potent activator of the aryl hydrocarbon receptor (AhR) and causes chloracne in humans. The pathogenesis and role of AhR in chloracne remains incompletely understood. To elucidate the mechanisms contributing to the development of the chloracne-like phenotype in a human epidermal equivalent model and identify potential biomarkers. Using primary normal human epidermal keratinocytes (NHEK), we studied AhR activation by XRE-luciferase, AhR degradation and CYP1A1 induction. We treated epidermal equivalents with high affinity TCDD or two non-chloracnegens: β-naphthoflavone (β-NF) and 2-(1'H-indole-3'-carbonyl)-thiazole-4-carboxylic acid methyl ester (ITE). Using Western blotting and immunochemistry for filaggrin (FLG), involucrin (INV) and transglutaminase-1 (TGM-1), we compared the effects of the ligands on keratinocyte differentiation and development of the chloracne-like phenotype by H&E. In NHEKs, activation of an XRE-luciferase and CYP1A1 protein induction correlated with ligand binding affinity: TCDD>β-NF>ITE. AhR degradation was induced by all ligands. In epidermal equivalents, TCDD induced a chloracne-like phenotype, whereas β-NF or ITE did not. All three ligands induced involucrin and TGM-1 protein expression in epidermal equivalents whereas FLG protein expression decreased following treatment with TCDD and β-NF. Inhibition of AhR by α-NF blocked TCDD-induced AhR activation in NHEKs and blocked phenotypic changes in epidermal equivalents; however, AhR knock down did not reproduce the phenotype. Ligand-induced CYP1A1 and AhR degradation did not correlate with their chloracnegenic potential, indicating that neither CYP1A1 nor AhR are suitable biomarkers. Mechanistic studies showed that the TCDD-induced chloracne-like phenotype depends on AhR activation whereas AhR knock down did not appear sufficient to induce the phenotype. Copyright © 2013 Japanese Society for Investigative Dermatology. Published by Elsevier

  14. Polycyclic’ Aromatic Hydrocarbon Induced Intracellular Signaling and Lymphocyte Apoptosis

    DEFF Research Database (Denmark)

    Schneider, Alexander M.

    The aryl hydrocarbon (dioxin) receptor (AhR) is a transcription factor possessing high affinity to potent environmental pollutants, polycyclic aromatic hydrocarbons (PAH) and related halogenated hydrocarbons (e.g. dioxins). Numerous research attribute toxicity of these compounds to the receptor...

  15. Evaluation of the Ecotoxicity of Sediments from Yangtze River Estuary and Contribution of Priority PAHs to Ah Receptor-Mediated Activities

    Science.gov (United States)

    Liu, Li; Chen, Ling; Shao, Ying; Zhang, Lili; Floehr, Tilman; Xiao, Hongxia; Yan, Yan; Eichbaum, Kathrin; Hollert, Henner; Wu, Lingling

    2014-01-01

    In this study, in vitro bioassays were performed to assess the ecotoxicological potential of sediments from Yangtze River estuary. The cytotoxicity and aryl hydrocarbon receptor (AhR)-mediated toxicity of sediment extracts with rainbow trout (Oncorhynchus mykiss) liver cells were determined by neutral red retention and 7-ethoxyresorufin-O-deethylase assays. The cytotoxicity and AhR-mediated activity of sediments from the Yangtze River estuary ranged from low level to moderate level compared with the ecotoxicity of sediments from other river systems. However, Yangtze River releases approximately 14 times greater water discharge compared with Rhine, a major river in Europe. Thus, the absolute pollution mass transfer of Yangtze River may be detrimental to the environmental quality of estuary and East China Sea. Effect-directed analysis was applied to identify substances causing high dioxin-like activities. To identify unknown substances contributing to dioxin-like potencies of whole extracts, we fractionated crude extracts by open column chromatography. Non-polar paraffinic components (F1), weakly and moderately polar components (F2), and highly polar substances (F3) were separated from each crude extract of sediments. F2 showed the highest dioxin-like activities. Based on the results of mass balance calculation of chemical toxic equivalent concentrations (TEQs), our conclusion is that priority polycyclic aromatic hydrocarbons indicated a low portion of bio-TEQs ranging from 1% to 10% of crude extracts. Further studies should be conducted to identify unknown pollutants. PMID:25111307

  16. Evaluation of the ecotoxicity of sediments from Yangtze river estuary and contribution of priority PAHs to ah receptor--mediated activities.

    Science.gov (United States)

    Liu, Li; Chen, Ling; Shao, Ying; Zhang, Lili; Floehr, Tilman; Xiao, Hongxia; Yan, Yan; Eichbaum, Kathrin; Hollert, Henner; Wu, Lingling

    2014-01-01

    In this study, in vitro bioassays were performed to assess the ecotoxicological potential of sediments from Yangtze River estuary. The cytotoxicity and aryl hydrocarbon receptor (AhR)-mediated toxicity of sediment extracts with rainbow trout (Oncorhynchus mykiss) liver cells were determined by neutral red retention and 7-ethoxyresorufin-O-deethylase assays. The cytotoxicity and AhR-mediated activity of sediments from the Yangtze River estuary ranged from low level to moderate level compared with the ecotoxicity of sediments from other river systems. However, Yangtze River releases approximately 14 times greater water discharge compared with Rhine, a major river in Europe. Thus, the absolute pollution mass transfer of Yangtze River may be detrimental to the environmental quality of estuary and East China Sea. Effect-directed analysis was applied to identify substances causing high dioxin-like activities. To identify unknown substances contributing to dioxin-like potencies of whole extracts, we fractionated crude extracts by open column chromatography. Non-polar paraffinic components (F1), weakly and moderately polar components (F2), and highly polar substances (F3) were separated from each crude extract of sediments. F2 showed the highest dioxin-like activities. Based on the results of mass balance calculation of chemical toxic equivalent concentrations (TEQs), our conclusion is that priority polycyclic aromatic hydrocarbons indicated a low portion of bio-TEQs ranging from 1% to 10% of crude extracts. Further studies should be conducted to identify unknown pollutants.

  17. Water exposure assessment of aryl hydrocarbon receptor agonists in Three Gorges Reservoir, China using SPMD-based virtual organisms.

    Science.gov (United States)

    Wang, Jingxian; Bernhöft, Silke; Pfister, Gerd; Schramm, Karl-Werner

    2014-10-15

    SPMD-based virtual organisms (VOs) were deployed at five to eight sites in the Three Gorges Reservoir (TGR), China for five periods in 2008, 2009 and 2011. The water exposure of aryl hydrocarbon receptor (AhR) agonists was assessed by the VOs. The chosen bioassay response for the extracts of the VOs, the induction of 7-ethoxyresorufin-O-deethylase (EROD) was assayed using a rat hepatoma cell line (H4IIE). The results show that the extracts from the VOs could induce AhR activity significantly, whereas the chemically derived 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) equivalent (TEQcal) accounted for water level reached a maximum of 175 m. Although the aqueous concentration of AhR agonists of 0.8-4.8 pg TCDDL(-1) in TGR was not alarming, the tendency of accumulating high concentration of AhR agonists in VO lipid and existence of possible synergism or antagonism in the water may exhibit a potential hazard to local biota being exposed to AhR agonists. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Correlating gene expression with deformities caused by aryl hydrocarbon receptor agonists in zebrafish (Danio rerio)

    Energy Technology Data Exchange (ETDEWEB)

    Bugiak, B.; Weber, L. [Saskatchewan Univ., Saskatoon, SK (Canada)

    2009-07-01

    Exposure to aryl hydrocarbon receptor (AhR) agonists in fish causes lethal disturbances in fish development, but the effects of acute AhR agonist exposure on the cardiovascular system and deformities remain unclear. This study addressed this issue by performing a series of experiments on zebrafish (Danio rerio). The authors hypothesized that genes needed for cardiovascular regulation (PTGS) would exhibit a stronger link to deformities than detoxification enzymes (CYPs). Zebrafish eggs were exposed aqueously until 4 days post-fertilization (dpf) to the AhR agonists benzo(a)pyrene (BaP) or 2,3,7,8-tetrachlorodibenzop-dioxin (TCDD) alone and in combination with the putative AhR antagonists resveratrol or alpha-naphthoflavone (ANF). Gene expression was measured using real-time, reverse transcriptase PCR in zebrafish at 5 and 10 dpf. Although the mortalities did not differ considerably among groups at 10 dpf, the deformities increased significantly after BaP-ANF at 5 dpf and after BaP at 10 dpf, but not after TCDD treatment. CYP and PTGS isozymes exhibited small, but statistically significant changes at 5 dpf. By 10 dpf, the expression returned to control values. In general, CYP1A and PTGS-1 expression at 5 dpf were positively correlated with deformities, while all other genes were negatively correlated with deformities. It was concluded that changes in CYP1A, CYP1C2, and PTGS-1 gene expression at 5 dpf are associated with developmental deformities, but additional work is needed to determine which has the most important mechanistic link.

  19. Differential effects of omeprazole and lansoprazole enantiomers on aryl hydrocarbon receptor in human hepatocytes and cell lines.

    Science.gov (United States)

    Novotna, Aneta; Srovnalova, Alzbeta; Svecarova, Michaela; Korhonova, Martina; Bartonkova, Iveta; Dvorak, Zdenek

    2014-01-01

    Proton pump inhibitors omeprazole and lansoprazole contain chiral sulfur atom and they are administered as a racemate, i.e. equimolar mixture of S- and R-enantiomers. The enantiopure drugs esomeprazole and dexlansoprazole have been developed and introduced to clinical practice due to their improved clinical and therapeutic properties. Since omeprazole and lansoprazole are activators of aryl hydrocarbon receptor (AhR) and inducers of CYP1A genes, we examined their enantiospecific effects on AhR-CYP1A pathway in human cancer cells and primary human hepatocytes. We performed gene reporter assays for transcriptional activity of AhR, RT-PCR analyses for CYP1A1/2 mRNAs, western blots for CYP1A1/2 proteins and EROD assay for CYP1A1/2 catalytic activity. Lansoprazole and omeprazole enantiomers displayed differential effects on AhR-CYP1A1/2 pathway. In general, S-enantiomers were stronger activators of AhR and inducers of CYP1A genes as compared to R-enantiomers in lower concentrations, i.e. 1-10 µM for lansoprazole and 10-100 µM for omeprazole. In contrast, R-enantiomers were stronger AhR activators and CYP1A inducers than S-enantiomers in higher concentrations, i.e. 100 µM for lansoprazole and 250 µM for omeprazole. In conclusion, we provide the first evidence of enantiospecific effects of omeprazole and lansoprazole on AhR signaling pathway.

  20. Environmental polycyclic aromatic hydrocarbons affect androgen receptor activation in vitro

    DEFF Research Database (Denmark)

    Vinggaard, Anne Marie; Hnida, Christina; Larsen, John Christian

    2000-01-01

    Nine structurally different polycyclic aromatic hydrocarbons (PAHs) were tested for their ability to either agonize or antagonize the human androgen receptor (hAR) in a sensitive reporter gene assay based on CHO cells transiently cotransfected with a hAR vector and an MMTV-LUC vector. Benz...

  1. Aryl hydrocarbon receptor is necessary to protect fetal human pulmonary microvascular endothelial cells against hyperoxic injury: Mechanistic roles of antioxidant enzymes and RelB

    International Nuclear Information System (INIS)

    Zhang, Shaojie; Patel, Ananddeep; Chu, Chun; Jiang, Weiwu; Wang, Lihua; Welty, Stephen E.; Moorthy, Bhagavatula; Shivanna, Binoy

    2015-01-01

    Hyperoxia contributes to the development of bronchopulmonary dysplasia (BPD) in premature infants. Activation of the aryl hydrocarbon receptor (AhR) protects adult and newborn mice against hyperoxic lung injury by mediating increases in the expression of phase I (cytochrome P450 (CYP) 1A) and phase II (NADP(H) quinone oxidoreductase (NQO1)) antioxidant enzymes (AOE). AhR positively regulates the expression of RelB, a component of the nuclear factor-kappaB (NF-κB) protein that contributes to anti-inflammatory processes in adult animals. Whether AhR regulates the expression of AOE and RelB, and protects fetal primary human lung cells against hyperoxic injury is unknown. Therefore, we tested the hypothesis that AhR-deficient fetal human pulmonary microvascular endothelial cells (HPMEC) will have decreased RelB activation and AOE, which will in turn predispose them to increased oxidative stress, inflammation, and cell death compared to AhR-sufficient HPMEC upon exposure to hyperoxia. AhR-deficient HPMEC showed increased hyperoxia-induced reactive oxygen species (ROS) generation, cleavage of poly(ADP-ribose) polymerase (PARP), and cell death compared to AhR-sufficient HPMEC. Additionally, AhR-deficient cell culture supernatants displayed increased macrophage inflammatory protein 1α and 1β, indicating a heightened inflammatory state. Interestingly, loss of AhR was associated with a significantly attenuated CYP1A1, NQO1, superoxide dismutase 1(SOD1), and nuclear RelB protein expression. These findings support the hypothesis that decreased RelB activation and AOE in AhR-deficient cells is associated with increased hyperoxic injury compared to AhR-sufficient cells. - Highlights: • AhR deficiency potentiates oxygen toxicity in human fetal lung cells. • Deficient AhR signaling increases hyperoxia-induced cell death. • AhR deficiency increases hyperoxia-induced ROS generation and inflammation. • Anti-oxidant enzyme levels are attenuated in AhR-deficient lung cells

  2. Aryl hydrocarbon receptor is necessary to protect fetal human pulmonary microvascular endothelial cells against hyperoxic injury: Mechanistic roles of antioxidant enzymes and RelB

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Shaojie; Patel, Ananddeep; Chu, Chun; Jiang, Weiwu; Wang, Lihua; Welty, Stephen E.; Moorthy, Bhagavatula; Shivanna, Binoy, E-mail: shivanna@bcm.edu

    2015-07-15

    Hyperoxia contributes to the development of bronchopulmonary dysplasia (BPD) in premature infants. Activation of the aryl hydrocarbon receptor (AhR) protects adult and newborn mice against hyperoxic lung injury by mediating increases in the expression of phase I (cytochrome P450 (CYP) 1A) and phase II (NADP(H) quinone oxidoreductase (NQO1)) antioxidant enzymes (AOE). AhR positively regulates the expression of RelB, a component of the nuclear factor-kappaB (NF-κB) protein that contributes to anti-inflammatory processes in adult animals. Whether AhR regulates the expression of AOE and RelB, and protects fetal primary human lung cells against hyperoxic injury is unknown. Therefore, we tested the hypothesis that AhR-deficient fetal human pulmonary microvascular endothelial cells (HPMEC) will have decreased RelB activation and AOE, which will in turn predispose them to increased oxidative stress, inflammation, and cell death compared to AhR-sufficient HPMEC upon exposure to hyperoxia. AhR-deficient HPMEC showed increased hyperoxia-induced reactive oxygen species (ROS) generation, cleavage of poly(ADP-ribose) polymerase (PARP), and cell death compared to AhR-sufficient HPMEC. Additionally, AhR-deficient cell culture supernatants displayed increased macrophage inflammatory protein 1α and 1β, indicating a heightened inflammatory state. Interestingly, loss of AhR was associated with a significantly attenuated CYP1A1, NQO1, superoxide dismutase 1(SOD1), and nuclear RelB protein expression. These findings support the hypothesis that decreased RelB activation and AOE in AhR-deficient cells is associated with increased hyperoxic injury compared to AhR-sufficient cells. - Highlights: • AhR deficiency potentiates oxygen toxicity in human fetal lung cells. • Deficient AhR signaling increases hyperoxia-induced cell death. • AhR deficiency increases hyperoxia-induced ROS generation and inflammation. • Anti-oxidant enzyme levels are attenuated in AhR-deficient lung cells

  3. Linked expression of Ah receptor, ARNT, CYP1A1, and CYP1B1 in rat mammary epithelia, in vitro, is each substantially elevated by specific extracellular matrix interactions that precede branching morphogenesis.

    Science.gov (United States)

    Larsen, Michele Campaigne; Brake, Paul B; Pollenz, Richard S; Jefcoate, Colin R

    2004-11-01

    Cytochrome P4501B1 (CYP1B1), the major constitutively expressed CYP in the rat mammary gland, is induced by Ah-receptor (AhR) ligands, while CYP1A1 is predominantly expressed only after induction. These CYPs contribute to carcinogenic activation of polycyclic aromatic hydrocarbons (PAHs). AhR, ARNT, and CYP1B1 were only weakly expressed, even after 2,3,7,8-tetrachlorodibenzo-p-dioxin induction, when rat mammary epithelial cells (RMEC) were cultured on plastic. RMEC cultured on the extracellular matrix (ECM), Matrigel, or on a floating gel of collagen I demonstrated branching morphogenesis and substantially increased basal CYP1B1 and induced CYP1A1 expression, in parallel with large increases in AhR and ARNT expression. Branching was more pronounced in the Wistar Kyoto than in the Wistar Furth rat strain. Although EGF enhanced branching, neither strain nor growth factor treatment substantially impacted CYP expression. Increased AhR and ARNT expression is observed within 24 h of dispersal on Matrigel, substantially prior to branch formation. Culture on thin layers of collagen I, collagen IV, and laminin, respectively, failed to reproduce the branching morphogenesis or increases in AhR, ARNT, or CYP expression. However, adherent, gelled collagen I recapitulated the increased protein expression, without supporting branching. This increased protein expression was closely paralleled by enhanced expression of beta-catenin and E-cadherin, components of cell-cell adhesion complexes. A synthetic peptide that selectively antagonizes integrin-ECM interactions reduced branch formation, without diminishing AhR, ARNT, and CYP expression. These data demonstrate that early ECM surface adhesion interactions mediate AhR and ARNT expression, which enhances CYP expression, independent of branching morphogenesis.

  4. Indole-3-carbinol induces G1 cell cycle arrest and apoptosis through aryl hydrocarbon receptor in THP-1 monocytic cell line.

    Science.gov (United States)

    Mohammadi, Saeed; Seyedhosseini, Fakhri Sadat; Behnampour, Nasser; Yazdani, Yaghoub

    2017-10-01

    The role of aryl hydrocarbon receptor (AhR) in carcinogenesis has been studied recently. Indole-3-carbinol (I3C) is an AhR agonist and a potential anticancer agent. Here, we investigated the effects of I3C on cell cycle progression and apoptosis through activation of AhR on THP-1 acute myeloid leukemia (AML) cell line. MTT viability assay was used to measure the cytotoxic effects of I3C on THP-1 cells. Apoptosis and cell cycle assays were investigated using flow cytometry. Real time RT-PCR was conducted to measure the alterations in the expression of AhR gene, key genes associated with AhR activation (IL1β and CYP1A1) and major genes involved in cell cycle regulation and apoptosis including P27, P21, CDK2, P53, BCL2 and FasR. Our findings revealed that I3C inhibits the proliferation of THP-1 cells in a dose- and time-dependent manner with minimal toxicity over normal monocytes. The AhR target genes (CYP1A1, IL1β) were overexpressed upon I3C treatment (p cycle arrest was also observed using flow cytometry. G1-acting cell cycle genes (P21, P27 and P53) were overexpressed (p cycle arrest in a dose- and time-dependent manner. Therefore, AhR could be targeted as a novel treatment possibility in AML.

  5. The crystal structure of the AhRR-ARNT heterodimer reveals the structural basis of the repression of AhR-mediated transcription.

    Science.gov (United States)

    Sakurai, Shunya; Shimizu, Toshiyuki; Ohto, Umeharu

    2017-10-27

    2,3,7,8-Tetrachlorodibenzo- p -dioxin and related compounds are extraordinarily potent environmental toxic pollutants. Most of the 2,3,7,8-tetrachlorodibenzo- p -dioxin toxicities are mediated by aryl hydrocarbon receptor (AhR), a ligand-dependent transcription factor belonging to the basic helix-loop-helix (bHLH) Per-ARNT-Sim (PAS) family. Upon ligand binding, AhR forms a heterodimer with AhR nuclear translocator (ARNT) and induces the expression of genes involved in various biological responses. One of the genes induced by AhR encodes AhR repressor (AhRR), which also forms a heterodimer with ARNT and represses the activation of AhR-dependent transcription. The control of AhR activation is critical for managing AhR-mediated diseases, but the mechanisms by which AhRR represses AhR activation remain poorly understood, because of the lack of structural information. Here, we determined the structure of the AhRR-ARNT heterodimer by X-ray crystallography, which revealed an asymmetric intertwined domain organization presenting structural features that are both conserved and distinct among bHLH-PAS family members. The structures of AhRR-ARNT and AhR-ARNT were similar in the bHLH-PAS-A region, whereas the PAS-B of ARNT in the AhRR-ARNT complex exhibited a different domain arrangement in this family reported so far. The structure clearly disclosed that AhRR competitively represses AhR binding to ARNT and target DNA and further suggested the existence of an AhRR-ARNT-specific repression mechanism. This study provides a structural basis for understanding the mechanism by which AhRR represses AhR-mediated gene transcription. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  6. Tumor necrosis factor-α inhibits effects of aryl hydrocarbon receptor ligands on cell death in human lymphocytes.

    Science.gov (United States)

    Ghatrehsamani, Mahdi; Soleimani, Masoud; Esfahani, Behjat A Moayedi; Shirzad, Hedayatollah; Hakemi, Mazdak G; Mossahebimohammadi, Majid; Eskandari, Nahid; Adib, Minoo

    2015-01-01

    Activation of aryl hydrocarbon receptor (AhR) leads to diverse outcome in various kinds of cells. AhR activation may induce apoptosis or prevent of apoptosis and cell death. Recent studies suggest that apoptosis effects of AhR can be modulated by inflammatory cytokine like tumor necrosis factor alpha (TNF-α). In this study, we try to investigate the possible interaction of TNF-α with the 2, 3, 7, 8-tetrachlorodibenzo-p-dioxin (TCDD), a ligand of AhR, on peripheral lymphocytes. Human peripheral blood mononuclear cells (PBMCs) were isolated from peripheral blood by discontinuous density gradient centrifugation on ficoll. Isolated PBMCs were divided into four groups: Control group, TNF-α administered group, TCDD administered group, co-administered group with TCDD and TNF-α. Cells were maintained for a week in lymphocyte culture condition. Then, TNF-α was added to group 2 and 4. Finally, apoptosis and necrosis were analyzed in all samples using flowcytometry. In group 4, the mean percent of necrosis and apoptosis in TCDD treatment groups was significantly larger than other groups; (P 0.05). However, the mean percent of cell death in co-administered group with TCDD and TNF-α was significantly lower than other groups; (P < 0.05). TNF-α could significantly inhibit effects of TCDD on lymphocytes apoptosis. Combination effects of TNF-α and TCDD on lymphocyte increase cell survival.

  7. Kynurenine 3-monooxygenase mediates inhibition of Th17 differentiation via catabolism of endogenous aryl hydrocarbon receptor ligands.

    Science.gov (United States)

    Stephens, Geoffrey L; Wang, Qun; Swerdlow, Bonnie; Bhat, Geetha; Kolbeck, Roland; Fung, Michael

    2013-07-01

    The aryl hydrocarbon receptor (AhR) is a key transcriptional regulator of Th17-cell differentiation. Although endogenous ligands have yet to be identified, evidence suggests that tryptophan metabolites can act as agonists for the AhR. Tryptophan metabolites are abundant in circulation, so we hypothesized that cell intrinsic factors might exist to regulate the exposure of Th17 cells to AhR-dependent activities. Here, we find that Th17 cells preferentially express kynurenine 3-monooxygenase (KMO), which is an enzyme involved in catabolism of the tryptophan metabolite kynurenine. KMO inhibition, either with a specific inhibitor or via siRNA-mediated silencing, markedly increased IL-17 production in vitro, whereas IFN-γ production by Th1 cells was unaffected. Inhibition of KMO significantly exacerbated disease in a Th17-driven model of autoimmune gastritis, suggesting that expression of KMO by Th17 cells serves to limit their continuous exposure to physiological levels of endogenous AhR ligands in vivo. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Gene expression and inducibility of the aryl hydrocarbon receptor-dependent pathway in cultured bovine blood lymphocytes.

    Science.gov (United States)

    Girolami, Flavia; Spalenza, Veronica; Carletti, Monica; Perona, Giovanni; Sacchi, Paola; Rasero, Roberto; Nebbia, Carlo

    2011-10-10

    The exposure to dioxin-like (DL) compounds, an important class of persistent environmental pollutants, results in the altered expression of target genes. This occurs through the binding to the aryl hydrocarbon receptor (AhR), the subsequent dimerization with the AhR nuclear translocator (ARNT), and the binding of the complex to DNA responsive elements. A number of genes are up-regulated, including, among others, the AhR repressor (AHRR) and several biotransformation enzymes, such as the members of CYP1 family and NAD(P)H-quinone oxidoreductase (NOQ1). The expression and the inducibility of the above genes were investigated in mitogen-stimulated cultured blood lymphocytes from cattle, which represent a notable source of DL-compound human exposure through dairy products and meat. As assessed by real-time PCR, all the examined genes except CYP1A2 and NQO1 were detected under basal conditions. Cell exposure to the DL-compounds PCB126 or PCB77 in the 10(-6)-10(-9)M concentration range resulted in a 2-4-fold induction of CYPIA1 and CYP1B1, which was antagonized by α-naphthoflavone or PCB153. This study demonstrates for the first time the presence and inducibility of the AhR pathway in easily accessible cells like bovine peripheral lymphocytes and prompts further investigations to verify whether similar changes could occur under in vivo conditions. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  9. Linking Ah receptor mediated effects of sediments and impacts on fish to key pollutants in the Yangtze Three Gorges Reservoir, China - A comprehensive perspective.

    Science.gov (United States)

    Floehr, Tilman; Scholz-Starke, Björn; Xiao, Hongxia; Hercht, Hendrik; Wu, Lingling; Hou, Junli; Schmidt-Posthaus, Heike; Segner, Helmut; Kammann, Ulrike; Yuan, Xingzhong; Roß-Nickoll, Martina; Schäffer, Andreas; Hollert, Henner

    2015-12-15

    The Three Gorges Reservoir (TGR), created in consequence of the Yangtze River's impoundment by the Three Gorges Dam, faces numerous anthropogenic impacts that challenge its unique ecosystem. Organic pollutants, particularly aryl hydrocarbon receptor (AhR) agonists, have been widely detected in the Yangtze River, but only little research was yet done on AhR-mediated activities. Hence, in order to assess effects of organic pollution, with particular focus on AhR-mediated activities, several sites in the TGR area were examined applying the "triad approach". It combines chemical analysis, in vitro, in vivo and in situ investigations to a holistic assessment. Sediments and the benthic fish species Pelteobagrus vachellii were sampled in 2011/2012, respectively, to identify relevant endpoints. Sediment was tested in vitro with the ethoxyresorufin-O-deethylase (EROD) induction assay, and in vivo with the Fish Embryo Toxicity Test and Sediment Contact Assay with Danio rerio. Activities of phase I (EROD) and phase II (glutathione-S-transferase) biotransformation enzymes, pollutant metabolites and histopathological alterations were studied in situ in P. vachellii. EROD induction was tested in vitro and in situ to evaluate possible relationships. Two sites, near Chongqing and Kaixian city, were identified as regional hot-spots and further investigated in 2013. The sediments induced in the in vitro/in vivo bioassays AhR-mediated activities and embryotoxic/teratogenic effects - particularly on the cardiovascular system. These endpoints could be significantly correlated to each other and respective chemical data. However, particle-bound pollutants showed only low bioavailability. The in situ investigations suggested a rather poor condition of P. vachellii, with histopathological alterations in liver and excretory kidney. Fish from Chongqing city exhibited significant hepatic EROD induction and obvious parasitic infestations. The polycyclic aromatic hydrocarbon (PAH) metabolite 1

  10. Considerations for potency equivalent calculations in the Ah receptor-based CALUX bioassay: normalization of superinduction results for improved sample potency estimation.

    Science.gov (United States)

    Baston, David S; Denison, Michael S

    2011-02-15

    The chemically activated luciferase expression (CALUX) system is a mechanistically based recombinant luciferase reporter gene cell bioassay used in combination with chemical extraction and clean-up methods for the detection and relative quantitation of 2,3,7,8-tetrachlorodibenzo-p-dioxin and related dioxin-like halogenated aromatic hydrocarbons in a wide variety of sample matrices. While sample extracts containing complex mixtures of chemicals can produce a variety of distinct concentration-dependent luciferase induction responses in CALUX cells, these effects are produced through a common mechanism of action (i.e. the Ah receptor (AhR)) allowing normalization of results and sample potency determination. Here we describe the diversity in CALUX response to PCDD/Fs from sediment and soil extracts and not only report the occurrence of superinduction of the CALUX bioassay, but we describe a mechanistically based approach for normalization of superinduction data that results in a more accurate estimation of the relative potency of such sample extracts. Copyright © 2010 Elsevier B.V. All rights reserved.

  11. Persistent aryl hydrocarbon receptor inducers increase with altitude, and estrogen-like disrupters are low in soils of the Alps.

    Science.gov (United States)

    Levy, Walkiria; Henkelmann, Bernhard; Bernhöft, Silke; Bovee, Toine; Buegger, Franz; Jakobi, Gert; Kirchner, Manfred; Bassan, Rodolfo; Kräuchi, Norbert; Moche, Wolfgang; Offenthaler, Ivo; Simončič, Primoz; Weiss, Peter; Schramm, Karl-Werner

    2011-01-01

    Soil samples from remote Alpine areas were analyzed for polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans and polychlorinated biphenyls by high-resolution gas chromatography/high-resolution gas spectrometry. Additionally, the EROD micro-assay and a genetically modified yeast estrogen bioassay were carried out to determine persistent aryl hydrocarbon receptors (AhR) and estrogen receptors (ER) agonists, respectively. Regarding the AhR agonists, the toxicity equivalents of analytical and EROD determined values were compared, targeting both altitude of samples and their soil organic content. The ratio between bioassay derived equivalents and analytical determinations suggested no significant contribution of unknown AhR inducers in these sampling sites and some antagonism in soils with relatively high PCB loading. More CYP1A1 expression was induced at the highest sites or about 1400-1500 m a.s.l. along the altitude profiles. Surprisingly, no clear tendencies with the soil organic content were found for dioxin-like compounds. Mean values obtained in the present study were for ER agonists, 2: 0.37±0.12ng 17ß-estradiol EQ g-1 dry soil [corrected] and 6.1 ± 4.2 pg TCDD-EQ g⁻¹ dry soil for AhR agonists. Low bioassay responses with a higher relative amount of ER disrupters than AhR inducers were detected,indicating the higher abundance of estrogen-like than persistent dioxin-like compounds in these forested areas [corrected].

  12. A dioxin-like compound induces hyperplasia and branching morphogenesis in mouse mammary gland, through alterations in TGF-β1 and aryl hydrocarbon receptor signaling.

    Science.gov (United States)

    Miret, Noelia; Rico-Leo, Eva; Pontillo, Carolina; Zotta, Elsa; Fernández-Salguero, Pedro; Randi, Andrea

    2017-11-01

    Hexachlorobenzene (HCB) is a widespread environmental pollutant and a dioxin-like compound that binds weakly to the aryl hydrocarbon receptor (AhR). Because AhR and transforming growth factor β1 (TGF-β1) converge to regulate common signaling pathways, alterations in this crosstalk might contribute to developing preneoplastic lesions. The aim of this study was to evaluate HCB action on TGF-β1 and AhR signaling in mouse mammary gland, through AhR+/+ and AhR-/- models. Results showed a differential effect in mouse mammary epithelial cells (NMuMG), depending on the dose: 0.05μM HCB induced cell migration and TGF-β1 signaling, whereas 5μM HCB reduced cell migration, promoted cell cycle arrest and stimulated the dioxin response element (DRE) -dependent pathway. HCB (5μM) enhanced α-smooth muscle actin expression and decreased TGF-β receptor II mRNA levels in immortalized mouse mammary fibroblasts AhR+/+, resembling the phenotype of transformed cells. Accordingly, their conditioned medium was able to enhance NMuMG cell migration. Assays in C57/Bl6 mice showed HCB (3mg/kg body weight) to enhance ductal hyperplasia, cell proliferation, estrogen receptor α nuclear localization, branch density, and the number of terminal end buds in mammary gland from AhR+/+ mice. Primary culture of mammary epithelial cells from AhR+/+ mice showed reduced AhR mRNA levels after HCB exposure (0.05 and 5μM). Interestingly, AhR-/- mice exhibited an increase in ductal hyperplasia and mammary growth in the absence of HCB treatment, thus revealing the importance of AhR in mammary development. Our findings show that environmental HCB concentrations modulate AhR and TGF-β1 signaling, which could contribute to altered mammary branching morphogenesis, likely leading to preneoplastic lesions and retaining terminal end buds. Copyright © 2017. Published by Elsevier Inc.

  13. Development and characterization of a green fluorescent protein-based rat cell bioassay system for detection of AH receptor ligands

    Energy Technology Data Exchange (ETDEWEB)

    Zhao Bin; Denison, M. [California Univ., Davis, CA (United States). Dept. of Environmental Toxicology

    2004-09-15

    Proper epidemiological, risk assessment and exposure analysis of TCDD and related HAHs requires accurate measurements of these chemicals both in the species of interest and in various exposure matrices (i.e. biological, environmental, food and feed). While high-resolution instrumental analysis techniques are established for these chemicals, these procedures are very costly, time-consuming and are impractical for large scale sampling studies. Accordingly, numerous bioanalytical methods have been developed for the detection of these chemicals in extracts from a variety of matrices, the majority of which take the advantage of the ability of these chemicals to activate one or more aspects of the AhR-dependent mechanism of action. One of the most sensitive bioassay systems developed to date is the so-called CALUX (Chemically Activated Luciferase Expression) assay, which is based on novel recombinant cell lines that contain a stably transfected dioxin (AhR)-responsive firefly luciferase gene. Treatment of these cells with TCDD and related HAHs and polycyclic aromatic hydrocarbons (PAHs), as well as other AhR ligands, results in induction of reporter gene expression in a time-, dose-, AhR-, and chemical-specific manner. The level of reporter gene expression correlates with the total concentration of the TCDD-like AhR inducers (agonists) present in the sample. Although the firefly luciferase reporter gene contributes to the high degree of sensitivity of the assay, it also has limitations with respect to our need for a rapid and inexpensive bioassay for high-throughput screening analysis. Accordingly, we previously developed a stably transfected murine cell line containing an AhRresponsive enhanced green fluorescent protein (EGFP) reporter gene. This cell line provided us with a high-throughput cell bioassay system for identification and characterization of AhR agonists and antagonists. Here we have extended these studies and describe the development, optimization, and

  14. Estrogen receptor α and aryl hydrocarbon receptor cross-talk in a transfected hepatoma cell line (HepG2 exposed to 2,3,7,8-tetrachlorodibenzo-p-dioxin

    Directory of Open Access Journals (Sweden)

    Manuela Göttel

    2014-01-01

    Full Text Available The prototype dioxin congener 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD is known to exert anti-estrogenic effects via activation of the aryl hydrocarbon receptor (AhR by interfering with the regulation of oestrogen homeostasis and the estrogen receptor α (ERα signalling pathway. The AhR/ER cross-talk is considered to play a crucial role in TCDD- and E2-dependent mechanisms of carcinogenesis, though the concerted mechanism of action in the liver is not yet elucidated. The present study investigated TCDD's impact on the transcriptional cross-talk between AhR and ERα and its modulation by 17β-estradiol (E2 in the human hepatoma cell line HepG2, which is AhR-responsive but ERα-negative. Transient transfection assays with co-transfection of hERα and supplementation of receptor antagonists showed anti-estrogenic action of TCDD via down-regulation of E2-induced ERα signaling. In contrast, enhancement of AhR signaling dependent on ERα was observed providing evidence for increased cytochrome P450 (CYP induction to promote E2 metabolism. However, relative mRNA levels of major E2-metabolizing CYP1A1 and 1B1 and the main E2-detoxifying catechol-O-methyltransferase were not affected by the co-treatments. This study provides new evidence of a TCDD-activated AhR-mediated molecular AhR/ERα cross-talk mechanism at transcriptional level via indirect inhibition of ERα and enhanced transcriptional activity of AhR in HepG2 cells.

  15. Role of endocrine disrupting chemicals on the tissue levels of AhR and sex steroid receptors in breast tumours

    Directory of Open Access Journals (Sweden)

    Sepideh Arbabi Bidgoli

    2016-09-01

    Full Text Available Breast cancer affects Iranian women at least one decade younger than their counterparts in other countries and the incidence of breast fibroadenoma is growing in the last two decades in Tehran. This study aimed to compare the AhR levels in premenopausal breast cancer and breast fibroadnemo with appropriate normal groups. Possible associations of AhR with lifestyle and reproductive risk factors and other fundamental genes of breast cancer and reproductive disorders were the other major goals of present study. To conduct the comparisons all possible reproductive, environmental and lifestyle risk factors of mentioned diseases were recorded in 100 breast cancer, 100 breast fibroadenoma and compared with 400 women in normal group from 2009 to 2011. AhR overexpression in epithelial cells of premenopausal patients emphasized the susceptibility of these cells to environmental induced reproductive disorders. The AhR overexpression was contributed to ER-/PgR- immunophenotype in malignant tissues. Weight gain (after 18 and after pregnancy, long term (>5yrs OCP consumption, smoking, severe stress ,history of ovarian cysts, hormonal deregulations, living near PAHs producing sources, were correlated with increased risk of breast cancer and reproductive disorders and were correlated with elevated tissue levels of AhR. It seems that increased risk of breast cancer and other reproductive tumours in Tehran may be the result of exposure to environmental endocrine disruptors. Long term exposure to environmental estrogens can increase the tissue levels of AhR and deregulate the expression pattern of sex steroid receptors and other genes in target tissues.

  16. Aryl hydrocarbon receptor pathway activation enhances gastric cancer cell invasiveness likely through a c-Jun-dependent induction of matrix metalloproteinase-9

    Directory of Open Access Journals (Sweden)

    Song Xin

    2009-04-01

    Full Text Available Abstract Background Abberant aryl hydrocarbon receptor (AhR expression and AhR pathway activation are involved in gastric carcinogenesis. However, the relationship between AhR pathway activation and gastric cancer progression is still unclear. In present study, we used 2,3,7,8-tetrachlorodibenzo-para-dioxin (TCDD, a classic and most potent ligand of AhR, to activate AhR pathway and investigated the effect of AhR pathway activation on human gastric cancer AGS cell invasion and explored the corresponding mechanism. Results To determine whether AhR pathway can be activated in AGS cells, we examined the expression of CYP1A1, a classic target gene of AhR pathway, following TCDD exposure. RT-PCR and western blot analysis showed that both CYP1A1 mRNA and protein expression were increased in a dose-dependent manner following TCDD treatment and AhR antagonist resveratrol (RSV could reverse this TCDD-induced CYP1A1 expression. To determine whether TCDD treatment of AGS cells results in an induction of MMP-9 expression, we detected MMP-9 mRNA using RT-PCR and detected MMP-9 enzymatic activity using gelatin zymography. The results showed that both MMP-9 mRNA expression and enzymatic activity were gradually increased with the concentration increase of TCDD in media and these changes could be reversed by RSV treatment in a dose-dependent manner. To examine whether AhR activation-induced MMP-9 expression and activity in AGS cells results in increased migration and invasion, we performed wound healing migration assay and transwell migration and invasion assay. After TCDD treatment, the migration distance and the migration and invasion abilities of AGS cells were increased with a dose-dependent manner. To demonstrate AhR activation-induced MMP-9 expression is mediated by c-Jun, siRNA transfection was performed to silence c-Jun mRNA in AGS cells. The results showed that MMP-9 mRNA expression and activity in untreated control AGS cells were very weak; After TCDD

  17. Activation of the aryl hydrocarbon receptor affects activation and function of human monocyte-derived dendritic cells.

    Science.gov (United States)

    Wang, C; Ye, Z; Kijlstra, A; Zhou, Y; Yang, P

    2014-08-01

    Aryl hydrocarbon receptor (AhR) is well known for mediating the toxic effects of dioxin-containing pollutants, but has also been shown to be involved in the natural regulation of the immune response. In this study, we investigated the effect of AhR activation by its endogenous ligands 6-formylindolo[3,2-b]carbazole (FICZ) and 2-(1'H-indole-3'-carbonyl)-thiazole-4-carboxylic acid methyl ester (ITE) on the differentiation, maturation and function of monocyte-derived DCs in Behçet's disease (BD) patients. In this study, we showed that AhR activation by FICZ and ITE down-regulated the expression of co-stimulatory molecules including human leucocyte antigen D-related (HLA-DR), CD80 and CD86, while it had no effect on the expression of CD83 and CD40 on DCs derived from BD patients and normal controls. Lipopolysaccharide (LPS)-treated dendritic cells (DCs) from active BD patients showed a higher level of interleukin (IL)-1β, IL-6, IL-23 and tumour necrosis factor (TNF)-α production. FICZ or ITE significantly inhibited the production of IL-1β, IL-6, IL-23 and TNF-α, but induced IL-10 production by DCs derived from active BD patients and normal controls. FICZ or ITE-treated DCs significantly inhibited the T helper type 17 (Th17) and Th1 cell response. Activation of AhR either by FICZ or ITE inhibits DC differentiation, maturation and function. Further studies are needed to investigate whether manipulation of the AhR pathway may be used to treat BD or other autoimmune diseases. © 2014 British Society for Immunology.

  18. Characterization and expression analysis of AH receptors in aquatic mammals and birds

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Eun-Young [Ehime Prefectural Institute of Public Health and Environmental Science, Matsuyama (Japan); Yasui, Tomoko; Hisato, Iwata; Shinsuke, Tanabe [Ehime Univ., Matsuyama (Japan)

    2004-09-15

    The magnitude of the risk that 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) and related planar halogenated aromatic hydrocarbons (PHAHs) pose to the health of aquatic birds and mammals is uncertain, because of the lack of direct information on the sensitivity and toxicity to these chemicals. Exposure to PHAHs is speculated to produce toxicity through changes in the expression of genes involved in the control of cell growth and differentiation. These changes are initiated by the binding to the aryl hydrocarbon receptor (AHR), a ligand-dependent transcription factor. The AHR and its dimerization partner ARNT belong to the basic-helix-loop-helix/Per-ARNT-Sim (bHLH-PAS) family of transcriptional regulation proteins. The bHLH domain was involved in protein-DNA and protein-protein interactions, and the PAS domain forms a secondary dimerization surface for heteromeric interactions between AHR and ARNT. Although the presence and basic function of AHR are known to be conserved in most vertebrates, only a limited number of studies on the structure and functional diversity of AHR in aquatic mammals and birds have been reported, in spite of their high exposure to dioxins and other related chemicals. To understand the molecular mechanism of susceptibility to dioxin exposure and toxic effects that PHAHs pose in wild animals, we investigated the molecular and functional characterization of AHRs from aquatic mammals and birds. Initially, the AHR cDNAs from the livers of Baikal seal (Pusa sibirica), black-footed albatross (Diomedea nigripes) and common cormorant (Phalacrocorax carbo) were cloned and sequenced. We also clarified the tissue-specific expression pattern of AHR mRNA and the relationships among PHAHs, AHR and CYP expression levels in the liver of Baikal seals and common cormorants.

  19. Reactivation of estrogen receptor α by vorinostat sensitizes mesenchymal-like triple-negative breast cancer to aminoflavone, a ligand of the aryl hydrocarbon receptor.

    Science.gov (United States)

    Stark, Karri; Burger, Angelika; Wu, Jianmei; Shelton, Phillip; Polin, Lisa; Li, Jing

    2013-01-01

    Aminoflavone (AF) acts as a ligand of the aryl hydrocarbon receptor (AhR). Expression of estrogen receptor α (ERα) and AhR-mediated transcriptional induction of CYP1A1 can sensitize breast cancer cells to AF. The objective of this study was to investigate the combined antitumor effect of AF and the histone deacetylase inhibitor vorinostat for treating mesenchymal-like triple-negative breast cancer (TNBC) as well as the underlying mechanisms of such treatment. In vitro antiproliferative activity of AFP464 (AF prodrug) in breast cancer cell lines was evaluated by MTS assay. In vitro, the combined effect of AFP464 and vorinostat on cell proliferation was assessed by the Chou-Talalay method. In vivo, antitumor activity of AFP464, given alone and in combination with vorinostat, was studied using TNBC xenograft models. Knockdown of ERα was performed using specific, small-interfering RNA. Western blot, quantitative RT-PCR, immunofluorescence, and immunohistochemical staining were performed to study the mechanisms underlying the combined antitumor effect. Luminal and basal A subtype breast cancer cell lines were sensitive to AFP464, whereas basal B subtype or mesenchymal-like TNBC cells were resistant. Vorinostat sensitized mesenchymal-like TNBC MDA-MB-231 and Hs578T cells to AFP464. It also potentiated the antitumor activity of AFP464 in a xenograft model using MDA-MB-231 cells. In vitro and in vivo mechanistic studies suggested that vorinostat reactivated ERα expression and restored AhR-mediated transcriptional induction of CYP1A1. The response of breast cancer cells to AF or AFP464 was associated with their gene expression profile. Vorinostat sensitized mesenchymal-like TNBC to AF, at least in part, by reactivating ERα expression and restoring the responsiveness of AhR to AF.

  20. Effects of currently used pesticides and their mixtures on the function of thyroid hormone and aryl hydrocarbon receptor in cell culture

    Energy Technology Data Exchange (ETDEWEB)

    Ghisari, Mandana; Long, Manhai; Tabbo, Agnese; Bonefeld-Jørgensen, Eva Cecilie, E-mail: ebj@mil.au.dk

    2015-05-01

    Evidence suggest that exposure to pesticides can interfere with the endocrine system by multiple mechanisms. The endocrine disrupting potential of currently used pesticides in Denmark was analyzed as single compounds and in an equimolar mixture of 5 selected pesticides. The pesticides were previously analyzed for effects on the function of estrogen and androgen receptors, the aromatase enzyme and steroidogenesis in vitro. In this study, the effect on thyroid hormone (TH) function and aryl hydrocarbon receptor (AhR) transactivity was assessed using GH3 cell proliferation assay (T-screen) and AhR responsive luciferase reporter gene bioassay, respectively. Thirteen pesticides were analyzed as follows: 2-methyl-4-chlorophenoxyacetic acid, terbuthylazine, iodosulfuron-methyl-sodium, mesosulfuron-methyl, metsulfuron-methyl, chlormequat chloride, bitertanol, propiconazole, prothioconazole, mancozeb and its metabolite ethylene thiourea, cypermethrin, tau-fluvalinate, and malathion (currently banned in DK). In the T-screen, prothioconazole, malathion, tau-fluvalinate, cypermethrin, terbuthylazine and mancozeb significantly stimulated and bitertanol and propiconazole slightly reduced the GH3 cell proliferation. In the presence of triiodothyronine (T3), prothioconazole, tau-fluvalinate, propiconazole, cypermethrin and bitertanol significantly antagonized the T3-induced GH3 cell proliferation. Eleven of the tested pesticides agonized the AhR function, and bitertanol and prothioconazole inhibited the basal AhR activity. Bitertanol, propiconazole, prothioconazole and cypermethrin antagonized the TCDD-induced AhR transactivation at the highest tested concentration. The 5-component mixture had inducing effect but the combined effect could not be predicted due to the presence of bitertanol eliciting inhibitory effect. Upon removal of bitertanol from the mixture, the remaining four pesticides acted additively. In conclusion, our data suggest that pesticides currently used in Denmark

  1. Characterization of the transgenic CA-AhR mouse - cell specific expression of the CA-AhR using CYP1A1 as a marker

    Energy Technology Data Exchange (ETDEWEB)

    Brunnberg, S.; Lindstam, M.; Andersson, P.; Hanberg, A. [Institute of Environmental Medicine, Stockholm (Sweden); Poellinger, L. [Department of Cell and Molecular Biology, Stockholm (Sweden)

    2004-09-15

    The risk assessments of dioxins and dioxin-like PCBs performed by WHO and EU lead to major concerns. The tolerable daily intake for humans has been assessed to be within the range of human exposures occurring in the general population today. Dioxins are known to adversely impair reproduction and affect development of reproductive organs, as well as the early development of the immune and the nervous systems. The Aryl hydrocarbon Receptor (AhR) mediates most toxic effects of dioxins, such as 2,3,7,8- tetrachlorodibenzo-p-dioxin (TCDD) and PCBs. In order to study the mechanisms of toxicity of ligands of the Ah receptor we have created a transgenic mouse model expressing a constitutively active Ah receptor (CA-AhR). The mutant Ah receptor is expressed and functionally active in most (or all) organs. Consequently, the CA-AhR mice show several of the well-known effects of dioxin exposure. Since the CA-AhR is continuously active at a relatively low level and from early development, this model resembles the human exposure scenario and is thus suitable for studies on mechanisms of action of Ah receptor ligands.

  2. Benzo[a]pyrene induces intercellular adhesion molecule-1 through a caveolae and aryl hydrocarbon receptor mediated pathway

    International Nuclear Information System (INIS)

    Oesterling, Elizabeth; Toborek, Michal; Hennig, Bernhard

    2008-01-01

    Toxicologic and epidemiologic studies have linked benzo[a]pyrene (B[a]P) exposure with cardiovascular diseases such as atherosclerosis. The mechanisms of action leading to these diseases have not been fully understood. One key step in the development of atherosclerosis is vascular endothelial dysfunction, which is characterized by increased adhesiveness. To determine if B[a]P could lead to increased endothelial adhesiveness, the effects of B[a]P on human endothelial cell intercellular adhesion molecule-1 (ICAM-1) expression was investigated. B[a]P was able to increase ICAM-1 protein only after pretreatment with the aryl hydrocarbon receptor (AhR) agonist β-naphthoflavone (β-NF). Knockdown of AhR by siRNA or treatment with AhR antagonist α-naphthoflavone (α-NF) eliminated the induction of ICAM-1 from B[a]P, confirming the necessity of AhR in this process. Likewise, B[a]P only increased monocyte adhesion to the vascular endothelium when cells were pretreated with β-NF. Experiments were done to define a signaling mechanism. B[a]P increased phosphorylation of MEK and p38-MAPK, and inhibitors to these proteins blunted the ICAM-1 induction. B[a]P was also able to increase AP-1 DNA binding and phosphorylation of cJun. Phosphorylation of cJun was disrupted by MEK and p38-MAPK inhibitors linking the signaling cascade. Finally, the importance of membrane microdomains, caveolae, was demonstrated by knockdown of the structural protein caveolin-1. Disruption of caveolae eliminated the B[a]P-induced ICAM-1 expression. These data suggest a possible pro-inflammatory mechanism of action of B[a]P involving caveolae, leading to increased vascular endothelial adhesiveness, and this inflammation may be a critical step in the development of B[a]P-induced atherosclerosis

  3. PCB 126 and Other Dioxin-Like PCBs Specifically Suppress Hepatic PEPCK Expression via the Aryl Hydrocarbon Receptor

    Science.gov (United States)

    Zhang, Wenshuo; Sargis, Robert M.; Volden, Paul A.; Carmean, Christopher M.; Sun, Xiao J.; Brady, Matthew J.

    2012-01-01

    Dioxins and dioxin-like compounds encompass a group of structurally related heterocyclic compounds that bind to and activate the aryl hydrocarbon receptor (AhR). The prototypical dioxin is 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), a highly toxic industrial byproduct that incites numerous adverse physiological effects. Global commercial production of the structurally similar polychlorinated biphenyls (PCBs), however, commenced early in the 20th century and continued for decades; dioxin-like PCBs therefore contribute significantly to total dioxin-associated toxicity. In this study, PCB 126, the most potent dioxin-like PCB, was evaluated with respect to its direct effects on hepatic glucose metabolism using primary mouse hepatocytes. Overnight treatment with PCB 126 reduced hepatic glycogen stores in a dose-dependent manner. Additionally, PCB 126 suppressed forskolin-stimulated gluconeogenesis from lactate. These effects were independent of acute toxicity, as PCB 126 did not increase lactate dehydrogenase release nor affect lipid metabolism or total intracellular ATP. Interestingly, provision of cells with glycerol instead of lactate as the carbon source completely restored hepatic glucose production, indicating specific impairment in the distal arm of gluconeogenesis. In concordance with this finding, PCB 126 blunted the forskolin-stimulated increase in phosphoenolpyruvate carboxykinase (PEPCK) mRNA levels without affecting glucose-6-phosphatase expression. Myricetin, a putative competitive AhR antagonist, reversed the suppression of PEPCK induction by PCB 126. Furthermore, other dioxin-like PCBs demonstrated similar effects on PEPCK expression in parallel with their ability to activate AhR. It therefore appears that AhR activation mediates the suppression of PEPCK expression by dioxin-like PCBs, suggesting a role for these pollutants as disruptors of energy metabolism. PMID:22615911

  4. PCB 126 and other dioxin-like PCBs specifically suppress hepatic PEPCK expression via the aryl hydrocarbon receptor.

    Directory of Open Access Journals (Sweden)

    Wenshuo Zhang

    Full Text Available Dioxins and dioxin-like compounds encompass a group of structurally related heterocyclic compounds that bind to and activate the aryl hydrocarbon receptor (AhR. The prototypical dioxin is 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD, a highly toxic industrial byproduct that incites numerous adverse physiological effects. Global commercial production of the structurally similar polychlorinated biphenyls (PCBs, however, commenced early in the 20(th century and continued for decades; dioxin-like PCBs therefore contribute significantly to total dioxin-associated toxicity. In this study, PCB 126, the most potent dioxin-like PCB, was evaluated with respect to its direct effects on hepatic glucose metabolism using primary mouse hepatocytes. Overnight treatment with PCB 126 reduced hepatic glycogen stores in a dose-dependent manner. Additionally, PCB 126 suppressed forskolin-stimulated gluconeogenesis from lactate. These effects were independent of acute toxicity, as PCB 126 did not increase lactate dehydrogenase release nor affect lipid metabolism or total intracellular ATP. Interestingly, provision of cells with glycerol instead of lactate as the carbon source completely restored hepatic glucose production, indicating specific impairment in the distal arm of gluconeogenesis. In concordance with this finding, PCB 126 blunted the forskolin-stimulated increase in phosphoenolpyruvate carboxykinase (PEPCK mRNA levels without affecting glucose-6-phosphatase expression. Myricetin, a putative competitive AhR antagonist, reversed the suppression of PEPCK induction by PCB 126. Furthermore, other dioxin-like PCBs demonstrated similar effects on PEPCK expression in parallel with their ability to activate AhR. It therefore appears that AhR activation mediates the suppression of PEPCK expression by dioxin-like PCBs, suggesting a role for these pollutants as disruptors of energy metabolism.

  5. Loss of aryl hydrocarbon receptor promotes gene changes associated with premature hematopoietic stem cell exhaustion and development of a myeloproliferative disorder in aging mice.

    Science.gov (United States)

    Singh, Kameshwar P; Bennett, John A; Casado, Fanny L; Walrath, Jason L; Welle, Stephen L; Gasiewicz, Thomas A

    2014-01-15

    Loss of immune function and increased hematopoietic disease are among the most clinically significant consequences of aging. Hematopoietic stem cells (HSCs) from mice lacking aryl hydrocarbon receptor (AhR) have high rates of cell division. Studies were designed to test the hypothesis that aging AhR-null allele (AhR-KO) mice develop premature HSC exhaustion, and changes leading to hematological disease. Compared to wild-type, aging AhR-KO mice showed a decreased survival rate, splenomegaly, increased circulating white blood cells, hematopoietic cell accumulation in tissues, and anemia. Analysis of bone marrow indicated increased numbers of stem/progenitor and lineage-committed cells, but decreased erythroid progenitors. There was also decreased self-renewal capacity of HSCs determined by competitive repopulation and serial transplantation. HSCs also showed increased levels of reactive oxygen species (ROS), Ki-67, and γ-H2A.X, but decreased p16(Ink4a). Splenic cells from aging KO mice had abnormal expression of genes, including Gata-1, Sh2d3c, Gfi-1, p21, and c-myc, involved in trafficking and associated with leukemia. HSCs from AhR-KO mice had gene changes related to HSC maintenance and consistent with phenotype observed. The most prominent gene changes (overexpression of Srpk2, Creb1, Hes1, mtor, pdp1) have been associated with HSC hyperproliferation, leukemia, and accelerated aging. Pathway analyses also indicated an enrichment of genes associated with oxidative stress, acute myelogenous leukemia, aging, and heat shock response, and the β-catenin/Wnt pathways. These data indicate that loss of AhR and associated changes in multiple signaling pathways promote premature HSC exhaustion and development of a myeloproliferative disorder. They also implicate a critical role of the AhR in the regulation of HSCs.

  6. Diphenylarsinic acid, a chemical warfare-related neurotoxicant, promotes liver carcinogenesis via activation of aryl hydrocarbon receptor signaling and consequent induction of oxidative DAN damage in rats

    International Nuclear Information System (INIS)

    Wei, Min; Yamada, Takanori; Yamano, Shotaro; Kato, Minoru; Kakehashi, Anna; Fujioka, Masaki; Tago, Yoshiyuki; Kitano, Mistuaki; Wanibuchi, Hideki

    2013-01-01

    Diphenylarsinic acid (DPAA), a chemical warfare-related neurotoxic organic arsenical, is present in the groundwater and soil in some regions of Japan due to illegal dumping after World War II. Inorganic arsenic is carcinogenic in humans and its organic arsenic metabolites are carcinogenic in animal studies, raising serious concerns about the carcinogenicity of DPAA. However, the carcinogenic potential of DPAA has not yet been evaluated. In the present study we found that DPAA significantly enhanced the development of diethylnitrosamine-induced preneoplastic lesions in the liver in a medium-term rat liver carcinogenesis assay. Evaluation of the expression of cytochrome P450 (CYP) enzymes in the liver revealed that DPAA induced the expression of CYP1B1, but not any other CYP1, CYP2, or CYP3 enzymes, suggesting that CYP1B1 might be the enzyme responsible for the metabolic activation of DPAA. We also found increased oxidative DNA damage, possibly due to elevated CYP1B1 expression. Induction of CYP1B1 has generally been linked with the activation of AhR, and we found that DPAA activates the aryl hydrocarbon receptor (AhR). Importantly, the promotion effect of DPAA was observed only at a dose that activated the AhR, suggesting that activation of AhR and consequent induction of AhR target genes and oxidative DNA damage plays a vital role in the promotion effects of DPAA. The present study provides, for the first time, evidence regarding the carcinogenicity of DPAA and indicates the necessity of comprehensive evaluation of its carcinogenic potential using long-term carcinogenicity studies. - Highlights: • DPAA, an environmental neurotoxicant, promotes liver carcinogenesis in rats. • DPAA is an activator of AhR signaling pathway. • DPAA promoted oxidative DNA damage in rat livers. • AhR target gene CYP 1B1 might be involved in the metabolism of DPAA

  7. Diphenylarsinic acid, a chemical warfare-related neurotoxicant, promotes liver carcinogenesis via activation of aryl hydrocarbon receptor signaling and consequent induction of oxidative DAN damage in rats

    Energy Technology Data Exchange (ETDEWEB)

    Wei, Min; Yamada, Takanori; Yamano, Shotaro; Kato, Minoru; Kakehashi, Anna; Fujioka, Masaki; Tago, Yoshiyuki; Kitano, Mistuaki; Wanibuchi, Hideki, E-mail: wani@med.osaka-cu.ac.jp

    2013-11-15

    Diphenylarsinic acid (DPAA), a chemical warfare-related neurotoxic organic arsenical, is present in the groundwater and soil in some regions of Japan due to illegal dumping after World War II. Inorganic arsenic is carcinogenic in humans and its organic arsenic metabolites are carcinogenic in animal studies, raising serious concerns about the carcinogenicity of DPAA. However, the carcinogenic potential of DPAA has not yet been evaluated. In the present study we found that DPAA significantly enhanced the development of diethylnitrosamine-induced preneoplastic lesions in the liver in a medium-term rat liver carcinogenesis assay. Evaluation of the expression of cytochrome P450 (CYP) enzymes in the liver revealed that DPAA induced the expression of CYP1B1, but not any other CYP1, CYP2, or CYP3 enzymes, suggesting that CYP1B1 might be the enzyme responsible for the metabolic activation of DPAA. We also found increased oxidative DNA damage, possibly due to elevated CYP1B1 expression. Induction of CYP1B1 has generally been linked with the activation of AhR, and we found that DPAA activates the aryl hydrocarbon receptor (AhR). Importantly, the promotion effect of DPAA was observed only at a dose that activated the AhR, suggesting that activation of AhR and consequent induction of AhR target genes and oxidative DNA damage plays a vital role in the promotion effects of DPAA. The present study provides, for the first time, evidence regarding the carcinogenicity of DPAA and indicates the necessity of comprehensive evaluation of its carcinogenic potential using long-term carcinogenicity studies. - Highlights: • DPAA, an environmental neurotoxicant, promotes liver carcinogenesis in rats. • DPAA is an activator of AhR signaling pathway. • DPAA promoted oxidative DNA damage in rat livers. • AhR target gene CYP 1B1 might be involved in the metabolism of DPAA.

  8. Cyprodinil as an activator of aryl hydrocarbon receptor

    International Nuclear Information System (INIS)

    Fang, Chien-Chung; Chen, Fei-Yun; Chen, Chang-Rong; Liu, Chien-Chiang; Wong, Liang-Chi; Liu, Yi-Wen; Su, Jyan-Gwo Joseph

    2013-01-01

    Highlights: ► Cyprodinil activated the aryl hydrocarbon receptor (AHR). ► Cyprodinil induced nuclear translocation of the AHR, and the expression of CYP1A1. ► Cyprodinil enhanced dexamethasone-induced gene expression. ► Cyprodinil phosphorylated ERK, indicating its deregulation of ERK activity. -- Abstract: Cyprodinil is a pyrimidinamine fungicide, used worldwide by agriculture. It is used to protect fruit plants and vegetables from a wide range of pathogens. Benzo[a]pyrene (BaP) and 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) are toxic environmental pollutants and are prototypes of aryl hydrocarbon receptor (AHR) ligands. Although the structure of cyprodinil distinctly differs from those of BaP and TCDD, our results show that cyprodinil induced nuclear translocation of the AHR, and induced the transcriptional activity of aryl hydrocarbon response element (AHRE). Cyprodinil induced the expression of cytochrome P450 (CYP) 1A1, a well-known AHR-targeted gene, in ovarian granulosa cells, HO23, and hepatoma cells, Hepa-1c1c7. Its induction did not appear in AHR signal-deficient cells, and was blocked by the AHR antagonist, CH-223191. Cyprodinil decreased AHR expression in HO23 cells, resulting in CYP1A1 expression decreasing after it peaked at 9 h of treatment in HO23 cells. Dexamethasone is a synthetic agonist of glucocorticoids. Cyprodinil enhanced dexamethasone-induced gene expression, and conversely, its induction of CYP1A1 expression was decreased by dexamethasone in HO23 cells, indicating its induction of crosstalk between the AHR and glucocorticoid receptor and its role as a potential endocrine disrupter. In addition to BaP, TCDD, and an AHR agonist, β-NF, cyprodinil also phosphorylated extracellular signal-regulated kinase (ERK) in HO23 and Hepa-1c1c7 cells, indicating its deregulation of ERK activity. In summary, our results demonstrate that cyprodinil, similar to BaP, acts as an AHR activator, a potential endocrine disrupter, and an ERK disrupter

  9. The aryl hydrocarbon receptor and glucocorticoid receptor interact to activate human metallothionein 2A

    Energy Technology Data Exchange (ETDEWEB)

    Sato, Shoko, E-mail: satosho@rs.tus.ac.jp [Laboratory of Nutrition, Graduate School of Agricultural Science, Tohoku University, Sendai 981-8555 (Japan); Shirakawa, Hitoshi, E-mail: shirakah@m.tohoku.ac.jp [Laboratory of Nutrition, Graduate School of Agricultural Science, Tohoku University, Sendai 981-8555 (Japan); Tomita, Shuhei, E-mail: tomita@med.tottori-u.ac.jp [Division of Molecular Pharmacology, Department of Pathophysiological and Therapeutic Science, Yonago 683-8503 (Japan); Tohkin, Masahiro, E-mail: tohkin@phar.nagoya-cu.ac.jp [Department of Medical Safety Science, Graduate School of Pharmaceutical Science, Nagoya City University, Nagoya 267-8603 (Japan); Gonzalez, Frank J., E-mail: gonzalef@mail.nih.gov [Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892 (United States); Komai, Michio, E-mail: mkomai@m.tohoku.ac.jp [Laboratory of Nutrition, Graduate School of Agricultural Science, Tohoku University, Sendai 981-8555 (Japan)

    2013-11-15

    Although the aryl hydrocarbon receptor (AHR) and glucocorticoid receptor (GR) play essential roles in mammalian development, stress responses, and other physiological events, crosstalk between these receptors has been the subject of much debate. Metallothioneins are classic glucocorticoid-inducible genes that were reported to increase upon treatment with AHR agonists in rodent tissues and cultured human cells. In this study, the mechanism of human metallothionein 2A (MT2A) gene transcription activation by AHR was investigated. Cotreatment with 3-methylcholanthrene and dexamethasone, agonists of AHR and GR respectively, synergistically increased MT2A mRNA levels in HepG2 cells. MT2A induction was suppressed by RNA interference against AHR or GR. Coimmunoprecipitation experiments revealed a physical interaction between AHR and GR proteins. Moreover, chromatin immunoprecipitation assays indicated that AHR was recruited to the glucocorticoid response element in the MT2A promoter. Thus, we provide a novel mechanism whereby AHR modulates expression of human MT2A via the glucocorticoid response element and protein–protein interactions with GR. - Highlights: • Aryl hydrocarbon receptor forms a complex with glucocorticoid receptor in cells. • Human metallothionein gene is regulated by the AHR and GR interaction. • AHR–GR complex binds to glucocorticoid response element in metallothionein gene. • We demonstrated a novel transcriptional mechanism via AHR and GR interaction.

  10. The aryl hydrocarbon receptor and glucocorticoid receptor interact to activate human metallothionein 2A

    International Nuclear Information System (INIS)

    Sato, Shoko; Shirakawa, Hitoshi; Tomita, Shuhei; Tohkin, Masahiro; Gonzalez, Frank J.; Komai, Michio

    2013-01-01

    Although the aryl hydrocarbon receptor (AHR) and glucocorticoid receptor (GR) play essential roles in mammalian development, stress responses, and other physiological events, crosstalk between these receptors has been the subject of much debate. Metallothioneins are classic glucocorticoid-inducible genes that were reported to increase upon treatment with AHR agonists in rodent tissues and cultured human cells. In this study, the mechanism of human metallothionein 2A (MT2A) gene transcription activation by AHR was investigated. Cotreatment with 3-methylcholanthrene and dexamethasone, agonists of AHR and GR respectively, synergistically increased MT2A mRNA levels in HepG2 cells. MT2A induction was suppressed by RNA interference against AHR or GR. Coimmunoprecipitation experiments revealed a physical interaction between AHR and GR proteins. Moreover, chromatin immunoprecipitation assays indicated that AHR was recruited to the glucocorticoid response element in the MT2A promoter. Thus, we provide a novel mechanism whereby AHR modulates expression of human MT2A via the glucocorticoid response element and protein–protein interactions with GR. - Highlights: • Aryl hydrocarbon receptor forms a complex with glucocorticoid receptor in cells. • Human metallothionein gene is regulated by the AHR and GR interaction. • AHR–GR complex binds to glucocorticoid response element in metallothionein gene. • We demonstrated a novel transcriptional mechanism via AHR and GR interaction

  11. The aryl hydrocarbon receptor (AHR) transcription factor regulates megakaryocytic polyploidization.

    Science.gov (United States)

    Lindsey, Stephan; Papoutsakis, Eleftherios T

    2011-02-01

    We propose that the aryl hydrocarbon receptor (AHR) is a novel transcriptional regulator of megakaryopoietic polyploidization. Functional evidence was obtained that AHR impacts in vivo megakaryocytic differentiation and maturation; compared to wild-type mice, AHR-null mice had lower platelet counts, fewer numbers of newly synthesized platelets, increased bleeding times and lower-ploidy megakaryocytes (Mks). AHR mRNA increased 3·6-fold during ex vivo megakaryocytic differentiation, but reduced or remained constant during parallel isogenic granulocytic or erythroid differentiation. We interrogated the role of AHR in megakaryopoiesis using a validated Mk model of megakaryopoiesis, the human megakaryoblastic leukaemia CHRF cell line. Upon CHRF Mk differentiation, AHR mRNA and protein levels increased, AHR protein shifted from the cytoplasm to the nucleus and AHR binding to its consensus DNA binding sequence increased. Protein and mRNA levels of the AHR transcriptional target HES1 also increased. Mk differentiation of CHRF cells where AHR or HES1 was knocked-down using RNAi resulted in lower ploidy distributions and cells that were incapable of reaching ploidy classes ≥16n. AHR knockdown also resulted in increased DNA synthesis of lower ploidy cells, without impacting apoptosis. Together, these data support a role for AHR in Mk polyploidization and in vivo platelet function, and warrant further detailed investigations. © 2011 Blackwell Publishing Ltd.

  12. Regulation of Innate Lymphoid Cells by Aryl Hydrocarbon Receptor

    Science.gov (United States)

    Li, Shiyang; Bostick, John W.; Zhou, Liang

    2018-01-01

    With striking similarity to their adaptive T helper cell counterparts, innate lymphoid cells (ILCs) represent an emerging family of cell types that express signature transcription factors, including T-bet+ Eomes+ natural killer cells, T-bet+ Eomes− group 1 ILCs, GATA3+ group 2 ILCs, RORγt+ group 3 ILCs, and newly identified Id3+ regulatory ILC. ILCs are abundantly present in barrier tissues of the host (e.g., the lung, gut, and skin) at the interface of host–environment interactions. Active research has been conducted to elucidate molecular mechanisms underlying the development and function of ILCs. The aryl hydrocarbon receptor (Ahr) is a ligand-dependent transcription factor, best known to mediate the effects of xenobiotic environmental toxins and endogenous microbial and dietary metabolites. Here, we review recent progresses regarding Ahr function in ILCs. We focus on the Ahr-mediated cross talk between ILCs and other immune/non-immune cells in host tissues especially in the gut. We discuss the molecular mechanisms of the action of Ahr expression and activity in regulation of ILCs in immunity and inflammation, and the interaction between Ahr and other pathways/transcription factors in ILC development and function with their implication in disease. PMID:29354125

  13. Regulation of Innate Lymphoid Cells by Aryl Hydrocarbon Receptor

    Directory of Open Access Journals (Sweden)

    Shiyang Li

    2018-01-01

    Full Text Available With striking similarity to their adaptive T helper cell counterparts, innate lymphoid cells (ILCs represent an emerging family of cell types that express signature transcription factors, including T-bet+ Eomes+ natural killer cells, T-bet+ Eomes− group 1 ILCs, GATA3+ group 2 ILCs, RORγt+ group 3 ILCs, and newly identified Id3+ regulatory ILC. ILCs are abundantly present in barrier tissues of the host (e.g., the lung, gut, and skin at the interface of host–environment interactions. Active research has been conducted to elucidate molecular mechanisms underlying the development and function of ILCs. The aryl hydrocarbon receptor (Ahr is a ligand-dependent transcription factor, best known to mediate the effects of xenobiotic environmental toxins and endogenous microbial and dietary metabolites. Here, we review recent progresses regarding Ahr function in ILCs. We focus on the Ahr-mediated cross talk between ILCs and other immune/non-immune cells in host tissues especially in the gut. We discuss the molecular mechanisms of the action of Ahr expression and activity in regulation of ILCs in immunity and inflammation, and the interaction between Ahr and other pathways/transcription factors in ILC development and function with their implication in disease.

  14. In vitro function of the aryl hydrocarbon receptor predicts in ...

    Science.gov (United States)

    Differences in sensitivity to dioxin-like compounds (DLCs) among species and taxa presents a major challenge to ecological risk assessments. Activation of the aryl hydrocarbon receptor (AHR) regulates adverse effects associated with exposure to DLCs in vertebrates. Prior investigations demonstrated that sensitivity to activation of the AHR1 (50% effect concentration; EC50) in an in vitro luciferase reporter gene (LRG) assay was predictive of the sensitivity of embryos (lethal dose to cause 50% lethality; LD50) across all species of birds for all DLCs. However, nothing was known about whether sensitivity to activation of the AHR is predictive of sensitivity of embryos of fishes to DLCs. Therefore, this study investigated in vitro sensitivities of AHR1s and AHR2s to the model DLC, 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), among eight species of fish of known sensitivities of embryos to TCDD. AHR1s and AHR2s of all fishes were activated by TCDD in vitro. There was no significant linear relationship between in vitro sensitivity of AHR1 and in vivo sensitivity among the investigated fishes (R2 = 0.33, p = 0.23). However, there was a significant linear relationship between in vitro sensitivity of AHR2 and in vivo sensitivity among the investigated fishes (R2 = 0.97, p = fishes was compared to the previously generated linear relationship between in vitro s

  15. Long interspersed element-1 is differentially regulated by food-borne carcinogens via the aryl hydrocarbon receptor.

    Science.gov (United States)

    Okudaira, N; Okamura, T; Tamura, M; Iijma, K; Goto, M; Matsunaga, A; Ochiai, M; Nakagama, H; Kano, S; Fujii-Kuriyama, Y; Ishizaka, Y

    2013-10-10

    A single human cell contains more than 5.0 × 10(5) copies of long interspersed element-1 (L1), 80-100 of which are competent for retrotransposition (L1-RTP). Recent observations have revealed the presence of de novo L1 insertions in various tumors, but little is known about its mechanism. Here, we found that 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) and 2-amino-3,8-dimethyl-imidazo[4,5-f]quinoxaline (MeIQx), food-borne carcinogens that are present in broiled meats, induced L1-RTP. This induction was dependent on a cellular cascade comprising the aryl hydrocarbon receptor (AhR), a mitogen-activated protein kinase, and CCAAT/enhancer-binding protein β. Notably, these compounds exhibited differential induction of L1-RTP. MeIQx-induced L1-RTP was dependent on AhR nuclear translocator 1 (ARNT1), a counterpart of AhR required for gene expression in response to environmental pollutants. By contrast, PhIP-induced L1-RTP did not require ARNT1 but was dependent on estrogen receptor α (ERα) and AhR repressor. In vivo studies using transgenic mice harboring the human L1 gene indicated that PhIP-induced L1-RTP was reproducibly detected in the mammary gland, which is a target organ of PhIP-induced carcinoma. Moreover, picomolar levels of each compound induced L1-RTP, which is comparable to the PhIP concentration detected in human breast milk. Data suggest that somatic cells possess machineries that induce L1-RTP in response to the carcinogenic compounds. Together with data showing that micromolar levels of heterocyclic amines (HCAs) were non-genotoxic, our observations indicate that L1-RTP by environmental compounds is a novel type of genomic instability, further suggesting that analysis of L1-RTP by HCAs is a novel approach to clarification of modes of carcinogenesis.

  16. Aryl hydrocarbon receptor overexpression in miniaturized follicles in female pattern hair loss.

    Science.gov (United States)

    Ramos, Paulo Müller; Brianezi, Gabrielli; Martins, Ana Carolina Pereira; Silva, Márcia Guimarães da; Marques, Mariângela Esther Alencar; Miot, Hélio Amante

    2017-01-01

    The etiopathogenesis of female pattern hair loss is still poorly understood. In addition to genetic and hormonal elements, environmental factors could be involved. The aryl hydrocarbon receptor is expressed in keratinocytes and can be activated by environmental pollutants leading to alterations in the cell cycle, inflammation, and apoptosis. Here we demonstrate the overexpression of nuclear aryl hydrocarbon receptors in miniaturized hair follicles in female pattern hair loss.

  17. Normal mast cell numbers in the tissues of AhR-deficient mice.

    Science.gov (United States)

    Pilz, Caroline; Feyerabend, Thorsten; Sonner, Jana; Redaelli, Chiara; Peter, Katharina; Kunze, Anja; Haas, Katharina; Esser, Charlotte; Schäkel, Knut; Wick, Wolfgang; Rodewald, Hans-Reimer; Lanz, Tobias V; Platten, Michael

    2016-01-01

    The transcription factor aryl hydrocarbon receptor (AhR) acts as an immunomodulatory molecule in several immune cell lineages. Recently, it has been implicated in development and maintenance of immune cells in barrier tissues such as skin and mucosa. To investigate its role on mast cell development and maintenance in skin, peritoneal exudate cells (PECs) and lymph nodes, we studied in depth their phenotype in AhR-deficient mice. Our findings do not provide any evidence for a suspected role of the AhR in mast cell homeostasis. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  18. [125I]2-iodo-3,7,8-trichlorodibenzo-p-dioxin-binding species in mouse liver induced by agonists for the Ah receptor: Characterization and identification

    International Nuclear Information System (INIS)

    Poland, A.; Teitelbaum, P.; Glover, E.

    1989-01-01

    The admininistration of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) to C57BL/6J mice produces a dose-related increase in the hepatic uptake of [ 125 I]2-iodo-3,7,8-trichlorodibenzo-p-dioxin ([ 125 I]Cl3DpD) in vivo and the binding of the radioligand to liver homogenate in vitro. The TCDD-induced hepatic binding species was found to be predominantly in the microsomal fraction and was inactivated by heating at 60 degree, trypsin, and mercurials. The TCDD-induced binding species was found to have an apparent equilibrium dissociation constant, KD, ([ 125 I]Cl3DpD) of 56 +/- 16 nM and a pool size, Bmax, of 22 +/- 5 nmol/g of liver. A number of halogenated dibenzo-p-dioxins, biphenyls, and polycyclic aromatic hydrocarbons compete with [ 125 I]Cl3DpD binding to this species; all are aromatic and planar. The distinctive profile of this binding species, a protein of large pool size induced in the microsomal fraction of liver but not other tissues and induced by agonists for the Ah receptor, suggested that this moiety might be cytochrome P3-450. The coincidence of the major microsomal species covalently labeled with the photoaffinity ligand [ 125 I]2-iodo-3-azido-7,8-dibromodibenzo-p-dioxin and that immunochemically stained with polyclonal antiserum that binds to cytochrome P3-450 confirms this hypothesis. This is a novel role for a cytochrome P-450 isozyme, as an induced sequestration site that enhances the hepatic localization of the agonist drug

  19. The Aryl Hydrocarbon Receptor Binds to E2F1 and Inhibits E2F1-induced Apoptosis

    Science.gov (United States)

    Marlowe, Jennifer L.; Fan, Yunxia; Chang, Xiaoqing; Peng, Li; Knudsen, Erik S.; Xia, Ying

    2008-01-01

    Cellular stress by DNA damage induces checkpoint kinase-2 (CHK2)-mediated phosphorylation and stabilization of the E2F1 transcription factor, leading to induction of apoptosis by activation of a subset of proapoptotic E2F1 target genes, including Apaf1 and p73. This report characterizes an interaction between the aryl hydrocarbon (Ah) receptor (AHR), a ligand-activated transcription factor, and E2F1 that results in the attenuation of E2F1-mediated apoptosis. In Ahr−/− fibroblasts stably transfected with a doxycycline-regulated AHR expression vector, inhibition of AHR expression causes a significant elevation of oxidative stress, γH2A.X histone phosphorylation, and E2F1-dependent apoptosis, which can be blocked by small interfering RNA-mediated knockdown of E2F1 expression. In contrast, ligand-dependent AHR activation protects these cells from etoposide-induced cell death. In cells expressing both proteins, AHR and E2F1 interact independently of the retinoblastoma protein (RB), because AHR and E2F1 coimmunoprecipitate from extracts of RB-negative cells. Additionally, chromatin immunoprecipitation assays indicate that AHR and E2F1 bind to the Apaf1 promoter at a region containing a consensus E2F1 binding site but no AHR binding sites. AHR activation represses Apaf1 and TAp73 mRNA induction by a constitutively active CHK2 expression vector. Furthermore, AHR overexpression blocks the transcriptional induction of Apaf1 and p73 and the accumulation of sub-G0/G1 cells resulting from ectopic overexpression of E2F1. These results point to a proproliferative, antiapoptotic function of the Ah receptor that likely plays a role in tumor progression. PMID:18524851

  20. Receptor Model Source Apportionment of Nonmethane Hydrocarbons in Mexico City

    Directory of Open Access Journals (Sweden)

    V. Mugica

    2002-01-01

    Full Text Available With the purpose of estimating the source contributions of nonmethane hydrocarbons (NMHC to the atmosphere at three different sites in the Mexico City Metropolitan Area, 92 ambient air samples were measured from February 23 to March 22 of 1997. Light- and heavy-duty vehicular profiles were determined to differentiate the NMHC contribution of diesel and gasoline to the atmosphere. Food cooking source profiles were also determined for chemical mass balance receptor model application. Initial source contribution estimates were carried out to determine the adequate combination of source profiles and fitting species. Ambient samples of NMHC were apportioned to motor vehicle exhaust, gasoline vapor, handling and distribution of liquefied petroleum gas (LP gas, asphalt operations, painting operations, landfills, and food cooking. Both gasoline and diesel motor vehicle exhaust were the major NMHC contributors for all sites and times, with a percentage of up to 75%. The average motor vehicle exhaust contributions increased during the day. In contrast, LP gas contribution was higher during the morning than in the afternoon. Apportionment for the most abundant individual NMHC showed that the vehicular source is the major contributor to acetylene, ethylene, pentanes, n-hexane, toluene, and xylenes, while handling and distribution of LP gas was the major source contributor to propane and butanes. Comparison between CMB estimates of NMHC and the emission inventory showed a good agreement for vehicles, handling and distribution of LP gas, and painting operations; nevertheless, emissions from diesel exhaust and asphalt operations showed differences, and the results suggest that these emissions could be underestimated.

  1. 2,3,7,8-tetrachlorodibenzo-p-dioxin decrease expression of aryl hydrocarbon receptor in peripheral lymphocyte of β-thalassemia major patients.

    Science.gov (United States)

    Ghatrehsamani, Mahdi; Soleimani, Masoud; Esfahani, Behjat Al-Sadat Moayedi; Hakemi, Mazdak Ganjalikhani; Shirzad, Hedayatollah; Eskandari, Nahid; Adib, Minoo

    2015-01-01

    β-thalassemia major is a hereditary disease with inefficient erythropoiesis. Level of inflammatory cytokine is elevated in these patients. In this study, we investigate the effect of aryl hydrocarbon receptor (AhR) ligand, 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), on the expression of inflammatory mediators in β-thalassemia major patient's lymphocytes. Peripheral blood mononuclear cells of patients and healthy participants was isolated and cultured in favor of lymphocytes increment. Based on the treatment, we divided the cell into four groups. The orders of group's treatments were no treatment, tumor necrosis factor-α (TNF-α) treatment, TNF-α and TCDD treatment, TCDD treatment in Group 1-4, respectively. After cell culture, we extracted the cells RNA and converted them to cDNA. Real-time polymerase chain reaction was performed to assessment relative expression of caspase-1, NLRP3, and AhR. We compared all patient groups with equal healthy (control) groups. Results showed that expression of caspase-1 in patients (Groups 1 and 2) was significantly lower than healthy individuals (P 0.05). Expression of AhR in other groups of patients (3 and 4) was significantly lower than control groups (P < 0.05). Expression of caspase-1 in Group 4 was significantly larger than the control group (P < 0.001). We show here that chronic inflammation decrease caspase-1 expression and exposure of human lymphocytes to TCDD promote caspase-1 expression. Furthermore, activation of AhR with TCDD decreases AhR expression in lymphocytes of β-thalassemia major disease.

  2. Metformin suppresses CYP1A1 and CYP1B1 expression in breast cancer cells by down-regulating aryl hydrocarbon receptor expression

    Energy Technology Data Exchange (ETDEWEB)

    Do, Minh Truong; Kim, Hyung Gyun; Tran, Thi Thu Phuong; Khanal, Tilak; Choi, Jae Ho [Department of Toxicology, College of Pharmacy, Chungnam National University, Daejeon (Korea, Republic of); Chung, Young Chul [Department of Food Science and Culinary, International University of Korea, Jinju (Korea, Republic of); Jeong, Tae Cheon, E-mail: taecheon@ynu.ac.kr [College of Pharmacy, Yeungnam University, Gyeongsan (Korea, Republic of); Jeong, Hye Gwang, E-mail: hgjeong@cnu.ac.kr [Department of Toxicology, College of Pharmacy, Chungnam National University, Daejeon (Korea, Republic of)

    2014-10-01

    Induction of cytochrome P450 (CYP) 1A1 and CYP1B1 by environmental xenobiotic chemicals or endogenous ligands through the activation of the aryl hydrocarbon receptor (AhR) has been implicated in a variety of cellular processes related to cancer, such as transformation and tumorigenesis. Here, we investigated the effects of the anti-diabetes drug metformin on expression of CYP1A1 and CYP1B1 in breast cancer cells under constitutive and inducible conditions. Our results indicated that metformin down-regulated the expression of CYP1A1 and CYP1B1 in breast cancer cells under constitutive and 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD)-induced conditions. Down-regulation of AhR expression was required for metformin-mediated decreases in CYP1A1 and CYP1B1 expression, and the metformin-mediated CYP1A1 and CYP1B1 reduction is irrelevant to estrogen receptor α (ERα) signaling. Furthermore, we found that metformin markedly down-regulated Sp1 protein levels in breast cancer cells. The use of genetic and pharmacological tools revealed that metformin-mediated down-regulation of AhR expression was mediated through the reduction of Sp1 protein. Metformin inhibited endogenous AhR ligand-induced CYP1A1 and CYP1B1 expression by suppressing tryptophan-2,3-dioxygenase (TDO) expression in MCF-7 cells. Finally, metformin inhibits TDO expression through a down-regulation of Sp1 and glucocorticoid receptor (GR) protein levels. Our findings demonstrate that metformin reduces CYP1A1 and CYP1B1 expression in breast cancer cells by down-regulating AhR signaling. Metformin would be able to act as a potential chemopreventive agent against CYP1A1 and CYP1B1-mediated carcinogenesis and development of cancer. - Graphical abstract: Schematic of the CYP1A1 and CYP1B1 gene regulation by metformin. - Highlights: • Metformin inhibits CYP1A1 and CYP1B1 expression. • Metformin down-regulates the AhR signaling. • Metformin reduces Sp1 protein expression. • Metformin suppresses TDO expression.

  3. Metformin suppresses CYP1A1 and CYP1B1 expression in breast cancer cells by down-regulating aryl hydrocarbon receptor expression

    International Nuclear Information System (INIS)

    Do, Minh Truong; Kim, Hyung Gyun; Tran, Thi Thu Phuong; Khanal, Tilak; Choi, Jae Ho; Chung, Young Chul; Jeong, Tae Cheon; Jeong, Hye Gwang

    2014-01-01

    Induction of cytochrome P450 (CYP) 1A1 and CYP1B1 by environmental xenobiotic chemicals or endogenous ligands through the activation of the aryl hydrocarbon receptor (AhR) has been implicated in a variety of cellular processes related to cancer, such as transformation and tumorigenesis. Here, we investigated the effects of the anti-diabetes drug metformin on expression of CYP1A1 and CYP1B1 in breast cancer cells under constitutive and inducible conditions. Our results indicated that metformin down-regulated the expression of CYP1A1 and CYP1B1 in breast cancer cells under constitutive and 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD)-induced conditions. Down-regulation of AhR expression was required for metformin-mediated decreases in CYP1A1 and CYP1B1 expression, and the metformin-mediated CYP1A1 and CYP1B1 reduction is irrelevant to estrogen receptor α (ERα) signaling. Furthermore, we found that metformin markedly down-regulated Sp1 protein levels in breast cancer cells. The use of genetic and pharmacological tools revealed that metformin-mediated down-regulation of AhR expression was mediated through the reduction of Sp1 protein. Metformin inhibited endogenous AhR ligand-induced CYP1A1 and CYP1B1 expression by suppressing tryptophan-2,3-dioxygenase (TDO) expression in MCF-7 cells. Finally, metformin inhibits TDO expression through a down-regulation of Sp1 and glucocorticoid receptor (GR) protein levels. Our findings demonstrate that metformin reduces CYP1A1 and CYP1B1 expression in breast cancer cells by down-regulating AhR signaling. Metformin would be able to act as a potential chemopreventive agent against CYP1A1 and CYP1B1-mediated carcinogenesis and development of cancer. - Graphical abstract: Schematic of the CYP1A1 and CYP1B1 gene regulation by metformin. - Highlights: • Metformin inhibits CYP1A1 and CYP1B1 expression. • Metformin down-regulates the AhR signaling. • Metformin reduces Sp1 protein expression. • Metformin suppresses TDO expression

  4. AhR transcription serum activity of Inuit´s across Greenlandic districts

    DEFF Research Database (Denmark)

    Long, Manhai; Deutch, Bente; Bonefeld-Jørgensen, Eva Cecilie

    2007-01-01

    . The individual is exposed to a complex mixture of POPs being life-long beginning during critical developmental windows. Exposure to POPs elicits a number of species- and tissue-specific toxic responses, many of which involve the aryl hydrocarbon receptor (AhR). The aim of this study was to compare the actual...... was similar in the different districts. For the combined data the order of the median AhR-TEQ was Tasiilaq > Nuuk > Sisimiut > Qaanaaq possibly being related to the different composition of POPs. In overall, the AhR transactivity was inversely correlated to the levels of sum POPs, age and /or intake of marine......-PCBs; ii) The inverse association between the integrated serum AhR transactivity and sum of POPs might be explained by the higher level of compounds antagonizing the AhR function probably due to selective POP bioaccumulation in the food chain....

  5. Quercetin-6-C-β-D-glucopyranoside, natural analog of quercetin exhibits anti-prostate cancer activity by inhibiting Akt-mTOR pathway via aryl hydrocarbon receptor.

    Science.gov (United States)

    Hamidullah; Kumar, Rajeev; Saini, Karan Singh; Kumar, Amit; Kumar, Sudhir; Ramakrishna, E; Maurya, Rakesh; Konwar, Rituraj; Chattopadhyay, Naibedya

    2015-12-01

    Pre-clinical studies suggest mitigating effect of dietary flavonoid quercetin against cancer and other diseases. However, quercetin suffers from poor metabolic stability, which appears to offset its pharmacological efficacy. Recently, we isolated quercetin-6-C-β-D-glucopyranoside (QCG) from Ulmus wallichiana planchon that has greater stability profile over quercetin. In the present study, the cytotoxic and apoptotic effects of QCG on prostate cancer cells were assessed. QCG inhibited prostate cancer cell proliferation by arresting cells at G0/G1 phase of cell cycle and induces apoptosis as evident from cytochrome c release, cleavage of caspase 3 and poly (ADP-ribose) polymerase. Mechanistic studies revealed that QCG inhibited reactive oxygen species (ROS) generation and Akt/mTOR cell survival pathways. Aryl hydrocarbon receptor (AhR) was a critical mediator of QCG action as knockdown of AhR attenuated QCG-induced cell cycle arrest, apoptosis and inhibition of Akt/mTOR pathway in prostate cancer cells. Taken together, our results suggest that QCG exhibits anti-cancer activity against prostate cancer cells via AhR-mediated down regulation of Akt/mTOR pathway in PC-3 cells. Copyright © 2015 Elsevier B.V. and Société Française de Biochimie et Biologie Moléculaire (SFBBM). All rights reserved.

  6. Binding of 2,3,7,8-tetrachlorodibenzo-p-dioxin to the AhR from various species is essentially irreversible

    Energy Technology Data Exchange (ETDEWEB)

    Bohonowych, J.; Denison, M. [California Univ., Davis, CA (United States)

    2004-09-15

    Halogenated aromatic hydrocarbons (HAHs) are a diverse group of widespread, persistent and toxic environmental contaminants that includes the polychlorinated dibenzo-p-dioxins and related chemicals. Exposure to these compounds results in a variety of biochemical and toxic effects, the majority of which are mediated by the aryl hydrocarbon receptor (AhR). 2,3,7,8- Tetrachlorodibenzo-p-dioxin (TCDD) is the most potent activator of the AhR and AhR-dependent effects. Interestingly, while a related class of compounds, the polycyclic aromatic hydrocarbons (PAHs), can bind to and activate the AhR, and produce many of the same biological effects as HAHs, they do not cause HAH-like toxicity. This can be due to differences between these two classes of compounds with respect to their AhR binding affinity, metabolic stability, and/or gene expression. PAHs have a lower affinity for the AhR5 and, unlike TCDD, can be readily metabolized by cytochrome P450 enzymes. In addition to its high affinity for the AhR, TCDD has been shown to stabilize the rat AhR receptor against thermal inactivation and to persistently bind the rat receptor. This persistent occupancy may also contribute to the differential toxicity of HAHs and PAHs. In addition to its biological and toxicological implications, the apparent lack of significant dissociation of TCDD from the AhR also impacts the design and interpretation of competitive binding experiments which assume traditional receptor-ligand equilibrium binding kinetics where binding is reversible and equilibrium of ligand:receptor complex is reached when rates of association and dissociation are equal. In this study we have further examined whether this persistent occupancy is a characteristic of the AhR among different species.

  7. Protective Effect of Mulberry (Morus alba L.) Extract against Benzo[a]pyrene Induced Skin Damage through Inhibition of Aryl Hydrocarbon Receptor Signaling.

    Science.gov (United States)

    Woo, Hyunju; Lee, JungA; Park, Deokhoon; Jung, Eunsun

    2017-12-20

    Benzo[a]pyrene (B[a]P), a type of polycyclic aromatic hydrocarbon, is present in the atmosphere surrounding our environment. Although B[a]P is a procarcinogen, enzymatically metabolized benzo[a]pyrene-7,8-dihydrodiol-9,10-epoxide (BPDE) could intercalate into DNA to form bulky BPDE-DNA adducts as an ultimate carcinogenic product in human keratinocytes. The aim of this study was to evaluate the protective effect of mulberry extract, purified from the fruit of Morus Alba L., on B[a]P-induced cytotoxicity in human keratinocytes and its mechanisms of action. In this study, we confirmed that B[a]P induced nuclear translocation and the activation of aryl hydrocarbon receptor (AhR) were decreased by pretreatment of mulberry extract. Mulberry extract could decrease DNA damage through the suppression of B[a]P derived DNA adduct formation and restoration of cell cycle retardation at S phase in a dose-dependent manner. Additionally, cyanidin-3-glucoside (C3G), a major active compound of mulberry extract, showed biological activities to protect the cells from B[a]P exposure, similar to the effectivity of the mulberry extract. These results indicated that the inhibitory effect of C3G against B[a]P inducing skin cancer is attributable to repress the AhR signaling pathway.

  8. Role of aryl hydrocarbon receptor polymorphisms on TCDD-mediated CYP1B1 induction and IgM suppression by human B cells

    Energy Technology Data Exchange (ETDEWEB)

    Kovalova, Natalia, E-mail: kovalova@msu.edu [Department of Pharmacology and Toxicology, Michigan State University, Lansing, MI 48824 (United States); Institute for Integrative Toxicology, Michigan State University, Lansing, MI 48824 (United States); Manzan, Maria, E-mail: ale.manzan@gmail.com [Institute for Integrative Toxicology, Michigan State University, Lansing, MI 48824 (United States); Crawford, Robert, E-mail: crawfo28@msu.edu [Institute for Integrative Toxicology, Michigan State University, Lansing, MI 48824 (United States); Kaminski, Norbert, E-mail: kamins11@msu.edu [Department of Pharmacology and Toxicology, Michigan State University, Lansing, MI 48824 (United States); Institute for Integrative Toxicology, Michigan State University, Lansing, MI 48824 (United States)

    2016-10-15

    Previous studies have demonstrated that most of the intraspecies variation in sensitivity to the toxic effects of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), including suppression of antibody responses, in murine models is due to single nucleotide polymorphisms (SNPs) within the aryl hydrocarbon receptor (AhR) gene. The underlying reason for variation in sensitivity to TCDD-induced suppression of IgM responses among humans is not well understood, but is thought, in part, to be a result of different polymorphic forms of the AhR expressed by different individuals. In this study, the functional properties of six (P517S, R554K, V570I, V570I + P517S, R554K + V570I and P517S + R554K + V570I) human AhR variants were examined in the human B cell line, SKW 6.4. TCDD-induced Cyp1B1 and Cyp1A2 mRNA expression levels and Cyp1B1-regulated reporter gene activity, used for comparative purposes, were markedly lower in SKW cells containing the R554K SNP than in SKW-AHR{sup +} (control AhR) cells. Furthermore, all AhR variants were able to mediate TCDD-induced suppression of the IgM response; however, a combined P517S + R554K + V570I variant partially reduced sensitivity to TCDD-mediated suppression of IgM secretion. Collectively, our findings show that the R554K human AhR SNP alone altered sensitivity of human B cells to TCDD-mediated induction of Cyp1B1 and Cyp1A2. By contrast, attenuation of TCDD-induced IgM suppression required a combination of all three SNPs P517S, R554K, and V570I. - Highlights: • Mouse, rat and SKW-AHR{sup +} B cells have a similar window of sensitivity to TCDD. • R554K AhR SNP alters B cell sensitivity to TCDD-mediated Cyp1B1 and Cyp1A2 induction. • Combination of P517S, R554K, and V570I SNPs attenuates TCDD-induced IgM suppression.

  9. Specialized odorant receptors in social insects that detect cuticular hydrocarbon cues and candidate pheromones.

    Science.gov (United States)

    Pask, Gregory M; Slone, Jesse D; Millar, Jocelyn G; Das, Prithwiraj; Moreira, Jardel A; Zhou, Xiaofan; Bello, Jan; Berger, Shelley L; Bonasio, Roberto; Desplan, Claude; Reinberg, Danny; Liebig, Jürgen; Zwiebel, Laurence J; Ray, Anandasankar

    2017-08-17

    Eusocial insects use cuticular hydrocarbons as components of pheromones that mediate social behaviours, such as caste and nestmate recognition, and regulation of reproduction. In ants such as Harpegnathos saltator, the queen produces a pheromone which suppresses the development of workers' ovaries and if she is removed, workers can transition to a reproductive state known as gamergate. Here we functionally characterize a subfamily of odorant receptors (Ors) with a nine-exon gene structure that have undergone a massive expansion in ants and other eusocial insects. We deorphanize 22 representative members and find they can detect cuticular hydrocarbons from different ant castes, with one (HsOr263) that responds strongly to gamergate extract and a candidate queen pheromone component. After systematic testing with a diverse panel of hydrocarbons, we find that most Harpegnathos saltator Ors are narrowly tuned, suggesting that several receptors must contribute to detection and discrimination of different cuticular hydrocarbons important in mediating eusocial behaviour.Cuticular hydrocarbons (CHC) mediate the interactions between individuals in eusocial insects, but the sensory receptors for CHCs are unclear. Here the authors show that in ants such as H. saltator, the 9-exon subfamily of odorant receptors (HsOrs) responds to CHCs, and ectopic expression of HsOrs in Drosophila neurons imparts responsiveness to CHCs.

  10. Hexachlorobenzene modulates the crosstalk between the aryl hydrocarbon receptor and transforming growth factor-β1 signaling, enhancing human breast cancer cell migration and invasion

    International Nuclear Information System (INIS)

    Miret, Noelia; Pontillo, Carolina; Ventura, Clara; Carozzo, Alejandro; Chiappini, Florencia

    2016-01-01

    Highlights: • HCB enhances TGF-β1 expression and activation levels in breast cancer cells. • HCB activates TGF-β1 pathways: Smad3, JNK and p38. • The HCB- induced migration and invasion involves TGF-β1 signaling pathways. • HCB modulates AhR levels and activation. • HCB enhances TGF-β1 mRNA expression in an AhR-dependent manner. - Abstract: Given the number of women affected by breast cancer, considerable interest has been raised in understanding the relationships between environmental chemicals and disease onset. Hexachlorobenzene (HCB) is a dioxin-like compound that is widely distributed in the environment and is a weak ligand of the aryl hydrocarbon receptor (AhR). We previously demonstrated that HCB acts as an endocrine disruptor capable of stimulating cell proliferation, migration, invasion, and metastasis in different breast cancer models. In addition, increasing evidence indicates that transforming growth factor-β1 (TGF-β1) can contribute to tumor maintenance and progression. In this context, this work investigated the effect of HCB (0.005, 0.05, 0.5, and 5 μM) on TGF-β1 signaling and AhR/TGF-β1 crosstalk in the human breast cancer cell line MDA-MB-231 and analyzed whether TGF-β1 pathways are involved in HCB-induced cell migration and invasion. RT-qPCR results indicated that HCB reduces AhR mRNA expression through TGF-β1 signaling but enhances TGF-β1 mRNA levels involving AhR signaling. Western blot analysis demonstrated that HCB could increase TGF-β1 protein levels and activation, as well as Smad3, JNK, and p38 phosphorylation. In addition, low and high doses of HCB were determined to exert differential effects on AhR protein levels, localization, and activation, with a high dose (5 μM) inducing AhR nuclear translocation and AhR-dependent CYP1A1 expression. These findings also revealed that c-Src and AhR are involved in HCB-mediated activation of Smad3. HCB enhances cell migration (scratch motility assay) and invasion (Transwell

  11. Induction of aryl hydrocarbon receptor-mediated and estrogen receptor-mediated activities, and modulation of cell proliferation by dinaphthofurans

    Czech Academy of Sciences Publication Activity Database

    Vondráček, Jan; Chramostová, Kateřina; Plíšková, M.; Bláha, L.; Brack, W.; Kozubík, Alois; Machala, M.

    2004-01-01

    Roč. 23, č. 9 (2004), s. 2214-2220 ISSN 0730-7268 R&D Projects: GA ČR GA525/03/1527 Institutional research plan: CEZ:AV0Z5004920 Keywords : aryl hydrocarbon receptor-mediated activity * estrogenicity * intercellular communication inhibition Subject RIV: BO - Biophysics Impact factor: 2.121, year: 2004

  12. Convergence of hepcidin deficiency, systemic iron overloading, heme accumulation, and REV-ERBα/β activation in aryl hydrocarbon receptor-elicited hepatotoxicity

    Energy Technology Data Exchange (ETDEWEB)

    Fader, Kelly A.; Nault, Rance [Department of Biochemistry & Molecular Biology, Michigan State University, East Lansing, MI 48824 (United States); Institute for Integrative Toxicology, Michigan State University, East Lansing, MI 48824 (United States); Kirby, Mathew P.; Markous, Gena [Department of Biochemistry & Molecular Biology, Michigan State University, East Lansing, MI 48824 (United States); Matthews, Jason [Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Oslo 0316 (Norway); Zacharewski, Timothy R., E-mail: tzachare@msu.edu [Department of Biochemistry & Molecular Biology, Michigan State University, East Lansing, MI 48824 (United States); Institute for Integrative Toxicology, Michigan State University, East Lansing, MI 48824 (United States)

    2017-04-15

    Persistent aryl hydrocarbon receptor (AhR) agonists elicit dose-dependent hepatic lipid accumulation, oxidative stress, inflammation, and fibrosis in mice. Iron (Fe) promotes AhR-mediated oxidative stress by catalyzing reactive oxygen species (ROS) production. To further characterize the role of Fe in AhR-mediated hepatotoxicity, male C57BL/6 mice were orally gavaged with sesame oil vehicle or 0.01–30 μg/kg 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) every 4 days for 28 days. Duodenal epithelial and hepatic RNA-Seq data were integrated with hepatic AhR ChIP-Seq, capillary electrophoresis protein measurements, and clinical chemistry analyses. TCDD dose-dependently repressed hepatic expression of hepcidin (Hamp and Hamp2), the master regulator of systemic Fe homeostasis, resulting in a 2.6-fold increase in serum Fe with accumulating Fe spilling into urine. Total hepatic Fe levels were negligibly increased while transferrin saturation remained unchanged. Furthermore, TCDD elicited dose-dependent gene expression changes in heme biosynthesis including the induction of aminolevulinic acid synthase 1 (Alas1) and repression of uroporphyrinogen decarboxylase (Urod), leading to a 50% increase in hepatic hemin and a 13.2-fold increase in total urinary porphyrins. Consistent with this heme accumulation, differential gene expression suggests that heme activated BACH1 and REV-ERBα/β, causing induction of heme oxygenase 1 (Hmox1) and repression of fatty acid biosynthesis, respectively. Collectively, these results suggest that Hamp repression, Fe accumulation, and increased heme levels converge to promote oxidative stress and the progression of TCDD-elicited hepatotoxicity. - Highlights: • TCDD represses hepatic hepcidin expression, leading to systemic iron overloading. • Dysregulation of heme biosynthesis is consistent with heme and porphyrin accumulation. • Heme-activated REV-ERBα/β repress circadian-regulated hepatic lipid metabolism. • Disruption of iron

  13. The Mitochondria-Targeted Antioxidant SkQ1 Downregulates Aryl Hydrocarbon Receptor-Dependent Genes in the Retina of OXYS Rats with AMD-Like Retinopathy

    Directory of Open Access Journals (Sweden)

    M. L. Perepechaeva

    2014-01-01

    Full Text Available The mitochondria-targeted antioxidant SkQ1 is a novel drug thought to retard development of age-related diseases. It has been shown that SkQ1 reduces clinical signs of retinopathy in senescence-accelerated OXYS rats, which are a known animal model of human age-related macular degeneration (AMD. The aim of this work was to test whether SkQ1 affects transcriptional activity of AhR (aryl hydrocarbon receptor and Nrf2 (nuclear factor erythroid 2-related factor 2, which are considered as AMD-associated genes in the retina of OXYS and Wistar rats. Our results showed that only AhR and AhR-dependent genes were sensitive to SkQ1. Dietary supplementation with SkQ1 decreased the AhR mRNA level in both OXYS and Wistar rats. At baseline, the retinal Cyp1a1 mRNA level was lower in OXYS rats. SkQ1 supplementation decreased the Cyp1a1 mRNA level in Wistar rats, but this level remained unchanged in OXYS rats. Baseline Cyp1a2 and Cyp1b1 mRNA expression was stronger in OXYS than in Wistar rats. In the OXYS strain, Cyp1a2 and Cyp1b1 mRNA levels decreased as a result of SkQ1 supplementation. These data suggest that the Cyp1a2 and Cyp1b1 enzymes are involved in the pathogenesis of AMD-like retinopathy of OXYS rats and are possible therapeutic targets of SkQ1.

  14. An aryl hydrocarbon receptor ligand acts on dendritic cells and T cells to suppress the Th17 response in allergic rhinitis patients.

    Science.gov (United States)

    Wei, Ping; Hu, Guo-Hua; Kang, Hou-Yong; Yao, Hong-Bing; Kou, Wei; Liu, Hong; Zhang, Cheng; Hong, Su-Ling

    2014-05-01

    A predominant Th17 population is a marker of allergic rhinitis (AR). The aryl hydrocarbon receptor (AhR) exhibits strong immunomodulation potential via regulation of the differentiation of T lymphocytes and dendritic cells (DCs) after activation by its ligand, such as 2-(1'H-indole-3'-carbonyl)-thiazole-4-carboxylic acid methyl ester (ITE). The aim of this study was to analyze the effect of AhR on Th17 differentiation by investigating the action of ITE on DCs and CD4(+) T cells from patients with AR. In all, 26 AR patients and 12 healthy controls were included in this study. The expression of interleukin (IL)-1β, IL-6, IL-10, and IL-17 in the culture supernatant and the presence of Th17 cells in CD4(+) T cells and DC-CD4(+) T-cell co-culture system were measured before and after treatment with ITE. We show that ITE significantly induced cell secretion of IL-10 and inhibited IL-1β and IL-6 production in DCs, and promoted IL-10 production and suppressed IL-17 expression in CD4(+) T cells in vitro. It also suppressed the expansion of Th17 cells in vitro. Our work demonstrates that ITE acts on DCs and CD4(+) T cells to inhibit the Th17 response that suppresses AR; the AhR-DC-Th17 axis may be an important pathway in the treatment of AR. ITE, a nontoxic AhR ligand, attenuated the Th17 response; thus, it appears to be a promising therapeutic candidate for suppressing the inflammatory responses associated with AR.

  15. Third-generation Ah receptor-responsive luciferase reporter plasmids: amplification of dioxin-responsive elements dramatically increases CALUX bioassay sensitivity and responsiveness.

    Science.gov (United States)

    He, Guochun; Tsutsumi, Tomoaki; Zhao, Bin; Baston, David S; Zhao, Jing; Heath-Pagliuso, Sharon; Denison, Michael S

    2011-10-01

    2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD, dioxin) and related dioxin-like chemicals are widespread and persistent environmental contaminants that produce diverse toxic and biological effects through their ability to bind to and activate the Ah receptor (AhR) and AhR-dependent gene expression. The chemically activated luciferase expression (CALUX) system is an AhR-responsive recombinant luciferase reporter gene-based cell bioassay that has been used in combination with chemical extraction and cleanup methods for the relatively rapid and inexpensive detection and relative quantitation of dioxin and dioxin-like chemicals in a wide variety of sample matrices. Although the CALUX bioassay has been validated and used extensively for screening purposes, it has some limitations when screening samples with very low levels of dioxin-like chemicals or when there is only a small amount of sample matrix for analysis. Here, we describe the development of third-generation (G3) CALUX plasmids with increased numbers of dioxin-responsive elements, and stable transfection of these new plasmids into mouse hepatoma (Hepa1c1c7) cells has produced novel amplified G3 CALUX cell bioassays that respond to TCDD with a dramatically increased magnitude of luciferase induction and significantly lower minimal detection limit than existing CALUX-type cell lines. The new G3 CALUX cell lines provide a highly responsive and sensitive bioassay system for the detection and relative quantitation of very low levels of dioxin-like chemicals in sample extracts.

  16. Quantitative characterization of changes in bone geometry, mineral density and biomechanical properties in two rat strains with different Ah-receptor structures after long-term exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin

    International Nuclear Information System (INIS)

    Herlin, Maria; Kalantari, Fereshteh; Stern, Natalia; Sand, Salomon; Larsson, Sune; Viluksela, Matti; Tuomisto, Jouni T.; Tuomisto, Jouko; Tuukkanen, Juha; Jaemsae, Timo; Lind, P. Monica; Hakansson, Helen

    2010-01-01

    Background: Both industrial chemicals and environmental pollutants can interfere with bone modeling and remodeling. Recently, detailed toxicological bone studies have been performed following exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), which exerts most of its toxic effects through the aryl hydrocarbon receptor (AhR). Objectives: The aims of the present study were to quantitatively evaluate changes in bone geometry, mineral density and biomechanical properties following long-term exposure to TCDD, and to further investigate the role of AhR in TCDD-induced bone alterations. To this end, tissue material used in the study was derived from TCDD-exposed Long-Evans (L-E) and Han/Wistar (H/W) rats, which differ markedly in sensitivity to TCDD-induced toxicity due to a strain difference in AhR structure. Methods: Ten weeks old female L-E and H/W rats were administered TCDD s.c. once per week for 20 weeks, at doses corresponding to calculated daily doses of 0, 1, 10, 100 and 1000 ng TCDD/kg bw (H/W only). Femur, tibia and vertebra from the L-E and H/W rats were analyzed by peripheral quantitative computed tomography (pQCT) and biomechanical testing at multiple sites. Dose-response modeling was performed to establish benchmark doses for the analyzed bone parameters, and to quantify strain sensitivity differences for those parameters, which were affected by TCDD exposure in both rat strains. Results: Bone geometry and bone biomechanical parameters were affected by TCDD exposure, while bone mineral density parameters were less affected. The trabecular area at proximal tibia and the endocortical circumference at tibial diaphysis were the parameters that showed the highest maximal responses. Significant strain differences in response to TCDD treatment were observed, with the L-E rat being the most sensitive strain. For the parameters that were affected in both strains, the differences in sensitivity were quantified, showing the most pronounced (about 49-fold) strain

  17. Lipophilic Chemicals from Diesel Exhaust Particles Trigger Calcium Response in Human Endothelial Cells via Aryl Hydrocarbon Receptor Non-Genomic Signalling

    Directory of Open Access Journals (Sweden)

    Bendik C. Brinchmann

    2018-05-01

    Full Text Available Exposure to diesel exhaust particles (DEPs affects endothelial function and may contribute to the development of atherosclerosis and vasomotor dysfunction. As intracellular calcium concentration [Ca2+]i is considered important in myoendothelial signalling, we explored the effects of extractable organic matter from DEPs (DEP-EOM on [Ca2+]i and membrane microstructure in endothelial cells. DEP-EOM of increasing polarity was obtained by pressurized sequential extraction of DEPs with n-hexane (n-Hex-EOM, dichloromethane (DCM-EOM, methanol, and water. Chemical analysis revealed that the majority of organic matter was extracted by the n-Hex- and DCM-EOM, with polycyclic aromatic hydrocarbons primarily occurring in n-Hex-EOM. The concentration of calcium was measured in human microvascular endothelial cells (HMEC-1 using micro-spectrofluorometry. The lipophilic n-Hex-EOM and DCM-EOM, but not the more polar methanol- and water-soluble extracts, induced rapid [Ca2+]i increases in HMEC-1. n-Hex-EOM triggered [Ca2+]i increase from intracellular stores, followed by extracellular calcium influx consistent with store operated calcium entry (SOCE. By contrast, the less lipophilic DCM-EOM triggered [Ca2+]i increase via extracellular influx alone, resembling receptor operated calcium entry (ROCE. Both extracts increased [Ca2+]i via aryl hydrocarbon receptor (AhR non-genomic signalling, verified by pharmacological inhibition and RNA-interference. Moreover, DCM-EOM appeared to induce an AhR-dependent reduction in the global plasma membrane order, as visualized by confocal fluorescence microscopy. DCM-EOM-triggered [Ca2+]i increase and membrane alterations were attenuated by the membrane stabilizing lipid cholesterol. In conclusion, lipophilic constituents of DEPs extracted by n-hexane and DCM seem to induce rapid AhR-dependent [Ca2+]i increase in HMEC-1 endothelial cells, possibly involving both ROCE and SOCE-mediated mechanisms. The semi-lipophilic fraction

  18. Polycyclic aromatic hydrocarbon components contribute to the mitochondria-antiapoptotic effect of fine particulate matter on human bronchial epithelial cells via the aryl hydrocarbon receptor

    Directory of Open Access Journals (Sweden)

    Baeza-Squiban Armelle

    2010-07-01

    Full Text Available Abstract Background Nowadays, effects of fine particulate matter (PM2.5 are well-documented and related to oxidative stress and pro-inflammatory response. Nevertheless, epidemiological studies show that PM2.5 exposure is correlated with an increase of pulmonary cancers and the remodeling of the airway epithelium involving the regulation of cell death processes. Here, we investigated the components of Parisian PM2.5 involved in either the induction or the inhibition of cell death quantified by different parameters of apoptosis and delineated the mechanism underlying this effect. Results In this study, we showed that low levels of Parisian PM2.5 are not cytotoxic for three different cell lines and primary cultures of human bronchial epithelial cells. Conversely, a 4 hour-pretreatment with PM2.5 prevent mitochondria-driven apoptosis triggered by broad spectrum inducers (A23187, staurosporine and oligomycin by reducing the mitochondrial transmembrane potential loss, the subsequent ROS production, phosphatidylserine externalization, plasma membrane permeabilization and typical morphological outcomes (cell size decrease, massive chromatin and nuclear condensation, formation of apoptotic bodies. The use of recombinant EGF and specific inhibitor led us to rule out the involvement of the classical EGFR signaling pathway as well as the proinflammatory cytokines secretion. Experiments performed with different compounds of PM2.5 suggest that endotoxins as well as carbon black do not participate to the antiapoptotic effect of PM2.5. Instead, the water-soluble fraction, washed particles and organic compounds such as polycyclic aromatic hydrocarbons (PAH could mimic this antiapoptotic activity. Finally, the activation or silencing of the aryl hydrocarbon receptor (AhR showed that it is involved into the molecular mechanism of the antiapoptotic effect of PM2.5 at the mitochondrial checkpoint of apoptosis. Conclusions The PM2.5-antiapoptotic effect in addition

  19. Aryl hydrocarbon receptor ligand effects in RBL2H3 cells

    DEFF Research Database (Denmark)

    Maaetoft-Udsen, Kristina; Shimoda, Lori M. N.; Frøkiær, Hanne

    2012-01-01

    The aryl hydrocarbon receptor (AHR) mediates toxic effects of dioxin and xenobiotic metabolism. AHR has an emerging role in the immune system, but its physiological ligands and functional role in immunocytes remain poorly understood. Mast cells are immunocytes that are central to inflammatory...

  20. Omeprazole induces NAD(P)H quinone oxidoreductase 1 via aryl hydrocarbon receptor-independent mechanisms: Role of the transcription factor nuclear factor erythroid 2–related factor 2

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Shaojie; Patel, Ananddeep; Moorthy, Bhagavatula; Shivanna, Binoy, E-mail: shivanna@bcm.edu

    2015-11-13

    Activation of the aryl hydrocarbon receptor (AhR) transcriptionally induces phase I (cytochrome P450 (CYP) 1A1) and phase II (NAD(P)H quinone oxidoreductase 1 (NQO1) detoxifying enzymes. The effects of the classical and nonclassical AhR ligands on phase I and II enzymes are well studied in human hepatocytes. Additionally, we observed that the proton pump inhibitor, omeprazole (OM), transcriptionally induces CYP1A1 in the human adenocarcinoma cell line, H441 cells via AhR. Whether OM activates AhR and induces the phase II enzyme, NAD(P)H quinone oxidoreductase 1 (NQO1), in fetal primary human pulmonary microvascular endothelial cells (HPMEC) is unknown. Therefore, we tested the hypothesis that OM will induce NQO1 in HPMEC via the AhR. The concentrations of OM used in our experiments did not result in cytotoxicity. OM activated AhR as evident by increased CYP1A1 mRNA expression. However, contrary to our hypothesis, OM increased NQO1 mRNA and protein via an AhR-independent mechanism as AhR knockdown failed to abrogate OM-mediated increase in NQO1 expression. Interestingly, OM activated Nrf2 as evident by increased phosphoNrf2 (S40) expression in OM-treated compared to vehicle-treated cells. Furthermore, Nrf2 knockdown abrogated OM-mediated increase in NQO1 expression. In conclusion, we provide evidence that OM induces NQO1 via AhR-independent, but Nrf2-dependent mechanisms. - Highlights: • We investigated whether omeprazole induces NQO1 in human fetal lung cells. • Omeprazole induces the phase II enzyme, NQO1, in human fetal lung cells. • AhR deficiency fails to abrogate omeprazole-mediated induction of NQO1. • Omeprazole increases phosphoNrf2 (S40) protein expression in human fetal lung cells. • Nrf2 knockdown abrogates the induction of NQO1 by omeprazole in human lung cells.

  1. Aryl Hydrocarbon Receptor Negatively Regulates Expression of the Plakoglobin Gene (Jup)

    Czech Academy of Sciences Publication Activity Database

    Procházková, Jiřina; Kabátková, Markéta; Šmerdová, Lenka; Pachernik, J.; Sýkorová, D.; Kohoutek, J.; Šimečková, P.; Hrubá, E.; Kozubík, Alois; Machala, M.; Vondráček, Jan

    2013-01-01

    Roč. 134, č. 2 (2013), s. 258-270 ISSN 1096-6080 R&D Projects: GA ČR(CZ) GA524/09/1337; GA ČR(CZ) GD204/09/H058; GA MŠk(CZ) EE2.3.30.0030 Grant - others:GA ČR(CZ) GA301/09/1832 Institutional research plan: CEZ:AV0Z50040702 Institutional support: RVO:68081707 Keywords : EMBRYONIC STEM-CELLS * LIVER EPITHELIAL-CELLS * AH RECEPTOR Subject RIV: BO - Biophysics Impact factor: 4.478, year: 2013

  2. Disruption of Ah Receptor Signaling during Mouse Development Leads to Abnormal Cardiac Structure and Function in the Adult.

    Directory of Open Access Journals (Sweden)

    Vinicius S Carreira

    Full Text Available The Developmental Origins of Health and Disease (DOHaD Theory proposes that the environment encountered during fetal life and infancy permanently shapes tissue physiology and homeostasis such that damage resulting from maternal stress, poor nutrition or exposure to environmental agents may be at the heart of adult onset disease. Interference with endogenous developmental functions of the aryl hydrocarbon receptor (AHR, either by gene ablation or by exposure in utero to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD, a potent AHR ligand, causes structural, molecular and functional cardiac abnormalities and altered heart physiology in mouse embryos. To test if embryonic effects progress into an adult phenotype, we investigated whether Ahr ablation or TCDD exposure in utero resulted in cardiac abnormalities in adult mice long after removal of the agent. Ten-months old adult Ahr-/- and in utero TCDD-exposed Ahr+/+ mice showed sexually dimorphic abnormal cardiovascular phenotypes characterized by echocardiographic findings of hypertrophy, ventricular dilation and increased heart weight, resting heart rate and systolic and mean blood pressure, and decreased exercise tolerance. Underlying these effects, genes in signaling networks related to cardiac hypertrophy and mitochondrial function were differentially expressed. Cardiac dysfunction in mouse embryos resulting from AHR signaling disruption seems to progress into abnormal cardiac structure and function that predispose adults to cardiac disease, but while embryonic dysfunction is equally robust in males and females, the adult abnormalities are more prevalent in females, with the highest severity in Ahr-/- females. The findings reported here underscore the conclusion that AHR signaling in the developing heart is one potential target of environmental factors associated with cardiovascular disease.

  3. Hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    1927-02-22

    Coal tar, mineral oils, bitumens, coal extraction products, hydrogenation products of coal, oil schists can be atomized and heated with steam to decompose pyrogenetically and form gases rich in olefins which may be heated with or without pressure and with or without catalysts to produce liquid hydrocarbons of low boiling point, some of which may be aromatic. The apparatus should be lined with copper, silica, or ferrosilicon to prevent contact of the bases with iron which causes deposition of soot. Catalysts used may be metal oxides, silica, graphite, active charcoal, mica, pumice, porcelain, barium carbonate, copper, silver, gold, chromium, boron, or their compounds. At temperatures from 300 to 400/sup 0/C, olefins are produced. At higher temperatures, naphthenes and benzene hydrocarbons are produced.

  4. Metformin inhibits 7,12-dimethylbenz[a]anthracene-induced breast carcinogenesis and adduct formation in human breast cells by inhibiting the cytochrome P4501A1/aryl hydrocarbon receptor signaling pathway

    Energy Technology Data Exchange (ETDEWEB)

    Maayah, Zaid H. [Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451 (Saudi Arabia); Ghebeh, Hazem [Stem Cell & Tissue Re-Engineering, King Faisal Specialist Hospital and Research Center, Riyadh 11211 (Saudi Arabia); Alhaider, Abdulqader A. [Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451 (Saudi Arabia); Camel Biomedical Research Unit, College of Pharmacy and Medicine, King Saud University, Riyadh 11451 (Saudi Arabia); El-Kadi, Ayman O.S. [Faculty of Pharmacy & Pharmaceutical Sciences, University of Alberta, Edmonton (Canada); Soshilov, Anatoly A.; Denison, Michael S. [Department of Environmental Toxicology, University of California at Davis, Davis, CA 95616 (United States); Ansari, Mushtaq Ahmad [Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451 (Saudi Arabia); Korashy, Hesham M., E-mail: hkorashy@ksu.edu.sa [Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451 (Saudi Arabia)

    2015-04-15

    Recent studies have established that metformin (MET), an oral anti-diabetic drug, possesses antioxidant activity and is effective against different types of cancer in several carcinogen-induced animal models and cell lines. However, whether MET can protect against breast cancer has not been reported before. Therefore, the overall objectives of the present study are to elucidate the potential chemopreventive effect of MET in non-cancerous human breast MCF10A cells and explore the underlying mechanism involved, specifically the role of cytochrome P4501A1 (CYP1A1)/aryl hydrocarbon receptor (AhR) pathway. Transformation of the MCF10A cells into initiated breast cancer cells with DNA adduct formation was conducted using 7,12-dimethylbenz[a]anthracene (DMBA), an AhR ligand. The chemopreventive effect of MET against DMBA-induced breast carcinogenesis was evidenced by the capability of MET to restore the induction of the mRNA levels of basic excision repair genes, 8-oxoguanine DNA glycosylase (OGG1) and apurinic/apyrimidinic endonuclease1 (APE1), and the level of 8-hydroxy-2-deoxyguanosine (8-OHdG). Interestingly, the inhibition of DMBA-induced DNA adduct formation was associated with proportional decrease in CYP1A1 and in NAD(P)H:quinone oxidoreductase 1 (NQO1) gene expression. Mechanistically, the involvements of AhR and nuclear factor erythroid 2-related factor-2 (Nrf2) in the MET-mediated inhibition of DMBA-induced CYP1A1 and NQO1 gene expression were evidenced by the ability of MET to inhibit DMBA-induced xenobiotic responsive element and antioxidant responsive element luciferase reporter gene expression which suggests an AhR- and Nrf2-dependent transcriptional control. However, the inability of MET to bind to AhR suggests that MET is not an AhR ligand. In conclusion, the present work shows a strong evidence that MET inhibits the DMBA-mediated carcinogenicity and adduct formation by inhibiting the expression of CYP1A1 through an AhR ligand-independent mechanism

  5. Metformin inhibits 7,12-dimethylbenz[a]anthracene-induced breast carcinogenesis and adduct formation in human breast cells by inhibiting the cytochrome P4501A1/aryl hydrocarbon receptor signaling pathway

    International Nuclear Information System (INIS)

    Maayah, Zaid H.; Ghebeh, Hazem; Alhaider, Abdulqader A.; El-Kadi, Ayman O.S.; Soshilov, Anatoly A.; Denison, Michael S.; Ansari, Mushtaq Ahmad; Korashy, Hesham M.

    2015-01-01

    Recent studies have established that metformin (MET), an oral anti-diabetic drug, possesses antioxidant activity and is effective against different types of cancer in several carcinogen-induced animal models and cell lines. However, whether MET can protect against breast cancer has not been reported before. Therefore, the overall objectives of the present study are to elucidate the potential chemopreventive effect of MET in non-cancerous human breast MCF10A cells and explore the underlying mechanism involved, specifically the role of cytochrome P4501A1 (CYP1A1)/aryl hydrocarbon receptor (AhR) pathway. Transformation of the MCF10A cells into initiated breast cancer cells with DNA adduct formation was conducted using 7,12-dimethylbenz[a]anthracene (DMBA), an AhR ligand. The chemopreventive effect of MET against DMBA-induced breast carcinogenesis was evidenced by the capability of MET to restore the induction of the mRNA levels of basic excision repair genes, 8-oxoguanine DNA glycosylase (OGG1) and apurinic/apyrimidinic endonuclease1 (APE1), and the level of 8-hydroxy-2-deoxyguanosine (8-OHdG). Interestingly, the inhibition of DMBA-induced DNA adduct formation was associated with proportional decrease in CYP1A1 and in NAD(P)H:quinone oxidoreductase 1 (NQO1) gene expression. Mechanistically, the involvements of AhR and nuclear factor erythroid 2-related factor-2 (Nrf2) in the MET-mediated inhibition of DMBA-induced CYP1A1 and NQO1 gene expression were evidenced by the ability of MET to inhibit DMBA-induced xenobiotic responsive element and antioxidant responsive element luciferase reporter gene expression which suggests an AhR- and Nrf2-dependent transcriptional control. However, the inability of MET to bind to AhR suggests that MET is not an AhR ligand. In conclusion, the present work shows a strong evidence that MET inhibits the DMBA-mediated carcinogenicity and adduct formation by inhibiting the expression of CYP1A1 through an AhR ligand-independent mechanism

  6. In vitro function of the aryl hydrocarbon receptor predicts in vivo sensitivity of oviparous vertebrates to dioxin-like compounds

    Science.gov (United States)

    Differences in sensitivity to dioxin-like compounds (DLCs) among species and taxa presents a major challenge to ecological risk assessments. Activation of the aryl hydrocarbon receptor (AHR) regulates adverse effects associated with exposure to DLCs in vertebrates. Prior investig...

  7. High-resolution gas chromatographic analysis of polycyclic aromatic hydrocarbons and aliphatic hydrocarbons; Separacion por cromatografia de gases de alta eficiencia de hidrocarburos aromaticos policiclicos, (PAH) y alifaticos (AH) ambientales, empleado como fases estacionarias OV-1 y SE-54

    Energy Technology Data Exchange (ETDEWEB)

    Perez, M.; Gonzalez, D.

    1988-07-01

    A study of the analysis by gas chromatography of aromatic polycyclic hydrocarbons and aliphatic hydrocarbons is presented. The separation has been carried out by glass and fused silica capillary column in two different polar stationary phases OV-1 and SE-54. The limitation and the advantages of the procedure are discussed in terms of separation, sensitivity and precision. (Author) 20 refs.

  8. Aryl hydrocarbon receptor activation and CYP1A induction by cooked food-derived carcinogenic heterocyclic amines in human HepG2 cell lines.

    Science.gov (United States)

    Sekimoto, Masashi; Sumi, Haruna; Hosaka, Takuomi; Umemura, Takashi; Nishikawa, Akiyoshi; Degawa, Masakuni

    2016-11-01

    The ability of nine cooked food-derived heterocyclic aromatic amines (HCAs), such as 3-amino-1,4-dimethyl-5H-pyrido[4,3-b]indole (Trp-P-1), 3-amino-1-methyl-5H-pyrido[4,3-b]indole (Trp-P-2), 2-amino-6-methylpyrido[12-a:3',2'-d]imidazole (Glu-P-1), 2-amino-pyrido[12-a:3',2'-d]imidazole hydrochloride (Glu-P-2), 2-amino-9H-pyrido[2,3-b]indole (AαC), 2-amino-3-methyl-9H-pyrido[2,3-b]indole (MeAαC), 2-amino-3-methylimidazo[4,5-f]quinolone (IQ), 2-amino-3,8-dimethylimidazo[4,5-f]quinoxaline (MeIQx) and 2-amino-1-methyl-6-phenyl-1H-imidazo[4,5-b]pyridine (PhIP), to activate human aryl hydrocarbon receptor (hAhR) was examined using a HepG2-A10 cell line, which has previously established from human hepatocarcinoma-derived HepG2 cells for use in hAhR-based luciferase reporter gene assays. Trp-P-1, Trp-P-2, AαC, MeAαC, IQ and MeIQx showed a definite ability to induce not only luciferase (hAhR activation) in HepG2-A10 cells but also cytochrome P450 (CYP)1A1/1A2 mRNAs in HepG2 cells, while such the ability of Glu-P-1, Glu-P-2, and PhIP was very low. In addition, all the HCAs examined, especially MeAαC and MeIQx, had a definite capacity for inhibiting the activity of ethoxyresorfin O-deethylase (CYP1As, especially CYP1A1). The present findings demonstrate that all the HCAs examined have the ability to activate hAhR and its target genes, and further confirm that these HCAs become good substrates for human CYP1A subfamily enzyme(s). Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Equivalent molecular mass of cytosolic and nuclear forms of Ah receptor from Hepa-1 cells determined by photoaffinity labeling with 2,3,7,8-[3H]tetrachlorodibenzo-p-dioxin

    International Nuclear Information System (INIS)

    Prokipcak, R.D.; Okey, A.B.

    1990-01-01

    The structure of the Ah receptor previously has been extensively characterized by reversible binding of the high affinity ligand 2,3,7,8-tetrachlorodibenzo-p-dioxin. We report the use of [ 3 H]2,3,7,8-tetrachlorodibenzo-p-dioxin as a photoaffinity ligand for Ah receptor from the mouse hepatoma cell line Hepa-1c1c9. Both cytosolic and nuclear forms of Ah receptor could be specifically photoaffinity-labeled, which allowed determination of molecular mass for the two forms under denaturing conditions. After analysis by fluorography of polyacrylamide gels run in the presence of sodium dodecyl sulfate, molecular mass for the cytosolic form of Ah receptor was estimated at 92,000 +/- 4,300 and that for the nuclear form was estimated at 93,500 +/- 3,400. Receptor in mixture of cytosol and nuclear extract (each labeled separately with [ 3 H]2,3,7,8-tetrachlorodibenzo-p-dioxin) migrated as a single band. These results are consistent with the presence of a common ligand-binding subunit of identical molecular mass in both cytosolic and nuclear complexes

  10. Aryl hydrocarbon receptor-dependent up-regulation of the heterodimeric amino acid transporter LAT1 (SLC7A5)/CD98hc (SLC3A2) by diesel exhaust particle extract in human bronchial epithelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Le Vee, Marc; Jouan, Elodie; Lecureur, Valérie [Institut de Recherches en Santé, Environnement et Travail (IRSET), UMR INSERM U1085, Faculté de Pharmacie, 2 Avenue du Pr Léon Bernard, 35043 Rennes (France); Fardel, Olivier, E-mail: olivier.fardel@univ-rennes1.fr [Institut de Recherches en Santé, Environnement et Travail (IRSET), UMR INSERM U1085, Faculté de Pharmacie, 2 Avenue du Pr Léon Bernard, 35043 Rennes (France); Pôle Biologie, Centre Hospitalier Universitaire, 2 rue Henri Le Guilloux, 35033 Rennes (France)

    2016-01-01

    The heterodimeric L-type amino acid transporter (LAT) 1/CD98hc is overexpressed in lung cancers with a poor prognosis factor. Factors that contribute to LAT1/CD98hc overexpression in lung cells remain however to be determined, but the implication of atmospheric pollution can be suspected. The present study was therefore designed to analyze the effects of diesel exhaust particle (DEP) extract (DEPe) on LAT1/CD98hc expression in bronchial epithelial BEAS-2B cells. Exposure to DEPe up-regulated LAT1 and CD98hc mRNA levels in a concentration-dependent manner, with DEPe EC{sub 50} values (around 0.2 μg/mL) relevant to environmental situations. DEPe concomitantly induced LAT1/CD98hc protein expression and LAT1-mediated leucine accumulation in BEAS-2B cells. Inhibition of the aryl hydrocarbon receptor (AhR) pathway through the use of a chemical AhR antagonist or the siRNA-mediated silencing of AhR expression was next found to prevent DEPe-mediated induction of LAT1/CD98hc, indicating that this regulation depends on AhR, known to be activated by major chemical DEP components like polycyclic aromatic hydrocarbons. DEPe exposure was finally shown to induce mRNA expression and activity of matrix metalloproteinase (MMP)-2 in BEAS-2B cells, in a CD98hc/focal adhesion kinase (FAK)/extracellular regulated kinase (ERK) manner, thus suggesting that DEPe-mediated induction of CD98hc triggers activation of the integrin/FAK/ERK signaling pathway known to be involved in MMP-2 regulation. Taken together, these data demonstrate that exposure to DEPe induces functional overexpression of the amino acid transporter LAT1/CD98hc in lung cells. Such a regulation may participate to pulmonary carcinogenic effects of DEPs, owing to the well-documented contribution of LAT1 and CD98hc to cancer development. - Highlights: • The amino acid transporter LAT1/CD98hc is up-regulated in DEPe-treated lung cells. • The aryl hydrocarbon receptor is involved in DEPe-triggered induction of LAT1/CD98hc.

  11. Deciphering Dimerization Modes of PAS Domains: Computational and Experimental Analyses of the AhR:ARNT Complex Reveal New Insights Into the Mechanisms of AhR Transformation.

    Science.gov (United States)

    Corrada, Dario; Soshilov, Anatoly A; Denison, Michael S; Bonati, Laura

    2016-06-01

    The Aryl hydrocarbon Receptor (AhR) is a transcription factor that mediates the biochemical response to xenobiotics and the toxic effects of a number of environmental contaminants, including dioxins. Recently, endogenous regulatory roles for the AhR in normal physiology and development have also been reported, thus extending the interest in understanding its molecular mechanisms of activation. Since dimerization with the AhR Nuclear Translocator (ARNT) protein, occurring through the Helix-Loop-Helix (HLH) and PER-ARNT-SIM (PAS) domains, is needed to convert the AhR into its transcriptionally active form, deciphering the AhR:ARNT dimerization mode would provide insights into the mechanisms of AhR transformation. Here we present homology models of the murine AhR:ARNT PAS domain dimer developed using recently available X-ray structures of other bHLH-PAS protein dimers. Due to the different reciprocal orientation and interaction surfaces in the different template dimers, two alternative models were developed for both the PAS-A and PAS-B dimers and they were characterized by combining a number of computational evaluations. Both well-established hot spot prediction methods and new approaches to analyze individual residue and residue-pairwise contributions to the MM-GBSA binding free energies were adopted to predict residues critical for dimer stabilization. On this basis, a mutagenesis strategy for both the murine AhR and ARNT proteins was designed and ligand-dependent DNA binding ability of the AhR:ARNT heterodimer mutants was evaluated. While functional analysis disfavored the HIF2α:ARNT heterodimer-based PAS-B model, most mutants derived from the CLOCK:BMAL1-based AhR:ARNT dimer models of both the PAS-A and the PAS-B dramatically decreased the levels of DNA binding, suggesting this latter model as the most suitable for describing AhR:ARNT dimerization. These novel results open new research directions focused at elucidating basic molecular mechanisms underlying the

  12. Deciphering Dimerization Modes of PAS Domains: Computational and Experimental Analyses of the AhR:ARNT Complex Reveal New Insights Into the Mechanisms of AhR Transformation.

    Directory of Open Access Journals (Sweden)

    Dario Corrada

    2016-06-01

    Full Text Available The Aryl hydrocarbon Receptor (AhR is a transcription factor that mediates the biochemical response to xenobiotics and the toxic effects of a number of environmental contaminants, including dioxins. Recently, endogenous regulatory roles for the AhR in normal physiology and development have also been reported, thus extending the interest in understanding its molecular mechanisms of activation. Since dimerization with the AhR Nuclear Translocator (ARNT protein, occurring through the Helix-Loop-Helix (HLH and PER-ARNT-SIM (PAS domains, is needed to convert the AhR into its transcriptionally active form, deciphering the AhR:ARNT dimerization mode would provide insights into the mechanisms of AhR transformation. Here we present homology models of the murine AhR:ARNT PAS domain dimer developed using recently available X-ray structures of other bHLH-PAS protein dimers. Due to the different reciprocal orientation and interaction surfaces in the different template dimers, two alternative models were developed for both the PAS-A and PAS-B dimers and they were characterized by combining a number of computational evaluations. Both well-established hot spot prediction methods and new approaches to analyze individual residue and residue-pairwise contributions to the MM-GBSA binding free energies were adopted to predict residues critical for dimer stabilization. On this basis, a mutagenesis strategy for both the murine AhR and ARNT proteins was designed and ligand-dependent DNA binding ability of the AhR:ARNT heterodimer mutants was evaluated. While functional analysis disfavored the HIF2α:ARNT heterodimer-based PAS-B model, most mutants derived from the CLOCK:BMAL1-based AhR:ARNT dimer models of both the PAS-A and the PAS-B dramatically decreased the levels of DNA binding, suggesting this latter model as the most suitable for describing AhR:ARNT dimerization. These novel results open new research directions focused at elucidating basic molecular mechanisms

  13. The aryl hydrocarbon receptor meets immunology: friend or foe? A little of both

    Directory of Open Access Journals (Sweden)

    Walker eJulliard

    2014-10-01

    Full Text Available The aryl hydrocarbon receptor (AHR has long been studied by toxicologists as a ligand-activated transcription factor that is activated by dioxin and other environmental pollutants such as polycyclic aromatic hydrocarbons. The hallmark of AHR activation is the upregulation of the cytochrome P450 enzymes that metabolize many of these toxic compounds. However, recent findings demonstrate that both exogenous and endogenous AHR ligands can alter innate and adaptive immune responses including effects on T-cell differentiation. Kynurenine, a tryptophan breakdown product, is one such endogenous ligand of the AHR. Expression of indoleamine 2,3-dioxygenase by dendritic cells causes accumulation of kynurenine and results in subsequent tolerogenic effects including increased regulatory T cell activity. At the same time, polycyclic aromatic hydrocarbons found in pollution enhance Th17 differentiation in the lungs of exposed mice via the AHR. In this perspective, we will discuss the importance of the AHR in the immune system and the role this might play in normal physiology and response to disease.

  14. Activation of the Aryl Hydrocarbon Receptor Interferes with Early Embryonic Development

    Directory of Open Access Journals (Sweden)

    Manolis Gialitakis

    2017-11-01

    Full Text Available The transcriptional program of early embryonic development is tightly regulated by a set of well-defined transcription factors that suppress premature expression of differentiation genes and sustain the pluripotent identity. It is generally accepted that this program can be perturbed by environmental factors such as chemical pollutants; however, the precise molecular mechanisms remain unknown. The aryl hydrocarbon receptor (AHR is a widely expressed nuclear receptor that senses environmental stimuli and modulates target gene expression. Here, we have investigated the AHR interactome in embryonic stem cells by mass spectrometry and show that ectopic activation of AHR during early differentiation disrupts the differentiation program via the chromatin remodeling complex NuRD (nucleosome remodeling and deacetylation. The activated AHR/NuRD complex altered the expression of differentiation-specific genes that control the first two developmental decisions without affecting the pluripotency program. These findings identify a mechanism that allows environmental stimuli to disrupt embryonic development through AHR signaling.

  15. Direct soil contact values for ecological receptors exposed to weathered petroleum hydrocarbon (PHC) fraction 2.

    Science.gov (United States)

    Angell, Robin A; Kullman, Steve; Shrive, Emma; Stephenson, Gladys L; Tindal, Miles

    2012-11-01

    Ecological tier 1 Canada-wide standards (CWS) for petroleum hydrocarbon (PHC) fraction 2 (F2; >nC10-C16) in soil were derived using ecotoxicological assessment endpoints (effective concentrations [ECs]/lethal concentrations [LCs]/inhibitory concentrations, 25% [IC25s]) with freshly spiked (fresh) fine- and coarse-grained soils. These soil standards might be needlessly conservative when applied to field samples with weathered hydrocarbons. The purpose of the present study was to assess the degradation and toxicity of weathered PHC F2 in a fine-grained soil and to derive direct soil contact values for ecological receptors. Fine-grained reference soils were spiked with distilled F2 and weathered for 183 d. Toxicity tests using plants and invertebrates were conducted with the weathered F2-spiked soils. Endpoint EC/IC25s were calculated and used to derive soil standards for weathered F2 in fine-grained soil protective of ecological receptors exposed via direct soil contact. The values derived for weathered F2 were less restrictive than current ecological tier 1 CWS for F2 in soil. Copyright © 2012 SETAC.

  16. Epigenetic Determinants of CYP1A1 Induction by the Aryl Hydrocarbon Receptor Agonist 3,3',4,4',5-Pentachlorobiphenyl (PCB 126

    Directory of Open Access Journals (Sweden)

    Sabine U. Vorrink

    2014-08-01

    Full Text Available Many enzymes involved in xenobiotic metabolism, including cytochrome P450 (CYP 1A1, are regulated by the aryl hydrocarbon receptor (AhR. 3,3',4,4',5-Penta chlorobiphenyl (PCB 126 is a potent ligand for AhR and can thus induce the expression of CYP1A1. Interestingly, we observed that human carcinoma cell lines derived from different types of epithelial cells displayed divergent degrees of CYP1A1 induction after exposure to PCB 126. Since epigenetic mechanisms are known to be involved in cell type-specific gene expression, we sought to assess the epigenetic determinants of CYP1A1 induction in these carcinoma cell lines. In contrast to HepG2 hepatocarcinoma cells, HeLa cervical carcinoma cells showed significantly lower levels of CYP1A1 mRNA expression following PCB 126 exposure. Our results show that the two cell lines maintained differences in the chromatin architecture along the CYP1A1 promoter region. Furthermore, treatment with the epigenetic modifiers, trichostatin A (TSA and 5-aza-2'-deoxycytidine (5-Aza-dC, significantly increased the expression of CYP1A1 after PCB 126 treatment in HeLa cells. However, we did not observe apparent differences in methylation levels or specific location of CpG DNA methylation between the two cell lines in the analyzed CYP1A1 promoter region. Taken together, our findings suggest that the differences in CYP1A1 expression between HepG2 and HeLa cells are due to differences in the chromatin architecture of the CYP1A1 promoter and thus establish a role of epigenetic regulation in cell-specific CYP1A1 expression.

  17. ITE Suppresses Angiogenic Responses in Human Artery and Vein Endothelial Cells: Differential Roles of AhR.

    Science.gov (United States)

    Li, Yan; Wang, Kai; Zou, Qing-Yun; Jiang, Yi-Zhou; Zhou, Chi; Zheng, Jing

    2017-12-01

    Aryl hydrocarbon receptor (AhR), a ligand-activated transcription factor is involved in regulation of many essential biological processes including vascular development and angiogenesis. 2-(1'H-indole-3'-carbonyl)-thiazole-4-carboxylic acid methyl ester (ITE) is an AhR ligand, which regulates immune responses and cancer cell growth. However, the roles of the ITE/AhR pathway in mediating placental angiogenesis remains elusive. Here, we determined if ITE affected placental angiogenic responses via AhR in human umbilical vein (HUVECs) and artery endothelial (HUAECs) cells in vitro. We observed that ITE dose- and time-dependently inhibited proliferation and viability of HUAECs and HUVECs, whereas it inhibited migration of HUAECs, but not HUVECs. While AhR siRNA significantly suppressed AhR protein expression in HUVECs and HUAECs, it attenuated the ITE-inhibited angiogenic responses of HUAECs, but not HUVECs. Collectively, ITE suppressed angiogenic responses of HUAECs and HUVECs, dependent and independent of AhR, respectively. These data suggest that ITE may regulate placental angiogenesis. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. In vitro screening for aryl hydrocarbon receptor agonistic activity in 200 pesticides using a highly sensitive reporter cell line, DR-EcoScreen cells, and in vivo mouse liver cytochrome P450-1A induction by propanil, diuron and linuron.

    Science.gov (United States)

    Takeuchi, Shinji; Iida, Mitsuru; Yabushita, Hisatoshi; Matsuda, Tadashi; Kojima, Hiroyuki

    2008-12-01

    The aryl hydrocarbon receptor (AhR) is a ligand-dependent transcription factor that regulates genes involved in xenobiotic metabolism, cellular proliferation and differentiation. In this study, we have developed a highly sensitive AhR-mediated reporter cell line, DR-EcoScreen cells, which are mouse hepatoma Hepa1c1c7 cells stably transfected with a reporter plasmid containing seven copies of dioxin-responsive element. Using these DR-EcoScreen cells, we performed the reporter gene assay and characterized the AhR agonistic activities of 200 pesticides (29 organochlorines, 11 diphenyl ethers, 56 organophosphorus pesticides, 12 pyrethroids, 22 carbamates, 12 acid amides, 7 triazines, 6 ureas, and 45 others). Eleven of the 200 pesticides (acifluorfen-methyl, bifenox, chlorpyrifos, isoxathion, quinalphos, chlorpropham, diethofencarb, propanil, diuron, linuron, and prochloraz) showed AhR-mediated transcriptional activity. In particular, three herbicides (propanil, diuron, and linuron) have a common chemical structure and showed more potent agonistic activity than other pesticides. To investigate the in vivo effects, we examined the gene expression of AhR-inducible cytochrome P450 1As (CYP1As) in the liver of female C57BL/6 mice intraperitoneally injected with these three herbicides (300 mg kg(-1)) by quantitative RT-PCR, resulting in induction of significant high levels of CYP1A1 and CYP1A2 mRNAs. This indicates that propanil, diuron and linuron possess AhR-mediated transactivation effect in vivo as well as in vitro. Through the present study, we demonstrated that DR-EcoScreen cells are useful for sensitive, rapid and simple identification of AhR agonists among a large number of environmental chemicals.

  19. The role of aryl hydrocarbon receptor signaling pathway in cardiotoxicity of acute lead intoxication in vivo and in vitro rat model.

    Science.gov (United States)

    Ansari, Mushtaq A; Maayah, Zaid H; Bakheet, Saleh A; El-Kadi, Ayman O; Korashy, Hesham M

    2013-04-05

    Lead (Pb(2+)) is a naturally occurring systemic toxicant heavy metal that affects several organs in the body including the kidneys, liver, and central nervous system. However, Pb(2+)-induced cardiotoxicity has never been investigated yet and the exact mechanism of Pb(2+) associated cardiotoxicity has not been studied. The current study was designed to investigate the potential effect of Pb(2+) to induce cardiotoxicity in vivo and in vitro rat model and to explore the molecular mechanisms and the role of aryl hydrocarbon receptor (AhR) and regulated gene, cytochrome P4501A1 (CYP1A1), in Pb(2+)-mediated cardiotoxicity. For these purposes, Wistar albino rats were treated with Pb(2+) (25, 50 and 100mg/kg, i.p.) for three days and the effects on physiological and histopathological parameters of cardiotoxicity were determined. At the in vitro level, rat cardiomyocyte H9c2 cell lines were incubated with increasing concentration of Pb(2+) (25, 50, and 100 μM) and the expression of hypertrophic genes, α- and β-myosin heavy chain (α-MHC and β-MHC), brain Natriuretic Peptide (BNP), and CYP1A1 were determined at the mRNA and protein levels using real-time PCR and Western blot analysis, respectively. The results showed that Pb(2+) significantly induced cardiotoxicity and heart failure as evidenced by increase cardiac enzymes, lactate dehydrogenase and creatine kinase and changes in histopathology in vivo. In addition, Pb(2+) treatment induced β-MHC and BNP whereas inhibited α-MHC mRNA and protein levels in vivo in a dose-dependent manner. In contrast, at the in vitro level, Pb(2+) treatment induced both β-MHC and α-MHC mRNA levels in time- and dose-dependent manner. Importantly, these changes were accompanied with a proportional increase in the expression of CYP1A1 mRNA and protein expression levels, suggesting a role for the CYP1A1 in cardiotoxicity. The direct evidence for the involvement of CYP1A1 in the induction of cardiotoxicity by Pb(2+) was evidenced by the

  20. Receptor modeling for source apportionment of polycyclic aromatic hydrocarbons in urban atmosphere.

    Science.gov (United States)

    Singh, Kunwar P; Malik, Amrita; Kumar, Ranjan; Saxena, Puneet; Sinha, Sarita

    2008-01-01

    This study reports source apportionment of polycyclic aromatic hydrocarbons (PAHs) in particulate depositions on vegetation foliages near highway in the urban environment of Lucknow city (India) using the principal components analysis/absolute principal components scores (PCA/APCS) receptor modeling approach. The multivariate method enables identification of major PAHs sources along with their quantitative contributions with respect to individual PAH. The PCA identified three major sources of PAHs viz. combustion, vehicular emissions, and diesel based activities. The PCA/APCS receptor modeling approach revealed that the combustion sources (natural gas, wood, coal/coke, biomass) contributed 19-97% of various PAHs, vehicular emissions 0-70%, diesel based sources 0-81% and other miscellaneous sources 0-20% of different PAHs. The contributions of major pyrolytic and petrogenic sources to the total PAHs were 56 and 42%, respectively. Further, the combustion related sources contribute major fraction of the carcinogenic PAHs in the study area. High correlation coefficient (R2 > 0.75 for most PAHs) between the measured and predicted concentrations of PAHs suggests for the applicability of the PCA/APCS receptor modeling approach for estimation of source contribution to the PAHs in particulates.

  1. Phosphorylation inhibits DNA-binding of alternatively spliced aryl hydrocarbon receptor nuclear translocator

    International Nuclear Information System (INIS)

    Kewley, Robyn J.; Whitelaw, Murray L.

    2005-01-01

    The basic helix-loop-helix/PER-ARNT-SIM homology (bHLH/PAS) transcription factor ARNT (aryl hydrocarbon receptor nuclear translocator) is a key component of various pathways which induce the transcription of cytochrome P450 and hypoxia response genes. ARNT can be alternatively spliced to express Alt ARNT, containing an additional 15 amino acids immediately N-terminal to the DNA-binding basic region. Here, we show that ARNT and Alt ARNT proteins are differentially phosphorylated by protein kinase CKII in vitro. Phosphorylation had an inhibitory effect on DNA-binding to an E-box probe by Alt ARNT, but not ARNT, homodimers. This inhibitory phosphorylation occurs through Ser77. Moreover, a point mutant, Alt ARNT S77A, shows increased activity on an E-box reporter gene, consistent with Ser77 being a regulatory site in vivo. In contrast, DNA binding by an Alt ARNT/dioxin receptor heterodimer to the xenobiotic response element is not inhibited by phosphorylation with CKII, nor does Alt ARNT S77A behave differently from wild type Alt ARNT in the context of a dioxin receptor heterodimer

  2. Interactions between polymorphisms in the aryl hydrocarbon receptor signalling pathway and exposure to persistent organochlorine pollutants affect human semen quality

    DEFF Research Database (Denmark)

    Brokken, L J S; Lundberg, P J; Spanò, M

    2014-01-01

    Persistent organic pollutants (POPs) may affect male reproductive function. Many dioxin-like POPs exert their effects by activation of the aryl hydrocarbon receptor (AHR) signalling pathway. We analysed whether gene-environment interactions between polymorphisms in AHR (R554K) and AHR repressor (...

  3. The Aryl Hydrocarbon Receptor Meets Immunology: Friend or Foe? A Little of Both

    Science.gov (United States)

    Julliard, Walker; Fechner, John H.; Mezrich, Joshua D.

    2014-01-01

    The aryl hydrocarbon receptor (AHR) has long been studied by toxicologists as a ligand-activated transcription factor that is activated by dioxin and other environmental pollutants such as polycyclic aromatic hydrocarbons (PAHs). The hallmark of AHR activation is the upregulation of the cytochrome P450 enzymes that metabolize many of these toxic compounds. However, recent findings demonstrate that both exogenous and endogenous AHR ligands can alter innate and adaptive immune responses including effects on T-cell differentiation. Kynurenine, a tryptophan breakdown product, is one such endogenous ligand of the AHR. Expression of indoleamine 2,3-dioxygenase by dendritic cells causes accumulation of kynurenine and results in subsequent tolerogenic effects including increased regulatory T-cell activity. At the same time, PAHs found in pollution enhance Th17 differentiation in the lungs of exposed mice via the AHR. In this perspective, we will discuss the importance of the AHR in the immune system and the role this might play in normal physiology and response to disease. PMID:25324842

  4. Mode of action and dose-response framework analysis for receptor-mediated toxicity : The aryl hydrocarbon receptor as a case study

    NARCIS (Netherlands)

    Budinsky, R. A.; Schrenk, D.; Simon, T.; Van Den Berg, M.; Reichard, J. F.; Silkworth, J. B.; Aylward, L. L.; Brix, A.; Gasiewicz, T.; Kaminski, N.; Perdew, G.; Starr, T. B.; Walker, N. J.; Rowlands, J. C.

    2014-01-01

    Dioxins and dioxin-like compounds are tumor promoters that cause liver cancer in rats and mice. The aryl hydrocarbon receptor (AHR) has been implicated as a key component in this tumor promotion response. Despite extensive knowledge of the toxicology of dioxins, no mode of action (MOA) hypothesis

  5. The Complex Biology of the Aryl Hydrocarbon Receptor and Its Role in the Pituitary Gland.

    Science.gov (United States)

    Formosa, Robert; Vassallo, Josanne

    2017-08-01

    The aryl hydrocarbon receptor (AHR) is a ligand-activated transcription factor best known for its ability to mediate the effects of environmental toxins such as 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD or dioxin), polycyclic aromatic hydrocarbons (PAHs), benzene, and polychlorinated biphenyls (PCBs) through the initiation of transcription of a number of metabolically active enzymes. Therefore, the AHR has been studied mostly in the context of xenobiotic signaling. However, several studies have shown that the AHR is constitutively active and plays an important role in general cell physiology, independently of its activity as a xenobiotic receptor and in the absence of exogenous ligands. Within the pituitary, activation of the AHR by environmental toxins has been implicated in disruption of gonadal development and fertility. Studies carried out predominantly in mouse models have revealed the detrimental influence of several environmental toxins on specific cell lineages of the pituitary tissue mediated by activation of AHR and its downstream effectors. Activation of AHR during fetal development adversely affected pituitary development while adult models exposed to AHR ligands demonstrated varying degrees of pituitary dysfunction. Such dysfunction may arise as a result of direct effects on pituitary cells or indirect effects on the hypothalamic-pituitary-gonadal axis. This review offers in-depth analysis of all aspects of AHR biology, with a particular focus on its role and activity within the adenohypophysis and specifically in pituitary tumorigenesis. A novel mechanism by which the AHR may play a direct role in pituitary cell proliferation and tumor formation is postulated. This review therefore attempts to cover all aspects of the AHR's role in the pituitary tissue, from fetal development to adult physiology and the pathophysiology underlying endocrine disruption and pituitary tumorigenesis.

  6. The aryl hydrocarbon receptor is a modulator of anti-viral immunity

    Science.gov (United States)

    Head, Jennifer L.; Lawrence, B. Paige

    2009-01-01

    Although immune modulation by AhR ligands has been studied for many years, the impact of AhR activation on host defenses against viral infection has not, until recently, garnered much attention. The development of novel reagents and model systems, new information regarding antiviral immunity, and a growing appreciation for the global health threat posed by viruses have invigorated interest in understanding how environmental signals affect susceptibility to and pathological consequences of viral infection. Using influenza A virus as a model of respiratory viral infection, recent studies show that AhR activation cues signaling events in both leukocytes and non-immune cells. Functional alterations include suppressed lymphocyte responses and increased inflammation in the infected lung. AhR-mediated events within and extrinsic to hematopoietic cells has been investigated using bone marrow chimeras, which show that AhR alters different elements of the immune response by affecting different tissue targets. In particular, suppressed CD8+ T cell responses are due to deregulated events within leukocytes themselves, whereas increased neutrophil recruitment to and IFN-γ levels in the lung result from AhR-regulated events extrinsic to bone marrow-derived cells. This latter discovery suggests that epithelial and endothelial cells are overlooked targets of AhR-mediated changes in immune function. Further support that AhR influences host cell responses to viral infection are provided by several studies demonstrating that AhR interacts directly with viral proteins and affects viral latency. While AhR clearly modulates host responses to viral infection, we still have much to understand about the complex interactions between immune cells, viruses, and the host environment. PMID:19027719

  7. Novel cellular targets of AhR underlie alterations in neutrophilic inflammation and iNOS expression during influenza virus infection

    Science.gov (United States)

    Head Wheeler, Jennifer L.; Martin, Kyle C.; Lawrence, B. Paige

    2012-01-01

    The underlying reasons for variable clinical outcomes from respiratory viral infections remain uncertain. Several studies suggest that environmental factors contribute to this variation, but limited knowledge of cellular and molecular targets of these agents hampers our ability to quantify or modify their contribution to disease and improve public health. The aryl hydrocarbon receptor (AhR) is an environment sensing transcription factor that binds many anthropogenic and natural chemicals. The immunomodulatory properties of AhR ligands are best characterized with extensive studies of changes in CD4+ T cell responses. Yet, AhR modulates other aspects of immune function. We previously showed that during influenza virus infection, AhR activation modulates neutrophil accumulation in the lung, and this contributes to increased mortality in mice. Enhanced levels of inducible nitric oxide synthase (iNOS) in infected lungs are observed during the same timeframe as AhR-mediated increased pulmonary neutrophilia. In this study, we evaluated whether these two consequences of AhR activation are causally linked. Reciprocal inhibition of AhR-mediated elevations in iNOS and pulmonary neutrophilia reveal that, although they are contemporaneous, they are not causally related. We show using Cre/loxP technology that elevated iNOS levels and neutrophil number in the infected lung result from separate, AhR-dependent signaling in endothelial and respiratory epithelial cells, respectively. Studies using mutant mice further reveal that AhR-mediated alterations in these innate responses to infection require a functional nuclear localization signal and DNA binding domain. Thus, gene targets of AhR in non-hematopoietic cells are important new considerations for understanding AhR-mediated changes in innate anti-viral immunity. PMID:23233726

  8. Aryl hydrocarbon receptor-dependent upregulation of Cyp1b1 by TCDD and diesel exhaust particles in rat brain microvessels

    Directory of Open Access Journals (Sweden)

    Jacob Aude

    2011-08-01

    Full Text Available Abstract Background AhR activates the transcription of several target genes including CYP1B1. Recently, we showed CYP1B1 as the major cytochrome P450 (CYP enzyme expressed in human brain microvessels. Here, we studied the effect of AhR activation by environmental pollutants on the expression of Cyp1b1 in rat brain microvessels. Methods Expression of AhR and Cyp1b1 was detected in isolated rat brain microvessels. AhR was immunovisualised in brain microvessel endothelial cells. The effect of AhR ligands on Cyp1b1 expression was studied using isolated brain microvessels after ex vivo and/or in vivo exposure to TCDD, heavy hydrocarbons containing diesel exhaust particles (DEP or Δ9-tetrahydrocannabinol (Δ9-THC. Results After ex vivo exposure to TCDD (a highly potent AhR ligand for 3 h, Cyp1b1 expression was significantly increased by 2.3-fold in brain microvessels. A single i.p. dose of TCDD also increased Cyp1b1 transcripts (22-fold and Cyp1b1 protein (2-fold in rat brain microvessels at 72 h after TCDD. Likewise, DEP treatment (in vivo and ex vivo strongly induced Cyp1b1 protein in brain microvessels. DEP-mediated Cyp1b1 induction was inhibited by actinomycin D, cycloheximide, or by an AhR antagonist. In contrast, a sub-chronic in vivo treatment with Δ9-THC once daily for 7 seven days had no effect on Cyp1b1 expression Conclusions Our results show that TCDD and DEP strongly induced Cyp1b1 in rat brain microvessels, likely through AhR activation.

  9. Obesity is mediated by differential aryl hydrocarbon receptor signaling in mice fed a Western diet.

    Science.gov (United States)

    Kerley-Hamilton, Joanna S; Trask, Heidi W; Ridley, Christian J A; Dufour, Eric; Ringelberg, Carol S; Nurinova, Nilufer; Wong, Diandra; Moodie, Karen L; Shipman, Samantha L; Moore, Jason H; Korc, Murray; Shworak, Nicholas W; Tomlinson, Craig R

    2012-09-01

    Obesity is a growing worldwide problem with genetic and environmental causes, and it is an underlying basis for many diseases. Studies have shown that the toxicant-activated aryl hydrocarbon receptor (AHR) may disrupt fat metabolism and contribute to obesity. The AHR is a nuclear receptor/transcription factor that is best known for responding to environmental toxicant exposures to induce a battery of xenobiotic-metabolizing genes. The intent of the work reported here was to test more directly the role of the AHR in obesity and fat metabolism in lieu of exogenous toxicants. We used two congenic mouse models that differ at the Ahr gene and encode AHRs with a 10-fold difference in signaling activity. The two mouse strains were fed either a low-fat (regular) diet or a high-fat (Western) diet. The Western diet differentially affected body size, body fat:body mass ratios, liver size and liver metabolism, and liver mRNA and miRNA profiles. The regular diet had no significant differential effects. The results suggest that the AHR plays a large and broad role in obesity and associated complications, and importantly, may provide a simple and effective therapeutic strategy to combat obesity, heart disease, and other obesity-associated illnesses.

  10. Parsing pyrogenic polycyclic aromatic hydrocarbons: forensic chemistry, receptor models, and source control policy.

    Science.gov (United States)

    O'Reilly, Kirk T; Pietari, Jaana; Boehm, Paul D

    2014-04-01

    A realistic understanding of contaminant sources is required to set appropriate control policy. Forensic chemical methods can be powerful tools in source characterization and identification, but they require a multiple-lines-of-evidence approach. Atmospheric receptor models, such as the US Environmental Protection Agency (USEPA)'s chemical mass balance (CMB), are increasingly being used to evaluate sources of pyrogenic polycyclic aromatic hydrocarbons (PAHs) in sediments. This paper describes the assumptions underlying receptor models and discusses challenges in complying with these assumptions in practice. Given the variability within, and the similarity among, pyrogenic PAH source types, model outputs are sensitive to specific inputs, and parsing among some source types may not be possible. Although still useful for identifying potential sources, the technical specialist applying these methods must describe both the results and their inherent uncertainties in a way that is understandable to nontechnical policy makers. The authors present an example case study concerning an investigation of a class of parking-lot sealers as a significant source of PAHs in urban sediment. Principal component analysis is used to evaluate published CMB model inputs and outputs. Targeted analyses of 2 areas where bans have been implemented are included. The results do not support the claim that parking-lot sealers are a significant source of PAHs in urban sediments. © 2013 SETAC.

  11. American Housing Survey (AHS)

    Data.gov (United States)

    Department of Housing and Urban Development — The AHS is the largest, regular national housing sample survey in the United States. The U.S. Census Bureau conducts the AHS to obtain up-to-date housing statistics...

  12. Estrogenic and AhR activities in dissolved phase and suspended solids from wastewater treatment plants.

    Science.gov (United States)

    Dagnino, Sonia; Gomez, Elena; Picot, Bernadette; Cavaillès, Vincent; Casellas, Claude; Balaguer, Patrick; Fenet, Hélène

    2010-05-15

    The distribution of estrogen receptor (ERalpha) and Aryl Hydrocarbon Receptor (AhR) activities between the dissolved phase and suspended solids were investigated during wastewater treatment. Three wastewater treatment plants with different treatment technologies (waste stabilization ponds (WSPs), trickling filters (TFs) and activated sludge supplemented with a biofilter system (ASB)) were sampled. Estrogenic and AhR activities were detected in both phases in influents and effluents. Estrogenic and AhR activities in wastewater influents ranged from 41.8 to 79 ng/L E(2) Eq. and from 37.9 to 115.5 ng/L TCDD Eq. in the dissolved phase and from 5.5 to 88.6 ng/g E(2) Eq. and from 15 to 700 ng/g TCDD Eq. in the suspended solids. For both activities, WSP showed greater or similar removal efficiency than ASB and both were much more efficient than TF which had the lowest removal efficiency. Moreover, our data indicate that the efficiency of removal of ER and AhR activities from the suspended solid phase was mainly due to removal of suspended solids. Indeed, ER and AhR activities were detected in the effluent suspended solid phase indicating that suspended solids, which are usually not considered in these types of studies, contribute to environmental contamination by endocrine disrupting compounds and should therefore be routinely assessed for a better estimation of the ER and AhR activities released in the environment. Copyright 2010 Elsevier B.V. All rights reserved.

  13. Testosterone-Dependent Interaction between Androgen Receptor and Aryl Hydrocarbon Receptor Induces Liver Receptor Homolog 1 Expression in Rat Granulosa Cells

    Science.gov (United States)

    Wu, Yanguang; Baumgarten, Sarah C.; Zhou, Ping

    2013-01-01

    Androgens play a major role in the regulation of normal ovarian function; however, they are also involved in the development of ovarian pathologies. These contrasting effects may involve a differential response of granulosa cells to the androgens testosterone (T) and dihydrotestosterone (DHT). To determine the molecular pathways that mediate the distinct effects of T and DHT, we studied the expression of the liver receptor homolog 1 (LRH-1) gene, which is differentially regulated by these steroids. We found that although both T and DHT stimulate androgen receptor (AR) binding to the LRH-1 promoter, DHT prevents T-mediated stimulation of LRH-1 expression. T stimulated the expression of aryl hydrocarbon receptor (AHR) and its interaction with the AR. T also promoted the recruitment of the AR/AHR complex to the LRH-1 promoter. These effects were not mimicked by DHT. We also observed that the activation of extracellular regulated kinases by T is required for AR and AHR interaction. In summary, T, but not DHT, stimulates AHR expression and the interaction between AHR and AR, leading to the stimulation of LRH-1 expression. These findings could explain the distinct response of granulosa cells to T and DHT and provide a molecular mechanism by which DHT negatively affects ovarian function. PMID:23689136

  14. Aryl hydrocarbon receptor nuclear translocator in human liver is regulated by miR-24

    Energy Technology Data Exchange (ETDEWEB)

    Oda, Yuki; Nakajima, Miki; Mohri, Takuya [Drug Metabolism and Toxicology, Division of Pharmaceutical Sciences, Graduate School of Medical Science, Kanazawa University, Kakuma-machi, Kanazawa 920-1192 (Japan); Takamiya, Masataka; Aoki, Yasuhiro [Department of Legal Medicine, Iwate Medical University School of Medicine, 19-1 Uchimaru, Morioka 020-8505 (Japan); Fukami, Tatsuki [Drug Metabolism and Toxicology, Division of Pharmaceutical Sciences, Graduate School of Medical Science, Kanazawa University, Kakuma-machi, Kanazawa 920-1192 (Japan); Yokoi, Tsuyoshi, E-mail: tyokoi@kenroku.kanazawa-u.ac.jp [Drug Metabolism and Toxicology, Division of Pharmaceutical Sciences, Graduate School of Medical Science, Kanazawa University, Kakuma-machi, Kanazawa 920-1192 (Japan)

    2012-05-01

    Aryl hydrocarbon receptor nuclear translocator (ARNT) forms a heterodimer with aryl hydrocarbon receptor or hypoxia inducible factor 1α to mediate biological responses to xenobiotic exposure and hypoxia. Although the regulation mechanism of the ARNT expression is largely unknown, earlier studies reported that the human ARNT protein level was decreased by hydrogen peroxide or reactive oxygen species. These stimuli increase the miR-24 level in various human cell lines. In silico analysis predicts that some microRNAs including miR-16 and miR-23b may bind to ARNT mRNA. This background prompted us to investigate whether human ARNT is regulated by microRNAs. Overexpression of miR-24 into HuH-7 and HepG2 cells significantly decreased the ARNT protein level, but not the ARNT mRNA level, indicating translational repression. However, overexpression of miR-16 or miR-23b caused no change in the ARNT expression. The miR-24-dependent down-regulation of ARNT decreased the expression of its downstream genes such as CYP1A1 and carbonic anhydrase IX. Luciferase assay was performed to determine the element on the ARNT mRNA to which miR-24 binds. Finally, it was demonstrated that the miR-24 levels in a panel of 26 human livers were inversely correlated with the protein levels or the translational efficiency of ARNT. Taken together, we found that miR-24 negatively regulates ARNT expression in human liver, affecting the expression of its downstream genes. miR-24 would be one of the factors underlying the mechanisms by which ARNT protein is decreased by reactive oxygen species. -- Highlights: ► Overexpression of miR-24 into human cell lines decreased the ARNT protein level. ► miR-24-dependent down-regulation of ARNT affected the expression of CYP1A1 and CA IX. ► Luciferase assay was performed to identify functional MREs for miR-24 in ARNT mRNA. ► The miR-24 levels inversely correlated with the ARNT protein levels in human liver.

  15. Insulin like growth factor 2 regulation of aryl hydrocarbon receptor in MCF-7 breast cancer cells

    International Nuclear Information System (INIS)

    Tomblin, Justin K.; Salisbury, Travis B.

    2014-01-01

    Highlights: •IGF-2 stimulates concurrent increases in AHR and CCND1 expression. •IGF-2 promotes the binding of AHR to the endogenous cyclin D1 promoter. •AHR knockdown inhibits IGF-2 stimulated increases in CCND1 mRNA and protein. •AHR knockdown inhibits IGF-2 stimulated increases in MCF-7 proliferation. -- Abstract: Insulin like growth factor (IGF)-1 and IGF-2 stimulate normal growth, development and breast cancer cell proliferation. Cyclin D1 (CCND1) promotes cell cycle by inhibiting retinoblastoma protein (RB1). The aryl hydrocarbon receptor (AHR) is a major xenobiotic receptor that also regulates cell cycle. The purpose of this study was to investigate whether IGF-2 promotes MCF-7 breast cancer proliferation by inducing AHR. Western blot and quantitative real time PCR (Q-PCR) analysis revealed that IGF-2 induced an approximately 2-fold increase (P < .001) in the expression of AHR and CCND1. Chromatin immunoprecipitation (ChIP), followed by Q-PCR indicated that IGF-2 promoted (P < .001) a 7-fold increase in AHR binding on the CCND1 promoter. AHR knockdown significantly (P < .001) inhibited IGF-2 stimulated increases in CCND1 mRNA and protein. AHR knockdown cells were less (P < .001) responsive to the proliferative effects of IGF-2 than control cells. Collectively, our findings have revealed a new regulatory mechanism by which IGF-2 induction of AHR promotes the expression of CCND1 and the proliferation of MCF-7 cells. This previously uncharacterized pathway could be important for the proliferation of IGF responsive cancer cells that also express AHR

  16. Aryl hydrocarbon receptor downregulates MYCN expression and promotes cell differentiation of neuroblastoma.

    Directory of Open Access Journals (Sweden)

    Pei-Yi Wu

    Full Text Available Neuroblastoma (NB is the most common malignant disease of infancy. MYCN amplification is a prognostic factor for NB and is a sign of highly malignant disease and poor patient prognosis. In this study, we aimed to investigate novel MYCN-related genes and assess how they affect NB cell behavior. The different gene expression found in 10 MYCN amplification NB tumors and 10 tumors with normal MYCN copy number were analyzed using tissue oligonucleotide microarrays. Ingenuity Pathway Analysis was subsequently performed to identify the potential genes involved in MYCN regulation pathways. Aryl hydrocarbon receptor (AHR, a receptor for dioxin-like compounds, was found to be inversely correlated with MYCN expression in NB tissues. This correlation was confirmed in a further 14 human NB samples. Moreover, AHR expression in NB tumors was found to correlate highly with histological grade of differentiation. In vitro studies revealed that AHR overexpression in NB cells induced spontaneous cell differentiation. In addition, it was found that ectopic expression of AHR suppressed MYCN promoter activity resulting in downregulation of MYCN expression. The suppression effect of AHR on the transcription of MYCN was compensated for by E2F1 overexpression, indicating that E2F1 is involved in the AHR-regulating MYCN pathway. Furthermore, AHR shRNA promotes the expression of E2F1 and MYCN in NB cells. These findings suggest that AHR is one of the upstream regulators of MYCN. Through the modulation of E2F1, AHR regulates MYCN gene expression, which may in turn affect NB differentiation.

  17. Insulin like growth factor 2 regulation of aryl hydrocarbon receptor in MCF-7 breast cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Tomblin, Justin K.; Salisbury, Travis B., E-mail: salisburyt@marshall.edu

    2014-01-17

    Highlights: •IGF-2 stimulates concurrent increases in AHR and CCND1 expression. •IGF-2 promotes the binding of AHR to the endogenous cyclin D1 promoter. •AHR knockdown inhibits IGF-2 stimulated increases in CCND1 mRNA and protein. •AHR knockdown inhibits IGF-2 stimulated increases in MCF-7 proliferation. -- Abstract: Insulin like growth factor (IGF)-1 and IGF-2 stimulate normal growth, development and breast cancer cell proliferation. Cyclin D1 (CCND1) promotes cell cycle by inhibiting retinoblastoma protein (RB1). The aryl hydrocarbon receptor (AHR) is a major xenobiotic receptor that also regulates cell cycle. The purpose of this study was to investigate whether IGF-2 promotes MCF-7 breast cancer proliferation by inducing AHR. Western blot and quantitative real time PCR (Q-PCR) analysis revealed that IGF-2 induced an approximately 2-fold increase (P < .001) in the expression of AHR and CCND1. Chromatin immunoprecipitation (ChIP), followed by Q-PCR indicated that IGF-2 promoted (P < .001) a 7-fold increase in AHR binding on the CCND1 promoter. AHR knockdown significantly (P < .001) inhibited IGF-2 stimulated increases in CCND1 mRNA and protein. AHR knockdown cells were less (P < .001) responsive to the proliferative effects of IGF-2 than control cells. Collectively, our findings have revealed a new regulatory mechanism by which IGF-2 induction of AHR promotes the expression of CCND1 and the proliferation of MCF-7 cells. This previously uncharacterized pathway could be important for the proliferation of IGF responsive cancer cells that also express AHR.

  18. Hepatic Aryl hydrocarbon Receptor Nuclear Translocator (ARNT regulates metabolism in mice.

    Directory of Open Access Journals (Sweden)

    Christopher H Scott

    Full Text Available Aryl hydrocarbon Receptor Nuclear Translocator (ARNT and its partners hypoxia-inducible factors (HIF-1α and HIF-2α are candidate factors for the well-known link between the liver, metabolic dysfunction and elevation in circulating lipids and glucose. Methods: Hepatocyte-specific ARNT-null (LARNT, HIF-1α-null (LHIF1α and HIF-2α-null (LHIF2α mice were created.LARNT mice had increased fasting glucose, impaired glucose tolerance, increased glucose production, raised post-prandial serum triglycerides (TG and markedly lower hepatic ATP versus littermate controls. There was increased expression of G6Pase, Chrebp, Fas and Scd-1 mRNAs in LARNT animals. Surprisingly, LHIF1α and LHIF2α mice exhibited no alterations in any metabolic parameter assessed.These results provide convincing evidence that reduced hepatic ARNT can contribute to inappropriate hepatic glucose production and post-prandial dyslipidaemia. Hepatic ARNT may be a novel therapeutic target for improving post-prandial hypertriglyceridemia and glucose homeostasis.

  19. Indoleamine 2,3-dioxygenase 1 (IDO1) inhibitors activate the aryl hydrocarbon receptor

    Energy Technology Data Exchange (ETDEWEB)

    Moyer, Benjamin J. [Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Dartmouth Hitchcock Medical Center, One Medical Center Drive, Lebanon, NH 03756 (United States); Rojas, Itzel Y. [Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, Dartmouth Hitchcock Medical Center, One Medical Center Drive, Lebanon, NH 03756 (United States); Murray, Iain A. [Center for Molecular Toxicology and Carcinogenesis, The Pennsylvania State University, University Park, PA 16802 (United States); Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA 16802 (United States); Lee, Seokwon; Hazlett, Haley F. [Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, Dartmouth Hitchcock Medical Center, One Medical Center Drive, Lebanon, NH 03756 (United States); Perdew, Gary H. [Center for Molecular Toxicology and Carcinogenesis, The Pennsylvania State University, University Park, PA 16802 (United States); Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA 16802 (United States); Tomlinson, Craig R., E-mail: Craig.R.Tomlinson@Dartmouth.edu [Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Dartmouth Hitchcock Medical Center, One Medical Center Drive, Lebanon, NH 03756 (United States); Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, Dartmouth Hitchcock Medical Center, One Medical Center Drive, Lebanon, NH 03756 (United States)

    2017-05-15

    Indoleamine 2,3-dioxygenase 1 (IDO1) plays a key role in the immune system by regulating tryptophan levels and T cell differentiation. Several tumor types overexpress IDO1 to avoid immune surveillance making IDO1 of interest as a target for therapeutic intervention. As a result, several IDO1 inhibitors are currently being tested in clinical trials for cancer treatment as well as several other diseases. Many of the IDO1 inhibitors in clinical trials naturally bear structural similarities to the IDO1 substrate tryptophan, as such, they fulfill many of the structural and functional criteria as potential AHR ligands. Using mouse and human cell-based luciferase gene reporter assays, qPCR confirmation experiments, and CYP1A1 enzyme activity assays, we report that some of the promising clinical IDO1 inhibitors also act as agonists for the aryl hydrocarbon receptor (AHR), best known for its roles in xenobiotic metabolism and as another key regulator of the immune response. The dual role as IDO antagonist and AHR agonist for many of these IDO target drugs should be considered for full interrogation of their biological mechanisms and clinical outcomes. - Highlights: • Indoleamine-2,3-dioxygenase 1 (IDO1) inhibitors are in cancer clinical trials. • Some IDO1 inhibitors also potently activate AHR signaling. • The dual role of the IDO1 inhibitors may explain some past paradoxical findings. • AHR induction studies must be included in assessing clinical suitability.

  20. Pluripotency factors and Polycomb Group proteins repress aryl hydrocarbon receptor expression in murine embryonic stem cells

    Directory of Open Access Journals (Sweden)

    Chia-I Ko

    2014-01-01

    Full Text Available The aryl hydrocarbon receptor (AHR is a transcription factor and environmental sensor that regulates expression of genes involved in drug-metabolism and cell cycle regulation. Chromatin immunoprecipitation analyses, Ahr ablation in mice and studies with orthologous genes in invertebrates suggest that AHR may also play a significant role in embryonic development. To address this hypothesis, we studied the regulation of Ahr expression in mouse embryonic stem cells and their differentiated progeny. In ES cells, interactions between OCT3/4, NANOG, SOX2 and Polycomb Group proteins at the Ahr promoter repress AHR expression, which can also be repressed by ectopic expression of reprogramming factors in hepatoma cells. In ES cells, unproductive RNA polymerase II binds at the Ahr transcription start site and drives the synthesis of short abortive transcripts. Activation of Ahr expression during differentiation follows from reversal of repressive marks in Ahr promoter chromatin, release of pluripotency factors and PcG proteins, binding of Sp factors, establishment of histone marks of open chromatin, and engagement of active RNAPII to drive full-length RNA transcript elongation. Our results suggest that reversible Ahr repression in ES cells holds the gene poised for expression and allows for a quick switch to activation during embryonic development.

  1. Interaction of fish aryl hydrocarbon receptor paralogs (AHR1 and AHR2) with the retinoblastoma protein

    Energy Technology Data Exchange (ETDEWEB)

    Merson, Rebeka R., E-mail: rmerson@ric.edu [Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA 02543 (United States); Biology Department, Rhode Island College, 500 Mt. Pleasant Ave., Providence, RI 02908 (United States); Karchner, Sibel I.; Hahn, Mark E. [Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA 02543 (United States)

    2009-08-13

    The aryl hydrocarbon receptor (AHR) mediates the toxic effects of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) and related compounds. In some mammalian cell lines, TCDD induces G1 cell cycle arrest, which depends on an interaction between the AHR and the retinoblastoma tumor suppressor (RB). Mammals possess one AHR, whereas fishes possess two or more AHR paralogs that differ in the domains important for AHR-RB interactions in mammals. To test the hypothesis that fish AHR paralogs differ in their ability to interact with RB, we cloned RB cDNA from Atlantic killifish, Fundulus heteroclitus, and studied the interactions of killifish RB protein with killifish AHR1 and AHR2. In coimmunoprecipitation experiments, in vitro-expressed killifish RB coprecipitated with both AHR1 and AHR2. Consistent with these results, both killifish AHR1 and AHR2 interacted with RB in mammalian two-hybrid assays. These results suggest that both fish AHR1 and AHR2 paralogs may have the potential to influence cell proliferation through interactions with RB.

  2. CARD9 impacts colitis by altering gut microbiota metabolism of tryptophan into aryl hydrocarbon receptor ligands.

    Science.gov (United States)

    Lamas, Bruno; Richard, Mathias L; Leducq, Valentin; Pham, Hang-Phuong; Michel, Marie-Laure; Da Costa, Gregory; Bridonneau, Chantal; Jegou, Sarah; Hoffmann, Thomas W; Natividad, Jane M; Brot, Loic; Taleb, Soraya; Couturier-Maillard, Aurélie; Nion-Larmurier, Isabelle; Merabtene, Fatiha; Seksik, Philippe; Bourrier, Anne; Cosnes, Jacques; Ryffel, Bernhard; Beaugerie, Laurent; Launay, Jean-Marie; Langella, Philippe; Xavier, Ramnik J; Sokol, Harry

    2016-06-01

    Complex interactions between the host and the gut microbiota govern intestinal homeostasis but remain poorly understood. Here we reveal a relationship between gut microbiota and caspase recruitment domain family member 9 (CARD9), a susceptibility gene for inflammatory bowel disease (IBD) that functions in the immune response against microorganisms. CARD9 promotes recovery from colitis by promoting interleukin (IL)-22 production, and Card9(-/-) mice are more susceptible to colitis. The microbiota is altered in Card9(-/-) mice, and transfer of the microbiota from Card9(-/-) to wild-type, germ-free recipients increases their susceptibility to colitis. The microbiota from Card9(-/-) mice fails to metabolize tryptophan into metabolites that act as aryl hydrocarbon receptor (AHR) ligands. Intestinal inflammation is attenuated after inoculation of mice with three Lactobacillus strains capable of metabolizing tryptophan or by treatment with an AHR agonist. Reduced production of AHR ligands is also observed in the microbiota from individuals with IBD, particularly in those with CARD9 risk alleles associated with IBD. Our findings reveal that host genes affect the composition and function of the gut microbiota, altering the production of microbial metabolites and intestinal inflammation.

  3. Indoleamine 2,3-dioxygenase 1 (IDO1) inhibitors activate the aryl hydrocarbon receptor

    International Nuclear Information System (INIS)

    Moyer, Benjamin J.; Rojas, Itzel Y.; Murray, Iain A.; Lee, Seokwon; Hazlett, Haley F.; Perdew, Gary H.; Tomlinson, Craig R.

    2017-01-01

    Indoleamine 2,3-dioxygenase 1 (IDO1) plays a key role in the immune system by regulating tryptophan levels and T cell differentiation. Several tumor types overexpress IDO1 to avoid immune surveillance making IDO1 of interest as a target for therapeutic intervention. As a result, several IDO1 inhibitors are currently being tested in clinical trials for cancer treatment as well as several other diseases. Many of the IDO1 inhibitors in clinical trials naturally bear structural similarities to the IDO1 substrate tryptophan, as such, they fulfill many of the structural and functional criteria as potential AHR ligands. Using mouse and human cell-based luciferase gene reporter assays, qPCR confirmation experiments, and CYP1A1 enzyme activity assays, we report that some of the promising clinical IDO1 inhibitors also act as agonists for the aryl hydrocarbon receptor (AHR), best known for its roles in xenobiotic metabolism and as another key regulator of the immune response. The dual role as IDO antagonist and AHR agonist for many of these IDO target drugs should be considered for full interrogation of their biological mechanisms and clinical outcomes. - Highlights: • Indoleamine-2,3-dioxygenase 1 (IDO1) inhibitors are in cancer clinical trials. • Some IDO1 inhibitors also potently activate AHR signaling. • The dual role of the IDO1 inhibitors may explain some past paradoxical findings. • AHR induction studies must be included in assessing clinical suitability.

  4. Low levels of the AhR in chronic obstructive pulmonary disease (COPD)-derived lung cells increases COX-2 protein by altering mRNA stability.

    Science.gov (United States)

    Zago, Michela; Sheridan, Jared A; Traboulsi, Hussein; Hecht, Emelia; Zhang, Yelu; Guerrina, Necola; Matthews, Jason; Nair, Parameswaran; Eidelman, David H; Hamid, Qutayba; Baglole, Carolyn J

    2017-01-01

    Heightened inflammation, including expression of COX-2, is associated with chronic obstructive pulmonary disease (COPD) pathogenesis. The aryl hydrocarbon receptor (AhR) is a ligand-activated transcription factor that is reduced in COPD-derived lung fibroblasts. The AhR also suppresses COX-2 in response to cigarette smoke, the main risk factor for COPD, by destabilizing the Cox-2 transcript by mechanisms that may involve the regulation of microRNA (miRNA). Whether reduced AhR expression is responsible for heightened COX-2 in COPD is not known. Here, we investigated the expression of COX-2 as well as the expression of miR-146a, a miRNA known to regulate COX-2 levels, in primary lung fibroblasts derived from non-smokers (Normal) and smokers (At Risk) with and without COPD. To confirm the involvement of the AhR, AhR knock-down via siRNA in Normal lung fibroblasts and MLE-12 cells was employed as were A549-AhRko cells. Basal expression of COX-2 protein was higher in COPD lung fibroblasts compared to Normal or Smoker fibroblasts but there was no difference in Cox-2 mRNA. Knockdown of AhR in lung structural cells increased COX-2 protein by stabilizing the Cox-2 transcript. There was less induction of miR-146a in COPD-derived lung fibroblasts but this was not due to the AhR. Instead, we found that RelB, an NF-κB protein, was required for transcriptional induction of both Cox-2 and miR-146a. Therefore, we conclude that the AhR controls COX-2 protein via mRNA stability by a mechanism independent of miR-146a. Low levels of the AhR may therefore contribute to the heightened inflammation common in COPD patients.

  5. Direct assessment of cumulative aryl hydrocarbon receptor agonist activity in sera from experimentally exposed mice and environmentally exposed humans

    DEFF Research Database (Denmark)

    Schlezinger, Jennifer J; Bernard, Pamela L; Haas, Amelia

    2010-01-01

    (PCB)-exposed Faroe Islanders using an AhR-driven reporter cell line. To validate relationships between serum AhR agonist levels and biological outcomes, AhR agonist activity in mouse sera correlated with toxic end points. AhR agonist activity in unmanipulated ("neat") human sera was compared......, was associated with the frequency of recent pilot whale dinners, but did not correlate with levels of PCBs quantified by GC/MS. Surprisingly, significant "baseline" AhR activity was found in commercial human sera. CONCLUSIONS: An AhR reporter assay revealed cumulative levels of AhR activation potential in neat...

  6. Toxicological characterisation of two novel selective aryl hydrocarbon receptor modulators in Sprague-Dawley rats

    Energy Technology Data Exchange (ETDEWEB)

    Mahiout, Selma, E-mail: selma.mahiout@helsinki.fi [Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki (Finland); Lindén, Jere [Department of Basic Veterinary Sciences, Faculty of Veterinary Medicine, University of Helsinki (Finland); Esteban, Javier; Sánchez-Pérez, Ismael [Instituto de Bioingeniería, Universidad Miguel Hernández de Elche, Elche, Alicante (Spain); Sankari, Satu [Central Laboratory of the Department of Equine and Small Animal Medicine, Faculty of Veterinary Medicine, University of Helsinki (Finland); Pettersson, Lars [Immunahr AB, Lund (Sweden); Håkansson, Helen [Institute of Environmental Medicine (IMM), Karolinska Institutet, Stockholm (Sweden); Pohjanvirta, Raimo [Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki (Finland)

    2017-07-01

    The aryl hydrocarbon receptor (AHR) mediates the toxicity of dioxins, but also plays important physiological roles. Selective AHR modulators, which elicit some effects imparted by this receptor without causing the marked toxicity of dioxins, are presently under intense scrutiny. Two novel such compounds are IMA-08401 (N-acetyl-N-phenyl-4-acetoxy-5-chloro-1, 2-dihydro-1-methyl-2-oxo-quinoline-3-carboxamide) and IMA-07101 (N-acetyl-N-(4-trifluoromethylphenyl)-4-acetoxy-1, 2-dihydro-5-methoxy-1-methyl-2-oxo-quinoline-3-carboxamide). They represent, as diacetyl prodrugs, AHR-active metabolites of the drug compounds laquinimod and tasquinimod, respectively, which are intended for the treatment of autoimmune diseases and cancer. Here, we toxicologically assessed the novel compounds in Sprague-Dawley rats, after a single dose (8.75–92.5 mg/kg) and 5-day repeated dosing at the highest doses achievable (IMA-08401: 100 mg/kg/day; and IMA-07101: 75 mg/kg/day). There were no overt clinical signs of toxicity, but body weight gain was marginally retarded, and the treatments induced minimal hepatic extramedullary haematopoiesis. Further, both the absolute and relative weights of the thymus were significantly decreased. Cyp1a1 gene expression was substantially increased in all tissues examined. The hepatic induction profile of other AHR battery genes was distinct from that caused by 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). The only marked alterations in serum clinical chemistry variables were a reduction in triglycerides and an increase in 3-hydroxybutyrate. Liver and kidney retinol and retinyl palmitate concentrations were affected largely in the same manner as reported for TCDD. In vitro, the novel compounds activated CYP1A1 effectively in H4IIE cells. Altogether, these novel compounds appear to act as potent activators of the AHR, but lack some major characteristic toxicities of dioxins. They therefore represent promising new selective AHR modulators. - Highlights: • IMA

  7. Interactions of the aryl hydrocarbon receptor with inflammatory mediators: Beyond CYP1A regulation

    Czech Academy of Sciences Publication Activity Database

    Vondráček, Jan; Umannová, Lenka; Machala, M.

    2011-01-01

    Roč. 12, č. 2 (2011), s. 89-103 ISSN 1389-2002 R&D Projects: GA ČR(CZ) GAP503/11/1227 Institutional research plan: CEZ:AV0Z50040507; CEZ:AV0Z50040702 Keywords : AhR * proinflammatory cytokines * antiinflammatory drugs Subject RIV: BO - Biophysics Impact factor: 5.113, year: 2011

  8. Identification of Molecular Markers Associated with Alteration of Receptor-Binding Specificity in a Novel Genotype of Highly Pathogenic Avian Influenza A(H5N1) Viruses Detected in Cambodia in 2013

    Science.gov (United States)

    Rith, Sareth; Davis, C. Todd; Duong, Veasna; Sar, Borann; Horm, Srey Viseth; Chin, Savuth; Ly, Sovann; Laurent, Denis; Richner, Beat; Oboho, Ikwo; Jang, Yunho; Davis, William; Thor, Sharmi; Balish, Amanda; Iuliano, A. Danielle; Sorn, San; Holl, Davun; Sok, Touch; Seng, Heng; Tarantola, Arnaud; Tsuyuoka, Reiko; Parry, Amy; Chea, Nora; Allal, Lotfi; Kitsutani, Paul; Warren, Dora; Prouty, Michael; Horwood, Paul; Widdowson, Marc-Alain; Lindstrom, Stephen; Villanueva, Julie; Donis, Ruben; Cox, Nancy

    2014-01-01

    Human infections with influenza A(H5N1) virus in Cambodia increased sharply during 2013. Molecular characterization of viruses detected in clinical specimens from human cases revealed the presence of mutations associated with the alteration of receptor-binding specificity (K189R, Q222L) and respiratory droplet transmission in ferrets (N220K with Q222L). Discovery of quasispecies at position 222 (Q/L), in addition to the absence of the mutations in poultry/environmental samples, suggested that the mutations occurred during human infection and did not transmit further. PMID:25210193

  9. Novel cell-based assay reveals associations of circulating serum AhR-ligands with metabolic syndrome and mitochondrial dysfunction.

    Science.gov (United States)

    Park, Wook-Ha; Jun, Dae Won; Kim, Jin Taek; Jeong, Jae Hoon; Park, Hyokeun; Chang, Yoon-Seok; Park, Kyong Soo; Lee, Hong Kyu; Pak, Youngmi Kim

    2013-01-01

    Serum concentrations of environmental pollutants have been positively correlated with diabetes and metabolic syndrome in epidemiologic studies. In turn, abnormal mitochondrial function has been associated with the diseases. The relationships between these variables, however, have not been studied. We developed novel cell-based aryl hydrocarbon receptor (AhR) agonist bioassay system without solvent extraction process and analyzed whether low-dose circulating AhR ligands in human serum are associated with parameters of metabolic syndrome and mitochondrial function. Serum AhR ligand activities were measured as serum 2,3,7,8-tetrachlorodibenzo-p-dioxin equivalent (sTCDDeq) in pM using 10 μL human sera from 97 Korean participants (47 with glucose intolerance and 50 matched controls, average age of 46.6 ± 9.9 years, 53 male and 45 female). sTCDDeq were higher in participants with glucose intolerance than normal controls and were positively associated (P fasting glucose, but not with HDL-cholesterol. Body mass index was in a positive linear relationship with serum AhR ligands in healthy participants. When myoblast cells were incubated with human sera, ATP generating power of mitochondria became impaired in an AhR ligand concentration-dependent manner. Our results support that circulating AhR ligands may directly reduce mitochondrial function in tissues, leading to weight gain, glucose intolerance, and metabolic syndrome. Our rapid cell-based assay using minute volume of human serum may provide one of the best monitoring systems for circulating AhR ligands, good clinical biomarkers for the progress of disease and therapeutic efficacy. Copyright © 2013 International Union of Biochemistry and Molecular Biology, Inc.

  10. Role of aryl hydrocarbon receptor nuclear translocator in KATP channel-mediated insulin secretion in INS-1 insulinoma cells

    International Nuclear Information System (INIS)

    Kim, Ji-Seon; Zheng Haifeng; Kim, Sung Joon; Park, Jong-Wan; Park, Kyong Soo; Ho, Won-Kyung; Chun, Yang-Sook

    2009-01-01

    Aryl hydrocarbon receptor nuclear translocator (ARNT) has been known to participate in cellular responses to xenobiotic and hypoxic stresses, as a common partner of aryl hydrocarbon receptor and hypoxia inducible factor-1/2α. Recently, it was reported that ARNT is essential for adequate insulin secretion in response to glucose input and that its expression is downregulated in the pancreatic islets of diabetic patients. In the present study, the authors addressed the mechanism by which ARNT regulates insulin secretion in the INS-1 insulinoma cell line. In ARNT knock-down cells, basal insulin release was elevated, but insulin secretion was not further stimulated by a high-glucose challenge. Electrophysiological analyses revealed that glucose-dependent membrane depolarization was impaired in these cells. Furthermore, K ATP channel activity and expression were reduced. Of two K ATP channel subunits, Kir6.2 was found to be positively regulated by ARNT at the mRNA and protein levels. Based on these results, the authors suggest that ARNT expresses K ATP channel and by so doing regulates glucose-dependent insulin secretion.

  11. The inhibition effect of 2,3,7,8-tetrachlorinated dibenzo-p-dioxin-induced aryl hydrocarbon receptor activation in human hepatoma cells with the treatment of cadmium chloride

    International Nuclear Information System (INIS)

    Chao, How-Ran; Tsou, Tsui-Chun; Chen, Hung-Ta; Chang, Eddy Essen; Tsai, Feng-Yuan; Lin, Ding-Yan; Chen, Fu-An; Wang, Ya-Fen

    2009-01-01

    Polychlorinated dibenzo-p-dioxins (PCDDs) and dibenzofurans (PCDFs), considered as endocrine disruptors, tend to accumulate in fatty tissues. Dioxin-responsive element chemical activated luciferase gene expression assay (DRE-luciferase assay) has been recognized as a semi-quantitative method for screening dioxins for its fast and low-cost as compared with HRGC/HRMS. However, some problems with the bioassay, including specificity, detection variation resulted from different cleanup strategies, and uncertainty of false-negative or false-positive results, remain to be overcome. Cadmium is a prevalent environmental contaminant around the world. This study was aimed to examine the effects of cadmium on the 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD)-induced activation of aryl hydrocarbon receptor (AhR)-mediated gene expression in human hepatoma cells (Huh7-DRE-Luc cells and Huh7 cells). Ethoxyresorufin-O-deethylase (EROD) and DRE-luciferase assay were employed to determine the enzyme activity of cytochrome P450 1A1 (CYP1A1) and activation of AhR, respectively. The results showed that Cd 2+ levels significantly inhibited the induction of TCDD-induced CYP1A1 and DRE luciferase activation in hepatoma cells. The 50% inhibited concentrations (IC 50 ) of CdCl 2 were 0.414 μM (95% confidence interval (C.I.): 0.230-0.602 μM) in Huh7-DRE-Luc cells and 23.2 μM (95% C.I.: 21.7-25.4 μM) in Huh7 cells. Accordingly, prevention of interference with non-dioxin-like compounds in a DRE-luciferase assay is of great importance in an extensive cleanup procedure.

  12. Differential susceptibilities of Holtzman and Sprague-Dawley rats to fetal death and placental dysfunction induced by 2,3,7,8-teterachlorodibenzo-p-dioxin (TCDD) despite the identical primary structure of the aryl hydrocarbon receptor

    International Nuclear Information System (INIS)

    Kawakami, Takashige; Ishimura, Ryuta; Nohara, Keiko; Takeda, Ken; Tohyama, Chiharu; Ohsako, Seiichiroh

    2006-01-01

    placental function, than SD-IGS rats. Direct sequencing analysis of the aryl hydrocarbon receptor (AhR) gene revealed no difference in the primary structure of the receptor between the HLZ and SD-IGS rats. In addition, no significant differences were observed between the two strains of rats in the levels of induction of placental cytochrome P450 1A1, 1B1, AhR, and AhRR mRNAs following administration of serially increasing doses of TCDD (0.0125, 0.05, 0.2, 0.8, and 1.6 μg TCDD/kg), indicating that the activity of TCDD-AhR complex in the placenta is similar between the HLZ and SD-IGS rats. Taken together, the above-described findings indicate that the higher susceptibility of HLZ rats to TCDD-induced placental dysfunction and fetal death may be modulated by other factor(s) in the genetic background of HLZ rats than the AhR

  13. Increased arylhydrocarbon receptor expression offers a potential therapeutic target for pancreatic cancer.

    Science.gov (United States)

    Koliopanos, Alexander; Kleeff, Jörg; Xiao, Yi; Safe, Stephen; Zimmermann, Arthur; Büchler, Markus W; Friess, Helmut

    2002-09-05

    The arylhydrocarbon receptor (AhR) was initially identified as a member of the adaptive metabolic and toxic response pathway to polycyclic aromatic hydrocarbons and to halogenated dibenzo-p-dioxins and dibenzofurans. In the present study, we sought to determine the functional significance of the AhR pathway in pancreatic carcinogenesis. AhR expression was analysed by Northern blotting. The exact site of AhR expression was analysed by in situ hybridization and immunohistochemistry. The effects of TCDD and four selective AhR agonists on pancreatic cancer cell lines were investigated by growth assays, apoptosis assays, and induction of the cyclin-dependent kinase inhibitor p21. There was strong AhR mRNA expression in 14 out of 15 pancreatic cancer samples, weak expression in chronic pancreatitis tissues, and faint expression in all normal pancreata. In pancreatic cancer tissues, AhR mRNA and protein expression were localized in the cytoplasm of pancreatic cancer cells. TCDD and the four AhR agonists inhibited pancreatic cancer cell growth in a dose-dependent manner, and decreased anchorage-independent cell growth. DAPI staining did not reveal nuclear fragmentation and CYP1A1 and was not induced by TCDD and AhR agonists. In contrast, TCDD and AhR agonists induced the expression of the cyclin-dependent kinase inhibitor p21. In conclusion, the relatively non-toxic AhR agonists caused growth inhibition in pancreatic cancer cells with high AhR expression levels via cell cycle arrest. In addition, almost all human pancreatic cancer tissues expressed this receptor at high levels, suggesting that these or related compounds may play a role in the therapy of pancreatic cancer in the future.

  14. Association between polymorphisms in the aryl hydrocarbon receptor repressor gene and disseminated testicular germ cell cancer

    DEFF Research Database (Denmark)

    Brokken, Leon J S; Lundberg-Giwercman, Yvonne; Rajpert-De Meyts, Ewa

    2013-01-01

    incidence of TGCC in some countries. Additionally, there is a strong genetic component that affects susceptibility. However, genetic polymorphisms that have been identified so far only partially explain the risk of TGCC. Many of the persistent environmental pollutants act through the aryl hydrocarbon...

  15. Cigarette smoke-induced cell death of a spermatocyte cell line can be prevented by inactivating the Aryl hydrocarbon receptor

    Science.gov (United States)

    Esakky, P; Hansen, D A; Drury, A M; Cusumano, A; Moley, K H

    2015-01-01

    Cigarette smoke exposure causes germ cell death during spermatogenesis. Our earlier studies demonstrated that cigarette smoke condensate (CSC) causes spermatocyte cell death in vivo and growth arrest of the mouse spermatocyte cell line (GC-2spd(ts)) in vitro via the aryl hydrocarbon receptor (AHR). We hypothesize here that inactivation of AHR could prevent the CSC-induced cell death in spermatocytes. We demonstrate that CSC exposure generates oxidative stress, which differentially regulates mitochondrial apoptosis in GC-2spd(ts) and wild type (WT) and AHR knockout (AHR-KO) mouse embryonic fibroblasts (MEFs). SiRNA-mediated silencing of Ahr augments the extent of CSC-mediated cellular damage while complementing the AHR-knockout condition. Pharmacological inhibition using the AHR-antagonist (CH223191) modulates the CSC-altered expression of apoptotic proteins and significantly abrogates DNA fragmentation though the cleavage of PARP appears AHR independent. Pretreatment with CH223191 at concentrations above 50 μM significantly prevents the CSC-induced activation of caspase-3/7 and externalization of phosphatidylserine in the plasma membrane. However, MAPK inhibitors alone or together with CH223191 could not prevent the membrane damage upon CSC addition and the caspase-3/7 activation and membrane damage in AHR-deficient MEF indicates the interplay of multiple cell signaling and cytoprotective ability of AHR. Thus the data obtained on one hand signifies the protective role of AHR in maintaining normal cellular homeostasis and the other, could be a potential prophylactic therapeutic target to promote cell survival and growth under cigarette smoke exposed environment by receptor antagonism via CH223191-like mechanism. Antagonist-mediated inactivation of the aryl hydrocarbon receptor blocks downstream events leading to cigarette smoke-induced cell death of a spermatocyte cell line. PMID:27551479

  16. Cardiac toxicity of 5-ring polycyclic aromatic hydrocarbons is differentially dependent on the aryl hydrocarbon receptor 2 isoform during zebrafish development

    International Nuclear Information System (INIS)

    Incardona, John P.; Linbo, Tiffany L.; Scholz, Nathaniel L.

    2011-01-01

    Petroleum-derived compounds, including polycyclic aromatic hydrocarbons (PAHs), commonly occur as complex mixtures in the environment. Recent studies using the zebrafish experimental model have shown that PAHs are toxic to the embryonic cardiovascular system, and that the severity and nature of this developmental cardiotoxicity varies by individual PAH. In the present study we characterize the toxicity of the relatively higher molecular weight 5-ring PAHs benzo[a]pyrene (BaP), benzo[e]pyrene (BeP), and benzo[k]fluoranthene (BkF). While all three compounds target the cardiovascular system, the underlying role of the ligand-activated aryl hydrocarbon receptor (AHR2) and the tissue-specific induction of the cytochrome p450 metabolic pathway (CYP1A) were distinct for each. BaP exposure (40 μM) produced AHR2-dependent bradycardia, pericardial edema, and myocardial CYP1A immunofluorescence. By contrast, BkF exposure (4–40 μM) caused more severe pericardial edema, looping defects, and erythrocyte regurgitation through the atrioventricular valve that were AHR2-independent (i.e., absent myocardial or endocardial CYP1A induction). Lastly, exposure to BeP (40 μM) yielded a low level of CYP1A+ signal in the vascular endothelium of the head and trunk, without evident toxic effects on cardiac function or morphogenesis. Combined with earlier work on 3- and 4-ring PAHs, our findings provide a more complete picture of how individual PAHs may drive the cardiotoxicity of mixtures in which they predominate. This will improve toxic injury assessments and risk assessments for wild fish populations that spawn in habitats altered by overlapping petroleum-related human impacts such as oil spills, urban stormwater runoff, or sediments contaminated by legacy industrial activities. -- Highlights: ► PAH compounds with 5 rings in different arrangements caused differential tissue-specific patterns of CYP1A induction in zebrafish embryos. ► These compounds produced differential cardiac

  17. Source contribution analysis of surface particulate polycyclic aromatic hydrocarbon concentrations in northeastern Asia by source–receptor relationships

    International Nuclear Information System (INIS)

    Inomata, Yayoi; Kajino, Mizuo; Sato, Keiichi; Ohara, Toshimasa; Kurokawa, Jun-ichi; Ueda, Hiromasa; Tang, Ning; Hayakawa, Kazuichi; Ohizumi, Tsuyoshi; Akimoto, Hajime

    2013-01-01

    We analyzed the source–receptor relationships for particulate polycyclic aromatic hydrocarbon (PAH) concentrations in northeastern Asia using an aerosol chemical transport model. The model successfully simulated the observed concentrations. In Beijing (China) benzo[a]pyren (BaP) concentrations are due to emissions from its own domain. In Noto, Oki and Tsushima (Japan), transboundary transport from northern China (>40°N, 40–60%) and central China (30–40°N, 10–40%) largely influences BaP concentrations from winter to spring, whereas the relative contribution from central China is dominant (90%) in Hedo. In the summer, the contribution from Japanese domestic sources increases (40–80%) at the 4 sites. Contributions from Japan and Russia are additional source of BaP over the northwestern Pacific Ocean in summer. The contribution rates for the concentrations from each domain are different among PAH species depending on their particulate phase oxidation rates. Reaction with O 3 on particulate surfaces may be an important component of the PAH oxidation processes. -- Highlights: •Source–receptor analysis was conducted for investigating PAHs in northeast Asia. •In winter, transboundary transport from China is large contribution in leeward. •Relative contribution from Korea, Japan, and eastern Russia is increased in summer. •This seasonal variation is strongly controlled by the meteorological conditions. •The transport distance is different among PAH species. -- Transboundary transport of PAHs in northeast Asia was investigated by source–receptor analysis

  18. Constitutive Expression of Aryl Hydrocarbon Receptor in Keratinocytes Causes Inflammatory Skin Lesions

    OpenAIRE

    Tauchi, Masafumi; Hida, Azumi; Negishi, Takaaki; Katsuoka, Fumiki; Noda, Shuhei; Mimura, Junsei; Hosoya, Tomonori; Yanaka, Akinori; Aburatani, Hiroyuki; Fujii-Kuriyama, Yoshiaki; Motohashi, Hozumi; Yamamoto, Masayuki

    2005-01-01

    Occupational and environmental exposure to polycyclic aromatic hydrocarbons (PAHs) has been suggested to provoke inflammatory and/or allergic disorders, including asthma, rhinitis, and dermatitis. The molecular mechanisms of this PAH-mediated inflammation remain to be clarified. Previous studies implied the involvement of PAHs as irritants and allergens, with the reactive oxygen species generated from the oxygenated PAHs believed to be an exacerbating factor. It is also possible that PAHs con...

  19. Receptor modeling of C2─C7 hydrocarbon sources at an urban background site in Zurich, Switzerland: changes between 1993─1994 and 2005─2006

    Directory of Open Access Journals (Sweden)

    S. Reimann

    2008-05-01

    Full Text Available Hourly measurements of 13 volatile hydrocarbons (C2–C7 were performed at an urban background site in Zurich (Switzerland in the years 1993–1994 and again in 2005–2006. For the separation of the volatile organic compounds by gas-chromatography (GC, an identical chromatographic column was used in both campaigns. Changes in hydrocarbon profiles and source strengths were recovered by positive matrix factorization (PMF. Eight and six factors could be related to hydrocarbon sources in 1993–1994 and in 2005–2006, respectively. The modeled source profiles were verified by hydrocarbon profiles reported in the literature. The source strengths were validated by independent measurements, such as inorganic trace gases (NOx, CO, SO2, methane (CH4, oxidized hydrocarbons (OVOCs and meteorological data (temperature, wind speed etc.. Our analysis suggests that the contribution of most hydrocarbon sources (i.e. road traffic, solvents use and wood burning decreased by a factor of about two to three between the early 1990s and 2005–2006. On the other hand, hydrocarbon losses from natural gas leakage remained at relatively constant levels (−20%. The estimated emission trends are in line with the results from different receptor-based approaches reported for other European cities. Their differences to national emission inventories are discussed.

  20. TCDD-induced transcriptional profiles in different mouse strains that have an identical AhR genotype

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Qing; Suzuki, Junko S.; Tohyama, Chiharu; Ohsako, Seiichiroh [Environmental Health Sciences Division, National Institute for Environmental Studies, Onogawa, Tsukuba (Japan); Takei, Teiji [Environmental Health and Safety Division, Ministry of the Environment, Kasumigaseki, Tokyo (Japan); Lin, Tinmin; Peterson, R.E. [Wisconsin Univ., Wisconsin, MA (United States). School of Pharmacy and Molecular and Environmental Toxicology Center

    2004-09-15

    2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) is an environmental contaminant that is known to cause hepatotoxicity, teratogenicity and carcinogenicity. A characteristic feature in the toxicity of TCDD is exceptionally large differences in susceptibility among animal species or even strains belonging to the same species. These strain differences in susceptibility to TCDD have now been elucidated to be due to the difference in ligand binding affinity or transcriptional activity of the aryl hydrocarbon receptor (AhR). Actually the C57BL/6 type AhR (AhR{sup b}) showed 6-fold higher ligand binding affinity than the DBA/2 type AhR (AhR{sup d}). The H/W rat AhR has a C-terminal truncation of the transactivating domain compared to the L-E rat AhR. On the other hand, there is considerable species variability in response sensitivity to TCDD that cannot be ascribed simply to polymorphisms of the AhR gene. A non-AhR gene susceptibility loci for hepatic porphyria has been observed in mice treated with iron compounds prior to TCDD injection by using a quantitative trait locus analysis of an F2 intercross between susceptible C57BL/6 and resistant DBA/2 stains. In the rat, a gene B with Han/Wistar type AhR is likely to be involved in resistance to TCDD lethality. These observations suggest that other modulating genes, so-called ''modifier genes'', have profound effects on the AhR-mediated gene expression phenotype. Based on the nucleotide sequence of the AhR coding region, the BALB/c, CBA/J, and C3H/He mouse strains are clustered together on a single branch. In the present study, we try to confirm the existence of modifiers by using microarray analysis to examine hepatic gene expression after TCDD exposure in BALB/c, CBA/J, and C3H/He mice. To recognize the existence of a modifier besides the AhR, it is a prerequisite experimental condition that the analyzed strains have an identical AhR genotype. Therefore, we selected BALB/c, CBA/J, and C3H/He mice as the model

  1. TGF-beta1 signaling plays a dominant role in the crosstalk between TGF-beta1 and the aryl hydrocarbon receptor ligand in prostate epithelial cells

    Czech Academy of Sciences Publication Activity Database

    Staršíchová, Andrea; Hrubá, E.; Slabáková, Eva; Pernicová, Zuzana; Procházková, Jiřina; Pěnčíková, K.; Šeda, Václav; Kabátková, Markéta; Vondráček, Jan; Kozubík, Alois; Machala, M.; Souček, Karel

    2012-01-01

    Roč. 24, č. 8 (2012), s. 1665-1676 ISSN 0898-6568 R&D Projects: GA ČR(CZ) GA310/07/0961 Institutional research plan: CEZ:AV0Z50040702 Keywords : transforming growth factor-beta * aryl hydrocarbon receptor ligand * prostate epithelial cells Subject RIV: BO - Biophysics Impact factor: 4.304, year: 2012

  2. Identification of cinnabarinic acid as a novel endogenous aryl hydrocarbon receptor ligand that drives IL-22 production.

    Directory of Open Access Journals (Sweden)

    Margaret M Lowe

    Full Text Available The aryl hydrocarbon receptor (AHR binds to environmental toxicants including synthetic halogenated aromatic hydrocarbons and is involved in a diverse array of biological processes. Recently, the AHR was shown to control host immunity by affecting the balance between inflammatory T cells that produce IL-17 (Th17 and IL-22 versus regulatory T cells (Treg involved in tolerance. While environmental AHR ligands can mediate this effect, endogenous ligands are likely to be more relevant in host immune responses. We investigated downstream metabolites of tryptophan as potential AHR ligands because (1 tryptophan metabolites have been implicated in regulating the balance between Th17 and Treg cells and (2 many of the AHR ligands identified thus far are derivatives of tryptophan. We characterized the ability of tryptophan metabolites to bind and activate the AHR and to increase IL-22 production in human T cells. We report that the tryptophan metabolite, cinnabarinic acid (CA, is an AHR ligand that stimulates the differentiation of human and mouse T cells producing IL-22. We compare the IL-22-stimulating activity of CA to that of other tryptophan metabolites and define stimulation conditions that lead to CA production from immune cells. Our findings link tryptophan metabolism to AHR activation and define a novel endogenous AHR agonist with potentially broad biological functions.

  3. Identification of cinnabarinic acid as a novel endogenous aryl hydrocarbon receptor ligand that drives IL-22 production.

    Science.gov (United States)

    Lowe, Margaret M; Mold, Jeff E; Kanwar, Bittoo; Huang, Yong; Louie, Alexander; Pollastri, Michael P; Wang, Cuihua; Patel, Gautam; Franks, Diana G; Schlezinger, Jennifer; Sherr, David H; Silverstone, Allen E; Hahn, Mark E; McCune, Joseph M

    2014-01-01

    The aryl hydrocarbon receptor (AHR) binds to environmental toxicants including synthetic halogenated aromatic hydrocarbons and is involved in a diverse array of biological processes. Recently, the AHR was shown to control host immunity by affecting the balance between inflammatory T cells that produce IL-17 (Th17) and IL-22 versus regulatory T cells (Treg) involved in tolerance. While environmental AHR ligands can mediate this effect, endogenous ligands are likely to be more relevant in host immune responses. We investigated downstream metabolites of tryptophan as potential AHR ligands because (1) tryptophan metabolites have been implicated in regulating the balance between Th17 and Treg cells and (2) many of the AHR ligands identified thus far are derivatives of tryptophan. We characterized the ability of tryptophan metabolites to bind and activate the AHR and to increase IL-22 production in human T cells. We report that the tryptophan metabolite, cinnabarinic acid (CA), is an AHR ligand that stimulates the differentiation of human and mouse T cells producing IL-22. We compare the IL-22-stimulating activity of CA to that of other tryptophan metabolites and define stimulation conditions that lead to CA production from immune cells. Our findings link tryptophan metabolism to AHR activation and define a novel endogenous AHR agonist with potentially broad biological functions.

  4. Disruption of contact inhibition in rat liver epithelial cells by various types of AhR ligands

    Energy Technology Data Exchange (ETDEWEB)

    Vondracek, J.; Chramostova, K.; Kozubik, A. [Institute of Biophysics, Brno (Czech Republic); Krcmar, P.; Machala, M. [Veterinary Research Institute, Brno (Czech Republic)

    2004-09-15

    The maintenance of a balance between cell gain and cell loss is essential for proper liver function. The exact role of aryl hydrocarbon receptor (AhR) in regulating cell proliferation and apoptosis of liver cells remains unclear, since ligand-dependent activation of AhR has been shown to induce cell cycle arrest, proliferation, differentiation or apoptosis, depending on the cellular model used. AhR can directly interact with retinoblastoma protein in hepatic cells, forming protein complexes that can efficiently block cell cycle progression by inducing G1 arrest, or to induce the expression of inhibitors of cyclin-dependent kinases, such as p271. On the other hand, it has been suggested that AhR could play a stimulatory role in cell proliferation, either directly or by mediating a release from contact inhibition. It is now generally accepted that progenitor cells exist in the liver, are activated in various liver diseases and can form a potential target cell population for both tumor initiating and tumor promoting chemicals4. 2,3,7,8-tetrachlorodibenzo-pdioxin (TCDD) has been found to release rat liver epithelial cells from contact inhibition by upregulating cyclin A expression and cyclin A/cdk2 activity. Our previous studies have shown that a number of AhR ligands5,6 can stimulate proliferation of confluent of rat liver epithelial ''stem-like'' WB-F344 cells. Such mechanism could play a role in liver tumor promotion. In the present study, we used flavonoid compounds that have been reported to act either as pure agonists, such as beta-naphthoflavone (BNF), or as partial/complete antagonists of AhR - alpha-naphthoflavone (ANF) and 3'-methoxy-4'-nitroflavone (3'M4'NF), in order to investigate effects of AhR agonists/antagonists on confluent rat liver epithelial cells. The present study aimed to investigate the effects of model flavonoids on the release of rat liver epithelial cells from contact inhibition, and on inducibility of

  5. BDE-99, but not BDE-47, is a transient aryl hydrocarbon receptor agonist in zebrafish liver cells

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Jie; Zhu, Jinyong; Chan, King Ming, E-mail: kingchan@cuhk.edu.hk

    2016-08-15

    Polybrominated diphenyl ethers (PBDEs) are endocrine-disrupting chemicals that affect the environment and the health of humans and wildlife. In this study, the zebrafish liver (ZFL) cell line was used in vitro to investigate two major PBDE contaminants: 2, 2′, 4, 4′, 5-pentabromodiphenyl ether (BDE-99) and 2, 2′, 4, 4′-tetrabromodiphenyl ether (BDE-47). BDE-99 was found to significantly induce cytochrome P450 (CYP1A), uridine diphosphate glucuronosyl transferase 1 family a, b (ugt1ab), 7-ethoxyresorufin-O-deethylase activity and an aryl hydrocarbon receptor (Ahr) dependent xenobiotic response element luciferase reporter system, confirming the Ahr-mediated activation of CYP1A by BDE-99. The time-course effect indicated that the role of BDE-99 in Ahr-mediated signaling is likely to be transient and highly dependent on the ability of BDE-99 to induce CYP1A and ugt1ab, and presumably its metabolism. BDE-99 also exhibited a significant dose-response effect on a developed zebrafish pregnane X receptor luciferase reporter gene system. However, the other abundant contaminant under study, BDE-47, did not exhibit the above effects. Together, these results indicated that the molecular mechanism of PBDEs induced in ZFL cells is a chemically specific process that differs between members of the PBDE family. CYP1A induction derived by BDE-99 warrants further risk assessment as the humans, wildlife and environment are exposed to a complex mixture including dioxin-like compounds and carcinogenic compounds. - Highlights: • BDE-99 is an aryl hydrocarbon receptor (Ahr) agonist in zebrafish liver cell-line ZFL. • BDE-99 induced EROD activity, CYP1A and ugt1ab gene expression, in ZFL. • BDE-99 induced the pregnane X receptor (Pxr) luciferase reporter gene system in ZFL. • BDE-47 did not show any effects in ZFL to induce CYP1A, ugt1ab, and EROD. • BDE-47 and -99 showed no induction of Rxr and Pxr pathways in ZFL cells.

  6. LAA~Ah

    Indian Academy of Sciences (India)

    411<0 = 1000 dalton, 1 dalton = 1.66024 x 10-24 g. ______ LAA~Ah ... energy use. These changes led to a reduction in food intake and the percentage of body fat, along with an ... of the brain called the hypothalamus may be important in ...

  7. Aa Ah Nak

    Science.gov (United States)

    Tha, Na Gya; Wus, Thay

    2017-01-01

    In this article, Aa Ah Nak, the authors' methodology presents not only various reflections but also diverse contradictions about the Aa Nii language as well as language revitalization. This article explores language foundation and how the Aa Nii language revitalization is inextricably linked to the genocide and resulting historic trauma pervasive…

  8. Polycyclic aromatic hydrocarbons modulate cell proliferation in rat hepatic epithelial stem-like WB-F344 cells

    International Nuclear Information System (INIS)

    Chramostova, Katerina; Vondracek, Jan; Sindlerova, Lenka; Vojtesek, Borivoj; Kozubik, Alois; Machala, Miroslav

    2004-01-01

    Although many polycyclic aromatic hydrocarbons (PAHs) are recognized as potent mutagens and carcinogens, relatively little is known about their role in the tumor promotion. It is known that 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) can induce release of rat hepatic oval epithelial cells from contact inhibition by a mechanism possibly involving the aryl hydrocarbon receptor (AhR) activation. Many PAHs are AhR ligands and are known to act as transient inducers of AhR-mediated activity. In this study, effects of 19 selected PAHs on proliferation of confluent rat liver epithelial WB-F344 cells were investigated. Non-mutagens that are weak activators or nonactivators of AhR-mediated activity had no effect on cell proliferation. Relatively strong or moderate AhR ligands with low mutagenic potencies, such as benzofluoranthenes, benz[a]anthracene, and chrysene, were found to increase cell numbers, which corresponded to an increased percentage of cells entering S-phase. Strong mutagens, including benzo[a]pyrene and dibenzo[a,l]pyrene, increased a percentage of cells in S-phase without inducing a concomitant increase in cell numbers. The treatment with mutagenic PAHs was associated with an increased DNA synthesis and induction of cell death, which corresponded with the activation of p53 tumor suppressor. Apoptosis was blocked by pifithrin-α, the chemical inhibitor of p53. Both weakly and strongly mutagenic PAHs known as AhR ligands were found to induce significant increase of cytochrome P4501A activity, suggesting a presence of functional AhR. The results of the present study seem to suggest that a release from contact inhibition could be a part of tumor promoting effects of AhR-activating PAHs; however, the genotoxic effects of some PAHs associated with p53 activation might interfere with this process

  9. Liver Tumor Promotion by 2,3,7,8-Tetrachlorodibenzo-p-dioxin Is Dependent on the Aryl Hydrocarbon Receptor and TNF/IL-1 Receptors

    Science.gov (United States)

    Kennedy, Gregory D.; Nukaya, Manabu; Moran, Susan M.; Glover, Edward; Weinberg, Samuel; Balbo, Silvia; Hecht, Stephen S.; Pitot, Henry C.; Drinkwater, Norman R.; Bradfield, Christopher A.

    2014-01-01

    We set out to better understand the signal transduction pathways that mediate liver tumor promotion by 2,3,7,8-tetrachlorodibenzo-p-dioxn (“dioxin”). To this end, we first employed congenic mice homozygous for either the Ahrb1 or Ahrd alleles (encoding an aryl hydrocarbon receptor (AHR) with high or low binding affinity for dioxin, respectively) and demonstrated that hepatocellular tumor promotion in response to dioxin segregated with the Ahr locus. Once we had genetic evidence for the importance of AHR signaling, we then asked if tumor promotion by dioxin was influenced by “interleukin-1 (IL-1)-like” inflammatory cytokines. The importance of this question arose from our earlier observation that aspects of the acute hepatocellular toxicity of dioxin are dependent upon IL1-like cytokine signaling. To address this issue, we employed a triple knock-out (TKO) mouse model with null alleles at the loci encoding the three relevant receptors for tumor necrosis factors α and β and IL-1α and IL-1β (i.e., null alleles at the Tnfrsf1a, Tnfrsf1b, and Il-1r1 loci). The observation that TKO mice were resistant to the tumor promoting effects of dioxin in liver suggests that inflammatory cytokines play an important step in dioxin mediated liver tumor promotion in the mouse. Collectively, these data support the idea that the mechanism of dioxin acute hepatotoxicity and its activity as a promoter in a mouse two stage liver cancer model may be similar, i.e., tumor promotion by dioxin, like acute hepatotoxicity, are mediated by the linked action of two receptor systems, the AHR and the receptors for the “IL-1-like” cytokines. PMID:24718703

  10. Baicalein induces G1 arrest in oral cancer cells by enhancing the degradation of cyclin D1 and activating AhR to decrease Rb phosphorylation

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Ya-Hsin, E-mail: yhcheng@mail.cmu.edu.tw [Department of Physiology, School of Medicine, China Medical University, Taichung 40402, Taiwan, ROC (China); Li, Lih-Ann; Lin, Pinpin; Cheng, Li-Chuan [Division of Environmental Health and Occupational Medicine, National Health Research Institutes, Zhunan, Miaoli 35053, Taiwan, ROC (China); Hung, Chein-Hui [Graduate Institute of Clinical Medicine Sciences, Chang Gung University, Puizi City, Chiayi 613, Taiwan, ROC (China); Chang, Nai Wen [Department of Biochemistry, School of Medicine, China Medical University, Taichung, Taiwan, ROC (China); Lin, Chingju [Department of Physiology, School of Medicine, China Medical University, Taichung 40402, Taiwan, ROC (China)

    2012-09-15

    Baicalein is a flavonoid, known to have anti-inflammatory and anti-cancer effects. As an aryl hydrocarbon receptor (AhR) ligand, baicalein at high concentrations blocks AhR-mediated dioxin toxicity. Because AhR had been reported to play a role in regulating the cell cycle, we suspected that the anti-cancer effect of baicalein is associated with AhR. This study investigated the molecular mechanism involved in the anti-cancer effect of baicalein in oral cancer cells HSC-3, including whether such effect would be AhR-mediated. Results revealed that baicalein inhibited cell proliferation and increased AhR activity in a dose-dependent manner. Cell cycle was arrested at the G1 phase and the expression of CDK4, cyclin D1, and phosphorylated retinoblastoma (pRb) was decreased. When the AhR was suppressed by siRNA, the reduction of pRb was partially reversed, accompanied by a decrease of cell population at G1 phase and an increase at S phase, while the reduction of cyclin D1 and CDK4 did not change. This finding suggests that the baicalein activation of AhR is indeed associated with the reduction of pRb, but is independent of the reduction of cyclin D1 and CDK4. When cells were pre-treated with LiCl, the inhibitor of GSK-3β, the decrease of cyclin D1 was blocked and the reduction of pRb was recovered. The data indicates that in HSC-3 the reduction of pRb is both mediated by baicalein through activation of AhR and facilitation of cyclin D1 degradation, which causes cell cycle arrest at the G1 phase, and results in the inhibition of cell proliferation. -- Highlights: ► Baicalein causes the G1 phase arrest by decreasing Rb phosphorylation. ► Baicalein modulates AhR-mediated cell proliferation. ► Both AhR activation and cyclin D1 degradation results in hypophosphorylation of Rb. ► Baicalein facilitates cyclin D1 degradation by signalling the GSK-3β pathway.

  11. Aryl hydrocarbon receptor 2 mediates the toxicity of Paclobutrazol on the digestive system of zebrafish embryos.

    Science.gov (United States)

    Wang, Wen-Der; Chen, Guan-Ting; Hsu, Hwei-Jan; Wu, Chang-Yi

    2015-02-01

    Paclobutrazol (PBZ), a trazole-containing fungicide and plant growth retardant, has been widely used for over 30 years to regulate plant growth and promote early fruit setting. Long-term usage of PBZ in agriculture and natural environments has resulted in residual PBZ in the soil and water. Chronic exposure to waterborne PBZ can cause various physiological effects in fish, including hepatic steatosis, antioxidant activity, and disruption of spermatogenesis. We have previously shown that PBZ also affects the rates of zebrafish embryonic survival and hatching, and causes developmental failure of the head skeleton and eyes; here, we further show that PBZ has embryonic toxic effects on digestive organs of zebrafish, and describe the underlying mechanisms. PBZ treatment of embryos resulted in dose-dependent morphological and functional abnormalities of the digestive organs. Real-time RT-PCR and in situ hybridization were used to show that PBZ strongly induces cyp1a1 expression in the digestive system, and slightly induces ahr2 expression in zebrafish embryos. Knockdown of ahr2 with morpholino oligonucleotides prevents PBZ toxicity. Thus, the toxic effect of PBZ on digestive organs is mediated by AhR2, as was previously reported for retene and TCDD. These findings have implications for understanding the potential toxicity of PBZ during embryogenesis, and thus the potential impact of fungicides on public health and the environment. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. American Housing Survey (AHS) 2011

    Data.gov (United States)

    Department of Housing and Urban Development — The AHS is the largest, regular national housing sample survey in the United States. The U.S. Census Bureau conducts the AHS to obtain up-to-date housing statistics...

  13. Combined chemical and toxicological long-term monitoring for AhR agonists with SPMD-based virtual organisms in drinking water Danjiangkou Reservoir, China.

    Science.gov (United States)

    Wang, Jingxian; Song, Guoqiang; Li, Aimin; Henkelmann, Bernhard; Pfister, Gerd; Tong, Anthony Z; Schramm, Karl-Werner

    2014-08-01

    SPMD-based virtual organisms (VOs) were employed for time-integrating, long-term sampling combined biological and chemical analyses for exposure assessment of hydrophobic organic pollutants (HOPs) in a drinking water reservoir, China. The SPMDs were deployed at four and five sites in the Danjiangkou (DJK) reservoir over two periods of 26 and 31 d to sequester the hydrophobic contaminants in water. The chosen bioassay response for the extracts of the SPMDs, the induction of 7-ethoxyresorufin-o-deethylase (EROD) was assayed using a rat hepatoma cell line (H4IIE). The known aryl hydrocarbon receptor (AhR) agonists PAHs and PCBs were analyzed by HRGC/HRMS instrument. The cause-effect relationship between the observed AhR activities and chemical concentrations of detected AhR agonists was examined. The results show that the extracts from the SPMD samples could induce AhR activity significantly, whereas the chemically derived 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) equivalent (TEQcal) was not correlated with the bioassay-derived TCDD equivalent (TEQbio). The known AhR agonists could only account for 2-10% of the observed AhR responses among which the contribution of PCBs could almost be neglected. Unidentified AhR-active compounds represented a greater proportion of the TCDD equivalent (TCDD-EQ) in SPMD samples from DJK. Based on the first assessment, the VO followed by the combination of chemical and biological analyses emerges as a resource efficient water monitoring device in ecotoxicological assessment for toxicologically relevant compounds which are readily available for uptake by resident aquatic biota in drinking water resources. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Inhibition of aryl hydrocarbon receptor-dependent transcription by resveratrol or kaempferol is independent of estrogen receptor α expression in human breast cancer cells

    Science.gov (United States)

    MacPherson, Laura; Matthews, Jason

    2016-01-01

    Resveratrol and kaempferol are natural chemopreventative agents that are also aryl hydrocarbon receptor (AHR) antagonists and estrogen receptor (ER) agonists. In this study we evaluated the role of ERα in resveratrol- and kaempferol-mediated inhibition of AHR-dependent transcription. Kaempferol or resveratrol inhibited dioxin-induced cytochrome P450 1A1 (CYP1A1) and CYP1B1 expression levels and recruitment of AHR, ERα and co-activators to CYP1A1 and CYP1B1. Both phytochemicals induced the expression and recruitment of ERα to gene amplified in breast cancer 1 (GREB1). RNAi-mediated knockdown of ERα in T-47D cells did not affect the inhibitory action of either phytochemical on AHR activity. Both compounds also inhibited AHR-dependent transcription in ERα-negative MDA-MB-231 and BT-549 breast cancer cells. These data show that ERα does not contribute to the AHR-inhibitory activities of resveratrol and kaempferol. PMID:20846786

  15. AhR Activation Underlies the CYP1A Autoinduction by A-998679 in Rats

    Directory of Open Access Journals (Sweden)

    Michael J. Liguori

    2012-10-01

    Full Text Available Xenobiotic-mediated induction of cytochrome P450 (CYP drug metabolizing enzymes (DMEs is frequently encountered in drug discovery and can influence disposition, pharmacokinetic, and toxicity profiles. The CYP1A subfamily of DMEs plays a central role in the biotransformation of several drugs and environmental chemicals. Autoinduction of drugs through CYP3A enzymes is a common mechanism for their enhanced clearance. However, autoinduction via CYP1A is encountered less frequently. In this report, an experimental compound, A-998679 (3-(5-pyridin-3-yl-1,2,4-oxadiazol-3-yl benzonitrile, was shown to enhance its own clearance via induction of CYP1A1 and CYP1A2. Rats were dosed for 5 days with 30, 100, and 200 mg/kg/day A-998679. During the dosing period, the compound’s plasma AUC decreased at 30 mg/kg (95% and 100 mg/kg (80%. Gene expression analysis and immunohistochemistry of the livers showed a large increase in the mRNA and protein levels of CYP1A, which was involved in the biotransformation of A-998679. Induction of CYP1A was confirmed in primary rat, human, and dog hepatocytes. The compound also weakly inhibited CYP1A2 in human liver microsomes. A-998679 activated the aryl hydrocarbon receptor (AhR in a luciferase gene reporter assay in HepG2 cells, upregulated expression of genes associated with AhR activation in rat liver, and enhanced nuclear migration of AhR in HepG2 cells. Collectively these results demonstrate that A-998679 is an AhR activator that induces CYP1A1 and CYP1A2 expression, resulting in an autoinduction phenomenon. The unique properties of A-998679, along with its novel structure distinct from classical polycyclic aromatic hydrocarbons, may warrant its further evaluation as a tool compound for use in studies involving AhR biology and CYP1A related mechanisms of drug metabolism and toxicity.

  16. Limitations of the toxic equivalency factor (TEF) approach for risk assessment of halogenated aromatic hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Safe, S. [Texas A and M Univ., College Station, TX (United States). Dept. of Veterinary Physiology and Pharmacology

    1995-12-31

    2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) and related halogenated aromatic hydrocarbons (HAHs) are present as complex mixtures of polychlorinated dibenzo-p-dioxins (PCDDs), dibenzofurans (PCDFs) and biphenyls (PCBs) in most environmental matrices. Risk management of these mixtures utilize the toxic equivalency factor (TEF) approach in which the TCDD (dioxin) or toxic equivalents of a mixture is a summation of the congener concentration (Ci) times TEF{sub i} (potency relative to TCDD) where. TEQ{sub mixture} = {Sigma}[Cil] {times} TEF{sub i}. TEQs are determined only for those HAHs which are aryl hydrocarbon (Ah) receptor agonists and this approach assumes that the toxic or biochemical effects of individual compounds in a mixture are additive. Several in vivo and in vitro laboratory and field studies with different HAH mixtures have been utilized to validate the TEF approach. For some responses, the calculated toxicities of PCDD/PCDF and PCB mixtures predict the observed toxic potencies. However, for fetal cleft palate and immunotoxicity in mice, nonadditive (antagonistic) responses are observed using complex PCB mixtures or binary mixtures containing an Ah receptor agonist with 2,2{prime},4,4{prime},5,5{prime}-hexachlorobiphenyl (PCB153). The potential interactive effects of PCBs and other dietary Ah receptor antagonist suggest that the TEF approach for risk management of HAHs requires further refinement and should be used selectively.

  17. Induction of c-Jun by air particulate matter (PM₁₀) of Mexico city: Participation of polycyclic aromatic hydrocarbons.

    Science.gov (United States)

    Salcido-Neyoy, Martha Estela; Sánchez-Pérez, Yesennia; Osornio-Vargas, Alvaro Román; Gonsebatt, María Eugenia; Meléndez-Zajgla, Jorge; Morales-Bárcenas, Rocío; Petrosyan, Pavel; Molina-Servin, Edith Danny; Vega, Elizabeth; Manzano-León, Natalia; García-Cuellar, Claudia M

    2015-08-01

    The carcinogenic potential of urban particulate matter (PM) has been partly attributed to polycyclic aromatic hydrocarbons (PAHs) content, which activates the aryl hydrocarbon receptor (AhR). Here we report the effect of PM with an aerodynamic size of 10 μm (PM10) on the induction of AhR pathway in A549 cells, evaluating its downstream targets CYP1B1, IL-6, IL-8 and c-Jun. Significant increases in CYP1B1 protein and enzyme activity; IL-6 and IL-8 secretion and c-Jun protein were found in response to PM10. The formation of PAH-DNA adducts was also detected. The involvement of AhR pathway was confirmed with Resveratrol as AhR antagonist, which reversed CYP1B1 and c-Jun induction. Nevertheless, in IL-6 and IL-8 secretion, the Resveratrol was ineffective, suggesting an effect independent of this pathway. Considering the role of c-Jun in oncogenesis, its induction by PM may be contributing to its carcinogenic potential through induction of AhR pathway by PAHs present in PM10. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Temporal variability of Polycyclic Aromatic Hydrocarbons in a receptor site of Puebla -Tlaxcala Valley.

    Science.gov (United States)

    Padilla Barrera, Zuhelen; Torres Jardón, Ricardo; Gerardo Ruiz, Luis; Castro, Telma

    2015-04-01

    The Puebla-Tlaxcala Valley is a region with high population scattered over two states, where emissions from combustion of a variety of materials and fuels represent a major problem in the deterioration of air quality. Polycyclic aromatic hydrocarbons (PAHs) are a class of semi-volatile organic compounds that are formed during combustion. PAH are present in large amounts in the particulate matter comes from the combustion and no combustion. The particle-bound PAHs are formed by accumulation and condensation mechanisms in the particle. In its condensed form are mainly associated with fine particles (homes is intense. Additionally, this period is when the boundary layer is fully established favoring the accumulation of newly issued pollutants and remnants of the night. The breaking of the layer precisely between 8 am and 9am resulting in a rapid decrease in the concentrations of all pollutants favored the vertical mixing them with cleaner air masses previously located above the boundary layer. Once broken the boundary layer , the new layer grows and pollutants are mixed with air masses that are being transported to other sites which establishes the dominant concentrations and in the day. By 7 pm there is an increase in vehicular traffic and even dominates the regional wind ventilation, a slight increase was observed in the concentrations of CO , NOx and DC.

  19. Receptor modelling study of polycyclic aromatic hydrocarbons in Jeddah, Saudi Arabia.

    Science.gov (United States)

    Alghamdi, Mansour A; Alam, Mohammed S; Yin, Jianxin; Stark, Christopher; Jang, Eunhwa; Harrison, Roy M; Shamy, Magdy; Khoder, Mamdouh I; Shabbaj, Ibrahim I

    2015-02-15

    Measurements of 14 polycyclic aromatic hydrocarbons (PAH) have been made in Jeddah, Saudi Arabia, with a view to establishing the concentrations in this major city, and quantifying the contributions of major sources. Particulate and vapour forms have been sampled and analysed separately. The concentrations are compared to measurements from other sites in the Middle Eastern region and are towards the lower end of the range, being far lower than concentrations reported from Riyadh (Saudi Arabia), Assiut (Egypt) and Tehran (Iran) but broadly similar to those measured in Damascus (Syria) and higher than those measured in Kuwait. The partitioning between vapour and particle phases is similar to that in data from Egypt and China, but with many compounds showing a higher particle-associated percentage than in Birmingham (UK) possibly reflecting a higher concentration of airborne particulate matter in the former countries. Concentrations in Jeddah were significantly higher at a site close to the oil refinery and a site close to a major ring road than at a suburban site to the north of the city. Application of positive matrix factorisation to the pooled data elicited three factors accounting respectively for 17%, 33% and 50% of the measured sum of PAH and these are interpreted as arising from gasoline vehicles, industrial sources, particularly the oil refinery, and to diesel/fuel oil combustion. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Receptor modelling study of polycyclic aromatic hydrocarbons in Jeddah, Saudi Arabia

    Energy Technology Data Exchange (ETDEWEB)

    Alghamdi, Mansour A. [Department of Environmental Sciences, Faculty of Meteorology, Environment and Arid Land Agriculture, King Abdulaziz University, Jeddah (Saudi Arabia); Alam, Mohammed S., E-mail: m.s.alam@bham.ac.uk [Division of Environmental Health and Risk Management, School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT (United Kingdom); Yin, Jianxin; Stark, Christopher; Jang, Eunhwa [Division of Environmental Health and Risk Management, School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT (United Kingdom); Harrison, Roy M., E-mail: r.m.harrison@bham.ac.uk [Department of Environmental Sciences, Faculty of Meteorology, Environment and Arid Land Agriculture, King Abdulaziz University, Jeddah (Saudi Arabia); Division of Environmental Health and Risk Management, School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT (United Kingdom); Shamy, Magdy; Khoder, Mamdouh I.; Shabbaj, Ibrahim I. [Department of Environmental Sciences, Faculty of Meteorology, Environment and Arid Land Agriculture, King Abdulaziz University, Jeddah (Saudi Arabia)

    2015-02-15

    Measurements of 14 polycyclic aromatic hydrocarbons (PAH) have been made in Jeddah, Saudi Arabia, with a view to establishing the concentrations in this major city, and quantifying the contributions of major sources. Particulate and vapour forms have been sampled and analysed separately. The concentrations are compared to measurements from other sites in the Middle Eastern region and are towards the lower end of the range, being far lower than concentrations reported from Riyadh (Saudi Arabia), Assiut (Egypt) and Tehran (Iran) but broadly similar to those measured in Damascus (Syria) and higher than those measured in Kuwait. The partitioning between vapour and particle phases is similar to that in data from Egypt and China, but with many compounds showing a higher particle-associated percentage than in Birmingham (UK) possibly reflecting a higher concentration of airborne particulate matter in the former countries. Concentrations in Jeddah were significantly higher at a site close to the oil refinery and a site close to a major ring road than at a suburban site to the north of the city. Application of positive matrix factorisation to the pooled data elicited three factors accounting respectively for 17%, 33% and 50% of the measured sum of PAH and these are interpreted as arising from gasoline vehicles, industrial sources, particularly the oil refinery, and to diesel/fuel oil combustion. - Highlights: • Measurements of 14 PAH compounds in vapour and particulate phases at three sites. • Comparison of concentrations across Jeddah and Middle Eastern regions. • Application of positive matrix factorisation to identify possible sources.

  1. Receptor modelling study of polycyclic aromatic hydrocarbons in Jeddah, Saudi Arabia

    International Nuclear Information System (INIS)

    Alghamdi, Mansour A.; Alam, Mohammed S.; Yin, Jianxin; Stark, Christopher; Jang, Eunhwa; Harrison, Roy M.; Shamy, Magdy; Khoder, Mamdouh I.; Shabbaj, Ibrahim I.

    2015-01-01

    Measurements of 14 polycyclic aromatic hydrocarbons (PAH) have been made in Jeddah, Saudi Arabia, with a view to establishing the concentrations in this major city, and quantifying the contributions of major sources. Particulate and vapour forms have been sampled and analysed separately. The concentrations are compared to measurements from other sites in the Middle Eastern region and are towards the lower end of the range, being far lower than concentrations reported from Riyadh (Saudi Arabia), Assiut (Egypt) and Tehran (Iran) but broadly similar to those measured in Damascus (Syria) and higher than those measured in Kuwait. The partitioning between vapour and particle phases is similar to that in data from Egypt and China, but with many compounds showing a higher particle-associated percentage than in Birmingham (UK) possibly reflecting a higher concentration of airborne particulate matter in the former countries. Concentrations in Jeddah were significantly higher at a site close to the oil refinery and a site close to a major ring road than at a suburban site to the north of the city. Application of positive matrix factorisation to the pooled data elicited three factors accounting respectively for 17%, 33% and 50% of the measured sum of PAH and these are interpreted as arising from gasoline vehicles, industrial sources, particularly the oil refinery, and to diesel/fuel oil combustion. - Highlights: • Measurements of 14 PAH compounds in vapour and particulate phases at three sites. • Comparison of concentrations across Jeddah and Middle Eastern regions. • Application of positive matrix factorisation to identify possible sources

  2. Combination of Hypomorphic Mutations of the Drosophila Homologues of Aryl Hydrocarbon Receptor and Nucleosome Assembly Protein Family Genes Disrupts Morphogenesis, Memory and Detoxification

    OpenAIRE

    Kuzin, Boris A.; Nikitina, Ekaterina A.; Cherezov, Roman O.; Vorontsova, Julia E.; Slezinger, Mikhail S.; Zatsepina, Olga G.; Simonova, Olga B.; Enikolopov, Grigori N.; Savvateeva-Popova, Elena V.

    2014-01-01

    Aryl hydrocarbon receptor is essential for biological responses to endogenous and exogenous toxins in mammals. Its Drosophila homolog spineless plays an important role in fly morphogenesis. We have previously shown that during morphogenesis spineless genetically interacts with CG5017 gene, which encodes a nucleosome assembly factor and may affect cognitive function of the fly. We now demonstrate synergistic interactions of spineless and CG5017 in pathways controlling oxidative stress response...

  3. Expression and distribution patterns of Mas-related gene receptor subtypes A-H in the mouse intestine: inflammation-induced changes.

    Science.gov (United States)

    Avula, Leela Rani; Buckinx, Roeland; Favoreel, Herman; Cox, Eric; Adriaensen, Dirk; Van Nassauw, Luc; Timmermans, Jean-Pierre

    2013-05-01

    Mas-related gene (Mrg) receptors constitute a subfamily of G protein-coupled receptors that are implicated in nociception, and are as such considered potential targets for pain therapies. Furthermore, some Mrgs have been suggested to play roles in the regulation of inflammatory responses to non-immunological activation of mast cells and in mast cell-neuron communication. Except for MrgD, E and F, whose changed expression has been revealed during inflammation in the mouse intestine in our earlier studies, information concerning the remaining cloned mouse Mrg subtypes in the gastrointestinal tract during (patho) physiological conditions is lacking. Therefore, the present study aimed at identifying the presence and putative function of these remaining cloned Mrg subtypes (n = 19) in the (inflamed) mouse intestine. Using reverse transcriptase-PCR, quantitative-PCR and multiple immunofluorescence staining with commercial and newly custom-developed antibodies, we compared the ileum and the related dorsal root ganglia (DRG) of non-inflamed mice with those of two models of intestinal inflammation, i.e., intestinal schistosomiasis and 2,4,6-trinitrobenzene sulfonic acid-induced ileitis. In the non-inflamed ileum and DRG, the majority of the Mrg subtypes examined were sparsely expressed, showing a neuron-specific expression pattern. However, significant changes in the expression patterns of multiple Mrg subtypes were observed in the inflamed ileum; for instance, MrgA4, MrgB2and MrgB8 were expressed in a clearly increased number of enteric sensory neurons and in nerve fibers in the lamina propria, while de novo expression of MrgB10 was observed in enteric sensory neurons and in newly recruited mucosal mast cells (MMCs). The MrgB10 expressing MMCs were found to be in close contact with nerve fibers in the lamina propria. This is the first report on the expression of all cloned Mrg receptor subtypes in the (inflamed) mouse intestine. The observed changes in the expression and

  4. Application of radiocarbon analysis and receptor modeling to the source apportionment of PAHs (polycyclic aromatic hydrocarbons) in the atmosphere

    International Nuclear Information System (INIS)

    Sheffield, A.E.

    1988-01-01

    The radiocarbon tracer technique was used to demonstrate that polycyclic aromatic hydrocarbons (PAHs) can be used for quantitative receptor modeling of air pollution. Fine-particle samples were collected during December, 1985, in Albuquerque, NM. Motor vehicles (fossil) and residential wood combustion (RWC, modern) were the major PAH-sources. For each sample, the PAH-fraction was solvent-extracted, isolated by liquid chromatography, and analyzed by GC-FID and GC-MS. The PAH-fractions from sixteen samples were analyzed for 14 C by Accelerator Mass Spectrometry. Radiocarbon data were used to calculate the relative RWC contribution (f RWC ) for samples analyzed for 14 C. Normalized concentrations of a prospective motor vehicle tracer, benzo(ghi)perylene (BGP) had a strong, negative correlation with f RWC . Normalized BGP concentrations were used to apportion sources for samples not analyzed for 14 C. Multiple Linear Regression (MLR) vs. ADCS and BGP was used to estimate source profiles for use in Target Factor Analysis (TFA). Profiles predicted by TFA were used in Chemical Mass Balances (CMBs). For non-volatile, stable PAHs, agreement between observed and predicted concentrations was excellent. The worst fits were observed for the most volatile PAHs and for coronene. The total RWC contributions predicted by CMBs correlated well with the radiocarbon data

  5. Toward Understanding the Role of Aryl Hydrocarbon Receptor in the Immune System: Current Progress and Future Trends

    Directory of Open Access Journals (Sweden)

    Hamza Hanieh

    2014-01-01

    Full Text Available The immune system is regulated by distinct signaling pathways that control the development and function of the immune cells. Accumulating evidence suggest that ligation of aryl hydrocarbon receptor (Ahr, an environmentally responsive transcription factor, results in multiple cross talks that are capable of modulating these pathways and their downstream responsive genes. Most of the immune cells respond to such modulation, and many inflammatory response-related genes contain multiple xenobiotic-responsive elements (XREs boxes upstream. Active research efforts have investigated the physiological role of Ahr in inflammation and autoimmunity using different animal models. Recently formed paradigm has shown that activation of Ahr by 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD or 3,3′-diindolylmethane (DIM prompts the differentiation of CD4+Foxp3+ regulatory T cells (Tregs and inhibits T helper (Th-17 suggesting that Ahr is an innovative therapeutic strategy for autoimmune inflammation. These promising findings generate a basis for future clinical practices in humans. This review addresses the current knowledge on the role of Ahr in different immune cell compartments, with a particular focus on inflammation and autoimmunity.

  6. A novel germline mutation in the aryl hydrocarbon receptor-interacting protein (AIP) gene in an Italian family with gigantism.

    Science.gov (United States)

    Urbani, C; Russo, D; Raggi, F; Lombardi, M; Sardella, C; Scattina, I; Lupi, I; Manetti, L; Tomisti, L; Marcocci, C; Martino, E; Bogazzi, F

    2014-10-01

    Acromegaly usually occurs as a sporadic disease, but it may be a part of familial pituitary tumor syndromes in rare cases. Germline mutations in the aryl hydrocarbon receptor-interacting protein (AIP) gene have been associated with a predisposition to familial isolated pituitary adenoma. The aim of the present study was to evaluate the AIP gene in a patient with gigantism and in her relatives. Direct sequencing of AIP gene was performed in fourteen members of the family, spanning among three generations. The index case was an 18-year-old woman with gigantism due to an invasive GH-secreting pituitary adenoma and a concomitant tall-cell variant of papillary thyroid carcinoma. A novel germline mutation in the AIP gene (c.685C>T, p.Q229X) was identified in the proband and in two members of her family, who did not present clinical features of acromegaly or other pituitary disorders. Eleven subjects had no mutation in the AIP gene. Two members of the family with clinical features of acromegaly refused either the genetic or the biochemical evaluation. The Q229X mutation was predicted to generate a truncated AIP protein, lacking the last two tetratricopeptide repeat domains and the final C-terminal α-7 helix. We identified a new AIP germline mutation predicted to produce a truncated AIP protein, lacking its biological properties due to the disruption of the C-terminus binding sites for both the chaperones and the client proteins of AIP.

  7. Prenatal polycyclic aromatic hydrocarbon, adiposity, peroxisome proliferator-activated receptor (PPAR γ methylation in offspring, grand-offspring mice.

    Directory of Open Access Journals (Sweden)

    Zhonghai Yan

    Full Text Available Greater levels of prenatal exposure to polycyclic aromatic hydrocarbon (PAH have been associated with childhood obesity in epidemiological studies. However, the underlying mechanisms are unclear.We hypothesized that prenatal PAH over-exposure during gestation would lead to weight gain and increased fat mass in offspring and grand-offspring mice. Further, we hypothesized that altered adipose gene expression and DNA methylation in genes important to adipocyte differentiation would be affected.Pregnant dams were exposed to a nebulized PAH mixture versus negative control aerosol 5 days a week, for 3 weeks. Body weight was recorded from postnatal day (PND 21 through PND60. Body composition, adipose cell size, gene expression of peroxisome proliferator-activated receptor (PPAR γ, CCAAT/enhancer-binding proteins (C/EBP α, cyclooxygenase (Cox-2, fatty acid synthase (FAS and adiponectin, and DNA methylation of PPAR γ, were assayed in both the offspring and grand-offspring adipose tissue.Offspring of dams exposed to greater PAH during gestation had increased weight, fat mass, as well as higher gene expression of PPAR γ, C/EBP α, Cox2, FAS and adiponectin and lower DNA methylation of PPAR γ. Similar differences in phenotype and DNA methylation extended through the grand-offspring mice.Greater prenatal PAH exposure was associated with increased weight, fat mass, adipose gene expression and epigenetic changes in progeny.

  8. An endogenous aryl hydrocarbon receptor ligand acts on dendritic cells and T cells to suppress experimental autoimmune encephalomyelitis

    Science.gov (United States)

    Quintana, Francisco J.; Murugaiyan, Gopal; Farez, Mauricio F.; Mitsdoerffer, Meike; Tukpah, Ann-Marcia; Burns, Evan J.; Weiner, Howard L.

    2010-01-01

    The ligand-activated transcription factor aryl hydrocarbon receptor (AHR) participates in the differentiation of FoxP3+ Treg, Tr1 cells, and IL-17–producing T cells (Th17). Most of our understanding on the role of AHR on the FoxP3+ Treg compartment results from studies using the toxic synthetic chemical 2,3,7,8-tetrachlorodibenzo-p-dioxin. Thus, the physiological relevance of AHR signaling on FoxP3+ Treg in vivo is unclear. We studied mice that carry a GFP reporter in the endogenous foxp3 locus and a mutated AHR protein with reduced affinity for its ligands, and found that AHR signaling participates in the differentiation of FoxP3+ Treg in vivo. Moreover, we found that treatment with the endogenous AHR ligand 2-(1′H-indole-3′-carbonyl)-thiazole-4-carboxylic acid methyl ester (ITE) given parenterally or orally induces FoxP3+ Treg that suppress experimental autoimmune encephalomyelitis. ITE acts not only on T cells, but also directly on dendritic cells to induce tolerogenic dendritic cells that support FoxP3+ Treg differentiation in a retinoic acid-dependent manner. Thus, our work demonstrates that the endogenous AHR ligand ITE promotes the induction of active immunologic tolerance by direct effects on dendritic and T cells, and identifies nontoxic endogenous AHR ligands as potential unique compounds for the treatment of autoimmune disorders. PMID:21068375

  9. Aryl hydrocarbon receptor signaling modulates antiviral immune responses: ligand metabolism rather than chemical source is the stronger predictor of outcome.

    Science.gov (United States)

    Boule, Lisbeth A; Burke, Catherine G; Jin, Guang-Bi; Lawrence, B Paige

    2018-01-29

    The aryl hydrocarbon receptor (AHR) offers a compelling target to modulate the immune system. AHR agonists alter adaptive immune responses, but the consequences differ across studies. We report here the comparison of four agents representing different sources of AHR ligands in mice infected with influenza A virus (IAV): TCDD, prototype exogenous AHR agonist; PCB126, pollutant with documented human exposure; ITE, novel pharmaceutical; and FICZ, degradation product of tryptophan. All four compounds diminished virus-specific IgM levels and increased the proportion of regulatory T cells. TCDD, PCB126 and ITE, but not FICZ, reduced virus-specific IgG levels and CD8 + T cell responses. Similarly, ITE, PCB126, and TCDD reduced Th1 and Tfh cells, whereas FICZ increased their frequency. In Cyp1a1-deficient mice, all compounds, including FICZ, reduced the response to IAV. Conditional Ahr knockout mice revealed that all four compounds require AHR within hematopoietic cells. Thus, differences in the immune response to IAV likely reflect variances in quality, magnitude, and duration of AHR signaling. This indicates that binding affinity and metabolism may be stronger predictors of immune effects than a compound's source of origin, and that harnessing AHR will require finding a balance between dampening immune-mediated pathologies and maintaining sufficient host defenses against infection.

  10. The aryl hydrocarbon receptor-dependent disruption of contact inhibition in rat liver WB-F344 epithelial cells is linked with induction of survivin, but not with inhibition of apoptosis

    Czech Academy of Sciences Publication Activity Database

    Svobodová, Jana; Kabátková, Markéta; Šmerdová, Lenka; Brenerová, P.; Dvořák, Z.; Machala, M.; Vondráček, Jan

    2015-01-01

    Roč. 333, JUL 2015 (2015), s. 37-44 ISSN 0300-483X R&D Projects: GA ČR(CZ) GA13-07711S Institutional support: RVO:68081707 Keywords : TUMOR PROMOTION * AH RECEPTOR * STEM-CELLS Subject RIV: BO - Biophysics Impact factor: 3.817, year: 2015

  11. Some heterocyclic aromatic compounds are Ah receptor agonists in the DR-CALUX assay and the EROD assay with RTL-W1 cells.

    Science.gov (United States)

    Hinger, Gunnar; Brinkmann, Markus; Bluhm, Kerstin; Sagner, Anne; Takner, Helena; Eisenträger, Adolf; Braunbeck, Thomas; Engwall, Magnus; Tiehm, Andreas; Hollert, Henner

    2011-09-01

    Heterocyclic aromatic compounds containing nitrogen, sulfur, or oxygen heteroatoms (NSO-HET) have been detected in air, soil, marine, and freshwater systems. However, only few publications are available investigating NSO-HET using in vitro bioassays. To support better characterization of environmental samples, selected NSO-HET were screened for dioxin-like activity in two bioassays. The present study focuses on the identification and quantification of dioxin-like effects of 12 NSO-HET using the DR-CALUX assay, and the 7-ethoxyresorufin-O-deethylase (EROD) assay with the permanent fish liver cell line RTL-W1. Changes of the total medium compound concentrations during the test procedure due to, e.g., sorption or volatilization were quantified using GC/MS. The NSO-HET benzofuran, 2,3-dimethylbenzofuran, dibenzofuran, dibenzothiophen, acridine, xanthene, and carbazole caused a response in the DR-CALUX assay. Only benzofuran and 2,3-dimethylbenzofuran were also positive in the EROD assay. All other compounds were inactive in the EROD assay. Relative potency (REP) values ranged from (2.80 ± 1.32) · 10(-8) to (3.26 ± 2.03) · 10(-6) in the DR-CALUX and from (3.26 ± 0.91) · 10(-7) to (4.87 ± 1.97) · 10(-7) in the EROD assay. The REP values were comparable to those of larger polycyclic aromatic hydrocarbons, e.g., fluoranthene and pyrene. Thus, and because of the ubiquitous distribution of heterocyclic aromatic compounds in the environment, the provided data will further facilitate the bioanalytical and analytical characterization of environmental samples towards these toxicants.

  12. IN VITRO INTERACTION OF INFLUENZA VIRUS A(H1N1pdm09 WITH MONOCYTIC MACROPHAGES: INDIVIDUAL RESPONSES OF TLR7 AND RIG1 RECEPTOR GENES

    Directory of Open Access Journals (Sweden)

    T. M. Sokolova

    2017-01-01

    Full Text Available In vitro differentiation of donor blood monocytes to macrophages (Mph following GM-CSF treatment was accompanied by a significant increase in the levels of gene transcription signaling receptors TLR7 or RIG1. The levels of intracellular viral RNA (M1 gene in Mph remained high upon infection by influenza virus A H1N1pdm (Moscow 2009 for 24-96 hours. The innate immunity reactions caused by influenza virus show individual features: they are decreased in Mph from donor 1 which had initially high level of endosomal TLR7 gene activity, and it increased by influenza virus in MPh from donor 2 who had a very low level of TLR7 gene expression. The influenza H1N1pdm virus weakly stimulated expression of gene RIG1 and production of inflammatory cytokines in Mf in donor 1. The differences may be connected with individual sensitivity of the donors to influenza infection.

  13. AhR and SHP regulate phosphatidylcholine and S-adenosylmethionine levels in the one-carbon cycle.

    Science.gov (United States)

    Kim, Young-Chae; Seok, Sunmi; Byun, Sangwon; Kong, Bo; Zhang, Yang; Guo, Grace; Xie, Wen; Ma, Jian; Kemper, Byron; Kemper, Jongsook Kim

    2018-02-07

    Phosphatidylcholines (PC) and S-adenosylmethionine (SAM) are critical determinants of hepatic lipid levels, but how their levels are regulated is unclear. Here, we show that Pemt and Gnmt, key one-carbon cycle genes regulating PC/SAM levels, are downregulated after feeding, leading to decreased PC and increased SAM levels, but these effects are blunted in small heterodimer partner (SHP)-null or FGF15-null mice. Further, aryl hydrocarbon receptor (AhR) is translocated into the nucleus by insulin/PKB signaling in the early fed state and induces Pemt and Gnmt expression. This induction is blocked by FGF15 signaling-activated SHP in the late fed state. Adenoviral-mediated expression of AhR in obese mice increases PC levels and exacerbates steatosis, effects that are blunted by SHP co-expression or Pemt downregulation. PEMT, AHR, and PC levels are elevated in simple steatosis patients, but PC levels are robustly reduced in steatohepatitis-fibrosis patients. This study identifies AhR and SHP as new physiological regulators of PC/SAM levels.

  14. Effect of TBT and PAHs on CYP1A, AhR and Vitellogenin Gene Expression in the Japanese Eel, Anguilla japonica.

    Science.gov (United States)

    Choi, Min Seop; Kwon, Se Ryun; Choi, Seong Hee; Kwon, Hyuk Chu

    2012-12-01

    Gene expressions of cytochrome P4501A (CYP1A), aryl hydrocarbon receptor (AhR) and vitellogenin (Vg) by endocrine disruptors, benzo[α]pyrene (B[a]P) and tributyltin (TBT) were examined in cultured eel hepatocytes which were isolated from eels treated previously with B[a]P (10 mg/kg) or estradiol-17β (20 mg/kg) in vivo, and the relationship between CYP1A, AhR and Vg genes were studied. When the cultured eel hepatocytes were treated with B[a]P (10(-6)-10(-5) M) the gene expressions of CYP1A and AhR were enhanced in a concentration-dependent manner. However, when treated with TBT (10(-9)-10(-5) M) the gene expressions of CYP1A and AhR were suppressed at high concentrations (10(-6)-10(-5) M), while having no effects at low concentrations (10(-9)-10(-7) M). Gene expression of Vg was also suppressed by TBT in a concentration-dependent manner in cultured eel hepatocytes which was previously treated in vivo with estradiol-17β.

  15. Breast cancer stem-like cells are inhibited by a non-toxic aryl hydrocarbon receptor agonist.

    Directory of Open Access Journals (Sweden)

    Gérald J Prud'homme

    2010-11-01

    Full Text Available Cancer stem cells (CSCs have increased resistance to cancer chemotherapy. They can be enriched as drug-surviving CSCs (D-CSCs by growth with chemotherapeutic drugs, and/or by sorting of cells expressing CSC markers such as aldehyde dehydrogenase-1 (ALDH. CSCs form colonies in agar, mammospheres in low-adherence cultures, and tumors following xenotransplantation in Scid mice. We hypothesized that tranilast, a non-toxic orally active drug with anti-cancer activities, would inhibit breast CSCs.We examined breast cancer cell lines or D-CSCs generated by growth of these cells with mitoxantrone. Tranilast inhibited colony formation, mammosphere formation and stem cell marker expression. Mitoxantrone-selected cells were enriched for CSCs expressing stem cell markers ALDH, c-kit, Oct-4, and ABCG2, and efficient at forming mammospheres. Tranilast markedly inhibited mammosphere formation by D-CSCs and dissociated formed mammospheres, at pharmacologically relevant concentrations. It was effective against D-CSCs of both HER-2+ and triple-negative cell lines. Tranilast was also effective in vivo, since it prevented lung metastasis in mice injected i.v. with triple-negative (MDA-MB-231 mitoxantrone-selected cells. The molecular targets of tranilast in cancer have been unknown, but here we demonstrate it is an aryl hydrocarbon receptor (AHR agonist and this plays a key role. AHR is a transcription factor activated by 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD, polycyclic aromatic hydrocarbons and other ligands. Tranilast induced translocation of the AHR to the nucleus and stimulated CYP1A1 expression (a marker of AHR activation. It inhibited binding of the AHR to CDK4, which has been linked to cell-cycle arrest. D-CSCs expressed higher levels of the AHR than other cells. Knockdown of the AHR with siRNA, or blockade with an AHR antagonist, entirely abrogated the anti-proliferative and anti-mammosphere activity of tranilast. Thus, the anti-cancer effects of

  16. The effects of polycyclic aromatic hydrocarbons on the immune system of fish: A review

    International Nuclear Information System (INIS)

    Reynaud, S.; Deschaux, P.

    2006-01-01

    Polycyclic aromatic hydrocarbons are an important class of environmental pollutants that are known to be carcinogenic and immunotoxic. This review summarizes the diverse literature on the effects of these pollutants on innate and acquired immunity in fish and the mechanism of PAH-induced immunotoxicity. Among innate immune parameters, many authors have focused on macrophage activities in fish exposed to polycyclic aromatic hydrocarbons. Macrophage respiratory burst appears especially sensitive to polycyclic aromatic hydrocarbons. Among acquired immune parameters, lymphocyte proliferation appears highly sensitive to polycyclic aromatic hydrocarbon exposure. However, the effects of polycyclic aromatic hydrocarbons on both specific and non-specific immunity are contradictory and depend on the mode of exposure, the dose used or the species studied. In contrast to mammals, fewer studies have been done in fish to determine the mechanism of polycyclic aromatic hydrocarbon-induced toxicity. This phenomenon seems to implicate different intracellular mechanisms such as metabolism by cytochrome P4501A, binding to the Ah-receptor, or increased intracellular calcium. Advances in basic knowledge of fish immunity should lead to improvements in monitoring fish health and predicting the impact of polycyclic aromatic hydrocarbons on fish populations, which is a fundamental ecotoxicological goal

  17. The effects of polycyclic aromatic hydrocarbons on the immune system of fish: A review

    Energy Technology Data Exchange (ETDEWEB)

    Reynaud, S. [Laboratoire d' Ecologie Alpine. UMR CNRS 5553. Universite Joseph Fourier. BP 53. 38041 Grenoble cedex 9 (France) and Laboratory of General and Comparative Immunophysiology, Science Teaching and Research Unit, 123, av. Albert Thomas, 87060 Limoges (France)]. E-mail: stephane.reynaud@ujf-grenoble.fr; Deschaux, P. [Laboratory of General and Comparative Immunophysiology, Science Teaching and Research Unit, 123, av. Albert Thomas, 87060 Limoges (France)

    2006-05-01

    Polycyclic aromatic hydrocarbons are an important class of environmental pollutants that are known to be carcinogenic and immunotoxic. This review summarizes the diverse literature on the effects of these pollutants on innate and acquired immunity in fish and the mechanism of PAH-induced immunotoxicity. Among innate immune parameters, many authors have focused on macrophage activities in fish exposed to polycyclic aromatic hydrocarbons. Macrophage respiratory burst appears especially sensitive to polycyclic aromatic hydrocarbons. Among acquired immune parameters, lymphocyte proliferation appears highly sensitive to polycyclic aromatic hydrocarbon exposure. However, the effects of polycyclic aromatic hydrocarbons on both specific and non-specific immunity are contradictory and depend on the mode of exposure, the dose used or the species studied. In contrast to mammals, fewer studies have been done in fish to determine the mechanism of polycyclic aromatic hydrocarbon-induced toxicity. This phenomenon seems to implicate different intracellular mechanisms such as metabolism by cytochrome P4501A, binding to the Ah-receptor, or increased intracellular calcium. Advances in basic knowledge of fish immunity should lead to improvements in monitoring fish health and predicting the impact of polycyclic aromatic hydrocarbons on fish populations, which is a fundamental ecotoxicological goal.

  18. ITE, a novel endogenous nontoxic aryl hydrocarbon receptor ligand, efficiently suppresses EAU and T-cell-mediated immunity.

    Science.gov (United States)

    Nugent, Lindsey F; Shi, Guangpu; Vistica, Barbara P; Ogbeifun, Osato; Hinshaw, Samuel J H; Gery, Igal

    2013-11-13

    Ligands for aryl hydrocarbon receptor (AHR), such as dioxins, are highly toxic. One such ligand, TCDD, was found to exert potent immunosuppressive capacities in mice developing pathogenic autoimmune processes, including EAU, but its toxicity makes it unusable for humans. A recently identified endogenous AHR ligand, ITE, is also immunosuppressive, but is nontoxic and could therefore be useful for therapy in humans. Here, we tested ITE for its capacity to inhibit EAU and related immune responses. EAU was induced in B10.A mice by immunization with interphotoreceptor retinoid-binding protein (IRBP; 40 μg) in CFA. Treatment with ITE was by daily intraperitoneal injection of 0.2 mg. Disease severity was assessed by both fundoscopy and histological examination. Draining lymph node cells were tested for proliferation by thymidine uptake and for cytokine production and release by ELISA. In addition, the intracellular expression of cytokines and Foxp3 was determined by flow cytometry. Serum antibodies were measured by ELISA. Treatment with ITE efficiently inhibited the development of EAU in mice, as well as the cellular immune responses against IRBP and PPD. ITE treatment inhibited the expansion of both Th1 and Th17 subpopulations, as well as their release of the signature cytokines, IFN-gamma and IL-17. The treatment moderately increased, however, the proportion of Foxp3 expressing T-regulatory cells. Antibody production was not affected by the treatment. ITE, an endogenous AHR ligand, efficiently inhibits EAU development and related cellular immune responses. Being nontoxic, ITE may be considered for treatment of pathogenic immunity in humans.

  19. ITE, A Novel Endogenous Nontoxic Aryl Hydrocarbon Receptor Ligand, Efficiently Suppresses EAU and T-Cell–Mediated Immunity

    Science.gov (United States)

    Nugent, Lindsey F.; Shi, Guangpu; Vistica, Barbara P.; Ogbeifun, Osato; Hinshaw, Samuel J. H.; Gery, Igal

    2013-01-01

    Purpose. Ligands for aryl hydrocarbon receptor (AHR), such as dioxins, are highly toxic. One such ligand, TCDD, was found to exert potent immunosuppressive capacities in mice developing pathogenic autoimmune processes, including EAU, but its toxicity makes it unusable for humans. A recently identified endogenous AHR ligand, ITE, is also immunosuppressive, but is nontoxic and could therefore be useful for therapy in humans. Here, we tested ITE for its capacity to inhibit EAU and related immune responses. Methods. EAU was induced in B10.A mice by immunization with interphotoreceptor retinoid-binding protein (IRBP; 40 μg) in CFA. Treatment with ITE was by daily intraperitoneal injection of 0.2 mg. Disease severity was assessed by both fundoscopy and histological examination. Draining lymph node cells were tested for proliferation by thymidine uptake and for cytokine production and release by ELISA. In addition, the intracellular expression of cytokines and Foxp3 was determined by flow cytometry. Serum antibodies were measured by ELISA. Results. Treatment with ITE efficiently inhibited the development of EAU in mice, as well as the cellular immune responses against IRBP and PPD. ITE treatment inhibited the expansion of both Th1 and Th17 subpopulations, as well as their release of the signature cytokines, IFN-gamma and IL-17. The treatment moderately increased, however, the proportion of Foxp3 expressing T-regulatory cells. Antibody production was not affected by the treatment. Conclusions. ITE, an endogenous AHR ligand, efficiently inhibits EAU development and related cellular immune responses. Being nontoxic, ITE may be considered for treatment of pathogenic immunity in humans. PMID:24150760

  20. Aryl hydrocarbon receptor activation by 2,3,7,8-tetrachlorodibenzo-p-dioxin impairs human B lymphopoiesis

    International Nuclear Information System (INIS)

    Li, Jinpeng; Phadnis-Moghe, Ashwini S.; Crawford, Robert B.; Kaminski, Norbert E.

    2017-01-01

    The homeostasis of peripheral B cell compartment requires lifelong B lymphopoiesis from hematopoietic stem cells (HSC). As a result, the B cell repertoire is susceptible to disruptions of hematopoiesis. Increasing evidence, primarily from rodent models, shows that the aryl hydrocarbon receptor (AHR) regulates hematopoiesis. To study the effects of persistent AHR activation on human B cell development, a potent AHR agonist and known environmental contaminant, 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) was utilized. An in vitro B cell development model system was established by co-culturing human cord blood-derived HSCs with irradiated human primary bone marrow stromal cells. Using this in vitro model, we found that TCDD significantly suppressed the total number of hematopoietic stem and progenitor cells (HSPC) in a concentration-dependent manner. Cell death analysis demonstrated that the decrease in cell number was not due to cytotoxicity by TCDD. In addition, TCDD markedly decreased CD34 expression on HSPCs. Structure-activity relationship studies using dioxin congeners demonstrated a correlation between the relative AHR binding affinity and the magnitude of decrease in the number of HSPCs and CD34 expression, suggesting that AHR mediates the observed TCDD-elicited changes in HSPCs. Moreover, a significant reduction in lineage committed B cell-derived from HSCs was observed in the presence of TCDD, indicating impairment of human B cell development. Similar effects of TCDD were observed regardless of the use of stromal cells in cultures indicating a direct effect of TCDD on HSCs. Collectively, we demonstrate that AHR activation by TCDD on human HSCs impairs early stages of human B lymphopoiesis.

  1. Aromatic Hydrocarbon Receptor Suppresses Prostate Cancer Bone Metastasis Cells-Induced Vasculogenesis of Endothelial Progenitor Cells under Hypoxia

    Directory of Open Access Journals (Sweden)

    Shuai Huang

    2016-07-01

    Full Text Available Background/Aims: Hypoxia leads to the development of neovascularization in solid tumor by regulating VEGF expression. Aromatic hydrocarbon receptor (AHR, a receptor for dioxin-like compounds, functions as a transcription factor through dimerization with hypoxia-inducible factors 1β (HIF-1β and inhibits the secretion of vascular endothelial growth factor (VEGF. The purpose of this study was to explore whether AHR can suppress hypoxia-induced VEGF production in prostate bone metastasis cells and repress neovascularization in endothelial progenitor cells (EPCs, and, if so, through what mechanisms. Methods: PC-3 or LNCaP cells induced angiogenesis was detected by Matrigel-based tube formation assay, mRNA expression levels was measured by qRT-PCR, VEGF secretion level was determined by ELISA assay, respectively. Results: AHR activation inhibits hypoxia-induced adhesiveness and vasculogenesis of EPCs induced by PC-3 or LNCaP cells under hypoxia. Moreover, AHR activation suppressed hypoxia-induced VEGF production in PC-3 and LNCaP cells (48 ± 14% in PC-3, p = 0.000; 41 ± 14% in LNCaP, p = 0.000 by attenuating HIF-1α and HIF-1β level that in turn diminished the angiogenic ability of EPCs in vitro. Furthermore, we found the mRNA level of hypoxia-inducible factors 1α (HIF-1α (1.54 ± 0.13 fold in PC-3, p = 0.002, 1.62 ± 0.12 fold in LNCaP, p = 0.001 and HIF-1β (1.67 ± 0.23 fold in PC-3, p = 0.007; 1.75 ± 0.26 fold in LNCaP, p=0.008 were upregulated in prostate cancer bone metastasis PC-3 and LNCaP cell lines in response to hypoxia, and revealed that the regulation of VEGF by HIF-1α and HIF-1β was possibly mediated by the activation of phosphatidylinositol 3-kinase pathway. Conclusion: By providing a mechanistic insight into the modulation of neovascularization by AHR ligand, we suggest that AHR ligand has a strong potential of being a new therapeutic agent with applications in the field of bone metastatic prostate cancer.

  2. The aryl hydrocarbon receptor and estrogen receptor alpha differentially modulate nuclear factor erythroid-2-related factor 2 transactivation in MCF-7 breast cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Lo, Raymond; Matthews, Jason, E-mail: jason.matthews@utoronto.ca

    2013-07-15

    Nuclear factor erythroid-2-related factor 2 (NRF2; NFE2L2) plays an important role in mediating cellular protection against reactive oxygen species. NRF2 signaling is positively modulated by the aryl hydrocarbon receptor (AHR) but inhibited by estrogen receptor alpha (ERα). In this study we investigated the crosstalk among NRF2, AHR and ERα in MCF-7 breast cancer cells treated with the NRF2 activator sulforaphane (SFN), a dual AHR and ERα activator, 3,3′-diindolylmethane (DIM), 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) or 17β-estradiol (E2). SFN-dependent increases in NADPH-dependent oxidoreductase 1 (NQO1) and heme oxygenase I (HMOX1) mRNA levels were significantly reduced after co-treatment with E2. E2-dependent repression of NQO1 and HMOX1 was associated with increased ERα but reduced p300 recruitment and reduced histone H3 acetylation at both genes. In contrast, DIM + SFN or TCDD + SFN induced NQO1 and HMOX1 mRNA expression to levels higher than SFN alone, which was prevented by RNAi-mediated knockdown of AHR. DIM + SFN but not TCDD + SFN also induced recruitment of ERα to NQO1 and HMOX1. However, the presence of AHR at NQO1 and HMOX1 restored p300 recruitment and histone H3 acetylation, thereby reversing the ERα-dependent repression of NRF2. Taken together, our study provides further evidence of functional interplay among NRF2, AHR and ERα signaling pathways through altered p300 recruitment to NRF2-regulated target genes. - Highlights: • We examined crosstalk among ERα, AHR, and NRF2 in MCF-7 breast cancer cells. • AHR enhanced the mRNA expression levels of two NRF2 target genes – HMOX1 and NQO1. • ERα repressed HMOX1 and NQO1 expression via decreased histone acetylation. • AHR prevented ERα-dependent repression of HMOX1 and NQO1.

  3. The aryl hydrocarbon receptor and estrogen receptor alpha differentially modulate nuclear factor erythroid-2-related factor 2 transactivation in MCF-7 breast cancer cells

    International Nuclear Information System (INIS)

    Lo, Raymond; Matthews, Jason

    2013-01-01

    Nuclear factor erythroid-2-related factor 2 (NRF2; NFE2L2) plays an important role in mediating cellular protection against reactive oxygen species. NRF2 signaling is positively modulated by the aryl hydrocarbon receptor (AHR) but inhibited by estrogen receptor alpha (ERα). In this study we investigated the crosstalk among NRF2, AHR and ERα in MCF-7 breast cancer cells treated with the NRF2 activator sulforaphane (SFN), a dual AHR and ERα activator, 3,3′-diindolylmethane (DIM), 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) or 17β-estradiol (E2). SFN-dependent increases in NADPH-dependent oxidoreductase 1 (NQO1) and heme oxygenase I (HMOX1) mRNA levels were significantly reduced after co-treatment with E2. E2-dependent repression of NQO1 and HMOX1 was associated with increased ERα but reduced p300 recruitment and reduced histone H3 acetylation at both genes. In contrast, DIM + SFN or TCDD + SFN induced NQO1 and HMOX1 mRNA expression to levels higher than SFN alone, which was prevented by RNAi-mediated knockdown of AHR. DIM + SFN but not TCDD + SFN also induced recruitment of ERα to NQO1 and HMOX1. However, the presence of AHR at NQO1 and HMOX1 restored p300 recruitment and histone H3 acetylation, thereby reversing the ERα-dependent repression of NRF2. Taken together, our study provides further evidence of functional interplay among NRF2, AHR and ERα signaling pathways through altered p300 recruitment to NRF2-regulated target genes. - Highlights: • We examined crosstalk among ERα, AHR, and NRF2 in MCF-7 breast cancer cells. • AHR enhanced the mRNA expression levels of two NRF2 target genes – HMOX1 and NQO1. • ERα repressed HMOX1 and NQO1 expression via decreased histone acetylation. • AHR prevented ERα-dependent repression of HMOX1 and NQO1.

  4. Introducing the "TCDD-inducible AhR-Nrf2 gene battery".

    Science.gov (United States)

    Yeager, Ronnie L; Reisman, Scott A; Aleksunes, Lauren M; Klaassen, Curtis D

    2009-10-01

    2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) induces genes via the transcription factor aryl hydrocarbon receptor (AhR), including Cyp1a1, NAD(P)H:quinone oxidoreductase 1 (Nqo1), UDP-glucuronosyltransferase 1a6 (Ugt1a6), and glutathione S-transferase a1 (Gsta1). These genes are referred to as the "AhR gene battery." However, Nqo1 is also considered a prototypical target gene of the transcription factor nuclear factor erythroid 2-related factor 2 (Nrf2). In mice, TCDD induction of Nrf2 and Nrf2 target, Nqo1, is dependent on AhR, and thus TCDD induction of drug-processing genes may be routed through an AhR-Nrf2 sequence. There has been speculation that Nrf2 may be involved in the TCDD induction of drug-processing genes; however, the data are not definitive. Therefore, to address whether TCDD induction of Nqo1, Ugts, and Gsts is dependent on Nrf2, we conducted the definitive experiment by administering TCDD (50 mug/kg, ip) to Nrf2-null and wild-type (WT) mice and collecting livers 24 h later to quantify the mRNA of drug-processing genes. TCDD induction of Cyp1a1 and Ugt1a1 was similar in WT and Nrf2-null mice, whereas TCDD induction of Ugt1a5 and 1a9 was blunted in Nrf2-null mice. TCDD induced Nqo1, Ugt1a6, 2b34, 2b35, 2b36, UDP-glucuronic acid-synthesizing gene UDP-glucose dehydrogenase, and Gsta1, m1, m2, m3, m6, p2, t2, and microsomal Gst1 in WT mice but not in Nrf2-null mice. Therefore, the present study demonstrates the novel finding that Nrf2 is required for TCDD induction of classical AhR battery genes Nqo1, Ugt1a6, and Gsta1, as well as most Ugt and Gst isoforms in livers of mice.

  5. Integrated in silico and in vivo approaches to investigate effects of BDE-99 mediated by the nuclear receptors on developing zebrafish.

    Science.gov (United States)

    Zhang, Li; Jin, Yaru; Han, Zhihua; Liu, Hongling; Shi, Laihao; Hua, Xiaoxue; Doering, Jon A; Tang, Song; Giesy, John P; Yu, Hongxia

    2018-03-01

    One of the most abundant polybrominated diphenyl ethers (PBDEs) is 2,2',4,4',5-pentabromodiphenyl ether (BDE-99), which persists and potentially bioaccumulates in aquatic wildlife. Previous studies in mammals have shown that BDE-99 affects development and disrupts certain endocrine functions through signaling pathways mediated by nuclear receptors. However, fewer studies have investigated the potential of BDE-99 to interact with nuclear receptors in aquatic vertebrates such as fish. In the present study, interactions between BDE-99 and nuclear receptors were investigated by in silico and in vivo approaches. This PBDE was able to dock into the ligand-binding domain of zebrafish aryl hydrocarbon receptor 2 (AhR2) and pregnane X receptor (PXR). It had a significant effect on the transcriptional profiles of genes associated with AhR or PXR. Based on the developed cytoscape of all zebrafish genes, it was also inferred that AhR and PXR could interact via cross-talk. In addition, both the in silico and in vivo approaches found that BDE-99 affected peroxisome proliferator-activated receptor alpha (PPARα), glucocorticoid receptor, and thyroid receptor. Collectively, our results demonstrate for the first time detailed in silico evidence that BDE-99 can bind to and interact with zebrafish AhR and PXR. These findings can be used to elaborate the molecular mechanism of BDE-99 and guide more objective environmental risk assessments. Environ Toxicol Chem 2018;37:780-787. © 2017 SETAC. © 2017 SETAC.

  6. Knockout of the aryl hydrocarbon receptor results in distinct hepatic and renal phenotypes in rats and mice

    Energy Technology Data Exchange (ETDEWEB)

    Harrill, Joshua A. [The Hamner Institute for Health Sciences, Institute for Chemical Safety Sciences, RTP, NC 27709 (United States); Hukkanen, Renee R.; Lawson, Marie; Martin, Greg [The Dow Chemical Company, Midland, MI 48640 (United States); Gilger, Brian [North Carolina State University, College of Veterinary Medicine, Raleigh, NC 27606 (United States); Soldatow, Valerie [University of North Carolina, Department of Environmental Sciences and Engineering, Chapel Hill, NC 27599 (United States); LeCluyse, Edward L. [The Hamner Institute for Health Sciences, Institute for Chemical Safety Sciences, RTP, NC 27709 (United States); Budinsky, Robert A.; Rowlands, J. Craig [The Dow Chemical Company, Midland, MI 48640 (United States); Thomas, Russell S., E-mail: RThomas@thehamner.org [The Hamner Institute for Health Sciences, Institute for Chemical Safety Sciences, RTP, NC 27709 (United States)

    2013-10-15

    The aryl hydrocarbon receptor (AHR) is a ligand-activated transcription factor which plays a role in the development of multiple tissues and is activated by a large number of ligands, including 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). In order to examine the roles of the AHR in both normal biological development and response to environmental chemicals, an AHR knockout (AHR-KO) rat model was created and compared with an existing AHR-KO mouse. AHR-KO rats harboring either 2-bp or 29-bp deletion mutation in exon 2 of the AHR were created on the Sprague–Dawley genetic background using zinc-finger nuclease (ZFN) technology. Rats harboring either mutation type lacked expression of AHR protein in the liver. AHR-KO rats were also insensitive to thymic involution, increased hepatic weight and the induction of AHR-responsive genes (Cyp1a1, Cyp1a2, Cyp1b1, Ahrr) following acute exposure to 25 μg/kg TCDD. AHR-KO rats had lower basal expression of transcripts for these genes and also accumulated ∼ 30–45-fold less TCDD in the liver at 7 days post-exposure. In untreated animals, AHR-KO mice, but not AHR-KO rats, had alterations in serum analytes indicative of compromised hepatic function, patent ductus venosus of the liver and persistent hyaloid arteries in the eye. AHR-KO rats, but not AHR-KO mice, displayed pathological alterations to the urinary tract: bilateral renal dilation (hydronephrosis), secondary medullary tubular and uroepithelial degenerative changes and bilateral ureter dilation (hydroureter). The present data indicate that the AHR may play significantly different roles in tissue development and homeostasis and toxicity across rodent species. - Highlights: • An AHR knockout rat was generated on a Sprague–Dawley outbred background. • AHR-KO rats lack expression of AHR protein. • AHR-KO rats are insensitive to TCDD-mediated effects. • Data suggests difference in the role of AHR in tissue development of rats and mice. • Abnormalities in vascular

  7. Knockout of the aryl hydrocarbon receptor results in distinct hepatic and renal phenotypes in rats and mice

    International Nuclear Information System (INIS)

    Harrill, Joshua A.; Hukkanen, Renee R.; Lawson, Marie; Martin, Greg; Gilger, Brian; Soldatow, Valerie; LeCluyse, Edward L.; Budinsky, Robert A.; Rowlands, J. Craig; Thomas, Russell S.

    2013-01-01

    The aryl hydrocarbon receptor (AHR) is a ligand-activated transcription factor which plays a role in the development of multiple tissues and is activated by a large number of ligands, including 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). In order to examine the roles of the AHR in both normal biological development and response to environmental chemicals, an AHR knockout (AHR-KO) rat model was created and compared with an existing AHR-KO mouse. AHR-KO rats harboring either 2-bp or 29-bp deletion mutation in exon 2 of the AHR were created on the Sprague–Dawley genetic background using zinc-finger nuclease (ZFN) technology. Rats harboring either mutation type lacked expression of AHR protein in the liver. AHR-KO rats were also insensitive to thymic involution, increased hepatic weight and the induction of AHR-responsive genes (Cyp1a1, Cyp1a2, Cyp1b1, Ahrr) following acute exposure to 25 μg/kg TCDD. AHR-KO rats had lower basal expression of transcripts for these genes and also accumulated ∼ 30–45-fold less TCDD in the liver at 7 days post-exposure. In untreated animals, AHR-KO mice, but not AHR-KO rats, had alterations in serum analytes indicative of compromised hepatic function, patent ductus venosus of the liver and persistent hyaloid arteries in the eye. AHR-KO rats, but not AHR-KO mice, displayed pathological alterations to the urinary tract: bilateral renal dilation (hydronephrosis), secondary medullary tubular and uroepithelial degenerative changes and bilateral ureter dilation (hydroureter). The present data indicate that the AHR may play significantly different roles in tissue development and homeostasis and toxicity across rodent species. - Highlights: • An AHR knockout rat was generated on a Sprague–Dawley outbred background. • AHR-KO rats lack expression of AHR protein. • AHR-KO rats are insensitive to TCDD-mediated effects. • Data suggests difference in the role of AHR in tissue development of rats and mice. • Abnormalities in vascular

  8. Acquired and innate immunity to polyaromatic hydrocarbons

    International Nuclear Information System (INIS)

    Yusuf, Nabiha; Timares, Laura; Seibert, Megan D.; Xu Hui; Elmets, Craig A.

    2007-01-01

    Polyaromatic hydrocarbons are ubiquitous environmental pollutants that are potent mutagens and carcinogens. Researchers have taken advantage of these properties to investigate the mechanisms by which chemicals cause cancer of the skin and other organs. When applied to the skin of mice, several carcinogenic polyaromatic hydrocarbons have also been shown to interact with the immune system, stimulating immune responses and resulting in the development of antigen-specific T-cell-mediated immunity. Development of cell-mediated immunity is strain-specific and is governed by Ah receptor genes and by genes located within the major histocompatibility complex. CD8 + T cells are effector cells in the response, whereas CD4 + T cells down-regulate immunity. Development of an immune response appears to have a protective effect since strains of mice that develop a cell-mediated immune response to carcinogenic polyaromatic hydrocarbons are less likely to develop tumors when subjected to a polyaromatic hydrocarbon skin carcinogenesis protocol than mice that fail to develop an immune response. With respect to innate immunity, TLR4-deficient C3H/HeJ mice are more susceptible to polyaromatic hydrogen skin tumorigenesis than C3H/HeN mice in which TLR4 is normal. These findings support the hypothesis that immune responses, through their interactions with chemical carcinogens, play an active role in the prevention of chemical skin carcinogenesis during the earliest stages. Efforts to augment immune responses to the chemicals that cause tumors may be a productive approach to the prevention of tumors caused by these agents

  9. Insulin/insulin like growth factors in cancer: new roles for the aryl hydrocarbon receptor, tumor resistance mechanisms and new blocking strategies

    Directory of Open Access Journals (Sweden)

    Travis B Salisbury

    2015-02-01

    Full Text Available The insulin-like growth factor 1 receptor (IGF1R and the insulin receptor (IR are receptor tyrosine kinases (RTKs that are expressed in cancer cells. The results of different studies indicate that tumor proliferation and survival is dependent on the IGF1R and IR, and that their inhibition leads to reductions in proliferation and increases in cell death. Molecular targeting therapies that have been used in solid tumors include: anti-IGF1R antibodies, anti-IGF1/IGF2 antibodies and small molecule inhibitors that suppress IGF1R and IR kinase activity. New advances in the molecular basis of anti-IGF1R blocking antibodies reveal they are biased agonists and promote the binding of IGF1 to integrin β3 receptors in some cancer cells. Our recent reports indicate that pharmacological aryl hydrocarbon receptor (AHR ligands inhibit breast cancer cell responses to IGFs, suggesting that targeting AHR may have benefit in cancers whose proliferation and survival are dependent on insulin/IGF signaling. Novel aspects of IGF1R/IR in cancer, such as biased agonism, integrin β3 signaling, AHR and new therapeutic targeting strategies will be discussed.

  10. TCDD and a putative endogenous AhR ligand, ITE, elicit the same immediate changes in gene expression in mouse lung fibroblasts.

    Science.gov (United States)

    Henry, Ellen C; Welle, Stephen L; Gasiewicz, Thomas A

    2010-03-01

    The aryl hydrocarbon receptor (AhR), a ligand-dependent transcription factor, mediates toxicity of several classes of xenobiotics and also has important physiological roles in differentiation, reproduction, and immunity, although the endogenous ligand(s) mediating these functions is/are as yet unidentified. One candidate endogenous ligand, 2-(1'H-indolo-3'-carbonyl)-thiazole-4-carboxylic acid methyl ester (ITE), is a potent AhR agonist in vitro, activates the murine AhR in vivo, but does not induce toxicity. We hypothesized that ITE and the toxic ligand, 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), may modify transcription of different sets of genes to account for their different toxicity. To test this hypothesis, primary mouse lung fibroblasts were exposed to 0.5muM ITE, 0.2nM TCDD, or vehicle for 4 h, and total gene expression was evaluated using microarrays. After this short-term and low-dose treatment, several hundred genes were changed significantly, and the response to ITE and TCDD was remarkably similar, both qualitatively and quantitatively. Induced gene sets included the expected battery of AhR-dependent xenobiotic-metabolizing enzymes, as well as several sets that reflect the inflammatory role of lung fibroblasts. Real time quantitative RT-qPCR assay of several selected genes confirmed these microarray data and further suggested that there may be kinetic differences in expression between ligands. These data suggest that ITE and TCDD elicit an analogous change in AhR conformation such that the initial transcription response is the same. Furthermore, if the difference in toxicity between TCDD and ITE is mediated by differences in gene expression, then it is likely that secondary changes enabled by the persistent TCDD, but not by the shorter lived ITE, are responsible.

  11. Aryl hydrocarbon receptor–ligand axis mediates pulmonary fibroblast migration and differentiation through increased arachidonic acid metabolism

    International Nuclear Information System (INIS)

    Su, Hsiang-Han; Lin, Hsin-Ting; Suen, Jau-Ling; Sheu, Chau Chyun; Yokoyama, Kazunari K.; Huang, Shau-Ku; Cheng, Chih Mei

    2016-01-01

    Pulmonary fibroblast migration and differentiation are critical events in fibrogenesis; meanwhile, fibrosis characterizes the pathology of many respiratory diseases. The role of aryl hydrocarbon receptor (AhR), a unique cellular chemical sensor, has been suggested in tissue fibrosis, but the mechanisms through which the AhR-ligand axis influences the fibrotic process remain undefined. In this study, the potential impact of the AhR-ligand axis on pulmonary fibroblast migration and differentiation was analyzed using human primary lung fibroblasts HFL-1 and CCL-202 cells. Boyden chamber-based cell migration assay showed that activated AhR in HFL-1cells significantly enhanced cell migration in response to 2, 3, 7, 8-tetrachlorodibenzo-p-dioxin (TCDD), and a known AhR antagonist, CH223191, inhibited its migratory activity. Furthermore, the calcium mobilization and subsequent upregulated expression of arachidonic acid metabolizing enzymes, including cyclooxygenase2 (COX-2) and 5-lipoxygenase (5-LOX), were observed in TCDD-treated HFL-1 cells, concomitant with elevated levels of prostaglandin E2 (PGE2) and leukotriene B4 (LTB4) secretion. Also, significantly increased expression of α-smooth muscle actin α-SMA), a fibroblast differentiation marker, was also noted in TCDD-treated HFL-1 cells (p < 0.05), resulting in a dynamic change in cytoskeleton protein levels and an increase in the nuclear translocation of the myocardin-related transcription factor. Moreover, the enhanced levels of α-SMA expression and fibroblast migration induced by TCDD, PGE2 and LTB4 were abrogated by selective inhibitors for COX-2 and 5-LOX. Knockdown of AhR by siRNA Completely diminished intracellular calcium uptake and reduced α-SMA protein verified by promoter-reporter assays and chromatin immunoprecipitation. Taken together, our results suggested the importance of the AhR-ligand axis in fibroblast migration and differentiation through its capacity in enhancing arachidonic acid metabolism.

  12. Genomewide Analysis of Aryl Hydrocarbon Receptor Binding Targets Reveals an Extensive Array of Gene Clusters that Control Morphogenetic and Developmental Programs

    Science.gov (United States)

    Sartor, Maureen A.; Schnekenburger, Michael; Marlowe, Jennifer L.; Reichard, John F.; Wang, Ying; Fan, Yunxia; Ma, Ci; Karyala, Saikumar; Halbleib, Danielle; Liu, Xiangdong; Medvedovic, Mario; Puga, Alvaro

    2009-01-01

    Background The vertebrate aryl hydrocarbon receptor (AHR) is a ligand-activated transcription factor that regulates cellular responses to environmental polycyclic and halogenated compounds. The naive receptor is believed to reside in an inactive cytosolic complex that translocates to the nucleus and induces transcription of xenobiotic detoxification genes after activation by ligand. Objectives We conducted an integrative genomewide analysis of AHR gene targets in mouse hepatoma cells and determined whether AHR regulatory functions may take place in the absence of an exogenous ligand. Methods The network of AHR-binding targets in the mouse genome was mapped through a multipronged approach involving chromatin immunoprecipitation/chip and global gene expression signatures. The findings were integrated into a prior functional knowledge base from Gene Ontology, interaction networks, Kyoto Encyclopedia of Genes and Genomes pathways, sequence motif analysis, and literature molecular concepts. Results We found the naive receptor in unstimulated cells bound to an extensive array of gene clusters with functions in regulation of gene expression, differentiation, and pattern specification, connecting multiple morphogenetic and developmental programs. Activation by the ligand displaced the receptor from some of these targets toward sites in the promoters of xenobiotic metabolism genes. Conclusions The vertebrate AHR appears to possess unsuspected regulatory functions that may be potential targets of environmental injury. PMID:19654925

  13. Gene expression changes in human prostate carcinoma cells exposed to genotoxic and nongenotoxic aryl hydrocarbon receptor ligands

    Czech Academy of Sciences Publication Activity Database

    Hrubá, E.; Vondráček, Jan; Líbalová, Helena; Topinka, Jan; Bryja, Vítězslav; Souček, Karel; Machala, M.

    2011-01-01

    Roč. 206, č. 2 (2011), s. 178-188 ISSN 0378-4274 R&D Projects: GA ČR(CZ) GA310/07/0961; GA ČR(CZ) GA524/09/1337 Institutional research plan: CEZ:AV0Z50040507; CEZ:AV0Z50040702; CEZ:AV0Z50390512; CEZ:AV0Z50390703 Keywords : LNCaP cells * AhR ligands * WNT5A Subject RIV: BO - Biophysics Impact factor: 3.230, year: 2011

  14. Aromatic hydrocarbon receptor inhibits lysophosphatidic acid-induced vascular endothelial growth factor-A expression in PC-3 prostate cancer cells

    International Nuclear Information System (INIS)

    Wu, Pei-Yi; Lin, Yueh-Chien; Lan, Shun-Yan; Huang, Yuan-Li; Lee, Hsinyu

    2013-01-01

    Highlights: •LPA-induced VEGF-A expression was regulated by HIF-1α and ARNT. •PI3K mediated LPA-induced VEGF-A expression. •AHR signaling inhibited LPA-induced VEGF-A expression in PC-3 cells. -- Abstract: Lysophosphatidic acid (LPA) is a lipid growth factor with multiple biological functions and has been shown to stimulate cancer cell secretion of vascular endothelial growth factor-A (VEGF-A) and trigger angiogenesis. Hypoxia-inducible factor-1 (HIF-1), a heterodimer consisting of HIF-1α and HIF-1β (also known as aromatic hydrocarbon receptor nuclear translocator (ARNT)) subunits, is an important regulator of angiogenesis in prostate cancer (PC) through the enhancement of VEGF-A expression. In this study, we first confirmed the ability of LPA to induce VEGF-A expression in PC-3 cells and then validated that LPA-induced VEGF-A expression was regulated by HIF-1α and ARNT through phosphatidylinositol 3-kinase activation. Aromatic hydrocarbon receptor (AHR), a receptor for dioxin-like compounds, functions as a transcription factor through dimerization with ARNT and was found to inhibit prostate carcinogenesis and vanadate-induced VEGF-A production. Since ARNT is a common dimerization partner of AHR and HIF-1α, we hypothesized that AHR might suppress LPA-induced VEGF-A expression in PC-3 cells by competing with HIF-1α for ARNT. Here we demonstrated that overexpression and ligand activation of AHR inhibited HIF-1-mediated VEGF-A induction by LPA treatment of PC-3 cells. In conclusion, our results suggested that AHR activation may inhibit LPA-induced VEGF-A expression in PC-3 cells by attenuating HIF-1α signaling, and subsequently, suppressing angiogenesis and metastasis of PC. These results suggested that AHR presents a potential therapeutic target for the prevention of PC metastasis

  15. Aromatic hydrocarbons

    International Nuclear Information System (INIS)

    Roder, M.

    1985-01-01

    Papers dealing with radiolysis of aromatic hydrocarbons of different composition (from benzene to terphenyls and hydrocarbons with condensed rings) as well as their mixtures (with alkanes, alkenes, other aromatic hydrocarbons) are reviewed. High radiation stability of aromatic hydrocarbons in condensed phases associated with peculiarities of molecular structure of compounds is underlined. Mechanisms of radiolytic processes, vaues of product yields are considered

  16. Transcriptomic assessment of resistance to effects of an aryl hydrocarbon receptor (AHR agonist in embryos of Atlantic killifish (Fundulus heteroclitus from a marine Superfund site

    Directory of Open Access Journals (Sweden)

    Franks Diana G

    2011-05-01

    Full Text Available Abstract Background Populations of Atlantic killifish (Fundulus heteroclitus have evolved resistance to the embryotoxic effects of polychlorinated biphenyls (PCBs and other halogenated and nonhalogenated aromatic hydrocarbons that act through an aryl hydrocarbon receptor (AHR-dependent signaling pathway. The resistance is accompanied by reduced sensitivity to induction of cytochrome P450 1A (CYP1A, a widely used biomarker of aromatic hydrocarbon exposure and effect, but whether the reduced sensitivity is specific to CYP1A or reflects a genome-wide reduction in responsiveness to all AHR-mediated changes in gene expression is unknown. We compared gene expression profiles and the response to 3,3',4,4',5-pentachlorobiphenyl (PCB-126 exposure in embryos (5 and 10 dpf and larvae (15 dpf from F. heteroclitus populations inhabiting the New Bedford Harbor, Massachusetts (NBH Superfund site (PCB-resistant and a reference site, Scorton Creek, Massachusetts (SC; PCB-sensitive. Results Analysis using a 7,000-gene cDNA array revealed striking differences in responsiveness to PCB-126 between the populations; the differences occur at all three stages examined. There was a sizeable set of PCB-responsive genes in the sensitive SC population, a much smaller set of PCB-responsive genes in NBH fish, and few similarities in PCB-responsive genes between the two populations. Most of the array results were confirmed, and additional PCB-regulated genes identified, by RNA-Seq (deep pyrosequencing. Conclusions The results suggest that NBH fish possess a gene regulatory defect that is not specific to one target gene such as CYP1A but rather lies in a regulatory pathway that controls the transcriptional response of multiple genes to PCB exposure. The results are consistent with genome-wide disruption of AHR-dependent signaling in NBH fish.

  17. Atmospheric chlorinated polycyclic aromatic hydrocarbons in East Asia.

    Science.gov (United States)

    Kakimoto, Kensaku; Nagayoshi, Haruna; Konishi, Yoshimasa; Kajimura, Keiji; Ohura, Takeshi; Hayakawa, Kazuichi; Toriba, Akira

    2014-09-01

    This study estimates atmospheric concentrations of chlorinated polycyclic aromatic hydrocarbons (ClPAHs) and polycyclic aromatic hydrocarbons (PAHs) in East Asia using a Gas Chromatograph with High Resolution Mass Spectrometer (GC-HRMS). ClPAHs are ubiquitously generated from PAHs through substitution, and some ClPAHs show higher aryl hydrocarbon receptor (AhR)-mediated activities than their parent PAHs. Atmospheric particles were collected using a high-volume air sampler equipped with a quartz-fiber filter. We determined the ClPAH concentrations of atmospheric particles collected in Japan (Sapporo, Sagamihara, Kanazawa, and Kitakyushu), Korea (Busan), and China (Beijing). The concentrations of ClPAHs were highest in the winter Beijing sample, where the total mean concentration was approximately 15-70 times higher than in the winter samples from Japan and Korea. The concentrations of Σ19ClPAHs and Σ9PAHs were significantly correlated in the Kanazawa and the Busan samples. This indicates that within those cities ClPAHs and PAHs share the same origin, implying direct chlorination of parent PAHs. Toxic equivalent concentrations (TEQs) of the total ClPAHs and PAHs were lowest in Kanazawa in the summer, reaching 1.18 and 2610fg-TEQm(-3) respectively, and highest in Beijing in the winter, reaching 627 and 4240000fg-TEQm(-3) respectively. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Upregulation of FLG, LOR, and IVL Expression by Rhodiola crenulata Root Extract via Aryl Hydrocarbon Receptor: Differential Involvement of OVOL1

    Directory of Open Access Journals (Sweden)

    Akiko Hashimoto-Hachiya

    2018-06-01

    Full Text Available Rhodiola species are antioxidative, salubrious plants that are known to inhibit oxidative stress induced by ultraviolet and γ-radiation in epidermal keratinocytes. As certain phytochemicals activate aryl hydrocarbon receptors (AHR or OVO-like 1 (OVOL1 to upregulate the expression of epidermal barrier proteins such as filaggrin (FLG, loricrin (LOR, and involucrin (IVL, we investigated such regulation by Rhodiola crenulata root extract (RCE. We demonstrated that RCE induced FLG and LOR upregulation in an AHR-OVOL1-dependent fashion. However, RCE-mediated IVL upregulation was AHR-dependent but OVOL1-independent. Coordinated upregulation of skin barrier proteins by RCE via AHR may be beneficial in the management of barrier-disrupted inflammatory skin diseases such as atopic dermatitis.

  19. Simulation studies for wells AH-4bis/AH-17 and AH-18, Ahuachapan Geothermal Field

    Energy Technology Data Exchange (ETDEWEB)

    Monterrosa, Manuel Ernesto

    1996-01-24

    Well AH-4bis, at the Ahuachapan Geothermal Field is planned to be drilled on the same pad as the former AH-4. A simulation study was carried out for two casing dameters 13 5/8 and 9 5/8” in order to estimate its production and to know its economic feasibility. The simulation results indcate a high probability of production in the range of 7 Mwe, equivalent to 120 kg/s total mass flow rate, 1250 kJ/kg at 6 bar-a for the new well AH-4bis. Well AH- 17 is good producer, during 1991 after ten years of production, the well was shut-in due to silica scaling problems. A wellbore simulation was carried out in order to predict the new production conditions after the work-over, mainly to estimate the water flow rate in order to reduce the silica scaling. The results indicate a very low water flow rate. The match between the simulated and measured production curves after the work-over was successful. The well AH-18 is located at the southern part of the actual bore field. CEL is planning to expand the borefield at this area and it is neccessary to estimate the possible production condtions at that zone. The results indicate a high probabilty of production at that area. The power potential is estimated at 3.5 Mwe per well at WHP 6 bar-a and the wells will not require induction.

  20. AhR-dependent secretion of PDGF-BB by human classically activated macrophages exposed to DEP extracts stimulates lung fibroblast proliferation

    Energy Technology Data Exchange (ETDEWEB)

    Jaguin, Marie [UMR INSERM U1085, Institut de Recherche sur la Santé, l' Environnement et le Travail (IRSET), Université de Rennes 1, 2 Avenue du Pr Léon Bernard, 35043 Rennes Cedex (France); Fardel, Olivier [UMR INSERM U1085, Institut de Recherche sur la Santé, l' Environnement et le Travail (IRSET), Université de Rennes 1, 2 Avenue du Pr Léon Bernard, 35043 Rennes Cedex (France); Pôle Biologie, Centre Hospitalier Universitaire (CHU) Rennes, 2 rue Henri Le Guilloux, 35033 Rennes Cedex (France); Lecureur, Valérie, E-mail: valerie.lecureur@univ-rennes1.fr [UMR INSERM U1085, Institut de Recherche sur la Santé, l' Environnement et le Travail (IRSET), Université de Rennes 1, 2 Avenue du Pr Léon Bernard, 35043 Rennes Cedex (France)

    2015-06-15

    Lung diseases are aggravated by exposure to diesel exhaust particles (DEPs) found in air pollution. Macrophages are thought to play a crucial role in lung immune response to these pollutants, even if the mechanisms involved remain incompletely characterized. In the present study, we demonstrated that classically and alternative human macrophages (MΦ) exhibited increased secretion of PDGF-B in response to DEP extract (DEPe). This occurred via aryl hydrocarbon receptor (AhR)-activation because DEPe-induced PDGF-B overexpression was abrogated after AhR expression knock-down by RNA interference, in both M1 and M2 polarizing MΦ. In addition, TCDD and benzo(a)pyrene, two potent AhR ligands, also significantly increased mRNA expression of PDGF-B in M1 MΦ, whereas some weak ligands of AhR did not. We next evaluated the impact of conditioned media (CM) from MΦ culture exposed to DEPe or of recombinant PDGF-B onto lung fibroblast proliferation. The tyrosine kinase inhibitor, AG-1295, prevents phosphorylations of PDGF-Rβ, AKT and ERK1/2 and the proliferation of MRC-5 fibroblasts induced by recombinant PDGF-B and by CM from M1 polarizing MΦ, strongly suggesting that the PDGF-BB secreted by DEPe-exposed MΦ is sufficient to activate the PDGF-Rβ pathway of human lung fibroblasts. In conclusion, we demonstrated that human MΦ, whatever their polarization status, secrete PDGF-B in response to DEPe and that PDGF-B is a target gene of AhR. Therefore, induction of PDGF-B by DEP may participate in the deleterious effects towards human health triggered by such environmental urban contaminants. - Highlights: • PDGF-B expression and secretion are increased by DEPe exposure in human M1 and M2 MΦ. • DEPe-induced PDGF-B expression is aryl-hydrocarbon-dependent. • DEPe-exposed M1 MΦ secrete sufficient PDGF-B to increase lung fibroblast proliferation.

  1. Comparative liver accumulation of dioxin-like compounds in sheep and cattle: Possible role of AhR-mediated xenobiotic metabolizing enzymes.

    Science.gov (United States)

    Girolami, F; Spalenza, V; Benedetto, A; Manzini, L; Badino, P; Abete, M C; Nebbia, C

    2016-11-15

    PCDDs, PCDFs, and PCBs are persistent organic pollutants (POPs) that accumulate in animal products and may pose serious health problems. Those able to bind the aryl hydrocarbon receptor (AhR), eliciting a plethora of toxic responses, are defined dioxin-like (DL) compounds, while the remainders are called non-DL (NDL). An EFSA opinion has highlighted the tendency of ovine liver to specifically accumulate DL-compounds to a greater extent than any other farmed ruminant species. To examine the possible role in such an accumulation of xenobiotic metabolizing enzymes (XME) involved in DL-compound biotransformation, liver samples were collected from ewes and cows reared in an area known for low dioxin contamination. A related paper reported that sheep livers had about 5-fold higher DL-compound concentrations than cattle livers, while the content of the six marker NDL-PCBs did not differ between species. Specimens from the same animals were subjected to gene expression analysis for AhR, AhR nuclear translocator (ARNT) and AhR-dependent oxidative and conjugative pathways; XME protein expression and activities were also investigated. Both AhR and ARNT mRNA levels were about 2-fold lower in ovine samples and the same occurred for CYP1A1 and CYP1A2, being approximately 3- and 9-fold less expressed in sheep compared to cattle, while CYP1B1 could be detectable in cattle only. The results of the immunoblotting and catalytic activity (most notably EROD) measurements of the CYP1A family enzymes were in line with the gene expression data. By contrast, phase II enzyme expression and activities in sheep were higher (UGT1A) or similar (GSTA1, NQO1) to those recorded in cattle. The overall low expression of CYP1 family enzymes in the sheep is in line with the observed liver accumulation of DL-compounds and is expected to affect the kinetics and the dynamics of other POPs such as many polycyclic aromatic hydrocarbons, as well as of toxins (e.g. aflatoxins) or drugs (e.g. benzimidazole

  2. Airborne urban particles (Milan winter-PM2.5) cause mitotic arrest and cell death: Effects on DNA, mitochondria, AhR binding and spindle organization

    Energy Technology Data Exchange (ETDEWEB)

    Gualtieri, Maurizio [Applied Cell Biology and Particles Effects, Department of Environmental Science, University Milano-Bicocca, Piazza della Scienza 1, 20126 Milano (Italy); Division of Environmental Medicine, Norwegian Institute of Public Health, P.O. Box 4404 Nydalen, N-0403 Oslo (Norway); Ovrevik, Johan [Division of Environmental Medicine, Norwegian Institute of Public Health, P.O. Box 4404 Nydalen, N-0403 Oslo (Norway); Mollerup, Steen [Section for Toxicology, National Institute of Occupational Health, N-0033 Oslo (Norway); Asare, Nana [Division of Environmental Medicine, Norwegian Institute of Public Health, P.O. Box 4404 Nydalen, N-0403 Oslo (Norway); Longhin, Eleonora [Applied Cell Biology and Particles Effects, Department of Environmental Science, University Milano-Bicocca, Piazza della Scienza 1, 20126 Milano (Italy); Dahlman, Hans-Jorgen [Division of Environmental Medicine, Norwegian Institute of Public Health, P.O. Box 4404 Nydalen, N-0403 Oslo (Norway); Camatini, Marina [Applied Cell Biology and Particles Effects, Department of Environmental Science, University Milano-Bicocca, Piazza della Scienza 1, 20126 Milano (Italy); Centre Research POLARIS, Department of Environmental Science, University Milano-Bicocca, Piazza della Scienza 1, 20126 Milano (Italy); Holme, Jorn A., E-mail: jorn.holme@fhi.no [Division of Environmental Medicine, Norwegian Institute of Public Health, P.O. Box 4404 Nydalen, N-0403 Oslo (Norway)

    2011-08-01

    Highlights: {yields} PM2.5 induces mitotic arrest in BEAS-2B cells. {yields} PM2.5 induces DNA damage and activates DNA damage response. {yields} AhR regulated genes (Cyp1A1, Cyp1B1 and AhRR) are upregulated after PM exposure. {yields} Mitotic spindle assembly is perturbed in PM exposed cells. - Abstract: Airborne particulate matter (PM) is considered to be an important contributor to lung diseases. In the present study we report that Milan winter-PM2.5 inhibited proliferation in human bronchial epithelial cells (BEAS-2B) by inducing mitotic arrest. The cell cycle arrest was followed by an increase in mitotic-apoptotic cells, mitotic slippage and finally an increase in 'classical' apoptotic cells. Exposure to winter-PM10 induced only a slight effect which may be due to the presence of PM2.5 in this fraction while pure combustion particles failed to disturb mitosis. Fewer cells expressing the mitosis marker phospho-histone H3 compared to cells with condensed chromosomes, suggest that PM2.5 induced premature mitosis. PM2.5 was internalized into the cells and often localized in laminar organelles, although particles without apparent plasma membrane covering were also seen. In PM-containing cells mitochondria and lysosomes were often damaged, and in mitotic cells fragmented chromosomes often appeared. PM2.5 induced DNA strands breaks and triggered a DNA-damage response characterized by increased phosphorylation of ATM, Chk2 and H2AX; as well as induced a marked increase in expression of the aryl hydrocarbon receptor (AhR)-regulated genes, CYP1A1, CYP1B1 and AhRR. Furthermore, some disturbance of the organization of microtubules was indicated. It is hypothesized that the induced mitotic arrest and following cell death was due to a premature chromosome condensation caused by a combination of DNA, mitochondrial and spindle damage.

  3. Characterization of AhR agonists reveals antagonistic activity in European herring gull (Larus argentatus) eggs.

    Science.gov (United States)

    Muusse, Martine; Christensen, Guttorm; Gomes, Tânia; Kočan, Anton; Langford, Katherine; Tollefsen, Knut Erik; Vaňková, Lenka; Thomas, Kevin V

    2015-05-01

    European herring gull (Larus argentatus) eggs from two Norwegian islands, Musvær in the south east and Reiaren in Northern Norway, were screened for dioxins, furans, and dioxin-like and selected non-dioxin-like polychlorinated biphenyls (PCBs), and subjected to non-target analysis to try to identify the aryl hydrocarbon receptor (AhR) agonists, responsible for elevated levels measured using the dioxin responsive chemically activated luciferase expression (DR-CALUX) assay. Eggs from Musvær contained chemically calculated toxic equivalent (WHO TEQ) levels of between 109 and 483 pg TEQ/g lw, and between 82 and 337 pg TEQ/g lw was determined in eggs from Reiaren. In particular PCB126 contributed highly to the total TEQ (69-82%). In 19 of the 23 samples the calculated WHO TEQ was higher than the TEQCALUX. Using CALUX specific relative effect potencies (REPs), the levels were lower at between 77 and 292 pg/g lw in eggs from Musvær and between 55 and 223 pg/g lw in eggs from Reiaren, which was higher than the TEQCALUX in 16 of the 23 samples. However, the means of the REP values and the TEQCALUX were not significantly different. This suggests the presence of compounds that can elicit antagonist effects, with a low binding affinity to the AhR. Non-target analysis identified the presence of hexachlorobenzene (HCB) (quantified at 9.6-185 pg/g lw) but neither this compound nor high concentrations of PCB126 and non-dioxin-like PCBs could explain the differences between the calculated TEQ or REP values and the TEQCALUX. Even though, for most AhR agonists, the sensitivity of herring gulls is not known, the reported levels can be considered to represent a risk for biological effects in the developing embryo, compared to LC50 values in chicken embryos. For human consumers of herring gull eggs, these eggs contain TEQ levels up to four times higher than the maximum tolerable weekly intake. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. AhR- and ER-mediated activities in human blood samples collected from PCB-contaminated and background region in Slovakia

    Energy Technology Data Exchange (ETDEWEB)

    Pliskova, M. [Veterinary Researcch Institute, Brno (Czech Republic); Canton, R.F.; Duursen, M.B.M. van [Utrecht Univ. (NL). Institute for Risk Assessment Sciences (IRAS)] (and others)

    2004-09-15

    Endocrine disruption mediated through activation of aryl hydrocarbon receptor (AhR) and estrogen receptor (ER) by polychlorinated biphenyls (PCBs) and other persistent organic pollutants (POPs) has been studied extensively both in vivo and in vitro. Non-ortho- and mono-ortho-substituted polychlorinated biphenyls (PCBs) are potent AhR agonists therefore, increased dioxin-like activity of complex blood samples might reflect an increased exposure to PCBs. The induction of expression of CYP1A1 and CYP1B1 in different tissues, including lymphocytes, also depends on activation of AhR and it could be useful as a potential biomarker of exposure to dioxin-like compounds. Using various in vivo and in vitro models, the exposure to PCBs or hydroxy-PCBs has been reported to lead to either induction of ER-mediated activity or to an antiestrogenic effect associated with a suppression of estradiol-induced ER-dependent gene expression. Nevertheless, relative (anti)estrogenic potencies of a large set of prevalent environmental PCBs have not been yet compared in a single bioassay. A cross-talk between AhR and ER has been suggested to lead to a suppression of ER-mediated gene expression. Therefore, presence of dioxin-like compounds in blood could potentially suppress the ER-mediated activity. Additionally, AhR-dependent induction of CYP1A1 and especially CYP1B1, two enzymes involved in oxidative metabolism of estradiol and other estrogens, might enhance the metabolism of estradiol and it has been suggested to cause a potential depression of estrogen levels in the body. The aim of the present study was to determine dioxin-like, estrogenic and antiestrogenic activities in human blood samples collected in two Eastern Slovakia regions differently polluted with PCBs using established in vitro bioassays. We also studied mRNA expression of CYP1A1 and 1B1 in lymphocytes and the genotypes of CYP1B1 as possible biomarkers of exposure for PCBs and related compounds. The biological data obtained

  5. Identification of aryl hydrocarbon receptor binding targets in mouse hepatic tissue treated with 2,3,7,8-tetrachlorodibenzo-p-dioxin

    International Nuclear Information System (INIS)

    Lo, Raymond; Celius, Trine; Forgacs, Agnes L.; Dere, Edward; MacPherson, Laura; Harper, Patricia; Zacharewski, Timothy; Matthews, Jason

    2011-01-01

    Genome-wide, promoter-focused ChIP-chip analysis of hepatic aryl hydrocarbon receptor (AHR) binding sites was conducted in 8-week old female C57BL/6 treated with 30 μg/kg/body weight 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) for 2 h and 24 h. These studies identified 1642 and 508 AHR-bound regions at 2 h and 24 h, respectively. A total of 430 AHR-bound regions were common between the two time points, corresponding to 403 unique genes. Comparison with previous AHR ChIP-chip studies in mouse hepatoma cells revealed that only 62 of the putative target genes overlapped with the 2 h AHR-bound regions in vivo. Transcription factor binding site analysis revealed an over-representation of aryl hydrocarbon response elements (AHREs) in AHR-bound regions with 53% (2 h) and 68% (24 h) of them containing at least one AHRE. In addition to AHREs, E2f-Myc activator motifs previously implicated in AHR function, as well as a number of other motifs, including Sp1, nuclear receptor subfamily 2 factor, and early growth response factor motifs were also identified. Expression microarray studies identified 133 unique genes differentially regulated after 4 h treatment with TCDD. Of which, 39 were identified as AHR-bound genes at 2 h. Ingenuity Pathway Analysis on the 39 AHR-bound TCDD responsive genes identified potential perturbation in biological processes such as lipid metabolism, drug metabolism, and endocrine system development as a result of TCDD-mediated AHR activation. Our findings identify direct AHR target genes in vivo, highlight in vitro and in vivo differences in AHR signaling and show that AHR recruitment does not necessarily result in changes in target gene expression. -- Highlights: ► ChIP-chip analysis of hepatic AHR binding after 2 h and 24 h of TCDD. ► We identified 1642 and 508 AHR-bound regions at 2 h and 24 h. ► 430 regions were common to both time points and highly enriched with AHREs. ► Only 62 putative target regions overlapped AHR-bound regions in

  6. Identification of aryl hydrocarbon receptor binding targets in mouse hepatic tissue treated with 2,3,7,8-tetrachlorodibenzo-p-dioxin

    Energy Technology Data Exchange (ETDEWEB)

    Lo, Raymond; Celius, Trine [Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario (Canada); Forgacs, Agnes L. [Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI (United States); Center for Integrative Toxicology, Michigan State University, East Lansing, MI (United States); Dere, Edward [Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI (United States); MacPherson, Laura [Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario (Canada); Harper, Patricia [Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario (Canada); Research Institute, The Hospital for Sick Children, Toronto, Ontario (Canada); Zacharewski, Timothy [Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI (United States); Center for Integrative Toxicology, Michigan State University, East Lansing, MI (United States); Matthews, Jason, E-mail: jason.matthews@utoronto.ca [Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario (Canada)

    2011-11-15

    Genome-wide, promoter-focused ChIP-chip analysis of hepatic aryl hydrocarbon receptor (AHR) binding sites was conducted in 8-week old female C57BL/6 treated with 30 {mu}g/kg/body weight 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) for 2 h and 24 h. These studies identified 1642 and 508 AHR-bound regions at 2 h and 24 h, respectively. A total of 430 AHR-bound regions were common between the two time points, corresponding to 403 unique genes. Comparison with previous AHR ChIP-chip studies in mouse hepatoma cells revealed that only 62 of the putative target genes overlapped with the 2 h AHR-bound regions in vivo. Transcription factor binding site analysis revealed an over-representation of aryl hydrocarbon response elements (AHREs) in AHR-bound regions with 53% (2 h) and 68% (24 h) of them containing at least one AHRE. In addition to AHREs, E2f-Myc activator motifs previously implicated in AHR function, as well as a number of other motifs, including Sp1, nuclear receptor subfamily 2 factor, and early growth response factor motifs were also identified. Expression microarray studies identified 133 unique genes differentially regulated after 4 h treatment with TCDD. Of which, 39 were identified as AHR-bound genes at 2 h. Ingenuity Pathway Analysis on the 39 AHR-bound TCDD responsive genes identified potential perturbation in biological processes such as lipid metabolism, drug metabolism, and endocrine system development as a result of TCDD-mediated AHR activation. Our findings identify direct AHR target genes in vivo, highlight in vitro and in vivo differences in AHR signaling and show that AHR recruitment does not necessarily result in changes in target gene expression. -- Highlights: Black-Right-Pointing-Pointer ChIP-chip analysis of hepatic AHR binding after 2 h and 24 h of TCDD. Black-Right-Pointing-Pointer We identified 1642 and 508 AHR-bound regions at 2 h and 24 h. Black-Right-Pointing-Pointer 430 regions were common to both time points and highly enriched with

  7. Polycyclic aromatic hydrocarbons reciprocally regulate IL-22 and IL-17 cytokines in peripheral blood mononuclear cells from both healthy and asthmatic subjects.

    Directory of Open Access Journals (Sweden)

    Coline Plé

    Full Text Available Pollution, including polycyclic aromatic hydrocarbons (PAH, may contribute to increased prevalence of asthma. PAH can bind to the Aryl hydrocarbon Receptor (AhR, a transcription factor involved in Th17/Th22 type polarization. These cells produce IL17A and IL-22, which allow neutrophil recruitment, airway smooth muscle proliferation and tissue repair and remodeling. Increased IL-17 and IL-22 productions have been associated with asthma. We hypothesized that PAH might affect, through their effects on AhR, IL-17 and IL-22 production in allergic asthmatics. Activated peripheral blood mononuclear cells (PBMCs from 16 nonallergic nonasthmatic (NA and 16 intermittent allergic asthmatic (AA subjects were incubated with PAH, and IL-17 and IL-22 productions were assessed. At baseline, activated PBMCs from AA exhibited an increased IL-17/IL-22 profile compared with NA subjects. Diesel exhaust particle (DEP-PAH and Benzo[a]Pyrene (B[a]P stimulation further increased IL-22 but decreased IL-17A production in both groups. The PAH-induced IL-22 levels in asthmatic patients were significantly higher than in healthy subjects. Among PBMCs, PAH-induced IL-22 expression originated principally from single IL-22- but not from IL-17- expressing CD4 T cells. The Th17 transcription factors RORA and RORC were down regulated, whereas AhR target gene CYP1A1 was upregulated. IL-22 induction by DEP-PAH was mainly dependent upon AhR whereas IL-22 induction by B[a]P was dependent upon activation of PI3K and JNK. Altogether, these data suggest that DEP-PAH and B[a]P may contribute to increased IL22 production in both healthy and asthmatic subjects through mechanisms involving both AhR -dependent and -independent pathways.

  8. Evolutionary trends of A(H1N1 influenza virus hemagglutinin since 1918.

    Directory of Open Access Journals (Sweden)

    Jun Shen

    2009-11-01

    Full Text Available The Pandemic (H1N1 2009 is spreading to numerous countries and causing many human deaths. Although the symptoms in humans are mild at present, fears are that further mutations in the virus could lead to a potentially more dangerous outbreak in subsequent months. As the primary immunity-eliciting antigen, hemagglutinin (HA is the major agent for host-driven antigenic drift in A(H3N2 virus. However, whether and how the evolution of HA is influenced by existing immunity is poorly understood for A(H1N1. Here, by analyzing hundreds of A(H1N1 HA sequences since 1918, we show the first evidence that host selections are indeed present in A(H1N1 HAs. Among a subgroup of human A(H1N1 HAs between 1918 approximately 2008, we found strong diversifying (positive selection at HA(1 156 and 190. We also analyzed the evolutionary trends at HA(1 190 and 225 that are critical determinants for receptor-binding specificity of A(H1N1 HA. Different A(H1N1 viruses appeared to favor one of these two sites in host-driven antigenic drift: epidemic A(H1N1 HAs favor HA(1 190 while the 1918 pandemic and swine HAs favor HA(1 225. Thus, our results highlight the urgency to understand the interplay between antigenic drift and receptor binding in HA evolution, and provide molecular signatures for monitoring future antigenically drifted 2009 pandemic and seasonal A(H1N1 influenza viruses.

  9. Cholera Toxin Induces Sustained Hyperexcitability in Myenteric, but Not Submucosal, AH Neurons in Guinea Pig Jejunum

    Directory of Open Access Journals (Sweden)

    Joel C. Bornstein

    2017-04-01

    Full Text Available Background and Aims: Cholera toxin (CT-induced hypersecretion requires activation of secretomotor pathways in the enteric nervous system (ENS. AH neurons, which have been identified as a population of intrinsic sensory neurons (ISNs, are a source of excitatory input to the secretomotor pathways. We therefore examined effects of CT in the intestinal lumen on myenteric and submucosal AH neurons.Methods: Isolated segments of guinea pig jejunum were incubated for 90 min with saline plus CT (12.5 μg/ml or CT + neurotransmitter antagonist, or CT + tetrodotoxin (TTX in their lumen. After washing CT away, submucosal or myenteric plexus preparations were dissected keeping circumferentially adjacent mucosa intact. Submucosal AH neurons were impaled adjacent to intact mucosa and myenteric AH neurons were impaled adjacent to, more than 5 mm from, and in the absence of intact mucosa. Neuronal excitability was monitored by injecting 500 ms current pulses through the recording electrode.Results: After CT pre-treatment, excitability of myenteric AH neurons adjacent to intact mucosa (n = 29 was greater than that of control neurons (n = 24, but submucosal AH neurons (n = 33, control n = 27 were unaffected. CT also induced excitability increases in myenteric AH neurons impaled distant from the mucosa (n = 6 or in its absence (n = 5. Coincubation with tetrodotoxin or SR142801 (NK3 receptor antagonist, but not SR140333 (NK1 antagonist or granisetron (5-HT3 receptor antagonist prevented the increased excitability induced by CT. Increased excitability was associated with a reduction in the characteristic AHP and an increase in the ADP of these neurons, but not a change in the hyperpolarization-activated inward current, Ih.Conclusions: CT increases excitability of myenteric, but not submucosal, AH neurons. This is neurally mediated and depends on NK3, but not 5-HT3 receptors. Therefore, CT may act to amplify the secretomotor response to CT via an increase in the

  10. Source apportionment of ambient non-methane hydrocarbons in Hong Kong: application of a principal component analysis/absolute principal component scores (PCA/APCS) receptor model.

    Science.gov (United States)

    Guo, H; Wang, T; Louie, P K K

    2004-06-01

    Receptor-oriented source apportionment models are often used to identify sources of ambient air pollutants and to estimate source contributions to air pollutant concentrations. In this study, a PCA/APCS model was applied to the data on non-methane hydrocarbons (NMHCs) measured from January to December 2001 at two sampling sites: Tsuen Wan (TW) and Central & Western (CW) Toxic Air Pollutants Monitoring Stations in Hong Kong. This multivariate method enables the identification of major air pollution sources along with the quantitative apportionment of each source to pollutant species. The PCA analysis identified four major pollution sources at TW site and five major sources at CW site. The extracted pollution sources included vehicular internal engine combustion with unburned fuel emissions, use of solvent particularly paints, liquefied petroleum gas (LPG) or natural gas leakage, and industrial, commercial and domestic sources such as solvents, decoration, fuel combustion, chemical factories and power plants. The results of APCS receptor model indicated that 39% and 48% of the total NMHCs mass concentrations measured at CW and TW were originated from vehicle emissions, respectively. 32% and 36.4% of the total NMHCs were emitted from the use of solvent and 11% and 19.4% were apportioned to the LPG or natural gas leakage, respectively. 5.2% and 9% of the total NMHCs mass concentrations were attributed to other industrial, commercial and domestic sources, respectively. It was also found that vehicle emissions and LPG or natural gas leakage were the main sources of C(3)-C(5) alkanes and C(3)-C(5) alkenes while aromatics were predominantly released from paints. Comparison of source contributions to ambient NMHCs at the two sites indicated that the contribution of LPG or natural gas at CW site was almost twice that at TW site. High correlation coefficients (R(2) > 0.8) between the measured and predicted values suggested that the PCA/APCS model was applicable for estimation

  11. An Aryl Hydrocarbon Receptor from the Salamander Ambystoma mexicanum Exhibits Low Sensitivity to 2,3,7,8-Tetrachlorodibenzo-p-dioxin.

    Science.gov (United States)

    Shoots, Jenny; Fraccalvieri, Domenico; Franks, Diana G; Denison, Michael S; Hahn, Mark E; Bonati, Laura; Powell, Wade H

    2015-06-02

    Structural features of the aryl hydrocarbon receptor (AHR) can underlie species- and population-specific differences in its affinity for 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). These differences often explain variations in TCDD toxicity. Frogs are relatively insensitive to dioxin, and Xenopus AHRs bind TCDD with low affinity. Weak TCDD binding results from the combination of three residues in the ligand-binding domain: A354 and A370, and N325. Here we sought to determine whether this mechanism of weak TCDD binding is shared by other amphibian AHRs. We isolated an AHR cDNA from the Mexican axolotl (Ambystoma mexicanum). The encoded polypeptide contains identical residues at positions that confer low TCDD affinity to X. laevis AHRs (A364, A380, and N335), and homology modeling predicts they protrude into the binding cavity. Axolotl AHR bound one-tenth the TCDD of mouse AHR in velocity sedimentation analysis, and in transactivation assays, the EC50 for TCDD was 23 nM, similar to X. laevis AHR1β (27 nM) and greater than AHR containing the mouse ligand-binding domain (0.08 nM). Sequence, modeled structure, and function indicate that axolotl AHR binds TCDD weakly, predicting that A. mexicanum lacks sensitivity toTCDD toxicity. We hypothesize that this characteristic of axolotl and Xenopus AHRs arose in a common ancestor of the Caudata and Anura.

  12. Combination of hypomorphic mutations of the Drosophila homologues of aryl hydrocarbon receptor and nucleosome assembly protein family genes disrupts morphogenesis, memory and detoxification.

    Science.gov (United States)

    Kuzin, Boris A; Nikitina, Ekaterina A; Cherezov, Roman O; Vorontsova, Julia E; Slezinger, Mikhail S; Zatsepina, Olga G; Simonova, Olga B; Enikolopov, Grigori N; Savvateeva-Popova, Elena V

    2014-01-01

    Aryl hydrocarbon receptor is essential for biological responses to endogenous and exogenous toxins in mammals. Its Drosophila homolog spineless plays an important role in fly morphogenesis. We have previously shown that during morphogenesis spineless genetically interacts with CG5017 gene, which encodes a nucleosome assembly factor and may affect cognitive function of the fly. We now demonstrate synergistic interactions of spineless and CG5017 in pathways controlling oxidative stress response and long-term memory formation in Drosophila melanogaster. Oxidative stress was induced by low doses of X-ray irradiation of flies carrying hypomorphic mutation of spineless, mutation of CG5017, and their combination. To determine the sensitivity of these mutants to pharmacological modifiers of the irradiation effect, we irradiated flies growing on standard medium supplemented by radiosensitizer furazidin and radioprotector serotonin. The effects of irradiation were investigated by analyzing leg and antenna morphological structures and by using real-time PCR to measure mRNA expression levels for spineless, Cyp6g1 and Gst-theta genes. We also examined long-term memory in these mutants using conditioned courtship suppression paradigm. Our results show that the interaction of spineless and CG5017 is important for regulation of morphogenesis, long-term memory formation, and detoxification during oxidative stress. Since spineless and CG5017 are evolutionary conserved, these results must be considered when evaluating the risk of combining similar mutations in other organisms, including humans.

  13. Combination of hypomorphic mutations of the Drosophila homologues of aryl hydrocarbon receptor and nucleosome assembly protein family genes disrupts morphogenesis, memory and detoxification.

    Directory of Open Access Journals (Sweden)

    Boris A Kuzin

    Full Text Available Aryl hydrocarbon receptor is essential for biological responses to endogenous and exogenous toxins in mammals. Its Drosophila homolog spineless plays an important role in fly morphogenesis. We have previously shown that during morphogenesis spineless genetically interacts with CG5017 gene, which encodes a nucleosome assembly factor and may affect cognitive function of the fly. We now demonstrate synergistic interactions of spineless and CG5017 in pathways controlling oxidative stress response and long-term memory formation in Drosophila melanogaster. Oxidative stress was induced by low doses of X-ray irradiation of flies carrying hypomorphic mutation of spineless, mutation of CG5017, and their combination. To determine the sensitivity of these mutants to pharmacological modifiers of the irradiation effect, we irradiated flies growing on standard medium supplemented by radiosensitizer furazidin and radioprotector serotonin. The effects of irradiation were investigated by analyzing leg and antenna morphological structures and by using real-time PCR to measure mRNA expression levels for spineless, Cyp6g1 and Gst-theta genes. We also examined long-term memory in these mutants using conditioned courtship suppression paradigm. Our results show that the interaction of spineless and CG5017 is important for regulation of morphogenesis, long-term memory formation, and detoxification during oxidative stress. Since spineless and CG5017 are evolutionary conserved, these results must be considered when evaluating the risk of combining similar mutations in other organisms, including humans.

  14. Circadian clock gene aryl hydrocarbon receptor nuclear translocator-like polymorphisms are associated with seasonal affective disorder: An Indian family study.

    Science.gov (United States)

    Rajendran, Bhagya; Janakarajan, Veeramahali Natarajan

    2016-01-01

    Polymorphisms in aryl hydrocarbon receptor nuclear translocator-like (ARNTL) gene, the key component of circadian clock manifests circadian rhythm abnormalities. As seasonal affective disorder (SAD) is associated with disrupted circadian rhythms, the main objective of this study was to screen an Indian family with SAD for ARNTL gene polymorphisms. In this study, 30 members of close-knit family with SAD, 30 age- and sex-matched controls of the same caste with no prior history of psychiatric illness and 30 age- and sex-matched controls belonging to 17 different castes with no prior history of psychiatric illness were genotyped for five different single nucleotide polymorphisms (SNPs) in ARNTL gene by TaqMan allele-specific genotyping assay. Statistical significance was assessed by more powerful quasi-likelihood score test-XM. Most of the family members carried the risk alleles and we observed a highly significant SNP rs2279287 (A/G) in ARNTL gene with an allelic frequency of 0.75. Polymorphisms in ARNTL gene disrupt circadian rhythms causing SAD and genetic predisposition becomes more deleterious in the presence of adverse environment.

  15. Activation of the aryl hydrocarbon receptor is the major toxic mode of action of an organic extract of a reference urban dust particulate matter mixture: The role of polycyclic aromatic hydrocarbons

    Czech Academy of Sciences Publication Activity Database

    Andrysík, Zdeněk; Vondráček, Jan; Marvanová, S.; Ciganek, M.; Neča, J.; Pěnčíková, K.; Mahadevan, B.; Topinka, Jan; Baird, W.M.; Kozubík, Alois; Machala, M.

    2011-01-01

    Roč. 714, 1-2 (2011), s. 53-62 ISSN 0027-5107 R&D Projects: GA ČR(CZ) GA310/07/0961 Institutional research plan: CEZ:AV0Z50040507; CEZ:AV0Z50040702; CEZ:AV0Z50390512; CEZ:AV0Z50390703 Keywords : urban air pollution * PAHs * AhR Subject RIV: BO - Biophysics Impact factor: 2.850, year: 2011

  16. Kynurenine promotes the goblet cell differentiation of HT-29 colon carcinoma cells by modulating Wnt, Notch and AhR signals.

    Science.gov (United States)

    Park, Joo-Hung; Lee, Jeong-Min; Lee, Eun-Jin; Kim, Da-Jeong; Hwang, Won-Bhin

    2018-04-01

    Various amino acids regulate cell growth and differentiation. In the present study, we examined the ability of HT-29 cells to differentiate into goblet cells in RPMI and DMEM which are largely different in the amounts of numerous amino acids. Most of the HT-29 cells differentiated into goblet cells downregulating the stem cell marker Lgr5 when cultured in DMEM, but remained undifferentiated in RPMI. The goblet cell differentiation in DMEM was inhibited by 1-methyl-tryptophan (1-MT), an inhibitor of indoleamine 2,3 dioxygenase-1 which is the initial enzyme in tryptophan metabolism along the kynurenine (KN) pathway, whereas tryptophan and KN induced goblet cell differentiation in RPMI. The levels of Notch1 and its activation product Notch intracytoplasmic domain in HT-29 cells were lower in DMEM than those in RPMI and were increased by 1-MT in both media. HT-29 cells grown in both media expressed β-catenin at the same level on day 2 when goblet cell differentiation was not observed. β-catenin expression, which was increased by 1-MT in both media, was decreased by KN. DMEM reduced Hes1 expression while enhancing Hath1 expression. Finally, aryl hydrocarbon receptor (AhR) activation moderately induced goblet cell differentiation. Our results suggest that KN promotes goblet cell differentiation by regulating Wnt, Notch, and AhR signals and expression of Hes1 and Hath1.

  17. In vitro and in silico derived relative effect potencies of ah-receptor-mediated effects by PCDD/Fs and PCBs in rat, mouse, and guinea pig CALUX cell lines.

    Science.gov (United States)

    Ghorbanzadeh, Mehdi; van Ede, Karin I; Larsson, Malin; van Duursen, Majorie B M; Poellinger, Lorenz; Lücke-Johansson, Sandra; Machala, Miroslav; Pěnčíková, Kateřina; Vondráček, Jan; van den Berg, Martin; Denison, Michael S; Ringsted, Tine; Andersson, Patrik L

    2014-07-21

    For a better understanding of species-specific relative effect potencies (REPs), responses of dioxin-like compounds (DLCs) were assessed. REPs were calculated using chemical-activated luciferase gene expression assays (CALUX) derived from guinea pig, rat, and mouse cell lines. Almost all 20 congeners tested in the rodent cell lines were partial agonists and less efficacious than 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). For this reason, REPs were calculated for each congener using concentrations at which 20% of the maximal TCDD response was reached (REP20TCDD). REP20TCDD values obtained for PCDD/Fs were comparable with their toxic equivalency factors assigned by the World Health Organization (WHO-TEF), while those for PCBs were in general lower than the WHO-TEF values. Moreover, the guinea pig cell line was the most sensitive as indicated by the 20% effect concentrations of TCDD of 1.5, 5.6, and 11.0 pM for guinea pig, rat, and mouse cells, respectively. A similar response pattern was observed using multivariate statistical analysis between the three CALUX assays and the WHO-TEFs. The mouse assay showed minor deviation due to higher relative induction potential for 2,3,7,8-tetrachlorodibenzofuran and 2,3,4,6,7,8-hexachlorodibenzofuran and lower for 1,2,3,4,6,7,8-heptachlorodibenzofuran and 3,3',4,4',5-pentachlorobiphenyl (PCB126). 2,3,7,8-Tetrachlorodibenzofuran was more than two times more potent in the mouse assay as compared with that of rat and guinea pig cells, while measured REP20TCDD for PCB126 was lower in mouse cells (0.05) as compared with that of the guinea pig (0.2) and rat (0.07). In order to provide REP20TCDD values for all WHO-TEF assigned compounds, quantitative structure-activity relationship (QSAR) models were developed. The QSAR models showed that specific electronic properties and molecular surface characteristics play important roles in the AhR-mediated response. In silico derived REP20TCDD values were generally consistent with the WHO

  18. Petroleum hydrocarbons

    International Nuclear Information System (INIS)

    Farrington, J.W.; Teal, J.M.; Parker, P.L.

    1976-01-01

    Methods for analysis of petroleum hydrocarbons in marine samples are presented. Types of hydrocarbons present and their origins are discussed. Principles and methods of analysis are outlined. Infrared spectrometry, uv spectrometry, gas chromatography, mass spectroscopy, and carbon 14 measurements are described

  19. Assessment of energetic costs of AhR activation by β-naphthoflavone in rainbow trout (Oncorhynchus mykiss) hepatocytes using metabolic flux analysis

    International Nuclear Information System (INIS)

    Nault, Rance; Abdul-Fattah, Hiba; Mironov, Gleb G.; Berezovski, Maxim V.; Moon, Thomas W.

    2013-01-01

    Exposure to environmental contaminants such as activators of the aryl hydrocarbon receptor (AhR) leads to the induction of defense and detoxification mechanisms. While these mechanisms allow organisms to metabolize and excrete at least some of these environmental contaminants, it has been proposed that these mechanisms lead to significant energetic challenges. This study tests the hypothesis that activation of the AhR by the model agonist β-naphthoflavone (βNF) results in increased energetic costs in rainbow trout (Oncorhynchus mykiss) hepatocytes. To address this hypothesis, we employed traditional biochemical approaches to examine energy allocation and metabolism including the adenylate energy charge (AEC), protein synthesis rates, Na + /K + -ATPase activity, and enzyme activities. Moreover, we have used for the first time in a fish cell preparation, metabolic flux analysis (MFA) an in silico approach for the estimation of intracellular metabolic fluxes. Exposure of trout hepatocytes to 1 μM βNF for 48 h did not alter hepatocyte AEC, protein synthesis, or Na + /K + -ATPase activity but did lead to sparing of glycogen reserves and changes in activities of alanine aminotransferase and citrate synthase suggesting altered metabolism. Conversely, MFA did not identify altered metabolic fluxes, although we do show that the dynamic metabolism of isolated trout hepatocytes poses a significant challenge for this type of approach which should be considered in future studies. - Highlights: • Energetic costs of AhR activation by βNF was examined in rainbow trout hepatocytes. • Metabolic flux analysis was performed on a fish cell preparation for the first time. • Exposure to βNF led to sparing of glycogen reserves and altered enzyme activities. • Adenylate energy charge was maintained despite temporal changes in metabolism

  20. Assessment of energetic costs of AhR activation by β-naphthoflavone in rainbow trout (Oncorhynchus mykiss) hepatocytes using metabolic flux analysis

    Energy Technology Data Exchange (ETDEWEB)

    Nault, Rance, E-mail: naultran@msu.edu [Ottawa-Carleton Institute of Biology, Department of Biology and Centre for Advanced Research in Environmental Genomics, University of Ottawa, Ottawa, Ontario, K1N 6N5 (Canada); Abdul-Fattah, Hiba [Ottawa-Carleton Institute of Biology, Department of Biology and Centre for Advanced Research in Environmental Genomics, University of Ottawa, Ottawa, Ontario, K1N 6N5 (Canada); Mironov, Gleb G.; Berezovski, Maxim V. [Ottawa-Carleton Institute of Biology, Department of Biology and Centre for Advanced Research in Environmental Genomics, University of Ottawa, Ottawa, Ontario, K1N 6N5 (Canada); Department of Chemistry, University of Ottawa, Ottawa, Ontario, K1N 6N5 (Canada); Moon, Thomas W. [Ottawa-Carleton Institute of Biology, Department of Biology and Centre for Advanced Research in Environmental Genomics, University of Ottawa, Ottawa, Ontario, K1N 6N5 (Canada)

    2013-08-15

    Exposure to environmental contaminants such as activators of the aryl hydrocarbon receptor (AhR) leads to the induction of defense and detoxification mechanisms. While these mechanisms allow organisms to metabolize and excrete at least some of these environmental contaminants, it has been proposed that these mechanisms lead to significant energetic challenges. This study tests the hypothesis that activation of the AhR by the model agonist β-naphthoflavone (βNF) results in increased energetic costs in rainbow trout (Oncorhynchus mykiss) hepatocytes. To address this hypothesis, we employed traditional biochemical approaches to examine energy allocation and metabolism including the adenylate energy charge (AEC), protein synthesis rates, Na{sup +}/K{sup +}-ATPase activity, and enzyme activities. Moreover, we have used for the first time in a fish cell preparation, metabolic flux analysis (MFA) an in silico approach for the estimation of intracellular metabolic fluxes. Exposure of trout hepatocytes to 1 μM βNF for 48 h did not alter hepatocyte AEC, protein synthesis, or Na{sup +}/K{sup +}-ATPase activity but did lead to sparing of glycogen reserves and changes in activities of alanine aminotransferase and citrate synthase suggesting altered metabolism. Conversely, MFA did not identify altered metabolic fluxes, although we do show that the dynamic metabolism of isolated trout hepatocytes poses a significant challenge for this type of approach which should be considered in future studies. - Highlights: • Energetic costs of AhR activation by βNF was examined in rainbow trout hepatocytes. • Metabolic flux analysis was performed on a fish cell preparation for the first time. • Exposure to βNF led to sparing of glycogen reserves and altered enzyme activities. • Adenylate energy charge was maintained despite temporal changes in metabolism.

  1. Low-dose dioxins alter gene expression related to cholesterol biosynthesis, lipogenesis, and glucose metabolism through the aryl hydrocarbon receptor-mediated pathway in mouse liver

    International Nuclear Information System (INIS)

    Sato, Shoko; Shirakawa, Hitoshi; Tomita, Shuhei; Ohsaki, Yusuke; Haketa, Keiichi; Tooi, Osamu; Santo, Noriaki; Tohkin, Masahiro; Furukawa, Yuji; Gonzalez, Frank J.; Komai, Michio

    2008-01-01

    2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) is a common environmental contaminant. TCDD binds and activates the transcription factor aryl hydrocarbon receptor (AHR), leading to adverse biological responses via the alteration of the expression of various AHR target genes. Although small amounts of TCDD are consumed via contaminated daily foodstuffs and environmental exposures, the effects of low-dose TCDD on gene expression in animal tissues have not been clarified, while a number of genes affected by high-dose TCDD were reported. In this study, we comprehensively analyzed gene expression profiles in livers of C57BL/6N mice that were orally administered relatively low doses of TCDD (5, 50, or 500 ng/kg body weight (bw) day -1 ) for 18 days. The hepatic TCDD concentrations, measured by gas chromatography-mass spectrometry, were 1.2, 17, and 1063 pg toxicity equivalent quantity (TEQ)/g, respectively. The mRNA level of the cytochrome P450 CYP1A1 was significantly increased by treatment with only TCDD 500 ng/kg bw day -1 . DNA microarray and quantitative RT-PCR analyses revealed changes in the expression of genes involved in the circadian rhythm, cholesterol biosynthesis, fatty acid synthesis, and glucose metabolism in the liver with at all doses of TCDD employed. However, repression of expression of genes involved in energy metabolism was not observed in the livers of Ahr-null mice that were administered the same dose of TCDD. These results indicate that changes in gene expression by TCDD are mediated by AHR and that exposure to low-dose TCDD could affect energy metabolism via alterations of gene expression

  2. Aryl hydrocarbon receptor suppresses the osteogenesis of mesenchymal stem cells in collagen-induced arthritic mice through the inhibition of β-catenin

    Energy Technology Data Exchange (ETDEWEB)

    Tong, Yulong [Department of Immunology, School of Basic Medical Sciences, Capital Medical University, No. 10 Xitoutiao, You An Men, Beijing 100069 (China); Niu, Menglin [Department of Immunology, School of Basic Medical Sciences, Capital Medical University, No. 10 Xitoutiao, You An Men, Beijing 100069 (China); Department of Blood Transfusion, Peking University Cancer Hospital & Institute, No. 52 Fucheng Rd., Beijing 100142 (China); Du, Yuxuan; Mei, Wentong; Cao, Wei; Dou, Yunpeng [Department of Immunology, School of Basic Medical Sciences, Capital Medical University, No. 10 Xitoutiao, You An Men, Beijing 100069 (China); Yu, Haitao [Department of Clinical Laboratory, The First Hospital of Lanzhou University, Lanzhou, Gansu Province 730000 (China); Du, Xiaonan [Department of Immunology, School of Basic Medical Sciences, Capital Medical University, No. 10 Xitoutiao, You An Men, Beijing 100069 (China); Yuan, Huihui, E-mail: huihui_yuan@163.com [Department of Immunology, School of Basic Medical Sciences, Capital Medical University, No. 10 Xitoutiao, You An Men, Beijing 100069 (China); Zhao, Wenming, E-mail: zhao-wenming@163.com [Department of Immunology, School of Basic Medical Sciences, Capital Medical University, No. 10 Xitoutiao, You An Men, Beijing 100069 (China)

    2017-01-15

    The contributions of aryl hydrocarbon receptor (Ahr) to the pathogenesis of rheumatoid arthritis (RA), particularly bone loss, have not been clearly explored. The imbalance between osteoblasts and osteoclasts is a major reason for bone loss. The dysfunction of osteoblasts, which are derived from mesenchymal stem cells (MSCs), induced bone erosion occurs earlier and is characterized as more insidious. Here, we showed that the nuclear expression and translocation of Ahr were both significantly increased in MSCs from collagen-induced arthritis (CIA) mice. The enhanced Ahr suppressed the mRNA levels of osteoblastic markers including Alkaline phosphatase (Alp) and Runt-related transcription factor 2 (Runx2) in the differentiation of MSCs to osteoblasts in CIA. The 2, 3, 7, 8-tetrachlorodibenzo-p-dioxin (TCDD)-mediated activation of Ahr dose-dependently suppressed the expression of osteoblastic markers. In addition, the expression of β-catenin was reduced in CIA MSCs compared with control, and the TCDD-mediated activation of the Ahr significantly inhibited β-catenin expression. The Wnt3a-induced the activation of Wnt/β-catenin pathway partly rescued the osteogenesis decline induced by TCDD. Taken together, these results indicate that activated Ahr plays a negative role in CIA MSCs osteogenesis, possibly by suppressing the expression of β-catenin. - Highlights: • The Ahr pathway displays an activated profile in CIA MSCs. • The activation of Ahr suppresses osteogenesis in CIA MSCs. • TCDD suppresses osteogenesis in a dose-dependent manner. • The activation of Ahr inhibits β-catenin expression to exacerbate bone erosion.

  3. Familial Isolated Pituitary Adenomas (FIPA) and the Pituitary Adenoma Predisposition due to Mutations in the Aryl Hydrocarbon Receptor Interacting Protein (AIP) Gene

    Science.gov (United States)

    Aaltonen, Lauri A.; Daly, Adrian F.

    2013-01-01

    Pituitary adenomas are one of the most frequent intracranial tumors and occur with a prevalence of approximately 1:1000 in the developed world. Pituitary adenomas have a serious disease burden, and their management involves neurosurgery, biological therapies, and radiotherapy. Early diagnosis of pituitary tumors while they are smaller may help increase cure rates. Few genetic predictors of pituitary adenoma development exist. Recent years have seen two separate, complimentary advances in inherited pituitary tumor research. The clinical condition of familial isolated pituitary adenomas (FIPA) has been described, which encompasses the familial occurrence of isolated pituitary adenomas outside of the setting of syndromic conditions like multiple endocrine neoplasia type 1 and Carney complex. FIPA families comprise approximately 2% of pituitary adenomas and represent a clinical entity with homogeneous or heterogeneous pituitary adenoma types occurring within the same kindred. The aryl hydrocarbon receptor interacting protein (AIP) gene has been identified as causing a pituitary adenoma predisposition of variable penetrance that accounts for 20% of FIPA families. Germline AIP mutations have been shown to associate with the occurrence of large pituitary adenomas that occur at a young age, predominantly in children/adolescents and young adults. AIP mutations are usually associated with somatotropinomas, but prolactinomas, nonfunctioning pituitary adenomas, Cushing disease, and other infrequent clinical adenoma types can also occur. Gigantism is a particular feature of AIP mutations and occurs in more than one third of affected somatotropinoma patients. Study of pituitary adenoma patients with AIP mutations has demonstrated that these cases raise clinical challenges to successful treatment. Extensive research on the biology of AIP and new advances in mouse Aip knockout models demonstrate multiple pathways by which AIP may contribute to tumorigenesis. This review assesses

  4. Modulation of aryl hydrocarbon receptor target genes in circulating lymphocytes from dairy cows bred in a dioxin-like PCB contaminated area

    International Nuclear Information System (INIS)

    Girolami, Flavia; Spalenza, Veronica; Carletti, Monica; Sacchi, Paola; Rasero, Roberto; Nebbia, Carlo

    2013-01-01

    Animal productions (i.e. fish, eggs, milk and dairy products) represent the major source of exposure to dioxins, furans, and dioxin-like (DL) polychlorobiphenyls for humans. The negative effects of these highly toxic and persistent pollutants are mediated by the activation of the aryl hydrocarbon receptor (AHR) that elicits the transcriptional induction of several genes, including those involved in xenobiotic metabolism. Previously we demonstrated the presence and functioning of the AHR signaling pathway in primary cultures of bovine blood lymphocytes. The aim of the present study was to investigate by real time PCR the expression and the inducibility of selected target genes (i.e. AHR, AHR nuclear translocator (ARNT), AHR repressor, CYP1A1 and CYP1B1) in uncultured cells from dairy cows naturally exposed to DL-compounds. The study was carried out on two groups of animals bred in a highly polluted area and characterized by a different degree of contamination, as assessed by bulk milk TEQ values, and a control group reared in an industry free area. Bovine lymphocytes expressed only AHR, ARNT and CYP1B1 genes to a detectable level; moreover, only CYP1B1 expression appeared to be correlated to TEQ values, being higher in the most contaminated group, and decreasing along with animal decontamination. Finally, lymphocytes from exposed cows displayed a lower inducibility of both CYP1A1 and CYP1B1 after the in vitro treatment with a specific AHR ligand. In conclusion, our results indicate that DL-compound contaminated cows may display significant changes in AHR-target gene expression of circulating lymphocytes. - Highlights: ► The expression of AHR-target genes in blood bovine lymphocytes was evaluated. ► The lymphocyte CYP1B1 expression appears to be related to bulk milk TEQ values. ► Blood lymphocytes from dairy cows might represent a matrix for dioxin biomonitoring

  5. An Aryl Hydrocarbon Receptor-Mediated Amplification Loop That Enforces Cell Migration in ER−/PR−/Her2− Human Breast Cancer Cells

    Science.gov (United States)

    Novikov, Olga; Wang, Zhongyan; Stanford, Elizabeth A.; Parks, Ashley J.; Ramirez-Cardenas, Alejandra; Landesman, Esther; Laklouk, Israa; Sarita-Reyes, Carmen; Gusenleitner, Daniel; Li, Amy; Monti, Stefano; Manteiga, Sara; Lee, Kyongbum

    2016-01-01

    The endogenous ligand-activated aryl hydrocarbon receptor (AHR) plays an important role in numerous biologic processes. As the known number of AHR-mediated processes grows, so too does the importance of determining what endogenous AHR ligands are produced, how their production is regulated, and what biologic consequences ensue. Consequently, our studies were designed primarily to determine whether ER−/PR−/Her2− breast cancer cells have the potential to produce endogenous AHR ligands and, if so, how production of these ligands is controlled. We postulated that: 1) malignant cells produce tryptophan-derived AHR ligand(s) through the kynurenine pathway; 2) these metabolites have the potential to drive AHR-dependent breast cancer migration; 3) the AHR controls expression of a rate-limiting kynurenine pathway enzyme(s) in a closed amplification loop; and 4) environmental AHR ligands mimic the effects of endogenous ligands. Data presented in this work indicate that primary human breast cancers, and their metastases, express high levels of AHR and tryptophan-2,3-dioxygenase (TDO); representative ER−/PR−/Her2− cell lines express TDO and produce sufficient intracellular kynurenine and xanthurenic acid concentrations to chronically activate the AHR. TDO overexpression, or excess kynurenine or xanthurenic acid, accelerates migration in an AHR-dependent fashion. Environmental AHR ligands 2,3,7,8-tetrachlorodibenzo[p]dioxin and benzo[a]pyrene mimic this effect. AHR knockdown or inhibition significantly reduces TDO2 expression. These studies identify, for the first time, a positive amplification loop in which AHR-dependent TDO2 expression contributes to endogenous AHR ligand production. The net biologic effect of AHR activation by endogenous ligands, which can be mimicked by environmental ligands, is an increase in tumor cell migration, a measure of tumor aggressiveness. PMID:27573671

  6. An Aryl Hydrocarbon Receptor-Mediated Amplification Loop That Enforces Cell Migration in ER-/PR-/Her2- Human Breast Cancer Cells.

    Science.gov (United States)

    Novikov, Olga; Wang, Zhongyan; Stanford, Elizabeth A; Parks, Ashley J; Ramirez-Cardenas, Alejandra; Landesman, Esther; Laklouk, Israa; Sarita-Reyes, Carmen; Gusenleitner, Daniel; Li, Amy; Monti, Stefano; Manteiga, Sara; Lee, Kyongbum; Sherr, David H

    2016-11-01

    The endogenous ligand-activated aryl hydrocarbon receptor (AHR) plays an important role in numerous biologic processes. As the known number of AHR-mediated processes grows, so too does the importance of determining what endogenous AHR ligands are produced, how their production is regulated, and what biologic consequences ensue. Consequently, our studies were designed primarily to determine whether ER - /PR - /Her2 - breast cancer cells have the potential to produce endogenous AHR ligands and, if so, how production of these ligands is controlled. We postulated that: 1) malignant cells produce tryptophan-derived AHR ligand(s) through the kynurenine pathway; 2) these metabolites have the potential to drive AHR-dependent breast cancer migration; 3) the AHR controls expression of a rate-limiting kynurenine pathway enzyme(s) in a closed amplification loop; and 4) environmental AHR ligands mimic the effects of endogenous ligands. Data presented in this work indicate that primary human breast cancers, and their metastases, express high levels of AHR and tryptophan-2,3-dioxygenase (TDO); representative ER - /PR - /Her2 - cell lines express TDO and produce sufficient intracellular kynurenine and xanthurenic acid concentrations to chronically activate the AHR. TDO overexpression, or excess kynurenine or xanthurenic acid, accelerates migration in an AHR-dependent fashion. Environmental AHR ligands 2,3,7,8-tetrachlorodibenzo[p]dioxin and benzo[a]pyrene mimic this effect. AHR knockdown or inhibition significantly reduces TDO2 expression. These studies identify, for the first time, a positive amplification loop in which AHR-dependent TDO2 expression contributes to endogenous AHR ligand production. The net biologic effect of AHR activation by endogenous ligands, which can be mimicked by environmental ligands, is an increase in tumor cell migration, a measure of tumor aggressiveness. Copyright © 2016 by The Author(s).

  7. Immunological characterization of the aryl hydrocarbon receptor (AHR) knockout rat in the presence and absence of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD)

    International Nuclear Information System (INIS)

    Phadnis-Moghe, Ashwini S.; Chen, Weimin; Li, Jinpeng; Crawford, Robert B.; Bach, Anthony; D’Ingillo, Shawna; Kovalova, Natalia; Suarez-Martinez, Jose E.; Kaplan, Barbara L.F.; Harrill, Joshua A.; Budinsky, Robert; Rowlands, J. Craig; Thomas, Russell S.

    2016-01-01

    The aryl hydrocarbon receptor (AHR) has been extensively characterized for the essential role it plays in mediating the toxic responses elicited by 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). Despite similarities across animal species, species-specific differences exist in the profile of toxicity and sensitivity to TCDD owing, in part, to differences in the AHR. Newer reports have implicated the importance of AHR in the development and regulation of the immune system. Our present studies seek to further explore the essential role of AHR in lymphoid tissue composition, B cell function and the immunological responses after TCDD administration using the recently established AHR KO rats. Comprehensive immune cell phenotyping showed a decrease in the CD8 + T cell, CD11c + populations and an increase in NKT cells in 3-week-old AHR KO rats compared to the WT controls. The lipopolysaccharide-induced IgM response and proliferation was markedly suppressed in the WT but not in the AHR KO B cells in the presence of TCDD. However, the percentage of LPS-activated IgM + B cells was significantly higher in the AHR KO B cells as compared to that of WT suggesting the role of AHR in regulating the IgM response. The use of an AHR antagonist further alluded to the endogenous role of AHR in regulating B cell responses in the rat. Overall, the studies report for the first time, comprehensive immune cell phenotyping of the AHR KO rat and the endogenous role of AHR in the regulation of B cell function in the rat.

  8. Modulation of aryl hydrocarbon receptor target genes in circulating lymphocytes from dairy cows bred in a dioxin-like PCB contaminated area

    Energy Technology Data Exchange (ETDEWEB)

    Girolami, Flavia [Department of Animal Pathology, University of Turin, Via Leonardo da Vinci 44, 10095 Grugliasco (Italy); Spalenza, Veronica [Department of Animal Production, Epidemiology and Ecology, University of Turin, Via Leonardo da Vinci 44, 10095 Grugliasco (Italy); Carletti, Monica [Department of Animal Pathology, University of Turin, Via Leonardo da Vinci 44, 10095 Grugliasco (Italy); Sacchi, Paola [Department of Animal Production, Epidemiology and Ecology, University of Turin, Via Leonardo da Vinci 44, 10095 Grugliasco (Italy); Rasero, Roberto [Department of Animal Production, Epidemiology and Ecology, University of Turin, Via Leonardo da Vinci 44, 10095 Grugliasco (Italy); Nebbia, Carlo [Department of Animal Pathology, University of Turin, Via Leonardo da Vinci 44, 10095 Grugliasco (Italy)

    2013-04-15

    Animal productions (i.e. fish, eggs, milk and dairy products) represent the major source of exposure to dioxins, furans, and dioxin-like (DL) polychlorobiphenyls for humans. The negative effects of these highly toxic and persistent pollutants are mediated by the activation of the aryl hydrocarbon receptor (AHR) that elicits the transcriptional induction of several genes, including those involved in xenobiotic metabolism. Previously we demonstrated the presence and functioning of the AHR signaling pathway in primary cultures of bovine blood lymphocytes. The aim of the present study was to investigate by real time PCR the expression and the inducibility of selected target genes (i.e. AHR, AHR nuclear translocator (ARNT), AHR repressor, CYP1A1 and CYP1B1) in uncultured cells from dairy cows naturally exposed to DL-compounds. The study was carried out on two groups of animals bred in a highly polluted area and characterized by a different degree of contamination, as assessed by bulk milk TEQ values, and a control group reared in an industry free area. Bovine lymphocytes expressed only AHR, ARNT and CYP1B1 genes to a detectable level; moreover, only CYP1B1 expression appeared to be correlated to TEQ values, being higher in the most contaminated group, and decreasing along with animal decontamination. Finally, lymphocytes from exposed cows displayed a lower inducibility of both CYP1A1 and CYP1B1 after the in vitro treatment with a specific AHR ligand. In conclusion, our results indicate that DL-compound contaminated cows may display significant changes in AHR-target gene expression of circulating lymphocytes. - Highlights: ► The expression of AHR-target genes in blood bovine lymphocytes was evaluated. ► The lymphocyte CYP1B1 expression appears to be related to bulk milk TEQ values. ► Blood lymphocytes from dairy cows might represent a matrix for dioxin biomonitoring.

  9. Modulation of aryl hydrocarbon receptor target genes in circulating lymphocytes from dairy cows bred in a dioxin-like PCB contaminated area.

    Science.gov (United States)

    Girolami, Flavia; Spalenza, Veronica; Carletti, Monica; Sacchi, Paola; Rasero, Roberto; Nebbia, Carlo

    2013-04-15

    Animal productions (i.e. fish, eggs, milk and dairy products) represent the major source of exposure to dioxins, furans, and dioxin-like (DL) polychlorobiphenyls for humans. The negative effects of these highly toxic and persistent pollutants are mediated by the activation of the aryl hydrocarbon receptor (AHR) that elicits the transcriptional induction of several genes, including those involved in xenobiotic metabolism. Previously we demonstrated the presence and functioning of the AHR signaling pathway in primary cultures of bovine blood lymphocytes. The aim of the present study was to investigate by real time PCR the expression and the inducibility of selected target genes (i.e. AHR, AHR nuclear translocator (ARNT), AHR repressor, CYP1A1 and CYP1B1) in uncultured cells from dairy cows naturally exposed to DL-compounds. The study was carried out on two groups of animals bred in a highly polluted area and characterized by a different degree of contamination, as assessed by bulk milk TEQ values, and a control group reared in an industry free area. Bovine lymphocytes expressed only AHR, ARNT and CYP1B1 genes to a detectable level; moreover, only CYP1B1 expression appeared to be correlated to TEQ values, being higher in the most contaminated group, and decreasing along with animal decontamination. Finally, lymphocytes from exposed cows displayed a lower inducibility of both CYP1A1 and CYP1B1 after the in vitro treatment with a specific AHR ligand. In conclusion, our results indicate that DL-compound contaminated cows may display significant changes in AHR-target gene expression of circulating lymphocytes. Copyright © 2013 Elsevier B.V. All rights reserved.

  10. Temporal variability of Polycyclic Aromatic Hydrocarbons (PAHs) in a receptor site of the Puebla-Tlaxcala Valley

    Science.gov (United States)

    Padilla, Z. V.; Torres, R.; Ruiz Suarez, L.; Molina, L. T.

    2013-05-01

    This contribution documents the presence and possible origin of PAHs, their temporal concentration patterns and correlations with other air pollutants in the so-called Puebla-Tlaxcala valley. This valley is located to the east of the Mexico City Metropolitan Area and is a very populated region which suffers of air pollution problems. Emission sources of PAHs include open burning, industrial boilers, automobiles and trucks, but vehicle emissions vary significantly depending on the use of: fuel, engine type and catalytic converter. An important emission source in the Puebla-Tlaxcala region is wood burning for cooking. Therefore, it is expected to have contributions of PAHS from this type of sources. PAHs measurements were performed in an air pollution semi-rural receptor site (Chipilo) southwest the City of Puebla, using an aerosol photoelectric sensor (PAS 2000 CE) to measure the concentration of PAHs and a diffuser charger (DC 2000 CE) to evaluate the active surface (DC) of the particles. The measuring period included March and April of 2012 during the ozne season in central Mexico. The use of these two sensors in parallel has been identified as a fingerprint technique to identify different types of particles from several combustion processes and is a useful tool to identify quantitatively the major source of emissions, as well as to describe thephysical and chemical characteristics of the particles. Correlations between PAHs and DC, with NOx and CO, together with an analysis of atmospheric transport may approximate the possible origin of these particles. The coefficient PAHs / DC associated with backward trajectory analysis represents a tool to identify potential areas of emission. The correlation between PAHs and NOx emissions reflects association with diesel combustion, while the correlation between PAHs and CO, the combustion of gasoline. The results show that vehicle emissions are the major source of PAHs with an associated increase in the concentration of

  11. Comparative analysis of TCDD-induced AhR-mediated gene expression in human, mouse and rat primary B cells

    Energy Technology Data Exchange (ETDEWEB)

    Kovalova, Natalia, E-mail: kovalova@msu.edu [Department of Pharmacology and Toxicology, Michigan State University, Lansing, MI 48824 (United States); Institute for Integrative Toxicology, Michigan State University, Lansing, MI 48824 (United States); Nault, Rance, E-mail: naultran@msu.edu [Institute for Integrative Toxicology, Michigan State University, Lansing, MI 48824 (United States); Department of Biochemistry & Molecular Biology, Michigan State University, East Lansing, MI 48824 (United States); Crawford, Robert, E-mail: crawfo28@msu.edu [Institute for Integrative Toxicology, Michigan State University, Lansing, MI 48824 (United States); Zacharewski, Timothy R., E-mail: tzachare@msu.edu [Institute for Integrative Toxicology, Michigan State University, Lansing, MI 48824 (United States); Department of Biochemistry & Molecular Biology, Michigan State University, East Lansing, MI 48824 (United States); Kaminski, Norbert E., E-mail: kamins11@msu.edu [Department of Pharmacology and Toxicology, Michigan State University, Lansing, MI 48824 (United States); Institute for Integrative Toxicology, Michigan State University, Lansing, MI 48824 (United States)

    2017-02-01

    2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) is a persistent environmental pollutant that activates the aryl hydrocarbon receptor (AhR) resulting in altered gene expression. In vivo, in vitro, and ex vivo studies have demonstrated that B cells are directly impaired by TCDD, and are a sensitive target as evidenced by suppression of antibody responses. The window of sensitivity to TCDD-induced suppression of IgM secretion among mouse, rat and human B cells is similar. Specifically, TCDD must be present within the initial 12 h post B cell stimulation, indicating that TCDD disrupts early signaling network(s) necessary for B lymphocyte activation and differentiation. Therefore, we hypothesized that TCDD treatment across three different species (mouse, rat and human) triggers a conserved, B cell-specific mechanism that is involved in TCDD-induced immunosuppression. RNA sequencing (RNA-Seq) was used to identify B cell-specific orthologous genes that are differentially expressed in response to TCDD in primary mouse, rat and human B cells. Time course studies identified TCDD-elicited differential expression of 515 human, 2371 mouse and 712 rat orthologous genes over the 24-h period. 28 orthologs were differentially expressed in response to TCDD in all three species. Overrepresented pathways enriched in all three species included cytokine-cytokine receptor interaction, ECM-receptor interaction, focal adhesion, regulation of actin cytoskeleton and pathways in cancer. Differentially expressed genes functionally associated with cell-cell signaling in humans, immune response in mice, and oxidation reduction in rats. Overall, these results suggest that despite the conservation of the AhR and its signaling mechanism, TCDD elicits species-specific gene expression changes. - Highlights: • Kovalova TAAP Highlights Nov. 2016 • RNA-Seq identified TCDD-induced gene expression in PWM-activated primary B cells. • TCDD elicited differential expression of 515 human, 2371 mouse and 712

  12. Gene expression profiling of the Notch-AhR-IL22 axis at homeostasis and in response to tissue injury.

    Science.gov (United States)

    Weidenbusch, Marc; Rodler, Severin; Song, Shangqing; Romoli, Simone; Marschner, Julian A; Kraft, Franziska; Holderied, Alexander; Kumar, Santosh; Mulay, Shrikant R; Honarpisheh, Mohsen; Kumar Devarapu, Satish; Lech, Maciej; Anders, Hans-Joachim

    2017-12-22

    Notch and interleukin-22 (IL-22) signaling are known to regulate tissue homeostasis and respond to injury in humans and mice, and the induction of endogenous aryl hydrocarbon receptor (Ahr) ligands through Notch links the two pathways in a hierarchical fashion. However in adults, the species-, organ- and injury-specific gene expression of the Notch-AhR-IL22 axis components is unknown. We therefore performed gene expression profiling of DLL1, DLL3, DLL4, DLK1, DLK2, JAG1, JAG2, Notch1, Notch2, Notch3, Notch4, ADAM17/TNF-α ADAM metalloprotease converting enzyme (TACE), PSEN1, basigin (BSG)/CD147, RBP-J, HES1, HES5, HEY1, HEYL, AHR, ARNT, ARNT2, CYP1A1, CYP24A1, IL-22, IL22RA1, IL22RA2, IL10RB, and STAT3 under homeostatic conditions in ten mature murine and human organs. Additionally, the expression of these genes was assessed in murine models of acute sterile inflammation and progressive fibrosis. We show that there are organ-specific gene expression profiles of the Notch-AhR-IL22 axis in humans and mice. Although there is an overall interspecies congruency, specific differences between human and murine expression signatures do exist. In murine tissues with AHR/ARNT expression CYP1A1 and IL-22 were correlated with HES5 and HEYL expression, while in human tissues no such correlation was found. Notch and AhR signaling are involved in renal inflammation and fibrosis with specific gene expression changes in each model. Despite the presence of all Notch pathway molecules in the kidney and a model-specific induction of Notch ligands, IL-22 was only up-regulated in acute inflammation, but rapidly down-regulated during regeneration. This implies that for targeting injury responses, e.g. via IL-22, species-specific differences, injury type and time points have to be considered. © 2017 The Author(s).

  13. Aryl hydrocarbon receptors in urogenital sinus mesenchyme mediate the inhibition of prostatic epithelial bud formation by 2,3,7,8-tetrachlorodibenzo-p-dioxin

    International Nuclear Information System (INIS)

    Ko, Kinarm; Moore, Robert W.; Peterson, Richard E.

    2004-01-01

    In utero exposure of male C57BL/6 mice to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) prevents prostatic epithelial buds from forming in the ventral region of the urogenital sinus (UGS) and reduces the number of buds that form in the dorsolateral region. This inhibition of budding is aryl hydrocarbon receptor (AHR) dependent and appears to be the primary cause of lobe-specific prostate abnormalities in TCDD-exposed mice. TCDD can inhibit prostatic epithelial bud formation by acting directly on the UGS in vitro, but whether it does so via AHR in UGS mesenchyme, epithelium, or both was unknown. To address this issue, UGS mesenchyme and epithelium from gestation day (GD) 15 wild-type C57BL/6J male mice were isolated, recombined, and cultured in vitro for 5 days with 10 -8 M 5α-dihydrotestosterone (DHT) and either 10 -9 M TCDD or vehicle. Prostatic epithelial buds were viewed by light microscopy after removal of mesenchyme. Effects depended greatly on which portions of the mesenchyme were used: TCDD had little if any effect when whole UGS epithelium (UGE) was recombined with ventral plus dorsolateral mesenchyme, tended to reduce bud numbers in recombinants made with UGE and dorsolateral mesenchyme, and severely reduced bud numbers in recombinants made with UGE and ventral mesenchyme (VM). [VM + UGE] recombinants prepared from wild-type and AHR knockout (Ahr -/- ) mice were then cultured with DHT to determine the site of action of TCDD. AHR null mutation alone had no effect on budding. TCDD severely inhibited prostatic epithelial bud formation in recombinants that contained mesenchymal AHR, whereas bud formation was not inhibited by TCDD in recombinants lacking mesenchymal AHR, regardless of epithelial AHR status. These results demonstrate that UGS mesenchyme and not UGS epithelium is the site of action of TCDD. Therefore, the initial events responsible for abnormal UGS (and ultimately prostate) development occur within the UGS mesenchyme, and changes in gene expression

  14. New insights to the role of aryl hydrocarbon receptor in bone phenotype and in dioxin-induced modulation of bone microarchitecture and material properties

    International Nuclear Information System (INIS)

    Herlin, Maria; Finnilä, Mikko A.J.; Zioupos, Peter; Aula, Antti; Risteli, Juha; Miettinen, Hanna M.; Jämsä, Timo; Tuukkanen, Juha; Korkalainen, Merja; Håkansson, Helen; Viluksela, Matti

    2013-01-01

    Bone is a target for high affinity aryl hydrocarbon receptor (AHR) ligands, such as dioxins. Although bone morphology, mineral density and strength are sensitive endpoints of dioxin toxicity, less is known about effects on bone microarchitecture and material properties. This study characterizes TCDD-induced modulations of bone tissue, and the role of AHR in dioxin-induced bone toxicity and for normal bone phenotype. Six AHR-knockout (Ahr −/− ) and wild-type (Ahr +/+ ) mice of both genders were exposed to TCDD weekly for 10 weeks, at a total dose of 200 μg/kg bw. Bones were examined with micro-computed tomography, nanoindentation and biomechanical testing. Serum levels of bone remodeling markers were analyzed, and the expression of genes related to osteogenic differentiation was profiled using PCR array. In Ahr +/+ mice, TCDD-exposure resulted in harder bone matrix, thinner and more porous cortical bone, and a more compact trabecular bone compartment. Bone remodeling markers and altered expression of a number of osteogenesis related genes indicated imbalanced bone remodeling. Untreated Ahr −/− mice displayed a slightly modified bone phenotype as compared with untreated Ahr +/+ mice, while TCDD exposure caused only a few changes in bones of Ahr −/− mice. Part of the effects of both TCDD-exposure and AHR-deficiency were gender dependent. In conclusion, exposure of adult mice to TCDD resulted in harder bone matrix, thinner cortical bone, mechanically weaker bones and most notably, increased trabecular bone volume fraction in Ahr +/+ mice. AHR is involved in bone development of a normal bone phenotype, and is crucial for manifestation of TCDD-induced bone alterations. - Highlights: • TCDD disrupts bone remodeling resulting in altered cortical and trabecular bone. • In trabecular bone an anabolic effect is observed. • Cortical bone is thinner, more porous, harder, stiffer and mechanically weaker. • AHR ablation results in increased trabecular bone

  15. Mitochondrial-targeted aryl hydrocarbon receptor and the impact of 2,3,7,8-tetrachlorodibenzo-p-dioxin on cellular respiration and the mitochondrial proteome

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Hye Jin [Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824 (United States); Center for Mitochondrial Science and Medicine, Michigan State University, East Lansing, MI 48824 (United States); Dornbos, Peter [Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824 (United States); Institute for Integrative Toxicology, Michigan State University, East Lansing, MI 48824-1319 (United States); Steidemann, Michelle [Institute for Integrative Toxicology, Michigan State University, East Lansing, MI 48824-1319 (United States); Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI 48824 (United States); Dunivin, Taylor K. [Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI 48824 (United States); Rizzo, Mike [Institute for Integrative Toxicology, Michigan State University, East Lansing, MI 48824-1319 (United States); Cell and Molecular Biology Graduate Program, Michigan State University, East Lansing, MI 48824 (United States); LaPres, John J., E-mail: lapres@msu.edu [Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824 (United States); Center for Mitochondrial Science and Medicine, Michigan State University, East Lansing, MI 48824 (United States)

    2016-08-01

    The aryl hydrocarbon receptor (AHR) is a ligand-activated transcription factor within the Per-Arnt-Sim (PAS) domain superfamily. Exposure to the most potent AHR ligand, 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), is associated with various pathological effects including metabolic syndrome. While research over the last several years has demonstrated a role for oxidative stress and metabolic dysfunction in AHR-dependent TCDD-induced toxicity, the role of the mitochondria in this process has not been fully explored. Our previous research suggested that a portion of the cellular pool of AHR could be found in the mitochondria (mitoAHR). Using a protease protection assay with digitonin extraction, we have now shown that this mitoAHR is localized to the inter-membrane space (IMS) of the organelle. TCDD exposure induced a degradation of mitoAHR similar to that of cytosolic AHR. Furthermore, siRNA-mediated knockdown revealed that translocase of outer-mitochondrial membrane 20 (TOMM20) was involved in the import of AHR into the mitochondria. In addition, TCDD altered cellular respiration in an AHR-dependent manner to maintain respiratory efficiency as measured by oxygen consumption rate (OCR). Stable isotope labeling by amino acids in cell culture (SILAC) identified a battery of proteins within the mitochondrial proteome influenced by TCDD in an AHR-dependent manner. Among these, 17 proteins with fold changes ≥ 2 are associated with various metabolic pathways, suggesting a role of mitochondrial retrograde signaling in TCDD-mediated pathologies. Collectively, these studies suggest that mitoAHR is localized to the IMS and AHR-dependent TCDD-induced toxicity, including metabolic dysfunction, wasting syndrome, and hepatic steatosis, involves mitochondrial dysfunction. - Highlights: • The mitoAHR is localized in the mitochondrial intermembrane space. • TOMM20 participates in mitoAHR translocation. • AHR contributes to the maintenance of respiratory control ratio following

  16. A luciferase reporter gene assay and aryl hydrocarbon receptor 1 genotype predict the LD50 of polychlorinated biphenyls in avian species

    International Nuclear Information System (INIS)

    Manning, Gillian E.; Farmahin, Reza; Crump, Doug; Jones, Stephanie P.; Klein, Jeff; Konstantinov, Alex; Potter, Dave; Kennedy, Sean W.

    2012-01-01

    Birds differ in sensitivity to the embryotoxic effects of polychlorinated biphenyls (PCBs), which complicates environmental risk assessments for these chemicals. Recent research has shown that the identities of amino acid residues 324 and 380 in the avian aryl hydrocarbon receptor 1 (AHR1) ligand binding domain (LBD) are primarily responsible for differences in avian species sensitivity to selected dibenzo-p-dioxins and furans. A luciferase reporter gene (LRG) assay was developed in our laboratory to measure AHR1-mediated induction of a cytochrome P450 1A5 reporter gene in COS-7 cells transfected with different avian AHR1 constructs. In the present study, the LRG assay was used to measure the concentration-dependent effects of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), and PCBs 126, 77, 105 and 118 on luciferase activity in COS-7 cells transfected with AHR1 constructs representative of 86 avian species in order to predict their sensitivity to PCB-induced embryolethality and the relative potency of PCBs in these species. The results of the LRG assay indicate that the identity of amino acid residues 324 and 380 in the AHR1 LBD are the major determinants of avian species sensitivity to PCBs. The relative potency of PCBs did not differ greatly among AHR1 constructs. Luciferase activity was significantly correlated with embryolethality data obtained from the literature (R 2 ≥ 0.87, p < 0.0001). Thus, the LRG assay in combination with the knowledge of a species' AHR1 LBD sequence can be used to predict PCB-induced embryolethality in potentially any avian species of interest without the use of lethal methods on a large number of individuals. -- Highlights: ► PCB embryolethality in birds can be predicted from a species' AHR1 genotype. ► The reporter gene assay is useful for predicting species sensitivity to PCBs. ► The relative potency of PCBs does not appear to differ between AHR1 genotypes. ► Contamination of PCB 105 and PCB 118 did not affect their relative

  17. New insights to the role of aryl hydrocarbon receptor in bone phenotype and in dioxin-induced modulation of bone microarchitecture and material properties

    Energy Technology Data Exchange (ETDEWEB)

    Herlin, Maria, E-mail: maria.herlin@ki.se [Institute of Environmental Medicine, Karolinska Institutet, Stockholm (Sweden); Finnilä, Mikko A.J., E-mail: mikko.finnila@oulu.fi [Department of Medical Technology, Institute of Biomedicine, University of Oulu, Oulu (Finland); Department of Anatomy and Cell Biology, Institute of Biomedicine, University of Oulu, Oulu (Finland); Zioupos, Peter, E-mail: p.zioupos@cranfield.ac.uk [Biomechanics Laboratories, Department of Engineering and Applied Science, Cranfield University, Shrivenham SN6 8LA (United Kingdom); Aula, Antti, E-mail: antti.aula@gmail.com [Department of Medical Physics, Imaging Centre, Tampere University Hospital, Tampere (Finland); Department of Biomedical Engineering, Tampere University of Technology, Tampere (Finland); Risteli, Juha, E-mail: juha.risteli@ppshp.fi [Department of Clinical Chemistry, Oulu University Hospital, Oulu (Finland); Miettinen, Hanna M., E-mail: hanna.miettinen@crl.com [Department of Environmental Health, National Institute for Health and Welfare, Kuopio (Finland); Jämsä, Timo, E-mail: timo.jamsa@oulu.fi [Department of Medical Technology, Institute of Biomedicine, University of Oulu, Oulu (Finland); Department of Diagnostic Radiology, Oulu University Hospital, Oulu (Finland); Tuukkanen, Juha, E-mail: juha.tuukkanen@oulu.fi [Department of Anatomy and Cell Biology, Institute of Biomedicine, University of Oulu, Oulu (Finland); Korkalainen, Merja, E-mail: merja.korkalainen@thl.fi [Department of Environmental Health, National Institute for Health and Welfare, Kuopio (Finland); Håkansson, Helen, E-mail: Helen.Hakansson@ki.se [Institute of Environmental Medicine, Karolinska Institutet, Stockholm (Sweden); Viluksela, Matti, E-mail: matti.viluksela@thl.fi [Department of Environmental Health, National Institute for Health and Welfare, Kuopio (Finland); Department of Environmental Science, University of Eastern Finland, Kuopio (Finland)

    2013-11-15

    Bone is a target for high affinity aryl hydrocarbon receptor (AHR) ligands, such as dioxins. Although bone morphology, mineral density and strength are sensitive endpoints of dioxin toxicity, less is known about effects on bone microarchitecture and material properties. This study characterizes TCDD-induced modulations of bone tissue, and the role of AHR in dioxin-induced bone toxicity and for normal bone phenotype. Six AHR-knockout (Ahr{sup −/−}) and wild-type (Ahr{sup +/+}) mice of both genders were exposed to TCDD weekly for 10 weeks, at a total dose of 200 μg/kg bw. Bones were examined with micro-computed tomography, nanoindentation and biomechanical testing. Serum levels of bone remodeling markers were analyzed, and the expression of genes related to osteogenic differentiation was profiled using PCR array. In Ahr{sup +/+} mice, TCDD-exposure resulted in harder bone matrix, thinner and more porous cortical bone, and a more compact trabecular bone compartment. Bone remodeling markers and altered expression of a number of osteogenesis related genes indicated imbalanced bone remodeling. Untreated Ahr{sup −/−} mice displayed a slightly modified bone phenotype as compared with untreated Ahr{sup +/+} mice, while TCDD exposure caused only a few changes in bones of Ahr{sup −/−} mice. Part of the effects of both TCDD-exposure and AHR-deficiency were gender dependent. In conclusion, exposure of adult mice to TCDD resulted in harder bone matrix, thinner cortical bone, mechanically weaker bones and most notably, increased trabecular bone volume fraction in Ahr{sup +/+} mice. AHR is involved in bone development of a normal bone phenotype, and is crucial for manifestation of TCDD-induced bone alterations. - Highlights: • TCDD disrupts bone remodeling resulting in altered cortical and trabecular bone. • In trabecular bone an anabolic effect is observed. • Cortical bone is thinner, more porous, harder, stiffer and mechanically weaker. • AHR ablation

  18. A luciferase reporter gene assay and aryl hydrocarbon receptor 1 genotype predict the LD{sub 50} of polychlorinated biphenyls in avian species

    Energy Technology Data Exchange (ETDEWEB)

    Manning, Gillian E., E-mail: gmann017@uottawa.ca [Centre for Advanced Research in Environmental Genomics, Department of Biology, University of Ottawa, Ottawa, ON, Canada K1N 6N5 (Canada); Environment Canada, National Wildlife Research Centre, Ottawa, ON, Canada K1A 0H3 (Canada); Farmahin, Reza, E-mail: mfarm070@uottawa.ca [Centre for Advanced Research in Environmental Genomics, Department of Biology, University of Ottawa, Ottawa, ON, Canada K1N 6N5 (Canada); Environment Canada, National Wildlife Research Centre, Ottawa, ON, Canada K1A 0H3 (Canada); Crump, Doug, E-mail: doug.crump@ec.gc.ca [Environment Canada, National Wildlife Research Centre, Ottawa, ON, Canada K1A 0H3 (Canada); Jones, Stephanie P., E-mail: stephanie.jones@ec.gc.ca [Environment Canada, National Wildlife Research Centre, Ottawa, ON, Canada K1A 0H3 (Canada); Klein, Jeff, E-mail: jeffery@well-labs.com [Wellington Laboratories Inc., Research Division, Guelph, ON, Canada N1G 3M5 (Canada); Konstantinov, Alex, E-mail: alex@well-labs.com [Wellington Laboratories Inc., Research Division, Guelph, ON, Canada N1G 3M5 (Canada); Potter, Dave, E-mail: dpotter@well-labs.com [Wellington Laboratories Inc., Research Division, Guelph, ON, Canada N1G 3M5 (Canada); Kennedy, Sean W., E-mail: sean.kennedy@ec.gc.ca [Centre for Advanced Research in Environmental Genomics, Department of Biology, University of Ottawa, Ottawa, ON, Canada K1N 6N5 (Canada); Environment Canada, National Wildlife Research Centre, Ottawa, ON, Canada K1A 0H3 (Canada)

    2012-09-15

    Birds differ in sensitivity to the embryotoxic effects of polychlorinated biphenyls (PCBs), which complicates environmental risk assessments for these chemicals. Recent research has shown that the identities of amino acid residues 324 and 380 in the avian aryl hydrocarbon receptor 1 (AHR1) ligand binding domain (LBD) are primarily responsible for differences in avian species sensitivity to selected dibenzo-p-dioxins and furans. A luciferase reporter gene (LRG) assay was developed in our laboratory to measure AHR1-mediated induction of a cytochrome P450 1A5 reporter gene in COS-7 cells transfected with different avian AHR1 constructs. In the present study, the LRG assay was used to measure the concentration-dependent effects of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), and PCBs 126, 77, 105 and 118 on luciferase activity in COS-7 cells transfected with AHR1 constructs representative of 86 avian species in order to predict their sensitivity to PCB-induced embryolethality and the relative potency of PCBs in these species. The results of the LRG assay indicate that the identity of amino acid residues 324 and 380 in the AHR1 LBD are the major determinants of avian species sensitivity to PCBs. The relative potency of PCBs did not differ greatly among AHR1 constructs. Luciferase activity was significantly correlated with embryolethality data obtained from the literature (R{sup 2} ≥ 0.87, p < 0.0001). Thus, the LRG assay in combination with the knowledge of a species' AHR1 LBD sequence can be used to predict PCB-induced embryolethality in potentially any avian species of interest without the use of lethal methods on a large number of individuals. -- Highlights: ► PCB embryolethality in birds can be predicted from a species' AHR1 genotype. ► The reporter gene assay is useful for predicting species sensitivity to PCBs. ► The relative potency of PCBs does not appear to differ between AHR1 genotypes. ► Contamination of PCB 105 and PCB 118 did not affect

  19. Comparison of aryl hydrocarbon hydroxylase and acetanilide 4-hydroxylase induction by polycyclic aromatic compounds in human and mouse cell lines.

    Science.gov (United States)

    Jaiswal, A K; Nebert, D W; Eisen, H W

    1985-08-01

    The human MCF-7 and the mouse Hepa-1 cell culture lines were compared for aryl hydrocarbon hydroxylase and acetanilide 4-hydroxylase inducibility by 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) and benzo[a]anthracene (BA) and TCDD- and BA-specific binding in the cytosol and nucleus. The effective concentration of BA in the growth medium required to induce either enzyme to 50% of its maximally inducible activity (EC50) was the same (5-11 microM) in both MCF-7 and Hepa-1 cells. On the other hand, the EC50 for TCDD in MCF-7 cells (5-25 nM) was more than 40-fold greater than that in Hepa-1 cells (0.4 to 0.6 nM). P1-450- and P3-450-specific mouse cDNA probes were used to quantitate mRNA induction in the Hepa-1 cell line. P1-450 mRNA was induced markedly by TCDD and benzo[a] anthracene, whereas P3-450 mRNA was induced negligibly. A P1-450-specific human cDNA probe was used to quantitate P1-450 mRNA induction in the MCF-7 cell line. Aryl hydrocarbon hydroxylase inducibility by TCDD or BA always paralleled P1-450 mRNA inducibility in either the mouse or human line. Although the cytosolic Ah receptor in Hepa-1 cells was easily detected by sucrose density gradient centrifugation, gel permeation chromatography, and anion-exchange high-performance liquid chromatography, the cytosolic receptor cannot be detected in MCF-7 cells. Following in vivo exposure of cultures to radiolabeled TCDD, the intranuclear concentration of inducer-receptor complex was at least fifty times greater in Hepa-1 than MCF-7 cultures. The complete lack of measurable cytosolic receptor and almost totally absent inducer-receptor complex in the nucleus of MCF-7 cells was, therefore, out of proportion to its capacity for aryl hydrocarbon hydroxylase and acetanilide 4-hydroxylase inducibility. This MCF-7 line should provide an interesting model for a better understanding of the mechanisms of drug-metabolizing enzyme induction by polycyclic aromatic compounds, including the Ah receptor-mediated mechanism.

  20. Mechanical and Thermal Properties of the AH of FRW Universe

    International Nuclear Information System (INIS)

    Yi-Huan, Wei

    2010-01-01

    We calculate the work made out by the apparent horizon (AH) of the Friedmann–Robertson–Walker (FRW) universe and the heat flux through the AH from the first law of thermodynamics. We discuss the mechanical properties of the AH and analyze the universe model for which the mechanical properties can change. Finally, the thermal properties of the AH of FRW universe are discussed

  1. Purifying hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Demoulins, H D; Garner, F H

    1923-02-07

    Hydrocarbon distillates, including natural gases and vapors produced by cracking hydrocarbon oils, are desulfurized etc. by treating the vapor with an aqueous alkaline solution of an oxidizing agent. The hydrocarbons may be previously purified by sulfuric acid. In examples aqueous solutions of sodium or calcium hydrochlorite containing 1.5 to 5.0 grams per liter of available chlorine and sufficient alkali to give an excess of 0.1 percent in the spent reagent are preheated to the temperature of the vapor, and either sprayed or atomized into the vapors near the outlet of the dephlegmator or fractionating tower, or passed in countercurrent to the vapors through one or a series of scrubbers.

  2. Patterns and sources of particle-phase aliphatic and polycyclic aromatic hydrocarbons in urban and rural sites of western Greece

    Science.gov (United States)

    Kalaitzoglou, Maria; Terzi, Eleni; Samara, Constantini

    Particle-bound aliphatic and polycyclic aromatic hydrocarbons (AHs and PAHs, respectively) were determined in the ambient air of the Eordea basin, in western Greece, where intensive coal burning for power generation takes place. Thirteen PAHs, n-alkanes (C 14-C 35), hopanes, and isoprenoid hydrocarbons (pristane and phytane) were determined in the total suspended particles collected from the atmosphere of four sites within the basin receiving potential impacts from various sources, such as fly ash, coal mining, automobile traffic, domestic heating, and agricultural or refuse burning. The same organic species were also determined in the fly ash generated in power stations, and in particulate emissions from open burning of biomass (dry corn leaves) and refuse burning. Organic particle sources were resolved using concentration diagnostic ratios and factor analysis (FA). A multivariate statistical receptor model (Absolute Principal Component Analysis, APCA) was finally employed to estimate the contribution of identified sources to the measured concentrations of organic pollutants. Four major sources for ambient PAHs and AHs were identified displaying variable contribution in different sites: (a) fossil fuel combustion, (b) biogenic emissions, (c) refuse burning, and (d) oil residues. Fuel combustion was the major source of ambient PAHs and an important source of n-alkanes in the range C 21-C 28. Oil residues were found to be the major source of low molecular weight n-alkanes (particularly the C 14-C 16), and an important source of pristane, phytane and UCM. Biogenic sources were primarily responsible for the high molecular weight n-alkanes explaining almost the entire concentration levels of homologues >C 32. Biomass burning was particularly important for the C 23-C 26n-alkanes. Despite the vicinity of certain sampling sites to power stations, coal fly ash was not identifiable as a source for ambient PAHs and AHs.

  3. Purifying hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Dunstan, A E

    1918-06-03

    Ligroin, kerosene, and other distillates from petroleum and shale oil, are purified by treatment with a solution of a hypochlorite containing an excess of alkali. The hydrocarbon may be poured into brine, the mixture stirred, and an electric current passed through. Heat may be applied.

  4. Differential modulation of expression of nuclear receptor mediated genes by tris(2-butoxyethyl) phosphate (TBOEP) on early life stages of zebrafish (Danio rerio)

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Zhiyuan, E-mail: zhiyuan_nju@163.com [State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023 (China); Yu, Yijun, E-mail: yjun.yu@gmail.com [State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023 (China); Tang, Song [School of Environment and Sustainability, University of Saskatchewan, Saskatoon, SK S7N 5B3 (Canada); Liu, Hongling, E-mail: hlliu@nju.edu.cn [State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023 (China); Su, Guanyong; Xie, Yuwei [State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023 (China); Giesy, John P. [State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023 (China); Toxicology Centre, University of Saskatchewan, Saskatoon, SK S7N 5B3 (Canada); Department of Veterinary Biomedical Sciences, University of Saskatchewan, Saskatoon, SK S7N 5B3 (Canada); Department of Biology and Chemistry, City University of Hong Kong, Kowloon, Hong Kong Special Administrative Region (Hong Kong); Hecker, Markus [School of Environment and Sustainability, University of Saskatchewan, Saskatoon, SK S7N 5B3 (Canada); Toxicology Centre, University of Saskatchewan, Saskatoon, SK S7N 5B3 (Canada); Yu, Hongxia [State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023 (China)

    2015-12-15

    Highlights: • Effects of TBOEP on expression of genes of several nuclear hormone receptors and their relationship with adverse effect pathways in zebrafish. • TBOEP was neither an agonist nor antagonist of AR or AhR as determined by use of in vitro mammalian cell-based receptor transactivation assays. • Modulation of ER- and MR-dependent pathways allowed for development of feasible receptor-mediated, critical mechanisms of toxic action. - Abstract: As one substitute for phased-out brominated flame retardants (BFRs), tris(2-butoxyethyl) phosphate (TBOEP) is frequently detected in aquatic organisms. However, knowledge about endocrine disrupting mechanisms associated with nuclear receptors caused by TBOEP remained restricted to results from in vitro studies with mammalian cells. In the study, results of which are presented here, embryos/larvae of zebrafish (Danio rerio) were exposed to 0.02, 0.1 or 0.5 μM TBOEP to investigate expression of genes under control of several nuclear hormone receptors (estrogen receptors (ERs), androgen receptor (AR), thyroid hormone receptor alpha (TRα), mineralocorticoid receptor (MR), glucocorticoid receptor (GR), aryl hydrocarbon (AhR), peroxisome proliferator-activated receptor alpha (PPARα), and pregnane × receptor (P × R)) pathways at 120 hpf. Exposure to 0.5 μM TBOEP significantly (p < 0.05, one-way analysis of variance) up-regulated expression of estrogen receptors (ERs, er1, er2a, and er2b) genes and ER-associated genes (vtg4, vtg5, pgr, ncor, and ncoa3), indicating TBOEP modulates the ER pathway. In contrast, expression of most genes (mr, 11βhsd, ube2i,and adrb2b) associated with the mineralocorticoid receptor (MR) pathway were significantly down-regulated. Furthermore, in vitro mammalian cell-based (MDA-kb2 and H4IIE-luc) receptor transactivation assays, were also conducted to investigate possible agonistic or antagonistic effects on AR- and AhR-mediated pathways. In mammalian cells, none of these pathways were

  5. Evaluating the interactions of vertebrate receptors with persistent pollutants and antifouling pesticides using recombinant yeast assays

    Energy Technology Data Exchange (ETDEWEB)

    Noguerol, Tania-Noelia; Boronat, Susanna; Casado, Marta; Pina, Benjamin [Institut de Biologia Molecular de Barcelona, CSIC, Department of Molecular Biology, Barcelona (Spain); Raldua, Demetrio [Laboratory of Environmental Toxicology, INTEXTER -UP, Terrassa (Spain); Barcelo, Damia [IIQAB-CSIC, Department of Environmental Chemistry, Barcelona (Spain)

    2006-07-15

    The development of in vitro methods for screening potentially harmful biological activities of new compounds is an extremely important way to increase not only their intrinsic environmental safety, but also the public perception of the safety standards associated with them. In this work we use two yeast systems to test the ability of different chemicals to bind and activate two vertebrate receptors which are intimately related to adverse biological effects of pollution in exposed fauna: the estrogen receptor (ER) and the aryl hydrocarbon receptor (AhR). The panel of compounds analysed here includes well-known pollutants, like PCBs, pp'-DDT and hexachlorobenzene, together with the less-known, emerging putative pollutants, such as Sea-Nine, Irgarol and diuron. Results show the ability of some of these compounds to interact with one or both receptors, provide hints about the relationship between structure and activity, and suggest mechanistic explanations for the biological activities already described in whole-animal experiments. In addition, we show that AhR may have an intrinsic ligand promiscuity comparable to that of ER, a feature not fully appreciated in the past due to the technical difficulties involved with testing highly lipophilic substances in yeast-based assays. (orig.)

  6. AhV_aPA-induced vasoconstriction involves the IP₃Rs-mediated Ca²⁺ releasing.

    Science.gov (United States)

    Zeng, Fuxing; Zou, Zhisong; Niu, Liwen; Li, Xu; Teng, Maikun

    2013-08-01

    AhV_aPA, the acidic PLA₂ purified from Agkistrodon halys pallas venom, was previously reported to possess a strong enzymatic activity and can remarkably induce a further contractile response on the 60 mM K⁺-induced contraction with an EC₅₀ in 369 nM on mouse thoracic aorta rings. In the present study, we found that the p-bromo-phenacyl-bromide (pBPB), which can completely inhibit the enzymatic activity of AhV_aPA, did not significantly reduce the contractile response on vessel rings induced by AhV_aPA, indicating that the vasoconstrictor effects of AhV_aPA are independent of the enzymatic activity. The inhibitor experiments showed that the contractile response induced by AhV_aPA is mainly attributed to the Ca²⁺ releasing from Ca²⁺ store, especially sarcoplasmic reticulum (SR). Detailed studies showed that the Ca²⁺ release from SR is related to the activation of inositol trisphosphate receptors (IP₃Rs) rather than ryanodine receptors (RyRs). Furthermore, the vasoconstrictor effect could be strongly reduced by pre-incubation with heparin, indicating that the basic amino acid residues on the surface of AhV_aPA may be involved in the interaction between AhV_aPA and the molecular receptors. These findings offer new insights into the functions of snake PLA₂ and provide a novel pathogenesis of A. halys pallas venom. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. Predicting hydrocarbon release from soil

    International Nuclear Information System (INIS)

    Poppendieck, D.; Loehr, R.C.

    2002-01-01

    'Full text:' The remediation of hazardous chemicals from soils can be a lengthy and costly process. As a result, recent regulatory initiatives have focused on risk-based corrective action (RBCA) approaches. Such approaches attempt to identify the amount of chemical that can be left at a site with contaminated soil and still be protective of human health and the environment. For hydrocarbons in soils to pose risk to human heath and the environment, the hydrocarbons must be released from the soil and accessible to microorganisms, earthworms, or other higher level organisms. The sorption of hydrocarbons to soil can reduce the availability of the hydrocarbon to receptors. Typically in soils and sediments, there is an initial fast release of a hydrocarbon from the soil to the aqueous phase followed by a slower release of the remaining hydrocarbon to the aqueous phase. The rate and extent of slow release can influence aqueous hydrocarbon concentrations and the fate and transport of hydrocarbons in the subsurface. Once the fast fraction of the chemical has been removed from the soil, the remaining fraction of a chemical may desorb at a rate that natural mechanisms can attenuate the released hydrocarbon. Hence, active remediation may be needed only until the fast fraction has been removed. However, the fast fraction is a soil and chemical specific parameter. This presentation will present a tier I type protocol that has been developed to quickly estimate the fraction of hydrocarbons that are readily released from the soil matrix to the aqueous phase. Previous research in our laboratory and elsewhere has used long-term desorption (four months) studies to determine the readily released fraction. This research shows that a single short-term (less than two weeks) batch extraction procedure provides a good estimate of the fast released fraction derived from long-term experiments. This procedure can be used as a tool to rapidly evaluate the release and bioavailability of

  8. Cracking hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Forwood, G F; Lane, M; Taplay, J G

    1921-10-07

    In cracking and hydrogenating hydrocarbon oils by passing their vapors together with steam over heated carbon derived from shale, wood, peat or other vegetable or animal matter, the gases from the condenser are freed from sulfuretted hydrogen, and preferably also from carbon dioxide, and passed together with oil vapors and steam through the retort. Carbon dioxide may be removed by passage through slaked lime, and sulfuretted hydrogen by means of hydrated oxide of iron. Vapors from high-boiling oils and those from low-boiling oils are passed alternately through the retort, so that carbon deposited from the high-boiling oils is used up during treatment of low-boiling oils.

  9. Distilling hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Bataafsche, N V; de Brey, J H.C.

    1918-10-30

    Hydrocarbons containing a very volatile constituent and less volatile constituents, such as casing-head gases, still gases from the distillation of crude petroleum and bituminous shale are separated into their constituents by rectification under pressure; a pressure of 20 atmospheres and limiting temperatures of 150/sup 0/C and 40/sup 0/C are mentioned as suitable. The mixture may be subjected to a preliminary treatment consisting in heating to a temperature below the maximum rectification temperature at a pressure greater than that proposed to be used in the rectification.

  10. AL-KAFA’AH FI AL-NIKAH

    Directory of Open Access Journals (Sweden)

    Najmah Sayuti

    2015-11-01

    Full Text Available Kafa'ah in marriage is basically equality, suitability and proportionality between the prospective couples getting married. Humans are required to kafa'ah in religion and religiosity. Non-Muslims can't kafa'ah with Muslims because of inequalities in beliefe. Some kafa'ah that should be considered in marriage is nasab, religion, belief or religiosity, profession, liberty and property.

  11. Induction of hepatic carbonyl reductase/20β-hydroxysteroid dehydrogenase mRNA in rainbow trout downstream from sewage treatment works-Possible roles of aryl hydrocarbon receptor agonists and oxidative stress

    International Nuclear Information System (INIS)

    Albertsson, E.; Larsson, D.G.J.; Foerlin, L.

    2010-01-01

    Carbonyl reductase/20β-hydroxysteroid dehydrogenase (CR/20β-HSD) serves both as a key enzyme in the gonadal synthesis of maturing-inducing hormone in salmonids, and as an enzyme protecting against certain reactive oxygen species. We have previously shown that mRNA of the hepatic CR/20β-HSD B isoform is increased in rainbow trout caged downstream from a Swedish sewage treatment plant. Here, we report an increase of both the A as well as B form in fish kept downstream from a second sewage treatment plant. The two mRNAs were also induced in fish hepatoma cells in vitro after exposure to effluent extract. This indicates that the effects observed in vivo could be a direct effect on the liver, i.e. the mRNA induction does not require a signal from any other organ. When fish were exposed in vivo to several effluents treated with more advanced methods (ozone, moving bed biofilm reactor or membrane bioreactor) the expression of hepatic mRNA CR/20β-HSD A and B was significantly reduced. Their abundance did not parallel the reduction of estrogen-responsive transcripts, in agreement with our previous observations that ethinylestradiol is not a potent inducer. Treatment with norethisterone, methyltestosterone or hydrocortisone in vivo did not induce the hepatic CR/20β-HSD A and B mRNA expression. In contrast, both isoforms were markedly induced by the aryl hydrocarbon receptor agonist β-naphthoflavone as well as by the pro-oxidant herbicide paraquat. We hypothesize that the induction of CR/20β-HSD A and B by sewage effluents could be due to anthropogenic contaminants stimulating the aryl hydrocarbon receptor and/or causing oxidative stress.

  12. First report of bioaccumulation and bioconcentration of aliphatic hydrocarbons (AHs) and persistent organic pollutants (PAHs, PCBs and PCNs) and their effects on alcyonacea and scleractinian corals and their endosymbiotic algae from the Persian Gulf, Iran: Inter and intra-species differences.

    Science.gov (United States)

    Ranjbar Jafarabadi, Ali; Riyahi Bakhtiari, Alireza; Aliabadian, Mansour; Laetitia, Hédouin; Shadmehri Toosi, Amirhossein; Yap, Chee Kong

    2018-06-15

    The coral reefs of the Persian Gulf are the most diverse systems of life in the marine environment of the Middle East. Unfortunately, they are highly threatened by local and global stressors, particularly oil pollutants. This is the first quantitative and qualitative study aimed at assessing the concentration and sources of n-alkanes and POPs (PAHs, PCBs and PCNs) in coral tissues, symbiotic algae (zooxanthellae), reef sediments and seawaters in coral reefs of Lark and Kharg in the Persian Gulf, Iran. This work was conducted on eight species of six genera and three families of hard corals and one family of soft coral. A significant variation in the concentration of ∑30n-alkanes and POPs (∑40PAHs, ∑22PCBs and 20PCNs) was found in the decreasing order: zooxanthellae > coral tissue > skeleton > reef sediment > seawater. The bioaccumulation of these compounds was 2-times higher in ahermatypic than in hermatypic corals, among which significant variations were observed in both sites. In Kharg, Porites lutea had the highest mean concentration of ∑30n-alkanes and ∑40PAHs in soft tissue, whereas the lowest values were in Platygyra daedalea. A contrasting trend was documented for ∑22PCBs and 20PCNs, with the highest level reported in soft tissue of P. daedalea and the lowest in P. lutea at Kharg. Compositional pattern of AHs and PAHs demonstrated the predominance of LMW-PAHs and n-alkanes. In skeleton and reef sediments, tetra, penta and tri-CBs were the most abundant PCBs congeners followed by di-CB > hexa-CB > hepta-CB > octa-CB,whiletri-CB > di-CB > tetra-CB > penta-CB > hexa-CB > hepta-CB > octa-CB was observed for soft tissue, zooxanthellae and seawater. The results of RAD test indicated significantly negative correlation between total concentration of these compounds with zooxanthellae density, the chlorophyll-a and C 2 in corals at both reefs. This is the first report on levels, health assessment and

  13. Hydrocarbon oils

    Energy Technology Data Exchange (ETDEWEB)

    Foorwood, G F; Taplay, J G

    1916-12-12

    Hydrocarbon oils are hydrogenated, cracked, or treated for the removal of sulfur by bringing their vapors mixed with steam at temperatures between 450 and 600/sup 0/C into contact with a form of carbon that is capable of decomposing steam with the production of nascent hydrogen at those temperatures. The forms of carbon used include lamp-black, soot, charcoals derived from wood, cellulose, and lignite, and carbons obtained by carbonizing oil residues and other organic bodies at temperatures below 600/sup 0/C. The process is applied to the treatment of coal oil, shale oil, petroleum, and lignite oil. In examples, kerosene is cracked at 570/sup 0/C, cracked spirit is hydrogenated at 500/sup 0/C, and shale spirit is desulfurized at 530/sup 0/C. The products are led to a condenser and thence to a scrubber, where they are washed with creosote oil. After desulfurization, the products are washed with dilute caustic soda to remove sulfurretted hydrogen.

  14. Hydrocarbon exploration

    Energy Technology Data Exchange (ETDEWEB)

    Lerche, I. (South Carolina Univ., Columbia, SC (United States). Dept. of Geological Sciences)

    1993-01-01

    This special issue of the journal examines various aspects of the on-going search for hydrocarbons, ranging from frontier basins where little data are available, to more mature areas where considerable data are available. The incentives underlying the search for oil are roughly: the social, economic and industrial needs of a nation; the incentive of a corporation to be profitable; and the personal incentives of individuals in the oil industry and governments, which range from financial wealth to power and which are as diverse as the individuals who are involved. From a geopolitical perspective, the needs, requirements, goals, strategies, and philosophies of nations, and groups of nations, also impact on the oil exploration game. Strategies that have been employed have ranged from boycott to austerity and rationing, to physical intervention, to global ''flooding'' with oil by over-production. (author)

  15. receptores

    Directory of Open Access Journals (Sweden)

    Salete Regina Daronco Benetti

    2006-01-01

    Full Text Available Se trata de un estudio etnográfico, que tuvo lo objetivo de interpretar el sistema de conocimiento y del significado atribuidos a la sangre referente a la transfusión sanguínea por los donadores y receptores de un banco de sangre. Para la colecta de las informaciones se observaron los participantes y la entrevista etnográfica se realizó el análisis de dominio, taxonómicos y temáticos. Los dominios culturales fueron: la sangre es vida: fuente de vida y alimento valioso; creencias religiosas: fuentes simbólicas de apoyos; donación sanguínea: un gesto colaborador que exige cuidarse, gratifica y trae felicidad; donación sanguínea: fuente simbólica de inseguridad; estar enfermo es una condición para realizar transfusión sanguínea; transfusión sanguínea: esperanza de vida; Creencias populares: transfusión sanguínea como riesgo para la salud; donadores de sangre: personas benditas; donar y recibir sangre: como significado de felicidad. Temática: “líquido precioso que origina, sostiene, modifica la vida, provoca miedo e inseguridad”.

  16. Coupling spectroscopic and chromatographic techniques for evaluation of the depositional history of hydrocarbons in a subtropical estuary

    International Nuclear Information System (INIS)

    Martins, César C.; Doumer, Marta E.; Gallice, Wellington C.; Dauner, Ana Lúcia L.; Cabral, Ana Caroline; Cardoso, Fernanda D.

    2015-01-01

    Spectroscopic and chromatographic techniques can be used together to evaluate hydrocarbon inputs to coastal environments such as the Paranaguá estuarine system (PES), located in the SW Atlantic, Brazil. Historical inputs of aliphatic hydrocarbons (AHs) and polycyclic aromatic hydrocarbons (PAHs) were analyzed using two sediment cores from the PES. The AHs were related to the presence of biogenic organic matter and degraded oil residues. The PAHs were associated with mixed sources. The highest hydrocarbon concentrations were related to oil spills, while relatively low levels could be attributed to the decrease in oil usage during the global oil crisis. The results of electron paramagnetic resonance were in agreement with the absolute AHs and PAHs concentrations measured by chromatographic techniques, while near-infrared spectroscopy results were consistent with unresolved complex mixture (UCM)/total n-alkanes ratios. These findings suggest that the use of a combination of techniques can increase the accuracy of assessment of contamination in sediments. - Highlights: • Historical inputs of hydrocarbons in a subtropical estuary were evaluated. • Spectroscopic and chromatographic methods were used in combination. • High hydrocarbon concentrations were related to anthropogenic activities. • Low hydrocarbon levels could be explained by the 1970s global oil crisis. - Spectroscopic and chromatographic techniques could be used together to evaluate hydrocarbon inputs to coastal environments

  17. Atrazine affects kidney and adrenal hormones (AHs) related genes expressions of rare minnow (Gobiocypris rarus).

    Science.gov (United States)

    Yang, Lihua; Zha, Jinmiao; Li, Wei; Li, Zhaoli; Wang, Zijian

    2010-05-05

    Atrazine, one of the most widely used herbicides, has been proved to interfere with sexual hormones. However few studies have considered the effects of atrazine on adrenal hormones (AH). In this study, rare minnow (Gobiocypris rarus) was exposed to 0, 3, 10, 33, 100 and 333microg/l atrazine for 28 days. The histopathology of kidney and gill was examined and the expressions of AHs-related genes including Na(+),K(+)-ATPase, glucocorticoid receptor (gr), heat shock protein 70 (hsp70), and heat shock protein 90 (hsp90) in kidney and gill were quantitatively determined. Histopathological observation revealed obvious lesions in gill including hyperplasia, necrosis in epithelium region, aneurysm and lamellar fusion at concentrations as low as 10microg/l. The observed lesions in kidney included extensive expansion in the lumen, degenerative and necrotic changes of the tubular epithelia, shrinkage of the glomerulus as well as increase of the Bowman's space at concentrations as low as 10microg/l. The expressions of Na(+),K(+)-ATPase, gr, hsp70 and hsp90 in the kidney of females were significantly decreased at all concentrations. For males, the expressions of hsp90 in the kidney of all treated groups were significantly down-regulated, while gr at all concentrations and hsp70 at 10, 33, 100microg/l were significantly up-regulated. However in the gill, the expressions of these genes were not significantly different from the control. These results indicated that exposure to atrazine caused impairments of kidney and gill of fish at environmental related concentrations. Histopathological lesions could partly attribute to the changes of the expressions of AHs-related genes in kidney. We concluded also that atrazine is a potential AHs-disruptor and AHs-related genes in kidney of fish could be used as sensitive molecular biomarkers.

  18. Atrazine affects kidney and adrenal hormones (AHs) related genes expressions of rare minnow (Gobiocypris rarus)

    Energy Technology Data Exchange (ETDEWEB)

    Yang Lihua; Zha Jinmiao; Li Wei; Li Zhaoli [State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Shuangqing Road 18, P.O. Box 2871, Beijing 100085 (China); Wang Zijian, E-mail: wangzj@rcees.ac.cn [State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Shuangqing Road 18, P.O. Box 2871, Beijing 100085 (China)

    2010-05-05

    Atrazine, one of the most widely used herbicides, has been proved to interfere with sexual hormones. However few studies have considered the effects of atrazine on adrenal hormones (AH). In this study, rare minnow (Gobiocypris rarus) was exposed to 0, 3, 10, 33, 100 and 333 {mu}g/l atrazine for 28 days. The histopathology of kidney and gill was examined and the expressions of AHs-related genes including Na{sup +},K{sup +}-ATPase, glucocorticoid receptor (gr), heat shock protein 70 (hsp70), and heat shock protein 90 (hsp90) in kidney and gill were quantitatively determined. Histopathological observation revealed obvious lesions in gill including hyperplasia, necrosis in epithelium region, aneurysm and lamellar fusion at concentrations as low as 10 {mu}g/l. The observed lesions in kidney included extensive expansion in the lumen, degenerative and necrotic changes of the tubular epithelia, shrinkage of the glomerulus as well as increase of the Bowman's space at concentrations as low as 10 {mu}g/l. The expressions of Na{sup +},K{sup +}-ATPase, gr, hsp70 and hsp90 in the kidney of females were significantly decreased at all concentrations. For males, the expressions of hsp90 in the kidney of all treated groups were significantly down-regulated, while gr at all concentrations and hsp70 at 10, 33, 100 {mu}g/l were significantly up-regulated. However in the gill, the expressions of these genes were not significantly different from the control. These results indicated that exposure to atrazine caused impairments of kidney and gill of fish at environmental related concentrations. Histopathological lesions could partly attribute to the changes of the expressions of AHs-related genes in kidney. We concluded also that atrazine is a potential AHs-disruptor and AHs-related genes in kidney of fish could be used as sensitive molecular biomarkers.

  19. Atrazine affects kidney and adrenal hormones (AHs) related genes expressions of rare minnow (Gobiocypris rarus)

    International Nuclear Information System (INIS)

    Yang Lihua; Zha Jinmiao; Li Wei; Li Zhaoli; Wang Zijian

    2010-01-01

    Atrazine, one of the most widely used herbicides, has been proved to interfere with sexual hormones. However few studies have considered the effects of atrazine on adrenal hormones (AH). In this study, rare minnow (Gobiocypris rarus) was exposed to 0, 3, 10, 33, 100 and 333 μg/l atrazine for 28 days. The histopathology of kidney and gill was examined and the expressions of AHs-related genes including Na + ,K + -ATPase, glucocorticoid receptor (gr), heat shock protein 70 (hsp70), and heat shock protein 90 (hsp90) in kidney and gill were quantitatively determined. Histopathological observation revealed obvious lesions in gill including hyperplasia, necrosis in epithelium region, aneurysm and lamellar fusion at concentrations as low as 10 μg/l. The observed lesions in kidney included extensive expansion in the lumen, degenerative and necrotic changes of the tubular epithelia, shrinkage of the glomerulus as well as increase of the Bowman's space at concentrations as low as 10 μg/l. The expressions of Na + ,K + -ATPase, gr, hsp70 and hsp90 in the kidney of females were significantly decreased at all concentrations. For males, the expressions of hsp90 in the kidney of all treated groups were significantly down-regulated, while gr at all concentrations and hsp70 at 10, 33, 100 μg/l were significantly up-regulated. However in the gill, the expressions of these genes were not significantly different from the control. These results indicated that exposure to atrazine caused impairments of kidney and gill of fish at environmental related concentrations. Histopathological lesions could partly attribute to the changes of the expressions of AHs-related genes in kidney. We concluded also that atrazine is a potential AHs-disruptor and AHs-related genes in kidney of fish could be used as sensitive molecular biomarkers.

  20. INDONESIA SHARI'AH COMPLIANCE STOCK RETURN BEHAVIOUR

    Directory of Open Access Journals (Sweden)

    Helma Malini

    2017-04-01

    Full Text Available This study aims to measures the behaviour of Indonesia Shari'ah compliance stock return. The measurement of return behaviour toward volatility will proved the capability of Indonesia Shari'ah compliance toward volatility that happened in Indonesia during the period of observation. Investing in Shari'ah compliance is quite different than investing in conventional stock which followed the capital market set of rules and law, Shari'ah compliance follows not only the capital market set of laws and but also the Islamic principles of principles. Most of the previous studies examine issues related to the conventional stocks and market. The present study take one step further by investigating issue related to Shari'ah compliance instrument. In the case of Shari'ah stock price in Indonesia, the dynamics volatility of the stock price can be minimized by taking an integrated screening process to the listed company, as precautions steps toward volatility

  1. Suppression of WIF-1 through promoter hypermethylation causes accelerated proliferation of the aryl hydrocarbon receptor (AHR) overexpressing MCF10AT1 breast cancer cells

    International Nuclear Information System (INIS)

    Wu, Dalei; Wong, Patrick; Li, Wen; Vogel, Christoph F.; Matsumura, Fumio

    2011-01-01

    Highlights: → 5-Aza-2'-deoxycytidine (AZ) causes proliferation suppression and ERα recovery. → AZ down-regulates Wnt/β-catenin pathway mainly by increasing WIF-1 expression. → Both ERα and AhR have some effects on DNA methylation in breast cancer cells. → Artificial overexpression of ERα in ER negative cells increases WIF-1 expression. → WIF-1 promoter hypermethylation is one of the major causes for accelerated proliferation. -- Abstract: The cause for increased cell proliferation in AHR overexpressing breast cancer cells still remains unknown. Here we studied the molecular basis of aggressive cell proliferation of an AHR overexpressing and ERα functionally down-regulated MCF10AT1 cell line, designated as P20E, in comparison to a matched sub-line, P20C with normal AHR expression and ERα function. We found that a 4-day treatment of P20E cells with 5-aza-2'-deoxycytidine (AZ) caused a significant suppression of cell proliferation. Such an effect of AZ was accompanied with the significant recovery of ERα function. Among diagnostic markers of AZ-induced cellular changes we found conspicuous up-regulation of mRNA expression of Wnt inhibitory factor-1 (WIF-1), particularly in P20E. The possibility of AZ-induced demethylation on the promoter of WIF-1 gene was confirmed through methylation specific PCR assay. Such AZ-induced changes in P20E cells were also accompanied with the decrease in the binding of nuclear proteins to the 32 P labeled TRE (TCF response element) and the reduced accumulation of β-catenin protein in the cell nucleus, indicating the importance of Wnt/β-catenin pathway in maintaining the increased cell proliferation in P20E line over P20C line. The importance of WIF-1 in this regard has been validated by transfecting cells with siRNA against WIF-1, which caused an increase in cell proliferation. Moreover, artificial overexpression of ERα in both P20E as well as MDA-MB-231 cells increased the mRNA expression of WIF-1. Together these

  2. Dioxin-induced retardation of development through a reduction in the expression of pituitary hormones and possible involvement of an aryl hydrocarbon receptor in this defect: A comparative study using two strains of mice with different sensitivities to dioxin

    International Nuclear Information System (INIS)

    Takeda, Tomoki; Taura, Junki; Hattori, Yukiko; Ishii, Yuji; Yamada, Hideyuki

    2014-01-01

    We have previously revealed that treating pregnant rats with 2,3,7,8-tetracholorodibenzo-p-dioxin (TCDD) reduces the expression of gonadotropins and growth hormone (GH) in the fetal and neonatal pituitary. A change in gonadotropin expression impairs the testicular expression of steroidogenic proteins in perinatal pups, and imprint defects in sexual behavior after reaching maturity. In this study, we examined whether TCDD also affects the expression of gonadotropin and GH in mice using C57BL/6J and DBA/2J strains which express the aryl hydrocarbon receptor (Ahr) exhibiting a different affinity for TCDD. When pregnant C57BL/6J mice at gestational day (GD) 12 were given oral TCDD (0.2–20 μg/kg), all doses significantly attenuated the pituitary expression of gonadotropin mRNAs in fetuses at GD18. On the other hand, in DBA/2J mice, a much higher dose of TCDD (20 μg/kg) was needed to produce a significant attenuation. Such reduction in the C57BL/6J strain continued until at least postnatal day (PND) 4. In agreement with this, TCDD reduced the testicular expression of steroidogenic proteins in C57BL/6J neonates at PND2 and 4, although the same did not occur in the fetal testis and ovary. Furthermore, TCDD reduced the perinatal expression of GH, litter size and the body weight of newborn pups only in the C57BL/6J strain. These results suggest that 1) also in mice, maternal exposure to TCDD attenuates gonadotropin-regulated steroidogenesis and GH expression leading to the impairment of pup development and sexual immaturity; and 2) Ahr activation during the late fetal and early postnatal stages is required for these defects. - Highlights: • The effect of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) on mouse growth was studied. • TCDD reduced the levels of luteinizing hormone and growth hormone in perinatal pups. • Maternal exposure to TCDD also attenuated testicular steroidogenesis in pups. • The above effects of TCDD were more pronounced in C57BL/6J than in DBA/2J

  3. Dioxin-induced retardation of development through a reduction in the expression of pituitary hormones and possible involvement of an aryl hydrocarbon receptor in this defect: A comparative study using two strains of mice with different sensitivities to dioxin

    Energy Technology Data Exchange (ETDEWEB)

    Takeda, Tomoki; Taura, Junki; Hattori, Yukiko; Ishii, Yuji; Yamada, Hideyuki, E-mail: hyamada@phar.kyushu-u.ac.jp

    2014-08-01

    We have previously revealed that treating pregnant rats with 2,3,7,8-tetracholorodibenzo-p-dioxin (TCDD) reduces the expression of gonadotropins and growth hormone (GH) in the fetal and neonatal pituitary. A change in gonadotropin expression impairs the testicular expression of steroidogenic proteins in perinatal pups, and imprint defects in sexual behavior after reaching maturity. In this study, we examined whether TCDD also affects the expression of gonadotropin and GH in mice using C57BL/6J and DBA/2J strains which express the aryl hydrocarbon receptor (Ahr) exhibiting a different affinity for TCDD. When pregnant C57BL/6J mice at gestational day (GD) 12 were given oral TCDD (0.2–20 μg/kg), all doses significantly attenuated the pituitary expression of gonadotropin mRNAs in fetuses at GD18. On the other hand, in DBA/2J mice, a much higher dose of TCDD (20 μg/kg) was needed to produce a significant attenuation. Such reduction in the C57BL/6J strain continued until at least postnatal day (PND) 4. In agreement with this, TCDD reduced the testicular expression of steroidogenic proteins in C57BL/6J neonates at PND2 and 4, although the same did not occur in the fetal testis and ovary. Furthermore, TCDD reduced the perinatal expression of GH, litter size and the body weight of newborn pups only in the C57BL/6J strain. These results suggest that 1) also in mice, maternal exposure to TCDD attenuates gonadotropin-regulated steroidogenesis and GH expression leading to the impairment of pup development and sexual immaturity; and 2) Ahr activation during the late fetal and early postnatal stages is required for these defects. - Highlights: • The effect of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) on mouse growth was studied. • TCDD reduced the levels of luteinizing hormone and growth hormone in perinatal pups. • Maternal exposure to TCDD also attenuated testicular steroidogenesis in pups. • The above effects of TCDD were more pronounced in C57BL/6J than in DBA/2J

  4. Assays of dioxins and dioxin-like compounds in actually contaminated soils using transgenic tobacco plants carrying a recombinant mouse aryl hydrocarbon receptor-mediated β-glucuronidase reporter gene expression system.

    Science.gov (United States)

    Inui, Hideyuki; Gion, Keiko; Utani, Yasushi; Wakai, Taketo; Kodama, Susumu; Eun, Heesoo; Kim, Yun-Seok; Ohkawa, Hideo

    2012-01-01

    The transgenic tobacco plant XD4V-26 carrying the recombinant mouse aryl hydrocarbon receptor XD4V-mediated β-glucuronidase (GUS) reporter gene expression system was used for assay of dioxins and dioxin-like compounds consisting of polychlorinated dibenzeno-p-dioxins, polychlorinated dibenzofurans, and coplanar polychlorinated biphenyls (Co-PCBs) in actually contaminated soils. The transgenic tobacco plant XD4V-26 showed a significant dose-dependent induced GUS activity when cultured on MS medium containing PCB126 [toxic equivalency factor (TEF) = 0.1]. In contrast, PCB169 and PCB180, which have 0.03 of TEF and unassigned TEF values, respectively, did not significantly induce GUS activity under the same conditions as with PCB126. When the tobacco plants were cultivated for up to 5 weeks on actually contaminated soils with dioxins and dioxin-like compounds collected from the periphery of an incinerator used for disposal of residential and industrial wastes, GUS activity in the leaves was dose-dependently increased. The plants clearly detected 360 pg-TEQ g(-1) of dioxins and dioxin-like compounds in this assay. There was a positive correlation between GUS activity and TEQ value of dioxins and dioxin-like compounds in the plants. This assay does not require any extraction and purification processes for the actually contaminated soil samples.

  5. Shari’ah concepts in Islamic banking

    Directory of Open Access Journals (Sweden)

    Botis, S.

    2013-12-01

    Full Text Available The paper analyses the main Shari’ah concepts in Islamic banking, a system which operates in accordance with the Islamic law principles, the most important being the prohibition against the payment or acceptance of interest charges (riba, replaced by profit-and-loss-sharing arrangements(PLS, Mudharabah. Also, the paper presents a survey of the historical evolution of the Islamic banking system in Muslim countries, starting with the first Islamic bank, early in the 60’s, Mit Ghamr Local Savings Bank in Egypt. In conclusion, the Islamic banking system is a rapid growth one. It is expected that this presentation will be helpful in increasing the interest in the Islamic principles of banking and financing.

  6. ITE and TCDD differentially regulate the vascular remodeling of rat placenta via the activation of AhR.

    Science.gov (United States)

    Wu, Yanming; Chen, Xiao; Zhou, Qian; He, Qizhi; Kang, Jiuhong; Zheng, Jing; Wang, Kai; Duan, Tao

    2014-01-01

    Vascular remodeling in the placenta is essential for normal fetal development. The previous studies have demonstrated that in utero exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD, an environmental toxicant) induces the intrauterine fetal death in many species via the activation of aryl hydrocarbon receptor (AhR). In the current study, we compared the effects of 2-(1'H-indole-3'-carbonyl)-thiazole-4-carboxylic acid methyl ester (ITE) and TCDD on the vascular remodeling of rat placentas. Pregnant rats on gestational day (GD) 15 were randomly assigned into 5 groups, and were exposed to a single dose of 1.6 and 8.0 mg/kg body weight (bw) ITE, 1.6 and 8.0 µg/kg bw TCDD, or an equivalent volume of the vehicle, respectively. The dams were sacrificed on GD20 and the placental tissues were gathered. The intrauterine fetal death was observed only in 8.0 µg/kg bw TCDD-exposed group and no significant difference was seen in either the placental weight or the fetal weight among all these groups. The immunohistochemical and histological analyses revealed that as compared with the vehicle-control, TCDD, but not ITE, suppressed the placental vascular remodeling, including reduced the ratio of the placental labyrinth zone to the basal zone thickness (at least 0.71 fold of control), inhibited the maternal sinusoids dilation and thickened the trophoblastic septa. However, no marked difference was observed in the density of fetal capillaries in the labyrinth zone among these groups, although significant differences were detected in the expression of angiogenic growth factors between ITE and TCDD-exposed groups, especially Angiopoietin-2 (Ang-2), Endoglin, Interferon-γ (IFN-γ) and placenta growth factor (PIGF). These results suggest ITE and TCDD differentially regulate the vascular remodeling of rat placentas, as well as the expression of angiogenic factors and their receptors, which in turn may alter the blood flow in the late gestation and partially resulted in

  7. Measurement of polynuclear aromatic hydrocarbons (PAHs) in epiphytic lichens and from PM 2.5 filters for receptor modeling in the Alberta Oil Sands Region (Invited)

    Science.gov (United States)

    Studabaker, W. B.; Jayanty, J.; Raymer, J. H.; Krupa, S.

    2013-12-01

    As mining and refinery operations in the Alberta Oil Sands Region (AOSR) have expanded, there has been increasing concern for the impacts of air pollution generated by those operations on both human and ecosystem health. The inaccessibility of much of the AOSR makes it difficult to establish conventional air quality monitoring stations to the extent needed to model long-range impacts of emissions from the AOSR operations. Epiphytic lichens are important markers of ecosystem health, are well-established bioaccumulators of trace metals, and are potentially useful biomonitors of air pollution. However, their ability to take up organic pollutants has not been extensively explored, and only recently have they been used for biomonitoring of pollution by PAHs. Here we describe the determination of polynuclear aromatic hydrocarbons (PAHs) in lichens, collected from sites throughout the AOSR, for modeling emissions associated with mining and oil extraction operations. We also describe preliminary results of the determination of PAHs in PM 2.5 filters from dichotomous samplers stationed in the AOSR, in the context of the biological sample data. Lichens (Hypogymnia physodes) were collected on two separate occasions. During the summer of 2009, single samples were taken from 200 sites in the AOSR; a subset of 20 of these was selected for determination of PAHs. During the summer of 2011, triplicate samples (from separate trees within a site) were collected from 20 sites representing similar locations to the 2008 sites. Lichens were milled in a cryogenic impactor, then were extracted with cyclohexane. Extracts were purified on silica gel using automated solid phase extraction and analyzed by gas chromatography with mass selective detection. Method detection limits for individual PAHs were 2-4 ng/g. Total PAHs in the samples from both collection events ranged from 50 ng/g to 350 ng/g, and declined with increasing distance from the mining and refinery operations. The relative

  8. Converting high boiling hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Terrisse, H; DuFour, L

    1929-02-12

    A process is given for converting high boiling hydrocarbons into low boiling hydrocarbons, characterized in that the high boiling hydrocarbons are heated to 200 to 500/sup 0/C in the presence of ferrous chloride and of such gases as hydrogen, water gas, and the like gases under a pressure of from 5 to 40 kilograms per square centimeter. The desulfurization of the hydrocarbons occurs simultaneously.

  9. Development of a platoon driving AHS; AHS jikkensha ni okeru gunsoko seigyo no kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    Seto, Y; Inoue, H [Nissan Motor Co. Ltd., Tokyo (Japan)

    1997-10-01

    Nissan and the Public Work Research Institute of the Ministry of Construction are developing an Automated Highway System. We are investigating a longitudinal control system in AHS. In this paper, a vehicle control method using two actuators an engine and a brake, is described. Experimental and simulated results are shown. A Platoon driving control method using road-to-vehicle and vehicle-to-vehicle communication is described. And the influence of the communication on the control performance is shown by experiments and simulation. The effects of the communication device and control device mentioned above are verified by experimental results in an AHS field test conducted in September 1996 on a dosed highway. 5 refs., 8 figs.

  10. TABUNGAN: IMPLEMENTASI AKAD WADI’AH ATAU QARD? (Kajian Praktik Wadi’ah di Perbankan Indonesia

    Directory of Open Access Journals (Sweden)

    Mufti Afif

    2016-02-01

    Full Text Available There are no discussion about banking usury in classic Fikh books, because there were no banks, which nowadays they are needed by society to save their worth. As the research of classic Fiqh, there are differences in ulamas’ instructions, based on their understanding. However, they agree to state that bank interest is a usury or forbidden in Islam. Qardul Hasan is another term of qard, that is interpreted by the most of Indonesian people as social engagement, or bequest. Financial department must be careful in understanding the instructions, related to the implementation in the real life. Banks and financial departments claim that money saving is as akad wadi’ah yad dhamanah, whereas the meaning of dhomanah is responsibility. Fiqh ulamas decide that actually, wadi’ah is responsible. Yad dhamanah is irresponsible.

  11. RASIONALITAS KONVERSI BANK KONVENSIONAL KE BANK SYARI’AH

    Directory of Open Access Journals (Sweden)

    Aji Damanuri

    2016-02-01

    Aji Damanuri   Abstract: Shari>’ah banking, for the last ten years, has increased in prosperity not only at the quantity of conventional banks but also at the count of assets and customers. This economical opportunity drives amount of conventional banks both to convert their institutions to be shari>’ah banks and to open officially shari>’ah platform units with their own assets. This system takes a significant question, is the conversion effected by both banker ideological factor and capitalists or pure economical rational calculation? Is a religious consideration linked to economical rationality? This paper is to elaborate the conversion using not only ‘choice theory’ (teori pilihan but also ‘rational action’ (tindakan rasional to seek religious action possibility in a reasonable way of shari>’ah banking.   Keywords: shari>’ah bank, conversion, rational action, religiosity.

  12. AH Cancri: a contact binary in M67

    International Nuclear Information System (INIS)

    Whelan, J.A.J.; Worden, S.P.; Rucinski, S.M.

    1979-01-01

    The W UMa-type contact binary system AH Cnc, which is a member of the old galactic cluster M67, has been studied spectroscopically and photometrically. Estimates of masses, radii, effective temperature and luminosity of AH Cnc have been derived from these data and from cluster membership considerations. The results suggest that AH Cnc is a typical evolved W-type W UMa contact system, although whether the system has evolved as a contact system or has recently become so, could not be determined. The properties of AH Cnc are similar to those of TX Cnc in Praesepe. Information provided by the existence of a gap in the Hertzsprung-Russell diagram for M67 has been coupled with the AH Cnc results to provide further estimates of the chemical composition of M67. (author)

  13. Endocrine disrupting potentials of Bisphenol A, Bisphenol A dimethacrylate, 4-n-Nonyl-phenol and 4-Octylphenol assessed in cell model systems for effects on the estrogen-, androgen-, aryl hydrocarbon-receptor and aromatase activity

    DEFF Research Database (Denmark)

    Bonefeld-Jørgensen, Eva Cecilie; Long, Manhai; Hofmeister, Marlene V

    used as surfactants. We have investigated the effect in vitro of these four plasticizers in four cell culture model systems.The estrogenic potencies were analyzed using the stable ERE-luciferase transfected cell line MVLN measuring the relative estrogen receptor (ER) transactivated luciferase units......, and activity of aromatase and AhR transactivation.Acknowledgement. The authors contributed equally to this work. We thank technical assistants Anne Keblovszki and Inger Sørensen for their excellent skills in the laboratory work. The data is a part of the European Union project ENDOMET: Dysregulation...... of endogenous steroid metabolism potentially alters neuronal and reproductive system development: effects of environmental plasticizers. Program "Quality of Life and Management of Living Resources". (Contract no. QLK4-CT-2002-02637). http://endomet.bham.ac.uk                                                                                                                                                                                                                         ....

  14. Characterization of hydrocarbon utilizing fungi from hydrocarbon ...

    African Journals Online (AJOL)

    Prof. Ogunji

    isolated fungi could be useful in the bioremediation of hydrocarbon polluted sites. Keywords: ... Technologies such as mechanical force, burying, evaporation, dispersant application, and ..... The effects of drilling fluids on marine bacteria from a.

  15. The tryptophan-derived endogenous arylhydrocarbon receptor ligand 6-formylindolo[3,2-b]carbazole (FICZ) is a nanomolar UVA-photosensitizer in epidermal keratinocytes

    Science.gov (United States)

    Williams, Joshua D.; Cabello, Christopher M.; Qiao, Shuxi; Wondrak, Georg T.

    2014-01-01

    Endogenous UVA-chromophores may act as sensitizers of oxidative stress underlying cutaneous photoaging and photocarcinogenesis, but the molecular identity of non-DNA key chromophores displaying UVA-driven photodyamic activity in human skin remains largely undefined. Here we report that 6-formylindolo[3,2-b]carbazole (FICZ), a tryptophan photoproduct and endogenous high affinity aryl hydrocarbon receptor (AhR) agonist, acts as a nanomolar photosensitizer potentiating UVA-induced oxidative stress irrespective of AhR ligand activity. In human HaCaT and primary epidermal keratinocytes, photodynamic induction of apoptosis was elicited by the combined action of solar simulated UVA and FICZ, whereas exposure to the isolated action of UVA or FICZ did not impair viability. In a human epidermal tissue reconstruct, FICZ/UVA-cotreatment caused pronounced phototoxicity inducing keratinocyte cell death, and FICZ photodynamic activity was also substantiated in a murine skin exposure model. Array analysis revealed pronounced potentiation of cellular heat shock, ER stress, and oxidative stress response gene expression observed only upon FICZ/UVA-cotreatment. FICZ photosensitization caused intracellular oxidative stress, and comet analysis revealed introduction of formamidopyrimidine-DNA glycosylase (FPG)-sensitive oxidative DNA lesions suppressible by antioxidant cotreatment. Taken together, our data demonstrate that the endogenous AhR ligand FICZ displays nanomolar photodynamic activity representing a molecular mechanism of UVA-induced photooxidative stress potentially operative in human skin. PMID:25431849

  16. EDUKASI MARKETING BANK SYARÎ’AH

    Directory of Open Access Journals (Sweden)

    Wadhan Wadhan

    2013-08-01

    Full Text Available Abstract: Marketing is a significant aspect to increase consumer trust. Hence, it is essential to educate the consumer with the lesson of the importance of syarî’ah products concerning the marketing aspects. In fact, many banks serves the customer with syariah service in Indonesia.  The basic concept of spiritual marketing is the managements of creation, taste, heart and work (the implementation. Those concepts are under the guidence of faith integrity, obidience, and loyality to Allâh swt. The key of ethics and moral of business is truly placed on the doers. A Muslim busines manager must hold tightly the ethic and moral of business that cope –khusn al-huluq, trusty, dan tolerant. There are three marketing strategies of syariah banking; marker driven strategic, viral marketing way, and fish net strategy. Element of  mega marketing that had been intruduced by Rasûlullâh since the fifteenth century, and now can be adopted to any kinds of businesses including syariah banking. Key Words: Marketing, Marketer, dan Mega Marketing  

  17. 2,3,7,8-Tetrachlorodibenzo-p-dioxin activates the aryl hydrocarbon receptor and alters sex steroid hormone secretion without affecting growth of mouse antral follicles in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Karman, Bethany N., E-mail: bklement@illinois.edu; Basavarajappa, Mallikarjuna S., E-mail: mbshivapur@gmail.com; Craig, Zelieann R., E-mail: zelieann@illinois.edu; Flaws, Jodi A., E-mail: jflaws@illinois.edu

    2012-05-15

    The persistent environmental contaminant, 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) is an ovarian toxicant. These studies were designed to characterize the actions of TCDD on steroidogenesis and growth of intact mouse antral follicles in vitro. Specifically, these studies tested the hypothesis that TCDD exposure leads to decreased sex hormone production/secretion by antral follicles as well as decreased growth of antral follicles in vitro. Since TCDD acts through binding to the aryl hydrocarbon receptor (AHR), and the AHR has been identified as an important factor in ovarian function, we also conducted experiments to confirm the presence and activation of the AHR in our tissue culture system. To do so, we exposed mouse antral follicles for 96 h to a series of TCDD doses previously shown to have effects on ovarian tissues and cells in culture, which also encompass environmentally relevant and pharmacological exposures (0.1–100 nM), to determine a dose response for TCDD in our culture system for growth, hormone production, and expression of the Ahr and Cyp1b1. The results indicate that TCDD decreases progesterone, androstenedione, testosterone, and estradiol levels in a non-monotonic dose response manner without altering growth of antral follicles. The addition of pregnenolone substrate (10 μM) restores hormone levels to control levels. Additionally, Cyp1b1 levels were increased by 3–4 fold regardless of the dose of TCDD exposure, evidence of AHR activation. Overall, these data indicate that TCDD may act prior to pregnenolone formation and through AHR transcriptional control of Cyp1b1, leading to decreased hormone levels without affecting growth of antral follicles. -- Highlights: ►TCDD disrupts sex steroid hormone levels, but not growth of antral follicles. ►Pregnenolone co-treatment by-passes TCDD-induced steroid hormone disruption. ►TCDD affects steroid hormone levels through an AHR pathway in antral follicles.

  18. The aryl hydrocarbon receptor is indispensable for dioxin-induced defects in sexually-dimorphic behaviors due to the reduction in fetal steroidogenesis of the pituitary-gonadal axis in rats.

    Science.gov (United States)

    Hattori, Yukiko; Takeda, Tomoki; Nakamura, Arisa; Nishida, Kyoko; Shioji, Yuko; Fukumitsu, Haruki; Yamada, Hideyuki; Ishii, Yuji

    2018-05-16

    Many forms of the toxic effects produced by dioxins and related chemicals take place following activation of the aryl hydrocarbon receptor (AHR). Our previous studies have demonstrated that treating pregnant rats with 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), a highly toxic dioxin, attenuates the pituitary expression of gonadotropins to reduce testicular steroidogenesis during the fetal stage, resulting in the impairment of sexually-dimorphic behaviors after the offspring reach maturity. To investigate the contribution of AHR to these disorders, we examined the effects of TCDD on AHR-knockout (AHR-KO) Wistar rats. When pregnant AHR-heterozygous rats were given an oral dose of 1 µg/kg TCDD at gestational day (GD) 15, TCDD reduced the expression of pituitary gonadotropins and testicular steroidogenic proteins in male wild-type fetuses at GD20 without affecting body weight, sex ratio and litter size. However, the same defect did not occur in AHR-KO fetuses. Further, fetal exposure to TCDD impaired the activity of masculine sexual behavior after reaching adulthood only in the wild-type offspring. Also, in female offspring, not only the fetal gonadotropins production but also sexual dimorphism, such as saccharin preference, after growing up were suppressed by TCDD only in the wild-type. Interestingly, in the absence of TCDD, deleting AHR reduced masculine sexual behavior, as well as fetal steroidogenesis of the pituitary-gonadal axis. These results provide novel evidence that 1) AHR is required for TCDD-produced defects in sexually-dimorphic behaviors of the offspring, and 2) AHR signaling plays a role in gonadotropin synthesis during the developmental stage to acquire sexual dimorphism after reaching adulthood. Copyright © 2018 Elsevier Inc. All rights reserved.

  19. Effect of PCB 126 on aryl hydrocarbon receptor 1 (AHR1) and AHR1 nuclear translocator 1 (ARNT1) mRNA expression and CYP1 monooxygenase activity in chicken (Gallus domesticus) ovarian follicles.

    Science.gov (United States)

    Wójcik, Dagmara; Antos, Piotr A; Katarzyńska, Dorota; Hrabia, Anna; Sechman, Andrzej

    2015-12-03

    The aim of the experiment was to study the in vitro effect of 3,3',4,4',5-pentachlorobiphenyl (PCB 126; a coplanar PCB congener) on aryl hydrocarbon receptor (AHR1) and AHR1 nuclear translocator (ARNT1) mRNA expression and the activity of CYP1 family monooxygenases in chicken ovarian follicles. White (1-4 mm) and yellowish (4-8 mm) prehierarchical follicles as well as fragments of the theca and granulosa layers of the 3 largest preovulatory follicles (F3-F1) were incubated in a medium supplemented with 0 (control group), 1, 10 or 100 nM PCB 126. The incubation was carried out for 6 h or 24 h for determination of mRNA expression of AHR1 and ARNT1 genes (real-time qPCR) and CYP1 monooxygenase activity (EROD and MROD fluorometric assays), respectively. It was found that chicken ovarian follicles express mRNA of AHR1 and ARNT1 genes. A modulatory effect of PCB 126 on AHR1 and ARNT1 expression depended not only on the biphenyl concentration but also on the follicular layer and the maturational state of the follicle. EROD and MROD activities appeared predominantly in the granulosa layer of the yellow preovulatory follicles. PCB 126 induced these activities in a dose-dependent manner in all ovarian follicles. The obtained results suggest that ovarian follicles, especially the granulosa layer, are involved in the detoxification process of PCBs in the laying hen. Taking this finding into consideration it can be suggested that the granulosa layer of the yellow hierarchical follicles plays a key role in the protective mechanism which reduces the amount of transferred dioxin-like compounds into the yolk of the oocyte. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  20. EPOS Thematic Core Service ANTHROPOGENIC HAZARDS (TCS AH) - development of e-research platform

    Science.gov (United States)

    Orlecka-Sikora, Beata

    2017-04-01

    TCS AH is based on IS-EPOS Platform. The Platform facilitates research on anthropogenic hazards and is available online, free of charge https://tcs.ah-epos.eu/. The Platform is a final product of the IS-EPOS project, founded by the national programme - POIG - which was implemented in 2013-2015 (POIG.02.03.00-14-090/13-00). The platform is a result of a joint work of scientific community and industrial partners. Currently, the development of TCS AH is carried under EPOS IP project (H2020-INFRADEV-1-2015-1, INFRADEV-3-2015). Platform is an open virtual access point for researchers and Ph. D. students interested in anthropogenic seismicity and related hazards. This environment is designed to ensure a researcher the maximum possible liberty for experimentation by providing a virtual laboratory, in which the researcher can design own processing streams and process the data integrated on the platform. TCS AH integrates: data and specific high-level services. Data gathered in the so-called "episodes", comprehensively describing a geophysical process, induced or triggered by human technological activity, which, under certain circumstances can become hazardous for people, infrastructure and the environment. 7 sets of seismic, geological and technological data were made available on the Platform. The data come from Poland, Germany, UK and Vietnam, and refer to underground mining, reservoir impoundment, shale gas exploitation and geothermal energy production. The next at least 19 new episodes related to conventional hydrocarbon extraction, reservoir treatment, underground mining and geothermal energy production are being integrated within the framework of EPOS IP project. The heterogeneous multi-disciplinary data (seismic, displacement, geomechanical data, production data etc.) are transformed to unified structures to form integrated and validated datasets. To deal with this various data the problem-oriented services were designed and implemented. The particular attention

  1. Shari’ah Auditing: A Review of Shari’ah Audit Practices in Islamic Financial Institution (IFIs

    Directory of Open Access Journals (Sweden)

    Abdul Rashid Azwan

    2017-01-01

    Full Text Available With its increasing number of Islamic Financial Institutions (IFIs in the country, Malaysia has emerged as a leading hub when benchmarked against the other Islamic countries of the world. Unlike its conventional counterpart, the Islamic financial system focuses on the achievement of societal justice as evaluated within its own framework and uses its own criteria in order to achieve the objective of the Maqasid Ash-Shari’ah. To help achieve this objective, the Islamic finance industry is in need of Shari’ah auditors who are not only knowledgeable and competent in ensuring that the IFIs operate in accordance with Shari’ah principles, but also adequate in supply, in order to cater for the increasing number of IFIs in the country. Therefore, a major aim of this study is to conduct a comprehensive review of the auditing process performed by Shari’ah auditors in determining the achievement of the Maqasid Ash-Shari’ah by the IFIs. Another aim of this study is to assess the existing Shari’ah auditing framework and standards practiced by IFIs in Malaysia. The results of this study could serve as a reference point for the regulatory and professional bodies in assessing the implementation of a comprehensive Shari’ah auditing framework.

  2. BAY‘ AL-MURABAHAH: Mendudukkan Kembali Posisinya dalam Perbankan Syari’ah

    Directory of Open Access Journals (Sweden)

    Luhur Prasetiyo

    2016-02-01

    Full Text Available BAY‘ AL-MURAbah}ah transaction becomes the most popular product which shari>’ah banking uses to sell its assets for amount of reasons. Total amount of shari>’ah banks store and transact their assets (fund in mura>bah}ah system. The reason is that this product has not only small risk but also ease to manage related to muz}a>rabah and musha>rakah system. In the other hand, Many people don’t understand mura>bah}ah mechanism precisely. They often think that mura>bah}ah mechanism is as credit as well. It is, in fact, that mura>bah}ah system is a cash transaction which shari>’ah banks have. This paper is to elaborate mura>bah}ah system as a product of shari>’ah banking.   Keywords: Perbankan Syariah, mura>bah}ah, margin keuntungan, kredit

  3. Hydrocarbons and air pollution

    International Nuclear Information System (INIS)

    Herz, O.

    1992-01-01

    This paper shows the influence of hydrocarbons vapors, emitted by transports or by volatile solvents using, on air pollution. Hydrocarbons are the principal precursors of photochemical pollution. After a brief introduction on atmospheric chemistry and photochemical reactions, the author describes the french prevention program against hydrocarbons emissions. In the last chapter, informations on international or european community programs for photochemical pollution study are given. 5 figs., 10 tabs

  4. Production of hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Day, D T; Day, R E

    1920-04-27

    A process is disclosed of converting hydro-carbon oils having high boiling points to hydro-carbon oils having low boiling points, which process comprises adding the oil to be treated to a mass of hydro-carbon oil bearing shale, passing the shale with the oil through a conveyor retort and subjecting the material while in the retort to a heat treatment involving a temperature of at least 500/sup 0/F.

  5. NIKAH WISATA; PENDEKATAN MAQASHID AL-SYARI’AH

    Directory of Open Access Journals (Sweden)

    Bakhtiar Bakhtiar

    2012-07-01

    Full Text Available The tour marriage as is done in a certain time basically it seems nothing wrong and there is no terms of harmonious violated from the fulfillment side of harmonious and requirements. However, in terms of the purpose of marriage, the law and maqasid al-syari'ah contain marriage problem. In addition, there can also be equated with  mut'ah marriage that is allowed by syi'i. The type of this marriage is not appropriate with the maqasid al-syariah, not only ashliyah but also tabi'iyah. Then the impact could be on the implications of the worst  neglect.Keywords : The tour marriage, maqasid al-Syari'ah and mudharatCopyright © 2012 by Kafa`ah All right reservedDOI : 10.15548/jk.v2i2.56

  6. Inhibition of the aryl hydrocarbon receptor prevents Western diet-induced obesity. Model for AHR activation by kynurenine via oxidized-LDL, TLR2/4, TGFβ, and IDO1

    Energy Technology Data Exchange (ETDEWEB)

    Moyer, Benjamin J. [Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, Dartmouth Hitchcock Medical Center, One Medical Center Drive, Lebanon, NH 03756 (United States); Rojas, Itzel Y. [Department of Medicine, Geisel School of Medicine at Dartmouth, Dartmouth Hitchcock Medical Center, One Medical Center Drive, Lebanon, NH 03756 (United States); Department of Pharmacology & Toxicology, Geisel School of Medicine at Dartmouth, Dartmouth Hitchcock Medical Center, One Medical Center Drive, Lebanon, NH 03756 (United States); Kerley-Hamilton, Joanna S. [Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, Dartmouth Hitchcock Medical Center, One Medical Center Drive, Lebanon, NH 03756 (United States); Hazlett, Haley F. [Department of Pharmacology & Toxicology, Geisel School of Medicine at Dartmouth, Dartmouth Hitchcock Medical Center, One Medical Center Drive, Lebanon, NH 03756 (United States); Department of Immunology & Microbiology, Geisel School of Medicine at Dartmouth, Dartmouth Hitchcock Medical Center, One Medical Center Drive, Lebanon, NH 03756 (United States); Nemani, Krishnamurthy V. [Department of Radiology, Geisel School of Medicine at Dartmouth, Dartmouth Hitchcock Medical Center, One Medical Center Drive, Lebanon, NH 03756 (United States); Trask, Heidi W.; West, Rachel J. [Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, Dartmouth Hitchcock Medical Center, One Medical Center Drive, Lebanon, NH 03756 (United States); Lupien, Leslie E. [Department of Medicine, Geisel School of Medicine at Dartmouth, Dartmouth Hitchcock Medical Center, One Medical Center Drive, Lebanon, NH 03756 (United States); Collins, Alan J. [Department of Immunology & Microbiology, Geisel School of Medicine at Dartmouth, Dartmouth Hitchcock Medical Center, One Medical Center Drive, Lebanon, NH 03756 (United States); and others

    2016-06-01

    Obesity is an increasingly urgent global problem, yet, little is known about its causes and less is known how obesity can be effectively treated. We showed previously that the aryl hydrocarbon receptor (AHR) plays a role in the regulation of body mass in mice fed Western diet. The AHR is a ligand-activated nuclear receptor that regulates genes involved in a number of biological pathways, including xenobiotic metabolism and T cell polarization. This study was an investigation into whether inhibition of the AHR prevents Western diet-based obesity. Male C57Bl/6J mice were fed control and Western diets with and without the AHR antagonist α-naphthoflavone or CH-223191, and a mouse hepatocyte cell line was used to delineate relevant cellular pathways. Studies are presented showing that the AHR antagonists α-naphthoflavone and CH-223191 significantly reduce obesity and adiposity and ameliorates liver steatosis in male C57Bl/6J mice fed a Western diet. Mice deficient in the tryptophan metabolizing enzyme indoleamine 2,3-dioxygenase 1 (IDO1) were also resistant to obesity. Using an AHR-directed, luciferase-expressing mouse hepatocyte cell line, we show that the transforming growth factor β1 (TGFβ1) signaling pathway via PI3K and NF-κB and the toll-like receptor 2/4 (TLR2/4) signaling pathway stimulated by oxidized low-density lipoproteins via NF-κB, each induce luciferase expression; however, TLR2/4 signaling was significantly reduced by inhibition of IDO1. At physiological levels, kynurenine but not kynurenic acid (both tryptophan metabolites and known AHR agonists) activated AHR-directed luciferase expression. We propose a hepatocyte-based model, in which kynurenine production is increased by enhanced IDO1 activity stimulated by TGFβ1 and TLR2/4 signaling, via PI3K and NF-κB, to perpetuate a cycle of AHR activation to cause obesity; and inhibition of the AHR, in turn, blocks the cycle's output to prevent obesity. The AHR with its broad ligand binding

  7. Inhibition of the aryl hydrocarbon receptor prevents Western diet-induced obesity. Model for AHR activation by kynurenine via oxidized-LDL, TLR2/4, TGFβ, and IDO1

    International Nuclear Information System (INIS)

    Moyer, Benjamin J.; Rojas, Itzel Y.; Kerley-Hamilton, Joanna S.; Hazlett, Haley F.; Nemani, Krishnamurthy V.; Trask, Heidi W.; West, Rachel J.; Lupien, Leslie E.; Collins, Alan J.

    2016-01-01

    Obesity is an increasingly urgent global problem, yet, little is known about its causes and less is known how obesity can be effectively treated. We showed previously that the aryl hydrocarbon receptor (AHR) plays a role in the regulation of body mass in mice fed Western diet. The AHR is a ligand-activated nuclear receptor that regulates genes involved in a number of biological pathways, including xenobiotic metabolism and T cell polarization. This study was an investigation into whether inhibition of the AHR prevents Western diet-based obesity. Male C57Bl/6J mice were fed control and Western diets with and without the AHR antagonist α-naphthoflavone or CH-223191, and a mouse hepatocyte cell line was used to delineate relevant cellular pathways. Studies are presented showing that the AHR antagonists α-naphthoflavone and CH-223191 significantly reduce obesity and adiposity and ameliorates liver steatosis in male C57Bl/6J mice fed a Western diet. Mice deficient in the tryptophan metabolizing enzyme indoleamine 2,3-dioxygenase 1 (IDO1) were also resistant to obesity. Using an AHR-directed, luciferase-expressing mouse hepatocyte cell line, we show that the transforming growth factor β1 (TGFβ1) signaling pathway via PI3K and NF-κB and the toll-like receptor 2/4 (TLR2/4) signaling pathway stimulated by oxidized low-density lipoproteins via NF-κB, each induce luciferase expression; however, TLR2/4 signaling was significantly reduced by inhibition of IDO1. At physiological levels, kynurenine but not kynurenic acid (both tryptophan metabolites and known AHR agonists) activated AHR-directed luciferase expression. We propose a hepatocyte-based model, in which kynurenine production is increased by enhanced IDO1 activity stimulated by TGFβ1 and TLR2/4 signaling, via PI3K and NF-κB, to perpetuate a cycle of AHR activation to cause obesity; and inhibition of the AHR, in turn, blocks the cycle's output to prevent obesity. The AHR with its broad ligand binding

  8. Differences of diurnal variations of some aliphatic and polycyclic aromatic hydrocarbons concentrations in aerosol of the urban area of Madrid

    International Nuclear Information System (INIS)

    Perez Garcia, M.M.; Perez Pastor, R.M.; Bea, J.F.; Campos, A.; Gonzalez Diaz, D.

    1990-01-01

    A study on daily concentration changes of polycyclic aromatic and aliphatic hydrocarbons (PAH's and AH's), was carried out in aerosols sampled in the Ciudad Universitaria of Madrid. Samples were taken at morning and night during February and June, for short sampling times, on glass fiber filters in Hi-Vol samplers, and then extracted ultrasonically with cyclohexane. Analysis were performed by HRGC with fused-silica capillary columns. The variable traffic rate, and the strong influence during winter periods of domestic heating are characteristic of this place. The aim of this work was to evaluate diurnal and seasonal variations of selected AH and PAH in the urban area of Madrid, by using descriptive parameters, such as total concentrations of AH and PAH, characteristic profiles and predominance carbon index. From these results, it has been tried to identify emission sources of the studied hydrocarbons. (Author). 10 refs

  9. Relationship between murine Ah phenotype and the hepatic metabolism of 2,3,7,8-tetrachlorodibenzo-P-dioxin (TCDD)

    International Nuclear Information System (INIS)

    Shen, E.S.; Olson, J.R.

    1986-01-01

    The Ah receptor has been correlated with the toxic effects of TCDD in C57BL/6J (B6) and DBA/2J (D2) mice. The B6 strain, which has a high affinity cytosolic Ah receptor, is more sensitive to TCDD than the D2 strain, which lacks this receptor. The metabolism of TCDD was studied by incubating 14 C-TCDD (2.2 μM) with hepatocytes from control and TCDD-pretreated B6 and D2 mice. Mice were pretreated with TCDD at doses that maximally induce ethoxyresorufin-O-deethylase (EROD) activity, a measure of Ah locus responsiveness to TCDD (B6, 3μg/kg, ip;D2, 30μg/kg, ip). Similar cytochrome P-450 content was detected in control B6 and D2 hepatocytes, however, TCDD pretreatment increased P-450 content 400% in B6 and 300% in D2 mice. No difference in hepatic EROD activity was found between control B6 and D2 mice (81.7 and 101.7 pmol/min/nmol P-450, respectively), but EROD activity was increased 17-fold in B6 and 10-fold in D2 mice after TCDD administration. The average rate of hepatic TCDD metabolism over two hours was similar in control B6 and D2 mice (1.103 and 0.945 pmol/hr/mg cell protein, respectively), although some qualitative differences in the metabolites were detected by HPLC. TCDD pretreatment produced no quantitative or qualitative changes in TCDD metabolism. These results suggest that the rate of hepatic TCDD metabolism does not correlate with genetic differences at the Ah locus

  10. Plasma devices for hydrocarbon reformation

    KAUST Repository

    Cha, Min

    2017-01-01

    Plasma devices for hydrocarbon reformation are provided. Methods of using the devices for hydrocarbon reformation are also provided. The devices can include a liquid container to receive a hydrocarbon source, and a plasma torch configured

  11. Dioxin activation of CYP1A5 promoter/enhancer regions from two avian species, common cormorant (Phalacrocorax carbo) and chicken (Gallus gallus): Association with aryl hydrocarbon receptor 1 and 2 isoforms

    International Nuclear Information System (INIS)

    Lee, Jin-Seon; Kim, Eun-Young; Iwata, Hisato

    2009-01-01

    The present study focuses on the molecular mechanism and interspecies differences in susceptibility of avian aryl hydrocarbon receptor (AHR)-cytochrome P4501A (CYP1A) signaling pathway. By the cloning of 5'-flanking regions of CYP1A5 gene from common cormorant (Phalacrocorax carbo) and chicken (Gallus gallus), seven putative xenobiotic response elements (XREs) were identified within 2.7 kb upstream region of common cormorant CYP1A5 (ccCYP1A5), and six XREs were found within 0.9 kb of chicken CYP1A5 (ckCYP1A5). Analysis of sequential deletion and mutagenesis of the binding sites in avian CYP1A5 genes by in vitro reporter gene assays revealed that two XREs at -613 bp and -1585 bp in ccCYP1A5, and one XRE at -262 bp in ckCYP1A5 conferred TCDD-responsiveness. The binding of AHR1 with AHR nuclear translocator 1 (ARNT1) to the functional XRE in a TCDD-dependent manner was verified with gel shift assays, suggesting that avian CYP1A5 is induced by TCDD through AHR1/ARNT1 signaling pathway as well as mammalian CYP1A1 but through a distinct pathway from mammalian CYP1A2, an ortholog of the CYP1A5. TCDD-EC 50 for the transcriptional activity in both cormorant AHR1- and AHR2-ccCYP1A5 reporter construct was 10-fold higher than that in chicken AHR1-ckCYP1A5 reporter construct. In contrast, chicken AHR2 showed no TCDD-dependent response. The TCDD-EC 50 for CYP1A5 transactivation was altered by switching AHR1 between the two avian species, irrespective of the species from which the regulatory region of CYP1A5 gene originates. Therefore, the structural difference in AHR, not the CYP1A5 regulatory region may be a major factor to account for the dioxin susceptibility in avian species

  12. Plasma devices for hydrocarbon reformation

    KAUST Repository

    Cha, Min Suk

    2017-02-16

    Plasma devices for hydrocarbon reformation are provided. Methods of using the devices for hydrocarbon reformation are also provided. The devices can include a liquid container to receive a hydrocarbon source, and a plasma torch configured to be submerged in the liquid. The plasma plume from the plasma torch can cause reformation of the hydrocarbon. The device can use a variety of plasma torches that can be arranged in a variety of positions in the liquid container. The devices can be used for the reformation of gaseous hydrocarbons and/or liquid hydrocarbons. The reformation can produce methane, lower hydrocarbons, higher hydrocarbons, hydrogen gas, water, carbon dioxide, carbon monoxide, or a combination thereof.

  13. Polycyclic aromatic hydrocarbons in the samples of environment

    International Nuclear Information System (INIS)

    Velkova, V.; Vybohova, E.; Bubenikova, T.

    2006-01-01

    Polycyclic aromatic hydrocarbons (pAHs) represent one group of toxic organic substances in the environment. We determined PAHs in the samples of water and river sediments from river Zolna, in the samples of soils and plants from surrounding of Zolna. The river Zolna flows directly through word-processing factory area. The impregnation division together with associated impregnated materials store is considered the most important source of PAH contamination in the surrounding area. We analysed the 16 compounds (PAHs) by List of the priority pollutants by EPA by the HPLC method. (authors)

  14. RESPON PERBANKAN SYARI’AH DAN LEMBAGA KEUANGAN SYARIAH DI PAMEKASAN TERHADAP PEMBUKAAN PROGRAM STUDI PERBANKAN SYARI’AH DI STAIN PAMEKASAN

    Directory of Open Access Journals (Sweden)

    Rudy Haryanto

    2011-01-01

    Full Text Available There are three focuses becoming study in this research that is: a Response ( appresiation Syari'ah Bangking and Financial Institution of Syari'ah in Pamekasan, b Expectation of Syari'ah Bangking and Financial Institution of Syari'Ah in Pamekasan to grad, c Elementary compentence which must be had by grad. This research uses the approach qualitative trying to watch closely the response of the head Syari'ah Bangking and Financial Institution of Moslem law in Pamekasan to opening of Study Program of Syari’ah Banking in STAIN Pamekasan. Result of this research showing that: Response of Financial Institution and Syari’ah Banking in Pamekasan to opening the Study Program of Syari’ah Banking in STAIN Pamekasan is very good, and they are also ready for cooperating in powering the Study Program of Syari’ah Banking in STAIN Pamekasan. Expectation of Syari’ah Banking and Financial Institution of Syari'ah in Pamekasan to grad of Study Program of Syari’ah Banking in STAIN Pamekasan, that is; the grad of Study Program of Syari’ah Banking STAIN Pamekasan next, absolute mastering the conception of Syari’ah Banking supported with knowledge of conventional banking concept and domination of information Technology Skill. Elementary compentence which must be had by the grad of Study Program of Syari’ah Banking in STAIN Pamekasan, that is; some of responders assess is competent, and some of other assess still many conventional banking payload, less payload of syari’ah banking, and still less subjects which uplift the skill and practice because the next grad have to ready to work in banking area.

  15. Pure non-dioxin-like PCB congeners suppress induction of AhR-dependent endpoints in rat liver cells

    Czech Academy of Sciences Publication Activity Database

    Brenerová, P.; Hamers, T.; Kamstra, J.H.; Vondráček, Jan; Střapacova, S.; Andersson, P.L.; Machala, M.

    2016-01-01

    Roč. 23, č. 3 (2016), s. 2099-2107 ISSN 0944-1344 R&D Projects: GA ČR(CZ) GBP503/12/G147 Institutional support: RVO:68081707 Keywords : NDL-PCBs * Aryl hydrocarbon receptor * DR-CALUX (R) assay Subject RIV: BO - Biophysics Impact factor: 2.741, year: 2016

  16. Comparing introduction to Europe of highly pathogenic avian influenza viruses A(H5N8) in 2014 and A(H5N1) in 2005

    NARCIS (Netherlands)

    Adlhoch, C.; Gossner, C.; Koch, G.; Brown, I.; Bouwstra, R.J.; Verdonck, F.; Penttinen, P.; Harder, T.

    2014-01-01

    Since the beginning of November 2014, nine outbreaks of highly pathogenic avian influenza virus (HPAIV) A(H5N8) in poultry have been detected in four European countries. In this report, similarities and differences between the modes of introduction of HPAIV A(H5N1) and A(H5N8) into Europe are

  17. HIV-1 and its gp120 inhibits the influenza A(H1N1)pdm09 life cycle in an IFITM3-dependent fashion.

    Science.gov (United States)

    Mesquita, Milene; Fintelman-Rodrigues, Natalia; Sacramento, Carolina Q; Abrantes, Juliana L; Costa, Eduardo; Temerozo, Jairo R; Siqueira, Marilda M; Bou-Habib, Dumith Chequer; Souza, Thiago Moreno L

    2014-01-01

    HIV-1-infected patients co-infected with A(H1N1)pdm09 surprisingly presented benign clinical outcome. The knowledge that HIV-1 changes the host homeostatic equilibrium, which may favor the patient resistance to some co-pathogens, prompted us to investigate whether HIV-1 infection could influence A(H1N1)pdm09 life cycle in vitro. We show here that exposure of A(H1N1)pdm09-infected epithelial cells to HIV-1 viral particles or its gp120 enhanced by 25% the IFITM3 content, resulting in a decrease in influenza replication. This event was dependent on toll-like receptor 2 and 4. Moreover, knockdown of IFITM3 prevented HIV-1 ability to inhibit A(H1N1)pdm09 replication. HIV-1 infection also increased IFITM3 levels in human primary macrophages by almost 100%. Consequently, the arrival of influenza ribonucleoproteins (RNPs) to nucleus of macrophages was inhibited, as evaluated by different approaches. Reduction of influenza RNPs entry into the nucleus tolled A(H1N1)pdm09 life cycle in macrophages earlier than usual, limiting influenza's ability to induce TNF-α. As judged by analysis of the influenza hemagglutin (HA) gene from in vitro experiments and from samples of HIV-1/A(H1N1)pdm09 co-infected individuals, the HIV-1-induced reduction of influenza replication resulted in delayed viral evolution. Our results may provide insights on the mechanisms that may have attenuated the clinical course of Influenza in HIV-1/A(H1N1)pdm09 co-infected patients during the recent influenza form 2009/2010.

  18. HIV-1 and its gp120 inhibits the influenza A(H1N1pdm09 life cycle in an IFITM3-dependent fashion.

    Directory of Open Access Journals (Sweden)

    Milene Mesquita

    Full Text Available HIV-1-infected patients co-infected with A(H1N1pdm09 surprisingly presented benign clinical outcome. The knowledge that HIV-1 changes the host homeostatic equilibrium, which may favor the patient resistance to some co-pathogens, prompted us to investigate whether HIV-1 infection could influence A(H1N1pdm09 life cycle in vitro. We show here that exposure of A(H1N1pdm09-infected epithelial cells to HIV-1 viral particles or its gp120 enhanced by 25% the IFITM3 content, resulting in a decrease in influenza replication. This event was dependent on toll-like receptor 2 and 4. Moreover, knockdown of IFITM3 prevented HIV-1 ability to inhibit A(H1N1pdm09 replication. HIV-1 infection also increased IFITM3 levels in human primary macrophages by almost 100%. Consequently, the arrival of influenza ribonucleoproteins (RNPs to nucleus of macrophages was inhibited, as evaluated by different approaches. Reduction of influenza RNPs entry into the nucleus tolled A(H1N1pdm09 life cycle in macrophages earlier than usual, limiting influenza's ability to induce TNF-α. As judged by analysis of the influenza hemagglutin (HA gene from in vitro experiments and from samples of HIV-1/A(H1N1pdm09 co-infected individuals, the HIV-1-induced reduction of influenza replication resulted in delayed viral evolution. Our results may provide insights on the mechanisms that may have attenuated the clinical course of Influenza in HIV-1/A(H1N1pdm09 co-infected patients during the recent influenza form 2009/2010.

  19. OPTIMALISASI BANK SYARI’AH MENUJU GOOD CORPORATE GOVERNANCE

    Directory of Open Access Journals (Sweden)

    Fahrur Ulum Fahrur Ulum

    2013-08-01

    Full Text Available Abstract: Syarî’ah banking must be optimized earnestly to fulfill the stakeholders interest. The effective implementation of cooporate governance would realize the goal of fairness, accountability, and transparancy.  There are several prior focus of this system manager: basic concept and problems of cooperate governance in syarî’ah banking, the pillars of implementation, and the mechanism.  As a result, to create an effective  cooperate governance of syariah banking, the following aspects must be urgently required: a contract clarity, market discipline, moral dimension, socio-political atmosphere,  law enforcement, and institution. Board of directors, senior management, stockholders, and depositors have important roles to establish the  harmony of syariah banking development. The stakeholders  are directly connected to the mechanism of cooperate governance of syariah banking. Key Words: corporate governance, bank syari’ah, stakeholders, dan mudlârabah

  20. Scaling Relationships for Adsorption Energies of C2 Hydrocarbons on Transition Metal Surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Jones, G

    2011-08-18

    Using density functional theory calculations we show that the adsorption energies for C{sub 2}H{sub x}-type adsorbates on transition metal surfaces scale with each other according to a simple bond order conservation model. This observation generalizes some recently recognized adsorption energy scaling laws for AH{sub x}-type adsorbates to unsaturated hydrocarbons and establishes a coherent simplified description of saturated as well as unsaturated hydrocarbons adsorbed on transition metal surfaces. A number of potential applications are discussed. We apply the model to the dehydrogenation of ethane over pure transition metal catalysts. Comparison with the corresponding full density functional theory calculations shows excellent agreement.

  1. Hydrocarbon pollution in the sediment from the Jarzouna-Bizerte coastal area of Tunisia (Mediterranean Sea).

    Science.gov (United States)

    Zrafi-Nouira, I; Khedir-Ghenim, Z; Zrafi, F; Bahri, R; Cheraeif, I; Rouabhia, M; Saidane-Mosbahi, D

    2008-06-01

    This study investigated the presence and origin of hydrocarbon pollution in industrial waste water sediments found near the Jarzouna (Bizerte, Tunisia) oil refinery. Analyses of surface sediments (layer 1) and deep sediments (layer 2) showed that Total Hydrocarbon (TH) concentrations ranged from 602 +/- 7.638 microg/g in layer-1 to 1270 +/- 2.176 microg/g in layer-2. The results suggest that the deeper the sediment, the higher the level of total hydrocarbon found. The sedimentary Non Aromatic Hydrocarbon (NAH) and Aromatic Hydrocarbon (AH) concentrations ranged from 66.22 +/- 1.516 to 211.82 +/- 10.670 microg/g for NAH, and from 13.84 +/- 0.180 to 115.60 +/- 2.479 microg/g for AH. The high variability of these concentrations was associated with the location of the sediment collection sites. Aliphatic biomarker analysis revealed petroleum contamination close to the refinery rejection site, and biogenic sources further away. Petroleum contamination may be associated with increased industrial activity in the area of Jarzouna-Bizerte in the Mediterranean Sea.

  2. Thraustochytrid protists degrade hydrocarbons

    Digital Repository Service at National Institute of Oceanography (India)

    Raikar, M.T.; Raghukumar, S.; Vani, V.; David, J.J.; Chandramohan, D.

    isolation tubes with crude oil. Three isolates tested showed positive hydrophobicity of cell walls as judged by the Microbial Adhesion to Hydrocarbons (MATH) assay. Addition of Bombay High crude oil to nutrient broth slightly enhanced growth of the protists...

  3. Purifying hydrocarbon oils

    Energy Technology Data Exchange (ETDEWEB)

    Rostin, H

    1938-08-11

    A process is described for continuously purifying hydrocarbon oils consisting in conducting the vapors of the same at a temperature of 300 to 400/sup 0/C over the oelitic ore minette together with reducing gases in presence of steam the proportion of the reducing gases and steam being such that the sulfur of the hydrocarbons escapes from the reaction chamber in the form of sulfuretted hydrogen without permanent sulfide of iron being formed.

  4. Process for refining hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Risenfeld, E H

    1924-11-26

    A process is disclosed for the refining of hydrocarbons or other mixtures through treatment in vapor form with metal catalysts, characterized by such metals being used as catalysts, which are obtained by reduction of the oxide of minerals containing the iron group, and by the vapors of the hydrocarbons, in the presence of the water vapor, being led over these catalysts at temperatures from 200 to 300/sup 0/C.

  5. Modulation of estrogen receptor-dependent reporter construct activation and G0/G1-S-phase transition by polycyclic aromatic hydrocarbons in human breast carcinoma MCF-7 cells

    Czech Academy of Sciences Publication Activity Database

    Vondráček, Jan; Kozubík, Alois; Machala, M.

    2002-01-01

    Roč. 70, č. 2 (2002), s. 193-201 ISSN 1096-6080 R&D Projects: GA ČR GP525/01/D076; GA MZe QC0194 Institutional research plan: CEZ:AV0Z5004920 Keywords : polycyclic aromatic hydrocarbons * estrogenicity * proliferation Subject RIV: BO - Biophysics Impact factor: 3.367, year: 2002

  6. PEMIKIRAN ISLAM DALAM PERSPEKTIF SUNNI DAN SYI’AH

    Directory of Open Access Journals (Sweden)

    Muh. Shohibul Itmam

    2013-09-01

    Full Text Available THE ISLAMIC THINKING IN SUNNI AND SYI’AH PERSPECTIVES. This paper attempts to describe the problems associated with Islam in particular with regard to Sunni and Syi’ah teachings. The number of  streams that developed in Islam today has resulted Islam got claims from various clerical community, such as terrorism and others, resulting in the ruination image of  Islam in the constellation of  the religions of  man. As the flow and the teachings of  the most dominating civilization of  the world religions, Sunni and Syiah, including the Wahhabi, are necessary to clarify the existence or clarified the diversity in the constellation of  Islam, considering the number of streams that are currently claiming truth on themselves. Iran as the country becoming a reference in the world of  developing Syi’ah should be used as a reference in the study of  understanding associated with Sunni and Syi’ah. From this country, the world of  Islam knows the concept ofgoverning “Wilayatul Faqih”. The concept was pioneered by the government of Imam Khomeini who became known after Islamic Revolution in Iran 1979 and continues to be developed up to now. Every year Iran is celebrated with a huge demonstration with the slogan in Persian, “Islam Pyruz ast, ast Nabud Istikbar”, Islam is victorious, crushed the vanity of the islam enemy. keywords: Islam, Sunni, Syi’ah, Perspective, Differences, Similarities. Tulisan ini mencoba mengurai persoalan yang berhubungan dengan Islam secara khusus yang berkaitan dengan ajaran Sunni dan Syi’ah. Banyaknya aliran yang berkembang dalam Islam dewasa ini telah mengakibatkan Islam mendapat klaim dari berbagai komunitas agamawan, seperti teroris dan lainnya, yang mengakibatkan redupnya citra Islam dalam percaturan agama-agama manusia. Sebagai aliran dan ajaran yang paling mendominasi peradaban agama dunia, Sunni dan  Syi’ah,  termasuk  Wahabi,  perlu  memperjelas  eksistensinya atau diperjelas

  7. Process for desulfurizing hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    1937-04-12

    A process is described for the desulfurization of a mixture of hydrocarbons, and in particular hydrocarbons containing less than 7 atoms of carbon and sulfur compounds of the type of sulfur carbonyl, characterized by the fact that the mixture, preferably in the liquid phase, is brought in contact with a solution of caustic alkali, essentially anhydrous or preferably with a solution of alkali hydroxide in an organic hydroxy nonacid solvent, for example, an alcohol, or with an alkaline alcoholate, under conditions suitable to the formation of hydrogen sulfide which produces a hydrocarbon mixture free from sulfur compounds of the sulfur carbonyl type but containing hydrogen sulfide, and that it is treated, following mixing, having beem submitted to the first treatment, by means of aqueous alkaline hydroxide to eliminate the hydrogen sulfide.

  8. Origin and distribution of hydrocarbons and organic matter in the surficial sediments of the Sfax-Kerkennah channel (Tunisia, Southern Mediterranean Sea)

    International Nuclear Information System (INIS)

    Zaghden, Hatem; Tedetti, Marc; Sayadi, Sami; Serbaji, Mohamed Moncef; Elleuch, Boubaker; Saliot, Alain

    2017-01-01

    We investigated the origin and distribution of aliphatic and polycyclic aromatic hydrocarbons (AHs and PAHs) and organic matter (OM) in surficial sediments of the Sfax-Kerkennah channel in the Gulf of Gabès (Tunisia, Southern Mediterranean Sea). TOC, AH and PAH concentrations ranged 2.3–11.7%, 8–174 μg g −1 sed. dw and 175–10,769 ng g −1 sed. dw, respectively. The lowest concentrations were recorded in the channel (medium sand sediment) and the highest ones in the Sfax harbor (very fine sand sediment). AHs, PAHs and TOC were not correlated for most of the stations. TOC/N and δ 13 C values revealed a mixed origin of OM with both marine and terrestrial sources. Hydrocarbon molecular composition highlighted the dominance of petrogenic AHs and the presence of both petrogenic and pyrogenic PAHs, associated with petroleum products and combustion processes. This work underscores the complex distribution patterns and the multiple sources of OM and hydrocarbons in this highly anthropogenized coastal environment. - Highlights: • TOC, AHs and PAHs ranged 2–12%, 8–174 μg g −1 sed. dw and 175–10,769 ng g −1 sed. dw. • Lowest concentrations in the Sfax-Kerkennah channel, highest ones in the Sfax harbor • Decoupling between TOC, AH and PAH contents • TOC/N and δ 13 C values revealed a mixed origin of OM with marine and terrestrial sources. • Dominance of petrogenic AHs and presence of both petrogenic and pyrogenic PAHs

  9. Recovery of hydrocarbon oils

    Energy Technology Data Exchange (ETDEWEB)

    1941-02-10

    A process is disclosed for recovery of hydrocarbon oils, especially lubricating oils or diesel oils, through pressure hydrogenation of distillation, extraction of hydrogenation products from coal or coaly materials or from oils such as mineral oils or tars in liquid phase by use in a reaction vessel of fixed-bed catalysts, characterized in that as starting material is employed material which has been freed of asphaltic and resinous material by hydrogenation refining, vacuum-steam distillation, treatment with hydrogen-rich hydrocarbons (hydroforming), or sulfuric acid.

  10. Comparing introduction to Europe of highly pathogenic avian influenza viruses A(H5N8) in 2014 and A(H5N1) in 2005.

    Science.gov (United States)

    Adlhoch, C; Gossner, C; Koch, G; Brown, I; Bouwstra, R; Verdonck, F; Penttinen, P; Harder, T

    2014-12-18

    Since the beginning of November 2014, nine outbreaks of highly pathogenic avian influenza virus (HPAIV) A(H5N8) in poultry have been detected in four European countries. In this report, similarities and differences between the modes of introduction of HPAIV A(H5N1) and A(H5N8) into Europe are described. Experiences from outbreaks of A(H5N1) in Europe demonstrated that early detection to control HPAIV in poultry has proven pivotal to minimise the risk of zoonotic transmission and prevention of human cases.

  11. Optrode for sensing hydrocarbons

    Science.gov (United States)

    Miller, H.; Milanovich, F.P.; Hirschfeld, T.B.; Miller, F.S.

    1988-09-13

    A two-phase system employing the Fujiwara reaction is provided for the fluorometric detection of halogenated hydrocarbons. A fiber optic is utilized to illuminate a column of pyridine trapped in a capillary tube coaxially attached at one end to the illuminating end of the fiber optic. A strongly alkaline condition necessary for the reaction is maintained by providing a reservoir of alkali in contact with the column of pyridine, the surface of contact being adjacent to the illuminating end of the fiber optic. A semipermeable membrane caps the other end of the capillary tube, the membrane being preferentially permeable to the halogenated hydrocarbon and but preferentially impermeable to water and pyridine. As the halogenated hydrocarbon diffuses through the membrane and into the column of pyridine, fluorescent reaction products are formed. Light propagated by the fiber optic from a light source, excites the fluorescent products. Light from the fluorescence emission is also collected by the same fiber optic and transmitted to a detector. The intensity of the fluorescence gives a measure of the concentration of the halogenated hydrocarbons. 5 figs.

  12. Catalyst for hydrocarbon conversion

    International Nuclear Information System (INIS)

    Duhaut, P.; Miquel, J.

    1975-01-01

    A description is given for a catalyst and process for hydrocarbon conversions, e.g., reforming. The catalyst contains an alumina carrier, platinum, iridium, at least one metal selected from uranium, vanadium, and gallium, and optionally halogen in the form of metal halide of one of the aforesaid components. (U.S.)

  13. Ah lo previdi - Arien von Mozart, Cocchi, Colla und Paisiello

    Czech Academy of Sciences Publication Activity Database

    Jonášová, Milada

    -, - (2008), s. 75-86. ISBN 9783761821107. ISSN 1861-9053. [Der junge Mozart 1756-1780. Philologie – Analyse – Rezeption. Salzburg, 01.12.2005-4.12.2005] R&D Projects: GA AV ČR 1QS900580552 Institutional research plan: CEZ:AV0Z90580513 Keywords : Ah lo previdi * Wolfgang Amadeus Mozart * G. Cocchi * G. Colla * G. Paisiello Subject RIV: AL - Art, Architecture, Cultural Heritage

  14. Differences of diurnal variations of some aliphatic and polycyclic aromatic hydrocarbons concentrations in aerosols of the urban area of Madrid

    International Nuclear Information System (INIS)

    Perez, M. M.; Perez-Pastor, R. M.; Bea, F. J.; Campos, A.; Gonzalez, D.

    1991-01-01

    A study on daily concentration changes of polycyclic aromatic and aliphatic hydrocarbons (PAH's and AH's), was carried out in aerosols sampled m the Ciudad Universitaria of Madrid. Samples were taken at morning and night during February and June, for short sampling times, on glass fiber filters in Hi-Vol samplers, and then extracted ultrasonically with cyclohexane. Analysis were performed by HRGC with fused-silica capillary columns. The variable traffic rate, and the strong influence during winter periods of domestic heating are characteristic of this place. The aim of this work was to evaluate diurnal and seasonal variations of selected AH and PAH in the urban area of Madrid, by using descriptive parameters, such as total concentrations of AH and PAH, characteristic profiles and predominance carbon index. (Author)

  15. Regulation of pregnane-X-receptor, CYP3A and P-glycoprotein genes in the PCB-resistant killifish (Fundulus heteroclitus) population from New Bedford Harbor

    International Nuclear Information System (INIS)

    Gräns, Johanna; Wassmur, Britt; Fernández-Santoscoy, María; Zanette, Juliano; Woodin, Bruce R.; Karchner, Sibel I.; Nacci, Diane E.; Champlin, Denise; Jayaraman, Saro; Hahn, Mark E.; Stegeman, John J.; Celander, Malin C.

    2015-01-01

    Highlights: • Basal levels of PXR and Pgp mRNA are lower in liver of fish from NBH than from SC. • Hepatic PXR, CYP3A and Pgp mRNA levels are induced by PCB in fish from NBH. • Both non-dioxin-like and dioxin-like PCBs induce PXR, CYP3A and Pgp in NBH fish. • Branchial PXR and CYP3A mRNA levels are induced by PCB 126 in fish from SC. • There is possible cross-talk between AhR and PXR signaling in killifish. - Abstract: Killifish survive and reproduce in the New Bedford Harbor (NBH) in Massachusetts (MA), USA, a site severely contaminated with polychlorinated biphenyls (PCBs) for decades. Levels of 22 different PCB congeners were analyzed in liver from killifish collected in 2008. Concentrations of dioxin-like PCBs in liver of NBH killifish were ∼400 times higher, and the levels of non-dioxin-like PCBs ∼3000 times higher than in killifish from a reference site, Scorton Creek (SC), MA. The NBH killifish are known to be resistant to the toxicity of dioxin-like compounds and to have a reduced aryl hydrocarbon receptor (AhR) signaling response. Little is known about the responses of these fish to non-dioxin-like PCBs, which are at extraordinarily high levels in NBH fish. In mammals, some non-dioxin-like PCB congeners act through nuclear receptor 1I2, the pregnane-X-receptor (PXR). To explore this pathway in killifish, a PXR cDNA was sequenced and its molecular phylogenetic relationship to other vertebrate PXRs was determined. Killifish were also collected in 2009 from NBH and SC, and after four months in the laboratory they were injected with a single dose of either the dioxin-like PCB 126 (an AhR agonist) or the non-dioxin-like PCB 153 (a mammalian PXR agonist). Gills and liver were sampled three days after injection and transcript levels of genes encoding PXR, cytochrome P450 3A (CYP3A), P-glycoprotein (Pgp), AhR2 and cytochrome P450 1A (CYP1A) were measured by quantitative PCR. As expected, there was little effect of PCB exposure on mRNA expression of

  16. Regulation of pregnane-X-receptor, CYP3A and P-glycoprotein genes in the PCB-resistant killifish (Fundulus heteroclitus) population from New Bedford Harbor

    Energy Technology Data Exchange (ETDEWEB)

    Gräns, Johanna; Wassmur, Britt; Fernández-Santoscoy, María [Department of Biological and Environmental Sciences, University of Gothenburg, Box 463, SE 405 30 Gothenburg (Sweden); Zanette, Juliano; Woodin, Bruce R.; Karchner, Sibel I. [Biology Department, MS #32, Woods Hole Oceanographic Institution, Woods Hole, MA 02543 (United States); Nacci, Diane E.; Champlin, Denise; Jayaraman, Saro [Office of Research and Development, National Health and Environmental Effects Research Laboratory, Atlantic Ecology Division, United States Environmental Protection Agency, 27 Tarzwell Drive, Narragansett, RI 02882 (United States); Hahn, Mark E.; Stegeman, John J. [Biology Department, MS #32, Woods Hole Oceanographic Institution, Woods Hole, MA 02543 (United States); Celander, Malin C., E-mail: malin.celander@gu.se [Department of Biological and Environmental Sciences, University of Gothenburg, Box 463, SE 405 30 Gothenburg (Sweden)

    2015-02-15

    Highlights: • Basal levels of PXR and Pgp mRNA are lower in liver of fish from NBH than from SC. • Hepatic PXR, CYP3A and Pgp mRNA levels are induced by PCB in fish from NBH. • Both non-dioxin-like and dioxin-like PCBs induce PXR, CYP3A and Pgp in NBH fish. • Branchial PXR and CYP3A mRNA levels are induced by PCB 126 in fish from SC. • There is possible cross-talk between AhR and PXR signaling in killifish. - Abstract: Killifish survive and reproduce in the New Bedford Harbor (NBH) in Massachusetts (MA), USA, a site severely contaminated with polychlorinated biphenyls (PCBs) for decades. Levels of 22 different PCB congeners were analyzed in liver from killifish collected in 2008. Concentrations of dioxin-like PCBs in liver of NBH killifish were ∼400 times higher, and the levels of non-dioxin-like PCBs ∼3000 times higher than in killifish from a reference site, Scorton Creek (SC), MA. The NBH killifish are known to be resistant to the toxicity of dioxin-like compounds and to have a reduced aryl hydrocarbon receptor (AhR) signaling response. Little is known about the responses of these fish to non-dioxin-like PCBs, which are at extraordinarily high levels in NBH fish. In mammals, some non-dioxin-like PCB congeners act through nuclear receptor 1I2, the pregnane-X-receptor (PXR). To explore this pathway in killifish, a PXR cDNA was sequenced and its molecular phylogenetic relationship to other vertebrate PXRs was determined. Killifish were also collected in 2009 from NBH and SC, and after four months in the laboratory they were injected with a single dose of either the dioxin-like PCB 126 (an AhR agonist) or the non-dioxin-like PCB 153 (a mammalian PXR agonist). Gills and liver were sampled three days after injection and transcript levels of genes encoding PXR, cytochrome P450 3A (CYP3A), P-glycoprotein (Pgp), AhR2 and cytochrome P450 1A (CYP1A) were measured by quantitative PCR. As expected, there was little effect of PCB exposure on mRNA expression of

  17. Natural co-infection of influenza A/H3N2 and A/H1N1pdm09 viruses resulting in a reassortant A/H3N2 virus.

    Science.gov (United States)

    Rith, Sareth; Chin, Savuth; Sar, Borann; Y, Phalla; Horm, Srey Viseth; Ly, Sovann; Buchy, Philippe; Dussart, Philippe; Horwood, Paul F

    2015-12-01

    Despite annual co-circulation of different subtypes of seasonal influenza, co-infections between different viruses are rarely detected. These co-infections can result in the emergence of reassortant progeny. We document the detection of an influenza co-infection, between influenza A/H3N2 with A/H1N1pdm09 viruses, which occurred in a 3 year old male in Cambodia during April 2014. Both viruses were detected in the patient at relatively high viral loads (as determined by real-time RT-PCR CT values), which is unusual for influenza co-infections. As reassortment can occur between co-infected influenza A strains we isolated plaque purified clonal viral populations from the clinical material of the patient infected with A/H3N2 and A/H1N1pdm09. Complete genome sequences were completed for 7 clonal viruses to determine if any reassorted viruses were generated during the influenza virus co-infection. Although most of the viral sequences were consistent with wild-type A/H3N2 or A/H1N1pdm09, one reassortant A/H3N2 virus was isolated which contained an A/H1N1pdm09 NS1 gene fragment. The reassortant virus was viable and able to infect cells, as judged by successful passage in MDCK cells, achieving a TCID50 of 10(4)/ml at passage number two. There is no evidence that the reassortant virus was transmitted further. The co-infection occurred during a period when co-circulation of A/H3N2 and A/H1N1pdm09 was detected in Cambodia. It is unclear how often influenza co-infections occur, but laboratories should consider influenza co-infections during routine surveillance activities. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.

  18. Functional conservation and divergence of four ginger AP1/AGL9 MADS-box genes revealed by analysis of their expression and protein-protein interaction, and ectopic expression of AhFUL gene in Arabidopsis.

    Directory of Open Access Journals (Sweden)

    Xiumei Li

    Full Text Available Alpinia genus are known generally as ginger-lilies for showy flowers in the ginger family, Zingiberaceae, and their floral morphology diverges from typical monocotyledon flowers. However, little is known about the functions of ginger MADS-box genes in floral identity. In this study, four AP1/AGL9 MADS-box genes were cloned from Alpinia hainanensis, and protein-protein interactions (PPIs and roles of the four genes in floral homeotic conversion and in floral evolution are surveyed for the first time. AhFUL is clustered to the AP1 lineage, AhSEP4 and AhSEP3b to the SEP lineage, and AhAGL6-like to the AGL6 lineage. The four genes showed conserved and divergent expression patterns, and their encoded proteins were localized in the nucleus. Seven combinations of PPI (AhFUL-AhSEP4, AhFUL-AhAGL6-like, AhFUL-AhSEP3b, AhSEP4-AhAGL6-like, AhSEP4-AhSEP3b, AhAGL6-like-AhSEP3b, and AhSEP3b-AhSEP3b were detected, and the PPI patterns in the AP1/AGL9 lineage revealed that five of the 10 possible combinations are conserved and three are variable, while conclusions cannot yet be made regarding the other two. Ectopic expression of AhFUL in Arabidopsis thaliana led to early flowering and floral organ homeotic conversion to sepal-like or leaf-like. Therefore, we conclude that the four A. hainanensis AP1/AGL9 genes show functional conservation and divergence in the floral identity from other MADS-box genes.

  19. Hydrocarbons derived from petroleum in bottled drinking water from Mexico City.

    Science.gov (United States)

    Vega, Salvador; Gutiérrez, Rey; Ortiz, Rutilio; Schettino, Beatriz; Ramírez, Maria de Lourdes; Pérez, José Jesus

    2011-06-01

    This paper describes the concentrations of polycyclic aromatic hydrocarbons (PAHs) and aliphatic hydrocarbons (AHs) derived from petroleum in bottled drinking water samples that were collected over 1 year from Mexico City in two bottle sizes (1.5 and 19 L), all brought in supermarkets. The analysis was by gas chromatography with flame ionization detection. -Concentrations of AHs (9.26-1.74 μg/L) were greater than PAHs (20.15-12.78 ng/L). Individual concentrations of PAHs such as fluoranthene, benzo(b)fluoranthene, benzo(k)fluoranthene, indeno(1,2,3-cd)pyrene and benzo(ghi)perylene were comparable with data reported by the World Health Organization (WHO). Total concentrations of PAHs for all samples (BDW1: 12.78 μg/L, BDW2: 16.72 μg/L, BDW3: 14.62 μg/L, BDW4: 20.15 μg/L and BDW5: 13.23 ng/L) were below the maximum permissible European level of 100 ng/L; no regulations exist for AHs although their values were greater than PAHs (BDW1: 3.11 μg/L, BDW2: 8.45 μg/L, BDW3: 1.74 μg/L, BDW4: 4.75 μg/L and BDW5: 9.26 μg/L).

  20. Trivalent influenza vaccine in patients on haemodialysis: impaired seroresponse with differences for A-H3N2 and A-H1N1 vaccine components

    NARCIS (Netherlands)

    W.E.Ph. Beyer (Walter); D.J. Versluis; P. Kramer; P.P.N.M. Diderich (Philip); W. Weimar (Willem); N. Masurel (Nic)

    1987-01-01

    textabstractOne hundred and one patients on haemodialysis, 21 patients on peritoneal dialysis and 30 healthy controls received a trivalent split vaccine containing 15 micrograms haemagglutinin of a recent influenza A-H3N2, influenza A-H1N1 and influenza B strain, respectively. Antibody production

  1. Identification of TMPRSS2 as a Susceptibility Gene for Severe 2009 Pandemic A(H1N1) Influenza and A(H7N9) Influenza

    NARCIS (Netherlands)

    Cheng, Zhongshan; Zhou, Jie; To, Kelvin Kai-Wang; Chu, Hin; Li, Cun; Wang, Dong; Yang, Dong; Zheng, Shufa; Hao, Ke; Bosse, Yohan; Obeidat, Ma'en; Brandsma, Corry-Anke; Song, You-Qiang; Chen, Yu; Zheng, Bo-Jian; Li, Lanjuan; Yuen, Kwok-Yung

    2015-01-01

    The genetic predisposition to severe A(H1N1) 2009 (A[H1N1]pdm09) influenza was evaluated in 409 patients, including 162 cases with severe infection and 247 controls with mild infection. We prioritized candidate variants based on the result of a pilot genome-wide association study and a lung

  2. Distilling hydrocarbons, etc

    Energy Technology Data Exchange (ETDEWEB)

    Turner, C

    1917-11-23

    In the fractional or destructive distillation of hydrocarbon oils or other liquids, the pressure in the still is raised and lowered alternately. The still is closed to raise the pressure, and is opened to lower the pressure rapidly solely by expansion of the vapors. The operation is effected without intermittent cooling, except such as may occur during the lowering of the pressure. In distilling hydrocarbon oil, pressure steam is blown into the oil until the pressure reaches 5 lb/in./sup 2/. The vapor outlet is then opened until the pressure falls to 2 lb/in./sup 2/, whereupon the vapor outlet is closed and steam is again admitted. The operation is continued until the steam, which is of 20 lb pressure, no longer effects distillation; after this stage, superheated steam is used.

  3. Distilling hydrocarbon oils

    Energy Technology Data Exchange (ETDEWEB)

    Tausz, J

    1924-07-16

    Hydrocarbon oils such as petroleum, shale oils, lignite or coal tar oils are purified by distilling them and collecting the distillate in fractions within narrow limits so that all the impurities are contained in one or more of the narrow fractions. In distilling ligroin obtained by destructive distillation of brown coal, it is found that the coloring and resin-forming constituents are contained in the fractions distilling over at 62 to 86/sup 0/C and 108/sup 0/C. The ligroin is purified, therefore, by distillating in an apparatus provided with an efficient dephlegmotor and removing these two fractions. The distillation may be carried out wholly or in part under reduced pressure, and fractions separated under ordinary pressure may be subsequently distilled under reduced pressure. The hydrocarbons may be first separated into fractions over wider limits and the separate fractions be subjected to a further fractional distillation.

  4. Comparative in vitro effects of 2,3,7,8-tetrachlorodibenzo-p-dioxin and selected polynuclear aromatic hydrocarbons on cyp1a1 gene transcription in cells which contain or are deficient in the 4S binding protein

    International Nuclear Information System (INIS)

    Kamps, C.; Safe, S.

    1990-01-01

    Using [ 3 H]-benzo[a]pyrene as the radioligand, several cell culture lines have been screened for the presence (or absence) of the 4S binding protein. Murine Hepa 1c1c7 cells contained both the 4S binding protein and the 9S (Ah) receptor whereas only the 9S receptor was detected in rat hepatoma H-4-II E cells in culture. The effects of a series of polynuclear aromatic hydrocarbons (PAHs) which included benzo[e]pyrene, benzo[ghi]perylene and 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) and their interactive effects on CYP1A1 gene transcription was determined by Northern analysis in both cell lines. The results showed that the PAHs which exhibited high affinity for the 4S binding protein were inactive as inducers in both cell lines; TCDD was active in both cell lines and the interactive effects between the PAHs and TCDD did not significantly modulate TCDD-mediated CYP1A1 gene transcription. The results suggest that the 4S binding protein does not regulate CYP1A1 gene transcription

  5. Nuclear explosives and hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Cohen, P

    1971-10-01

    A nuclear explosive 12 in. in diam and producing very little tritium is feasible in France. Such a device would be well adapted for contained nuclear explosions set off for the purpose of hydrocarbon storage or stimulation. The different aspects of setting off the explosive are reviewed. In the particular case of gas storage in a nuclear cavity in granite, it is demonstrated that the dose of irradiation received is extremely small. (18 refs.)

  6. Treatment of hydrocarbon oils

    Energy Technology Data Exchange (ETDEWEB)

    1936-02-22

    A process is described for refining a mixture of liquid hydrocarbons containing harmful substances, this process permitting the operation, which consists in treating the liquid mixture at a temperature higher than 200/sup 0/C with a solid catalyst of phosphoric acid, consisting of phosphoric acid deposited on a solid support of the type of metallurgical coke, for a time sufficient to convert the harmful components to inoffensive substances.

  7. Biogeochemistry of Halogenated Hydrocarbons

    Science.gov (United States)

    Adriaens, P.; Gruden, C.; McCormick, M. L.

    2003-12-01

    Halogenated hydrocarbons originate from both natural and industrial sources. Whereas direct anthropogenic emissions to the atmosphere and biosphere are often easy to assess, particularly when they are tied to major industrial activities, the attribution of emissions to other human activities (e.g., biomass burning), diffuse sources (e.g., atmospheric discharge, run off), and natural production (e.g., soils, fungi, algae, microorganisms) are difficult to quantify. The widespread occurrence of both alkyl and aryl halides in groundwater, surface water, soils, and various trophic food chains, even those not affected by known point sources, suggests a substantial biogeochemical cycling of these compounds (Wania and Mackay, 1996; Adriaens et al., 1999; Gruden et al., 2003). The transport and reactive fate mechanisms controlling their reactivity are compounded by the differences in sources of alkyl-, aryl-, and complex organic halides, and the largely unknown impact of biogenic processes, such as enzymatically mediated halogenation of organic matter, fungal production of halogenated hydrocarbons, and microbial or abiotic transformation reactions (e.g., Asplund and Grimvall, 1991; Gribble, 1996; Watling and Harper, 1998; Oberg, 2002). The largest source may be the natural halogenation processes in the terrestrial environment, as the quantities detected often exceed the amount that can be explained by human activities in the surrounding areas ( Oberg, 1998). Since biogeochemical processes result in the distribution of a wide range of halogenated hydrocarbon profiles, altered chemical structures, and isomer distributions in natural systems, source apportionment (or environmental forensics) can often only be resolved using multivariate statistical methods (e.g., Goovaerts, 1998; Barabas et al., 2003; Murphy and Morrison, 2002).This chapter will describe the widespread occurrence of halogenated hydrocarbons, interpret their distribution and biogeochemical cycling in light of

  8. Cracking hydrocarbon oils

    Energy Technology Data Exchange (ETDEWEB)

    Seigle, A A.F.M.

    1922-12-20

    Hydrocarbon oils such as petroleum, peat, shale, or lignite oils, heavy tars, resin oils, naphthalene oils, etc., are vaporized by being fed from a tank through a preheater to the lower part of a vertical annular retort heated by a flame projected down the central cavity from a burner. The oil vapors rise through annular passages formed by disks, on which are placed chips of copper, iron, aluminum, etc., to act as catalysts.

  9. High boiling point hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Pier, M

    1929-04-29

    A process is given for the production of hydrocarbons of high boiling point, such as lubricating oils, from bituminous substances, such as varieties of coal, shale, or other solid distillable carbonaceous materials. The process consists of treating the initial materials with organic solvents and then subjecting the products extracted from the initial materials, preferably directly, to a reducing treatment in respect to temperature, pressure, and time. The reduction treatment is performed by means of hydrogen under pressure.

  10. Direct hydrocarbon fuel cells

    Science.gov (United States)

    Barnett, Scott A.; Lai, Tammy; Liu, Jiang

    2010-05-04

    The direct electrochemical oxidation of hydrocarbons in solid oxide fuel cells, to generate greater power densities at lower temperatures without carbon deposition. The performance obtained is comparable to that of fuel cells used for hydrogen, and is achieved by using novel anode composites at low operating temperatures. Such solid oxide fuel cells, regardless of fuel source or operation, can be configured advantageously using the structural geometries of this invention.

  11. The flame retardants tetrabromobisphenol A and tetrabromobisphenol A-bisallylether suppress the induction of interleukin-2 receptor α chain (CD25) in murine splenocytes

    International Nuclear Information System (INIS)

    Pullen, Sabine; Boecker, Ronald; Tiegs, Gisa

    2003-01-01

    Polybrominated flame retardants (PBF) are frequently used additives in electronical equipment. They are ubiquitous environmental contaminants which bioaccumulate with several health effects for humans and the environment. This study investigated immunotoxic effects of the PBF tetrabromobisphenol A (TBBP A), tetrabromobisphenol A-bisallylether (TBBP A-AE), tetrabromobisphenol A-bis-(2,3-dibromopropyl-ether) (TBBP A-PE), decabromodiphenylether (DBDE), and 2,4,6-tribromophenol (TBP) in vitro. The structurally related polychlorinated aromatic hydrocarbon 3,4,3',4'-tetrachlorobiphenyl (PCB77) and dioxins mediate their immunotoxicity via the Ah-receptor gene complex. A highly relevant function of the Ah receptor, the induction of CYP 1A1 in hepatocytes of C57BL/6 mice by the established inducers 3-methylcholanthrene (MC) and PCB77 was compared to the effect of PBF by measurement of ethoxyresorufin-o-deethylase (EROD) activity. The PBF did not show any induction of CYP 1A1, while EROD activity of hepatocytes exposed to MC and PCB77 was induced 10.8- and 8.7-fold, respectively. To investigate immunotoxic effects of the flame retardants, splenocytes of C57BL/6 mice were incubated with subtoxic doses of the flame retardants and PCB77 and activated by concanavalin A (Con A). The flame retardants TBBP A and TBBP A-AE significantly inhibited the expression of interleukin-2 receptor α chain (CD25) in contrast to TBBP A-PE, DBDE, TBP, and PCB77 as shown by immunohistochemistry and quantitative analysis by laser scanning cytometry. None of the substances had any effect on the Con A-induced production of cytokines. Hence, TBBP A and TBBP A-AE may act as immunotoxic compounds by specifically inhibiting the expression of CD25

  12. Polycyclic aromatic hydrocarbons in cigarette sidestream smoke particulates from a Taiwanese brand and their carcinogenic relevance.

    Science.gov (United States)

    Lee, Hui-Ling; Hsieh, Dennis P H; Li, Lih-Ann

    2011-01-01

    Polycyclic aromatic hydrocarbons (PAHs) adsorbed on cigarette sidestream smoke particulates (CSSPs) have been regarded as important contributors to lung carcinogenesis in never smokers. However, limited information is available on PAH levels in cigarette sidestream smoke. Here we determine the concentrations of 22 PAHs, including 16 US EPA priority PAHs, in CSSPs generated from a high market-share domestic brand in Taiwan. Five of the 22 PAHs are undetectable. The remaining 17 PAHs constitute about 0.022% of the total mass of CSSPs. Near one fifth of the PAH mass come from IARC group 1 and group 2 carcinogens. Carcinogenic potency is equivalent to 144 ng benzo[a]pyrene per cigarette converted according to potency equivalency factors (PEFs). The CSSP condensate could activate AhR activity and induce AhR target gene expression. High concentrations of CSSPs also exhibited AhR-independent cytotoxicity. However, mixing the 17 PAHs as the composition in the CSSP condensate could not reconstitute either capacity. Since AhR activation and cytotoxicity are important mechanisms underlying carcinogenic potency, the results suggest that other component compounds play a more active role in carcinogenesis. The approach of individual PAH profiling plus PEF conversion commonly used in risk assessment is likely to underestimate the risk caused by environmental cigarette smoke exposure. Copyright © 2010 Elsevier Ltd. All rights reserved.

  13. Origin and distribution of hydrocarbons and organic matter in the surficial sediments of the Sfax-Kerkennah channel (Tunisia, Southern Mediterranean Sea).

    Science.gov (United States)

    Zaghden, Hatem; Tedetti, Marc; Sayadi, Sami; Serbaji, Mohamed Moncef; Elleuch, Boubaker; Saliot, Alain

    2017-04-15

    We investigated the origin and distribution of aliphatic and polycyclic aromatic hydrocarbons (AHs and PAHs) and organic matter (OM) in surficial sediments of the Sfax-Kerkennah channel in the Gulf of Gabès (Tunisia, Southern Mediterranean Sea). TOC, AH and PAH concentrations ranged 2.3-11.7%, 8-174μgg -1 sed.dw and 175-10,769ngg -1 sed.dw, respectively. The lowest concentrations were recorded in the channel (medium sand sediment) and the highest ones in the Sfax harbor (very fine sand sediment). AHs, PAHs and TOC were not correlated for most of the stations. TOC/N and δ 13 C values revealed a mixed origin of OM with both marine and terrestrial sources. Hydrocarbon molecular composition highlighted the dominance of petrogenic AHs and the presence of both petrogenic and pyrogenic PAHs, associated with petroleum products and combustion processes. This work underscores the complex distribution patterns and the multiple sources of OM and hydrocarbons in this highly anthropogenized coastal environment. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Calorimetry of 25 Ah lithium/thionyl chloride cells

    Science.gov (United States)

    Johnson, C. J.; Dawson, S.

    1991-01-01

    Heat flow measurements of 25-Ah lithium thionyl chloride cells provided a method to calculate an effective thermal potential, E(TP) of 3.907 V. The calculation is useful to determine specific heat generation of this cell chemistry and design. The E(TP) value includes heat generation by electrochemical cell reactions, competitive chemical reactions, and resistance heating at the tabs, connectors, and leads. Heat flow was measured while applying electrical loads to the cell in an isothermal calorimeter set at 0, 20, and 60 C.

  15. Preferential induction of the AhR gene battery in HepaRG cells after a single or repeated exposure to heterocyclic aromatic amines

    International Nuclear Information System (INIS)

    Dumont, Julie; Josse, Rozenn; Lambert, Carine; Antherieu, Sebastien; Laurent, Veronique; Loyer, Pascal; Robin, Marie-Anne; Guillouzo, Andre

    2010-01-01

    2-Amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) and 2-amino-3,8-dimethylimidazo[4,5-f]quinoxaline (MeIQx) are two of the most common heterocyclic aromatic amines (HAA) produced during cooking of meat, fish and poultry. Both HAA produce different tumor profiles in rodents and are suspected to be carcinogenic in humans. In order to better understand the molecular basis of HAA toxicity, we have analyzed gene expression profiles in the metabolically competent human HepaRG cells using pangenomic oligonucleotide microarrays, after either a single (24-h) or a repeated (28-day) exposure to 10 μM PhIP or MeIQx. The most responsive genes to both HAA were downstream targets of the arylhydrocarbon receptor (AhR): CYP1A1 and CYP1A2 after both time points and CYP1B1 and ALDH3A1 after 28 days. Accordingly, CYP1A1/1A2 induction in HAA-treated HepaRG cells was prevented by chemical inhibition or small interference RNA-mediated down-regulation of the AhR. Consistently, HAA induced activity of the CYP1A1 promoter, which contains a consensus AhR-related xenobiotic-responsive element (XRE). In addition, several other genes exhibited both time-dependent and compound-specific expression changes with, however, a smaller magnitude than previously reported for the prototypical AhR target genes. These changes concerned genes mainly related to cell growth and proliferation, apoptosis, and cancer. In conclusion, these results identify the AhR gene battery as the preferential target of PhIP and MeIQx in HepaRG cells and further support the hypothesis that intake of HAA in diet might increase human cancer risk.

  16. Measuring Trace Hydrocarbons in Silanes

    Science.gov (United States)

    Lesser, L. A.

    1984-01-01

    Technique rapid and uses standard analytical equipment. Silane gas containing traces of hydrocarbons injected into carrier gas of moist nitrogen having about 0.2 percent water vapor. Carrier, water and silane pass through short column packed with powdered sodium hydroxide which combines moisture and silane to form nonvolatile sodium silicate. Carrier gas free of silane but containing nonreactive hydrocarbons, pass to silica-gel column where chromatographic separation takes place. Hydrocarbons measured by FID.

  17. Origin and distribution of hydrocarbons and organic matter in the surficial sediments of the Sfax-Kerkennah channel (Tunisia, Southern Mediterranean Sea)

    OpenAIRE

    Zaghden, H.; Tedetti, Marc; Sayadi, S.; Serbaji, M. M.; Elleuch, B.; Saliot, A.

    2017-01-01

    International audience; We investigated the origin and distribution of aliphatic and polycyclic aromatic hydrocarbons (AHs and PAHs)and organic matter (OM) in surficial sediments of the Sfax-Kerkennah channel in the Gulf of Gabès (Tunisia,Southern Mediterranean Sea). TOC, AH and PAH concentrations ranged 2.3–11.7%, 8–174 μg g−1 sed. dw and175–10,769 ng g−1 sed. dw, respectively. The lowest concentrations were recorded in the channel (mediumsand sediment) and the highest ones in the Sfax harbo...

  18. Fractional separation of hydrocarbon vapours

    Energy Technology Data Exchange (ETDEWEB)

    1937-07-10

    A process is described for converting higher boiling hydrocarbons to lower boiling hydrocarbons by subjecting them at elevated temperatures to a conversion operation, then separating the higher and lower boiling fractions. The separation takes place while the reaction products are maintained in the vapor phase by contact with a mass of solid porous material which has little or no catalytic activity but does have a preferential absorption property for higher boiling hydrocarbons so that the lower boiling part of the reaction products pass through the separation zone while the heavier hydrocarbons are retained. The separation is accomplished without substantial loss of heat of these reaction products.

  19. Aeroelastic characteristics of the AH-64 bearingless tail rotor

    Science.gov (United States)

    Banerjee, D.

    1988-01-01

    The results of a wind tunnel test program to determine the performance loads and dynamic characteristics of the Composite Flexbeam Tail Rotor (CFTR) for the AH-64 Advanced Attack Helicopter are reported. The CFTR uses an elastomeric shear attachment of the flexbeam to the hub to provide soft-inplane S-mode and stiff-inplane C-mode configuration. The properties of the elastomer were selected for proper frequency placement and scale damping of the inplane S-mode. Kinematic pitch-lag coupling was introduced to provide the first cyclic inplane C-mode damping at high collective pitch. The CFTR was tested in a wind tunnel over the full slideslip envelop of the AH-64. It is found that the rotor was aeroelastically stable throughout the complete collective pitch range and up to rotor speeds of 1403 rpm. The dynamic characteristics of the rotor were found to be satisfactory at all pitch angles and rotor speeds of the tunnel tests. The design characteristics of the rotor which permit the high performance characteristics are discussed. Several schematic drawings and photographs of the rotor are provided.

  20. Process for preparing hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Krauch, C; Anther, E; Pier, M

    1926-04-07

    A process is described for the conversion of coal of all kinds, wood, oil, shale, as well as other carbonaceous materials into liquid hydrocarbons in two steps, characterized by treatment of the coal and so forth with a stream of hydrogen or hydrogen-containing gases at raised temperatures and raised pressures and producing a tarry product which, after separation of the ashlike residue, is converted by a further treatment, in the presence of catalysts, with hydrogen or hydrogen-containing gases at raised temperature and pressure, largely into low-boiling products.