WorldWideScience

Sample records for hydrocarbon ah receptor

  1. Transcript variations, phylogenetic tree and chromosomal localization of porcine aryl hydrocarbon receptor (AhR) and AhR nuclear translocator (ARNT) genes

    Indian Academy of Sciences (India)

    AGNIESZKA SADOWSKA; LUKASZ PAUKSZTO; ANNA NYNCA; IZABELA SZCZERBAL; KARINA ORLOWSKA; SYLWIA SWIGONSKA; MONIKA RUSZKOWSKA; TOMASZ MOLCAN; JAN P. JASTRZEBSKI; GRZEGORZ PANASIEWICZ; RENATA E. CIERESZKO

    2017-03-01

    Aryl hydrocarbon receptor (AhR) is a ligand-activated transcription factor best known for mediating xenobiotic-induced toxicity. AhR requires aryl hydrocarbon receptor nuclear translocator (ARNT) to form an active transcription complex and promote the activation of genes which have dioxin responsive element in their regulatory regions. The present study was performed to determine the complete cDNA sequences of porcine AhR and ARNT genes and their chromosomal localization. Total RNA from porcine livers were used to obtain the sequence of the entire porcine transcriptome by next-generation sequencing (NGS;lllumina HiSeq2500). In addition, both, in silico analysis and fluorescence in situ hybridization (FISH) were used to determine chromosomal localization of porcine AhR and ARNT genes. In silico analysis of nucleotide sequences showed that there were two transcript variants of AhR and ARNT genes in the pig. In addition, computer analysis revealed that AhR gene in the pig is located on chromosome 9 and ARNT on chromosome 4. The results of FISH experiment confirmed the localization of porcine AhR and ARNT genes. In the present study, for the first time, the full cDNAs of AhR and ARNT were demonstrated in the pig.In future, it would be interesting to determine the tissue distribution of AhR and ARNT transcript variants in the pig and to test whether these variants are associated with different biological functions and/or different activation pathways.

  2. Aryl Hydrocarbon Receptor (AhR Modulates Cockroach Allergen-Induced Immune Responses through Active TGFβ1 Release

    Directory of Open Access Journals (Sweden)

    Yufeng Zhou

    2014-01-01

    Full Text Available Background. Aryl hydrocarbon receptor (AhR, a multifunctional regulator that senses and responds to environmental stimuli, plays a role in normal cell development and immune regulation. Recent evidence supports a significant link between environmental exposure and AhR in the development of allergic diseases. We sought to investigate whether AhR plays a role in mediating cockroach allergen-induced allergic immune responses. Methods. AhR expression in human lung fibroblasts from asthmatic and healthy individuals and in cockroach extract (CRE treated human lung fibroblasts (WI-38 was examined. The role of AhR in modulating CRE induced TGFβ1 production was investigated by using AhR agonist, TCDD, antagonist CH122319, and knockdown of AhR. The role of latent TGFβ1 binding protein-1 (LTBP1 in mediating TCDD induced active TGFβ1 release was also examined. Results. AhR expression was higher in airway fibroblasts from asthmatic subjects as compared to healthy controls. AhR in fibroblasts was activated by TCDD with an increased expression of cyp1a1 and cyp1b1. Increased AhR expression was observed in CRE-treated fibroblasts. Importantly, CRE induced TGFβ1 production in fibroblasts was significantly enhanced by TCDD but inhibited by CH122319. Reduced TGFβ1 production was further confirmed in fibroblasts with AhR knockdown. Moreover, AhR knockdown inhibited CRE induced fibroblast differentiation. Furthermore, TCDD induced active TGFβ1 release was significantly inhibited by LTBP1 knockdown. Conclusion. These results provide evidence for the role of AhR in modulating cockroach allergen-induced immune responses through controlling the active TGFβ1 release, suggesting a possible synergistic effect between exposure to allergens and environmental chemicals on the development of allergic diseases.

  3. Over-expression of AhR (aryl hydrocarbon receptor induces neural differentiation of Neuro2a cells: neurotoxicology study

    Directory of Open Access Journals (Sweden)

    Ishihara-Sugano Mitsuko

    2006-09-01

    Full Text Available Abstract Background Dioxins and related compounds are suspected of causing neurological disruption in human and experimental animal offspring following perinatal exposure during development and growth. The molecular mechanism(s of the actions in the brain, however, have not been fully investigated. A major participant in the process of the dioxin-toxicity is the dioxin receptor, namely the aryl hydrocarbon receptor (AhR. AhR regulates the transcription of diverse genes through binding to the xenobiotic-responsive element (XRE. Since the AhR has also been detected in various regions of the brain, the AhR may play a key role in the developmental neurotoxicity of dioxins. This study focused on the effect of AhR activation in the developing neuron. Methods The influence of the AhR on the developing neuron was assessed using the Neuro2a-AhR transfectant. The undifferentiated murine neuroblastoma Neuro2a cell line (ATCC was stably transfected with AhR cDNA and the established cell line was named N2a-Rα. The activation of exogenous AhR in N2a-Rα cells was confirmed using RNAi, with si-AhR suppressing the expression of exogenous AhR. The neurological properties of N2a-Rα based on AhR activation were evaluated by immunohistochemical analysis of cytoskeletal molecules and by RT-PCR analysis of mRNA expression of neurotransmitter-production related molecules, such as tyrosine hydroxylase (TH. Results N2a-Rα cells exhibited constant activation of the exogenous AhR. CYP1A1, a typical XRE-regulated gene, mRNA was induced without the application of ligand to the culture medium. N2a-Rα cells exhibited two significant functional features. Morphologically, N2a-Rα cells bore spontaneous neurites exhibiting axon-like properties with the localization of NF-H. In addition, cdc42 expression was increased in comparison to the control cell line. The other is the catecholaminergic neuron-like property. N2a-Rα cells expressed tyrosine hydroxylase (TH mRNA as a

  4. Aryl hydrocarbon receptor (AhR) agonists suppress interleukin-6 expression by bone marrow stromal cells: an immunotoxicology study

    OpenAIRE

    2003-01-01

    Abstract Background Bone marrow stromal cells produce cytokines required for the normal growth and development of all eight hematopoietic cell lineages. Aberrant cytokine production by stromal cells contributes to blood cell dyscrasias. Consequently, factors that alter stromal cell cytokine production may significantly compromise the development of normal blood cells. We have shown that environmental chemicals, such as aromatic hydrocarbon receptor (AhR) agonists, suppress B lymphopoiesis by ...

  5. Aminoflavone, a ligand of the Aryl Hydrocarbon Receptor (AhR), inhibits HIF-1α expression in an AhR-independent fashion

    Science.gov (United States)

    Terzuoli, Erika; Puppo, Maura; Rapisarda, Annamaria; Uranchimeg, Badarch; Cao, Liang; Burger, Angelika M.; Ziche, Marina; Melillo, Giovanni

    2010-01-01

    Aminoflavone (AF), the active component of a novel anticancer agent (AFP464) in phase I clinical trials, is a ligand of the aryl hydrocarbon receptor (AhR). AhR dimerizes with HIF-1β/ARNT, which is shared with HIF-1α, a transcription factor critical for the response of cells to oxygen deprivation. To address whether pharmacological activation of the AhR pathway might be a potential mechanism for inhibition of HIF-1, we tested the effects of AF on HIF-1 expression. AF inhibited HIF-1α transcriptional activity and protein accumulation in MCF-7 cells. However, inhibition of HIF-1α by AF was independent from a functional AhR pathway. Indeed, AF inhibited HIF-1α expression in AhR100 cells, in which the AhR pathway is functionally impaired, yet did not induce cytotoxicity, providing evidence that these effects are mediated by distinct signaling pathways. Moreover, AF was inactive in MDA-MB-231 cells, yet inhibited HIF-1α in MDA-MB-231 cells transfected with the SULT1A1 gene. AF inhibited HIF-1α mRNA expression by approximately 50%. Notably, actinomycin-D completely abrogated the ability of AF to down-regulate HIF-1α mRNA, indicating that active transcription was required for the inhibition of HIF-1α expression. Finally, AF inhibited HIF-1α protein accumulation and the expression of HIF-1-target genes in MCF-7 xenografts. These results demonstrate that AF inhibits HIF-1α in an AhR-independent fashion and they unveil additional activities of AF that may be relevant for its further clinical development. PMID:20736373

  6. A novel role of the aryl hydrocarbon receptor (AhR in centrosome amplification - implications for chemoprevention

    Directory of Open Access Journals (Sweden)

    Chatterjee Payel

    2010-06-01

    Full Text Available Abstract Background Centrosome aberrations can cause genomic instability and correlate with malignant progression in common human malignancies such as breast and prostate cancer. Deregulation of cyclin/cyclin-dependent kinase 2 (CDK2 activity has previously been shown to be critically involved in centrosome overduplication. We therefore test here whether small molecule CDK inhibitors derived from the bis-indole indirubin can be used to suppress centrosome aberrations as a novel approach to chemoprevention of malignant progression. Results As expected, we found that the CDK inhibitor indirubin-3'-oxime (IO suppresses centrosome amplification in breast cancer cells. However, we made the unexpected discovery that indirubin-derived compounds that have been chemically modified to be inactive as kinase inhibitors such as 1-methyl-indirubin-3'-oxime (MeIO still significantly reduced centrosome amplification. All indirubins used in the present study are potent agonists of the aryl hydrocarbon receptor (AhR, which is known for its important role in the cellular metabolism of xenobiotics. To corroborate our results, we first show that the coincidence of nuclear AhR overexpression, reflecting a constitutive activation, and numerical centrosome aberrations correlates significantly with malignancy in mammary tissue specimens. Remarkably, a considerable proportion (72.7% of benign mammary tissue samples scored also positive for nuclear AhR overexpression. We furthermore provide evidence that continued expression of endogenous AhR is critical to promote centriole overduplication induced by cyclin E and that AhR and cyclin E may function in the same pathway. Overexpression of the AhR in the absence of exogenous ligands was found to rapidly disrupt centriole duplication control. Nonetheless, the AhR agonists IO and MeIO were still found to significantly reduce centriole overduplication stimulated by ectopic AhR expression. Conclusions Our results indicate that

  7. Fibroblast growth factor (Fgf) 21 is a novel target gene of the aryl hydrocarbon receptor (AhR)

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Xingguo, E-mail: chengx@stjohns.edu [Department of Pharmaceutical Sciences, St. John' s University, 8000 Utopia Parkway, Queens, NY 11439 (United States); Vispute, Saurabh G. [Department of Pharmaceutical Sciences, St. John' s University, 8000 Utopia Parkway, Queens, NY 11439 (United States); Liu, Jie [Department of Internal Medicine, University of Kansas Medical Center, 3901 Rainbow Boulevard, Kansas City, KS 66160 (United States); Cheng, Christine; Kharitonenkov, Alexei [Lilly Research Laboratories, Division of Eli Lilly and Co., Indianapolis, IN 46285 (United States); Klaassen, Curtis D., E-mail: curtisklaassenphd@gmail.com [Department of Internal Medicine, University of Kansas Medical Center, 3901 Rainbow Boulevard, Kansas City, KS 66160 (United States)

    2014-07-01

    The toxic effects of dioxins, such as 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), mainly through activation of the aryl hydrocarbon receptor (AhR) are well documented. Fibroblast growth factor (Fgf) 21 plays critical roles in metabolic adaptation to fasting by increasing lipid oxidation and ketogenesis in the liver. The present study was performed to determine whether activation of the AhR induces Fgf21 expression. In mouse liver, TCDD increased Fgf21 mRNA in both dose- and time-dependent manners. In addition, TCDD markedly increased Fgf21 mRNA expression in cultured mouse and human hepatocytes. Moreover, TCDD increased mRNA (in liver) and protein levels (in both liver and serum) of Fgf21 in wild-type mice, but not in AhR-null mice. Chromatin immunoprecipitation assays showed that TCDD increased AhR protein binding to the Fgf21 promoter (− 105/+ 1 base pair). Fgf21-null mice administered 200 μg/kg of TCDD died within 20 days, whereas wild-type mice receiving the same treatment were still alive at one month after administration. This indicates that TCDD-induced Fgf21 expression protects against TCDD toxicity. Diethylhexylphthalate (DEHP) pretreatment attenuated TCDD-induced Fgf21 expression in mouse liver and white adipose tissue, which may explain a previous report that DEHP pretreatment decreases TCDD-induced wasting. In conclusion, Fgf21 appears to be a target gene of AhR-signaling pathway in mouse and human liver. - Highlights: • TCDD induced Fgf21 expression at both mRNA and protein levels. • Fgf21 induction by TCDD is AhR-dependent. • DEHP attenuated TCDD-induced Fgf21 expression.

  8. Tissue specificity of aryl hydrocarbon receptor (AhR) mediated responses and relative sensitivity of white sturgeon (Acipenser transmontanus) to an AhR agonist.

    Science.gov (United States)

    Doering, Jon A; Wiseman, Steve; Beitel, Shawn C; Tendler, Brett J; Giesy, John P; Hecker, Markus

    2012-06-15

    Sturgeons are endangered in some parts of the world. Due to their benthic nature and longevity sturgeon are at greater risk of exposure to bioaccumulative contaminants such as dioxin-like compounds that are associated with sediments. Despite their endangered status, little research has been conducted to characterize the relative responsiveness of sturgeon to dioxin-like compounds. In an attempt to study the biological effects and possible associated risks of exposure to dioxin-like compounds in sturgeon, the molecular and biochemical responses of white sturgeon (Acipenser transmontanus) to a model aryl hydrocarbon receptor (AhR) agonist, β-naphthoflavone (βNF) were investigated. White sturgeon were injected intraperitoneally with one of three doses of βNF (0, 50, or 500mg/kg, bw). Rainbow trout (Oncorhynchus mykiss) were used as a reference species since their responses have been well characterized in the past. Three days following injection with βNF, fish were euthanized and livers, gills, and intestines collected for biochemical and molecular analyses. White sturgeon exposed to βNF had significantly greater ethoxyresorufin O-deethylase (EROD) activity in liver (up to 37-fold), gill (up to 41-fold), and intestine (up to 36-fold) than did unexposed controls. Rainbow trout injected with βNF exhibited EROD activity that was significantly greater in liver (88-fold), than that of controls, but was undetectable in gills or intestine. Abundance of CYP1A transcript displayed a comparable pattern of tissue-specific induction with intestine (up to 189-fold), gills (up to 53-fold), and liver (up to 21-fold). Methoxyresorufin O-deethylase (MROD) and pentoxyresorufin O-deethylase (PROD) activities were undetectable in unexposed white sturgeon tissues while exposed tissues displayed MROD activity that was only moderately greater than the activity that could be detected. Differential inducibility among liver, gill, and intestine following exposure to an AhR agonist is

  9. Aryl hydrocarbon receptor (AhR agonists suppress interleukin-6 expression by bone marrow stromal cells: an immunotoxicology study

    Directory of Open Access Journals (Sweden)

    Schlezinger Jennifer J

    2003-12-01

    Full Text Available Abstract Background Bone marrow stromal cells produce cytokines required for the normal growth and development of all eight hematopoietic cell lineages. Aberrant cytokine production by stromal cells contributes to blood cell dyscrasias. Consequently, factors that alter stromal cell cytokine production may significantly compromise the development of normal blood cells. We have shown that environmental chemicals, such as aromatic hydrocarbon receptor (AhR agonists, suppress B lymphopoiesis by modulating bone marrow stromal cell function. Here, we extend these studies to evaluate the potential for two prototypic AhR agonists, 7,12-dimethylbenz [a]anthracene (DMBA and 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD, to alter stromal cell cytokine responses. Methods Bone marrow stromal cells were treated with AhR agonists and bacterial lipopolysaccharide (LPS to mimic innate inflammatory cytokine responses and to study the effects of AhR ligands on those responses. Steady state cytokine RNA levels were screened by RNAse protection assays (RPA and quantified by real-time PCR. Cytokine (IL-6 protein production was measured by ELISA. NF-κB EMSAs were used to study IL-6 transcriptional regulation. Results RPAs indicated that AhR+ bone marrow stromal cells consistently up-regulated genes encoding IL-6 and LIF in response to LPS, presumably through activation of Toll-like receptor 4. Pre-treatment with low doses of DMBA or TCDD selectively abrogated IL-6 gene induction but had no effect on LIF mRNA. Real-time-PCR indicated a significant inhibition of IL-6 mRNA by AhR ligands within 1 hour of LPS challenge which was reflected in a profound down-regulation of IL-6 protein induction, with DMBA and TCDD suppressing IL-6 levels as much as 65% and 88%, respectively. This potent inhibitory effect persisted for at least 72 hours. EMSAs measuring NF-κB binding to IL-6 promoter sequences, an event known to induce IL-6 transcription, indicated a significant decrease in

  10. Aryl hydrocarbon receptor (AhR) agonists suppress interleukin-6 expression by bone marrow stromal cells: an immunotoxicology study.

    Science.gov (United States)

    Jensen, Brenda A; Leeman, Rebecca J; Schlezinger, Jennifer J; Sherr, David H

    2003-12-16

    Bone marrow stromal cells produce cytokines required for the normal growth and development of all eight hematopoietic cell lineages. Aberrant cytokine production by stromal cells contributes to blood cell dyscrasias. Consequently, factors that alter stromal cell cytokine production may significantly compromise the development of normal blood cells. We have shown that environmental chemicals, such as aromatic hydrocarbon receptor (AhR) agonists, suppress B lymphopoiesis by modulating bone marrow stromal cell function. Here, we extend these studies to evaluate the potential for two prototypic AhR agonists, 7,12-dimethylbenz [a]anthracene (DMBA) and 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), to alter stromal cell cytokine responses. Bone marrow stromal cells were treated with AhR agonists and bacterial lipopolysaccharide (LPS) to mimic innate inflammatory cytokine responses and to study the effects of AhR ligands on those responses. Steady state cytokine RNA levels were screened by RNAse protection assays (RPA) and quantified by real-time PCR. Cytokine (IL-6) protein production was measured by ELISA. NF-kappaB EMSAs were used to study IL-6 transcriptional regulation. RPAs indicated that AhR+ bone marrow stromal cells consistently up-regulated genes encoding IL-6 and LIF in response to LPS, presumably through activation of Toll-like receptor 4. Pre-treatment with low doses of DMBA or TCDD selectively abrogated IL-6 gene induction but had no effect on LIF mRNA. Real-time-PCR indicated a significant inhibition of IL-6 mRNA by AhR ligands within 1 hour of LPS challenge which was reflected in a profound down-regulation of IL-6 protein induction, with DMBA and TCDD suppressing IL-6 levels as much as 65% and 88%, respectively. This potent inhibitory effect persisted for at least 72 hours. EMSAs measuring NF-kappaB binding to IL-6 promoter sequences, an event known to induce IL-6 transcription, indicated a significant decrease in the LPS-mediated induction of DNA-binding Rel

  11. Fibroblast growth factor (Fgf) 21 is a novel target gene of the aryl hydrocarbon receptor (AhR).

    Science.gov (United States)

    Cheng, Xingguo; Vispute, Saurabh G; Liu, Jie; Cheng, Christine; Kharitonenkov, Alexei; Klaassen, Curtis D

    2014-07-01

    The toxic effects of dioxins, such as 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), mainly through activation of the aryl hydrocarbon receptor (AhR) are well documented. Fibroblast growth factor (Fgf) 21 plays critical roles in metabolic adaptation to fasting by increasing lipid oxidation and ketogenesis in the liver. The present study was performed to determine whether activation of the AhR induces Fgf21 expression. In mouse liver, TCDD increased Fgf21 mRNA in both dose- and time-dependent manners. In addition, TCDD markedly increased Fgf21 mRNA expression in cultured mouse and human hepatocytes. Moreover, TCDD increased mRNA (in liver) and protein levels (in both liver and serum) of Fgf21 in wild-type mice, but not in AhR-null mice. Chromatin immunoprecipitation assays showed that TCDD increased AhR protein binding to the Fgf21 promoter (-105/+1 base pair). Fgf21-null mice administered 200μg/kg of TCDD died within 20days, whereas wild-type mice receiving the same treatment were still alive at one month after administration. This indicates that TCDD-induced Fgf21 expression protects against TCDD toxicity. Diethylhexylphthalate (DEHP) pretreatment attenuated TCDD-induced Fgf21 expression in mouse liver and white adipose tissue, which may explain a previous report that DEHP pretreatment decreases TCDD-induced wasting. In conclusion, Fgf21 appears to be a target gene of AhR-signaling pathway in mouse and human liver.

  12. Polycyclic aromatic hydrocarbons (PAHs) mediate transcriptional activation of the ATP binding cassette transporter ABCB6 gene via the aryl hydrocarbon receptor (AhR).

    Science.gov (United States)

    Chavan, Hemantkumar; Krishnamurthy, Partha

    2012-09-14

    Liver is endowed with a mechanism to induce hepatic cytochromes P450 (CYP450s) in response to therapeutic drugs and environmental contaminants, leading to increased detoxification and elimination of the xenobiotics. Each CYP450 is composed of an apoprotein moiety and a heme prosthetic group, which is required for CYP450 activity. Thus, under conditions of CYP450 induction, there is a coordinate increase in heme biosynthesis to compensate for the increased expression of CYP450s. ABCB6, a mitochondrial ATP binding cassette transporter, which regulates coproporphyrinogen transport from the cytoplasm into the mitochondria to complete heme biosynthesis, represents a previously unrecognized rate-limiting step in heme biosynthesis. However, it is not known if exposure to drugs and environmental contaminants induces ABCB6 expression, to assure an adequate and apparently coordinated supply of heme for the generation of functional cytochrome holoprotein. In the present study, we demonstrate that polycyclic aromatic hydrocarbons (PAHs), the widely distributed environmental toxicants shown to induce porphyrin accumulation causing hepatic porphyria, up-regulate ABCB6 expression in both mice and humans. Using siRNA technology and Abcb6 knock-out mice, we demonstrate that PAH-mediated increase in hepatic porphyrins is compromised in the absence of ABCB6. Moreover, in vivo studies in aryl hydrocarbon receptor (AhR) knock-out mice demonstrate that PAH induction of ABCB6 is mediated by AhR. Promoter activation studies combined with electrophoretic mobility shift assay and chromatin immunoprecipitation assay demonstrate direct interactions between the AhR binding sites in the ABCB6 promoter and the AhR receptor, implicating drug activation mechanisms for ABCB6 similar to those found in inducible cytochrome P450s. These studies are the first to describe direct transcriptional activation of both mouse and human ABCB6 by xenobiotics.

  13. Benzimidazoisoquinolines: a new class of rapidly metabolized aryl hydrocarbon receptor (AhR ligands that induce AhR-dependent Tregs and prevent murine graft-versus-host disease.

    Directory of Open Access Journals (Sweden)

    Sumit Punj

    Full Text Available The aryl hydrocarbon receptor (AhR is a ligand-activated transcription factor that plays multiple roles in regulation of immune and inflammatory responses. The ability of certain AhR ligands to induce regulatory T cells (Tregs has generated interest in developing AhR ligands for therapeutic treatment of immune-mediated diseases. To this end, we designed a screen for novel Treg-inducing compounds based on our understanding of the mechanisms of Treg induction by the well-characterized immunosuppressive AhR ligand, 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD. We screened a ChemBridge small molecule library and identified 10-chloro-7H-benzimidazo[2,1-a]benzo[de]Iso-quinolin-7-one (10-Cl-BBQ as a potent AhR ligand that was rapidly metabolized and not cytotoxic to proliferating T cells. Like TCDD,10-Cl-BBQ altered donor CD4(+ T cell differentiation during the early stages of a graft versus host (GVH response resulting in expression of high levels of CD25, CTLA-4 and ICOS, as well as several genes associated with Treg function. The Treg phenotype required AhR expression in the donor CD4(+ T cells. Foxp3 was not expressed in the AhR-induced Tregs implicating AhR as an independent transcription factor for Treg induction. Structure-activity studies showed that unsubstituted BBQ as well as 4, 11-dichloro-BBQ were capable of inducing AhR-Tregs. Other substitutions reduced activation of AhR. Daily treatment with 10-Cl-BBQ during the GVH response prevented development of GVH disease in an AhR-dependent manner with no overt toxicity. Together, our data provide strong support for development of select BBQs that activate the AhR to induce Tregs for treatment of immune-mediated diseases.

  14. Cell bioassays for detection of aryl hydrocarbon (AhR) and estrogen receptor (ER) mediated activity in environmental samples

    Energy Technology Data Exchange (ETDEWEB)

    Hilscherova, K. [Dept. of Environmental Chemistry and Toxicology, Faculty of Science, Masaryk Univ., Brno (Czech Republic); Machala, M. [Veterinary Research Inst. of Veterinary Medicine, Brno (Czech Republic); Kannan, K.; Giesy, J.P. [Dept. of Zoology, National Food Safety and Toxicology Center, Inst. for Environmental Toxicology, Michigan State Univ., East Lansing, MI (United States); Blankenship, A.L. [Dept. of Zoology, National Food Safety and Toxicology Center, Inst. for Environmental Toxicology, Michigan State Univ., East Lansing, MI (United States); ENTRIX Inc., East Lansing, MI (United States)

    2000-07-01

    In vitro cell bioassays are useful techniques for the determination of receptor-mediated activities in environmental samples containing complex mixtures of contaminants. The cell bioassays determine contamination by pollutants that act through specific modes of action. This article presents strategies for the evaluation of aryl hydrocarbon receptor (AhR)- (hereafter referred as dioxin-like) or estrogen receptor (ER)-mediated activities of potential endocrine disrupting compounds (EDCs) in complex environmental mixtures. Extracts from various types of environmental or food matrices can be tested by this technique to evaluate their 2,3,7,8-tetrachlorodibenzo-p-dioxin equivalents (TCDD-EQs) or estrogenic equivalents (E{sub 2}-EQs) and to identify contaminated samples that need further investigation using resource-intensive instrumental analyses. Fractionation of sample extracts exhibiting significant activities, and subsequent reanalysis with the bioassays can identify important classes of contaminants that are responsible for the observed activity. Effect-directed chemical analysis is performed only for the active fractions to determine the responsible compounds. Mass-balance estimates of all major compounds contributing to the observed effects can be calculated to determine if all of the activity has been identified, and to assess the potential for interactions such as synergism or antagonism among contaminants present in the complex mixtures. The bioassay approach is an efficient (fast and cost effective) screening system to identify the samples of interest and to provide basic information for further analysis and risk evaluation. (orig.)

  15. Identification and expression of aryl hydrocarbon receptors (AhR1 and AhR2) provide insight in an evolutionary context regarding sensitivity of white sturgeon (Acipenser transmontanus) to dioxin-like compounds.

    Science.gov (United States)

    Doering, Jon A; Wiseman, Steve; Beitel, Shawn C; Giesy, John P; Hecker, Markus

    2014-05-01

    Sturgeons are ancient fishes, which are endangered in many parts of the world. Due to their benthic nature and longevity, sturgeon are at great risk of exposure to bioaccumulative contaminants such as dioxin-like compounds (DLCs). Despite their endangered status, little research has been conducted to characterize the relative sensitivity of sturgeons to DLCs. Proper assessment of risk of DLCs posed to these fishes therefore, requires a better understanding of this sensitivity and the factors that are driving it. Adverse effects associated with exposure to DLCs are mediated by the aryl hydrocarbon receptor (AhR). This study identified and characterized two distinct AhRs, AhR1 and AhR2, in white sturgeon (Acipenser transmontanus) for the first time as a first step in studying the relative sensitivities of sturgeons to DLCs. Furthermore, tissue-specific expression of both AhRs under basal conditions and in response to exposure to the model DLC, β-naphthoflavone (βNF), was determined. The sequence of amino acids of AhR1 of white sturgeon had greater similarity to AhRs of tetrapods, including amphibians, birds, and mammals, than to AhR1s of other fishes. The sequence of amino acids in the ligand binding domain of the AhR1 had greater than 80% similarity to AhRs known to bind DLCs and was less similar to AhRs not known to bind DLCs. AhR2 of white sturgeon had greatest similarity to AhR2 of other fishes. Profiles of expression of AhR1 and AhR2 in white sturgeon were distinct from those known in other fishes and appear more similar to profiles observed in birds. Expressions of both AhR1 and AhR2 of white sturgeon were greatest in liver and heart, which are target organs for DLCs. Furthermore, abundances of transcripts of AhR1 and AhR2 in all tissues from white sturgeon were greater than controls (up to 35-fold) following exposure to βNF. Based upon both AhRs having similar abundances of transcript in target organs of DLC toxicity, both AhRs being up-regulated following

  16. Mixed-ligand copper(II) complexes activate aryl hydrocarbon receptor AhR and induce CYP1A genes expression in human hepatocytes and human cell lines.

    Science.gov (United States)

    Kubešová, Kateřina; Dořičáková, Aneta; Trávníček, Zdeněk; Dvořák, Zdeněk

    2016-07-25

    The effects of four copper(II) mixed-ligand complexes [Cu(qui1)(L)]NO3·H2O (1-3) and [Cu(qui2)(phen)]NO3 (4), where qui1=2-phenyl-3-hydroxy-4(1H)-quinolinone, Hqui2=2-(4-amino-3,5-dichlorophenyl)-N-propyl-3-hydroxy-4(1H)-quinolinone-7-carboxamide, L=1,10-phenanthroline (phen) (1), 5-methyl-1,10-phenanthroline (mphen) (2), bathophenanthroline (bphen) (3), on transcriptional activities of steroid receptors, nuclear receptors and xenoreceptors have been studied. The complexes (1-4) did not influence basal or ligand-inducible activities of glucocorticoid receptor, androgen receptor, thyroid receptor, pregnane X receptor and vitamin D receptor, as revealed by gene reporter assays. The complexes 1 and 2 dose-dependently induced luciferase activity in stable gene reporter AZ-AhR cell line, and this induction was reverted by resveratrol, indicating involvement of aryl hydrocarbon receptor (AhR) in the process. The complexes 1, 2 and 3 induced CYP1A1 mRNA in LS180 cells and CYP1A1/CYP1A2 in human hepatocytes through AhR. Electrophoretic mobility shift assay EMSA showed that the complexes 1 and 2 transformed AhR in its DNA-binding form. Collectively, we demonstrate that the complexes 1 and 2 activate AhR and induce AhR-dependent genes in human hepatocytes and cancer cell lines. In conclusion, the data presented here might be of toxicological importance, regarding the multiple roles of AhR in human physiology and pathophysiology.

  17. Dose- and time-dependent expression of aryl hydrocarbon receptor (AhR) and aryl hydrocarbon receptor nuclear translocator (ARNT) in PCB-, B[a]P-, and TBT-exposed intertidal copepod Tigriopus japonicus.

    Science.gov (United States)

    Kim, Bo-Mi; Rhee, Jae-Sung; Hwang, Un-Ki; Seo, Jung Soo; Shin, Kyung-Hoon; Lee, Jae-Seong

    2015-02-01

    The aryl hydrocarbon receptor (AhR) and aryl hydrocarbon nuclear translocator (ARNT) genes from the copepod Tigriopus japonicus (Tj) were cloned to examine their potential functions in the invertebrate putative AhR-CYP signaling pathway. The amino acid sequences encoded by the Tj-AhR and Tj-ARNT genes showed high similarity to homologs of Daphnia and Drosophila, ranging from 68% and 70% similarity for the AhR genes to 56% for the ARNT genes. To determine whether Tj-AhR and Tj-ARNT are modulated by environmental pollutants, transcriptional expression of Tj-AhR and Tj-ARNT was analyzed in response to exposure to five concentrations of polychlorinated biphenyl (PCB 126) (control, 10, 50, 100, 500 μg L(-1)), benzo[a]pyrene (B[a]P) (control, 5, 10, 50, 100 μg L(-1)), and tributyltin (TBT) (control, 1, 5, 10, 20 μg L(-1)) 24h after exposure. A time-course experiment (0, 3, 6, 12, 24h) was performed to analyze mRNA expression patterns after exposure to PCB, B[a]P, and TBT. T. japonicus exhibited dose-dependent and time-dependent upregulation of Tj-AhR and Tj-ARNT in response to pollutant exposure, and the degree of expression was dependent on the pollutant, suggesting that pollutants such as PCB, B[a]P, and TBT modulate expression of Tj-AhR and Tj-ARNT genes in the putative AhR-CYP signaling pathway.

  18. Predicting the sensitivity of fishes to dioxin-like compounds: possible role of the aryl hydrocarbon receptor (AhR) ligand binding domain.

    Science.gov (United States)

    Doering, Jon A; Giesy, John P; Wiseman, Steve; Hecker, Markus

    2013-03-01

    Dioxin-like compounds are chronically toxic to most vertebrates. However, dramatic differences in sensitivity to these chemicals exist both within and among vertebrate classes. A recent study found that in birds, critical amino acid residues in the aryl hydrocarbon receptor (AhR) ligand binding domain are predictive of sensitivity to dioxin-like compounds in a range of species. It is currently unclear whether similar predictive relationships exist for fishes, a group of animals at risk of exposure to dioxin-like compounds. Effects of dioxin-like compounds are mediated through the AhR in fishes and birds. However, AhR dynamics are more complex among fishes. Fishes possess AhRs that can be grouped within at least three distinct clades (AhR1, AhR2, AhR3) with each clade possibly containing multiple isoforms. AhR2 has been shown to be the active form in most teleosts, with AhR1 not binding dioxin-like compounds. The role of AhR3 in dioxin-like toxicity has not been established to date and this clade is only known to be expressed in some cartilaginous fishes. Furthermore, multiple mechanisms of sensitivity to dioxin-like compounds that are not relevant in birds could exist among fishes. Although, at this time, deficiencies exist for the development of such a predictive relationship for application to fishes, successfully establishing such relationships would offer a substantial improvement in assessment of risks of dioxin-like compounds for this class of vertebrates. Elucidation of such relationships would provide a mechanistic foundation for extrapolation among species to allow the identification of the most sensitive fishes, with the ultimate goal of the prediction of risk posed to endangered species that are not easily studied.

  19. Aryl hydrocarbon receptor (AhR-mediated perturbations in gene expression during early stages of CD4+ T-cell differentiation

    Directory of Open Access Journals (Sweden)

    Diana eRohlman

    2012-08-01

    Full Text Available Activation of the aryl hydrocarbon receptor (AhR by its prototypic ligand, 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD, mediates potent suppression of T-cell dependent immune responses. The suppressive effects of TCDD occur early during CD4+ T-cell differentiation in the absence of effects on proliferation and have recently been associated with the induction of AhR-dependent regulatory T-cells (Treg. Since AhR functions as a ligand-activated transcription factor, changes in gene expression induced by TCDD during the early stages of CD4+ T-cell differentiation are likely to reflect fundamental mechanisms of AhR action. A custom panel of genes associated with T-cell differentiation was used to query changes in gene expression induced by exposure to 1 nM TCDD. CD4+ T-cells from AhR+/+ and AhR-/- mice were cultured with cytokines known to polarize the differentiation of T-cells to various effector lineages. Treatment with TCDD induced expression of Cyp1a1, Cyp1b1 and Ahrr in CD4+ T-cells from AhR+/+ mice under all culture conditions, validating the presence and activation of AhR in these cells. The highest levels of AhR activation occurred under Th17 conditions at 24 hours and Tr1 conditions at 48 hours. Unexpectedly, expression levels of most genes associated with early T-cell differentiation were unaltered by AhR activation, including lineage-specific genes that drive CD4+ T-cell polarization. The major exception was AhR-dependent up-regulation of Il22 that was seen under all culture conditions. Independent of TCDD, AhR down-regulated the expression of Il17a and Rorc based on increased expression of these genes in AhR-deficient cells across culture conditions. These findings are consistent with a role for AhR in down-regulation of inflammatory immune responses and implicate IL-22 as a potential contributor to the immunosuppressive effects of TCDD.

  20. Activation of aryl hydrocarbon receptor (AhR leads to reciprocal epigenetic regulation of FoxP3 and IL-17 expression and amelioration of experimental colitis.

    Directory of Open Access Journals (Sweden)

    Narendra P Singh

    Full Text Available BACKGROUND: Aryl hydrocarbon receptor (AhR, a transcription factor of the bHLH/PAS family, is well characterized to regulate the biochemical and toxic effects of environmental chemicals. More recently, AhR activation has been shown to regulate the differentiation of Foxp3(+ Tregs as well as Th17 cells. However, the precise mechanisms are unclear. In the current study, we investigated the effect of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD, a potent AhR ligand, on epigenetic regulation leading to altered Treg/Th17 differentiation, and consequent suppression of colitis. METHODOLOGY/PRINCIPAL FINDINGS: Dextran sodium sulphate (DSS administration induced acute colitis in C57BL/6 mice, as shown by significant weight loss, shortening of colon, mucosal ulceration, and increased presence of CXCR3(+ T cells as well as inflammatory cytokines. Interestingly, a single dose of TCDD (25 µg/kg body weight was able to attenuate all of the clinical and inflammatory markers of colitis. Analysis of T cells in the lamina propria (LP and mesenteric lymph nodes (MLN, during colitis, revealed decreased presence of Tregs and increased induction of Th17 cells, which was reversed following TCDD treatment. Activation of T cells from AhR(+/+ but not AhR (-/- mice, in the presence of TCDD, promoted increased differentiation of Tregs while inhibiting Th17 cells. Analysis of MLN or LP cells during colitis revealed increased methylation of CpG islands of Foxp3 and demethylation of IL-17 promoters, which was reversed following TCDD treatment. CONCLUSIONS/SIGNIFICANCE: These studies demonstrate for the first time that AhR activation promotes epigenetic regulation thereby influencing reciprocal differentiation of Tregs and Th17 cells, and amelioration of inflammation.

  1. Itraconazole cis-diastereoisomers activate aryl hydrocarbon receptor AhR and pregnane X receptor PXR and induce CYP1A1 in human cell lines and human hepatocytes.

    Science.gov (United States)

    Stepankova, Martina; Pastorkova, Barbora; Bachleda, Petr; Dvorak, Zdenek

    2017-04-05

    Triazole antimycotic itraconazole contains in its structure three chiral centres; therefore, it forms eight stereoisomers. Commercial preparations of itraconazole are a mixture of four cis-diastereoisomers. There is much evidence that efficacy, adverse effects, and toxicity of chiral drugs may be stereospecific. Therefore, we have prepared 4 pure cis-diastereoisomers of itraconazole and investigated their effects on transcriptional activities of xenoreceptors aryl hydrocarbon receptor AhR and pregnane X receptor PXR. Gene reporter assays showed that itraconazole dose-dependently activated both AhR and PXR, and the activation of AhR but not of PXR was enantiospecific. Itraconazole diastereoisomers transformed AhR and PXR into their DNA-binding forms, as demonstrated by electromobility shift assays. Cytochrome P450 CYP1A1 mRNA and protein were induced by itraconazole diastereoisomers in human hepatoma cells HepG2, human skin cells HaCaT, and in primary human hepatocytes. The expression of CYP3A4 in human intestinal LS180 cells was not influenced by itraconazole, but we observed downregulation of CYP3A4 in human hepatocytes. Collectively, we show that itraconazole is a dual activator of AhR and PXR, with differential effects on the target genes for xenoreceptors. The enantiospecific pattern was observed only in gene reporter assays for AhR. The data presented here might be of toxicological and clinical importance.

  2. Ah receptor agonist activity in frequently consumed food items

    NARCIS (Netherlands)

    Waard, de W.J.; Aarts, J.M.M.J.G.; Peijnenburg, A.A.C.M.; Kok, de T.M.C.M.; Schooten, van F.J.; Hoogenboom, L.A.P.

    2008-01-01

    The aryl hydrocarbon receptor (AhR) receives much attention for its role in the toxicity of dioxins and dioxin-like polychlorinated biphenyls. However, many other compounds have also been reported to bind and activate AhR, of which natural food components are of special interest from a human health

  3. Ah receptor agonist activity in frequently consumed food items

    NARCIS (Netherlands)

    Waard, de W.J.; Aarts, J.M.M.J.G.; Peijnenburg, A.A.C.M.; Kok, de T.M.C.M.; Schooten, van F.J.; Hoogenboom, L.A.P.

    2008-01-01

    The aryl hydrocarbon receptor (AhR) receives much attention for its role in the toxicity of dioxins and dioxin-like polychlorinated biphenyls. However, many other compounds have also been reported to bind and activate AhR, of which natural food components are of special interest from a human health

  4. DDE and PCB 153 independently induce aryl hydrocarbon receptor (AhR) expression in peripheral blood mononuclear cells.

    Science.gov (United States)

    Gaspar-Ramírez, Octavio; Pérez-Vázquez, Francisco J; Salgado-Bustamante, Mariana; González-Amaro, Roberto; Hernandez-Castro, Berenice; Pérez-Maldonado, Ivan N

    2015-01-01

    Recent studies have demonstrated that compounds inducing pro-inflammatory cytokines enhance AhR expression. The aim of this study was 2-fold: (1) to determine if two pro-inflammatory compounds, dichlorodiphenyldichloroethylene (DDE) and 2,2',4,4',5,5'-hexa-chlorobiphenyl (PCB 153), independently affect AhR gene expression in peripheral blood mononuclear cells (PBMC); and (2) if affected, to determine whether the mechanism involved was due to AhR activation or to a pro-inflammatory effect of the chemicals. PBMC isolated from healthy individuals were incubated in the presence of DDE (10 µg/ml) and PCB 153 (20 ng/ml) over time and AhR and CYP1A1 expression was assessed with a real-time PCR technique. The results indicated there was over-expression of the AhR mRNA in PBMC when the cells were treated with DDE and PCB 153. No changes in expression levels of CYP1A1 mRNA were found. Importantly, when the cells were exposed to DDE and PCB 153 in the presence of an antagonist of tumor necrosis factor (TNF)-α, the over-expression of AhR was abolished; as expected, the expression of CYP1A1 was unaffected. In conclusion, these studies demonstrated for the first time an increment of AhR expression "in vitro" in PBMC treated with two pro-inflammatory environmental pollutants, DDE and PCB153. Moreover, the over-expression of AhR was dependent of TNFα induced by DDE and PCB 153 and was independent of AhR activation.

  5. Enhancement of hypoxia-induced gene expression in fish liver by the aryl hydrocarbon receptor (AhR) ligand, benzo[a]pyrene (BaP).

    Science.gov (United States)

    Yu, Richard Man Kit; Ng, Patrick Kwok Shing; Tan, Tianfeng; Chu, Daniel Ling Ho; Wu, Rudolf Shiu Sun; Kong, Richard Yuen Chong

    2008-11-21

    Fish in polluted coastal habitats commonly suffer simultaneous exposure to both hypoxia and xenobiotics. Although the adaptive molecular responses to each stress have been described, little is known about the interaction between the signaling pathways mediating these responses. Previous studies in mammalian hepatoma cell lines have shown that hypoxia-inducible factor (HIF)- and/or aryl hydrocarbon receptor (AhR)-activated gene expression is suppressed following co-exposure to hypoxia and the hallmark AhR ligand 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). However, whether similar crosstalk exists in the non-tumor liver tissues of fish and whether other non-TCDD ligands also play the same inhibitory role in this crosstalk remain unknown. Here, the in vivo hepatic mRNA expression profiles of multiple hypoxia- and AhR-responsive genes (later gene expression=mRNA expression of the gene) were examined in the orange-spotted grouper (Epinephelus coioides) upon single and combined exposures to hypoxia and benzo[a]pyrene (BaP). Combined exposure enhanced hypoxia-induced gene expression but did not significantly alter BaP-induced gene expression. Protein carbonyl content was markedly elevated in fish subjected to combined exposure, indicating accumulation of reactive oxygen species (ROS). Application of diethyldithiocarbamate (DDC) to hypoxia-treated grouper liver explants similarly exaggerated hypoxia-induced gene expression as in the combined stress tissues in vivo. These observations suggest that ROS derived from the combined hypoxia and BaP stress have a role in enhancing hypoxia-induced gene expression.

  6. Newspapers and Newspaper Ink Contain Agonists for the Ah Receptor

    Science.gov (United States)

    Bohonowych, Jessica E. S.; Zhao, Bin; Timme-Laragy, Alicia; Jung, Dawoon; Di Giulio, Richard T.; Denison, Michael S.

    2010-01-01

    Ligand-dependent activation of the aryl hydrocarbon receptor (AhR) pathway leads to a diverse array of biological and toxicological effects. The best-studied ligands for the AhR include polycyclic and halogenated aromatic hydrocarbons, the most potent of which is 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). However, as new AhR ligands are identified and characterized, their structural and physiochemical diversity continues to expand. Our identification of AhR agonists in crude extracts from diverse materials raises questions as to the magnitude and extent of human exposure to AhR ligands through normal daily activities. We have found that solvent extracts of newspapers from countries around the world stimulate the AhR signaling pathway. AhR agonist activity was observed for dimethyl sulfoxide (DMSO), ethanol, and water extracts of printed newspaper, unprinted virgin paper, and black printing ink, where activation of luciferase reporter gene expression was transient, suggesting that the AhR active chemical(s) was metabolically labile. DMSO and ethanol extracts also stimulated AhR transformation and DNA binding, and also competed with [3H]TCDD for binding to the AhR. In addition, DMSO extracts of printed newspaper induced cytochrome P450 1A associated 7-ethoxyresorufin-O-deethylase activity in zebrafish embryos in vivo. Although the responsible bioactive chemical(s) remain to be identified, our results demonstrate that newspapers and printing ink contain relatively potent metabolically labile agonists of the AhR. Given the large amount of recycling and reprocessing of newspapers throughout the world, release of these easily extractable AhR agonists into the environment should be examined and their potential effects on aquatic organisms assessed. PMID:18203687

  7. The constitutively active Ah receptor (CA-AhR) mouse as a model for dioxin exposure - effects in reproductive organs.

    Science.gov (United States)

    Brunnberg, Sara; Andersson, Patrik; Poellinger, Lorenz; Hanberg, Annika

    2011-12-01

    The dioxin/aryl hydrocarbon receptor (AhR) mediates most toxic effects of dioxins. In utero/lactational exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) impairs fetal/neonatal development and the developing male reproductive tract are among the most sensitive tissues. TCDD causes antiestrogenic responses in rodent mammary gland and uterus and in human breast cancer cell lines in the presence of estrogen. Also, more recently an estrogen-like effect of TCDD/AhR has been suggested in the absence of estrogen. A transgenic mouse expressing a constitutively active AhR (CA-AhR) was developed as a model mimicking a situation of constant exposure to AhR agonists. Male and female reproductive tissues of CA-AhR mice were characterized for some of the effects commonly seen after dioxin exposure. Sexually mature CA-AhR female mice showed decreased uterus weight, while an uterotrophic assay in immature CA-AhR mice resulted in increased uterus weight. In immature mice, both TCDD-exposure and CA-AhR increased the expression of the estrogen receptor target gene Cathepsin D. When co-treated with 17β-estradiol no increase in Cathepsin D levels occurred in either TCDD-exposed or CA-AhR mice. In sexually mature male CA-AhR mice the weights of testis and ventral prostate were decreased and the epididymal sperm reserve was reduced. The results of the present study are in accordance with previous studies on dioxin-exposed rodents in that an activated AhR (here CA-AhR) leads to antiestrogenic effects in the presence of estrogen, but to estrogenic effects in the absence of estrogen. These results suggest the CA-AhR mouse model as a useful tool for studies of continuous low activity of the AhR from early development, resembling the human exposure situation.

  8. Antioxidant Functions of the Aryl Hydrocarbon Receptor

    Directory of Open Access Journals (Sweden)

    Cornelia Dietrich

    2016-01-01

    Full Text Available The aryl hydrocarbon receptor (AhR is a transcription factor belonging to the basic helix-loop-helix/PER-ARNT-SIM family. It is activated by a variety of ligands, such as environmental contaminants like polycyclic aromatic hydrocarbons or dioxins, but also by naturally occurring compounds and endogenous ligands. Binding of the ligand leads to dimerization of the AhR with aryl hydrocarbon receptor nuclear translocator (ARNT and transcriptional activation of several xenobiotic phase I and phase II metabolizing enzymes. It is generally accepted that the toxic responses of polycyclic aromatic hydrocarbons, dioxins, and structurally related compounds are mediated by activation of the AhR. A multitude of studies indicate that the AhR operates beyond xenobiotic metabolism and exerts pleiotropic functions. Increasing evidence points to a protective role of the AhR against carcinogenesis and oxidative stress. Herein, I will highlight data demonstrating a causal role of the AhR in the antioxidant response and present novel findings on potential AhR-mediated antioxidative mechanisms.

  9. Inhibitory effect and its mechanism of ITE,an endogenous aryl hydrocarbon receptor (AhR) ligand,on the proliferation of human placental trophoblast cells%芳香烃受体(AhR)内源性配体ITE对胎盘滋养层细胞的增殖抑制作用及其机制

    Institute of Scientific and Technical Information of China (English)

    郝克红; 王凯; 陈晓; 段涛

    2014-01-01

    目的 研究芳香烃受体(aryl hydrocarbon receptor,AhR)的内源性配体2-(1'H-吲哚3'-羰基)噻唑-4-羧酸甲酯(ITE)对胎盘滋养层细胞增殖的影响及其机制.方法 用免疫组织化学及Western blot检测AhR在早期绒毛和晚期胎盘组织中的表达,利用人胎盘滋养层细胞系JEG-3和JAR作为细胞模型研究ITE对胎盘滋养层细胞增殖的影响.结果 AhR主要分布于人胎盘合体滋养层细胞的胞质中,并且晚期胎盘组织中AhR蛋白的表达水平高于早期绒毛组织(P<0.05).AhR蛋白质在JEG-3中表达较高,而在JAR中几乎检测不到.ITE可诱导JEG-3细胞中AhR下游靶基因细胞色素P4501A1(CYP1 A1) mRNA的表达,该诱导作用具有剂量和时间依赖性.同时,ITE使JEG-3细胞滞留于细胞周期的S期,进而抑制细胞的增殖.结论 ITE通过激活AhR信号通路抑制胎盘滋养层细胞的增殖,该抑制作用主要通过调节细胞周期的改变来实现.

  10. NEW TRENDS IN ARYL HYDROCARBON RECEPTOR BIOLOGY

    OpenAIRE

    Fernández-Salguero, Pedro M.; Sonia eMulero-Navarro

    2016-01-01

    Traditionally considered as a critical intermediate in the toxic and carcinogenic response to dioxin (2,3,7,8-tetrachlorodibenzo-p-dioxin, TCDD), the Aryl hydrocarbon/Dioxin receptor (AhR) has proven to be also an important regulator of cell physiology and organ homeostasis. AhR has become an interesting and actual area of research mainly boosted by a significant number of recent studies analyzing its contribution to the proper functioning of the immune, hepatic, cardiovascular, vascular and ...

  11. New Trends in Aryl Hydrocarbon Receptor Biology

    OpenAIRE

    Mulero-navarro, Sonia; Fernandez-Salguero, Pedro M.

    2016-01-01

    Traditionally considered as a critical intermediate in the toxic and carcinogenic response to dioxin (2,3,7,8-tetrachlorodibenzo-p-dioxin, TCDD), the Aryl hydrocarbon/Dioxin receptor (AhR) has proven to be also an important regulator of cell physiology and organ homeostasis. AhR has become an interesting and actual area of research mainly boosted by a significant number of recent studies analyzing its contribution to the proper functioning of the immune, hepatic, cardiovascular, vascular and ...

  12. Distinct roles for aryl hydrocarbon receptor nuclear translocator and ah receptor in estrogen-mediated signaling in human cancer cell lines.

    Directory of Open Access Journals (Sweden)

    Mark P Labrecque

    Full Text Available The activated AHR/ARNT complex (AHRC regulates the expression of target genes upon exposure to environmental contaminants such as 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD. Importantly, evidence has shown that TCDD represses estrogen receptor (ER target gene activation through the AHRC. Our data indicates that AHR and ARNT act independently from each other at non-dioxin response element sites. Therefore, we sought to determine the specific functions of AHR and ARNT in estrogen-dependent signaling in human MCF7 breast cancer and human ECC-1 endometrial carcinoma cells. Knockdown of AHR with siRNA abrogates dioxin-inducible repression of estrogen-dependent gene transcription. Intriguingly, knockdown of ARNT does not effect TCDD-mediated repression of estrogen-regulated transcription, suggesting that AHR represses ER function independently of ARNT. This theory is supported by the ability of the selective AHR modulator 3',4'-dimethoxy-α-naphthoflavone (DiMNF to repress estrogen-inducible transcription. Furthermore, basal and estrogen-activated transcription of the genes encoding cathepsin-D and pS2 are down-regulated in MCF7 cells but up-regulated in ECC-1 cells in response to loss of ARNT. These responses are mirrored at the protein level with cathepsin-D. Furthermore, knock-down of ARNT led to opposite but corresponding changes in estrogen-stimulated proliferation in both MCF7 and ECC-1 cells. We have obtained experimental evidence demonstrating a dioxin-dependent repressor function for AHR and a dioxin-independent co-activator/co-repressor function for ARNT in estrogen signalling. These results provide us with further insight into the mechanisms of transcription factor crosstalk and putative therapeutic targets in estrogen-positive cancers.

  13. Triclosan activates aryl hydrocarbon receptor (AhR)-dependent apoptosis and affects Cyp1a1 and Cyp1b1 expression in mouse neocortical neurons.

    Science.gov (United States)

    Szychowski, Konrad A; Wnuk, Agnieszka; Kajta, Małgorzata; Wójtowicz, Anna K

    2016-11-01

    Triclosan (TCS) is an antimicrobial agent that is used extensively in personal care and in sanitizing products, such as soaps, toothpastes, and hair products. A number of studies have revealed the presence of TCS in human tissues, such as fat, liver and brain, in addition to blood and breast milk. The aim of the present study was to investigate the impact of TCS on AhR and Cyp1a1/Cyp1b1 signaling in mouse neocortical neurons in primary cultures. In addition to the use of selective ligands and siRNAs, expression levels of mRNA and proteins as well as caspase-3 activity, reactive oxygen species (ROS) formation, and lactate dehydrogenase (LDH) release have been measured. We also studied the involvement of the AhR in TCS-induced LDH release and caspase-3 activation as well as the effect of TCS on ROS generation. Cultures of neocortical neurons were prepared from Swiss mouse embryos on day 15/16 of gestation. The cells were cultured in phenol red-free Neurobasal medium with B27 and glutamine, and the neurons were exposed to 1 and 10µM TCS. Our experiments showed that the expression of AhR and Cyp1a1 mRNA decreased in cells exposed to 10µM TCS for 3 or 6h. In the case of Cyp1b1, mRNA expression remained unchanged compared with the control group following 3h of exposure to TCS, but after 6h, the mRNA expression of Cyp1b1 was decreased. Our results confirmed that the AhR is involved in the TCS mechanism of action, and our data demonstrated that after the cells were transfected with AhR siRNA, the cytotoxic and pro-apoptotic properties of TCS were decreased. The decrease in Cyp1a1 mRNA and protein expression levels accompanied by a decrease in its activity. The stimulation of Cyp1a1 activity produced by the application of an AhR agonist (βNF) was attenuated by TCS, whereas the addition of AhR antagonist (αNF) reversed the inhibitory effects of TCS. In our experiments, TCS diminished Cyp1b1 mRNA and enhanced its protein expression. In case of Cyp1a1 we observed

  14. Identification and analysis of novel flavonoid agonists and antagonists for the AH and estrogen receptor

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, B.; Nagy, S.; Rogers, J.; Denison, M. [Dept. of Environmental Toxicology, Univ. of California, Davis (United States); Nantz, M.; Kurth, M.; Springsteel, M. [Dept. of Chemistry, Univ. of California, Davis (United States)

    2004-09-15

    The aryl hydrocarbon receptor (AhR) is a ligand-activated transcription factor that mediates many of the biological and toxicological effects in a diverse range of species, tissues, and cell types. The most studied effect is induction of gene expression, and, the majority of AhR responsive genes, such as cytochrome P4501A1 (CYP1A1), utilize AhR dependent mechanism of action. While halogenated aromatic hydrocarbons (HAHs) and polycyclic aromatic hydrocarbons (PAHs) are the prototypical ligands of the Ah receptor, it has recently identified that the AhR is activated by a structurally diverse array of hydrophobic natural and synthetic chemicals. Given the structural diversity in AhR ligands, the physiochemical characteristics for high and low affinity ligands seems to be established. Environmental contaminants that can disrupt the endocrine homeostasis of an organism have also gained widespread attention in recent years and numerous chemicals have been identified as having either hormone or anti-hormone properties. However, like the AhR, the structural diversity and characteristics of endocrine disrupters that exert their action via nuclear receptors also seems to be depended on the estrogen receptor (ER). The flavonoids are a diverse family of chemicals commonly found in fruits and vegetables. Members of this family exert cytostatic, apoptotic, anti-inflammatory and anti-angiogenic activities. In addition, several flavonoids are potent modulators of both the expression and activities of specific cytochrome P450 genes/proteins and somel others have estrogenic and antiestrogenic activity. Accordingly flavonoids have attracted attention as possible chemoprotective or chemotherapeutic agents. We have previously developed and analyzed a novel chemical library of flavonoids which contained {proportional_to}200 compounds. The ability of these compounds to activate and/or inhibit AhR- and ER- dependent gene expression was examined by using our recently developed AhR- and ER

  15. Blockade of the aryl hydrocarbon receptor pathway triggered by dioxin, polycyclic aromatic hydrocarbons and cigarette smoke by Phellinus linteus.

    Science.gov (United States)

    Mukai, Mai; Kasai, Ayumi; Hiramatsu, Nobuhiko; Hayakawa, Kunihiro; Okamura, Maro; Tagawa, Yasuhiro; Yao, Jian; Nakamura, Tomoyuki; Kitamura, Masanori

    2008-10-01

    Environmental pollutants including halogenated and polycyclic aromatic hydrocarbons activate the aryl hydrocarbon receptor (AhR) and thereby cause a wide range of pathological changes. Development of AhR antagonists will be useful for prevention and treatment of diseases related to AhR activation. Towards this end, we aimed in the present study at seeking for potential inhibitors of the AhR pathway in mycelial extracts using the dioxin responsive element-based sensing via secreted alkaline phosphatase (DRESSA). Through the screening of 13 mycelia, extracts prepared from Phellinus linteus, Cordyceps militaris and Hericium erinaceum inhibited activation of AhR by 2,3,7,8-tetrachlorodibenzo-p-dioxin, benzo[a]pyrene or 3-methylcholanthrene. Subsequent studies revealed that only Phellinus linteus suppressed activation of AhR and AhR-dependent gene expression triggered by all of these agonists. Cigarette smoke is known to contain a number of halogenated and polycyclic aromatic hydrocarbons. We found that Phellinus linteus has the potential to block activation of AhR and AhR-dependent gene expression triggered by cigarette smoke. Furthermore, the inhibitory effect of Phellinus linteus on the AhR pathway was independent of; 1) depression of AhR or AhR nuclear translocator, and 2) induction of AhR repressor. We conclude that Phellinus linteus contains potent inhibitor(s) of AhR activation and may be useful for prevention of pathologies associated with aberrant activation of AhR.

  16. Activation of the Ah receptor by extracts of dietary herbal supplements, vegetables, and fruits

    NARCIS (Netherlands)

    Jeuken, A.; Keser, B.J.G.; Khan, E.; Brouwer, A.; Koeman, J.H.; Denison, M.S.

    2003-01-01

    The aryl hydrocarbon receptor (AhR) is a ligand-dependent transcription factor that can be activated by a structurally diverse range of synthetic and natural chemicals, and it mediates the toxic and biological effects of environmental contaminants such as 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD).

  17. Influence of TCDD and natural Ah receptor agonists on benzo[a]pyrene-DNA adduct formation in the Caco-2 human colon cell line

    NARCIS (Netherlands)

    Waard, de W.J.; Kok, de T.M.C.M.; Maas, L.M.; Peijnenburg, A.A.C.M.; Hoogenboom, L.A.P.; Aarts, H.J.M.; Schooten, van F.J.

    2008-01-01

    Several compounds originating from cruciferous vegetables and citrus fruits bind to and activate the aryl hydrocarbon receptor (AhR). This receptor plays an important role in the toxicity of the known tumour promoter and potent AhR-agonist 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). However, vegetab

  18. Hydrocarbon Receptor Pathway in Dogs

    NARCIS (Netherlands)

    Steenbeek, F.G. van; Spee, B.; Penning, L.C.; Kummeling, A.; Gils, I.H.M.; Grinwis, G.C.M.; Leenen, D. van; Holstege, F.C.P.; Vos-Loohuis, M.; Rothuizen, J.; Leegwater, P.A.J.

    2013-01-01

    The aryl hydrocarbon receptor (AHR) mediates biological responses to toxic chemicals. An unexpected role for AHR in vascularization was suggested when mice lacking AHR displayed impaired closure of the ductus venosus after birth, as did knockout mice for aryl hydrocarbon receptor interacting protein

  19. Hydrocarbon Receptor Pathway in Dogs

    NARCIS (Netherlands)

    Steenbeek, F.G. van; Spee, B.; Penning, L.C.; Kummeling, A.; Gils, I.H.M.; Grinwis, G.C.M.; Leenen, D. van; Holstege, F.C.P.; Vos-Loohuis, M.; Rothuizen, J.; Leegwater, P.A.J.

    The aryl hydrocarbon receptor (AHR) mediates biological responses to toxic chemicals. An unexpected role for AHR in vascularization was suggested when mice lacking AHR displayed impaired closure of the ductus venosus after birth, as did knockout mice for aryl hydrocarbon receptor interacting

  20. Role of the Aryl Hydrocarbon Receptor in Colon Neoplasia

    Directory of Open Access Journals (Sweden)

    Guofeng Xie

    2015-07-01

    Full Text Available For both men and women, colorectal cancer (CRC is the second leading cause of cancer death in the United States, primarily as a consequence of limited therapies for metastatic disease. The aryl hydrocarbon receptor (AhR is a ligand-dependent transcription factor with diverse functions in detoxification of xenobiotics, inflammatory responses, and tissue homeostasis. Emerging evidence indicates that AhR also plays an important role in regulating intestinal cell proliferation and tumorigenesis. Here, we review both the pro- and anti-carcinogenic properties of AhR signaling and its potential role as a therapeutic target in CRC.

  1. Role of the Aryl Hydrocarbon Receptor in Colon Neoplasia

    Energy Technology Data Exchange (ETDEWEB)

    Xie, Guofeng, E-mail: gxie@medicine.umaryland.edu; Raufman, Jean-Pierre [Division of Gastroenterology and Hepatology, Veterans Administration Maryland Health Care System, University of Maryland School of Medicine, Baltimore, MD 21201 (United States)

    2015-07-31

    For both men and women, colorectal cancer (CRC) is the second leading cause of cancer death in the United States, primarily as a consequence of limited therapies for metastatic disease. The aryl hydrocarbon receptor (AhR) is a ligand-dependent transcription factor with diverse functions in detoxification of xenobiotics, inflammatory responses, and tissue homeostasis. Emerging evidence indicates that AhR also plays an important role in regulating intestinal cell proliferation and tumorigenesis. Here, we review both the pro- and anti-carcinogenic properties of AhR signaling and its potential role as a therapeutic target in CRC.

  2. Craniofacial form is altered by chronic adult exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD in Han/Wistar and Long–Evans rats with different aryl hydrocarbon receptor (AhR structures

    Directory of Open Access Journals (Sweden)

    Sabrina B. Sholts

    2015-01-01

    Full Text Available Mammalian bone has shown a variety of responses to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD exposure in experimental and wildlife studies. Although many responses have been well characterized in the postcranial skeleton, dioxin-induced effects on the cranium are largely unknown. In this study, we investigated the effects of chronic adult exposure to TCDD on cranial size and shape in dioxin-resistant Han/Wistar (H/W and dioxin-sensitive Long–Evans (L–E rat strains. Three-dimensional landmark configurations for the face, vault, and base of the cranium were recorded and analyzed using geometric morphometrics (GM and dose–response modeling. The strongest effects were shown by L–E and H/W rats with daily exposures of 100 and 1000 ng TCDD/kg bw/day, respectively, resulting in significant reductions in centroid size (CS in all three cranial modules for both strains except for the vault in H/W rats. Consistent with previous evidence of intraspecific variation in TCDD resistance, the benchmark doses (CEDs for cranial size reduction in L–E rats were roughly 10-fold lower than those for H/W rats. For both strains, the face showed the greatest size reduction from the highest doses of TCDD (i.e., 3.6 and 6.3% decreases in H/W and L–E rats, respectively, most likely related to dose-dependent reductions in limb bone size and body weight gain. However, intrinsic morphological differences between strains were also observed: although the control groups of H/W and L–E rats had vaults and bases of comparable size, the face was 6.4% larger in L–E rats. Thus, although H/W rats possess an altered aryl hydrocarbon receptor (AhR that appears to mediate and provides some resistance to TCDD exposure, their smaller reductions in facial size may also relate to strain-specific patterns of cranial development and growth. Future research will be aimed at understanding how ontogenetic factors may modulate toxic effects of prenatal and lactational exposure on

  3. Evodiamine as a novel antagonist of aryl hydrocarbon receptor

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Hui [State Key Laboratory of Trauma, Burns, and Combined Injury, Department 1, Research Institute of Surgery, Daping Hospital, The Third Military Medical University, Chongqing 400042 (China); Department of Laboratory Medicine, The Affiliated Tenth People' s Hospital, Tongji University, Shanghai 200072 (China); Tu, Yongjiu; Zhang, Chun; Fan, Xia; Wang, Xi [State Key Laboratory of Trauma, Burns, and Combined Injury, Department 1, Research Institute of Surgery, Daping Hospital, The Third Military Medical University, Chongqing 400042 (China); Wang, Zhanli [College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014 (China); Liang, Huaping, E-mail: huaping_liang@yahoo.com.cn [State Key Laboratory of Trauma, Burns, and Combined Injury, Department 1, Research Institute of Surgery, Daping Hospital, The Third Military Medical University, Chongqing 400042 (China)

    2010-11-05

    Research highlights: {yields} Evodiamine interacted with the AhR. {yields} Evodiamine inhibited the specific binding of [{sup 3}H]-TCDD to the AhR. {yields} Evodiamine acts as an antagonist of the AhR. -- Abstract: Evodiamine, the major bioactive alkaloid isolated from Wu-Chu-Yu, has been shown to interact with a wide variety of proteins and modify their expression and activities. In this study, we investigated the interaction between evodiamine and the aryl hydrocarbon receptor (AhR). Molecular modeling results revealed that evodiamine directly interacted with the AhR. Cytosolic receptor binding assay also provided the evidence that evodiamine could interact with the AhR with the K{sub i} value of 28.4 {+-} 4.9 nM. In addition, we observed that evodiamine suppressed the 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) induced nuclear translocation of the AhR and the expression of CYP1A1 dose-dependently. These results suggested that evodiamine was able to bind to the AhR as ligand and exhibit antagonistic effects.

  4. Gene expression profiling in Caco-2 human colon cells exposed to TCDD, benzo[a]pyrene, and natural Ah receptor agonists from cruciferous vegetables and citrus fruits

    NARCIS (Netherlands)

    Waard, de W.J.; Aarts, J.M.M.J.G.; Peijnenburg, A.A.C.M.; Baykus, H.; Talsma, E.F.; Punt, A.; Kok, de T.M.C.M.; Schooten, van F.J.; Hoogenboom, L.A.P.

    2008-01-01

    Cruciferous vegetables and citrus fruits are reported to possess health-beneficial properties, but also have been shown to contain natural aryl hydrocarbon receptor (AhR) agonists (NAhRAs). Binding to the AhR is widely assumed to activate the main pathway by which dioxins, like 2,3,7,8-tetrachlorodi

  5. The AhR Ligand, TCDD, Regulates Androgen Receptor Activity Differently in Androgen-Sensitive versus Castration-Resistant Human Prostate Cancer Cells

    OpenAIRE

    2015-01-01

    The reported biological effects of TCDD include induction of drug metabolizing enzymes, wasting syndrome and tumor promotion. TCDD elicits most of its effects through binding the aryl hydrocarbon receptor (AhR). TCDD induced degradation of AhR has been widely reported and requires ubiquitination of the protein. The rapid depletion of AhR following TCDD activation serves as a mechanism to modulate AhR mediated gene induction. In addition to inducing AhR degradation, TCDD has been reported to i...

  6. Oculomotor deficits in aryl hydrocarbon receptor null mouse.

    Directory of Open Access Journals (Sweden)

    Aline Chevallier

    Full Text Available The Aryl hydrocarbon Receptor or AhR, a ligand-activated transcription factor, is known to mediate the toxic and carcinogenic effects of various environmental pollutants such as 2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD. Recent studies in Caenorhabditis elegans and Drosophila melanogaster show that the orthologs of the AhR are expressed exclusively in certain types of neurons and are implicated in the development and the homeostasis of the central nervous system. While physiological roles of the AhR were demonstrated in the mammalian heart, liver and gametogenesis, its ontogenic expression and putative neural functions remain elusive. Here, we report that the constitutive absence of the AhR in adult mice (AhR-/- leads to abnormal eye movements in the form of a spontaneous pendular horizontal nystagmus. To determine if the nystagmus is of vestibular, visual, or cerebellar origin, gaze stabilizing reflexes, namely vestibulo-ocular and optokinetic reflexes (VOR and OKR, were investigated. The OKR is less effective in the AhR-/- mice suggesting a deficit in the visuo-motor circuitry, while the VOR is mildly affected. Furthermore, the AhR is expressed in the retinal ganglion cells during the development, however electroretinograms revealed no impairment of retinal cell function. The structure of the cerebellum of the AhR-/- mice is normal which is compatible with the preserved VOR adaptation, a plastic process dependent on cerebellar integrity. Finally, intoxication with TCDD of control adults did not lead to any abnormality of the oculomotor control. These results demonstrate that the absence of the AhR leads to acquired central nervous system deficits in the adults. Given the many common features between both AhR mouse and human infantile nystagmus syndromes, the AhR-/- mice might give insights into the developmental mechanisms which lead to congenital eye disorders.

  7. The aryl hydrocarbon receptor:a regulator of Th17 and Treg cell development in disease

    Institute of Scientific and Technical Information of China (English)

    Peggy P Ho; Lawrence Steinman

    2008-01-01

    @@ The aryl hydrocarbon receptor (AhR)was discovered almost 30 years ago as a specific binding site for the halogenated polycyclic aromatic hydrocarbon,2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD),an environmental toxin (as reviewed in [1]).Within the last decade,AhR was found to have a basic helixloop-helix and function as a ligand-activated transcription factor.Located in the cytoplasm of most cells,AhR forms a receptor complex with several proteins including the chaperone protein hsp90 (a 90kDa heat shock protein).

  8. Aryl hydrocarbon receptor ligand activity of commercial health foods.

    Science.gov (United States)

    Amakura, Yoshiaki; Tsutsumi, Tomoaki; Nakamura, Masafumi; Handa, Hiroshi; Yoshimura, Morio; Matsuda, Rieko; Yoshida, Takashi

    2011-06-15

    The aryl hydrocarbon receptor (AhR) is a ligand-activated transcription factor that mediates toxicological effects by binding to agonists such as dioxins. We previously reported the presence of natural dioxin-like ligands in foods. To further characterise natural ligands with dioxin-like activity, we examined the influence of 50 kinds of commercial supplement and health food on the AhR, using a reporter gene assay. Some samples, prepared using soybean, sesame, or propolis as an ingredient, were revealed to show AhR-binding activity, similar to that of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), at high concentrations. To characterise the AhR-activating substances in eight active samples, the respective extracts were subjected to fractionation with n-hexane, ethyl acetate, and water, followed by estimating their AhR activities. The n-hexane fraction of the propolis extract sample, and the ethyl acetate fractions of the other samples, showed AhR activity similar to that of TCDD, at a high concentration range. HPLC analysis of the active fractions identified isoflavones, such as daidzein and glycitein, and flavones, such as tectochrysin and chrysin, in the samples. Among these compounds, tectochrysin exhibited marked AhR activation. Flavonoids, which are characterised as natural AhR ligands, are known to have representative beneficial effects on human health. The natural AhR ligands identified in this study are known to be useful for human health. Therefore, it is considered that AhR may play a beneficial regulatory role in humans. Copyright © 2010 Elsevier Ltd. All rights reserved.

  9. Malassezia-derived indoles activate the aryl hydrocarbon receptor and inhibit Toll-like receptor-induced maturation in monocyte-derived dendritic cells.

    NARCIS (Netherlands)

    Vlachos, C.; Schulte, B.M.; Magiatis, P.; Adema, G.J.; Gaitanis, G.

    2012-01-01

    Background The aryl hydrocarbon receptor (AhR) is a nuclear receptor and transcriptional regulator with pleiotropic effects. The production of potent AhR ligands by Malassezia yeasts, such as indirubin, indolo[3,2-b]carbazole (ICZ), tryptanthrin and malassezin, has been associated with the

  10. Malassezia-derived indoles activate the aryl hydrocarbon receptor and inhibit Toll-like receptor-induced maturation in monocyte-derived dendritic cells.

    NARCIS (Netherlands)

    Vlachos, C.; Schulte, B.M.; Magiatis, P.; Adema, G.J.; Gaitanis, G.

    2012-01-01

    Background The aryl hydrocarbon receptor (AhR) is a nuclear receptor and transcriptional regulator with pleiotropic effects. The production of potent AhR ligands by Malassezia yeasts, such as indirubin, indolo[3,2-b]carbazole (ICZ), tryptanthrin and malassezin, has been associated with the pathogene

  11. Enantiospecific effects of ketoconazole on aryl hydrocarbon receptor.

    Directory of Open Access Journals (Sweden)

    Aneta Novotna

    Full Text Available Azole antifungal ketoconazole (KET was demonstrated to activate aryl hydrocarbon receptor (AhR. Since clinically used KET is a racemic mixture of two cis-enantiomers (2R,4S-(+-KET and (2S,4R-(--KET, we examined the effects of KET enantiomers on AhR signaling pathway. (+-KET dose-dependently activated AhR in human gene reporter cell line AZ-AHR, and displayed 5-20× higher agonist activity (efficacy, as compared to (--KET; both enantiomers were AhR antagonists with equal potency (IC50. Consistently, (+-KET strongly induced CYP1A1 mRNA and protein in human HepG2 cells, while (--KET exerted less than 10% of (+-KET activity. In primary human hepatocytes, both enantiomers preferentially induced CYP1A2 over CYP1A1 mRNA and protein, and the potency of (+-KET was slightly higher as compared to (--KET. Ligand binding assay with guinea pig liver cytosols revealed that both (+-KET and (--KET are weak ligands of AhR that displaced [3H]-TCDD with comparable potency. Similarly, both enantiomers weakly transformed AhR to DNA-binding form with similar potency, as showed by EMSA, in guinea pig liver cytosolic extracts and nuclear extracts from mouse Hepa-1 cells. We also examined effects of KET on glucocorticoid receptor (GR, a regulator of AhR activity. Both KET enantiomers antagonized GR with similar potency, as revealed by gene reporter assay in AZ-GR cell line and down-regulation of tyrosine aminotransferase mRNA in human hepatocytes. Finally, we demonstrate enantiospecific antifungal activities of KET enantiomers in six Candida spp. strains. In conclusion, the significance of current study is providing the first evidence of enatiospecific effects of cis-enantiomers of ketoconazole on AhR-CYP1A pathway.

  12. Airborne polycyclic aromatic hydrocarbons trigger human skin cells aging through aryl hydrocarbon receptor.

    Science.gov (United States)

    Qiao, Yuan; Li, Qiang; Du, Hong-Yang; Wang, Qiao-Wei; Huang, Ye; Liu, Wei

    2017-07-01

    Accumulating evidence suggests that polycyclic aromatic hydrocarbons (PAH) which adsorbed on the surface of ambient air particulate matters (PM), are the major toxic compound to cause cardiovascular and respiratory diseases, even cancer. However, its detrimental effects on human skin cell remain unclear. Here, we demonstrated that SRM1649b, a reference urban dust material of PAH, triggers human skin cells aging through cell cycle arrest, cell growth inhibition and apoptosis. Principally, SRM1649b facilitated Aryl hydrocarbon receptor (AhR) translocated into nucleus, subsequently activated ERK/MAPK signaling pathway, and upregulated aging-related genes expression. Most important, we found that AhR antagonist efficiently revert the aging of skin cells. Thus our novel findings firstly revealed the mechanism of skin aging under PAH contamination and provided potential strategy for clinical application. Copyright © 2017. Published by Elsevier Inc.

  13. Activation of the aryl hydrocarbon receptor reduces the number of precursor and effector T cells, but preserves thymic CD4(+)CD25(+)Foxp3(+) regulatory T cells

    NARCIS (Netherlands)

    Schulz, V.J.; Smit, J.J.; Bol-Schoenmakers, M.; van Duursen, M.B.M.; van den Berg, M.; Pieters, R.H.H.

    2012-01-01

    Aryl hydrocarbon receptor (AhR) activation suppresses immune responses, including allergic sensitization, by increasing the percentage of regulatory (Treg) cells. Furthermore, AhR activation is known to affect thymic precursor T cells. However, the effect of AhR activation on intrathymic CD4(+)CD25(

  14. The anti-inflammatory drug leflunomide is an agonist of the aryl hydrocarbon receptor.

    Directory of Open Access Journals (Sweden)

    Edmond F O'Donnell

    Full Text Available BACKGROUND: The aryl hydrocarbon receptor (AhR is a ligand-activated transcription factor that mediates the toxicity and biological activity of dioxins and related chemicals. The AhR influences a variety of processes involved in cellular growth and differentiation, and recent studies have suggested that the AhR is a potential target for immune-mediated diseases. METHODOLOGY/PRINCIPAL FINDINGS: During a screen for molecules that activate the AhR, leflunomide, an immunomodulatory drug presently used in the clinic for the treatment of rheumatoid arthritis, was identified as an AhR agonist. We aimed to determine whether any biological activity of leflunomide could be attributed to a previously unappreciated interaction with the AhR. The currently established mechanism of action of leflunomide involves its metabolism to A771726, possibly by cytochrome P450 enzymes, followed by inhibition of de novo pyrimidine biosynthesis by A771726. Our results demonstrate that leflunomide, but not its metabolite A771726, caused nuclear translocation of AhR into the nucleus and increased expression of AhR-responsive reporter genes and endogenous AhR target genes in an AhR-dependent manner. In silico Molecular Docking studies employing AhR ligand binding domain revealed favorable binding energy for leflunomide, but not for A771726. Further, leflunomide, but not A771726, inhibited in vivo epimorphic regeneration in a zebrafish model of tissue regeneration in an AhR-dependent manner. However, suppression of lymphocyte proliferation by leflunomide or A771726 was not dependent on AhR. CONCLUSIONS: These data reveal that leflunomide, an anti-inflammatory drug, is an agonist of the AhR. Our findings link AhR activation by leflunomide to inhibition of fin regeneration in zebrafish. Identification of alternative AhR agonists is a critical step in evaluating the AhR as a therapeutic target for the treatment of immune disorders.

  15. Common commercial and consumer products contain activators of the aryl hydrocarbon (dioxin receptor.

    Directory of Open Access Journals (Sweden)

    Bin Zhao

    Full Text Available Activation of the Ah receptor (AhR by halogenated aromatic hydrocarbons (HAHs, such as 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD, dioxin, can produce a wide variety of toxic and biological effects. While recent studies have shown that the AhR can bind and be activated by structurally diverse chemicals, how widespread of these AhR agonists are in environmental, biological and synthetic materials remains to be determined. Using AhR-based assays, we demonstrate the presence of potent AhR agonists in a variety of common commercial and consumer items. Solvent extracts of paper, rubber and plastic products contain chemicals that can bind to and stimulate AhR DNA binding and/or AhR-dependent gene expression in hepatic cytosol, cultured cell lines, human epidermis and zebrafish embryos. In contrast to TCDD and other persistent dioxin-like HAHs, activation of AhR-dependent gene expression by these extracts was transient, suggesting that the agonists are metabolically labile. Solvent extracts of rubber products produce AhR-dependent developmental toxicity in zebrafish in vivo, and inhibition of expression of the metabolic enzyme CYP1A, significantly increased their toxic potency. Although the identity of the responsible AhR-active chemicals and their toxicological impact remain to be determined, our data demonstrate that AhR active chemicals are widely distributed in everyday products.

  16. Potential therapeutic significance of increased expression of aryl hydrocarbon receptor in human gastric cancer

    Institute of Scientific and Technical Information of China (English)

    TieLi Peng; Jie Chen; Wei Mao; Xin Liu; Yu Tao; Lian-Zhou Chen; Min-Hu Chen

    2009-01-01

    AIM: To determine the functional significance of aryl hydrocarbon receptor (AhR) in gastric carcinogenesis, and to explore the possible role of AhR in gastric cancer (GC) treatment. METHODS: RT-PCR, real-time PCR, and Western blotting were performed to detect AhR expression in 39 GC tissues and five GC cell lines. AhR protein was detected by immunohistochemistry (IHC) in 190 samples: 30 chronic superficial gastritis (CSG), 30 chronic atrophic gastritis (CAG), 30 intestinal metaplasia (IM), 30 atypical hyperplasia (AH), and 70 GC. The AhR agonist tetrachlorodibenzo-para-dioxin (TCDD) was used to treat AGS cells. MTT assay and flow cytometric analysis were performed to measure the viability, cell cycle and apoptosis of AGS cells. RESULTS: AhR expression was significantly increased in GC tissues and GC cell lines. IHC results indicated that the levels of AhR expression gradually increased, with the lowest levels in CSG, followed by CAG, IM, AH and GC. AhR expression and nuclear translocation were significantly higher in GC than in precancerous tissues. TCDD inhibited proliferation of AGS cells via induction of growth arrest at the G1-S phase. CONCLUSION: AhR plays an important role in gastric carcinogenesis. AhR may be a potential therapeutic target for GC treatment.

  17. Aryl hydrocarbon receptor mediates benzene-induced hematotoxicity.

    Science.gov (United States)

    Yoon, Byung-Il; Hirabayashi, Yoko; Kawasaki, Yasushi; Kodama, Yukio; Kaneko, Toyozo; Kanno, Jun; Kim, Dae-Yong; Fujii-Kuriyama, Yoshiaki; Inoue, Tohru

    2002-11-01

    Benzene can induce hematotoxicity and leukemia in humans and mice. Since a review of the literature shows that the CYP2E1 knockout mouse is not known to possess any benzene toxicity, the metabolism of benzene by CYP2E1 in the liver is regarded to be prerequisite for its cytotoxicity and genotoxicity, although the mechanism is not fully understood yet. Because it was found some years ago that benzene was also a substrate for CYP1A1, we investigated the involvement of the aryl hydrocarbon receptor (AhR) in benzene hematotoxicity using AhR wild-type (AhR(+/+)), heterozygous (AhR(+/-)), and homozygous (AhR(-/-)) male mice. Interestingly, following a 2-week inhalation of 300 ppm benzene (a potent dose for leukemogenicity), no hematotoxicity was induced in AhR(-/-) mice. Further, there were no changes in cellularity of peripheral blood and bone marrow (BM), nor in levels of granulocyte-macrophage colony-forming units in BM. This lack of hematotoxicity was associated with the lack of p21 overexpression, which was regularly seen in the wild-type mice following benzene inhalation. Combined treatment with two major benzene metabolites, phenol and hydroquinone, induced hemopoietic toxicity, although it was not known whether this happened due to a surprising lack of expression of CYP2E1 by AhR knockout, or due to a lack of other AhR-mediated CYP enzymes, including 1A1 (i.e., a possible alternative pathway of benzene metabolism). The former possibility, evaluated in the present study, failed to show a significant relationship between AhR and the expression of CYP2E1. Furthermore, a subsequent evaluation of AhR expression after benzene inhalation tended to show higher but less significant expression in the liver, and none in the BM, compared with sham control. Although this study failed to identify the more likely of the above-mentioned two possibilities, the study using AhR knockout mice on benzene inhalation presents the unique possibility that the benzene toxicity may be

  18. Treatment of mice with the Ah receptor agonist and human carcinogen dioxin results in altered numbers and function of hematopoietic stem cells

    OpenAIRE

    Singh, Kameshwar P.; Wyman, Amber; Casado, Fanny L.; Garrett, Russell W.; Gasiewicz, Thomas A.

    2008-01-01

    The aryl hydrocarbon receptor (AhR) mediates the carcinogenicity of a family of environmental contaminants, the most potent being 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). Increased incidence of lymphoma and leukemia in humans is associated with TCDD exposure. Although AhR activation by TCDD has profound effects on the immune system, precise cellular and molecular mechanisms have yet to be determined. These studies tested the hypothesis that alteration of marrow populations following treatm...

  19. Estrogen receptor- and aryl hydrocarbon receptor- mediated activities of a coal-tar creosote

    Energy Technology Data Exchange (ETDEWEB)

    Fielden, M.R.; Wu, Z.F.; Sinal, C.J.; Jury, H.H.; Bend, J.R.; Hammond, G.L.; Zacharewski, T.R. [Michigan State University, East Lansing, MI (USA). Dept. of Biochemistry

    2000-05-01

    A coal-tar creosote was examined for estrogen receptor (ER)- and aryl hydrocarbon receptor (AhR)-mediated activity using a battery of mechanistically based assays. In vitro, creosote was found to bind the mouse ER, bind to the human sex hormone-binding globulin, and elicit partial agonist activity in reporter gene assays in transiently transfected MCF-7 cells. Based on competitive binding to the mouse ER, creosote contains approximately 165 mg/L of estradiol- equivalents. Creosote effectively transformed the AhR in vitro and induced a Cyp 1a1-regulated luciferase reporter gene in transiently transfected Hepa 1c1c7 cells. Based on dose-response curves, creosote contains approximately 730 mg/L of dioxin-equivalents. Creosote did not exhibit any AhR-mediated antiestrogenic activity in vitro. In vivo, creosote significantly induced liver pentoxyresorufin O- depentylation and ethoxyresorufin-O-deethylation (EROD) in a dose-dependent manner in ovariectomized (OVX) ICR mice, but did not increase uterine weight wet or vaginal cornification, due possibly to AhR-mediated antiestrogenic activity. In OVX DBA/2 mice, a strain less responsive to AhR ligands, creosote induced liver EROD to a lesser extent, but still did not show an increase in uterine wet weight or vaginal cornification. These results demonstrate that coal- tar creosote exhibits AhR- and ER-mediated activity in vitro, but its dioxinlike activity may suppress estrogenic response in vivo.

  20. Estrogen receptor- and aryl hydrocarbon receptor-mediated activities of a coal-tar creosote

    Energy Technology Data Exchange (ETDEWEB)

    Fielden, M.R.; Wu, Z.F.; Sinal, C.J.; Jury, H.H.; Bend, J.R.; Hammond, G.L.; Zacharewski, T.R.

    2000-05-01

    A coal-tar creosote was examined for estrogen receptor (ER)- and aryl hydrocarbon receptor (AhR)-mediated activity using a battery of mechanistically based assays. In vitro, creosote was found to bind to the mouse ER, bind to the human sex hormone-binding globulin, and elicit partial agonist activity in reporter gene assays in transiently transfected MCF-7 cells. Based on competitive binding to the mouse ER, creosote contains approximately 165 mg/L of estradiol-equivalents. Creosote effectively transformed the AhR in vitro and induced a Cyplal-regulated luciferase reporter gene in transiently transfected Hepa 1c1c7 cells. Based on dose-response curves, creosote contains approximately 730 mg/L of dioxin-equivalents. Creosote did not exhibit any AhR-mediated antiestrogenic activity in vitro. In vivo, creosote significantly induced liver pentoxyresorufin O-depentylation and ethoxyresorufin-O-deethylation (EROD) in a dose-dependent manner in ovariectomized (OVX) ICR mice, but did not increase uterine weight wet or vaginal cornification, due possibly to AhR-mediated antiestrogenic activity. In OVX DBA/2 mice, a strain less responsive to AhR ligands, creosote induced liver EROD to a lesser extent, but still did not show an increase in uterine wet weight or vaginal cornification. These results demonstrate that coal-tar creosote exhibits AhR- and ER-mediated activity in vitro, but its dioxinlike activity may suppress estrogenic responses in vivo.

  1. Aryl Hydrocarbon Receptor Activation by TCDD Reduces Inflammation Associated with Crohn's Disease

    OpenAIRE

    Benson, Jenna M.; Shepherd, David M.

    2010-01-01

    Crohn's disease results from a combination of genetic and environmental factors that trigger an inappropriate immune response to commensal gut bacteria. The aryl hydrocarbon receptor (AhR) is well known for its involvement in the toxicity of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), an environmental contaminant that affects people primarily through the diet. Recently, TCDD was shown to suppress immune responses by generating regulatory T cells (Tregs). We hypothesized that AhR activation da...

  2. The constitutively active Ah receptor (CA-Ahr) mouse as a potential model for dioxin exposure--effects in vital organs.

    Science.gov (United States)

    Brunnberg, Sara; Andersson, Patrik; Lindstam, Maria; Paulson, Ivar; Poellinger, Lorenz; Hanberg, Annika

    2006-07-25

    The dioxin/aryl hydrocarbon receptor (AhR) mediates most, if not all, toxic effects of dioxins and functions as a ligand-activated transcription factor regulating transcription of a battery of genes. In order to study the mechanisms behind the toxicity of ligands of the Ah receptor we have created a transgenic mouse model expressing a constitutively active Ah receptor (CA-AhR). The mutant Ah receptor is expressed and functionally active in all organs studied. The purpose of the present study was to characterize histopathologically, the phenotype of the CA-AhR with regard to the liver, kidney, lung, heart, spleen and thymus of male and female transgenic CA-AhR mice. Moreover, cell-specific activity of the CA-AhR using up-regulation of the AhR target gene CYP1A1 as a marker, was also examined. The relative weight of liver, kidney and heart were increased while relative thymus weight was decreased. Furthermore, slight morphological lesions of the liver, kidney and spleen was seen. Expression of CYP1A1 was found in cells corresponding to endothelial cells in all of the organs studied. In some tissues additional cell types, such as hepatocytes, renal tubuli cell and Clara cells expressed CYP1A1. Both the effects on organ weights and the cellular expression of CYP1A1 in CA-AhR mice correspond well to observations in TCDD-exposed mice. In conclusion, this characterization further support that the CA-AhR mouse is a useful model for life-long continuous low-level activity of the AhR, i.e. the dioxin exposure situation of humans of the general population.

  3. The aryl hydrocarbon receptor controls cyclin O to promote epithelial multiciliogenesis

    Science.gov (United States)

    Villa, Matteo; Crotta, Stefania; Dingwell, Kevin S.; Hirst, Elizabeth M. A.; Gialitakis, Manolis; Ahlfors, Helena; Smith, James C.; Stockinger, Brigitta; Wack, Andreas

    2016-01-01

    Epithelia function as barriers against environmental insults and express the transcription factor aryl hydrocarbon receptor (AhR). However, AhR function in these tissues is unknown. Here we show that AhR regulates multiciliogenesis in both murine airway epithelia and in Xenopus laevis epidermis. In air-exposed airway epithelia, induction of factors required for multiciliogenesis, including cyclin O (Ccno) and Multicilin (Mcidas), is AhR dependent, and air exposure induces AhR binding to the Ccno promoter. Submersion and hypoxic conditions impede AhR-dependent Ccno induction. This is mediated by the persistence of Notch signalling, as Notch blockade renders multiciliogenesis and Ccno induction by AhR independent from air exposure. In contrast to Ccno induction, air exposure does not induce the canonical AhR target cytochrome P450 1a1 (Cyp1a1). Inversely, exposure to AhR ligands induces Cyp1a1 but not Ccno and impeded ciliogenesis. These data indicate that AhR involvement in detoxification of environmental pollutants may impede its physiological role, resulting in respiratory pathology. PMID:27554288

  4. Anthocyan does not suppress transformation of aryl hydrocarbon receptor induced by dioxin.

    Science.gov (United States)

    Mukai, Rie; Fukuda, Itsuko; Nishiumi, Shin; Hosokawa, Keizo; Kanazawa, Kazuki; Ashida, Hitoshi

    2004-01-01

    Dioxins cause a variety of toxic effects through transformation of a cytosolic aryl hydrocarbon receptor (AhR). We have previously demonstrated that certain natural flavones and flavonols at the dietary levels suppress AhR transformation. In this study, we investigated whether 5 anthocyanidins, 15 anthocyanins, and protocatechuic acid suppress AhR transformation in mouse hepatoma Hepa-1c1c7 cells. All the compounds tested here at 5 microM unexpectedly failed to suppress the transformation induced by 0.1 nM TCDD, indicating that anthocyan does not have a potential to prevent dioxin toxicity.

  5. An endogenous aryl hydrocarbon receptor ligand inhibits proliferation and migration of human ovarian cancer cells.

    Science.gov (United States)

    Wang, Kai; Li, Yan; Jiang, Yi-Zhou; Dai, Cai-Feng; Patankar, Manish S; Song, Jia-Sheng; Zheng, Jing

    2013-10-28

    The aryl hydrocarbon receptor (AhR), a ligand-activated transcription factor mediates many biological processes. Herein, we investigated if 2-(1'H-indole-3'-carbonyl)-thiazole-4-carboxylic acid methyl ester (ITE, an endogenous AhR ligand) regulated proliferation and migration of human ovarian cancer cells via AhR. We found that AhR was widely present in many histotypes of ovarian cancer tissues. ITE suppressed OVCAR-3 cell proliferation and SKOV-3 cell migration in vitro, which were blocked by AhR knockdown. ITE also suppressed OVCAR-3 cell growth in mice. These data suggest that the ITE might potentially be used for therapeutic intervention for at least a subset of human ovarian cancer.

  6. Aryl Hydrocarbon Receptor and Breast Cancer%芳香烃受体与乳腺癌

    Institute of Scientific and Technical Information of China (English)

    胡蕾蕾

    2011-01-01

    The aryl hydrocarbon receptor ( AhR ) is a ligand-activated transcription factor,which mediates the activity of polycyclic aromatic hydrocarbons and is involved in some important biological processes.The AhRin complex with its binding partner aryl hydrocarbon receptor nuclear translocator,mediates the cellular response to xenobiotic compounds such as the environmental pollutant dioxin.Recent researches showed that AhR might promote the development of breast cancer via a variety of approaches and the inhibitory AhR-ER cross-alk may explain why the breast cancer caused by chemical carcinogens is still estrogen receptor-positive.%芳香烃受体(AhR)是一种配体依赖性激活的转录因子,可介导多环芳烃类化合物的毒性反应(包括致毒性),还参与一些重要的生物学过程.AhR与芳香烃受体核转位蛋白结合,促使对异生型物质如环境污染物二口 恶英作出反应.近年来的研究发现,AhR可能通过多种途径在乳腺癌的发生、发展中起作用,其中AhR与雌激素受体的抑制性交互应答可能解释为什么乳腺癌仍为激素敏感性乳腺癌,尤其是化学致癌物为主导的乳腺癌.

  7. Aryl hydrocarbon receptors in osteoclast lineage cells are a negative regulator of bone mass.

    Directory of Open Access Journals (Sweden)

    Tai-yong Yu

    Full Text Available Aryl hydrocarbon receptors (AhRs play a critical role in various pathological and physiological processes. Although recent research has identified AhRs as a key contributor to bone metabolism following studies in systemic AhR knockout (KO or transgenic mice, the cellular and molecular mechanism(s in this process remain unclear. In this study, we explored the function of AhR in bone metabolism using AhR(RANKΔOc/ΔOc (RANK(Cre/+;AhR(flox/flox mice. We observed enhanced bone mass together with decreased resorption in both male and female 12 and 24-week-old AhR(RANKΔOc/ΔOc mice. Control mice treated with 3-methylcholanthrene (3MC, an AhR agonist, exhibited decreased bone mass and increased bone resorption, whereas AhR(CtskΔOc/ΔOc (Ctsk(Cre/+;AhR(flox/flox mice injected with 3MC appeared to have a normal bone phenotype. In vitro, bone marrow-derived macrophages (BMDMs from AhR(RANKΔOc/ΔOc mice exhibited impaired osteoclastogenesis and repressed differentiation with downregulated expression of B lymphocyte-induced maturation protein 1 (Blimp1, and cytochrome P450 genes Cyp1b1 and Cyp1a2. Collectively, our results not only demonstrated that AhR in osteoclast lineage cells is a physiologically relevant regulator of bone resorption, but also highlighted the need for further studies on the skeletal actions of AhR inhibitors in osteoclast lineage cells commonly associated with bone diseases, especially diseases linked to environmental pollutants known to induce bone loss.

  8. The AhR Ligand, TCDD, Regulates Androgen Receptor Activity Differently in Androgen-Sensitive versus Castration-Resistant Human Prostate Cancer Cells.

    Science.gov (United States)

    Ghotbaddini, Maryam; Powell, Joann B

    2015-07-06

    The reported biological effects of TCDD include induction of drug metabolizing enzymes, wasting syndrome and tumor promotion. TCDD elicits most of its effects through binding the aryl hydrocarbon receptor (AhR). TCDD induced degradation of AhR has been widely reported and requires ubiquitination of the protein. The rapid depletion of AhR following TCDD activation serves as a mechanism to modulate AhR mediated gene induction. In addition to inducing AhR degradation, TCDD has been reported to induce degradation of hormone receptors. The studies reported here, evaluate the effect of TCDD exposure on androgen receptor (AR) expression and activity in androgen-sensitive LNCaP and castration-resistant C4-2 prostate cancer cells. Our results show that TCDD exposure does not induce AhR or AR degradation in C4-2 cells. However, both AhR and AR are degraded in LNCaP cells following TCDD exposure. In addition, TCDD enhances AR phosphorylation and induces expression of AR responsive genes in LNCaP cells. Our data reveals that TCDD effect on AR expression and activity differs in androgen-sensitive and castration-resistant prostate cancer cell models.

  9. The AhR Ligand, TCDD, Regulates Androgen Receptor Activity Differently in Androgen-Sensitive versus Castration-Resistant Human Prostate Cancer Cells

    Directory of Open Access Journals (Sweden)

    Maryam Ghotbaddini

    2015-07-01

    Full Text Available The reported biological effects of TCDD include induction of drug metabolizing enzymes, wasting syndrome and tumor promotion. TCDD elicits most of its effects through binding the aryl hydrocarbon receptor (AhR. TCDD induced degradation of AhR has been widely reported and requires ubiquitination of the protein. The rapid depletion of AhR following TCDD activation serves as a mechanism to modulate AhR mediated gene induction. In addition to inducing AhR degradation, TCDD has been reported to induce degradation of hormone receptors. The studies reported here, evaluate the effect of TCDD exposure on androgen receptor (AR expression and activity in androgen-sensitive LNCaP and castration-resistant C4-2 prostate cancer cells. Our results show that TCDD exposure does not induce AhR or AR degradation in C4-2 cells. However, both AhR and AR are degraded in LNCaP cells following TCDD exposure. In addition, TCDD enhances AR phosphorylation and induces expression of AR responsive genes in LNCaP cells. Our data reveals that TCDD effect on AR expression and activity differs in androgen-sensitive and castration-resistant prostate cancer cell models.

  10. EGF receptor signaling blocks aryl hydrocarbon receptor-mediated transcription and cell differentiation in human epidermal keratinocytes

    OpenAIRE

    Sutter, Carrie Hayes; Yin, Hong; Li, Yunbo; Mammen, Jennifer S.; Bodreddigari, Sridevi; Stevens, Gaylene; Cole, Judith A; Sutter, Thomas R.

    2009-01-01

    Dioxin is an extremely potent carcinogen. In highly exposed people, the most commonly observed toxicity is chloracne, a pathological response of the skin. Most of the effects of dioxin are attributed to its activation of the aryl hydrocarbon receptor (AHR), a transcription factor that binds to the Ah receptor nuclear translocator (ARNT) to regulate the transcription of numerous genes, including CYP1A1 and CYP1B1. In cultures of normal human epidermal keratinocytes dioxin accelerates cell diff...

  11. Polymorphism of the aryl-hydrocarbon receptor gene in intron 10 of human cancers

    Directory of Open Access Journals (Sweden)

    M. Rocas

    2011-11-01

    Full Text Available Polychlorinated dibenzo-p-dioxins (PCDDs and related halogenated aromatic hydrocarbons (e.g., PCDFs, often called "dioxins", are ubiquitously present environmental contaminants. Some of them, notably 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD, are among the most toxic synthetic compounds known. The biological effects of dioxins are mediated via the aryl hydrocarbon receptor (AhR. Mutations in the AhR transactivation domain are linked to sensitivity to the acute lethality of TCDD. We present here a study of AhR gene polymorphism in normal and cancer human tissues affecting pre-mRNA splicing in the AhR gene-coding transactivation domain region (exon 10, intron 10, exon 11 region, previously shown to be associated with AhR dysfunction. We tested 126 pairs of normal and cancer tissue samples from liver, lung, stomach, kidney, mucous, breast, and pancreas of 49 males and 77 females (45-70 years of age. We used in vitro splicing assay, RT-PCR and sequencing methods. Our results showed that in an in vitro system it is possible to reconstitute cellular pre-mRNA splicing events. Tested cancer tissues did not contain mutations in the AhR transactivation domain region when the DNA sequences were compared with those from normal tissues. There were also no differences in AhR mRNA splice variants between normal and malignant breast tissues and no polymorphisms in the studied regions or cDNA.

  12. Polymorphism of the aryl-hydrocarbon receptor gene in intron 10 of human cancers.

    Science.gov (United States)

    Rocas, M; Jakubauskiene, E; Kanopka, A

    2011-11-01

    Polychlorinated dibenzo-p-dioxins (PCDDs) and related halogenated aromatic hydrocarbons (e.g., PCDFs), often called "dioxins", are ubiquitously present environmental contaminants. Some of them, notably 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), are among the most toxic synthetic compounds known. The biological effects of dioxins are mediated via the aryl hydrocarbon receptor (AhR). Mutations in the AhR transactivation domain are linked to sensitivity to the acute lethality of TCDD. We present here a study of AhR gene polymorphism in normal and cancer human tissues affecting pre-mRNA splicing in the AhR gene-coding transactivation domain region (exon 10, intron 10, exon 11 region), previously shown to be associated with AhR dysfunction. We tested 126 pairs of normal and cancer tissue samples from liver, lung, stomach, kidney, mucous, breast, and pancreas of 49 males and 77 females (45-70 years of age). We used in vitro splicing assay, RT-PCR and sequencing methods. Our results showed that in an in vitro system it is possible to reconstitute cellular pre-mRNA splicing events. Tested cancer tissues did not contain mutations in the AhR transactivation domain region when the DNA sequences were compared with those from normal tissues. There were also no differences in AhR mRNA splice variants between normal and malignant breast tissues and no polymorphisms in the studied regions or cDNA.

  13. Specific in vitro toxicity of crude and refined petroleum products. 1. Aryl hydrocarbon receptor-mediated responses

    NARCIS (Netherlands)

    Vrabie, C.M.; Jonker, M.T.O.; Murk, A.J.

    2009-01-01

    The present study is the first in a series reporting on in vitro toxic potencies of oils. The objective was to determine whether 11 crude oils and refined products activate the aryl hydrocarbon receptor (AhR) in a dioxin receptor¿mediated luciferase assay. Cells were exposed for 6 and 24 h to differ

  14. Specific in vitro toxicity of crude and refined petroleum products. 1. Aryl hydrocarbon receptor-mediated responses

    NARCIS (Netherlands)

    Vrabie, C.M.; Jonker, M.T.O.; Murk, A.J.

    2009-01-01

    The present study is the first in a series reporting on in vitro toxic potencies of oils. The objective was to determine whether 11 crude oils and refined products activate the aryl hydrocarbon receptor (AhR) in a dioxin receptor¿mediated luciferase assay. Cells were exposed for 6 and 24 h to

  15. Lactobacillus bulgaricus OLL1181 activates the aryl hydrocarbon receptor pathway and inhibits colitis.

    Science.gov (United States)

    Takamura, Takeyuki; Harama, Daisuke; Fukumoto, Suguru; Nakamura, Yuki; Shimokawa, Naomi; Ishimaru, Kayoko; Ikegami, Shuji; Makino, Seiya; Kitamura, Masanori; Nakao, Atsuhito

    2011-10-01

    Increasing evidence suggests that the aryl hydrocarbon receptor (AhR) pathway has an important role in the regulation of inflammatory responses. Most recently, we have shown that the activation of the AhR pathway by a potent AhR agonist inhibits the development of dextran sodium sulfate (DSS)-induced colitis, a model of human ulcerative colitis, by the induction of prostaglandin E2 (PGE2) in the large intestine. Because several strains of probiotic lactic acid bacteria have been reported to inhibit DSS-induced colitis by unidentified mechanisms, we hypothesized that particular strains of lactic acid bacterium might have the potential to activate the AhR pathway, thereby inhibiting DSS-induced colitis. This study investigated whether there are specific lactic acid bacterial strains that can activate the AhR pathway, and if so, whether this AhR-activating potential is associated with suppression of DSS-induced colitis. By using AhR signaling reporter cells, we found that Lactobacillus bulgaricus OLL1181 had the potential to activate the AhR pathway. OLL1181 also induced the mRNA expression of cytochrome P450 family 1A1 (CYP1A1), a target gene of the AhR pathway, in human colon cells, which was inhibited by the addition of an AhR antagonist, α-naphthoflavon (αNF). In addition, mice treated orally with OLL1181 showed an increase in CYP1A1 mRNA expression in the large intestine and amelioration of DSS-induced colitis. Thus, OLL1181 can induce activation of the intestinal AhR pathway and inhibit DSS-induced colitis in mice. This strain of lactic acid bacterium has therefore the potential to activate the AhR pathway, which may be able to suppress colitis.

  16. Leflunomide Induces Pulmonary and Hepatic CYP1A Enzymes via Aryl Hydrocarbon Receptor.

    Science.gov (United States)

    Patel, Ananddeep; Zhang, Shaojie; Paramahamsa, Maturu; Jiang, Weiwu; Wang, Lihua; Moorthy, Bhagavatula; Shivanna, Binoy

    2015-12-01

    Emerging evidence indicates that the aryl hydrocarbon receptor (AhR) plays a crucial role in normal physiologic homeostasis. Additionally, aberrant AhR signaling leads to several pathologic states in the lung and liver. Activation of AhR transcriptionally induces phase I (CYP1A) detoxifying enzymes. Although the effects of the classic AhR ligands such as 3-methylcholanthrene and dioxins on phase 1 enzymes are well studied in rodent lung, liver, and other organs, the toxicity profiles limit their use as therapeutic agents in humans. Hence, there is a need to identify and investigate nontoxic AhR ligands not only to understand the AhR biology but also to develop the AhR as a clinically relevant therapeutic target. Leflunomide is a Food and Drug Administration-approved drug in humans that is known to have AhR agonist activity in vitro. Whether it activates AhR and induces phase 1 enzymes in vivo is unknown. Therefore, we tested the hypothesis that leflunomide will induce pulmonary and hepatic CYP1A enzymes in C57BL/6J wild-type mice, but not in AhR-null mice. We performed real-time reverse-transcription polymerase chain reaction analyses for CYP1A1/2 mRNA expression, western blot assays for CYP1A1/2 protein expression, and ethoxyresorufinO-deethylase assay for CYP1A1 catalytic activity. Leflunomide increased CYP1A1/A2 mRNA, protein, and enzymatic activities in wild-type mice. In contrast, leflunomide failed to increase pulmonary and hepatic CYP1A enzymes in AhR-null mice. In conclusion, we provide evidence that leflunomide induces pulmonary and hepatic CYP1A enzymes via the AhR.

  17. A selective aryl hydrocarbon receptor modulator 3,3'-Diindolylmethane inhibits gastric cancer cell growth

    Directory of Open Access Journals (Sweden)

    Yin Xiao-Fei

    2012-05-01

    Full Text Available Abstract Background Aryl hydrocarbon receptor (AhR is a ligand-activated transcription factor associated with gastric carcinogenesis. 3,3'-Diindolylmethane (DIM is a relatively non-toxic selective AhR modulator. This study was to detect the effects of DIM on gastric cancer cell growth. Methods Gastric cancer cell SGC7901 was treated with DIM at different concentrations (0,10,20,30,40,50 μmol/L with or without an AhR antagonist, resveratrol. The expression of AhR and Cytochrome P4501A1 (CYP1A1, a classic target gene of AhR pathway, were detected by RT-PCR and Western blot; cell viability was measured by MTT assay, and the changes in cell cycle and apoptosis were analyzed by flow cytometry. Results RT-PCR and western-blot showed that with the increase of the concentration of DIM, AhR protein gradually decreased and CYP1A1 expression increased, suggesting that DIM activated the AhR pathway and caused the translocation of AhR from cytoplasm to nucleus. MTT assay indicated that the viability of SGC7901 cells was significantly decreased in a concentration- and time-dependent manner after DIM treatment and this could be partially reversed by resveratrol. Flow cytometry analysis showed that DIM arrested cell cycle in G1 phase and induced cell apoptosis. Conclusion Selective aryl hydrocarbon receptor modulator 3,3'-Diindolylmethane inhibits SGC7901 cell proliferation by inducing apoptosis and delaying cell cycle progression. AhR may be a potential therapeutic target for gastric cancer treatment.

  18. Identification of ah receptor agonists in soil of E-waste recycling sites from Taizhou area in China.

    Science.gov (United States)

    Shen, Chaofeng; Huang, Shengbiao; Wang, Zijian; Qiao, Min; Tang, Xianjin; Yu, Chunna; Shi, Dezhi; Zhu, Youfeng; Shi, Jiyan; Chen, Xincai; Setty, Karen; Chen, Yingxu

    2008-01-01

    In recent years, increasing concern has surrounded the consequences of improper electric and electronic waste (e-waste) disposal. In order to mitigate or remediate the potentially severe toxic effects of e-waste recycling on the environment, organisms, and humans, many contaminated sites must first be well-characterized. In this study, soil samples were taken from Taizhou city, one of the largest e-waste disposal centers in China, which was involved in recycling for nearly 30 years. The extracts of the samples were assayed for aryl hydrocarbon receptor (AhR)-mediated ethoxyresorufin-O-deethylase (EROD) induction in the rat hepatoma cell line H4IIE. Some of the target AhR agonists, including polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs), polychlorinated biphenyls (PCBs), and polycyclic aromatic hydrocarbons (PAHs), were instrumentally analyzed as well. The cause-effect relationship and dose-response relationship between the chemical concentrations of AhR agonists and observed EROD activity were examined. The results showed that soil extracts could induce AhR activity significantly, and the chemically derived 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) equivalents (TEQcal) were perfectly correlated to bioassay-derived TCDD equivalents (TEQbio; R = 0.96, P electric power devices and open burning of electric wires and printed circuit boards may be the main sources of these dioxin-like compounds. This study suggests that the combination of in vitro bioassay and chemical analysis is useful to screen, identify, and prioritize AhR agonists in soil from e-waste recycling areas.

  19. Aryl hydrocarbon receptor-independent up-regulation of intracellular calcium concentration by environmental polycyclic aromatic hydrocarbons in human endothelial HMEC-1 cells.

    Science.gov (United States)

    Mayati, Abdullah; Le Ferrec, Eric; Lagadic-Gossmann, Dominique; Fardel, Olivier

    2012-09-01

    Polycyclic aromatic hydrocarbons (PAHs) such as benzo(a)pyrene (B(a)P) constitute a major family of widely-distributed environmental toxic contaminants, known as potent ligands of the aryl hydrocarbon receptor (AhR). B(a)P has been recently shown to trigger an early and transient increase of intracellular calcium concentration ([Ca(2+)](i)), involved in AhR-related up-regulation of target genes by B(a)P. This study was designed to determine whether AhR may play a role in [Ca(2+)](i) induction provoked by B(a)P. We demonstrated that, in addition to B(a)P, various PAHs, including pyrene and benzo(e)pyrene, known to not or only very poorly interact with AhR, similarly up-regulated [Ca(2+)](i) in human endothelial HMEC-1 cells. Moreover, α-naphthoflavone, a flavonoïd antagonist of AhR, was also able to induce [Ca(2+)](i). Knocking-down AhR expression in HMEC-1 cells through transfection of siRNAs, was finally demonstrated to not prevent B(a)P-mediated induction of [Ca(2+)](i), whereas it efficiently counteracted B(a)P-mediated induction of the referent AhR target gene cytochrome P-450 1B1. Taken together, these data demonstrate that environmental PAHs trigger [Ca(2+)](i) induction in an AhR-independent manner.

  20. Characterization of natural aryl hydrocarbon receptor agonists from cassia seed and rosemary.

    Science.gov (United States)

    Amakura, Yoshiaki; Yoshimura, Morio; Takaoka, Masashi; Toda, Haruka; Tsutsumi, Tomoaki; Matsuda, Rieko; Teshima, Reiko; Nakamura, Masafumi; Handa, Hiroshi; Yoshida, Takashi

    2014-04-17

    Many recent studies have suggested that activation of the aryl hydrocarbon receptor (AhR) reduces immune responses, thus suppressing allergies and autoimmune diseases. In our continuing study on natural AhR agonists in foods, we examined the influence of 37 health food materials on the AhR using a reporter gene assay, and found that aqueous ethanol extracts of cassia seed and rosemary had particularly high AhR activity. To characterize the AhR-activating substances in these samples, the chemical constituents of the respective extracts were identified. From an active ethyl acetate fraction of the cassia seed extract, eight aromatic compounds were isolated. Among these compounds, aurantio-obtusin, an anthraquinone, elicited marked AhR activation. Chromatographic separation of an active ethyl acetate fraction of the rosemary extract gave nine compounds. Among these compounds, cirsimaritin induced AhR activity at 10-10² μM, and nepitrin and homoplantagenin, which are flavone glucosides, showed marked AhR activation at 10-10³ μM.

  1. The aryl hydrocarbon receptor in barrier organ physiology, immunology, and toxicology.

    Science.gov (United States)

    Esser, Charlotte; Rannug, Agneta

    2015-01-01

    The aryl hydrocarbon receptor (AhR) is an evolutionarily old transcription factor belonging to the Per-ARNT-Sim-basic helix-loop-helix protein family. AhR translocates into the nucleus upon binding of various small molecules into the pocket of its single-ligand binding domain. AhR binding to both xenobiotic and endogenous ligands results in highly cell-specific transcriptome changes and in changes in cellular functions. We discuss here the role of AhR for immune cells of the barrier organs: skin, gut, and lung. Both adaptive and innate immune cells require AhR signaling at critical checkpoints. We also discuss the current two prevailing views-namely, 1) AhR as a promiscuous sensor for small chemicals and 2) a role for AhR as a balancing factor for cell differentiation and function, which is controlled by levels of endogenous high-affinity ligands. AhR signaling is considered a promising drug and preventive target, particularly for cancer, inflammatory, and autoimmune diseases. Therefore, understanding its biology is of great importance.

  2. Interactions of polybrominated diphenyl ethers with the aryl hydrocarbon receptor pathway.

    Science.gov (United States)

    Peters, A K; Nijmeijer, S; Gradin, K; Backlund, M; Bergman, A; Poellinger, L; Denison, M S; Van den Berg, M

    2006-07-01

    Polybrominated diphenyl ethers (PBDEs) are brominated flame retardants that have been in use as additives in various consumer products. Structural similarities of PBDEs with other polyhalogenated aromatic hydrocarbons that show affinity for the aryl hydrocarbon receptor (AhR), such as some polychlorinated biphenyls, raised concerns about their possible dioxin-like properties. We studied the ability of environmentally relevant PBDEs (BDE-47, -99, -100, -153, -154, and -183) and the "planar" congener BDE-77 to bind and/or activate the AhR in stably transfected rodent hepatoma cell lines with an AhR-responsive enhanced green fluorescent protein (AhR-EGFP) reporter gene (H1G1.1c3 mouse and H4G1.1c2 rat hepatoma). 7-Ethoxyresorufin-O-deethylation (EROD) was used as a marker for CYP1A1 activity. Dose- and bromination-specific inhibition of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD)-induced responses was measured by their ability to inhibit the induction of AhR-EGFP expression and EROD activity. Individual exposure to these PBDEs did not result in any increase in induction of AhR-EGFP or CYP1A1 activity. The lower brominated PBDEs showed the strongest inhibitory effect on TCDD-induced activities in both cell lines. While the highest brominated PBDE tested, BDE-183, inhibited EROD activity, it did not affect the induction of AhR-EGFP expression. Similar findings were observed after exposing stably transfected human hepatoma (xenobiotic response element [XRE]-HepG2) cells to these PBDEs, resulting in a small but statically significant agonistic effect on XRE-driven luciferase activity. Co-exposure with TCDD resulted again in antagonistic effects, confirming that the inhibitory effect of these PBDEs on TCDD-induced responses was not only due to direct interaction at receptor level but also at DNA-binding level. This antagonism was confirmed for BDE-99 in HepG2 cells transiently transfected with a Gal4-AhR construct and the corresponding Gal4-Luc reporter gene. In addition, a

  3. Aryl Hydrocarbon Receptor Activation in Hematopoietic Stem/Progenitor Cells Alters Cell Function and Pathway-Specific Gene Modulation Reflecting Changes in Cellular Trafficking and MigrationS⃞

    OpenAIRE

    Casado, Fanny L.; Singh, Kameshwar P.; Gasiewicz, Thomas A.

    2011-01-01

    The aryl hydrocarbon receptor (AhR) is a transcription factor belonging to the Per-ARNT-Sim family of proteins. These proteins sense molecules and stimuli from the cellular/tissue environment and initiate signaling cascades to elicit appropriate cellular responses. Recent literature reports suggest an important function of AhR in hematopoietic stem cell (HSC) biology. However, the molecular mechanisms by which AhR signaling regulates HSC functions are unknown. In previous studies, we and othe...

  4. TCDD-Induced Activation of Aryl Hydrocarbon Receptor Inhibits Th17 Polarization and Regulates Non-Eosinophilic Airway Inflammation in Asthma

    OpenAIRE

    Xiao-ming Li; Juan Peng; Wen Gu; Xue-jun Guo

    2016-01-01

    The aryl hydrocarbon receptor (AhR), a transcription factor of the bHLH/PAS family, has recently been demonstrated to regulate T cell differentiation. Whether AhR activation participates in allergic airway inflammation remains unknown. In the current study, using a non-eosinophilic asthma model, we demonstrate that 2, 3, 7, 8-tetrachlorodibenzo-P-dioxin (TCDD), a potent AhR ligand, reduced the airway infiltration of neutrophils, airway hyperresponsiveness and Th17 cytokine expression. Further...

  5. Endogenous ligands of the aryl hydrocarbon receptor regulate lung dendritic cell function.

    Science.gov (United States)

    Thatcher, Thomas H; Williams, Marc A; Pollock, Stephen J; McCarthy, Claire E; Lacy, Shannon H; Phipps, Richard P; Sime, Patricia J

    2016-01-01

    The aryl hydrocarbon receptor (AhR) is a transcription factor that has been extensively studied as a regulator of toxicant metabolism. However, recent evidence indicates that the AhR also plays an important role in immunity. We hypothesized that the AhR is a novel, immune regulator of T helper type 2 (Th2) -mediated allergic airway disease. Here, we report that AhR-deficient mice develop increased allergic responses to the model allergen ovalbumin (OVA), which are driven in part by increased dendritic cell (DC) functional activation. AhR knockout (AhR(-/-) ) mice sensitized and challenged with OVA develop an increased inflammatory response in the lung compared with wild-type controls, with greater numbers of inflammatory eosinophils and neutrophils, greater T-cell proliferation, greater production of Th2 cytokines, and higher levels of OVA-specific IgE and IgG1. Lung DCs from AhR(-/-) mice stimulated antigen-specific proliferation and Th2 cytokine production by naive T cells in vitro. Additionally, AhR(-/-) DCs produced higher levels of tumour necrosis factor-α and interleukin-6, which promote Th2 differentiation, and expressed higher cell surface levels of stimulatory MHC Class II and CD86 molecules. Overall, loss of the AhR was associated with enhanced T-cell activation by pulmonary DCs and heightened pro-inflammatory allergic responses. This suggests that endogenous AhR ligands are involved in the normal regulation of Th2-mediated immunity in the lung via a DC-dependent mechanism. Therefore, the AhR may represent an important target for therapeutic intervention in allergic airways inflammation.

  6. Omeprazole Inhibits Pancreatic Cancer Cell Invasion through a Nongenomic Aryl Hydrocarbon Receptor Pathway.

    Science.gov (United States)

    Jin, Un-Ho; Kim, Sang-Bae; Safe, Stephen

    2015-05-18

    Omeprazole and 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) are aryl hydrocarbon receptor (AhR) agonists that inhibit the invasion of breast cancer cells through inhibition of CXCR4 transcription. Treatment of highly invasive Panc1 pancreatic cancer cells with TCDD, omeprazole, and seven other AhR-active pharmaceuticals showed that only omeprazole and tranilast, but not TCDD, inhibited invasion in a Boyden chamber assay. Similar results were observed in MiaPaCa2 cells, another quasimensenchymal pancreatic ductal adenocarcinoma (QM-PDA) pancreatic cancer cell line, whereas invasion was not observed with BxPC3 or L3.6pL cells, which are classified as classical (less invasive) pancreatic cancer cells. It was also observed in QM-PDA cells that TCDD, omeprazole, and tranilast did not induce CYP1A1 or CXCR4 and that treatment with these compounds did not result in nuclear uptake of AhR. In contrast, treatment of BxPC3 and L3.6pL cells with these AhR ligands resulted in induction of CYP1A1 (by TCDD) and nuclear uptake of AhR, which was similar to that observed for Ah-responsive MDA-MB-468 breast and HepG2 liver cancer cell lines. Results of AhR and AhR nuclear translocator (Arnt) knockdown experiments in Panc1 and MiaPaCa2 cells demonstrated that omeprazole- and tranilast-mediated inhibition of invasion was AhR-dependent but Arnt-independent. These results demonstrate that in the most highly invasive subtype of pancreatic cancer cells (QM-PDA) the selective AhR modulators omeprazole and tranilast inhibit invasion through a nongenomic AhR pathway.

  7. Pathogenesis of Aryl Hydrocarbon Receptor-Mediated Development of Lymphoma Is Associated with Increased Cyclooxygenase-2 Expression

    OpenAIRE

    Vogel, Christoph F. A.; Li, Wen; Sciullo, Eric; Newman, John; Hammock, Bruce; Reader, J. Rachel; Tuscano, Joseph; Matsumura, Fumio

    2007-01-01

    Epidemiological studies indicate that exposure to environmental pollutants such as pesticides and dioxins leads to the pathogenesis of lymphoma and leukemia. Here, we show that activation of the aryl hydrocarbon receptor (AhR) by 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) resulted in loss of the programmed cell death (apoptosis) response in three different lymphoma cell lines, which plays a key role in the development of cancer, especially lymphoma and leukemia. The AhR-mediated inhibition of...

  8. Molecular interactions of the aryl hydrocarbon receptor and its biological and toxicological relevance for reproduction.

    Science.gov (United States)

    Pocar, P; Fischer, B; Klonisch, T; Hombach-Klonisch, S

    2005-04-01

    The dioxin/aryl hydrocarbon receptor (AhR) is a ligand-activated transcription factor responsive to both natural and man-made environmental compounds. AhR and its nuclear partner ARNT are expressed in the female reproductive tract in a variety of species and several indications suggest that the AhR might play a pivotal role in the physiology of reproduction. Furthermore, it appears to be the mediator of most, if not all, the adverse effects on reproduction of a group of highly potent environmental pollutants collectively called aryl hydrocarbons (AHs), including the highly toxic compound 2,3,7,8-tetrachlor-odibenzo-p-dioxin (TCDD). Although a large body of recent literature has implicated AhR in multiple signal transduction pathways, the mechanisms of action resulting in a wide spectrum of effects on female reproduction are largely unknown. Here we summarize the major types of molecular cross-talks that have been identified for the AhR and linked cell signaling pathways and that are relevant for the understanding of the role of this transcription factor in female reproduction.

  9. Regulation of mouse small heat shock protein αb-crystallin gene by aryl hydrocarbon receptor.

    Directory of Open Access Journals (Sweden)

    Shuang Liu

    Full Text Available The stress-inducible small heat shock protein (shsp/αB-crystallin gene is expressed highly in the lens and moderately in other tissues. Here we provide evidence that it is a target gene of the aryl hydrocarbon receptor (AhR transcription factor. A sequence (-329/-323, CATGCGA similar to the consensus xenobiotic responsive element (XRE, called here XRE-like, is present in the αBE2 region of αB-crystallin enhancer and can bind AhR in vitro and in vivo. αB-crystallin protein levels were reduced in retina, lens, cornea, heart, skeletal muscle and cultured muscle fibroblasts of AhR(-/- mice; αB-crystallin mRNA levels were reduced in the eye, heart and skeletal muscle of AhR(-/- mice. Increased AhR stimulated αB-crystallin expression in transfection experiments conducted in conjunction with the aryl hydrocarbon receptor nuclear translocator (ARNT and decreased AhR reduced αB-crystallin expression. AhR effect on aB-crystallin promoter activity was cell-dependent in transfection experiments. AhR up-regulated αB-crystallin promoter activity in transfected HeLa, NIH3T3 and COS-7 cells in the absence of exogenously added ligand (TCDD, but had no effect on the αB-crystallin promoter in C(2C(12, CV-1 or Hepa-1 cells with or without TCDD. TCDD enhanced AhR-stimulated αB-crystallin promoter activity in transfected αTN4 cells. AhR could bind to an XRE-like site in the αB-crystallin enhancer in vitro and in vivo. Finally, site-specific mutagenesis experiments showed that the XRE-like motif was necessary for both basal and maximal AhR-induction of αB-crystallin promoter activity. Our data strongly suggest that AhR is a regulator of αB-crystallin gene expression and provide new avenues of research for the mechanism of tissue-specific αB-crystallin gene regulation under normal and physiologically stressed conditions.

  10. Altered adrenergic response and specificity of the receptors in rat ascites hepatoma AH130.

    Science.gov (United States)

    Sanae, F; Miyamoto, K; Koshiura, R

    1989-11-15

    Adenylate cyclase activation through adrenergic receptors in rat ascites hepatoma (AH) 130 cells in response to adrenergic drugs was studied, and receptor binding and displacement were compared with those of normal rat hepatocytes. Epinephrine (Epi) and norepinephrine (NE) activated AH130 adenylate cyclase about half as much as isoproterenol (IPN) but equaled IPN after treatment with the alpha-antagonist phentolamine or islet-activating protein (IAP). The three catecholamines in hepatocytes were similar regardless of phentolamine or IAP. These catecholamines activated adenylate cyclase in order of IPN greater than NE greater than Epi in AH130 cells but IPN greater than Epi greater than NE in hepatocytes. We then used the alpha 1-selective ligand [3H]prazosin, the alpha 2-selective ligand [3H]clonidine, and the beta-ligand [125I]iodocyanopindolol [( 125I]ICYP), and found that AH130 cells had few prazosin-binding sites, about eight times as many clonidine-binding sites with high affinity, and many more ICYP-binding sites than in hepatocytes. The dissociation constant (Ki) of the beta 1-selective drug metoprolol by Hofstee plots for AH130 cells was lower than that for hepatocytes. The inhibition of specific ICYP binding by the beta 2-selective agonist salbutamol for AH130 cells gave only one Ki value which was much higher than both high and low Ki values of the drug for hepatocytes. These findings indicate that the alpha- and beta-adrenergic receptors in hepatocytes are predominantly alpha 1-type and beta 2-type, but that those in AH130 cells are predominantly alpha 2-type and beta 1-type, and the low adrenergic response of AH130 cells is due to the dominant appearance of alpha 2-adrenergic receptors, linked with the inhibitory guanine-nucleotide binding regulatory protein, instead of alpha 1-adrenergic receptors, and beta 1-adrenergic receptors with low affinity for the hormone.

  11. Decreased Expression of the Aryl Hydrocarbon Receptor in Ocular Behcet’s Disease

    Directory of Open Access Journals (Sweden)

    Chaokui Wang

    2014-01-01

    Full Text Available Recent studies show that the aryl hydrocarbon receptor (AhR is involved in immune responses. AhR is activated following interaction with its ligands, such as 6-formylindolo[3,2-b]carbazole (FICZ and 2-(1′H-indole-3′-carbonyl-thiazole-4-carboxylic acid methyl ester (ITE. In this study, we investigated the role of AhR activation by its endogenous ligands in the pathogenesis of ocular Behcet’s disease (BD. The expression of AhR was significantly decreased in active BD patients as compared to inactive BD patients and normal controls. Both FICZ and ITE inhibited Th1 and Th17 polarization and induced the expression of IL-22 by PBMCs and by CD4+T cells in active BD patients and normal controls. Stimulation of purified CD4+T cells with FICZ or ITE caused a decreased expression of RORC, IL-17, IL-23R, and CCR6 and an increased phosphorylation of STAT3 and STAT5. The present study suggests that a decreased AhR expression is associated with disease activity in BD patients. The activation of AhR by either FICZ or ITE was able to inhibit Th1 and Th17 cell polarization. Further studies are needed to investigate whether modulation of AhR might be used in the treatment of BD.

  12. Decreased expression of the aryl hydrocarbon receptor in ocular Behcet's disease.

    Science.gov (United States)

    Wang, Chaokui; Ye, Zi; Kijlstra, Aize; Zhou, Yan; Yang, Peizeng

    2014-01-01

    Recent studies show that the aryl hydrocarbon receptor (AhR) is involved in immune responses. AhR is activated following interaction with its ligands, such as 6-formylindolo[3,2-b]carbazole (FICZ) and 2-(1'H-indole-3'-carbonyl)-thiazole-4-carboxylic acid methyl ester (ITE). In this study, we investigated the role of AhR activation by its endogenous ligands in the pathogenesis of ocular Behcet's disease (BD). The expression of AhR was significantly decreased in active BD patients as compared to inactive BD patients and normal controls. Both FICZ and ITE inhibited Th1 and Th17 polarization and induced the expression of IL-22 by PBMCs and by CD4(+)T cells in active BD patients and normal controls. Stimulation of purified CD4(+)T cells with FICZ or ITE caused a decreased expression of RORC, IL-17, IL-23R, and CCR6 and an increased phosphorylation of STAT3 and STAT5. The present study suggests that a decreased AhR expression is associated with disease activity in BD patients. The activation of AhR by either FICZ or ITE was able to inhibit Th1 and Th17 cell polarization. Further studies are needed to investigate whether modulation of AhR might be used in the treatment of BD.

  13. Naturally occurring marine brominated indoles are aryl hydrocarbon receptor ligands/agonists.

    Science.gov (United States)

    DeGroot, Danica E; Franks, Diana G; Higa, Tatsuo; Tanaka, Junichi; Hahn, Mark E; Denison, Michael S

    2015-06-15

    The aryl hydrocarbon receptor (AhR) is a ligand-dependent transcription factor that mediates the toxic and biological effects of structurally diverse chemicals, including the environmental contaminant 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). As part of a larger effort to identify the full spectrum of chemicals that can bind to and activate the AhR, we have examined the ability of several naturally occurring marine-derived brominated indoles and brominated (methylthio)indoles (collectively referred to as brominated indoles) to bind to the AhR and stimulate AhR-dependent gene expression. Incubation of mouse, rat, and guinea pig recombinant cell lines containing a stably transfected AhR-responsive luciferase reporter gene with eight brominated indoles revealed that all compounds stimulated luciferase reporter gene activity, although some species-specific differences were observed. All compounds induced significantly more luciferase activity when incubated with cells for 4 h as compared to 24 h, demonstrating that these compounds are transient activators of the AhR signaling pathway. Three of the brominated indoles induced CYP1A1 mRNA in human HepG2 cells in vitro and Cyp1a mRNA in zebrafish embryos in vivo. The identification of the brominated indoles as direct ligands and activators/agonists of the AhR was confirmed by their ability to compete with [(3)H]TCDD for binding to the AhR and to stimulate AhR transformation and DNA binding in vitro. Taken together, these results indicate that marine-derived brominated indoles are members of a new class of naturally occurring AhR agonists.

  14. Naturally-Occurring Marine Brominated Indoles are Aryl Hydrocarbon Receptor Ligands/Agonists

    Science.gov (United States)

    DeGroot, Danica E.; Franks, Diana G.; Higa, Tatsuo; Tanaka, Junichi; Hahn, Mark E.; Denison, Michael S.

    2015-01-01

    The aryl hydrocarbon receptor (AhR) is a ligand-dependent transcription factor that mediates the toxic and biological effects of structurally diverse chemicals, including the environmental contaminant 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). As part of a larger effort to identify the full spectrum of chemicals that can bind to and activate the AhR, we have examined the ability of several naturally-occurring marine-derived brominated indoles and brominated (methylthio)indoles (collectively referred to as “brominated indoles”) to bind to the AhR and stimulate AhR-dependent gene expression. Incubation of mouse, rat and guinea pig recombinant cell lines containing a stably transfected AhR-responsive luciferase reporter gene with eight brominated indoles revealed that all compounds stimulated luciferase reporter gene activity, although some species-specific differences were observed. All compounds induced significantly more luciferase activity when incubated with cells for 4 h as compared to 24 h, demonstrating that these compounds are transient activators of the AhR signaling pathway. Three of the brominated indoles induced CYP1A1 mRNA in human HepG2 cells in vitro and Cyp1a mRNA in zebrafish embryos in vivo. The identification of the brominated indoles as direct ligands and activators/agonists of the AhR was confirmed by their ability to compete with [3H]TCDD for binding to the AhR and to stimulate AhR transformation and DNA binding in vitro. Taken together, these marine-derived brominated indoles are members of a new class of naturally-occurring AhR agonists. PMID:26001051

  15. Aryl hydrocarbon receptor protects lung adenocarcinoma cells against cigarette sidestream smoke particulates-induced oxidative stress

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Ya-Hsin [Graduate Institute of Basic Medical Science, School of Medicine, China Medical University, Taichung 40402, Taiwan, ROC (China); Huang, Su-Chin; Lin, Chun-Ju; Cheng, Li-Chuan [Division of Environmental Health and Occupational Medicine, National Health Research Institutes, Zhunan, Miaoli 35053, Taiwan, ROC (China); Li, Lih-Ann, E-mail: lihann@nhri.org.tw [Division of Environmental Health and Occupational Medicine, National Health Research Institutes, Zhunan, Miaoli 35053, Taiwan, ROC (China)

    2012-03-15

    Environmental cigarette smoke has been suggested to promote lung adenocarcinoma progression through aryl hydrocarbon receptor (AhR)-signaled metabolism. However, whether AhR facilitates metabolic activation or detoxification in exposed adenocarcinoma cells remains ambiguous. To address this question, we have modified the expression level of AhR in two human lung adenocarcinoma cell lines and examined their response to an extract of cigarette sidestream smoke particulates (CSSP). We found that overexpression of AhR in the CL1-5 cell line reduced CSSP-induced ROS production and oxidative DNA damage, whereas knockdown of AhR expression increased ROS level in CSSP-exposed H1355 cells. Oxidative stress sensor Nrf2 and its target gene NQO1 were insensitive to AhR expression level and CSSP treatment in human lung adenocarcinoma cells. In contrast, induction of AhR expression concurrently increased mRNA expression of xenobiotic-metabolizing genes CYP1B1, UGT1A8, and UGT1A10 in a ligand-independent manner. It appeared that AhR accelerated xenobiotic clearing and diminished associated oxidative stress by coordinate regulation of a set of phase I and II metabolizing genes. However, the AhR-signaled protection could not shield cells from constant oxidative stress. Prolonged exposure to high concentrations of CSSP induced G0/G1 cell cycle arrest via the p53–p21–Rb1 signaling pathway. Despite no effect on DNA repair rate, AhR facilitated the recovery of cells from growth arrest when CSSP exposure ended. AhR-overexpressing lung adenocarcinoma cells exhibited an increased anchorage-dependent and independent proliferation when recovery from exposure. In summary, our data demonstrated that AhR protected lung adenocarcinoma cells against CSSP-induced oxidative stress and promoted post-exposure clonogenicity. -- Highlights: ► AhR expression level influences cigarette sidestream smoke-induced ROS production. ► AhR reduces oxidative stress by coordinate regulation of

  16. Activation of p53 in Human and Murine Cells by DNA-Damaging Agents Differentially Regulates Aryl Hydrocarbon Receptor Levels.

    Science.gov (United States)

    Panchanathan, Ravichandran; Liu, Hongzhu; Choubey, Divaker

    2015-01-01

    Aryl hydrocarbon receptor (AhR) is a ligand-activated transcription factor that regulates multiple cellular processes. The anticancer drug doxorubicin (DOX) can activate AhR-mediated transcription of target genes. Because DOX in cells activates a DNA damage response involving ataxia telangiectasia-mutated (ATM)-mediated activation of p53, we investigated whether the activation of the p53 in cells by DNA-damaging agents such as DOX or bleomycin could regulate the AhR levels. Here we report that activation of p53 by DNA-damaging agents in human cells increased levels of AhR through a posttranscriptional mechanism. Accordingly, fibroblasts from ATM patients, which are defective in p53 activation, expressed reduced constitutive levels of AhR and treatment of cells with bleomycin did not appreciably increase the AhR levels. Further, activation of p53 in cells stimulated the expression of AhR target genes. In murine cells, activation of p53 reduced the levels of AhR messenger RNA and protein and reduced the expression of AhR target genes. Our observations revealed that activation of p53 in human and murine cells differentially regulates AhR levels.

  17. Transcription factor aryl hydrocarbon receptor/aryl hydrocarbon receptor nuclear translocator is involved in regulation of the xenobiotic tolerance-related cytochrome P450 CYP6DA2 in Aphis gossypii Glover.

    Science.gov (United States)

    Peng, T; Chen, X; Pan, Y; Zheng, Z; Wei, X; Xi, J; Zhang, J; Gao, X; Shang, Q

    2017-10-01

    The cotton aphid, Aphis gossypii, is one of the most economically important agricultural pests worldwide as it is polyphagous and resistant to many classes of insecticides. Overexpression of the cytochrome P450 monooxygenase (P450) CYP6DA2 has previously been found to be associated with gossypol and spirotetramat tolerance in the cotton aphid. In the present study, the elements located in the promoter region (-357:-343; -250:-241; -113:-104) of CYP6DA2 were shown to control promoter activity, and gossypol induction was observed. We hypothesized that the expression of CYP6DA2 is subject to transcriptional regulation. To investigate the underlying mechanism, we assessed two transcription factors, aryl hydrocarbon receptor (AhR) and aryl hydrocarbon receptor nuclear translocator (ARNT), and found that the abundance of AhR was highly correlated with CYP6DA2 abundance. RNA interference of AhR or ARNT significantly decreased the levels of the target gene as well as those of its counterpart, and both dramatically repressed CYP6DA2 expression. Cotransfection of the ARNT, AhR, or AhR plus ARNT and CYP6DA2 promoter constructs elevated CYP6DA2 promoter activity, with the AhR plus ARNT cotransfection being the most effective. Thus, these elements located in the promoter were responsible for CYP6DA2 transcription, and CYP6DA2 expression was regulated by the transcription factors AhR and ARNT. © 2017 The Royal Entomological Society.

  18. REGULATION OF CENTRAL NERVOUS SYSTEM AUTOIMMUNITY BY THE ARYL HYDROCARBON RECEPTOR

    OpenAIRE

    Quintana, Francisco J.

    2013-01-01

    The ligand-activated transcription factor aryl hydrocarbon receptor controls the activity of several components of the immune system, many of which play an important role in neuroinflammation. This review discusses the role of AhR in T cells and dendritic cells, its relevance for the control of autoimmunity in the central nervous system, and its potential as a therapeutic target for immune mediated disorders.

  19. Activation of arylhydrocarbon receptor (AhR) in T lineage cells inhibits cellular growth

    Energy Technology Data Exchange (ETDEWEB)

    Nohara, K.; Tomohiro, I.; Chiharu, T. [National Institute for Environmental Studies, Tsukuba (Japan)

    2004-09-15

    Dioxins, including the most toxic congener, 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), exert their toxic effects by binding and activating the arylhydrocarbon receptor (AhR), a liganddependent transcription factor. Upon binding dioxins, the AhR in the cytoplasm is activated and translocated to the nucleus, where it heterodimerizes with another transcription factor, ARNT. The AhR/ARNT heterodimer modulates expressions of various genes by binding xenobiotic responsive elements (XREs) in their enhancer regions or modifies cellular functions through protein-protein interactions. The AhR activation by TCDD exposure induces various immunotoxic reactions including thymus involution and suppression of T cell-dependent antibody production. We have investigated the roles of AhR activation in T lineage cells and their underlying mechanisms by generating transgenic (Tg) mice expressing a constitutively active AhR (CA-AhR) mutant specifically in T cells and by transiently expressing the CA-AhR mutant in Jurkat T cells.

  20. Specific in vitro toxicity of crude and refined petroleum products. 1. Aryl hydrocarbon receptor-mediated responses.

    NARCIS (Netherlands)

    Vrabie, C.M.; Jonker, M.T.O.; Murk, A.J.

    2009-01-01

    The present study is the first in a series reporting on in vitro toxic potencies of oils. The objective was to determine whether 11 crude oils and refined products activate the aryl hydrocarbon receptor (AhR) in a dioxin receptor–mediated luciferase assay. Cells were exposed for 6 and 24 h to differ

  1. Cell specific effects of PCB 126 on aryl hydrocarbone receptors in follicular cells of porcine ovaries

    Energy Technology Data Exchange (ETDEWEB)

    Wojtowicz, A.; Augustowska, K.; Gregoraszczuk, E. [Lab. of Physiology and Toxicology of Reproduction, Dept. of Animal Physiology, Inst. of Zoology, Jagiellonian Univ., Krakow (Poland)

    2004-09-15

    Polychlorinated biphenyles (PCBs) like other endocrine disrupters could interfere with natural hormones by binding to their receptors and thus mimicking the cellular response to them. They are known to possess either estrogenic or antiestrogenic properties. In our previous papers we demonstrated that PCBs are able to disrupt ovarian steroidogenesis. We found that the coplanar PCB 126 caused the decrease in estradiol secretion in whole cultured pig ovarian follicles. PCB 126 congener is structurally related to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). Since TCDD effects are known to be mediated by aryl hydrocarbone receptors (AhRs), we decided to determine if PCB 126 affects signal transduction pathway activated by these receptors. It has been reported that the functional AhR is present in ovary including oocytes, granulosa and theca cells of rat, mouse, rhesus monkey and human ovary. Moreover, the expression of AhR in the rat ovary appeared to be estrous cycle-dependent, thus suggesting that AhR expression may be regulated by fluctuating hormone levels. This study was designed to investigate the effects of the non-ortho-substituted 3,3',4,4',5-pentachlorobiphenyl (PCB126) on the AhR activation, localization and protein level in pig ovarian follicle cells.

  2. Indoxyl sulfate downregulates expression of Mas receptor via OAT3/AhR/Stat3 pathway in proximal tubular cells.

    Science.gov (United States)

    Ng, Hwee-Yeong; Yisireyili, Maimaiti; Saito, Shinichi; Lee, Chien-Te; Adelibieke, Yelixiati; Nishijima, Fuyuhiko; Niwa, Toshimitsu

    2014-01-01

    Renin-angiotensin system (RAS) plays a pivotal role in chronic kidney disease (CKD). Angiotensin converting enzyme-related carboxypeptidase 2 (ACE2)/angiotensin (Ang)-(1-7)/Mas receptor axis counteracts the deleterious actions of Ang II. ACE2 exerts its actions by cleaving Ang II into Ang-(1-7) which activates Mas receptor. This study aimed to determine if the expression of Mas receptor is altered in the kidneys of CKD rats, and if indoxyl sulfate (IS), a uremic toxin, affects the expression of Mas receptor in rat kidneys and cultured human proximal tubular cells (HK-2 cells). The expression of Mas receptor was examined in the kidneys of CKD and AST-120-treated CKD rats using immunohistochemistry. Further, the effects of IS on Mas receptor expression in the kidneys of normotensive and hypertensive rats were examined. The effects of IS on the expression of Mas receptor and phosphorylation of endothelial nitric oxide synthase (eNOS) in HK-2 cells were examined using immunoblotting. CKD rats showed reduced renal expression of Mas receptor, while AST-120 restored its expression. Administration of IS downregulated Mas receptor expression in the kidneys of normotensive and hypertensive rats. IS downregulated Mas receptor expression in HK-2 cells in a time- and dose-dependent manner. Knockdown of organic anion transporter 3 (OAT3), aryl hydrocarbon receptor (AhR), and signal transducer and activator of transcription 3 (Stat3) inhibited IS-induced downregulation of Mas receptor and phosphorylated eNOS. N-acetylcysteine, an antioxidant, also inhibited IS-induced downregulation of Mas receptor and phosphorylated eNOS. Ang-(1-7) attenuated IS-induced transforming growth factor-β1 (TGF-β1) expression. Mas receptor expression is reduced in the kidneys of CKD rats. IS downregulates renal expression of Mas receptor via OAT3/AhR/Stat3 pathway in proximal tubular cells. IS-induced downregulation of Mas receptor might be involved in upregulation of TGF-β1 in proximal tubular

  3. Embryonic and Postnatal Expression of Aryl Hydrocarbon Receptor mRNA in Mouse Brain

    Science.gov (United States)

    Kimura, Eiki; Tohyama, Chiharu

    2017-01-01

    Aryl hydrocarbon receptor (AhR), a member of the basic helix-loop-helix-Per-Arnt-Sim transcription factor family, plays a critical role in the developing nervous system of invertebrates and vertebrates. Dioxin, a ubiquitous environmental pollutant, avidly binds to this receptor, and maternal exposure to dioxin has been shown to impair higher brain functions and dendritic morphogenesis, possibly via an AhR-dependent mechanism. However, there is little information on AhR expression in the developing mammalian brain. To address this issue, the present study analyzed AhR mRNA expression in the brains of embryonic, juvenile, and adult mice by reverse transcription (RT)-PCR and in situ hybridization. In early brain development (embryonic day 12.5), AhR transcript was detected in the innermost cortical layer. The mRNA was also expressed in the hippocampus, cerebral cortex, cerebellum, olfactory bulb, and rostral migratory stream on embryonic day 18.5, postnatal days 3, 7, and 14, and in 12-week-old (adult) mice. Hippocampal expression was abundant in the CA1 and CA3 pyramidal and dentate gyrus granule cell layers, where expression level of AhR mRNA in 12-week old is higher than that in 7-day old. These results reveal temporal and spatial patterns of AhR mRNA expression in the mouse brain, providing the information that may contribute to the elucidation of the physiologic and toxicologic significance of AhR in the developing brain. PMID:28223923

  4. Regulation of estrogen sulfotransferase expression by confluence of MCF10A breast epithelial cells: role of the aryl hydrocarbon receptor.

    Science.gov (United States)

    Fu, Jiaqi; Fang, Hailin; Paulsen, Michelle; Ljungman, Mats; Kocarek, Thomas A; Runge-Morris, Melissa

    2011-11-01

    Estrogen sulfotransferase (SULT1E1) catalyzes the sulfonation of estrogens, which limits estrogen mitogenicity. We recently reported that SULT1E1 expression is low in preconfluent MCF10A human breast epithelial cells but increases when the cells become confluent. Pulse-chase labeling experiments with 5-bromouridine demonstrated that the confluence-mediated increase in SULT1E1 expression was due to increased mRNA synthesis. Because aryl hydrocarbon receptor (AhR) activation has been shown to suppress SULT1E1 expression and loss of cell-cell contact has been shown to activate the AhR in other cell types, we tested whether the confluence-associated changes in SULT1E1 expression were mediated by the AhR. Relative to confluent MCF10A cells, preconfluent cells had higher levels of CYP1A1 mRNA and greater activation of an AhR-responsive luciferase reporter, demonstrating that the AhR was active in the preconfluent cells. AhR and aryl hydrocarbon receptor nuclear translocator mRNA and protein levels were also higher in preconfluent than in confluent cultures. Treatment of preconfluent cells with the AhR antagonist, 3'-methoxy-4'-nitroflavone (MNF), or AhR knockdown significantly increased SULT1E1 expression. MCF10A cells stably transfected with a luciferase reporter containing ∼7 kilobases of the SULT1E1 5'-flanking region showed both MNF- and confluence-inducible luciferase expression. Preconfluent cells transiently transfected with the reporter showed both MNF treatment- and AhR knockdown-mediated luciferase induction, but mutation of a computationally predicted dioxin response element (DRE) at nucleotide (nt) -3476 did not attenuate these effects. These results demonstrate that SULT1E1 expression in MCF10A cells is transcriptionally regulated by confluence through a suppressive action of the AhR, which is not mediated through a DRE at nt -3476.

  5. Tissue-specific expression of aryl hydrocarbon receptor and putative developmental regulatory modules in Baltic salmon yolk-sac fry

    Energy Technology Data Exchange (ETDEWEB)

    Vuori, Kristiina A. [Centre of Excellence in Evolutionary Genetics and Physiology, Department of Biology, University of Turku, FI-20014 Turku (Finland)], E-mail: kristiina.vuori@utu.fi; Nordlund, Eija [Department of Information Technology, University of Turku, and Turku Centre for Computer Science (TUCS), FI-20014 Turku (Finland); Kallio, Jenny [Centre of Excellence in Evolutionary Genetics and Physiology, Department of Biology, University of Turku, FI-20014 Turku (Finland); Salakoski, Tapio [Department of Information Technology, University of Turku, and Turku Centre for Computer Science (TUCS), FI-20014 Turku (Finland); Nikinmaa, Mikko [Centre of Excellence in Evolutionary Genetics and Physiology, Department of Biology, University of Turku, FI-20014 Turku (Finland)

    2008-04-08

    The aryl hydrocarbon receptor (AhR) is an ancient protein that is conserved in vertebrates and invertebrates, indicating its important function throughout evolution. AhR has been studied largely because of its role in toxicology-gene expression via AhR is induced by many aromatic hydrocarbons in mammals. Recently, however, it has become clear that AhR is involved in various aspects of development such as cell proliferation and differentiation, and cell motility and migration. The mechanisms by which AhR regulates these various functions remain poorly understood. Across-species comparative studies of AhR in invertebrates, non-mammalian vertebrates and mammals may help to reveal the multiple functions of AhR. Here, we have studied AhR during larval development of Baltic salmon (Salmon salar). Our results indicate that AhR protein is expressed in nervous system, liver and muscle tissues. We also present putative regulatory modules and module-matching genes, produced by chromatin immunoprecipitation (ChIP) cloning and in silico analysis, which may be associated with evolutionarily conserved functions of AhR during development. For example, the module NFKB-AHRR-CREB found from salmon ChIP sequences is present in human ULK3 (regulating formation of granule cell axons in mouse and axon outgrowth in Caernohabditis elegans) and SRGAP1 (GTPase-activating protein involved in the Slit/Robo pathway) promoters. We suggest that AhR may have an evolutionarily conserved role in neuronal development and nerve cell targeting, and in Wnt signaling pathway.

  6. A novel computational approach for the prediction of networked transcription factors of aryl hydrocarbon-receptor-regulated genes.

    Science.gov (United States)

    Kel, Alexander; Reymann, Susanne; Matys, Volker; Nettesheim, Paul; Wingender, Edgar; Borlak, Jürgen

    2004-12-01

    A novel computational method based on a genetic algorithm was developed to study composite structure of promoters of coexpressed genes. Our method enabled an identification of combinations of multiple transcription factor binding sites regulating the concerted expression of genes. In this article, we study genes whose expression is regulated by a ligand-activated transcription factor, aryl hydrocarbon receptor (AhR), that mediates responses to a variety of toxins. AhR-mediated change in expression of AhR target genes was measured by oligonucleotide microarrays and by reverse transcription-polymerase chain reaction in human and rat hepatocytes. Promoters and long-distance regulatory regions (>10 kb) of AhR-responsive genes were analyzed by the genetic algorithm and a variety of other computational methods. Rules were established on the local oligonucleotide context in the flanks of the AhR binding sites, on the occurrence of clusters of AhR recognition elements, and on the presence in the promoters of specific combinations of multiple binding sites for the transcription factors cooperating in the AhR regulatory network. Our rules were applied to search for yet unknown Ah-receptor target genes. Experimental evidence is presented to demonstrate high fidelity of this novel in silico approach.

  7. Impurities contained in antifungal drug ketoconazole are potent activators of human aryl hydrocarbon receptor.

    Science.gov (United States)

    Grycová, Aneta; Dořičáková, Aneta; Dvořák, Zdeněk

    2015-12-03

    Antifungal drug ketoconazole is a mixture of (+)/(-) cis-enantiomers, which also contains several impurities. Ketoconazole was identified as an activator of aryl hydrocarbon receptor AhR by three independent research teams. In the current paper we demonstrate that impurities contained in ketoconazole preparations are strong activators of human AhR and inducers of CYP1A1. Impurity IMP-C had similar potency (EC50), but 10-15 times higher efficacy (magnitude of induction) towards AhR, comparing to (+)-ketoconazole, as revealed by gene reporter assay in AZ-AHR stably transfected cells. Impurities IMP-B and IMP-C, and in lesser extent IMP-E, induced a formation of AhR-DNA complex, as demonstrated by electromobility shift assay EMSA. Impurities IMP-C and IMP-E dose-dependently induced CYP1A1 mRNA after 24 h, and their effects were comparable to those by (+)-ketoconazole. The level of CYP1A1 protein in HepG2 cells was strongly increased by IMP-C after 48h. In conclusion, our data further elucidated molecular effects of ketoconazole towards AhR signaling pathway, with possible implications in ketoconazole role in skin chemoprevention and/or damage, involving AhR.

  8. Aryl hydrocarbon receptor-mediated and estrogenic activities of oxygenated polycyclic aromatic hydrocarbons and azaarenes originally identified in extracts of river sediments.

    Science.gov (United States)

    Machala, M; Ciganek, M; Bláha, L; Minksová, K; Vondráck, J

    2001-12-01

    Reproductive dysfunction in wildlife populations can be a result of environmental contaminants binding to aryl hydrocarbon receptor (AhR) or estrogenic receptors. Signaling by both types of receptors can be affected by polycyclic aromatic hydrocarbons (PAHs), which are potential endocrine disruptors. However, our knowledge regarding the effects of oxygenated (oxy)-PAHs and azaarenes on AhR-mediated and estrogenic activities is incomplete. In the present study, we have identified 9-fluorenone, anthrone, anthraquinone, benzanthrone, benz[a]anthracene-7,12-dione, benz[c]acridine, and dibenz[a,h]acridine as prevalent oxy-PAHs and azaarenes found in river sediments. Their concentrations in sediment samples ranged from 2.1 to 165.2 ng g(-1) for oxy-PAHs and up to 27.3 ng g(-1) for azaarenes. Their relative AhR-inducing and estrogenic potencies were quantified in vitro using two cell lines that were stably transfected with a luciferase reporter gene system and expressed as induction equivalency factors (IEFs). The only oxy-PAHs with detectable levels of in vitro AhR-mediated activity were benzanthrone and benz[a]anthracene-7,12-dione. However, their IEFs were approximately three to four orders of magnitude lower than those of benzo[a]pyrene. On the other hand, azaarenes showed a strong AhR-mediated activity, with dibenzo[a,h]acridine being a far more potent inducer of activity than benzo[a]pyrene. Benzanthrone, benz[a]anthracene-7,12-dione, anthraquinone, and benz[a]acridine were weak inducers of in vitro estrogenic activity, with IEFs similar to that of benzo[a]pyrene. Based on concentrations and relative potencies, our results suggest that dibenzo[a,h]acridine can significantly contribute to the overall AhR-mediated activity in river sediments, whereas the remaining compounds do not. No studied compound was found to contribute significantly to estrogen receptor-mediated activity in vitro.

  9. Evolution of the receptor binding properties of the influenza A(H3N2) hemagglutinin

    OpenAIRE

    Lin, Yi Pu; Xiong, Xiaoli; Wharton, Stephen A.; Martin, Stephen R.; Coombs, Peter J.; Vachieri, Sebastien G.; Christodoulou, Evangelos; Walker, Philip A.; Liu, Junfeng; John J Skehel; Gamblin, Steven J.; Hay, Alan J.; Daniels, Rodney S; McCauley, John W.

    2012-01-01

    The hemagglutinin (HA) of influenza A(H3N2) virus responsible for the 1968 influenza pandemic derived from an avian virus. On introduction into humans, its receptor binding properties had changed from a preference for avian receptors (α2,3-linked sialic acid) to a preference for human receptors (α2,6-linked sialic acid). By 2001, the avidity of human H3 viruses for avian receptors had declined, and since then the affinity for human receptors has also decreased significantly. These changes in ...

  10. PAH-CALUX, an optimized bioassay for AhR-mediated hazard identification of polycyclic aromatic hydrocarbons (PAHs) as individual compounds and in complex mixtures.

    Science.gov (United States)

    Pieterse, B; Felzel, E; Winter, R; van der Burg, B; Brouwer, A

    2013-10-15

    Polycyclic aromatic hydrocarbons (PAHs) represent a class of ubiquitously occurring environmental compounds that are implicated in a wide range of toxicological effects. Routine measurement of PAH contamination generally involves chemical analytical analysis of a selected group of representatives, for example, EPA-16, which may result in underestimation of the PAH-related toxicity of a sample. Many high molecular weight PAHs are known ligands of the aryl hydrocarbon receptor (AhR), a nuclear receptor that mediates toxic effects related to these compounds. Making use of this property we developed a PAH CALUX assay, a mammalian, H4IIe- cell-based reporter assay for the hazard identification of total PAH mixtures. The PAH CALUX reporter cell line allows for specific, rapid (4 h exposure time) and reliable quantification of AhR-induced luciferase induction relative to benzo[a]pyrene (BaP), which is used as a positive reference PAH congener. Full dose response relationships with inductions over 100-fold were reached within only 2 h of exposure to BaP. The PAH CALUX is highly sensitive, that is, using a 4 h exposure time, a limit of detection (LOD) of 5.2 × 10(-11) M BaP was achieved, and highly accurate, that is, a repeatability of 5.9% and a reproducibility of 6.6% were established. Screening of a selection of PAHs that were prioritized by the European Union and/or the U.S. Environmental Protection Agency showed that the PAH CALUX bioassay has a high predictability, particularly for carcinogenic PAHs. Experiments with synthetic mixtures and reference materials containing complex PAH mixtures show the suitability of the assay for these types of applications. Moreover, the presented results suggest that application of the PAH CALUX will result in a lower risk of underestimation of the toxicity of a sample than chemical analytical approaches that focus on a limited set of prioritized compounds.

  11. Aryl‐hydrocarbon receptor activity modulates prolactin expression in the pituitary

    Energy Technology Data Exchange (ETDEWEB)

    Moran, Tyler B.; Brannick, Katherine E.; Raetzman, Lori T., E-mail: raetzman@life.illinois.edu

    2012-11-15

    Pituitary tumors account for 15% of intracranial neoplasms, however the extent to which environmental toxicants contribute to the proliferation and hormone expression of pituitary cells is unknown. Aryl-hydrocarbon receptor (AhR) interacting protein (AIP) loss of function mutations cause somatotrope and lactotrope adenomas in humans. AIP sequesters AhR and inhibits its transcriptional function. Because of the link between AIP and pituitary tumors, we hypothesize that exposure to dioxins, potent exogenous ligands for AhR that are persistent in the environment, may predispose to pituitary dysfunction through activation of AhR. In the present study, we examined the effect of AhR activation on proliferation and endogenous pituitary hormone expression in the GH3 rat somatolactotrope tumor cell line and the effect of loss of AhR action in knockout mice. GH3 cells respond to nM doses of the reversible AhR agonist β-naphthoflavone with a robust induction of Cyp1a1. Although mRNA levels of the anti-proliferative signaling cytokine TGFbeta1 are suppressed upon β-naphthoflavone treatment, we did not observe an alteration in cell proliferation. AhR activation with β-naphthoflavone suppresses Ahr expression and impairs expression of prolactin (PRL), but not growth hormone (GH) mRNA in GH3 cells. In mice, loss of Ahr similarly leads to a reduction in Prl mRNA at P3, while Gh is unaffected. Additionally, there is a significant reduction in pituitary hormones Lhb and Fshb in the absence of Ahr. Overall, these results demonstrate that AhR is important for pituitary hormone expression and suggest that environmental dioxins can exert endocrine disrupting effects at the pituitary. -- Highlights: ► AhR signaling suppresses Prl mRNA expression. ► AhR signaling does not influence pituitary proliferation in culture. ► AhR is necessary for Prl, Lhb and Fshb expression at postnatal day 3.

  12. The Aryl Hydrocarbon Receptor Governs Epithelial Cell Invasion during Oropharyngeal Candidiasis

    Science.gov (United States)

    Solis, Norma V.; Swidergall, Marc; Bruno, Vincent M.; Gaffen, Sarah L.

    2017-01-01

    ABSTRACT Oropharyngeal candidiasis (OPC), caused predominantly by Candida albicans, is a prevalent infection in patients with advanced AIDS, defects in Th17 immunity, and head and neck cancer. A characteristic feature of OPC is fungal invasion of the oral epithelial cells. One mechanism by which C. albicans hyphae can invade oral epithelial cells is by expressing the Als3 and Ssa1 invasins that interact with the epidermal growth factor receptor (EGFR) on epithelial cells and stimulate endocytosis of the organism. However, the signaling pathways that function downstream of EGFR and mediate C. albicans endocytosis are poorly defined. Here, we report that C. albicans infection activates the aryl hydrocarbon receptor (AhR), leading to activation of Src family kinases (SFKs), which in turn phosphorylate EGFR and induce endocytosis of the fungus. Furthermore, treatment of oral epithelial cells with interferon gamma inhibits fungal endocytosis by inducing the synthesis of kynurenines, which cause prolonged activation of AhR and SFKs, thereby interfering with C. albicans-induced EGFR signaling. Treatment of both immunosuppressed and immunocompetent mice with an AhR inhibitor decreases phosphorylation of SFKs and EGFR in the oral mucosa, reduces fungal invasion, and lessens the severity of OPC. Thus, our data indicate that AhR plays a central role in governing the pathogenic interactions of C. albicans with oral epithelial cells during OPC and suggest that this receptor is a potential therapeutic target. PMID:28325761

  13. Assessment of the aryl hydrocarbon receptor-mediated activities of polycyclic aromatic hydrocarbons in a human cell-based reporter gene assay.

    Science.gov (United States)

    Vondráček, Jan; Pěnčíková, Kateřina; Neča, Jiří; Ciganek, Miroslav; Grycová, Aneta; Dvořák, Zdeněk; Machala, Miroslav

    2017-01-01

    Activation of the aryl hydrocarbon receptor (AhR)-mediated activity is one of key events in toxicity of polycyclic aromatic hydrocarbons (PAHs). Although various classes of AhR ligands may differentially activate human and rodent AhR, there is presently a lack of data on the human AhR-inducing relative potencies (REPs) of PAHs. Here, we focused on estimation of the AhR-mediated activities of a large set of environmental PAHs in human gene reporter AZ-AhR cell line, with an aim to develop the human AhR-based REP values with potential implications for risk assessment of PAHs. The previously identified weakly active PAHs mostly failed to activate the AhR in human cells. The order for REPs of individual PAHs in human cells largely corresponded with the available data from rodent-based experimental systems; nevertheless, we identified differences up to one order of magnitude in REP values of PAHs between human and rodent cells. Higher REP values were found in human cells for some important environmental contaminants or suspected carcinogens, such as indeno[1,2,3-cd]pyrene, benz[a]anthracene or benzo[b]fluoranthene, while lower REP values were determined for methyl-substituted PAHs. Our results also indicate that a different rate of metabolism for individual PAHs in human vs. rodent cells may affect estimation of REP values in human cell-based assay, and potentially alter toxicity of some compounds, such as benzofluoranthenes, in humans. We applied the AZ-AhR assay to evaluation of the AhR-mediated activity of complex mixtures of organic compounds associated with diesel exhaust particles, and we identified the polar compounds present in these mixtures as being particularly highly active in human cells, as compared with rodent cells. The present data suggest that differences may exist between the AhR-mediated potencies of PAHs in human and rodent cells, and that the AhR-mediated effects of polar PAH derivatives and metabolites in human cell models deserve further

  14. Differential influences of the aryl hydrocarbon receptor on Th17 mediated responses in vitro and in vivo.

    Directory of Open Access Journals (Sweden)

    João H Duarte

    Full Text Available The aryl hydrocarbon receptor (AhR has been attributed with anti-inflammatory effects in the development of pathological immune responses leading to experimental autoimmune encephalomyelitis (EAE via the induction of regulatory T cells. In agreement with previously published findings, we find that TCDD administration confers protection from EAE, however, this immuno-modulatory effect was not the consequence of de novo Treg generation, but the inhibition of Th17 cell differentiation. Systemic application of FICZ at the time of immunization also reduced EAE pathology albeit to a lesser degree than TCDD. In vitro Th17 differentiation in the presence of AhR agonists, including TCDD, promoted IL-17 and IL-22 expression, but did not induce Treg differentiation. AhR affinity influenced the amounts of IL-17 and IL-22 protein that was secreted by Th17 cells, but did not seem to affect susceptibility to EAE in vivo. Making use of conditional AhR-deficient mice, we show that the anti-inflammatory effect of TCDD depends on AhR activation in both T cells and dendritic cells, further emphasising the ability of TCDD to interfere with T effector cell differentiation in vivo. The dichotomy between the in vivo and in vitro effects of AhR reveals the complexity of the AhR pathway, which has the capacity of affecting different AhR-expressing cell types involved in mounting immune responses, thus participating in defining their outcome.

  15. Are styrene oligomers in coastal sediments of an industrial area aryl hydrocarbon-receptor agonists?

    Science.gov (United States)

    Hong, Seongjin; Lee, Junghyun; Lee, Changkeun; Yoon, Seo Joon; Jeon, Seungyeon; Kwon, Bong-Oh; Lee, Jong-Hyeon; Giesy, John P; Khim, Jong Seong

    2016-06-01

    Effect-directed analysis (EDA) was performed to identify the major aryl hydrocarbon receptor (AhR) agonists in sediments collected from a highly industrialized area (Lake Shihwa, Korea). Great AhR-mediated potencies were found in fractions containing aromatic compounds with log Kow values of 5-8, and relatively great concentrations of styrene oligomers (SOs) and polycyclic aromatic hydrocarbons (PAHs) were detected in those fractions. Until now, there was little information on occurrences and toxic relative potencies (RePs) of SOs in coastal environments. In the present study; i) distributions and compositions, ii) AhR binding affinities, and iii) contributions of SOs to total AhR-mediated potencies were determined in coastal sediments. Elevated concentrations of 10 SOs were detected in sediments of inland creeks ranging from 61 to 740 ng g(-1) dry mass (dm), while lesser concentrations were found in inner (mean = 33 ng g(-1) dm) and outer regions (mean = 25 ng g(-1) dm) of the lake. Concentrations of PAHs in sediments were comparable to those of SOs. 2,4-diphenyl-1-butene (SD3) was the predominant SO analogue in sediments. SOs and PAHs were accumulated in sediments near sources, and could not be transported to remote regions due to their hydrophobicity. RePs of 3 SOs could be derived, which were 1000- to 10,000-fold less than that of one representative potent AhR active PAH, benzo[a]pyrene. Although concentrations of SOs in sediments were comparable to those of PAHs, the collective contribution of SOs to total AhR-mediated potencies were rather small (coastal environment.

  16. Lack of ligand-selective binding of the aryl hydrocarbon receptor to putative DNA binding sites regulating expression of Bax and paraoxonase 1 genes.

    Science.gov (United States)

    DeGroot, Danica E; Hayashi, Ai; Denison, Michael S

    2014-01-01

    The aryl hydrocarbon receptor (AhR) is a ligand-dependent transcription factor that mediates the biological and toxicological effects of structurally diverse chemicals through its ability to bind specific DNA recognition sites (dioxin responsive elements (DREs)), and activate transcription of adjacent genes. While the DRE has a highly conserved consensus sequence, it has been suggested that the nucleotide specificity of AhR DNA binding may be ligand-dependent. The upstream regulatory regions of the murine Bax and human paraoxonase 1 (PON1) genes reportedly contain unique DRE-like sequences that respond to AhRs activated by some ligands but not others. Given the significant implications of this observation to understanding the diversity in AhR responses and that of other ligand-dependent nuclear receptors, a combination of DNA binding, nuclear translocation and gene expression analysis was used to investigate the molecular mechanisms underlying these ligand-selective responses. Although known AhR agonists stimulated AhR nuclear translocation, DRE binding and gene expression, the ligand-selective DRE-like DNA elements identified in the Bax and PON1 upstream regulatory regions failed to bind ligand-activated AhR or confer AhR-responsiveness upon a reporter gene. These results argue against the reported ligand-selectivity of AhR DNA binding and suggest DNA binding by ligand activated AhR involves DRE-containing DNA.

  17. The aryl hydrocarbon receptor ligand ITE inhibits TGFβ1-induced human myofibroblast differentiation.

    Science.gov (United States)

    Lehmann, Geniece M; Xi, Xia; Kulkarni, Ajit A; Olsen, Keith C; Pollock, Stephen J; Baglole, Carolyn J; Gupta, Shikha; Casey, Ann E; Huxlin, Krystel R; Sime, Patricia J; Feldon, Steven E; Phipps, Richard P

    2011-04-01

    Fibrosis can occur in any human tissue when the normal wound healing response is amplified. Such amplification results in fibroblast proliferation, myofibroblast differentiation, and excessive extracellular matrix deposition. Occurrence of these sequelae in organs such as the eye or lung can result in severe consequences to health. Unfortunately, medical treatment of fibrosis is limited by a lack of safe and effective therapies. These therapies may be developed by identifying agents that inhibit critical steps in fibrotic progression; one such step is myofibroblast differentiation triggered by transforming growth factor-β1 (TGFβ1). In this study, we demonstrate that TGFβ1-induced myofibroblast differentiation is blocked in human fibroblasts by a candidate endogenous aryl hydrocarbon receptor (AhR) ligand 2-(1'H-indole-3'-carbonyl)-thiazole-4-carboxylic acid methyl ester (ITE). Our data show that ITE disrupts TGFβ1 signaling by inhibiting the nuclear translocation of Smad2/3/4. Although ITE functions as an AhR agonist, and biologically persistent AhR agonists, such as 2,3,7,8-tetrachlorodibenzo-p-dioxin, cause severe toxic effects, ITE exhibits no toxicity. Interestingly, ITE effectively inhibits TGFβ1-driven myofibroblast differentiation in AhR(-/-) fibroblasts: Its ability to inhibit TGFβ1 signaling is AhR independent. As supported by the results of this study, the small molecule ITE inhibits myofibroblast differentiation and may be useful clinically as an antiscarring agent.

  18. Anthocyans fail to suppress transformation of aryl hydrocarbon receptor induced by dioxin.

    Science.gov (United States)

    Mukai, Rie; Fukuda, Itsuko; Hosokawa, Keizo; Nishiumi, Shin; Kaneko, Atsushi; Ashida, Hitoshi

    2005-05-01

    Dioxins induce adverse effects through transformation of the cytosolic aryl hydrocarbon receptor (AhR). Our previous study found that flavones and flavonols at dietary levels suppress AhR transformation. In the present study, we investigated whether 20 anthocyans dissolved in trifluoroacetic acid (TFA)-MeOH suppressed AhR transformation in a cell-free system and in Hepa-1c1c7 cells. Although four compounds at 50 muM suppressed 0.1 nM 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD)-induced AhR transformation and their effects were dose-dependent in the cell-free system, they were ineffective at 0.5 muM, which is close to physiological concentration. Moreover, no anthocyan at 50 muM tested here suppressed 0.1 nM TCDD-induced AhR transformation in Hepa-1c1c7 cells. We also confirmed that protocatechuic acid and related compounds, which are possible metabolites of anthocyans, did not affect the transformation in the cell-free system. It is concluded that anthocyans are not suitable candidates for protection from dioxin toxicity.

  19. Effect of dioxins on regulation of tyrosine hydroxylase gene expression by aryl hydrocarbon receptor: a neurotoxicology study

    Directory of Open Access Journals (Sweden)

    Akahoshi Eiichi

    2009-06-01

    Full Text Available Abstract Background Dioxins and related compounds are suspected of causing neurological disruption. Epidemiological studies indicated that exposure to these compounds caused neurodevelopmental disturbances such as learning disability and attention deficit hyperactivity disorder, which are thought to be closely related to dopaminergic dysfunction. Although the molecular mechanism of their actions has not been fully investigated, a major participant in the process is aryl hydrocarbon receptor (AhR. This study focused on the effect of 2, 3, 7, 8-tetrachlorodibenzo-p-dioxin (TCDD exposure on the regulation of TH, a rate-limiting enzyme of dopamine synthesis, gene expression by AhR. Methods N2a-Rβ cells were established by transfecting murine neuroblastoma Neuro2a with the rat AhR cDNA. TH expression induced by TCDD was assessed by RT-PCR and Western blotting. Participation of AhR in TCDD-induced TH gene expression was confirmed by suppressing AhR expression using the siRNA method. Catecholamines including dopamine were measured by high-performance liquid chromatography. A reporter gene assay was used to identify regulatory motifs in the promoter region of TH gene. Binding of AhR with the regulatory motif was confirmed by an electrophoretic mobility shift assay (EMSA. Results Induction of TH by TCDD through AhR activation was detected at mRNA and protein levels. Induced TH protein was functional and its expression increased dopamine synthesis. The reporter gene assay and EMSA indicated that AhR directly regulated TH gene expression. Regulatory sequence called aryl hydrocarbon receptor responsive element III (AHRE-III was identified upstream of the TH gene from -285 bp to -167 bp. Under TCDD exposure, an AhR complex was bound to AHRE-III as well as the xenobiotic response element (XRE, though AHRE-III was not identical to XRE, the conventional AhR-binding motif. Conclusion Our results suggest TCDD directly regulate the dopamine system by TH gene

  20. Aryl hydrocarbon receptor-dependent regulation of miR-196a expression controls lung fibroblast apoptosis but not proliferation

    Energy Technology Data Exchange (ETDEWEB)

    Hecht, Emelia [Department of Medicine, McGill University, Montreal, Quebec (Canada); Zago, Michela [Research Institute of the McGill University Health Centre, McGill University, Montreal, Quebec (Canada); Sarill, Miles [Department of Medicine, McGill University, Montreal, Quebec (Canada); Rico de Souza, Angela [Research Institute of the McGill University Health Centre, McGill University, Montreal, Quebec (Canada); Gomez, Alvin; Matthews, Jason [Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON (Canada); Hamid, Qutayba; Eidelman, David H. [Department of Medicine, McGill University, Montreal, Quebec (Canada); Research Institute of the McGill University Health Centre, McGill University, Montreal, Quebec (Canada); Baglole, Carolyn J., E-mail: Carolyn.baglole@McGill.ca [Department of Medicine, McGill University, Montreal, Quebec (Canada); Research Institute of the McGill University Health Centre, McGill University, Montreal, Quebec (Canada)

    2014-11-01

    The aryl hydrocarbon receptor (AhR) is a ligand-activated transcription factor implicated in the regulation of apoptosis and proliferation. Although activation of the AhR by xenobiotics such as dioxin inhibits the cell cycle and control apoptosis, paradoxically, AhR expression also promotes cell proliferation and survival independent of exogenous ligands. The microRNA (miRNA) miR-196a has also emerged as a regulator of proliferation and apoptosis but a relationship between the AhR and miR-196a is not known. Therefore, we hypothesized that AhR-dependent regulation of endogenous miR-196a expression would promote cell survival and proliferation. Utilizing lung fibroblasts from AhR deficient (AhR{sup −/−}) and wild-type (AhR{sup +/+}) mice, we show that there is ligand-independent regulation of miRNA, including low miR-196a in AhR{sup −/−} cells. Validation by qRT-PCR revealed a significant decrease in basal expression of miR-196a in AhR{sup −/−} compared to AhR{sup +/+} cells. Exposure to AhR agonists benzo[a]pyrene (B[a]P) and FICZ as well as AhR antagonist CH-223191 decreased miR-196a expression in AhR{sup +/+} fibroblasts concomitant with decreased AhR protein levels. There was increased proliferation only in AhR{sup +/+} lung fibroblasts in response to serum, corresponding to a decrease in p27{sup KIP1} protein, a cyclin-dependent kinase inhibitor. Increasing the cellular levels of miR-196a had no effect on proliferation or expression of p27{sup KIP1} in AhR{sup −/−} fibroblasts but attenuated cigarette smoke-induced apoptosis. This study provides the first evidence that AhR expression is essential for the physiological regulation of cellular miRNA levels- including miR-196a. Future experiments designed to elucidate the functional relationship between the AhR and miR-196a may delineate additional novel ligand-independent roles for the AhR. - Highlights: • The AhR controls proliferation and apoptosis in lung cells. • The AhR regulates the

  1. Leflunomide induces NAD(P)H quinone dehydrogenase 1 enzyme via the aryl hydrocarbon receptor in neonatal mice.

    Science.gov (United States)

    Shrestha, Amrit Kumar; Patel, Ananddeep; Menon, Renuka T; Jiang, Weiwu; Wang, Lihua; Moorthy, Bhagavatula; Shivanna, Binoy

    2017-03-25

    Aryl hydrocarbon receptor (AhR) has been increasingly recognized to play a crucial role in normal physiological homeostasis. Additionally, disrupted AhR signaling leads to several pathological states in the lung and liver. AhR activation transcriptionally induces detoxifying enzymes such as cytochrome P450 (CYP) 1A and NAD(P)H quinone dehydrogenase 1 (NQO1). The toxicity profiles of the classical AhR ligands such as 3-methylcholanthrene and dioxins limit their use as a therapeutic agent in humans. Hence, there is a need to identify nontoxic AhR ligands to develop AhR as a clinically relevant druggable target. Recently, we demonstrated that leflunomide, a FDA approved drug, used to treat rheumatoid arthritis in humans, induces CYP1A enzymes in adult mice via the AhR. However, the mechanisms by which this drug induces NQO1 in vivo are unknown. Therefore, we tested the hypothesis that leflunomide will induce pulmonary and hepatic NQO1 enzyme in neonatal mice via AhR-dependent mechanism(s). Leflunomide elicited significant induction of pulmonary CYP1A1 and NQO1 expression in neonatal mice. Interestingly, the dose at which leflunomide increased NQO1 was significantly higher than that required to induce CYP1A1 enzyme. Likewise, it also enhanced hepatic CYP1A1, 1A2 and NQO1 expression in WT mice. In contrast, leflunomide failed to induce these enzymes in AhR-null mice. Our results indicate that leflunomide induces pulmonary and hepatic CYP1A and NQO1 enzymes via the AhR in neonatal mice. These findings have important implications to prevent and/or treat disorders such as bronchopulmonary dysplasia in human infants where AhR may play a crucial role in the disease pathogenesis.

  2. Identification of interacting proteins with aryl hydrocarbon receptor in scallop Chlamys farreri by yeast two hybrid screening.

    Science.gov (United States)

    Cai, Yuefeng; Pan, Luqing; Miao, Jingjing; Liu, Tong

    2016-11-01

    The aryl hydrocarbon receptor (AhR) belongs to the basic-helix-loop helix (bHLH) Per-Arnt-Sim (PAS) family of transcription factors. AhR has been known primarily for its role in the regulation of several drug and xenobiotic metabolizing enzymes, as well as the mediation of the toxicity of certain xenobiotics, including 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). Although the AhR is well-studied as a mediator of the toxicity of certain xenobiotics in marine bivalves, the normal physiological function remains unknown. In order to explore the function of the AhR, the bait protein expression plasmid pGBKT7-CfAhR and the cDNA library of gill from Chlamys farreri were constructed. By yeast two hybrid system, after multiple screening with the high screening rate medium, rotary verification, sequencing and bioinformatics analysis, the interactions of the CfAhR with receptor for activated protein kinase C 1 (RACK1), thyroid peroxidase-like protein (TPO), Toll-like receptor 4(TLR 4), androglobin-like, store-operated Ca(2+) entry (SocE), ADP/ATP carrier protein, cytochrome b, thioesterase, actin, ferritin subunit 1, poly-ubiquitin, short-chain collagen C4-like and one hypothetical protein in gill cells were identified. This study suggests that the CfAhR played fundamental roles in immune system homeostasis, oxidative stress response, and in grow and development of C. farreri. The elucidation of these protein interactions is of much importance both in understanding the normal physiological function of AhR, and as potential targets for further research on protein function in AhR interactions.

  3. Detecting Polychlorinated Biphenyls by Ah Receptor and Fluorescence Quantitative PCR with Exonuclease

    Science.gov (United States)

    Zhao, Xiaoxiang; Zhuang, Huisheng

    2010-11-01

    Tetrachlorobiphenyls as ligands were cultivated with goldfish, Ah receptors were extracted from the liver of goldfish and purified by hydroxyapatite. The complex of TCB ligands-receptors were analyzed by Surface Plasmon Resonance. DNA probes were amplified by PCR using Primers F1 and F2 with the DNA recognition site of responsive enhancer. DNA probes bound to the complex were not digested by exonuclease. The DNA that bound to the complex was quantified by real time PCR. A standard curve with TCB concentration to Ct values was obtained in the range of 10-12mol/L to 10-8 mol/L, according to TCB concentration in samples. The detection limit of the assay was below 10-12mol/L of TCB. Compared with HPLC, this assay is much more sensitive. These results suggest that fluorescence quantitative PCR with exonuclease by Ah receptors fits for detection of trace PCB.

  4. Induction of aryl hydrocarbon receptor-mediated and estrogen receptor-mediated activities, and modulation of cell proliferation by dinaphthofurans.

    Science.gov (United States)

    Vondrácek, Jan; Chramostová, Katerina; Plísková, Martina; Bláha, Ludek; Brack, Werner; Kozubík, Alois; Machala, Miroslav

    2004-09-01

    A group of heterocyclic aromatic compounds, dinaphthofurans (DNFs), recently have been identified as potentially significant contaminants in freshwater sediments. In the present study, a battery of in vitro assays was used for detection of toxic effects of DNFs that are potentially associated with endocrine disruption and tumor promotion. Dinaphthofurans were found to act as relatively potent inducers of aryl hydrocarbon receptor (AhR)-mediated activity in the chemical-activated luciferase reporter gene expression DR-CALUX assay. The relative AhR-inducing potencies of DNFs were similar or even higher than relative potencies of unsubstituted polycyclic aromatic hydrocarbons (PAHs), with dinaphtho[1,2-b;2'3'-d]furan being the most potent AhR agonist. Two compounds, dinaphtho[2,1-b;2'3'-d]furan and dinaphtho[1,2-b;1'2'-d]furan, induced estrogen receptor (ER)-mediated activity in the estrogen receptor-mediated CALUX (the ER-CALUX) assay. Two types of potential tumor-promoting effects of DNFs were investigated, using in vitro bioassays for detection of inhibition of gap-junctional intercellular communication and detection of a release from contact inhibition. Although the acute inhibition of gap-junctional intercellular communication was not observed, all six tested DNFs were able to release rat liver epithelial WB-F344 cells from contact inhibition at concentrations as low as 100 nM. In summary, the present study indicated that DNFs can exert multiple biological effects in vitro, including induction of the AhR-mediated activity, release of cells from contact inhibition, and induction of ER-mediated activity.

  5. γ-Tocotrienol upregulates aryl hydrocarbon receptor expression and enhances the anticancer effect of baicalein

    Energy Technology Data Exchange (ETDEWEB)

    Yamashita, Shuya; Baba, Kiwako; Makio, Akiko; Kumazoe, Motofumi; Huang, Yuhui; Lin, I-Chian; Bae, Jaehoon; Murata, Motoki; Yamada, Shuhei; Tachibana, Hirofumi, E-mail: tatibana@agr.kyushu-u.ac.jp

    2016-05-13

    Previous studies have identified biomolecules that mediate the physiological actions of food factors, such as amino acids, vitamins, fatty acids, minerals, plant polyphenols, and lactobacilli, suggesting that our bodies are equipped with an innate system that senses which food factors are required to maintain our health. However, the effects of environmental factors on food factor sensing (FFS) remains largely unknown. Tocotorienols (T3s), which belongs to the vitamin E family, possess several physiological functions, including cholesterol lowering and neuroprotective effects. Here, we investigated the effects of naturally abundant γ-T3 on FFS-related gene expressions in melanoma using a DNA chip. Our results showed that γ-T3 increased the expression level of aryl hydrocarbon receptor (AhR), a sensing molecule to plant polyphenol baicalein. The co-treatment with γ-T3 and baicalein enhanced the anti-proliferative activity of baicalein, accompanied by the downstream events of AhR-activation induced by baicalein. These data suggest that γ-T3 upregulates AhR expression and enhances its sensitivity to baicalein. - Highlights: • γ-T3 upregulated the expression of AhR in mouse melanoma. • Promotion of the binding activity of Sp1 is associated with the increasing effect of γ-T3 on AhR expression. • γ-T3 enhanced the anti-proliferative activity of baicalein that has an AhR ligand activity. • γ-T3 enhanced the inducing activity of baicalein on the expression of AhR target genes.

  6. The androgenic anabolic steroid tetrahydrogestrinone produces dioxin-like effects via the aryl hydrocarbon receptor.

    Science.gov (United States)

    Moon, Hyo Youl; Kim, Sun-Hee; Ryu, Sung Ho; Suh, Pann-Ghill

    2012-10-01

    For a long time, athletes have used androgenic anabolic steroids (AASs) in an inappropriate and veiled manner with the aim of improving exercise performance or for cosmetic purposes. Abuse of AASs triggers adverse effects such as hepatocarcinogenesis, heart attacks, and aggressive behavior. However, AAS-induced toxicity is not completely understood at the molecular level. In the present study, we showed, by performing a dioxin response element (DRE)-luciferase reporter gene assay, that tetrahydrogestrinone (THG), a popular and potent androgen receptor agonist, has dioxin-like effects. In addition, we showed that THG increased cytochrome P-450 1A1 (CYP1A1) mRNA and protein levels, and enzyme activity. The gene encoding CYP1A1 is involved in phase 1 xenobiotic metabolism and a target gene of the aryl hydrocarbon receptor (AhR). Using the AhR antagonist CH-223191, we also examined whether the effects of THG on DRE activation depended on AhR. Our results suggest that synthetic anabolic steroids may have dioxin-like side effects that can disturb endocrine systems and may cause other side effects including cancer through AhR.

  7. Effect-directed analysis of Ah receptor-mediated activities caused by PAHs in suspended particulate matter sampled in flood events.

    Science.gov (United States)

    Wölz, J; Brack, W; Moehlenkamp, C; Claus, E; Braunbeck, Th; Hollert, H

    2010-07-15

    Suspended particulate matter (SPM) sampled during a flood event in the year 2004 at the rivers Neckar and Rhine (Southwest Germany) was assessed for aryl hydrocarbon receptor (AhR)-mediated activities using EROD induction in the rainbow trout liver cell line RTL-W1. All EROD inductions were normalized to the positive control TCDD and given as bio-TEQ values. Since all samples indicated elevated AhR-mediated toxicities, an effect-directed analysis (EDA) was applied to identify substances causing the effects. In three primary fractions (F1 to F3) non-polar aliphatics, non-polar aromatic substances and more polar substances were separated. Fraction F2, co-eluting with non-polar polyaromatic substances (PACs) including polycyclic aromatic hydrocarbons (PAHs) gave highest AhR-agonistic effects and, thus, were sub-fractionated into seven secondary fractions (F2-1 to F2-7). Fraction F2-1, co-eluting with PCBs and PCDD/Fs, did not cause AhR-agonist activities. F2-2 to F2-4 containing PACs of less than 16 aromatic C-atoms produced minor activities. Highest inductions were detected with fraction F2-5 to F2-7, containing substances of more than 16 aromatic C-atoms (bio-TEQs up to approximately 4500 pg/g). Concentrations and relative potencies (REPs) of priority EPA-PAHs allowed the calculation of chemical toxicity equivalent concentrations (chem-TEQ values). Based on the chem-TEQs, EPA-PAHs explained between 5 and 58% of crude extract bio-TEQs from both rivers. Whereas fractions F2-1 to F2-4 indicated no biological activities, EPA-PAHs in fraction F2-5 to F2-7 accounted for 2 to 137% of AhR-related activities. Copyright 2010 Elsevier B.V. All rights reserved.

  8. Sinomenine induces the generation of intestinal Treg cells and attenuates arthritis via activation of aryl hydrocarbon receptor.

    Science.gov (United States)

    Tong, Bei; Yuan, Xusheng; Dou, Yannong; Wu, Xin; Wang, Yuhui; Xia, Yufeng; Dai, Yue

    2016-10-01

    Sinomenine (SIN), an anti-arthritis drug, has previously been proven to exert immunomodulatory activity in rats by inducing intestinal regulatory T-cells (Treg cells). Here, we assessed the effect of SIN on the generation and function of Treg cells in autoimmune arthritis, and the underlying mechanisms in view of aryl hydrocarbon receptor (AhR). The proportions of Treg cells and IL-17-producing T-cells (Th17 cells) differentiated from naive T-cells were analyzed by flow cytometric analysis. The AhR agonistic effect of SIN was tested by analyzing the activation of downstream signaling pathways and target genes. The dependence of intestinal Treg cell induction and arthritis alleviation by SIN on AhR activation was confirmed in a mouse collagen-induced arthritis (CIA) model. SIN promoted the differentiation and function of intestinal Treg cells in vitro. It induced the expression and activity of AhR target gene, promoted AhR/Hsp90 dissociation and AhR nuclear translocation, induced XRE reporter activity, and facilitated AhR/XRE binding in vitro, displaying the potential to be an agonist of AhR. In CIA mice, SIN induced the generation of intestinal Treg cells, and facilitated the immunosuppressive function of these Treg cells as shown by an adoptive transfer test. In addition, the induction of intestinal Treg cells and the anti-arthritic effect of SIN in CIA mice could be largely diminished by the AhR antagonist resveratrol. SIN attenuates arthritis by promoting the generation and function of Treg cells in an AhR-dependent manner.

  9. Activation of the aryl hydrocarbon receptor by carbaryl: Computational evidence of the ability of carbaryl to assume a planar conformation.

    Science.gov (United States)

    Casado, Susana; Alonso, Mercedes; Herradón, Bernardo; Tarazona, José V; Navas, José

    2006-12-01

    It has been accepted that aryl hydrocarbon receptor (AhR) ligands are compounds with two or more aromatic rings in a coplanar conformation. Although general agreement exists that carbaryl is able to activate the AhR, it has been proposed that such activation could occur through alternative pathways without ligand binding. This idea was supported by studies showing a planar conformation of carbaryl as unlikely. The objective of the present work was to clarify the process of AhR activation by carbaryl. In rat H4IIE cells permanently transfected with a luciferase gene under the indirect control of AhR, incubation with carbaryl led to an increase of luminescence. Ligand binding to the AhR was studied by means of a cell-free in vitro system in which the activation of AhR can occur only by ligand binding. In this system, exposure to carbaryl also led to activation of AhR. These results were similar to those obtained with the AhR model ligand beta-naphthoflavone, although this compound exhibited higher potency than carbaryl in both assays. By means of computational modeling (molecular mechanics and quantum chemical calculations), the structural characteristics and electrostatic properties of carbaryl were described in detail, and it was observed that the substituent at C-1 and the naphthyl ring were not coplanar. Assuming that carbaryl would interact with the AhR through a hydrogen bond, this interaction was studied computationally using hydrogen fluoride as a model H-bond donor. Under this situation, the stabilization energy of the carbaryl molecule would permit it to adopt a planar conformation. These results are in accordance with the mechanism traditionally accepted for AhR activation: Binding of ligands in a planar conformation.

  10. The Effect of Aromatic Hydrocarbon Receptor on the Phenotype of the Hepa 1c1c7 Murine Hepatoma Cells in the Absence of Dioxin

    Directory of Open Access Journals (Sweden)

    Feng Wang

    2007-01-01

    Full Text Available The aromatic hydrocarbon receptor (AhR mediates biological responses to certain exogenous ligands, such as the environmental contaminant 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD, and has also been demonstrated to modulate the cell cycle and differentiated state of several cell lines independently of exogenous ligands. In this study, we used DNA micorarray analysis to elucidate the profile of genes responsive to the expression of unliganded AhR by re-introducing AhR into an AhR-deficient mouse derivative (c19 of the mouse hepatoma cell line Hepa1c1c7. 22 gene products were up-regulated and 8 were down-regulated two-fold or more in c19 cells infected with a retroviral vector expressing mouse AhR. Surprisingly, expression of genes involved in cell proliferation or differentiation were not affected by introduction of AhR. AhR also did not restore expression of the albumin gene in c19 cells. Introduction of AhR into c12, a similar AhRdefective mouse hepatoma cell line, also did not restore albumin expression, and furthermore, did not lead to changes in cellular morphology or cell cycle parameters. These observations fail to support the notion that unliganded AhR regulates proliferation and differentiation of liver-derived cells.

  11. Naturally-Occurring Glucosinolates, Glucoraphanin and Glucoerucin, are Antagonists to Aryl Hydrocarbon Receptor as Their Chemopreventive Potency.

    Science.gov (United States)

    Abdull Razis, Ahmad Faizal; Noor, Noramaliza Mohd

    2015-01-01

    As a cytosolic transcription factor, the aryl hydrocarbon (Ah) receptor is involved in several patho- physiological events leading to immunosuppression and cancer; hence antagonists of the Ah receptor may possess chemoprevention properties. It is known to modulate carcinogen-metabolising enzymes, for instance the CYP1 family of cytochromes P450 and quinone reductase, both important in the biotransformation of many chemical carcinogens via regulating phase I and phase II enzyme systems. Utilising chemically-activated luciferase expression (CALUX) assay it was revealed that intact glucosinolates, glucoraphanin and glucoerucin, isolated from Brassica oleracea L. var. acephala sabellica and Eruca sativa ripe seeds, respectively, are such antagonists. Both glucosinolates were poor ligands for the Ah receptor; however, they effectively antagonised activation of the receptor by the avid ligand benzo[a]pyrene. Indeed, intact glucosinolate glucoraphanin was a more potent antagonist to the receptor than glucoerucin. It can be concluded that both glucosinolates effectively act as antagonists for the Ah receptor, and this may contribute to their established chemoprevention potency.

  12. Activation of the aryl hydrocarbon receptor pathway enhances cancer cell invasion by upregulating the MMP expression and is associated with poor prognosis in upper urinary tract urothelial cancer.

    Science.gov (United States)

    Ishida, Masaru; Mikami, Shuji; Kikuchi, Eiji; Kosaka, Takeo; Miyajima, Akira; Nakagawa, Ken; Mukai, Makio; Okada, Yasunori; Oya, Mototsugu

    2010-02-01

    Aryl hydrocarbon receptor (AhR) and the activation of the AhR pathway are involved in xenobiotic-induced toxicity and carcinogenesis. Although xenobiotics, such as cigarette smoke, contribute to the development of urothelial carcinoma (UC), the relationship between AhR and UC is unclear. In the present study, we investigated AhR expression in 209 patients with upper urinary tract UC. The nuclear expression of AhR was significantly associated with histological grade, pathological T stage, lymphovascular invasion and lymph node involvement. A multivariate Cox analysis revealed that nuclear AhR expression was a significant and independent predictor for disease-specific survival (hazard ratio = 2.469, P = 0.013). To determine whether the AhR pathway can be activated in the T24 UC cell line, we examined the expression of cytochrome P450 (CYP) 1A1 and CYP1B1, which are target genes of the AhR pathway, following exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), a ligand of AhR. TCDD treatment upregulated the expression levels of AhR, CYP1A1 and CYP1B1. TCDD enhanced T24 cell invasion associated with the upregulation of matrix metalloproteinase (MMP)-1 and MMP-9. Furthermore, targeting AhR messenger RNA (mRNA) expression in T24 cells with small interfering RNA (siRNA) downregulated the mRNA expression of AhR, CYP1A1, CYP1B1, MMP-1, MMP-2 and MMP-9; furthermore, the cells transfected with siRNA for AhR showed decreased invasion activity in comparison with the cells transfected with a non-targeting siRNA. Our results therefore suggest that AhR plays a role in the invasiveness of UC cells and can serve as a marker for the prognosis of upper urinary tract UC.

  13. piRNA-associated proteins and retrotransposons are differentially expressed in murine testis and ovary of aryl hydrocarbon receptor deficient mice

    Science.gov (United States)

    Rico-Leo, Eva M.; Moreno-Marín, Nuria; González-Rico, Francisco J.; Barrasa, Eva; Ortega-Ferrusola, Cristina; Martín-Muñoz, Patricia; Sánchez-Guardado, Luis O.; Llano, Elena; Alvarez-Barrientos, Alberto; Infante-Campos, Ascensión; Catalina-Fernández, Inmaculada; Hidalgo-Sánchez, Matías; de Rooij, Dirk G.; Pendás, Alberto M.; Peña, Fernando J.; Merino, Jaime M.

    2016-01-01

    Previous studies suggested that the aryl hydrocarbon receptor (AhR) contributes to mice reproduction and fertility. However, the mechanisms involved remain mostly unknown. Retrotransposon silencing by Piwi-interacting RNAs (piRNAs) is essential for germ cell maturation and, remarkably, AhR has been identified as a regulator of murine B1-SINE retrotransposons. Here, using littermate AhR+/+ and AhR−/− mice, we report that AhR regulates the general course of spermatogenesis and oogenesis by a mechanism likely to be associated with piRNA-associated proteins, piRNAs and retrotransposons. piRNA-associated proteins MVH and Miwi are upregulated in leptotene to pachytene spermatocytes with a more precocious timing in AhR−/− than in AhR+/+ testes. piRNAs and transcripts from B1-SINE, LINE-1 and IAP retrotransposons increased at these meiotic stages in AhR-null testes. Moreover, B1-SINE transcripts colocalize with MVH and Miwi in leptonema and pachynema spermatocytes. Unexpectedly, AhR−/− males have increased sperm counts, higher sperm functionality and enhanced fertility than AhR+/+ mice. In contrast, piRNA-associated proteins and B1-SINE and IAP-derived transcripts are reduced in adult AhR−/− ovaries. Accordingly, AhR-null female mice have lower numbers of follicles when compared with AhR+/+ mice. Thus, AhR deficiency differentially affects testis and ovary development possibly by a process involving piRNA-associated proteins, piRNAs and transposable elements. PMID:28003471

  14. A comparison of adrenergic receptors of rat ascites hepatoma AH130 cells with those of normal rat hepatocytes.

    Science.gov (United States)

    Sanae, F; Miyamoto, K; Koshiura, R

    1988-04-01

    The pharmacological specificity of adrenergic receptors in the plasma membrane of rat ascites hepatoma AH130 cells was compared with that in normal rat hepatocytes. The number of [125I]iodocyanopindolol-binding sites was much greater in AH130 cells than in the hepatocytes. We characterized the alpha-adrenergic receptor subtypes using the alpha 1-selective ligand [3H]prazosin and the alpha 2-selective ligand [3H]clonidine. AH130 cells had fewer prazosin-binding sites than the hepatocytes and about 8 times as many clonidine-binding sites of high affinity. The results showed that the adrenergic receptors in AH130 cells have pharmacological properties that are very different from those of the receptors in normal rat hepatocytes.

  15. Association of aryl hydrocarbon receptor-related gene variants with the severity of autism spectrum disorders

    Directory of Open Access Journals (Sweden)

    Takashi X. Fujisawa

    2016-11-01

    Full Text Available Exposure to environmental chemicals, such as dioxin, is known to have adverse effects on the homeostasis of gonadal steroids, thereby potentially altering the sexual differentiation of the brain to express autistic traits. Dioxin-like chemicals act on the aryl hydrocarbon receptor (AhR, polymorphisms and mutations of AhR-related gene may exert pathological influences on sexual differentiation of the brain, causing autistic traits. To ascertain the relationship between AhR-related gene polymorphisms and autism susceptibility, we identified genotypes of them in patients and controls and determined whether there are different gene and genotype distributions between both groups. In addition, to clarify the relationships between the polymorphisms and the severity of autism, we compared the two genotypes of AhR-related genes (rs2066853, rs2228099 with the severity of autistic symptoms. Although no statistically significant difference was found between autism spectrum disorder (ASD patients and control individuals for the genotypic distribution of any of the polymorphisms studied herein, a significant difference in the total score of severity was observed in rs2228099 polymorphism, suggesting that the polymorphism modifies the severity of ASD symptoms but not ASD susceptibility. Moreover, we found that a significant difference in the social communication score of severity was observed. These results suggest that the rs2228099 polymorphism is possibly associated with the severity of social communication impairment among the diverse ASD symptoms.

  16. Reduction of vitellogenin synthesis by an aryl hydrocarbon receptor agonist in the white sturgeon (Acipenser transmontamus).

    Science.gov (United States)

    Palumbo, Amanda J; Denison, Michael S; Doroshov, Serge I; Tjeerdema, Ronald S

    2009-08-01

    Migrating white sturgeon (Acipenser transmontamus) may be subject to agricultural, municipal, and industrial wastewater effluents that likely contain different classes of endocrine-disrupting contaminants. Concern is mounting about the negative effects of environmental estrogens on fish reproduction; however, in environmental mixtures, the affects from estrogenic compounds may be suppressed by aryl hydrocarbon receptor (AhR) ligands. Indeed, reductions in 17beta-estradiol-induced (0.01 and 1 mg/kg) vitellogenin (VTG) levels were observed in white sturgeon coinjected with beta-naphthoflavone (BNF; 50 mg/kg), a model for contaminants that activate the AhR. Variation in the time of injection was used to attempt to correlate VTG inhibition to ethoxyresorufin-O-deethylase activity. No evidence was found to suggest that the inhibition of VTG is a direct result of enhanced estrogen metabolism by BNF-induced enzymes. Results of the present study are relevant for monitoring programs that measure VTG, because these results show that AhR-active environmental contaminants can repress VTG synthesis, which commonly is used as an indicator of estrogen-mimicking contaminants. Furthermore, suppression of natural estrogen signaling by AhR agonists may have significant effects on fish reproduction.

  17. TCDD-Induced Activation of Aryl Hydrocarbon Receptor Inhibits Th17 Polarization and Regulates Non-Eosinophilic Airway Inflammation in Asthma.

    Directory of Open Access Journals (Sweden)

    Xiao-ming Li

    Full Text Available The aryl hydrocarbon receptor (AhR, a transcription factor of the bHLH/PAS family, has recently been demonstrated to regulate T cell differentiation. Whether AhR activation participates in allergic airway inflammation remains unknown. In the current study, using a non-eosinophilic asthma model, we demonstrate that 2, 3, 7, 8-tetrachlorodibenzo-P-dioxin (TCDD, a potent AhR ligand, reduced the airway infiltration of neutrophils, airway hyperresponsiveness and Th17 cytokine expression. Furthermore, stimulation with TCDD promoted Treg differentiation and inhibited Th17 differentiation. However, the maturation of dendritic cells may not be inhibited by AhR activation. This study thus indicates a critical role of TCDD-induced AhR activation in the regulation of non-eosinophilic airway inflammation.

  18. Activation of the aryl hydrocarbon receptor is the major toxic mode of action of an organic extract of a reference urban dust particulate matter mixture: The role of polycyclic aromatic hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Andrysik, Zdenek; Vondracek, Jan [Department of Cytokinetics, Institute of Biophysics AS CR, Kralovopolska 135, 61265 Brno (Czech Republic); Department of Toxicology, Pharmacology and Immunotherapy, Veterinary Research Institute, Hudcova 70, 62100 Brno (Czech Republic); Marvanova, Sona; Ciganek, Miroslav; Neca, Jiri; Pencikova, Katerina [Department of Toxicology, Pharmacology and Immunotherapy, Veterinary Research Institute, Hudcova 70, 62100 Brno (Czech Republic); Mahadevan, Brinda [Department of Environmental and Molecular Toxicology, Oregon State University, ALS 1007, Corvallis, OR 97331-7301 (United States); Topinka, Jan [Laboratory of Genetic Ecotoxicology, Institute of Experimental Medicine AS CR, Videnska 1083, 14220 Prague (Czech Republic); Baird, William M. [Department of Environmental and Molecular Toxicology, Oregon State University, ALS 1007, Corvallis, OR 97331-7301 (United States); Kozubik, Alois [Department of Cytokinetics, Institute of Biophysics AS CR, Kralovopolska 135, 61265 Brno (Czech Republic); Machala, Miroslav, E-mail: machala@vri.cz [Department of Toxicology, Pharmacology and Immunotherapy, Veterinary Research Institute, Hudcova 70, 62100 Brno (Czech Republic)

    2011-09-01

    Highlights: {yields} SRM1649a extract and its fractions are potent activators of AhR in a model of epithelial cells. {yields} AhR-dependent effects include both induction of CYP1 enzymes and disruption of cell proliferation control. {yields} Polycyclic aromatic hydrocarbons present in the neutral SRM1649a fraction are major contributors to the AhR-mediated toxic effects. {yields} Activation of AhR and related nongenotoxic effects occur at significantly lower doses than the formation of DNA adducts and activation of DNA damage response. {yields} More attention should be paid to the AhR-dependent nongenotoxic events elicited by urban particulate matter constituents. - Abstract: Many of the toxic and carcinogenic effects of urban air pollution have been linked to polycyclic aromatic hydrocarbons (PAHs) adsorbed to airborne particulate matter (PM). The carcinogenic properties of PAHs in complex organic mixtures derived from PM have been chiefly attributed to their mutagenicity. Nevertheless, PAHs are also potent activators of the aryl hydrocarbon receptor (AhR), which may contribute to their nongenotoxic effects, including tumor promotion. As the genotoxicity of carcinogenic PAHs in complex mixtures derived from urban PM is often inhibited by other mixture constituents, the AhR-mediated activity of urban PM extracts might significantly contribute to the carcinogenic activity of such mixtures. In the present study, we used an organic extract of the urban dust standard reference material, SRM1649a, as a model mixture to study a range of toxic effects related to DNA damage and AhR activation. Both the organic extract and its neutral aromatic fraction formed a low number of DNA adducts per nucleotide in the liver epithelial WB-F344 cells model, without inducing DNA damage response, such as tumor suppressor p53 activation and apoptosis. In contrast, we found that this extract, as well as its neutral and polar fractions, were potent inducers of a range of Ah

  19. Hypoxia perturbs aryl hydrocarbon receptor signaling and CYP1A1 expression induced by PCB 126 in human skin and liver-derived cell lines.

    Science.gov (United States)

    Vorrink, Sabine U; Severson, Paul L; Kulak, Mikhail V; Futscher, Bernard W; Domann, Frederick E

    2014-02-01

    The aryl hydrocarbon receptor (AhR) is an important mediator of toxic responses after exposure to xenobiotics including 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) and dioxin-like polychlorinated biphenyls (PCBs). Activation of AhR responsive genes requires AhR dimerization with the aryl hydrocarbon receptor nuclear translocator (ARNT), a heterodimeric partner also shared by the hypoxia-inducible factor-1α (HIF-1α) protein. TCDD-stimulated AhR transcriptional activity can be influenced by hypoxia; however, it less well known whether hypoxia interferes with AhR transcriptional transactivation in the context of PCB-mediated AhR activation in human cells. Elucidation of this interaction is important in liver hepatocytes which extensively metabolize ingested PCBs and experience varying degrees of oxygen tension during normal physiologic function. This study was designed to assess the effect of hypoxia on AhR transcriptional responses after exposure to 3,3',4,4',5-pentachlorobiphenyl (PCB 126). Exposure to 1% O2 prior to PCB 126 treatment significantly inhibited CYP1A1 mRNA and protein expression in human HepG2 and HaCaT cells. CYP1A1 transcriptional activation was significantly decreased upon PCB 126 stimulation under conditions of hypoxia. Additionally, hypoxia pre-treatment reduced PCB 126 induced AhR binding to CYP1 target gene promoters. Importantly, ARNT overexpression rescued cells from the inhibitory effect of hypoxia on XRE-luciferase reporter activity. Therefore, the mechanism of interference of the signaling crosstalk between the AhR and hypoxia pathways appears to be at least in part dependent on ARNT availability. Our results show that AhR activation and CYP1A1 expression induced by PCB 126 were significantly inhibited by hypoxia and hypoxia might therefore play an important role in PCB metabolism and toxicity.

  20. Activation of aryl hydrocarbon receptor promotes invasion of clear cell renal cell carcinoma and is associated with poor prognosis and cigarette smoke.

    Science.gov (United States)

    Ishida, Masaru; Mikami, Shuji; Shinojima, Toshiaki; Kosaka, Takeo; Mizuno, Ryuichi; Kikuchi, Eiji; Miyajima, Akira; Okada, Yasunori; Oya, Mototsugu

    2015-07-15

    Although exposure to environmental pollutants is one of the risk factors for renal cell carcinoma (RCC), its relationship with carcinogenesis and the progression of RCC remains unknown. The present study was designed to elucidate the role of the aryl hydrocarbon receptor (AhR), a major mediator of carcinogenesis caused by environmental pollutants, in the progression of RCC. The expression of AhR was investigated in 120 patients with RCC using immunohistochemistry, and its relationship with clinicopathological parameters and prognoses was statistically analyzed. RCC cell lines were exposed to indirubin or 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), AhR ligands, to activate the AhR pathway, or were transfected with small interfering RNA (siRNA) for AhR. The expression of the AhR target genes CYP1A1 and CYP1B1, matrix metalloproteinases (MMPs), and invasion through Matrigel(TM) were then examined. AhR was predominantly expressed in the nuclei of high-grade clear cell RCC (ccRCC) and tumor-infiltrating lymphocytes (TILs), and its expression levels in cancer cells and TILs correlated with the pathological tumor stage and histological grade. A multivariate Cox analysis revealed that the strong expression of AhR in cancer cells was a significant and independent predictor of disease-specific survival. AhR ligands up-regulated the expression of AhR and CYPs and promoted invasion by up-regulating MMPs. Furthermore, siRNA for AhR down-regulated CYPs, and inhibited cancer cell invasion together with the down-regulation of MMPs. These results suggest that AhR regulates the invasion of ccRCC and may be involved in tumor immunity. Therefore, inhibiting the activation of AhR may represent a potentially attractive therapeutic target for ccRCC patients.

  1. Hypoxia perturbs aryl hydrocarbon receptor signaling and CYP1A1 expression induced by PCB 126 in human skin and liver-derived cell lines

    Energy Technology Data Exchange (ETDEWEB)

    Vorrink, Sabine U. [Interdisciplinary Graduate Program in Human Toxicology, The University of Iowa, Iowa City, IA (United States); Department of Radiation Oncology, The University of Iowa, Iowa City, IA (United States); Severson, Paul L. [Department of Pharmacology and Toxicology, The University of Arizona, Tucson, AZ (United States); Kulak, Mikhail V. [Department of Surgery, The University of Iowa, Iowa City, IA (United States); Futscher, Bernard W. [Department of Pharmacology and Toxicology, The University of Arizona, Tucson, AZ (United States); Domann, Frederick E., E-mail: frederick-domann@uiowa.edu [Interdisciplinary Graduate Program in Human Toxicology, The University of Iowa, Iowa City, IA (United States); Department of Radiation Oncology, The University of Iowa, Iowa City, IA (United States); Department of Surgery, The University of Iowa, Iowa City, IA (United States)

    2014-02-01

    The aryl hydrocarbon receptor (AhR) is an important mediator of toxic responses after exposure to xenobiotics including 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) and dioxin-like polychlorinated biphenyls (PCBs). Activation of AhR responsive genes requires AhR dimerization with the aryl hydrocarbon receptor nuclear translocator (ARNT), a heterodimeric partner also shared by the hypoxia-inducible factor-1α (HIF-1α) protein. TCDD-stimulated AhR transcriptional activity can be influenced by hypoxia; however, it less well known whether hypoxia interferes with AhR transcriptional transactivation in the context of PCB-mediated AhR activation in human cells. Elucidation of this interaction is important in liver hepatocytes which extensively metabolize ingested PCBs and experience varying degrees of oxygen tension during normal physiologic function. This study was designed to assess the effect of hypoxia on AhR transcriptional responses after exposure to 3,3′,4,4′,5-pentachlorobiphenyl (PCB 126). Exposure to 1% O{sub 2} prior to PCB 126 treatment significantly inhibited CYP1A1 mRNA and protein expression in human HepG2 and HaCaT cells. CYP1A1 transcriptional activation was significantly decreased upon PCB 126 stimulation under conditions of hypoxia. Additionally, hypoxia pre-treatment reduced PCB 126 induced AhR binding to CYP1 target gene promoters. Importantly, ARNT overexpression rescued cells from the inhibitory effect of hypoxia on XRE-luciferase reporter activity. Therefore, the mechanism of interference of the signaling crosstalk between the AhR and hypoxia pathways appears to be at least in part dependent on ARNT availability. Our results show that AhR activation and CYP1A1 expression induced by PCB 126 were significantly inhibited by hypoxia and hypoxia might therefore play an important role in PCB metabolism and toxicity. - Highlights: • Significant crosstalk exists between AhR and HIF-1α signaling. • Hypoxia perturbs PCB 126 induced AhR function and

  2. Aryl hydrocarbon receptor activation modulates CD8αα(+)TCRαβ(+) IELs and suppression of colitis manifestations in mice.

    Science.gov (United States)

    Chen, Weigang; Pu, Aimin; Sheng, Baifa; Zhang, Zhicao; Li, Liangzi; Liu, Zhongze; Wang, Qimeng; Li, Xiang; Ma, Yuanhang; Yu, Min; Sun, Lihua; Qiu, Yuan; Yang, Hua

    2017-03-01

    This research is dedicated to investigating the effects and potential mechanism of action of the aryl hydrocarbon receptor on the intestinal mucosal immune system in dextran sulfate sodium (DSS)-induced colitis. Colitis was induced by the administration of 3% DSS to wild-type C57BL/6J mice for 7days. 6-formylindolo(3, 2-b)carbazole (FICZ), an endogenous agonist of the aryl hydrocarbon receptor (AhR), was given intraperitoneally on a daily basis beginning 2days after the start of DSS administration. The mice were weighed and assessed, and colon tissues were measured. Intraepithelial lymphocytes (IELs) were isolated from the colon and examined by flow cytometry and quantitative real-time PCR. FICZ ameliorated DSS-induced colitis, resulting in a reduced disease activity index and improvement in the histology and length of the colon. Colitis reduced the percentage and number of CD8αα(+)TCRαβ(+) IELs. FICZ prevented the reduction in the numbers of CD8αα(+)TCRαβ(+) IELs by upregulating the expression of the IL-15 receptor and the aryl hydrocarbon receptor (AhR), and attenuating the apoptotic rate of CD8αα(+)TCRαβ(+) IELs. Finally, IL-10 was increased and IFN-γ was decreased in CD8αα(+)TCRαβ(+) IELs by FICZ administration in DSS-induced colitis. The results suggest that AhR activation ameliorated DSS-induced acute colitis, in a manner that is associated with the local expansion and functions of CD8αα(+)TCRαβ(+) IELs in acute colitis. The findings indicate that AhR-related ligands might be targeted as novel drug targets for IBD. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  3. Detection of Interaction of Binding Affinity of Aromatic Hydrocarbon Receptor to the Specific DNA by Exonuclease Protection Mediated PCR Assay

    Institute of Scientific and Technical Information of China (English)

    SUN Xi; XU Shunqing

    2005-01-01

    A novel exonuclease protection mediated PCR assay (EPM-PCR) to detect the interaction of protein and DNA at a dioxin-responsive enhancer (DRE) upstream of the CYP1A1 gene in rat hepatic cytosol was established. A double-stranded DNA fragment containing two binding sites was designed and incubated with the aryl hydrocarbon receptor (AhR) transformed by 2,3,7,8-tet rachlorodibenzo p dioxin (TCDD) to generate TCDD: AhR: DNA complex which could protect receptor-binding DNA against exonuclease Ⅲ (Exo Ⅲ) digestion. With ExoⅢ treatment, free DNAs were digested and receptor-bound DNAs remained that could be amplified by PCR. By agarose gel electrophoreses a clear band (285bp) was detected using TCDD-treated sample, while nothing with control samples. To detect transformed AhR-DRE complex, 2 fmol DNAs and 3 ug cytosol proteins were found to be sufficient in the experiment. Compared with gel retardation assay, this new method is more sensitive for monitoring the Ah receptor-enhancer interaction without radioactive pollution.

  4. Aryl hydrocarbon receptor expression is associated with a family history of upper gastrointestinal tract cancer in a high-risk population exposed to aromatic hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Roth, M.J.; Wei, W.Q.; Baer, J.; Abnet, C.C.; Wang, G.Q.; Sternberg, L.R.; Warner, A.C.; Johnson, L.L.; Lu, N.; Giffen, C.A.; Dawsey, S.M.; Qiao, Y.L.; Cherry, J. [NCI, Bethesda, MD (United States)

    2009-09-15

    Polycyclic aromatic hydrocarbon (PAH) exposure is a risk factor for esophageal squamous cell carcinoma, and PAHs are ligands of the aryl hydrocarbon receptor (AhR). This study measured the expression of AhR and related genes in frozen esophageal cell samples from patients exposed to different levels of indoor air pollution, who did or did not have high-grade squamous dysplasia and who did or did not have a family history of upper gastrointestinal tract (UGI) cancer. 147 samples were evaluated, including 23 (16%) from patients with high-grade dysplasia and 48 (33%) from patients without dysplasia who heated their homes with coal, without a chimney (a 'high' indoor air pollution group), and 27 (18%) from patients with high-grade dysplasia and 49 (33%) from patients without dysplasia who did not heat their homes at all (a 'low' indoor air pollution group). Sixty-four (44%) had a family history of UGI cancer. RNA was extracted and quantitative PCR analysis was done. AhR gene expression was detectable in 85 (58%) of the samples and was >9-fold higher in those with a family history of UGI cancer (median expression (interquartile range), -1,964 (-18,000, -610) versus -18,000 (-18,000, -1036); P = 0.02, Wilcoxon rank-sum test). Heating status, dysplasia category, age, gender, and smoking were not associated with AhR expression (linear regression; all P values {ge} 0.1). AhR expression was higher in patients with a family history of UGI cancer. Such individuals may be more susceptible to the deleterious effects of PAH exposure, including PAH-induced cancer.

  5. Activation of the aryl hydrocarbon receptor is the major toxic mode of action of an organic extract of a reference urban dust particulate matter mixture: the role of polycyclic aromatic hydrocarbons.

    Science.gov (United States)

    Andrysík, Zdeněk; Vondráček, Jan; Marvanová, Soňa; Ciganek, Miroslav; Neča, Jiří; Pěnčíková, Kateřina; Mahadevan, Brinda; Topinka, Jan; Baird, William M; Kozubík, Alois; Machala, Miroslav

    2011-09-01

    Many of the toxic and carcinogenic effects of urban air pollution have been linked to polycyclic aromatic hydrocarbons (PAHs) adsorbed to airborne particulate matter (PM). The carcinogenic properties of PAHs in complex organic mixtures derived from PM have been chiefly attributed to their mutagenicity. Nevertheless, PAHs are also potent activators of the aryl hydrocarbon receptor (AhR), which may contribute to their nongenotoxic effects, including tumor promotion. As the genotoxicity of carcinogenic PAHs in complex mixtures derived from urban PM is often inhibited by other mixture constituents, the AhR-mediated activity of urban PM extracts might significantly contribute to the carcinogenic activity of such mixtures. In the present study, we used an organic extract of the urban dust standard reference material, SRM1649a, as a model mixture to study a range of toxic effects related to DNA damage and AhR activation. Both the organic extract and its neutral aromatic fraction formed a low number of DNA adducts per nucleotide in the liver epithelial WB-F344 cells model, without inducing DNA damage response, such as tumor suppressor p53 activation and apoptosis. In contrast, we found that this extract, as well as its neutral and polar fractions, were potent inducers of a range of AhR-mediated responses, including induction of the AhR-mediated transcription, such as cytochrome P450 1A1/1B1 expression, and the AhR-dependent cell proliferation. Importantly, these toxic events occurred at doses one order of magnitude lower than DNA damage. The AhR-mediated activity of the neutral fraction was linked to PAHs and their derivatives, as polychlorinated dibenzo-p-dioxins, dibenzofurans and biphenyls were only minor contributors to the overall AhR-mediated activity. Taken together, our data suggest that more attention should be paid to the AhR-dependent nongenotoxic events elicited by urban PM constituents, especially PAHs and their derivatives.

  6. Nucleotide specificity of DNA binding of the aryl hydrocarbon receptor:ARNT complex is unaffected by ligand structure.

    Science.gov (United States)

    DeGroot, Danica E; Denison, Michael S

    2014-01-01

    The aryl hydrocarbon receptor (AhR) is a ligand-activated transcription factor that mediates the toxic and biological effects of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD, dioxin) and a wide variety of structurally diverse ligands through its ability to translocate into the nucleus and bind to a specific DNA recognition site (the dioxin-responsive element [DRE]) adjacent to responsive genes. Although the sequence of the DRE is well defined, several reports suggested that the nucleotide specificity of AhR DNA binding may vary depending on the structure of its bound ligand. Given the potential toxicological significance of this hypothesis, an unbiased DNA-selection-and-PCR-amplification approach was utilized to directly determine whether binding and activation of the AhR by structurally diverse agonists alter its nucleotide specificity of DNA binding. Guinea pig hepatic cytosolic AhR activated in vitro by equipotent concentrations of TCDD, 3-methylcholanthrene, β-naphthoflavone, indirubin, L-kynurenine, or YH439 was incubated with a pool of DNA oligonucleotides containing a 15-base pair variable region consisting of all possible nucleotides. The AhR-bound oligonucleotides isolated by immunoprecipitation were PCR amplified and used in subsequent rounds of selection. Sequence analysis of a total of 196 isolated oligonucleotides revealed that each ligand-activated AhR:ARNT complex only bound to DRE-containing DNA oligonucleotides; no non-DRE-containing DNA oligonucleotides were identified. These results demonstrate that the binding and activation of the AhR by structurally diverse agonists do not appear to alter its nucleotide specificity of DNA binding and suggest that stimulation of gene expression mediated by direct DNA binding of ligand-activated AhR:ARNT complexes is DRE dependent.

  7. Omeprazole Attenuates Pulmonary Aryl Hydrocarbon Receptor Activation and Potentiates Hyperoxia-Induced Developmental Lung Injury in Newborn Mice

    Science.gov (United States)

    Shivanna, Binoy; Zhang, Shaojie; Patel, Ananddeep; Jiang, Weiwu; Wang, Lihua; Welty, Stephen E.; Moorthy, Bhagavatula

    2015-01-01

    Hyperoxia contributes to the development of bronchopulmonary dysplasia (BPD) in human preterm infants and a similar lung phenotype characterized by alveolar simplification in newborn mice. Omeprazole (OM) is a proton pump inhibitor that is used to treat humans with gastric acid related disorders. OM-mediated aryl hydrocarbon receptor (AhR) activation attenuates acute hyperoxic lung injury (HLI) in adult mice. Whether OM activates pulmonary AhR and protects C57BL/6J newborn mice against hyperoxia-induced developmental lung (alveolar and pulmonary vascular simplification, inflammation, and oxidative stress) injury (HDLI) is unknown. Therefore, we tested the hypothesis that OM will activate pulmonary AhR and mitigate HDLI in newborn mice. Newborn mice were treated daily with i.p. injections of OM at doses of 10 (OM10) or 25 (OM25) mg/kg while being exposed to air or hyperoxia (FiO2 of 85%) for 14 days, following which their lungs were harvested to determine alveolarization, pulmonary vascularization, inflammation, oxidative stress, vascular injury, and AhR activation. To our surprise, hyperoxia-induced alveolar and pulmonary vascular simplification, inflammation, oxidative stress, and vascular injury were augmented in OM25-treated animals. These findings were associated with attenuated pulmonary vascular endothelial growth factor receptor 2 expression and decreased pulmonary AhR activation in the OM25 group. We conclude that contrary to our hypothesis, OM decreases functional activation of pulmonary AhR and potentiates HDLI in newborn mice. These observations are consistent with our previous findings, which suggest that AhR activation plays a protective role in HDLI in newborn mice. PMID:26272953

  8. Estrogen receptor α and aryl hydrocarbon receptor cross-talk in a transfected hepatoma cell line (HepG2) exposed to 2,3,7,8-tetrachlorodibenzo-p-dioxin

    OpenAIRE

    Manuela Göttel; Ludovic Le Corre; Coralie Dumont; Dieter Schrenk; Marie-Christine Chagnon

    2014-01-01

    The prototype dioxin congener 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) is known to exert anti-estrogenic effects via activation of the aryl hydrocarbon receptor (AhR) by interfering with the regulation of oestrogen homeostasis and the estrogen receptor α (ERα) signalling pathway. The AhR/ER cross-talk is considered to play a crucial role in TCDD- and E2-dependent mechanisms of carcinogenesis, though the concerted mechanism of action in the liver is not yet elucidated. The present study inve...

  9. Podocyte injury caused by indoxyl sulfate, a uremic toxin and aryl-hydrocarbon receptor ligand.

    Directory of Open Access Journals (Sweden)

    Osamu Ichii

    Full Text Available Indoxyl sulfate is a uremic toxin and a ligand of the aryl-hydrocarbon receptor (AhR, a transcriptional regulator. Elevated serum indoxyl sulfate levels may contribute to progressive kidney disease and associated vascular disease. We asked whether indoxyl sulfate injures podocytes in vivo and in vitro. Mice exposed to indoxyl sulfate for 8 w exhibited prominent tubulointerstitial lesions with vascular damage. Indoxyl sulfate-exposed mice with microalbuminuria showed ischemic changes, while more severely affected mice showed increased mesangial matrix, segmental solidification, and mesangiolysis. In normal mouse kidneys, AhR was predominantly localized to the podocyte nuclei. In mice exposed to indoxyl sulfate for 2 h, isolated glomeruli manifested increased Cyp1a1 expression, indicating AhR activation. After 8 w of indoxyl sulfate, podocytes showed foot process effacement, cytoplasmic vacuoles, and a focal granular and wrinkled pattern of podocin and synaptopodin expression. Furthermore, vimentin and AhR expression in the glomerulus was increased in the indoxyl sulfate-exposed glomeruli compared to controls. Glomerular expression of characteristic podocyte mRNAs was decreased, including Actn4, Cd2ap, Myh9, Nphs1, Nphs2, Podxl, Synpo, and Wt1. In vitro, immortalized-mouse podocytes exhibited AhR nuclear translocation beginning 30 min after 1 mM indoxyl sulfate exposure, and there was increased phospho-Rac1/Cdc42 at 2 h. After exposure to indoxyl sulfate for 24 h, mouse podocytes exhibited a pro-inflammatory phenotype, perturbed actin cytoskeleton, decreased expression of podocyte-specific genes, and decreased cell viability. In immortalized human podocytes, indoxyl sulfate treatment caused cell injury, decreased mRNA expression of podocyte-specific proteins, as well as integrins, collagens, cytoskeletal proteins, and bone morphogenetic proteins, and increased cytokine and chemokine expression. We propose that basal levels of AhR activity regulate

  10. Two years after the Hebei Spirit oil spill: residual crude-derived hydrocarbons and potential AhR-mediated activities in coastal sediments.

    Science.gov (United States)

    Hong, Seongjin; Khim, Jong Seong; Ryu, Jongseong; Park, Jinsoon; Song, Sung Joon; Kwon, Bong-Oh; Choi, Kyungho; Ji, Kyunghee; Seo, Jihyun; Lee, Sangwoo; Park, Jeongim; Lee, Woojin; Choi, Yeyong; Lee, Kyu Tae; Kim, Chan-Kook; Shim, Won Joon; Naile, Jonathan E; Giesy, John P

    2012-02-07

    The Hebei Spirit oil spill occurred in December 2007 approximately 10 km off the coast of Taean, South Korea, on the Yellow Sea. However, the exposure and potential effects remain largely unknown. A total of 50 surface and subsurface sediment samples were collected from 22 sampling locations at the spill site in order to determine the concentration, distribution, composition of residual crudes, and to evaluate the potential ecological risk after two years of oil exposure. Samples were extracted and analyzed for 16 polycyclic aromatic hydrocarbons (PAHs), 20 alkyl-PAHs, 15 aliphatic hydrocarbons, and total petroleum hydrocarbons using GC-MSD. AhR-mediated activity associated with organic sediment extracts was screened using the H4IIE-luc cell bioassay. The response of the benthic invertebrate community was assessed by mapping the macrobenthic fauna. Elevated concentrations of residual crudes from the oil spill were primarily found in muddy bottoms, particularly in subsurface layers. In general, the bioassay results were consistent with the chemistry data in a dose-dependent manner, although the mass-balance was incomplete. More weathered samples containing greater fractions of alkylated PAHs exhibited greater AhR activity, due to the occurrence of recalcitrant AhR agonists present in residual oils. The macrobenthic population distribution exhibits signs of species-specific tolerances and/or recolonization of certain species such as Batillaria during weathering periods. Although the Hebei Spirit oil spill was a severe oil exposure, it appears the site is recovering two years later.

  11. Interaction of aryl hydrocarbon receptor and NF-κB subunit RelB in breast cancer is associated with interleukin-8 overexpression.

    Science.gov (United States)

    Vogel, Christoph Franz Adam; Li, Wen; Wu, Dalei; Miller, Jamie K; Sweeney, Colleen; Lazennec, Gwendal; Fujisawa, Yasuko; Matsumura, Fumio

    2011-08-01

    The aryl hydrocarbon receptor (AhR) has been best known for its role in mediating the toxicity of dioxin. Here we show that AhR overexpression is found among estrogen receptor (ER)α-negative human breast tumors and that its overexpression is positively correlated to that of the NF-κB subunit RelB and Interleukin (IL)-8. Increased DNA binding activity of the AhR and RelB is coupled to IL-8 overexpression in primary breast cancer tissue, which was also supported by in situ hybridization. Activation of AhR in vitro by 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) induced IL-8 expression in MDA-MB 436 and MCF-7 cells in an AhR and RelB dependent manner. Consistently, downregulation of RelB or AhR by small interfering RNAs (siRNA) decreased the level of IL-8 but increased expression of ERα in vitro in MCF-7 cells. Our results strongly suggest that RelB and AhR have a critical role in the regulation of IL-8 and reveal a supportive role of RelB and AhR in the anti-apoptotic response in human breast cancer cells. AhR and RelB may present a novel therapeutic target for inflammatory driven breast carcinogenesis and tumor progression. Overexpression of pro-survival factors AhR and RelB may explain the process of the development of environmentally-induced type of breast cancers.

  12. The aryl hydrocarbon receptor-dependent deregulation of cell cycle control induced by polycyclic aromatic hydrocarbons in rat liver epithelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Andrysik, Zdenek [Laboratory of Cytokinetics, Institute of Biophysics, 612 65 Brno (Czech Republic); Department of Chemistry and Toxicology, Veterinary Research Institute, 621 32 Brno (Czech Republic); Vondracek, Jan [Laboratory of Cytokinetics, Institute of Biophysics, 612 65 Brno (Czech Republic) and Department of Chemistry and Toxicology, Veterinary Research Institute, 621 32 Brno (Czech Republic)]. E-mail: vondracek@ibp.cz; Machala, Miroslav [Department of Chemistry and Toxicology, Veterinary Research Institute, 621 32 Brno (Czech Republic); Krcmar, Pavel [Department of Chemistry and Toxicology, Veterinary Research Institute, 621 32 Brno (Czech Republic); Svihalkova-Sindlerova, Lenka [Laboratory of Cytokinetics, Institute of Biophysics, 612 65 Brno (Czech Republic); Kranz, Anne [Institute of Toxicology, Johannes Gutenberg-University, 55131 Mainz (Germany); Weiss, Carsten [Institute of Toxicology, Johannes Gutenberg-University, 55131 Mainz (Germany); Faust, Dagmar [Institute of Toxicology, Johannes Gutenberg-University, 55131 Mainz (Germany); Kozubik, Alois [Laboratory of Cytokinetics, Institute of Biophysics, 612 65 Brno (Czech Republic); Dietrich, Cornelia [Institute of Toxicology, Johannes Gutenberg-University, 55131 Mainz (Germany)

    2007-02-03

    Disruption of cell proliferation control by polycyclic aromatic hydrocarbons (PAHs) may contribute to their carcinogenicity. We investigated role of the aryl hydrocarbon receptor (AhR) in disruption of contact inhibition in rat liver epithelial WB-F344 'stem-like' cells, induced by the weakly mutagenic benz[a]anthracene (BaA), benzo[b]fluoranthene (BbF) and by the strongly mutagenic benzo[a]pyrene (BaP). There were significant differences between the effects of BaA and BbF, and those of the strongly genotoxic BaP. Both BaA and BbF increased percentage of cells entering S-phase and cell numbers, associated with an increased expression of Cyclin A and Cyclin A/cdk2 complex activity. Their effects were significantly reduced in cells expressing a dominant-negative AhR mutant (dnAhR). Roscovitine, a chemical inhibitor of cdk2, abolished the induction of cell proliferation by BbF. However, neither BaA nor BbF modulated expression of the principal cdk inhibitor involved in maintenance of contact inhibition, p27{sup Kip1}, or pRb phosphorylation. The strongly mutagenic BaP induced apoptosis, a decrease in total cell numbers and significantly higher percentage of cells entering S-phase than either BaA or BbF. Given that BaP induced high levels of Cyclin A/cdk2 activity, downregulation of p27{sup Kip1} and hyperphosphorylation of pRb, the accumulation of cells in S-phase was probably due to cell proliferation, although S-phase arrest due to blocked replication forks can not be excluded. Both types of effects of BaP were significantly attenuated in dnAhR cells. Transfection of WB-F344 cells with siRNA targeted against AhR decreased induction of Cyclin A induced by BbF or BaP, further supporting the role of AhR in proliferative effects of PAHs. This suggest that activation of AhR plays a significant role both in disruption of contact inhibition by weakly mutagenic PAHs and in genotoxic effects of BaP possibly leading to enhanced cell proliferation. Thus, PAHs may

  13. Aryl hydrocarbon Receptor is Necessary to Protect Fetal Human Pulmonary Microvascular Endothelial Cells against Hyperoxic Injury: Mechanistic Roles of Antioxidant Enzymes and RelB

    Science.gov (United States)

    Zhang, Shaojie; Patel, Ananddeep; Chu, Chun; Jiang, Weiwu; Wang, Lihua; Welty, Stephen E.; Moorthy, Bhagavatula; Shivanna, Binoy

    2015-01-01

    Hyperoxia contributes to the development of bronchopulmonary dysplasia (BPD) in premature infants. Activation of the aryl hydrocarbon receptor (AhR) protects adult and newborn mice against hyperoxic lung injury by mediating increases in the expression of phase I (cytochrome P450 (CYP) 1A) and phase II (NADP(H) quinone oxidoreductase (NQO1)) antioxidant enzymes (AOE). AhR positively regulates the expression of RelB, a component of the nuclear factor-kappaB (NF-κB) protein that contributes to anti-inflammatory processes in adult animals. Whether AhR regulates the expression of AOE and RelB, and protects fetal primary human lung cells against hyperoxic injury is unknown. Therefore, we tested the hypothesis that AhR-deficient fetal human pulmonary microvascular endothelial cells (HPMEC) will have decreased RelB activation and AOE, which will in turn predispose them to increased oxidative stress, inflammation, and cell death compared to AhR-sufficient HPMEC upon exposure to hyperoxia. AhR-deficient HPMEC showed increased hyperoxia-induced reactive oxygen species (ROS) generation, cleavage of poly (ADP-ribose) polymerase (PARP), and cell death compared to AhR-sufficient HPMEC. Additionally, AhR-deficient cell culture supernatants displayed increased macrophage inflammatory protein 1α and 1β, indicating a heightened inflammatory state. Interestingly, loss of AhR was associated with a significantly attenuated CYP1A1, NQO1, superoxide dismutase 1(SOD1), and nuclear RelB protein expression. These findings support the hypothesis that decreased RelB activation and AOE in AhR-deficient cells is associated with increased hyperoxic injury compared to AhR-sufficient cells. PMID:25831079

  14. Catechins in tea suppress the activity of cytochrome P450 1A1 through the aryl hydrocarbon receptor activation pathway in rat livers.

    Science.gov (United States)

    Fukuda, Itsuko; Nishiumi, Shin; Mukai, Rie; Yoshida, Ken-ichi; Ashida, Hitoshi

    2015-05-01

    Polycyclic aromatic hydrocarbons (PAHs) and halogenated aromatic hydrocarbons (HAHs) develop various adverse effects through activation of an aryl hydrocarbon receptor (AhR). The suppressive effects of brewed green tea and black tea on 3-methylcholanthrene (MC)-induced AhR activation and its downstream events were examined in the liver of rats. Ad-libitum drinking of green tea and black tea suppressed MC-induced AhR activation and elevation of ethoxyresorufin O-deethylase activity in the liver, whereas the teas themselves did not induce them. Tea showed a suppressive fashion on the expression of cytochrome P450 1A1 (CYP1A1). Tea suppressed the AhR activation induced by 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) ex vivo. A part of catechins and theaflavins was present in plasma and liver as conjugated and intact forms. The results of this study suggested that active component(s) of tea are incorporated in the liver and suppress the activity of CYP1As through the AhR activation pathway.

  15. The crystal structure of the AhRR/ARNT heterodimer reveals the structural basis of the repression of AhR-mediated transcription.

    Science.gov (United States)

    Sakurai, Shunya; Shimizu, Toshiyuki; Ohto, Umeharu

    2017-09-13

    2,3,7,8-Tetrachlorodibenzo-p-dioxin and related compounds (TCDDs) are extraordinarily potent environmental toxic pollutants. Most of the TCDD toxicities are mediated by aryl hydrocarbon receptor (AhR), a ligand-dependent transcription factor belonging to the basic helix-loop-helix-Per-ARNT-Sim (bHLH-PAS) family. Upon ligand binding, AhR forms a heterodimer with AhR nuclear translocator (ARNT) and induces the expression of genes involved in various biological responses. One of the genes induced by AhR encodes AhR repressor (AhRR), which also forms a heterodimer with ARNT and represses the activation of AhR-dependent transcription. The control of AhR activation is critical for managing AhR-mediated diseases, but the mechanisms by which AhRR represses AhR activation remain poorly understood, due to the lack of structural information. Here, we determined the structure of the AhRR/ARNT heterodimer by X-ray crystallography, which revealed an asymmetric intertwined domain organization presenting structural features that are both conserved and distinct among bHLH-PAS family members. The structures of AhRR/ARNT and AhR/ARNT were similar in the bHLH-PAS-A region, while the PAS-B of ARNT in the AhRR/ARNT complex exhibited a different domain arrangement in this family reported so far. The structure clearly disclosed that AhRR competitively represses AhR binding to ARNT and target DNA, and further suggested the existence of an AhRR/ARNT-specific repression mechanism. This study provides a structural basis for understanding the mechanism by which AhRR represses AhR-mediated gene transcription. Copyright © 2017, The American Society for Biochemistry and Molecular Biology.

  16. Differential effects of omeprazole and lansoprazole enantiomers on aryl hydrocarbon receptor in human hepatocytes and cell lines.

    Science.gov (United States)

    Novotna, Aneta; Srovnalova, Alzbeta; Svecarova, Michaela; Korhonova, Martina; Bartonkova, Iveta; Dvorak, Zdenek

    2014-01-01

    Proton pump inhibitors omeprazole and lansoprazole contain chiral sulfur atom and they are administered as a racemate, i.e. equimolar mixture of S- and R-enantiomers. The enantiopure drugs esomeprazole and dexlansoprazole have been developed and introduced to clinical practice due to their improved clinical and therapeutic properties. Since omeprazole and lansoprazole are activators of aryl hydrocarbon receptor (AhR) and inducers of CYP1A genes, we examined their enantiospecific effects on AhR-CYP1A pathway in human cancer cells and primary human hepatocytes. We performed gene reporter assays for transcriptional activity of AhR, RT-PCR analyses for CYP1A1/2 mRNAs, western blots for CYP1A1/2 proteins and EROD assay for CYP1A1/2 catalytic activity. Lansoprazole and omeprazole enantiomers displayed differential effects on AhR-CYP1A1/2 pathway. In general, S-enantiomers were stronger activators of AhR and inducers of CYP1A genes as compared to R-enantiomers in lower concentrations, i.e. 1-10 µM for lansoprazole and 10-100 µM for omeprazole. In contrast, R-enantiomers were stronger AhR activators and CYP1A inducers than S-enantiomers in higher concentrations, i.e. 100 µM for lansoprazole and 250 µM for omeprazole. In conclusion, we provide the first evidence of enantiospecific effects of omeprazole and lansoprazole on AhR signaling pathway.

  17. Cancer immunoediting and dioxin-activating aryl hydrocarbon receptor: a missing link in the shift toward tumor immunoescape?

    Directory of Open Access Journals (Sweden)

    Ruggero Ridolfi

    2010-05-01

    Full Text Available The aryl hydrocarbon receptor (AhR, a member of the PAS protein family, is found in organisms as diverse as Drosophila melano­gaster, nematodes, and mammals. While several reviews have reported that AhR, once activated by agonist ligands, causes long-term effects such as modification of cell growth through cell cycle control, there is also recent evidence of its decisive role in immunosuppression. The most widely studied AhR agonist is 2,3,7,8-tetrachlorodibenzo-p-dioxin, which binds AhR with the highest known affinity, leading to profound suppression of both humoral and cellular immune responses, with praecox thymus involution, consequent thymocyte loss, and induction of T-cell apoptosis. Dioxin-AhR binding causes a decline in the number of dendritic cells and enhances apoptosis following their inappropriate activation. Dioxin-mediated activation of AhR also has a direct influence on the expansion of regula­tory T-cells CD4+CD25+ FoxP3+ (T-regs and an adverse affect on CD8+ T-cell responses. Dioxin released from industrial and waste incinerators over the last few decades has caused widespread contamination of food, leading to its accumulation in fatty tissue in animals and humans. The elimination half-life of dioxin in humans (7-10 years may favor the potentially continuous and long-lasting activation of AhR, leading to perpetual immune suppression and facilitating the onset, growth, and diffusion of tumors, especially in young people. In the cancer immunoediting hypoth­esis, which subdivides the relationship between tumor and immune system into three phases: elimination, equilibrium, and escape, it is thought that dioxin accumulation may cause an inevitable shift toward tumor escape.

  18. Aryl hydrocarbon receptor is necessary to protect fetal human pulmonary microvascular endothelial cells against hyperoxic injury: Mechanistic roles of antioxidant enzymes and RelB

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Shaojie; Patel, Ananddeep; Chu, Chun; Jiang, Weiwu; Wang, Lihua; Welty, Stephen E.; Moorthy, Bhagavatula; Shivanna, Binoy, E-mail: shivanna@bcm.edu

    2015-07-15

    Hyperoxia contributes to the development of bronchopulmonary dysplasia (BPD) in premature infants. Activation of the aryl hydrocarbon receptor (AhR) protects adult and newborn mice against hyperoxic lung injury by mediating increases in the expression of phase I (cytochrome P450 (CYP) 1A) and phase II (NADP(H) quinone oxidoreductase (NQO1)) antioxidant enzymes (AOE). AhR positively regulates the expression of RelB, a component of the nuclear factor-kappaB (NF-κB) protein that contributes to anti-inflammatory processes in adult animals. Whether AhR regulates the expression of AOE and RelB, and protects fetal primary human lung cells against hyperoxic injury is unknown. Therefore, we tested the hypothesis that AhR-deficient fetal human pulmonary microvascular endothelial cells (HPMEC) will have decreased RelB activation and AOE, which will in turn predispose them to increased oxidative stress, inflammation, and cell death compared to AhR-sufficient HPMEC upon exposure to hyperoxia. AhR-deficient HPMEC showed increased hyperoxia-induced reactive oxygen species (ROS) generation, cleavage of poly(ADP-ribose) polymerase (PARP), and cell death compared to AhR-sufficient HPMEC. Additionally, AhR-deficient cell culture supernatants displayed increased macrophage inflammatory protein 1α and 1β, indicating a heightened inflammatory state. Interestingly, loss of AhR was associated with a significantly attenuated CYP1A1, NQO1, superoxide dismutase 1(SOD1), and nuclear RelB protein expression. These findings support the hypothesis that decreased RelB activation and AOE in AhR-deficient cells is associated with increased hyperoxic injury compared to AhR-sufficient cells. - Highlights: • AhR deficiency potentiates oxygen toxicity in human fetal lung cells. • Deficient AhR signaling increases hyperoxia-induced cell death. • AhR deficiency increases hyperoxia-induced ROS generation and inflammation. • Anti-oxidant enzyme levels are attenuated in AhR-deficient lung cells

  19. Correlating gene expression with deformities caused by aryl hydrocarbon receptor agonists in zebrafish (Danio rerio)

    Energy Technology Data Exchange (ETDEWEB)

    Bugiak, B.; Weber, L. [Saskatchewan Univ., Saskatoon, SK (Canada)

    2009-07-01

    Exposure to aryl hydrocarbon receptor (AhR) agonists in fish causes lethal disturbances in fish development, but the effects of acute AhR agonist exposure on the cardiovascular system and deformities remain unclear. This study addressed this issue by performing a series of experiments on zebrafish (Danio rerio). The authors hypothesized that genes needed for cardiovascular regulation (PTGS) would exhibit a stronger link to deformities than detoxification enzymes (CYPs). Zebrafish eggs were exposed aqueously until 4 days post-fertilization (dpf) to the AhR agonists benzo(a)pyrene (BaP) or 2,3,7,8-tetrachlorodibenzop-dioxin (TCDD) alone and in combination with the putative AhR antagonists resveratrol or alpha-naphthoflavone (ANF). Gene expression was measured using real-time, reverse transcriptase PCR in zebrafish at 5 and 10 dpf. Although the mortalities did not differ considerably among groups at 10 dpf, the deformities increased significantly after BaP-ANF at 5 dpf and after BaP at 10 dpf, but not after TCDD treatment. CYP and PTGS isozymes exhibited small, but statistically significant changes at 5 dpf. By 10 dpf, the expression returned to control values. In general, CYP1A and PTGS-1 expression at 5 dpf were positively correlated with deformities, while all other genes were negatively correlated with deformities. It was concluded that changes in CYP1A, CYP1C2, and PTGS-1 gene expression at 5 dpf are associated with developmental deformities, but additional work is needed to determine which has the most important mechanistic link.

  20. BRCA-1 promoter hypermethylation and silencing induced by the aromatic hydrocarbon receptor-ligand TCDD are prevented by resveratrol in MCF-7 cells.

    Science.gov (United States)

    Papoutsis, Andreas J; Borg, Jamie L; Selmin, Ornella I; Romagnolo, Donato F

    2012-10-01

    Epigenetic mechanisms may contribute to reduced expression of the tumor suppressor gene BRCA-1 in sporadic breast cancers. Through environmental exposure and diet, humans are exposed to xenobiotics and food compounds that bind the aromatic hydrocarbon receptor (AhR). AhR-ligands include the dioxin-like and tumor promoter 2,3,7,8 tetrachlorodibenzo-p-dioxin (TCDD). The activated AhR regulates transcription through binding to xenobiotic response elements (XREs=GCGTG) and interactions with transcription cofactors. Previously, we reported on the presence of several XREs in the proximal BRCA-1 promoter and that the expression of endogenous AhR was required for silencing of BRCA-1 expression by TCDD. Here, we document that in estrogen receptor-α-positive and BRCA-1 wild-type MCF-7 breast cancer cells, the treatment with TCDD attenuated 17β-estradiol-dependent stimulation of BRCA-1 protein and induced hypermethylation of a CpG island spanning the BRCA-1 transcriptional start site of exon-1a. Additionally, we found that TCDD enhanced the association of the AhR; DNA methyl transferase (DNMT)1, DNMT3a and DNMT3b; methyl binding protein (MBD)2; and trimethylated H3K9 (H3K9me3) with the BRCA-1 promoter. Conversely, the phytoalexin resveratrol, selected as a prototype dietary AhR antagonist, antagonized at physiologically relevant doses (1 μmol/L) the TCDD-induced repression of BRCA-1 protein, BRCA-1 promoter methylation and the recruitment of the AhR, MBD2, H3K9me3 and DNMTs (1, 3a and 3b). Taken together, these observations provide mechanistic evidence for AhR agonists in the establishment of BRCA-1 promoter hypermethylation and the basis for the development of prevention strategies based on AhR antagonists.

  1. 29. LACK OF ASSOCIATION OF AH RECEPTOR GENE POLYMORPHISM WITH SUSCEPTIBILITY TO BLADDER CANCER IN SHANGHAI POPULATION

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    @@The diversity in genetic background largely predetermine the individual susceptibility towards health risk related to xenobiotic exposure. The receptors of signal transduction mechanism are involved in the modulation of toxicological outcome of xenobiotics. The survey of distribution of different polymorphic forms of Ah receptor in Chinese population and probing into their possible association with health risk related with xenobiotic exposure will not only contribute to a better understanding of mechanism of imperilment, but also inspire a clue for a further

  2. Expression of zebra fish aromatase cyp19a and cyp19b genes in response to the ligands of estrogen receptor and aryl hydrocarbon receptor.

    Science.gov (United States)

    Cheshenko, Ksenia; Brion, Francois; Le Page, Yann; Hinfray, Nathalie; Pakdel, Farzad; Kah, Olivier; Segner, Helmut; Eggen, Rik I L

    2007-04-01

    Many endocrine-disrupting chemicals act via estrogen receptor (ER) or aryl hydrocarbon receptor (AhR). To investigate the interference between ER and AhR, we studied the effects of 17beta-estradiol (E2) and 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) on the expression of zebra fish cyp19a (zfcyp19a) and cyp19b (zfcyp19b) genes, encoding aromatase P450, an important steroidogenic enzyme. In vivo (mRNA quantification in exposed zebra fish larvae) and in vitro (activity of zfcyp19-luciferase reporter genes in cell cultures in response to chemicals and zebra fish transcription factors) assays were used. None of the treatments affected zfcyp19a, excluding the slight upregulation by E2 observed in vitro. Strong upregulation of zfcyp19b by E2 in both assays was downregulated by TCDD. This effect could be rescued by the addition of an AhR antagonist. Antiestrogenic effect of TCDD on the zfcyp19b expression in the brain was also observed on the protein level, assessed by immunohistochemistry. TCDD alone did not affect zfcyp19b expression in vivo or promoter activity in the presence of zebra fish AhR2 and AhR nuclear translocator 2b (ARNT2b) in vitro. However, in the presence of zebra fish ERalpha, AhR2, and ARNT2b, TCDD led to a slight upregulation of promoter activity, which was eliminated by either an ER or AhR antagonist. Studies with mutated reporter gene constructs indicated that both mechanisms of TCDD action in vitro were independent of dioxin-responsive elements (DREs) predicted in the promoter. This study shows the usefulness of in vivo zebra fish larvae and in vitro zfcyp19b reporter gene assays for evaluation of estrogenic chemical actions, provides data on the functionality of DREs predicted in zfcyp19 promoters and shows the effects of cross talk between ER and AhR on zfcyp19b expression. The antiestrogenic effect of TCDD demonstrated raises further concerns about the neuroendocrine effects of AhR ligands.

  3. Coal dust alters β-naphthoflavone-induced aryl hydrocarbon receptor nuclear translocation in alveolar type II cells

    Directory of Open Access Journals (Sweden)

    Castranova Vincent

    2009-08-01

    Full Text Available Abstract Background Many polycyclic aromatic hydrocarbons (PAHs can cause DNA adducts and initiate carcinogenesis. Mixed exposures to coal dust (CD and PAHs are common in occupational settings. In the CD and PAH-exposed lung, CD increases apoptosis and causes alveolar type II (AT-II cell hyperplasia but reduces CYP1A1 induction. Inflammation, but not apoptosis, appears etiologically associated with reduced CYP1A1 induction in this mixed exposure model. Many AT-II cells in the CD-exposed lungs have no detectable CYP1A1 induction after PAH exposure. Although AT-II cells are a small subfraction of lung cells, they are believed to be a potential progenitor cell for some lung cancers. Because CYP1A1 is induced via ligand-mediated nuclear translocation of the aryl hydrocarbon receptor (AhR, we investigated the effect of CD on PAH-induced nuclear translocation of AhR in AT-II cells isolated from in vivo-exposed rats. Rats received CD or vehicle (saline by intratracheal (IT instillation. Three days before sacrifice, half of the rats in each group started daily intraperitoneal injections of the PAH, β-naphthoflavone (BNF. Results Fourteen days after IT CD exposure and 1 day after the last intraperitoneal BNF injection, AhR immunofluorescence indicated that proportional AhR nuclear expression and the percentage of cells with nuclear AhR were significantly increased in rats receiving IT saline and BNF injections compared to vehicle controls. However, in CD-exposed rats, BNF did not significantly alter the nuclear localization or cytosolic expression of AhR compared to rats receiving CD and oil. Conclusion Our findings suggest that during particle and PAH mixed exposures, CD alters the BNF-induced nuclear translocation of AhR in AT-II cells. This provides an explanation for the modification of CYP1A1 induction in these cells. Thus, this study suggests that mechanisms for reduced PAH-induced CYP1A1 activity in the CD exposed lung include not only the

  4. Reduction in 7,12-dimethylbenz[a]anthracene-induced hepatic cytochrome-P450 1A1 expression following soy consumption in female rats is mediated by degradation of the aryl hydrocarbon receptor

    Science.gov (United States)

    Consumption of a soy diet has been found to reduce cancer incidence in animals and is associated with reduced cancer risk in humans. In this study, the effect of consuming soy protein isolate (SPI) on the aryl hydrocarbon receptor (AhR)-mediated signaling pathway was investigated. Female Sprague-Daw...

  5. Environmental polycyclic aromatic hydrocarbons affect androgen receptor activation in vitro

    DEFF Research Database (Denmark)

    Vinggaard, Anne Marie; Hnida, Christina; Larsen, John Christian

    2000-01-01

    Nine structurally different polycyclic aromatic hydrocarbons (PAHs) were tested for their ability to either agonize or antagonize the human androgen receptor (hAR) in a sensitive reporter gene assay based on CHO cells transiently cotransfected with a hAR vector and an MMTV-LUC vector. Benz...

  6. Development and characterization of a green fluorescent protein-based rat cell bioassay system for detection of AH receptor ligands

    Energy Technology Data Exchange (ETDEWEB)

    Zhao Bin; Denison, M. [California Univ., Davis, CA (United States). Dept. of Environmental Toxicology

    2004-09-15

    Proper epidemiological, risk assessment and exposure analysis of TCDD and related HAHs requires accurate measurements of these chemicals both in the species of interest and in various exposure matrices (i.e. biological, environmental, food and feed). While high-resolution instrumental analysis techniques are established for these chemicals, these procedures are very costly, time-consuming and are impractical for large scale sampling studies. Accordingly, numerous bioanalytical methods have been developed for the detection of these chemicals in extracts from a variety of matrices, the majority of which take the advantage of the ability of these chemicals to activate one or more aspects of the AhR-dependent mechanism of action. One of the most sensitive bioassay systems developed to date is the so-called CALUX (Chemically Activated Luciferase Expression) assay, which is based on novel recombinant cell lines that contain a stably transfected dioxin (AhR)-responsive firefly luciferase gene. Treatment of these cells with TCDD and related HAHs and polycyclic aromatic hydrocarbons (PAHs), as well as other AhR ligands, results in induction of reporter gene expression in a time-, dose-, AhR-, and chemical-specific manner. The level of reporter gene expression correlates with the total concentration of the TCDD-like AhR inducers (agonists) present in the sample. Although the firefly luciferase reporter gene contributes to the high degree of sensitivity of the assay, it also has limitations with respect to our need for a rapid and inexpensive bioassay for high-throughput screening analysis. Accordingly, we previously developed a stably transfected murine cell line containing an AhRresponsive enhanced green fluorescent protein (EGFP) reporter gene. This cell line provided us with a high-throughput cell bioassay system for identification and characterization of AhR agonists and antagonists. Here we have extended these studies and describe the development, optimization, and

  7. beta-TrCP inhibition reduces prostate cancer cell growth via upregulation of the aryl hydrocarbon receptor.

    Directory of Open Access Journals (Sweden)

    Udi Gluschnaider

    Full Text Available BACKGROUND: Prostate cancer is a common and heterogeneous disease, where androgen receptor (AR signaling plays a pivotal role in development and progression. The initial treatment for advanced prostate cancer is suppression of androgen signaling. Later on, essentially all patients develop an androgen independent stage which does not respond to anti hormonal treatment. Thus, alternative strategies targeting novel molecular mechanisms are required. beta-TrCP is an E3 ligase that targets various substrates essential for many aspects of tumorigenesis. METHODOLOGY/PRINCIPAL FINDINGS: Here we show that beta-TrCP depletion suppresses prostate cancer and identify a relevant growth control mechanism. shRNA targeted against beta-TrCP reduced prostate cancer cell growth and cooperated with androgen ablation in vitro and in vivo. We found that beta-TrCP inhibition leads to upregulation of the aryl hydrocarbon receptor (AhR mediating the therapeutic effect. This phenomenon could be ligand independent, as the AhR ligand 2,3,7,8-Tetrachlorodibenzo-p-Dioxin (TCDD did not alter prostate cancer cell growth. We detected high AhR expression and activation in basal cells and atrophic epithelial cells of human cancer bearing prostates. AhR expression and activation is also significantly higher in tumor cells compared to benign glandular epithelium. CONCLUSIONS/SIGNIFICANCE: Together these observations suggest that AhR activation may be a cancer counteracting mechanism in the prostate. We maintain that combining beta-TrCP inhibition with androgen ablation could benefit advanced prostate cancer patients.

  8. Skatole (3-Methylindole Is a Partial Aryl Hydrocarbon Receptor Agonist and Induces CYP1A1/2 and CYP1B1 Expression in Primary Human Hepatocytes.

    Directory of Open Access Journals (Sweden)

    Martin Krøyer Rasmussen

    Full Text Available Skatole (3-methylindole is a product of bacterial fermentation of tryptophan in the intestine. A significant amount of skatole can also be inhaled during cigarette smoking. Skatole is a pulmonary toxin that induces the expression of aryl hydrocarbon receptor (AhR regulated genes, such as cytochrome P450 1A1 (CYP1A1, in human bronchial cells. The liver has a high metabolic capacity for skatole and is the first organ encountered by the absorbed skatole; however, the effect of skatole in the liver is unknown. Therefore, we investigated the impact of skatole on hepatic AhR activity and AhR-regulated gene expression. Using reporter gene assays, we showed that skatole activates AhR and that this is accompanied by an increase of CYP1A1, CYP1A2 and CYP1B1 expression in HepG2-C3 and primary human hepatocytes. Specific AhR antagonists and siRNA-mediated AhR silencing demonstrated that skatole-induced CYP1A1 expression is dependent on AhR activation. The effect of skatole was reduced by blocking intrinsic cytochrome P450 activity and indole-3-carbinole, a known skatole metabolite, was a more potent inducer than skatole. Finally, skatole could reduce TCDD-induced CYP1A1 expression, suggesting that skatole is a partial AhR agonist. In conclusion, our findings suggest that skatole and its metabolites affect liver homeostasis by modulating the AhR pathway.

  9. Estrogen receptor α and aryl hydrocarbon receptor cross-talk in a transfected hepatoma cell line (HepG2 exposed to 2,3,7,8-tetrachlorodibenzo-p-dioxin

    Directory of Open Access Journals (Sweden)

    Manuela Göttel

    2014-01-01

    Full Text Available The prototype dioxin congener 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD is known to exert anti-estrogenic effects via activation of the aryl hydrocarbon receptor (AhR by interfering with the regulation of oestrogen homeostasis and the estrogen receptor α (ERα signalling pathway. The AhR/ER cross-talk is considered to play a crucial role in TCDD- and E2-dependent mechanisms of carcinogenesis, though the concerted mechanism of action in the liver is not yet elucidated. The present study investigated TCDD's impact on the transcriptional cross-talk between AhR and ERα and its modulation by 17β-estradiol (E2 in the human hepatoma cell line HepG2, which is AhR-responsive but ERα-negative. Transient transfection assays with co-transfection of hERα and supplementation of receptor antagonists showed anti-estrogenic action of TCDD via down-regulation of E2-induced ERα signaling. In contrast, enhancement of AhR signaling dependent on ERα was observed providing evidence for increased cytochrome P450 (CYP induction to promote E2 metabolism. However, relative mRNA levels of major E2-metabolizing CYP1A1 and 1B1 and the main E2-detoxifying catechol-O-methyltransferase were not affected by the co-treatments. This study provides new evidence of a TCDD-activated AhR-mediated molecular AhR/ERα cross-talk mechanism at transcriptional level via indirect inhibition of ERα and enhanced transcriptional activity of AhR in HepG2 cells.

  10. Aryl hydrocarbon receptor pathway activation enhances gastric cancer cell invasiveness likely through a c-Jun-dependent induction of matrix metalloproteinase-9

    Directory of Open Access Journals (Sweden)

    Song Xin

    2009-04-01

    Full Text Available Abstract Background Abberant aryl hydrocarbon receptor (AhR expression and AhR pathway activation are involved in gastric carcinogenesis. However, the relationship between AhR pathway activation and gastric cancer progression is still unclear. In present study, we used 2,3,7,8-tetrachlorodibenzo-para-dioxin (TCDD, a classic and most potent ligand of AhR, to activate AhR pathway and investigated the effect of AhR pathway activation on human gastric cancer AGS cell invasion and explored the corresponding mechanism. Results To determine whether AhR pathway can be activated in AGS cells, we examined the expression of CYP1A1, a classic target gene of AhR pathway, following TCDD exposure. RT-PCR and western blot analysis showed that both CYP1A1 mRNA and protein expression were increased in a dose-dependent manner following TCDD treatment and AhR antagonist resveratrol (RSV could reverse this TCDD-induced CYP1A1 expression. To determine whether TCDD treatment of AGS cells results in an induction of MMP-9 expression, we detected MMP-9 mRNA using RT-PCR and detected MMP-9 enzymatic activity using gelatin zymography. The results showed that both MMP-9 mRNA expression and enzymatic activity were gradually increased with the concentration increase of TCDD in media and these changes could be reversed by RSV treatment in a dose-dependent manner. To examine whether AhR activation-induced MMP-9 expression and activity in AGS cells results in increased migration and invasion, we performed wound healing migration assay and transwell migration and invasion assay. After TCDD treatment, the migration distance and the migration and invasion abilities of AGS cells were increased with a dose-dependent manner. To demonstrate AhR activation-induced MMP-9 expression is mediated by c-Jun, siRNA transfection was performed to silence c-Jun mRNA in AGS cells. The results showed that MMP-9 mRNA expression and activity in untreated control AGS cells were very weak; After TCDD

  11. 芳香烃受体在女性生殖中的作用%Function of Aryl Hydrocarbon Receptor in the Female Reproduction

    Institute of Scientific and Technical Information of China (English)

    郝克红; 王凯; 周倩; 段涛

    2012-01-01

    The aryl hydrocarbon receptor (AhR) is a ligand-dependent transcription factor. Upon binding to its ligands, AhR regulates expression of the AhR battery of target genes and mediates a variety of biological processes. AhR regulates the follicular growth, synthesization and secretion of ovarian hormones and ovulation. The signal pathway of AhR is also related with menstrual cycle and may change the proliferation and secretion of endometrium through regulating the signal system of estrogen. The expression of AhR in placenta is the highest, and mainly expresses in trophoblast cells and vascular endothelial cells, thus, AhR maybe affect placental fuction through influencing transport and metabolize of glucose. The mice which are knoched out AhR gene could not maintain implantation of embryos and development of fetus normally, in addition, normal pregnancy and lactation may not be maintained after implantation with decreased number of newborn mice, low alive rate of 2-week-old mice and high mortality after ablactation.%芳香烃受体(AhR)是一种配体激活的转录因子,通过与其配体结合,启动下游靶基因转录,发挥相应的生物学效应.AhR可调控雌(女)性哺乳动物卵泡的生长、卵巢激素的合成、分泌及排卵;AhR信号通路与月经周期亦相关,可能通过调控雌激素信号系统改变子宫内膜的增殖和分泌.AhR在胎盘的表达水平最高,且主要分布于胎盘滋养层细胞和胎盘血管内皮细胞,其可能通过影响葡萄糖的转运和代谢系统影响胎盘功能.AhR基因敲除小鼠不能正常维持胚胎的植入和胎仔的发育,另外,即使胚胎着床后也不能维持正常妊娠和哺乳,且同胎出生仔数减少、出生后2周幼仔存活率低、断奶后死亡率高.

  12. Activation of the aryl hydrocarbon receptor affects activation and function of human monocyte-derived dendritic cells.

    Science.gov (United States)

    Wang, C; Ye, Z; Kijlstra, A; Zhou, Y; Yang, P

    2014-08-01

    Aryl hydrocarbon receptor (AhR) is well known for mediating the toxic effects of dioxin-containing pollutants, but has also been shown to be involved in the natural regulation of the immune response. In this study, we investigated the effect of AhR activation by its endogenous ligands 6-formylindolo[3,2-b]carbazole (FICZ) and 2-(1'H-indole-3'-carbonyl)-thiazole-4-carboxylic acid methyl ester (ITE) on the differentiation, maturation and function of monocyte-derived DCs in Behçet's disease (BD) patients. In this study, we showed that AhR activation by FICZ and ITE down-regulated the expression of co-stimulatory molecules including human leucocyte antigen D-related (HLA-DR), CD80 and CD86, while it had no effect on the expression of CD83 and CD40 on DCs derived from BD patients and normal controls. Lipopolysaccharide (LPS)-treated dendritic cells (DCs) from active BD patients showed a higher level of interleukin (IL)-1β, IL-6, IL-23 and tumour necrosis factor (TNF)-α production. FICZ or ITE significantly inhibited the production of IL-1β, IL-6, IL-23 and TNF-α, but induced IL-10 production by DCs derived from active BD patients and normal controls. FICZ or ITE-treated DCs significantly inhibited the T helper type 17 (Th17) and Th1 cell response. Activation of AhR either by FICZ or ITE inhibits DC differentiation, maturation and function. Further studies are needed to investigate whether manipulation of the AhR pathway may be used to treat BD or other autoimmune diseases.

  13. Characterization and expression analysis of AH receptors in aquatic mammals and birds

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Eun-Young [Ehime Prefectural Institute of Public Health and Environmental Science, Matsuyama (Japan); Yasui, Tomoko; Hisato, Iwata; Shinsuke, Tanabe [Ehime Univ., Matsuyama (Japan)

    2004-09-15

    The magnitude of the risk that 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) and related planar halogenated aromatic hydrocarbons (PHAHs) pose to the health of aquatic birds and mammals is uncertain, because of the lack of direct information on the sensitivity and toxicity to these chemicals. Exposure to PHAHs is speculated to produce toxicity through changes in the expression of genes involved in the control of cell growth and differentiation. These changes are initiated by the binding to the aryl hydrocarbon receptor (AHR), a ligand-dependent transcription factor. The AHR and its dimerization partner ARNT belong to the basic-helix-loop-helix/Per-ARNT-Sim (bHLH-PAS) family of transcriptional regulation proteins. The bHLH domain was involved in protein-DNA and protein-protein interactions, and the PAS domain forms a secondary dimerization surface for heteromeric interactions between AHR and ARNT. Although the presence and basic function of AHR are known to be conserved in most vertebrates, only a limited number of studies on the structure and functional diversity of AHR in aquatic mammals and birds have been reported, in spite of their high exposure to dioxins and other related chemicals. To understand the molecular mechanism of susceptibility to dioxin exposure and toxic effects that PHAHs pose in wild animals, we investigated the molecular and functional characterization of AHRs from aquatic mammals and birds. Initially, the AHR cDNAs from the livers of Baikal seal (Pusa sibirica), black-footed albatross (Diomedea nigripes) and common cormorant (Phalacrocorax carbo) were cloned and sequenced. We also clarified the tissue-specific expression pattern of AHR mRNA and the relationships among PHAHs, AHR and CYP expression levels in the liver of Baikal seals and common cormorants.

  14. The inhibition of lung cancer cell migration by AhR-regulated autophagy

    Science.gov (United States)

    Tsai, Chi-Hao; Li, Ching-Hao; Cheng, Yu-Wen; Lee, Chen-Chen; Liao, Po-Lin; Lin, Cheng-Hui; Huang, Shih-Hsuan; Kang, Jaw-Jou

    2017-01-01

    The aryl hydrocarbon receptor (AhR) is a ligand-activated transcription factor that is highly expressed in multiple organs and tissues. Whereas AhR mediates the metabolism of xenobiotic and endogenous compounds, its novel function in cancer epithelial-mesenchymal transition (EMT) remains controversial. Autophagy also participates in tumour progression through its functions in cell homeostasis and facilitates adaptation to EMT progression. In the present study, we found that AhR-regulated autophagy positively modulates EMT in non-small cell lung cancer cells. The motility of A549, H1299, and CL1-5 cells were correlated with different AhR expression levels. Invasive potential and cell morphology also changed when AhR protein expression was altered. Moreover, AhR levels exerted a contrasting effect on autophagy potential. Autophagy was higher in CL1-5 and H1299 cells with lower AhR levels than in A549 cells. Both AhR overexpression and autophagy inhibition decreased CL1-5 metastasis in vivo. Furthermore, AhR promoted BNIP3 ubiquitination for proteasomal degradation. AhR silencing in A549 cells also reduced BNIP3 ubiquitination. Taken together, these results provide a novel insight into the cross-linking between AhR and autophagy, we addressed the mechanistic BNIP3 modulation by endogenous AhR, which affect cancer cell EMT progression. PMID:28195146

  15. Characterization of the transgenic CA-AhR mouse - cell specific expression of the CA-AhR using CYP1A1 as a marker

    Energy Technology Data Exchange (ETDEWEB)

    Brunnberg, S.; Lindstam, M.; Andersson, P.; Hanberg, A. [Institute of Environmental Medicine, Stockholm (Sweden); Poellinger, L. [Department of Cell and Molecular Biology, Stockholm (Sweden)

    2004-09-15

    The risk assessments of dioxins and dioxin-like PCBs performed by WHO and EU lead to major concerns. The tolerable daily intake for humans has been assessed to be within the range of human exposures occurring in the general population today. Dioxins are known to adversely impair reproduction and affect development of reproductive organs, as well as the early development of the immune and the nervous systems. The Aryl hydrocarbon Receptor (AhR) mediates most toxic effects of dioxins, such as 2,3,7,8- tetrachlorodibenzo-p-dioxin (TCDD) and PCBs. In order to study the mechanisms of toxicity of ligands of the Ah receptor we have created a transgenic mouse model expressing a constitutively active Ah receptor (CA-AhR). The mutant Ah receptor is expressed and functionally active in most (or all) organs. Consequently, the CA-AhR mice show several of the well-known effects of dioxin exposure. Since the CA-AhR is continuously active at a relatively low level and from early development, this model resembles the human exposure scenario and is thus suitable for studies on mechanisms of action of Ah receptor ligands.

  16. Effects of currently used pesticides and their mixtures on the function of thyroid hormone and aryl hydrocarbon receptor in cell culture

    Energy Technology Data Exchange (ETDEWEB)

    Ghisari, Mandana; Long, Manhai; Tabbo, Agnese; Bonefeld-Jørgensen, Eva Cecilie, E-mail: ebj@mil.au.dk

    2015-05-01

    Evidence suggest that exposure to pesticides can interfere with the endocrine system by multiple mechanisms. The endocrine disrupting potential of currently used pesticides in Denmark was analyzed as single compounds and in an equimolar mixture of 5 selected pesticides. The pesticides were previously analyzed for effects on the function of estrogen and androgen receptors, the aromatase enzyme and steroidogenesis in vitro. In this study, the effect on thyroid hormone (TH) function and aryl hydrocarbon receptor (AhR) transactivity was assessed using GH3 cell proliferation assay (T-screen) and AhR responsive luciferase reporter gene bioassay, respectively. Thirteen pesticides were analyzed as follows: 2-methyl-4-chlorophenoxyacetic acid, terbuthylazine, iodosulfuron-methyl-sodium, mesosulfuron-methyl, metsulfuron-methyl, chlormequat chloride, bitertanol, propiconazole, prothioconazole, mancozeb and its metabolite ethylene thiourea, cypermethrin, tau-fluvalinate, and malathion (currently banned in DK). In the T-screen, prothioconazole, malathion, tau-fluvalinate, cypermethrin, terbuthylazine and mancozeb significantly stimulated and bitertanol and propiconazole slightly reduced the GH3 cell proliferation. In the presence of triiodothyronine (T3), prothioconazole, tau-fluvalinate, propiconazole, cypermethrin and bitertanol significantly antagonized the T3-induced GH3 cell proliferation. Eleven of the tested pesticides agonized the AhR function, and bitertanol and prothioconazole inhibited the basal AhR activity. Bitertanol, propiconazole, prothioconazole and cypermethrin antagonized the TCDD-induced AhR transactivation at the highest tested concentration. The 5-component mixture had inducing effect but the combined effect could not be predicted due to the presence of bitertanol eliciting inhibitory effect. Upon removal of bitertanol from the mixture, the remaining four pesticides acted additively. In conclusion, our data suggest that pesticides currently used in Denmark

  17. Aryl Hydrocarbon Receptor Activation by TCDD Modulates Expression of Extracellular Matrix Remodeling Genes during Experimental Liver Fibrosis

    Science.gov (United States)

    Lamb, Cheri L.; Cholico, Giovan N.; Perkins, Daniel E.; Fewkes, Michael T.; Oxford, Julia Thom; Lujan, Trevor J.; Morrill, Erica E.

    2016-01-01

    The aryl hydrocarbon receptor (AhR) is a soluble, ligand-activated transcription factor that mediates the toxicity of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). Increasing evidence implicates the AhR in regulating extracellular matrix (ECM) homeostasis. We recently reported that TCDD increased necroinflammation and myofibroblast activation during liver injury elicited by carbon tetrachloride (CCl4). However, TCDD did not increase collagen deposition or exacerbate fibrosis in CCl4-treated mice, which raises the possibility that TCDD may enhance ECM turnover. The goal of this study was to determine how TCDD impacts ECM remodeling gene expression in the liver. Male C57BL/6 mice were treated for 8 weeks with 0.5 mL/kg CCl4, and TCDD (20 μg/kg) was administered during the last two weeks. Results indicate that TCDD increased mRNA levels of procollagen types I, III, IV, and VI and the collagen processing molecules HSP47 and lysyl oxidase. TCDD also increased gelatinase activity and mRNA levels of matrix metalloproteinase- (MMP-) 3, MMP-8, MMP-9, and MMP-13. Furthermore, TCDD modulated expression of genes in the plasminogen activator/plasmin system, which regulates MMP activation, and it also increased TIMP1 gene expression. These findings support the notion that AhR activation by TCDD dysregulates ECM remodeling gene expression and may facilitate ECM metabolism despite increased liver injury. PMID:27672655

  18. Indoxyl Sulfate Downregulates Mas Receptor via Aryl Hydrocarbon Receptor/Nuclear Factor-kappa B, and Induces Cell Proliferation and Tissue Factor Expression in Vascular Smooth Muscle Cells.

    Science.gov (United States)

    Ng, Hwee-Yeong; Bolati, Wulaer; Lee, Chien-Te; Chien, Yu-Shu; Yisireyili, Maimaiti; Saito, Shinichi; Pei, Sung-Nan; Nishijima, Fuyuhiko; Niwa, Toshimitsu

    2016-01-01

    Angiotensin converting enzyme-related carboxypeptidase 2/angiotensin (Ang)-(1-7)/Mas receptor axis is protective in the development of chronic kidney disease and cardiovascular disease. This study is aimed at investigating whether indoxyl sulfate (IS) affects Mas receptor expression, cell proliferation and tissue factor expression in vascular smooth muscle cells, and if Ang-(1-7), an activator of Mas receptor, counteracts the IS-induced effects. IS was administered to normotensive and hypertensive rats. Human aortic smooth muscle cells (HASMCs) were cultured with IS. IS reduced the expression of Mas receptor in the aorta of normotensive and hypertensive rats. IS downregulated the Mas receptor expression in a time- and dose-dependent manner in HASMCs. Knockdown of aryl hydrocarbon receptor (AhR) and nuclear factor-kappa B (NF-x03BA;B) inhibited IS-induced downregulation of Mas receptor. Further, IS stimulated cell proliferation and tissue factor expression in HASMCs. Ang-(1-7) attenuated IS-induced cell proliferation and tissue factor expression in HASMCs. Ang-(1-7) suppressed phosphorylation of extracellular signal-regulated kinase 1/2 (ERK1/2) and NF-x03BA;B in HASMCs. IS downregulated the expression of Mas receptor via AhR/NF-x03BA;B, and induced cell proliferation and tissue factor expression in HASMCs. Ang-(1-7) inhibited IS-induced cell proliferation and tissue factor expression by suppressing the phosphorylation of ERK1/2 and NF-x03BA;B p65. © 2016 S. Karger AG, Basel.

  19. Induction of AhR-mediated gene transcription by coffee.

    Science.gov (United States)

    Ishikawa, Toshio; Takahashi, Satoshi; Morita, Koji; Okinaga, Hiroko; Teramoto, Tamio

    2014-01-01

    Aryl hydrocarbon receptor (AhR) is classically known to be activated by xenobiotics such as dioxins and polycyclic aromatic hydrocarbons (PAHs). Although it has been reported that PAHs are contained in roasted coffee beans, in general coffee beverages are not considered to be AhR activators. We tested whether exposure to coffee would activate AhR in cultured cells. HepG2 cells stably expressing an AhR-responsive reporter gene were treated with coffee samples. Also, expression of CYP1A1, an endogenous AhR-responsive gene, was quantitated by RT-PCR and Western blotting in HepG2, Caco-2, and MCF-7 cells, after treatment with coffee. In order to obtain sensitive and reproducible results, all the experiments were performed with the cells placed in either phosphate-buffered saline (PBS) or pure serum, instead of routinely-used culture medium, whose intrinsic AhR-stimulating activity turned out to be so strong as to interfere with the analyses. All the coffee samples tested robustly stimulated AhR-mediated transcription in the reporter gene assays. Of note, to what extent coffee and other AhR agonists activated AhR was different, depending on whether the experiments were done in PBS or serum. CYP1A1 mRNA was induced by coffee, in HepG2, Caco-2, and MCF-7 cells placed in either PBS or serum. CYP1A1 protein expression, which was not detected in these cells incubated in PBS, was also increased by coffee in cells placed in serum. By using culture medium-free experimental settings, we have shown that coffee is a strong AhR activator. Our observation may help elucidate as-yet-unrecognized effects of coffee on human health.

  20. Induction of AhR-mediated gene transcription by coffee.

    Directory of Open Access Journals (Sweden)

    Toshio Ishikawa

    Full Text Available Aryl hydrocarbon receptor (AhR is classically known to be activated by xenobiotics such as dioxins and polycyclic aromatic hydrocarbons (PAHs. Although it has been reported that PAHs are contained in roasted coffee beans, in general coffee beverages are not considered to be AhR activators. We tested whether exposure to coffee would activate AhR in cultured cells.HepG2 cells stably expressing an AhR-responsive reporter gene were treated with coffee samples. Also, expression of CYP1A1, an endogenous AhR-responsive gene, was quantitated by RT-PCR and Western blotting in HepG2, Caco-2, and MCF-7 cells, after treatment with coffee. In order to obtain sensitive and reproducible results, all the experiments were performed with the cells placed in either phosphate-buffered saline (PBS or pure serum, instead of routinely-used culture medium, whose intrinsic AhR-stimulating activity turned out to be so strong as to interfere with the analyses.All the coffee samples tested robustly stimulated AhR-mediated transcription in the reporter gene assays. Of note, to what extent coffee and other AhR agonists activated AhR was different, depending on whether the experiments were done in PBS or serum. CYP1A1 mRNA was induced by coffee, in HepG2, Caco-2, and MCF-7 cells placed in either PBS or serum. CYP1A1 protein expression, which was not detected in these cells incubated in PBS, was also increased by coffee in cells placed in serum.By using culture medium-free experimental settings, we have shown that coffee is a strong AhR activator. Our observation may help elucidate as-yet-unrecognized effects of coffee on human health.

  1. Aryl hydrocarbon receptor-mediated up-regulation of ATP-driven xenobiotic efflux transporters at the blood-brain barrier.

    Science.gov (United States)

    Wang, Xueqian; Hawkins, Brian T; Miller, David S

    2011-02-01

    Many widespread and persistent organic pollutants, e.g., 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), activate the aryl hydrocarbon receptor (AhR), causing it to translocate to the cell nucleus, where it transactivates target genes. AhR's ability to target the blood-brain barrier is essentially unexplored. We show here that exposing isolated rat brain capillaries to 0.05-0.5 nM TCDD roughly doubled transport activity and protein expression of P-glycoprotein, an ATP-driven drug efflux pump and a critical determinant of drug entry into the CNS. These effects were abolished by actinomycin D or cycloheximide or by the AhR antagonists resveratrol and α-naphthoflavone. Brain capillaries from TCDD-dosed rats (1-5 μg/kg, i.p.) exhibited increased transport activity and protein expression of 3 xenobiotic efflux pumps, P-glycoprotein, multidrug resistance-associated protein 2, and breast cancer resistance polypeptide, as well as expression of Cyp1a1 and Cyp1b1, both AhR target genes. Consistent with increased P-glycoprotein expression in capillaries from TCDD-dosed rats, in situ brain perfusion indicated significantly reduced brain accumulation of verapamil, a P-glycoprotein substrate. These findings suggest a new paradigm for the field of environmental toxicology: toxicants acting through AhR to target xenobiotic efflux transporters at the blood-brain barrier and thus reduce brain accumulation of CNS-acting therapeutic drugs.

  2. Site-directed mutagenesis implicates a threonine residue in TM6 in the subtype selectivities of UH-AH 37 and pirenzepine at muscarinic receptors.

    Science.gov (United States)

    Ellis, J; Seidenberg, M

    2000-08-01

    The structural basis for the selectivity of the antagonist UH-AH 37 at human muscarinic acetylcholine receptors was investigated by expressing mutant receptors in COS-7 cells. Previous studies have demonstrated that the interaction between UH-AH 37 and [(3)H]N-methylscopolamine in equilibrium assays is competitive and that the high affinity of UH-AH 37 for the M(5) subtype, compared to M(2), is due to an epitope in the sixth transmembrane domain (TM6) or the third outer loop of the receptor. By mutating each nonconserved residue in this region of M(2) and M(5) to its counterpart in the other receptor, we identified a threonine residue in the middle of TM6 uniquely responsible for the higher affinity of the M(5) receptor (M(1), M(3), and M(4) receptors also carry a threonine at that location and also have high affinity for UH-AH 37). The mutant receptor in which the corresponding alanine of the M(2) receptor was replaced by threonine, M(2)(401)ala --> thr, expressed enhanced affinity for pirenzepine as well as for UH-AH 37. The chick M(2) receptor, which expresses anomalously high affinity for pirenzepine, differs from its mammalian counterparts by the presence of a threonine at this position. Affinities of AF-DX 116 and 4-DAMP, as well as the allosteric potency of UH-AH 37, were not sensitive to the M(2)(401) ala --> thr mutation. Copyright 2000 S. Karger AG, Basel

  3. Diphenylarsinic acid, a chemical warfare-related neurotoxicant, promotes liver carcinogenesis via activation of aryl hydrocarbon receptor signaling and consequent induction of oxidative DAN damage in rats

    Energy Technology Data Exchange (ETDEWEB)

    Wei, Min; Yamada, Takanori; Yamano, Shotaro; Kato, Minoru; Kakehashi, Anna; Fujioka, Masaki; Tago, Yoshiyuki; Kitano, Mistuaki; Wanibuchi, Hideki, E-mail: wani@med.osaka-cu.ac.jp

    2013-11-15

    Diphenylarsinic acid (DPAA), a chemical warfare-related neurotoxic organic arsenical, is present in the groundwater and soil in some regions of Japan due to illegal dumping after World War II. Inorganic arsenic is carcinogenic in humans and its organic arsenic metabolites are carcinogenic in animal studies, raising serious concerns about the carcinogenicity of DPAA. However, the carcinogenic potential of DPAA has not yet been evaluated. In the present study we found that DPAA significantly enhanced the development of diethylnitrosamine-induced preneoplastic lesions in the liver in a medium-term rat liver carcinogenesis assay. Evaluation of the expression of cytochrome P450 (CYP) enzymes in the liver revealed that DPAA induced the expression of CYP1B1, but not any other CYP1, CYP2, or CYP3 enzymes, suggesting that CYP1B1 might be the enzyme responsible for the metabolic activation of DPAA. We also found increased oxidative DNA damage, possibly due to elevated CYP1B1 expression. Induction of CYP1B1 has generally been linked with the activation of AhR, and we found that DPAA activates the aryl hydrocarbon receptor (AhR). Importantly, the promotion effect of DPAA was observed only at a dose that activated the AhR, suggesting that activation of AhR and consequent induction of AhR target genes and oxidative DNA damage plays a vital role in the promotion effects of DPAA. The present study provides, for the first time, evidence regarding the carcinogenicity of DPAA and indicates the necessity of comprehensive evaluation of its carcinogenic potential using long-term carcinogenicity studies. - Highlights: • DPAA, an environmental neurotoxicant, promotes liver carcinogenesis in rats. • DPAA is an activator of AhR signaling pathway. • DPAA promoted oxidative DNA damage in rat livers. • AhR target gene CYP 1B1 might be involved in the metabolism of DPAA.

  4. PCB 126 and other dioxin-like PCBs specifically suppress hepatic PEPCK expression via the aryl hydrocarbon receptor.

    Directory of Open Access Journals (Sweden)

    Wenshuo Zhang

    Full Text Available Dioxins and dioxin-like compounds encompass a group of structurally related heterocyclic compounds that bind to and activate the aryl hydrocarbon receptor (AhR. The prototypical dioxin is 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD, a highly toxic industrial byproduct that incites numerous adverse physiological effects. Global commercial production of the structurally similar polychlorinated biphenyls (PCBs, however, commenced early in the 20(th century and continued for decades; dioxin-like PCBs therefore contribute significantly to total dioxin-associated toxicity. In this study, PCB 126, the most potent dioxin-like PCB, was evaluated with respect to its direct effects on hepatic glucose metabolism using primary mouse hepatocytes. Overnight treatment with PCB 126 reduced hepatic glycogen stores in a dose-dependent manner. Additionally, PCB 126 suppressed forskolin-stimulated gluconeogenesis from lactate. These effects were independent of acute toxicity, as PCB 126 did not increase lactate dehydrogenase release nor affect lipid metabolism or total intracellular ATP. Interestingly, provision of cells with glycerol instead of lactate as the carbon source completely restored hepatic glucose production, indicating specific impairment in the distal arm of gluconeogenesis. In concordance with this finding, PCB 126 blunted the forskolin-stimulated increase in phosphoenolpyruvate carboxykinase (PEPCK mRNA levels without affecting glucose-6-phosphatase expression. Myricetin, a putative competitive AhR antagonist, reversed the suppression of PEPCK induction by PCB 126. Furthermore, other dioxin-like PCBs demonstrated similar effects on PEPCK expression in parallel with their ability to activate AhR. It therefore appears that AhR activation mediates the suppression of PEPCK expression by dioxin-like PCBs, suggesting a role for these pollutants as disruptors of energy metabolism.

  5. PCB 126 and Other Dioxin-Like PCBs Specifically Suppress Hepatic PEPCK Expression via the Aryl Hydrocarbon Receptor

    Science.gov (United States)

    Zhang, Wenshuo; Sargis, Robert M.; Volden, Paul A.; Carmean, Christopher M.; Sun, Xiao J.; Brady, Matthew J.

    2012-01-01

    Dioxins and dioxin-like compounds encompass a group of structurally related heterocyclic compounds that bind to and activate the aryl hydrocarbon receptor (AhR). The prototypical dioxin is 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), a highly toxic industrial byproduct that incites numerous adverse physiological effects. Global commercial production of the structurally similar polychlorinated biphenyls (PCBs), however, commenced early in the 20th century and continued for decades; dioxin-like PCBs therefore contribute significantly to total dioxin-associated toxicity. In this study, PCB 126, the most potent dioxin-like PCB, was evaluated with respect to its direct effects on hepatic glucose metabolism using primary mouse hepatocytes. Overnight treatment with PCB 126 reduced hepatic glycogen stores in a dose-dependent manner. Additionally, PCB 126 suppressed forskolin-stimulated gluconeogenesis from lactate. These effects were independent of acute toxicity, as PCB 126 did not increase lactate dehydrogenase release nor affect lipid metabolism or total intracellular ATP. Interestingly, provision of cells with glycerol instead of lactate as the carbon source completely restored hepatic glucose production, indicating specific impairment in the distal arm of gluconeogenesis. In concordance with this finding, PCB 126 blunted the forskolin-stimulated increase in phosphoenolpyruvate carboxykinase (PEPCK) mRNA levels without affecting glucose-6-phosphatase expression. Myricetin, a putative competitive AhR antagonist, reversed the suppression of PEPCK induction by PCB 126. Furthermore, other dioxin-like PCBs demonstrated similar effects on PEPCK expression in parallel with their ability to activate AhR. It therefore appears that AhR activation mediates the suppression of PEPCK expression by dioxin-like PCBs, suggesting a role for these pollutants as disruptors of energy metabolism. PMID:22615911

  6. Effects of currently used pesticides and their mixtures on the function of thyroid hormone and aryl hydrocarbon receptor in cell culture.

    Science.gov (United States)

    Ghisari, Mandana; Long, Manhai; Tabbo, Agnese; Bonefeld-Jørgensen, Eva Cecilie

    2015-05-01

    Evidence suggest that exposure to pesticides can interfere with the endocrine system by multiple mechanisms. The endocrine disrupting potential of currently used pesticides in Denmark was analyzed as single compounds and in an equimolar mixture of 5 selected pesticides. The pesticides were previously analyzed for effects on the function of estrogen and androgen receptors, the aromatase enzyme and steroidogenesis in vitro. In this study, the effect on thyroid hormone (TH) function and aryl hydrocarbon receptor (AhR) transactivity was assessed using GH3 cell proliferation assay (T-screen) and AhR responsive luciferase reporter gene bioassay, respectively. Thirteen pesticides were analyzed as follows: 2-methyl-4-chlorophenoxyacetic acid, terbuthylazine, iodosulfuron-methyl-sodium, mesosulfuron-methyl, metsulfuron-methyl, chlormequat chloride, bitertanol, propiconazole, prothioconazole, mancozeb and its metabolite ethylene thiourea, cypermethrin, tau-fluvalinate, and malathion (currently banned in DK). In the T-screen, prothioconazole, malathion, tau-fluvalinate, cypermethrin, terbuthylazine and mancozeb significantly stimulated and bitertanol and propiconazole slightly reduced the GH3 cell proliferation. In the presence of triiodothyronine (T3), prothioconazole, tau-fluvalinate, propiconazole, cypermethrin and bitertanol significantly antagonized the T3-induced GH3 cell proliferation. Eleven of the tested pesticides agonized the AhR function, and bitertanol and prothioconazole inhibited the basal AhR activity. Bitertanol, propiconazole, prothioconazole and cypermethrin antagonized the TCDD-induced AhR transactivation at the highest tested concentration. The 5-component mixture had inducing effect but the combined effect could not be predicted due to the presence of bitertanol eliciting inhibitory effect. Upon removal of bitertanol from the mixture, the remaining four pesticides acted additively. In conclusion, our data suggest that pesticides currently used in Denmark

  7. The Aryl Hydrocarbon Receptor Pathway: A Key Component of the microRNA-Mediated AML Signalisome

    Directory of Open Access Journals (Sweden)

    Julia E. Rager

    2012-05-01

    Full Text Available Recent research has spotlighted the role of microRNAs (miRNAs as critical epigenetic regulators of hematopoietic stem cell differentiation and leukemia development. Despite the recent advances in knowledge surrounding epigenetics and leukemia, the mechanisms underlying miRNAs’ influence on leukemia development have yet to be clearly elucidated. Our aim was to identify high ranking biological pathways altered at the gene expression level and under epigenetic control. Specifically, we set out to test the hypothesis that miRNAs dysregulated in acute myeloid leukemia (AML converge on a common pathway that can influence signaling related to hematopoiesis and leukemia development. We identified genes altered in AML patients that are under common regulation of seven key miRNAs. By mapping these genes to a global interaction network, we identified the “AML Signalisome”. The AML Signalisome comprises 53 AML-associated molecules, and is enriched for proteins that play a role in the aryl hydrocarbon receptor (AhR pathway, a major regulator of hematopoiesis. Furthermore, we show biological enrichment for hematopoiesis-related proteins within the AML Signalisome. These findings provide important insight into miRNA-regulated pathways in leukemia, and may help to prioritize targets for disease prevention and treatment.

  8. In Vitro Transformation of Chlorinated Parabens by the Liver S9 Fraction: Kinetics, Metabolite Identification, and Aryl Hydrocarbon Receptor Agonist Activity.

    Science.gov (United States)

    Terasaki, Masanori; Wada, Takeshi; Nagashima, Satoshi; Makino, Masakazu; Yasukawa, Hiro

    2016-01-01

    We investigated the kinetics of in vitro transformation of a dichlorinated propyl paraben (2-propyl 3,5-dichloro-4-hydroxybenzoate; Cl2PP) by the rat liver S9 fraction and assessed the aryl hydrocarbon receptor (AhR) agonist activity of the metabolite products identified in HPLC and GC/MS analysis and by metabolite syntheses. The results indicated that the chlorination of Cl2PP reduced its degradation rate by approximately 40-fold. Two hydroxylated metabolite products showed AhR agonist activity of up to 39% of that of the parent Cl2PP when assessed in a yeast (YCM3) reporter gene assay. The determination of the metabolic properties of paraben bioaccumulation presented here provides further information on the value of risk assessments of chlorinated parabens as a means to ensure human health and environmental safety.

  9. Amino Acid Substitutions That Affect Receptor Binding and Stability of the Hemagglutinin of Influenza A/H7N9 Virus

    Science.gov (United States)

    Schrauwen, Eefje J. A.; Burke, David F.; Rimmelzwaan, Guus F.; Herfst, Sander; Fouchier, Ron A. M.

    2016-01-01

    Receptor-binding preference and stability of hemagglutinin have been implicated as crucial determinants of airborne transmission of influenza viruses. Here, amino acid substitutions previously identified to affect these traits were tested in the context of an A/H7N9 virus. Some combinations of substitutions, most notably G219S and K58I, resulted in relatively high affinity for α2,6-linked sialic acid receptor and acid and temperature stability. Thus, the hemagglutinin of the A/H7N9 virus may adopt traits associated with airborne transmission. PMID:26792744

  10. The aryl hydrocarbon receptor and glucocorticoid receptor interact to activate human metallothionein 2A

    Energy Technology Data Exchange (ETDEWEB)

    Sato, Shoko, E-mail: satosho@rs.tus.ac.jp [Laboratory of Nutrition, Graduate School of Agricultural Science, Tohoku University, Sendai 981-8555 (Japan); Shirakawa, Hitoshi, E-mail: shirakah@m.tohoku.ac.jp [Laboratory of Nutrition, Graduate School of Agricultural Science, Tohoku University, Sendai 981-8555 (Japan); Tomita, Shuhei, E-mail: tomita@med.tottori-u.ac.jp [Division of Molecular Pharmacology, Department of Pathophysiological and Therapeutic Science, Yonago 683-8503 (Japan); Tohkin, Masahiro, E-mail: tohkin@phar.nagoya-cu.ac.jp [Department of Medical Safety Science, Graduate School of Pharmaceutical Science, Nagoya City University, Nagoya 267-8603 (Japan); Gonzalez, Frank J., E-mail: gonzalef@mail.nih.gov [Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892 (United States); Komai, Michio, E-mail: mkomai@m.tohoku.ac.jp [Laboratory of Nutrition, Graduate School of Agricultural Science, Tohoku University, Sendai 981-8555 (Japan)

    2013-11-15

    Although the aryl hydrocarbon receptor (AHR) and glucocorticoid receptor (GR) play essential roles in mammalian development, stress responses, and other physiological events, crosstalk between these receptors has been the subject of much debate. Metallothioneins are classic glucocorticoid-inducible genes that were reported to increase upon treatment with AHR agonists in rodent tissues and cultured human cells. In this study, the mechanism of human metallothionein 2A (MT2A) gene transcription activation by AHR was investigated. Cotreatment with 3-methylcholanthrene and dexamethasone, agonists of AHR and GR respectively, synergistically increased MT2A mRNA levels in HepG2 cells. MT2A induction was suppressed by RNA interference against AHR or GR. Coimmunoprecipitation experiments revealed a physical interaction between AHR and GR proteins. Moreover, chromatin immunoprecipitation assays indicated that AHR was recruited to the glucocorticoid response element in the MT2A promoter. Thus, we provide a novel mechanism whereby AHR modulates expression of human MT2A via the glucocorticoid response element and protein–protein interactions with GR. - Highlights: • Aryl hydrocarbon receptor forms a complex with glucocorticoid receptor in cells. • Human metallothionein gene is regulated by the AHR and GR interaction. • AHR–GR complex binds to glucocorticoid response element in metallothionein gene. • We demonstrated a novel transcriptional mechanism via AHR and GR interaction.

  11. Omeprazole Induces NAD(P)H Quinone Oxidoreductase 1 via Aryl Hydrocarbon Receptor-Independent Mechanisms: Role of the Transcription Factor Nuclear Factor Erythroid 2–Related Factor 2

    Science.gov (United States)

    Zhang, Shaojie; Patel, Ananddeep; Moorthy, Bhagavatula; Shivanna, Binoy

    2015-01-01

    Activation of the aryl hydrocarbon receptor (AhR) transcriptionally induces phase I (cytochrome P450 (CYP) 1A1) and phase II (NAD(P)H quinone oxidoreductase 1 (NQO1) detoxifying enzymes. The effects of the classical and nonclassical AhR ligands on phase I and II enzymes are well studied in human hepatocytes. Additionally, we observed that the proton pump inhibitor, omeprazole (OM), transcriptionally induces CYP1A1 in the human adenocarcinoma cell line, H441 cells via AhR. Whether OM activates AhR and induces the phase II enzyme, NAD(P)H quinone oxidoreductase 1 (NQO1), in fetal primary human pulmonary microvascular endothelial cells (HPMEC) is unknown. Therefore, we tested the hypothesis that OM will induce NQO1 in HPMEC via the AhR. The concentrations of OM used in our experiments did not result in cytotoxicity. OM activated AhR as evident by increased CYP1A1 mRNA expression. However, contrary to our hypothesis, OM increased NQO1 mRNA and protein via an AhR-independent mechanism as AhR knockdown failed to abrogate OM-mediated increase in NQO1 expression. Interestingly, OM activated Nrf2 as evident by increased phosphoNrf2 (S40) expression in OM-treated compared to vehicle-treated cells. Furthermore, Nrf2 knockdown abrogated OM-mediated increase in NQO1 expression. In conclusion, we provide evidence that OM induces NQO1 via AhR-independent, but Nrf2-dependent mechanisms. PMID:26441083

  12. Evaluation of sensitizers found in wastewater from paper recycling areas, and their activation of the aryl hydrocarbon receptor in vitro.

    Science.gov (United States)

    Terasaki, Masanori; Yasuda, Michiko; Shimoi, Kayoko; Jozuka, Kazuhiko; Makino, Masakazu; Shiraishi, Fujio; Nakajima, Daisuke

    2014-09-15

    The in vitro potential of sensitizers and related compounds (SRCs) originating from impurities in waste paper in activating the human aryl hydrocarbon receptor (AhR) α was assessed using yeast reporter gene as well as cytochrome P450 (CYP)1A1 and ethoxyresorufin O-deethylase (EROD) assays. In the yeast assay, eight compounds exhibited agonist activity, and their activity relative to β-naphthoflavone (BNF) ranged from 1.4 × 10(-4) to 8.3 × 10(-2), with the highest activity observed for benzyl 2-naphthyl ether (BNE). In the EROD assay, six compounds caused a more significant induction of CYP1A-dependent activity than did the vehicle control at 50 μM (ppaper recycling area was fractioned using solid-phase extraction (SPE) combined with a C18 disk and florisil cartridge. In gas chromatography-mass spectrometry (GC-MS) analysis, SRCs were detected in the first fraction, at a total concentration of 5.5 μg/L. This fraction also activated AhR, and its activity, expressed as a BNF equivalent value, was 0.42 nM in the yeast assay. The contribution ratio of active compounds accounted for up to 34% and 4.4% observed activity of the fraction and total samples, respectively. To our knowledge, this is the first study to show that paper industry-related compounds, namely aromatic sensitizers, activate AhR by using a yeast assay and HepG2 cells.

  13. Aryl hydrocarbon receptor regulates CYP1B1 but not ABCB1 and ABCG2 in hCMEC/D3 human cerebral microvascular endothelial cells after TCDD exposure.

    Science.gov (United States)

    Jacob, Aude; Potin, Sophie; Chapy, Hélène; Crete, Dominique; Glacial, Fabienne; Ganeshamoorthy, Kayathiri; Couraud, Pierre-Olivier; Scherrmann, Jean-Michel; Declèves, Xavier

    2015-07-10

    The aryl hydrocarbon receptor (AhR) is a ligand-dependent transcription factor activated by a variety of widespread persistent environmental pollutants such as 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). It can transactivate the expression of several target genes. Recently AhR transcripts were detected in isolated human brain microvessels and in the hCMEC/D3 human cerebral microvascular endothelial cell line, an in vitro model of the human cerebral endothelium. To date AhR implication in the co-regulation of ABCB1, ABCG2 and CYP1B1 at human cerebral endothelium has not been addressed. Here we investigated whether AhR could co-regulate ABCB1, ABCG2 and CYP1B1 expressions in the hCMEC/D3 cell line. Exposure to TCDD induced a concentration-dependent increase in CYP1B1 expression. We demonstrated AhR involvement in the TCDD-mediated increase in CYP1B1 expression by using small interfering RNA against AhR. Western blotting analysis also revealed an increase in CYP1B1 protein expression following TCDD exposure in hCMEC/D3. Regarding ABCB1 and ABCG2, exposure to TCDD had no effect on their protein expressions and functional activities. In conclusion our data indicated a differential modulation of CYP1B1 and ABCB1/ABCG2 expressions in hCMEC/D3 cells following TCDD exposure.

  14. Binding of aromatic amines to the rat hepatic Ah receptor in vitro and in vivo and the 8S and 4S estrogen receptor of rat uterus and rat liver

    Energy Technology Data Exchange (ETDEWEB)

    Cikryt, P.; Kaiser, T.; Gottlicher, M. (Univ. of Wuerzburg (West Germany))

    1990-08-01

    Studies on structurally related aromatic amines with different carcinogenic properties have shown that 2-acetylaminofluorene (2-AAF) and 2-acetylaminophenanthrene (AAP) inhibit the binding of 2,3,7,8-tetrachlorodibenzo-p-dioxin to the Ah receptor in vitro. The apparent inhibitor constants (K{sub i}) are 2.3 {mu}M for 2-AAF and 2.7 {mu}M for AAP. In contrast, 4-acetylaminofluorene, an isomer of 2-AAF, and trans-4-acetylaminostilbene do not bind to the rat hepatic cytosolic Ah receptor. Pretreating female Wistar rats with 2-AAF or AAP leads to the induction of the P-450 isoenzymes that are under the control of the Ah receptor. Ornithine decarboxylase activity is induced by all aromatic amines tested irrespective of their Ah receptor affinity. The aromatic amines used as model compounds do not inhibit the binding of 17-{beta}-estradiol to the 8S and 4S estrogen receptor of rat uterus or rat liver in a competition assay analyzed using sucrose density gradient centrifugation. On the other hand, the aromatic amines bind to varying extents to another estrogen-binding protein of rat liver whose function and identity is still unknown. The study demonstrates that structurally related aromatic amines in their unmetabolized form interact differentially with a cellular target protein, the Ah receptor, in vitro as well as in vivo. However, a relationship between these effects and the postulated promoting properties of 2-AAF remains to be established.

  15. Indole-3-carbinol induces G1 cell cycle arrest and apoptosis through aryl hydrocarbon receptor in THP-1 monocytic cell line.

    Science.gov (United States)

    Mohammadi, Saeed; Seyedhosseini, Fakhri Sadat; Behnampour, Nasser; Yazdani, Yaghoub

    2017-10-01

    The role of aryl hydrocarbon receptor (AhR) in carcinogenesis has been studied recently. Indole-3-carbinol (I3C) is an AhR agonist and a potential anticancer agent. Here, we investigated the effects of I3C on cell cycle progression and apoptosis through activation of AhR on THP-1 acute myeloid leukemia (AML) cell line. MTT viability assay was used to measure the cytotoxic effects of I3C on THP-1 cells. Apoptosis and cell cycle assays were investigated using flow cytometry. Real time RT-PCR was conducted to measure the alterations in the expression of AhR gene, key genes associated with AhR activation (IL1β and CYP1A1) and major genes involved in cell cycle regulation and apoptosis including P27, P21, CDK2, P53, BCL2 and FasR. Our findings revealed that I3C inhibits the proliferation of THP-1 cells in a dose- and time-dependent manner with minimal toxicity over normal monocytes. The AhR target genes (CYP1A1, IL1β) were overexpressed upon I3C treatment (p < .05 to p < .001). The antiproliferative effects of I3C were in association with programed cell death. I3C downregulated BCL2 and upregulated FasR in THP-1 cells (p < .05 to p < .001). G1 cell cycle arrest was also observed using flow cytometry. G1-acting cell cycle genes (P21, P27 and P53) were overexpressed (p < .05 to p < .001), while CDK2 was downregulated upon I3C treatment (p < .01 to p < .001). I3C could exert its antileukemic effects through AhR activation which is associated with programed cell death and G1 cell cycle arrest in a dose- and time-dependent manner. Therefore, AhR could be targeted as a novel treatment possibility in AML.

  16. Tetrandrine ameliorates collagen-induced arthritis in mice by restoring the balance between Th17 and Treg cells via the aryl hydrocarbon receptor.

    Science.gov (United States)

    Yuan, Xusheng; Tong, Bei; Dou, Yannong; Wu, Xin; Wei, Zhifeng; Dai, Yue

    2016-02-01

    Tetrandrine is an alkaloid constituent of the root of Stephania tetrandra S. Moore. The long-term clinical uses of tetrandrine for treatments of rheumatalgia and arthralgia as well as the inhibition of rat adjuvant-induced arthritis imply that tetrandrine may have therapeutic potential in rheumatoid arthritis (RA). Here, we explored its anti-RA mechanism in collagen-induced arthritis (CIA) in relation to the balance between T helper (Th) 17 cells and regulatory T (Treg) cells. DBA/1 mice were immunized with chicken type II collagen and were orally administered tetrandrine for 14 consecutive days. Then, the mice were sacrificed, their joints were removed for histological analysis, and spleens and mesenteric lymph nodes (MLNs) were removed to examine the Th17 and Treg cells. Tetrandrine markedly alleviated the severity of arthritis, reduced the serum levels of pro-inflammatory cytokines, and restored the Th17/Treg balance, as demonstrated by the serum levels of their related cytokines (IL-17 and IL-10) and the proportion of each cell type. Tetrandrine inhibited Th17 cell differentiation and induced Treg cell differentiation in vitro . Notably, aryl hydrocarbon receptor (AhR) was proven to play a crucial role in tetrandrine-mediated T cell differentiation. The correlation between AhR activation, regulation of Th17/Treg and amelioration of arthritis by tetrandrine was verified in the CIA mice. Moreover, tetrandrine might be a ligand of AhR because it facilitated the expression of the AhR target gene cytochrome P450 1A1 (CYP1A1) and the activation of its downstream signaling pathways. Taken together, tetrandrine exerts its anti-arthritis efficacy by restoring Th17/Treg balance via AhR.

  17. Diphenylarsinic acid, a chemical warfare-related neurotoxicant, promotes liver carcinogenesis via activation of aryl hydrocarbon receptor signaling and consequent induction of oxidative DNA damage in rats.

    Science.gov (United States)

    Wei, Min; Yamada, Takanori; Yamano, Shotaro; Kato, Minoru; Kakehashi, Anna; Fujioka, Masaki; Tago, Yoshiyuki; Kitano, Mistuaki; Wanibuchi, Hideki

    2013-11-15

    Diphenylarsinic acid (DPAA), a chemical warfare-related neurotoxic organic arsenical, is present in the groundwater and soil in some regions of Japan due to illegal dumping after World War II. Inorganic arsenic is carcinogenic in humans and its organic arsenic metabolites are carcinogenic in animal studies, raising serious concerns about the carcinogenicity of DPAA. However, the carcinogenic potential of DPAA has not yet been evaluated. In the present study we found that DPAA significantly enhanced the development of diethylnitrosamine-induced preneoplastic lesions in the liver in a medium-term rat liver carcinogenesis assay. Evaluation of the expression of cytochrome P450 (CYP) enzymes in the liver revealed that DPAA induced the expression of CYP1B1, but not any other CYP1, CYP2, or CYP3 enzymes, suggesting that CYP1B1 might be the enzyme responsible for the metabolic activation of DPAA. We also found increased oxidative DNA damage, possibly due to elevated CYP1B1 expression. Induction of CYP1B1 has generally been linked with the activation of AhR, and we found that DPAA activates the aryl hydrocarbon receptor (AhR). Importantly, the promotion effect of DPAA was observed only at a dose that activated the AhR, suggesting that activation of AhR and consequent induction of AhR target genes and oxidative DNA damage plays a vital role in the promotion effects of DPAA. The present study provides, for the first time, evidence regarding the carcinogenicity of DPAA and indicates the necessity of comprehensive evaluation of its carcinogenic potential using long-term carcinogenicity studies.

  18. In vitro function of the aryl hydrocarbon receptor predicts in ...

    Science.gov (United States)

    Differences in sensitivity to dioxin-like compounds (DLCs) among species and taxa presents a major challenge to ecological risk assessments. Activation of the aryl hydrocarbon receptor (AHR) regulates adverse effects associated with exposure to DLCs in vertebrates. Prior investigations demonstrated that sensitivity to activation of the AHR1 (50% effect concentration; EC50) in an in vitro luciferase reporter gene (LRG) assay was predictive of the sensitivity of embryos (lethal dose to cause 50% lethality; LD50) across all species of birds for all DLCs. However, nothing was known about whether sensitivity to activation of the AHR is predictive of sensitivity of embryos of fishes to DLCs. Therefore, this study investigated in vitro sensitivities of AHR1s and AHR2s to the model DLC, 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), among eight species of fish of known sensitivities of embryos to TCDD. AHR1s and AHR2s of all fishes were activated by TCDD in vitro. There was no significant linear relationship between in vitro sensitivity of AHR1 and in vivo sensitivity among the investigated fishes (R2 = 0.33, p = 0.23). However, there was a significant linear relationship between in vitro sensitivity of AHR2 and in vivo sensitivity among the investigated fishes (R2 = 0.97, p = vitro sensitivity of AHR2 and in vivo sensitivity of embryos among fishes was compared to the previously generated linear relationship between in vitro s

  19. Effects of the environmental contaminants DEHP and TCDD on estradiol synthesis and aryl hydrocarbon receptor and peroxisome proliferator-activated receptor signalling in the human granulosa cell line KGN.

    Science.gov (United States)

    Ernst, Jana; Jann, Johann-Christoph; Biemann, Ronald; Koch, Holger M; Fischer, Bernd

    2014-09-01

    Environmental contaminants binding to transcription factors, such as the aryl hydrocarbon receptor (AhR) and the alpha and gamma peroxisome proliferator-activated receptors (PPARs), contribute to adverse effects on the reproductive system. Expressing both the AhR and PPARs, the human granulosa cell line KGN offers the opportunity to investigate the regulatory mechanisms involved in receptor crosstalk, independent of overriding hormonal control. The aim of the present study was to investigate the impact of two environmental contaminants, 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD, an AhR ligand) and di-(2-ethylhexyl) phthalate (DEHP, a PPAR ligand), on gonadotrophin sensitivity and estrogen synthesis in KGN cells. Accumulation of the DEHP metabolite mono-(2-ethylhexyl) phthalate (MEHP) in DEHP-exposed cells was measured by high-performance liquid chromatography mass spectrometry, thereby demonstrating DEHP metabolism to MEHP by KGN cells. By employing TCDD ( an AhR agonist), rosiglitazone (a PPARgamma agonist) or bezafibrate (a PPARalpha agonist), the presence of a functional AhR and PPAR cascade was confirmed in KGN cells. Cytotoxicity testing revealed no effect on KGN cell proliferation for the concentrations of TCDD and DEHP used in the current study. FSH-stimulated cells were exposed to TCDD, DEHP or a mix of both and estradiol synthesis was measured by enzyme-linked immunosorbent assay and gene expression by quantitative RT-PCR. Exposure decreased estradiol synthesis (TCDD, DEHP, mix) and reduced the mRNA expression of CYP19 aromatase (DEHP, mix) and FSHR (DEHP). DEHP induced the expression of the alpha and gamma PPARs and AhR, an effect which was inhibited by selective PPAR antagonists. Studies in the human granulosa cell line KGN show that the action of endocrine-disrupting chemicals may be due to a direct activation of AhR, for example by TCDD, and by a transactivation via PPARs, for example by DEHP, inducing subsequent transcriptional changes with a broad

  20. 3-methylcholanthrene induces differential recruitment of aryl hydrocarbon receptor to human promoters

    DEFF Research Database (Denmark)

    Pansoy, Andrea; Ahmed, Shaimaa; Valen, Eivind;

    2010-01-01

    The aryl hydrocarbon receptor (AHR) is a ligand-activated protein that mediates the toxic actions of polycyclic aromatic and halogenated compounds. Identifying genes directly regulated by AHR is important in understanding the pathways regulated by this receptor. Here we used chromatin immunopreci......The aryl hydrocarbon receptor (AHR) is a ligand-activated protein that mediates the toxic actions of polycyclic aromatic and halogenated compounds. Identifying genes directly regulated by AHR is important in understanding the pathways regulated by this receptor. Here we used chromatin...

  1. Dioxin increases the interaction between aryl hydrocarbon receptor and estrogen receptor alpha at human promoters

    DEFF Research Database (Denmark)

    Ahmed, Shaaima; Valen, Eivind; Sandelin, Albin Gustav

    2009-01-01

    genes with little knowledge of what was occurring at other genomic regions. In this study, we showed using chromatin immunoprecipitation followed by hybridization to promoter focused microarrays (ChIP-chip) that 2,3,7,8-tetrachlorodibenzo-p-dioxin treatment significantly increased the overlap of genomic...... regions bound by both AHR and ER . Conventional and sequential ChIPs confirmed the recruitment of AHR and ER to many of the identified regions. Transcription factor binding site analysis revealed an overrepresentation of aryl hydrocarbon receptor response elements in regions bound by both AHR and ER...

  2. Metformin suppresses CYP1A1 and CYP1B1 expression in breast cancer cells by down-regulating aryl hydrocarbon receptor expression

    Energy Technology Data Exchange (ETDEWEB)

    Do, Minh Truong; Kim, Hyung Gyun; Tran, Thi Thu Phuong; Khanal, Tilak; Choi, Jae Ho [Department of Toxicology, College of Pharmacy, Chungnam National University, Daejeon (Korea, Republic of); Chung, Young Chul [Department of Food Science and Culinary, International University of Korea, Jinju (Korea, Republic of); Jeong, Tae Cheon, E-mail: taecheon@ynu.ac.kr [College of Pharmacy, Yeungnam University, Gyeongsan (Korea, Republic of); Jeong, Hye Gwang, E-mail: hgjeong@cnu.ac.kr [Department of Toxicology, College of Pharmacy, Chungnam National University, Daejeon (Korea, Republic of)

    2014-10-01

    Induction of cytochrome P450 (CYP) 1A1 and CYP1B1 by environmental xenobiotic chemicals or endogenous ligands through the activation of the aryl hydrocarbon receptor (AhR) has been implicated in a variety of cellular processes related to cancer, such as transformation and tumorigenesis. Here, we investigated the effects of the anti-diabetes drug metformin on expression of CYP1A1 and CYP1B1 in breast cancer cells under constitutive and inducible conditions. Our results indicated that metformin down-regulated the expression of CYP1A1 and CYP1B1 in breast cancer cells under constitutive and 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD)-induced conditions. Down-regulation of AhR expression was required for metformin-mediated decreases in CYP1A1 and CYP1B1 expression, and the metformin-mediated CYP1A1 and CYP1B1 reduction is irrelevant to estrogen receptor α (ERα) signaling. Furthermore, we found that metformin markedly down-regulated Sp1 protein levels in breast cancer cells. The use of genetic and pharmacological tools revealed that metformin-mediated down-regulation of AhR expression was mediated through the reduction of Sp1 protein. Metformin inhibited endogenous AhR ligand-induced CYP1A1 and CYP1B1 expression by suppressing tryptophan-2,3-dioxygenase (TDO) expression in MCF-7 cells. Finally, metformin inhibits TDO expression through a down-regulation of Sp1 and glucocorticoid receptor (GR) protein levels. Our findings demonstrate that metformin reduces CYP1A1 and CYP1B1 expression in breast cancer cells by down-regulating AhR signaling. Metformin would be able to act as a potential chemopreventive agent against CYP1A1 and CYP1B1-mediated carcinogenesis and development of cancer. - Graphical abstract: Schematic of the CYP1A1 and CYP1B1 gene regulation by metformin. - Highlights: • Metformin inhibits CYP1A1 and CYP1B1 expression. • Metformin down-regulates the AhR signaling. • Metformin reduces Sp1 protein expression. • Metformin suppresses TDO expression.

  3. Activation of the aryl hydrocarbon receptor by the calcium/calmodulin-dependent protein kinase kinase inhibitor 7-oxo-7H-benzimidazo[2,1-a]benz[de]isoquinoline-3-carboxylic acid (STO-609).

    Science.gov (United States)

    Monteiro, Patricia; Gilot, David; Langouet, Sophie; Fardel, Olivier

    2008-12-01

    This study was designed to analyze the effects of the Ca2+/calmodulin-dependent protein kinase kinase (CaMKK) inhibitor STO-609 (7-oxo-7H-benzimidazo[2,1-a]benz[de]isoquinoline-3-carboxylic acid) toward the aryl hydrocarbon receptor (AhR) pathway because Ca2+/calmodulin-dependent protein kinase (CaMK) Ialpha, known as a downstream CaMKK effector, has been recently shown to contribute to the AhR cascade. STO-609 failed to alter up-regulation of the AhR target CYP1A1 in response to the potent AhR ligand 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) in MCF-7 cells. STO-609, used at a 25 muM concentration known to fully inhibit CaMKK activity, was surprisingly found to markedly induce CYP1A1 expression and activity by itself in MCF-7 cells; it similarly up-regulated various other AhR target genes in human macrophages. STO-609-related CYP1A1 induction was prevented by chemical inhibition or small interfering RNA-mediated knockdown expression of AhR. Moreover, STO-609 was demonstrated to physically interact with the ligand-binding domain of AhR, as assessed by TCDD binding competition assay, and to induce AhR translocation to the nucleus. As already reported for AhR agonists, STO-609 triggered the increase of [Ca2+](i) and activation of CaMKIalpha, whose inhibition through the use of the Ca2+ chelator 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid-acetoxymethyl ester or the CaMK inhibitor KN-93 (2-[N-(2-hydroxyethyl)]-N-(4-methoxybenzenesulfonyl)]amino-N-(4-chlorocinnamyl)-N-methylbenzylamine), respectively, prevented STO-609-mediated CYP1A1 activity induction. Taken together, these results demonstrate that the CaMKK inhibitor STO-609 can act as an AhR ligand and, in this way, fully activates the Ca2+/CaMKIalpha/AhR cascade. Such data, therefore, make unlikely any contribution of CaMKK activity to the AhR pathway and, moreover, suggest that caution may be required when using STO-609 as a specific inhibitor of CaMKKs.

  4. Quercetin-6-C-β-D-glucopyranoside, natural analog of quercetin exhibits anti-prostate cancer activity by inhibiting Akt-mTOR pathway via aryl hydrocarbon receptor.

    Science.gov (United States)

    Hamidullah; Kumar, Rajeev; Saini, Karan Singh; Kumar, Amit; Kumar, Sudhir; Ramakrishna, E; Maurya, Rakesh; Konwar, Rituraj; Chattopadhyay, Naibedya

    2015-12-01

    Pre-clinical studies suggest mitigating effect of dietary flavonoid quercetin against cancer and other diseases. However, quercetin suffers from poor metabolic stability, which appears to offset its pharmacological efficacy. Recently, we isolated quercetin-6-C-β-D-glucopyranoside (QCG) from Ulmus wallichiana planchon that has greater stability profile over quercetin. In the present study, the cytotoxic and apoptotic effects of QCG on prostate cancer cells were assessed. QCG inhibited prostate cancer cell proliferation by arresting cells at G0/G1 phase of cell cycle and induces apoptosis as evident from cytochrome c release, cleavage of caspase 3 and poly (ADP-ribose) polymerase. Mechanistic studies revealed that QCG inhibited reactive oxygen species (ROS) generation and Akt/mTOR cell survival pathways. Aryl hydrocarbon receptor (AhR) was a critical mediator of QCG action as knockdown of AhR attenuated QCG-induced cell cycle arrest, apoptosis and inhibition of Akt/mTOR pathway in prostate cancer cells. Taken together, our results suggest that QCG exhibits anti-cancer activity against prostate cancer cells via AhR-mediated down regulation of Akt/mTOR pathway in PC-3 cells. Copyright © 2015 Elsevier B.V. and Société Française de Biochimie et Biologie Moléculaire (SFBBM). All rights reserved.

  5. Baicalin Protects Mice from Aristolochic Acid I-Induced Kidney Injury by Induction of CYP1A through the Aromatic Hydrocarbon Receptor

    Directory of Open Access Journals (Sweden)

    Ke Wang

    2015-07-01

    Full Text Available Exposure to aristolochic acid I (AAI can lead to aristolochic acid nephropathy (AAN, Balkan endemic nephropathy (BEN and urothelial cancer. The induction of hepatic CYP1A, especially CYP1A2, was considered to detoxify AAI so as to reduce its nephrotoxicity. We previously found that baicalin had the strong ability to induce CYP1A2 expression; therefore in this study, we examined the effects of baicalin on AAI toxicity, metabolism and disposition, as well as investigated the underlying mechanisms. Our toxicological studies showed that baicalin reduced the levels of blood urea nitrogen (BUN and creatinine (CRE in AAI-treated mice and attenuated renal injury induced by AAI. Pharmacokinetic analysis demonstrated that baicalin markedly decreased AUC of AAI in plasma and the content of AAI in liver and kidney. CYP1A induction assays showed that baicalin exposure significantly increased the hepatic expression of CYP1A1/2, which was completely abolished by inhibitors of the Aromatic hydrocarbon receptor (AhR, 3ʹ,4ʹ-dimethoxyflavone and resveratrol, in vitro and in vivo, respectively. Moreover, the luciferase assays revealed that baicalin significantly increased the luciferase activity of the reporter gene incorporated with the Xenobiotic response elements recognized by AhR. In summary, baicalin significantly reduced the disposition of AAI and ameliorated AAI-induced kidney toxicity through AhR-dependent CYP1A1/2 induction in the liver.

  6. The Tryptophan-Derived Endogenous Aryl Hydrocarbon Receptor Ligand 6-Formylindolo[3,2-b]Carbazole Is a Nanomolar UVA Photosensitizer in Epidermal Keratinocytes.

    Science.gov (United States)

    Park, Sophia L; Justiniano, Rebecca; Williams, Joshua D; Cabello, Christopher M; Qiao, Shuxi; Wondrak, Georg T

    2015-06-01

    Endogenous UVA chromophores may act as sensitizers of oxidative stress underlying cutaneous photoaging and photocarcinogenesis, but the molecular identity of non-DNA key chromophores displaying UVA-driven photodyamic activity in human skin remains largely undefined. Here we report that 6-formylindolo[3,2-b]carbazole (FICZ), a tryptophan photoproduct and endogenous high-affinity aryl hydrocarbon receptor (AhR) agonist, acts as a nanomolar photosensitizer potentiating UVA-induced oxidative stress irrespective of AhR ligand activity. In human HaCaT and primary epidermal keratinocytes, photodynamic induction of apoptosis was elicited by the combined action of solar-simulated UVA and FICZ, whereas exposure to the isolated action of UVA or FICZ did not impair viability. In a human epidermal tissue reconstruct, FICZ/UVA cotreatment caused pronounced phototoxicity inducing keratinocyte cell death, and FICZ photodynamic activity was also substantiated in a murine skin exposure model. Array analysis revealed pronounced potentiation of cellular heat shock, endoplasmic reticulum stress, and oxidative stress response gene expression observed only upon FICZ/UVA cotreatment. FICZ photosensitization caused intracellular oxidative stress, and comet analysis revealed introduction of formamidopyrimidine-DNA glycosylase (Fpg)-sensitive oxidative DNA lesions suppressible by antioxidant cotreatment. Taken together, our data demonstrate that the endogenous AhR ligand FICZ displays nanomolar photodynamic activity representing a molecular mechanism of UVA-induced photooxidative stress potentially operative in human skin.

  7. Receptor Model Source Apportionment of Nonmethane Hydrocarbons in Mexico City

    Directory of Open Access Journals (Sweden)

    V. Mugica

    2002-01-01

    Full Text Available With the purpose of estimating the source contributions of nonmethane hydrocarbons (NMHC to the atmosphere at three different sites in the Mexico City Metropolitan Area, 92 ambient air samples were measured from February 23 to March 22 of 1997. Light- and heavy-duty vehicular profiles were determined to differentiate the NMHC contribution of diesel and gasoline to the atmosphere. Food cooking source profiles were also determined for chemical mass balance receptor model application. Initial source contribution estimates were carried out to determine the adequate combination of source profiles and fitting species. Ambient samples of NMHC were apportioned to motor vehicle exhaust, gasoline vapor, handling and distribution of liquefied petroleum gas (LP gas, asphalt operations, painting operations, landfills, and food cooking. Both gasoline and diesel motor vehicle exhaust were the major NMHC contributors for all sites and times, with a percentage of up to 75%. The average motor vehicle exhaust contributions increased during the day. In contrast, LP gas contribution was higher during the morning than in the afternoon. Apportionment for the most abundant individual NMHC showed that the vehicular source is the major contributor to acetylene, ethylene, pentanes, n-hexane, toluene, and xylenes, while handling and distribution of LP gas was the major source contributor to propane and butanes. Comparison between CMB estimates of NMHC and the emission inventory showed a good agreement for vehicles, handling and distribution of LP gas, and painting operations; nevertheless, emissions from diesel exhaust and asphalt operations showed differences, and the results suggest that these emissions could be underestimated.

  8. Effects of scorched food leachates with or without activated charcoal pretreatment on AhR activation in cultured cells.

    Science.gov (United States)

    Takahashi, Satoshi; Morita, Koji; Kinoshita, Makoto; Fujimori, Shin; Ishikawa, Toshio

    2015-12-01

    Aryl hydrocarbon receptor (AhR) is a transcription factor activated by xenobiotics, including dioxins and polycyclic aromatic hydrocarbons (PAHs). Although AhR is also activated by some dietary constituents, it has not been completely clarified in what circumstances AhR ligands are ingested in our daily life. Because PAHs are formed by the incomplete combustion of organic materials, we hypothesized that scorched foods might contain and leach out AhR ligands sufficient to stimulate AhR in vitro. To test this hypothesis, scorched foods (bread, cheese, etc.) were mixed vigorously with water, and the supernatants were retrieved as samples. The samples were added to HepG2 cells stably expressing an AhR-responsive reporter gene. Also, expression of CYP1A1, an endogenous AhR-responsive gene, was analyzed by RT-PCR in different cell lines treated with the samples. We further tested whether pretreatment of the samples with activated charcoal would alter their AhR-stimulating activity. All the supernatant samples tested induced AhR-dependent reporter gene activity and CYP1A1 mRNA expression. In some samples, these inductions were inhibited by pretreatment with activated charcoal. Our findings indicate that scorched food leachates stimulate AhR in cultured cells and that activated charcoal adsorbs the AhR-stimulating substances in some leachates. Thus, people who habitually eat scorched foods are exposed to AhR ligands on a regular basis. Further studies are needed to elucidate whether burnt foods actually exert biological effects on our health.

  9. Endocrine disrupting potentials of Bisphenol A, Bisphenol A dimethacrylate, 4-n-Nonyl-phenol and 4-Octylphenol assessed in cell model systems for effects on the estrogen-, androgen-, aryl hydrocarbon-receptor and aromatase activity

    DEFF Research Database (Denmark)

    Bonefeld-Jørgensen, Eva Cecilie; Long, Manhai; Hofmeister, Marlene V;

    used as surfactants. We have investigated the effect in vitro of these four plasticizers in four cell culture model systems.The estrogenic potencies were analyzed using the stable ERE-luciferase transfected cell line MVLN measuring the relative estrogen receptor (ER) transactivated luciferase units...... in the conversion of androgens to estrogens in an array of cells, were assessed in the human choriocarcinoma JEG-3 cells using the classical [3H]2O assay. Trans-activation of the Aryl hydrocarbon receptor (AhR) was determined in the mouse hepatoma Hepa1.12cR cell line, stable transfected by an AhR-CALUX construct...... determining RLU. All four compounds elicited a response in each of the four bioassays. Thus, our in vitro data clearly indicates that the four tested plasticizers have ED potentials and that such effects can be mediated via several cellular pathway systems including the estrogen- and the androgen hormones...

  10. Aryl hydrocarbon receptor-mediated toxic potency of dissolved lipophilic organic contaminants collected from Lincoln Creek, Milwaukee, Wisconsin, USA, to PLHC-1 (Poeciliopsis lucida) fish hepatoma cells

    Energy Technology Data Exchange (ETDEWEB)

    Villeneuve, D.L.; Crunkilton, R.L.; DeVita, W.M. [Univ. of Wisconsin, Stevens Point, WI (United States)

    1997-05-01

    Lincoln Creek is a severely degraded urban stream located in Milwaukee County, Wisconsin, USA. As part of a comprehensive study on effects of urban storm water runoff on the stream biota, an in vitro bioassay with PLHC-1 (Poeciliopsis lucida) fish hepatoma cells was used to assess potential toxic potency of aryl hydrocarbon receptor (AhR)-active compounds, collected by semipermeable membrane devices (SPMDs) exposed to Lincoln Creek water. Dialysates from SPMDs exposed to Lincoln Creek water caused marked cytochrome P4501A induction in PLHC-1. Toxic potency of dialysates, expressed as bioassay-derived 2,3,7,8-tetrachlorodibenzo-p-dioxin equivalents (TCDD-EQ) ranged from 1,300 to 6,600 pg TCDD-EQ/g SPMD for 14-d exposures. Dialysates from SPMDs exposed to stream water at base flow had potencies consistently lower than those exposed to storm-flow (high-flow) events that occurred during the same 14-d period. Polychlorinated biphenyls were not detectable in the dialysates. Gas chromatography-mass spectrometry analysis identified polycyclic aromatic hydrocarbons (PAHs) as major contaminants in the dialysates. A log-log correlation of total PAHs and TCDD-EQ yielded an r{sup 2} of 0.802. Empirical evidence suggests that AhR-active PAHs can account for about 20 to 50% of the potency observed.

  11. Diversification of the ant odorant receptor gene family and positive selection on candidate cuticular hydrocarbon receptors.

    Science.gov (United States)

    Engsontia, Patamarerk; Sangket, Unitsa; Robertson, Hugh M; Satasook, Chutamas

    2015-08-27

    Chemical communication plays important roles in the social behavior of ants making them one of the most successful groups of animals on earth. However, the molecular evolutionary process responsible for their chemosensory adaptation is still elusive. Recent advances in genomic studies have led to the identification of large odorant receptor (Or) gene repertoires from ant genomes providing fruitful materials for molecular evolution analysis. The aim of this study was to test the hypothesis that diversification of this gene family is involved in olfactory adaptation of each species. We annotated the Or genes from the genome sequences of two leaf-cutter ants, Acromyrmex echinatior and Atta cephalotes (385 and 376 putative functional genes, respectively). These were used, together with Or genes from Camponotus floridanus, Harpegnathos saltator, Pogonomyrmex barbatus, Linepithema humile, Cerapachys biroi, Solenopsis invicta and Apis mellifera, in molecular evolution analysis. Like the Or family in other insects, ant Or genes evolve by the birth-and-death model of gene family evolution. Large gene family expansions involving tandem gene duplications, and gene gains outnumbering losses, are observed. Codon analysis of genes in lineage-specific expansion clades revealed signatures of positive selection on the candidate cuticular hydrocarbon receptor genes (9-exon subfamily) of Cerapachys biroi, Camponotus floridanus, Acromyrmex echinatior and Atta cephalotes. Positively selected amino acid positions are primarily in transmembrane domains 3 and 6, which are hypothesized to contribute to the odor-binding pocket, presumably mediating changing ligand specificity. This study provides support for the hypothesis that some ant lineage-specific Or genes have evolved under positive selection. Newly duplicated genes particularly in the candidate cuticular hydrocarbon receptor clade that have evolved under positive selection may contribute to the highly sophisticated lineage

  12. Search for Ah(dioxin) receptor target genes which mediate dioxin toxicity: induction of p27{sup Kip1} cell cycle inhibitor and N-myristoyltransferase 2

    Energy Technology Data Exchange (ETDEWEB)

    Kolluri, S.K.

    1999-01-01

    Dioxins, in particular TCDD, are potent mammalian toxins acting predominantly in the thymus and skin, in body weight regulation and in liver carcinogenesis. The Ah receptor (AhR) a ligand activated transcription factor belonging to the bHLH-PAS protein family mediates the toxicity of dioxins. Despite the extensive research conducted during the past 20 years, the mechanism by which AhR mediates the toxicity of dioxins is not understood. Known AhR regulated genes mostly code for xenobiotica metabolizing enzymes but the AhR target gene(s) which mediate toxicity are not known. In this study 5L rat hepatoma cells were employed as a model system for dioxin toxicity in which TCDD severely delays cell cycle progression in the G1 phase by an AhR dependent mechanism. An AhR deficient variant subclone of 5L cells, the BP8 cells, are resistant to TCDD. These AhR-deficient cells were used for a mutational analysis of AhR overexpression to test the required properties of AhR to delay cell cycle progression. Both, the receptor`s capacity for sequence specific DNA recognition and the presence of the transcriptional activation domain are necessary to induce the cell cycle delay. This suggests that AhR mediates the TCDD effects on cell cycle by bona fide induction of yet to be identified target genes. Such AhR target genes were searched following two approaches, e.g. based on the biochemical analysis of the cell cycle machinery and by a systematic search for AhR induced genes. Evidence from biochemical analysis of the cell cycle machinery suggested that TCDD might induce cell cycle inhibitor(s). One of the inhibitory proteins, p27{sup Kip1}, is induced by TCDD in 5L cells. Induction of p27{sup Kip1} occurs through the direct induction of Kip1 mRNA by AhR. AhR-dependent activation of Kip1-transcription is a novel mechanism of Kip1 induction which is distinct from the accumulation of Kip1 protein caused by posttranscriptional regulation in all the cases reported so far. Kip1 is the

  13. An aryl hydrocarbon receptor ligand acts on dendritic cells and T cells to suppress the Th17 response in allergic rhinitis patients.

    Science.gov (United States)

    Wei, Ping; Hu, Guo-Hua; Kang, Hou-Yong; Yao, Hong-Bing; Kou, Wei; Liu, Hong; Zhang, Cheng; Hong, Su-Ling

    2014-05-01

    A predominant Th17 population is a marker of allergic rhinitis (AR). The aryl hydrocarbon receptor (AhR) exhibits strong immunomodulation potential via regulation of the differentiation of T lymphocytes and dendritic cells (DCs) after activation by its ligand, such as 2-(1'H-indole-3'-carbonyl)-thiazole-4-carboxylic acid methyl ester (ITE). The aim of this study was to analyze the effect of AhR on Th17 differentiation by investigating the action of ITE on DCs and CD4(+) T cells from patients with AR. In all, 26 AR patients and 12 healthy controls were included in this study. The expression of interleukin (IL)-1β, IL-6, IL-10, and IL-17 in the culture supernatant and the presence of Th17 cells in CD4(+) T cells and DC-CD4(+) T-cell co-culture system were measured before and after treatment with ITE. We show that ITE significantly induced cell secretion of IL-10 and inhibited IL-1β and IL-6 production in DCs, and promoted IL-10 production and suppressed IL-17 expression in CD4(+) T cells in vitro. It also suppressed the expansion of Th17 cells in vitro. Our work demonstrates that ITE acts on DCs and CD4(+) T cells to inhibit the Th17 response that suppresses AR; the AhR-DC-Th17 axis may be an important pathway in the treatment of AR. ITE, a nontoxic AhR ligand, attenuated the Th17 response; thus, it appears to be a promising therapeutic candidate for suppressing the inflammatory responses associated with AR.

  14. The Mitochondria-Targeted Antioxidant SkQ1 Downregulates Aryl Hydrocarbon Receptor-Dependent Genes in the Retina of OXYS Rats with AMD-Like Retinopathy

    Directory of Open Access Journals (Sweden)

    M. L. Perepechaeva

    2014-01-01

    Full Text Available The mitochondria-targeted antioxidant SkQ1 is a novel drug thought to retard development of age-related diseases. It has been shown that SkQ1 reduces clinical signs of retinopathy in senescence-accelerated OXYS rats, which are a known animal model of human age-related macular degeneration (AMD. The aim of this work was to test whether SkQ1 affects transcriptional activity of AhR (aryl hydrocarbon receptor and Nrf2 (nuclear factor erythroid 2-related factor 2, which are considered as AMD-associated genes in the retina of OXYS and Wistar rats. Our results showed that only AhR and AhR-dependent genes were sensitive to SkQ1. Dietary supplementation with SkQ1 decreased the AhR mRNA level in both OXYS and Wistar rats. At baseline, the retinal Cyp1a1 mRNA level was lower in OXYS rats. SkQ1 supplementation decreased the Cyp1a1 mRNA level in Wistar rats, but this level remained unchanged in OXYS rats. Baseline Cyp1a2 and Cyp1b1 mRNA expression was stronger in OXYS than in Wistar rats. In the OXYS strain, Cyp1a2 and Cyp1b1 mRNA levels decreased as a result of SkQ1 supplementation. These data suggest that the Cyp1a2 and Cyp1b1 enzymes are involved in the pathogenesis of AMD-like retinopathy of OXYS rats and are possible therapeutic targets of SkQ1.

  15. Tetrachlorodibenzo-p-dioxin exposure alters radial arm maze performance and hippocampal morphology in female AhR mice.

    Science.gov (United States)

    Powers, B E; Lin, T-M; Vanka, A; Peterson, R E; Juraska, J M; Schantz, S L

    2005-02-01

    Perinatal exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) has been reported to alter spatial learning in rats tested on a radial arm maze (RAM). TCDD is believed to exert most of its effects through binding to the aryl hydrocarbon receptor (AhR). To determine whether the AhR mediates TCDD-induced alterations in spatial learning, we tested male and female AhR-knockout (AhR-/-), heterozygous (AhR+/-) and wild-type (AhR+/+) mice on the RAM. AhR+/- male and female mice were time mated, and treated dams were dosed with 5 microg TCDD/kg body weight on day 13 of gestation. When offspring reached adulthood, male and female AhR+/+, AhR+/- and AhR-/- mice from TCDD-exposed and unexposed litters were tested on the eight-arm RAM. After testing, we examined hippocampal morphology as visualized by the Timm's silver sulfide stain. TCDD-exposed female AhR+/- mice made more errors than their respective controls on the RAM and exhibited a decrease in the size of the intra- and infrapyramidal mossy fiber (IIP-MF) field of the hippocampus. None of the other TCDD-exposed groups differed from their respective control groups with regard to maze performance or hippocampal morphology. The reduction of IIP-MF field indicates a possible morphological basis for the learning deficit that was observed in the female AhR+/- mice. It is hypothesized that the effect of TCDD exposure is AhR dependent and that TCDD may alter GABAergic activity in the hippocampus of female mice during development.

  16. Aryl hydrocarbon receptor mediated activities in road dust from a metropolitan area, Hanoi-Vietnam: contribution of polycyclic aromatic hydrocarbons (PAHs) and human risk assessment.

    Science.gov (United States)

    Tuyen, Le Huu; Tue, Nguyen Minh; Suzuki, Go; Misaki, Kentaro; Viet, Pham Hung; Takahashi, Shin; Tanabe, Shinsuke

    2014-09-01

    Dioxin-Responsive Chemical-Activated LUciferase gene eXpression assay (DR-CALUX) was applied to assess the total toxic activity of the mixture of PAHs and related compounds as well as dioxin-related compounds in road dust from urban areas of Hanoi, Vietnam. Road dust from Hanoi contained significantly higher DR-CALUX activities (3 to 39, mean 20 ng CALUX-TEQ/g dw) than those from a rural site (2 to 13, mean 5 ng CALUX-TEQ/g dw). The total concentrations of 24 major PAHs (Σ24PAHs) in urban road dust (0.1 to 5.5, mean 2.5 μg/g dw) were also 6 times higher than those in rural road dust (0.08 to 1.5, mean 0.4 μg/g dw). Diagnostic ratios of PAHs indicated vehicular engine combustion as the major PAH emission source in both sites. PAHs accounted for 0.8 to 60% (mean 10%) and 2 to 76% (mean 20%) of the measured CALUX-TEQs in road dust for Hanoi the rural site, respectively. Benzo[b]-/benzo[k]fluoranthenes were the major TEQ contributors among PAHs, whereas DRCs contributed hydrocarbon receptor agonists in road dust. Significant PAH concentrations in urban dust indicated high mutagenic and carcinogenic potencies. Estimated results of incremental life time cancer risk (ILCR) indicated that Vietnamese populations, especially those in urban areas such as Hanoi, are potentially exposed to high cancer risk via both dust ingestion and dermal contact. This is the first study on the exposure risk of AhR agonists, including PAHs and DRCs, in urban road dust from a developing country using a combined bio-chemical analytical approach.

  17. Aryl Hydrocarbon Receptor Ligands in Cigarette Smoke Induce Production of Interleukin-22 to Promote Pancreatic Fibrosis in Models of Chronic Pancreatitis.

    Science.gov (United States)

    Xue, Jing; Zhao, Qinglan; Sharma, Vishal; Nguyen, Linh P; Lee, Yvonne N; Pham, Kim L; Edderkaoui, Mouad; Pandol, Stephen J; Park, Walter; Habtezion, Aida

    2016-12-01

    Cigarette smoke has been identified as an independent risk factor for chronic pancreatitis (CP). Little is known about the mechanisms by which smoking promotes development of CP. We assessed the effects of aryl hydrocarbon receptor (AhR) ligands found in cigarette smoke on immune cell activation in humans and pancreatic fibrosis in animal models of CP. We obtained serum samples from patients with CP treated at Stanford University hospital and healthy individuals (controls) and isolated CD4(+) T cells. Levels of interleukin-22 (IL22) were measured by enzyme-linked immunosorbent assay and smoking histories were collected. T cells from healthy nonsmokers and smokers were stimulated and incubated with AhR agonists (2,3,7,8-tetrachlorodibenzo-p-dioxin or benzo[a]pyrene) or antagonists and analyzed by flow cytometry. Mice were given intraperitoneal injections of caerulein or saline, with or without lipopolysaccharide, to induce CP. Some mice were given intraperitoneal injections of AhR agonists at the start of caerulein injection, with or without an antibody against IL22 (anti-IL22) starting 2 weeks after the first caerulein injection, or recombinant mouse IL22 or vehicle (control) intraperitoneally 4 weeks after the first caerulein injection. Mice were exposed to normal air or cigarette smoke for 6 h/d for 7 weeks and expression of AhR gene targets was measured. Pancreata were collected from all mice and analyzed by histology and quantitative reverse transcription polymerase chain reaction. Pancreatic stellate cells and T cells were isolated and studied using immunoblot, immunofluorescence, flow cytometry, and enzyme-linked immunosorbent analyses. Mice given AhR agonists developed more severe pancreatic fibrosis (based on decreased pancreas size, histology, and increased expression of fibrosis-associated genes) than mice not given agonists after caerulein injection. In mice given saline instead of caerulein, AhR ligands did not induce fibrosis. Pancreatic T cells

  18. Aryl hydrocarbon receptor ligand effects in RBL2H3 cells

    DEFF Research Database (Denmark)

    Maaetoft-Udsen, Kristina; Shimoda, Lori M. N.; Frøkiær, Hanne;

    2012-01-01

    The aryl hydrocarbon receptor (AHR) mediates toxic effects of dioxin and xenobiotic metabolism. AHR has an emerging role in the immune system, but its physiological ligands and functional role in immunocytes remain poorly understood. Mast cells are immunocytes that are central to inflammatory...

  19. Smoke carcinogens cause bone loss through the aryl hydrocarbon receptor and induction of CYP1 enzymes

    Science.gov (United States)

    Smoking is a major risk factor for osteoporosis and fracture. Here, we show that smoke toxins and environmental chemicals such as benzo[a]pyrene (BaP), 2,3,7,8-tetrachlorodibenzo-pdioxin (TCDD), and 3-methyl cholanthrene, which are well known aryl hydrocarbon receptor (AHR) agonists, induce osteocla...

  20. Effects of currently used pesticides in the AhR-CALUX assay: comparison between the human TV101L and the rat H4IIE cell line

    DEFF Research Database (Denmark)

    Long, M.; Laier, Peter; Vinggaard, Anne;

    2003-01-01

    The aryl hydrocarbon receptor (AhR) is a ligand-activated transcription factor that mediates many of the biologic and toxicological effects of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) and related compounds. The in vitro chemically activated luciferase expression (CALUX) assay has been proven...... TV101L hepatoma cell lines. In comparison the results indicated that the rat H4IIE cell line is more sensitive than the human TV101L for detection of TCDD inducing AhR-CALUX activity. The pesticides iprodione, chlorpyrifos and prochloraz showed dose-dependent AhR agonistic effects in both cell lines...

  1. Metformin inhibits 7,12-dimethylbenz[a]anthracene-induced breast carcinogenesis and adduct formation in human breast cells by inhibiting the cytochrome P4501A1/aryl hydrocarbon receptor signaling pathway

    Energy Technology Data Exchange (ETDEWEB)

    Maayah, Zaid H. [Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451 (Saudi Arabia); Ghebeh, Hazem [Stem Cell & Tissue Re-Engineering, King Faisal Specialist Hospital and Research Center, Riyadh 11211 (Saudi Arabia); Alhaider, Abdulqader A. [Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451 (Saudi Arabia); Camel Biomedical Research Unit, College of Pharmacy and Medicine, King Saud University, Riyadh 11451 (Saudi Arabia); El-Kadi, Ayman O.S. [Faculty of Pharmacy & Pharmaceutical Sciences, University of Alberta, Edmonton (Canada); Soshilov, Anatoly A.; Denison, Michael S. [Department of Environmental Toxicology, University of California at Davis, Davis, CA 95616 (United States); Ansari, Mushtaq Ahmad [Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451 (Saudi Arabia); Korashy, Hesham M., E-mail: hkorashy@ksu.edu.sa [Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451 (Saudi Arabia)

    2015-04-15

    Recent studies have established that metformin (MET), an oral anti-diabetic drug, possesses antioxidant activity and is effective against different types of cancer in several carcinogen-induced animal models and cell lines. However, whether MET can protect against breast cancer has not been reported before. Therefore, the overall objectives of the present study are to elucidate the potential chemopreventive effect of MET in non-cancerous human breast MCF10A cells and explore the underlying mechanism involved, specifically the role of cytochrome P4501A1 (CYP1A1)/aryl hydrocarbon receptor (AhR) pathway. Transformation of the MCF10A cells into initiated breast cancer cells with DNA adduct formation was conducted using 7,12-dimethylbenz[a]anthracene (DMBA), an AhR ligand. The chemopreventive effect of MET against DMBA-induced breast carcinogenesis was evidenced by the capability of MET to restore the induction of the mRNA levels of basic excision repair genes, 8-oxoguanine DNA glycosylase (OGG1) and apurinic/apyrimidinic endonuclease1 (APE1), and the level of 8-hydroxy-2-deoxyguanosine (8-OHdG). Interestingly, the inhibition of DMBA-induced DNA adduct formation was associated with proportional decrease in CYP1A1 and in NAD(P)H:quinone oxidoreductase 1 (NQO1) gene expression. Mechanistically, the involvements of AhR and nuclear factor erythroid 2-related factor-2 (Nrf2) in the MET-mediated inhibition of DMBA-induced CYP1A1 and NQO1 gene expression were evidenced by the ability of MET to inhibit DMBA-induced xenobiotic responsive element and antioxidant responsive element luciferase reporter gene expression which suggests an AhR- and Nrf2-dependent transcriptional control. However, the inability of MET to bind to AhR suggests that MET is not an AhR ligand. In conclusion, the present work shows a strong evidence that MET inhibits the DMBA-mediated carcinogenicity and adduct formation by inhibiting the expression of CYP1A1 through an AhR ligand-independent mechanism

  2. Disruption of Ah Receptor Signaling during Mouse Development Leads to Abnormal Cardiac Structure and Function in the Adult.

    Directory of Open Access Journals (Sweden)

    Vinicius S Carreira

    Full Text Available The Developmental Origins of Health and Disease (DOHaD Theory proposes that the environment encountered during fetal life and infancy permanently shapes tissue physiology and homeostasis such that damage resulting from maternal stress, poor nutrition or exposure to environmental agents may be at the heart of adult onset disease. Interference with endogenous developmental functions of the aryl hydrocarbon receptor (AHR, either by gene ablation or by exposure in utero to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD, a potent AHR ligand, causes structural, molecular and functional cardiac abnormalities and altered heart physiology in mouse embryos. To test if embryonic effects progress into an adult phenotype, we investigated whether Ahr ablation or TCDD exposure in utero resulted in cardiac abnormalities in adult mice long after removal of the agent. Ten-months old adult Ahr-/- and in utero TCDD-exposed Ahr+/+ mice showed sexually dimorphic abnormal cardiovascular phenotypes characterized by echocardiographic findings of hypertrophy, ventricular dilation and increased heart weight, resting heart rate and systolic and mean blood pressure, and decreased exercise tolerance. Underlying these effects, genes in signaling networks related to cardiac hypertrophy and mitochondrial function were differentially expressed. Cardiac dysfunction in mouse embryos resulting from AHR signaling disruption seems to progress into abnormal cardiac structure and function that predispose adults to cardiac disease, but while embryonic dysfunction is equally robust in males and females, the adult abnormalities are more prevalent in females, with the highest severity in Ahr-/- females. The findings reported here underscore the conclusion that AHR signaling in the developing heart is one potential target of environmental factors associated with cardiovascular disease.

  3. Altered thyroxin and retinoid metabolic response to 2,3,7,8-tetrachlorodibenzo-p-dioxin in aryl hydrocarbon receptor-null mice

    Energy Technology Data Exchange (ETDEWEB)

    Nishimura, Noriko; Yonemoto, Junzo [National Institute for Environmental Studies, Endocrine Disruptors and Dioxin Research Project, Tsukuba (Japan); Miyabara, Yuichi [Shinshu University, Research and Education Center for Inlandwater Environment, Nagano (Japan); Fujii-Kuriyama, Yoshiaki [University of Tsukuba, Center for Tsukuba Advanced Research Alliance, Tsukuba (Japan); Tohyama, Chiharu [National Institute for Environmental Studies, Environmental Health Sciences Division, Tsukuba (Japan)

    2005-05-01

    To determine whether the disruption of thyroid hormone and retinoid homeostasis that occurs after exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) can be mediated by the arylhydrocarbon receptor (AhR), pregnant AhR-heterozygous (AhR+/-) mice were administered a single oral dose of 10 {mu}g kg{sup -1} TCDD at gestation day 12.5. Serum and liver were collected on postnatal day 21 from vehicle-treated control or TCDD-treated AhR+/- and AhR-null (AhR-/-) mouse pups. Whereas TCDD exposure resulted in a marked reduction of total thyroxin (TT4) and free T4 (FT4) levels in the serum of AhR+/- mice, TCDD had no effects on AhR-/- mice. Gene expression of UDP-glucuronosyltransferase (UGT)1A6, cytochrome P450 (CYP)1A1, and CYP1A2 in the liver was induced markedly by TCDD in AhR+/- but not AhR-/- mice. Induction of CYP1A1 in response to TCDD was confirmed by immunohistochemical evidence in that CYP1A1 protein was conspicuously localized in the cytoplasm of hepatocytes in the centrilobular region. Levels of retinyl palmitate were greatly reduced in the liver of TCDD-exposed AhR+/- mice, but not in vehicle-treated AhR+/- mice. No effects of TCDD on retinoid levels in the liver were found in AhR-/- mice. We conclude that disruption of thyroid hormone and retinoid homeostasis is mediated entirely via AhR. Induction of UGT1A6 is thought to be responsible at least partly for reduced serum thyroid hormone levels in TCDD-exposed mice. (orig.)

  4. High-resolution gas chromatographic analysis of polycyclic aromatic hydrocarbons and aliphatic hydrocarbons; Separacion por cromatografia de gases de alta eficiencia de hidrocarburos aromaticos policiclicos, (PAH) y alifaticos (AH) ambientales, empleado como fases estacionarias OV-1 y SE-54

    Energy Technology Data Exchange (ETDEWEB)

    Perez, M.; Gonzalez, D.

    1988-07-01

    A study of the analysis by gas chromatography of aromatic polycyclic hydrocarbons and aliphatic hydrocarbons is presented. The separation has been carried out by glass and fused silica capillary column in two different polar stationary phases OV-1 and SE-54. The limitation and the advantages of the procedure are discussed in terms of separation, sensitivity and precision. (Author) 20 refs.

  5. In vitro function of the aryl hydrocarbon receptor predicts in vivo sensitivity of oviparous vertebrates to dioxin-like compounds

    Science.gov (United States)

    Differences in sensitivity to dioxin-like compounds (DLCs) among species and taxa presents a major challenge to ecological risk assessments. Activation of the aryl hydrocarbon receptor (AHR) regulates adverse effects associated with exposure to DLCs in vertebrates. Prior investig...

  6. In vitro function of the aryl hydrocarbon receptor predicts in vivo sensitivity of oviparous vertebrates to dioxin-like compounds

    Science.gov (United States)

    Differences in sensitivity to dioxin-like compounds (DLCs) among species and taxa presents a major challenge to ecological risk assessments. Activation of the aryl hydrocarbon receptor (AHR) regulates adverse effects associated with exposure to DLCs in vertebrates. Prior investig...

  7. Lineage-dependent effects of aryl hydrocarbon receptor agonists contribute to liver tumorigenesis

    OpenAIRE

    Harrill, Joshua A.; Bethany B Parks; Wauthier, Eliane; Rowlands, J. Craig; Reid, Lola M.; Thomas, Russell S.

    2015-01-01

    Rodent cancer bioassays indicate that the aryl hydrocarbon receptor (AHR) agonist, 2,3,7,8-tetracholorodibenzo-p-dioxin (TCDD), causes increases in both hepatocytic and cholangiocytic tumors. Effects of AHR activation have been evaluated on rodent hepatic stem cells (rHpSCs) versus their descendants, hepatoblasts (rHBs), two lineage stages of multipotent, hepatic precursors with overlapping but also distinct phenotypic traits. This was made possible by defining the first successful culture co...

  8. Fetal exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin transactivates aryl hydrocarbon receptor-responsive element III in the tyrosine hydroxylase immunoreactive neurons of the mouse midbrain.

    Science.gov (United States)

    Tanida, Takashi; Tasaka, Ken; Akahoshi, Eiichi; Ishihara-Sugano, Mitsuko; Saito, Michiko; Kawata, Shigehisa; Danjo, Megumi; Tokumoto, Junko; Mantani, Youhei; Nagahara, Daichi; Tabuchi, Yoshiaki; Yokoyama, Toshifumi; Kitagawa, Hiroshi; Kawata, Mitsuhiro; Hoshi, Nobuhiko

    2014-02-01

    Fetal exposure to dioxins and related compounds is known to disrupt normal development of the midbrain dopaminergic system, which regulates behavior, cognition and emotion. The toxicity of these chemicals is mediated mainly by aryl hydrocarbon receptor (AhR) signaling. Previously, we identified a novel binding motif of AhR, the AhR-responsive element III (AHRE-III), in vitro. This motif is located upstream from the gene encoding tyrosine hydroxylase (TH), the rate-limiting enzyme of dopamine biosynthesis. To provide in vivo evidence, we investigated whether 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) could regulate AHRE-III transcriptional activity in midbrain dopaminergic neurons. We produced transgenic mice with inserted constructs of the AHRE-III enhancers, TH gene promoter and the c-myc-tagged luciferase gene. Single oral administrations of TCDD (0-2000 ng kg⁻¹ body weight) to the transgenic dams markedly enhanced TH-immunoreactive (ir) intensity in the A9, A10 and A8 areas of their offspring at 3 days and 8 weeks of age. The offspring of dams treated with 200 ng kg⁻¹ TCDD exhibited significant increases in the numbers of TH- and double (TH and c-myc)-ir neurons in area A9 compared with controls at 8 weeks. These results show that fetal exposure to TCDD upregulates TH expression and increases TH-ir neurons in the midbrain. Moreover, the results suggest that TCDD directly transactivates the TH promoter via the AhR-AHRE-III-mediated pathway in area A9. Fetal exposure to TCDD caused stable upregulation of TH via the AhR-AHRE-III signaling pathway and overgrowth of TH-ir neurons in the midbrain, implying possible involvement in the etiology of neurodevelopmental disorders such as attention-deficit/hyperactivity disorder (ADHD).

  9. AhR transcriptional activity in serum of Inuits across Greenlandic districts

    Directory of Open Access Journals (Sweden)

    Bonefeld-Jorgensen Eva C

    2007-10-01

    Full Text Available Abstract Background Human exposure to lipophilic persistent organic pollutants (POPs including polychlorinated dibenzo-p-dioxins/furans (PCDDs/PCDFs, polychlorinated biphenyls (PCBs and organochlorine pesticide is ubiquitous. The individual is exposed to a complex mixture of POPs being life-long beginning during critical developmental windows. Exposure to POPs elicits a number of species- and tissue-specific toxic responses, many of which involve the aryl hydrocarbon receptor (AhR. The aim of this study was to compare the actual level of integrated AhR transcriptional activity in the lipophilic serum fraction containing the actual POP mixture among Inuits from different districts in Greenland, and to evaluate whether the AhR transactivity is correlated to the bio-accumulated POPs and/or lifestyle factors. Methods The study included 357 serum samples from the Greenlandic districts: Nuuk and Sisimiut (South West Coast, Qaanaaq (North Coast and Tasiilaq (East Coast. The bio-accumulated serum POPs were extracted by ethanol: hexane and clean-up on Florisil columns. Effects of the serum extract on the AhR transactivity was determined using the Hepa 1.12cR mouse hepatoma cell line carrying an AhR-luciferase reporter gene, and the data was evaluated for possible association to the serum levels of 14 PCB congeners, 10 organochlorine pesticide residues and/or lifestyle factors. Results In total 85% of the Inuit samples elicited agonistic AhR transactivity in a district dependent pattern. The median level of the AhR-TCDD equivalent (AhR-TEQ of the separate genders was similar in the different districts. For the combined data the order of the median AhR-TEQ was Tasiilaq > Nuuk ≥ Sisimiut > Qaanaaq possibly being related to the different composition of POPs. In overall, the AhR transactivity was inversely correlated to the levels of sum POPs, age and/or intake of marine food. Conclusion i We observed that the proportion of dioxin like (DL compounds in the

  10. The AhR is involved in the regulation of LoVo cell proliferation through cell cycle-associated proteins.

    Science.gov (United States)

    Yin, Jiuheng; Sheng, Baifa; Han, Bin; Pu, Aimin; Yang, Kunqiu; Li, Ping; Wang, Qimeng; Xiao, Weidong; Yang, Hua

    2016-05-01

    Some ingredients in foods can activate the aryl hydrocarbon receptor (AhR) and arrest cell proliferation. In this study, we hypothesized that 6-formylindolo [3, 2-b] carbazole (FICZ) arrests the cell cycle in LoVo cells (a colon cancer line) through the AhR. The AhR agonist FICZ and the AhR antagonist CH223191 were used to treat LoVo cells. Real-time PCR and Western blot analyses were performed to detect the expression of the AhR, CYP1A1, CDK4, cyclinD1, cyclin E, CDK2, P27, and pRb. The distribution and activation of the AhR were detected with immunofluorescence. A 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide (MTT) assay and flow cytometric analysis were performed to measure cell viability, cell cycle stage, and apoptosis. Our results show that FICZ inhibited LoVo cell proliferation by inducing G1 cell cycle arrest but had no effect on epithelial apoptosis. Further analysis found that FICZ downregulated cyclinD1 and upregulated p27 expression to arrest Rb phosphorylation. The downregulation of cyclinD1 and upregulation of p27 were abolished by co-treatment with CH223191. We conclude that the AhR, when activated by FICZ (an endogenous AhR ligand), can arrest the cell cycle and block LoVo cell proliferation.

  11. Engraftment and lineage potential of adult hematopoietic stem and progenitor cells is compromised following short-term culture in the presence of an aryl hydrocarbon receptor antagonist.

    Science.gov (United States)

    Gu, Angel; Torres-Coronado, Monica; Tran, Chy-Anh; Vu, Hieu; Epps, Elizabeth W; Chung, Janet; Gonzalez, Nancy; Blanchard, Suzette; DiGiusto, David L

    2014-08-01

    Hematopoietic stem cell gene therapy for HIV/AIDS is a promising alternative to lifelong antiretroviral therapy. One of the limitations of this approach is the number and quality of stem cells available for transplant following in vitro manipulations associated with stem cell isolation and genetic modification. The development of methods to increase the number of autologous, gene-modified stem cells available for transplantation would overcome this barrier. Hematopoietic stem and progenitor cells (HSPC) from adult growth factor-mobilized peripheral blood were cultured in the presence of an aryl hydrocarbon receptor antagonist (AhRA) previously shown to expand HSPC from umbilical cord blood. Qualitative and quantitative assessment of the hematopoietic potential of minimally cultured (MC-HSPC) or expanded HSPC (Exp-HSPC) was performed using an immunodeficient mouse model of transplantation. Our results demonstrate robust, multilineage engraftment of both MC-HSPC and Exp-HSPC although estimates of expansion based on stem cell phenotype were not supported by a corresponding increase in in vivo engrafting units. Bone marrow of animals transplanted with either MC-HSPC or Exp-HSPC contained secondary engrafting cells verifying the presence of primitive stem cells in both populations. However, the frequency of in vivo engrafting units among the more primitive CD34+/CD90+ HSPC population was significantly lower in Exp-HSPC compared with MC-HSPC. Exp-HSPC also produced fewer lymphoid progeny and more myeloid progeny than MC-HSPC. These results reveal that in vitro culture of adult HSPC in AhRA maintains but does not increase the number of in vivo engrafting cells and that HSPC expanded in vitro contain defects in lymphopoiesis as assessed in this model system. Further investigation is required before implementation of this approach in the clinical setting.

  12. Epigenetic Determinants of CYP1A1 Induction by the Aryl Hydrocarbon Receptor Agonist 3,3',4,4',5-Pentachlorobiphenyl (PCB 126

    Directory of Open Access Journals (Sweden)

    Sabine U. Vorrink

    2014-08-01

    Full Text Available Many enzymes involved in xenobiotic metabolism, including cytochrome P450 (CYP 1A1, are regulated by the aryl hydrocarbon receptor (AhR. 3,3',4,4',5-Penta chlorobiphenyl (PCB 126 is a potent ligand for AhR and can thus induce the expression of CYP1A1. Interestingly, we observed that human carcinoma cell lines derived from different types of epithelial cells displayed divergent degrees of CYP1A1 induction after exposure to PCB 126. Since epigenetic mechanisms are known to be involved in cell type-specific gene expression, we sought to assess the epigenetic determinants of CYP1A1 induction in these carcinoma cell lines. In contrast to HepG2 hepatocarcinoma cells, HeLa cervical carcinoma cells showed significantly lower levels of CYP1A1 mRNA expression following PCB 126 exposure. Our results show that the two cell lines maintained differences in the chromatin architecture along the CYP1A1 promoter region. Furthermore, treatment with the epigenetic modifiers, trichostatin A (TSA and 5-aza-2'-deoxycytidine (5-Aza-dC, significantly increased the expression of CYP1A1 after PCB 126 treatment in HeLa cells. However, we did not observe apparent differences in methylation levels or specific location of CpG DNA methylation between the two cell lines in the analyzed CYP1A1 promoter region. Taken together, our findings suggest that the differences in CYP1A1 expression between HepG2 and HeLa cells are due to differences in the chromatin architecture of the CYP1A1 promoter and thus establish a role of epigenetic regulation in cell-specific CYP1A1 expression.

  13. Long-term p-nitrophenol exposure can disturb liver metabolic cytochrome P450 genes together with aryl hydrocarbon receptor in Japanese quail.

    Science.gov (United States)

    Ahmed, Eman; Nagaoka, Kentaro; Fayez, Mostafa; Samir, Haney; Watanabe, Gen

    2015-08-01

    P-Nitrophenol is a major metabolite of some organophosphorus compounds. It is considered to be one of nitrophenol derivatives of diesel exhaust particles that induce substantial hazards impacts on human and animal health. P-Nitrophenol (PNP) is a persistent organic pollutant. Consequently, bioaccumulation of PNP potentiates toxicity. The objectives of the current study were to assess the potential hepatic toxicity and pathway associated with long-term exposure to PNP. Japanese quails were orally administered different doses of PNP for 75 days. Liver and plasma samples were collected at days 45 (45D), days 60 (60D) and days 75 (75D). Liver histological changes and plasma corticosterone levels were assessed. Basal mRNA level of cytochromes P450 (CYP 450) (CYP1A4, 1A5, 1B1), heme oxygenase (HO-1), and aryl hydrocarbon receptor 1 (AhR1), from the liver of exposed birds and primary hepatocytes cultured for 24 hr with PNP, were analyzed using quantitative real-time PCR. The results revealed various histopathological changes in the liver, such as lymphocytes aggregation and hepatocytes degeneration. Significant increases in corticosterone levels were reported. After 60-days of in vivo exposure, the birds exhibited an overexpression in the liver CYP1A4, 1B1, AhR1, and HO-1. Furthermore, with continuous PNP administration, an overall downregulation of the tested genes was observed. In vitro, although a significant overexpression of CYP1A4, 1B1, and HO-1 was observed, CYP1A5 was downregulated. In conclusion, PNP can interfere with the liver CYP 450 enzymes and modulate HO-1 expression in the in vitro and in vivo experiments. Hence, it could have serious deleterious effects on humans, livestock, and wild animals.

  14. Identification of Cinnabarinic Acid as a Novel Endogenous Aryl Hydrocarbon Receptor Ligand That Drives IL-22 Production

    OpenAIRE

    2014-01-01

    The aryl hydrocarbon receptor (AHR) binds to environmental toxicants including synthetic halogenated aromatic hydrocarbons and is involved in a diverse array of biological processes. Recently, the AHR was shown to control host immunity by affecting the balance between inflammatory T cells that produce IL-17 (Th17) and IL-22 versus regulatory T cells (Treg) involved in tolerance. While environmental AHR ligands can mediate this effect, endogenous ligands are likely to be more relevant in host ...

  15. The aryl hydrocarbon receptor meets immunology: friend or foe? A little of both

    Directory of Open Access Journals (Sweden)

    Walker eJulliard

    2014-10-01

    Full Text Available The aryl hydrocarbon receptor (AHR has long been studied by toxicologists as a ligand-activated transcription factor that is activated by dioxin and other environmental pollutants such as polycyclic aromatic hydrocarbons. The hallmark of AHR activation is the upregulation of the cytochrome P450 enzymes that metabolize many of these toxic compounds. However, recent findings demonstrate that both exogenous and endogenous AHR ligands can alter innate and adaptive immune responses including effects on T-cell differentiation. Kynurenine, a tryptophan breakdown product, is one such endogenous ligand of the AHR. Expression of indoleamine 2,3-dioxygenase by dendritic cells causes accumulation of kynurenine and results in subsequent tolerogenic effects including increased regulatory T cell activity. At the same time, polycyclic aromatic hydrocarbons found in pollution enhance Th17 differentiation in the lungs of exposed mice via the AHR. In this perspective, we will discuss the importance of the AHR in the immune system and the role this might play in normal physiology and response to disease.

  16. The role of endogenous aryl hydrocarbon receptor signaling in cardiovascular physiology.

    Science.gov (United States)

    Zhang, Nan

    2011-04-01

    The aryl hydrocarbon receptor (AHR) is an orphan nuclear receptor with a primary function of mediating xenobiotic metabolism through transcriptional activation of Phase I and Phase II drug-metabolizing enzymes. Although no high-affinity physiological activators of AHR have been discovered, the endogenous signaling of the AHR pathway is believed to play an important role in the development and function of the cardiovascular system, based on the observations on ahr gene-deficient mice. The AHR knockout mice develop cardiac hypertrophy, abnormal vascular structure in multiple organs and altered blood pressure depending on their host environment. In this review, the endogenous role of AHR in cardiovascular physiology, including heart function, vascular development and blood pressure regulation has been summarized and discussed.

  17. Genetic dissection of endothelial transcriptional activity of zebrafish aryl hydrocarbon receptors (AHRs)

    Science.gov (United States)

    Sugden, Wade W.; Leonardo-Mendonça, Roberto C.; Acuña-Castroviejo, Darío

    2017-01-01

    The aryl hydrocarbon receptor (AHR) is a basic helix-loop-helix transcription factor conserved across phyla from flies to humans. Activated by a number of endogenous ligands and environmental toxins, studies on AHR function and gene regulation have largely focused on a toxicological perspective relating to aromatic hydrocarbons generated by human activities and the often-deleterious effects of exposure on vertebrates mediated by AHR activation. A growing body of work has highlighted the importance of AHR in physiologic processes, including immune cell differentiation and vascular patterning. Here we dissect the contribution of the 3 zebrafish AHRs, ahr1a, ahr1b and ahr2, to endothelial cyp1a1/b1 gene regulation under physiologic conditions and upon exposure to the AHR ligand Beta-naphthoflavone. We show that in fish multiple AHRs are functional in the vasculature, with vessel-specific differences in the ability of ahr1b to compensate for the loss of ahr2 to maintain AHR signaling. We further provide evidence that AHR can regulate the expression of the chemokine receptor cxcr4a in endothelial cells, a regulatory mechanism that may provide insight into AHR function in the endothelium. PMID:28817646

  18. American Housing Survey (AHS)

    Data.gov (United States)

    Department of Housing and Urban Development — The AHS is the largest, regular national housing sample survey in the United States. The U.S. Census Bureau conducts the AHS to obtain up-to-date housing statistics...

  19. Changes of aryl hydrocarbon receptor in cardiac hypertrophy induced by high glucose in vitro%芳香烃受体在体外高糖环境诱导心肌肥大过程中的表达

    Institute of Scientific and Technical Information of China (English)

    唐雪娇; 肖骅; 张磊; 魏潇; 雷建明; 郭静文

    2016-01-01

    AIM:To investigate the changes of aryl hydrocarbon receptor (AhR) in the process of cardiomyo-cyte hypertrophy induced by high glucose , and to explore its potential mechanisms .METHODS: The rat cardiomyocytes (H9c2 cells) were divided into normal glucose group , high glucose group, DMSO group and resveratrol (an AhR antago-nist) group.The content and distribution of AhR were observed with immunofluorescence staining .The myocardial cells were stained with rhodamine-labeled phalloidin to visualize cytoskeleton , and the cell surface area were determined after im-aging by fluorescence microscopy .The generation of reactive oxygen species ( ROS) in the cardiomyocytes was measured u-sing a fluorescent probe DCFH-DA.The mRNA expression of AhR , CYP1A1, atrial natriuretic peptide ( ANP) and brain natriuretic peptide ( BNP) were evaluated by real-time quantitative PCR ( RT-qPCR).The protein levels of AhR, CYP1A1, ANP and BNP were assessed by Western blot .RESULTS:AhR was constitutively presented in the cytosol un-der normal-glucose condition and was translocated to the nuclei under high-glucose condition .High glucose induced cardiac hypertrophy , and increased ROS generation .Significant reductions in the cell size and ROS generation were observed after treated with resveratrol.The expression of AhR, CYP1A1, ANP and BNP at mRNA and protein levels in high glucose group was increased as compared with normal glucose group and resveratrol group , and the above-mentioned indexes signifi-cantly decreased in resveratrol group as compared with DMSO group .CONCLUSION: High glucose-induced cardiac hy-pertrophy increases AhR expression , which may be involved in the maintenance of glucose homeostasis in the cardiomyo-cytes.AhR translocation to the nucleus induced by high glucose results in the increases in CYP 1A1 expression and ROS generation, which may be an important mechanism of high glucose-induced cardiomyocyte hypertrophy .%目的:观察高糖环境诱导心肌细胞肥

  20. Contribution of priority PAHs and POPs to Ah receptor-mediated activities in sediment samples from the River Elbe Estuary, Germany.

    Science.gov (United States)

    Otte, Jens C; Keiter, Steffen; Faßbender, Christopher; Higley, Eric B; Rocha, Paula Suares; Brinkmann, Markus; Wahrendorf, Dierk-Steffen; Manz, Werner; Wetzel, Markus A; Braunbeck, Thomas; Giesy, John P; Hecker, Markus; Hollert, Henner

    2013-01-01

    The estuary of the River Elbe between Hamburg and the North Sea (Germany) is a sink for contaminated sediment and suspended particulate matter (SPM). One major concern is the effect of human activities on the hydrodynamics, particularly the intensive dredging activities in this area that may result in remobilization of sediment-bound pollutants. The aim of this study was to identify pollutants contributing to the toxicological risk associated with re-suspension of sediments in the Elbe Estuary by use of an effect-directed analysis that combines chemical and biological analyses in with specific fractionation techniques. Sediments were collected from sites along the Elbe Estuary and a site from a small harbor basin of the Elbe Estuary that is known to be polluted. The sixteen priority EPA-PAHs were quantified in organic extracts of sediments. In addition, dioxin equivalents of sediments were investigated by use of the 7-ethoxyresorufin O-deethylase assay with RTL-W1 cells and the Ah receptor-mediated luciferase transactivation assay with H4IIE-luc cells. Quantification of the 16 priority PAHs revealed that sediments were moderately contaminated at all of the sites in the Elbe River Estuary (Elbe River into its estuary. Successful identification of a significant portion of dioxin-like activity to priority PAHs in complex environmental samples such as sediments has rarely been reported.

  1. Aryl hydrocarbon receptor-dependent upregulation of Cyp1b1 by TCDD and diesel exhaust particles in rat brain microvessels

    Directory of Open Access Journals (Sweden)

    Jacob Aude

    2011-08-01

    Full Text Available Abstract Background AhR activates the transcription of several target genes including CYP1B1. Recently, we showed CYP1B1 as the major cytochrome P450 (CYP enzyme expressed in human brain microvessels. Here, we studied the effect of AhR activation by environmental pollutants on the expression of Cyp1b1 in rat brain microvessels. Methods Expression of AhR and Cyp1b1 was detected in isolated rat brain microvessels. AhR was immunovisualised in brain microvessel endothelial cells. The effect of AhR ligands on Cyp1b1 expression was studied using isolated brain microvessels after ex vivo and/or in vivo exposure to TCDD, heavy hydrocarbons containing diesel exhaust particles (DEP or Δ9-tetrahydrocannabinol (Δ9-THC. Results After ex vivo exposure to TCDD (a highly potent AhR ligand for 3 h, Cyp1b1 expression was significantly increased by 2.3-fold in brain microvessels. A single i.p. dose of TCDD also increased Cyp1b1 transcripts (22-fold and Cyp1b1 protein (2-fold in rat brain microvessels at 72 h after TCDD. Likewise, DEP treatment (in vivo and ex vivo strongly induced Cyp1b1 protein in brain microvessels. DEP-mediated Cyp1b1 induction was inhibited by actinomycin D, cycloheximide, or by an AhR antagonist. In contrast, a sub-chronic in vivo treatment with Δ9-THC once daily for 7 seven days had no effect on Cyp1b1 expression Conclusions Our results show that TCDD and DEP strongly induced Cyp1b1 in rat brain microvessels, likely through AhR activation.

  2. Development of a Single-Chain Peptide Agonist of the Relaxin-3 Receptor Using Hydrocarbon Stapling.

    Science.gov (United States)

    Hojo, Keiko; Hossain, Mohammed Akhter; Tailhades, Julien; Shabanpoor, Fazel; Wong, Lilian L L; Ong-Pålsson, Emma E K; Kastman, Hanna E; Ma, Sherie; Gundlach, Andrew L; Rosengren, K Johan; Wade, John D; Bathgate, Ross A D

    2016-08-25

    Structure-activity studies of the insulin superfamily member, relaxin-3, have shown that its G protein-coupled receptor (RXFP3) binding site is contained within its central B-chain α-helix and this helical structure is essential for receptor activation. We sought to develop a single B-chain mimetic that retained agonist activity. This was achieved by use of solid phase peptide synthesis together with on-resin ruthenium-catalyzed ring closure metathesis of a pair of judiciously placed i,i+4 α-methyl, α-alkenyl amino acids. The resulting hydrocarbon stapled peptide was shown by solution NMR spectroscopy to mimic the native helical conformation of relaxin-3 and to possess potent RXFP3 receptor binding and activation. Alternative stapling procedures were unsuccessful, highlighting the critical need to carefully consider both the peptide sequence and stapling methodology for optimal outcomes. Our result is the first successful minimization of an insulin-like peptide to a single-chain α-helical peptide agonist which will facilitate study of the function of relaxin-3.

  3. Controlling viral immuno-inflammatory lesions by modulating aryl hydrocarbon receptor signaling.

    Directory of Open Access Journals (Sweden)

    Tamara Veiga-Parga

    2011-12-01

    Full Text Available Ocular herpes simplex virus infection can cause a blinding CD4⁺ T cell orchestrated immuno-inflammatory lesion in the cornea called Stromal Keratitis (SK. A key to controlling the severity of SK lesions is to suppress the activity of T cells that orchestrate lesions and enhance the representation of regulatory cells that inhibit effector cell function. In this report we show that a single administration of TCDD (2, 3, 7, 8- Tetrachlorodibenzo-p-dioxin, a non-physiological ligand for the AhR receptor, was an effective means of reducing the severity of SK lesions. It acted by causing apoptosis of Foxp3⁻ CD4⁺ T cells but had no effect on Foxp3⁺ CD4⁺ Tregs. TCDD also decreased the proliferation of Foxp3⁻ CD4⁺ T cells. The consequence was an increase in the ratio of Tregs to T effectors which likely accounted for the reduced inflammatory responses. In addition, in vitro studies revealed that TCDD addition to anti-CD3/CD28 stimulated naïve CD4⁺ T cells caused a significant induction of Tregs, but inhibited the differentiation of Th1 and Th17 cells. Since a single TCDD administration given after the disease process had been initiated generated long lasting anti-inflammatory effects, the approach holds promise as a therapeutic means of controlling virus induced inflammatory lesions.

  4. Aryl hydrocarbon receptor activation impairs extracellular matrix remodeling during zebra fish fin regeneration.

    Science.gov (United States)

    Andreasen, Eric A; Mathew, Lijoy K; Löhr, Christiane V; Hasson, Rachelle; Tanguay, Robert L

    2007-01-01

    Adult zebra fish completely regenerate their caudal (tail) fin following partial amputation. Exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) inhibits this regenerative process. Proper regulation of transcription, innervation, vascularization, and extracellular matrix (ECM) composition is essential for complete fin regeneration. Previous microarray studies suggest that genes involved in ECM regulation are misexpressed following activation of the aryl hydrocarbon receptor. To investigate whether TCDD blocks regeneration by impairing ECM remodeling, male zebra fish were i.p. injected with 50 ng/g TCDD or vehicle, and caudal fins were amputated. By 3 days postamputation (dpa), the vascular network in the regenerating fin of TCDD-exposed fish was disorganized compared to vehicle-exposed animals. Furthermore, immunohistochemical staining revealed that axonal outgrowth was impacted by TCDD as early as 3 dpa. Histological analysis demonstrated that TCDD exposure leads to an accumulation of collagen at the end of the fin ray just distal to the amputation site by 3 dpa. Mature lepidotrichial-forming cells (fin ray-forming cells) were not observed in the fins of TCDD-treated fish. The capacity to metabolize ECM was also altered by TCDD exposure. Quantitative real-time PCR studies revealed that the aryl hydrocarbon pathway is active and that matrix-remodeling genes are expressed in the regenerate following TCDD exposure.

  5. No evidence of somatic aryl hydrocarbon receptor interacting protein mutations in sporadic endocrine neoplasia

    DEFF Research Database (Denmark)

    Raitila, A; Georgitsi, M; Karhu, A;

    2007-01-01

    Germline mutations in the aryl hydrocarbon receptor interacting protein (AIP) gene were recently observed in patients with pituitary adenoma predisposition (PAP). Though AIP mutation-positive individuals with prolactin-, mixed growth hormone/prolactin-, and ACTH-producing pituitary adenomas as well...... as non-secreting pituitary adenomas have been reported, most mutation-positive patients have had growth hormone-producing adenomas diagnosed at relatively young age. Pituitary adenomas are also component tumors of some familial endocrine neoplasia syndromes such as multiple endocrine neoplasia type 1....... Here, we have analyzed 32 pituitary adenomas and 79 other tumors of the endocrine system for somatic AIP mutations by direct sequencing. No somatic mutations were identified. However, two out of nine patients with prolactin-producing adenoma were shown to harbor a Finnish founder mutation (Q14X...

  6. Aryl Hydrocarbon Receptor Repressor and TiPARP (ARTD14 Use Similar, but also Distinct Mechanisms to Repress Aryl Hydrocarbon Receptor Signaling

    Directory of Open Access Journals (Sweden)

    Laura MacPherson

    2014-05-01

    Full Text Available The aryl hydrocarbon receptor (AHR regulates the toxic effects of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD. The AHR repressor (AHRR is an AHR target gene and functions as a ligand-induced repressor of AHR; however, its mechanism of inhibition is controversial. Recently, we reported that TCDD-inducible poly (ADP-ribose polymerase (TiPARP; ARTD14 also acts as a repressor of AHR, representing a new player in the mechanism of AHR action. Here we compared the ability of AHRR- and TiPARP-mediated inhibition of AHR activity. TCDD increased AHRR mRNA levels and recruitment of AHRR to cytochrome P450 1A1 (CYP1A1 in MCF7 cells. Knockdown of TiPARP, but not AHRR, increased TCDD-induced CYP1A1 mRNA and AHR protein levels. Similarly, immortalized TiPARP−/− mouse embryonic fibroblasts (MEFs and AHRR−/− MEFs exhibited enhanced AHR transactivation. However, unlike TiPARP−/− MEFs, AHRR−/− MEFs did not exhibit increased AHR protein levels. Overexpression of TiPARP in AHRR−/− MEFs or AHRRΔ8, the active isoform of AHRR, in TiPARP−/− MEFs reduced TCDD-induced CYP1A1 mRNA levels, suggesting that they independently repress AHR. GFP-AHRRΔ8 and GFP-TiPARP expressed as small diffuse nuclear foci in MCF7 and HuH7 cells. GFP-AHRRΔ8_Δ1-49, which lacks its putative nuclear localization signal, localized to both the nucleus and the cytoplasm, while the GFP-AHRRΔ8_Δ1-100 mutant localized predominantly in large cytoplasmic foci. Neither GFP-AHRRΔ8_Δ1-49 nor GFP-AHRRΔ8_Δ1-100 repressed AHR. Taken together, AHRR and TiPARP repress AHR transactivation by similar, but also different mechanisms.

  7. Correlation between TCDD acute toxicity and aryl hydrocarbon receptor structure for different mammals.

    Science.gov (United States)

    Wang, Yonghua; Wang, Qiuying; Wu, Bing; Li, Yi; Lu, Guanghua

    2013-03-01

    The 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) toxicity has large species differences, and TCDD exerts its toxicity by binding into aryl hydrocarbon receptor (AHR). In this study, we applied bioinformatics approaches to quantitatively analyze the correlation between TCDD acute toxicity and AHRs. Seven mammalian AHRs were chosen as target receptors. Low conserved functional domains of AHRs were identified and quantitatively characterized. Linear regression was applied to determine the relationships of different mammalian AHRs and TCDD LD(50) values. The results indicated that ligand binding domain and glutamine-rich domain of mammalian AHRs showed a low degree of conservation. Based on previous literatures, the number of glutamine residues (NOQ) and binding free energy with TCDD were applied to quantitatively represent the differences of glutamine-rich domain and ligand binding domain, respectively. Then, regression equations between studied mammalian AHR structures and TCDD LD(50) were constructed, and high linear correlation was found (R(2)=0.986). This study indicated that mammalian differences of TCDD acute toxicity might be partly determined by the differences of glutamine-rich domain and ligand binding domain of AHR, which provides a potential insight to analyze the species differences of TCDD toxicity.

  8. Parsing pyrogenic polycyclic aromatic hydrocarbons: forensic chemistry, receptor models, and source control policy.

    Science.gov (United States)

    O'Reilly, Kirk T; Pietari, Jaana; Boehm, Paul D

    2014-04-01

    A realistic understanding of contaminant sources is required to set appropriate control policy. Forensic chemical methods can be powerful tools in source characterization and identification, but they require a multiple-lines-of-evidence approach. Atmospheric receptor models, such as the US Environmental Protection Agency (USEPA)'s chemical mass balance (CMB), are increasingly being used to evaluate sources of pyrogenic polycyclic aromatic hydrocarbons (PAHs) in sediments. This paper describes the assumptions underlying receptor models and discusses challenges in complying with these assumptions in practice. Given the variability within, and the similarity among, pyrogenic PAH source types, model outputs are sensitive to specific inputs, and parsing among some source types may not be possible. Although still useful for identifying potential sources, the technical specialist applying these methods must describe both the results and their inherent uncertainties in a way that is understandable to nontechnical policy makers. The authors present an example case study concerning an investigation of a class of parking-lot sealers as a significant source of PAHs in urban sediment. Principal component analysis is used to evaluate published CMB model inputs and outputs. Targeted analyses of 2 areas where bans have been implemented are included. The results do not support the claim that parking-lot sealers are a significant source of PAHs in urban sediments. © 2013 SETAC.

  9. Aryl hydrocarbon receptor agonists trigger avoidance of novel food in rats.

    Science.gov (United States)

    Mahiout, Selma; Pohjanvirta, Raimo

    2016-12-01

    The aryl hydrocarbon receptor (AHR) is a ligand-activated transcription factor that mediates the toxicity of dioxins, but also plays important physiological roles, which are only beginning to unfold. Previous studies have surprisingly unveiled that low doses of the potent AHR agonist TCDD induce a strong and persistent avoidance of novel food items in rats. Here, we further examined the involvement of the AHR in the avoidance response in Sprague-Dawley rats with three established AHR agonists: 6-formylindolo(3,2-b)carbazole (FICZ), β-naphthoflavone (BNF) and benzo[a]pyrene (BaP); with a novel selective AHR modulator (C2); and with an activator of another nuclear receptor, CAR: 2,4,6-tryphenyldioxane-1,3 (TPD). As sensitive indices of AHR or CAR activity, we used Cyp1a1 and Cyp2b1 gene expression, as they are, respectively, the drug-metabolizing enzymes specifically regulated by them. We further attempted to address the roles played by enhanced neophobia and conditioned taste aversion (CTA) in the avoidance behaviour. All AHR agonists triggered practically total avoidance of novel chocolate, but the durations varied. Likewise, acutely subtoxic doses of C2, differing by 25-fold, all elicited a similar outcome. In contrast, TPD did not influence chocolate consumption at all. If rats were initially accustomed to chocolate for 6h after single FICZ or BNF exposure, avoidance was still clearly present two weeks later when chocolate was offered again. Hence, the avoidance response appears to specifically involve the AHR instead of being triggered by induction of intestinal or hepatic nuclear receptor signalling in general. It is also shared by both endogenous and exogenous AHR activators. Moreover, this behavioural change in rats seems to contain elements of both CTA and enhanced neophobia, but further clarification of this is still required.

  10. Amino Acids in Hemagglutinin Antigenic Site B Determine Antigenic and Receptor Binding Differences between A(H3N2)v and Ancestral Seasonal H3N2 Influenza Viruses.

    Science.gov (United States)

    Wang, Xiaoquan; Ilyushina, Natalia A; Lugovtsev, Vladimir Y; Bovin, Nicolai V; Couzens, Laura K; Gao, Jin; Donnelly, Raymond P; Eichelberger, Maryna C; Wan, Hongquan

    2017-01-15

    Influenza A H3N2 variant [A(H3N2)v] viruses, which have caused human infections in the United States in recent years, originated from human seasonal H3N2 viruses that were introduced into North American swine in the mid-1990s, but they are antigenically distinct from both the ancestral and current circulating H3N2 strains. A reference A(H3N2)v virus, A/Minnesota/11/2010 (MN/10), and a seasonal H3N2 strain, A/Beijing/32/1992 (BJ/92), were chosen to determine the molecular basis for the antigenic difference between A(H3N2)v and the ancestral viruses. Viruses containing wild-type and mutant MN/10 or BJ/92 hemagglutinins (HAs) were constructed and probed for reactivity with ferret antisera against MN/10 and BJ/92 in hemagglutination inhibition assays. Among the amino acids that differ between the MN/10 and BJ/92 HAs, those in antigenic site A had little impact on the antigenic phenotype. Within antigenic site B, mutations at residues 156, 158, 189, and 193 of MN/10 HA to those in BJ/92 switched the MN/10 antigenic phenotype to that of BJ/92. Mutations at residues 156, 157, 158, 189, and 193 of BJ/92 HA to amino acids present in MN/10 were necessary for BJ/92 to become antigenically similar to MN/10. The HA amino acid substitutions responsible for switching the antigenic phenotype also impacted HA binding to sialyl receptors that are usually present in the human respiratory tract. Our study demonstrates that antigenic site B residues play a critical role in determining both the unique antigenic phenotype and receptor specificity of A(H3N2)v viruses, a finding that may facilitate future surveillance and risk assessment of novel influenza viruses.

  11. Exposure to atmospheric particulate matter enhances Th17 polarization through the aryl hydrocarbon receptor.

    Directory of Open Access Journals (Sweden)

    Michael van Voorhis

    Full Text Available Lung diseases, including asthma, COPD, and other autoimmune lung pathologies are aggravated by exposure to particulate matter (PM found in air pollution. IL-17 has been shown to exacerbate airway disease in animal models. As PM is known to contain aryl hydrocarbon receptor (AHR ligands and the AHR has recently been shown to play a role in differentiation of Th17 T cells, the aim of this study was to determine whether exposure to PM could impact Th17 polarization in an AHR-dependent manner. This study used both cell culture techniques and in vivo exposure in mice to examine the response of T cells to PM. Initially experiments were conducted with urban dust particles from a standard reference material, and ultimately repeated with freshly collected samples of diesel exhaust and cigarette smoke. The readout for the assays was increased T cell differentiation as indicated by increased generation of IL-17A in culture, and increased populations of IL-17 producing cells by intracellular flow cytometry. The data illustrate that Th17 polarization was significantly enhanced by addition of urban dust in a dose dependent fashion in cultures of wild-type but not AHR(-/- mice. The data further suggest that polycyclic aromatic hydrocarbons played a primary role in this enhancement. There was both an increase of Th17 cell differentiation, and also an increase in the amount of IL-17 secreted by the cells. In summary, this paper identifies a novel mechanism whereby PM can directly act on the AHR in T cells, leading to enhanced Th17 differentiation. Further understanding of the molecular mechanisms responsible for pathologic Th17 differentiation and autoimmunity seen after exposure to pollution will allow direct targeting of proteins involved in AHR activation and function for treatment of PM exposures.

  12. Developing a qPCR method to quantify AhR-PCP-DNA complex for detection of environmental trace-level PCP.

    Science.gov (United States)

    Zhao, Xiaoxiang; Pang, Xiaoqian; Chaisuwan, Nuanapa

    2011-07-01

    Pentachlorophenol (PCP), a widely-used aseptic or biocide, is known as an environmental toxicant involved in endocrine disruption even at a trace level. In order to reliably and efficiently quantify environmental trace-quantity PCP, this study developed a novel PCP detection method using the aryl hydrocarbon receptor (AhR) and fluorescence quantitative PCR (qPCR). DNA probe with AhR binding sites was synthesized by PCR before added into AhR-PCP complex. After AhR-PCP-DNA complex was digested with exonuclease, copy number of DNA probe was determined using fluorescence qPCR. To calculate PCP concentration in samples, a standard curve (PCP concentration versus Ct value) was constructed and the detection range was 10(-13) to 10(-9) M. PCP detection limit was 0.0089 ppt for the AhR-PCP-DNA complex assay and 8.8780 ppm for high performance liquid chromatography, demonstrating that the method developed in this study is more sensitive. These results suggest that AhR-PCP-DNA complex method may be successfully applicable in detection and quantification of environmental trace-level PCP.

  13. Studies on responsiveness of hepatoma cells to catecholamines. III. Difference between the receptor-adenylate cyclase regulating systems in AH130 cells and cultured normal rat liver cells.

    Science.gov (United States)

    Sanae, F; Matsunaga, T; Miyamoto, K; Koshiura, R

    1986-10-01

    The responsiveness to three beta-adrenergic agonists, isoproterenol (IPN), epinephrine (Epi) and norepinephrine (NE) in AH13O cells was examined compared with that in normal rat liver cells which were cultured for 24 hr after collagenase digestion. As regards to the activation of adenylate cyclase in the cell homogenates, the relative affinity of the three agonists was in order of IPN greater than NE greater than Epi in AH130 cells and IPN greater than Epi greater than NE in cultured normal liver cells. While the efficacies of the three agonists were similar in cultured liver cells, those of NE and Epi were markedly lower than that of IPN in AH13O cells and were increased to the similar level of IPN by pretreatment with phentolamine, but not with prazosin. Clonidine inhibited the activation of adenylate cyclase by IPN in AH13O cells. When cells were preincubated with islet-activating protein (IAP), the activity of adenylate cyclase in the presence or absence of agonist in both cell lines increased. In IAP-treated AH13O cells, the efficacies of NE and Epi became close to that of IPN. Adenylate cyclase in IAP-treated AH13O cells was activated by GTP in a dose-dependent manner, but that in IAP-treated cultured liver cells was not. In the presence of IPN, biphasic (activatory and inhibitory) effects of GTP on the cyclase were observed, and the inhibitory phase was eliminated by the IAP-treatment in both cell lines.(ABSTRACT TRUNCATED AT 250 WORDS)

  14. Testosterone-Dependent Interaction between Androgen Receptor and Aryl Hydrocarbon Receptor Induces Liver Receptor Homolog 1 Expression in Rat Granulosa Cells

    Science.gov (United States)

    Wu, Yanguang; Baumgarten, Sarah C.; Zhou, Ping

    2013-01-01

    Androgens play a major role in the regulation of normal ovarian function; however, they are also involved in the development of ovarian pathologies. These contrasting effects may involve a differential response of granulosa cells to the androgens testosterone (T) and dihydrotestosterone (DHT). To determine the molecular pathways that mediate the distinct effects of T and DHT, we studied the expression of the liver receptor homolog 1 (LRH-1) gene, which is differentially regulated by these steroids. We found that although both T and DHT stimulate androgen receptor (AR) binding to the LRH-1 promoter, DHT prevents T-mediated stimulation of LRH-1 expression. T stimulated the expression of aryl hydrocarbon receptor (AHR) and its interaction with the AR. T also promoted the recruitment of the AR/AHR complex to the LRH-1 promoter. These effects were not mimicked by DHT. We also observed that the activation of extracellular regulated kinases by T is required for AR and AHR interaction. In summary, T, but not DHT, stimulates AHR expression and the interaction between AHR and AR, leading to the stimulation of LRH-1 expression. These findings could explain the distinct response of granulosa cells to T and DHT and provide a molecular mechanism by which DHT negatively affects ovarian function. PMID:23689136

  15. Truncated glucagon-like peptide-1 (proglucagon 78-107 amide), an intestinal insulin-releasing peptide, has specific receptors on rat insulinoma cells (RIN 5AH)

    DEFF Research Database (Denmark)

    Orskov, C; Nielsen, Jens Høiriis

    1988-01-01

    We studied binding of 125I-labelled truncated-glucagon-like peptide-1 (proglucagon 78-107 amide) to a cloned rat insulin-producing cell line, RIN 5AH, in monolayer culture. Interaction of the peptide with pancreatic insulinoma cells was saturable and time dependent. Half-maximal binding was obtai......We studied binding of 125I-labelled truncated-glucagon-like peptide-1 (proglucagon 78-107 amide) to a cloned rat insulin-producing cell line, RIN 5AH, in monolayer culture. Interaction of the peptide with pancreatic insulinoma cells was saturable and time dependent. Half-maximal binding...

  16. Contribution of priority PAHs and POPs to Ah receptor-mediated activities in sediment samples from the River Elbe Estuary, Germany.

    Directory of Open Access Journals (Sweden)

    Jens C Otte

    Full Text Available The estuary of the River Elbe between Hamburg and the North Sea (Germany is a sink for contaminated sediment and suspended particulate matter (SPM. One major concern is the effect of human activities on the hydrodynamics, particularly the intensive dredging activities in this area that may result in remobilization of sediment-bound pollutants. The aim of this study was to identify pollutants contributing to the toxicological risk associated with re-suspension of sediments in the Elbe Estuary by use of an effect-directed analysis that combines chemical and biological analyses in with specific fractionation techniques. Sediments were collected from sites along the Elbe Estuary and a site from a small harbor basin of the Elbe Estuary that is known to be polluted. The sixteen priority EPA-PAHs were quantified in organic extracts of sediments. In addition, dioxin equivalents of sediments were investigated by use of the 7-ethoxyresorufin O-deethylase assay with RTL-W1 cells and the Ah receptor-mediated luciferase transactivation assay with H4IIE-luc cells. Quantification of the 16 priority PAHs revealed that sediments were moderately contaminated at all of the sites in the Elbe River Estuary (<0.02-0.906 µg/g dw. Sediments contained relatively small concentrations of dioxin equivalents (Bio-TEQ with concentrations ranging from 15.5 to 322 pg/g dw, which were significantly correlated with dioxin equivalents calculated based on toxicity reference values and concentrations of PAH. The concentration of Bio-TEQ at the reference site exceeded 200,000 pg/g dw. In a potency balance the 16 PAHs explained between 47 and 118% of the Bio-TEQ in the luciferase assay, which can be explained by the constant input of PAHs bound to SPM from the upper course of the Elbe River into its estuary. Successful identification of a significant portion of dioxin-like activity to priority PAHs in complex environmental samples such as sediments has rarely been reported.

  17. Contribution of Priority PAHs and POPs to Ah Receptor-Mediated Activities in Sediment Samples from the River Elbe Estuary, Germany

    Science.gov (United States)

    Otte, Jens C.; Keiter, Steffen; Faßbender, Christopher; Higley, Eric B.; Rocha, Paula Suares; Brinkmann, Markus; Wahrendorf, Dierk-Steffen; Manz, Werner; Wetzel, Markus A.; Braunbeck, Thomas; Giesy, John P.; Hecker, Markus; Hollert, Henner

    2013-01-01

    The estuary of the River Elbe between Hamburg and the North Sea (Germany) is a sink for contaminated sediment and suspended particulate matter (SPM). One major concern is the effect of human activities on the hydrodynamics, particularly the intensive dredging activities in this area that may result in remobilization of sediment-bound pollutants. The aim of this study was to identify pollutants contributing to the toxicological risk associated with re-suspension of sediments in the Elbe Estuary by use of an effect-directed analysis that combines chemical and biological analyses in with specific fractionation techniques. Sediments were collected from sites along the Elbe Estuary and a site from a small harbor basin of the Elbe Estuary that is known to be polluted. The sixteen priority EPA-PAHs were quantified in organic extracts of sediments. In addition, dioxin equivalents of sediments were investigated by use of the 7-ethoxyresorufin O-deethylase assay with RTL-W1 cells and the Ah receptor-mediated luciferase transactivation assay with H4IIE-luc cells. Quantification of the 16 priority PAHs revealed that sediments were moderately contaminated at all of the sites in the Elbe River Estuary (<0.02–0.906 µg/g dw). Sediments contained relatively small concentrations of dioxin equivalents (Bio-TEQ) with concentrations ranging from 15.5 to 322 pg/g dw, which were significantly correlated with dioxin equivalents calculated based on toxicity reference values and concentrations of PAH. The concentration of Bio-TEQ at the reference site exceeded 200,000 pg/g dw. In a potency balance the 16 PAHs explained between 47 and 118% of the Bio-TEQ in the luciferase assay, which can be explained by the constant input of PAHs bound to SPM from the upper course of the Elbe River into its estuary. Successful identification of a significant portion of dioxin-like activity to priority PAHs in complex environmental samples such as sediments has rarely been reported. PMID:24146763

  18. Integration of Genome-Wide Computation DRE Search, AhR ChIP-chip and Gene Expression Analyses of TCDD-Elicited Responses in the Mouse Liver

    Directory of Open Access Journals (Sweden)

    Matthews Jason

    2011-07-01

    Full Text Available Abstract Background The aryl hydrocarbon receptor (AhR is a ligand-activated transcription factor (TF that mediates responses to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD. Integration of TCDD-induced genome-wide AhR enrichment, differential gene expression and computational dioxin response element (DRE analyses further elucidate the hepatic AhR regulatory network. Results Global ChIP-chip and gene expression analyses were performed on hepatic tissue from immature ovariectomized mice orally gavaged with 30 μg/kg TCDD. ChIP-chip analysis identified 14,446 and 974 AhR enriched regions (1% false discovery rate at 2 and 24 hrs, respectively. Enrichment density was greatest in the proximal promoter, and more specifically, within ± 1.5 kb of a transcriptional start site (TSS. AhR enrichment also occurred distal to a TSS (e.g. intergenic DNA and 3' UTR, extending the potential gene expression regulatory roles of the AhR. Although TF binding site analyses identified over-represented DRE sequences within enriched regions, approximately 50% of all AhR enriched regions lacked a DRE core (5'-GCGTG-3'. Microarray analysis identified 1,896 number of TCDD-responsive genes (|fold change| ≥ 1.5, P1(t > 0.999. Integrating this gene expression data with our ChIP-chip and DRE analyses only identified 625 differentially expressed genes that involved an AhR interaction at a DRE. Functional annotation analysis of differentially regulated genes associated with AhR enrichment identified overrepresented processes related to fatty acid and lipid metabolism and transport, and xenobiotic metabolism, which are consistent with TCDD-elicited steatosis in the mouse liver. Conclusions Details of the AhR regulatory network have been expanded to include AhR-DNA interactions within intragenic and intergenic genomic regions. Moreover, the AhR can interact with DNA independent of a DRE core suggesting there are alternative mechanisms of AhR-mediated gene regulation.

  19. In Silico Identification of an Aryl Hydrocarbon Receptor Antagonist with Biological Activity In Vitro and In Vivo

    OpenAIRE

    2014-01-01

    The aryl hydrocarbon receptor (AHR) is critically involved in several physiologic processes, including cancer progression and multiple immune system activities. We, and others, have hypothesized that AHR modulators represent an important new class of targeted therapeutics. Here, ligand shape–based virtual modeling techniques were used to identify novel AHR ligands on the basis of previously identified chemotypes. Four structurally unique compounds were identified. One lead compound, 2-((2-(5-...

  20. Aryl hydrocarbon receptor downregulates MYCN expression and promotes cell differentiation of neuroblastoma.

    Directory of Open Access Journals (Sweden)

    Pei-Yi Wu

    Full Text Available Neuroblastoma (NB is the most common malignant disease of infancy. MYCN amplification is a prognostic factor for NB and is a sign of highly malignant disease and poor patient prognosis. In this study, we aimed to investigate novel MYCN-related genes and assess how they affect NB cell behavior. The different gene expression found in 10 MYCN amplification NB tumors and 10 tumors with normal MYCN copy number were analyzed using tissue oligonucleotide microarrays. Ingenuity Pathway Analysis was subsequently performed to identify the potential genes involved in MYCN regulation pathways. Aryl hydrocarbon receptor (AHR, a receptor for dioxin-like compounds, was found to be inversely correlated with MYCN expression in NB tissues. This correlation was confirmed in a further 14 human NB samples. Moreover, AHR expression in NB tumors was found to correlate highly with histological grade of differentiation. In vitro studies revealed that AHR overexpression in NB cells induced spontaneous cell differentiation. In addition, it was found that ectopic expression of AHR suppressed MYCN promoter activity resulting in downregulation of MYCN expression. The suppression effect of AHR on the transcription of MYCN was compensated for by E2F1 overexpression, indicating that E2F1 is involved in the AHR-regulating MYCN pathway. Furthermore, AHR shRNA promotes the expression of E2F1 and MYCN in NB cells. These findings suggest that AHR is one of the upstream regulators of MYCN. Through the modulation of E2F1, AHR regulates MYCN gene expression, which may in turn affect NB differentiation.

  1. Insulin like growth factor 2 regulation of aryl hydrocarbon receptor in MCF-7 breast cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Tomblin, Justin K.; Salisbury, Travis B., E-mail: salisburyt@marshall.edu

    2014-01-17

    Highlights: •IGF-2 stimulates concurrent increases in AHR and CCND1 expression. •IGF-2 promotes the binding of AHR to the endogenous cyclin D1 promoter. •AHR knockdown inhibits IGF-2 stimulated increases in CCND1 mRNA and protein. •AHR knockdown inhibits IGF-2 stimulated increases in MCF-7 proliferation. -- Abstract: Insulin like growth factor (IGF)-1 and IGF-2 stimulate normal growth, development and breast cancer cell proliferation. Cyclin D1 (CCND1) promotes cell cycle by inhibiting retinoblastoma protein (RB1). The aryl hydrocarbon receptor (AHR) is a major xenobiotic receptor that also regulates cell cycle. The purpose of this study was to investigate whether IGF-2 promotes MCF-7 breast cancer proliferation by inducing AHR. Western blot and quantitative real time PCR (Q-PCR) analysis revealed that IGF-2 induced an approximately 2-fold increase (P < .001) in the expression of AHR and CCND1. Chromatin immunoprecipitation (ChIP), followed by Q-PCR indicated that IGF-2 promoted (P < .001) a 7-fold increase in AHR binding on the CCND1 promoter. AHR knockdown significantly (P < .001) inhibited IGF-2 stimulated increases in CCND1 mRNA and protein. AHR knockdown cells were less (P < .001) responsive to the proliferative effects of IGF-2 than control cells. Collectively, our findings have revealed a new regulatory mechanism by which IGF-2 induction of AHR promotes the expression of CCND1 and the proliferation of MCF-7 cells. This previously uncharacterized pathway could be important for the proliferation of IGF responsive cancer cells that also express AHR.

  2. The emerging role of aryl hydrocarbon receptor in the activation and differentiation of Th17 cells.

    Science.gov (United States)

    Baricza, Eszter; Tamási, Viola; Marton, Nikolett; Buzás, Edit I; Nagy, György

    2016-01-01

    The aryl hydrocarbon receptor (AHR) is a cytoplasmic transcription factor, which plays an essential role in the xenobiotic metabolism in a wide variety of cells. The AHR gene is evolutionarily conserved and it has a central role not only in the differentiation and maturation of many tissues, but also in the toxicological metabolism of the cell by the activation of metabolizing enzymes. Several lines of evidence support that both AHR agonists and antagonists have profound immunological effects; and recently, the AHR has been implicated in antibacterial host defense. According to recent studies, the AHR is essential for the differentiation and activation of T helper 17 (Th17) cells. It is well known that Th17 cells have a central role in the development of inflammation, which is crucial in the defense against pathogens. In addition, Th17 cells play a major role in the pathogenesis of several autoimmune diseases such as rheumatoid arthritis. Therefore, the AHR may provide connection between the environmental chemicals, the immune regulation, and autoimmunity. In the present review, we summarize the role of the AHR in the Th17 cell functions.

  3. Expression of the aryl hydrocarbon receptor pathway and cyclooxygenase-2 in dog tumors.

    Science.gov (United States)

    Giantin, M; Vascellari, M; Lopparelli, R M; Ariani, P; Vercelli, A; Morello, E M; Cristofori, P; Granato, A; Buracco, P; Mutinelli, F; Dacasto, M

    2013-02-01

    In humans, the aryl hydrocarbon receptor (AHR) gene battery constitutes a set of contaminant-responsive genes, which have been recently shown to be involved in the regulation of several patho-physiological conditions, including tumorigenesis. As the domestic dog represents a valuable animal model in comparative oncology, mRNA levels of cytochromes P450 1A1, 1A2 and 1B1 (CYP1A1, 1A2 and 1B1), AHR, AHR nuclear translocator (ARNT), AHR repressor (AHRR, whose partial sequence was here obtained) and cyclooxygenase-2 (COX2) were measured in dog control tissues (liver, skin, mammary gland and bone), in 47 mast cell tumors (MCTs), 32 mammary tumors (MTs), 5 osteosarcoma (OSA) and related surgical margins. Target genes were constitutively expressed in the dog, confirming the available human data. Furthermore, their pattern of expression in tumor biopsies was comparable to that already described in a variety of human cancers; in particular, both AHR and COX2 genes were up-regulated and positively correlated, while CYP1A1 and CYP1A2 mRNAs were generally poorly expressed. This work demonstrated for the first time that target mRNAs are expressed in neoplastic tissues of dogs, thereby increasing the knowledge about dog cancer biology and confirming this species as an useful animal model for comparative studies on human oncology.

  4. Pluripotency factors and Polycomb Group proteins repress aryl hydrocarbon receptor expression in murine embryonic stem cells

    Directory of Open Access Journals (Sweden)

    Chia-I Ko

    2014-01-01

    Full Text Available The aryl hydrocarbon receptor (AHR is a transcription factor and environmental sensor that regulates expression of genes involved in drug-metabolism and cell cycle regulation. Chromatin immunoprecipitation analyses, Ahr ablation in mice and studies with orthologous genes in invertebrates suggest that AHR may also play a significant role in embryonic development. To address this hypothesis, we studied the regulation of Ahr expression in mouse embryonic stem cells and their differentiated progeny. In ES cells, interactions between OCT3/4, NANOG, SOX2 and Polycomb Group proteins at the Ahr promoter repress AHR expression, which can also be repressed by ectopic expression of reprogramming factors in hepatoma cells. In ES cells, unproductive RNA polymerase II binds at the Ahr transcription start site and drives the synthesis of short abortive transcripts. Activation of Ahr expression during differentiation follows from reversal of repressive marks in Ahr promoter chromatin, release of pluripotency factors and PcG proteins, binding of Sp factors, establishment of histone marks of open chromatin, and engagement of active RNAPII to drive full-length RNA transcript elongation. Our results suggest that reversible Ahr repression in ES cells holds the gene poised for expression and allows for a quick switch to activation during embryonic development.

  5. Aryl hydrocarbon receptor and kynurenine: recent advances in autoimmune disease research

    Directory of Open Access Journals (Sweden)

    Nam Trung Nguyen

    2014-10-01

    Full Text Available Aryl hydrocarbon receptor (AHR is thought to be a crucial factor in the regulation of immune responses. Many AHR-mediated immunoregulatory mechanisms have been discovered, and this knowledge may enhance our understanding of the molecular pathogenesis of autoimmune inflammatory syndromes such as collagen-induced arthritis, experimental autoimmune encephalomyelitis, and experimental colitis. Recent findings have elucidated the critical link between AHR and indoleamine 2,3-dioxigenase (IDO in the development of regulatory T (Treg cells and Th17 cells, which are key factors in a variety of human autoimmune diseases. Induction of IDO and IDO-mediated tryptophan catabolism, together with its downstream products such as kynurenine, is an important immunoregulatory mechanism underlying immunosuppression, tolerance, and immunity. Recent studies revealed that induction of IDO depends on AHR expression. This review summarizes the most current findings regarding the functions of AHR and IDO in immune cells as they relate to the pathogenesis of autoimmune diseases in response to various stimuli. We also discuss the potential link between AHR and IDO/tryptophan metabolites, and the involvement of several novel related factors (such as microRNA in the development of autoimmune diseases. These novel factors represent potential therapeutic targets for the treatment of autoimmune disorders.

  6. Pluripotency factors and Polycomb Group proteins repress aryl hydrocarbon receptor expression in murine embryonic stem cells.

    Science.gov (United States)

    Ko, Chia-I; Wang, Qin; Fan, Yunxia; Xia, Ying; Puga, Alvaro

    2014-01-01

    The aryl hydrocarbon receptor (AHR) is a transcription factor and environmental sensor that regulates expression of genes involved in drug-metabolism and cell cycle regulation. Chromatin immunoprecipitation analyses, Ahr ablation in mice and studies with orthologous genes in invertebrates suggest that AHR may also play a significant role in embryonic development. To address this hypothesis, we studied the regulation of Ahr expression in mouse embryonic stem cells and their differentiated progeny. In ES cells, interactions between OCT3/4, NANOG, SOX2 and Polycomb Group proteins at the Ahr promoter repress AHR expression, which can also be repressed by ectopic expression of reprogramming factors in hepatoma cells. In ES cells, unproductive RNA polymerase II binds at the Ahr transcription start site and drives the synthesis of short abortive transcripts. Activation of Ahr expression during differentiation follows from reversal of repressive marks in Ahr promoter chromatin, release of pluripotency factors and PcG proteins, binding of Sp factors, establishment of histone marks of open chromatin, and engagement of active RNAPII to drive full-length RNA transcript elongation. Our results suggest that reversible Ahr repression in ES cells holds the gene poised for expression and allows for a quick switch to activation during embryonic development.

  7. Interaction of fish aryl hydrocarbon receptor paralogs (AHR1 and AHR2) with the retinoblastoma protein

    Energy Technology Data Exchange (ETDEWEB)

    Merson, Rebeka R., E-mail: rmerson@ric.edu [Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA 02543 (United States); Biology Department, Rhode Island College, 500 Mt. Pleasant Ave., Providence, RI 02908 (United States); Karchner, Sibel I.; Hahn, Mark E. [Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA 02543 (United States)

    2009-08-13

    The aryl hydrocarbon receptor (AHR) mediates the toxic effects of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) and related compounds. In some mammalian cell lines, TCDD induces G1 cell cycle arrest, which depends on an interaction between the AHR and the retinoblastoma tumor suppressor (RB). Mammals possess one AHR, whereas fishes possess two or more AHR paralogs that differ in the domains important for AHR-RB interactions in mammals. To test the hypothesis that fish AHR paralogs differ in their ability to interact with RB, we cloned RB cDNA from Atlantic killifish, Fundulus heteroclitus, and studied the interactions of killifish RB protein with killifish AHR1 and AHR2. In coimmunoprecipitation experiments, in vitro-expressed killifish RB coprecipitated with both AHR1 and AHR2. Consistent with these results, both killifish AHR1 and AHR2 interacted with RB in mammalian two-hybrid assays. These results suggest that both fish AHR1 and AHR2 paralogs may have the potential to influence cell proliferation through interactions with RB.

  8. Growth hormone binding to specific receptors stimulates growth and function of cloned insulin-producing rat insulinoma RIN-5AH cells

    DEFF Research Database (Denmark)

    Billestrup, Nils; Martin, J M

    1985-01-01

    Binding of 125I-labeled human GH (hGH) to a cloned rat insulin-producing cell line RIN-5AH in monolayer culture was studied along with some physiological effects of the hormone on these cells. Binding was time and temperature dependent, and steady state binding was observed in 60 min at 37 C...

  9. Dioxin exposure blocks lactation through a direct effect on mammary epithelial cells mediated by the aryl hydrocarbon receptor repressor.

    Science.gov (United States)

    Basham, Kaitlin J; Leonard, Christopher J; Kieffer, Collin; Shelton, Dawne N; McDowell, Maria E; Bhonde, Vasudev R; Looper, Ryan E; Welm, Bryan E

    2015-01-01

    In mammals, lactation is a rich source of nutrients and antibodies for newborn animals. However, millions of mothers each year experience an inability to breastfeed. Exposure to several environmental toxicants, including 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), has been strongly implicated in impaired mammary differentiation and lactation. TCDD and related polyhalogenated aromatic hydrocarbons are widespread industrial pollutants that activate the aryl hydrocarbon receptor (AHR). Despite many epidemiological and animal studies, the molecular mechanism through which AHR signaling blocks lactation remains unclear. We employed in vitro models of mammary differentiation to recapitulate lactogenesis in the presence of toxicants. We demonstrate AHR agonists directly block milk production in isolated mammary epithelial cells. Moreover, we define a novel role for the aryl hydrocarbon receptor repressor (AHRR) in mediating this response. Our mechanistic studies suggest AHRR is sufficient to block transcription of the milk gene β-casein. As TCDD is a prevalent environmental pollutant that affects women worldwide, our results have important public health implications for newborn nutrition.

  10. Association between polymorphisms in the aryl hydrocarbon receptor repressor gene and disseminated testicular germ cell cancer

    Directory of Open Access Journals (Sweden)

    Leon J. S. Brokken

    2013-02-01

    Full Text Available In the Western world, testicular germ cell cancer (TGCC is the most common malignancy of young men. The malignant transformation of germ cells is thought to be caused by developmental and hormonal disturbances, probably related to environmental and lifestyle factors because of rapidly increasing incidence of TGCC in some countries. Additionally, there is a strong genetic component that affects susceptibility. However, genetic polymorphisms that have been identified so far only partially explain the risk of TGCC. Many of the persistent environmental pollutants act through the aryl hydrocarbon receptor (AHR. AHR signalling pathway is known to interfere with reproductive hormone signalling, which is supposed to play a role in the pathogenesis and invasive progression of TGCC. The aim of the present study was to identify whether AHR-related polymorphisms were associated with risk as well as histological and clinical features of TGCC in 367 patients and 537 controls. Haplotype-tagging single nucleotide polymorphisms (SNPs were genotyped in genes encoding AHR and AHR repressor (AHRR. Binary logistic regression was used to calculate the risk of TGCC, nonseminoma versus seminoma, and metastasis versus localised disease.Four SNPs in AHRR demonstrated a significant allele association with risk to develop metastases (rs2466287: OR = 0.43, 95% CI 0.21-0.90; rs2672725: OR = 0.49, 95% CI: 0.25-0.94; rs6879758: OR = 0.27, 95% CI: 0.08-0.92; rs6896163: OR = 0.34, 95% CI: 0.12-0.98.This finding supports the hypothesis that compounds acting through AHR may play a role in the invasive progression of TGCC, either directly or through modification of reproductive hormone action.

  11. Aryl hydrocarbon receptor inhibition promotes hematolymphoid development from human pluripotent stem cells.

    Science.gov (United States)

    Angelos, Mathew G; Ruh, Paige N; Webber, Beau R; Blum, Robert H; Ryan, Caitlin D; Bendzick, Laura; Shim, Seonhui; Yingst, Ashley M; Tufa, Dejene M; Verneris, Michael R; Kaufman, Dan S

    2017-06-29

    The aryl hydrocarbon receptor (AHR) plays an important physiological role in hematopoiesis. AHR is highly expressed in hematopoietic stem and progenitor cells (HSPCs) and inhibition of AHR results in a marked expansion of human umbilical cord blood-derived HSPCs following cytokine stimulation. It is unknown whether AHR also contributes earlier in human hematopoietic development. To model hematopoiesis, human embryonic stem cells (hESCs) were allowed to differentiate in defined conditions in the presence of the AHR antagonist StemReginin-1 (SR-1) or the AHR agonist 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). We demonstrate a significant increase in CD34(+)CD31(+) hematoendothelial cells in SR-1-treated hESCs, as well as a twofold expansion of CD34(+)CD45(+) hematopoietic progenitor cells. Hematopoietic progenitor cells were also significantly increased by SR-1 as quantified by standard hematopoietic colony-forming assays. Using a clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9)-engineered hESC-RUNX1c-tdTomato reporter cell line with AHR deletion, we further demonstrate a marked enhancement of hematopoietic differentiation relative to wild-type hESCs. We also evaluated whether AHR antagonism could promote innate lymphoid cell differentiation from hESCs. SR-1 increased conventional natural killer (cNK) cell differentiation, whereas TCDD treatment blocked cNK development and supported group 3 innate lymphoid cell (ILC3) differentiation. Collectively, these results demonstrate that AHR regulates early human hematolymphoid cell development and may be targeted to enhance production of specific cell populations derived from human pluripotent stem cells. © 2017 by The American Society of Hematology.

  12. Virulence-associated substitution D222G in the hemagglutinin of 2009 pandemic influenza A(H1N1) virus affects receptor binding

    NARCIS (Netherlands)

    S. Chutinimitkul (Salin); S. Herfst (Sander); J. Steel (John); A.C. Lowen (Anice); J. Ye (Jian); D.A.J. van Riel (Debby); E.J.A. Schrauwen (Eefje); T.M. Bestebroer (Theo); B.F. Koel (Björn); D.F. Burke (David); K.H. Sutherland-Cash (Kyle); C.S. Whittleson (Chris); C.A. Russell (Colin); D.J. Wales (David); D.J. Smith (Derek); M. Jonges (Marcel); A. Meijer (Adam); M. Koopmans (Matty); G.F. Rimmelzwaan (Guus); T. Kuiken (Thijs); A.D.M.E. Osterhaus (Albert); A. García-Sastre (Adolfo); D.R. Perez (Daniel); R.A.M. Fouchier (Ron)

    2010-01-01

    textabstractThe clinical impact of the 2009 pandemic influenza A(H1N1) virus (pdmH1N1) has been relatively low. However, amino acid substitution D222G in the hemagglutinin of pdmH1N1 has been associated with cases of severe disease and fatalities. D222G was introduced in a prototype pdmH1N1 by rever

  13. TCDD-induced transcriptional profiles in different mouse strains that have an identical AhR genotype

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Qing; Suzuki, Junko S.; Tohyama, Chiharu; Ohsako, Seiichiroh [Environmental Health Sciences Division, National Institute for Environmental Studies, Onogawa, Tsukuba (Japan); Takei, Teiji [Environmental Health and Safety Division, Ministry of the Environment, Kasumigaseki, Tokyo (Japan); Lin, Tinmin; Peterson, R.E. [Wisconsin Univ., Wisconsin, MA (United States). School of Pharmacy and Molecular and Environmental Toxicology Center

    2004-09-15

    2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) is an environmental contaminant that is known to cause hepatotoxicity, teratogenicity and carcinogenicity. A characteristic feature in the toxicity of TCDD is exceptionally large differences in susceptibility among animal species or even strains belonging to the same species. These strain differences in susceptibility to TCDD have now been elucidated to be due to the difference in ligand binding affinity or transcriptional activity of the aryl hydrocarbon receptor (AhR). Actually the C57BL/6 type AhR (AhR{sup b}) showed 6-fold higher ligand binding affinity than the DBA/2 type AhR (AhR{sup d}). The H/W rat AhR has a C-terminal truncation of the transactivating domain compared to the L-E rat AhR. On the other hand, there is considerable species variability in response sensitivity to TCDD that cannot be ascribed simply to polymorphisms of the AhR gene. A non-AhR gene susceptibility loci for hepatic porphyria has been observed in mice treated with iron compounds prior to TCDD injection by using a quantitative trait locus analysis of an F2 intercross between susceptible C57BL/6 and resistant DBA/2 stains. In the rat, a gene B with Han/Wistar type AhR is likely to be involved in resistance to TCDD lethality. These observations suggest that other modulating genes, so-called ''modifier genes'', have profound effects on the AhR-mediated gene expression phenotype. Based on the nucleotide sequence of the AhR coding region, the BALB/c, CBA/J, and C3H/He mouse strains are clustered together on a single branch. In the present study, we try to confirm the existence of modifiers by using microarray analysis to examine hepatic gene expression after TCDD exposure in BALB/c, CBA/J, and C3H/He mice. To recognize the existence of a modifier besides the AhR, it is a prerequisite experimental condition that the analyzed strains have an identical AhR genotype. Therefore, we selected BALB/c, CBA/J, and C3H/He mice as the model

  14. The inhibition effect of 2,3,7,8-tetrachlorinated dibenzo-p-dioxin-induced aryl hydrocarbon receptor activation in human hepatoma cells with the treatment of cadmium chloride

    Energy Technology Data Exchange (ETDEWEB)

    Chao, How-Ran [Department of Environmental Science and Engineering, National Pingtung University of Science and Technology, Neipu, Pingtung 912, Taiwan (China); Emerging Compounds Research Center, National Pingtung University of Science and Technology, Neipu, Pingtung 912, Taiwan (China); Tsou, Tsui-Chun [Division of Environmental Health and Occupational Medicine, National Health Research Institutes, Zhunan, Miaoli 350, Taiwan (China); Chen, Hung-Ta [Sustainable Environment Research Center, National Cheng Kung University, Tainan 701, Taiwan (China); Chang, Eddy Essen; Tsai, Feng-Yuan [Division of Environmental Health and Occupational Medicine, National Health Research Institutes, Zhunan, Miaoli 350, Taiwan (China); Lin, Ding-Yan [Department of Environmental Science and Engineering, National Pingtung University of Science and Technology, Neipu, Pingtung 912, Taiwan (China); Chen, Fu-An [Graduate Institute of Pharmaceutical Science, Department of Pharmacy, Tajen University, Yan-Pu, Pingtung 907, Taiwan (China); Wang, Ya-Fen, E-mail: yfwang@cycu.edu.tw [Department of Bioenvironmental Engineering, Chung Yuan Christian University, Chungli, Taoyuan 320, Taiwan (China); R and D Center of Membrane Technology, Chung Yuan Christian University, Chungli 320, Taiwan (China)

    2009-10-15

    Polychlorinated dibenzo-p-dioxins (PCDDs) and dibenzofurans (PCDFs), considered as endocrine disruptors, tend to accumulate in fatty tissues. Dioxin-responsive element chemical activated luciferase gene expression assay (DRE-luciferase assay) has been recognized as a semi-quantitative method for screening dioxins for its fast and low-cost as compared with HRGC/HRMS. However, some problems with the bioassay, including specificity, detection variation resulted from different cleanup strategies, and uncertainty of false-negative or false-positive results, remain to be overcome. Cadmium is a prevalent environmental contaminant around the world. This study was aimed to examine the effects of cadmium on the 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD)-induced activation of aryl hydrocarbon receptor (AhR)-mediated gene expression in human hepatoma cells (Huh7-DRE-Luc cells and Huh7 cells). Ethoxyresorufin-O-deethylase (EROD) and DRE-luciferase assay were employed to determine the enzyme activity of cytochrome P450 1A1 (CYP1A1) and activation of AhR, respectively. The results showed that Cd{sup 2+} levels significantly inhibited the induction of TCDD-induced CYP1A1 and DRE luciferase activation in hepatoma cells. The 50% inhibited concentrations (IC{sub 50}) of CdCl{sub 2} were 0.414 {mu}M (95% confidence interval (C.I.): 0.230-0.602 {mu}M) in Huh7-DRE-Luc cells and 23.2 {mu}M (95% C.I.: 21.7-25.4 {mu}M) in Huh7 cells. Accordingly, prevention of interference with non-dioxin-like compounds in a DRE-luciferase assay is of great importance in an extensive cleanup procedure.

  15. Assays of polychlorinated biphenyl congeners and co-contaminated heavy metals in the transgenic Arabidopsis plants carrying the recombinant guinea pig aryl hydrocarbon receptor-mediated β-glucuronidase reporter gene expression system.

    Science.gov (United States)

    Shimazu, Sayuri; Ohta, Masaya; Ohkawa, Hideo; Ashida, Hitoshi

    2012-01-01

    The transgenic Arabidopsis plant XgD2V11-6 carrying the recombinant guinea pig (g) aryl hydrocarbon receptor (AhR)-mediated β-glucuronidase (GUS) reporter gene expression system was examined for assay of polychlorinated biphenyl (PCB) congeners and co-contaminated heavy metals. When the transgenic Arabidopsis plants were treated with PCB126 (toxic equivalency factor; TEF: 0.1) and PCB169 (TEF: 0.03), the GUS activity of the whole plants was increased significantly. After treatment with PCB80 (TEF: 0), the GUS activity was nearly the same level as that treated with 0.1% dimethylsulfoxide (DMSO) as a vehicle control. After exposure to a 1:1 mixture of PCB126 and PCB169, the GUS activity was increased additively. However, after exposure to a mixture of PCB126 and PCB80, the GUS activity was lower than that of the treatment with PCB126 alone. Thus, PCB80 seemed to be an antagonist towards AhR. When the transgenic plants were treated with each of the heavy metals Fe, Cu, Zn, Cd and Pb together with PCB126, Cd and Pb increased the PCB126-induced GUS activity. On the other hand, Fe, Cu and Zn did not affect the PCB126-induced GUS activity. In the presence of the biosurfactant mannosylerythritol lipid-B (MEL-B) and the carrier protein bovine serum albumin (BSA), the PCB126-induced GUS activity was increased, but the Cd-assisted PCB126-induced GUS activity was not affected. Thus, MEL-B and BSA seemed to increase uptake and transport of PCB126, respectively.

  16. Disruption of contact inhibition in rat liver epithelial cells by various types of AhR ligands

    Energy Technology Data Exchange (ETDEWEB)

    Vondracek, J.; Chramostova, K.; Kozubik, A. [Institute of Biophysics, Brno (Czech Republic); Krcmar, P.; Machala, M. [Veterinary Research Institute, Brno (Czech Republic)

    2004-09-15

    The maintenance of a balance between cell gain and cell loss is essential for proper liver function. The exact role of aryl hydrocarbon receptor (AhR) in regulating cell proliferation and apoptosis of liver cells remains unclear, since ligand-dependent activation of AhR has been shown to induce cell cycle arrest, proliferation, differentiation or apoptosis, depending on the cellular model used. AhR can directly interact with retinoblastoma protein in hepatic cells, forming protein complexes that can efficiently block cell cycle progression by inducing G1 arrest, or to induce the expression of inhibitors of cyclin-dependent kinases, such as p271. On the other hand, it has been suggested that AhR could play a stimulatory role in cell proliferation, either directly or by mediating a release from contact inhibition. It is now generally accepted that progenitor cells exist in the liver, are activated in various liver diseases and can form a potential target cell population for both tumor initiating and tumor promoting chemicals4. 2,3,7,8-tetrachlorodibenzo-pdioxin (TCDD) has been found to release rat liver epithelial cells from contact inhibition by upregulating cyclin A expression and cyclin A/cdk2 activity. Our previous studies have shown that a number of AhR ligands5,6 can stimulate proliferation of confluent of rat liver epithelial ''stem-like'' WB-F344 cells. Such mechanism could play a role in liver tumor promotion. In the present study, we used flavonoid compounds that have been reported to act either as pure agonists, such as beta-naphthoflavone (BNF), or as partial/complete antagonists of AhR - alpha-naphthoflavone (ANF) and 3'-methoxy-4'-nitroflavone (3'M4'NF), in order to investigate effects of AhR agonists/antagonists on confluent rat liver epithelial cells. The present study aimed to investigate the effects of model flavonoids on the release of rat liver epithelial cells from contact inhibition, and on inducibility of

  17. Identification of a high-affinity ligand that exhibits complete aryl hydrocarbon receptor antagonism.

    Science.gov (United States)

    Smith, Kayla J; Murray, Iain A; Tanos, Rachel; Tellew, John; Boitano, Anthony E; Bisson, William H; Kolluri, Siva K; Cooke, Michael P; Perdew, Gary H

    2011-07-01

    The biological functions of the aryl hydrocarbon receptor (AHR) can be delineated into dioxin response element (DRE)-dependent or -independent activities. Ligands exhibiting either full or partial agonist activity, e.g., 2,3,7,8-tetrachlorodibenzo-p-dioxin and α-naphthoflavone, have been demonstrated to potentiate both DRE-dependent and -independent AHR function. In contrast, the recently identified selective AHR modulators (SAhRMs), e.g., 1-allyl-3-(3,4-dimethoxyphenyl)-7-(trifluoromethyl)-1H-indazole (SGA360), bias AHR toward DRE-independent functionality while displaying antagonism with regard to ligand-induced DRE-dependent transcription. Recent studies have expanded the physiological role of AHR to include modulation of hematopoietic progenitor expansion and immunoregulation. It remains to be established whether such physiological roles are mediated through DRE-dependent or -independent pathways. Here, we present evidence for a third class of AHR ligand, "pure" or complete antagonists with the capacity to suppress both DRE-dependent and -independent AHR functions, which may facilitate dissection of physiological AHR function with regard to DRE or non-DRE-mediated signaling. Competitive ligand binding assays together with in silico modeling identify N-(2-(1H-indol-3-yl)ethyl)-9-isopropyl-2-(5-methylpyridin-3-yl)-9H-purin-6-amine (GNF351) as a high-affinity AHR ligand. DRE-dependent reporter assays, in conjunction with quantitative polymerase chain reaction analysis of AHR targets, reveal GNF351 as a potent AHR antagonist that demonstrates efficacy in the nanomolar range. Furthermore, unlike many currently used AHR antagonists, e.g., α-naphthoflavone, GNF351 is devoid of partial agonist potential. It is noteworthy that in a model of AHR-mediated DRE-independent function, i.e., suppression of cytokine-induced acute-phase gene expression, GNF351 has the capacity to antagonize agonist and SAhRM-mediated suppression of SAA1. Such data indicate that GNF351 is a

  18. Aryl Hydrocarbon Receptors in the frog Xenopus laevis: Two AHR1 paralogs exhibit low affinity for 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD)

    OpenAIRE

    Lavine, Jeremy A.; Rowatt, Ashley J.; Klimova, Tatyana; Whitington, Aric J.; Dengler, Emelyne; Beck, Catherine; Powell, Wade H.

    2005-01-01

    2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) is a potent developmental toxicant in most vertebrates. However, frogs are relatively insensitive to TCDD toxicity, especially during early life stages. Toxicity of TCDD and related halogenated aromatic hydrocarbons is mediated by the aryl hydrocarbon receptor (AHR), and specific differences in properties of the AHR signaling pathway can underlie differences in TCDD toxicity in different species. This study investigated the role of AHR in frog TCDD i...

  19. Predicting the Ah receptor binding affinity of PCDFs using molecular electronegativity interaction vector%分子电性作用矢量预测多氯代苯并呋喃Ah受体结合能力

    Institute of Scientific and Technical Information of China (English)

    冯涛; 周小华; 周兴

    2011-01-01

    Study on the quantitative structure-activity relationship (QSAR) of poly chlorinated dibenzofurans (PCDFs) would be helpful in discussing Ah receptor binding affinity of polychlorinated dibenzofurans (PCDFs). In this paper, a novel molecular electronegativity interaction vector (MEIV), which has been developed according to classification of atomic type, was used to describe the chemical structure of 136 polychlorinated dibenzofurans (PCDFs), a rational quantitative relationship model between the Ah receptor binding affinity of polychlorinated dibenzofurans (PCDFs) and the molecular electronegativity interaction vector (MEIV) was achieved by a multiple linear regression (MLR). The results of significance test were satisfying on the whole (n=26, /J=0.925, SD=0.570, F=15.210). Another more predictive model was constructed with a quite high correlation coefficient (R=0.917) by selecting six parameters form the all elements in the molecular electronegativity interaction vector (MEIV) vectors of the former model through a stepwise multiple regression (SMR). The performance of the six-parameter model was tested through cross-validation by the leave-one-out procedure (LOO) and satisfactory results were obtained(Rcv=0.828), then Ah receptor binding affinity of the rest unknown polychlorinated dibenzofurans (PCDFs) were predicted by the model. It was suggested that molecular electronegativity interaction vector (MEIV) was an excellent vectorial descriptor and possessed good structure selectivity.%首先用分子电性矢量(MEIV)表征多氯代苯并呋喃(PCDFs)136种同系物的结构,再用多元线性回归方法建立多氯代苯并呋喃(PCDFs)Ah受体的结合能力与分子电性矢量之间的定量关系(QSAR)模型,两者的相关性较显著,(n=26,R=0.925,SD=0.570,F=15.210)。此外先用逐步回归方法(SMR)从该模型中选6个参数建立新模型,其相关系数为R=0.917;再用留一法互相检验,其相关系数Re=0.828

  20. Baicalein induces G1 arrest in oral cancer cells by enhancing the degradation of cyclin D1 and activating AhR to decrease Rb phosphorylation

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Ya-Hsin, E-mail: yhcheng@mail.cmu.edu.tw [Department of Physiology, School of Medicine, China Medical University, Taichung 40402, Taiwan, ROC (China); Li, Lih-Ann; Lin, Pinpin; Cheng, Li-Chuan [Division of Environmental Health and Occupational Medicine, National Health Research Institutes, Zhunan, Miaoli 35053, Taiwan, ROC (China); Hung, Chein-Hui [Graduate Institute of Clinical Medicine Sciences, Chang Gung University, Puizi City, Chiayi 613, Taiwan, ROC (China); Chang, Nai Wen [Department of Biochemistry, School of Medicine, China Medical University, Taichung, Taiwan, ROC (China); Lin, Chingju [Department of Physiology, School of Medicine, China Medical University, Taichung 40402, Taiwan, ROC (China)

    2012-09-15

    Baicalein is a flavonoid, known to have anti-inflammatory and anti-cancer effects. As an aryl hydrocarbon receptor (AhR) ligand, baicalein at high concentrations blocks AhR-mediated dioxin toxicity. Because AhR had been reported to play a role in regulating the cell cycle, we suspected that the anti-cancer effect of baicalein is associated with AhR. This study investigated the molecular mechanism involved in the anti-cancer effect of baicalein in oral cancer cells HSC-3, including whether such effect would be AhR-mediated. Results revealed that baicalein inhibited cell proliferation and increased AhR activity in a dose-dependent manner. Cell cycle was arrested at the G1 phase and the expression of CDK4, cyclin D1, and phosphorylated retinoblastoma (pRb) was decreased. When the AhR was suppressed by siRNA, the reduction of pRb was partially reversed, accompanied by a decrease of cell population at G1 phase and an increase at S phase, while the reduction of cyclin D1 and CDK4 did not change. This finding suggests that the baicalein activation of AhR is indeed associated with the reduction of pRb, but is independent of the reduction of cyclin D1 and CDK4. When cells were pre-treated with LiCl, the inhibitor of GSK-3β, the decrease of cyclin D1 was blocked and the reduction of pRb was recovered. The data indicates that in HSC-3 the reduction of pRb is both mediated by baicalein through activation of AhR and facilitation of cyclin D1 degradation, which causes cell cycle arrest at the G1 phase, and results in the inhibition of cell proliferation. -- Highlights: ► Baicalein causes the G1 phase arrest by decreasing Rb phosphorylation. ► Baicalein modulates AhR-mediated cell proliferation. ► Both AhR activation and cyclin D1 degradation results in hypophosphorylation of Rb. ► Baicalein facilitates cyclin D1 degradation by signalling the GSK-3β pathway.

  1. Dioxin Toxicity In Vivo Results from an Increase in the Dioxin-Independent Transcriptional Activity of the Aryl Hydrocarbon Receptor

    Science.gov (United States)

    Céspedes, Miguel Angel; Galindo, Maximo Ibo; Couso, Juan Pablo

    2010-01-01

    The Aryl hydrocarbon receptor (Ahr) is the nuclear receptor mediating the toxicity of dioxins -widespread and persistent pollutants whose toxic effects include tumor promotion, teratogenesis, wasting syndrome and chloracne. Elimination of Ahr in mice eliminates dioxin toxicity but also produces adverse effects, some seemingly unrelated to dioxin. Thus the relationship between the toxic and dioxin-independent functions of Ahr is not clear, which hampers understanding and treatment of dioxin toxicity. Here we develop a Drosophila model to show that dioxin actually increases the in vivo dioxin-independent activity of Ahr. This hyperactivation resembles the effects caused by an increase in the amount of its dimerisation partner Ahr nuclear translocator (Arnt) and entails an increased transcriptional potency of Ahr, in addition to the previously described effect on nuclear translocation. Thus the two apparently different functions of Ahr, dioxin-mediated and dioxin-independent, are in fact two different levels (hyperactivated and basal, respectively) of a single function. PMID:21079739

  2. Dioxin toxicity in vivo results from an increase in the dioxin-independent transcriptional activity of the aryl hydrocarbon receptor.

    Directory of Open Access Journals (Sweden)

    Miguel Angel Céspedes

    Full Text Available The Aryl hydrocarbon receptor (Ahr is the nuclear receptor mediating the toxicity of dioxins--widespread and persistent pollutants whose toxic effects include tumor promotion, teratogenesis, wasting syndrome and chloracne. Elimination of Ahr in mice eliminates dioxin toxicity but also produces adverse effects, some seemingly unrelated to dioxin. Thus the relationship between the toxic and dioxin-independent functions of Ahr is not clear, which hampers understanding and treatment of dioxin toxicity. Here we develop a Drosophila model to show that dioxin actually increases the in vivo dioxin-independent activity of Ahr. This hyperactivation resembles the effects caused by an increase in the amount of its dimerisation partner Ahr nuclear translocator (Arnt and entails an increased transcriptional potency of Ahr, in addition to the previously described effect on nuclear translocation. Thus the two apparently different functions of Ahr, dioxin-mediated and dioxin-independent, are in fact two different levels (hyperactivated and basal, respectively of a single function.

  3. American Housing Survey (AHS) 2011

    Data.gov (United States)

    Department of Housing and Urban Development — The AHS is the largest, regular national housing sample survey in the United States. The U.S. Census Bureau conducts the AHS to obtain up-to-date housing statistics...

  4. G protein-coupled receptor 30 ligand G-1 increases aryl hydrocarbon receptor signalling by inhibition of tubulin assembly and cell cycle arrest in human MCF-7 cells.

    Science.gov (United States)

    Tarnow, Patrick; Tralau, Tewes; Luch, Andreas

    2016-08-01

    Regulatory crosstalk between the aryl hydrocarbon receptor (AHR) and oestrogen receptor α (ERα) is well established. Apart from the nuclear receptors ERα and ERβ, oestrogen signalling further involves an unrelated G protein-coupled receptor termed GPR30. In order to investigate potential regulatory crosstalk, this study investigated the influence of G-1 as one of the few GPR30-specific ligands on the AHR regulon in MCF-7 cells. As a well-characterised model system, these human mammary carcinoma cells co-express all three receptors (AHR, ERα and GPR30) and are thus ideally suited to study corresponding regulatory pathway interactions on transcript level. Indeed, treatment with micromolar concentrations of the GPR30-specific agonist G-1 resulted in up-regulation of AHR as well as the transcripts for cytochromes P450 1A1 and 1B1, two well-known targets of the AHR regulon. While this was partly attributable to G-1-mediated inhibition of tubulin assembly and subsequent cell cycle arrest in the G2/M phase, the effects nevertheless required functional AHR. However, G-1-induced up-regulation of CYP 1A1 was not mediated by GPR30, as G15 antagonist treatment as well as a knockdown of GPR30 and AHR failed to inhibit this effect.

  5. Combined chemical and toxicological long-term monitoring for AhR agonists with SPMD-based virtual organisms in drinking water Danjiangkou Reservoir, China.

    Science.gov (United States)

    Wang, Jingxian; Song, Guoqiang; Li, Aimin; Henkelmann, Bernhard; Pfister, Gerd; Tong, Anthony Z; Schramm, Karl-Werner

    2014-08-01

    SPMD-based virtual organisms (VOs) were employed for time-integrating, long-term sampling combined biological and chemical analyses for exposure assessment of hydrophobic organic pollutants (HOPs) in a drinking water reservoir, China. The SPMDs were deployed at four and five sites in the Danjiangkou (DJK) reservoir over two periods of 26 and 31 d to sequester the hydrophobic contaminants in water. The chosen bioassay response for the extracts of the SPMDs, the induction of 7-ethoxyresorufin-o-deethylase (EROD) was assayed using a rat hepatoma cell line (H4IIE). The known aryl hydrocarbon receptor (AhR) agonists PAHs and PCBs were analyzed by HRGC/HRMS instrument. The cause-effect relationship between the observed AhR activities and chemical concentrations of detected AhR agonists was examined. The results show that the extracts from the SPMD samples could induce AhR activity significantly, whereas the chemically derived 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) equivalent (TEQcal) was not correlated with the bioassay-derived TCDD equivalent (TEQbio). The known AhR agonists could only account for 2-10% of the observed AhR responses among which the contribution of PCBs could almost be neglected. Unidentified AhR-active compounds represented a greater proportion of the TCDD equivalent (TCDD-EQ) in SPMD samples from DJK. Based on the first assessment, the VO followed by the combination of chemical and biological analyses emerges as a resource efficient water monitoring device in ecotoxicological assessment for toxicologically relevant compounds which are readily available for uptake by resident aquatic biota in drinking water resources. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. BCL6--regulated by AhR/ARNT and wild-type MEF2B--drives expression of germinal center markers MYBL1 and LMO2.

    Science.gov (United States)

    Ding, Jie; Dirks, Wilhelm G; Ehrentraut, Stefan; Geffers, Robert; MacLeod, Roderick A F; Nagel, Stefan; Pommerenke, Claudia; Romani, Julia; Scherr, Michaela; Vaas, Lea A I; Zaborski, Margarete; Drexler, Hans G; Quentmeier, Hilmar

    2015-06-01

    Genetic heterogeneity is widespread in tumors, but poorly documented in cell lines. According to immunoglobulin hypermutation analysis, the diffuse large B-cell lymphoma cell line U-2932 comprises two subpopulations faithfully representing original tumor subclones. We set out to identify molecular causes underlying subclone-specific expression affecting 221 genes including surface markers and the germinal center oncogenes BCL6 and MYC. Genomic copy number variations explained 58/221 genes differentially expressed in the two U-2932 clones. Subclone-specific expression of the aryl-hydrocarbon receptor (AhR) and the resulting activity of the AhR/ARNT complex underlaid differential regulation of 11 genes including MEF2B. Knock-down and inhibitor experiments confirmed that AhR/ARNT regulates MEF2B, a key transcription factor for BCL6. AhR, MEF2B and BCL6 levels correlated not only in the U-2932 subclones but in the majority of 23 cell lines tested, indicting overexpression of AhR as a novel mechanism behind BCL6 diffuse large B-cell lymphoma. Enforced modulation of BCL6 affected 48/221 signature genes. Although BCL6 is known as a transcriptional repressor, 28 genes were up-regulated, including LMO2 and MYBL1 which, like BCL6, signify germinal center diffuse large B-cell lymphoma. Supporting the notion that BCL6 can induce gene expression, BCL6 and the majority of potential targets were co-regulated in a series of B-cell lines. In conclusion, genomic copy number aberrations, activation of AhR/ARNT, and overexpression of BCL6 are collectively responsible for differential expression of more than 100 genes in subclones of the U-2932 cell line. It is particularly interesting that BCL6 - regulated by AhR/ARNT and wild-type MEF2B - may drive expression of germinal center markers in diffuse large B-cell lymphoma.

  7. Effects of artificial sweeteners on the AhR- and GR-dependent CYP1A1 expression in primary human hepatocytes and human cancer cells.

    Science.gov (United States)

    Kamenickova, Alzbeta; Pecova, Michaela; Bachleda, Petr; Dvorak, Zdenek

    2013-12-01

    Food constituents may cause a phenomenon of food-drug interactions. In the current study, we examined the effects of artificial sweeteners (aspartame, acesulfame, cyclamate, saccharin) on the aryl hydrocarbon receptor (AhR) and glucocorticoid receptor (GR)-dependent expression of CYP1A1 in human hepatocytes, hepatic HepG2 and intestinal LS174T cancer cell lines. Sweeteners were tested in concentrations up to those occurring in non-alcoholic beverages. Basal and ligand-inducible AhR- and GR-dependent reporter gene activation in stably transfected HepG2 and HeLa cells, respectively, were not affected by either of the sweeteners tested after 24h of incubation. The expression of CYP1A1 mRNA and protein in primary cultures of human hepatocytes and in LS174T and HepG2 cells was not induced by any of the tested sweeteners. Overall, aspartame, acesulfame, saccharin and cyclamate had no effects on CYP1A1 expression and transcriptional activities of AhR and GR. These data imply the safety of artificial sweeteners in terms of interference with AhR, GR and CYP1A1.

  8. Effects of 4-nitrophenol on expression of the ER-α and AhR signaling pathway-associated genes in the small intestine of rats.

    Science.gov (United States)

    Tang, Juan; Song, Meiyan; Watanabe, Gen; Nagaoka, Kentaro; Rui, Xiaoli; Li, ChunMei

    2016-09-01

    4-Nitrophenol (PNP) is a persistent organic pollutant that was proven to be an environmental endocrine disruptor. The aim of this study was to evaluate the role of the estrogen receptor-α (ER-α) and aryl hydrocarbon receptor (AhR) signaling pathway in regulating the damage response to PNP in the small intestine of rats. Wistar-Imamichi male rats (21 d) were randomly divided into two groups: the control group and PNP group. Each group had three processes that were gavaged with PNP or vehicle daily: single dose (1 d), repeated dose (3 consecutive days) (3 d), and repeated dose with recovery (3 consecutive days and 3 recovery days) (6 d). The weight of the body, the related viscera, and small intestine were examined. Histological parameters of the small intestine and the quantity of mucus proteins secreted by small goblet cells were determined using HE staining and PAS staining. The mRNA expression of AhR, ER-α, CYP1A1, and GST was measured by real-time qPCR. In addition, we also analyzed the AhR, ER-α, and CYP1A1 expression in the small intestine by immunohistochemical staining. The small intestines histologically changed in the PNP-treated rat and the expression of AhR, CYP1A1, and GST was increased. While ER-α was significantly decreased in the small intestine, simultaneously, when rats were exposed to a longer PNP treatment, the damages disappeared. Our results demonstrate that PNP has an effect on the expression of AhR signaling pathway genes, AhR, CYP1A1, and GST, and ER-α in the rat small intestine.

  9. AhR Activation Underlies the CYP1A Autoinduction by A-998679 in Rats

    Directory of Open Access Journals (Sweden)

    Michael J. Liguori

    2012-10-01

    Full Text Available Xenobiotic-mediated induction of cytochrome P450 (CYP drug metabolizing enzymes (DMEs is frequently encountered in drug discovery and can influence disposition, pharmacokinetic, and toxicity profiles. The CYP1A subfamily of DMEs plays a central role in the biotransformation of several drugs and environmental chemicals. Autoinduction of drugs through CYP3A enzymes is a common mechanism for their enhanced clearance. However, autoinduction via CYP1A is encountered less frequently. In this report, an experimental compound, A-998679 (3-(5-pyridin-3-yl-1,2,4-oxadiazol-3-yl benzonitrile, was shown to enhance its own clearance via induction of CYP1A1 and CYP1A2. Rats were dosed for 5 days with 30, 100, and 200 mg/kg/day A-998679. During the dosing period, the compound’s plasma AUC decreased at 30 mg/kg (95% and 100 mg/kg (80%. Gene expression analysis and immunohistochemistry of the livers showed a large increase in the mRNA and protein levels of CYP1A, which was involved in the biotransformation of A-998679. Induction of CYP1A was confirmed in primary rat, human, and dog hepatocytes. The compound also weakly inhibited CYP1A2 in human liver microsomes. A-998679 activated the aryl hydrocarbon receptor (AhR in a luciferase gene reporter assay in HepG2 cells, upregulated expression of genes associated with AhR activation in rat liver, and enhanced nuclear migration of AhR in HepG2 cells. Collectively these results demonstrate that A-998679 is an AhR activator that induces CYP1A1 and CYP1A2 expression, resulting in an autoinduction phenomenon. The unique properties of A-998679, along with its novel structure distinct from classical polycyclic aromatic hydrocarbons, may warrant its further evaluation as a tool compound for use in studies involving AhR biology and CYP1A related mechanisms of drug metabolism and toxicity.

  10. Cardiac toxicity of 5-ring polycyclic aromatic hydrocarbons is differentially dependent on the aryl hydrocarbon receptor 2 isoform during zebrafish development

    Energy Technology Data Exchange (ETDEWEB)

    Incardona, John P., E-mail: john.incardona@noaa.gov; Linbo, Tiffany L.; Scholz, Nathaniel L.

    2011-12-15

    Petroleum-derived compounds, including polycyclic aromatic hydrocarbons (PAHs), commonly occur as complex mixtures in the environment. Recent studies using the zebrafish experimental model have shown that PAHs are toxic to the embryonic cardiovascular system, and that the severity and nature of this developmental cardiotoxicity varies by individual PAH. In the present study we characterize the toxicity of the relatively higher molecular weight 5-ring PAHs benzo[a]pyrene (BaP), benzo[e]pyrene (BeP), and benzo[k]fluoranthene (BkF). While all three compounds target the cardiovascular system, the underlying role of the ligand-activated aryl hydrocarbon receptor (AHR2) and the tissue-specific induction of the cytochrome p450 metabolic pathway (CYP1A) were distinct for each. BaP exposure (40 {mu}M) produced AHR2-dependent bradycardia, pericardial edema, and myocardial CYP1A immunofluorescence. By contrast, BkF exposure (4-40 {mu}M) caused more severe pericardial edema, looping defects, and erythrocyte regurgitation through the atrioventricular valve that were AHR2-independent (i.e., absent myocardial or endocardial CYP1A induction). Lastly, exposure to BeP (40 {mu}M) yielded a low level of CYP1A+ signal in the vascular endothelium of the head and trunk, without evident toxic effects on cardiac function or morphogenesis. Combined with earlier work on 3- and 4-ring PAHs, our findings provide a more complete picture of how individual PAHs may drive the cardiotoxicity of mixtures in which they predominate. This will improve toxic injury assessments and risk assessments for wild fish populations that spawn in habitats altered by overlapping petroleum-related human impacts such as oil spills, urban stormwater runoff, or sediments contaminated by legacy industrial activities. -- Highlights: Black-Right-Pointing-Pointer PAH compounds with 5 rings in different arrangements caused differential tissue-specific patterns of CYP1A induction in zebrafish embryos. Black

  11. Induction of c-Jun by air particulate matter (PM₁₀) of Mexico city: Participation of polycyclic aromatic hydrocarbons.

    Science.gov (United States)

    Salcido-Neyoy, Martha Estela; Sánchez-Pérez, Yesennia; Osornio-Vargas, Alvaro Román; Gonsebatt, María Eugenia; Meléndez-Zajgla, Jorge; Morales-Bárcenas, Rocío; Petrosyan, Pavel; Molina-Servin, Edith Danny; Vega, Elizabeth; Manzano-León, Natalia; García-Cuellar, Claudia M

    2015-08-01

    The carcinogenic potential of urban particulate matter (PM) has been partly attributed to polycyclic aromatic hydrocarbons (PAHs) content, which activates the aryl hydrocarbon receptor (AhR). Here we report the effect of PM with an aerodynamic size of 10 μm (PM10) on the induction of AhR pathway in A549 cells, evaluating its downstream targets CYP1B1, IL-6, IL-8 and c-Jun. Significant increases in CYP1B1 protein and enzyme activity; IL-6 and IL-8 secretion and c-Jun protein were found in response to PM10. The formation of PAH-DNA adducts was also detected. The involvement of AhR pathway was confirmed with Resveratrol as AhR antagonist, which reversed CYP1B1 and c-Jun induction. Nevertheless, in IL-6 and IL-8 secretion, the Resveratrol was ineffective, suggesting an effect independent of this pathway. Considering the role of c-Jun in oncogenesis, its induction by PM may be contributing to its carcinogenic potential through induction of AhR pathway by PAHs present in PM10.

  12. Receptor modeling of C2─C7 hydrocarbon sources at an urban background site in Zurich, Switzerland: changes between 1993─1994 and 2005─2006

    Directory of Open Access Journals (Sweden)

    S. Reimann

    2008-05-01

    Full Text Available Hourly measurements of 13 volatile hydrocarbons (C2–C7 were performed at an urban background site in Zurich (Switzerland in the years 1993–1994 and again in 2005–2006. For the separation of the volatile organic compounds by gas-chromatography (GC, an identical chromatographic column was used in both campaigns. Changes in hydrocarbon profiles and source strengths were recovered by positive matrix factorization (PMF. Eight and six factors could be related to hydrocarbon sources in 1993–1994 and in 2005–2006, respectively. The modeled source profiles were verified by hydrocarbon profiles reported in the literature. The source strengths were validated by independent measurements, such as inorganic trace gases (NOx, CO, SO2, methane (CH4, oxidized hydrocarbons (OVOCs and meteorological data (temperature, wind speed etc.. Our analysis suggests that the contribution of most hydrocarbon sources (i.e. road traffic, solvents use and wood burning decreased by a factor of about two to three between the early 1990s and 2005–2006. On the other hand, hydrocarbon losses from natural gas leakage remained at relatively constant levels (−20%. The estimated emission trends are in line with the results from different receptor-based approaches reported for other European cities. Their differences to national emission inventories are discussed.

  13. Gene-environment interactions in male reproductive health: special reference to the aryl hydrocarbon receptor signaling pathway

    Directory of Open Access Journals (Sweden)

    Leon J S Brokken

    2014-02-01

    Full Text Available Over the last few decades, there have been numerous reports of adverse effects on the reproductive health of wildlife and laboratory animals caused by exposure to endocrine disrupting chemicals (EDCs. The increasing trends in human male reproductive disorders and the mounting evidence for causative environmental factors have therefore sparked growing interest in the health threat posed to humans by EDCs, which are substances in our food, environment and consumer items that interfere with hormone action, biosynthesis or metabolism, resulting in disrupted tissue homeostasis or reproductive function. The mechanisms of EDCs involve a wide array of actions and pathways. Examples include the estrogenic, androgenic, thyroid and retinoid pathways, in which the EDCs may act directly as agonists or antagonists, or indirectly via other nuclear receptors. Dioxins and dioxin-like EDCs exert their biological and toxicological actions through activation of the aryl hydrocarbon-receptor, which besides inducing transcription of detoxifying enzymes also regulates transcriptional activity of other nuclear receptors. There is increasing evidence that genetic predispositions may modify the susceptibility to adverse effects of toxic chemicals. In this review, potential consequences of hereditary predisposition and EDCs are discussed, with a special focus on the currently available publications on interactions between dioxin and androgen signaling.

  14. 6-Formylindolo[3,2-b]Carbazole Accelerates Skin Wound Healing via Activation of ERK, but Not Aryl Hydrocarbon Receptor.

    Science.gov (United States)

    Morino-Koga, Saori; Uchi, Hiroshi; Mitoma, Chikage; Wu, Zhouwei; Kiyomatsu, Mari; Fuyuno, Yoko; Nagae, Konosuke; Yasumatsu, Mao; Suico, Mary Ann; Kai, Hirofumi; Furue, Masutaka

    2017-10-01

    Wound healing is an elaborate process composed of overlapping phases, such as proliferation and remodeling, and is delayed in several circumstances, including diabetes. Although several treatment strategies for chronic wounds, such as growth factors, have been applied, further alternatives are required. The skin, especially keratinocytes, is continually exposed to UV rays, which impairs wound healing. 6-Formylindolo[3,2-b]carbazole (FICZ) is a tryptophan photoproduct formed by UV exposure, indicating that FICZ might be one of the effectors of UV radiation. In contrast, treatment with tryptophan, the precursor for FICZ, promoted wound closure in keratinocytes. Therefore, the aim of our study was to determine the role of FICZ in wound healing. Here we showed that FICZ enhanced keratinocyte migration through mitogen-activated protein kinase/extracellular signal-regulated kinase activation, and promoted wound healing in various mouse models, including db/db mice, which exhibit wound healing impairments because of type 2 diabetes. Moreover, FICZ, the endogenous ligand of an aryl hydrocarbon receptor, accelerated migration even in the aryl hydrocarbon receptor knockdown condition and also promoted wound healing in DBA/2 mice, bearing a low-affinity aryl hydrocarbon receptor, suggesting that FICZ enhanced keratinocyte migration in a mitogen-activated protein kinase/extracellular signal-regulated kinase-dependent, but aryl hydrocarbon receptor-independent, manner. The function of FICZ might indicate the possibility of its clinical use for intractable chronic wounds. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  15. Antioxidants for Healthy Skin: The Emerging Role of Aryl Hydrocarbon Receptors and Nuclear Factor-Erythroid 2-Related Factor-2.

    Science.gov (United States)

    Furue, Masutaka; Uchi, Hiroshi; Mitoma, Chikage; Hashimoto-Hachiya, Akiko; Chiba, Takahito; Ito, Takamichi; Nakahara, Takeshi; Tsuji, Gaku

    2017-03-03

    Skin is the outermost part of the body and is, thus, inevitably exposed to UV rays and environmental pollutants. Oxidative stress by these hazardous factors accelerates skin aging and induces skin inflammation and carcinogenesis. Aryl hydrocarbon receptors (AHRs) are chemical sensors that are abundantly expressed in epidermal keratinocytes and mediate the production of reactive oxygen species. To neutralize or minimize oxidative stress, the keratinocytes also express nuclear factor-erythroid 2-related factor-2 (NRF2), which is a master switch for antioxidant signaling. Notably, there is fine-tuned crosstalk between AHR and NRF2, which mutually increase or decrease their activation states. Many NRF2-mediated antioxidant phytochemicals are capable of up- and downmodulating AHR signaling. The precise mechanisms by which these phytochemicals differentially affect the AHR and NRF2 system remain largely unknown and warrant future investigation.

  16. Antioxidants for Healthy Skin: The Emerging Role of Aryl Hydrocarbon Receptors and Nuclear Factor-Erythroid 2-Related Factor-2

    Science.gov (United States)

    Furue, Masutaka; Uchi, Hiroshi; Mitoma, Chikage; Hashimoto-Hachiya, Akiko; Chiba, Takahito; Ito, Takamichi; Nakahara, Takeshi; Tsuji, Gaku

    2017-01-01

    Skin is the outermost part of the body and is, thus, inevitably exposed to UV rays and environmental pollutants. Oxidative stress by these hazardous factors accelerates skin aging and induces skin inflammation and carcinogenesis. Aryl hydrocarbon receptors (AHRs) are chemical sensors that are abundantly expressed in epidermal keratinocytes and mediate the production of reactive oxygen species. To neutralize or minimize oxidative stress, the keratinocytes also express nuclear factor-erythroid 2-related factor-2 (NRF2), which is a master switch for antioxidant signaling. Notably, there is fine-tuned crosstalk between AHR and NRF2, which mutually increase or decrease their activation states. Many NRF2-mediated antioxidant phytochemicals are capable of up- and downmodulating AHR signaling. The precise mechanisms by which these phytochemicals differentially affect the AHR and NRF2 system remain largely unknown and warrant future investigation. PMID:28273792

  17. Size Distribution of Chlorinated Polycyclic Aromatic Hydrocarbons in Atmospheric Particles.

    Science.gov (United States)

    Kakimoto, Kensaku; Nagayoshi, Haruna; Konishi, Yoshimasa; Kajimura, Keiji; Ohura, Takeshi; Nakano, Takeshi; Hata, Mitsuhiko; Furuuchi, Masami; Tang, Ning; Hayakawa, Kazuichi; Toriba, Akira

    2017-01-01

    The particle size distribution of chlorinated polycyclic aromatic hydrocarbons (ClPAHs) in particulate matter (PM) in Japan is examined for the first time. PM was collected using a PM0.1 air sampler with a six-stage filter. PM was collected in October 2014 and January 2015 to observe potential seasonal variation in the atmospheric behavior and size of PM, including polycyclic aromatic hydrocarbons (PAHs) and ClPAHs. We found that the concentration of PAHs and ClPAHs between 0.5-1.0 μm and 1.0-2.5 μm markedly increase in January (i.e., the winter season). Among the ClPAHs, 1-ClPyrene and 6-ClBenzo[a]Pyrene were the most commonly occurring compounds; further, approximately 15% of ClPAHs were in the nanoparticle phase (<0.1 μm). The relatively high presence of nanoparticles is a potential human health concern because these particles can easily be deposited in the lung periphery. Lastly, we evaluated the aryl hydrocarbon receptor (AhR) ligand activity of PM extracts in each size fraction. The result indicates that PM < 2.5 μm has the strong AhR ligand activity.

  18. Modulation of aryl hydrocarbon receptor (AHR)-dependent signaling by peroxisome proliferator-activated receptor β/δ (PPARβ/δ) in keratinocytes

    Science.gov (United States)

    Borland, Michael G.; Krishnan, Prasad; Lee, Christina; Albrecht, Prajakta P.; Shan, Weiwei; Bility, Moses T.; Marcus, Craig B.; Lin, Jyh M.; Amin, Shantu; Gonzalez, Frank J.; Perdew, Gary H.; Peters, Jeffrey M.

    2014-01-01

    Whether peroxisome proliferator-activated receptor β/δ (PPARβ/δ) reduces skin tumorigenesis by altering aryl hydrocarbon receptor (AHR)-dependent activities was examined. Polycyclic aromatic hydrocarbons (PAH) increased expression of cytochrome P4501A1 (CYP1A1), CYP1B1 and phase II xenobiotic metabolizing enzymes in wild-type skin and keratinocytes. Surprisingly, this effect was not found in Pparβ/δ-null skin and keratinocytes. Pparβ/δ-null keratinocytes exhibited decreased AHR occupancy and histone acetylation on the Cyp1a1 promoter in response to a PAH compared with wild-type keratinocytes. Bisulfite sequencing of the Cyp1a1 promoter and studies using a DNA methylation inhibitor suggest that PPARβ/δ promotes demethylation of the Cyp1a1 promoter. Experiments with human HaCaT keratinocytes stably expressing shRNA against PPARβ/δ also support this conclusion. Consistent with the lower AHR-dependent activities in Pparβ/δ-null mice compared with wild-type mice, 7,12-dimethylbenz[a]anthracene (DMBA)-induced skin tumorigenesis was inhibited in Pparβ/δ-null mice compared with wild-type. Results from these studies demonstrate that PPARβ/δ is required to mediate complete carcinogenesis by DMBA. The mechanisms underlying this PPARβ/δ-dependent reduction of AHR signaling by PAH are not due to alterations in the expression of AHR auxiliary proteins, ligand binding or AHR nuclear translocation between genotypes, but are likely influenced by PPARβ/δ-dependent demethylation of AHR target gene promoters including Cyp1a1 that reduces AHR accessibility as shown by reduced promoter occupancy. This PPARβ/δ/AHR crosstalk is unique to keratinocytes and conserved between mice and humans. PMID:24639079

  19. Effect of TBT and PAHs on CYP1A, AhR and Vitellogenin Gene Expression in the Japanese Eel, Anguilla japonica.

    Science.gov (United States)

    Choi, Min Seop; Kwon, Se Ryun; Choi, Seong Hee; Kwon, Hyuk Chu

    2012-12-01

    Gene expressions of cytochrome P4501A (CYP1A), aryl hydrocarbon receptor (AhR) and vitellogenin (Vg) by endocrine disruptors, benzo[α]pyrene (B[a]P) and tributyltin (TBT) were examined in cultured eel hepatocytes which were isolated from eels treated previously with B[a]P (10 mg/kg) or estradiol-17β (20 mg/kg) in vivo, and the relationship between CYP1A, AhR and Vg genes were studied. When the cultured eel hepatocytes were treated with B[a]P (10(-6)-10(-5) M) the gene expressions of CYP1A and AhR were enhanced in a concentration-dependent manner. However, when treated with TBT (10(-9)-10(-5) M) the gene expressions of CYP1A and AhR were suppressed at high concentrations (10(-6)-10(-5) M), while having no effects at low concentrations (10(-9)-10(-7) M). Gene expression of Vg was also suppressed by TBT in a concentration-dependent manner in cultured eel hepatocytes which was previously treated in vivo with estradiol-17β.

  20. Liver Tumor Promotion by 2,3,7,8-Tetrachlorodibenzo-p-dioxin Is Dependent on the Aryl Hydrocarbon Receptor and TNF/IL-1 Receptors

    Science.gov (United States)

    Kennedy, Gregory D.; Nukaya, Manabu; Moran, Susan M.; Glover, Edward; Weinberg, Samuel; Balbo, Silvia; Hecht, Stephen S.; Pitot, Henry C.; Drinkwater, Norman R.; Bradfield, Christopher A.

    2014-01-01

    We set out to better understand the signal transduction pathways that mediate liver tumor promotion by 2,3,7,8-tetrachlorodibenzo-p-dioxn (“dioxin”). To this end, we first employed congenic mice homozygous for either the Ahrb1 or Ahrd alleles (encoding an aryl hydrocarbon receptor (AHR) with high or low binding affinity for dioxin, respectively) and demonstrated that hepatocellular tumor promotion in response to dioxin segregated with the Ahr locus. Once we had genetic evidence for the importance of AHR signaling, we then asked if tumor promotion by dioxin was influenced by “interleukin-1 (IL-1)-like” inflammatory cytokines. The importance of this question arose from our earlier observation that aspects of the acute hepatocellular toxicity of dioxin are dependent upon IL1-like cytokine signaling. To address this issue, we employed a triple knock-out (TKO) mouse model with null alleles at the loci encoding the three relevant receptors for tumor necrosis factors α and β and IL-1α and IL-1β (i.e., null alleles at the Tnfrsf1a, Tnfrsf1b, and Il-1r1 loci). The observation that TKO mice were resistant to the tumor promoting effects of dioxin in liver suggests that inflammatory cytokines play an important step in dioxin mediated liver tumor promotion in the mouse. Collectively, these data support the idea that the mechanism of dioxin acute hepatotoxicity and its activity as a promoter in a mouse two stage liver cancer model may be similar, i.e., tumor promotion by dioxin, like acute hepatotoxicity, are mediated by the linked action of two receptor systems, the AHR and the receptors for the “IL-1-like” cytokines. PMID:24718703

  1. Improvement of Chicken Primordial Germ Cell Maintenance In Vitro by Blockade of the Aryl Hydrocarbon Receptor Endogenous Activity.

    Science.gov (United States)

    Pérez Sáez, Juan M; Bussmann, Leonardo E; Barañao, J Lino; Bussmann, Ursula A

    2016-06-01

    Primordial germ cells (PGCs) are the undifferentiated progenitors of gametes. Germline competent PGCs can be developed as a cell-based system for genetic modification in chickens, which provides a valuable tool for transgenic technology with both research and industrial applications. This implies manipulation of PGCs, which, in recent years, encouraged a lot of research focused on the study of PGCs and the way of improving their culture. The aryl hydrocarbon receptor (AHR) is a ligand-activated transcription factor that besides mediating toxic responses to environmental contaminants plays pivotal physiological roles in various biological processes. Since a novel compound that acts as an antagonist of this receptor has been reported to promote expansion of hematopoietic stem cells, we conducted the present study with the aim of determining whether addition of an established AHR antagonist to the standard culture medium used nowadays for in vitro chicken PGCs culture improves ex vivo expansion. We have found that addition of α-naphthoflavone in culture medium promotes the amplification of undifferentiated cells and that this effect is exerted by the blockade of AHR action. Our results constitute the first report of the successful use of a readily available AHR antagonist to improve avian PGCs expansion, and they further extend the knowledge of the effects of AHR modulation in undifferentiated cells.

  2. Protective effects of levamisole, acetylsalicylic acid, and α-tocopherol against dioxin toxicity measured as the expression of AhR and COX-2 in a chicken embryo model.

    Science.gov (United States)

    Gostomska-Pampuch, Kinga; Ostrowska, Alicja; Kuropka, Piotr; Dobrzyński, Maciej; Ziółkowski, Piotr; Kowalczyk, Artur; Łukaszewicz, Ewa; Gamian, Andrzej; Całkosiński, Ireneusz

    2017-04-01

    Polychlorinated dibenzo-p-dioxins and dibenzofurans (dioxins) are classed as persistent organic pollutants and have adverse effects on multiple functions within the body. Dioxins are known carcinogens, immunotoxins, and teratogens. Dioxins are transformed in vivo, and interactions between the products and the aryl hydrocarbon receptor (AhR) lead to the formation of proinflammatory and toxic metabolites. The aim of this study was to determine whether α-tocopherol (vitamin E), acetylsalicylic acid (ASA), and levamisole can decrease the amount of damage caused by dioxins. Fertile Hubbard Flex commercial line chicken eggs were injected with solutions containing 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) or containing TCDD and the test compounds. The chicken embryos and organs were analyzed after 7 and 13 days. The levels at which AhR and cyclooxygenase-2 (COX-2) proteins (which are induced during inflammation) were expressed were evaluated by performing immunohistochemical analyses on embryos treated with TCDD alone or with TCDD and the test compounds. TCDD caused developmental disorders and increased AhR and COX-2 expression in the chicken embryo tissues. Vitamin E, levamisole, ASA, and ASA plus vitamin E inhibited AhR and COX-2 expression in embryos after 7 days and decreased AhR and COX-2 expression in embryos after 13 days. ASA, levamisole, and ASA plus vitamin E weakened the immune response and prevented multiple organ changes. Vitamin E was not fully protective against developmental changes in the embryos.

  3. Contributions of aryl hydrocarbon receptor genetic variants to the risk of glioma and PAH-DNA adducts.

    Science.gov (United States)

    Gu, Aihua; Ji, Guixiang; Jiang, Tao; Lu, Ailin; You, Yongping; Liu, Ning; Luo, Chengzhang; Yan, Wei; Zhao, Peng

    2012-08-01

    The aryl hydrocarbon receptor (AHR) gene is involved in the response to polycyclic aromatic hydrocarbon (PAH) exposure. To investigate the hypothesis that the genetic variants in the AHR gene might be a causal genetic susceptibility to PAH-DNA adduct formation and glioma risk, we conducted a case-control study of 384 glioma cases and 384 cancer-free controls to explore the association between six common single-nucleotide polymorphisms of the AHR gene and glioma risk. Using PAH-DNA adducts as biomarkers, we then evaluated the association between PAH-DNA adduct levels and glioma risk based on a tissue microarray including 11 controls and 77 glioma patients. We further explored the contributions of the glioma risk-associated AHR polymorphisms to the levels of PAH-DNA adducts in glioma tissues based on 77 glioma patients. We found that PAH-DNA adduct staining existed in normal brain tissues and grades I-IV gliomas, and the staining intensity was significantly associated with the glioma grade. Two AHR polymorphisms (rs2066853 and rs2158041) demonstrated significant association with glioma risk. Intriguingly, we also found statistically significant associations between these two variants and PAH-DNA adduct levels in glioma tissue. These data suggest the contributions of AHR rs2066853 and rs2158041 to glioma risk and the PAH-DNA adduct levels, which shed new light on gene-environment interactions in the etiology of glioma. Further studies with a larger sample size and ethnically diverse populations are required to elucidate the potential biological mechanism for, as well as the impact of, the susceptibility to glioma due to genetic variants of AHR.

  4. Aryl hydrocarbon receptor function in early vertebrates:Inducibility of cytochrome P450 1A in agnathan and elasmobranch fish

    Science.gov (United States)

    Hahn, Mark E.; Woodin, Bruce R.; Stegeman, John J.; Tillitt, Donald E.

    1998-01-01

    The mammalian aryl hydrocarbon receptor (AHR) is a ligand-activated transcription factor that controls the expression of cytochrome P450 1A (CYP1A) genes in response to halogenated aromatic hydrocarbons such as 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). The natural ligand and normal physiologic function of this protein are as yet unknown. One approach to understanding AHR function and significance is to determine the evolutionary history of this receptor and of processes such as CYP1A induction that are controlled by the AHR in mammals. In these studies, AHR function was evaluated in representative cartilaginous fish (little skate, Raja erinacea) and jawless fish (sea lamprey, Petromyzon marinus and Atlantic hagfish, Myxine glutinosa), using CYP1A induction as a model AHR-dependent response. Treatment of skate with β-naphthoflavone (BNF) caused an 8-fold increase in hepatic ethoxyresorufin O-deethylase (EROD) activity as well as a 37-fold increase in the content of immunodetectable CYP1A protein. Evidence of CYP1A inducibility was also obtained for another cartilaginous fish, the smooth dogfish Mustelus canis. In contrast, hepatic EROD activity was not detected in untreated lamprey nor in lamprey treated with 3,3′,4,4′-tetrachlorobiphenyl (TCB), a potent AHR agonist in teleosts. A possible CYP1A homolog was detected in lamprey hepatic microsomes by one of three antibodies to teleost CYP1A, but expression of this protein was not altered by TCB treatment. CYP1A protein and catalytic activity were measurable in hagfish, but neither was induced after treatment with TCB. These results suggest that the AHR-CYP1A signal transduction pathway is highly conserved in gnathostomes, but that there may be fundamental differences in AHR signaling or AHR-CYP1A coupling in agnathan fish. Agnathan fish such as hagfish and lamprey may be interesting model species for examining possible ancestral AHR functions not related to CYP1A regulation.

  5. Mitochondrial activity and oxidative stress functions are influenced by the activation of AhR-induced CYP1A1 overexpression in cardiomyocytes.

    Science.gov (United States)

    Zhou, Bing; Wang, Xi; Li, Feng; Wang, Yingting; Yang, Lei; Zhen, Xiaolong; Tan, Wuhong

    2017-07-01

    There is an endemic cardiomyopathy currently occurring in China, termed, Keshan disease (KD). The authors previously compared mitochondrial‑associated gene expression profiles of peripheral blood mononuclear cells (PBMCs) derived from KD patients and normal controls, using mitochondria‑focused cDNA microarray technology. The results detected an upregulation of the enzyme‑associated CYP1A1 gene, (ratios ≥2.0). The aryl hydrocarbon receptor (AhR) regulates the expression of numerous cytochrome P450 (CYP) genes including members of the CYP1 family; CYP1A1 and CYP1A2. Several previous studies have suggested roles for the aryl hydrocarbon receptor (AhR) and the genes that it regulates. An example involves cytochrome P4501A1 (CYP1A1), in the pathogenesis of heart failure, cardiac hypertrophy and other cardiomyopathies. Mitochondria comprise ~30% of the intracellular volume in mammalian cardiomyocytes, and subtle alterations in mitochondria can markedly influence cardiomyopathies. The present study investigated alterations in the activity and functions of mitochondria following AhR‑induced overexpression of CYP1A1. AC16 cells were treated with the CYP1A1 inducer 2,3,7,8‑tetrachlorodibenzo‑p‑dioxin (TCDD), and cytotoxicity was then evaluated in MTT assays. Reverse transcription‑quantitative polymerase chain reactions, western blot analysis and 7‑ethoxyresorufin O‑deacylase assays were performed to analyze the mRNA and protein levels, and the enzymatic activity of CYP1A1. Mitochondrial activity and mass were analyzed using an inverted fluorescence microscope and a fluorescence microplate reader. Reactive oxygen species (ROS) activity was analyzed using flow cytometry. The results of the current study demonstrated that TCDD gradually increased mRNA and protein levels of AhR and CYP1A1, in addition to the enzymatic activity. Mitochondrial activity and the quality of mitochondrial membranes were also significantly attenuated, and mitochondrial ROS

  6. AhR-mediated and antiestrogenic activity of humic substances.

    Science.gov (United States)

    Janosek, J; Bittner, M; Hilscherová, K; Bláha, L; Giesy, J P; Holoubek, I

    2007-04-01

    Humic substances (HS) were for decades regarded as inert in the ecosystems with respect to their possible toxicity. However, HS have been recently shown to elicit various adverse effects generally attributed to xenobiotics. In our study, we used MVLN and H4IIE-luc cell lines stably transfected with luciferase gene under control of estrogen receptor (ER) and Ah receptor (AhR; receptor connected with so-called dioxin-like toxicity) for assessment of anti/estrogenic and AhR-mediated effects of 12 commercially available humic substances. Out of those, five humic acids were shown to induce AhR-mediated activity with relative potencies related to TCDD 2.6 x 10(-8)-7.4 x 10(-8). Organic extracts of HS solutions also elicited high activities what means that lipophilic molecules are responsible for a great part of effect. However, relatively high activity remaining in extracted solution suggests also presence of polar AhR-agonists. Contribution of persistent organic compounds to the observed effects was ruled out by H(2)SO(4) treatment. Eight out of twelve HS elicited significant antiestrogenic effects with IC(50) ranging from 40 to 164 mg l(-1). The possible explanations of the antiestrogenic effect include sorption of 17-beta-estradiol (E2) on HS, changes in membrane permeability for E2 or another specific mechanism.

  7. Ethnic variability in the allelic distribution of human aryl hydrocarbon receptor codon 554 and assessment of variant receptor function in vitro.

    Science.gov (United States)

    Wong, J M; Harper, P A; Meyer, U A; Bock, K W; Morike, K; Lagueux, J; Ayotte, P; Tyndale, R F; Sellers, E M; Manchester, D K; Okey, A B

    2001-02-01

    The aryl hydrocarbon receptor (AHR) is a ligand-dependent transcriptional regulator of several genes including the cytochrome P4501 (CYP1) family as well as genes encoding factors involved in cell growth and differentiation. In mice, several polymorphic forms of the AHR are known, some of which have altered affinity for toxic and carcinogenic ligands. Remarkably little genetic variation has been detected in the human AHR gene. In studies on human AHR, Kawajiri et al. (Pharmacogenetics 1995; 5:151-158) reported a variation at codon 554 that results in an amino acid change from arginine to lysine; the frequency of the variant allele in a Japanese population (n = 277) was 0.43. We investigated the Lys554 allele in 386 individuals of various ethnic origins and found the frequency to be: 0.58 in Ivory Coast Africans (n = 58); 0.53 in a mixed African group (n = 20); 0.39 in Caribbean-Africans (n = 55); 0.32 in Canadian Chinese (n = 41); 0.14 in North American Indians (n = 47); 0.12 in French Canadian Caucasians (n = 20); 0.11 in a mixed ethnicity North American group (n = 45); 0.09 in Canadian Inuits (n = 22); and 0.07 in German Caucasians (n = 78). We expressed the human Lys554 allele in an in-vitro transcription-translation system and found that the receptor bearing the R554L substitution had an equivalent ability to that of the wild-type receptor to bind to a dioxin-responsive element following treatment with 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). The Lys554 allele also was equivalent to the wild-type receptor at stimulating CYP1A1 mRNA expression when transfected into TCDD-treated receptor-deficient mouse Hepa-1 cells. It is not yet known if any of the wide variations in allele frequency at codon 554 are related to ethnic differences in susceptibility to adverse effects of environmental chemicals.

  8. Receptor modelling study of polycyclic aromatic hydrocarbons in Jeddah, Saudi Arabia

    Energy Technology Data Exchange (ETDEWEB)

    Alghamdi, Mansour A. [Department of Environmental Sciences, Faculty of Meteorology, Environment and Arid Land Agriculture, King Abdulaziz University, Jeddah (Saudi Arabia); Alam, Mohammed S., E-mail: m.s.alam@bham.ac.uk [Division of Environmental Health and Risk Management, School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT (United Kingdom); Yin, Jianxin; Stark, Christopher; Jang, Eunhwa [Division of Environmental Health and Risk Management, School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT (United Kingdom); Harrison, Roy M., E-mail: r.m.harrison@bham.ac.uk [Department of Environmental Sciences, Faculty of Meteorology, Environment and Arid Land Agriculture, King Abdulaziz University, Jeddah (Saudi Arabia); Division of Environmental Health and Risk Management, School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT (United Kingdom); Shamy, Magdy; Khoder, Mamdouh I.; Shabbaj, Ibrahim I. [Department of Environmental Sciences, Faculty of Meteorology, Environment and Arid Land Agriculture, King Abdulaziz University, Jeddah (Saudi Arabia)

    2015-02-15

    Measurements of 14 polycyclic aromatic hydrocarbons (PAH) have been made in Jeddah, Saudi Arabia, with a view to establishing the concentrations in this major city, and quantifying the contributions of major sources. Particulate and vapour forms have been sampled and analysed separately. The concentrations are compared to measurements from other sites in the Middle Eastern region and are towards the lower end of the range, being far lower than concentrations reported from Riyadh (Saudi Arabia), Assiut (Egypt) and Tehran (Iran) but broadly similar to those measured in Damascus (Syria) and higher than those measured in Kuwait. The partitioning between vapour and particle phases is similar to that in data from Egypt and China, but with many compounds showing a higher particle-associated percentage than in Birmingham (UK) possibly reflecting a higher concentration of airborne particulate matter in the former countries. Concentrations in Jeddah were significantly higher at a site close to the oil refinery and a site close to a major ring road than at a suburban site to the north of the city. Application of positive matrix factorisation to the pooled data elicited three factors accounting respectively for 17%, 33% and 50% of the measured sum of PAH and these are interpreted as arising from gasoline vehicles, industrial sources, particularly the oil refinery, and to diesel/fuel oil combustion. - Highlights: • Measurements of 14 PAH compounds in vapour and particulate phases at three sites. • Comparison of concentrations across Jeddah and Middle Eastern regions. • Application of positive matrix factorisation to identify possible sources.

  9. The R304X mutation of the Aryl hydrocarbon receptor Interacting Protein gene in familial isolated pituitary adenomas: mutational Hot-Spot or founder effect?

    OpenAIRE

    Occhi, G.; Jaffrain-Rea, M. L.; Trivellin, G.; Albiger, N; Ceccato, F.; De Menis, E.; Angelini, M.; Ferasin, S; Beckers, Albert; F. Mantero; Scaroni, C.

    2010-01-01

    Background: Mutations in the Aryl hydrocarbon receptor Interacting Protein (AIP) gene have been described in about 15% of kindreds with Familial Isolated Pituitary Adenomas (FIPA) and in a minority of early onset sporadic pituitary adenomas (PA). Among the AIP mutations reported so far, the R304X (AIPR304X) represents, together with the "Finnish mutation" Q14X, the most common one. Methods: Three AIPR304X Italian families, including a newly reported kindred, have been genotyped for 12 genetic...

  10. Augmented Growth Hormone Secretion and Stat3 Phosphorylation in an Aryl Hydrocarbon Receptor Interacting Protein (AIP)-Disrupted Somatotroph Cell Line

    OpenAIRE

    Fukuda, Takashi; Tanaka, Tomoko; Hamaguchi, Yuriko; Kawanami, Takako; Nomiyama, Takashi; Yanase, Toshihiko

    2016-01-01

    Aryl hydrocarbon receptor interacting protein (AIP) is thought to be a tumor suppressor gene, as indicated by a mutational analysis of pituitary somatotroph adenomas. However, the physiological significance of AIP inactivation in somatotroph cells remains unclear. Using CRISPR/Cas9, we identified a GH3 cell clone (termed GH3-FTY) in which Aip was genetically disrupted, and subsequently investigated its character with respect to growth hormone (Gh) synthesis and proliferation. Compared with GH...

  11. Altered subcellular localization of heat shock protein 90 is associated with impaired expression of the aryl hydrocarbon receptor pathway in dogs.

    Directory of Open Access Journals (Sweden)

    Frank G van Steenbeek

    Full Text Available The aryl hydrocarbon receptor (AHR mediates biological responses to toxic chemicals. An unexpected role for AHR in vascularization was suggested when mice lacking AHR displayed impaired closure of the ductus venosus after birth, as did knockout mice for aryl hydrocarbon receptor interacting protein (AIP and aryl hydrocarbon receptor nuclear translocator (ARNT. The resulting intrahepatic portosystemic shunts (IHPSS are frequently diagnosed in specific dog breeds, such as the Irish wolfhound. We compared the expression of components of the AHR pathway in healthy Irish wolfhounds and dogs with IHPSS. To this end, we analyzed the mRNA expression in the liver of AHR,AIP, ARNT, and other genes involved in this pathway, namely, those for aryl hydrocarbon receptor nuclear translocator 2 (ARNT2, hypoxia inducible factor 1alpha (HIF1A, heat shock protein 90AA1 (HSP90AA1, cytochromes P450 (CYP1A1, CYP1A2, and CYP1B1, vascular endothelial growth factor A (VEGFA, nitric oxide synthesase 3 (NOS3, and endothelin (EDN1. The observed low expression of AHR mRNA in the Irish wolfhounds is in associated with a LINE-1 insertion in intron 2, for which these dogs were homozygous. Down regulation in Irish wolfhounds was observed for AIP, ARNT2, CYP1A2, CYP1B1 and HSP90AA1 expression, whereas the expression of HIF1A was increased. Immunohistochemistry revealed lower levels of AHR, HIF1A, and VEGFA protein in the nucleus and lower levels of ARNT and HSP90AA1 protein in the cytoplasm of the liver cells of Irish wolfhounds. The impaired expression of HSP90AA1 could trigger the observed differences in mRNA and protein levels and therefore explain the link between two very different functions of AHR: regulation of the closure of the ductus venosus and the response to toxins.

  12. Toward Understanding the Role of Aryl Hydrocarbon Receptor in the Immune System: Current Progress and Future Trends

    Directory of Open Access Journals (Sweden)

    Hamza Hanieh

    2014-01-01

    Full Text Available The immune system is regulated by distinct signaling pathways that control the development and function of the immune cells. Accumulating evidence suggest that ligation of aryl hydrocarbon receptor (Ahr, an environmentally responsive transcription factor, results in multiple cross talks that are capable of modulating these pathways and their downstream responsive genes. Most of the immune cells respond to such modulation, and many inflammatory response-related genes contain multiple xenobiotic-responsive elements (XREs boxes upstream. Active research efforts have investigated the physiological role of Ahr in inflammation and autoimmunity using different animal models. Recently formed paradigm has shown that activation of Ahr by 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD or 3,3′-diindolylmethane (DIM prompts the differentiation of CD4+Foxp3+ regulatory T cells (Tregs and inhibits T helper (Th-17 suggesting that Ahr is an innovative therapeutic strategy for autoimmune inflammation. These promising findings generate a basis for future clinical practices in humans. This review addresses the current knowledge on the role of Ahr in different immune cell compartments, with a particular focus on inflammation and autoimmunity.

  13. Expression of the aryl hydrocarbon receptor contributes to the establishment of intestinal microbial community structure in mice

    Science.gov (United States)

    Murray, Iain A.; Nichols, Robert G.; Zhang, Limin; Patterson, Andrew D.; Perdew, Gary H.

    2016-01-01

    Environmental and genetic factors represent key components in the establishment/maintenance of the intestinal microbiota. The aryl hydrocarbon receptor (AHR) is emerging as a pleiotropic factor, modulating pathways beyond its established role as a xenobiotic sensor. The AHR is known to regulate immune surveillance within the intestine through retention of intraepithelial lymphocytes, functional redistribution of Th17/Treg balance. Consequently, environmental/genetic manipulation of AHR activity likely influences host-microbe homeostasis. Utilizing C57BL6/J Ahr−/+ and Ahr−/− co-housed littermates followed by 18 days of genotypic segregation, we examined the influence of AHR expression upon intestinal microbe composition/functionality and host physiology. 16S sequencing/quantitative PCR (qPCR) revealed significant changes in phyla abundance, particularly Verrucomicrobia together with segmented filamentous bacteria, and an increase in species diversity in Ahr−/− mice following genotypic segregation. Metagenomics/metabolomics indicate microbial composition is associated with functional shifts in bacterial metabolism. Analysis identified Ahr−/−-dependent increases in ileal gene expression, indicating increased inflammatory tone. Transfer of Ahr−/− microbiota to wild-type germ-free mice recapitulated the increase Verrucomicrobia and inflammatory tone, indicating Ahr−/−-microbial dependence. These data suggest a role for the AHR in influencing the community structure of the intestinal microbiota. PMID:27659481

  14. A novel germline mutation in the aryl hydrocarbon receptor-interacting protein (AIP) gene in an Italian family with gigantism.

    Science.gov (United States)

    Urbani, C; Russo, D; Raggi, F; Lombardi, M; Sardella, C; Scattina, I; Lupi, I; Manetti, L; Tomisti, L; Marcocci, C; Martino, E; Bogazzi, F

    2014-10-01

    Acromegaly usually occurs as a sporadic disease, but it may be a part of familial pituitary tumor syndromes in rare cases. Germline mutations in the aryl hydrocarbon receptor-interacting protein (AIP) gene have been associated with a predisposition to familial isolated pituitary adenoma. The aim of the present study was to evaluate the AIP gene in a patient with gigantism and in her relatives. Direct sequencing of AIP gene was performed in fourteen members of the family, spanning among three generations. The index case was an 18-year-old woman with gigantism due to an invasive GH-secreting pituitary adenoma and a concomitant tall-cell variant of papillary thyroid carcinoma. A novel germline mutation in the AIP gene (c.685C>T, p.Q229X) was identified in the proband and in two members of her family, who did not present clinical features of acromegaly or other pituitary disorders. Eleven subjects had no mutation in the AIP gene. Two members of the family with clinical features of acromegaly refused either the genetic or the biochemical evaluation. The Q229X mutation was predicted to generate a truncated AIP protein, lacking the last two tetratricopeptide repeat domains and the final C-terminal α-7 helix. We identified a new AIP germline mutation predicted to produce a truncated AIP protein, lacking its biological properties due to the disruption of the C-terminus binding sites for both the chaperones and the client proteins of AIP.

  15. Aryl hydrocarbon receptor nuclear translocator (ARNT) isoforms control lymphoid cancer cell proliferation through differentially regulating tumor suppressor p53 activity.

    Science.gov (United States)

    Gardella, Kacie A; Muro, Israel; Fang, Gloria; Sarkar, Krishnakali; Mendez, Omayra; Wright, Casey W

    2016-03-01

    The aryl hydrocarbon receptor nuclear translocator (ARNT) is involved in xenobiotic and hypoxic responses, and we previously showed that ARNT also regulates nuclear factor-κB (NF-κB) signaling by altering the DNA binding activity of the RelB subunit. However, our initial study of ARNT-mediated RelB modulation was based on simultaneous suppression of the two ARNT isoforms, isoform 1 and 3, and precluded the examination of their individual functions. We find here that while normal lymphocytes harbor equal levels of isoform 1 and 3, lymphoid malignancies exhibit a shift to higher levels of ARNT isoform 1. These elevated levels of ARNT isoform 1 are critical to the proliferation of these cancerous cells, as suppression of isoform 1 in a human multiple myeloma (MM) cell line, and an anaplastic large cell lymphoma (ALCL) cell line, triggered S-phase cell cycle arrest, spontaneous apoptosis, and sensitized cells to doxorubicin treatment. Furthermore, co-suppression of RelB or p53 with ARNT isoform 1 prevented cell cycle arrest and blocked doxorubicin induced apoptosis. Together our findings reveal that certain blood cancers rely on ARNT isoform 1 to potentiate proliferation by antagonizing RelB and p53-dependent cell cycle arrest and apoptosis. Significantly, our results identify ARNT isoform 1 as a potential target for anticancer therapies.

  16. Methoxychlor inhibits growth and induces atresia through the aryl hydrocarbon receptor pathway in mouse ovarian antral follicles.

    Science.gov (United States)

    Basavarajappa, Mallikarjuna S; Hernández-Ochoa, Isabel; Wang, Wei; Flaws, Jodi A

    2012-08-01

    Methoxychlor (MXC) is an organochlorine pesticide used against pests that attack crops, vegetables, and livestock. MXC inhibits growth and induces atresia (death) of mouse ovarian antral follicles in vitro. Since several studies indicate that many chemicals act through the aryl hydrocarbon receptor (AHR) pathway, the current study tested the hypothesis that MXC binds to the AHR to inhibit growth and induce atresia of antral follicles. The data indicate that MXC binds to AHR. Further, a relatively high dose of MXC (100μg/ml) inhibits growth and induces atresia in both wild-type (WT) and AHR null (AHRKO) follicles, whereas a lower dose of MXC (10μg/ml) inhibits growth and induces atresia in WT, but not in AHRKO follicles. These data indicate that AHR deletion partially protects antral follicles from MXC induced slow growth and atresia. Collectively, these data show that MXC may act through the AHR pathway to inhibit follicle growth and induce atresia in antral follicles of the ovary.

  17. Application of radiocarbon analysis and receptor modeling to the source apportionment of PAHs (polycyclic aromatic hydrocarbons) in the atmosphere

    Energy Technology Data Exchange (ETDEWEB)

    Sheffield, A.E.

    1988-01-01

    The radiocarbon tracer technique was used to demonstrate that polycyclic aromatic hydrocarbons (PAHs) can be used for quantitative receptor modeling of air pollution. Fine-particle samples were collected during December, 1985, in Albuquerque, NM. Motor vehicles (fossil) and residential wood combustion (RWC, modern) were the major PAH-sources. For each sample, the PAH-fraction was solvent-extracted, isolated by liquid chromatography, and analyzed by GC-FID and GC-MS. The PAH-fractions from sixteen samples were analyzed for {sup 14}C by Accelerator Mass Spectrometry. Radiocarbon data were used to calculate the relative RWC contribution (f{sub RWC}) for samples analyzed for {sup 14}C. Normalized concentrations of a prospective motor vehicle tracer, benzo(ghi)perylene (BGP) had a strong, negative correlation with f{sub RWC}. Normalized BGP concentrations were used to apportion sources for samples not analyzed for {sup 14}C. Multiple Linear Regression (MLR) vs. ADCS and BGP was used to estimate source profiles for use in Target Factor Analysis (TFA). Profiles predicted by TFA were used in Chemical Mass Balances (CMBs). For non-volatile, stable PAHs, agreement between observed and predicted concentrations was excellent. The worst fits were observed for the most volatile PAHs and for coronene. The total RWC contributions predicted by CMBs correlated well with the radiocarbon data.

  18. Prenatal polycyclic aromatic hydrocarbon, adiposity, peroxisome proliferator-activated receptor (PPAR γ methylation in offspring, grand-offspring mice.

    Directory of Open Access Journals (Sweden)

    Zhonghai Yan

    Full Text Available RATIONALE: Greater levels of prenatal exposure to polycyclic aromatic hydrocarbon (PAH have been associated with childhood obesity in epidemiological studies. However, the underlying mechanisms are unclear. OBJECTIVES: We hypothesized that prenatal PAH over-exposure during gestation would lead to weight gain and increased fat mass in offspring and grand-offspring mice. Further, we hypothesized that altered adipose gene expression and DNA methylation in genes important to adipocyte differentiation would be affected. MATERIALS AND METHODS: Pregnant dams were exposed to a nebulized PAH mixture versus negative control aerosol 5 days a week, for 3 weeks. Body weight was recorded from postnatal day (PND 21 through PND60. Body composition, adipose cell size, gene expression of peroxisome proliferator-activated receptor (PPAR γ, CCAAT/enhancer-binding proteins (C/EBP α, cyclooxygenase (Cox-2, fatty acid synthase (FAS and adiponectin, and DNA methylation of PPAR γ, were assayed in both the offspring and grand-offspring adipose tissue. FINDINGS: Offspring of dams exposed to greater PAH during gestation had increased weight, fat mass, as well as higher gene expression of PPAR γ, C/EBP α, Cox2, FAS and adiponectin and lower DNA methylation of PPAR γ. Similar differences in phenotype and DNA methylation extended through the grand-offspring mice. CONCLUSIONS: Greater prenatal PAH exposure was associated with increased weight, fat mass, adipose gene expression and epigenetic changes in progeny.

  19. [The formulation of the current management of patients with atypical hyperplasia (AH)].

    Science.gov (United States)

    Gorchev, G; Milkov, V; Popov, I; Rachev, E

    1993-01-01

    The authors study is the receptor status of 16 patients with AH. The amount of ER and PR in patients with AH is compared to the amount of the same receptors in patients with highly differentiated adenocarcinoma. A progestin treatment is proposed for AH together with dynamic evaluation of the amount of ER and PR. In patients ER, PR, even if they have not complete their reproduction, hysterectomy is proposed. The cases ER+, PR+ are actively followed up. Every patients should undergo complex investigation and evaluation in which together with the receptor status extremely important is the routine biopsy.

  20. Hydrocarbon pneumonia

    Science.gov (United States)

    Pneumonia - hydrocarbon ... Coughing Fever Shortness of breath Smell of a hydrocarbon product on the breath Stupor (decreased level of ... Most children who drink or inhale hydrocarbon products and develop ... hydrocarbons may lead to rapid respiratory failure and death.

  1. Stapled Peptides with γ-Methylated Hydrocarbon Chains for the Estrogen Receptor/Coactivator Interaction.

    Science.gov (United States)

    Speltz, Thomas E; Fanning, Sean W; Mayne, Christopher G; Fowler, Colin; Tajkhorshid, Emad; Greene, Geoffrey L; Moore, Terry W

    2016-03-18

    "Stapled" peptides are typically designed to replace two non-interacting residues with a constraining, olefinic staple. To mimic interacting leucine and isoleucine residues, we have created new amino acids that incorporate a methyl group in the γ-position of the stapling amino acid S5. We have incorporated them into a sequence derived from steroid receptor coactivator 2, which interacts with estrogen receptor α. The best peptide (IC50 =89 nm) replaces isoleucine 689 with an S-γ-methyl stapled amino acid, and has significantly higher affinity than unsubstituted peptides (390 and 760 nm). Through X-ray crystallography and molecular dynamics studies, we show that the conformation taken up by the S-γ-methyl peptide minimizes the syn-pentane interactions between the α- and γ-methyl groups.

  2. Identification of aryl hydrocarbon receptor signaling pathways altered in TCDD-treated red seabream embryos by transcriptome analysis.

    Science.gov (United States)

    Iida, Midori; Fujii, Satoshi; Uchida, Masaya; Nakamura, Hiroshi; Kagami, Yoshihiro; Agusa, Tetsuro; Hirano, Masashi; Bak, Su-Min; Kim, Eun-Young; Iwata, Hisato

    2016-08-01

    2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) induces a broad spectrum of toxic effects including craniofacial malformation and neural damage in fish embryos. These effects are mainly mediated by the aryl hydrocarbon receptor (AHR). However, the mode of action between TCDD-induced AHR activation and adverse outcomes is not yet understood. To provide a comprehensive picture of the AHR signaling pathway in fish embryos exposed to TCDD, red seabream (Pagrus major) embryos were treated with graded concentrations of TCDD (0.3-37nM) in seawater, or with a mixture of TCDD and 500nM CH223191, an AHR-specific antagonist. The transcriptome of red seabream embryos was analyzed using a custom-made microarray with 6000 probes specifically prepared for this species. A Jonckheere-Terpstra test was performed to screen for genes that demonstrated altered mRNA expression levels following TCDD exposure. The signals of 1217 genes (as human homologs) were significantly altered in a TCDD concentration-dependent manner (q-valueTCDD-induced alteration in mRNA expression was alleviated by co-exposure to CH223191, suggesting that the mRNA expression level of these genes was regulated by AHR. To identify TCDD-activated pathways, the microarray data were further subjected to gene set enrichment analysis (GSEA) and functional protein-protein interaction (PPI) network analysis. GSEA demonstrated that the effects of TCDD on sets of genes involved calcium, mitogen-activated protein kinase (MAPK), actin cytoskeleton, chemokine, T cell receptor, melanoma, vascular endothelial growth factor (VEGF), axon guidance, and renal cell carcinoma signaling pathways. These results suggest the hypotheses that TCDD induces immunosuppression via the calcium, MAPK, chemokine, and T cell receptor signaling pathways, neurotoxicity via VEGF signaling, and axon guidance alterations and teratogenicity via the dysregulation of the actin cytoskeleton and melanoma and renal cell carcinoma signaling pathways. Furthermore

  3. Increased cytochrome P450 and aryl hydrocarbon receptor in bronchial epithelium of heavy smokers with non-small cell lung carcinoma carries a poor prognosis.

    Science.gov (United States)

    Oyama, Tsunehiro; Sugio, Kenji; Uramoto, Hidetaka; Iwata, Teruo; Onitsuka, Takamitsu; Isse, Toyohi; Nozoe, Tadahiro; Kagawa, Norio; Yasumoto, Kosei; Kawamoto, Toshihiro

    2007-05-01

    Smoking induces mutations via the formation of DNA-adducts in the bronchial and alveolar epithelium and contributes to the development of lung cancer. Benz(a)pyrene and nitrosamine, typical carcinogens in cigarette smoke, undergo metabolic activation by the phase I enzymes, such as cytochrome P450 (CYP) 1A1, CYP2A6 and CYP2E1. The transcriptional regulation of these phase I enzymes is regulated by arylhydrocarbon receptor (AH-R) which binds many well-known carcinogens. To identify a cause and effect relationship, the expression of cytochrome CYP and AH-R in the bronchial epithelium was correlated with the history of cigarette smoking in patients with non-small cell lung carcinoma (NSCLC). Although CYP3A+ cells were absent in the bronchial epithelium of all patients, there were many CYP2E1+ cells in heavy (>1000 cigarette/day x year) smokers (38.5%). In contra-distinction, there was significantly less number of CYP2E1+ cells in light (less than 1000 cigarette/day x year) smokers (15.6%) or non-smokers (10.0%). Similarly, there were more CYP1A1+ (19.2%) and CYP2A6+ cells in heavy (65.4%) smokers as compared to non-smokers. The number of AH-R+ cells was also significantly higher in cases with p53 mutation (62.5%) than those without (12.2%) mutation. Since in patients with early NSCLC, CYP positivity showed a close correlation with a poor survival (p less than 0.01), expression of CYP in bronchial epithelium has a prognostic potential.

  4. Breast cancer stem-like cells are inhibited by a non-toxic aryl hydrocarbon receptor agonist.

    Directory of Open Access Journals (Sweden)

    Gérald J Prud'homme

    Full Text Available BACKGROUND: Cancer stem cells (CSCs have increased resistance to cancer chemotherapy. They can be enriched as drug-surviving CSCs (D-CSCs by growth with chemotherapeutic drugs, and/or by sorting of cells expressing CSC markers such as aldehyde dehydrogenase-1 (ALDH. CSCs form colonies in agar, mammospheres in low-adherence cultures, and tumors following xenotransplantation in Scid mice. We hypothesized that tranilast, a non-toxic orally active drug with anti-cancer activities, would inhibit breast CSCs. METHODOLOGY/FINDINGS: We examined breast cancer cell lines or D-CSCs generated by growth of these cells with mitoxantrone. Tranilast inhibited colony formation, mammosphere formation and stem cell marker expression. Mitoxantrone-selected cells were enriched for CSCs expressing stem cell markers ALDH, c-kit, Oct-4, and ABCG2, and efficient at forming mammospheres. Tranilast markedly inhibited mammosphere formation by D-CSCs and dissociated formed mammospheres, at pharmacologically relevant concentrations. It was effective against D-CSCs of both HER-2+ and triple-negative cell lines. Tranilast was also effective in vivo, since it prevented lung metastasis in mice injected i.v. with triple-negative (MDA-MB-231 mitoxantrone-selected cells. The molecular targets of tranilast in cancer have been unknown, but here we demonstrate it is an aryl hydrocarbon receptor (AHR agonist and this plays a key role. AHR is a transcription factor activated by 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD, polycyclic aromatic hydrocarbons and other ligands. Tranilast induced translocation of the AHR to the nucleus and stimulated CYP1A1 expression (a marker of AHR activation. It inhibited binding of the AHR to CDK4, which has been linked to cell-cycle arrest. D-CSCs expressed higher levels of the AHR than other cells. Knockdown of the AHR with siRNA, or blockade with an AHR antagonist, entirely abrogated the anti-proliferative and anti-mammosphere activity of tranilast

  5. Temporal variability of Polycyclic Aromatic Hydrocarbons in a receptor site of Puebla -Tlaxcala Valley.

    Science.gov (United States)

    Padilla Barrera, Zuhelen; Torres Jardón, Ricardo; Gerardo Ruiz, Luis; Castro, Telma

    2015-04-01

    The Puebla-Tlaxcala Valley is a region with high population scattered over two states, where emissions from combustion of a variety of materials and fuels represent a major problem in the deterioration of air quality. Polycyclic aromatic hydrocarbons (PAHs) are a class of semi-volatile organic compounds that are formed during combustion. PAH are present in large amounts in the particulate matter comes from the combustion and no combustion. The particle-bound PAHs are formed by accumulation and condensation mechanisms in the particle. In its condensed form are mainly associated with fine particles (< 0.10 um). The major emission sources of PAHs are open burning, industrial boilers and emission from cars and trucks. Emission rates of PAHs vary significantly depending on vehicle use: fuel type, engine type and catalytic converter, and once emitted into the atmosphere, particulate PAHs may undergo transformation by photo-oxidation. The measurements were made with a photoelectric aerosol sensor (PAS 2000 CE) and a diffusion charger (DC 2000 CE), the first determines the concentration of PAHs, while the second determines the active surface of particles. The use of these two sensors in parallel is a useful tool to identify quantitatively the greatest source of emission, describe the physical and chemical characteristics of the particles. Correlations between PAHs with the active surface (DC), NOy and CO, together with an analysis of weather atmospheric transport to approximate the possible origin of these particles. The coefficient PAHs / DC associated with the backward trajectory analysis is a tool to identify potential areas of emission. The correlation between PAHs and NOx reflects emissions associated with diesel combustion, while the correlation between PAHs and CO, combustion of gasoline. Concentration patterns were recorded over 24 hours in both PAHs and DC. The average concentration of PAHs was 4.9 ng/m3 and the maximum of 81.9 ng/m3 , while the average active

  6. TCDD and a putative endogenous AhR ligand, ITE, elicit the same immediate changes in gene expression in mouse lung fibroblasts.

    Science.gov (United States)

    Henry, Ellen C; Welle, Stephen L; Gasiewicz, Thomas A

    2010-03-01

    The aryl hydrocarbon receptor (AhR), a ligand-dependent transcription factor, mediates toxicity of several classes of xenobiotics and also has important physiological roles in differentiation, reproduction, and immunity, although the endogenous ligand(s) mediating these functions is/are as yet unidentified. One candidate endogenous ligand, 2-(1'H-indolo-3'-carbonyl)-thiazole-4-carboxylic acid methyl ester (ITE), is a potent AhR agonist in vitro, activates the murine AhR in vivo, but does not induce toxicity. We hypothesized that ITE and the toxic ligand, 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), may modify transcription of different sets of genes to account for their different toxicity. To test this hypothesis, primary mouse lung fibroblasts were exposed to 0.5muM ITE, 0.2nM TCDD, or vehicle for 4 h, and total gene expression was evaluated using microarrays. After this short-term and low-dose treatment, several hundred genes were changed significantly, and the response to ITE and TCDD was remarkably similar, both qualitatively and quantitatively. Induced gene sets included the expected battery of AhR-dependent xenobiotic-metabolizing enzymes, as well as several sets that reflect the inflammatory role of lung fibroblasts. Real time quantitative RT-qPCR assay of several selected genes confirmed these microarray data and further suggested that there may be kinetic differences in expression between ligands. These data suggest that ITE and TCDD elicit an analogous change in AhR conformation such that the initial transcription response is the same. Furthermore, if the difference in toxicity between TCDD and ITE is mediated by differences in gene expression, then it is likely that secondary changes enabled by the persistent TCDD, but not by the shorter lived ITE, are responsible.

  7. Contribution of polycyclic aromatic hydrocarbon (PAH) sources to the urban environment: A comparison of receptor models.

    Science.gov (United States)

    Teixeira, Elba Calesso; Agudelo-Castañeda, Dayana Milena; Mattiuzi, Camila Dalla Porta

    2015-12-15

    The aim of this study was to evaluate the contribution of the main emission sources of PAHs associated with PM2.5, in an urban area of the Rio Grande do Sul state. Source apportionment was conducted using both the US EPA Positive Matrix Factorization (PMF) model and the Chemical Mass Balance (CMB) model. The two models were compared to analyze the source contributions similarities and differences, their advantages and disadvantages. PM2.5 samples were collected continuously over 24h using a stacked filter unit at 3 sampling sites of the urban area of the Rio Grande do Sul state every 15days between 2006 and 2008. Both models identified the main emission sources of PAHs in PM2.5: vehicle fleet (diesel and gasoline), coal combustion, wood burning, and dust. Results indicated similar source contribution amongst the sampling sites, as expected because of the proximity amongst the sampling sites, which are under the influence of the same pollutants emitting sources. Moreover, differences were observed in obtained sources contributions for the same data set of each sampling site. The PMF model attributed a slightly greater amount of PAHs to the gasoline and diesel sources, while diesel contributed more in the CMB results. The results were comparable with previous works of the region and in accordance with the characteristics of the study area. Comparison between these receptor models, which contain different physical constraints, is important for understanding better PAH emissions sources in order to reduce air pollution.

  8. Alu retrotransposons promote differentiation of human carcinoma cells through the aryl hydrocarbon receptor

    Science.gov (United States)

    Morales-Hernández, Antonio; González-Rico, Francisco J.; Román, Angel C.; Rico-Leo, Eva; Alvarez-Barrientos, Alberto; Sánchez, Laura; Macia, Ángela; Heras, Sara R.; García-Pérez, José L.; Merino, Jaime M.; Fernández-Salguero, Pedro M.

    2016-01-01

    Cell differentiation is a central process in development and in cancer growth and dissemination. OCT4 (POU5F1) and NANOG are essential for cell stemness and pluripotency; yet, the mechanisms that regulate their expression remain largely unknown. Repetitive elements account for almost half of the Human Genome; still, their role in gene regulation is poorly understood. Here, we show that the dioxin receptor (AHR) leads to differentiation of human carcinoma cells through the transcriptional upregulation of Alu retrotransposons, whose RNA transcripts can repress pluripotency genes. Despite the genome-wide presence of Alu elements, we provide evidences that those located at the NANOG and OCT4 promoters bind AHR, are transcribed by RNA polymerase-III and repress NANOG and OCT4 in differentiated cells. OCT4 and NANOG repression likely involves processing of Alu-derived transcripts through the miRNA machinery involving the Microprocessor and RISC. Consistently, stable AHR knockdown led to basal undifferentiation, impaired Alus transcription and blockade of OCT4 and NANOG repression. We suggest that transcripts produced from AHR-regulated Alu retrotransposons may control the expression of stemness genes OCT4 and NANOG during differentiation of carcinoma cells. The control of discrete Alu elements by specific transcription factors may have a dynamic role in genome regulation under physiological and diseased conditions. PMID:26883630

  9. Identification of cytochrome P4501A inducers in complex mixtures of polycyclic aromatic hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Villeneuve, D.L. [Michigan State Univ., East Lansing, MI (United States); DeVita, W.M.; Crunkilton, R.L. [Univ. of Wisconsin, Stevens Point, WI (United States). Coll. of Natural Resources

    1998-12-31

    An in vitro ethoxyresorufin O-deethylase (EROD) assay was used to study the ability of individual polycyclic aromatic hydrocarbons (PAHs) and mixtures of PAHs to induce Ah receptor (AhR) mediated cytochrome P4501A activity in PLHC-1 fish hepatoma cells. The purpose was to identify the most potent inducers from a set of thirteen separate PAHs and describe interactions occurring in complex mixtures of these PAHs. Where possible, potency was expressed in terms of 2,3,7,8 tetrachlorodibenzo-p-dioxin (TCDD) equivalents (TCDD-EQ) by normalizing the PAH results to a TCDD standard curve. The most potent inducers were benzo(k)fluoranthene > benzo(a)pyrene {approx} benzo(b)fluoranthene > chrysene {approx} benzo(a)anthracene. At equal concentrations, these PAHs yielded potencies of 1670, 940, 655, 255, and 185 pg TCDD-EQ/g, respectively. Analysis of various mixtures of the thirteen PAHs suggested that complex interactions may be occurring.

  10. Direct assessment of cumulative aryl hydrocarbon receptor agonist activity in sera from experimentally exposed mice and environmentally exposed humans

    DEFF Research Database (Denmark)

    Schlezinger, Jennifer J; Bernard, Pamela L; Haas, Amelia;

    2010-01-01

    readouts to provide a broader context for estimating human risk than that obtained with serum extraction and gas chromatography/mass spectroscopy (GC/MS)-based assays alone. METHODS: AhR agonist activity was quantified in sera from dioxin-treated mice, commercial human sources, and polychlorinated biphenyl...

  11. Aryl hydrocarbon receptor activation by 2,3,7,8-tetrachlorodibenzo-p-dioxin impairs human B lymphopoiesis.

    Science.gov (United States)

    Li, Jinpeng; Phadnis-Moghe, Ashwini S; Crawford, Robert B; Kaminski, Norbert E

    2017-03-01

    The homeostasis of peripheral B cell compartment requires lifelong B lymphopoiesis from hematopoietic stem cells (HSC). As a result, the B cell repertoire is susceptible to disruptions of hematopoiesis. Increasing evidence, primarily from rodent models, shows that the aryl hydrocarbon receptor (AHR) regulates hematopoiesis. To study the effects of persistent AHR activation on human B cell development, a potent AHR agonist and known environmental contaminant, 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) was utilized. An in vitro B cell development model system was established by co-culturing human cord blood-derived HSCs with irradiated human primary bone marrow stromal cells. Using this in vitro model, we found that TCDD significantly suppressed the total number of hematopoietic stem and progenitor cells (HSPC) in a concentration-dependent manner. Cell death analysis demonstrated that the decrease in cell number was not due to cytotoxicity by TCDD. In addition, TCDD markedly decreased CD34 expression on HSPCs. Structure-activity relationship studies using dioxin congeners demonstrated a correlation between the relative AHR binding affinity and the magnitude of decrease in the number of HSPCs and CD34 expression, suggesting that AHR mediates the observed TCDD-elicited changes in HSPCs. Moreover, a significant reduction in lineage committed B cell-derived from HSCs was observed in the presence of TCDD, indicating impairment of human B cell development. Similar effects of TCDD were observed regardless of the use of stromal cells in cultures indicating a direct effect of TCDD on HSCs. Collectively, we demonstrate that AHR activation by TCDD on human HSCs impairs early stages of human B lymphopoiesis.

  12. Inhibition of aryl hydrocarbon receptor signaling and induction of NRF2-mediated antioxidant activity by cinnamaldehyde in human keratinocytes.

    Science.gov (United States)

    Uchi, Hiroshi; Yasumatsu, Mao; Morino-Koga, Saori; Mitoma, Chikage; Furue, Masutaka

    2017-01-01

    Dioxins and other environmental pollutants are toxic and remain in biological tissues for a long time leading to various levels of oxidative stress. Although the toxicity of these agents has been linked to activation of the aryl hydrocarbon receptor (AHR), no effective treatment has been developed. To explore novel phytochemicals that inhibit AHR activation in keratinocytes. Keratinocytes were used in this study because the skin is one of the organs most affected by dioxin and other environmental pollutants. HaCaT cells, which are a human keratinocyte cell line, and normal human epidermal keratinocytes were stimulated with benzo[a]pyrene to induce AHR activation, and the effects of traditional Japanese Kampo herbal formulae were analyzed. Quantification of mRNA, western blotting, immunofluorescence localization of molecules, siRNA silencing, and visualization of oxidative stress were performed. Cinnamomum cassia extract and its major constituent cinnamaldehyde significantly inhibited the activation of AHR. Cinnamaldehyde also activated the NRF2/HO1 pathway and significantly alleviated the production of reactive oxygen species in keratinocytes. The inhibition of AHR signaling and the activation of antioxidant activity by cinnamaldehyde operated in a mutually independent manner as assessed by siRNA methods In addition, AHR signaling was effectively inhibited by traditional Kampo formulae containing C. cassia. Cinnamaldehyde has two independent biological activities; namely, an inhibitory action on AHR activation and an antioxidant effect mediated by NRF2/HO1 signaling. Through these dual functions, cinnamaldehyde may be beneficial for the treatment of disorders related to oxidative stress such as dioxin intoxication, acne, and vitiligo. Copyright © 2016 Japanese Society for Investigative Dermatology. Published by Elsevier Ireland Ltd. All rights reserved.

  13. Aryl hydrocarbon receptor (AHR-regulated transcriptomic changes in rats sensitive or resistant to major dioxin toxicities

    Directory of Open Access Journals (Sweden)

    Okey Allan B

    2010-04-01

    Full Text Available Abstract Background The major toxic effects of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD appear to result from dysregulation of mRNA levels mediated by the aryl hydrocarbon receptor (AHR. Dioxin-like chemicals alter expression of numerous genes in liver, but it remains unknown which lie in pathways leading to major toxicities such as hepatotoxicity, wasting and lethality. To identify genes involved in these responses we exploited a rat genetic model. Rats expressing an AHR splice-variant lacking a portion of the transactivation domain are highly resistant to dioxin-induced toxicities. We examined changes in hepatic mRNA abundances 19 hours after TCDD treatment in two dioxin-resistant rat strains/lines and two dioxin-sensitive rat strains/lines. Results Resistant rat strains/lines exhibited fewer transcriptional changes in response to TCDD than did rats with wildtype AHR. However, well-known AHR-regulated and dioxin-inducible genes such as CYP1A1, CYP1A2, and CYP1B1 remained fully responsive to TCDD in all strains/lines. Pathway analysis indicated that the genes which respond differently to TCDD between sensitive and resistant rats are mainly involved in lipid metabolism, cellular membrane function and energy metabolism. These pathways previously have been shown to respond differently to dioxin treatment in dioxin-sensitive versus dioxin-resistant rats at a biochemical level and in the differential phenotype of toxicologic responses. Conclusion The transactivation-domain deletion in dioxin-resistant rats does not abolish global AHR transactivational activity but selectively interferes with expression of subsets of genes that are candidates to mediate or protect from major dioxin toxicities such as hepatotoxicity, wasting and death.

  14. Familial acromegaly due to aryl hydrocarbon receptor-interacting protein (AIP) gene mutation in a Turkish cohort.

    Science.gov (United States)

    Niyazoglu, Mutlu; Sayitoglu, Muge; Firtina, Sinem; Hatipoglu, Esra; Gazioglu, Nurperi; Kadioglu, Pinar

    2014-06-01

    Aryl hydrocarbon receptor-interacting protein (AIP) is associated with 15-20% of familial isolated pituitary adenomas and 50-80% of cases with AIP mutation exhibit a somatotropinoma. Herein we report clinical characteristics of a large family where AIP R304X variants have been identified. AIP mutation analysis was performed on a large (n = 52) Turkish family across six generations. Sella MRIs of 30 family members were obtained. Basal pituitary hormone levels were evaluated in 13 family members harboring an AIP mutation. Thirteen of 52 family members (25%) were found to have a heterozygous nonsense germline R304X mutation in the AIP gene. Seven of the 13 mutation carriers (53.8%) had current or previous history of pituitary adenoma. Of these 7 mutation carriers, all but one had somatotropinoma/somatolactotropinoma (85.7% of the pituitary adenomas). Of the 6 acromegaly patients with AIP mutation (F/M: 3/3) the mean age at diagnosis of acromegaly was 32 ± 10.3 years while the mean age of symptom onset was 24.8 ± 9.9 years. Three of the six (50%) acromegaly cases with AIP mutation within the family presented with a macroadenoma and none presented with gigantism. Biochemical disease control was achieved in 66.6% (4/6) of the mutation carriers with acromegaly after a mean follow-up period of 18.6 ± 17.6 years. Common phenotypic characteristics of familial pituitary adenoma or somatotropinoma due to AIP mutation vary between families or even between individuals within a family.

  15. ITE, a novel endogenous nontoxic aryl hydrocarbon receptor ligand, efficiently suppresses EAU and T-cell-mediated immunity.

    Science.gov (United States)

    Nugent, Lindsey F; Shi, Guangpu; Vistica, Barbara P; Ogbeifun, Osato; Hinshaw, Samuel J H; Gery, Igal

    2013-11-13

    Ligands for aryl hydrocarbon receptor (AHR), such as dioxins, are highly toxic. One such ligand, TCDD, was found to exert potent immunosuppressive capacities in mice developing pathogenic autoimmune processes, including EAU, but its toxicity makes it unusable for humans. A recently identified endogenous AHR ligand, ITE, is also immunosuppressive, but is nontoxic and could therefore be useful for therapy in humans. Here, we tested ITE for its capacity to inhibit EAU and related immune responses. EAU was induced in B10.A mice by immunization with interphotoreceptor retinoid-binding protein (IRBP; 40 μg) in CFA. Treatment with ITE was by daily intraperitoneal injection of 0.2 mg. Disease severity was assessed by both fundoscopy and histological examination. Draining lymph node cells were tested for proliferation by thymidine uptake and for cytokine production and release by ELISA. In addition, the intracellular expression of cytokines and Foxp3 was determined by flow cytometry. Serum antibodies were measured by ELISA. Treatment with ITE efficiently inhibited the development of EAU in mice, as well as the cellular immune responses against IRBP and PPD. ITE treatment inhibited the expansion of both Th1 and Th17 subpopulations, as well as their release of the signature cytokines, IFN-gamma and IL-17. The treatment moderately increased, however, the proportion of Foxp3 expressing T-regulatory cells. Antibody production was not affected by the treatment. ITE, an endogenous AHR ligand, efficiently inhibits EAU development and related cellular immune responses. Being nontoxic, ITE may be considered for treatment of pathogenic immunity in humans.

  16. An aryl hydrocarbon receptor repressor from Xenopus laevis: function, expression, and role in dioxin responsiveness during frog development.

    Science.gov (United States)

    Zimmermann, Anna L; King, Elizabeth A; Dengler, Emelyne; Scogin, Shana R; Powell, Wade H

    2008-07-01

    Xenopus laevis and other frogs are extremely insensitive to the toxicity of xenobiotic ligands of the aryl hydrocarbon receptor (AHR), including 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). Premetamorphic life stages are especially insensitive, and they are reported to be refractory to induction of Cytochrome P4501As, which are readily induced in older animals. The AHR repressor (AHRR) is a member of the AHR gene family. AHRR expression is induced by TCDD; it then represses AHR in an apparent negative feedback loop. In this study, we sought to test the hypothesis that constitutive AHRR expression underlies the lack of TCDD responsiveness in frog early life stages. We determined the sequence of an AHRR complimentary DNA encoding an 85.3-kDa protein sharing 52-55% identity with the bHLH/PAS domains of other AHRRs. In transient transfection assays, X. laevis AHRR inhibited TCDD-induced reporter gene expression mediated by either X. laevis AHR paralog, AHR1alpha or AHR1beta. AHRR messenger RNA was expressed at low levels in embryos (Nieuwkoop-Faber stage 33-38; approximately 52 h.p.f.) and was induced approximately twofold following TCDD exposure (42 ng/g wet weight). In contrast, AHRR exhibited higher constitutive expression and was induced more than threefold in tadpoles at stage 52-55 (prometamorphic; approximately 4 weeks postfertilization) and in isolated viscera of stage 62 tadpoles (in the metamorphic climax; approximately 7 weeks postfertilization). Although the magnitude of induction was smaller, the temporal pattern of AHRR expression and inducibility resembled that of CYP1A6. Thus, attenuated transcriptional activation of AHR target genes and low TCDD toxicity in X. laevis embryos cannot be explained by constitutive, high-level expression of AHRR.

  17. Aromatic Hydrocarbon Receptor Suppresses Prostate Cancer Bone Metastasis Cells-Induced Vasculogenesis of Endothelial Progenitor Cells under Hypoxia

    Directory of Open Access Journals (Sweden)

    Shuai Huang

    2016-07-01

    Full Text Available Background/Aims: Hypoxia leads to the development of neovascularization in solid tumor by regulating VEGF expression. Aromatic hydrocarbon receptor (AHR, a receptor for dioxin-like compounds, functions as a transcription factor through dimerization with hypoxia-inducible factors 1β (HIF-1β and inhibits the secretion of vascular endothelial growth factor (VEGF. The purpose of this study was to explore whether AHR can suppress hypoxia-induced VEGF production in prostate bone metastasis cells and repress neovascularization in endothelial progenitor cells (EPCs, and, if so, through what mechanisms. Methods: PC-3 or LNCaP cells induced angiogenesis was detected by Matrigel-based tube formation assay, mRNA expression levels was measured by qRT-PCR, VEGF secretion level was determined by ELISA assay, respectively. Results: AHR activation inhibits hypoxia-induced adhesiveness and vasculogenesis of EPCs induced by PC-3 or LNCaP cells under hypoxia. Moreover, AHR activation suppressed hypoxia-induced VEGF production in PC-3 and LNCaP cells (48 ± 14% in PC-3, p = 0.000; 41 ± 14% in LNCaP, p = 0.000 by attenuating HIF-1α and HIF-1β level that in turn diminished the angiogenic ability of EPCs in vitro. Furthermore, we found the mRNA level of hypoxia-inducible factors 1α (HIF-1α (1.54 ± 0.13 fold in PC-3, p = 0.002, 1.62 ± 0.12 fold in LNCaP, p = 0.001 and HIF-1β (1.67 ± 0.23 fold in PC-3, p = 0.007; 1.75 ± 0.26 fold in LNCaP, p=0.008 were upregulated in prostate cancer bone metastasis PC-3 and LNCaP cell lines in response to hypoxia, and revealed that the regulation of VEGF by HIF-1α and HIF-1β was possibly mediated by the activation of phosphatidylinositol 3-kinase pathway. Conclusion: By providing a mechanistic insight into the modulation of neovascularization by AHR ligand, we suggest that AHR ligand has a strong potential of being a new therapeutic agent with applications in the field of bone metastatic prostate cancer.

  18. The aryl hydrocarbon receptor and estrogen receptor alpha differentially modulate nuclear factor erythroid-2-related factor 2 transactivation in MCF-7 breast cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Lo, Raymond; Matthews, Jason, E-mail: jason.matthews@utoronto.ca

    2013-07-15

    Nuclear factor erythroid-2-related factor 2 (NRF2; NFE2L2) plays an important role in mediating cellular protection against reactive oxygen species. NRF2 signaling is positively modulated by the aryl hydrocarbon receptor (AHR) but inhibited by estrogen receptor alpha (ERα). In this study we investigated the crosstalk among NRF2, AHR and ERα in MCF-7 breast cancer cells treated with the NRF2 activator sulforaphane (SFN), a dual AHR and ERα activator, 3,3′-diindolylmethane (DIM), 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) or 17β-estradiol (E2). SFN-dependent increases in NADPH-dependent oxidoreductase 1 (NQO1) and heme oxygenase I (HMOX1) mRNA levels were significantly reduced after co-treatment with E2. E2-dependent repression of NQO1 and HMOX1 was associated with increased ERα but reduced p300 recruitment and reduced histone H3 acetylation at both genes. In contrast, DIM + SFN or TCDD + SFN induced NQO1 and HMOX1 mRNA expression to levels higher than SFN alone, which was prevented by RNAi-mediated knockdown of AHR. DIM + SFN but not TCDD + SFN also induced recruitment of ERα to NQO1 and HMOX1. However, the presence of AHR at NQO1 and HMOX1 restored p300 recruitment and histone H3 acetylation, thereby reversing the ERα-dependent repression of NRF2. Taken together, our study provides further evidence of functional interplay among NRF2, AHR and ERα signaling pathways through altered p300 recruitment to NRF2-regulated target genes. - Highlights: • We examined crosstalk among ERα, AHR, and NRF2 in MCF-7 breast cancer cells. • AHR enhanced the mRNA expression levels of two NRF2 target genes – HMOX1 and NQO1. • ERα repressed HMOX1 and NQO1 expression via decreased histone acetylation. • AHR prevented ERα-dependent repression of HMOX1 and NQO1.

  19. The Aryl-Hydrocarbon Receptor Protein Interaction Network (AHR-PIN as Identified by Tandem Affinity Purification (TAP and Mass Spectrometry

    Directory of Open Access Journals (Sweden)

    Dorothy M. Tappenden

    2013-01-01

    Full Text Available The aryl-hydrocarbon receptor (AHR, a ligand activated PAS superfamily transcription factor, mediates most, if not all, of the toxicity induced upon exposure to various dioxins, dibenzofurans, and planar polyhalogenated biphenyls. While AHR-mediated gene regulation plays a central role in the toxic response to dioxin exposure, a comprehensive understanding of AHR biology remains elusive. AHR-mediated signaling starts in the cytoplasm, where the receptor can be found in a complex with the heat shock protein of 90 kDa (Hsp90 and the immunophilin-like protein, aryl-hydrocarbon receptor-interacting protein (AIP. The role these chaperones and other putative interactors of the AHR play in the toxic response is not known. To more comprehensively define the AHR-protein interaction network (AHR-PIN and identify other potential pathways involved in the toxic response, a proteomic approach was undertaken. Using tandem affinity purification (TAP and mass spectrometry we have identified several novel protein interactions with the AHR. These interactions physically link the AHR to proteins involved in the immune and cellular stress responses, gene regulation not mediated directly via the traditional AHR:ARNT heterodimer, and mitochondrial function. This new insight into the AHR signaling network identifies possible secondary signaling pathways involved in xenobiotic-induced toxicity.

  20. Activation of aryl hydrocarbon receptor by TCDD prevents diabetes in NOD mice and increases Foxp3+ T cells in pancreatic lymph nodes

    OpenAIRE

    Kerkvliet, Nancy I.; Linda B. Steppan; Vorachek, William; Oda, Shannon; Farrer, David; Wong, Carmen P.; Pham, Duy; Mourich, Dan V.

    2009-01-01

    The ligand-activated transcription factor, aryl hydrocarbon receptor (AHR), is a novel inducer of adaptive Tregs. 2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD), the most potent AHR ligand, induces adaptive CD4+CD25+ Tregs during an acute graft-versus-host (GvH) response and prevents the generation of allospecific cytotoxic T lymphocytes. TCDD also suppresses the induction of experimental autoimmune encephalitis in association with an expanded population of Foxp3+ Tregs. In this study, we show th...

  1. Knockout of the aryl hydrocarbon receptor results in distinct hepatic and renal phenotypes in rats and mice

    Energy Technology Data Exchange (ETDEWEB)

    Harrill, Joshua A. [The Hamner Institute for Health Sciences, Institute for Chemical Safety Sciences, RTP, NC 27709 (United States); Hukkanen, Renee R.; Lawson, Marie; Martin, Greg [The Dow Chemical Company, Midland, MI 48640 (United States); Gilger, Brian [North Carolina State University, College of Veterinary Medicine, Raleigh, NC 27606 (United States); Soldatow, Valerie [University of North Carolina, Department of Environmental Sciences and Engineering, Chapel Hill, NC 27599 (United States); LeCluyse, Edward L. [The Hamner Institute for Health Sciences, Institute for Chemical Safety Sciences, RTP, NC 27709 (United States); Budinsky, Robert A.; Rowlands, J. Craig [The Dow Chemical Company, Midland, MI 48640 (United States); Thomas, Russell S., E-mail: RThomas@thehamner.org [The Hamner Institute for Health Sciences, Institute for Chemical Safety Sciences, RTP, NC 27709 (United States)

    2013-10-15

    The aryl hydrocarbon receptor (AHR) is a ligand-activated transcription factor which plays a role in the development of multiple tissues and is activated by a large number of ligands, including 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). In order to examine the roles of the AHR in both normal biological development and response to environmental chemicals, an AHR knockout (AHR-KO) rat model was created and compared with an existing AHR-KO mouse. AHR-KO rats harboring either 2-bp or 29-bp deletion mutation in exon 2 of the AHR were created on the Sprague–Dawley genetic background using zinc-finger nuclease (ZFN) technology. Rats harboring either mutation type lacked expression of AHR protein in the liver. AHR-KO rats were also insensitive to thymic involution, increased hepatic weight and the induction of AHR-responsive genes (Cyp1a1, Cyp1a2, Cyp1b1, Ahrr) following acute exposure to 25 μg/kg TCDD. AHR-KO rats had lower basal expression of transcripts for these genes and also accumulated ∼ 30–45-fold less TCDD in the liver at 7 days post-exposure. In untreated animals, AHR-KO mice, but not AHR-KO rats, had alterations in serum analytes indicative of compromised hepatic function, patent ductus venosus of the liver and persistent hyaloid arteries in the eye. AHR-KO rats, but not AHR-KO mice, displayed pathological alterations to the urinary tract: bilateral renal dilation (hydronephrosis), secondary medullary tubular and uroepithelial degenerative changes and bilateral ureter dilation (hydroureter). The present data indicate that the AHR may play significantly different roles in tissue development and homeostasis and toxicity across rodent species. - Highlights: • An AHR knockout rat was generated on a Sprague–Dawley outbred background. • AHR-KO rats lack expression of AHR protein. • AHR-KO rats are insensitive to TCDD-mediated effects. • Data suggests difference in the role of AHR in tissue development of rats and mice. • Abnormalities in vascular

  2. AH-64E Apache Remanufacture (AH-64E Remanufacture)

    Science.gov (United States)

    2015-12-01

    strike, armed reconnaissance, Manned-Unmanned Teaming, security and vertical maneuver missions across the full spectrum of warfare from Stability and...Jan 2008 LUT Nov 2009 Nov 2009 May 2010 Nov 2009 Milestone C Jul 2010 Jul 2010 Jan 2011 Sep 2010 IOT &E Mar 2012 Mar 2012 Sep 2012 Mar 2012 FRP Jul...Acronyms and Abbreviations IOT &E - Initial Operational Test and Evaluation LUT - Limited User Test AH-64E Remanufacture December 2015 SAR March 21, 2016

  3. Simulation studies for wells AH-4bis/AH-17 and AH-18, Ahuachapan Geothermal Field

    Energy Technology Data Exchange (ETDEWEB)

    Monterrosa, Manuel Ernesto

    1996-01-24

    Well AH-4bis, at the Ahuachapan Geothermal Field is planned to be drilled on the same pad as the former AH-4. A simulation study was carried out for two casing dameters 13 5/8 and 9 5/8” in order to estimate its production and to know its economic feasibility. The simulation results indcate a high probability of production in the range of 7 Mwe, equivalent to 120 kg/s total mass flow rate, 1250 kJ/kg at 6 bar-a for the new well AH-4bis. Well AH- 17 is good producer, during 1991 after ten years of production, the well was shut-in due to silica scaling problems. A wellbore simulation was carried out in order to predict the new production conditions after the work-over, mainly to estimate the water flow rate in order to reduce the silica scaling. The results indicate a very low water flow rate. The match between the simulated and measured production curves after the work-over was successful. The well AH-18 is located at the southern part of the actual bore field. CEL is planning to expand the borefield at this area and it is neccessary to estimate the possible production condtions at that zone. The results indicate a high probabilty of production at that area. The power potential is estimated at 3.5 Mwe per well at WHP 6 bar-a and the wells will not require induction.

  4. AhR-dependent secretion of PDGF-BB by human classically activated macrophages exposed to DEP extracts stimulates lung fibroblast proliferation

    Energy Technology Data Exchange (ETDEWEB)

    Jaguin, Marie [UMR INSERM U1085, Institut de Recherche sur la Santé, l' Environnement et le Travail (IRSET), Université de Rennes 1, 2 Avenue du Pr Léon Bernard, 35043 Rennes Cedex (France); Fardel, Olivier [UMR INSERM U1085, Institut de Recherche sur la Santé, l' Environnement et le Travail (IRSET), Université de Rennes 1, 2 Avenue du Pr Léon Bernard, 35043 Rennes Cedex (France); Pôle Biologie, Centre Hospitalier Universitaire (CHU) Rennes, 2 rue Henri Le Guilloux, 35033 Rennes Cedex (France); Lecureur, Valérie, E-mail: valerie.lecureur@univ-rennes1.fr [UMR INSERM U1085, Institut de Recherche sur la Santé, l' Environnement et le Travail (IRSET), Université de Rennes 1, 2 Avenue du Pr Léon Bernard, 35043 Rennes Cedex (France)

    2015-06-15

    Lung diseases are aggravated by exposure to diesel exhaust particles (DEPs) found in air pollution. Macrophages are thought to play a crucial role in lung immune response to these pollutants, even if the mechanisms involved remain incompletely characterized. In the present study, we demonstrated that classically and alternative human macrophages (MΦ) exhibited increased secretion of PDGF-B in response to DEP extract (DEPe). This occurred via aryl hydrocarbon receptor (AhR)-activation because DEPe-induced PDGF-B overexpression was abrogated after AhR expression knock-down by RNA interference, in both M1 and M2 polarizing MΦ. In addition, TCDD and benzo(a)pyrene, two potent AhR ligands, also significantly increased mRNA expression of PDGF-B in M1 MΦ, whereas some weak ligands of AhR did not. We next evaluated the impact of conditioned media (CM) from MΦ culture exposed to DEPe or of recombinant PDGF-B onto lung fibroblast proliferation. The tyrosine kinase inhibitor, AG-1295, prevents phosphorylations of PDGF-Rβ, AKT and ERK1/2 and the proliferation of MRC-5 fibroblasts induced by recombinant PDGF-B and by CM from M1 polarizing MΦ, strongly suggesting that the PDGF-BB secreted by DEPe-exposed MΦ is sufficient to activate the PDGF-Rβ pathway of human lung fibroblasts. In conclusion, we demonstrated that human MΦ, whatever their polarization status, secrete PDGF-B in response to DEPe and that PDGF-B is a target gene of AhR. Therefore, induction of PDGF-B by DEP may participate in the deleterious effects towards human health triggered by such environmental urban contaminants. - Highlights: • PDGF-B expression and secretion are increased by DEPe exposure in human M1 and M2 MΦ. • DEPe-induced PDGF-B expression is aryl-hydrocarbon-dependent. • DEPe-exposed M1 MΦ secrete sufficient PDGF-B to increase lung fibroblast proliferation.

  5. Atmospheric chlorinated polycyclic aromatic hydrocarbons in East Asia.

    Science.gov (United States)

    Kakimoto, Kensaku; Nagayoshi, Haruna; Konishi, Yoshimasa; Kajimura, Keiji; Ohura, Takeshi; Hayakawa, Kazuichi; Toriba, Akira

    2014-09-01

    This study estimates atmospheric concentrations of chlorinated polycyclic aromatic hydrocarbons (ClPAHs) and polycyclic aromatic hydrocarbons (PAHs) in East Asia using a Gas Chromatograph with High Resolution Mass Spectrometer (GC-HRMS). ClPAHs are ubiquitously generated from PAHs through substitution, and some ClPAHs show higher aryl hydrocarbon receptor (AhR)-mediated activities than their parent PAHs. Atmospheric particles were collected using a high-volume air sampler equipped with a quartz-fiber filter. We determined the ClPAH concentrations of atmospheric particles collected in Japan (Sapporo, Sagamihara, Kanazawa, and Kitakyushu), Korea (Busan), and China (Beijing). The concentrations of ClPAHs were highest in the winter Beijing sample, where the total mean concentration was approximately 15-70 times higher than in the winter samples from Japan and Korea. The concentrations of Σ19ClPAHs and Σ9PAHs were significantly correlated in the Kanazawa and the Busan samples. This indicates that within those cities ClPAHs and PAHs share the same origin, implying direct chlorination of parent PAHs. Toxic equivalent concentrations (TEQs) of the total ClPAHs and PAHs were lowest in Kanazawa in the summer, reaching 1.18 and 2610fg-TEQm(-3) respectively, and highest in Beijing in the winter, reaching 627 and 4240000fg-TEQm(-3) respectively. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Airborne urban particles (Milan winter-PM2.5) cause mitotic arrest and cell death: Effects on DNA, mitochondria, AhR binding and spindle organization

    Energy Technology Data Exchange (ETDEWEB)

    Gualtieri, Maurizio [Applied Cell Biology and Particles Effects, Department of Environmental Science, University Milano-Bicocca, Piazza della Scienza 1, 20126 Milano (Italy); Division of Environmental Medicine, Norwegian Institute of Public Health, P.O. Box 4404 Nydalen, N-0403 Oslo (Norway); Ovrevik, Johan [Division of Environmental Medicine, Norwegian Institute of Public Health, P.O. Box 4404 Nydalen, N-0403 Oslo (Norway); Mollerup, Steen [Section for Toxicology, National Institute of Occupational Health, N-0033 Oslo (Norway); Asare, Nana [Division of Environmental Medicine, Norwegian Institute of Public Health, P.O. Box 4404 Nydalen, N-0403 Oslo (Norway); Longhin, Eleonora [Applied Cell Biology and Particles Effects, Department of Environmental Science, University Milano-Bicocca, Piazza della Scienza 1, 20126 Milano (Italy); Dahlman, Hans-Jorgen [Division of Environmental Medicine, Norwegian Institute of Public Health, P.O. Box 4404 Nydalen, N-0403 Oslo (Norway); Camatini, Marina [Applied Cell Biology and Particles Effects, Department of Environmental Science, University Milano-Bicocca, Piazza della Scienza 1, 20126 Milano (Italy); Centre Research POLARIS, Department of Environmental Science, University Milano-Bicocca, Piazza della Scienza 1, 20126 Milano (Italy); Holme, Jorn A., E-mail: jorn.holme@fhi.no [Division of Environmental Medicine, Norwegian Institute of Public Health, P.O. Box 4404 Nydalen, N-0403 Oslo (Norway)

    2011-08-01

    Highlights: {yields} PM2.5 induces mitotic arrest in BEAS-2B cells. {yields} PM2.5 induces DNA damage and activates DNA damage response. {yields} AhR regulated genes (Cyp1A1, Cyp1B1 and AhRR) are upregulated after PM exposure. {yields} Mitotic spindle assembly is perturbed in PM exposed cells. - Abstract: Airborne particulate matter (PM) is considered to be an important contributor to lung diseases. In the present study we report that Milan winter-PM2.5 inhibited proliferation in human bronchial epithelial cells (BEAS-2B) by inducing mitotic arrest. The cell cycle arrest was followed by an increase in mitotic-apoptotic cells, mitotic slippage and finally an increase in 'classical' apoptotic cells. Exposure to winter-PM10 induced only a slight effect which may be due to the presence of PM2.5 in this fraction while pure combustion particles failed to disturb mitosis. Fewer cells expressing the mitosis marker phospho-histone H3 compared to cells with condensed chromosomes, suggest that PM2.5 induced premature mitosis. PM2.5 was internalized into the cells and often localized in laminar organelles, although particles without apparent plasma membrane covering were also seen. In PM-containing cells mitochondria and lysosomes were often damaged, and in mitotic cells fragmented chromosomes often appeared. PM2.5 induced DNA strands breaks and triggered a DNA-damage response characterized by increased phosphorylation of ATM, Chk2 and H2AX; as well as induced a marked increase in expression of the aryl hydrocarbon receptor (AhR)-regulated genes, CYP1A1, CYP1B1 and AhRR. Furthermore, some disturbance of the organization of microtubules was indicated. It is hypothesized that the induced mitotic arrest and following cell death was due to a premature chromosome condensation caused by a combination of DNA, mitochondrial and spindle damage.

  7. A model for aryl hydrocarbon receptor-activated gene expression shows potency and efficacy changes and predicts squelching due to competition for transcription co-activators.

    Directory of Open Access Journals (Sweden)

    Ted W Simon

    Full Text Available A stochastic model of nuclear receptor-mediated transcription was developed based on activation of the aryl hydrocarbon receptor (AHR by 2,3,7,8-tetrachlorodibenzodioxin (TCDD and subsequent binding the activated AHR to xenobiotic response elements (XREs on DNA. The model was based on effects observed in cells lines commonly used as in vitro experimental systems. Following ligand binding, the AHR moves into the cell nucleus and forms a heterodimer with the aryl hydrocarbon nuclear translocator (ARNT. In the model, a requirement for binding to DNA is that a generic coregulatory protein is subsequently bound to the AHR-ARNT dimer. Varying the amount of coregulator available within the nucleus altered both the potency and efficacy of TCDD for inducing for transcription of CYP1A1 mRNA, a commonly used marker for activation of the AHR. Lowering the amount of available cofactor slightly increased the EC50 for the transcriptional response without changing the efficacy or maximal response. Further reduction in the amount of cofactor reduced the efficacy and produced non-monotonic dose-response curves (NMDRCs at higher ligand concentrations. The shapes of these NMDRCs were reminiscent of the phenomenon of squelching. Resource limitations for transcriptional machinery are becoming apparent in eukaryotic cells. Within single cells, nuclear receptor-mediated gene expression appears to be a stochastic process; however, intercellular communication and other aspects of tissue coordination may represent a compensatory process to maintain an organism's ability to respond on a phenotypic level to various stimuli within an inconstant environment.

  8. Ultraviolet B inhibition of DNMT1 activity via AhR activation dependent SIRT1 suppression in CD4+ T cells from systemic lupus erythematosus patients.

    Science.gov (United States)

    Wu, Zhouwei; Mei, Xingyu; Ying, Zuolin; Sun, Yue; Song, Jun; Shi, Weimin

    2017-06-01

    Previous studies have reported that ultraviolet B (UVB) inhibits DNA methyltransferase1 (DNMT1) activity in CD4+ T cells from systemic lupus erythematosus (SLE) patients. Silent mating type information regulation 2 homolog 1 (SIRT1) is a type of Class III histone deacetylases (HDACs), and has been reported to play roles in the pathogenesis of different autoimmune diseases and can modulate DNMT1 activity. Moreover, aryl hydrocarbon receptor (AhR) has been reported to link UVB with SLE. However, the exact mechanisms by which DNMT1 activity is inhibited by UVB in lupus CD4+ T cells remain largely unknown. To elucidate the exact mechanisms by which DNMT1 activity is inhibited by UVB in lupus CD4+ T cells. Twenty-two newly diagnosed active SLE patients and 30 healthy controls were enrolled in the study. CD4+ T cells were isolated, cultured and treated. DNMT1 activity assay, quantitative real-time PCR (qRT-PCR), Western blotting, RNA interference using small interfering RNA and Chromatin Immunoprecipitation (ChIP) assay were employed. DNMT1 activity was inhibited in si-SIRT1-transfected CD4+ T cells, and increased by the established SIRT1 activator, SRT1720. Moreover, the mRNA and protein expression of SIRT1 were suppressed by UVB exposure in lupus CD4+ T cells. UVB-inhibited DNMT1 activity was reversed by SRT1720 in si-control-transfected lupus CD4+ T cells, but not in si-SIRT1-transfected lupus CD4 + T cells. Furthermore, AhR activation by VAF347 reduced the mRNA and protein expression of SIRT1. ChIP using an antibody against AhR in normal CD4+ T cells revealed a 16-fold stronger signal at the site about 1.6kb upstream from the translation start site of the SIRT1 promoter. Finally, UVB could activate AhR and inhibit the mRNA and protein expression of SIRT1. AhR knockdown abrogated the inhibition of UVB-mediated SIRT1 mRNA and protein expression and DNMT1 activity in lupus CD4+ T cells. UVB suppressed SIRT1 expression via activating AhR, and subsequently inhibited DNMT1

  9. Transcriptomic assessment of resistance to effects of an aryl hydrocarbon receptor (AHR agonist in embryos of Atlantic killifish (Fundulus heteroclitus from a marine Superfund site

    Directory of Open Access Journals (Sweden)

    Franks Diana G

    2011-05-01

    Full Text Available Abstract Background Populations of Atlantic killifish (Fundulus heteroclitus have evolved resistance to the embryotoxic effects of polychlorinated biphenyls (PCBs and other halogenated and nonhalogenated aromatic hydrocarbons that act through an aryl hydrocarbon receptor (AHR-dependent signaling pathway. The resistance is accompanied by reduced sensitivity to induction of cytochrome P450 1A (CYP1A, a widely used biomarker of aromatic hydrocarbon exposure and effect, but whether the reduced sensitivity is specific to CYP1A or reflects a genome-wide reduction in responsiveness to all AHR-mediated changes in gene expression is unknown. We compared gene expression profiles and the response to 3,3',4,4',5-pentachlorobiphenyl (PCB-126 exposure in embryos (5 and 10 dpf and larvae (15 dpf from F. heteroclitus populations inhabiting the New Bedford Harbor, Massachusetts (NBH Superfund site (PCB-resistant and a reference site, Scorton Creek, Massachusetts (SC; PCB-sensitive. Results Analysis using a 7,000-gene cDNA array revealed striking differences in responsiveness to PCB-126 between the populations; the differences occur at all three stages examined. There was a sizeable set of PCB-responsive genes in the sensitive SC population, a much smaller set of PCB-responsive genes in NBH fish, and few similarities in PCB-responsive genes between the two populations. Most of the array results were confirmed, and additional PCB-regulated genes identified, by RNA-Seq (deep pyrosequencing. Conclusions The results suggest that NBH fish possess a gene regulatory defect that is not specific to one target gene such as CYP1A but rather lies in a regulatory pathway that controls the transcriptional response of multiple genes to PCB exposure. The results are consistent with genome-wide disruption of AHR-dependent signaling in NBH fish.

  10. AhR- and ER-mediated activities in human blood samples collected from PCB-contaminated and background region in Slovakia

    Energy Technology Data Exchange (ETDEWEB)

    Pliskova, M. [Veterinary Researcch Institute, Brno (Czech Republic); Canton, R.F.; Duursen, M.B.M. van [Utrecht Univ. (NL). Institute for Risk Assessment Sciences (IRAS)] (and others)

    2004-09-15

    Endocrine disruption mediated through activation of aryl hydrocarbon receptor (AhR) and estrogen receptor (ER) by polychlorinated biphenyls (PCBs) and other persistent organic pollutants (POPs) has been studied extensively both in vivo and in vitro. Non-ortho- and mono-ortho-substituted polychlorinated biphenyls (PCBs) are potent AhR agonists therefore, increased dioxin-like activity of complex blood samples might reflect an increased exposure to PCBs. The induction of expression of CYP1A1 and CYP1B1 in different tissues, including lymphocytes, also depends on activation of AhR and it could be useful as a potential biomarker of exposure to dioxin-like compounds. Using various in vivo and in vitro models, the exposure to PCBs or hydroxy-PCBs has been reported to lead to either induction of ER-mediated activity or to an antiestrogenic effect associated with a suppression of estradiol-induced ER-dependent gene expression. Nevertheless, relative (anti)estrogenic potencies of a large set of prevalent environmental PCBs have not been yet compared in a single bioassay. A cross-talk between AhR and ER has been suggested to lead to a suppression of ER-mediated gene expression. Therefore, presence of dioxin-like compounds in blood could potentially suppress the ER-mediated activity. Additionally, AhR-dependent induction of CYP1A1 and especially CYP1B1, two enzymes involved in oxidative metabolism of estradiol and other estrogens, might enhance the metabolism of estradiol and it has been suggested to cause a potential depression of estrogen levels in the body. The aim of the present study was to determine dioxin-like, estrogenic and antiestrogenic activities in human blood samples collected in two Eastern Slovakia regions differently polluted with PCBs using established in vitro bioassays. We also studied mRNA expression of CYP1A1 and 1B1 in lymphocytes and the genotypes of CYP1B1 as possible biomarkers of exposure for PCBs and related compounds. The biological data obtained

  11. Structural Vector Description and Estimation of Normal Boiling Points for 66 Aromatic Hydrocarbons

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    A molecular vector-type descriptor containing 6 variables is used to describe the structure of aromatic hydrocarbons (AHs) and relate to normal boiling points (bp) of AHs. The correlation coefficient (R) between the estimated bp and experimental bp is 0.9988 and the root mean square error (RMS) is 7.907° C for 66 AHs. The RMS obtained by cross-validation is 9.131° C, which implies the relationship model having good prediction ability.

  12. NahY, a Catabolic Plasmid-Encoded Receptor Required for Chemotaxis of Pseudomonas putida to the Aromatic Hydrocarbon Naphthalene

    OpenAIRE

    1999-01-01

    Pseudomonas putida G7 exhibits chemotaxis to naphthalene, but the molecular basis for this was not known. A new gene, nahY, was found to be cotranscribed with meta cleavage pathway genes on the NAH7 catabolic plasmid for naphthalene degradation. The nahY gene encodes a 538-amino-acid protein with a membrane topology and a C-terminal region that resemble those of chemotaxis transducer proteins. A P. putida G7 nahY mutant grew on naphthalene but was not chemotactic to this aromatic hydrocarbon....

  13. Separation and analysis of aromatic hydrocarbons from two Chinese coals

    Institute of Scientific and Technical Information of China (English)

    DING Ming-jie; LI Wen-dian; XIE Rui-lun; ZONG Ying; CAI Ke-ying; PENG Yao-li; ZONG Zhi-min; XIE Rui-lun; WEI Xian-yong

    2008-01-01

    Separation and analysis of aromatic hydrocarbons (AHs) from coals is of considerable significance for both fuel and non-fuel use of the coals. In present work two Chinese bituminous coals were selected for separation of AHs by ultrasonic extraction with CS2 followed by column chromatography using hexane as eluent. A series of AHs were separated from the two coals and analyzed by GC/MS. FTIR was employed to characterize the raw coals and the extracted residues. The results of GC/MS analysis show that the separated AHs are mono- to tetracyclic arenes, among which the principle AHs are alkyl naphthalenes and phenanthrenes. Obvious differences in the composition and the structure of AHs exist between the two coals, i.e., the AHs from Tongting coal tend to be higher rings compared to those from Pingshuo coal both from the variety and from the abundance of the AHs. FFIR analysis shows that the raw and extracted coals are similar in terms of functional groups, suggesting that the composition and structure of CS extract, especially the AHs, from coals can be used to interpret the coal structure to some extent.

  14. Polycyclic aromatic hydrocarbons: from metabolism to lung cancer.

    Science.gov (United States)

    Moorthy, Bhagavatula; Chu, Chun; Carlin, Danielle J

    2015-05-01

    Excessive exposure to polycyclic aromatic hydrocarbons (PAHs) often results in lung cancer, a disease with the highest cancer mortality in the United States. After entry into the lung, PAHs induce phase I metabolic enzymes such as cytochrome P450 (CYP) monooxygenases, i.e. CYP1A1/2 and 1B1, and phase II enzymes such as glutathione S-transferases, UDP glucuronyl transferases, NADPH quinone oxidoreductases (NQOs), aldo-keto reductases (AKRs), and epoxide hydrolases (EHs), via the aryl hydrocarbon receptor (AhR)-dependent and independent pathways. Humans can also be exposed to PAHs through diet, via consumption of charcoal broiled foods. Metabolism of PAHs through the CYP1A1/1B1/EH pathway, CYP peroxidase pathway, and AKR pathway leads to the formation of the active carcinogens diol-epoxides, radical cations, and o-quinones. These reactive metabolites produce DNA adducts, resulting in DNA mutations, alteration of gene expression profiles, and tumorigenesis. Mutations in xenobiotic metabolic enzymes, as well as polymorphisms of tumor suppressor genes (e.g. p53) and/or genes involved in gene expression (e.g. X-ray repair cross-complementing proteins), are associated with lung cancer susceptibility in human populations from different ethnicities, gender, and age groups. Although various metabolic activation/inactivation pathways, AhR signaling, and genetic susceptibilities contribute to lung cancer, the precise points at which PAHs induce tumor initiation remain unknown. The goal of this review is to provide a current state-of-the-science of the mechanisms of human lung carcinogenesis mediated by PAHs, the experimental approaches used to study this complex class of compounds, and future directions for research of these compounds.

  15. Peran Dokter sebagai Saksi Ahli Di Persidangan

    Directory of Open Access Journals (Sweden)

    Rika Susanti

    2013-05-01

    Full Text Available AbstrakPemanfaatan ilmu kedokteran forensik dalam penegakan hukum serta keadilan membutuhkan dokter sebagai saksi ahli medis di persidangan. Saksi ahli pada dasarnya adalah seseorang yang memiliki pengetahuan, pengalaman dan keahlian khusus sebagai dasar dalam memberikan keterangan ahli suatu perkara pidana. Kewajiban dokter untuk membuat keterangan ahli diatur dalam Kitab Undang-undang Acara Pidana dan dalam etika kedokteran. Kehadiran dokter sebagai saksi ahli dapat diminta oleh jaksa penuntut ataupun penasehat hukum tersangka atas persetujuan hakim. Dokter dapat menjadi saksi fakta (dokter yang merawat atau saksi pendapat (ahli independen tergantung keterangan yang dibutuhkan pengadilan. Dalam memberikan keterangan ahli, dokter harus mengikuti ketentuan yang berlaku di persidangan Indonesia, sehingga penting bagi dokter untuk mengetahui tata cara dan sikap dokter sebagai saksi ahli dan mengikuti pedoman menjadi saksi ahli kedokteran.Kata kunci: Dokter sebagai aksi ahli, dasar hukum, persidangan, pedoman saksi ahliAbstractThe utilization of forensic medical science in law enforcement and justice requires a medical doctor as an expert medical witness in court. An expert witness is basically a person who has knowledge, experience and special skill as a basis in providing expertise which is caused a criminal. The obligation of the doctor to make expert explanation is arranged in the book of the law in the crime and in medical ethics.The presence of the doctor as an expert witness can be requested by the prosecutor or the lawyer of the suspect upon approval the judge. Doctors can be as a witness of fact (the treating doctor or as a witness of opinion (the independent expert witness, depending on the information needed at the court. In providing expert information, the doctor should follow the applicable provisions in Council of Indonesia, so it is important for the doctor to know the ordinances and the attitude of doctors acting as medical

  16. Inhibitory Ah Receptor-Androgen Receptor Crosstalk in Prostate Cancer

    Science.gov (United States)

    2006-02-01

    8217-Diindolylmethane induces apoptosis in human cancer cells. Biochem Biophys Res Commun 1996; 228:153- 158. 24. Rahman KM, Aranha O, Glazyrin A, Chinni SR...8217-diindolylmethane (DIM) in human breast cancer cells. Biochem Pharmacol 2002; 63:1085-1097. 28. Rahman KM, Aranha O, Sarkar FH. Indole-3-carbinol (I3C) induces

  17. Assessment of energetic costs of AhR activation by β-naphthoflavone in rainbow trout (Oncorhynchus mykiss) hepatocytes using metabolic flux analysis

    Energy Technology Data Exchange (ETDEWEB)

    Nault, Rance, E-mail: naultran@msu.edu [Ottawa-Carleton Institute of Biology, Department of Biology and Centre for Advanced Research in Environmental Genomics, University of Ottawa, Ottawa, Ontario, K1N 6N5 (Canada); Abdul-Fattah, Hiba [Ottawa-Carleton Institute of Biology, Department of Biology and Centre for Advanced Research in Environmental Genomics, University of Ottawa, Ottawa, Ontario, K1N 6N5 (Canada); Mironov, Gleb G.; Berezovski, Maxim V. [Ottawa-Carleton Institute of Biology, Department of Biology and Centre for Advanced Research in Environmental Genomics, University of Ottawa, Ottawa, Ontario, K1N 6N5 (Canada); Department of Chemistry, University of Ottawa, Ottawa, Ontario, K1N 6N5 (Canada); Moon, Thomas W. [Ottawa-Carleton Institute of Biology, Department of Biology and Centre for Advanced Research in Environmental Genomics, University of Ottawa, Ottawa, Ontario, K1N 6N5 (Canada)

    2013-08-15

    Exposure to environmental contaminants such as activators of the aryl hydrocarbon receptor (AhR) leads to the induction of defense and detoxification mechanisms. While these mechanisms allow organisms to metabolize and excrete at least some of these environmental contaminants, it has been proposed that these mechanisms lead to significant energetic challenges. This study tests the hypothesis that activation of the AhR by the model agonist β-naphthoflavone (βNF) results in increased energetic costs in rainbow trout (Oncorhynchus mykiss) hepatocytes. To address this hypothesis, we employed traditional biochemical approaches to examine energy allocation and metabolism including the adenylate energy charge (AEC), protein synthesis rates, Na{sup +}/K{sup +}-ATPase activity, and enzyme activities. Moreover, we have used for the first time in a fish cell preparation, metabolic flux analysis (MFA) an in silico approach for the estimation of intracellular metabolic fluxes. Exposure of trout hepatocytes to 1 μM βNF for 48 h did not alter hepatocyte AEC, protein synthesis, or Na{sup +}/K{sup +}-ATPase activity but did lead to sparing of glycogen reserves and changes in activities of alanine aminotransferase and citrate synthase suggesting altered metabolism. Conversely, MFA did not identify altered metabolic fluxes, although we do show that the dynamic metabolism of isolated trout hepatocytes poses a significant challenge for this type of approach which should be considered in future studies. - Highlights: • Energetic costs of AhR activation by βNF was examined in rainbow trout hepatocytes. • Metabolic flux analysis was performed on a fish cell preparation for the first time. • Exposure to βNF led to sparing of glycogen reserves and altered enzyme activities. • Adenylate energy charge was maintained despite temporal changes in metabolism.

  18. Hepatic stellate cells increase the immunosuppressive function of natural Foxp3+ regulatory T cells via IDO-induced AhR activation.

    Science.gov (United States)

    Kumar, Sudhir; Wang, Jiang; Thomson, Angus W; Gandhi, Chandrashekhar R

    2017-02-01

    Immunosuppressive, naturally occurring CD4(+)CD25(+)forkhead box p3(+) (Foxp3(+)) regulatory T cells (nTregs) offer potential for the treatment of immune-mediated inflammatory disorders. However, potential instability of ex vivo-expanded nTregs following their adoptive transfer may be a significant limitation. LPS-stimulated hepatic stellate cells (HSCs) induce expansion and enhance the suppressive function and stability of allogeneic nTregs We aimed to delineate mechanisms underlying HSC-induced expansion and increased potency of nTregs HSCs and nTregs were isolated from mouse livers and spleens, respectively. Following coculture with LPS-pretreated allogeneic HSCs (LPS/HSCs), proliferation of nTregs was measured by CFSE dilution, and Foxp3 expression and acetylation were determined by immunoprecipitation (IP) and Western blotting analysis. Expression of various genes associated with immunologic tolerance was determined by quantitative RT-PCR (qRT-PCR). LPS stimulation increased the expression and activity of the immunoregulatory enzyme IDO1 in HSCs, and LPS/HSCs stimulated aryl hydrocarbon receptor (AhR) signaling in cocultured nTregs Reciprocally, Tregs increased IDO1 expression in HSCs. IDO1(-/-) LPS/HSCs were inferior to WT LPS/HSCs in stimulating nTreg expansion. Pharmacologic inhibition of IDO1 in HSCs by 1-methyltryptophan (1MT) inhibited LPS/HSC-induced AhR signaling in nTregs, which was responsible for their expansion, Foxp3 expression, and stabilization of Foxp3 by increasing acetylation of lysine residues. Finally, HSCs cryopreserved, following 2-3 passages, were as potent as primary-cultured HSCs in expanding nTregs In conclusion, LPS/HSCs expand allogeneic nTregs through an IDO-dependent, AhR-mediated mechanism and increase their stability through lysine-acetylation of Foxp3. nTregs expanded by cryopreserved HSCs may have potential for clinical use.

  19. Identification of aryl hydrocarbon receptor binding targets in mouse hepatic tissue treated with 2,3,7,8-tetrachlorodibenzo-p-dioxin

    Energy Technology Data Exchange (ETDEWEB)

    Lo, Raymond; Celius, Trine [Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario (Canada); Forgacs, Agnes L. [Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI (United States); Center for Integrative Toxicology, Michigan State University, East Lansing, MI (United States); Dere, Edward [Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI (United States); MacPherson, Laura [Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario (Canada); Harper, Patricia [Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario (Canada); Research Institute, The Hospital for Sick Children, Toronto, Ontario (Canada); Zacharewski, Timothy [Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI (United States); Center for Integrative Toxicology, Michigan State University, East Lansing, MI (United States); Matthews, Jason, E-mail: jason.matthews@utoronto.ca [Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario (Canada)

    2011-11-15

    Genome-wide, promoter-focused ChIP-chip analysis of hepatic aryl hydrocarbon receptor (AHR) binding sites was conducted in 8-week old female C57BL/6 treated with 30 {mu}g/kg/body weight 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) for 2 h and 24 h. These studies identified 1642 and 508 AHR-bound regions at 2 h and 24 h, respectively. A total of 430 AHR-bound regions were common between the two time points, corresponding to 403 unique genes. Comparison with previous AHR ChIP-chip studies in mouse hepatoma cells revealed that only 62 of the putative target genes overlapped with the 2 h AHR-bound regions in vivo. Transcription factor binding site analysis revealed an over-representation of aryl hydrocarbon response elements (AHREs) in AHR-bound regions with 53% (2 h) and 68% (24 h) of them containing at least one AHRE. In addition to AHREs, E2f-Myc activator motifs previously implicated in AHR function, as well as a number of other motifs, including Sp1, nuclear receptor subfamily 2 factor, and early growth response factor motifs were also identified. Expression microarray studies identified 133 unique genes differentially regulated after 4 h treatment with TCDD. Of which, 39 were identified as AHR-bound genes at 2 h. Ingenuity Pathway Analysis on the 39 AHR-bound TCDD responsive genes identified potential perturbation in biological processes such as lipid metabolism, drug metabolism, and endocrine system development as a result of TCDD-mediated AHR activation. Our findings identify direct AHR target genes in vivo, highlight in vitro and in vivo differences in AHR signaling and show that AHR recruitment does not necessarily result in changes in target gene expression. -- Highlights: Black-Right-Pointing-Pointer ChIP-chip analysis of hepatic AHR binding after 2 h and 24 h of TCDD. Black-Right-Pointing-Pointer We identified 1642 and 508 AHR-bound regions at 2 h and 24 h. Black-Right-Pointing-Pointer 430 regions were common to both time points and highly enriched with

  20. Involvement of aryl hydrocarbon receptor signaling in the development of small cell lung cancer induced by HPV E6/E7 oncoproteins

    Directory of Open Access Journals (Sweden)

    Rossini Mara

    2011-01-01

    Full Text Available Abstract Background Lung cancers consist of four major types that and for clinical-pathological reasons are often divided into two broad categories: small cell lung cancer (SCLC and non-small cell lung cancer (NSCLC. All major histological types of lung cancer are associated with smoking, although the association is stronger for SCLC and squamous cell carcinoma than adenocarcinoma. To date, epidemiological studies have identified several environmental, genetic, hormonal and viral factors associated with lung cancer risk. It has been estimated that 15-25% of human cancers may have a viral etiology. The human papillomavirus (HPV is a proven cause of most human cervical cancers, and might have a role in other malignancies including vulva, skin, oesophagus, head and neck cancer. HPV has also been speculated to have a role in the pathogenesis of lung cancer. To validate the hypothesis of HPV involvement in small cell lung cancer pathogenesis we performed a gene expression profile of transgenic mouse model of SCLC induced by HPV-16 E6/E7 oncoproteins. Methods Gene expression profile of SCLC has been performed using Agilent whole mouse genome (4 × 44k representing ~ 41000 genes and mouse transcripts. Samples were obtained from two HPV16-E6/E7 transgenic mouse models and from littermate's normal lung. Data analyses were performed using GeneSpring 10 and the functional classification of deregulated genes was performed using Ingenuity Pathway Analysis (Ingenuity® Systems, http://www.ingenuity.com. Results Analysis of deregulated genes induced by the expression of E6/E7 oncoproteins supports the hypothesis of a linkage between HPV infection and SCLC development. As a matter of fact, comparison of deregulated genes in our system and those in human SCLC showed that many of them are located in the Aryl Hydrocarbon Receptor Signal transduction pathway. Conclusions In this study, the global gene expression of transgenic mouse model of SCLC induced by HPV-16 E

  1. 芳香烃受体(AHR)在胎盘生成中的作用%Roles of Aryl Hydrocarbon Receptor in the Placenta Development

    Institute of Scientific and Technical Information of China (English)

    陈晓; 赵真; 王凯; 段涛

    2013-01-01

    Placenta is a transcent organ that connects morther and fetus, which is significant in maintaining pregnancy, fetal growth and fetal survival. This review illustrates the roles of aryl hydrocarbon receptor (AHR) in the placenta development, which associates with some disorders of pregnancy, such as misscariage, preeclampsia, fetal growth restriction, etc. Activation of the AHR is involved in the regulation of a couple of physiological processes, including immunoregulation, reproductivity, vascular remodling, etc. AHR is closely associated with proliferation and apoptosis of trophoblast cells and also regulates its cell cycle. AHR plays an important role in angiogenesis and regulation of blood volume, and it involves in normal vascular development in placenta through regulating the balance of angiogenesis promoting factors and angiogenesis inhibiting factors. Meanwhile, AHR may mediate pla-cental angiogenesis and invaded ability of trophoblast cells during placenta development. Abnormol expression of AHR will directly induce the occurance of related pregnancy disease.%胎盘是连接母体与胎儿的重要器官,在维持正常的妊娠过程中发挥着重要的作用.胎盘的结构和功能异常不仅易引发妊娠期高血压和糖尿病等妊娠并发症,还易导致早产、胎儿宫内生长受限(intrauterine growth retardation,IUGR)、流产等不良妊娠结局.芳香烃受体(aryl hydrocarbon receptor,AHR)作为一种配体激活性转录蛋白,参与了生殖调控、免疫功能调节、血管重塑等一系列重要的生理活动.AHR与滋养细胞的增殖和凋亡密切相关,并且具有调节滋养细胞细胞周期的作用.AHR在胎盘血管的生成及血流量的调节中也发挥着重要的作用,它通过调节促血管生成因子与血管生成抑制因子的平衡,参与胎盘血管的正常发育生长;同时AHR还很可能在胎盘的生长发育中介导了胎盘血管的生成以及滋养细胞的侵袭能力;AHR表达异常

  2. 2,3,7,8-Tetrachlorodibenzo-p-dioxin treatment alters eicosanoid levels in several organs of the mouse in an aryl hydrocarbon receptor-dependent fashion

    Energy Technology Data Exchange (ETDEWEB)

    Bui, Peter; Solaimani, Parrisa [Molecular Toxicology Program, University of California, Los Angeles, California 90095 (United States); Dept of Pathology and Laboratory Medicine, University of California, Los Angeles, California 90095 (United States); Jonsson Comprehensive Cancer Center, University of California, Los Angeles, California 90095 (United States); Wu, Xiaomeng [Dept of Pathology and Laboratory Medicine, University of California, Los Angeles, California 90095 (United States); Jonsson Comprehensive Cancer Center, University of California, Los Angeles, California 90095 (United States); Hankinson, Oliver, E-mail: ohank@mednet.ucla.edu [Molecular Toxicology Program, University of California, Los Angeles, California 90095 (United States); Dept of Pathology and Laboratory Medicine, University of California, Los Angeles, California 90095 (United States); Jonsson Comprehensive Cancer Center, University of California, Los Angeles, California 90095 (United States); Molecular Biology Institute, University of California, Los Angeles, California 90095 (United States)

    2012-03-01

    2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) adversely affects many mammalian organs and tissues. These effects are mediated by the aryl hydrocarbon receptor (AHR). CYP1A1, CYP1A2 and CYP1B1 are upregulated by the liganded AHR. These (and other) cytochromes P450 can metabolize arachidonic acid into a variety of bioactive eicosanoids. Towards investigating a potential role of eicosanoids in TCDD toxicity, arachidonic acid, two other unsaturated long-chain fatty acids, and up to twenty-five eicosanoids were measured in five organs/tissues of male and female wild-type and Ahr null mice treated or untreated with TCDD. TCDD generally increased the levels of the four dihydroxyeicosatrienoic acids (DHETs) and (where measured) 5,6-epoxyeicosatrienoic acid and 18-, 19- and 20-hydroxyeicosatrienoic acids (HETEs) in the serum, liver, spleen and lungs, but not the heart, of both sexes, and increased the levels in the serum, liver and spleen of several metabolites that are usually considered products of lipoxygenase activity, but which may also be generated by cytochromes P450. TCDD also increased the levels of the esterified forms of these eicosanoids in the liver in parallel with the corresponding free forms. The levels of prostanoids were generally not affected by TCDD. The above changes did not occur in Ahr null mice, and are therefore mediated by the AHR. TCDD increased the mRNA levels of Cyp1a1, Cyp1a2, Cyp1b1 and the Pla2g12a form of phospholipase A{sub 2} to varying degrees in the different organs, and these increases correlated with some but not all the changes in eicosanoids levels in the organs, suggesting that other enzymes may also be involved. -- Highlights: ► TCDD treatment increases the levels of many eicosanoids in several mouse organs. ► Products of both the cytochrome P450 and classical lipoxygenase pathways are increased. ► These increases are dependent on the aryl hydrocarbon receptor. ► Cyp1a1, Cyp1a2 and Cyp1b1 appear to be responsible for much but

  3. Source Contribution Analysis of Surface Particulate Polycyclic Aromatic Hydrocarbon Concentrations in Northeastern Asia by Source-receptor Relationships

    Energy Technology Data Exchange (ETDEWEB)

    Inomata, Yayoi; Kajino, Mizuo; Sato, Keiichi; Ohara, Toshimasa; Kurokawa, Jun-Ichi; Ueda, Hiromasa; Tang, Ning; Hayakawa, Kazuichi; Ohizumi, Tsuyoshi; Akimoto, Hajime

    2013-11-01

    We analyzed the sourceereceptor relationships for particulate polycyclic aromatic hydrocarbon (PAH) concentrations in northeastern Asia using an aerosol chemical transport model. The model successfully simulated the observed concentrations. In Beijing (China) benzo[a]pyren (BaP) concentrations are due to emissions from its own domain. In Noto, Oki and Tsushima (Japan), transboundary transport from northern China (>40°N, 40-60%) and central China (30-40°N, 10-40%) largely influences BaP concentrations from winter to spring, whereas the relative contribution from central China is dominant (90%) in Hedo. In the summer, the contribution from Japanese domestic sources increases (40-80%) at the 4 sites. Contributions from Japan and Russia are additional source of BaP over the northwestern Pacific Ocean in summer. The contribution rates for the concentrations from each domain are different among PAH species depending on their particulate phase oxidation rates. Reaction with O3 on particulate surfaces may be an important component of the PAH oxidation processes.

  4. In vitro and in silico derived relative effect potencies of ah-receptor-mediated effects by PCDD/Fs and PCBs in rat, mouse, and guinea pig CALUX cell lines.

    Science.gov (United States)

    Ghorbanzadeh, Mehdi; van Ede, Karin I; Larsson, Malin; van Duursen, Majorie B M; Poellinger, Lorenz; Lücke-Johansson, Sandra; Machala, Miroslav; Pěnčíková, Kateřina; Vondráček, Jan; van den Berg, Martin; Denison, Michael S; Ringsted, Tine; Andersson, Patrik L

    2014-07-21

    For a better understanding of species-specific relative effect potencies (REPs), responses of dioxin-like compounds (DLCs) were assessed. REPs were calculated using chemical-activated luciferase gene expression assays (CALUX) derived from guinea pig, rat, and mouse cell lines. Almost all 20 congeners tested in the rodent cell lines were partial agonists and less efficacious than 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). For this reason, REPs were calculated for each congener using concentrations at which 20% of the maximal TCDD response was reached (REP20TCDD). REP20TCDD values obtained for PCDD/Fs were comparable with their toxic equivalency factors assigned by the World Health Organization (WHO-TEF), while those for PCBs were in general lower than the WHO-TEF values. Moreover, the guinea pig cell line was the most sensitive as indicated by the 20% effect concentrations of TCDD of 1.5, 5.6, and 11.0 pM for guinea pig, rat, and mouse cells, respectively. A similar response pattern was observed using multivariate statistical analysis between the three CALUX assays and the WHO-TEFs. The mouse assay showed minor deviation due to higher relative induction potential for 2,3,7,8-tetrachlorodibenzofuran and 2,3,4,6,7,8-hexachlorodibenzofuran and lower for 1,2,3,4,6,7,8-heptachlorodibenzofuran and 3,3',4,4',5-pentachlorobiphenyl (PCB126). 2,3,7,8-Tetrachlorodibenzofuran was more than two times more potent in the mouse assay as compared with that of rat and guinea pig cells, while measured REP20TCDD for PCB126 was lower in mouse cells (0.05) as compared with that of the guinea pig (0.2) and rat (0.07). In order to provide REP20TCDD values for all WHO-TEF assigned compounds, quantitative structure-activity relationship (QSAR) models were developed. The QSAR models showed that specific electronic properties and molecular surface characteristics play important roles in the AhR-mediated response. In silico derived REP20TCDD values were generally consistent with the WHO

  5. Source apportionment of particle-bound polycyclic aromatic hydrocarbons in Lumbini, Nepal by using the positive matrix factorization receptor model

    Science.gov (United States)

    Chen, Pengfei; Li, Chaoliu; Kang, Shichang; Yan, Fangping; Zhang, Qianggong; Ji, Zhengming; Tripathee, Lekhendra; Rupakheti, Dipesh; Rupakheti, Maheswar; Qu, Bin; Sillanpää, Mika

    2016-12-01

    Indo-Gangetic Plain (IGP) is one of the most polluted regions in the world. Despite numbers of studies conducted at urban site, few data are available at rural area. In this study, characteristics of 15 particle-bound priority polycyclic aromatic hydrocarbons (PAHs) of total suspended particles (TSPs) collected at a typical rural area (Lumbini) of IGP from April 2013 to March 2014 were reported. The results showed that annual average TSP and PAH concentrations were 209 ± 123 μg/m3 and 94.8 ± 54.6 ng/m3, respectively, which were similar to those of large cities such as Agra and Delhi in the upwind adjacent regions. Clear seasonal variation of TSP and PAH concentrations was observed, with the highest average concentration occurring in winter followed by the pre-monsoon, post-monsoon, and monsoon seasons, reflecting combined influence of source strength and monsoon circulation on PAH concentrations of Lumbini. Positive matrix factorization analysis showed that biomass combustion (50.6%) and vehicular emissions (30.4%) were first two sources of PAHs, followed by coal combustion (11.6%) and air-soil exchange (7.4%), in line with that of diagnostic molecular ratios results. Because of extensive agro-residue burning, intensive forest fires, and conducive weather conditions, contribution of biomass burning during non-monsoon season (55.7%) was higher than that of monsoon season (42.1%). The total BaP equivalent concentration (BaPeq) of particulate PAHs ranged between 2.51 and 47.3 ng/m3, was 2-40 times higher than the WHO guideline (1 ng/m3), implying local residents were at risk for adverse health effects.

  6. Augmented Growth Hormone Secretion and Stat3 Phosphorylation in an Aryl Hydrocarbon Receptor Interacting Protein (AIP)-Disrupted Somatotroph Cell Line

    Science.gov (United States)

    Hamaguchi, Yuriko; Kawanami, Takako; Nomiyama, Takashi; Yanase, Toshihiko

    2016-01-01

    Aryl hydrocarbon receptor interacting protein (AIP) is thought to be a tumor suppressor gene, as indicated by a mutational analysis of pituitary somatotroph adenomas. However, the physiological significance of AIP inactivation in somatotroph cells remains unclear. Using CRISPR/Cas9, we identified a GH3 cell clone (termed GH3-FTY) in which Aip was genetically disrupted, and subsequently investigated its character with respect to growth hormone (Gh) synthesis and proliferation. Compared with GH3, GH3-FTY cells showed remarkably increased Gh production and a slight increase in cell proliferation. Gh-induced Stat3 phosphorylation is known to be a mechanism of Gh oversecretion in GH3. Interestingly, phosphorylated-Stat3 expression in GH3-FTY cells was increased more compared with GH3 cells, suggesting a stronger drive for this mechanism in GH3-FTY. The phenotypes of GH3-FTY concerning Gh overproduction, cell proliferation, and increased Stat3 phosphorylation were significantly reversed by the exogenous expression of Aip. GH3-FTY cells were less sensitive to somatostatin than GH3 cells in the suppression of cell proliferation, which might be associated with the reduced expression of somatostatin receptor type 2. GH3-FTY xenografts in BALB/c nude mice (GH3-FTY mice) formed more mitotic somatotroph tumors than GH3 xenografts (GH3 mice), as also evidenced by increased Ki67 scores. GH3-FTY mice were also much larger and had significantly higher plasma Gh levels than GH3 mice. Furthermore, GH3-FTY mice showed relative insulin resistance compared with GH3 mice. In conclusion, we established a somatotroph cell line, GH3-FTY, which possessed prominent Gh secretion and mitotic features associated with the disruption of Aip. PMID:27706259

  7. Aryl hydrocarbon receptor knockout rats are insensitive to the pathological effects of repeated oral exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin.

    Science.gov (United States)

    Harrill, Joshua A; Layko, Debra; Nyska, Abraham; Hukkanen, Renee R; Manno, Rosa Anna; Grassetti, Andrea; Lawson, Marie; Martin, Greg; Budinsky, Robert A; Rowlands, J Craig; Thomas, Russell S

    2016-06-01

    Sustained activation of the aryl hydrocarbon receptor (AHR) is believed to be the initial key event in AHR receptor-mediated tumorigenesis in the rat liver. The role of AHR in mediating pathological changes in the liver prior to tumor formation was investigated in a 4-week, repeated-dose study using adult female wild-type (WT) and AHR knockout (AHR-KO) rats treated with 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). Beginning at 8 weeks of age, AHR-KO and WT rats were dosed by oral gavage with varying concentrations of TCDD (0, 3, 22, 100, 300 and 1000 ng kg(-1)  day(-1) ). Lung, liver and thymus histopathology, hematology, serum chemistry and the distribution of TCDD in liver and adipose tissue were examined. Treatment-related increases in the severity of liver and thymus pathology were observed in WT, but not AHR-KO rats. In the liver, these included hepatocellular hypertrophy, bile duct hyperplasia, multinucleated hepatocytes and inflammatory cell foci. A loss of cellularity in the thymic cortex and thymic atrophy was observed. Treatment-related changes in serum chemistry parameters were also observed in WT, but not AHR-KO rats. Finally, dose-dependent accumulation of TCDD was observed primarily in the liver of WT rats and primarily in the adipose tissue of AHR-KO rats. The results suggest that AHR activation is the initial key event underlying the progression of histological effects leading to liver tumorigenesis following TCDD treatment. Copyright © 2015 John Wiley & Sons, Ltd.

  8. Circadian clock gene aryl hydrocarbon receptor nuclear translocator-like polymorphisms are associated with seasonal affective disorder: An Indian family study.

    Science.gov (United States)

    Rajendran, Bhagya; Janakarajan, Veeramahali Natarajan

    2016-01-01

    Polymorphisms in aryl hydrocarbon receptor nuclear translocator-like (ARNTL) gene, the key component of circadian clock manifests circadian rhythm abnormalities. As seasonal affective disorder (SAD) is associated with disrupted circadian rhythms, the main objective of this study was to screen an Indian family with SAD for ARNTL gene polymorphisms. In this study, 30 members of close-knit family with SAD, 30 age- and sex-matched controls of the same caste with no prior history of psychiatric illness and 30 age- and sex-matched controls belonging to 17 different castes with no prior history of psychiatric illness were genotyped for five different single nucleotide polymorphisms (SNPs) in ARNTL gene by TaqMan allele-specific genotyping assay. Statistical significance was assessed by more powerful quasi-likelihood score test-XM. Most of the family members carried the risk alleles and we observed a highly significant SNP rs2279287 (A/G) in ARNTL gene with an allelic frequency of 0.75. Polymorphisms in ARNTL gene disrupt circadian rhythms causing SAD and genetic predisposition becomes more deleterious in the presence of adverse environment.

  9. A Structural Switch between Agonist and Antagonist Bound Conformations for a Ligand-Optimized Model of the Human Aryl Hydrocarbon Receptor Ligand Binding Domain

    Directory of Open Access Journals (Sweden)

    Arden Perkins

    2014-10-01

    Full Text Available The aryl hydrocarbon receptor (AHR is a ligand-activated transcription factor that regulates the expression of a diverse group of genes. Exogenous AHR ligands include the environmental contaminant 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD, which is a potent agonist, and the synthetic AHR antagonist N-2-(1H-indol-3ylethyl-9-isopropyl-2- (5-methylpyridin-3-yl-9H-purin-6-amine (GNF351. As no experimentally determined structure of the ligand binding domain exists, homology models have been utilized for virtual ligand screening (VLS to search for novel ligands. Here, we have developed an “agonist-optimized” homology model of the human AHR ligand binding domain, and this model aided in the discovery of two human AHR agonists by VLS. In addition, we performed molecular dynamics simulations of an agonist TCDD-bound and antagonist GNF351-bound version of this model in order to gain insights into the mechanics of the AHR ligand-binding pocket. These simulations identified residues 307–329 as a flexible segment of the AHR ligand pocket that adopts discrete conformations upon agonist or antagonist binding. This flexible segment of the AHR may act as a structural switch that determines the agonist or antagonist activity of a given AHR ligand.

  10. Combination of hypomorphic mutations of the Drosophila homologues of aryl hydrocarbon receptor and nucleosome assembly protein family genes disrupts morphogenesis, memory and detoxification.

    Directory of Open Access Journals (Sweden)

    Boris A Kuzin

    Full Text Available Aryl hydrocarbon receptor is essential for biological responses to endogenous and exogenous toxins in mammals. Its Drosophila homolog spineless plays an important role in fly morphogenesis. We have previously shown that during morphogenesis spineless genetically interacts with CG5017 gene, which encodes a nucleosome assembly factor and may affect cognitive function of the fly. We now demonstrate synergistic interactions of spineless and CG5017 in pathways controlling oxidative stress response and long-term memory formation in Drosophila melanogaster. Oxidative stress was induced by low doses of X-ray irradiation of flies carrying hypomorphic mutation of spineless, mutation of CG5017, and their combination. To determine the sensitivity of these mutants to pharmacological modifiers of the irradiation effect, we irradiated flies growing on standard medium supplemented by radiosensitizer furazidin and radioprotector serotonin. The effects of irradiation were investigated by analyzing leg and antenna morphological structures and by using real-time PCR to measure mRNA expression levels for spineless, Cyp6g1 and Gst-theta genes. We also examined long-term memory in these mutants using conditioned courtship suppression paradigm. Our results show that the interaction of spineless and CG5017 is important for regulation of morphogenesis, long-term memory formation, and detoxification during oxidative stress. Since spineless and CG5017 are evolutionary conserved, these results must be considered when evaluating the risk of combining similar mutations in other organisms, including humans.

  11. An Aryl Hydrocarbon Receptor from the Salamander Ambystoma mexicanum Exhibits Low Sensitivity to 2,3,7,8-Tetrachlorodibenzo-p-dioxin.

    Science.gov (United States)

    Shoots, Jenny; Fraccalvieri, Domenico; Franks, Diana G; Denison, Michael S; Hahn, Mark E; Bonati, Laura; Powell, Wade H

    2015-06-02

    Structural features of the aryl hydrocarbon receptor (AHR) can underlie species- and population-specific differences in its affinity for 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). These differences often explain variations in TCDD toxicity. Frogs are relatively insensitive to dioxin, and Xenopus AHRs bind TCDD with low affinity. Weak TCDD binding results from the combination of three residues in the ligand-binding domain: A354 and A370, and N325. Here we sought to determine whether this mechanism of weak TCDD binding is shared by other amphibian AHRs. We isolated an AHR cDNA from the Mexican axolotl (Ambystoma mexicanum). The encoded polypeptide contains identical residues at positions that confer low TCDD affinity to X. laevis AHRs (A364, A380, and N335), and homology modeling predicts they protrude into the binding cavity. Axolotl AHR bound one-tenth the TCDD of mouse AHR in velocity sedimentation analysis, and in transactivation assays, the EC50 for TCDD was 23 nM, similar to X. laevis AHR1β (27 nM) and greater than AHR containing the mouse ligand-binding domain (0.08 nM). Sequence, modeled structure, and function indicate that axolotl AHR binds TCDD weakly, predicting that A. mexicanum lacks sensitivity toTCDD toxicity. We hypothesize that this characteristic of axolotl and Xenopus AHRs arose in a common ancestor of the Caudata and Anura.

  12. Activation of aryl hydrocarbon receptor by TCDD prevents diabetes in NOD mice and increases Foxp3+ T cells in pancreatic lymph nodes.

    Science.gov (United States)

    Kerkvliet, Nancy I; Steppan, Linda B; Vorachek, William; Oda, Shannon; Farrer, David; Wong, Carmen P; Pham, Duy; Mourich, Dan V

    2009-07-01

    The ligand-activated transcription factor, aryl hydrocarbon receptor (AHR), is a novel inducer of adaptive Tregs. 2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD), the most potent AHR ligand, induces adaptive CD4+CD25+ Tregs during an acute graft-versus-host (GvH) response and prevents the generation of allospecific cytotoxic T lymphocytes. TCDD also suppresses the induction of experimental autoimmune encephalitis in association with an expanded population of Foxp3+ Tregs. In this study, we show that chronic treatment of NOD mice with TCDD potently suppresses the development of autoimmune Type 1 diabetes in parallel with greatly reduced pancreatic islet insulitis and an expanded population of CD4+CD25+Foxp3+ cells in the pancreatic lymph nodes. When treatment with TCDD was terminated after 15 weeks (23 weeks of age), mice developed diabetes over the next 8 weeks in association with lower numbers of Tregs and decreased activation of AHR. Analysis of the expression levels of several genes associated with inflammation, T-cell activation and/or Treg function in pancreatic lymph node cells failed to reveal any differences associated with TCDD treatment. Taken together, the data suggest that AHR activation by TCDD-like ligands may represent a novel avenue for treatment of immune-mediated diseases.

  13. T-bet over-expression regulates aryl hydrocarbon receptor-mediated T helper type 17 differentiation through an interferon (IFN)γ-independent pathway.

    Science.gov (United States)

    Yokosawa, M; Kondo, Y; Tahara, M; Iizuka-Koga, M; Segawa, S; Kaneko, S; Tsuboi, H; Yoh, K; Takahashi, S; Matsumoto, I; Sumida, T

    2017-04-01

    Various transcription factors are also known to enhance or suppress T helper type 17 (Th17) differentiation. We have shown previously that the development of collagen-induced arthritis was suppressed in T-bet transgenic (T-bet Tg) mice, and T-bet seemed to suppress Th17 differentiation through an interferon (IFN)-γ-independent pathway, although the precise mechanism remains to be clarified. The present study was designed to investigate further the mechanisms involved in the regulation of Th17 differentiation by T-bet over-expression, and we found the new relationship between T-bet and aryl hydrocarbon receptor (AHR). Both T-bet Tg mice and IFN-γ(-/-) -over-expressing T-bet (T-bet Tg/IFN-γ(-/-) ) mice showed inhibition of retinoic acid-related orphan receptor (ROR)γt expression and IL-17 production by CD4(+) T cells cultured under conditions that promote Th-17 differentiation, and decreased IL-6 receptor (IL-6R) expression and signal transducer and activator of transcription-3 (STAT-3) phosphorylation in CD4(+) T cells. The mRNA expression of ahr and rorc were suppressed in CD4(+) T cells cultured under Th-17 conditions from T-bet Tg mice and T-bet Tg/IFN-γ(-/-) mice. CD4(+) T cells of wild-type (WT) and IFN-γ(-/-) mice transduced with T-bet-expressing retrovirus also showed inhibition of IL-17 production, whereas T-bet transduction had no effect on IL-6R expression and STAT-3 phosphorylation. Interestingly, the mRNA expression of ahr and rorc were suppressed in CD4(+) T cells with T-bet transduction cultured under Th17 conditions. The enhancement of interleukin (IL)-17 production from CD4(+) T cells by the addition of AHR ligand with Th17 conditions was cancelled by T-bet over-expression. Our findings suggest that T-bet over-expression-induced suppression of Th17 differentiation is mediated through IFN-γ-independent AHR suppression.

  14. Neuraminidase Receptor Binding Variants of Human Influenza A(H3N2) Viruses Resulting from Substitution of Aspartic Acid 151 in the Catalytic Site: a Role in Virus Attachment?▿

    Science.gov (United States)

    Lin, Yi Pu; Gregory, Victoria; Collins, Patrick; Kloess, Johannes; Wharton, Stephen; Cattle, Nicholas; Lackenby, Angie; Daniels, Rodney; Hay, Alan

    2010-01-01

    Changes in the receptor binding characteristics of human H3N2 viruses have been evident from changes in the agglutination of different red blood cells (RBCs) and the reduced growth capacity of recently isolated viruses, particularly in embryonated eggs. An additional peculiarity of viruses circulating in 2005 to 2009 has been the poor inhibition of hemagglutination by postinfection ferret antisera for many viruses isolated in MDCK cells, including homologous reference viruses. This was shown not to be due to an antigenic change in hemagglutinin (HA) but was shown to be the result of a mutation in aspartic acid 151 of neuraminidase (NA) to glycine, asparagine, or alanine, which caused an oseltamivir-sensitive agglutination of RBCs. The D151G substitution was shown to cause a change in the specificity of NA such that it acquired the capacity to bind receptors, which were refractory to enzymatic cleavage, without altering its ability to remove receptors for HA. Thus, the inhibition of NA-dependent agglutination by the inclusion of oseltamivir carboxylate in the assay was effective in restoring the anti-HA specificity of the hemagglutination inhibition (HI) assay for monitoring antigenic changes in HA. Since the NA-dependent binding activity did not affect virus neutralization, and virus populations in clinical specimens possessed, at most, low levels of the “151 mutant,” the biological significance of this feature of NA in, for example, immune evasion is unclear. It is apparent, however, that an important role of aspartic acid 151 in the activity of NA may be to restrict the specificity of the NA interaction and its receptor-destroying activity to complement that of HA receptor binding. PMID:20410266

  15. New insights to the role of aryl hydrocarbon receptor in bone phenotype and in dioxin-induced modulation of bone microarchitecture and material properties.

    Science.gov (United States)

    Herlin, Maria; Finnilä, Mikko A J; Zioupos, Peter; Aula, Antti; Risteli, Juha; Miettinen, Hanna M; Jämsä, Timo; Tuukkanen, Juha; Korkalainen, Merja; Håkansson, Helen; Viluksela, Matti

    2013-11-15

    Bone is a target for high affinity aryl hydrocarbon receptor (AHR) ligands, such as dioxins. Although bone morphology, mineral density and strength are sensitive endpoints of dioxin toxicity, less is known about effects on bone microarchitecture and material properties. This study characterizes TCDD-induced modulations of bone tissue, and the role of AHR in dioxin-induced bone toxicity and for normal bone phenotype. Six AHR-knockout (Ahr(-/-)) and wild-type (Ahr(+/+)) mice of both genders were exposed to TCDD weekly for 10 weeks, at a total dose of 200μg/kgbw. Bones were examined with micro-computed tomography, nanoindentation and biomechanical testing. Serum levels of bone remodeling markers were analyzed, and the expression of genes related to osteogenic differentiation was profiled using PCR array. In Ahr(+/+) mice, TCDD-exposure resulted in harder bone matrix, thinner and more porous cortical bone, and a more compact trabecular bone compartment. Bone remodeling markers and altered expression of a number of osteogenesis related genes indicated imbalanced bone remodeling. Untreated Ahr(-/-) mice displayed a slightly modified bone phenotype as compared with untreated Ahr(+/+) mice, while TCDD exposure caused only a few changes in bones of Ahr(-/-) mice. Part of the effects of both TCDD-exposure and AHR-deficiency were gender dependent. In conclusion, exposure of adult mice to TCDD resulted in harder bone matrix, thinner cortical bone, mechanically weaker bones and most notably, increased trabecular bone volume fraction in Ahr(+/+) mice. AHR is involved in bone development of a normal bone phenotype, and is crucial for manifestation of TCDD-induced bone alterations. © 2013.

  16. Familial isolated pituitary adenomas (FIPA) and the pituitary adenoma predisposition due to mutations in the aryl hydrocarbon receptor interacting protein (AIP) gene.

    Science.gov (United States)

    Beckers, Albert; Aaltonen, Lauri A; Daly, Adrian F; Karhu, Auli

    2013-04-01

    Pituitary adenomas are one of the most frequent intracranial tumors and occur with a prevalence of approximately 1:1000 in the developed world. Pituitary adenomas have a serious disease burden, and their management involves neurosurgery, biological therapies, and radiotherapy. Early diagnosis of pituitary tumors while they are smaller may help increase cure rates. Few genetic predictors of pituitary adenoma development exist. Recent years have seen two separate, complimentary advances in inherited pituitary tumor research. The clinical condition of familial isolated pituitary adenomas (FIPA) has been described, which encompasses the familial occurrence of isolated pituitary adenomas outside of the setting of syndromic conditions like multiple endocrine neoplasia type 1 and Carney complex. FIPA families comprise approximately 2% of pituitary adenomas and represent a clinical entity with homogeneous or heterogeneous pituitary adenoma types occurring within the same kindred. The aryl hydrocarbon receptor interacting protein (AIP) gene has been identified as causing a pituitary adenoma predisposition of variable penetrance that accounts for 20% of FIPA families. Germline AIP mutations have been shown to associate with the occurrence of large pituitary adenomas that occur at a young age, predominantly in children/adolescents and young adults. AIP mutations are usually associated with somatotropinomas, but prolactinomas, nonfunctioning pituitary adenomas, Cushing disease, and other infrequent clinical adenoma types can also occur. Gigantism is a particular feature of AIP mutations and occurs in more than one third of affected somatotropinoma patients. Study of pituitary adenoma patients with AIP mutations has demonstrated that these cases raise clinical challenges to successful treatment. Extensive research on the biology of AIP and new advances in mouse Aip knockout models demonstrate multiple pathways by which AIP may contribute to tumorigenesis. This review assesses

  17. A mechanism-based mathematical model of aryl hydrocarbon receptor-mediated CYP1A induction in rats using beta-naphthoflavone as a tool compound.

    Science.gov (United States)

    Chen, Emile P; Chen, Liangfu; Ji, Yan; Tai, Guoying; Wen, Yuan H; Ellens, Harma

    2010-12-01

    β-Naphthoflavone (BNF) is a synthetic flavone that selectively and potently induces CYP1A enzymes via aryl hydrocarbon receptor activation. Mechanism-based mathematical models of CYP1A enzyme induction were developed to predict the time course of enzyme induction and quantitatively evaluate the interrelationship between BNF plasma concentrations, hepatic CYP1A1 and CYP1A2 mRNA levels, and CYP1A enzyme activity in rats in vivo. Male Sprague-Dawley rats received a continuous intravenous infusion of vehicle or 1.5 or 6 mg · kg(-1) · h(-1) BNF for 6 h, with blood and liver sampling. Plasma BNF concentrations were determined by liquid chromatography-tandem mass spectrometry. Hepatic mRNA levels of CYP1A1 and CYP1A2 were determined by TaqMan. Ethoxyresorufin O-deethylation was used to measure the increase in CYP1A enzyme activity as a result of induction. The induction of hepatic CYP1A1/CYP1A2 mRNA and CYP1A activity occurred within 2 h after BNF administration. This caused a rapid increase in metabolic clearance of BNF, resulting in plasma concentrations declining during the infusion. Overall, the enzyme induction models developed in this study adequately captured the time course of BNF pharmacokinetics, CYP1A1/CYP1A2 mRNA levels, and increases in CYP1A enzyme activity data for both dose groups simultaneously. The model-predicted degradation half-life of CYP1A enzyme activity is comparable with previously reported values. The present results also confirm a previous in vitro finding that CYP1A1 is the predominant contributor to CYP1A induction. These physiologically based models provide a basis for predicting drug-induced toxicity in humans from in vitro and preclinical data and can be a valuable tool in drug development.

  18. Modulation of aryl hydrocarbon receptor target genes in circulating lymphocytes from dairy cows bred in a dioxin-like PCB contaminated area

    Energy Technology Data Exchange (ETDEWEB)

    Girolami, Flavia, E-mail: flavia.girolami@unito.it [Department of Animal Pathology, University of Turin, Via Leonardo da Vinci 44, 10095 Grugliasco (Italy); Spalenza, Veronica, E-mail: veronica.spalenza@unito.it [Department of Animal Production, Epidemiology and Ecology, University of Turin, Via Leonardo da Vinci 44, 10095 Grugliasco (Italy); Carletti, Monica, E-mail: monica.carletti@unito.it [Department of Animal Pathology, University of Turin, Via Leonardo da Vinci 44, 10095 Grugliasco (Italy); Sacchi, Paola, E-mail: paola.sacchi@unito.it [Department of Animal Production, Epidemiology and Ecology, University of Turin, Via Leonardo da Vinci 44, 10095 Grugliasco (Italy); Rasero, Roberto, E-mail: roberto.rasero@unito.it [Department of Animal Production, Epidemiology and Ecology, University of Turin, Via Leonardo da Vinci 44, 10095 Grugliasco (Italy); Nebbia, Carlo, E-mail: carlo.nebbia@unito.it [Department of Animal Pathology, University of Turin, Via Leonardo da Vinci 44, 10095 Grugliasco (Italy)

    2013-04-15

    Animal productions (i.e. fish, eggs, milk and dairy products) represent the major source of exposure to dioxins, furans, and dioxin-like (DL) polychlorobiphenyls for humans. The negative effects of these highly toxic and persistent pollutants are mediated by the activation of the aryl hydrocarbon receptor (AHR) that elicits the transcriptional induction of several genes, including those involved in xenobiotic metabolism. Previously we demonstrated the presence and functioning of the AHR signaling pathway in primary cultures of bovine blood lymphocytes. The aim of the present study was to investigate by real time PCR the expression and the inducibility of selected target genes (i.e. AHR, AHR nuclear translocator (ARNT), AHR repressor, CYP1A1 and CYP1B1) in uncultured cells from dairy cows naturally exposed to DL-compounds. The study was carried out on two groups of animals bred in a highly polluted area and characterized by a different degree of contamination, as assessed by bulk milk TEQ values, and a control group reared in an industry free area. Bovine lymphocytes expressed only AHR, ARNT and CYP1B1 genes to a detectable level; moreover, only CYP1B1 expression appeared to be correlated to TEQ values, being higher in the most contaminated group, and decreasing along with animal decontamination. Finally, lymphocytes from exposed cows displayed a lower inducibility of both CYP1A1 and CYP1B1 after the in vitro treatment with a specific AHR ligand. In conclusion, our results indicate that DL-compound contaminated cows may display significant changes in AHR-target gene expression of circulating lymphocytes. - Highlights: ► The expression of AHR-target genes in blood bovine lymphocytes was evaluated. ► The lymphocyte CYP1B1 expression appears to be related to bulk milk TEQ values. ► Blood lymphocytes from dairy cows might represent a matrix for dioxin biomonitoring.

  19. 2,3,7,8-Tetrachlorodibenzo-p-dioxin treatment alters eicosanoid levels in several organs of the mouse in an aryl hydrocarbon receptor-dependent fashion.

    Science.gov (United States)

    Bui, Peter; Solaimani, Parrisa; Wu, Xiaomeng; Hankinson, Oliver

    2012-03-01

    2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) adversely affects many mammalian organs and tissues. These effects are mediated by the aryl hydrocarbon receptor (AHR). CYP1A1, CYP1A2 and CYP1B1 are upregulated by the liganded AHR. These (and other) cytochromes P450 can metabolize arachidonic acid into a variety of bioactive eicosanoids. Towards investigating a potential role of eicosanoids in TCDD toxicity, arachidonic acid, two other unsaturated long-chain fatty acids, and up to twenty-five eicosanoids were measured in five organs/tissues of male and female wild-type and Ahr null mice treated or untreated with TCDD. TCDD generally increased the levels of the four dihydroxyeicosatrienoic acids (DHETs) and (where measured) 5,6-epoxyeicosatrienoic acid and 18-, 19- and 20-hydroxyeicosatrienoic acids (HETEs) in the serum, liver, spleen and lungs, but not the heart, of both sexes, and increased the levels in the serum, liver and spleen of several metabolites that are usually considered products of lipoxygenase activity, but which may also be generated by cytochromes P450. TCDD also increased the levels of the esterified forms of these eicosanoids in the liver in parallel with the corresponding free forms. The levels of prostanoids were generally not affected by TCDD. The above changes did not occur in Ahr null mice, and are therefore mediated by the AHR. TCDD increased the mRNA levels of Cyp1a1, Cyp1a2, Cyp1b1 and the Pla2g12a form of phospholipase A(2) to varying degrees in the different organs, and these increases correlated with some but not all the changes in eicosanoids levels in the organs, suggesting that other enzymes may also be involved.

  20. Mitochondrial-targeted aryl hydrocarbon receptor and the impact of 2,3,7,8-tetrachlorodibenzo-p-dioxin on cellular respiration and the mitochondrial proteome.

    Science.gov (United States)

    Hwang, Hye Jin; Dornbos, Peter; Steidemann, Michelle; Dunivin, Taylor K; Rizzo, Mike; LaPres, John J

    2016-08-01

    The aryl hydrocarbon receptor (AHR) is a ligand-activated transcription factor within the Per-Arnt-Sim (PAS) domain superfamily. Exposure to the most potent AHR ligand, 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), is associated with various pathological effects including metabolic syndrome. While research over the last several years has demonstrated a role for oxidative stress and metabolic dysfunction in AHR-dependent TCDD-induced toxicity, the role of the mitochondria in this process has not been fully explored. Our previous research suggested that a portion of the cellular pool of AHR could be found in the mitochondria (mitoAHR). Using a protease protection assay with digitonin extraction, we have now shown that this mitoAHR is localized to the inter-membrane space (IMS) of the organelle. TCDD exposure induced a degradation of mitoAHR similar to that of cytosolic AHR. Furthermore, siRNA-mediated knockdown revealed that translocase of outer-mitochondrial membrane 20 (TOMM20) was involved in the import of AHR into the mitochondria. In addition, TCDD altered cellular respiration in an AHR-dependent manner to maintain respiratory efficiency as measured by oxygen consumption rate (OCR). Stable isotope labeling by amino acids in cell culture (SILAC) identified a battery of proteins within the mitochondrial proteome influenced by TCDD in an AHR-dependent manner. Among these, 17 proteins with fold changes≥2 are associated with various metabolic pathways, suggesting a role of mitochondrial retrograde signaling in TCDD-mediated pathologies. Collectively, these studies suggest that mitoAHR is localized to the IMS and AHR-dependent TCDD-induced toxicity, including metabolic dysfunction, wasting syndrome, and hepatic steatosis, involves mitochondrial dysfunction. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. The Aryl Hydrocarbon Receptor Antagonist StemRegenin1 Improves In Vitro Generation of Highly Functional Natural Killer Cells from CD34(+) Hematopoietic Stem and Progenitor Cells.

    Science.gov (United States)

    Roeven, Mieke W H; Thordardottir, Soley; Kohela, Arwa; Maas, Frans; Preijers, Frank; Jansen, Joop H; Blijlevens, Nicole M; Cany, Jeannette; Schaap, Nicolaas; Dolstra, Harry

    2015-12-15

    Early natural killer (NK)-cell repopulation after allogeneic stem cell transplantation (allo-SCT) has been associated with reduced relapse rates without an increased risk of graft-versus-host disease, indicating that donor NK cells have specific antileukemic activity. Therefore, adoptive transfer of donor NK cells is an attractive strategy to reduce relapse rates after allo-SCT. Since NK cells of donor origin will not be rejected, multiple NK-cell infusions could be administered in this setting. However, isolation of high numbers of functional NK cells from transplant donors is challenging. Hence, we developed a cytokine-based ex vivo culture protocol to generate high numbers of functional NK cells from granulocyte colony-stimulating factor (G-CSF)-mobilized CD34(+) hematopoietic stem and progenitor cells (HSPCs). In this study, we demonstrate that addition of aryl hydrocarbon receptor antagonist StemRegenin1 (SR1) to our culture protocol potently enhances expansion of CD34(+) HSPCs and induces expression of NK-cell-associated transcription factors promoting NK-cell differentiation. As a result, high numbers of NK cells with an active phenotype can be generated using this culture protocol. These SR1-generated NK cells exert efficient cytolytic activity and interferon-γ production toward acute myeloid leukemia and multiple myeloma cells. Importantly, we observed that NK-cell proliferation and function are not inhibited by cyclosporin A, an immunosuppressive drug often used after allo-SCT. These findings demonstrate that SR1 can be exploited to generate high numbers of functional NK cells from G-CSF-mobilized CD34(+) HSPCs, providing great promise for effective NK-cell-based immunotherapy after allo-SCT.

  2. Toxicogenomic analysis of exposure to TCDD, PCB126 and PCB153: identification of genomic biomarkers of exposure to AhR ligands

    Directory of Open Access Journals (Sweden)

    Vezina Chad M

    2010-10-01

    Full Text Available Abstract Background Two year cancer bioassays conducted by the National Toxicology Program have shown chronic exposure to dioxin-like compounds (DLCs to lead to the development of both neoplastic and non-neoplastic lesions in the hepatic tissue of female Sprague Dawley rats. Most, if not all, of the hepatotoxic effects induced by DLC's are believed to involve the binding and activation of the transcription factor, the aryl hydrocarbon receptor (AhR. Toxicogenomics was implemented to identify genomic responses that may be contributing to the development of hepatotoxicity in rats. Results Through comparative analysis of time-course microarray data, unique hepatic gene expression signatures were identified for the DLCs, 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD (100 ng/kg/day and 3,3',4,4',5-pentachlorobiphenyl (PCB126 (1000 ng/kg/day and the non-DLC 2,2',4,4',5,5',-hexachlorobiphenyl (PCB153 (1000 μg/kg/day. A common time independent signature of 41 AhR genomic biomarkers was identified which exhibited at least a 2-fold change in expression following subchronic (13-wk and chronic (52-wk p.o. exposure to TCDD and PCB126, but not the non DLC, PCB153. Real time qPCR analysis validated that 30 of these genes also exhibited at least a 2-fold change in hepatic expression at 24 hr following a single exposure to TCDD (5 μg/kg, po. Phenotypic anchoring was conducted which identified forty-six genes that were differently expressed both following chronic p.o. exposure to DLCs and in previously reported studies of cholangiocarcinoma or hepatocellular adenoma. Conclusions Together these analyses provide a comprehensive description of the genomic responses which occur in rat hepatic tissue with exposure to AhR ligands and will help to isolate those genomic responses which are contributing to the hepatotoxicity observed with exposure to DLCs. In addition, the time independent gene expression signature of the AhR ligands may assist in identifying other agents

  3. Temporal variability of Polycyclic Aromatic Hydrocarbons (PAHs) in a receptor site of the Puebla-Tlaxcala Valley

    Science.gov (United States)

    Padilla, Z. V.; Torres, R.; Ruiz Suarez, L.; Molina, L. T.

    2013-05-01

    This contribution documents the presence and possible origin of PAHs, their temporal concentration patterns and correlations with other air pollutants in the so-called Puebla-Tlaxcala valley. This valley is located to the east of the Mexico City Metropolitan Area and is a very populated region which suffers of air pollution problems. Emission sources of PAHs include open burning, industrial boilers, automobiles and trucks, but vehicle emissions vary significantly depending on the use of: fuel, engine type and catalytic converter. An important emission source in the Puebla-Tlaxcala region is wood burning for cooking. Therefore, it is expected to have contributions of PAHS from this type of sources. PAHs measurements were performed in an air pollution semi-rural receptor site (Chipilo) southwest the City of Puebla, using an aerosol photoelectric sensor (PAS 2000 CE) to measure the concentration of PAHs and a diffuser charger (DC 2000 CE) to evaluate the active surface (DC) of the particles. The measuring period included March and April of 2012 during the ozne season in central Mexico. The use of these two sensors in parallel has been identified as a fingerprint technique to identify different types of particles from several combustion processes and is a useful tool to identify quantitatively the major source of emissions, as well as to describe thephysical and chemical characteristics of the particles. Correlations between PAHs and DC, with NOx and CO, together with an analysis of atmospheric transport may approximate the possible origin of these particles. The coefficient PAHs / DC associated with backward trajectory analysis represents a tool to identify potential areas of emission. The correlation between PAHs and NOx emissions reflects association with diesel combustion, while the correlation between PAHs and CO, the combustion of gasoline. The results show that vehicle emissions are the major source of PAHs with an associated increase in the concentration of

  4. Maqashidusy Syari'ah Dan Kloning

    Directory of Open Access Journals (Sweden)

    Asymuni Abdurrahman

    1997-06-01

    Full Text Available MASALAH kloning ini, merupakan masalah yang baru timbul sekalipun embrio masalah ini sudah lama dikenal ilmuan, terutama dikalangan ahli botani atau ilmu tumbuh-tumbuhan dan ilmu biologi. Pengertian kloning bersifat umum, tidak terbatas pada tumbuhan dan hewan saja. Tetapi juga dalam perkembangan ilmu rekayasa genetika dimungkinkan untuk dapat diterapkan pada manusia. Kloning dalam batas pelaksanaannya untuk tumbuh-tumbuhan dan hewan tidaklah menjadi permasalahan, tetapi akan menjadi permasalahan kalau sampai kloning ini diterapkan pada manusia yang dapat memproduksi manusia tanpa pernikahan. Sekalipun sampai sekarang belum berhasil kloning terhadap manusia, namun perlu mendapat antisipasi pemikiran dari segi syari'ah, khususnya dari segi maqashidusy syari'ah.

  5. SISTEM LEMBAGA KEUANGAN SHARI’AH

    Directory of Open Access Journals (Sweden)

    Shinta Dewianty

    2012-04-01

    Full Text Available Lembaga Keuangan Shari’ah merupakan embrio kekuatan ekonomi di negara ini, di zamannya ia mampu menjadi sistem yang bisa mensejahterakan umatnya. Di masa krisis, ia mampu lolos dari kebangkrutan, sekalipun tidak mendapat bantuan dana BLBI. Konsep yang mengandung keshari’ahan ini harus menjadi kekuatan baru dalam membangkitkan kembali perekonomian negeri ini. Sistem lembaga Keuangan Shari’ah ini berkembang pesat memainkan peranan penting dalam mengalokasikan sumber daya dan meningkatkan pembangunan ekonomi. Tulisan ini merupakan studi pustaka dimana penulis mencoba menjelaskan bagaimana sistem lembaga keuangan islam di berbagai Negara, dan kemudian di bandingkan dengan penerapan sistem lembaga keuangan di Indonesia.

  6. Characterization of hydrocarbon utilizing fungi from hydrocarbon ...

    African Journals Online (AJOL)

    Prof. Ogunji

    hydrocarbon polluted sediments and water .... ecosystem may result in selective increase or decrease in microbial population (Okpokwasili ... been implicated in degradation of hydrocarbons such as crude oil, polyaromatic hydrocarbons and.

  7. A COMPUTER DOCKING STUDY OF THE BINDING OF POLYCYCLIC AROMATIC HYDROCARBONS AND THEIR METABOLITES TO THE LIGARD-BINDING DOMAIN OF THE ESTROGEN RECEPTOR

    Science.gov (United States)

    Polycyclic aromatic hydrocarbons (PAHs) are a class of ubiquitous, anthropogenic chemicals found in the environment. In the present study, computational methods are used to evaluate their potential estrogenicity and the contribution chemicals in this class make to environmental e...

  8. Coactivator Recruitment of AhR/ARNT1

    Directory of Open Access Journals (Sweden)

    Alexander Endler

    2014-06-01

    Full Text Available A common feature of nuclear receptors (NRs is the transformation of external cell signals into specific transcriptions of the signal molecule. Signal molecules function as ligands for NRs and, after their uptake, activated NRs form homo- or heterodimers at promoter recognition sequences of the specific genes in the nucleus. Another common feature of NRs is their dependence on coactivators, which bridge the basic transcriptional machinery and other cofactors to the target genes, in order to initiate transcription and to unwind histone-bound DNA for exposing additional promoter recognition sites via their histone acetyltransferase (HAT function. In this review, we focus on our recent findings related to the recruitment of steroid receptor coactivator 1 (SRC1/NCoA1 by the estrogen receptor-α (ERα and by the arylhydrocarbon receptor/arylhydrocarbon receptor nuclear translocator 1 (AhR/ARNT1 complex. We also describe the extension of our previously published findings regarding the binding between ARNT1.1 exon16 and SRC1e exon 21, via in silico analyses of androgen receptor (AR NH2-carboxyl-terminal interactions, the results of which were verified by in vitro experiments. Based on these data, we suggest a newly derived tentative binding site of nuclear coactivator 2/glucocorticoid receptor interacting protein-1/transcriptional intermediary factor 2 (NCOA-2/ GRIP-1/TIF-2 for ARNT1.1 exon 16. Furthermore, results obtained by immunoprecipitation have revealed a second leucine-rich binding site for hARNT1.1 exon 16 in SRC1e exon 21 (LSSTDLL. Finally, we discuss the role of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD as an endocrine disruptor for estrogen related transcription.

  9. Apparatus for hydrocarbon extraction

    Science.gov (United States)

    Bohnert, George W.; Verhulst, Galen G.

    2013-03-19

    Systems and methods for hydrocarbon extraction from hydrocarbon-containing material. Such systems and methods relate to extracting hydrocarbon from hydrocarbon-containing material employing a non-aqueous extractant. Additionally, such systems and methods relate to recovering and reusing non-aqueous extractant employed for extracting hydrocarbon from hydrocarbon-containing material.

  10. Genetic association of aromatic hydrocarbon receptor (AHR) and cytochrome P450, family 1, subfamily A, polypeptide 1 (CYP1A1) polymorphisms with dioxin blood concentrations among pregnant Japanese women

    OpenAIRE

    Kobayashi, Sumitaka; Sata, Fumihiro; Sasaki, Seiko; Ban, Susumu; Miyashita, Chihiro; Okada, Emiko; Limpar, Mariko; Yoshioka, Eiji; Kajiwara, Jumboku; TODAKA, Takashi; Saijo, Yasuaki; Kishi, Reiko

    2013-01-01

    Dioxins are metabolized by cytochrome P450, family 1 (CYP1) via the aromatic hydrocarbon receptor (AHR). We determined whether different blood dioxin concentrations are associated with polymorphisms in AHR (dbSNP ID: rs2066853), AHR repressor (AHRR; rs2292596), CYP1 subfamily A polypeptide 1 (CYP1A1; rs4646903 and rs1048963), CYP1 subfamily A polypeptide 2 (CYP1A2; rs762551), and CYP1 subfamily B polypeptide 1 (CYP1B1; rs1056836) in pregnant Japanese women. These six polymorphisms were detect...

  11. New insights to the role of aryl hydrocarbon receptor in bone phenotype and in dioxin-induced modulation of bone microarchitecture and material properties

    Energy Technology Data Exchange (ETDEWEB)

    Herlin, Maria, E-mail: maria.herlin@ki.se [Institute of Environmental Medicine, Karolinska Institutet, Stockholm (Sweden); Finnilä, Mikko A.J., E-mail: mikko.finnila@oulu.fi [Department of Medical Technology, Institute of Biomedicine, University of Oulu, Oulu (Finland); Department of Anatomy and Cell Biology, Institute of Biomedicine, University of Oulu, Oulu (Finland); Zioupos, Peter, E-mail: p.zioupos@cranfield.ac.uk [Biomechanics Laboratories, Department of Engineering and Applied Science, Cranfield University, Shrivenham SN6 8LA (United Kingdom); Aula, Antti, E-mail: antti.aula@gmail.com [Department of Medical Physics, Imaging Centre, Tampere University Hospital, Tampere (Finland); Department of Biomedical Engineering, Tampere University of Technology, Tampere (Finland); Risteli, Juha, E-mail: juha.risteli@ppshp.fi [Department of Clinical Chemistry, Oulu University Hospital, Oulu (Finland); Miettinen, Hanna M., E-mail: hanna.miettinen@crl.com [Department of Environmental Health, National Institute for Health and Welfare, Kuopio (Finland); Jämsä, Timo, E-mail: timo.jamsa@oulu.fi [Department of Medical Technology, Institute of Biomedicine, University of Oulu, Oulu (Finland); Department of Diagnostic Radiology, Oulu University Hospital, Oulu (Finland); Tuukkanen, Juha, E-mail: juha.tuukkanen@oulu.fi [Department of Anatomy and Cell Biology, Institute of Biomedicine, University of Oulu, Oulu (Finland); Korkalainen, Merja, E-mail: merja.korkalainen@thl.fi [Department of Environmental Health, National Institute for Health and Welfare, Kuopio (Finland); Håkansson, Helen, E-mail: Helen.Hakansson@ki.se [Institute of Environmental Medicine, Karolinska Institutet, Stockholm (Sweden); Viluksela, Matti, E-mail: matti.viluksela@thl.fi [Department of Environmental Health, National Institute for Health and Welfare, Kuopio (Finland); Department of Environmental Science, University of Eastern Finland, Kuopio (Finland)

    2013-11-15

    Bone is a target for high affinity aryl hydrocarbon receptor (AHR) ligands, such as dioxins. Although bone morphology, mineral density and strength are sensitive endpoints of dioxin toxicity, less is known about effects on bone microarchitecture and material properties. This study characterizes TCDD-induced modulations of bone tissue, and the role of AHR in dioxin-induced bone toxicity and for normal bone phenotype. Six AHR-knockout (Ahr{sup −/−}) and wild-type (Ahr{sup +/+}) mice of both genders were exposed to TCDD weekly for 10 weeks, at a total dose of 200 μg/kg bw. Bones were examined with micro-computed tomography, nanoindentation and biomechanical testing. Serum levels of bone remodeling markers were analyzed, and the expression of genes related to osteogenic differentiation was profiled using PCR array. In Ahr{sup +/+} mice, TCDD-exposure resulted in harder bone matrix, thinner and more porous cortical bone, and a more compact trabecular bone compartment. Bone remodeling markers and altered expression of a number of osteogenesis related genes indicated imbalanced bone remodeling. Untreated Ahr{sup −/−} mice displayed a slightly modified bone phenotype as compared with untreated Ahr{sup +/+} mice, while TCDD exposure caused only a few changes in bones of Ahr{sup −/−} mice. Part of the effects of both TCDD-exposure and AHR-deficiency were gender dependent. In conclusion, exposure of adult mice to TCDD resulted in harder bone matrix, thinner cortical bone, mechanically weaker bones and most notably, increased trabecular bone volume fraction in Ahr{sup +/+} mice. AHR is involved in bone development of a normal bone phenotype, and is crucial for manifestation of TCDD-induced bone alterations. - Highlights: • TCDD disrupts bone remodeling resulting in altered cortical and trabecular bone. • In trabecular bone an anabolic effect is observed. • Cortical bone is thinner, more porous, harder, stiffer and mechanically weaker. • AHR ablation

  12. Molecular adaptation to high pressure in cytochrome P450 1A and aryl hydrocarbon receptor systems of the deep-sea fish Coryphaenoides armatus.

    Science.gov (United States)

    Lemaire, Benjamin; Karchner, Sibel I; Goldstone, Jared V; Lamb, David C; Drazen, Jeffrey C; Rees, Jean François; Hahn, Mark E; Stegeman, John J

    2017-07-08

    Limited knowledge of the molecular evolution of deep-sea fish proteomes so far suggests that a few widespread residue substitutions in cytosolic proteins binding hydrophilic ligands contribute to resistance to the effects of high hydrostatic pressure (HP). Structure-function studies with additional protein systems, including membrane bound proteins, are essential to provide a more general picture of adaptation in these extremophiles. We explored molecular features of HP adaptation in proteins binding hydrophobic ligands, either in lipid bilayers (cytochrome P450 1A - CYP1A) or in the cytosol (the aryl hydrocarbon receptor - AHR), and their partners P450 oxidoreductase (POR) and AHR nuclear translocator (ARNT), respectively. Cloning studies identified the full-length coding sequence of AHR, CYP1A and POR, and a partial sequence of ARNT from Coryphaenoides armatus, an abyssal gadiform fish thriving down to 5000m depth. Inferred protein sequences were aligned with many non-deep-sea homologs to identify unique amino acid substitutions of possible relevance in HP adaptation. Positionally unique substitutions of various physicochemical properties were found in all four proteins, usually at sites of strong-to-absolute residue conservation. Some were in domains deemed important for protein-protein interaction or ligand binding. In addition, some involved removal or addition of beta-branched residues; local modifications of beta-branched residue patterns could be important to HP adaptation. In silico predictions further suggested that some unique substitutions might substantially modulate the flexibility of the polypeptide segment in which they are found. Repetitive motifs unique to the abyssal fish AHR were predicted to be rich in glycosylation sites, suggesting that post-translational changes could be involved in adaptation as well. Recombinant CYP1A and AHR showed functional properties (spectral characteristics, catalytic activity and ligand binding) that demonstrate

  13. Exposure to Endocrine Disruptors and Nuclear Receptors Gene Expression in Infertile and Fertile Men from Italian Areas with Different Environmental Features

    Directory of Open Access Journals (Sweden)

    Cinzia La Rocca

    2015-10-01

    Full Text Available Internal levels of selected endocrine disruptors (EDs (i.e., perfluorooctane sulfonate (PFOS, perfluorooctanoic acid (PFOA, di-2-ethylhexyl-phthalate (DEHP, mono-(2-ethylhexyl-phthalate (MEHP, and bisphenol A (BPA were analyzed in blood/serum of infertile and fertile men from metropolitan, urban and rural Italian areas. PFOS and PFOA levels were also evaluated in seminal plasma. In peripheral blood mononuclear cells (PBMCs of same subjects, gene expression levels of a panel of nuclear receptors (NRs, namely estrogen receptor α (ERα estrogen receptor β (ERβ, androgen receptor (AR, aryl hydrocarbon receptor (AhR, peroxisome proliferator-activated receptor γ (PPARγ and pregnane X receptor (PXR were also assessed. Infertile men from the metropolitan area had significantly higher levels of BPA and gene expression of all NRs, except PPARγ, compared to subjects from other areas. Subjects from urban areas had significantly higher levels of MEHP, whereas subjects from rural area had higher levels of PFOA in both blood and seminal plasma. Interestingly, ERα, ERβ, AR, PXR and AhR expression is directly correlated with BPA and inversely correlated with PFOA serum levels. Our study indicates the relevance of the living environment when investigating the exposure to specific EDs. Moreover, the NRs panel in PBMCs demonstrated to be a potential biomarker of effect to assess the EDs impact on reproductive health.

  14. AL-KAFA’AH FI AL-NIKAH

    Directory of Open Access Journals (Sweden)

    Najmah Sayuti

    2015-11-01

    Full Text Available Kafa'ah in marriage is basically equality, suitability and proportionality between the prospective couples getting married. Humans are required to kafa'ah in religion and religiosity. Non-Muslims can't kafa'ah with Muslims because of inequalities in beliefe. Some kafa'ah that should be considered in marriage is nasab, religion, belief or religiosity, profession, liberty and property.

  15. CYP1A1 and CYP1B1 expressions in medulloblastoma cells are AhR-independent and have no direct link with resveratrol-induced differentiation and apoptosis.

    Science.gov (United States)

    Wu, Mo-Li; Li, Hong; Wu, Da-Chang; Wang, Xiao-Wei; Chen, Xiao-Yan; Kong, Qing-You; Ma, Jing-Xin; Gao, Ying; Liu, Jia

    Resveratrol induces apoptosis and regulates CYP1A1 and CYP1B1 expression in human medulloblastoma cells. To elucidate the potential correlation of their expressions with the anti-medulloblastoma effects of resveratrol, human medulloblastoma cells, UW228-3, were treated with CYP1A1 selective inhibitor (alpha-naphthoflavone, alpha-NF), selective CYP1A1/1A2 inducer (beta-naphthoflavone, beta-NF) and their combination with resveratrol, respectively. The influences of those treatments on the expressions of CYP1A1, 1A2 and 1B1 as well as the cell growth, differentiation and death were analyzed. It was found that neither alpha-NF nor beta-NF had any effect on cell growth. alpha-NF inhibited resveratrol-induced CYP1A1 expression without interfering cell differentiation and apoptosis. beta-NF could up-regulate resveratrol-induced CYP1A1 expression but not enhance the anti-cancer effects of resveratrol. CYP1A2 was undetectable in the cells irrespective to the treatments. Aryl hydrocarbon receptor (AhR) was absent in UW228-3 cells under normal culture and treated with resveratrol but induced by both alpha- and beta-NF. Immunohistochemical examination performed on 11 pairs of human medulloblastoma and noncancerous cerebellar tissues revealed that AhR was undetectable in either of them, whereas CYP1A1 was expressed in cerebellum but down-regulated or diminished in their malignant counterparts. Our data suggest for the first time that CYP1A1 and 1B1 expressions in human medulloblastoma cells are AhR-independent and have no direct links with resveratrol-induced differentiation and apoptosis. Appearance of CYP1A1 expression may reflect a more maturated status and a better prognosis of medulloblastomas.

  16. 3-Methylcholanthrene, an AhR agonist, caused cell-cycle arrest by histone deacetylation through a RhoA-dependent recruitment of HDAC1 and pRb2 to E2F1 complex.

    Directory of Open Access Journals (Sweden)

    Chih-Cheng Chang

    Full Text Available We previously showed that treating vascular endothelial cells with 3-methylcholanthrene (3MC caused cell-cycle arrest in the Go/G1 phase; this resulted from the induction of p21 and p27 and a decreased level and activity of the cyclin-dependent kinase, Cdk2. We further investigated the molecular mechanisms that modulate cell-cycle regulatory proteins through the aryl-hydrocarbon receptor (AhR/Ras homolog gene family, member A (RhoA dependent epigenetic modification of histone. AhR/RhoA activation mediated by 3MC was essential for the upregulation of retinoblastoma 2 (pRb2 and histone deacetylase 1 (HDAC1, whereas their nuclear translocation was primarily modulated by RhoA activation. The combination of increased phosphatase and tensin homolog (PTEN activity and decreased phosphatidylinositide 3-kinase (PI3K activation by 3MC led to the inactivation of the Ras-cRaf pathway, which contributed to pRb2 hypophosphorylation. Increased HDAC1/pRb2 recruitment to the E2F1 complex decreased E2F1-transactivational activity and H3/H4 deacetylation, resulting in the downregulation of cell-cycle regulatory proteins (Cdk2/4 and Cyclin D3/E. Co-immunoprecipitation and electrophoretic mobility shift assay (EMSA results showed that simvastatin prevented the 3MC-increased binding activities of E2F1 proteins in their promoter regions. Additionally, RhoA inhibitors (statins reversed the effect of 3MC in inhibiting DNA synthesis by decreasing the nuclear translocation of pRb2/HDAC1, leading to a recovery of the levels of cell-cycle regulatory proteins. In summary, 3MC decreased cell proliferation by the epigenetic modification of histone through an AhR/RhoA-dependent mechanism that can be rescued by statins.

  17. AhV_aPA-induced vasoconstriction involves the IP₃Rs-mediated Ca²⁺ releasing.

    Science.gov (United States)

    Zeng, Fuxing; Zou, Zhisong; Niu, Liwen; Li, Xu; Teng, Maikun

    2013-08-01

    AhV_aPA, the acidic PLA₂ purified from Agkistrodon halys pallas venom, was previously reported to possess a strong enzymatic activity and can remarkably induce a further contractile response on the 60 mM K⁺-induced contraction with an EC₅₀ in 369 nM on mouse thoracic aorta rings. In the present study, we found that the p-bromo-phenacyl-bromide (pBPB), which can completely inhibit the enzymatic activity of AhV_aPA, did not significantly reduce the contractile response on vessel rings induced by AhV_aPA, indicating that the vasoconstrictor effects of AhV_aPA are independent of the enzymatic activity. The inhibitor experiments showed that the contractile response induced by AhV_aPA is mainly attributed to the Ca²⁺ releasing from Ca²⁺ store, especially sarcoplasmic reticulum (SR). Detailed studies showed that the Ca²⁺ release from SR is related to the activation of inositol trisphosphate receptors (IP₃Rs) rather than ryanodine receptors (RyRs). Furthermore, the vasoconstrictor effect could be strongly reduced by pre-incubation with heparin, indicating that the basic amino acid residues on the surface of AhV_aPA may be involved in the interaction between AhV_aPA and the molecular receptors. These findings offer new insights into the functions of snake PLA₂ and provide a novel pathogenesis of A. halys pallas venom. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. Airborne urban particles (Milan winter-PM2.5) cause mitotic arrest and cell death: Effects on DNA, mitochondria, AhR binding and spindle organization.

    Science.gov (United States)

    Gualtieri, Maurizio; Ovrevik, Johan; Mollerup, Steen; Asare, Nana; Longhin, Eleonora; Dahlman, Hans-Jørgen; Camatini, Marina; Holme, Jørn A

    2011-08-01

    Airborne particulate matter (PM) is considered to be an important contributor to lung diseases. In the present study we report that Milan winter-PM2.5 inhibited proliferation in human bronchial epithelial cells (BEAS-2B) by inducing mitotic arrest. The cell cycle arrest was followed by an increase in mitotic-apoptotic cells, mitotic slippage and finally an increase in "classical" apoptotic cells. Exposure to winter-PM10 induced only a slight effect which may be due to the presence of PM2.5 in this fraction while pure combustion particles failed to disturb mitosis. Fewer cells expressing the mitosis marker phospho-histone H3 compared to cells with condensed chromosomes, suggest that PM2.5 induced premature mitosis. PM2.5 was internalized into the cells and often localized in laminar organelles, although particles without apparent plasma membrane covering were also seen. In PM-containing cells mitochondria and lysosomes were often damaged, and in mitotic cells fragmented chromosomes often appeared. PM2.5 induced DNA strands breaks and triggered a DNA-damage response characterized by increased phosphorylation of ATM, Chk2 and H2AX; as well as induced a marked increase in expression of the aryl hydrocarbon receptor (AhR)-regulated genes, CYP1A1, CYP1B1 and AhRR. Furthermore, some disturbance of the organization of microtubules was indicated. It is hypothesized that the induced mitotic arrest and following cell death was due to a premature chromosome condensation caused by a combination of DNA, mitochondrial and spindle damage.

  19. 12 CFR Appendixes A-H to Subpart A... - Appendixes A-H to Subpart A of Part 702

    Science.gov (United States)

    2010-01-01

    ... 12 Banks and Banking 6 2010-01-01 2010-01-01 false Appendixes A-H to Subpart A of Part 702 A Appendixes A-H to Subpart A of Part 702 Banks and Banking NATIONAL CREDIT UNION ADMINISTRATION REGULATIONS AFFECTING CREDIT UNIONS PROMPT CORRECTIVE ACTION Net Worth Classification Pt. 702, Apps. Appendixes A-H...

  20. In-flight AHS MTF measurements

    Science.gov (United States)

    Viallefont-Robinet, Françoise; Fontanilles, Guillaume; de Miguel, Eduardo

    2008-10-01

    The disposal of couples of images of the same landscape acquired with two spatial resolutions gives the opportunity to assess the in-flight Modulation Transfer Function (MTF) of the lower resolution sensor in the common spectral bands. For each couple, the higher resolution image stands for the landscape so that the ratio of the spectra obtained by FFT of the two images, gives the lower resolution sensor MTF. This paper begins with a brief recall of the method including the aliasing correction. The next step presents the data to be processed, provided by the Instituto Nacional de Tecnica Aeroespacial (INTA). The model of the AHS MTF is described. The presentation of the corresponding AHS results naturally follows. Last part of the paper consists in a comparison with other measurements: measurements obtained with the edge method and laboratory measurements.

  1. Doktrin Shi’ah Membelenggu Ukhuwwah

    Directory of Open Access Journals (Sweden)

    Moh. Hasyim Afandi

    2015-09-01

    Full Text Available Ukhuwah is a basic necessity for every human being. Either in religious life or society, man needs ukhuwah. Ukhuwah does not have to force someone equal in all respects. Ukhuwah principle is tolerance, mutual respect, mutual appriciation and not force. Indonesia is a diverse country, whether ethnic, religious, cultural or others. With Bhineka Tunggal Ika, diversity can be tied in a single container NKRI. This republic can be realized thanks to the struggle of leaders who promote ukhuwah. The emergence of Shi’ah ideology ukhuwah disturbing in this country. With the doctrine of takfir (which really only understand Shia’ah, the others infidels and leaders (believe that the imam is the supreme authority in religion and world. If this kind of ideology is left, the disintegration will happen. Because of the belief that they will not tolerate, respect, and appreciate other philosophies.

  2. Mengangkat "Sing Liyan" Untuk Formulasi Nilai Tambah Syari'ah

    OpenAIRE

    Iwan Triyuwono

    2011-01-01

    Abstract: Making Use “Sing Liyan”/ “The Other” to Formulate Shari’ah Value Added: This study attempts to formulate Shari’ah value-added as consequence of adopting Shari’ah Enterprise Theory (SET) as a basic theory of Shari’ah Accounting. The issue emerges as a result of a conflicting idea of whether Shari’ah accounting utilizes SET or Entity Theory (ET). For some reasons, this study implicitly prefers to SET than ET. Hence, the study is only concerned with value-added instead of income in the...

  3. Southeast Asian Sharī‘ahs

    Directory of Open Access Journals (Sweden)

    M.B. Hooker

    2013-08-01

    Full Text Available The Southeast Asian materials show that the sharī‘ah’s providing various pathways (through time and place for individual Muslims to follow when doing their duty to God, which is fidelity to Revealed Truth. There are many paths and it is pointless to insist upon an historical ‘purist’ mono-legacy, however attractive this might appear theoretically. The realities of life (economics, social structure, alternative philosophies, and so on dictate otherwise. Local sharī‘ahs adapt realities to Revelation irrespective of whether sources of legislation or forms of government are Muslim or non-Muslim this was never an issue in Southeast Asia. The localized sharī‘ahs were achieved via an acceptance of legal pluralism and hybridization of laws. The result is that Revealed obligations are phrased in local terms, change over time is allowed for, and the end result is a truly original and unique set of ‘Southeast Asian’ sharī‘ahs.Copyright (c 2014 by SDI. All right reserved.DOI: 10.15408/sdi.v20i2.387

  4. Differential modulation of expression of nuclear receptor mediated genes by tris(2-butoxyethyl) phosphate (TBOEP) on early life stages of zebrafish (Danio rerio)

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Zhiyuan, E-mail: zhiyuan_nju@163.com [State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023 (China); Yu, Yijun, E-mail: yjun.yu@gmail.com [State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023 (China); Tang, Song [School of Environment and Sustainability, University of Saskatchewan, Saskatoon, SK S7N 5B3 (Canada); Liu, Hongling, E-mail: hlliu@nju.edu.cn [State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023 (China); Su, Guanyong; Xie, Yuwei [State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023 (China); Giesy, John P. [State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023 (China); Toxicology Centre, University of Saskatchewan, Saskatoon, SK S7N 5B3 (Canada); Department of Veterinary Biomedical Sciences, University of Saskatchewan, Saskatoon, SK S7N 5B3 (Canada); Department of Biology and Chemistry, City University of Hong Kong, Kowloon, Hong Kong Special Administrative Region (Hong Kong); Hecker, Markus [School of Environment and Sustainability, University of Saskatchewan, Saskatoon, SK S7N 5B3 (Canada); Toxicology Centre, University of Saskatchewan, Saskatoon, SK S7N 5B3 (Canada); Yu, Hongxia [State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023 (China)

    2015-12-15

    Highlights: • Effects of TBOEP on expression of genes of several nuclear hormone receptors and their relationship with adverse effect pathways in zebrafish. • TBOEP was neither an agonist nor antagonist of AR or AhR as determined by use of in vitro mammalian cell-based receptor transactivation assays. • Modulation of ER- and MR-dependent pathways allowed for development of feasible receptor-mediated, critical mechanisms of toxic action. - Abstract: As one substitute for phased-out brominated flame retardants (BFRs), tris(2-butoxyethyl) phosphate (TBOEP) is frequently detected in aquatic organisms. However, knowledge about endocrine disrupting mechanisms associated with nuclear receptors caused by TBOEP remained restricted to results from in vitro studies with mammalian cells. In the study, results of which are presented here, embryos/larvae of zebrafish (Danio rerio) were exposed to 0.02, 0.1 or 0.5 μM TBOEP to investigate expression of genes under control of several nuclear hormone receptors (estrogen receptors (ERs), androgen receptor (AR), thyroid hormone receptor alpha (TRα), mineralocorticoid receptor (MR), glucocorticoid receptor (GR), aryl hydrocarbon (AhR), peroxisome proliferator-activated receptor alpha (PPARα), and pregnane × receptor (P × R)) pathways at 120 hpf. Exposure to 0.5 μM TBOEP significantly (p < 0.05, one-way analysis of variance) up-regulated expression of estrogen receptors (ERs, er1, er2a, and er2b) genes and ER-associated genes (vtg4, vtg5, pgr, ncor, and ncoa3), indicating TBOEP modulates the ER pathway. In contrast, expression of most genes (mr, 11βhsd, ube2i,and adrb2b) associated with the mineralocorticoid receptor (MR) pathway were significantly down-regulated. Furthermore, in vitro mammalian cell-based (MDA-kb2 and H4IIE-luc) receptor transactivation assays, were also conducted to investigate possible agonistic or antagonistic effects on AR- and AhR-mediated pathways. In mammalian cells, none of these pathways were

  5. [Mechanism for subcellular localization of nuclear receptor CAR].

    Science.gov (United States)

    Kanno, Yuichiro; Inouye, Yoshio

    2011-03-01

    Animals including human beings have defense mechanisms against the toxicity of xenobiotics such as medicinal compounds and environmental pollutants. Receptor-type transcriptional factors, such as aryl hydrocarbon receptor (AhR), constitutive androstane receptor (CAR) and pregnane X receptor (PXR), play important roles in the defense against xenobiotic toxicities. In the absence of stimuli, these receptors are distributed predominantly in the cytoplasmic compartment. Following xenobiotic stimuli, receptors translocate into the nucleus and transactivate its target genes. However, the exogenously expressed CAR translocates spontaneously into the nucleus in immortal cells. Previously, we identified subcellular localization signals in rat CAR: nuclear localization signal (NLS), nuclear export signal (NES) and cytoplasmic retention region (CRR). Lack of CRR function might be responsible for the spontaneous nuclear accumulation of CAR in immortal cells. Further, the nuclear import of CAR is regulated by the importin-Ran system, which is required for maintaining an intact microtubule network. Clarifying the mechanisms underlying the nuclear translocation of CAR would be useful for the establishment of novel assay systems for the screening of ligands and activators of CAR using immortal cells without sacrificing animals.

  6. Genetic tuning of the novel avian influenza A(H7N9) virus during interspecies transmission, China, 2013.

    Science.gov (United States)

    Wang, D; Yang, L; Gao, R; Zhang, X; Tan, Y; Wu, A; Zhu, W; Zhou, J; Zou, S; Li, Xiyan; Sun, Y; Zhang, Y; Liu, Y; Liu, T; Xiong, Y; Xu, J; Chen, L; Weng, Y; Qi, X; Guo, J; Li, Xiaodan; Dong, J; Huang, W; Zhang, Y; Dong, L; Zhao, X; Liu, L; Lu, J; Lan, Y; Wei, H; Xin, L; Chen, Y; Xu, C; Chen, T; Zhu, Y; Jiang, T; Feng, Z; Yang, W; Wang, Y; Zhu, H; Guan, Y; Gao, G F; Li, D; Han, J; Wang, S; Wu, G; Shu, Y

    2014-06-26

    A novel avian influenza A(H7N9) virus causing human infection emerged in February 2013 in China. To elucidate the mechanism of interspecies transmission, we compared the signature amino acids of avian influenza A(H7N9) viruses from human and non-human hosts and analysed the reassortants of 146 influenza A(H7N9) viruses with full genome sequences. We propose a genetic tuning procedure with continuous amino acid substitutions and reassorting that mediates host adaptation and interspecies transmission. When the early influenza A(H7N9) virus, containing ancestor haemagglutinin (HA) and neuraminidase (NA) genes similar to A/Shanghai/05 virus, circulated in waterfowl and transmitted to terrestrial poultry, it acquired an NA stalk deletion at amino acid positions 69 to 73. Then, receptor binding preference was tuned to increase the affinity to human-like receptors through HA G186V and Q226L mutations in terrestrial poultry. Additional mammalian adaptations such as PB2 E627K were selected in humans. The continual reassortation between H7N9 and H9N2 viruses resulted in multiple genotypes for further host adaptation. When we analysed a potential association of mutations and reassortants with clinical outcome, only the PB2 E627K mutation slightly increased the case fatality rate. Genetic tuning may create opportunities for further adaptation of influenza A(H7N9) and its potential to cause a pandemic.

  7. Tumorigenic effects of endocrine-disrupting chemicals are alleviated by licorice (Glycyrrhiza glabra) root extract through suppression of AhR expression in mammalian cells.

    Science.gov (United States)

    Chu, Xiao Ting; de la Cruz, Joseph; Hwang, Seong Gu; Hong, Heeok

    2014-01-01

    Endocrine-disrupting chemicals (EDCs) have been reported to interfere with estrogen signaling. Exposure to these chemicals decreases the immune response and causes a wide range of diseases in animals and humans. Recently, many studies showed that licorice (Glycyrrhiza glabra) root extract (LRE) commonly called "gamcho" in Korea exhibits antioxidative, chemoprotective, and detoxifying properties. This study aimed to investigate the mechanism of action of LRE and to determine if and how LRE can alleviate the toxicity of EDCs. LRE was prepared by vacuum evaporation and freeze-drying after homogenization of licorice root powder that was soaked in 80% ethanol for 72 h. We used 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) as a representative EDC, which is known to induce tumors or cancers; MCF-7 breast cancer cells, used as a tumor model, were treated with TCDD and various concentrations of LRE (0, 50, 100, 200, 400 μg/mL) for 24, 48, and 72 h. As a result, TCDD stimulated MCF-7 cell proliferation, but LRE significantly inhibited TCDD-induced MCF-7 cell proliferation in a dose- and time-dependent manner. The expression of TCDD toxicity-related genes, i.e., aryl hydrocarbon receptor (AhR), AhR nuclear translocator, and cytochrome P450 1A1, was also down-regulated by LRE in a dose-dependent manner. Analysis of cell cycle distribution after treatment of MCF-7 cells with TCDD showed that LRE inhibited the proliferation of MCF-7 cells via G2/M phase arrest. Reverse transcription-polymerase chain reaction and Western blot analysis also revealed that LRE dose-dependently increased the expression of the tumor suppressor genes p53 and p27 and down-regulated the expression of cell cycle-related genes. These data suggest that LRE can mitigate the tumorigenic effects of TCDD in breast cancer cells by suppression of AhR expression and cell cycle arrest. Thus, LRE can be used as a potential toxicity-alleviating agent against EDC-mediated diseases.

  8. Source apportionment of polycyclic aromatic hydrocarbons in surface sediment of mud areas in the East China Sea using diagnostic ratios and factor analysis.

    Science.gov (United States)

    Deng, Wei; Li, Xian Guo; Li, Sheng Yong; Ma, Yan Yan; Zhang, Da Hai

    2013-05-15

    Polycyclic aromatic hydrocarbons (PAHs) and aliphatic hydrocarbons (AHs) have been quantified for surface sediments collected from the East China Sea (ECS). Our results showed that relatively high levels of PAHs and AHs occurred in both the inner and outer mud areas, while their concentrations at the control site were much lower. AHs for all samples were dominated by the unresolved complex mixture (UCM). Results from diagnostic ratios revealed that sedimentary PAHs were mainly originated from mixed combustion residues of biomass, coal, and petroleum. Combustion residues of petroleum and oil were responsible for the presence of high AHs concentrations. We also conducted factor analysis (FA) to further characterize the PAH and AH sources. Four factors were identified based on the loading of components and attributed to coal and wood combustion (Factor 1), traffic-related sources (Factor 2), petrogenic source (Factor 3) and natural gas combustion (Factor 4).

  9. The hydrocarbon sphere

    Energy Technology Data Exchange (ETDEWEB)

    Mandev, P.

    1984-01-01

    The hydrocarbon sphere is understood to be the area in which hydrocarbon compounds are available. It is believed that the lower boundary on the hydrocarbon sphere is most probably located at a depth where the predominant temperatures aid in the destruction of hydrocarbons (300 to 400 degrees centigrade). The upper limit on the hydrocarbon sphere obviously occurs at the earth's surface, where hydrocarbons oxidize to H20 and CO2. Within these ranges, the occurrence of the hydrocarbon sphere may vary from the first few hundred meters to 15 kilometers or more. The hydrocarbon sphere is divided into the external (mantle) sphere in which the primary gas, oil and solid hydrocarbon fields are located, and the internal (metamorphic) sphere containing primarily noncommercial accumulations of hydrocarbon gases and solid carbon containing compounds (anthraxilite, shungite, graphite, etc.) based on the nature and scale of hydrocarbon compound concentrations (natural gas, oil, maltha, asphalt, asphaltite, etc.).

  10. Atrazine affects kidney and adrenal hormones (AHs) related genes expressions of rare minnow (Gobiocypris rarus)

    Energy Technology Data Exchange (ETDEWEB)

    Yang Lihua; Zha Jinmiao; Li Wei; Li Zhaoli [State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Shuangqing Road 18, P.O. Box 2871, Beijing 100085 (China); Wang Zijian, E-mail: wangzj@rcees.ac.cn [State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Shuangqing Road 18, P.O. Box 2871, Beijing 100085 (China)

    2010-05-05

    Atrazine, one of the most widely used herbicides, has been proved to interfere with sexual hormones. However few studies have considered the effects of atrazine on adrenal hormones (AH). In this study, rare minnow (Gobiocypris rarus) was exposed to 0, 3, 10, 33, 100 and 333 {mu}g/l atrazine for 28 days. The histopathology of kidney and gill was examined and the expressions of AHs-related genes including Na{sup +},K{sup +}-ATPase, glucocorticoid receptor (gr), heat shock protein 70 (hsp70), and heat shock protein 90 (hsp90) in kidney and gill were quantitatively determined. Histopathological observation revealed obvious lesions in gill including hyperplasia, necrosis in epithelium region, aneurysm and lamellar fusion at concentrations as low as 10 {mu}g/l. The observed lesions in kidney included extensive expansion in the lumen, degenerative and necrotic changes of the tubular epithelia, shrinkage of the glomerulus as well as increase of the Bowman's space at concentrations as low as 10 {mu}g/l. The expressions of Na{sup +},K{sup +}-ATPase, gr, hsp70 and hsp90 in the kidney of females were significantly decreased at all concentrations. For males, the expressions of hsp90 in the kidney of all treated groups were significantly down-regulated, while gr at all concentrations and hsp70 at 10, 33, 100 {mu}g/l were significantly up-regulated. However in the gill, the expressions of these genes were not significantly different from the control. These results indicated that exposure to atrazine caused impairments of kidney and gill of fish at environmental related concentrations. Histopathological lesions could partly attribute to the changes of the expressions of AHs-related genes in kidney. We concluded also that atrazine is a potential AHs-disruptor and AHs-related genes in kidney of fish could be used as sensitive molecular biomarkers.

  11. Novel Highly Pathogenic Avian A(H5N2) and A(H5N8) Influenza Viruses of Clade 2.3.4.4 from North America Have Limited Capacity for Replication and Transmission in Mammals.

    Science.gov (United States)

    Kaplan, Bryan S; Russier, Marion; Jeevan, Trushar; Marathe, Bindumadhav; Govorkova, Elena A; Russell, Charles J; Kim-Torchetti, Mia; Choi, Young Ki; Brown, Ian; Saito, Takehiko; Stallknecht, David E; Krauss, Scott; Webby, Richard J

    2016-01-01

    Highly pathogenic influenza A(H5N8) viruses from clade 2.3.4.4 were introduced to North America by migratory birds in the fall of 2014. Reassortment of A(H5N8) viruses with avian viruses of North American lineage resulted in the generation of novel A(H5N2) viruses with novel genotypes. Through sequencing of recent avian influenza viruses, we identified PB1 and NP gene segments very similar to those in the viruses isolated from North American waterfowl prior to the introduction of A(H5N8) to North America, highlighting these bird species in the origin of reassortant A(H5N2) viruses. While they were highly virulent and transmissible in poultry, we found A(H5N2) viruses to be low pathogenic in mice and ferrets, and replication was limited in both hosts compared with those of recent highly pathogenic avian influenza (HPAI) H5N1 viruses. Molecular characterization of the hemagglutinin protein from A(H5N2) viruses showed that the receptor binding preference, cleavage, and pH of activation were highly adapted for replication in avian species and similar to those of other 2.3.4.4 viruses. In addition, North American and Eurasian clade 2.3.4.4 H5NX viruses replicated to significantly lower titers in differentiated normal human bronchial epithelial cells than did seasonal human A(H1N1) and highly pathogenic A(H5N1) viruses isolated from a human case. Thus, despite their having a high impact on poultry, our findings suggest that the recently emerging North American A(H5N2) viruses are not expected to pose a substantial threat to humans and other mammals without further reassortment and/or adaptation and that reassortment with North American viruses has not had a major impact on viral phenotype. IMPORTANCE Highly pathogenic H5 influenza viruses have been introduced into North America from Asia, causing extensive morbidity and mortality in domestic poultry. The introduced viruses have reassorted with North American avian influenza viruses, generating viral genotypes not seen on

  12. Induction of hepatic carbonyl reductase/20{beta}-hydroxysteroid dehydrogenase mRNA in rainbow trout downstream from sewage treatment works-Possible roles of aryl hydrocarbon receptor agonists and oxidative stress

    Energy Technology Data Exchange (ETDEWEB)

    Albertsson, E., E-mail: eva.albertsson@zool.gu.se [Department of Zoology, University of Gothenburg, Box 463, SE-405 30 Goeteborg (Sweden); Larsson, D.G.J. [Department of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Box 434, SE-405 30 Goeteborg (Sweden); Foerlin, L. [Department of Zoology, University of Gothenburg, Box 463, SE-405 30 Goeteborg (Sweden)

    2010-05-05

    Carbonyl reductase/20{beta}-hydroxysteroid dehydrogenase (CR/20{beta}-HSD) serves both as a key enzyme in the gonadal synthesis of maturing-inducing hormone in salmonids, and as an enzyme protecting against certain reactive oxygen species. We have previously shown that mRNA of the hepatic CR/20{beta}-HSD B isoform is increased in rainbow trout caged downstream from a Swedish sewage treatment plant. Here, we report an increase of both the A as well as B form in fish kept downstream from a second sewage treatment plant. The two mRNAs were also induced in fish hepatoma cells in vitro after exposure to effluent extract. This indicates that the effects observed in vivo could be a direct effect on the liver, i.e. the mRNA induction does not require a signal from any other organ. When fish were exposed in vivo to several effluents treated with more advanced methods (ozone, moving bed biofilm reactor or membrane bioreactor) the expression of hepatic mRNA CR/20{beta}-HSD A and B was significantly reduced. Their abundance did not parallel the reduction of estrogen-responsive transcripts, in agreement with our previous observations that ethinylestradiol is not a potent inducer. Treatment with norethisterone, methyltestosterone or hydrocortisone in vivo did not induce the hepatic CR/20{beta}-HSD A and B mRNA expression. In contrast, both isoforms were markedly induced by the aryl hydrocarbon receptor agonist {beta}-naphthoflavone as well as by the pro-oxidant herbicide paraquat. We hypothesize that the induction of CR/20{beta}-HSD A and B by sewage effluents could be due to anthropogenic contaminants stimulating the aryl hydrocarbon receptor and/or causing oxidative stress.

  13. Contribution of commonly analyzed polycyclic aromatic hydrocarbons (PAHs) to potential toxicity in early life stages of rainbow trout (Oncorhynchus mykiss)

    Energy Technology Data Exchange (ETDEWEB)

    Sundberg, H.; Ishaq, R.; Tjarnlund, U.; Akerman, G.; Grunder, K.; Bandh, C.; Broman, D.; Balk, L. [Stockholm Univ., Stockholm (Sweden). Dept. of Applied Environmental Science

    2006-06-15

    The potential toxicity of sediment extracts from a contaminated bay in Sweden was investigated through a series of bio-effect-directed fractionation experiments. The aim of the study was to determine the contribution of polycyclic aromatic hydrocarbons (PAHs) to potential toxicity in early life stages of rainbow trout. The connection between the aryl hydrocarbon receptor (AhR) and toxicopathic effects caused by environmental polycyclic aromatic compound (PAC) mixtures was also investigated. Although samples from PAC polluted areas cause mortalities and toxicopathic effects, the mechanisms of toxicity have been established for only a few PACs. Ten samples of the top 10 cm of bottom sediment were collected from the polluted bay. A synthetic PAC mixture was prepared with 17 commonly analyzed PAHs in amounts equimolar to those found in the sediment PAC fraction. The synthetic PAC mixture was injected into eggs in 3 graded doses corresponding to the analyzed amount of PAHs in the sediment PAC fraction. Ten subfractions were isolated from the sediment PAC fraction and from the synthetic PAC mixture. Toxicopathic variables and hepatic Ethoxyresorufin O-deethylase (EROD) activities were recorded in larvae. Abnormalities in newly hatched larvae included hemorrhages in the yolk sac, head, trunk and tail region; edemas in the yolk sac; pericardium, and fins; and asymmetric yolk sacs. The 17 PAHs were unable to account for the toxicopathic effects, and could explain less than 4 per cent of the total EROD induction. Results indicated that mortalities caused by complex environmental PAC mixtures may involve mechanisms other than AhR mediation. Only a small percentage of the potential toxicity from a polluted sediment sample to early life stages of fish could be attributed to the 17 PAHs. It was concluded that the lack of a clear relationship between toxicopathic effects and EROD induction emphasizes the need for a battery of bio-markers for estimating environmental risk. 30 refs

  14. Intracellular Localization and Trafficking of Serine Proteinase AhSub and Cysteine Proteinase AhCP of Acanthamoeba healyi

    OpenAIRE

    Moon, E.-K.; Lee, S.-T.; Chung, D.-I.; Kong, H.-H.

    2006-01-01

    Proteinases have been proposed to play important roles in pathogenesis and various biologic actions in Acanthamoeba. Although genetic characteristics of several proteases of Acanthamoeba have been reported, the intracellular localization and trafficking of these enzymes has yet to be studied. In the present study, we analyzed the intracellular localization and trafficking of two proteinases, AhSub and AhCP, of Acanthamoeba healyi by transient transfection. Full-length AhSub-enhanced green flu...

  15. Gene expression analysis in children with complex seizures due to influenza A(H1N1)pdm09 or rotavirus gastroenteritis.

    Science.gov (United States)

    Tsuge, Mitsuru; Oka, Takashi; Yamashita, Nobuko; Saito, Yukie; Fujii, Yosuke; Nagaoka, Yoshiharu; Yashiro, Masato; Tsukahara, Hirokazu; Morishima, Tsuneo

    2014-02-01

    Viral infections have been implicated as a cause of complex seizures in children. The pathogenic differences in complex seizures due to influenza A(H1N1)pdm09 or rotavirus gastroenteritis remain unclear. This study analyzed the gene expression profiles in the peripheral whole blood from pediatric patients with complex seizures due to influenza A(H1N1)pdm09 or rotavirus gastroenteritis. The gene expression profiles of ten patients (five with seizures and five without) with influenza A(H1N1)pdm09 and six patients (three with seizures and three without) with rotavirus gastroenteritis were examined. Gene expression profiles in the whole blood were different in complex seizures due to influenza A(H1N1)pdm09 or rotavirus gastroenteritis. Transcripts related to the immune response were significantly differentially expressed in complex seizures with influenza A(H1N1)pdm09, and transcripts related to the stress response were significantly differentially expressed in complex seizures with rotavirus gastroenteritis. Pathway analysis showed that the mitogen-activated protein kinases in the T cell receptor signaling pathway were activated in complex seizures due to influenza A(H1N1)pdm09. Dysregulation of the genes related to immune response or stress response could contribute to the pathogenic differences of the complex seizures due to influenza A(H1N1)pdm09 or rotavirus gastroenteritis.

  16. Hydrocarbons in sediments along a tropical estuary-shelf transition area: Sources and spatial distribution.

    Science.gov (United States)

    Maciel, Daniele Claudino; de Souza, José Roberto Botelho; Taniguchi, Satie; Bícego, Márcia Caruso; Schettini, Carlos Augusto França; Zanardi-Lamardo, Eliete

    2016-12-15

    Estuaries generally act as sediment traps and may retain a range of contaminants associated to this matrix. Aliphatic hydrocarbons (AHs) were investigated in Capibaribe Estuarine System and adjacent shelf, Northeast of Brazil, to evaluate the contamination and to better understand its functionality related to the coast. Fourteen sediment samples were analyzed, using gas chromatography with flame ionization detection. Total AHs concentrations ranged from 7.5 to 190.3μgg(-1) and n-alkanes ranged from below detection limit (contamination by petroleum hydrocarbons. The concentration decrease (about 90%) towards the adjacent shelf suggested an estuarine high retention capacity but dilution and degradation processes cannot be neglected. Similar AHs characteristics reported in sediments from the adjacent shelf suggested that this system may also export contaminants. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Raman characteristics of hydrocarbon and hydrocarbon inclusions

    Institute of Scientific and Technical Information of China (English)

    ZHANG Nai; TIAN ZuoJi; LENG YingYing; WANG HuiTong; SONG FuQing; MENG JianHua

    2007-01-01

    The Raman spectrograms of hydrocarbon standard samples show that: (1) the Raman spectrogram of normal paraffin has very strong peaks of methyl and methylene (from 2700 cm-1 to 2970 cm-1); (2)branch methyl has the particular peak of 748 cm-1±; (3) six cyclic has the particular peak of 804 cm-1±; (4)phenyl has two particular peaks of 988 cm-1± and 3058 cm-1± and the 988 cm-1± peak is stronger than the 3058 cm-1± peak; and (5) hexene has three alkenyl spectrum peaks of 1294 cm-1±, 1635 cm-1± and 2996 cm-1±, with the 1635 cm-1± peak being the strongest, showing that the number of carbon in hydrocarbon does not affect its Raman spectrogram, and the hydrocarbon molecular structure and base groups affect its Raman spectrogram, the same hydrocarbons (such as normal paraffin) have the same Raman spectrogram; the types (such as CH4, C2H6, C3H8) and the content of hydrocarbon in oil inclusions are not estimated by their characteristic Raman peaks. According to the Raman spectrograms of hydrocarbon compositions, the Raman spectrogram of hydrocarbon inclusion can be divided into five types: saturated hydrocarbon Raman spectrogram, fluoresce Raman spectrogram, saturated hydrocarbon bitumen Raman spectrogram, bitumen Raman spectrogram, and ethane Raman spectrogram.And according to the characteristics of Raman spectrogram, hydrocarbon inclusions can be divided into five types: saturated hydrocarbon inclusion, less saturated hydrocarbon (oil or gas) inclusion,saturated hydrocarbon bitumen inclusion, bitumen inclusion, and methane water inclusion.

  18. Raman characteristics of hydrocarbon and hydrocarbon inclusions

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The Raman spectrograms of hydrocarbon standard samples show that: (1) the Raman spectrogram of normal paraffin has very strong peaks of methyl and methylene (from 2700 cm-1 to 2970 cm-1); (2) branch methyl has the particular peak of 748 cm-1±; (3) six cyclic has the particular peak of 804 cm-1±; (4) phenyl has two particular peaks of 988 cm-1± and 3058 cm-1± and the 988 cm-1± peak is stronger than the 3058 cm-1± peak; and (5) hexene has three alkenyl spectrum peaks of 1294 cm-1±, 1635 cm-1± and 2996 cm-1±, with the 1635 cm-1± peak being the strongest, showing that the number of carbon in hy-drocarbon does not affect its Raman spectrogram, and the hydrocarbon molecular structure and base groups affect its Raman spectrogram, the same hydrocarbons (such as normal paraffin) have the same Raman spectrogram; the types (such as CH4, C2H6, C3H8) and the content of hydrocarbon in oil inclu-sions are not estimated by their characteristic Raman peaks. According to the Raman spectrograms of hydrocarbon compositions, the Raman spectrogram of hydrocarbon inclusion can be divided into five types: saturated hydrocarbon Raman spectrogram, fluoresce Raman spectrogram, saturated hydro-carbon bitumen Raman spectrogram, bitumen Raman spectrogram, and ethane Raman spectrogram. And according to the characteristics of Raman spectrogram, hydrocarbon inclusions can be divided into five types: saturated hydrocarbon inclusion, less saturated hydrocarbon (oil or gas) inclusion, saturated hydrocarbon bitumen inclusion, bitumen inclusion, and methane water inclusion.

  19. Dopamine D2-Receptor Antagonists Down-Regulate CYP1A1/2 and CYP1B1 in the Rat Liver.

    Directory of Open Access Journals (Sweden)

    P Harkitis

    Full Text Available Dopaminergic systems regulate the release of several hormones including growth hormone (GH, thyroid hormones, insulin, glucocorticoids and prolactin (PRL that play significant roles in the regulation of various Cytochrome P450 (CYP enzymes. The present study investigated the role of dopamine D2-receptor-linked pathways in the regulation of CYP1A1, CYP1A2 and CYP1B1 that belong to a battery of genes controlled by the Aryl Hydrocarbon Receptor (AhR and play a crucial role in the metabolism and toxicity of numerous environmental toxicants. Inhibition of dopamine D2-receptors with sulpiride (SULP significantly repressed the constitutive and benzo[a]pyrene (B[a]P-induced CYP1A1, CYP1A2 and CYP1B expression in the rat liver. The expression of AhR, heat shock protein 90 (HSP90 and AhR nuclear translocator (ARNT was suppressed by SULP in B[a]P-treated livers, whereas the AhRR expression was increased by the drug suggesting that the SULP-mediated repression of the CYP1 inducibility is due to inactivation of the AhR regulatory system. At signal transduction level, the D2-mediated down-regulation of constitutive CYP1A1/2 and CYP1B1 expression appears to be mediated by activation of the insulin/PI3K/AKT pathway. PRL-linked pathways exerting a negative control on various CYPs, and inactivation of the glucocorticoid-linked pathways that