WorldWideScience

Sample records for hydrided materials exhibited

  1. Lightweight hydride storage materials

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, G.J.; Guthrie, S.E.; Bauer, W. [Sandia National Labs., Livermore, CA (United States)

    1995-09-01

    The need for lightweight hydrides in vehicular applications has prompted considerable research into the use of magnesium and its alloys. Although this earlier work has provided some improved performance in operating temperature and pressure, substantial improvements are needed before these materials will significantly enhance the performance of an engineered system on a vehicle. We are extending the work of previous investigators on Mg alloys to reduce the operating temperature and hydride heat of formation in light weight materials. Two important results will be discussed in this paper: (1) a promising new alloy hydride was found which has better pressure-temperature characteristics than any previous Mg alloy and, (2) a new fabrication process for existing Mg alloys was developed and demonstrated. The new alloy hydride is composed of magnesium, aluminum and nickel. It has an equilibrium hydrogen overpressure of 1.3 atm. at 200{degrees}C and a storage capacity between 3 and 4 wt.% hydrogen. A hydrogen release rate of approximately 5 x 10{sup -4} moles-H{sub 2}/gm-min was measured at 200{degrees}C. The hydride heat of formation was found to be 13.5 - 14 kcal/mole-H{sub 2}, somewhat lower than Mg{sub 2}Ni. The new fabrication method takes advantage of the high vapor transport of magnesium. It was found that Mg{sub 2}Ni produced by our low temperature process was better than conventional materials because it was single phase (no Mg phase) and could be fabricated with very small particle sizes. Hydride measurements on this material showed faster kinetic response than conventional material. The technique could potentially be applied to in-situ hydride bed fabrication with improved packing density, release kinetics, thermal properties and mechanical stability.

  2. The renaissance of hydrides as energy materials

    Science.gov (United States)

    Mohtadi, Rana; Orimo, Shin-Ichi

    2017-02-01

    Materials based on hydrides have been the linchpin in the development of several practical energy storage technologies, of which the most prominent example is nickel-metal hydride batteries. Motivated by the need to meet the future's energy demand, the past decade has witnessed substantial advancements in the research and development of hydrides as media for hydrogen energy storage. More recently, new and rapidly evolving discoveries have positioned hydrides as highly promising materials for future electrochemical energy storage, such as electrolytes for mono- and divalent batteries, and anodes for lithium-ion batteries. In addition, the potential of hydrides in efficient power transmission has been recently revealed. In this Review, we highlight key advances and illustrate how the versatility of hydrides has not only yielded a meaningful past, but also ensures a very bright future.

  3. Materials science of Mg-Ni-based new hydrides

    Energy Technology Data Exchange (ETDEWEB)

    Orimo, S.; Fujii, H. [Hiroshima Univ. (Japan). Faculty of Integrated Arts and Sciences

    2001-02-01

    One of the advantageous functional properties of Mg alloys (or compounds) is to exhibit the reversible hydriding reaction. In this paper, we present our systematic studies regarding the relationship between nanometer- or atomistic-scale structures and the specific hydriding properties of the Mg-Ni binary system, such as(1) nanostructured (n)-Mg{sub 2}Ni, (2) a mixture of n-Mg{sub 2}Ni and amorphous (a)-MgNi,(3) pure a-MgNi, and(4) n-MgNi{sub 2}. Further studies on(5) an a-MgNi-based system for clarifying the effect of the short-range ordering on the structural and hydriding properties and(6) a MgNi{sub 2}-based system for synthesizing the new Laves phase structure are also presented. The materials science of Mg-Ni-based new hydrides will provide indispensable knowledge for practically developing the Mg alloys as hydrogen-storage materials. (orig.)

  4. Lithium hydride - A space age shielding material

    Science.gov (United States)

    Welch, F. H.

    1974-01-01

    Men and materials performing in the environment of an operating nuclear reactor require shielding from the escaping neutron particles and gamma rays. For efficient shielding from gamma rays, dense, high atomic number elements such as iron, lead, or tungsten are required, whereas light, low atomic number elements such as hydrogen, lithium, or beryllium are required for efficient neutron shielding. The use of lithium hydride (LiH) as a highly efficient neutron-shielding material is considered. It contains, combined into a single, stable compound, two of the elements most effective in attenuating and absorbing neutrons.

  5. Composite Materials for Hazard Mitigation of Reactive Metal Hydrides.

    Energy Technology Data Exchange (ETDEWEB)

    Pratt, Joseph William; Cordaro, Joseph Gabriel; Sartor, George B.; Dedrick, Daniel E.; Reeder, Craig L.

    2012-02-01

    under simulated usage and accident conditions. Mitigating the hazards associated with reactive metal hydrides during an accident while finding a way to keep the original capability of the active material intact during normal use has been the focus of this work. These composites were made by polymerizing vinyl monomers using free-radical polymerization chemistry, in the presence of the metal hydride, in this case a prepared sodium alanate (chosen as a representative reactive metal hydride). It was found that the polymerization of styrene and divinyl benzene could be initiated using AIBN in toluene at 70 degC. The resulting composite materials can be either hard or brittle solids depending on the cross-linking density. Thermal decomposition of these styrene-based composite materials is lower than neat polystyrene indicating that the chemical nature of the polymer is affected by the formation of the composite. The char-forming nature of cross-linked polystyrene is low and therefore, not an ideal polymer for hazard mitigation. To obtain composite materials containing a polymer with higher char-forming potential, siloxane-based monomers were investigated. Four vinyl-containing siloxane oligomers were polymerized with and without added styrene and divinyl benzene. Like the styrene materials, these composite materials exhibited thermal decomposition behavior significantly different than the neat polymers. Specifically, the thermal decomposition temperature was shifted approximately 100 degC lower than the neat polymer signifying a major chemical change to the polymer network. Thermal analysis of the cycled samples was performed on the siloxane-based composite materials. It was found that after 30 cycles the siloxane-containing polymer composite material has similar TGA/DSC-MS traces as the virgin composite material indicating that the polymer is physically intact upon cycling. Hydrogen capacity measurements revealed that addition of the polymer to the metal hydride in the form

  6. Review of magnesium hydride-based materials: development and optimisation

    NARCIS (Netherlands)

    Crivello, J. -C.; Dam, B.; Denys, R. V.; Dornheim, M.; Grant, D. M.; Huot, J.; Jensen, T. R.; de Jongh, P.|info:eu-repo/dai/nl/186125372; Latroche, M.; Milanese, C.; Milcius, D.; Walker, G. S.; Webb, C. J.; Zlotea, C.; Yartys, V. A.

    Magnesium hydride has been studied extensively for applications as a hydrogen storage material owing to the favourable cost and high gravimetric and volumetric hydrogen densities. However, its high enthalpy of decomposition necessitates high working temperatures for hydrogen desorption while the

  7. Hydrogen Storage in Porous Materials and Magnesium Hydrides

    NARCIS (Netherlands)

    Grzech, A.

    2013-01-01

    In this thesis representatives of two different types of materials for potential hydrogen storage application are presented. Usage of either nanoporous materials or metal hydrides has both operational advantages and disadvantages. A main objective of this thesis is to characterize the hydrogen

  8. Hydrogen Storage in Porous Materials and Magnesium Hydrides

    NARCIS (Netherlands)

    Grzech, A.

    2013-01-01

    In this thesis representatives of two different types of materials for potential hydrogen storage application are presented. Usage of either nanoporous materials or metal hydrides has both operational advantages and disadvantages. A main objective of this thesis is to characterize the hydrogen stora

  9. Review of magnesium hydride-based materials: development and optimisation

    Science.gov (United States)

    Crivello, J.-C.; Dam, B.; Denys, R. V.; Dornheim, M.; Grant, D. M.; Huot, J.; Jensen, T. R.; de Jongh, P.; Latroche, M.; Milanese, C.; Milčius, D.; Walker, G. S.; Webb, C. J.; Zlotea, C.; Yartys, V. A.

    2016-02-01

    Magnesium hydride has been studied extensively for applications as a hydrogen storage material owing to the favourable cost and high gravimetric and volumetric hydrogen densities. However, its high enthalpy of decomposition necessitates high working temperatures for hydrogen desorption while the slow rates for some processes such as hydrogen diffusion through the bulk create challenges for large-scale implementation. The present paper reviews fundamentals of the Mg-H system and looks at the recent advances in the optimisation of magnesium hydride as a hydrogen storage material through the use of catalytic additives, incorporation of defects and an understanding of the rate-limiting processes during absorption and desorption.

  10. Phase I. Lanthanum-based Start Materials for Hydride Batteries

    Energy Technology Data Exchange (ETDEWEB)

    Gschneidner, K. A. [Ames Lab., Ames, IA (United States); Schmidt, F. A. [Ames Lab., Ames, IA (United States); Frerichs, A. E. [Ames Lab., Ames, IA (United States); Ament, K. A. [Ames Lab., Ames, IA (United States)

    2013-08-20

    The purpose of Phase I of this work is to focus on developing a La-based start material for making nickel-metal (lanthanum)-hydride batteries based on our carbothermic-silicon process. The goal is to develop a protocol for the manufacture of (La1-xRx)(Ni1-yMy)(Siz), where R is a rare earth metal and M is a non-rare earth metal, to be utilized as the negative electrode in nickel-metal hydride (NiMH) rechargeable batteries.

  11. Review of magnesium hydride-based materials: development and optimisation

    NARCIS (Netherlands)

    Crivello, J. -C.; Dam, B.; Denys, R. V.; Dornheim, M.; Grant, D. M.; Huot, J.; Jensen, T. R.; de Jongh, P.; Latroche, M.; Milanese, C.; Milcius, D.; Walker, G. S.; Webb, C. J.; Zlotea, C.; Yartys, V. A.

    2016-01-01

    Magnesium hydride has been studied extensively for applications as a hydrogen storage material owing to the favourable cost and high gravimetric and volumetric hydrogen densities. However, its high enthalpy of decomposition necessitates high working temperatures for hydrogen desorption while the slo

  12. ALUMINUM HYDRIDE: A REVERSIBLE STORAGE MATERIAL FOR HYDROGEN STORAGE

    Energy Technology Data Exchange (ETDEWEB)

    Zidan, R; Christopher Fewox, C; Brenda Garcia-Diaz, B; Joshua Gray, J

    2009-01-09

    One of the challenges of implementing the hydrogen economy is finding a suitable solid H{sub 2} storage material. Aluminium (alane, AlH{sub 3}) hydride has been examined as a potential hydrogen storage material because of its high weight capacity, low discharge temperature, and volumetric density. Recycling the dehydride material has however precluded AlH{sub 3} from being implemented due to the large pressures required (>10{sup 5} bar H{sub 2} at 25 C) and the thermodynamic expense of chemical synthesis. A reversible cycle to form alane electrochemically using NaAlH{sub 4} in THF been successfully demonstrated. Alane is isolated as the triethylamine (TEA) adduct and converted to unsolvated alane by heating under vacuum. To complete the cycle, the starting alanate can be regenerated by direct hydrogenation of the dehydrided alane and the alkali hydride (NaH) This novel reversible cycle opens the door for alane to fuel the hydrogen economy.

  13. Investigation of metal hydride materials as hydrogen reservoirs for metal-hydrogen batteries

    Science.gov (United States)

    ONISCHAK

    1976-01-01

    The performance and suitability of various metal hydride materials were examined for use as possible hydrogen storage reservoirs for secondary metal-hydrogen batteries. Lanthanum pentanickel hydride appears as a probable candidate in terms of stable hydrogen supply under feasible thermal conditions. A kinetic model describing the decomposition rate data of the hydride has been developed.

  14. High Temperature Metal Hydrides as Heat Storage Materials for Solar and Related Applications

    Directory of Open Access Journals (Sweden)

    Borislav Bogdanović

    2009-01-01

    Full Text Available For the continuous production of electricity with solar heat power plants the storage of heat at a temperature level around 400 °C is essential. High temperature metal hydrides offer high heat storage capacities around this temperature. Based on Mg-compounds, these hydrides are in principle low-cost materials with excellent cycling stability. Relevant properties of these hydrides and their possible applications as heat storage materials are described.

  15. High temperature metal hydrides as heat storage materials for solar and related applications.

    Science.gov (United States)

    Felderhoff, Michael; Bogdanović, Borislav

    2009-01-01

    For the continuous production of electricity with solar heat power plants the storage of heat at a temperature level around 400 degrees C is essential. High temperature metal hydrides offer high heat storage capacities around this temperature. Based on Mg-compounds, these hydrides are in principle low-cost materials with excellent cycling stability. Relevant properties of these hydrides and their possible applications as heat storage materials are described.

  16. ALUMINUM HYDRIDE: A REVERSIBLE MATERIAL FOR HYDROGEN STORAGE

    Energy Technology Data Exchange (ETDEWEB)

    Zidan, R; Christopher Fewox, C; Brenda Garcia-Diaz, B; Joshua Gray, J

    2009-01-09

    Hydrogen storage is one of the challenges to be overcome for implementing the ever sought hydrogen economy. Here we report a novel cycle to reversibly form high density hydrogen storage materials such as aluminium hydride. Aluminium hydride (AlH{sub 3}, alane) has a hydrogen storage capacity of 10.1 wt% H{sub 2}, 149 kg H{sub 2}/m{sup 3} volumetric density and can be discharged at low temperatures (< 100 C). However, alane has been precluded from use in hydrogen storage systems because of the lack of practical regeneration methods. The direct hydrogenation of aluminium to form AlH{sub 3} requires over 10{sup 5} bars of hydrogen pressure at room temperature and there are no cost effective synthetic means. Here we show an unprecedented reversible cycle to form alane electrochemically, using alkali metal alanates (e.g. NaAlH{sub 4}, LiAlH{sub 4}) in aprotic solvents. To complete the cycle, the starting alanates can be regenerated by direct hydrogenation of the dehydrided alane and the alkali hydride being the other compound formed in the electrochemical cell. The process of forming NaAlH{sub 4} from NaH and Al is well established in both solid state and solution reactions. The use of adducting Lewis bases is an essential part of this cycle, in the isolation of alane from the mixtures of the electrochemical cell. Alane is isolated as the triethylamine (TEA) adduct and converted to pure, unsolvated alane by heating under vacuum.

  17. ALUMINUM HYDRIDE: A REVERSIBLE MATERIAL FOR HYDROGEN STORAGE

    Energy Technology Data Exchange (ETDEWEB)

    Fewox, C; Ragaiy Zidan, R; Brenda Garcia-Diaz, B

    2008-12-31

    Hydrogen storage is one of the greatest challenges for implementing the ever sought hydrogen economy. Here we report a novel cycle to reversibly form high density hydrogen storage materials such as aluminium hydride. Aluminium hydride (AlH{sub 3}, alane) has a hydrogen storage capacity of 10.1 wt% H{sub 2}, 149 kg H{sub 2}/m{sup 3} volumetric density and can be discharged at low temperatures (< 100 C). However, alane has been precluded from use in hydrogen storage systems because of the lack of practical regeneration methods; the direct hydrogenation of aluminium to form AlH{sub 3} requires over 10{sup 5} bars of hydrogen pressure at room temperature and there are no cost effective synthetic means. Here we show an unprecedented reversible cycle to form alane electrochemically, using alkali alanates (e.g. NaAlH{sub 4}, LiAlH{sub 4}) in aprotic solvents. To complete the cycle, the starting alanates can be regenerated by direct hydrogenation of the dehydrided alane and the alkali hydride being the other compound formed in the electrochemical cell. The process of forming NaAlH{sub 4} from NaH and Al is well established in both solid state and solution reactions. The use of adducting Lewis bases is an essential part of this cycle, in the isolation of alane from the mixtures of the electrochemical cell. Alane is isolated as the triethylamine (TEA) adduct and converted to pure, unsolvated alane by heating under vacuum.

  18. Strategies for the improvement of the hydrogen storage properties of metal hydride materials.

    Science.gov (United States)

    Wu, Hui

    2008-10-24

    Metal hydrides are an important family of materials that can potentially be used for safe, efficient and reversible on-board hydrogen storage. Light-weight metal hydrides in particular have attracted intense interest due to their high hydrogen density. However, most of these hydrides have rather slow absorption kinetics, relatively high thermal stability, and/or problems with the reversibility of hydrogen absorption/desorption cycling. This paper discusses a number of different approaches for the improvement of the hydrogen storage properties of these materials, with emphasis on recent research on tuning the ionic mobility in mixed hydrides. This concept opens a promising pathway to accelerate hydrogenation kinetics, reduce the activation energy for hydrogen release, and minimize deleterious possible by-products often associated with complex hydride systems.

  19. Hydrogenation reaction characteristics and properties of its hydrides for magnetic regenerative material HoCu2

    Institute of Scientific and Technical Information of China (English)

    金滔; 吴梦茜; 黄迦乐; 汤珂; 陈立新

    2016-01-01

    The hydrogenation reaction characteristics and the properties of its hydrides for the magnetic regenerative material HoCu2 (CeCu2-type) of a cryocooler were investigated. The XRD testing reveals that the hydrides of HoCu2 were a mixture of Cu, unknown hydride I, and unknown hydride II. Based on the PCT (pressure−concentration−temperature) curves under different reaction temperatures, the relationships among reaction temperature, equilibrium pressure, and maximum hydrogen absorption capacity were analyzed and discussed. The enthalpy changeΔH and entropy changeΔS as a result of the whole hydrogenation process were also calculated from the PCT curves. The magnetization and volumetric specific heat capacity of the hydride were also measured by SQUID magnetometer and PPMS, respectively.

  20. Investigation of Lithium Metal Hydride Materials for Mitigation of Deep Space Radiation

    Science.gov (United States)

    Rojdev, Kristina; Atwell, William

    2016-01-01

    Radiation exposure to crew, electronics, and non-metallic materials is one of many concerns with long-term, deep space travel. Mitigating this exposure is approached via a multi-faceted methodology focusing on multi-functional materials, vehicle configuration, and operational or mission constraints. In this set of research, we are focusing on new multi-functional materials that may have advantages over traditional shielding materials, such as polyethylene. Metal hydride materials are of particular interest for deep space radiation shielding due to their ability to store hydrogen, a low-Z material known to be an excellent radiation mitigator and a potential fuel source. We have previously investigated 41 different metal hydrides for their radiation mitigation potential. Of these metal hydrides, we found a set of lithium hydrides to be of particular interest due to their excellent shielding of galactic cosmic radiation. Given these results, we will continue our investigation of lithium hydrides by expanding our data set to include dose equivalent and to further understand why these materials outperformed polyethylene in a heavy ion environment. For this study, we used HZETRN 2010, a one-dimensional transport code developed by NASA Langley Research Center, to simulate radiation transport through the lithium hydrides. We focused on the 1977 solar minimum Galactic Cosmic Radiation environment and thicknesses of 1, 5, 10, 20, 30, 50, and 100 g/cm2 to stay consistent with our previous studies. The details of this work and the subsequent results will be discussed in this paper.

  1. A review of catalyst-enhanced magnesium hydride as a hydrogen storage material

    Science.gov (United States)

    Webb, C. J.

    2015-09-01

    Magnesium hydride remains an attractive hydrogen storage material due to the high hydrogen capacity and low cost of production. A high activation energy and poor kinetics at practical temperatures for the pure material have driven research into different additives to improve the sorption properties. This review details the development of catalytic additives and their effect on the activation energy, kinetics and thermodynamic properties of magnesium hydride.

  2. Crack initiation at long radial hydrides in Zr-2. 5Nb pressure tube material at elevated temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Choubey, R.; Puls, M.P. (AECL Research, Pinawa, Manitoba (Canada). Whiteshell Labs.)

    1994-05-01

    Crack initiation at hydrides in smooth tensile specimens of Zr-2.5Nb pressure tube material was investigated at elevated temperatures up to 300 C using an acoustic emission (AE) technique. The test specimens contained long, radial hydride platelets. These hydrides have their plate normals oriented in the applied stress direction. Below [approximately]100 C, widespread hydride cracking was initiated at stresses close to the yield stress. An estimate of the hydride's fracture strength from this data yielded a value of [approximately]520 MPa at 100 C. Metallography showed that up to this temperature, cracking occurred along the length of the hydrides. However, at higher temperatures, there was no clear evidence of lengthwise cracking of hydrides, and fewer of the total hydride population fractured during deformation, as indicated by the AE record and the metallography. Moreover, the hydrides showed significant plasticity by-being able to flow along with the matrix material and align themselves parallel to the applied stress direction without fracturing. Near the fracture surface of the specimen, transverse cracking of the flow-reoriented hydrides had occurred at various points along the lengths of the hydrides. These fractures appear to be the result of stresses produced by large plastic strains imposed by the surrounding matrix on the less ductile hydrides.

  3. A micromechanical model for predicting hydride embrittlement in nuclear fuel cladding material

    Science.gov (United States)

    Chan, K. S.

    1996-01-01

    A major concern about nuclear fuel cladding under waste repository conditions is that the slow cooling rate anticipated in the repository may lead to the formation of excessive radial hydrides, and cause embrittlement of the cladding materials. In this paper, the development of a micromechanical model for predicting hydride-induced embrittlement in nuclear fuel cladding is presented. The important features of the proposed model are: (1) the capability to predict the orientation, morphology, and types of hydrides under the influence of key variables such as cooling rate, internal pressure, and time, and (2) the ability to predict the influence of hydride orientation and morphology on the tensile ductility and fracture toughness of the cladding material. Various model calculations are presented to illustrate the characteristics and utilities of the proposed methodology. A series of experiments was also performed to check assumptions used and to verify some of the model predictions.

  4. Metal Hydrides as hot carrier cell absorber materials

    Science.gov (United States)

    Wang, Pei; Wen, Xiaoming; Shrestha, Santosh; Conibeer, Gavin; Aguey-Zinsou, Kondo-Francois

    2016-09-01

    The hot Carrier Solar Cell (HCSC) allows the photon-induced hot carriers (the carriers with energy larger than the band gap) to be collected before they completely thermalise. The absorber of the HCSC should have a large phononic band gap to supress Klemens Decay, which results in a slow carrier cooling speed. In fact, a large phononic band gap likely exists in a binary compound whose constituent elements have a large mass ratio between each other. Binary hydrides with their overwhelming mass ratio of the constituent elements are important absorber candidates. Study on different types of binary hydrides as potential absorber candidates is presented in this paper. Many binary transition metal hydrides have reported theoretical or experimental phonon dispersion charts which show large phononic band gaps. Among these hydrides, the titanium hydride (TiHX) is outstanding because of its low cost, easy fabrication process and is relatively inert to air and water. A TiHX thin film is fabricated by directly hydrogenating an evaporated titanium thin film. Characterisation shows good crystal quality and the hydrogenation process is believed to be successful. Ultrafast transient absorption (TA) spectroscopy is used to study the electron cooling time of TiHX. The result is very noisy due to the low absorption and transmission of the sample. The evolution of the TA curves has been explained by band to band transition using the calculated band structure of TiH2. Though not reliable due to the high noise, decay time fitting at 700nm and 600nm shows a considerably slow carrier cooling speed of the sample.

  5. Aluminum-titanium hydride-boron carbide composite provides lightweight neutron shield material

    Science.gov (United States)

    Poindexter, A. M.

    1967-01-01

    Inexpensive lightweight neutron shield material has high strength and ductility and withstands high internal heat generation rates without excessive thermal stress. This composite material combines structural and thermal properties of aluminum, neutron moderating properties of titanium hydride, and neutron absorbing characteristics of boron carbide.

  6. Development of Novel Metal Hydride-Carbon Nanomaterial Based Nanocomposites as Anode Electrode Materials for Lithium Ion Battery

    Science.gov (United States)

    2014-06-30

    Final Progress Report (27-02-2012 To 26-02-2014) Project Title:- Development of novel metal hydride -carbon nanomaterial based nanocomposites as...anode electrode materials for Lithium ion battery Objectives:- The aim of this study is to develop metal hydride –carbon nanomaterial based...be as follows:- Milestone I • Synthesis of nanosized metal hydrides (NMH)-carbon nanotubes (CNT) hybridizing with G (NMH- CNT-G) nanocomposites

  7. The impact of carbon materials on the hydrogen storage properties of light metal hydrides

    NARCIS (Netherlands)

    Adelhelm, P.A.|info:eu-repo/dai/nl/313907854; de Jongh, P.E.|info:eu-repo/dai/nl/186125372

    2011-01-01

    The safe and efficient storage of hydrogen is still one of the remaining challenges towards fuel cell powered cars. Metal hydrides are a promising class of materials as they allow the storage of large amounts of hydrogen in a small volume at room temperature and low pressures. However, usually the

  8. The impact of carbon materials on the hydrogen storage properties of light metal hydrides

    NARCIS (Netherlands)

    Adelhelm, P.A.; de Jongh, P.E.

    2011-01-01

    The safe and efficient storage of hydrogen is still one of the remaining challenges towards fuel cell powered cars. Metal hydrides are a promising class of materials as they allow the storage of large amounts of hydrogen in a small volume at room temperature and low pressures. However, usually the k

  9. Hydriding and Dehydriding Characteristics of Mechanically Alloyed LaMg17Ni Composite Material

    Institute of Scientific and Technical Information of China (English)

    李谦; 蒋利军; 林勤; 周国治; 詹峰; 郑强; 魏秀英

    2003-01-01

    A composite material with the nominal composition LaMg17Ni was synthesized by mechanical alloying and the hydriding/dehydriding (H/D) behaviors of this material were studied at several temperatures. This material has a hydrogen storage capacity (5.76% H2, mass fraction) lower than conventionally alloyed La2Mg17 (6.63% H2, mass fraction) without activation but shows a superior hydriding/dehydriding kinetic property. At 523 K it absorbed 4.97% (mass fraction) in less than 1 min, approximately 100 times faster than La2Mg17 alloy under the same conditions. This attractive kinetic property of the alloy can be ascribed to the catalytic action of Mg2Ni, LaH2 and La as well as the multiphase structure formed in the preparation processes. The relationships between the equilibrium plateau pressure and the temperature can be expressed as lgpeq=-2797/T+4.267 (553 K≤T≤623 K) for hydriding and lgpeq=-3957/T+6.063(553 K≤T≤623 K) for dehydriding.

  10. THE ABSORPTION OF HYDROGEN ON LOW PRESSURE HYDRIDE MATERIALS

    Energy Technology Data Exchange (ETDEWEB)

    Morgan, G.; Korinko, P.

    2012-04-03

    For this study, hydrogen getter materials (Zircaloy-4 and pure zirconium) that have a high affinity for hydrogen (and low overpressure) have been investigated to determine the hydrogen equilibrium pressure on Zircaloy-4 and pure zirconium. These materials, as with most getter materials, offered significant challenges to overcome given the low hydrogen equilibrium pressure for the temperature range of interest. Hydrogen-zirconium data exists for pure zirconium at 500 C and the corresponding hydrogen overpressure is roughly 0.01 torr. This manuscript presents the results of the equilibrium pressures for the absorption and desorption of hydrogen on zirconium materials at temperatures ranging from 400 C to 600 C. The equilibrium pressures in this temperature region range from 150 mtorr at 600 C to less than 0.1 mtorr at 400 C. It has been shown that the Zircaloy-4 and zirconium samples are extremely prone to surface oxidation prior to and during heating. This oxidation precludes the hydrogen uptake, and therefore samples must be heated under a minimum vacuum of 5 x 10{sup -6} torr. In addition, the Zircaloy-4 samples should be heated at a sufficiently low rate to maintain the system pressure below 0.5 mtorr since an increase in pressure above 0.5 mtorr could possibly hinder the H{sub 2} absorption kinetics due to surface contamination. The results of this study and the details of the testing protocol will be discussed.

  11. Raman and photoelectron spectroscopic investigation of high-purity niobium materials: Oxides, hydrides, and hydrocarbons

    Science.gov (United States)

    Singh, Nageshwar; Deo, M. N.; Nand, Mangla; Jha, S. N.; Roy, S. B.

    2016-09-01

    We present investigations of the presence of oxides, hydrides, and hydrocarbons in high-purity (residual resistivity ratio, ˜300) niobium (Nb) materials used in fabrication of superconducting radio frequency (SRF) cavities for particle accelerators. Raman spectroscopy of Nb materials (as-received from the vendor as well as after surface chemical- and thermal processing) revealed numerous peaks, which evidently show the presence of oxides (550 cm-1), hydrides (1277 and 1385 cm-1: ˜80 K temperature), and groups of hydrocarbons (1096, 2330, 2710, 2830, 2868, and 3080 cm-1). The present work provides direct spectroscopic evidence of hydrides in the electropolished Nb materials typically used in SRF cavities. Raman spectroscopy thus can provide vital information about the near-surface chemical species in niobium materials and will help in identifying the cause for the performance degradation of SRF cavities. Furthermore, photoelectron spectroscopy was performed on the Nb samples to complement the Raman spectroscopy study. This study reveals the presence of C and O in the Nb samples. Core level spectra of Nb (doublet 3d5/2 and 3d3/2) show peaks near 206.6 and 209.4 eV, which can be attributed to the Nb5+ oxidation state. The core level spectra of C 1 s of the samples are dominated by graphitic carbon (binding energy, 284.6 eV), while the spectra of O 1 s are asymmetrically peaked near binding energy of ˜529 eV, and that indicates the presence of metal-oxide Nb2O5. The valence-band spectra of the Nb samples are dominated by a broad peak similar to O 2p states, but after sputtering (for 10 min) a peak appears at ˜1 eV, which is a feature of the elemental Nb atom.

  12. Hydrogen Absorbing Material in Carbonaceous-Metal Hydride

    Directory of Open Access Journals (Sweden)

    Farid Mulana

    2006-06-01

    Full Text Available One of the most promising materials for storing hydrogen in solid state would be included in metal-carbon composites. In order to obtain nanocrystalline metal particles encapsulated by crystalline or amorphous carbon, mechanosynthesis of zirconium-carbonaceous composites and alkali metal-carbonaceous composites was performed. For zirconium-carbonaceous composites, only zirconium-carbon black composite absorbed more hydrogen than expected for a mere mixture with the same composition. The higher hydrogen capacity on the zirconium-carbon black composite would be due to some specific sites on the carbonaceous material created during the milling. Another effect of the composite formation was stabilization of zirconium, that is, the composites did not ignite in air. On alkali metal-carbonaceous composites, carbon black has superior effect in composite formation compared with graphite in which some cooperative effect was only detected on alkali metal-carbon black composite. The effect of the carbonaceous composite formation was resistance to air and anti-sticking characteristics to balls and the wall of the vial during the ball milling.

  13. Hybrid functional calculations of potential hydrogen storage material: Complex dimagnesium iron hydride

    KAUST Repository

    Ul Haq, Bakhtiar

    2014-06-01

    By employing the state of art first principles approaches, comprehensive investigations of a very promising hydrogen storage material, Mg 2FeH6 hydride, is presented. To expose its hydrogen storage capabilities, detailed structural, elastic, electronic, optical and dielectric aspects have been deeply analysed. The electronic band structure calculations demonstrate that Mg2FeH6 is semiconducting material. The obtained results of the optical bandgap (4.19 eV) also indicate that it is a transparent material for ultraviolet light, thus demonstrating its potential for optoelectronics application. The calculated elastic properties reveal that Mg2FeH6 is highly stiff and stable hydride. Finally, the calculated hydrogen (H2) storage capacity (5.47 wt.%) within a reasonable formation energy of -78 kJ mol-1, at room temperature, can be easily achievable, thus making Mg2FeH6 as potential material for practical H2 storage applications. Copyright © 2014, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.

  14. First-principles predictions of potential hydrogen storage materials: Nanosized Ti(core)/Mg(shell) hydrides

    Science.gov (United States)

    Tao, S. X.; Notten, P. H. L.; van Santen, R. A.; Jansen, A. P. J.

    2011-05-01

    MgH2 is one of the most promising hydrogen storage materials. However MgH2 is thermodynamicly too stable, leading to a too high desorption temperature of 300°C at atmospheric pressure, which is a major impediment for practical applications. In this study, aiming to tune the thermodynamic stability of the MgH2, nanosized two-dimensional Mg/Ti/Mg sandwich and three-dimensional Ti(core)/Mg(shell) hydrides have been investigated by using density functional theory calculations. For both structures, four types of hydrogen atoms can be distinguished: on the surface of the Mg (Hsurf), within the Mg (HMg), at the Mg/Ti interface (HMgTi), and within the Ti (HTi). For the dehydrogenation reaction, the hydrogen desorption from the hydride is in the order Hsurf, HMg, HMgTi, HTi. The desorption energy of Hsurf is unexpectedly high. As expected, due to the well-preserved fluorite structure of the partially hydrogenated hydride, the desorption energy of HMg is significantly lower than that of bulk rutile MgH2. The further desorption of HMgTi and HTi becomes more difficult due to the strong Ti-H bonding. We propose that partial hydrogenation without adsorption of Hsurf and partial dehydrogenation without desorption of HMgTi and HTi would keep the fluorite symmetry with its favorable thermodynamics. The reversible hydrogen capacity (HMg) of the Mg/Ti/Mg sandwich structure is low, whereas the reversible hydrogen capacity of the Ti(core)/Mg(shell) is calculated to be reasonable high. Our results predicted Ti(core)/Mg(shell) structures are potential useful materials for hydrogen storage application.

  15. Investigation and characterization of ball-milled magnesium-based hydrides for hydrogen storage materials

    Science.gov (United States)

    Yang, Jing

    2011-12-01

    Three alloys are prepared through mechanical alloying and the hydrogen storage properties have been investigated systematically. In Mg-Ni and Mg-Ni-Fe alloys, the main binary alloy phase is Mg2Ni, while in Mg-Ni-Fe-Ti alloys, NiTi, FeTi are also found as the main binary phases beside Mg 2Ni. The hydrogen absorption capacities of the three alloys are 2.9wt%, 2.2wt% and 2.3wt% respectively. Absorption content increases with the increasing of milling time, which also increases the amorphous degree of the alloys. The amorphous degree increasing is unfavorable to improve hydrogen storage capacity. Longer milling time will contribute to a higher hydriding/dehydriding rate at a constant temperature. The alloys exhibit a different hydriding behavior when temperature was increased from 473K to 673K. The alloys particles became finer after long time milling, which led to a decrease in the different distance of the hydrogen atoms.

  16. Designing Meta Material Slabs Exhibiting Negative Refraction Using Topology Optimization

    DEFF Research Database (Denmark)

    Christiansen, Rasmus Ellebæk; Sigmund, O.

    2016-01-01

    This paper proposes a topology optimization based approach for designing meta materials exhibiting a desired negative refraction with high transmission at a given angle of incidence and frequency. The approach considers a finite slab of meta material consisting of axis-symmetric designable unit...

  17. CRADA (AL-C-2009-02) Final Report: Phase I. Lanthanum-based Start Materials for Hydride Batteries

    Energy Technology Data Exchange (ETDEWEB)

    Gschneidner, Jr., Karl [Ames Laboratory; Schmidt, Frederick [Ames Laboratory; Frerichs, A. E. [Ames Laboratory; Ament, Katherine A. [Ames Laboratory

    2013-05-01

    The purpose of Phase I of this work is to focus on developing a La-based start material for making nickel-metal (lanthanum)-hydride batteries based on our carbothermic-silicon process. The goal is to develop a protocol for the manufacture of (La{sub 1-x}R{sub x})(Ni{sub 1-y}M{sub y})(Si{sub z}), where R is a rare earth metal and M is a non-rare earth metal, to be utilized as the negative electrode in nickel-metal hydride (NiMH) rechargeable batteries.

  18. Synthesis of Renewable Energy Materials, Sodium Aluminum Hydride by Grignard Reagent of Al

    Directory of Open Access Journals (Sweden)

    Jun-qin Wang

    2015-01-01

    Full Text Available The research on hydrogen generation and application has attracted widespread attention around the world. This paper is to demonstrate that sodium aluminum hydride can be synthesized under simple and mild reaction condition. Being activated through organics, aluminum powder reacts with hydrogen and sodium hydride to produce sodium aluminum hydride under atmospheric pressure. The properties and composition of the sample were characterized by FTIR, XRD, SEM, and so forth. The results showed that the product through this synthesis method is sodium aluminum hydride, and it has higher purity, perfect crystal character, better stability, and good hydrogen storage property. The reaction mechanism is also discussed in detail.

  19. Pyrometallurgical Extraction of Valuable Elements in Ni-Metal Hydride Battery Electrode Materials

    Science.gov (United States)

    Jiang, Yin-ju; Deng, Yong-chun; Bu, Wen-gang

    2015-10-01

    Gas selective reduction-oxidation (redox) and melting separation were consecutively applied to electrode materials of AB5-type Ni-metal hydride batteries leading to the production of a Ni-Co alloy and slag enriched with rare earth oxides (REO). In the selective redox process, electrode materials were treated with H2/H2O at 1073 K and 1173 K (800 °C and 900 °C). Active elements such as REs, Al, and Mn were oxidized whereas relatively inert elements such as Ni and Co were transformed into their elemental states in the treated materials. SiO2 and Al2O3 powders were added into the treated materials as fluxes which were then melted at 1823 K (1550 °C) to yield a Ni-Co alloy and a REO-SiO2-Al2O3-MnO slag. The high-purity Ni-Co alloy produced can be used as a raw material for AB5-type hydrogen-storage alloy. The REO content in slag was very high, i.e., 48.51 pct, therefore it can be used to recycle rare earth oxides.

  20. Exhibition

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    China[Guangzheu] International Trade Fair for Home Textiles Date:March 18th- March 21st,2011 Venue:China Import and Export Fair Complex(Guangzhou,China) Organizers:China National Textile&Apparel Council China Foreign Trade Center(Group) China Home Textile Association China Foreign Trade Guangzhou Exhibition Corp.

  1. Exhibition

    CERN Multimedia

    Staff Association

    2017-01-01

    A Look of Hope Islam Mahmoud Sweity From 19 to 30 June 2017 CERN Meyrin, Main Building Islam Mahmoud Sweity Islam Mahmoud Sweity was born in 1997 at Beit Awwa, Palestine. She is currently following a course to get an Art diploma of Painting at the college of Fine Arts at An-Najah National University under the supervision of Esmat Al As'aad. Her portraits, landscapes and still life paintings are full of life and shining colours. Charged of emotional empathy they catch the attention of the viewer and are reminding us that life is beautiful and worth living in spite of all difficulties we have to go through. She participated in many exhibitions and has exposed her drawings in 2015 at CERN and in France in the framework of the exhibition "The Origin“, and in 2017 in the Former Yugoslav Republic of Macedonia, Palestina and Jordan. In this exhibition the oil paintings made in the past year will be presented. For more information : staff.association@cern.ch | T&eacu...

  2. Properties of nanoscale metal hydrides.

    Science.gov (United States)

    Fichtner, Maximilian

    2009-05-20

    Nanoscale hydride particles may exhibit chemical stabilities which differ from those of a macroscopic system. The stabilities are mainly influenced by a surface energy term which contains size-dependent values of the surface tension, the molar volume and an additional term which takes into account a potential reduction of the excess surface energy. Thus, the equilibrium of a nanoparticular hydride system may be shifted to the hydrogenated or to the dehydrogenated side, depending on the size and on the prefix of the surface energy term of the hydrogenated and dehydrogenated material. Additional complexity appears when solid-state reactions of complex hydrides are considered and phase segregation has to be taken into account. In such a case the reversibility of complex hydrides may be reduced if the nanoparticles are free standing on a surface. However, it may be enhanced if the system is enclosed by a nanoscale void which prevents the reaction partners on the dehydrogenated side from diffusing away from each other. Moreover, the generally enhanced diffusivity in nanocrystalline systems may lower the kinetic barriers for the material's transformation and, thus, facilitate hydrogen absorption and desorption.

  3. Exhibition

    CERN Multimedia

    Staff Association

    2016-01-01

    Encounters Hanne Blitz From February 1st to 12th 2016 CERN Meyrin, Main Building What is our reaction to a first encounter with a tourist attraction? Contemporary Dutch painter Hanne Blitz captures visitors' responses to art and architecture, sweeping vistas and symbolic memorials. Encounters, a series of oil paintings curated specially for this CERN exhibition, depicts tourists visiting cultural highlights around the world. A thought-provoking journey not to be missed, and a tip of the hat to CERN's large Hadron Collider.

  4. Materials considerations in the design of a metal-hydride heat pump for an advanced extravehicular mobility unit

    Science.gov (United States)

    Liebert, B. E.

    1986-01-01

    A metal-hydride heat pump (HHP) has been proposed to provide an advanced regenerable nonventing thermal sink for the liquid-cooled garment worn during an extravehicular activity (EVA). The conceptual design indicates that there is a potential for significant advantages over the one presently being used by shuttle crew personnel as well as those that have been proposed for future use with the space station. Compared to other heat pump designs, a HHP offers the potential for extended use with no electrical power requirements during the EVA. In addition, a reliable, compact design is possible due to the absence of moving parts other than high-reliability check valves. Because there are many subtleties in the properties of metal hydrides for heat pump applications, it is essential that a prototype hydride heat pump be constructed with the selected materials before a committment is made for the final design. Particular care must be given to the evaporator heat exchanger worn by the astronaut since the performance of hydride heat pumps is generally heat transfer limited.

  5. High H- ionic conductivity in barium hydride

    Science.gov (United States)

    Verbraeken, Maarten C.; Cheung, Chaksum; Suard, Emmanuelle; Irvine, John T. S.

    2015-01-01

    With hydrogen being seen as a key renewable energy vector, the search for materials exhibiting fast hydrogen transport becomes ever more important. Not only do hydrogen storage materials require high mobility of hydrogen in the solid state, but the efficiency of electrochemical devices is also largely determined by fast ionic transport. Although the heavy alkaline-earth hydrides are of limited interest for their hydrogen storage potential, owing to low gravimetric densities, their ionic nature may prove useful in new electrochemical applications, especially as an ionically conducting electrolyte material. Here we show that barium hydride shows fast pure ionic transport of hydride ions (H-) in the high-temperature, high-symmetry phase. Although some conductivity studies have been reported on related materials previously, the nature of the charge carriers has not been determined. BaH2 gives rise to hydride ion conductivity of 0.2 S cm-1 at 630 °C. This is an order of magnitude larger than that of state-of-the-art proton-conducting perovskites or oxide ion conductors at this temperature. These results suggest that the alkaline-earth hydrides form an important new family of materials, with potential use in a number of applications, such as separation membranes, electrochemical reactors and so on.

  6. Designing Meta Material Slabs Exhibiting Negative Refraction Using Topology Optimization

    DEFF Research Database (Denmark)

    Christiansen, Rasmus Ellebæk; Sigmund, O.

    2016-01-01

    This paper proposes a topology optimization based approach for designing meta materials exhibiting a desired negative refraction with high transmission at a given angle of incidence and frequency. The approach considers a finite slab of meta material consisting of axis-symmetric designable unit...... cells subjected to an exterior field. The unit cell is designed to achieve the desired properties based on tailoring the response of the meta material slab underthe exterior field. The approach is directly applicable to physical problems modeled by the Helmholtz equation, such as acoustic, elastic...... and electromagnetic wave problems. Acoustic meta materials with unit cell size on the order of half the wave length are considered as examples. Optimized designs are presented and their performance under varying frequency and angle of incidence is investigated....

  7. Exhibition

    CERN Multimedia

    Staff Association

    2017-01-01

    Sintropie Flavio Pellegrini From 13 to 24 March 2017 CERN Meyrin, Main Building Energia imprigionata - Flavio Pellegrini. The exhibition is composed by eleven wood artworks with the expression of movement as theme. The artworks are the result of harmonics math applied to sculpture. The powerful black colour is dominated by the light source, generating reflexes and modulations. The result is a continuous variation of perspective visions. The works generate, at a first approach, an emotion of mystery and incomprehension, only a deeper contemplation lets one discover entangling and mutative details, evidencing the elegance of the lines and letting the meaning emerge. For more information : staff.association@cern.ch | Tél: 022 766 37 38

  8. Exhibition

    CERN Multimedia

    Staff Association

    2016-01-01

    The Elementary Particles of Painting Alfonso Fratteggiani Bianchi and Ermanno Imbergamo From September 26 to October 7, 2016 CERN Meyrin, Main Building With intentions similar to those of CERN physicists, the artist Alfonso Fratteggiani Bianchi investigates the color pigment, studying its interaction with light and with the support on which it is deposited. He creates monochrome paintings by spreading the color pigment in the pure state on stones, without using glue or any other type of adhesive. With intentions similar to artists, the physicist Ermanno Imbergamo investigates the use of luminescent wavelength shifters, materials commonly used in Particle Physics, for art. He creates other monochrome artworks, which disclose further aspects of interaction among light, color pigments and support. For more information: staff.association@cern.ch | Tel: 022 767 28 19

  9. Effect of Preparation Methods on Hydriding Properties of La1.5Mg17 Ni0.5 Composite Materials

    Institute of Scientific and Technical Information of China (English)

    Jiang Lijun; Xiao Fang; Li Qian; Lin Qin; Zhan Feng; Chou Kouchih; Lei Tingquan

    2004-01-01

    La1.5Mg17Ni0.5 hydrogen storage materials were prepared by hydriding combustion synthesis (HCS) and mechanical alloying (MA) method respectively. The experimental results show that the hydrogen absorption properties of La1.5Mg17Nio.5 prepared by MA are better than that by HCS. La1.5Mg17Nio.5 prepared by MA can absorb 6.73 mass% hydrogen at 523 K within 1 min, and 4.92 mass% hydrogen at 423 K. The improvement of hydriding properties of La1.5Mg17Ni0.5alloy prepared by MA can be ascribed to the formation of nano-crystalline and defects during the mechanical alloying.

  10. Research into processes of production of hydrides of materials containing rare-earth metals and their corrosion

    Science.gov (United States)

    Sofronov, V. L.; Kartashov, E. Y.; Molokov, P. B.; Zhiganov, A. N.; Kalaev, M. E.

    2017-01-01

    Production of permanent magnets on basis of rare earth elements (REE) is implemented by means of powder metallurgy, therefore a technologically important operation is the multistage mechanical crushing of materials to the extent of domains. The promising technique of crushing of magnetic materials is their consistent hydrogenation-dehydrogenation that allows obtaining nano-dispersed powders which are stable enough in air. Hydrogenation apparatuses, as opposed to conventional grinding machines, do not comprise motion works and their producing capacity is much higher. Hydrogenation process does not require any additional preparation of materials and it excludes undermilling and overmilling as well as material oxidation. The paper presents the results of investigation on the temperature effect on the hydrogenation process of Nd-Fe alloys. The study results on the corrosion stability of ligature hydrides under various conditions are also given. Kinetic parameters of the hydrogenation process of ligatures are determined. The phase composition of corrosion products is detected. Guidelines on hydride powder storage are given.

  11. Structural and kinetic studies of metal hydride hydrogen storage materials using thin film deposition and characterization techniques

    Science.gov (United States)

    Kelly, Stephen Thomas

    Hydrogen makes an attractive energy carrier for many reasons. It is an abundant chemical fuel that can be produced from a wide variety of sources and stored for very long periods of time. When used in a fuel cell, hydrogen emits only water at the point of use, making it very attractive for mobile applications such as in an automobile. Metal hydrides are promising candidates for on-board reversible hydrogen storage in mobile applications due to their very high volumetric storage capacities---in most cases exceeding even that of liquid hydrogen. The United States Department of Energy (DOE) has set fuel system targets for an automotive hydrogen storage system, but as of yet no single material meets all the requirements. In particular, slow reaction kinetics and/or inappropriate thermodynamics plague many metal hydride hydrogen storage materials. In order to engineer a practical material that meets the DOE targets, we need a detailed understanding of the kinetic and thermodynamic properties of these materials during the phase change. In this work I employed sputter deposited thin films as a platform to study materials with highly controlled chemistry, microstructure and catalyst placement using thin film characterization techniques such as in situ x-ray diffraction (XRD) and neutron reflectivity. I observed kinetic limitations in the destabilized Mg2Si system due to the slow diffusion of the host Mg and Si atoms while forming separate MgH2 and Si phases. Conversely, I observed that the presence of Al in the Mg/Al system inhibits hydrogen diffusion while the host Mg and Al atoms interdiffuse readily, allowing the material to fall into a kinetic and/or thermodynamic trap by forming intermetallic compounds such as Mg17Al 12. By using in situ XRD to analyze epitaxial Mg films grown on (001) oriented Al2O3 substrates I observed hydride growth consistent with a model of a planar hydride layer growing into an existing metal layer. Subsequent film cycling changes the hydrogen

  12. Metal hydrides used as negative electrode materials for Li-ion batteries

    Science.gov (United States)

    Sartori, Sabrina; Cuevas, Fermin; Latroche, Michel

    2016-02-01

    Energy is a key issue for future generation. Researches are conducted worldwide to develop new efficient means for energy conversion and storage. Electrochemical storage is foreseen as an efficient way to handle intermittent renewable energy production. The most advanced batteries are nowadays based on lithium-ion technology though their specific capacities should be significantly increased to bring solution to mass storage. Conversion reactions are one way to step forward larger capacities at the anode. We here review the possibility to use metallic or complex hydrides as negative electrode using conversion reaction of hydride with lithium. Moreover, promising alloying of lithium with the metallic species might provide additional reversible capacities. Both binary and ternary systems are reviewed and results are compared in the frame of the electrochemical application.

  13. Metal hydrides as electrode/catalyst materials for oxygen evolution/reduction in electrochemical devices

    Science.gov (United States)

    Bugga, Ratnakumar V. (Inventor); Halpert, Gerald (Inventor); Fultz, Brent (Inventor); Witham, Charles K. (Inventor); Bowman, Robert C. (Inventor); Hightower, Adrian (Inventor)

    1997-01-01

    An at least ternary metal alloy of the formula, AB.sub.(5-Y)X(.sub.y), is claimed. In this formula, A is selected from the rare earth elements, B is selected from the elements of groups 8, 9, and 10 of the periodic table of the elements, and X includes at least one of the following: antimony, arsenic, and bismuth. Ternary or higher-order substitutions, to the base AB.sub.5 alloys, that form strong kinetic interactions with the predominant metals in the base metal hydride are used to form metal alloys with high structural integrity after multiple cycles of hydrogen sorption.

  14. Hydrogen Outgassing from Lithium Hydride

    Energy Technology Data Exchange (ETDEWEB)

    Dinh, L N; Schildbach, M A; Smith, R A; Balazs1, B; McLean II, W

    2006-04-20

    Lithium hydride is a nuclear material with a great affinity for moisture. As a result of exposure to water vapor during machining, transportation, storage and assembly, a corrosion layer (oxide and/or hydroxide) always forms on the surface of lithium hydride resulting in the release of hydrogen gas. Thermodynamically, lithium hydride, lithium oxide and lithium hydroxide are all stable. However, lithium hydroxides formed near the lithium hydride substrate (interface hydroxide) and near the sample/vacuum interface (surface hydroxide) are much less thermally stable than their bulk counterpart. In a dry environment, the interface/surface hydroxides slowly degenerate over many years/decades at room temperature into lithium oxide, releasing water vapor and ultimately hydrogen gas through reaction of the water vapor with the lithium hydride substrate. This outgassing can potentially cause metal hydriding and/or compatibility issues elsewhere in the device. In this chapter, the morphology and the chemistry of the corrosion layer grown on lithium hydride (and in some cases, its isotopic cousin, lithium deuteride) as a result of exposure to moisture are investigated. The hydrogen outgassing processes associated with the formation and subsequent degeneration of this corrosion layer are described. Experimental techniques to measure the hydrogen outgassing kinetics from lithium hydride and methods employing the measured kinetics to predict hydrogen outgassing as a function of time and temperature are presented. Finally, practical procedures to mitigate the problem of hydrogen outgassing from lithium hydride are discussed.

  15. Complex and liquid hydrides for energy storage

    Energy Technology Data Exchange (ETDEWEB)

    Callini, Elsa; Atakli, Zuleyha Özlem Kocabas; Hauback, Bjørn C.; Orimo, Shin-ichi; Jensen, Craig; Dornheim, Martin; Grant, David; Cho, Young Whan; Chen, Ping; Hjörvarsson, Bjørgvin; de Jongh, Petra; Weidenthaler, Claudia; Baricco, Marcello; Paskevicius, Mark; Jensen, Torben R.; Bowden, Mark E.; Autrey, Thomas S.; Züttel, Andreas

    2016-03-10

    The research on complex hydrides for hydrogen storage was imitated by the discovery of Ti as a hydrogen sorption catalyst in NaAlH4 by Boris Bogdanovic in 1996. A large number of new complex hydride materials in various forms and combinations have been synthesized and characterized and the knowledge on the properties of complex hydrides and the synthesis methods has grown enormously since then. A significant part of the research groups active in the field of complex hydrides are collaborators in the IEA task 32. This paper reports about the important issues in the field of the complex hydride research, i.e. the synthesis of borohydrides, the thermodynamics of complex hydrides and their thermodynamic properties, the effects of size and confinement, the hydrogen sorption mechanism and the complex hydride composites as well as the properties of liquid complex hydrides. This paper is the result of the collaboration of several groups and excellent summary of the recent achievements.

  16. Multivariate optimization and simultaneous determination of hydride and non-hydride-forming elements in samples of a wide pH range using dual-mode sample introduction with plasma techniques: application on leachates from cement mortar material.

    Science.gov (United States)

    Mulugeta, Mesay; Wibetoe, Grethe; Engelsen, Christian J; Asfaw, Alemayehu

    2009-02-01

    Analytical methods have been developed for the simultaneous determination of hydride-forming (As, Sb) and non-hydride-forming (Cr, Mo, V) elements in aqueous samples of a wide pH range (pH 3-13). The methods used dual-mode (DM) sample introduction with ICP-AES and ICP-MS instruments. The effect of selected experimental variables, i.e., sample pH and concentrations of HNO(3), thiourea, and NaBH(4), were studied in a multivariate way using face-centered central composite design (FC-CCD). Compromised optimum values of the experimental parameters were identified using a response optimizer. The statistically found optimum values were verified experimentally. The methods provided improved sensitivities for the hydride-forming elements compared with the respective conventional nebulization (Neb) systems by factors of 67 (As) and 64 (Sb) for ICP-AES and 36 (As) and 54 (Sb) for ICP-MS. Slight sensitivity improvements were also observed for the non-hydride-forming elements. The limits of detection (LOD) of As and Sb were lowered, respectively, to 0.8 and 0.9 microg L(-1) with the DM-ICP-AES system and to 0.01 and 0.02 microg L(-1) with the DM-ICP-MS system. The short-term stabilities of both methods were between 2.1 and 5.4%. The methods were applied for the analysis of leachates of a cement mortar material prepared in the pH range 3-13. The elemental concentration of the leachates determined by the two DM methods were statistically compared with the values obtained from Neb-ICP-MS analysis; the values showed good agreement at the 95% confidence level. Quantitative spike recoveries were obtained for the analytes from most of the leachates using both DM methods.

  17. Hydrogen-storing hydride complexes

    Science.gov (United States)

    Srinivasan, Sesha S [Tampa, FL; Niemann, Michael U [Venice, FL; Goswami, D Yogi [Tampa, FL; Stefanakos, Elias K [Tampa, FL

    2012-04-10

    A ternary hydrogen storage system having a constant stoichiometric molar ratio of LiNH.sub.2:MgH.sub.2:LiBH.sub.4 of 2:1:1. It was found that the incorporation of MgH.sub.2 particles of approximately 10 nm to 20 nm exhibit a lower initial hydrogen release temperature of 150.degree. C. Furthermore, it is observed that the particle size of LiBNH quaternary hydride has a significant effect on the hydrogen sorption concentration with an optimum size of 28 nm. The as-synthesized hydrides exhibit two main hydrogen release temperatures, one around 160.degree. C. and the other around 300.degree. C., with the main hydrogen release temperature reduced from 310.degree. C. to 270.degree. C., while hydrogen is first reversibly released at temperatures as low as 150.degree. C. with a total hydrogen capacity of 6 wt. % to 8 wt. %. Detailed thermal, capacity, structural and microstructural properties have been demonstrated and correlated with the activation energies of these materials.

  18. Hydride development for hydrogen storage

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, G.J.; Guthrie, S.E.; Bauer, W.; Yang, N.Y.C. [Sandia National Lab., Livermore, CA (United States); Sandrock, G. [SunaTech, Inc., Ringwood, NJ (United States)

    1996-10-01

    The purpose of this project is to develop and demonstrate improved hydride materials for hydrogen storage. The work currently is organized into four tasks: hydride development, bed fabrication, materials support for engineering systems, and IEA Annex 12 activities. At the present time, hydride development is focused on Mg alloys. These materials generally have higher weight densities for storing hydrogen than rare earth or transition metal alloys, but suffer from high operating temperatures, slow kinetic behavior and material stability. The authors approach is to study bulk alloy additions which increase equilibrium overpressure, in combination with stable surface alloy modification and particle size control to improve kinetic properties. This work attempts to build on the considerable previous research in this area, but examines specific alloy systems in greater detail, with attention to known phase properties and structures. The authors have found that specific phases can be produced which have significantly improved hydride properties compared to previous studies.

  19. Synthesis and characterization of light-metal-based hydrides for hydrogen storage materials

    Science.gov (United States)

    Choi, Young Joon

    In the past few years, research and development on the use of hydrogen as a fuel for various applications have gathered momentum in response to the demand for cleaner fuels and substitutes to fossil fuels. The use of hydrogen for automobiles, one of the most important applications of hydrogen fuel, requires an on-board hydrogen storage system that can be regenerated on-board or off-board. However, one of the key obstacles to this application is that current available storage technologies do not meet the capacity and efficiency requirements for achieving the commercial viability. In this study, two solid-state hydrogen storage systems, i.e. Mg-Ti-H and Li-Al-B-H, are investigated. Among a variety of MgH2/TiH2 ratios and milling conditions, the 10MgH2/TiH2 sample milled in a dual-planetary high-energy mill for 4 hours under 15 MPa hydrogen pressure were found to be the optimal materials, displaying a substantially reduced activation energy and enthalpy change for MgH2 dehydrogenation. PCT analysis demonstrated that the system showed excellent cycle stability attributed to the inhibition of coarsening by TiH2. Lithium borohydride (LiBH4) is one of the promising candidates as a superior hydrogen storage because of its high theoretical storage capacity (18.5 wt.%). In this work, the promising hydrogen storage properties of combined systems of Li3AlH6/LiBH4 and Al/LiBH 4, exhibiting the favorable formation of AlB2 during dehydrogenation, were presented based on TGA and XRD analyses. Additionally, the characterization of the intermediate and final products of the dehydrogenation and rehydrogenation of the above systems by solid-state NMR analyses were presented. This has verified and further clarified the paths and intermediate products of the reversible hydrogen release and uptake by the mixtures.

  20. Development of a used fuel cladding damage model incorporating circumferential and radial hydride responses

    Science.gov (United States)

    Chen, Qiushi; Ostien, Jakob T.; Hansen, Glen

    2014-04-01

    At the completion of the fuel drying process, used fuel Zry4 cladding typically exhibits a significant population of δ-hydride inclusions. These inclusions are in the form of small platelets that are generally oriented both circumferentially and radially within the cladding material. There is concern that radially-oriented hydride inclusions may weaken the cladding material and lead to issues during used fuel storage and transportation processes. A high fidelity model of the mechanical behavior of hydrides has utility in both designing fuel cladding to be more resistant to this hydride-induced weakening and also in suggesting modifications to drying, storage, and transport operations to reduce the impact of hydride formation and/or the avoidance of loading scenarios that could overly stress the radial inclusions. We develop a mechanical model for the Zry4-hydride system that, given a particular morphology of hydride inclusions, allows the calculation of the response of the hydrided cladding under various loading scenarios. The model treats the Zry4 matrix material as J2 elastoplastic, and treats the hydrides as platelets oriented in predefined directions (e.g., circumferentially and radially). The model is hosted by the Albany analysis framework, where a finite element approximation of the weak form of the cladding boundary value problem is solved using a preconditioned Newton-Krylov approach. Instead of forming the required system Jacobian operator directly or approximating its action with a differencing operation, Albany leverages the Trilinos Sacado package to form the Jacobian via automatic differentiation. We present results that describe the performance of the model in comparison with as-fabricated Zry4 as well as HB Robinson fuel cladding. Further, we also present performance results that demonstrate the efficacy of the overall solution method employed to host the model.

  1. Development of a used fuel cladding damage model incorporating circumferential and radial hydride responses

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Qiushi, E-mail: qiushi@clemson.edu [Glenn Department of Civil Engineering, Clemson University, Clemson, SC 29634 (United States); Ostien, Jakob T., E-mail: jtostie@sandia.gov [Mechanics of Materials Dept. 8256, Sandia National Laboratories, P.O. Box 969, Livermore, CA 94551-0969 (United States); Hansen, Glen, E-mail: gahanse@sandia.gov [Computational Multiphysics Dept. 1443, Sandia National Laboratories, P.O. Box 5800, Albuquerque, NM 87185-1321 (United States)

    2014-04-01

    At the completion of the fuel drying process, used fuel Zry4 cladding typically exhibits a significant population of δ-hydride inclusions. These inclusions are in the form of small platelets that are generally oriented both circumferentially and radially within the cladding material. There is concern that radially-oriented hydride inclusions may weaken the cladding material and lead to issues during used fuel storage and transportation processes. A high fidelity model of the mechanical behavior of hydrides has utility in both designing fuel cladding to be more resistant to this hydride-induced weakening and also in suggesting modifications to drying, storage, and transport operations to reduce the impact of hydride formation and/or the avoidance of loading scenarios that could overly stress the radial inclusions. We develop a mechanical model for the Zry4-hydride system that, given a particular morphology of hydride inclusions, allows the calculation of the response of the hydrided cladding under various loading scenarios. The model treats the Zry4 matrix material as J{sub 2} elastoplastic, and treats the hydrides as platelets oriented in predefined directions (e.g., circumferentially and radially). The model is hosted by the Albany analysis framework, where a finite element approximation of the weak form of the cladding boundary value problem is solved using a preconditioned Newton–Krylov approach. Instead of forming the required system Jacobian operator directly or approximating its action with a differencing operation, Albany leverages the Trilinos Sacado package to form the Jacobian via automatic differentiation. We present results that describe the performance of the model in comparison with as-fabricated Zry4 as well as HB Robinson fuel cladding. Further, we also present performance results that demonstrate the efficacy of the overall solution method employed to host the model.

  2. A computational study on novel carbon-based lithium materials for hydrogen storage and the role of carbon in destabilizing complex metal hydrides

    Science.gov (United States)

    Ghouri, Mohammed Minhaj

    One of the major impediments in the way of the realization of hydrogen economy is the storage of hydrogen gas. This involves both the storage for stationary applications as well as that of storage onboard vehicles for transportation applications. For obvious reasons, the system targets for the automotive applications are more stringent. There are many approaches which are still being researched for the storage of hydrogen for vehicular applications. Among them are the high pressure storage of hydrogen gas and the storing of liquid hydrogen in super insulated cryogenic cylinders. While both of them have been demonstrated practically, the high stakes of their respective shortcomings is hindering the wide spread application of these methods. Thus different solid state storage materials are being looked upon as promising solutions. Metal hydrides are a class of solid state hydrogen storage materials which are formed by the reaction of metals or their alloys with hydrogen. These materials have very good gravimetric storage densities, but are very stable thermodynamically to desorp hydrogen at room temperatures. Research is going on to improve the thermodynamics and the reaction kinetics of different metal hydrides. This dissertation tries to address the problem of high thermodynamic stability of the existing metal hydrides in two ways. First, a novel carbon based lithium material is proposed as a viable storage option based on its promising thermodynamic heat of formation. Pure beryllium (Be) clusters and the carbon-beryllium (C-Be) clusters are studied in detail using the Density Functional Theory (DFT) computational methods. Their interactions with hydrogen molecule are further studied. The results of these calculations indicate that hydrogen is more strongly physisorbed to the beryllium atom in the C-Be cluster, rather than to a carbon atom. After these initial studies, we calculated the geometries and the energies of more than 100 different carbon based lithium

  3. Probing the cerium/cerium hydride interface using nanoindentation

    Energy Technology Data Exchange (ETDEWEB)

    Brierley, Martin, E-mail: martin.brierley@awe.co.uk [Atomic Weapons Establishment, Aldermaston, Berkshire RG7 4PR (United Kingdom); University of Manchester, Manchester M13 9PL (United Kingdom); Knowles, John, E-mail: john.knowles@awe.co.uk [Atomic Weapons Establishment, Aldermaston, Berkshire RG7 4PR (United Kingdom)

    2015-10-05

    Highlights: • A disparity exists between the minimum energy and actual shape of a cerium hydride. • Cerium hydride is found to be harder than cerium metal by a ratio of 1.7:1. • A zone of material under compressive stress was identified surrounding the hydride. • No distribution of hardness was apparent within the hydride. - Abstract: A cerium hydride site was sectioned and the mechanical properties of the exposed phases (cerium metal, cerium hydride, oxidised cerium hydride) were measured using nanoindentation. An interfacial region under compressive stress was observed in the cerium metal surrounding a surface hydride that formed as a consequence of strain energy generated by the volume expansion associated with precipitation of the hydride phase.

  4. Activation and discharge kinetics of metal hydride electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Johnsen, Stein Egil

    2003-07-01

    Potential step chronoamperometry and Electrochemical Impedance Spectroscopy (eis) measurements were performed on single metal hydride particles. For the {alpha}-phase, the bulk diffusion coefficient and the absorption/adsorption rate parameters were determined. Materials produced by atomisation, melt spinning and conventional casting were investigated. The melt spun and conventional cast materials were identical and the atomised material similar in composition. The particles from the cast and the melt spun material were shaped like parallelepipeds. A corresponding equation, for this geometry, for diffusion coupled to an absorption/adsorption reaction was developed. It was found that materials produced by melt spinning exhibited lower bulk diffusion (1.7E-14 m2/s) and absorption/adsorption reaction rate (1.0E-8 m/s), compared to materials produced by conventionally casting (1.1E-13 m2/s and 5.5E-8 m/s respectively). In addition, the influence of particle active surface and relative diffusion length were discussed. It was concluded that there are uncertainties connected to these properties, which may explain the large distribution in the kinetic parameters measured on metal hydride particles. Activation of metal hydride forming materials has been studied and an activation procedure, for porous electrodes, was investigated. Cathodic polarisation of the electrode during a hot alkaline surface treatment gave the maximum discharge capacity on the first discharge of the electrode. The studied materials were produced by gas atomisation and the spherical shape was retained during the activation. Both an AB{sub 5} and an AB{sub 2} alloy was successfully activated and discharge rate properties determined. The AB{sub 2} material showed a higher maximum discharge capacity, but poor rate properties, compared to the AB{sub 5} material. Reduction of surface oxides, and at the same time protection against corrosion of active metallic nickel, can explain the satisfying results of

  5. Boron Hydrides

    Science.gov (United States)

    1946-07-01

    of direct interest could be b.P.4d. ’Thus the discovory of a now proj.ect, since silano is probably too readily infla-zmablo for practical usc’ this...devoted, ho specc4fie compounds vhitih a’-ould be tocdte at prescnt arc: nron tiy * silano , %;2.SiFi3 , diothyl sila~no, (C2 115 )2 Si112, mono r.-rop; ! (n...Bcrohydrido or Li h.... I .A-4A- The prepuation of Silano med of Stannane by the interaction or lithium aluzirun hydride v-ithl silicon tetrtchiorido and

  6. Exhibition of circular Bragg phenomenon by hyperbolic, dielectric, structurally chiral materials

    Science.gov (United States)

    Lakhtakia, Akhlesh

    2014-01-01

    The relative permittivity dyadic of a dielectric structurally chiral material (SCM) varies helicoidally along a fixed direction; in consequence, the SCM exhibits the circular Bragg phenomenon, which is the circular-polarization-selective reflection of light. The introduction of hyperbolicity in an SCM-by making either one or two but not all three eigenvalues of the relative permittivity dyadic acquire negative real parts-does not eliminate the circular Bragg phenomenon, but significantly alters the regime for its exhibition. Significantly wider circular-polarization-sensitive stopbands may be exhibited by hyperbolic SCMs in comparison to nonhyperbolic SCMs. Physical vapor deposition techniques appear to be suitable to fabricate hyperbolic SCMs.

  7. Anodematerials for Metal Hydride Batteries

    DEFF Research Database (Denmark)

    Jensen, Jens Oluf

    1997-01-01

    This report describes the work on development of hydride forming alloys for use as electrode materials in metal hydride batteries. The work has primarily been concentrated on calcium based alloys derived from the compound CaNi5. This compound has a higher capacity compared with alloys used in today......’s hydride batteries, but a much poorer stability towards repeated charge/discharge cycling. The aim was to see if the cycleability of CaNi5 could be enhanced enough by modifications to make the compound a suitable electrode material. An alloying method based on mechanical alloying in a planetary ball mill...... by annealing at 700°C for 12 hours. The alloys appeared to be nanocrystalline with an average crystallite size around 10 nm before annealing. Special steel containers was developed for the annealing of the metal powders in inert atmosphere. The use of various annealing temperatures was investigated...

  8. New synthesis route for ternary transition metal amides as well as ultrafast amide-hydride hydrogen storage materials.

    Science.gov (United States)

    Cao, Hujun; Santoru, Antonio; Pistidda, Claudio; Richter, Theresia M M; Chaudhary, Anna-Lisa; Gizer, Gökhan; Niewa, Rainer; Chen, Ping; Klassen, Thomas; Dornheim, Martin

    2016-04-14

    K2[Mn(NH2)4] and K2[Zn(NH2)4] were successfully synthesized via a mechanochemical method. The mixture of K2[Mn(NH2)4] and LiH showed excellent rehydrogenation properties. In fact, after dehydrogenation K2[Mn(NH2)4]-8LiH fully rehydrogenates within 60 seconds at ca. 230 °C and 5 MPa of H2. This is one of the fastest rehydrogenation rates in amide-hydride systems known to date. This work also shows a strategy for the synthesis of transition metal nitrides by decomposition of the mixtures of M[M'(NH2)n] (where M is an alkali or alkaline earth metal and M' is a transition metal) and metal hydrides.

  9. Next Generation Energetic Materials: New Cluster Hydrides and Metastable Alloys of Aluminum in Very Low Oxidation States

    Science.gov (United States)

    2016-10-01

    studies (M = Mg, Au, Sn, Mo, Ni, Zn) that preliminarily show similarities to the solution chemistry (Fig. 1c). These results show that AlM hydrides and...oxidation chemistry and thermodynamics. Our studies on the oxidation of Li2Al3(PPh2)61- showed that initial reactivity occurs at the reduced...nanoparticle nucleation on functionalized graphene surfactants from aluminum monochloride solutions. This data shows a strong affinity of AlCl units for

  10. An improved method for the determination of trace levels of arsenic and antimony in geological materials by automated hydride generation-atomic absorption spectroscopy

    Science.gov (United States)

    Crock, J.G.; Lichte, F.E.

    1982-01-01

    An improved, automated method for the determination of arsenic and antimony in geological materials is described. After digestion of the material in sulfuric, nitric, hydrofluoric and perchloric acids, a hydrochloric acid solution of the sample is automatically mixed with reducing agents, acidified with additional hydrochloric acid, and treated with a sodium tetrahydroborate solution to form arsine and stibine. The hydrides are decomposed in a heated quartz tube in the optical path of an atomic absorption spectrometer. The absorbance peak height for arsenic or antimony is measured. Interferences that exist are minimized to the point where most geological materials including coals, soils, coal ashes, rocks and sediments can be analyzed directly without use of standard additions. The relative standard deviation of the digestion and the instrumental procedure is less than 2% at the 50 ??g l-1 As or Sb level. The reagent-blank detection limit is 0.2 ??g l-1 As or Sb. ?? 1982.

  11. Fundamental experiments on hydride reorientation in zircaloy

    Science.gov (United States)

    Colas, Kimberly B.

    In the current study, an in-situ X-ray diffraction technique using synchrotron radiation was used to follow directly the kinetics of hydride dissolution and precipitation during thermomechanical cycles. This technique was combined with conventional microscopy (optical, SEM and TEM) to gain an overall understanding of the process of hydride reorientation. Thus this part of the study emphasized the time-dependent nature of the process, studying large volume of hydrides in the material. In addition, a micro-diffraction technique was also used to study the spatial distribution of hydrides near stress concentrations. This part of the study emphasized the spatial variation of hydride characteristics such as strain and morphology. Hydrided samples in the shape of tensile dog-bones were used in the time-dependent part of the study. Compact tension specimens were used during the spatial dependence part of the study. The hydride elastic strains from peak shift and size and strain broadening were studied as a function of time for precipitating hydrides. The hydrides precipitate in a very compressed state of stress, as measured by the shift in lattice spacing. As precipitation proceeds the average shift decreases, indicating average stress is reduced, likely due to plastic deformation and morphology changes. When nucleation ends the hydrides follow the zirconium matrix thermal contraction. When stress is applied below the threshold stress for reorientation, hydrides first nucleate in a very compressed state similar to that of unstressed hydrides. After reducing the average strain similarly to unstressed hydrides, the average hydride strain reaches a constant value during cool-down to room temperature. This could be due to a greater ease of deforming the matrix due to the applied far-field strain which would compensate for the strains due to thermal contraction. Finally when hydrides reorient, the average hydride strains become tensile during the first precipitation regime and

  12. Advanced Hydride Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Motyka, T.

    1989-01-01

    Metal hydrides have been used at the Savannah River Tritium Facilities since 1984. However, the most extensive application of metal hydride technology at the Savannah River Site is being planned for the Replacement Tritium Facility, a $140 million facility schedules for completion in 1990 and startup in 1991. In the new facility, metal hydride technology will be used to store, separate, isotopically purify, pump, and compress hydrogen isotopes. In support of the Replacement Tritium Facility, a $3.2 million, cold,'' process demonstration facility, the Advanced Hydride Laboratory began operation in November of 1987. The purpose of the Advanced Hydride Laboratory is to demonstrate the Replacement Tritium Facility's metal hydride technology by integrating the various unit operations into an overall process. This paper will describe the Advanced Hydride Laboratory, its role and its impact on the application of metal hydride technology to tritium handling.

  13. Advanced Hydride Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Motyka, T.

    1989-12-31

    Metal hydrides have been used at the Savannah River Tritium Facilities since 1984. However, the most extensive application of metal hydride technology at the Savannah River Site is being planned for the Replacement Tritium Facility, a $140 million facility schedules for completion in 1990 and startup in 1991. In the new facility, metal hydride technology will be used to store, separate, isotopically purify, pump, and compress hydrogen isotopes. In support of the Replacement Tritium Facility, a $3.2 million, ``cold,`` process demonstration facility, the Advanced Hydride Laboratory began operation in November of 1987. The purpose of the Advanced Hydride Laboratory is to demonstrate the Replacement Tritium Facility`s metal hydride technology by integrating the various unit operations into an overall process. This paper will describe the Advanced Hydride Laboratory, its role and its impact on the application of metal hydride technology to tritium handling.

  14. Hydrogen generation using silicon nanoparticles and their mixtures with alkali metal hydrides

    Science.gov (United States)

    Patki, Gauri Dilip

    mole of Si. We compare our silicon nanoparticles (˜10nm diameter) with commercial silicon nanopowder (hydrogen production rate increased by a factor of 150. However, in all cases, silicon requires a base (e.g. NaOH, KOH, hydrazine) to catalyze its reaction with water. Metal hydrides are also promising hydrogen storage materials. The optimum metal hydride would possess high hydrogen storage density at moderate temperature and pressure, release hydrogen safely and controllably, and be stable in air. Alkali metal hydrides have high hydrogen storage density, but exhibit high uncontrollable reactivity with water. In an attempt to control this explosive nature while maintaining high storage capacity, we mixed our silicon nanoparticles with the hydrides. This has dual benefits: (1) the hydride- water reaction produces the alkali hydroxide needed for base-catalyzed silicon oxidation, and (2) dilution with 10nm coating by, the silicon may temper the reactivity of the hydride, making the process more controllable. Initially, we analyzed hydrolysis of pure alkali metal hydrides and alkaline earth metal hydrides. Lithium hydride has particularly high hydrogen gravimetric density, along with faster reaction kinetics than sodium hydride or magnesium hydride. On analysis of hydrogen production we found higher hydrogen yield from the silicon nanoparticle—metal hydride mixture than from pure hydride hydrolysis. The silicon-hydride mixtures using our 10nm silicon nanoparticles produced high hydrogen yield, exceeding the theoretical yield. Some evidence of slowing of the hydride reaction rate upon addition of silicon nanoparticles was observed.

  15. Exhibition of circular Bragg phenomenon by hyperbolic, dielectric, structurally chiral materials

    CERN Document Server

    Lakhtakia, Akhlesh

    2013-01-01

    The relative permittivity dyadic of a dielectric structurally chiral material (SCM) varies helicoidally along a fixed direction; in consequence, the SCM exhibits the circular Bragg phenomenon, which is the circular-polarization-selective reflection of light. The introduction of hyperbolicity in an SCM---by making either one or two but not all three eigenvalues of the relative permittivity dyadic acquire negative real parts---does not eliminate the circular Bragg phenomenon, but significantly alters the regime for its exhibition. Physical vapor deposition techniques appear to be suitable to fabricate hyperbolic SCMs.

  16. Hydrogen storage in complex metal hydrides

    National Research Council Canada - National Science Library

    Bogdanovic, Borislav; Felderhoff, Michael; Streukens, Guido

    2009-01-01

    ...) are solid-state hydrogen-storage materials with high hydrogen capacities. They can be used in combination with fuel cells as a hydrogen source thus enabling longer operation times compared with classical metal hydrides...

  17. Experimental validation of systematically designed acoustic hyperbolic meta material slab exhibiting negative refraction

    DEFF Research Database (Denmark)

    Christiansen, Rasmus Ellebæk; Sigmund, Ole

    2016-01-01

    This Letter reports on the experimental validation of a two-dimensional acoustic hyperbolic metamaterial slab optimized to exhibit negative refractive behavior. The slab was designed using a topology optimization based systematic design method allowing for tailoring the refractive behavior....... The experimental results confirm the predicted refractive capability as well as the predicted transmission at an interface. The study simultaneously provides an estimate of the attenuation inside the slab stemming from the boundary layer effects—insight which can be utilized in the further design...... of the metamaterial slabs. The capability of tailoring the refractive behavior opens possibilities for different applications. For instance, a slab exhibiting zero refraction across a wide angular range is capable of funneling acoustic energy through it, while a material exhibiting the negative refractive behavior...

  18. Antimony speciation analysis in sediment reference materials using high-performance liquid chromatography coupled to hydride generation atomic fluorescence spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Potin-Gautier, M. [Laboratoire de Chimie Analytique, BioInorganique et Environnement LCABIE (UMR CNRS 3054), Universite de Pau et des pays de l' Adour, 64000 Pau (France); Pannier, F. [Laboratoire de Chimie Analytique, BioInorganique et Environnement LCABIE (UMR CNRS 3054), Universite de Pau et des pays de l' Adour, 64000 Pau (France)]. E-mail: Florence.pannier@univ-pau.fr; Quiroz, W. [Laboratoire de Chimie Analytique, BioInorganique et Environnement LCABIE (UMR CNRS 3054), Universite de Pau et des pays de l' Adour, 64000 Pau (France); Laboratorio de Quimica Analitica y Ambiental, Instituto de Quimica, Pontificia Universidad catolica de Valparaiso (Chile); Pinochet, H. [Laboratorio de Quimica Analitica y Ambiental, Instituto de Quimica, Pontificia Universidad catolica de Valparaiso (Chile); Gregori, I. de [Laboratorio de Quimica Analitica y Ambiental, Instituto de Quimica, Pontificia Universidad catolica de Valparaiso (Chile)

    2005-11-30

    This work presents the development of suitable methodologies for determination of the speciation of antimony in sediment reference samples. Liquid chromatography with a post-column photo-oxidation step and hydride generation atomic fluorescence spectrometry as detection system is applied to the separation and determination of Sb(III), Sb(V) and trimethylantimony species. Post-column decomposition and hydride generation steps were studied for sensitive detection with the AFS detector. This method was applied to investigate the conditions under which speciation analysis of antimony in sediment samples can be carried out. Stability studies of Sb species during the extraction processes of solid matrices, using different reagents solutions, were performed. Results demonstrate that for the extraction yield and the stability of Sb species in different marine sediment extracts, citric acid in ascorbic acid medium was the best extracting solution for antimony speciation analysis in this matrix (between 55% and 65% of total Sb was recovered from CRMs, Sb(III) being the predominant species). The developed method allows the separation of the three compounds within 6 min with detection limits of 30 ng g{sup -1} for Sb(III) and TMSbCl2 and 40 ng g{sup -1} for Sb(V) in sediment samples.

  19. Peltier heat measurements at a junction between materials exhibiting Fermi gas and Fermi liquid behaviour

    Energy Technology Data Exchange (ETDEWEB)

    Kuznetsov, V L; Kuznetsova, L A; Rowe, D M [Division of Electronic Engineering, Cardiff University, Queen' s Buildings, 5 The Parade, PO Box 925, Cardiff CF24 0YE (United Kingdom)

    2003-11-07

    The feasibility of improving the conversion efficiency of a thermoelectric converter by employing interfaces between materials exhibiting Fermi gas (FG) and Fermi liquid (FL) behaviour has been studied. Thermocouples consisting of a semiconductor and a strongly correlated material have been fabricated and the Peltier heat measured over the temperature range 15 deg 330 K. A number of materials possessing different types of strong electron correlation have been synthesized including the heavy fermion compound YbAl{sub 3}, manganite La{sub 0.7}Ca{sub 0.3}MnO{sub 3} and high-T{sub c} superconductor YBa{sub 2}Cu{sub 3}O{sub 7{delta}}. n- and p-Bi{sub 2}Te{sub 3}-based solid solutions as well as n-Bi{sub 0.85}Sb{sub 0.15} solid solution have also been synthesized and used as materials exhibiting FG properties. Experimental measurements of the Peltier heat were compared to the results of calculations based on preliminary measured thermoelectric properties of materials and electrical contact resistance at the interfaces. The potential of employing FG/FL interfaces in thermoelectric energy conversion is discussed.

  20. Exhibition of circular Bragg phenomenon by hyperbolic, dielectric, structurally chiral materials

    OpenAIRE

    Lakhtakia, Akhlesh

    2013-01-01

    The relative permittivity dyadic of a dielectric structurally chiral material (SCM) varies helicoidally along a fixed direction; in consequence, the SCM exhibits the circular Bragg phenomenon, which is the circular-polarization-selective reflection of light. The introduction of hyperbolicity in an SCM---by making either one or two but not all three eigenvalues of the relative permittivity dyadic acquire negative real parts---does not eliminate the circular Bragg phenomenon, but significantly ...

  1. Development of a direct hydride generation nebulizer for the determination of selenium by inductively coupled plasma optical emission spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Carrion, Nereida E-mail: ncarrion@strix.ciens.ucv.ve; Murillo, Miguel; Montiel, Edie; Diaz, Dorfe

    2003-08-15

    A study was conducted to evaluate the performance of a new direct hydride generation nebulizer system for determination of hydride forming elements by inductively coupled plasma optical emission spectroscopy. This system was designed and optimized to obtain the highest sensitivity. Several experimental designs were used for these purposes. To optimize the individual parameters of the system, and to study the interaction between these parameters for both direct hydride generation nebulizers, a central composite orthogonal design with eight factors was set up. Significant behavioral differences were observed in the two direct hydride generation nebulizers studied. Finally, a 70 {mu}m gas orifice nebulizer exhibits a better detection limit than the 120 {mu}m nebulizer. Generally, for determination of selenium, this new direct hydride generation nebulizer system exhibits a linear dynamic range and detection limit (3{sigma}b) of 3 orders of magnitude and 0.2 {mu}g l{sup -1} for selenium, respectively. This new hydride generator is much simpler system that conventional hydride generation systems, which does not need to be changed to work in normal mode with the inductively coupled plasma, since this system may be used for hydride forming elements and those that do not form them. It produces a rapid response with low memory effect. It reduces the interference level of Ni, Co and Cu to 600, 500 and 5 mg l{sup -1}, respectively. The accuracy of the system was verified by the determination of selenium in several standard reference materials of ambient, food and clinical sample matrices. No statistically significant differences (95 confidence level) were obtained between our method and the reference values.

  2. (abstract) Studies on AB(sub 5) Metal Hydride Alloys with Sn Additives

    Science.gov (United States)

    Ratnakumar, B. V.; Surampudi, S.; Stefano, S. Di; Halpert, G.; Witham, C.; Fultz, B.

    1994-01-01

    The use of metal hydrides as negative electrodes in alkaline rechargeable cells is becoming increasingly popular, due to several advantages offered by the metal hydrides over conventional anode materials (such as Zn, Cd) in terms of specific energy environmental cycle life and compatibility. Besides, the similarities in the cell voltage pressure characteristics, and charge control methods of the Ni-MH cells to the commonly used Ni-Cd point to a projected take over of 25% of the Ni-Cd market for consumer electronics by the Ni-MH cells in the next couple of years. Two classes of metal hydrides alloys based on rare earth metals (AB(sub 5)) and titanium (AB(sub 2)) are being currently developed at various laboratories. AB(sub 2) alloys exhibit higher specific energy than the AB(sub 5) alloys but the state of the art commercial Ni-MH cells are predominately manufactured using AB(sub 5) alloys.

  3. New magnetocaloric material based on GdNiH{sub 3.2} hydride for application in cryogenic devices

    Energy Technology Data Exchange (ETDEWEB)

    Smarzhevskaya, Alexandra I.; Verbetsky, Viktor N. [Lomonosov Moscow State University, Moscow (Russian Federation); Iwasieczko, Waclaw [Trzebiatowski Institute of Low Temperature and Structure Research, Polish Academy of Sciences, Wroclaw (Poland); Nikitin, Sergey A. [Lomonosov Moscow State University, Moscow (Russian Federation); International Laboratory of High Magnetic Fields and Low Temperatures, Wroclaw (Poland)

    2014-05-15

    The paper presents the investigation of GdNiH{sub 3.2} hydride magnetocaloric properties. The isothermal magnetization in the fields up to 5 T and heat capacity data are obtained for GdNiH{sub 3.2} and GdNi compounds. The maximum value of magnetic entropy change ΔS{sub M} in GdNiH{sub 3.2} is extremely large and obtained in much lower temperature range compared to GdNi. It is shown that the hydrogenation does not noticeably affect the value of ΔS{sub M} but shifts ΔS{sub M}(T) maximum to lower temperatures (∝ 11K). The possibility of GdNiH{sub 3.2} application in cryogenic devices is discussed. (copyright 2014 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  4. Destabilization of magnesium hydride through interface engineering

    OpenAIRE

    Mooij, L.P.A.

    2013-01-01

    The aim of this thesis is to study the thermodynamics of hydrogenation of nanoconfined magnesium within a thin film multilayer model system. Magnesium hydride is a potential material for hydrogen storage, which is a key component in a renewable energy system based on hydrogen. In bulk form, magnesium hydride is very stable, which means that hydrogen is released only at elevated temperature. Furthermore, the kinetics of hydrogen sorption is slow, which further hampers the practical use of this...

  5. Characterization of hydrides and delayed hydride cracking in zirconium alloys

    Science.gov (United States)

    Fang, Qiang

    This thesis tries to fill some of the missing gaps in the study of zirconium hydrides with state-of-art experiments, cutting edge tomographical technique, and a novel numerical algorithm. A new hydriding procedure is proposed. The new anode material and solution combination overcomes many drawbacks of the AECLRTM hydriding method and leads to superior hydriding result compared to the AECL RTM hydriding procedure. The DHC crack growth velocity of as-received Excel alloy and Zr-2.5Nb alloy together with several different heat treated Excel alloy samples are measured. While it already known that the DHC crack growth velocity increases with the increase of base metal strength, the finding that the transverse plane is the weaker plane for fatigue crack growth despite having higher resistance to DHC crack growth was unexpected. The morphologies of hydrides in a coarse grained Zircally-2 sample have been studied using synchrotron x-rays at ESRF with a new technique called Diffraction Contrast Tomography that uses simultaneous collection of tomographic data and diffraction data to determine the crystallographic orientation of crystallites (grains) in 3D. It has been previously limited to light metals such as Al or Mg (due to the use of low energy x-rays). Here we show the first DCT measurements using high energy x-rays (60 keV), allowing measurements in zirconium. A new algorithm of a computationally effcient way to characterize distributions of hydrides - in particular their orientation and/or connectivity - has been proposed. It is a modification of the standard Hough transform, which is an extension of the Hough transform widely used in the line detection of EBSD patterns. Finally, a basic model of hydrogen migration is built using ABAQUS RTM, which is a mature finite element package with tested modeling modules of a variety of physical laws. The coupling of hydrogen diffusion, lattice expansion, matrix deformation and phase transformation is investigated under

  6. Anodematerials for Metal Hydride Batteries

    DEFF Research Database (Denmark)

    Jensen, Jens Oluf

    1997-01-01

    by annealing at 700°C for 12 hours. The alloys appeared to be nanocrystalline with an average crystallite size around 10 nm before annealing. Special steel containers was developed for the annealing of the metal powders in inert atmosphere. The use of various annealing temperatures was investigated......This report describes the work on development of hydride forming alloys for use as electrode materials in metal hydride batteries. The work has primarily been concentrated on calcium based alloys derived from the compound CaNi5. This compound has a higher capacity compared with alloys used in today...... was developed. The parameters milling time, milling intensity, number of balls and form of the alloying metals were investigated. Based on this a final alloying technique for the subsequent preparation of electrode materials was established. The technique comprises milling for 4 hours twice possibly followed...

  7. Synthesis of ruthenium hydride

    Science.gov (United States)

    Kuzovnikov, M. A.; Tkacz, M.

    2016-02-01

    Ruthenium hydride was synthesized at a hydrogen pressure of about 14 GPa in a diamond-anvil cell. Energy-dispersive x-ray diffraction was used to monitor the ruthenium crystal structure as a function of hydrogen pressure up to 30 GPa. The hydride formation was accompanied by phase transition from the original hcp structure of the pristine metal to the fcc structure. Our results confirmed the theoretical prediction of ruthenium hydride formation under hydrogen pressure. The standard Gibbs free energy of the ruthenium hydride formation reaction was calculated assuming the pressure of decomposition as the equilibrium pressure.

  8. Metal hydride air conditioner

    Institute of Scientific and Technical Information of China (English)

    YANG; Ke; DU; Ping; LU; Man-qi

    2005-01-01

    The relationship among the hydrogen storage properties, cycling characteristics and thermal parameters of the metal hydride air conditioning systems was investigated. Based on a new alloy selection model, three pairs of hydrogen storage alloys, LaNi4.4 Mn0.26 Al0.34 / La0.6 Nd0.4 Ni4.8 Mn0.2 Cu0. 1, LaNi4.61Mn0. 26 Al0.13/La0.6 Nd0.4 Ni4.8 Mn0.2 Cu0. 1 and LaNi4.61 Mn0.26 Al0.13/La0.6 Y0.4 Ni4.8 Mn0. 2, were selected as the working materials for the metal hydride air conditioning system. Studies on the factors affecting the COP of the system showed that higher COP and available hydrogen content need the proper operating temperature and cycling time,large hydrogen storage capacity, flat plateau and small hysterisis of hydrogen alloys, proper original input hydrogen content and mass ratio of the pair of alloys. It also needs small conditioning system was established by using LaNi4.61 Mn0.26 Al0. 13/La0.6 Y0.4 Ni4.8 Mn0.2 alloys as the working materials, which showed that under the operating temperature of 180℃/40℃, a low temperature of 13℃ was reached, with COP =0.38 and Wnet =0.09 kW/kg.

  9. Hysteresis in Metal Hydrides.

    Science.gov (United States)

    Flanagan, Ted B., And Others

    1987-01-01

    This paper describes a reproducible process where the irreversibility can be readily evaluated and provides a thermodynamic description of the important phenomenon of hysteresis. A metal hydride is used because hysteresis is observed during the formation and decomposition of the hydride phase. (RH)

  10. Hydrogen storage in the form of metal hydrides

    Science.gov (United States)

    Zwanziger, M. G.; Santana, C. C.; Santos, S. C.

    1984-01-01

    Reversible reactions between hydrogen and such materials as iron/titanium and magnesium/ nickel alloy may provide a means for storing hydrogen fuel. A demonstration model of an iron/titanium hydride storage bed is described. Hydrogen from the hydride storage bed powers a converted gasoline electric generator.

  11. Formation of novel transition metal hydride complexes with ninefold hydrogen coordination

    Science.gov (United States)

    Takagi, Shigeyuki; Iijima, Yuki; Sato, Toyoto; Saitoh, Hiroyuki; Ikeda, Kazutaka; Otomo, Toshiya; Miwa, Kazutoshi; Ikeshoji, Tamio; Orimo, Shin-ichi

    2017-01-01

    Ninefold coordination of hydrogen is very rare, and has been observed in two different hydride complexes comprising rhenium and technetium. Herein, based on a theoretical/experimental approach, we present evidence for the formation of ninefold H- coordination hydride complexes of molybdenum ([MoH9]3−), tungsten ([WH9]3−), niobium ([NbH9]4−) and tantalum ([TaH9]4−) in novel complex transition-metal hydrides, Li5MoH11, Li5WH11, Li6NbH11 and Li6TaH11, respectively. All of the synthesized materials are insulated with band gaps of approximately 4 eV, but contain a sufficient amount of hydrogen to cause the H 1s-derived states to reach the Fermi level. Such hydrogen-rich materials might be of interest for high-critical-temperature superconductivity if the gaps close under compression. Furthermore, the hydride complexes exhibit significant rotational motions associated with anharmonic librations at room temperature, which are often discussed in relation to the translational diffusion of cations in alkali-metal dodecahydro-closo-dodecaborates and strongly point to the emergence of a fast lithium conduction even at room temperature. PMID:28287143

  12. Formation of novel transition metal hydride complexes with ninefold hydrogen coordination.

    Science.gov (United States)

    Takagi, Shigeyuki; Iijima, Yuki; Sato, Toyoto; Saitoh, Hiroyuki; Ikeda, Kazutaka; Otomo, Toshiya; Miwa, Kazutoshi; Ikeshoji, Tamio; Orimo, Shin-Ichi

    2017-03-13

    Ninefold coordination of hydrogen is very rare, and has been observed in two different hydride complexes comprising rhenium and technetium. Herein, based on a theoretical/experimental approach, we present evidence for the formation of ninefold H- coordination hydride complexes of molybdenum ([MoH9](3-)), tungsten ([WH9](3-)), niobium ([NbH9](4-)) and tantalum ([TaH9](4-)) in novel complex transition-metal hydrides, Li5MoH11, Li5WH11, Li6NbH11 and Li6TaH11, respectively. All of the synthesized materials are insulated with band gaps of approximately 4 eV, but contain a sufficient amount of hydrogen to cause the H 1s-derived states to reach the Fermi level. Such hydrogen-rich materials might be of interest for high-critical-temperature superconductivity if the gaps close under compression. Furthermore, the hydride complexes exhibit significant rotational motions associated with anharmonic librations at room temperature, which are often discussed in relation to the translational diffusion of cations in alkali-metal dodecahydro-closo-dodecaborates and strongly point to the emergence of a fast lithium conduction even at room temperature.

  13. Creating nanoshell on the surface of titanium hydride bead

    Directory of Open Access Journals (Sweden)

    PAVLENKO Vyacheslav Ivanovich

    2016-12-01

    Full Text Available The article presents data on the modification of titanium hydride bead by creating titanium nanoshell on its surface by ion-plasma vacuum magnetron sputtering. To apply titanium nanoshell on the titanium hydride bead vacuum coating plant of multifunctional nanocomposite coatings QVADRA 500 located in the center of high technology was used. Analysis of the micrographs of the original surface of titanium hydride bead showed that the microstructure of the surface is flat, smooth, in addition the analysis of the microstructure of material surface showed the presence of small porosity, roughness, mainly cavities, as well as shallow longitudinal cracks. The presence of oxide film in titanium hydride prevents the free release of hydrogen and fills some micro-cracks on the surface. Differential thermal analysis of both samples was conducted to determine the thermal stability of the initial titanium hydride bead and bead with applied titanium nanoshell. Hydrogen thermal desorption spectra of the samples of the initial titanium hydride bead and bead with applied titanium nanoshell show different thermal stability of compared materials in the temperature range from 550 to 860о C. Titanium nanoshells applied in this way allows increasing the heat resistance of titanium hydride bead – the temperature of starting decomposition is 695о C and temperature when decomposition finishes is more than 1000о C. Modified in this way titanium hydride bead can be used as a filler in the radiation protective materials used in the construction or upgrading biological protection of nuclear power plants.

  14. Helium trapping at erbium oxide precipitates in erbium hydride

    Energy Technology Data Exchange (ETDEWEB)

    Foiles, Stephen M. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Battaile, Corbett Chandler [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2016-02-01

    The formation of He bubbles in erbium tritides is a significant process in the aging of these materials. Due to the long-standing uncertainty about the initial nucleation process of these bubbles, there is interest in mechanisms that can lead to the localization of He in erbium hydrides. Previous work has been unable to identify nucleation sites in homogeneous erbium hydride. This work builds on the experimental observation that erbium hydrides have nano- scale erbium oxide precipitates due to the high thermodynamic stability of erbium oxide and the ubiquitous presence of oxygen during materials processing. Fundamental DFT calculations indicate that the He is energetically favored in the oxide relative to the bulk hydride. Activation energies for the motion of He in the oxide and at the oxide-hydride interface indicate that trapping is kinetically feasible. A simple kinetic Monte Carlo model is developed that demonstrates the degree of trapping of He as a function of temperature and oxide fraction.

  15. Hydrogen storage in complex metal hydrides

    Directory of Open Access Journals (Sweden)

    BORISLAV BOGDANOVIĆ

    2009-02-01

    Full Text Available Complex metal hydrides such as sodium aluminohydride (NaAlH4 and sodium borohydride (NaBH4 are solid-state hydrogen-storage materials with high hydrogen capacities. They can be used in combination with fuel cells as a hydrogen source thus enabling longer operation times compared with classical metal hydrides. The most important point for a wide application of these materials is the reversibility under moderate technical conditions. At present, only NaAlH4 has favourable thermodynamic properties and can be employed as a thermally reversible means of hydrogen storage. By contrast, NaBH4 is a typical non- -reversible complex metal hydride; it reacts with water to produce hydrogen.

  16. Regenerative Hydride Heat Pump

    Science.gov (United States)

    Jones, Jack A.

    1992-01-01

    Hydride heat pump features regenerative heating and single circulation loop. Counterflow heat exchangers accommodate different temperatures of FeTi and LaNi4.7Al0.3 subloops. Heating scheme increases efficiency.

  17. Regenerative Hydride Heat Pump

    Science.gov (United States)

    Jones, Jack A.

    1992-01-01

    Hydride heat pump features regenerative heating and single circulation loop. Counterflow heat exchangers accommodate different temperatures of FeTi and LaNi4.7Al0.3 subloops. Heating scheme increases efficiency.

  18. Metal hydride-based materials towards high performance negative electrodes for all-solid-state lithium-ion batteries.

    Science.gov (United States)

    Zeng, Liang; Kawahito, Koji; Ikeda, Suguru; Ichikawa, Takayuki; Miyaoka, Hiroki; Kojima, Yoshitsugu

    2015-06-18

    Electrode performances of MgH2-LiBH4 composite materials for lithium-ion batteries have been studied using LiBH4 as the solid-state electrolyte, which shows a high reversible capacity of 1650 mA h g(-1) with an extremely low polarization of 0.05 V, durable cyclability and robust rate capability.

  19. Selective hydride generation- cryotrapping- ICP-MS for arsenic speciation analysis at picogram levels: analysis of river and sea water reference materials and human bladder epithelial cells

    Science.gov (United States)

    Matoušek, Tomáš; Currier, Jenna M.; Trojánková, Nikola; Saunders, R. Jesse; Ishida, María C.; González-Horta, Carmen; Musil, Stanislav; Mester, Zoltán; Stýblo, Miroslav; Dědina, Jiří

    2013-01-01

    An ultra sensitive method for arsenic (As) speciation analysis based on selective hydride generation (HG) with preconcentration by cryotrapping (CT) and inductively coupled plasma- mass spectrometry (ICP-MS) detection is presented. Determination of valence of the As species is performed by selective HG without prereduction (trivalent species only) or with L-cysteine prereduction (sum of tri- and pentavalent species). Methylated species are resolved on the basis of thermal desorption of formed methyl substituted arsines after collection at −196°C. Limits of detection of 3.4, 0.04, 0.14 and 0.10 pg mL−1 (ppt) were achieved for inorganic As, mono-, di- and trimethylated species, respectively, from a 500 μL sample. Speciation analysis of river water (NRC SLRS-4 and SLRS-5) and sea water (NRC CASS-4, CASS-5 and NASS-5) reference materials certified to contain 0.4 to 1.3 ng mL−1 total As was performed. The concentrations of methylated As species in tens of pg mL−1 range obtained by HG-CT-ICP-MS systems in three laboratories were in excellent agreement and compared well with results of HG-CT-atomic absorption spectrometry and anion exchange liquid chromatography- ICP-MS; sums of detected species agreed well with the certified total As content. HG-CT-ICP-MS method was successfully used for analysis of microsamples of exfoliated bladder epithelial cells isolated from human urine. Here, samples of lysates of 25 to 550 thousand cells contained typically tens pg up to ng of iAs species and from single to hundreds pg of methylated species, well within detection power of the presented method. A significant portion of As in the cells was found in the form of the highly toxic trivalent species. PMID:24014931

  20. Study of the mechanical behavior of the hydride blister/rim structure in Zircaloy-4 using in-situ synchrotron X-ray diffraction

    Science.gov (United States)

    Lin, Jun-li; Han, Xiaochun; Heuser, Brent J.; Almer, Jonathan D.

    2016-04-01

    High-energy synchrotron X-ray diffraction was utilized to study the mechanical response of the f.c.c δ hydride phase, the intermetallic precipitation with hexagonal C14 lave phase and the α-Zr phase in the Zircaloy-4 materials with a hydride rim/blister structure near one surface of the material during in-situ uniaxial tension experiment at 200 °C. The f.c.c δ was the only hydride phase observed in the rim/blister structure. The conventional Rietveld refinement was applied to measure the macro-strain equivalent response of the three phases. Two regions were delineated in the applied load versus lattice strain measurement: a linear elastic strain region and region that exhibited load partitioning. Load partitioning was quantified by von Mises analysis. The three phases were observed to have similar elastic modulus at 200 °C.

  1. Study of the mechanical behavior of the hydride blister/rim structure in Zircaloy-4 using in-situ synchrotron X-ray diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Jun-li; Han, Xiaochun; Heuser, Brent J.; Almer, Jonathan D.

    2016-04-01

    High-energy synchrotron X-ray diffraction was utilized to study the mechanical response of the f.c.c delta hydride phase, the intermetallic precipitation with hexagonal C14 lave phase and the alpha-Zr phase in the Zircaloy-4 materials with a hydride rim/blister structure near one surface of the material during in-situ uniaxial tension experiment at 200 degrees C. The f.c.c delta was the only hydride phase observed in the rim/blister structure. The conventional Rietveld refinement was applied to measure the macro-strain equivalent response of the three phases. Two regions were delineated in the applied load versus lattice strain measurement: a linear elastic strain region and region that exhibited load partitioning. Load partitioning was quantified by von Mises analysis. The three phases were observed to have similar elastic modulus at 200 degrees C.

  2. Study of the mechanical behavior of the hydride blister/rim structure in Zircaloy-4 using in-situ synchrotron X-ray diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Jun-li; Han, Xiaochun [Department of Nuclear, Plasma, and Radiological Engineering, University of Illinois at Urbana-Champaign, Urbana, IL (United States); Heuser, Brent J., E-mail: bheuser@illinois.edu [Department of Nuclear, Plasma, and Radiological Engineering, University of Illinois at Urbana-Champaign, Urbana, IL (United States); Almer, Jonathan D. [Advanced Photon Source, Argonne National Laboratory, Argonne, IL (United States)

    2016-04-01

    High-energy synchrotron X-ray diffraction was utilized to study the mechanical response of the f.c.c δ hydride phase, the intermetallic precipitation with hexagonal C14 lave phase and the α-Zr phase in the Zircaloy-4 materials with a hydride rim/blister structure near one surface of the material during in-situ uniaxial tension experiment at 200 °C. The f.c.c δ was the only hydride phase observed in the rim/blister structure. The conventional Rietveld refinement was applied to measure the macro-strain equivalent response of the three phases. Two regions were delineated in the applied load versus lattice strain measurement: a linear elastic strain region and region that exhibited load partitioning. Load partitioning was quantified by von Mises analysis. The three phases were observed to have similar elastic modulus at 200 °C.

  3. Photochromism of rare-earth metal-oxy-hydrides

    Science.gov (United States)

    Nafezarefi, F.; Schreuders, H.; Dam, B.; Cornelius, S.

    2017-09-01

    Recently, thin films of yttrium oxy-hydride (YOxHy) were reported to show an unusual color-neutral photochromic effect promising for application in smart windows. Our present work demonstrates that also oxy-hydrides based on Gd, Dy, and Er have photochromic properties and crystal structures similar to YOxHy. Compared to YOxHy, the optical bandgaps of the lanthanide based oxy-hydrides are smaller while photochromic contrast and kinetics show large variation among different cations. Based on these findings, we propose that cation alloying is a viable pathway to tailor the photochromic properties of oxy-hydride materials. Furthermore, we predict that the oxy-hydrides of the other lanthanides are also potentially photochromic.

  4. Metal hydrides for concentrating solar thermal power energy storage

    Science.gov (United States)

    Sheppard, D. A.; Paskevicius, M.; Humphries, T. D.; Felderhoff, M.; Capurso, G.; Bellosta von Colbe, J.; Dornheim, M.; Klassen, T.; Ward, P. A.; Teprovich, J. A.; Corgnale, C.; Zidan, R.; Grant, D. M.; Buckley, C. E.

    2016-04-01

    The development of alternative methods for thermal energy storage is important for improving the efficiency and decreasing the cost of concentrating solar thermal power. We focus on the underlying technology that allows metal hydrides to function as thermal energy storage (TES) systems and highlight the current state-of-the-art materials that can operate at temperatures as low as room temperature and as high as 1100 °C. The potential of metal hydrides for thermal storage is explored, while current knowledge gaps about hydride properties, such as hydride thermodynamics, intrinsic kinetics and cyclic stability, are identified. The engineering challenges associated with utilising metal hydrides for high-temperature TES are also addressed.

  5. Fracture of functionally graded materials: application to hydrided zircaloy; Fissuration des materiaux a gradient de proprietes: application au zircaloy hydrure

    Energy Technology Data Exchange (ETDEWEB)

    Perales, F

    2005-12-15

    This thesis is devoted to the dynamic fracture of functionally graded materials. More particularly, it deals with the toughness of nuclear cladding at high burnup submitted to transient loading. The fracture is studied at local scale using cohesive zone model in a multi body approach. Cohesive zone models include frictional contact to take into account mixed mode fracture. Non smooth dynamics problems are treated within the Non-Smooth Contact Dynamics framework. A multi scale study is necessary because of the dimension of the clad. At microscopic scale, the effective properties of surface law, between each body, are obtained by periodic numerical homogenization. A two fields Finite Element formulation is so written. An extended formulation of the NSCD framework is obtained. The associated software allows to simulate, in finite deformation, from the crack initiation to post-fracture behavior in heterogeneous materials. At microscopic scale, random RVE calculations are made to determine effective properties. At macroscopic scale, calculations of part of clad are made to determine the role of the mean hydrogen concentration and gradient of hydrogen parameters in the toughness of the clad under dynamic loading. (author)

  6. Destabilization of magnesium hydride through interface engineering

    NARCIS (Netherlands)

    Mooij, L.P.A.

    2013-01-01

    The aim of this thesis is to study the thermodynamics of hydrogenation of nanoconfined magnesium within a thin film multilayer model system. Magnesium hydride is a potential material for hydrogen storage, which is a key component in a renewable energy system based on hydrogen. In bulk form,

  7. Destabilization of magnesium hydride through interface engineering

    NARCIS (Netherlands)

    Mooij, L.P.A.

    2013-01-01

    The aim of this thesis is to study the thermodynamics of hydrogenation of nanoconfined magnesium within a thin film multilayer model system. Magnesium hydride is a potential material for hydrogen storage, which is a key component in a renewable energy system based on hydrogen. In bulk form, magnesiu

  8. Destabilization of magnesium hydride through interface engineering

    NARCIS (Netherlands)

    Mooij, L.P.A.

    2013-01-01

    The aim of this thesis is to study the thermodynamics of hydrogenation of nanoconfined magnesium within a thin film multilayer model system. Magnesium hydride is a potential material for hydrogen storage, which is a key component in a renewable energy system based on hydrogen. In bulk form, magnesiu

  9. Uranium Hydride Nucleation and Growth Model FY'16 ESC Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    Hill, Mary Ann [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Richards, Andrew Walter [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Holby, Edward F. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Schulze, Roland K. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-12-20

    Uranium hydride corrosion is of great interest to the nuclear industry. Uranium reacts with water and/or hydrogen to form uranium hydride which adversely affects material performance. Hydride nucleation is influenced by thermal history, mechanical defects, oxide thickness, and chemical defects. Information has been gathered from past hydride experiments to formulate a uranium hydride model to be used in a Canned Subassembly (CSA) lifetime prediction model. This multi-scale computer modeling effort started in FY’13, and the fourth generation model is now complete. Additional high-resolution experiments will be run to further test the model.

  10. Experimental validation of systematically designed acoustic hyperbolic meta material slab exhibiting negative refraction

    DEFF Research Database (Denmark)

    Christiansen, Rasmus Ellebæk; Sigmund, Ole

    2016-01-01

    This Letter reports on the experimental validation of a two-dimensional acoustic hyperbolic metamaterial slab optimized to exhibit negative refractive behavior. The slab was designed using a topology optimization based systematic design method allowing for tailoring the refractive behavior. The e...

  11. Ferroelectric or non-ferroelectric: Why so many materials exhibit "ferroelectricity" on the nanoscale

    Science.gov (United States)

    Vasudevan, Rama K.; Balke, Nina; Maksymovych, Peter; Jesse, Stephen; Kalinin, Sergei V.

    2017-06-01

    Ferroelectric materials have remained one of the major focal points of condensed matter physics and materials science for over 50 years. In the last 20 years, the development of voltage-modulated scanning probe microscopy techniques, exemplified by Piezoresponse force microscopy (PFM) and associated time- and voltage spectroscopies, opened a pathway to explore these materials on a single-digit nanometer level. Consequently, domain structures and walls and polarization dynamics can now be imaged in real space. More generally, PFM has allowed studying electromechanical coupling in a broad variety of materials ranging from ionics to biological systems. It can also be anticipated that the recent Nobel prize ["The Nobel Prize in Chemistry 2016," http://www.nobelprize.org/nobel_prizes/chemistry/laureates/2016/ (Nobel Media, 2016)] in molecular electromechanical machines will result in rapid growth in interest in PFM as a method to probe their behavior on single device and device assembly levels. However, the broad introduction of PFM also resulted in a growing number of reports on the nearly ubiquitous presence of ferroelectric-like phenomena including remnant polar states and electromechanical hysteresis loops in materials which are non-ferroelectric in the bulk or in cases where size effects are expected to suppress ferroelectricity. While in certain cases plausible physical mechanisms can be suggested, there is remarkable similarity in observed behaviors, irrespective of the materials system. In this review, we summarize the basic principles of PFM, briefly discuss the features of ferroelectric surfaces salient to PFM imaging and spectroscopy, and summarize existing reports on ferroelectric-like responses in non-classical ferroelectric materials. We further discuss possible mechanisms behind observed behaviors and possible experimental strategies for their identification.

  12. A PVC-foam material model based on a thermodynamically elasto-plastic-damage framework exhibiting failure and crushing

    NARCIS (Netherlands)

    Gielen, A.W.J.

    2008-01-01

    A well known foam for naval sandwiches is PVC (polyvinyl chloride) foam. This foam exhibits elasto-damage behavior under tension and elasto-plastic behavior under compression. A proper material model is required for the prediction of the failure and post-failure behavior of these sandwiches during (

  13. Hydrogen, lithium, and lithium hydride production

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Sam W.; Spencer, Larry S.; Phillips, Michael R.; Powell, G. Louis; Campbell, Peggy J.

    2017-06-20

    A method is provided for extracting hydrogen from lithium hydride. The method includes (a) heating lithium hydride to form liquid-phase lithium hydride; (b) extracting hydrogen from the liquid-phase lithium hydride, leaving residual liquid-phase lithium metal; (c) hydriding the residual liquid-phase lithium metal to form refined lithium hydride; and repeating steps (a) and (b) on the refined lithium hydride.

  14. Analytical Yield Criterion for an Anisotropic Material Containing Spherical Voids and Exhibiting Tension-Compression Asymmetry

    Science.gov (United States)

    2011-11-01

    factll rights reserved. wart ), cazacu@reef.ufl.eduthat it was deduced based on micromechanical considerations. Several modifications of Gurson’s (1977...non-zero anisotropy coefficients for three-dimensional stress conditions. Assuming triaxial loading conditions aligned with the material symmetry axes...a spherical void, subjected to plane- stress conditions, were performed for various initial porosities and different values of the anisotropy

  15. Metallographic and fractographic observations of hydrides during delayed hydride cracking in Zr-2.5% Nb alloy

    Energy Technology Data Exchange (ETDEWEB)

    Jovanovic, M.T.; Eadie, R.L. [Univ. of Alberta, Edmonton, Alberta (Canada). Dept. of Chemical and Materials Engineering; Shek, G.K.; Seahra, H. [Ontario Hydro Technologies, Toronto, Ontario (Canada)

    1998-01-01

    Potential drop measurements, optical microscopy, and scanning electron microscopy were performed to study the mechanism of delayed hydride cracking (DHC), the relation of the fracture to the hydride morphology, and the fractography of the DHC mechanism. The material used in this study was taken from modified extrusions of the material used to manufacture Zr-2.5% Nb pressure tubes. The material was electrolytically hydrided to approximately 60 {micro}g/g before testing. Cracking tests were carried out at 250 C with an applied K{sub 1} of 12 MPa {radical}m. The number of potential jumps was strongly correlated to the number of striations on the fracture surface. The results indicate that the DHC process occurs in these samples in an intermittent fashion. Brittle fracture is the operating fracture mechanism for the hydrides that cover most of the fracture surface, but there are some regions of ductile fracture both within the fracture and at the striations.

  16. Filiform-mode hydride corrosion of uranium surfaces

    Science.gov (United States)

    Hill, M. A.; Schulze, R. K.; Bingert, J. F.; Field, R. D.; McCabe, R. J.; Papin, P. A.

    2013-11-01

    Hydride nucleation and growth has previously been studied in uranium with an air-formed oxide. Preferred directional growth of uranium hydride has not been observed, presumably due to the constraint of the oxide layer and/or the presence of a surface layer distorted by mechanical grinding and polishing. Instead, hydrides typically first form as subsurface blisters that do not exhibit preferred growth directionality. By eliminating the strained surface layer through electropolishing, removing the natural oxide through ion sputtering, avoiding exposure of the uranium to air, and then exposing uranium to high purity hydrogen in an environmental cell, hydride growth patterns emerge that correspond to defect structures within the microstructure. These hydride growth patterns are similar to filiform corrosion, a type of corrosion that frequently forms under thin protective films. This work describes the first reported observation of filiform-like corrosion in uranium. The uranium hydride initiates at defects, but grows into filaments up to 20 μm wide, and tends to form in straight lines, largely propagating along twin boundaries. Propagation is driven by hydrogen reaction at the filament head, promoted by more efficient delivery of reactant. However, this phenomenon does not involve an electrochemical process associated with conventional filiform corrosion and is therefore described as filiform-like. Hydride growth was observed using optical microscopy for a period of nearly three years. Sample characterization included automated electron backscatter diffraction (EBSD) measurements to determine growth directions. Observation of this anomalous hydride growth provides clues as to the mechanisms operating in uranium hydriding for more conventionally prepared sample surfaces.

  17. Artificial exomuscle investigations for applications--metal hydride.

    Science.gov (United States)

    Crevier, Marie-Charlotte; Richard, Martin; Rittenhouse, D Matheson; Roy, Pierre-Olivier; Bédard, Stéphane

    2007-03-01

    In pursuing the development of bionic devices, Victhom identified a need for technologies that could replace current motorized systems and be better integrated into the human body motion. The actuators used to obtain large displacements are noisy, heavy, and do not adequately reproduce human muscle behavior. Subsequently, a project at Victhom was devoted to the development of active materials to obtain an artificial exomuscle actuator. An exhaustive literature review was done at Victhom to identify promising active materials for the development of artificial muscles. According to this review, metal hydrides were identified as a promising technology for artificial muscle development. Victhom's investigations focused on determining metal hydride actuator potential in the context of bionics technology. Based on metal hydride properties and artificial muscle requirements such as force, displacement and rise time, an exomuscle was built. In addition, a finite element model, including heat and mass transfer in the metal hydride, was developed and implemented in FEMLAB software.

  18. Artificial exomuscle investigations for applications-metal hydride

    Energy Technology Data Exchange (ETDEWEB)

    Crevier, Marie-Charlotte; Richard, Martin; Rittenhouse, D Matheson; Roy, Pierre-Olivier; Bedard, Stephane [Victhom Human Bionics Inc., Saint-Augustin-de-Desmaures, QC (Canada)

    2007-03-01

    In pursuing the development of bionic devices, Victhom identified a need for technologies that could replace current motorized systems and be better integrated into the human body motion. The actuators used to obtain large displacements are noisy, heavy, and do not adequately reproduce human muscle behavior. Subsequently, a project at Victhom was devoted to the development of active materials to obtain an artificial exomuscle actuator. An exhaustive literature review was done at Victhom to identify promising active materials for the development of artificial muscles. According to this review, metal hydrides were identified as a promising technology for artificial muscle development. Victhom's investigations focused on determining metal hydride actuator potential in the context of bionics technology. Based on metal hydride properties and artificial muscle requirements such as force, displacement and rise time, an exomuscle was built. In addition, a finite element model, including heat and mass transfer in the metal hydride, was developed and implemented in FEMLAB software. (review article)

  19. High-pressure synthesis of noble metal hydrides.

    Science.gov (United States)

    Donnerer, Christian; Scheler, Thomas; Gregoryanz, Eugene

    2013-04-07

    The formation of hydride phases in the noble metals copper, silver, and gold was investigated by in situ x-ray diffraction at high hydrogen pressures. In the case of copper, a novel hexagonal hydride phase, Cu2H, was synthesised at pressures above 18.6 GPa. This compound exhibits an anti-CdI2-type structure, where hydrogen atoms occupy every second layer of octahedral interstitial sites. In contrast to chemically produced CuH, this phase does not show a change in compressibility compared to pure copper. Furthermore, repeated compression (after decomposition of Cu2H) led to the formation of cubic copper hydride at 12.5 GPa, a phenomenon attributed to an alteration of the microstructure during dehydrogenation. No hydrides of silver (up to 87 GPa) or gold (up to 113 GPa) were found at both room and high temperatures.

  20. Participatory Communication Referred to Meta-Design Approach through the FleXpeaker™ Application of Innovative Material in Exhibition Design

    Directory of Open Access Journals (Sweden)

    Pei-Hsuan Su

    2016-07-01

    Full Text Available Modelling a communication system in material culture today always involves with objects, people, organizations, activities and interrelationships among them. The researcher suggests bringing together stakeholders engaged to exchange ideas, which the interactions relate to multiple professions and disciplines in a participatory scope of communication system. Owing to the invention of digital media, the status quo of images and sounds has revolutionized and caused changes of the mode of art exhibitions that produce activities and aesthetic concepts in terms of numerical representation, modularity, automation, visual variability and transcoding. Underlying a participatory-design approach, the research emphasizes a co-creative meta-interpretation of museum‟s visitors. In addition, the research delves further into the use of new media-FleXpeaker™ [ITRI], as the carrier. Combining art and design with innovative technology, the research focuses on examining design objects and innovative material which are applied in new media art and exhibition, in the hope to find new angles of participatory interpretation of the “integrated innovation” in curating an exhibition.

  1. Air and metal hydride battery

    Energy Technology Data Exchange (ETDEWEB)

    Lampinen, M.; Noponen, T. [Helsinki Univ. of Technology, Otaniemi (Finland). Lab. of Applied Thermodynamics

    1998-12-31

    The main goal of the air and metal hydride battery project was to enhance the performance and manufacturing technology of both electrodes to such a degree that an air-metal hydride battery could become a commercially and technically competitive power source for electric vehicles. By the end of the project it was possible to demonstrate the very first prototype of the air-metal hydride battery at EV scale, achieving all the required design parameters. (orig.)

  2. Suppression of the critical temperature in binary vanadium hydrides

    Energy Technology Data Exchange (ETDEWEB)

    Dolan, M.D., E-mail: michael.dolan@csiro.au [CSIRO Energy Technology, 1 Technology Court, Pullenvale, QLD 4069 (Australia); McLennan, K.G. [CSIRO Energy Technology, 1 Technology Court, Pullenvale, QLD 4069 (Australia); Chandra, D. [Department of Chemical and Materials Engineering, University of Nevada, Reno, Reno, NV 89557 (United States); Kochanek, M.A. [CSIRO Energy Technology, 1 Technology Court, Pullenvale, QLD 4069 (Australia); Song, G. [CSIRO Process Science and Engineering, Gate 4, Normanby Rd, Clayton, VIC 3168 (Australia)

    2014-02-15

    Highlights: • Addition of 10 mol% Cr to V increases the β-hydride T{sub C} to >200 °C. • Addition of 10 mol% Ni to V increases the β-hydride T{sub C} to >400 °C. • Addition of 10 mol% Al to V decreases the β-hydride T{sub C} to <30 °C. • V{sub 90}Al{sub 10} membrane can be cycled to <30 °C under H{sub 2} without β-hydride formation. -- Abstract: The tendency of vanadium-based alloy membranes to embrittle is the biggest commercialisation barrier for this hydrogen separation technology. Excessive hydrogen absorption and the α → β hydride transition both contribute to brittle failure of these membranes. Alloying is known to reduce absorption, but the influence of alloying on hydride phase formation under conditions relevant to membrane operation has not been studied in great detail previously. Here, the effect of Cr, Ni, and Al alloying additions on V–H phase equilibrium has been studied using hydrogen absorption measurements and in situ X-ray diffraction studies. The addition of 10 mol% Ni increases the critical temperature for α + β hydride formation to greater than 400 °C, compared to 170 °C for V. Cr also increases the critical temperature, to between 200 and 300 °C. The addition of 10 mol% Al, however, suppresses the critical temperature to less than 30 °C, thereby enabling this material to be cycled thermally and hydrostatically while precluding formation of the β-hydride phase. This is despite Al also decreasing hydrogen absorption. The implication of this finding is that one of the mechanisms of brittle failure in vanadium-based hydrogen-selective membranes has been eliminated, thereby increasing the robustness of this material relative to V.

  3. Plasmonic hydrogen sensing with nanostructured metal hydrides.

    Science.gov (United States)

    Wadell, Carl; Syrenova, Svetlana; Langhammer, Christoph

    2014-12-23

    In this review, we discuss the evolution of localized surface plasmon resonance and surface plasmon resonance hydrogen sensors based on nanostructured metal hydrides, which has accelerated significantly during the past 5 years. We put particular focus on how, conceptually, plasmonic resonances can be used to study metal-hydrogen interactions at the nanoscale, both at the ensemble and at the single-nanoparticle level. Such efforts are motivated by a fundamental interest in understanding the role of nanosizing on metal hydride formation processes in the quest to develop efficient solid-state hydrogen storage materials with fast response times, reasonable thermodynamics, and acceptable long-term stability. Therefore, a brief introduction to the thermodynamics of metal hydride formation is also given. However, plasmonic hydrogen sensors not only are of academic interest as research tool in materials science but also are predicted to find more practical use as all-optical gas detectors in industrial and medical applications, as well as in a future hydrogen economy, where hydrogen is used as a carbon free energy carrier. Therefore, the wide range of different plasmonic hydrogen sensor designs already available is reviewed together with theoretical efforts to understand their fundamentals and optimize their performance in terms of sensitivity. In this context, we also highlight important challenges to be addressed in the future to take plasmonic hydrogen sensors from the laboratory to real applications in devices, including poisoning/deactivation of the active materials, sensor lifetime, and cross-sensitivity toward other gas species.

  4. Low-Cost Metal Hydride Thermal Energy Storage System for Concentrating Solar Power Systems

    Energy Technology Data Exchange (ETDEWEB)

    Zidan, Ragaiy [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Hardy, B. J. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Corgnale, C. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Teprovich, J. A. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Ward, P. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Motyka, Ted [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-01-31

    The objective of this research was to evaluate and demonstrate a metal hydride-based TES system for use with a CSP system. A unique approach has been applied to this project that combines our modeling experience with the extensive material knowledge and expertise at both SRNL and Curtin University (CU). Because of their high energy capacity and reasonable kinetics many metal hydride systems can be charged rapidly. Metal hydrides for vehicle applications have demonstrated charging rates in minutes and tens of minutes as opposed to hours. This coupled with high heat of reaction allows metal hydride TES systems to produce very high thermal power rates (approx. 1kW per 6-8 kg of material). A major objective of this work is to evaluate some of the new metal hydride materials that have recently become available. A problem with metal hydride TES systems in the past has been selecting a suitable high capacity low temperature metal hydride material to pair with the high temperature material. A unique aspect of metal hydride TES systems is that many of these systems can be located on or near dish/engine collectors due to their high thermal capacity and small size. The primary objective of this work is to develop a high enthalpy metal hydride that is capable of reversibly storing hydrogen at high temperatures (> 650 °C) and that can be paired with a suitable low enthalpy metal hydride with low cost materials. Furthermore, a demonstration of hydrogen cycling between the two hydride beds is desired.

  5. Hydride morphology and striation formation during delayed hydride cracking in Zr-2.5% Nb

    Energy Technology Data Exchange (ETDEWEB)

    Shek, G.K. [Ontario Hydro Technol., Ont. (Canada). Mater. Technol. Unit; Jovanovic, M.T. [Alberta Univ., Edmonton, AB (Canada). Dept. of Mining, Metallurgical and Petroleum Engineering; Seahra, H. [Ontario Hydro Technol., Ont. (Canada). Mater. Technol. Unit; Ma, Y. [Alberta Univ., Edmonton, AB (Canada). Dept. of Mining, Metallurgical and Petroleum Engineering; Li, D. [Alberta Univ., Edmonton, AB (Canada). Dept. of Mining, Metallurgical and Petroleum Engineering; Eadie, R.L. [Alberta Univ., Edmonton, AB (Canada). Dept. of Mining, Metallurgical and Petroleum Engineering

    1996-08-01

    These experiments were designed to study hydride formation at the crack tip, acoustic emission (AE), potential drop (PD) and striation formation during DHC (delayed hydride cracking) in Zr-2.5% Nb. The test material was taken from an especially extruded pressure tube, which showed similar strength properties to normal pressure tube material but somewhat coarser microstructure. In testing at K{sub I} below 12 MPa {radical}m at both 200 and 250 C very large striations (>40 {mu}m at 200 and >50 {mu}m at 250 C) were produced. In simultaneous monitoring with acoustic emission and potential drop, both AE and PD jumps were shown to be monolithic. The number of striations on the fracture surface corresponded to the number of monolithic AE/PD jumps. Tapered shaped hydrides with the thick end adjacent to the crack tip were observed. These hydrides grew in size during the incubation period until they reached the striation length and then fractured monolithically. However, when K{sub I} was increased beyond about 12 MPa {radical}m for these same specimens, the striation spacing decreased below 30 {mu}m, the monolithic jumping dissolved into more continuous changes in signals, although the smaller striations were still visible on the fracture surface. (orig.).

  6. Hydride morphology and striation formation during delayed hydride cracking in Zr-2.5% Nb

    Science.gov (United States)

    Shek, G. K.; Jovanoviċ, M. T.; Seahra, H.; Ma, Y.; Li, D.; Eadie, R. L.

    1996-08-01

    These experiments were designed to study hydride formation at the crack tip, acoustic emission (AE), potential drop (PD) and striation formation during DHC (delayed hydride cracking) in Zr-2.5% Nb. The test material was taken from an especially extrude pressure tube, which showed similar strength properties to normal pressure tube material but somewhat coarser microstructure. In testing at KI below 12 MPa √m at both 200 and 250°C very large striations (> 40 μ at 200 and >50 μm at 250°C) were produced. In simultaneous monitoring with acoustic emission and potential drop, both AE and PD jumps were shown to be monolithic. The number of striations on the fracture surface corresponded to the number of monolithic AE/PD jumps. Tapered shaped hydrides with the thick end adjacent to the crack tip were observed. These hydrides grew in size during the incubation period until they reached the striation length and then fractured monolithically. However, when KI was increased beyond about 12 MPa √m for these same specimens, the striation spacing decreased below 30 μ, the monolithic jumping dissolved into more continuous changes in signals, although the smaller striations were still visible on the fracture surface.

  7. Nanometer-scale hydrogen 'portals' for the control of magnesium hydride formation.

    Science.gov (United States)

    Chung, Chia-Jung; Nivargi, Chinmay; Clemens, Bruce

    2015-11-21

    Magnesium and Mg-based material systems are attractive candidates for hydrogen storage but limited by unsuitable thermodynamic and kinetic properties. In particular, the kinetics are too slow at room temperature and atmospheric pressure. To study the hydride formation kinetics in a controlled way, we have designed a unique 'nanoportal' structure of Pd nanoparticles deposited on epitaxial Mg thin films, through which the hydride will nucleate only under Pd nanoparticles. We propose a growth mechanism for the hydrogenation reaction in the nanoportal structure, which is supported by scanning electron microscopy (SEM) images of hydrogenated samples exhibiting consistent results. Interestingly, the grain boundaries of Mg films play an important role in hydride nucleation and growth processes. Kinetic modeling based on the Johnson-Mehl-Avrami-Kolmogorov (JMAK) formalism seems to agree with the two-dimensional nucleation and growth mechanism hypothesized and the overall reaction rate is limited by hydrogen flux through the interface between the Pd nanoparticle and the underlying Mg film. The fact that in our structure Mg can be transformed completely into MgH2 with only a small percentage of Pd nanoparticles offers possibilities for future on-board storage applications.

  8. Significantly improved electrochemical hydrogen storage properties of magnesium nickel hydride modified with nano-nickel

    Science.gov (United States)

    Chen, Wei; Zhu, Yunfeng; Yang, Chen; Zhang, Jiguang; Li, Menghuai; Li, Liquan

    2015-04-01

    Magnesium nickel hydride (Mg2NiH4) used as negative electrode material in nickel-metal hydride (Ni-MH) secondary battery is modified by nano-nickel via mechanical milling. In this paper, we systematically investigate the microstructure and electrochemical properties of the modified system with different milling durations. X-ray diffraction (XRD) and high resolution transmission electron microscopy (HRTEM) analyses confirm the amorphous transformation of Mg2Ni-based hydride and a novel NiH0.75 nanocrystalline with a diameter of about 5 nm embedding or covering on the surface of the base particle has been observed. Its formation mechanism and positive effects on electrochemical properties of the Mg2NiH4 have also been elaborated. Electrochemical measurements show that the 5 h milled composite possesses markedly increased discharge capacity up to 896 mAh g-1. With prolonging the milling duration from 5 h to 40 h, the discharge capacity at the 10th cycle increases from 99 mAh g-1 to 359 mAh g-1. Besides, the discharging procedure changes from stepwise processes to one single-step process with increasing the milling duration. Tafel polarization test shows that the nano-nickel modified system exhibits a much better anti-corrosion ability during charging/discharging cycles. Meanwhile, both the charge-transfer reaction on the alloy surface and hydrogen diffusion inside the alloy bulk are enhanced with nano-nickel modification.

  9. FEASIBILITY OF RECYCLING PLUTONIUM AND MINOR ACTINIDES IN LIGHT WATER REACTORS USING HYDRIDE FUEL

    Energy Technology Data Exchange (ETDEWEB)

    Greenspan, Ehud; Todreas, Neil; Taiwo, Temitope

    2009-03-10

    The objective of this DOE NERI program sponsored project was to assess the feasibility of improving the plutonium (Pu) and minor actinide (MA) recycling capabilities of pressurized water reactors (PWRs) by using hydride instead of oxide fuels. There are four general parts to this assessment: 1) Identifying promising hydride fuel assembly designs for recycling Pu and MAs in PWRs 2) Performing a comprehensive systems analysis that compares the fuel cycle characteristics of Pu and MA recycling in PWRs using the promising hydride fuel assembly designs identified in Part 1 versus using oxide fuel assembly designs 3) Conducting a safety analysis to assess the likelihood of licensing hydride fuel assembly designs 4) Assessing the compatibility of hydride fuel with cladding materials and water under typical PWR operating conditions Hydride fuel was found to offer promising transmutation characteristics and is recommended for further examination as a possible preferred option for recycling plutonium in PWRs.

  10. Heat transfer analysis of metal hydrides in metal-hydrogen secondary batteries

    Science.gov (United States)

    Onischak, M.; Dharia, D.; Gidaspow, D.

    1976-01-01

    The heat transfer between a metal-hydrogen secondary battery and a hydrogen-storing metal hydride was studied. Temperature profiles of the endothermic metal hydrides and the metal-hydrogen battery were obtained during discharging of the batteries assuming an adiabatic system. Two hydride materials were considered in two physical arrangements within the battery system. In one case the hydride is positioned in a thin annular region about the battery stack; in the other the hydride is held in a tube down the center of the stack. The results show that for a typical 20 ampere-hour battery system with lanthanum pentanickel hydride as the hydrogen reservoir the system could perform successfully.

  11. Molecular early main group metal hydrides: synthetic challenge, structures and applications.

    Science.gov (United States)

    Harder, Sjoerd

    2012-11-25

    Within the general area of early main group metal chemistry, the controlled synthesis of well-defined metal hydride complexes is a rapidly developing research field. As group 1 and 2 metal complexes are generally highly dynamic and lattice energies for their [MH](∞) and [MH(2)](∞) salts are high, the synthesis of well-defined soluble hydride complexes is an obvious challenge. Access to molecular early main group metal hydrides, however, is rewarding: these hydrocarbon-soluble metal hydrides are highly reactive, have found use in early main group metal catalysis and are potentially also valuable molecular model systems for polar metal hydrides as a hydrogen storage material. The article focusses specifically on alkali and alkaline-earth metal hydride complexes and discusses the synthetic challenge, molecular structures, reactivity and applications.

  12. Hydrogen storage in metal hydrides and complex hydrides; Wasserstoffspeicherung in Metall- und komplexen Hydriden - Schlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Bielmann, M.; Zuettel, A.

    2007-07-01

    This final report for the Swiss Federal Office of Energy (SFOE), reports on work done in 2007 at the Swiss Federal Laboratories for Materials Science and Technology EMPA on the storage of hydrogen in metal hydrides and complex hydrides. In particular, the use of tetrahydroborates is noted. The potential of this class of materials is stressed. The structures at room-temperature were examined using neutron and X-ray diffraction methods. Thermodynamic methods helped determine the thermodynamic stability of the materials. Also, a complete energy diagram for the materials was developed. The use of silicon oxide to reduce activation energy and its catalytic effects are discussed. The challenges placed by desorption mechanisms are noted. The authors note that reversibility is basically proven.

  13. 用于高效液相色谱和开管毛细管电色谱的氢化硅胶分离材料%Hydride-Based Separation Materials for High Performance Liquid Chromatography and Open Tubular Capillary Electrochromatography

    Institute of Scientific and Technical Information of China (English)

    PESEK Joseph J; MATYSKA Maria T

    2005-01-01

    Silica hydride is a recent development in chromatographic support materials for high performance liquid chromatography (HPLC) where hydride groups replace 95% of the silanols on the surface. This conversion changes many of the fundamental properties of the material as well as the bonded stationary phases that are the result of further chemical modification of the hydride surface. Some unique chromatographic properties of hydride-based phases are described as well as some general application areas where these bonded materials may be used in preference to or have advantages not available from typical stationary phases. The fabrication, properties and applications of etched chemically modified capillaries for electrophoretic analysis are also reviewed. It is shown that the etching process creates a surface that is fundamentally different than a bare fused silica capillary. The new surface matrix produces unique electroosmotic flow properties and is more compatible with basic and biological compounds. After chemical modification of the surface, the bonded organic moiety (stationary phase) contributes to the control of migration of solutes in the capillary. Both electrophoretic and chromatographic processes take place in the etched chemically modified capillaries leading to a variety of experimental variables that can be used to optimize separations. A number of examples of separations on these capillaries are described.

  14. Novel fuel cell stack with coupled metal hydride containers

    Science.gov (United States)

    Liu, Zhixiang; Li, Yan; Bu, Qingyuan; Guzy, Christopher J.; Li, Qi; Chen, Weirong; Wang, Cheng

    2016-10-01

    Air-cooled, self-humidifying hydrogen fuel cells are often used for backup and portable power sources, with a metal hydride used as the hydrogen storage material. To provide a stable hydrogen flow to the fuel cell stack, heat must be provided to the metal hydride. Conventionally, the heat released from the exothermic reaction of hydrogen and oxygen in the fuel cell stack to the exhaust air is used to heat a separate metal hydride container. In this case, the heat is only partially used instead of being more closely coupled because of the heat transfer resistances in the system. To achieve better heat integration, a novel scheme is proposed whereby hydrogen storage and single fuel cells are more closely coupled. Based on this idea, metal hydride containers in the form of cooling plates were assembled between each pair of cells in the stack so that the heat could be directly transferred to a metal hydride container of much larger surface-to-volume ratio than conventional separate containers. A heat coupled fuel cell portable power source with 10 cells and 11 metal hydride containers was constructed and the experimental results show that this scheme is beneficial for the heat management of fuel cell stack.

  15. Metal hydrides based high energy density thermal battery

    Energy Technology Data Exchange (ETDEWEB)

    Fang, Zhigang Zak, E-mail: zak.fang@utah.edu [Department of Metallurgical Engineering, The University of Utah, 135 South 1460 East, Room 412, Salt Lake City, UT 84112-0114 (United States); Zhou, Chengshang; Fan, Peng [Department of Metallurgical Engineering, The University of Utah, 135 South 1460 East, Room 412, Salt Lake City, UT 84112-0114 (United States); Udell, Kent S. [Department of Metallurgical Engineering, The University of Utah, 50 S. Central Campus Dr., Room 2110, Salt Lake City, UT 84112-0114 (United States); Bowman, Robert C. [Department of Metallurgical Engineering, The University of Utah, 135 South 1460 East, Room 412, Salt Lake City, UT 84112-0114 (United States); Vajo, John J.; Purewal, Justin J. [HRL Laboratories, LLC, 3011 Malibu Canyon Road, Malibu, CA 90265 (United States); Kekelia, Bidzina [Department of Metallurgical Engineering, The University of Utah, 50 S. Central Campus Dr., Room 2110, Salt Lake City, UT 84112-0114 (United States)

    2015-10-05

    Highlights: • The principle of the thermal battery using advanced metal hydrides was demonstrated. • The thermal battery used MgH{sub 2} and TiMnV as a working pair. • High energy density can be achieved by the use of MgH{sub 2} to store thermal energy. - Abstract: A concept of thermal battery based on advanced metal hydrides was studied for heating and cooling of cabins in electric vehicles. The system utilized a pair of thermodynamically matched metal hydrides as energy storage media. The pair of hydrides that was identified and developed was: (1) catalyzed MgH{sub 2} as the high temperature hydride material, due to its high energy density and enhanced kinetics; and (2) TiV{sub 0.62}Mn{sub 1.5} alloy as the matching low temperature hydride. Further, a proof-of-concept prototype was built and tested, demonstrating the potential of the system as HVAC for transportation vehicles.

  16. The electrochemical impedance of metal hydride electrodes

    DEFF Research Database (Denmark)

    Valøen, Lars Ole; Lasia, Andrzej; Jensen, Jens Oluf

    2002-01-01

    The electrochemical impedance responses for different laboratory type metal hydride electrodes were successfully modeled and fitted to experimental data for AB5 type hydrogen storage alloys as well as one MgNi type electrode. The models fitted the experimental data remarkably well. Several AC......, explaining the experimental impedances in a wide frequency range for electrodes of hydride forming materials mixed with copper powder, were obtained. Both charge transfer and spherical diffusion of hydrogen in the particles are important sub processes that govern the total rate of the electrochemical...... hydrogen absorption/desorption reaction. To approximate the experimental data, equations describing the current distribution in porous electrodes were needed. Indications of one or more parallel reduction/oxidation processes competing with the electrochemical hydrogen absorption/desorption reaction were...

  17. Pore-Confined Light Metal Hydrides for Energy Storage and Catalysis

    NARCIS (Netherlands)

    Bramwell, P.L.

    2017-01-01

    Light metal hydrides have enjoyed several decades of attention in the field of hydrogen storage, but their applications have recently begun to diversify more and more into the broader field of energy storage. For example, light metal hydrides have shown great promise as battery materials, in sensors

  18. Research of new AB type hydrogen storage materials that can be used as a negative electrode in nickel -metal hydride battery; Recherche de nouveaux composes intermetalliques hydrurables de type AB utilisables comme electrode negative d`accumulateur nickel-hydrure

    Energy Technology Data Exchange (ETDEWEB)

    Jordy, Ch.

    1994-12-15

    The aim of this work is to determine new AB type hydrogen storage materials that can be used as a negative electrode in nickel-metal hydride battery. The main requested solid-gas hydrogenation properties are as follows : a reversible capacity higher than 400 mAh/g and a plateau pressure close to 0, 01 MPa at 25 deg C. Binary intermetallic compounds have been selected according to their high hydrogen capacity. The thermodynamic properties of the hydride have to be adjusted by partial substitution of the A and/or B elements. The selected binary intermetallic rate to the substitution was based on known thermodynamic models and on criteria on hydrogen atom occupation in interstitial sites. The only alloys, which could have interest, are the one which are homogeneous. Amongst them, the compounds Ti(Fe{sub 1-x}) where M=Ni,Co,Mn,Cr, showed a solid-gas capacity higher than 400 mAh/g and a plateau pressure close to 0,01 MPa at 25 deg C. Nevertheless, the electrochemical capacity is extremely low due to the iron corrosion in concentrated KOH. The electrochemical capacities of (Ti{sub 1-x-y} Zr{sub x}M{sub y})Ni compounds for M=V and Si are the most promising in the AB type since a 350 m Ah/g reversible capacity has been measured bY THE CONSTANT POTENTIAL METHOD. We also showed that the partial zirconium substitution made the martensitic transformation temperature higher. (author)

  19. Nanostructured Magnesium Hydride for Reversible Hydrogen Storage

    Science.gov (United States)

    de Rango, P.; Chaise, A.; Fruchart, D.; Miraglia, S.; Marty, Ph.

    2013-05-01

    The aim of this work was to develop suitable materials to store hydrogen in a solid state. A systematic investigation of the co-milling process of magnesium hydride with a transition metal was undertaken in order to produce nanostructured and highly reactive powders. The initiating role of the transition metal was evidenced by in situ neutron diffraction experiments. High performances in terms of thermal and mechanical behavior were achieved introducing expanded graphite and compacting the mixture to form composite materials. Absorption and desorption kinetics have been measured versus temperature and H2 pressure.

  20. Development of a component design tool for metal hydride heat pumps

    Science.gov (United States)

    Waters, Essene L.

    Given current demands for more efficient and environmentally friendly energy sources, hydrogen based energy systems are an increasingly popular field of interest. Within the field, metal hydrides have become a prominent focus of research due to their large hydrogen storage capacity and relative system simplicity and safety. Metal hydride heat pumps constitute one such application, in which heat and hydrogen are transferred to and from metal hydrides. While a significant amount of work has been done to study such systems, the scope of materials selection has been quite limited. Typical studies compare only a few metal hydride materials and provide limited justification for the choice of those few. In this work, a metal hydride component design tool has been developed to enable the targeted down-selection of an extensive database of metal hydrides to identify the most promising materials for use in metal hydride thermal systems. The material database contains over 300 metal hydrides with various physical and thermodynamic properties included for each material. Sub-models for equilibrium pressure, thermophysical data, and default properties are used to predict the behavior of each material within the given system. For a given thermal system, this tool can be used to identify optimal materials out of over 100,000 possible hydride combinations. The selection tool described herein has been applied to a stationary combined heat and power system containing a high-temperature proton exchange membrane (PEM) fuel cell, a hot water tank, and two metal hydride beds used as a heat pump. A variety of factors can be used to select materials including efficiency, maximum and minimum system pressures, pressure difference, coefficient of performance (COP), and COP sensitivity. The targeted down-selection of metal hydrides for this system focuses on the system's COP for each potential pair. The values of COP and COP sensitivity have been used to identify pairs of highest interest for

  1. Metal Hydride Compression

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Terry A. [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Bowman, Robert [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Smith, Barton [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Anovitz, Lawrence [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Jensen, Craig [Hawaii Hydrogen Carriers LLC, Honolulu, HI (United States)

    2017-07-01

    Conventional hydrogen compressors often contribute over half of the cost of hydrogen stations, have poor reliability, and have insufficient flow rates for a mature FCEV market. Fatigue associated with their moving parts including cracking of diaphragms and failure of seal leads to failure in conventional compressors, which is exacerbated by the repeated starts and stops expected at fueling stations. Furthermore, the conventional lubrication of these compressors with oil is generally unacceptable at fueling stations due to potential fuel contamination. Metal hydride (MH) technology offers a very good alternative to both conventional (mechanical) and newly developed (electrochemical, ionic liquid pistons) methods of hydrogen compression. Advantages of MH compression include simplicity in design and operation, absence of moving parts, compactness, safety and reliability, and the possibility to utilize waste industrial heat to power the compressor. Beyond conventional H2 supplies of pipelines or tanker trucks, another attractive scenario is the on-site generating, pressuring and delivering pure H2 at pressure (≥ 875 bar) for refueling vehicles at electrolysis, wind, or solar generating production facilities in distributed locations that are too remote or widely distributed for cost effective bulk transport. MH hydrogen compression utilizes a reversible heat-driven interaction of a hydride-forming metal alloy with hydrogen gas to form the MH phase and is a promising process for hydrogen energy applications [1,2]. To deliver hydrogen continuously, each stage of the compressor must consist of multiple MH beds with synchronized hydrogenation & dehydrogenation cycles. Multistage pressurization allows achievement of greater compression ratios using reduced temperature swings compared to single stage compressors. The objectives of this project are to investigate and demonstrate on a laboratory scale a two-stage MH hydrogen (H2) gas compressor with a

  2. A nickel metal hydride battery for electric vehicles.

    Science.gov (United States)

    Ovshinsky, S R; Fetcenko, M A; Ross, J

    1993-04-09

    Widespread use of electric vehicles can have significant impact on urban air quality, national energy independence, and international balance of trade. An efficient battery is the key technological element to the development of practical electric vehicles. The science and technology of a nickel metal hydride battery, which stores hydrogen in the solid hydride phase and has high energy density, high power, long life, tolerance to abuse, a wide range of operating temperature, quick-charge capability, and totally sealed maintenance-free operation, is described. A broad range of multi-element metal hydride materials that use structural and compositional disorder on several scales of length has been engineered for use as the negative electrode in this battery. The battery operates at ambient temperature, is made of nontoxic materials, and is recyclable. Demonstration of the manufacturing technology has been achieved.

  3. Erbium hydride decomposition kinetics.

    Energy Technology Data Exchange (ETDEWEB)

    Ferrizz, Robert Matthew

    2006-11-01

    Thermal desorption spectroscopy (TDS) is used to study the decomposition kinetics of erbium hydride thin films. The TDS results presented in this report are analyzed quantitatively using Redhead's method to yield kinetic parameters (E{sub A} {approx} 54.2 kcal/mol), which are then utilized to predict hydrogen outgassing in vacuum for a variety of thermal treatments. Interestingly, it was found that the activation energy for desorption can vary by more than 7 kcal/mol (0.30 eV) for seemingly similar samples. In addition, small amounts of less-stable hydrogen were observed for all erbium dihydride films. A detailed explanation of several approaches for analyzing thermal desorption spectra to obtain kinetic information is included as an appendix.

  4. Solid hydrides as hydrogen storage reservoirs; Hidruros solidos como acumuladores de hidrogeno

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez, A.; Sanchez, C.; Friedrichs, O.; Ares, J. R.; Leardini, F.; Bodega, J.; Fernandez, J. F.

    2010-07-01

    Metal hydrides as hydrogen storage materials are briefly reviewed in this paper. Fundamental properties of metal-hydrogen (gas) system such as Pressure-Composition-Temperature (P-C-T) characteristics are discussed on the light of the metal-hydride thermodynamics. Attention is specially paid to light metal hydrides which might have application in the car and transport sector. The pros and cons of MgH{sub 2} as a light material are outlined. Researches in course oriented to improve the behaviour of MgH{sub 2} are presented. Finally, other very promising alternative materials such as Al compounds (alanates) or borohydrides as light hydrogen accumulators are also considered. (Author)

  5. Technical and economic evaluation of hydrogen storage systems based on light metal hydrides

    Energy Technology Data Exchange (ETDEWEB)

    Jepsen, Julian

    2014-07-01

    Novel developments regarding materials for solid-state hydrogen storage show promising prospects. These complex hydrides exhibit high mass-related storage capacities and thus great technical potential to store hydrogen in an efficient and safe way. However, a comprehensive evaluation of economic competitiveness is still lacking, especially in the case of the LiBH4 / MgH2 storage material. In this study, an assessment with respect to the economic feasibility of implementing complex hydrides as hydrogen storage materials is presented. The cost structure of hydrogen storage systems based on NaAlH4 and LiBH4 / MgH2 is discussed and compared with the conventional high pressure (700 bar) and liquid storage systems. Furthermore, the properties of LiBH4 / MgH2, so-called Li-RHC (Reactive Hydride Composite), are scientifically compared and evaluated on the lab and pilot plant scale. To enhance the reaction rate, the addition of TiCl3 is investigated and high energy ball milling is evaluated as processing technique. The effect of the additive in combination with the processing technique is described in detail. Finally, an optimum set of processing parameters and additive content are identified and can be applied for scaled-up production of the material based on simple models considering energy input during processing. Furthermore, thermodynamic, heat transfer and kinetic properties are experimentally determined by different techniques and analysed as a basis for modelling and designing scaled-up storage systems. The results are analysed and discussed with respect to the reaction mechanisms and reversibility of the system. Heat transfer properties are assessed with respect to the scale-up for larger hydrogen storage systems. Further improvements of the heat transfer were achieved by compacting the material. In this regard, the influence of the compaction pressure on the apparent density, thermal conductivity and sorption behaviour, was investigated in detail. Finally, scaled

  6. Geoneutrino and Hydridic Earth model

    CERN Document Server

    Bezrukov, Leonid

    2013-01-01

    Uranium, Thorium and Potassium-40 abundances in the Earth were calculated in the frame of Hydridic Earth model. Terrestrial heat producton from U, Th and K40 decays was calculated also. We must admit the existance of Earth expansion process to understand the obtained large value of terrestrial heat producton. The geoneutrino detector with volume more than 5 kT (LENA type) must be constructed to definitely separate between Bulk Silicat Earth model and Hydridic Earth model.

  7. Zirconium hydrides and Fe redistribution in Zr-2.5%Nb alloy under ion irradiation

    Science.gov (United States)

    Idrees, Y.; Yao, Z.; Cui, J.; Shek, G. K.; Daymond, M. R.

    2016-11-01

    Zr-2.5%Nb alloy is used to fabricate the pressure tubes of the CANDU reactor. The pressure tube is the primary pressure boundary for coolant in the CANDU design and is susceptible to delayed hydride cracking, reduction in fracture toughness upon hydride precipitation and potentially hydride blister formation. The morphology and nature of hydrides in Zr-2.5%Nb with 100 wppm hydrogen has been investigated using transmission electron microscopy. The effect of hydrides on heavy ion irradiation induced decomposition of the β phase has been reported. STEM-EDX mapping was employed to investigate the distribution of alloying elements. The results show that hydrides are present in the form of stacks of different sizes, with length scales from nano- to micro-meters. Heavy ion irradiation experiments at 250 °C on as-received and hydrided Zr-2.5%Nb alloy, show interesting effects of hydrogen on the irradiation induced redistribution of Fe. It was found that Fe is widely redistributed from the β phase into the α phase in the as-received material, however, the loss of Fe from the β phase and subsequent precipitation is retarded in the hydrided material. This preliminary work will further the current understanding of microstructural evolution of Zr based alloys in the presence of hydrogen.

  8. Thin-film metal hydrides.

    Science.gov (United States)

    Remhof, Arndt; Borgschulte, Andreas

    2008-12-01

    The goal of the medieval alchemist, the chemical transformation of common metals into nobel metals, will forever be a dream. However, key characteristics of metals, such as their electronic band structure and, consequently, their electric, magnetic and optical properties, can be tailored by controlled hydrogen doping. Due to their morphology and well-defined geometry with flat, coplanar surfaces/interfaces, novel phenomena may be observed in thin films. Prominent examples are the eye-catching hydrogen switchable mirror effect, the visualization of solid-state diffusion and the formation of complex surface morphologies. Thin films do not suffer as much from embrittlement and/or decrepitation as bulk materials, allowing the study of cyclic absorption and desorption. Therefore, thin-metal hydride films are used as model systems to study metal-insulator transitions, for high throughput combinatorial research or they may be used as indicator layers to study hydrogen diffusion. They can be found in technological applications as hydrogen sensors, in electrochromic and thermochromic devices. In this review, we discuss the effect of hydrogen loading of thin niobium and yttrium films as archetypical examples of a transition metal and a rare earth metal, respectively. Our focus thereby lies on the hydrogen induced changes of the electronic structure and the morphology of the thin films, their optical properties, the visualization and the control of hydrogen diffusion and on the study of surface phenomena and catalysis.

  9. From permanent magnets to rechargeable hydride electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Willems, J.J.G.; Buschow, K.H.J.

    1987-02-15

    A brief historical survey is given of how the study of coercitivity mechanisms in SmCo/sub 5/ permanent-magnet materials eventually led to the discovery of the favourable hydrogen sorption properties of the compound LaNi/sub 5/. It is shown how continued research by many investigators dealing with a variety of different physical and chemical properties has resulted in an advanced understanding of some of the principles that govern hydrogen absorption and which are responsible for the changes in physical properties that accompany it. The problems associated with various applications of LaNi/sub 5/-based hydrogen-storage materials are also briefly discussed. A large part of this paper is devoted to the applicability of LaNi/sub 5/-type materials in batteries. Research in this area has resulted in the development of a new type of rechargeable battery: the nickel-hydride cell. This battery can be charged and discharged at high rates and is relatively insensitive to overcharging and overdischarging. Special attention is given to the nature of the electrode degradation process and the effect of composition variations in LaNi/sub 5/-related materials on the lifetime of the corresponding hydride electrodes when subjected to severe electrochemical charge-discharge cycles.

  10. Physics of hydride fueled PWR

    Science.gov (United States)

    Ganda, Francesco

    The first part of the work presents the neutronic results of a detailed and comprehensive study of the feasibility of using hydride fuel in pressurized water reactors (PWR). The primary hydride fuel examined is U-ZrH1.6 having 45w/o uranium: two acceptable design approaches were identified: (1) use of erbium as a burnable poison; (2) replacement of a fraction of the ZrH1.6 by thorium hydride along with addition of some IFBA. The replacement of 25 v/o of ZrH 1.6 by ThH2 along with use of IFBA was identified as the preferred design approach as it gives a slight cycle length gain whereas use of erbium burnable poison results in a cycle length penalty. The feasibility of a single recycling plutonium in PWR in the form of U-PuH2-ZrH1.6 has also been assessed. This fuel was found superior to MOX in terms of the TRU fractional transmutation---53% for U-PuH2-ZrH1.6 versus 29% for MOX---and proliferation resistance. A thorough investigation of physics characteristics of hydride fuels has been performed to understand the reasons of the trends in the reactivity coefficients. The second part of this work assessed the feasibility of multi-recycling plutonium in PWR using hydride fuel. It was found that the fertile-free hydride fuel PuH2-ZrH1.6, enables multi-recycling of Pu in PWR an unlimited number of times. This unique feature of hydride fuels is due to the incorporation of a significant fraction of the hydrogen moderator in the fuel, thereby mitigating the effect of spectrum hardening due to coolant voiding accidents. An equivalent oxide fuel PuO2-ZrO2 was investigated as well and found to enable up to 10 recycles. The feasibility of recycling Pu and all the TRU using hydride fuels were investigated as well. It was found that hydride fuels allow recycling of Pu+Np at least 6 times. If it was desired to recycle all the TRU in PWR using hydrides, the number of possible recycles is limited to 3; the limit is imposed by positive large void reactivity feedback.

  11. Sodium-based hydrides for thermal energy applications

    Science.gov (United States)

    Sheppard, D. A.; Humphries, T. D.; Buckley, C. E.

    2016-04-01

    Concentrating solar-thermal power (CSP) with thermal energy storage (TES) represents an attractive alternative to conventional fossil fuels for base-load power generation. Sodium alanate (NaAlH4) is a well-known sodium-based complex metal hydride but, more recently, high-temperature sodium-based complex metal hydrides have been considered for TES. This review considers the current state of the art for NaH, NaMgH3- x F x , Na-based transition metal hydrides, NaBH4 and Na3AlH6 for TES and heat pumping applications. These metal hydrides have a number of advantages over other classes of heat storage materials such as high thermal energy storage capacity, low volume, relatively low cost and a wide range of operating temperatures (100 °C to more than 650 °C). Potential safety issues associated with the use of high-temperature sodium-based hydrides are also addressed.

  12. A study of advanced magnesium-based hydride and development of a metal hydride thermal battery system

    Science.gov (United States)

    Zhou, Chengshang

    Metal hydrides are a group of important materials known as energy carriers for renewable energy and thermal energy storage. A concept of thermal battery based on advanced metal hydrides is studied for heating and cooling of cabins in electric vehicles. The system utilizes a pair of thermodynamically matched metal hydrides as energy storage media. The hot hydride that is identified and developed is catalyzed MgH2 due to its high energy density and enhanced kinetics. TiV0.62Mn1.5, TiMn2, and LaNi5 alloys are selected as the matching cold hydride. A systematic experimental survey is carried out in this study to compare a wide range of additives including transitions metals, transition metal oxides, hydrides, intermetallic compounds, and carbon materials, with respect to their effects on dehydrogenation properties of MgH2. The results show that additives such as Ti and V-based metals, hydride, and certain intermetallic compounds have strong catalytic effects. Solid solution alloys of magnesium are exploited as a way to destabilize magnesium hydride thermodynamically. Various elements are alloyed with magnesium to form solid solutions, including indium and aluminum. Thermodynamic properties of the reactions between the magnesium solid solution alloys and hydrogen are investigated, showing that all the solid solution alloys that are investigated in this work have higher equilibrium hydrogen pressures than that of pure magnesium. Cyclic stability of catalyzed MgH2 is characterized and analyzed using a PCT Sievert-type apparatus. Three systems, including MgH2-TiH 2, MgH2-TiMn2, and MgH2-VTiCr, are examined. The hydrogenating and dehydrogenating kinetics at 300°C are stable after 100 cycles. However, the low temperature (25°C to 150°C) hydrogenation kinetics suffer a severe degradation during hydrogen cycling. Further experiments confirm that the low temperature kinetic degradation can be mainly related the extended hydrogenation-dehydrogenation reactions. Proof

  13. Complex rare-earth aluminum hydrides: mechanochemical preparation, crystal structure and potential for hydrogen storage.

    Science.gov (United States)

    Weidenthaler, Claudia; Pommerin, André; Felderhoff, Michael; Sun, Wenhao; Wolverton, Christopher; Bogdanović, Borislav; Schüth, Ferdi

    2009-11-25

    A novel type of complex rare-earth aluminum hydride was prepared by mechanochemical preparation. The crystal structure of the REAlH(6) (with RE = La, Ce, Pr, Nd) compounds was calculated by DFT methods and confirmed by preliminary structure refinements. The trigonal crystal structure consists of isolated [AlH(6)](3-) octahedra bridged via [12] coordinated RE cations. The investigation of the rare-earth aluminum hydrides during thermolysis shows a decrease of thermal stability with increasing atomic number of the RE element. Rare-earth hydrides (REH(x)) are formed as primary dehydrogenation products; the final products are RE-aluminum alloys. The calculated decomposition enthalpies of the rare-earth aluminum hydrides are at the lower end for reversible hydrogenation under moderate conditions. Even though these materials may require somewhat higher pressures and/or lower temperatures for rehydrogenation, they are interesting examples of low-temperature metal hydrides for which reversibility might be reached.

  14. Assessing nanoparticle size effects on metal hydride thermodynamics using the Wulff construction.

    Science.gov (United States)

    Kim, Ki Chul; Dai, Bing; Karl Johnson, J; Sholl, David S

    2009-05-20

    The reaction thermodynamics of metal hydrides are crucial to the use of these materials for reversible hydrogen storage. In addition to altering the kinetics of metal hydride reactions, the use of nanoparticles can also change the overall reaction thermodynamics. We use density functional theory to predict the equilibrium crystal shapes of seven metals and their hydrides via the Wulff construction. These calculations allow the impact of nanoparticle size on the thermodynamics of hydrogen release from these metal hydrides to be predicted. Specifically, we study the temperature required for the hydride to generate a H(2) pressure of 1 bar as a function of the radius of the nanoparticle. In most, but not all, cases the hydrogen release temperature increases slightly as the particle size is reduced.

  15. Pore confined synthesis of magnesium boron hydride nanoparticles

    NARCIS (Netherlands)

    Au, Yuen S.; Yan, Yigang; De Jong, Krijn P.; Remhof, Arndt; De Jongh, Petra E.

    2014-01-01

    Nanostructured materials based on light elements such as Li, Mg, and Na are essential for energy storage and conversion applications, but often difficult to prepare with control over size and structure. We report a new strategy that is illustrated for the formation of magnesium boron hydrides,

  16. Pore confined synthesis of magnesium boron hydride nanoparticles

    NARCIS (Netherlands)

    Au, Yuen S.; Yan, Yigang; De Jong, Krijn P.; Remhof, Arndt; De Jongh, Petra E.

    2014-01-01

    Nanostructured materials based on light elements such as Li, Mg, and Na are essential for energy storage and conversion applications, but often difficult to prepare with control over size and structure. We report a new strategy that is illustrated for the formation of magnesium boron hydrides, relev

  17. Interaction of electrons with light metal hydrides in the transmission electron microscope.

    Science.gov (United States)

    Wang, Yongming; Wakasugi, Takenobu; Isobe, Shigehito; Hashimoto, Naoyuki; Ohnuki, Somei

    2014-12-01

    Transmission electron microscope (TEM) observation of light metal hydrides is complicated by the instability of these materials under electron irradiation. In this study, the electron kinetic energy dependences of the interactions of incident electrons with lithium, sodium and magnesium hydrides, as well as the constituting element effect on the interactions, were theoretically discussed, and electron irradiation damage to these hydrides was examined using in situ TEM. The results indicate that high incident electron kinetic energy helps alleviate the irradiation damage resulting from inelastic or elastic scattering of the incident electrons in the TEM. Therefore, observations and characterizations of these materials would benefit from increased, instead decreased, TEM operating voltage.

  18. A New Reducing Regent: Dichloroindium Hydride

    Institute of Scientific and Technical Information of China (English)

    A. BABA; I. SHIBATA; N. HAYASHI

    2005-01-01

    @@ 1Introduction Among the hydride derivatives of group 13 elements, various types of aluminum hydrides and boron hydrides have been employed as powerful reduction tools. Indium hydrides have not received much attention,whereas the synthesis of indium trihydride (InH3) was reported several decades ago[1]. There have been no precedents for monometallic indium hydrides having practical reactivity, while activated hydrides such as an ate complex LiPhn InH4-n (n = 0- 2) and phosphine-coordinated indium hydrides readily reduce carbonyl compounds. In view of this background, we focused on the development of dichloroindium hydrides (Cl2InH) as novel reducing agents that bear characteristic features in both ionic and radical reactions.

  19. Hydride Olefin complexes of tantalum and niobium

    NARCIS (Netherlands)

    Klazinga, Aan Hendrik

    1979-01-01

    This thesis describes investigations on low-valent tantalum and niobium hydride and alkyl complexes, particularly the dicyclopentadienyl tantalum hydride olefin complexes Cp2Ta(H)L (L=olefin). ... Zie: Summary

  20. An experimental survey of additives for improving dehydrogenation properties of magnesium hydride

    Science.gov (United States)

    Zhou, Chengshang; Fang, Zhigang Zak; Sun, Pei

    2015-03-01

    The use of a wide range of additives has been known as an important method for improving hydrogen storage properties of MgH2. There is a lack of a standard methodology, however, that can be used to select or compare the effectiveness of different additives. A systematic experimental survey was carried out in this study to compare a wide range of additives including transitions metals, transition metal oxides, hydrides, intermetallic compounds, and carbon materials, with respect to their effects on dehydrogenation properties of MgH2. MgH2 with various additives were prepared by using a high-energy-high-pressure planetary ball milling method and characterized by using thermogravimetric analysis (TGA) techniques. The results showed that additives such as Ti and V-based metals, hydride, and certain intermetallic compounds have strong catalytic effects. Additives such as Al, In, Sn, Si showed minor effects on the kinetics of the dehydrogenation of MgH2, while exhibiting moderate thermodynamic destabilizing effects. In combination, MgH2 with both kinetic and thermodynamic additives, such as the MgH2-In-TiMn2 system, exhibited a drastically decreased dehydrogenation temperature.

  1. Influence of hydrides orientation on strain, damage and failure of hydrided zircaloy-4; Influence de l'orientation des hydrures sur les modes de deformation, d'endommagement et de rupture du zircaloy-4 hydrure

    Energy Technology Data Exchange (ETDEWEB)

    Racine, A

    2005-09-15

    In pressurized water reactors of nuclear power plants, fuel pellets are contained in cladding tubes, made of Zirconium alloy, for instance Zircaloy-4. During their life in the primary water of the reactor (155 bars, 300 C), cladding tubes are oxidized and consequently hydrided. A part of the hydrogen given off precipitates as Zirconium hydrides in the bulk material and embrittles the material. This embrittlement depends on many parameters, among which hydrogen content and orientation of hydrides with respect to the applied stress. This investigation is devoted to the influence of the orientation of hydrides with respect to the applied stress on strain, damage and failure mechanisms. Macroscopic and SEM in-situ ring tensile tests are performed on cladding tube material (unirradiated cold worked stress-relieved Zircaloy-4) hydrided with about 200 and 500 wppm hydrogen, and with different main hydrides orientation: either parallel or perpendicular to the circumferential tensile direction. We get the mechanical response of the material as a function of hydride orientation and hydrogen content and we investigate the deformation, damage and failure mechanisms. In both cases, digital image correlation techniques are used to estimate local and global strain distributions. Neither the tensile stress-strain response nor the global and local strain modes are significantly affected by hydrogen content or hydride orientation, but the failure modes are strongly modified. Indeed, only 200 wppm radial hydrides embrittle Zy-4: sample fail in the elastic domain at about 350 MPa before strain bands could develop; whereas in other cases sample reach at least 750 MPa before necking and final failure, in ductile or brittle mode. To model this particular heterogeneous material behavior, a non-coupled damage approach which takes into account the anisotropic distribution of the hydrides is proposed. Its parameters are identified from the macroscopic strain field measurements and a

  2. The effect of stress state on zirconium hydride reorientation

    Science.gov (United States)

    Cinbiz, Mahmut Nedim

    Prior to storage in a dry-cask facility, spent nuclear fuel must undergo a vacuum drying cycle during which the spent fuel rods are heated up to elevated temperatures of ≤ 400°C to remove moisture the canisters within the cask. As temperature increases during heating, some of the hydride particles within the cladding dissolve while the internal gas pressure in fuel rods increases generating multi-axial hoop and axial stresses in the closed-end thin-walled cladding tubes. As cool-down starts, the hydrogen in solid solution precipitates as hydride platelets, and if the multiaxial stresses are sufficiently large, the precipitating hydrides reorient from their initial circumferential orientation to radial orientation. Radial hydrides can severely embrittle the spent nuclear fuel cladding at low temperature in response to hoop stress loading. Because the cladding can experience a range of stress states during the thermo-mechanical treatment induced during vacuum drying, this study has investigated the effect of stress state on the process of hydride reorientation during controlled thermo-mechanical treatments utilizing the combination of in situ X-ray diffraction and novel mechanical testing analyzed by the combination of metallography and finite element analysis. The study used cold worked and stress relieved Zircaloy-4 sheet containing approx. 180 wt. ppm hydrogen as its material basis. The failure behavior of this material containing radial hydrides was also studied over a range of temperatures. Finally, samples from reactor-irradiated cladding tubes were examined by X-ray diffraction using synchrotron radiation. To reveal the stress state effect on hydride reorientation, the critical threshold stress to reorient hydrides was determined by designing novel mechanical test samples which produce a range of stress states from uniaxial to "near-equibiaxial" tension when a load is applied. The threshold stress was determined after thermo-mechanical treatments by

  3. Luminescent properties of aluminum hydride

    Energy Technology Data Exchange (ETDEWEB)

    Baraban, A.P.; Gabis, I.E.; Dmitriev, V.A. [Saint-Petersburg State University, Department of Physics, Saint-Petersburg 198504 (Russian Federation); Dobrotvorskii, M.A., E-mail: mstislavd@gmail.com [Saint-Petersburg State University, Department of Physics, Saint-Petersburg 198504 (Russian Federation); Kuznetsov, V.G. [Saint-Petersburg State University, Department of Physics, Saint-Petersburg 198504 (Russian Federation); Matveeva, O.P. [National Mineral Resources University, Saint Petersburg 199106 (Russian Federation); Titov, S.A. [Petersburg State University of Railway Transport, Saint-Petersburg 190031 (Russian Federation); Voyt, A.P.; Elets, D.I. [Saint-Petersburg State University, Department of Physics, Saint-Petersburg 198504 (Russian Federation)

    2015-10-15

    We studied cathodoluminescence and photoluminescence of α-AlH{sub 3}– a likely candidate for use as possible hydrogen carrier in hydrogen-fueled vehicles. Luminescence properties of original α-AlH{sub 3} and α-AlH{sub 3} irradiated with ultraviolet were compared. The latter procedure leads to activation of thermal decomposition of α-AlH{sub 3} and thus has a practical implementation. We showed that the original and UV-modified aluminum hydride contain luminescence centers ‐ structural defects of the same type, presumably hydrogen vacancies, characterized by a single set of characteristic bands of radiation. The observed luminescence is the result of radiative intracenter relaxation of the luminescence center (hydrogen vacancy) excited by electrons or photons, and its intensity is defined by the concentration of vacancies, and the area of their possible excitation. UV-activation of the dehydrogenation process of aluminum hydride leads to changes in the spatial distribution of the luminescence centers. For short times of exposure their concentration increases mainly in the surface regions of the crystals. At high exposures, this process extends to the bulk of the aluminum hydride and ends with a decrease in concentration of luminescence centers in the surface region. - Highlights: • Aluminum hydride contains hydrogen vacancies which serve as luminescence centers. • The luminescence is the result of radiative relaxation of excited centers. • Hydride UV-irradiation alters distribution and concentration of luminescence centers.

  4. Photochemistry of Transition Metal Hydrides.

    Science.gov (United States)

    Perutz, Robin N; Procacci, Barbara

    2016-08-10

    Photochemical reactivity associated with metal-hydrogen bonds is widespread among metal hydride complexes and has played a critical part in opening up C-H bond activation. It has been exploited to design different types of photocatalytic reactions and to obtain NMR spectra of dilute solutions with a single pulse of an NMR spectrometer. Because photolysis can be performed on fast time scales and at low temperature, metal-hydride photochemistry has enabled determination of the molecular structure and rates of reaction of highly reactive intermediates. We identify five characteristic photoprocesses of metal monohydride complexes associated with the M-H bond, of which the most widespread are M-H homolysis and R-H reductive elimination. For metal dihydride complexes, the dominant photoprocess is reductive elimination of H2. Dihydrogen complexes typically lose H2 photochemically. The majority of photochemical reactions are likely to be dissociative, but hydride complexes may be designed with equilibrated excited states that undergo different photochemical reactions, including proton transfer or hydride transfer. The photochemical mechanisms of a few reactions have been analyzed by computational methods, including quantum dynamics. A section on specialist methods (time-resolved spectroscopy, matrix isolation, NMR, and computational methods) and a survey of transition metal hydride photochemistry organized by transition metal group complete the Review.

  5. Method of producing a chemical hydride

    Science.gov (United States)

    Klingler, Kerry M.; Zollinger, William T.; Wilding, Bruce M.; Bingham, Dennis N.; Wendt, Kraig M.

    2007-11-13

    A method of producing a chemical hydride is described and which includes selecting a composition having chemical bonds and which is capable of forming a chemical hydride; providing a source of a hydrocarbon; and reacting the composition with the source of the hydrocarbon to generate a chemical hydride.

  6. Hydrogen, lithium, and lithium hydride production

    Science.gov (United States)

    Brown, Sam W; Spencer, Larry S; Phillips, Michael R; Powell, G. Louis; Campbell, Peggy J

    2014-03-25

    A method of producing high purity lithium metal is provided, where gaseous-phase lithium metal is extracted from lithium hydride and condensed to form solid high purity lithium metal. The high purity lithium metal may be hydrided to provide high purity lithium hydride.

  7. NATO Advanced Study Institute on Metal Hydrides

    CERN Document Server

    1981-01-01

    In the last five years, the study of metal hydrides has ex­ panded enormously due to the potential technological importance of this class of materials in hydrogen based energy conversion schemes. The scope of this activity has been worldwide among the industrially advanced nations. There has been a consensus among researchers in both fundamental and applied areas that a more basic understanding of the properties of metal/hydrogen syster;,s is required in order to provide a rational basis for the selection of materials for specific applications. The current worldwide need for and interest in research in metal hydrides indicated the timeliness of an Advanced Study Insti­ tute to provide an in-depth view of the field for those active in its various aspects. The inclusion of speakers from non-NATO coun­ tries provided the opportunity for cross-fertilization of ideas for future research. While the emphasis of the Institute was on basic properties, there was a conscious effort to stimulate interest in the applic...

  8. A J integral based method to measure fracture resistance and cohesive laws in materials exhibiting large scale plasticity

    DEFF Research Database (Denmark)

    Sørensen, Bent F.; Goutianos, Stergios

    2014-01-01

    A method is developed to extract the fracture resistance and mode I cohesive law of nonlinear elastic-plastic materials using a Double Cantilever Beam (DCB) sandwich specimen loaded with pure bending moments. The method is based on the J integral which is valid for materials having a non-linear s......A method is developed to extract the fracture resistance and mode I cohesive law of nonlinear elastic-plastic materials using a Double Cantilever Beam (DCB) sandwich specimen loaded with pure bending moments. The method is based on the J integral which is valid for materials having a non...

  9. Hydrogen Storage in Metal Hydrides

    Science.gov (United States)

    1990-08-01

    Hydrogen Storage Capacity Hydride by weight (%) [1) by volume (g/ml) [2] MgH2 7.00 0.101 Mg2NiH4 3.84 0,081 Mg2CuH4 2.04 - - 27 ...Include Security Classification) Hydrogen Storage in Metal Hydrides (U) 12. PERSONAL AUTHOR(S) DelaRosa, Mark J. 13a. TYPE OF REPORT 13b. TIME...objective of this program was to develop an economical process for pr-ducing a lightweight hydrogen storage medium by the chemical vapor infiltration

  10. Crystallography of shear transformations in zirconium hydrides

    Energy Technology Data Exchange (ETDEWEB)

    Cassidy, Michael Philip [Univ. of Illinois, Urbana-Champaign, IL (United States)

    1978-01-01

    The crystallography and substructure of the transformations which have been hypothesized as involving a martensitic shear, and which occur between zirconium hydrides were investigated. Specifically, the formation of gamma zirconium hydride from delta hydride and the delta hydride to epsilon hydride transformation were studied. The habit planes, orientation relationships, lattice invariant shears, and interface structures were determined by transmission electron microscopy and diffraction. Surface tilts were observed and measured with an interference microscope. The direction and magnitude of the shape strain produced by the formation of gamma were determined by the measurement of fiducial scratch displacements. These results were compared with the phenomenological crystallographic theory of martensitic transformations.

  11. Characteristics and Applications of Metal Hydrides

    Science.gov (United States)

    Egan, G. J.; Lynch, F. E.

    1987-01-01

    Report discusses engineering principles of uses of metal hydrides in spacecraft. Metal hydrides absorb, store, pump, compress, and expand hydrogen gas. Additionally, they release or absorb sizeable amounts of heat as they form and decompose - property adapted for thermal-energy management or for propulsion. Describes efforts to: Identify heat sources and sinks suitable for driving metal hydride thermal cycles in spacecraft; develop concepts for hydride subsystems employing available heating and cooling methods; and produce data base on estimated sizes, masses, and performances of hydride devices for spacecraft.

  12. Investigation of metal hydride nanoparticles templated in metal organic frameworks.

    Energy Technology Data Exchange (ETDEWEB)

    Jacobs, Benjamin W.; Herberg, Julie L. (Lawrence Livermore National Laboratory, Livermore, CA); Highley, Aaron M.; Grossman, Jeffrey (MIT, Cambridge, MA); Wagner, Lucas (MIT, Cambridge, MA); Bhakta, Raghu; Peaslee, D. (University of Missouri, St. Louis, MO); Allendorf, Mark D.; Liu, X. (University of Missouri, St. Louis, MO); Behrens, Richard, Jr.; Majzoub, Eric H. (University of Missouri, St. Louis, MO)

    2010-11-01

    Hydrogen is proposed as an ideal carrier for storage, transport, and conversion of energy. However, its storage is a key problem in the development of hydrogen economy. Metal hydrides hold promise in effectively storing hydrogen. For this reason, metal hydrides have been the focus of intensive research. The chemical bonds in light metal hydrides are predominantly covalent, polar covalent or ionic. These bonds are often strong, resulting in high thermodynamic stability and low equilibrium hydrogen pressures. In addition, the directionality of the covalent/ionic bonds in these systems leads to large activation barriers for atomic motion, resulting in slow hydrogen sorption kinetics and limited reversibility. One method for enhancing reaction kinetics is to reduce the size of the metal hydrides to nano scale. This method exploits the short diffusion distances and constrained environment that exist in nanoscale hydride materials. In order to reduce the particle size of metal hydrides, mechanical ball milling is widely used. However, microscopic mechanisms responsible for the changes in kinetics resulting from ball milling are still being investigated. The objective of this work is to use metal organic frameworks (MOFs) as templates for the synthesis of nano-scale NaAlH4 particles, to measure the H2 desorption kinetics and thermodynamics, and to determine quantitative differences from corresponding bulk properties. Metal-organic frameworks (MOFs) offer an attractive alternative to traditional scaffolds because their ordered crystalline lattice provides a highly controlled and understandable environment. The present work demonstrates that MOFs are stable hosts for metal hydrides and their reactive precursors and that they can be used as templates to form metal hydride nanoclusters on the scale of their pores (1-2 nm). We find that using the MOF HKUST-1 as template, NaAlH4 nanoclusters as small as 8 formula units can be synthesized inside the pores. A detailed picture of

  13. Neutron and X-ray Studies of Advanced Materials VII Symposium at the 143rd TMS Annual Meeting & Exhibition

    Energy Technology Data Exchange (ETDEWEB)

    Spanos, George [The Minerals, Metals and Materials Society (TMS), Warrendale, PA (United States)

    2015-02-05

    The Neutron and X-Ray Studies of Advanced Materials VII Symposium, held at the 2014, 143rd Annual Meeting of The Minerals, Metals, and Materials Society (TMS), brought together experts, young investigators, and students from this sub-discipline of materials science in order for them to share their latest discoveries and develop collaborations. This annual symposium, which is organized by The Minerals, Metals, and Materials Society, is an important event for this community of scientists. This year, over 100 high-level technical talks were delivered over the course of the four day event. In addition, the large number of students and young investigators in attendance ensured the maximum benefit to the next generation’s work force in this area of study. The science surrounding the utilization of neutrons and x-rays to study advanced materials is becoming increasingly important in increasing the understanding of how the exceptional materials properties of such materials arise. In particular, x-rays and neutrons can be used to visualize material structures at an extremely high resolution and in some cases, three dimensions—allowing unprecedented insights into the mechanisms governing certain materials properties such as strength and toughness. Moreover, some of these techniques allow materials to be visualized without damaging the material, approaches known as non-destructive evaluation or “NDE”. This allows materials to be studied in 3 dimensions while undergoing change in real time which represents an important (and long sought-after) advancement in materials science. The types of interactions afforded by this event are beneficial to society at large primarily because they provide opportunities for the leaders within this field to learn from one another and thus improve the quality and productivity of their investigations. Additionally, the presence of young investigators and students with technical interests in this field provides promise that the United

  14. Release of hydrogen from nanoconfined hydrides by application of microwaves

    Science.gov (United States)

    Sanz-Moral, Luis Miguel; Navarrete, Alexander; Sturm, Guido; Link, Guido; Rueda, Miriam; Stefanidis, Georgios; Martín, Ángel

    2017-06-01

    The release of hydrogen from solid hydrides by thermolysis can be improved by nanoconfinement of the hydride in a suitable micro/mesoporous support, but the slow heat transfer by conduction through the support can be a limitation. In this work, a C/SiO2 mesoporous material has been synthesized and employed as matrix for nanoconfinement of hydrides. The matrix showed high surface area and pore volume (386 m2/g and 1.41 cm3/g), which enabled the confinement of high concentrations of hydride. Furthermore, by modification of the proportion between C and SiO2, the dielectric properties of the complex could be modified, making it susceptible to microwave heating. As with this heating method the entire sample is heated simultaneously, the heat transfer resistances associated to conduction were eliminated. To demonstrate this possibility, ethane 1,2-diaminoborane (EDAB) was embedded on the C/SiO2 matrix at concentrations ranging from 11 to 31%wt using a wet impregnation method, and a device appropriate for hydrogen release from this material by application of microwaves was designed with the aid of a numerical simulation. Hydrogen liberation tests by conventional heating and microwaves were compared, showing that by microwave heating hydrogen release can be initiated and stopped in shorter times.

  15. Research on Service Life of Flame Resistant Materials in the Exhibition Hall by the Use of Mechanical Method of the Meso Damage Mechanics

    Directory of Open Access Journals (Sweden)

    Zhang Junzhu

    2015-01-01

    Full Text Available The population in the exhibition hall is relatively dense, and fire incidents often occur, so the existence of flame resistant materials is very important. The flame resistant materials are used to analyze the museums, art galleries, science and technology museums and other exhibition halls. Taking two kinds of flame resistant materials, namely, Mg(OH2 and Al(OH3 as an example, this paper establishes a model of meso damage mechanics by the use of mechanical method of the meso damage mechanics, and researches the macro mechanical properties of the thermal insulation materials and decorative materials so as to predict its service life. This research finds that the use of two kinds of flame resistant materials, namely, Mg(OH2 and Al(OH3 can improve the elasticity modulus of the thermal insulation materials and decorative materials used in the construction, so that its macro mechanical properties can have a significant improvement, and its service life can also have a significant improvement after adding flame retardant materials.

  16. Exhibit Engineering

    DEFF Research Database (Denmark)

    Mortensen, Marianne Foss

    ) a synthesis of the findings from the first two studies with findings from the literature to generate two types of results: a coherent series of suggestions for a design iteration of the studied exhibit as well as a more general normative model for exhibit engineering. Finally, another perspective...

  17. Discovery of novel hydrogen storage materials: an atomic scale computational approach.

    Science.gov (United States)

    Wolverton, C; Siegel, Donald J; Akbarzadeh, A R; Ozoliņš, V

    2008-02-13

    Practical hydrogen storage for mobile applications requires materials that exhibit high hydrogen densities, low decomposition temperatures, and fast kinetics for absorption and desorption. Unfortunately, no reversible materials are currently known that possess all of these attributes. Here we present an overview of our recent efforts aimed at developing a first-principles computational approach to the discovery of novel hydrogen storage materials. Such an approach requires several key capabilities to be effective: (i) accurate prediction of decomposition thermodynamics, (ii) prediction of crystal structures for unknown hydrides, and (iii) prediction of preferred decomposition pathways. We present examples that illustrate each of these three capabilities: (i) prediction of hydriding enthalpies and free energies across a wide range of hydride materials, (ii) prediction of low energy crystal structures for complex hydrides (such as Ca(AlH(4))(2) CaAlH(5), and Li(2)NH), and (iii) predicted decomposition pathways for Li(4)BN(3)H(10) and destabilized systems based on combinations of LiBH(4), Ca(BH(4))(2) and metal hydrides. For the destabilized systems, we propose a set of thermodynamic guidelines to help identify thermodynamically viable reactions. These capabilities have led to the prediction of several novel high density hydrogen storage materials and reactions.

  18. Thin-film metal hydrides for solar energy applications

    Energy Technology Data Exchange (ETDEWEB)

    Mongstad, Trygve Tveiteraas

    2012-11-01

    Thin-film metal hydrides may become important solar energy materials in the future. This thesis demonstrates interesting material properties of metal hydride films, relevant for applications as semiconducting materials for photovoltaic (PV) solar cells and for regulation of light using smart window technology.The work presented here has comprised an experimental study, focusing on three different materials: Magnesium hydride (MgH2), magnesium nickel hydride (Mg2NiH4) and yttrium hydride (YHx). Reactive sputter deposition was used to prepare the metal hydride film samples.This synthesis method is relatively uncommon for metal hydrides. Here,the first demonstration of reactive sputtering synthesis for YHx and Mg2NiH4 is given. Different challenges in forming singlephase, pure metal hydrides were identified: MgH2 could not be deposited without 3-16% metallic Mg present in the films, and YHx was found to react strong-ly to oxygen (O) during the deposition process. On the other hand, Mg2NiH4 films formed easily and apparently without major metallic clusters and with low O content.Mg2NiH4 is a semiconductor with an optical band gap that is suitable for PV solar cells. This study has showed that films with promising electrical and optical properties can be synthesized using reactive cosputtering of Mg and Ni. Using optical methods, the band gap for the as deposited samples was estimated to 1.54-1.76 eV, depending on the Mg-Ni composition. The asdeposited films were amorphous or nano-crystalline, but could be crystallized into the high-temperature fcc structure of Mg2NiH4 using heat treatment at 523 K. The band gap of the crystalline films was 2.1-2.2 eV, depending on the composition.A pronounced photochromic reaction to visible and UV light was observed for transparent yttrium hydride (T-YHx) samples. The optical transmission was reduced when the samples were illuminated, and the original optical transmission was restored when the samples were kept under dark conditions

  19. Human Exhibitions

    DEFF Research Database (Denmark)

    Andreassen, Rikke

    From 1870s to 1910s, more than 50 exhibitions of so-called exotic people took place in Denmark. Here large numbers of people of Asian and African origin were exhibited for the entertainment and ‘education’ of a mass audience. Several of these exhibitions took place in Copenhagen Zoo. Here different...... light on the staging of exhibitions, the daily life of the exhibitees, the wider connections between shows across Europe and the thinking of the time on matters of race, science, gender and sexuality. A window onto contemporary racial understandings, the book presents interviews with the descendants...... of displayed people, connecting the attitudes and science of the past with both our (continued) modern fascination with ‘the exotic’, and contemporary language and popular culture. As such, it will be of interest to scholars of sociology, anthropology and history working in the areas of gender and sexuality...

  20. Study on Hydrogen Storage Materials

    Science.gov (United States)

    Sugiyama, Jun

    2016-09-01

    Complex hydrides have been heavily investigated as a hydrogen storage material, particularly for future vehicular applications. The present major problem of such complex hydrides is their relatively high hydrogen desorption temperature (Td). In order to find a predominant parameter for determining Td, we have investigated internal nuclear magnetic fields in several complex hydrides, such as, lithium and sodium alanates, borohydrides, and magnesium hydrides, with a muon spin rotation and relaxation (μ+SR) technique. At low temperatures, the μ+SR spectrum obtained in a zero external field (ZF) exhibits a clear oscillation due to the formation of a three spin 1/2 system, HμH, besides Mg(BH4)2 and Sc(BH4)2. Such oscillatory signal becomes weaker and weaker with increasing temperature, and finally disappears above around room temperature. However, the volume fraction of the HμH signal to the whole asymmetry at 5 K is found to be a good indicator for Td in borohydrides. At high temperatures, on the contrary, the ZF-spectrum for MgH2 shows a Kubo-Toyabe like relaxation due to a random nuclear magnetic field of 1H. Such nuclear magnetic field becomes dynamic well below Td in the milled MgH2, indicating a significant role on H-diffusion in solids for determining Td.

  1. Complex Hydride Compounds with Enhanced Hydrogen Storage Capacity

    Energy Technology Data Exchange (ETDEWEB)

    Mosher, Daniel A.; Opalka, Susanne M.; Tang, Xia; Laube, Bruce L.; Brown, Ronald J.; Vanderspurt, Thomas H.; Arsenault, Sarah; Wu, Robert; Strickler, Jamie; Anton, Donald L.; Zidan, Ragaiy; Berseth, Polly

    2008-02-18

    between alkaline metal hydrides (AmH), Alkaline earth metal hydrides (AeH2), alane (AlH3), transition metal (Tm) hydrides (TmHz, where z=1-3) and molecular hydrogen (H2). The effort started first with variations of known alanates and subsequently extended the search to unknown compounds. In this stage, the FPM techniques were developed and validated on known alanate materials such as NaAlH4 and Na2LiAlH6. The coupled predictive methodologies were used to survey over 200 proposed phases in six quaternary spaces, formed from various combinations of Na, Li Mg and/or Ti with Al and H. A wide range of alanate compounds was examined using SSP having additions of Ti, Cr, Co, Ni and Fe. A number of compositions and reaction paths were identified having H weight fractions up to 5.6 wt %, but none meeting the 7.5 wt%H reversible goal. Similarly, MSP of alanates produced a number of interesting compounds and general conclusions regarding reaction behavior of mixtures during processing, but no alanate based candidates meeting the 7.5 wt% goal. A novel alanate, LiMg(AlH4)3, was synthesized using SBP that demonstrated a 7.0 wt% capacity with a desorption temperature of 150°C. The deuteride form was synthesized and characterized by the Institute for Energy (IFE) in Norway to determine its crystalline structure for related FPM studies. However, the reaction exhibited exothermicity and therefore was not reversible under acceptable hydrogen gas pressures for on-board recharging. After the extensive studies of alanates, the material class of emphasis was shifted to borohydrides. Through SBP, several ligand-stabilized Mg(BH4)2 complexes were synthesized. The Mg(BH4)2*2NH3 complex was found to change behavior with slightly different synthesis conditions and/or aging. One of the two mechanisms was an amine-borane (NH3BH3) like dissociation reaction which released up to 16 wt %H and more conservatively 9 wt%H when not including H2 released from the NH3. From FPM, the stability of the Mg(BH4

  2. A deformation and thermodynamic model for hydride precipitation kinetics in spent fuel cladding

    Energy Technology Data Exchange (ETDEWEB)

    Stout, R.B.

    1989-10-01

    Hydrogen is contained in the Zircaloy cladding of spent fuel rods from nuclear reactors. All the spent fuel rods placed in a nuclear waste repository will have a temperature history that decreases toward ambient; and as a result, most all of the hydrogen in the Zircaloy will eventually precipitate as zirconium hydride platelets. A model for the density of hydride platelets is a necessary sub-part for predicting Zircaloy cladding failure rate in a nuclear waste repository. A model is developed to describe statistically the hydride platelet density, and the density function includes the orientation as a physical attribute. The model applies concepts from statistical mechanics to derive probable deformation and thermodynamic functionals for cladding material response that depend explicitly on the hydride platelet density function. From this model, hydride precipitation kinetics depend on a thermodynamic potential for hydride density change and on the inner product of a stress tensor and a tensor measure for the incremental volume change due to hydride platelets. The development of a failure response model for Zircaloy cladding exposed to the expected conditions in a nuclear waste repository is supported by the US DOE Yucca Mountain Project. 19 refs., 3 figs.

  3. Metal hydride-based thermal energy storage systems

    Energy Technology Data Exchange (ETDEWEB)

    Vajo, John J.; Fang, Zhigang

    2017-10-03

    The invention provides a thermal energy storage system comprising a metal-containing first material with a thermal energy storage density of about 1300 kJ/kg to about 2200 kJ/kg based on hydrogenation; a metal-containing second material with a thermal energy storage density of about 200 kJ/kg to about 1000 kJ/kg based on hydrogenation; and a hydrogen conduit for reversibly transporting hydrogen between the first material and the second material. At a temperature of 20.degree. C. and in 1 hour, at least 90% of the metal is converted to the hydride. At a temperature of 0.degree. C. and in 1 hour, at least 90% of the metal hydride is converted to the metal and hydrogen. The disclosed metal hydride materials have a combination of thermodynamic energy storage densities and kinetic power capabilities that previously have not been demonstrated. This performance enables practical use of thermal energy storage systems for electric vehicle heating and cooling.

  4. Rechargeable metal hydrides for spacecraft application

    Science.gov (United States)

    Perry, J. L.

    1988-01-01

    Storing hydrogen on board the Space Station presents both safety and logistics problems. Conventional storage using pressurized bottles requires large masses, pressures, and volumes to handle the hydrogen to be used in experiments in the U.S. Laboratory Module and residual hydrogen generated by the ECLSS. Rechargeable metal hydrides may be competitive with conventional storage techniques. The basic theory of hydride behavior is presented and the engineering properties of LaNi5 are discussed to gain a clear understanding of the potential of metal hydrides for handling spacecraft hydrogen resources. Applications to Space Station and the safety of metal hydrides are presented and compared to conventional hydride storage. This comparison indicates that metal hydrides may be safer and require lower pressures, less volume, and less mass to store an equivalent mass of hydrogen.

  5. Nanostructured, complex hydride systems for hydrogen generation

    Directory of Open Access Journals (Sweden)

    Robert A. Varin

    2015-02-01

    Full Text Available Complex hydride systems for hydrogen (H2 generation for supplying fuel cells are being reviewed. In the first group, the hydride systems that are capable of generating H2 through a mechanical dehydrogenation phenomenon at the ambient temperature are discussed. There are few quite diverse systems in this group such as lithium alanate (LiAlH4 with the following additives: nanoiron (n-Fe, lithium amide (LiNH2 (a hydride/hydride system and manganese chloride MnCl2 (a hydride/halide system. Another hydride/hydride system consists of lithium amide (LiNH2 and magnesium hydride (MgH2, and finally, there is a LiBH4-FeCl2 (hydride/halide system. These hydride systems are capable of releasing from ~4 to 7 wt.% H2 at the ambient temperature during a reasonably short duration of ball milling. The second group encompasses systems that generate H2 at slightly elevated temperature (up to 100 °C. In this group lithium alanate (LiAlH4 ball milled with the nano-Fe and nano-TiN/TiC/ZrC additives is a prominent system that can relatively quickly generate up to 7 wt.% H2 at 100 °C. The other hydride is manganese borohydride (Mn(BH42 obtained by mechano-chemical activation synthesis (MCAS. In a ball milled (2LiBH4 + MnCl2 nanocomposite, Mn(BH42 co-existing with LiCl can desorb ~4.5 wt.% H2 at 100 °C within a reasonable duration of dehydrogenation. Practical application aspects of hydride systems for H2 generation/storage are also briefly discussed.

  6. Use of reversible hydrides for hydrogen storage

    Science.gov (United States)

    Darriet, B.; Pezat, M.; Hagenmuller, P.

    1980-01-01

    The addition of metals or alloys whose hydrides have a high dissociation pressure allows a considerable increase in the hydrogenation rate of magnesium. The influence of temperature and hydrogen pressure on the reaction rate were studied. Results concerning the hydriding of magnesium rich alloys such as Mg2Ca, La2Mg17 and CeMg12 are presented. The hydriding mechanism of La2Mg17 and CeMg12 alloys is given.

  7. Inhibited solid propellant composition containing beryllium hydride

    Science.gov (United States)

    Thompson, W. W. (Inventor)

    1978-01-01

    An object of this invention is to provide a composition of beryllium hydride and carboxy-terminated polybutadiene which is stable. Another object of this invention is to provide a method for inhibiting the reactivity of beryllium hydride toward carboxy-terminated polybutadiene. It was found that a small amount of lecithin inhibits the reaction of beryllium hydride with the acid groups in carboxy terminated polybutadiene.

  8. Synthesis of hydrides by interaction of intermetallic compounds with ammonia

    Energy Technology Data Exchange (ETDEWEB)

    Tarasov, Boris P., E-mail: tarasov@icp.ac.ru [Institute of Problems of Chemical Physics of the Russian Academy of Sciences, Chernogolovka 142432 (Russian Federation); Fokin, Valentin N.; Fokina, Evelina E. [Institute of Problems of Chemical Physics of the Russian Academy of Sciences, Chernogolovka 142432 (Russian Federation); Yartys, Volodymyr A., E-mail: volodymyr.yartys@ife.no [Institute for Energy Technology, Kjeller NO 2027 (Norway); Department of Materials Science and Engineering, Norwegian University of Science and Technology, Trondheim NO 7491 (Norway)

    2015-10-05

    Highlights: • Interaction of the intermetallics A{sub 2}B, AB, AB{sub 2}, AB{sub 5} and A{sub 2}B{sub 17} with NH{sub 3} was studied. • The mechanism of interaction of the alloys with ammonia is temperature-dependent. • Hydrides, hydridonitrides, disproportionation products or metal–N–H compounds are formed. • NH{sub 4}Cl was used as an activator of the reaction between ammonia and intermetallics. • Interaction with ammonia results in the synthesis of the nanopowders. - Abstract: Interaction of intermetallic compounds with ammonia was studied as a processing route to synthesize hydrides and hydridonitrides of intermetallic compounds having various stoichiometries and types of crystal structures, including A{sub 2}B, AB, AB{sub 2}, AB{sub 5} and A{sub 2}B{sub 17} (A = Mg, Ti, Zr, Sc, Nd, Sm; B = transition metals, including Fe, Co, Ni, Ti and nontransition elements, Al and B). In presence of NH{sub 4}Cl used as an activator of the reaction between ammonia and intermetallic alloys, their interaction proceeds at rather mild P–T conditions, at temperatures 100–200 °C and at pressures of 0.6–0.8 MPa. The mechanism of interaction of the alloys with ammonia appears to be temperature-dependent and, following a rise of the interaction temperature, it leads to the formation of interstitial hydrides; interstitial hydridonitrides; disproportionation products (binary hydride; new intermetallic hydrides and binary nitrides) or new metal–nitrogen–hydrogen compounds like magnesium amide Mg(NH{sub 2}){sub 2}. The interaction results in the synthesis of the nanopowders where hydrogen and nitrogen atoms become incorporated into the crystal lattices of the intermetallic alloys. The nitrogenated materials have the smallest particle size, down to 40 nm, and a specific surface area close to 20 m{sup 2}/g.

  9. The application of Co-Al-hydrotalcite as a novel additive of positive material for nickel-metal hydride secondary cells

    Science.gov (United States)

    Feng, Zhaobin; Yang, Zhanhong; Yang, Bin; Zhang, Zheng; Xie, Xiaoe

    2014-11-01

    Co-Al-CO3 layered double hydroxide (LDH) with the different Co/Al molar ration is synthesized by hydrothermal method and investigated as an additive for positive material of the Ni-MH cells. The Fourier transform infrared spectra (FT-IR), scanning electron microscopy (SEM) and X-ray diffraction (XRD) show the Co-Al-LDH with Co/Al = 4:1 (molar ration) is well-crystallized and hexagon structure. The electrochemical performances of the nickel electrode added with different Co/Al molar ration Co-Al-LDH, the pure nickel electrode and the nickel electrode added with CoO are investigated by the cyclic voltammograms (CV), galvanostatic charge-discharge measurements, and AC electrochemical impedance spectroscopy (EIS). Compared with the pure nickel electrode and the nickel electrode added with CoO, the nickel electrode added with Co/Al = 4:1 (molar ration) Co-Al-LDH has higher discharge capacity and more stable cycling performances. This cell can undergo at least 400 charge-discharge cycles at constant current of 1 C. The discharge capacity of this cell remains about 287 mAh g-1 after the 400th cycle. Meanwhile, compared with the pure electrode, the nickel electrode added with Co/Al = 4:1 (molar ration) Co-Al-LDH possess a higher rate capability to meet the needs of high-storage applications.

  10. Predicting formation enthalpies of metal hydrides

    DEFF Research Database (Denmark)

    Andreasen, A.

    2004-01-01

    In order for the hydrogen based society viz. a society in which hydrogen is the primary energy carrier to become realizable an efficient way of storing hydrogen is required. For this purpose metal hydrides are serious candidates. Metal hydrides are formedby chemical reaction between hydrogen...... and metal and for the stable hydrides this is associated with release of heat (#DELTA#H_f ). The more thermodynamically stable the hydride, the larger DHf, and the higher temperature is needed in order to desorphydrogen (reverse reaction) and vice versa. For practical application the temperature needed...

  11. Research on Metal Hydride Compressor System

    Institute of Scientific and Technical Information of China (English)

    1999-01-01

    Ti-Zr series Laves phase hydrogen storage alloys with good hydrogen storage properties, such as large hydrogen capacity, rapid hydriding and dehydriding rate, high compression ratio, gentle plateau, small hysteresis, easily being activated and long cyclic stability etc. for metal hydride compressor have been investigated. In addition, a hydride compressor with special characteristics, namely, advanced filling method, good heat transfer effect and reasonable structural design etc. has also been constructed. A hydride compressor cryogenic system has been assembled coupling the compressor with a J-T micro-throttling refrigeration device and its cooling capacity can reach 0.4 W at 25 K.

  12. Thermodynamic Hydricity of Transition Metal Hydrides.

    Science.gov (United States)

    Wiedner, Eric S; Chambers, Matthew B; Pitman, Catherine L; Bullock, R Morris; Miller, Alexander J M; Appel, Aaron M

    2016-08-10

    Transition metal hydrides play a critical role in stoichiometric and catalytic transformations. Knowledge of free energies for cleaving metal hydride bonds enables the prediction of chemical reactivity, such as for the bond-forming and bond-breaking events that occur in a catalytic reaction. Thermodynamic hydricity is the free energy required to cleave an M-H bond to generate a hydride ion (H(-)). Three primary methods have been developed for hydricity determination: the hydride transfer method establishes hydride transfer equilibrium with a hydride donor/acceptor pair of known hydricity, the H2 heterolysis method involves measuring the equilibrium of heterolytic cleavage of H2 in the presence of a base, and the potential-pKa method considers stepwise transfer of a proton and two electrons to give a net hydride transfer. Using these methods, over 100 thermodynamic hydricity values for transition metal hydrides have been determined in acetonitrile or water. In acetonitrile, the hydricity of metal hydrides spans a range of more than 50 kcal/mol. Methods for using hydricity values to predict chemical reactivity are also discussed, including organic transformations, the reduction of CO2, and the production and oxidation of hydrogen.

  13. Coinage Metal Hydrides: Synthesis, Characterization, and Reactivity.

    Science.gov (United States)

    Jordan, Abraham J; Lalic, Gojko; Sadighi, Joseph P

    2016-08-10

    Hydride complexes of copper, silver, and gold encompass a broad array of structures, and their distinctive reactivity has enabled dramatic recent advances in synthesis and catalysis. This Review summarizes the synthesis, characterization, and key stoichiometric reactions of isolable or observable coinage metal hydrides. It discusses catalytic processes in which coinage metal hydrides are known or probable intermediates, and presents mechanistic studies of selected catalytic reactions. The purpose of this Review is to convey how developments in coinage metal hydride chemistry have led to new organic transformations, and how developments in catalysis have in turn inspired the synthesis of reactive new complexes.

  14. Exhibit Engineering

    DEFF Research Database (Denmark)

    Mortensen, Marianne Foss

    of tools and processes to guide the design of educational science exhibits. The guiding paradigm for this development is design-based research, which is characterised by an iterative cycle of design, enactment, and analysis. In the design phase, an educational intervention is planned and carried out based...... on a hypothesised learning process and the means of supporting it. In the enactment phase, the educational intervention is implemented (i.e. the planned lesson is taught, or the museum exhibit is opened to the public). Finally, the analysis phase establishes causality between emergent characteristics...... of the learning outcomes and the design characteristics of the intervention. The analysis process can yield two types of outcomes: Suggestions for the refinement of the specific design in question, and “humble” theory, which is theory that can guide the design of a category of educational interventions...

  15. Crystal structure of gold hydride

    Energy Technology Data Exchange (ETDEWEB)

    Degtyareva, Valentina F., E-mail: degtyar@issp.ac.ru

    2015-10-05

    Highlights: • Volume expansion of metal hydrides is due to the increase in the s-band filling. • AuH structure is similar to that of Hg having one more s electron compared to Au. • Structure stability of both Hg and AuH is governed by the Hume-Rothery rule. - Abstract: A number of transition metal hydrides with close-packed metal sublattices of fcc or hcp structures with hydrogen in octahedral interstitial positions were obtained by the high-pressure-hydrogen technique described by Ponyatovskii et al. (1982). In this paper we consider volume increase of metals by hydrogenation and possible crystal structure of gold hydride in relation with the structure of mercury, the nearest neighbor of Au in the Periodic table. Suggested structure of AuH has a basic tetragonal body-centered cell that is very similar to the mercury structure Hg-t I 2. The reasons of stability for this structure are discussed within the model of Fermi sphere–Brillouin zone interactions.

  16. Hydrogen storage in sodium aluminum hydride.

    Energy Technology Data Exchange (ETDEWEB)

    Ozolins, Vidvuds; Herberg, J.L. (Lawrence Livermore National Laboratories, Livermore, CA); McCarty, Kevin F.; Maxwell, Robert S. (Lawrence Livermore National Laboratories, Livermore, CA); Stumpf, Roland Rudolph; Majzoub, Eric H.

    2005-11-01

    Sodium aluminum hydride, NaAlH{sub 4}, has been studied for use as a hydrogen storage material. The effect of Ti, as a few mol. % dopant in the system to increase kinetics of hydrogen sorption, is studied with respect to changes in lattice structure of the crystal. No Ti substitution is found in the crystal lattice. Electronic structure calculations indicate that the NaAlH{sub 4} and Na{sub 3}AlH{sub 6} structures are complex-ionic hydrides with Na{sup +} cations and AlH{sub 4}{sup -} and AlH{sub 6}{sup 3-} anions, respectively. Compound formation studies indicate the primary Ti-compound formed when doping the material at 33 at. % is TiAl{sub 3} , and likely Ti-Al compounds at lower doping rates. A general study of sorption kinetics of NaAlH{sub 4}, when doped with a variety of Ti-halide compounds, indicates a uniform response with the kinetics similar for all dopants. NMR multiple quantum studies of solution-doped samples indicate solvent interaction with the doped alanate. Raman spectroscopy was used to study the lattice dynamics of NaAlH{sub 4}, and illustrated the molecular ionic nature of the lattice as a separation of vibrational modes between the AlH{sub 4}{sup -} anion-modes and lattice-modes. In-situ Raman measurements indicate a stable AlH{sub 4}{sup -} anion that is stable at the melting temperature of NaAlH{sub 4}, indicating that Ti-dopants must affect the Al-H bond strength.

  17. Photoelectron spectroscopic study of carbon aluminum hydride cluster anions

    Science.gov (United States)

    Zhang, Xinxing; Wang, Haopeng; Ganteför, Gerd; Eichhorn, Bryan W.; Kiran, Boggavarapu; Bowen, Kit H.

    2016-10-01

    Numerous previously unknown carbon aluminum hydride cluster anions were generated in the gas phase, identified by time-of-flight mass spectrometry and characterized by anion photoelectron spectroscopy, revealing their electronic structure. Density functional theory calculations on the CAl5-9H- and CAl5-7H2- found that several of them possess unusually high carbon atom coordination numbers. These cluster compositions have potential as the basis for new energetic materials.

  18. Gas chromatographic separation of hydrogen isotopes using metal hydrides

    Energy Technology Data Exchange (ETDEWEB)

    Aldridge, F.T.

    1984-05-09

    A study was made of the properties of metal hydrides which may be suitable for use in chromatographic separation of hydrogen isotopes. Sixty-five alloys were measured, with the best having a hydrogen-deuterium separation factor of 1.35 at 60/sup 0/C. Chromatographic columns using these alloys produced deuterium enrichments of up to 3.6 in a single pass, using natural abundance hydrogen as starting material. 25 references, 16 figures, 4 tables.

  19. 2007Fairs & Exhibitions in China

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    @@ The 6th China (Guangzhou) International Seasoning Exhibition Date: May 11-13 Founded in: 2003.05 Venues: Guangzhou Int'l Convention &Exhibition Center (Pazhou) Exhibits: Seasonings, food additives, relevant material,equipment, service and publications

  20. Metal Hydrides for Rechargeable Batteries

    Energy Technology Data Exchange (ETDEWEB)

    Valoeen, Lars Ole

    2000-03-01

    Rechargeable battery systems are paramount in the power supply of modern electronic and electromechanical equipment. For the time being, the most promising secondary battery systems for the future are the lithium-ion and the nickel metal hydride (NiMH) batteries. In this thesis, metal hydrides and their properties are described with the aim of characterizing and improving those. The thesis has a special focus on the AB{sub 5} type hydrogen storage alloys, where A is a rare earth metal like lanthanum, or more commonly misch metal, which is a mixture of rare earth metals, mainly lanthanum, cerium, neodymium and praseodymium. B is a transition metal, mainly nickel, commonly with additions of aluminium, cobalt, and manganese. The misch metal composition was found to be very important for the geometry of the unit cell in AB{sub 5} type alloys, and consequently the equilibrium pressure of hydrogen in these types of alloys. The A site substitution of lanthanum by misch metal did not decrease the surface catalytic properties of AB{sub 5} type alloys. B-site substitution of nickel with other transition elements, however, substantially reduced the catalytic activity of the alloy. If the internal pressure within the electrochemical test cell was increased using inert argon gas, a considerable increase in the high rate charge/discharge performance of LaNi{sub 5} was observed. An increased internal pressure would enable the utilisation of alloys with a high hydrogen equivalent pressure in batteries. Such alloys often have favourable kinetics and high hydrogen diffusion rates and thus have a potential for improving the high current discharge rates in metal hydride batteries. The kinetic properties of metal hydride electrodes were found to improve throughout their lifetime. The activation properties were found highly dependent on the charge/discharge current. Fewer charge/discharge cycles were needed to activate the electrodes if a small current was used instead of a higher

  1. Metal Hydrides for Rechargeable Batteries

    Energy Technology Data Exchange (ETDEWEB)

    Valoeen, Lars Ole

    2000-03-01

    Rechargeable battery systems are paramount in the power supply of modern electronic and electromechanical equipment. For the time being, the most promising secondary battery systems for the future are the lithium-ion and the nickel metal hydride (NiMH) batteries. In this thesis, metal hydrides and their properties are described with the aim of characterizing and improving those. The thesis has a special focus on the AB{sub 5} type hydrogen storage alloys, where A is a rare earth metal like lanthanum, or more commonly misch metal, which is a mixture of rare earth metals, mainly lanthanum, cerium, neodymium and praseodymium. B is a transition metal, mainly nickel, commonly with additions of aluminium, cobalt, and manganese. The misch metal composition was found to be very important for the geometry of the unit cell in AB{sub 5} type alloys, and consequently the equilibrium pressure of hydrogen in these types of alloys. The A site substitution of lanthanum by misch metal did not decrease the surface catalytic properties of AB{sub 5} type alloys. B-site substitution of nickel with other transition elements, however, substantially reduced the catalytic activity of the alloy. If the internal pressure within the electrochemical test cell was increased using inert argon gas, a considerable increase in the high rate charge/discharge performance of LaNi{sub 5} was observed. An increased internal pressure would enable the utilisation of alloys with a high hydrogen equivalent pressure in batteries. Such alloys often have favourable kinetics and high hydrogen diffusion rates and thus have a potential for improving the high current discharge rates in metal hydride batteries. The kinetic properties of metal hydride electrodes were found to improve throughout their lifetime. The activation properties were found highly dependent on the charge/discharge current. Fewer charge/discharge cycles were needed to activate the electrodes if a small current was used instead of a higher

  2. Hydride-induced embrittlement of Zircaloy-4 cladding under plane-strain tension

    Science.gov (United States)

    Daum, Robert S.

    mum was thus macroscopically brittle (the macroscopic failure strain was small) as the result of the initiation and propagation of a Mode I (i.e., tensile) crack through the thickness of the cladding. Crack growth occurred due to void initiation at fractured hydride particles and subsequent strain-induced coalescence. Mode I cracks were also observed at 300°C within the hydride rim, but the substrate failed by a mixed Mode I/II crack with no signs of void nucleation, as the hydride particles in the substrate resisted fracture. Macroscopically brittle behavior occurred for cladding with hydride rims thicker than ≈170-mum. In contrast, at 375°C, materials with rim thicknesses up to 260 mum were ductile and failed due to localized necking. As a result, the effect of hydrogen on ductility at this temperature is small. Also, at this highest temperature, small Mode I cracks were occasionally observed within the hydride rim; these cracks were associated with high local hydrogen contents (>4000 wt ppm) and the presence of the tetragonal epsilon-hydride phase near the outer surface, suggesting that this hydride phase is highly brittle at all temperatures of this study. This study also tested specimens with a uniform distribution of hydrides (containing ≤2200-wt-ppm hydrogen) in order to compare their behavior to that of hydride-rim specimens. Uniformly-hydrided specimens containing ≈2200-wt-ppm hydrogen tested at 300°C showed the initiation of Mode I cracks and macroscopically brittle behavior, similar to that of the hydride-rim cladding. However, when tested at 375°C, cladding with ≈2200-wt-ppm hydrogen showed comparable macroscopic ductility (>4% uniform hoop strain) and fracture (i.e., plastic instability) to that of non-hydrided cladding, suggesting that this cladding is macroscopically ductile. The difference between material behavior at 300 and 375°C indicates that the survivability of cladding during a reactivity initiated accident may depend critically on

  3. Kinetics of hydride front in Zircaloy-2 and H release from a fractional hydrided surface

    Energy Technology Data Exchange (ETDEWEB)

    Diaz, M.; Gonzalez-Gonzalez, A.; Moya, J. S.; Remartinez, B.; Perez, S.; Sacedon, J. L. [Instituto de Ciencia de Materiales de Madrid (CSIC), Sor Juana Ines de la Cruz 3, Cantoblanco, 28049 Madrid (Spain); Iberdrola, Tomas Redondo 3, 28033 Madrid (Spain); Instituto de Ciencia de Materiales de Madrid (CSIC), Sor Juana Ines de la Cruz 3, Cantoblanco, 28049 Madrid (Spain)

    2009-07-15

    The authors study the hydriding process on commercial nuclear fuel claddings from their inner surface using an ultrahigh vacuum method. The method allows determining the incubation and failure times of the fuel claddings, as well as the dissipated energy and the partial pressure of the desorbed H{sub 2} from the outer surface of fuel claddings during the hydriding process. The correlation between the hydriding dissipated energy and the amount of zirconium hydride (formed at different stages of the hydriding process) leads to a near t{sup 1/2} potential law corresponding to the time scaling of the reaction for the majority of the tested samples. The calibrated relation between energy and hydride thickness allows one to calculate the enthalpy of the {delta}-ZrH{sub 1.5} phase. The measured H{sub 2} desorption from the external surface is in agreement with a proposed kinetic desorption model from the hydrides precipitated at the surface.

  4. Ionic conduction of lithium hydride single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Pilipenko, G.I.; Oparin, D.V.; Zhuravlev, N.A.; Gavrilov, F.F.

    1987-09-01

    Using the electrical-conductivity- and NMR-measurement- methods, the ionic-conduction mechanism is established in stoichiometric lithium hydride single crystals. The activation energies of migration of anion- and cation-vacancies and the formation of Schottky-pair defects are determined. They assume that the mechanisms of self-diffusion and conductivity are different in lithium hydride.

  5. Influence of lanthanon hydride catalysts on hydrogen storage properties of sodium alanates

    Institute of Scientific and Technical Information of China (English)

    WU Zhe; CHEN Lixin; XIAO Xuezhang; FAN Xiulin; LI Shouquan; WANG Qidong

    2013-01-01

    NaAlH4 complex hydrides doped with lanthanon hydrides were prepared by hydrogenation of the ball-milled NaH/Al+xmol.% RE-H composites (RE=La,Ce; x=2,4,6) using NaHl and A1 powder as raw materials.The influence of lanthanon hydride catalysts on the hydriding and dehydriding behaviors of the as-synthesized composites were investigated.It was found that the composite doped with 2 mol.% La.H3.01 displayed the highest hydrogen absorption capacity of 4.78 wt.% and desorption capacity of 4.66wt.%,respectively.Moreover,the composite doped with 6 mol% CeH2.51 showed the best hydriding/dehydriding reaction kinetics.The proposed catalytic mechanism for reversible hydrogen storage properties of the composite was attributed to the presence of active LaH3.01 and CeH2.51 particles,which were scattering on the surface of NaH and A1 particles,acting as the catalytic active sites for hydrogen diffusion and playing an important catalytic role in the improved hydriding/dehydriding reaction.

  6. Hydrorefining distillates from coal liquefaction using intermetallic compound hydrides

    Energy Technology Data Exchange (ETDEWEB)

    Kadiev, Kh.M.; Pivovarova, N.A.; Askhabova, Kh.N.; Taramov, Kh.K.

    1986-07-01

    Investigations are discussed into hydrorefining of coal liquefaction distillate using ZrNi intermetallic compound hydride as catalyst. The paper shows that 70-75% reduction in content of unsaturated and sulfur-containing compounds takes place in the presence of this catalyst at low temperature (200-250 C) and pressure (0.1 MPa), and establishes that preliminary preparation of starting material (removal of phenols and nitrous bases) produces significant effect on hydrorefining results and product stability. Tests have also shown that although intermetallic compound hydride catalyst has fairly low stability, it is capable of recovering its catalytic properties on reduction-oxidation treatment. Description of the tests and characteristics of hydrorefining products of coal liquefaction distillate are given. 8 references.

  7. Submillimeter Spectroscopy of Hydride Molecules

    Science.gov (United States)

    Phillips, T. G.

    1998-05-01

    Simple hydride molecules are of great importance in astrophysics and astrochemistry. Physically they dominate the cooling of dense, warm phases of the ISM, such as the cores and disks of YSOs. Chemically they are often stable end points of chemical reactions, or may represent important intermediate stages of the reaction chains, which can be used to test the validity of the process. Through the efforts of astronomers, physicists, chemists, and laboratory spectroscopists we have an approximate knowledge of the abundance of some of the important species, but a great deal of new effort will be required to achieve the comprehensive and accurate data set needed to determine the energy balance and firmly establish the chemical pathways. Due to the low moment of inertia, the hydrides rotate rapidly and so have their fundamental spectral lines in the submillimeter. Depending on the cloud geometry and temperature profile they may be observed in emission or absorption. Species such as HCl, HF, OH, CH, CH(+) , NH_2, NH_3, H_2O, H_2S, H_3O(+) and even H_3(+) have been detected, but this is just a fraction of the available set. Also, most deduced abundances are not nearly sufficiently well known to draw definitive conclusions about the chemical processes. For example, the most important coolant for many regions, H_2O, has a possible range of deduced abundance of a factor of 1000. The very low submillimeter opacity at the South Pole site will be a significant factor in providing a new capabilty for interstellar hydride spectroscopy. The new species and lines made available in this way will be discussed.

  8. Pressure-driven formation and stabilization of superconductive chromium hydrides

    Science.gov (United States)

    Yu, Shuyin; Jia, Xiaojing; Frapper, Gilles; Li, Duan; Oganov, Artem R.; Zeng, Qingfeng; Zhang, Litong

    2015-01-01

    Chromium hydride is a prototype stoichiometric transition metal hydride. The phase diagram of Cr-H system at high pressures remains largely unexplored due to the challenges in dealing with the high activation barriers and complications in handing hydrogen under pressure. We have performed an extensive structural study on Cr-H system at pressure range 0 ∼ 300 GPa using an unbiased structure prediction method based on evolutionary algorithm. Upon compression, a number of hydrides are predicted to become stable in the excess hydrogen environment and these have compositions of Cr2Hn (n = 2–4, 6, 8, 16). Cr2H3, CrH2 and Cr2H5 structures are versions of the perfect anti-NiAs-type CrH with ordered tetrahedral interstitial sites filled by H atoms. CrH3 and CrH4 exhibit host-guest structural characteristics. In CrH8, H2 units are also identified. Our study unravels that CrH is a superconductor at atmospheric pressure with an estimated transition temperature (T c) of 10.6 K, and superconductivity in CrH3 is enhanced by the metallic hydrogen sublattice with T c of 37.1 K at 81 GPa, very similar to the extensively studied MgB2. PMID:26626579

  9. High Density Hydrogen Storage System Demonstration Using NaAlH4 Based Complex Compound Hydrides

    Energy Technology Data Exchange (ETDEWEB)

    Daniel A. Mosher; Xia Tang; Ronald J. Brown; Sarah Arsenault; Salvatore Saitta; Bruce L. Laube; Robert H. Dold; Donald L. Anton

    2007-07-27

    This final report describes the motivations, activities and results of the hydrogen storage independent project "High Density Hydrogen Storage System Demonstration Using NaAlH4 Based Complex Compound Hydrides" performed by the United Technologies Research Center under the Department of Energy Hydrogen Program, contract # DE-FC36-02AL67610. The objectives of the project were to identify and address the key systems technologies associated with applying complex hydride materials, particularly ones which differ from those for conventional metal hydride based storage. This involved the design, fabrication and testing of two prototype systems based on the hydrogen storage material NaAlH4. Safety testing, catalysis studies, heat exchanger optimization, reaction kinetics modeling, thermochemical finite element analysis, powder densification development and material neutralization were elements included in the effort.

  10. Bed geometries, fueling strategies and optimization of heat exchanger designs in metal hydride storage systems for automotive applications: A review

    DEFF Research Database (Denmark)

    Mazzucco, Andrea; Dornheim, Martin; Sloth, Michael

    2014-01-01

    given to metal hydride storage tanks for light duty vehicles, since this application is the most promising one for such storage materials and has been widely studied in the literature. Enhancing cooling/heating during hydrogen uptake and discharge has found to be essential to improve storage systems......This review presents recent developments for effective heat management systems to be integrated in metal hydride storage tanks, and investigates the performance improvements and limitations of each particular solution. High pressures and high temperatures metal hydrides can lead to different design...

  11. Destabilization of Mg Hydride by Self-Organized Nanoclusters in the Immiscible Mg-Ti System

    NARCIS (Netherlands)

    Asano, Kohta; Westerwaal, Ruud J.; Anastasopol, Anca; Mooij, Lennard P A; Boelsma, Christiaan; Ngene, Peter; Schreuders, Herman; Eijt, Stephan W H; Dam, Bernard

    2015-01-01

    Mg is an attractive hydrogen storage material not only because of its high gravimetric and volumetric hydrogen capacities but also because of it low material costs. However, the hydride of MgH2 is too stable to release hydrogen under moderate conditions. We demonstrate that the formation of

  12. Destabilization of Mg Hydride by Self-Organized Nanoclusters in the Immiscible Mg-Ti System

    NARCIS (Netherlands)

    Asano, Kohta; Westerwaal, Ruud J.; Anastasopol, Anca; Mooij, Lennard P A; Boelsma, Christiaan; Ngene, Peter; Schreuders, Herman; Eijt, Stephan W H; Dam, Bernard

    2015-01-01

    Mg is an attractive hydrogen storage material not only because of its high gravimetric and volumetric hydrogen capacities but also because of it low material costs. However, the hydride of MgH2 is too stable to release hydrogen under moderate conditions. We demonstrate that the formation of nanomete

  13. Hydride heat pump with heat regenerator

    Science.gov (United States)

    Jones, Jack A. (Inventor)

    1991-01-01

    A regenerative hydride heat pump process and system is provided which can regenerate a high percentage of the sensible heat of the system. A series of at least four canisters containing a lower temperature performing hydride and a series of at least four canisters containing a higher temperature performing hydride is provided. Each canister contains a heat conductive passageway through which a heat transfer fluid is circulated so that sensible heat is regenerated. The process and system are useful for air conditioning rooms, providing room heat in the winter or for hot water heating throughout the year, and, in general, for pumping heat from a lower temperature to a higher temperature.

  14. Final report for the DOE Metal Hydride Center of Excellence.

    Energy Technology Data Exchange (ETDEWEB)

    Keller, Jay O.; Klebanoff, Leonard E.

    2012-01-01

    This report summarizes the R&D activities within the U.S. Department of Energy Metal Hydride Center of Excellence (MHCoE) from March 2005 to June 2010. The purpose of the MHCoE has been to conduct highly collaborative and multi-disciplinary applied R&D to develop new reversible hydrogen storage materials that meet or exceed DOE 2010 and 2015 system goals for hydrogen storage materials. The MHCoE combines three broad areas: mechanisms and modeling (which provide a theoretically driven basis for pursuing new materials), materials development (in which new materials are synthesized and characterized) and system design and engineering (which allow these new materials to be realized as practical automotive hydrogen storage systems). This Final Report summarizes the organization and execution of the 5-year research program to develop practical hydrogen storage materials for light duty vehicles. Major results from the MHCoE are summarized, along with suggestions for future research areas.

  15. Mathematical modeling of the nickel/metal hydride battery system

    Energy Technology Data Exchange (ETDEWEB)

    Paxton, Blaine Kermit [Univ. of California, Berkeley, CA (United States). Dept. of Chemical Engineering

    1995-09-01

    A group of compounds referred to as metal hydrides, when used as electrode materials, is a less toxic alternative to the cadmium hydroxide electrode found in nickel/cadmium secondary battery systems. For this and other reasons, the nickel/metal hydride battery system is becoming a popular rechargeable battery for electric vehicle and consumer electronics applications. A model of this battery system is presented. Specifically the metal hydride material, LaNi{sub 5}H{sub 6}, is chosen for investigation due to the wealth of information available in the literature on this compound. The model results are compared to experiments found in the literature. Fundamental analyses as well as engineering optimizations are performed from the results of the battery model. In order to examine diffusion limitations in the nickel oxide electrode, a ``pseudo 2-D model`` is developed. This model allows for the theoretical examination of the effects of a diffusion coefficient that is a function of the state of charge of the active material. It is found using present data from the literature that diffusion in the solid phase is usually not an important limitation in the nickel oxide electrode. This finding is contrary to the conclusions reached by other authors. Although diffusion in the nickel oxide active material is treated rigorously with the pseudo 2-D model, a general methodology is presented for determining the best constant diffusion coefficient to use in a standard one-dimensional battery model. The diffusion coefficients determined by this method are shown to be able to partially capture the behavior that results from a diffusion coefficient that varies with the state of charge of the active material.

  16. An all-solid-state metal hydride - Sulfur lithium-ion battery

    Science.gov (United States)

    López-Aranguren, Pedro; Berti, Nicola; Dao, Anh Ha; Zhang, Junxian; Cuevas, Fermín; Latroche, Michel; Jordy, Christian

    2017-07-01

    A metal hydride is used for the first time as anode in a complete all-solid-state battery with sulfur as cathode and LiBH4 as solid electrolyte. The hydride is a nanocomposite made of MgH2 and TiH2 counterparts. The battery exhibits a high reversible capacity of 910 mAh g-1 with discharge plateaus at 1.8 V and 1.4 V. Moreover, the capacity remains to 85% of the initial value over the 25 first charge/discharge cycles.

  17. First-principles prediction of new complex transition metal hydrides for high temperature applications.

    Science.gov (United States)

    Nicholson, Kelly M; Sholl, David S

    2014-11-17

    Metal hydrides with high thermodynamic stability are desirable for high-temperature applications, such as those that require high hydrogen release temperatures or low hydrogen overpressures. First-principles calculations have been used previously to identify complex transition metal hydrides (CTMHs) for high temperature use by screening materials with experimentally known structures. Here, we extend our previous screening of CTMHs with a library of 149 proposed materials based on known prototype structures and charge balancing rules. These proposed materials are typically related to known materials by cation substitution. Our semiautomated, high-throughput screening uses density functional theory (DFT) and grand canonical linear programming (GCLP) methods to compute thermodynamic properties and phase diagrams: 81 of the 149 materials are found to be thermodynamically stable. We identified seven proposed materials that release hydrogen at higher temperatures than the associated binary hydrides and at high temperature, T > 1000 K, for 1 bar H2 overpressure. Our results indicate that there are many novel CTMH compounds that are thermodynamically stable, and the computed thermodynamic data and phase diagrams should be useful for selecting materials and operating parameters for high temperature metal hydride applications.

  18. Tailoring Thermodynamics and Kinetics for Hydrogen Storage in Complex Hydrides towards Applications.

    Science.gov (United States)

    Liu, Yongfeng; Yang, Yaxiong; Gao, Mingxia; Pan, Hongge

    2016-02-01

    Solid-state hydrogen storage using various materials is expected to provide the ultimate solution for safe and efficient on-board storage. Complex hydrides have attracted increasing attention over the past two decades due to their high gravimetric and volumetric hydrogen densities. In this account, we review studies from our lab on tailoring the thermodynamics and kinetics for hydrogen storage in complex hydrides, including metal alanates, borohydrides and amides. By changing the material composition and structure, developing feasible preparation methods, doping high-performance catalysts, optimizing multifunctional additives, creating nanostructures and understanding the interaction mechanisms with hydrogen, the operating temperatures for hydrogen storage in metal amides, alanates and borohydrides are remarkably reduced. This temperature reduction is associated with enhanced reaction kinetics and improved reversibility. The examples discussed in this review are expected to provide new inspiration for the development of complex hydrides with high hydrogen capacity and appropriate thermodynamics and kinetics for hydrogen storage.

  19. Metal hydrides: an innovative and challenging conversion reaction anode for lithium-ion batteries

    Directory of Open Access Journals (Sweden)

    Luc Aymard

    2015-08-01

    Full Text Available The state of the art of conversion reactions of metal hydrides (MH with lithium is presented and discussed in this review with regard to the use of these hydrides as anode materials for lithium-ion batteries. A focus on the gravimetric and volumetric storage capacities for different examples from binary, ternary and complex hydrides is presented, with a comparison between thermodynamic prediction and experimental results. MgH2 constitutes one of the most attractive metal hydrides with a reversible capacity of 1480 mA·h·g−1 at a suitable potential (0.5 V vs Li+/Li0 and the lowest electrode polarization (2, TiH2, complex hydrides Mg2MHx and other Mg-based hydrides. The reversible conversion reaction mechanism of MgH2, which is lithium-controlled, can be extended to others hydrides as: MHx + xLi+ + xe− in equilibrium with M + xLiH. Other reaction paths—involving solid solutions, metastable distorted phases, and phases with low hydrogen content—were recently reported for TiH2 and Mg2FeH6, Mg2CoH5 and Mg2NiH4. The importance of fundamental aspects to overcome technological difficulties is discussed with a focus on conversion reaction limitations in the case of MgH2. The influence of MgH2 particle size, mechanical grinding, hydrogen sorption cycles, grinding with carbon, reactive milling under hydrogen, and metal and catalyst addition to the MgH2/carbon composite on kinetics improvement and reversibility is presented. Drastic technological improvement in order to the enhance conversion process efficiencies is needed for practical applications. The main goals are minimizing the impact of electrode volume variation during lithium extraction and overcoming the poor electronic conductivity of LiH. To use polymer binders to improve the cycle life of the hydride-based electrode and to synthesize nanoscale composite hydride can be helpful to address these drawbacks. The development of high-capacity hydride anodes should be inspired by the emergent

  20. Metal hydrides: an innovative and challenging conversion reaction anode for lithium-ion batteries.

    Science.gov (United States)

    Aymard, Luc; Oumellal, Yassine; Bonnet, Jean-Pierre

    2015-01-01

    The state of the art of conversion reactions of metal hydrides (MH) with lithium is presented and discussed in this review with regard to the use of these hydrides as anode materials for lithium-ion batteries. A focus on the gravimetric and volumetric storage capacities for different examples from binary, ternary and complex hydrides is presented, with a comparison between thermodynamic prediction and experimental results. MgH2 constitutes one of the most attractive metal hydrides with a reversible capacity of 1480 mA·h·g(-1) at a suitable potential (0.5 V vs Li(+)/Li(0)) and the lowest electrode polarization (hydrides Mg2MH x and other Mg-based hydrides. The reversible conversion reaction mechanism of MgH2, which is lithium-controlled, can be extended to others hydrides as: MH x + xLi(+) + xe(-) in equilibrium with M + xLiH. Other reaction paths-involving solid solutions, metastable distorted phases, and phases with low hydrogen content-were recently reported for TiH2 and Mg2FeH6, Mg2CoH5 and Mg2NiH4. The importance of fundamental aspects to overcome technological difficulties is discussed with a focus on conversion reaction limitations in the case of MgH2. The influence of MgH2 particle size, mechanical grinding, hydrogen sorption cycles, grinding with carbon, reactive milling under hydrogen, and metal and catalyst addition to the MgH2/carbon composite on kinetics improvement and reversibility is presented. Drastic technological improvement in order to the enhance conversion process efficiencies is needed for practical applications. The main goals are minimizing the impact of electrode volume variation during lithium extraction and overcoming the poor electronic conductivity of LiH. To use polymer binders to improve the cycle life of the hydride-based electrode and to synthesize nanoscale composite hydride can be helpful to address these drawbacks. The development of high-capacity hydride anodes should be inspired by the emergent nano-research prospects which

  1. Impedance and self-discharge mechanism studies of nickel metal hydride batteries for energy storage applications

    Science.gov (United States)

    Zhu, Wenhua; Zhu, Ying; Tatarchuk, Bruce

    2013-04-01

    Nickel metal hydride battery packs have been found wide applications in the HEVs (hybrid electric vehicles) through the on-board rapid energy conservation and efficient storage to decrease the fossil fuel consumption rate and reduce CO2 emissions as well as other harmful exhaust gases. In comparison to the conventional Ni-Cd battery, the Ni-MH battery exhibits a relatively higher self-discharge rate. In general, there are quite a few factors that speed up the self-discharge of the electrodes in the sealed nickel metal hydride batteries. This disadvantage eventually reduces the overall efficiency of the energy conversion and storage system. In this work, ac impedance data were collected from the nickel metal hydride batteries. The self-discharge mechanism and battery capacity degradation were analyzed and discussed for further performance improvement.

  2. Method of forming metal hydride films

    Science.gov (United States)

    Steinberg, R.; Alger, D. L.; Cooper, D. W. (Inventor)

    1977-01-01

    The substrate to be coated (which may be of metal, glass or the like) is cleaned, both chemically and by off-sputtering in a vacuum chamber. In an ultra-high vacuum system, vapor deposition by a sublimator or vaporizer coats a cooled shroud disposed around the substrate with a thin film of hydride forming metal which getters any contaminant gas molecules. A shutter is then opened to allow hydride forming metal to be deposited as a film or coating on the substrate. After the hydride forming metal coating is formed, deuterium or other hydrogen isotopes are bled into the vacuum system and diffused into the metal film or coating to form a hydride of metal film. Higher substrate temperatures and pressures may be used if various parameters are appropriately adjusted.

  3. Sealed aerospace metal-hydride batteries

    Science.gov (United States)

    Coates, Dwaine

    1992-01-01

    Nickel metal hydride and silver metal hydride batteries are being developed for aerospace applications. There is a growing market for smaller, lower cost satellites which require higher energy density power sources than aerospace nickel-cadmium at a lower cost than space nickel-hydrogen. These include small LEO satellites, tactical military satellites and satellite constellation programs such as Iridium and Brilliant Pebbles. Small satellites typically do not have the spacecraft volume or the budget required for nickel-hydrogen batteries. NiCd's do not have adequate energy density as well as other problems such as overcharge capability and memory effort. Metal hydride batteries provide the ideal solution for these applications. Metal hydride batteries offer a number of advantages over other aerospace battery systems.

  4. Structural and mechanical properties of alkali hydrides investigated by the first-principles calculations and principal component analysis

    Science.gov (United States)

    Settouti, Nadera; Aourag, Hafid

    2016-08-01

    The structural and mechanical properties of alkali hydrides (LiH, NaH, KH, RbH, and CsH) were investigated via first-principles calculations which cover the optimized structural parameters. The density functional theory in combination with the generalized gradient approximation (GGA) were used in this study. From the present study, one could note that alkali hydrides are brittle materials and mechanically stable. It was found that stiffness and shear resistance are greater in LiH than in other hydrides. It is more brittle in nature, and comparatively harder than the other materials under study; it also presents a high degree of anisotropy. The results were then investigated and analyzed with principal component analysis (PCA), which is one of the most common techniques in multivariate analysis, was used to explore the correlations among material properties of alkali hydrides and to study their trends. The alkali hydrides obtained by the first-principles calculations were also compared with the alkaline-earth metal hydrides (BeH2, MgH2, CaH2, SrH2, and BaH2) and discussed in this work.

  5. White Paper Summary of 2nd ASTM International Workshop on Hydrides in Zirconium Alloy Cladding

    Energy Technology Data Exchange (ETDEWEB)

    Sindelar, R. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Louthan, M. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); PNNL, B. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2015-05-29

    This white paper recommends that ASTM International develop standards to address the potential impact of hydrides on the long term performance of irradiated zirconium alloys. The need for such standards was apparent during the 2nd ASTM International Workshop on Hydrides in Zirconium Alloy Cladding and Assembly Components, sponsored by ASTM International Committee C26.13 and held on June 10-12, 2014, in Jackson, Wyoming. The potentially adverse impacts of hydrogen and hydrides on the long term performance of irradiated zirconium-alloy cladding on used fuel were shown to depend on multiple factors such as alloy chemistry and processing, irradiation and post irradiation history, residual and applied stresses and stress states, and the service environment. These factors determine the hydrogen content and hydride morphology in the alloy, which, in turn, influence the response of the alloy to the thermo-mechanical conditions imposed (and anticipated) during storage, transport and disposal of used nuclear fuel. Workshop presentations and discussions showed that although hydrogen/hydride induced degradation of zirconium alloys may be of concern, the potential for occurrence and the extent of anticipated degradation vary throughout the nuclear industry because of the variations in hydrogen content, hydride morphology, alloy chemistry and irradiation conditions. The tools and techniques used to characterize hydrides and hydride morphologies and their impacts on material performance also vary. Such variations make site-to-site comparisons of test results and observations difficult. There is no consensus that a single material or system characteristic (e.g., reactor type, burnup, hydrogen content, end-of life stress, alloy type, drying temperature, etc.) is an effective predictor of material response during long term storage or of performance after long term storage. Multi-variable correlations made for one alloy may not represent the behavior of another alloy exposed to

  6. Investigation of Cracked Lithium Hydride Reactor Vessels

    Energy Technology Data Exchange (ETDEWEB)

    bird, e.l.; mustaleski, t.m.

    1999-06-01

    Visual examination of lithium hydride reactor vessels revealed cracks that were adjacent to welds, most of which were circumferentially located in the bottom portion of the vessels. Sections were cut from the vessels containing these cracks and examined by use of the metallograph, scanning electron microscope, and microprobe to determine the cause of cracking. Most of the cracks originated on the outer surface just outside the weld fusion line in the base material and propagated along grain boundaries. Crack depths of those examined sections ranged from {approximately}300 to 500 {micro}m. Other cracks were reported to have reached a maximum depth of 1/8 in. The primary cause of cracking was the creation of high tensile stresses associated with the differences in the coefficients of thermal expansion between the filler metal and the base metal during operation of the vessel in a thermally cyclic environment. This failure mechanism could be described as creep-type fatigue, whereby crack propagation may have been aided by the presence of brittle chromium carbides along the grain boundaries, which indicates a slightly sensitized microstructure.

  7. gamma-Zr-Hydride Precipitate in Irradiated Massive delta- Zr-Hydride

    DEFF Research Database (Denmark)

    Warren, M. R.; Bhattacharya, D. K.

    1975-01-01

    During examination of A Zircaloy-2-clad fuel pin, which had been part of a test fuel assembly in a boiling water reactor, several regions of severe internal hydriding were noticed in the upper-plenum end of the pin. Examination of similar fuel pins has shown that hydride of this type is caused...

  8. First-principles screening of complex transition metal hydrides for high temperature applications.

    Science.gov (United States)

    Nicholson, Kelly M; Sholl, David S

    2014-11-17

    Metal hydrides with enhanced thermodynamic stability with respect to the associated binary hydrides are useful for high temperature applications in which highly stable materials with low hydrogen overpressures are desired. Though several examples of complex transition metal hydrides (CTMHs) with such enhanced stability are known, little thermodynamic or phase stability information is available for this materials class. In this work, we use semiautomated thermodynamic and phase diagram calculations based on density functional theory (DFT) and grand canonical linear programming (GCLP) methods to screen 102 ternary and quaternary CTMHs and 26 ternary saline hydrides in a library of over 260 metals, intermetallics, binary, and higher hydrides to identify materials that release hydrogen at higher temperatures than the associated binary hydrides and at elevated temperatures, T > 1000 K, for 1 bar H2 overpressure. For computational efficiency, we employ a tiered screening approach based first on solid phase ground state energies with temperature effects controlled via H2 gas alone and second on the inclusion of phonon calculations that correct solid phase free energies for temperature-dependent vibrational contributions. We successfully identified 13 candidate CTMHs including Eu2RuH6, Yb2RuH6, Ca2RuH6, Ca2OsH6, Ba2RuH6, Ba3Ir2H12, Li4RhH4, NaPd3H2, Cs2PtH4, K2PtH4, Cs3PtH5, Cs3PdH3, and Rb2PtH4. The most stable CTMHs tend to crystallize in the Sr2RuH6 cubic prototype structure and decompose to the pure elements and hydrogen rather than to intermetallic phases.

  9. Real-time measurement of desorption temperature and kinetics of magnesium hydride powder sample based on optical reflection

    Energy Technology Data Exchange (ETDEWEB)

    Poh, Chung-Kiak [Institute for Superconducting and Electronic Materials, University of Wollongong, Innovation Campus, Squires Way, Fairy Meadow, NSW 2519 (Australia); Guo, Zaiping; Liu, Hua-Kun [Institute for Superconducting and Electronic Materials, University of Wollongong, Innovation Campus, Squires Way, Fairy Meadow, NSW 2519 (Australia); CSIRO National Hydrogen Materials Alliance, CSIRO Energy Centre, 10 Murray Dwyer Circuit, Steel River Estate, Mayfield West, NSW 2304 (Australia)

    2009-11-15

    We demonstrate the proof-of-principle that interaction between visible light and a magnesium hydride sample in reflective mode can be used to determine the desorption temperature and kinetics of magnesium hydride in powder form. The demonstrated optical technique requires only milligrams of sample and can potentially be used to measure the de/absorption temperature and kinetics of magnesium nanostructures, which are often fabricated via the physical vapor deposition method inside an optically transparent quartz tube. This would help to eliminate the common problem of oxidation associated with removal and transport of the freshly fabricated nanostructures into an inert protective environment. This optical technique could be applied to any hydrogen-storage material in the form of powder which shows a significant difference in its optical absorption between the hydride and the non-hydride phase. (author)

  10. The Effect of Hydrogen and Hydrides on the Integrity of Zirconium Alloy Components Delayed Hydride Cracking

    CERN Document Server

    Puls, Manfred P

    2012-01-01

    By drawing together the current theoretical and experimental understanding of the phenomena of delayed hydride cracking (DHC) in zirconium alloys, The Effect of Hydrogen and Hydrides on the Integrity of Zirconium Alloy Components: Delayed Hydride Cracking provides a detailed explanation focusing on the properties of hydrogen and hydrides in these alloys. Whilst the focus lies on zirconium alloys, the combination of both the empirical and mechanistic approaches creates a solid understanding that can also be applied to other hydride forming metals.   This up-to-date reference focuses on documented research surrounding DHC, including current methodologies for design and assessment of the results of periodic in-service inspections of pressure tubes in nuclear reactors. Emphasis is placed on showing that our understanding of DHC is supported by progress across a broad range of fields. These include hysteresis associated with first-order phase transformations; phase relationships in coherent crystalline metallic...

  11. Preliminary development of flaw evaluation procedures for delayed hydride cracking initiation under hydride non-ratcheting conditions

    Energy Technology Data Exchange (ETDEWEB)

    Xu, S.; Cui, J.; Kawa, D.; Shek, G.K.; Scarth, D.A. [Kinectrics Inc., Toronto, Ontario (Canada)

    2006-07-01

    The flaw evaluation procedure for Delayed Hydride Cracking (DHC) initiation currently provided in the CSA Standard N285.8 was developed for hydride ratcheting conditions, in which flaw-tip hydrides do not completely dissolve at peak temperature. Test results have shown that hydrided regions formed under non-ratcheting conditions, in which flaw-tip hydrides completely dissolve at peak temperature, have significantly higher resistance to cracking than those formed under ratcheting conditions. This paper presents some preliminary work on the development of a procedure for the evaluation of DHC initiation for flaws under hydride non-ratcheting conditions. (author)

  12. Adhesion of oxide layer to metal-doped aluminum hydride surface: Density functional calculations

    Science.gov (United States)

    Takezawa, Tomoki; Itoi, Junichi; Kannan, Takashi

    2017-07-01

    The density functional theory (DFT) calculations were carried out to evaluate the adhesion energy of the oxide layer to the metal-doped surface of hydrogen storage material, aluminum hydride (alane, AlH3). The total energy calculations using slab model revealed that the surface doping of some metals to aluminum hydride weakens the adhesion strength of the oxide layer. The influence of titanium, iron, cobalt, and zirconium doping on adhesion strength were evaluated. Except for iron doping, the adhesion strength becomes weak by the doping.

  13. Development of Hydrogen Storage Tank Systems Based on Complex Metal Hydrides

    Directory of Open Access Journals (Sweden)

    Morten B. Ley

    2015-09-01

    Full Text Available This review describes recent research in the development of tank systems based on complex metal hydrides for thermolysis and hydrolysis. Commercial applications using complex metal hydrides are limited, especially for thermolysis-based systems where so far only demonstration projects have been performed. Hydrolysis-based systems find their way in space, naval, military and defense applications due to their compatibility with proton exchange membrane (PEM fuel cells. Tank design, modeling, and development for thermolysis and hydrolysis systems as well as commercial applications of hydrolysis systems are described in more detail in this review. For thermolysis, mostly sodium aluminum hydride containing tanks were developed, and only a few examples with nitrides, ammonia borane and alane. For hydrolysis, sodium borohydride was the preferred material whereas ammonia borane found less popularity. Recycling of the sodium borohydride spent fuel remains an important part for their commercial viability.

  14. Deuterium distributions on delayed hydride crack fracture surfaces of Zr-2.5Nb

    Energy Technology Data Exchange (ETDEWEB)

    Laursen, T. [Queen`s Univ., Kingston, ON (Canada); Palmer, G.R. [Queen`s Univ., Kingston, ON (Canada); Shek, G.K. [Ontario Hydro Technologies, Toronto, Ontario (Canada)

    1995-02-01

    Delayed hydride cracking (DHC) fracture surfaces on unirradiated Zr-2.5Nb pressure tube material have been characterized by nuclear reaction analysis (NRA). Although the fracture surface is rough and oxidized, NRA was able to detect the deuteride on the surface and to determine an average deuteride thickness. This thickness, which represents half of the fractured hydride thickness, was 1 {mu}m in the case of a specimen containing an average D concentration of 68 wppm and fractured at 517-525 K. On a specimen selected for its large ligament zones, D distributions on a tunnelled DHC crack was compared to those on the adjacent ligament zones. The hydriding of these ligament zones - in spite of their different appearance - is consistent with fracture by a DHC mechanism. ((orig.))

  15. Room temperature and thermal decomposition of magnesium hydride/deuteride thin films

    Energy Technology Data Exchange (ETDEWEB)

    Ares, J.R.; Leardini, F.; Bodega, J.; Macia, M.D.; Diaz-Chao, P.; Ferrer, I.J.; Fernandez, J.F.; Sanchez, C. [Universidad Autonoma de Madrid (Spain). Lab. de Materiales de Interes en Energias Renovables

    2010-07-01

    Magnesium hydride (MgH{sub 2}) can be considered an interesting material to store hydrogen as long as two main drawbacks were solved: (i) its high stability and (ii) slow (de)hydriding kinetics. In that context, magnesium hydride films are an excellent model system to investigate the influence of structure, morphology and dimensionality on kinetic and thermodynamic properties. In the present work, we show that desorption mechanism of Pd-capped MgH{sub 2} at room temperature is controlled by a bidimensional interphase mechanism and a similar rate step limiting mechanism is observed during thermal decomposition of MgH{sub 2}. This mechanism is different to that occurring in bulk MgH{sub 2} (nucleation and growth) and obtained activation energies are lower than those reported in bulk MgH{sub 2}. We also investigated the Pd-capping properties upon H-absorption/desorption by means of RBS and isotope experiments. (orig.)

  16. Computational Discovery of Novel Hydrogen Storage Materials and Reactions

    Science.gov (United States)

    Wolverton, Christopher

    2009-03-01

    Practical hydrogen storage for mobile applications requires materials that exhibit high hydrogen densities, low decomposition temperatures, and fast kinetics for absorption and desorption. Unfortunately, no reversible materials are currently known that possess all of these attributes. Here we present an overview of our recent efforts aimed at developing a first-principles computational approach to the discovery of novel hydrogen storage materials. We have developed computational tools which enable accurate prediction of decomposition thermodynamics, crystal structures for unknown hydrides, and thermodynamically preferred decomposition pathways. We present examples that illustrate each of these three capabilities. Specifically, we focus on recent work on crystal structure and dehydriding reactions of borohydride materials, such as Mg(BH4)2, MgB12H12, and mixtures of complex hydrides such as the ternary LiBH4/LiNH2/MgH2 system.References:[0pt] (1) V. Ozolins, E. H. Majzoub, and C. Wolverton, ``First-Principles Prediction of a Ground State Crystal Structure of Magnesium Borohydride'', Phys. Rev. Lett. 100, 135501 (2008).(2) C. Wolverton, D. J. Siegel, A. R. Akbarzadeh, and V. Ozolins, ``Discovery of Novel Hydrogen Storage Materials: An Atomic Scale Computational Approach'', J. Phys. Condens. Matt. 20, 064228 (2008).(3) J. Yang, et al., ``A Self-Catalyzing Hydrogen Storage Material'' Angew. Chem. Int. Ed., 47, 882 (2008).(4) A. R. Akbarzadeh, V. Ozolins, and C. Wolverton, ``First-Principles Determination of Multicomponent Hydride Phase Diagrams: Application to the Li-Mg-N-H System'', Advanced Materials 19, 3233 (2007).(5) D. J. Siegel, C. Wolverton, and V. Ozolins, ``Thermodynamic Guidelines for the Prediction of Hydrogen Storage Reactions and their Application to Destabilized Hydride Mixtures'', Phys. Rev. B 76, 134102 (2007).

  17. Half-metallic ferromagnetism in TM-doped MgH2 hydride

    Science.gov (United States)

    Lakhal, M.; Bhihi, M.; Naji, S.; Mounkachi, O.; Benyoussef, A.; Loulidi, M.; El Kenz, A.

    2015-06-01

    We show that, in addition to its thermodynamic properties that make it a good candidate for hydrogen storage, the MgH2 hydride exhibits interesting magnetic properties when doped with some transition metals (TM). Using the Korringa-Kohn-Rostoker method (KKR) combined with the coherent potential approximation in the framework of first-principle calculations, we study the half-metallic ferromagnetic properties of the MgH2 doped with TM: Co, V, Cr, Ti; Mg0.95TM0.05H2. The ferromagnetic state energy is computed and compared with the disordered local moment state energy. We show, from the electronic structure, that doping MgH2 with TM elements can convert the material to a half-metallic with a high wide impurity band and high magnetic moment. We have found that the corresponding Curie temperature is bigger than the room temperature, which is considered as a relevant parameter for spintronic applications. Moreover, the mechanism of the hybridization and the interaction between the magnetic ions are also investigated showing that the double exchange is the underlying mechanism responsible for the magnetism of such materials.

  18. Lattice contraction in photochromic yttrium hydride

    Energy Technology Data Exchange (ETDEWEB)

    Maehlen, Jan Petter, E-mail: jepe@ife.no; Mongstad, Trygve T.; You, Chang Chuan; Karazhanov, Smagul

    2013-12-15

    Highlights: •Photochromic yttrium hydride films (YH:O) were prepared by reactive sputtering. •Black and transparent YH:O films were studied by time-resolved synchrotron XRD. •Both YH:O samples showed a lattice contraction upon illumination. •Also exposure to the X-ray beam itself results in a lattice contraction. -- Abstract: A strong photochromic effect was recently discovered in thin films of oxygen-containing yttrium hydride taking place at room temperature and reacting to ultraviolet and visible light. In this paper, we report on a lattice contraction upon illumination observed for thin-film samples of photochromic yttrium hydride, recorded by time-resolved X-ray diffraction using synchrotron radiation. The time dependence of the lattice contraction is consistent with the observed photochromic response of the samples.

  19. Atom probe analysis of titanium hydride precipitates.

    Science.gov (United States)

    Takahashi, J; Kawakami, K; Otsuka, H; Fujii, H

    2009-04-01

    It is expected that the three-dimensional atom probe (3DAP) will be used as a tool to visualize the atomic scale of hydrogen atoms in steel is expected, due to its high spatial resolution and very low detection limit. In this paper, the first 3DAP analysis of titanium hydride precipitates in metal titanium is reported in terms of the quantitative detection of hydrogen. FIB fabrication techniques using the lift-out method have enabled the production of needle tips of hydride precipitates, of several tens of microns in size, within a titanium matrix. The hydrogen concentration estimated from 3DAP analysis was slightly smaller than that of the hydride phase predicted from the phase diagram. We discuss the origin of the difference between the experimental and predicted values and the performance of 3DAP for the quantitative detection of hydrogen.

  20. Iron Group Hydrides in Noyori Bifunctional Catalysis.

    Science.gov (United States)

    Morris, Robert H

    2016-12-01

    This is an overview of the hydride-containing catalysts prepared in the Morris group for the efficient hydrogenation of simple ketones, imines, nitriles and esters and the asymmetric hydrogenation and transfer hydrogenation of prochiral ketones and imines. The work was inspired by and makes use of Noyori metal-ligand bifunctional concepts involving the hydride-ruthenium amine-hydrogen HRuNH design. It describes the synthesis and some catalytic properties of hydridochloro, dihydride and amide complexes of ruthenium and in one case, osmium, with monodentate, bidentate and tetradentate phosphorus and nitrogen donor ligands. The iron hydride that has been identified in a very effective asymmetric transfer hydrogenation process is also mentioned. The link between the HMNH structure and the sense of enantioinduction is demonstrated by use of simple transition state models.

  1. Effects of Alkaline Pre-Etching to Metal Hydride Alloys

    Directory of Open Access Journals (Sweden)

    Tiejun Meng

    2017-10-01

    Full Text Available The responses of one AB5, two AB2, four A2B7, and one C14-related body-centered-cubic (BCC metal hydrides to an alkaline-etch (45% KOH at 110 °C for 2 h were studied by internal resistance, X-ray diffraction, scanning electron microscope, inductively coupled plasma, and AC impedance measurements. Results show that while the etched rare earth–based AB5 and A2B7 alloys surfaces are covered with hydroxide/oxide (weight gain, the transition metal–based AB2 and BCC-C14 alloys surfaces are corroded and leach into electrolyte (weight loss. The C14-predominated AB2, La-only A2B7, and Sm-based A2B7 showed the most reduction in the internal resistance with the alkaline-etch process. Etched A2B7 alloys with high La-contents exhibited the lowest internal resistance and are suggested for use in the high-power application of nickel/metal hydride batteries.

  2. Evidence of stress-induced hydrogen ordering in zirconium hydrides

    Energy Technology Data Exchange (ETDEWEB)

    Steuwer, A. [FaME38 at the ESRF-ILL, 6 rue J Horowitz, 38042 Grenoble (France); ESS Scandinavia, University of Lund, Stora Algatan 4, 22350 Lund (Sweden)], E-mail: steuwer@ill.fr; Santisteban, J.R. [Centro Atomico Bariloche, CNEA, San Carlos de Bariloche (Argentina); Preuss, M. [University of Manchester, Grosvenor Street, Manchester M1 7HS (United Kingdom); Peel, M.J.; Buslaps, T. [European Synchrotron Radiation Facility, 6 rue J Horowitz, 38042 Grenoble (France); Harada, M. [R and D Section, Chofu-Kita Plant, Kobe Special Tube Co, Shimonoseki 752-0953 (Japan)

    2009-01-15

    The formation of hydrides in zirconium alloys significantly affects their mechanical properties and is considered to play a critical role in their failure mechanisms, yet relatively little is known about the micromechanical behavior of hydrides in the bulk. This paper presents the result of in situ uniaxial mechanical tensioning experiments on hydrided zircaloy-2 and zircaloy-4 specimens using energy-dispersive synchrotron X-ray diffraction, which suggests that a stress-induced transformation of the {delta}-hydride to {gamma}-hydride via ordering of the hydrogen atoms occurs, akin to a Snoek-type relaxation. Subsequent annealing was found to reverse the ordering phenomenon.

  3. Titanium compacts produced by the pulvimetallurgical hydride-dehydride method for biomedical applications

    Energy Technology Data Exchange (ETDEWEB)

    Barreiro, M M [Materiales Dentales, Facultad de OdontologIa, Universidad de Buenos Aires, Marcelo T de Alvear 2142 (1122), Buenos Aires (Argentina); Grana, D R; Kokubu, G A [PatologIa I. Escuela de OdontologIa, Facultad de Medicina. Asociacion Odontologica Argentina-Universidad del Salvador, Tucuman 1845 (1050) Buenos Aires (Argentina); Luppo, M I; Mintzer, S; Vigna, G, E-mail: mbarreiro@mater.odon.uba.a, E-mail: dgrana@usal.edu.a, E-mail: luppo@cnea.gov.a, E-mail: vigna@cnea.gov.a [Departamento Materiales, Comision Nacional de Energia Atomica, Gral Paz 1499 (B1650KNA), San MartIn, Buenos Aires (Argentina)

    2010-04-15

    Titanium powder production by the hydride-dehydride method has been developed as a non-expensive process. In this work, commercially pure grade two Ti specimens were hydrogenated. The hydrided material was milled in a planetary mill. The hydrided titanium powder was dehydrided and then sieved to obtain a particle size between 37 and 125{mu}m in order to compare it with a commercial powder produced by chemical reduction with a particle size lower than 150{mu}m. Cylindrical green compacts were obtained by uniaxial pressing of the powders at 343 MPa and sintering in vacuum. The powders and the density of sintered compacts were characterized, the oxygen content was measured and in vivo tests were performed in the tibia bones of Wistar rats in order to evaluate their biocompatibility. No differences were observed between the materials which were produced either with powders obtained by the hydride-dehydride method or with commercial powders produced by chemical reduction regarding modifications in compactation, sintering and biological behaviour.

  4. Catalyzed light hydride nanomaterials embedded in a micro-channels hydrogen storage container.

    Science.gov (United States)

    Dehouche, Zahir; Peretti, Hernán A; Yoo, Yeong; Belkacemi, Khaled; Goyette, Jacques

    2009-01-01

    Activated alloys synthesized by arc-melting were examined as catalysts for improving the hydrogen sorption characteristics of nanostructured magnesium hydride, proposed as a reversible hydrogen storage material. The MgH(2)-catalyst absorbing materials were prepared by ball milling of pure MgH(2) with hydrided Zr(47)Ni(53), Zr(9)Ni(11), and other alloys investigated. The nanostructured MgH(2)-intermetallic systems were tested at 250 degrees C and catalyst addition of eutectoid Zr(47)Ni(53) resulted in the fastest desorption time and highest initial desorption rate. The catalyzed Mg-hydride with activated Zr(9)Ni(11) and Zr(7)Ni(10) phases showed fast desorption kinetics. Moreover, the results demonstrated that the composition of dispersed Zr(x)Ni(y)catalysts has a strong influence on the amount of accumulated hydrogen and desorption rate of Mg-nanocomposite. Part two covers advanced micro-channels hydrogen storage module design based on the results of semi-empirical computer simulations of heat and mass transfers in the container. The micro-channels reservoir concept offers many advantages over the conventional metal hydride hydrogen storage system. It is a micro-structured system that can pack a lot of power into a small space and dissipate effectively the heat of the sorption reactions. This review summarizes recent patents related to CNTS.

  5. Synthesis and Characterization of Metal Hydride/Carbon Aerogel Composites for Hydrogen Storage

    Directory of Open Access Journals (Sweden)

    Kuen-Song Lin

    2012-01-01

    Full Text Available Two materials currently of interest for onboard lightweight hydrogen storage applications are sodium aluminum hydride (NaAlH4, a complex metal hydride, and carbon aerogels (CAs, a light porous material connected by several spherical nanoparticles. The objectives of the present work have been to investigate the synthesis, characterization, and hydrogenation behavior of Pd-, Ti- or Fe-doped CAs, NaAlH4, and MgH2 nanocomposites. The diameters of Pd nanoparticles onto CA’s surface and BET surface area of CAs were 3–10 nm and 700–900 m2g−1, respectively. The H2 storage capacity of metal hydrides has been studied using high-pressure TGA microbalance and they were 4.0, 2.7, 2.1, and 1.2 wt% for MgH2-FeTi-CAs, MgH2-FeTi, CAs-Pd, and 8 mol% Ti-doped NaAlH4, respectively, at room temperature. Carbon aerogels with higher surface area and mesoporous structures facilitated hydrogen diffusion and adsorption, which accounted for its extraordinary hydrogen storage phenomenon. The hydrogen adsorption abilities of CAs notably increased after inclusion of metal hydrides by the “hydrogen spillover” mechanisms.

  6. Hydride formation on deformation twin in zirconium alloy

    Science.gov (United States)

    Kim, Ju-Seong; Kim, Sung-Dae; Yoon, Jonghun

    2016-12-01

    Hydrides deteriorate the mechanical properties of zirconium (Zr) alloys used in nuclear reactors. Intergranular hydrides that form along grain boundaries have been extensively studied due to their detrimental effects on cracking. However, it has been little concerns on formation of Zr hydrides correlated with deformation twins which is distinctive heterogeneous nucleation site in hexagonal close-packed metals. In this paper, the heterogeneous precipitation of Zr hydrides at the twin boundaries was visualized using transmission electron microscopy. It demonstrates that intragranular hydrides in the twinned region precipitates on the rotated habit plane by the twinning and intergranular hydrides precipitate along the coherent low energy twin boundaries independent of the conventional habit planes. Interestingly, dislocations around the twin boundaries play a substantial role in the nucleation of Zr hydrides by reducing the misfit strain energy.

  7. Investigations of the structural stability of metal hydride composites by in-situ neutron imaging

    Science.gov (United States)

    Herbrig, Kai; Pohlmann, Carsten; Gondek, Łukasz; Figiel, Henryk; Kardjilov, Nikolay; Hilger, André; Manke, Ingo; Banhart, John; Kieback, Bernd; Röntzsch, Lars

    2015-10-01

    Metal hydride composites (MHC) with expanded natural graphite (ENG) exhibiting enhanced thermal conductivity and reduced porosity compared to metal hydride powders can enable a reversible, compact and safe way for hydrogen storage. In this study, neutron imaging during cyclic hydrogenation was utilized to investigate the structural stability and the spatial-temporal hydrogen concentration of application-oriented MHC with 40 mm in diameter compared to a loose metal hydride powder. In particular, swelling and shrinking effects of a radially confined MHC which could freely expand upwards were studied. It was found that the loose powder bed was easily torn apart during dehydrogenation, which leads to increased thermal resistance within the hydride bed. In contrast, the thermal resistance between MHC and container wall was minimized since the initial gap closes during initial hydrogenation and does not reopen thereafter. Further cyclic hydrogenation caused MHC volume changes, i.e. an almost reversible swelling/shrinking (so-called ;MHC breathing;). Moreover, neutron imaging allowed for the observation of reaction fronts within the MHC and the powder bed that are governed by the heat transfer.

  8. Technical challenges and future direction for high-efficiency metal hydride thermal energy storage systems

    Science.gov (United States)

    Ward, Patrick A.; Corgnale, Claudio; Teprovich, Joseph A.; Motyka, Theodore; Hardy, Bruce; Sheppard, Drew; Buckley, Craig; Zidan, Ragaiy

    2016-04-01

    Recently, there has been increasing interest in thermal energy storage (TES) systems for concentrated solar power (CSP) plants, which allow for continuous operation when sunlight is unavailable. Thermochemical energy storage materials have the advantage of much higher energy densities than latent or sensible heat materials. Furthermore, thermochemical energy storage systems based on metal hydrides have been gaining great interest for having the advantage of higher energy densities, better reversibility, and high enthalpies. However, in order to achieve higher efficiencies desired of a thermal storage system by the US Department of Energy, the system is required to operate at temperatures >600 °C. Operation at temperatures >600 °C presents challenges including material selection, hydrogen embrittlement and permeation of containment vessels, appropriate selection of heat transfer fluids, and cost. Herein, the technical difficulties and proposed solutions associated with the use of metal hydrides as TES materials in CSP applications are discussed and evaluated.

  9. A dehydrogenation mechanism of metal hydrides based on interactions between Hdelta+ and H-.

    Science.gov (United States)

    Lu, Jun; Fang, Zhigang Zak; Sohn, Hong Yong

    2006-10-16

    This paper describes a reaction mechanism that explains the dehydrogenation reactions of alkali and alkaline-earth metal hydrides. These light metal hydrides, e.g., lithium-based compounds such as LiH, LiAlH4, and LiNH2, are the focus of intense research recently as the most promising candidate materials for on-board hydrogen storage applications. Although several interesting and promising reactions and materials have been reported, most of these reported reactions and materials have been discovered by empirical means because of a general lack of understanding of any underlying principles. This paper describes an understanding of the dehydrogenation reactions on the basis of the interaction between negatively charged hydrogen (H-, electron donor) and positively charged hydrogen (Hdelta+, electron acceptor) and experimental evidence that captures and explains many observations that have been reported to date. This reaction mechanism can be used as a guidance for screening new material systems for hydrogen storage.

  10. Rules and trends of metal cation driven hydride-transfer mechanisms in metal amidoboranes.

    Science.gov (United States)

    Kim, Dong Young; Lee, Han Myoung; Seo, Jongcheol; Shin, Seung Koo; Kim, Kwang S

    2010-01-01

    Group I and II metal amidoboranes have been identified as one of the promising families of materials for efficient H(2) storage. However, the underlying mechanism of the dehydrogenation of these materials is not well understood. Thus, the mechanisms and kinetics of H(2) release in metal amidoboranes are investigated using high level ab initio calculations and kinetic simulations. The metal plays the role of catalyst for the hydride transfer with formation of a metal hydride intermediate towards the dehydrogenation. In this process, with increasing ionic character of the metal hydride bond in the intermediate, the stability of the intermediate decreases, while the dehydrogenation process involving ionic recombination of the hydridic H with the protic H proceeds with a reduced barrier. Such correlations lead directly to a U-shaped relationship between the activation energy barrier for H(2) elimination and the ionicity of metal hydride bond. Oligomerized intermediates are formed by the chain reaction of the size-driven catalytic effects of metals, competing with the non-oligomerization pathway. The kinetic rates at low temperatures are determined by the maximum barrier height in the pathway (a Lambda-shaped relation), while those at moderately high temperatures are determined by most of multiple-barriers. This requires kinetic simulations. At the operating temperatures of proton exchange membrane fuel cells, the metal amidoboranes with lithium and sodium release H(2) along both oligomerization and non-oligomerization paths. The sodium amidoboranes show the most accelerated rates, while others release H(2) at similar rates. In addition, we predict that the novel metal amidoborane-based adducts and mixtures would release H(2) with accelerated rates as well as with enhanced reversibility. This comprehensive study is useful for further developments of active metal-based better hydrogen storage materials.

  11. High capacity hydrogen storage materials: attributes for automotive applications and techniques for materials discovery.

    Science.gov (United States)

    Yang, Jun; Sudik, Andrea; Wolverton, Christopher; Siegel, Donald J

    2010-02-01

    Widespread adoption of hydrogen as a vehicular fuel depends critically upon the ability to store hydrogen on-board at high volumetric and gravimetric densities, as well as on the ability to extract/insert it at sufficiently rapid rates. As current storage methods based on physical means--high-pressure gas or (cryogenic) liquefaction--are unlikely to satisfy targets for performance and cost, a global research effort focusing on the development of chemical means for storing hydrogen in condensed phases has recently emerged. At present, no known material exhibits a combination of properties that would enable high-volume automotive applications. Thus new materials with improved performance, or new approaches to the synthesis and/or processing of existing materials, are highly desirable. In this critical review we provide a practical introduction to the field of hydrogen storage materials research, with an emphasis on (i) the properties necessary for a viable storage material, (ii) the computational and experimental techniques commonly employed in determining these attributes, and (iii) the classes of materials being pursued as candidate storage compounds. Starting from the general requirements of a fuel cell vehicle, we summarize how these requirements translate into desired characteristics for the hydrogen storage material. Key amongst these are: (a) high gravimetric and volumetric hydrogen density, (b) thermodynamics that allow for reversible hydrogen uptake/release under near-ambient conditions, and (c) fast reaction kinetics. To further illustrate these attributes, the four major classes of candidate storage materials--conventional metal hydrides, chemical hydrides, complex hydrides, and sorbent systems--are introduced and their respective performance and prospects for improvement in each of these areas is discussed. Finally, we review the most valuable experimental and computational techniques for determining these attributes, highlighting how an approach that

  12. Lab-size rechargeable metal hydride-air cells

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Wei-Kang; Noreus, Dag [Department of Materials and Enviromental Chemistry, Arrhenius Laboratory, Stockholm University, S-106 91 Stockholm (Sweden)

    2010-09-01

    Lab-size rechargeable metal hydride-air (MH-air) cells with a gas management device were designed in order to minimize the loss of electrolyte. An AB{sub 5}-type hydrogen storage alloy was used as anode materials of the MH-air. The thickness of the metal hydride electrodes was in the range of 3.0-3.4 mm. Porous carbon-based air electrodes with Ag{sub 2}O catalysts were used as bi-functional electrodes for oxygen reduction and generation. The electrodes were first examined in half-cells to evaluate their performance and then assembled into one MH-air cell. The results showed the good cycling stability of the rechargeable MH-air cell with a capacity of 1990 mAh. The discharge voltage was 0.69 V at 0.05-0.1 C. The charge efficiency was about 90%. The specific and volumetric energy densities were about 95Wh kg{sup -1} and 140 Wh L{sup -1}, respectively. (author)

  13. Measurement of nuclear fuel pin hydriding utilizing epithermal neutron scattering

    Energy Technology Data Exchange (ETDEWEB)

    Miller, W.H. [Univ. of Missouri, Columbia, MO (United States); Farkas, D.M.; Lutz, D.R. [General Electric Co., Pleasanton, CA (United States)

    1996-12-31

    The measurement of hydrogen or zirconium hydriding in fuel cladding has long been of interest to the nuclear power industry. The detection of this hydrogen currently requires either destructive analysis (with sensitivities down to 1 {mu}g/g) or nondestructive thermal neutron radiography (with sensitivities on the order of a few weight percent). The detection of hydrogen in metals can also be determined by measuring the slowing down of neutrons as they collide and rapidly lose energy via scattering with hydrogen. This phenomenon is the basis for the {open_quotes}notched neutron spectrum{close_quotes} technique, also referred to as the Hysen method. This technique has been improved with the {open_quotes}modified{close_quotes} notched neutron spectrum technique that has demonstrated detection of hydrogen below 1 {mu}g/g in steel. The technique is nondestructive and can be used on radioactive materials. It is proposed that this technique be applied to the measurement of hydriding in zirconium fuel pins. This paper summarizes a method for such measurements.

  14. Electronic Principles of Hydrogen Incorporation and Dynamics in Metal Hydrides

    Directory of Open Access Journals (Sweden)

    Ljiljana Matović

    2012-08-01

    Full Text Available An approach to various metal hydrides based on electronic principles is presented. The effective medium theory (EMT is used to illustrate fundamental aspects of metal-hydrogen interaction and clarify the most important processes taking place during the interaction. The elaboration is extended using the numerous existing results of experiment and calculations, as well as using some new material. In particular, the absorption/desorption of H in the Mg/MgH2 system is analyzed in detail, and all relevant initial structures and processes explained. Reasons for the high stability and slow sorption in this system are noted, and possible solutions proposed. The role of the transition-metal impurities in MgH2 is briefly discussed, and some interesting phenomena, observed in complex intermetallic compounds, are mentioned. The principle mechanism governing the Li-amide/imide transformation is also discussed. Latterly, some perspectives for the metal-hydrides investigation from the electronic point of view are elucidated.

  15. Hydrogen Storage Engineering Center of Excellence Metal Hydride Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Motyka, T. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2014-05-31

    The Hydrogen Storage Engineering Center of Excellence (HSECoE) was established in 2009 by the U.S. Department of Energy (DOE) to advance the development of materials-based hydrogen storage systems for hydrogen-fueled light-duty vehicles. The overall objective of the HSECoE is to develop complete, integrated system concepts that utilize reversible metal hydrides, adsorbents, and chemical hydrogen storage materials through the use of advanced engineering concepts and designs that can simultaneously meet or exceed all the DOE targets. This report describes the activities and accomplishments during Phase 1 of the reversible metal hydride portion of the HSECoE, which lasted 30 months from February 2009 to August 2011. A complete list of all the HSECoE partners can be found later in this report but for the reversible metal hydride portion of the HSECoE work the major contributing organizations to this effort were the United Technology Research Center (UTRC), General Motors (GM), Pacific Northwest National Laboratory (PNNL), the National Renewable Energy Laboratory (NREL) and the Savannah River National Laboratory (SRNL). Specific individuals from these and other institutions that supported this effort and the writing of this report are included in the list of contributors and in the acknowledgement sections of this report. The efforts of the HSECoE are organized into three phases each approximately 2 years in duration. In Phase I, comprehensive system engineering analyses and assessments were made of the three classes of storage media that included development of system level transport and thermal models of alternative conceptual storage configurations to permit detailed comparisons against the DOE performance targets for light-duty vehicles. Phase 1 tasks also included identification and technical justifications for candidate storage media and configurations that should be capable of reaching or exceeding the DOE targets. Phase 2 involved bench-level testing and

  16. A study of H+ production using metal hydride and other compounds by means of laser ion source

    Energy Technology Data Exchange (ETDEWEB)

    Sekine M.; Kondo K.; Okamura, M.; Hayashizaki, N.

    2012-02-22

    A laser ion source can provide wide variety of ion beams from solid target materials, however, it has been difficult to create proton beam efficiently. We examined capability of proton production using beeswax, polyethylene, and metal hydrides (MgH2 and ZrH2) as target materials. The results showed that beeswax and polyethylene could not be used to produce protons because these targets are transparent to the laser wavelength of 1064 nm. On the other hand, the metal hydrides could supply protons. Although the obtained particle numbers of protons were less than those of the metal ions, the metal hydrides could be used as a target for proton laser ion source.

  17. A study of H{sup +} production using metal hydride and other compounds by means of laser ion source

    Energy Technology Data Exchange (ETDEWEB)

    Sekine, M. [Department of Nuclear Engineering, Tokyo Institute of Technology, Meguro, Tokyo (Japan); Riken, Wako, Saitama (Japan); Kondo, K.; Okamura, M. [Collider-Accelerator Department, Brookhaven National Laboratory, Upton, New York 11973-5000 (United States); Hayashizaki, N. [Research Laboratory for Nuclear Reactors, Tokyo Institute of Technology, Meguro, Tokyo (Japan)

    2012-02-15

    A laser ion source can provide wide variety of ion beams from solid target materials, however, it has been difficult to create proton beam efficiently. We examined capability of proton production using beeswax, polyethylene, and metal hydrides (MgH{sub 2} and ZrH{sub 2}) as target materials. The results showed that beeswax and polyethylene could not be used to produce protons because these targets are transparent to the laser wavelength of 1064 nm. On the other hand, the metal hydrides could supply protons. Although the obtained particle numbers of protons were less than those of the metal ions, the metal hydrides could be used as a target for proton laser ion source.

  18. A study of H+ production using metal hydride and other compounds by means of laser ion sourcea)

    Science.gov (United States)

    Sekine, M.; Kondo, K.; Okamura, M.; Hayashizaki, N.

    2012-02-01

    A laser ion source can provide wide variety of ion beams from solid target materials, however, it has been difficult to create proton beam efficiently. We examined capability of proton production using beeswax, polyethylene, and metal hydrides (MgH2 and ZrH2) as target materials. The results showed that beeswax and polyethylene could not be used to produce protons because these targets are transparent to the laser wavelength of 1064 nm. On the other hand, the metal hydrides could supply protons. Although the obtained particle numbers of protons were less than those of the metal ions, the metal hydrides could be used as a target for proton laser ion source.

  19. A study of H+ production using metal hydride and other compounds by means of laser ion source.

    Science.gov (United States)

    Sekine, M; Kondo, K; Okamura, M; Hayashizaki, N

    2012-02-01

    A laser ion source can provide wide variety of ion beams from solid target materials, however, it has been difficult to create proton beam efficiently. We examined capability of proton production using beeswax, polyethylene, and metal hydrides (MgH(2) and ZrH(2)) as target materials. The results showed that beeswax and polyethylene could not be used to produce protons because these targets are transparent to the laser wavelength of 1064 nm. On the other hand, the metal hydrides could supply protons. Although the obtained particle numbers of protons were less than those of the metal ions, the metal hydrides could be used as a target for proton laser ion source.

  20. Hydrogen concentration limit and critical temperatures for delayed hydride cracking in zirconium alloys

    Energy Technology Data Exchange (ETDEWEB)

    Shi, S.Q. [Atomic Energy of Canada Ltd., Pinawa, Manitoba (Canada). Mater. and Mech. Branch; Shek, G.K. [Materials Technology Unit, Ontario Hydro Technologies, 800 Kipling Avenue, Toronto, Ontario (Canada); Puls, M.P. [Atomic Energy of Canada Ltd., Pinawa, Manitoba (Canada). Mater. and Mech. Branch

    1995-02-01

    An experimental study was carried out to determine the hydrogen concentration limit as a function of temperature at which delayed hydride cracking (DHC) commences in Zr-2.5Nb pressure tube material. For a given hydrogen content of the specimen, two critical temperatures were observed in this work - a DHC initiation temperature, T{sub c}, at which DHC would initiate when approaching the test temperature from above the solvus (or terminal solid solubility) for hydride dissolution (TSSD) and a DHC arrest temperature, T{sub h}, obtained by heating the same specimen from T{sub c} after DHC had started. Both of T{sub c} and T{sub h} are close to, but below, the temperatures defined by TSSD for the specific hydrogen content of the specimen. A theoretical analysis was carried out to quantitatively derive the hydrogen concentration limit and these critical temperatures. The theoretical prediction for T{sub c} depends sensitively on the particular solvus or terminal solid solubility curve for hydride precipitation (TSSP) used, since there is a wide range of values for TSSP depending on the thermal-mechanical history of the material. It is also suggested that T{sub h} is governed by the TSSP for hydride growth, in contrast to T{sub c}, which is governed by the TSSP for hydride nucleation. A model for a previously observed critical temperature (T{sub A}) is also proposed. T{sub A} is a DHC arrest temperature, obtained by approaching the test temperature from a lower temperature. The model suggests that T{sub A} is controlled by the energy difference between TSSD, TSSP and the hydrostatic stress at the crack tip. ((orig.))

  1. Development of a modular room-temperature hydride storage system for vehicular applications

    Science.gov (United States)

    Capurso, Giovanni; Schiavo, Benedetto; Jepsen, Julian; Lozano, Gustavo; Metz, Oliver; Saccone, Adriana; De Negri, Serena; Bellosta von Colbe, José M.; Klassen, Thomas; Dornheim, Martin

    2016-03-01

    The subject of this paper concerns the development of a vehicular hydrogen tank system, using a commercial interstitial metal hydride as storage material. The design of the tank was intended to feed a fuel cell in a light prototype vehicle, and the chosen hydride material, Hydralloy C5 by GfE, was expected to be able to absorb and desorb hydrogen in a range of pressure suitable for this purpose. A systematic analysis of the material in laboratory scale allows an extrapolation of the thermodynamic and reaction kinetics data. The following development of the modular tank was done according to the requirements of the prototype vehicle propulsion system and led to promising intermediate results. The modular approach granted flexibility in the design, allowing both to reach carefully the design goals and to learn the limiting factors in the sorption process. Proper heat management and suitable equipment remain key factors in order to achieve the best performances.

  2. Application of thermal electrochemical equation to metal-hydride half-cell system

    Institute of Scientific and Technical Information of China (English)

    LIU Kai-yu; HUANG Bai-yun; ZHANG Ping-min; HE Yue-hui; ZHOU Ke-chao; SU Geng

    2006-01-01

    Application of thermal electrochemical equation to metal-hydride half-cell system was investigated, and the influence of state of charge on the thermal electrochemical performance of hydrogen storage materials was studied. The results show that both the absolute value of the molar enthalpy change and the internal resistance of evolution hydrogen reaction are less than that of absorption hydrogen reaction at the same state of charge. The molar reaction enthalpy change of absorption and evolution of hydride electrode change contrarily with the enhancement of filling degree of hydrogen in hydride electrode. The relation curve of molar reaction enthalpy change to state of charge, both absorption and evolution hydrogen reaction, is close to a constant when the state of charge is 10%-60%, and during state of charge below 10% or state of charge above 60%, the molar reaction enthalpy change varies sharply. Meanwhile, the internal resistance of electrode reaction has an ascending trend with the enhancement on filling degree of hydrogen in hydride electrode in both absorption and evolution hydrogen reaction.

  3. Enhancement of Hydrogen Storage Behavior of Complex Hydrides via Bimetallic Nanocatalysts Doping

    Directory of Open Access Journals (Sweden)

    Prakash C. Sharma

    2012-10-01

    Full Text Available Pristine complex quaternary hydride (LiBH4/2LiNH2 and its destabilized counterpart (LiBH4/2LiNH2/nanoMgH2 have recently shown promising reversible hydrogen storage capacity under moderate operating conditions. The destabilization of complex hydride via nanocrystalline MgH2 apparently lowers the thermodynamic heat values and thus enhances the reversible hydrogen storage behavior at moderate temperatures. However, the kinetics of these materials is rather low and needs to be improved for on-board vehicular applications. Nanocatalyst additives such as nano Ni, nano Fe, nano Co, nano Mn and nano Cu at low concentrations on the complex hydride host structures have demonstrated a reduction in the decomposition temperature and overall increase in the hydrogen desorption reaction rates. Bi-metallic nanocatalysts such as the combination of nano Fe and nano Ni have shown further pronounced kinetics enhancement in comparison to their individual counterparts. Additionally, the vital advantage of using bi-metallic nanocatalysts is to enable the synergistic effects and characteristics of the two transitional nanometal species on the host hydride matrix for the optimized hydrogen storage behavior.

  4. Development of physics based analytical interatomic potential for palladium-hydride.

    Science.gov (United States)

    Park, Young Ho; Hijazi, Iyad

    2017-04-01

    Palladium hydrides (Pd-H) research is an important topic in materials research with many practical industrial applications. The complex behavior of the Pd-H alloy system such as phase miscibility gap, however, presents a huge challenge for developing reliable computational models. The embedded atom method (EAM) offers an advantage of computational efficiency and being suited to the metal-hydride system. We propose a new EAM interatomic potential for the complete mathematical modeling of palladium hydride. The present interatomic potential well predicts the lattice constant, cohesive energy, bulk modulus, other elastic constants, and stable alloy crystal structures during molecular dynamics simulations. The phase miscibility gap is also accurately predicted for the Pd-H system using the present potential. To our knowledge, only two Pd-H EAM potentials were used for predicting the phase miscibility gap for the PdH system. The predicted values from these works, however, considerably deviated from the experimental result, which hinders further application to the palladium hydride system. The present potential is reliably accurate and can be used to study the Pd-H system with its compete description of the mathematical formalism.

  5. First-principles study of structural stability and elastic properties of MgPd3 and its hydride

    Directory of Open Access Journals (Sweden)

    Dong-Hai Wu

    2014-06-01

    Full Text Available Theoretical study of structural stability and elastic properties of α- and β-MgPd3 intermetallic compounds as well as their hydrides have been carried out based on density functional theory. The results indicate α-MgPd3 is more stable than β phase with increased stability in their hydrides. The calculated elastic constants of α-MgPd3 are overall larger than β phase. After hydrogenation, the elastic constants are enlarged. And the elastic moduli exhibit similar tendency. The anisotropy of α-MgPd3 is larger than β phase, and the hydrides demonstrate larger anisotropy. Their ductility follows the order of α-MgPd3H0.5 < α-MgPd3 < β-MgPd3H < β-MgPd3. Compared with β phase, higher Debye temperature of α-MgPd3 implies stronger covalent interaction, and the Debye temperature of hydrides increases slightly. The electronic structures demonstrate that the Pd–Pd interaction is stronger than Pd–Mg, and Pd–H bonds play a significant role in the phase stability and elastic properties of hydrides.

  6. DEVELOPMENT OF A FABRICATION PROCESS FOR SOL-GEL/METAL HYDRIDE COMPOSITE GRANULES

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, E; Eric Frickey, E; Leung Heung, L

    2004-02-23

    dried in air at 40 C. The granules were heated to 230 C for 30 minutes in argon to remove the remaining water and organic materials. The resulting product was spherical composite granules (100 to 2000 micron diameter) with a porous silica matrix containing small agglomerates of metal hydride particles. Open porosity in the silica matrix allows hydrogen to permeate rapidly through the matrix but the pores are small enough to contain the metal hydride particles. Additional porosity around the metal hydride particles, induced using abietic acid as a pore former, allows the particles to freely expand and contract without fracturing the brittle sol-gel matrix. It was demonstrated that the granules readily absorb and desorb hydrogen while remaining integral and dimensionally stable. Microcracking was observed after the granules were cycled in hydrogen five times. The strength of the granules was improved by coating them with a thin layer of a micro-porous polymer sol-gel that would allow hydrogen to freely pass through the coating but would filter out metal hydride poisons such as water and carbon monoxide. It was demonstrated that if a thin sol-gel coating was applied after the granules were cycled, the coating not only improved the strength of the granules but the coated granules retained their strength after additional hydrogen cycling tests. This additional strength is needed to extend the lifetime of the granules and to survive the compressive load in a large column of granules. Additional hydrogen adsorption tests are planned to evaluate the performance of coated granules after one hundred cycles. Tests will also be performed to determine the effects of metal hydride poisons on the granules. The results of these tests will be documented in a separate report. The process that was developed to form these granules could be scaled to a production process. The process to form granules from a mixture of metal hydride particles and pore former such as abietic acid can be

  7. Encapsulation of hydride by molecular main group metal clusters: manipulating the source and coordination sphere of the interstitial ion.

    Science.gov (United States)

    Boss, Sally R; Coles, Martyn P; Eyre-Brook, Vicki; García, Felipe; Haigh, Robert; Hitchcock, Peter B; McPartlin, Mary; Morey, James V; Naka, Hiroshi; Raithby, Paul R; Sparkes, Hazel A; Tate, Christopher W; Wheatley, Andrew E H

    2006-12-21

    The sequential treatment of Lewis acids with N,N'-bidentate ligands and thereafter with ButLi has afforded a series of hydride-encapsulating alkali metal polyhedra. While the use of Me3Al in conjunction with Ph(2-C5H4N)NH gives Ph(2-C5H4N)NAlMe2 and this reacts with MeLi in thf to yield the simple 'ate complex Ph(2-C5H4N)NAlMe3Li.thf, the employment of an organolithium substrate capable of beta-hydride elimination redirects the reaction significantly. Whereas the use of ButLi has previously yielded a main group interstitial hydride in which H- exhibits micro6-coordination, it is shown here that variability in the coordination sphere of the encapsulated hydride may be induced by manipulation of the organic ligand. Reaction of (c-C6H11)(2-C5H4N)NH with Me3Al/ButLi yields [{(c-C6H11)(2-C5H4N)N}6HLi8]+[(But2AlMe2)2Li]-, which is best viewed as incorporating only linear di-coordination of the hydride ion. The guanidine 1,3,4,6,7,8-hexahydro-2H-pyrimido[1,2-a]pyrimidine (hppH) in conjunction with Me2Zn/ButLi yields the micro8-hydride [(hpp)6HLi8]+[But3Zn]-.0.5PhMe. Formation of the micro8-hydride [(hpp)6HLi8]+[ButBEt3]- is revealed by employment of the system Et3B/ButLi. A new and potentially versatile route to interstitial hydrides of this class is revealed by synthesis of the mixed borohydride-lithium hydride species [(hpp)6HLi8]+[Et3BH]- and [(hpp)6HLi8]+[(Et3B)2H]- through the direct combination of hppLi with Et3BHLi.

  8. Parallel Exhibits: Combining Physical and Virtual Exhibits

    NARCIS (Netherlands)

    L. Lischke; T. Dingler; S. Schneegaß; A. Schmidt; M. van der Vaart; P. Wozniak

    2014-01-01

    People have a special fascination for original physical objects, their texture, and visible history. However, the digitization of exhibits and the use of these data is a current challenge for museums. We believe that museums need to capitalize on the affordances of physical exhibits to help users na

  9. Numerical study of a magnesium hydride tank

    Science.gov (United States)

    Delhomme, Baptiste; de Rango, Patricia; Marty, Philippe

    2012-11-01

    Hydrogen storage in metal hydride tanks (MHT) is a very promising solution. Several experimental tanks, studied by different teams, have already proved the feasibility and the interesting performances of this solution. However, in much cases, an optimization of tank geometry is still needed in order to perform fast hydrogen loading. The development of efficient numerical tools is a key issue for MHT design and optimization. We propose a simple model representing a metal hydride tank exchanging its heat of reaction with a thermal fluid flow. In this model, the radial and axial discretisations have been decoupled by using Matlab® one-dimensional tools. Calculations are compared to experimental results obtained in a previous study. A good agreement is found for the loading case. The discharging case shows some discrepancies, which are discussed in this paper.

  10. Advanced chemical hydride-based hydrogen generation/storage system for fuel cell vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Breault, R.W.; Rolfe, J. [Thermo Power Corp., Waltham, MA (United States)

    1998-08-01

    Because of the inherent advantages of high efficiency, environmental acceptability, and high modularity, fuel cells are potentially attractive power supplies. Worldwide concerns over clean environments have revitalized research efforts on developing fuel cell vehicles (FCV). As a result of intensive research efforts, most of the subsystem technology for FCV`s are currently well established. These include: high power density PEM fuel cells, control systems, thermal management technology, and secondary power sources for hybrid operation. For mobile applications, however, supply of hydrogen or fuel for fuel cell operation poses a significant logistic problem. To supply high purity hydrogen for FCV operation, Thermo Power`s Advanced Technology Group is developing an advanced hydrogen storage technology. In this approach, a metal hydride/organic slurry is used as the hydrogen carrier and storage media. At the point of use, high purity hydrogen will be produced by reacting the metal hydride/organic slurry with water. In addition, Thermo Power has conceived the paths for recovery and regeneration of the spent hydride (practically metal hydroxide). The fluid-like nature of the spent hydride/organic slurry will provide a unique opportunity for pumping, transporting, and storing these materials. The final product of the program will be a user-friendly and relatively high energy storage density hydrogen supply system for fuel cell operation. In addition, the spent hydride can relatively easily be collected at the pumping station and regenerated utilizing renewable sources, such as biomass, natural, or coal, at the central processing plants. Therefore, the entire process will be economically favorable and environmentally friendly.

  11. Pressure-induced transformations of molecular boron hydride

    CERN Document Server

    Nakano, S; Gregoryanz, E A; Goncharov, A F; Mao Ho Kwang

    2002-01-01

    Decaborane, a molecular boron hydride, was compressed to 131 GPa at room temperature to explore possible non-molecular phases in this system and their physical properties. Decaborane changed its colour from transparent yellow to orange/red above 50 GPa and then to black above 100 GPa, suggesting some transformations. Raman scattering and infrared (IR) absorption spectroscopy reveal significant structural changes. Above 100 GPa, B-B skeletal, B-H and B-H-B Raman/IR peaks gradually disappeared, which implies a transformation into a non-molecular phase in which conventional borane-type bonding is lost. The optical band gap of the material at 100 GPa was estimated to be about 1.0 eV.

  12. Shielding efficiency of metal hydrides and borohydrides in fusion reactors

    Directory of Open Access Journals (Sweden)

    Singh Vishvanath P.

    2016-01-01

    Full Text Available Mass attenuation coefficients, mean free paths and exposure buildup factors have been used to characterize the shielding efficiency of metal hydrides and borohydrides, with high density of hydrogen. Gamma ray exposure buildup factors were computed using five-parameter geometric progression fitting at energies 0.015 MeV to15 MeV, and for penetration depths up to 40 mean free paths. Fast-neutron shielding efficiency has been characterized by the effective neutron removal cross-section. It is shown that ZrH2 and VH2 are very good shielding materials for gamma rays and fast neutrons due to their suitable combination of low- and high-Z elements. The present work should be useful for the selection and design of blankets and shielding, and for dose evaluation for components in fusion reactors.

  13. Niche applications of metal hydrides and related thermal management issues

    Energy Technology Data Exchange (ETDEWEB)

    Lototskyy, M., E-mail: mlototskyy@uwc.ac.za [HySA Systems Competence Centre, South African Institute for Advanced Materials Chemistry, Faculty of Natural Sciences, University of the Western Cape, Private Bag X17, Bellville 7535 (South Africa); Satya Sekhar, B. [HySA Systems Competence Centre, South African Institute for Advanced Materials Chemistry, Faculty of Natural Sciences, University of the Western Cape, Private Bag X17, Bellville 7535 (South Africa); Muthukumar, P. [Mechanical Department, Indian Institute of Technology Guwahati, Guwahati 781039 (India); Linkov, V.; Pollet, B.G. [HySA Systems Competence Centre, South African Institute for Advanced Materials Chemistry, Faculty of Natural Sciences, University of the Western Cape, Private Bag X17, Bellville 7535 (South Africa)

    2015-10-05

    Highlights: • MH H{sub 2} storage, compression & heat management: developments/thermal management. • Thermodynamic criteria for proper selection of MH for different gas phase applications. • Factors influencing on H{sub 2} charge/discharge dynamic performance and energy efficiency. • The improvement of MH heat transfer characteristics is crucial. • Ways of improvement of heat transfer in the MH systems. - Abstract: This short review highlights and discusses the recent developments and thermal management issues related to metal hydride (MH) systems for hydrogen storage, hydrogen compression and heat management (refrigeration, pump and upgrade, etc.). Special attention is paid to aligning the system features with the requirements of the specific application. The considered system features include the MH material, the MH bed on the basis of its corresponding MH container, as well as the layout of the integrated system.

  14. Crystal structure of the superconducting phase of sulfur hydride

    Science.gov (United States)

    Einaga, Mari; Sakata, Masafumi; Ishikawa, Takahiro; Shimizu, Katsuya; Eremets, Mikhail I.; Drozdov, Alexander P.; Troyan, Ivan A.; Hirao, Naohisa; Ohishi, Yasuo

    2016-09-01

    A superconducting critical temperature above 200 K has recently been discovered in H2S (or D2S) under high hydrostatic pressure. These measurements were interpreted in terms of a decomposition of these materials into elemental sulfur and a hydrogen-rich hydride that is responsible for the superconductivity, although direct experimental evidence for this mechanism has so far been lacking. Here we report the crystal structure of the superconducting phase of hydrogen sulfide (and deuterium sulfide) in the normal and superconducting states obtained by means of synchrotron X-ray diffraction measurements, combined with electrical resistance measurements at both room and low temperatures. We find that the superconducting phase is mostly in good agreement with the theoretically predicted body-centred cubic (bcc) structure for H3S. The presence of elemental sulfur is also manifest in the X-ray diffraction patterns, thus proving the decomposition mechanism of H2S to H3S + S under pressure.

  15. Metal hydride hydrogen compression: recent advances and future prospects

    Science.gov (United States)

    Yartys, Volodymyr A.; Lototskyy, Mykhaylo; Linkov, Vladimir; Grant, David; Stuart, Alastair; Eriksen, Jon; Denys, Roman; Bowman, Robert C.

    2016-04-01

    Metal hydride (MH) thermal sorption compression is one of the more important applications of the MHs. The present paper reviews recent advances in the field based on the analysis of the fundamental principles of this technology. The performances when boosting hydrogen pressure, along with two- and three-step compression units, are analyzed. The paper includes also a theoretical modelling of a two-stage compressor aimed at describing the performance of the experimentally studied systems, their optimization and design of more advanced MH compressors. Business developments in the field are reviewed for the Norwegian company HYSTORSYS AS and the South African Institute for Advanced Materials Chemistry. Finally, future prospects are outlined presenting the role of the MH compression in the overall development of the hydrogen-driven energy systems. The work is based on the analysis of the development of the technology in Europe, USA and South Africa.

  16. Nickel metal hydride LEO cycle testing

    Science.gov (United States)

    Lowery, Eric

    1995-01-01

    The George C. Marshall Space Flight Center is working to characterize aerospace AB5 Nickel Metal Hydride (NiMH) cells. The cells are being evaluated in terms of storage, low earth orbit (LEO) cycling, and response to parametric testing (high rate charge and discharge, charge retention, pulse current ability, etc.). Cells manufactured by Eagle Picher are the subjects of the evaluation. There is speculation that NiMH cells may become direct replacements for current Nickel Cadmium cells in the near future.

  17. Superhalogens: A Bridge between Complex Metal Hydrides and Li Ion Batteries.

    Science.gov (United States)

    Jena, Puru

    2015-04-02

    Complex metal hydrides and Li ion batteries play an integral role in the pursuit of clean and sustainable energy. The former stores hydrogen and can provide a clean energy solution for the transportation industry, while the latter can store energy harnessed from the sun and the wind. However, considerable materials challenges remain in both cases, and research for finding solutions has traditionally followed parallel paths. In this Perspective, I show that there is a common link between these two seemingly disparate fields that can be unveiled by studying the electronic structure of the anions in complex metal hydrides and in electrolytes of Li ion batteries; they are both superhalogens. I demonstrate that considerable progress made in our understanding of superhalogens in the past decade can provide solutions to some of the materials challenges in both of these areas.

  18. Storing hydrogen in the form of light alloy hydrides

    Science.gov (United States)

    Freund, E.; Gillerm, C.

    1981-01-01

    Different hydrides are investigated to find a system with a sufficiently high storage density (at least 3%). The formation of hydrides with light alloys is examined. Reaction kinetics for hydride formation were defined and applied to the systems Mg-Al-H, Mg-Al-Cu-H, Ti-Al-H, Ti-Al-Cu-H, and Ti-Al-Ni-H. Results indicate that the addition of Al destabilizes MgH2 and TiH2 hydrides while having only a limited effect on the storage density.

  19. Determination of the heat of hydride formation/decomposition by high-pressure differential scanning calorimetry (HP-DSC).

    Science.gov (United States)

    Rongeat, Carine; Llamas-Jansa, Isabel; Doppiu, Stefania; Deledda, Stefano; Borgschulte, Andreas; Schultz, Ludwig; Gutfleisch, Oliver

    2007-11-22

    Among the thermodynamic properties of novel materials for solid-state hydrogen storage, the heat of formation/decomposition of hydrides is the most important parameter to evaluate the stability of the compound and its temperature and pressure of operation. In this work, the desorption and absorption behaviors of three different classes of hydrides are investigated under different hydrogen pressures using high-pressure differential scanning calorimetry (HP-DSC). The HP-DSC technique is used to estimate the equilibrium pressures as a function of temperature, from which the heat of formation is derived. The relevance of this procedure is demonstrated for (i) magnesium-based compounds (Ni-doped MgH2), (ii) Mg-Co-based ternary hydrides (Mg-CoHx) and (iii) Alanate complex hydrides (Ti-doped NaAlH4). From these results, it can be concluded that HP-DSC is a powerful tool to obtain a good approximation of the thermodynamic properties of hydride compounds by a simple and fast study of desorption and absorption properties under different pressures.

  20. High capacity hydrogen storage nanocomposite materials

    Science.gov (United States)

    Zidan, Ragaiy; Wellons, Matthew S

    2015-02-03

    A novel hydrogen absorption material is provided comprising a mixture of a lithium hydride with a fullerene. The subsequent reaction product provides for a hydrogen storage material which reversibly stores and releases hydrogen at temperatures of about 270.degree. C.

  1. Alkaline-earth metal hydrides as novel host lattices for Eu(II) luminescence.

    Science.gov (United States)

    Kunkel, Nathalie; Kohlmann, Holger; Sayede, Adlane; Springborg, Michael

    2011-07-04

    Luminescence of divalent europium has been investigated for the first time in metal hydrides. A complete solid-solution series was found for the pseudobinary system Eu(x)Sr(1-x)H(2) [a = 637.6(1) pm -12.1(3)x pm, b = 387.0(1)-6.5(2)x pm, c = 732.2(2)-10.1(4)x pm]. Europium-doped alkaline-earth hydrides Eu(x)M(1-x)H(2) (M = Ca, Sr, Ba) with a small europium concentration (x = 0.005) exhibit luminescence with maximum emission wavelengths of 764 nm (M = Ca), 728 nm (M = Sr), and 750 nm (M = Ba); i.e., the emission energy of divalent europium shows an extremely large red shift compared to the emission energies of fluorides or oxides. Theoretical calculations (LDA+U) confirm decreasing band gaps with increasing europium content of the solid solutions.

  2. Predicted energy densitites for nickel-hydrogen and silver-hydrogen cells embodying metallic hydrides for hydrogen storage

    Science.gov (United States)

    Easter, R. W.

    1974-01-01

    Simplified design concepts were used to estimate gravimetric and volumetric energy densities for metal hydrogen battery cells for assessing the characteristics of cells containing metal hydrides as compared to gaseous storage cells, and for comparing nickel cathode and silver cathode systems. The silver cathode was found to yield superior energy densities in all cases considered. The inclusion of hydride forming materials yields cells with very high volumetric energy densities that also retain gravimetric energy densities nearly as high as those of gaseous storage cells.

  3. Nickel/metal hydride technology for consumer and electric vehicle batteries—a review and up-date

    Science.gov (United States)

    Dhar, S. K.; Ovshínsky, S. R.; Gifford, P. R.; Corrigan, D. A.; Fetcenko, M. A.; Venkatesan, S.

    Nickel/metal hydride batteries today represent the fastest growing market segment for rechargeable batteries due to the high energy density and more environmentally acceptable chemistry offered by this technology. The high energy density of nickel/metal hydride batteries coupled with high power density and long cycle life make this battery chemistry a key enabling technology for practical electric vehicles, including cars, vans, trucks, and other forms of transportation such as scooters, bicycles, and three-wheelers. This paper provides a review of Ovonic technology and up-dates recent developments in materials and cell development for both consumer electronic and EV applications, and highlights areas for future development.

  4. A model to describe the mechanical behavior and the ductile failure of hydrided Zircaloy-4 fuel claddings between 25 °C and 480 °C

    Science.gov (United States)

    Le Saux, M.; Besson, J.; Carassou, S.

    2015-11-01

    A model is proposed to describe the mechanical behavior and the ductile failure at 25, 350 and 480 °C of Zircaloy-4 cladding tubes, as-received and hydrided up to 1200 wt. ppm (circumferential hydrides). The model is based on the Gurson-Tvergaard-Needleman model extended to account for plastic anisotropy and viscoplasticity. The model considers damage nucleation by both hydride cracking and debonding of the interface between the Laves phase precipitates and the matrix. The damage nucleation rate due to hydride cracking is directly deduced from quantitative microstructural observations. The other model parameters are identified from several experimental tests. Finite element simulations of axial tension, hoop tension, expansion due to compression and hoop plane strain tension experiments are performed to assess the model prediction capability. The calibrated model satisfactorily reproduces the effects of hydrogen and temperature on both the viscoplastic and the failure properties of the material. The results suggest that damage is anisotropic and influenced by the stress state for the non-hydrided or moderately hydrided material and becomes more isotropic for high hydrogen contents.

  5. Metal assisted approach to develop molecularly imprinted mesoporous material exhibiting pockets for the fast uptake of diethyl phthalate as copper complex.

    Science.gov (United States)

    Kaur, Prabhjot; Narula, Priyanka; Kaur, Varinder; Singh, Raghubir; Kansal, Sushil Kumar

    2014-01-01

    A new molecularly imprinted mesoporous material (MIM) containing specific pockets for the extraction of diethyl phthalate (DEP) as copper complex has been prepared for the first time. The mesoporous material was developed by utilizing copper-phthalate complex (Cu-DEP) as the template molecule, 3-aminopropyltriethoxysilane (APS) as a functional monomer and tetraethoxyorthosilicate (TEOS) as the silica source for polymer network formation. The mesoporous material showed fast uptake kinetics, and equilibrium was obtained within 30 min due to the introduction of copper, which provides an additional site for interaction with the functional monomer. Synthesized polymer was well characterized using UV-Vis spectrophotometry, IR spectroscopy, TGA studies, and TEM. To achieve efficient extraction of the template molecule, various factors including sorption kinetics, quantity of MIM, time required for equilibrium set-up, sorption isotherm and reuse of MIM were optimized. The extracted DEP samples were analyzed quantitatively at 310 nm using an HPLC-DA system. The prepared material is robust and can be reused. In addition, it was found to be selective for DEP as compared to other phthalates.

  6. Britain exhibition at CERN

    CERN Multimedia

    Bertin; CERN PhotoLab

    1969-01-01

    The United Kingdom inaugurated the Industrial Exhibitions in 1968, and it wasn't till 1971 that other countries staged exhibitions at CERN. This photo was taken in 1969, at the second British exhibition, where 16 companies were present.

  7. Structural and hydrogen storage capacity evolution of Mg2FeH6 hydride synthesized by reactive mechanical alloying

    Institute of Scientific and Technical Information of China (English)

    LI Song-lin(李松林); R.A.Varin

    2004-01-01

    Mg-based metal hydrides are promising as hydrogen storage materials for fuel cell application. In this work, Mg2 FeH6 complex hydride phase was synthesized by controlled reactive ball milling of 2Mg-Fe (atomic ratio)powder mixture in H2. Mg2 FeH6 is confirmed to be formed via the following three stages: formation of MgH2 via the reaction of Mg with H2, incubation stage and formation of Mg2 FeH6 by reaction of fully refined MgH2 and Fe.The incubation stage is characterized by no traces of Mg or hydride crystalline phase by XRD. On the other hand,Mg is observed uniformly distributed in the milled powder by SEM-EDS. Also, almost the same amount of H2 as the first stage is detected stored in the powders of the second stage by DSC and TGA.

  8. Boron-nitrogen based hydrides and reactive composites for hydrogen storage

    DEFF Research Database (Denmark)

    Jepsen, Lars H.; Ley, Morten B.; Lee, Young-Su;

    2014-01-01

    Hydrogen forms chemical compounds with most other elements and forms a variety of different chemical bonds. This fascinating chemistry of hydrogen has continuously provided new materials and composites with new prospects for rational design and the tailoring of properties. This review highlights ...... a range of new boron and nitrogen based hydrides and illustrates how hydrogen release and uptake properties can be improved. © 2014 Elsevier Ltd....

  9. Synthesis and investigation of [Cp(PMe(3))Rh(H)(H(2))](+) and its partially deuterated and tritiated isotopomers: evidence for a hydride/dihydrogen structure.

    Science.gov (United States)

    Taw, Felicia L; Mellows, Heather; White, Peter S; Hollander, Frederick J; Bergman, Robert G; Brookhart, Maurice; Heinekey, D Michael

    2002-05-08

    Hydrogenolysis of [Cp(PMe(3))Rh(Me)(CH(2)Cl(2))](+)BAr'(4)(-) (4, Ar' = 3,5-C(6)H(3)(CF(3))(2)) in dichloromethane afforded the nonclassical polyhydride complex [Cp*PMe(3))Rh(H)(H(2))](+)BAr'(4)(-) (1), which exhibits a single hydride resonance at all accessible temperatures in the (1)H NMR spectrum. Exposure of solutions of 1 to D(2) or T(2) gas resulted in partial isotopic substitution in the hydride sites. Formulation of 1 as a hydride/dihydrogen complex was based upon T(1) (T(1)(min) = 23 ms at 150 K, 500 MHz), J(H-D) (ca. 10 Hz), and J(H-T) (ca. 70 Hz) measurements. The barrier (Delta G(++)) to exchange of hydride with dihydrogen sites was determined to be less than ca. 5 kcal/mol. Protonation of Cp(PMe(3))Rh(H)(2) (2) using H(OEt(2))(2)BAr'(4) resulted in binuclear species [(Cp(PMe(3))Rh(H))(2)(mu-H)](+)BAr'(4)(-) (3), which is formed in a reaction involving 1 as an intermediate. Complex 3 contains two terminal hydrides and one bridging hydride ligand which exchange with a barrier of 9.1 kcal/mol as observed by (1)H NMR spectroscopy. Additionally, the structures of 3 and 4, determined by X-ray diffraction, are reported.

  10. Alloys for hydrogen storage in nickel/hydrogen and nickel/metal hydride batteries

    Science.gov (United States)

    Anani, Anaba; Visintin, Arnaldo; Petrov, Konstantin; Srinivasan, Supramaniam; Reilly, James J.; Johnson, John R.; Schwarz, Ricardo B.; Desch, Paul B.

    1993-01-01

    Since 1990, there has been an ongoing collaboration among the authors in the three laboratories to (1) prepare alloys of the AB(sub 5) and AB(sub 2) types, using arc-melting/annealing and mechanical alloying/annealing techniques; (2) examine their physico-chemical characteristics (morphology, composition); (3) determine the hydrogen absorption/desorption behavior (pressure-composition isotherms as a function of temperature); and (4) evaluate their performance characteristics as hydride electrodes (charge/discharge, capacity retention, cycle life, high rate capability). The work carried out on representative AB(sub 5) and AB(sub 2) type modified alloys (by partial substitution or with small additives of other elements) is presented. The purpose of the modification was to optimize the thermodynamics and kinetics of the hydriding/dehydriding reactions and enhance the stabilities of the alloys for the desired battery applications. The results of our collaboration, to date, demonstrate that (1) alloys prepared by arc melting/annealing and mechanical alloying/annealing techniques exhibit similar morphology, composition and hydriding/dehydriding characteristics; (2) alloys with the appropriate small amounts of substituent or additive elements: (1) retain the single phase structure, (2) improve the hydriding/dehydriding reactions for the battery applications, and (3) enhance the stability in the battery environment; and (3) the AB(sub 2) type alloys exhibit higher energy densities than the AB(sub 5) type alloys but the state-of-the-art, commercialized batteries are predominantly manufactured using Ab(sub 5) type alloys.

  11. Calibration of Thermal Desorption System (TDS) Response to Hydrogen for Analysis of Titanium Subhydride and Titanium Hydride

    Energy Technology Data Exchange (ETDEWEB)

    Mills, Bernice E. [Sandia National Lab. (SNL-CA), Livermore, CA (United States)

    2013-07-01

    The equipment and method for and results of calibration of the Sandia/CA TDS system for hydrogen quantification is presented. This technique for calibration can be used to quantify the hydrogen content titanium subhydride, titanium hydride, and any other hydrogen-containing material that desorbs its hydrogen in the form of molecular hydrogen below 1450°C.

  12. A large cryogenic magnetocaloric effect exhibited at low field by a 3D ferromagnetically coupled Mn(II)-Gd(III) framework material.

    Science.gov (United States)

    Guo, Fu-Sheng; Chen, Yan-Cong; Liu, Jun-Liang; Leng, Ji-Dong; Meng, Zhao-Sha; Vrábel, Peter; Orendáč, Martin; Tong, Ming-Liang

    2012-12-28

    The large cryogenic magnetocaloric effect of a 3D oxydiacetate-bridged gadolinium-manganese MOF material, [Mn(H(2)O)(6)][MnGd(oda)(3)](2)·6H(2)O (1), was evaluated by magnetization and heat capacity measurements. A maximum -ΔS(m) of 50.1 J kg(-1) K(-1) for ΔH = 70 kG along with significant entropy change at lower field was found on account of the weak Mn···Gd ferromagnetic interactions and the small molecular mass. This suggests that 1 could be considered as a potential coolant for liquid helium temperature applications.

  13. Nanoconfined hydrides for energy storage

    Science.gov (United States)

    Nielsen, Thomas K.; Besenbacher, Flemming; Jensen, Torben R.

    2011-05-01

    The world in the 21st century is facing increasing challenges within the development of more environmentally friendly energy systems, sustainable and `green chemistry' solutions for a variety of chemical and catalytic processes. Nanomaterials science is expected to contribute strongly by the development of new nanotools, e.g. for improving the performance of chemical reactions. Nanoconfinement is of increasing interest and may lead to significantly enhanced kinetics, higher degree of stability and/or more favourable thermodynamic properties. Nanoconfined chemical reactions may have a wide range of important applications in the near future, e.g. within the merging area of chemical storage of renewable energy. This review provides selected examples within nanoconfinement of hydrogen storage materials, which may serve as an inspiration for other research fields as well. Selected nanoporous materials, methods for preparation of nanoconfined systems and their hydrogen storage properties are reviewed.The world in the 21st century is facing increasing challenges within the development of more environmentally friendly energy systems, sustainable and `green chemistry' solutions for a variety of chemical and catalytic processes. Nanomaterials science is expected to contribute strongly by the development of new nanotools, e.g. for improving the performance of chemical reactions. Nanoconfinement is of increasing interest and may lead to significantly enhanced kinetics, higher degree of stability and/or more favourable thermodynamic properties. Nanoconfined chemical reactions may have a wide range of important applications in the near future, e.g. within the merging area of chemical storage of renewable energy. This review provides selected examples within nanoconfinement of hydrogen storage materials, which may serve as an inspiration for other research fields as well. Selected nanoporous materials, methods for preparation of nanoconfined systems and their hydrogen storage

  14. Light metal hydrides and complex hydrides for hydrogen storage.

    Science.gov (United States)

    Schüth, F; Bogdanović, B; Felderhoff, M

    2004-10-21

    The availability of feasible methods for hydrogen storage is one of the key-maybe the key-requirements for the large scale application of PEM fuel cells in cars. There are in principle four different approaches, i.e. cryostorage in liquid form, high pressure storage, storage in the form of a chemical compound which is converted to hydrogen by on-board reforming, or reversible chemical storage in different kinds of storage materials. New developments in the field of chemical storage make such systems attractive compared to the other options. This review will discuss the different possibilities for chemical storage of hydrogen and the focus on the presently most advanced system with respect to storage capacity and kinetics, i.e. catalyzed alanates, especially NaAlH(4).

  15. Method of making crack-free zirconium hydride

    Science.gov (United States)

    Sullivan, Richard W.

    1980-01-01

    Crack-free hydrides of zirconium and zirconium-uranium alloys are produced by alloying the zirconium or zirconium-uranium alloy with beryllium, or nickel, or beryllium and scandium, or nickel and scandium, or beryllium and nickel, or beryllium, nickel and scandium and thereafter hydriding.

  16. Electrochemical and Optical Properties of Magnesium-Alloy Hydrides Reviewed

    Directory of Open Access Journals (Sweden)

    Thirugnasambandam G. Manivasagam

    2012-10-01

    Full Text Available As potential hydrogen storage media, magnesium based hydrides have been systematically studied in order to improve reversibility, storage capacity, kinetics and thermodynamics. The present article deals with the electrochemical and optical properties of Mg alloy hydrides. Electrochemical hydrogenation, compared to conventional gas phase hydrogen loading, provides precise control with only moderate reaction conditions. Interestingly, the alloy composition determines the crystallographic nature of the metal-hydride: a structural change is induced from rutile to fluorite at 80 at.% of Mg in Mg-TM alloy, with ensuing improved hydrogen mobility and storage capacity. So far, 6 wt.% (equivalent to 1600 mAh/g of reversibly stored hydrogen in MgyTM(1-yHx (TM: Sc, Ti has been reported. Thin film forms of these metal-hydrides reveal interesting electrochromic properties as a function of hydrogen content. Optical switching occurs during (dehydrogenation between the reflective metal and the transparent metal hydride states. The chronological sequence of the optical improvements in optically active metal hydrides starts with the rare earth systems (YHx, followed by Mg rare earth alloy hydrides (MgyGd(1-yHx and concludes with Mg transition metal hydrides (MgyTM(1-yHx. In-situ optical characterization of gradient thin films during (dehydrogenation, denoted as hydrogenography, enables the monitoring of alloy composition gradients simultaneously.

  17. High energy density battery based on complex hydrides

    Science.gov (United States)

    Zidan, Ragaiy

    2016-04-26

    A battery and process of operating a battery system is provided using high hydrogen capacity complex hydrides in an organic non-aqueous solvent that allows the transport of hydride ions such as AlH.sub.4.sup.- and metal ions during respective discharging and charging steps.

  18. High energy density battery based on complex hydrides

    Energy Technology Data Exchange (ETDEWEB)

    Zidan, Ragaiy

    2016-04-26

    A battery and process of operating a battery system is provided using high hydrogen capacity complex hydrides in an organic non-aqueous solvent that allows the transport of hydride ions such as AlH.sub.4.sup.- and metal ions during respective discharging and charging steps.

  19. Synthesis, characterization and properties of some organozinc hydride complexes

    NARCIS (Netherlands)

    Koning, A.J. de; Boersma, J.; Kerk, G.J.M. van der

    1980-01-01

    The synthesis and characterization of the monopyridine complexes of ethylzinc hydride and phenylzinc hydride are described. On treatment with TMED these complexes are converted into R2Zn3H4. TMED species through a combination of ligand-exchange and disproportionation. The formation of organozinc hyd

  20. High ramp rate thermogravimetric analysis of zirconium(II) hydride and titanium(II) hydride

    Energy Technology Data Exchange (ETDEWEB)

    Licavoli, Joseph J., E-mail: jjlicavo@mtu.edu; Sanders, Paul G., E-mail: sanders@mtu.edu

    2015-09-20

    Highlights: • A unique arc image device has been proposed for high ramp rate thermogravimetry. • Powder oxidation influences decomposition kinetics at temperatures below 933 K. • Particle size has a negligible effect on TiH{sub 2} decomposition behavior. • Improvements to the device are required to conduct accurate kinetic analysis. - Abstract: Zirconium and titanium hydride are utilized in liquid phase metal foam processing techniques. This application results in immediate exposure to molten metal and almost immediate decomposition at high temperatures. Most decomposition characterization techniques utilize slow heating rates and are unable to capture the decomposition behavior of hydrides under foam processing conditions. In order to address this issue a specialized high ramp rate thermogravimetric analyzer was created from a xenon arc image refiner. In addition to thermogravimetry, complimentary techniques including X-ray diffraction and scanning electron microscopy were used to characterize hydride decomposition and compare the results to literature. Hydrides were partially oxidized and separated into particles size ranges to evaluate the influence of these factors on decomposition. Oxidizing treatments were found to decrease decomposition rate only at temperatures below 933 K (660 °C) while particle size effects appeared to be negligible. Several improvements to the unique TGA apparatus presented in the current work are suggested to allow reliable kinetic modeling and analysis.

  1. MgF2 as a material exhibiting all-angle negative refraction and subwavelength imaging due to the phonon response in the far infrared

    Science.gov (United States)

    Macêdo, R.; Rodrigues da Silva, R.; Dumelow, T.; da Costa, J. A. P.

    2014-01-01

    We consider the possibility of using MgF2 crystals as a suitable material for achieving all-angle negative refraction at far infrared frequencies. This possibility is associated with the highly anisotropic nature of the phonon response, leading to dielectric tensor components of opposing signs. The results show that this phenomenon should occur at somewhat lower frequencies than that of quartz, which has previously been investigated experimentally, but with relatively high efficiency. We also simulate subwavelength imaging, through canalization, at 247 cm-1, corresponding to the frequency of a transverse optical phonon polarized perpendicular to the extraordinary axis. Our simulations show that the Fabry-Pérot condition (use of a slab of thickness equal to an integral number of half-wavelengths) is not necessarily helpful in achieving subwavelength resolution.

  2. ORNL Interim Progress Report on Hydride Reorientation CIRFT Tests

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jy-An John [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Yan, Yong [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Wang, Hong [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2016-10-28

    A systematic study of H. B. Robinson (HBR) high burnup spent nuclear fuel (SNF) vibration integrity was performed in Phase I project under simulated transportation environments, using the Cyclic Integrated Reversible-Bending Fatigue Tester (CIRFT) hot cell testing technology developed at Oak Ridge National Laboratory in 2013–14. The data analysis on the as-irradiated HBR SNF rods demonstrated that the load amplitude is the dominant factor that controls the fatigue life of bending rods. However, previous studies have shown that the hydrogen content and hydride morphology has an important effect on zirconium alloy mechanical properties. To address the effect of radial hydrides in SNF rods, in Phase II a test procedure was developed to simulate the effects of elevated temperatures, pressures, and stresses during transfer-drying operations. Pressurized and sealed fuel segments were heated to the target temperature for a preset hold time and slow-cooled at a controlled rate. The procedure was applied to both non-irradiated/prehydrided and high-burnup Zircaloy-4 fueled cladding segments using the Nuclear Regulatory Commission-recommended 400°C maximum temperature limit at various cooling rates. Before testing high-burnup cladding, four out-of-cell tests were conducted to optimize the hydride reorientation (R) test condition with pre-hydride Zircaloy-4 cladding, which has the same geometry as the high burnup fuel samples. Test HR-HBR#1 was conducted at the maximum hoop stress of 145 MPa, at a 400°C maximum temperature and a 5°C/h cooling rate. On the other hand, thermal cycling was performed for tests HR-HBR#2, HR-HBR#3, and HR-HBR#4 to generate more radial hydrides. It is clear that thermal cycling increases the ratio of the radial hydride to circumferential hydrides. The internal pressure also has a significant effect on the radial hydride morphology. This report describes a procedure and experimental results of the four out-of-cell hydride reorientation tests of

  3. Investigation of the direct hydride generation nebulizer for the determination of arsenic, antimony and selenium in inductively coupled plasma optical emission spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Rojas, Illiana; Murillo, Miguel; Carrion, Nereida; Chirinos, Jose [Centro de Quimica Analitica, Escuela de Quimica, Facultad de Ciencias, Universidad Central de Venezuela, P.O. Box 47102, 1041a, Caracas (Venezuela)

    2003-05-01

    A direct hydride generation nebulizer (DHGN) was explored for introduction of the sample in inductively coupled plasma-optical emission spectrometry (ICP-OES) using radially viewed mode. This simple hydride generation system was constructed in our laboratory and requires similar plasma operating conditions to conventional nebulizer-spray-chamber arrangements. This work was focused on the optimization of the operating conditions for hydride generation and evaluation of the main analytical figures of merit for the determination of As, Sb and Se. The excitation conditions of the ICP-OES instrument operated with the DHGN were also explored. Results showed that the analytical performance of the new system for the determination of As, Sb and Se was superior to that of conventional nebulization systems. The DHGN also enabled the determination of elements that do not form volatile hydrides, but with less sensitivity than conventional nebulization systems. Evaluation of the plasma robustness showed that gases generated in hydride generation do not significantly affects the plasma discharge. Similar to conventional hydride generation techniques, analysis with DHGN was susceptible to non-spectroscopic interferences produced by transition metals. Finally, the utility of the DHGN in practical ICP-OES studies was demonstrated in the determination of trace elements in an oyster tissue standard reference material. (orig.)

  4. Growth and decomposition of Lithium and Lithium hydride on Nickel

    DEFF Research Database (Denmark)

    Engbæk, Jakob; Nielsen, Gunver; Nielsen, Jane Hvolbæk

    2006-01-01

    In this paper we have investigated the deposition, structure and decomposition of lithium and lithium-hydride films on a nickel substrate. Using surface sensitive techniques it was possible to quantify the deposited Li amount, and to optimize the deposition procedure for synthesizing lithium......-hydride films. By only making thin films of LiH it is possible to study the stability of these hydride layers and compare it directly with the stability of pure Li without having any transport phenomena or adsorbed oxygen to obscure the results. The desorption of metallic lithium takes place at a lower...... temperature than the decomposition of the lithium-hydride, confirming the high stability and sintering problems of lithium-hydride making the storage potential a challenge. (c) 2006 Elsevier B.V. All rights reserved....

  5. Hydrogen storage systems based on magnesium hydride: from laboratory tests to fuel cell integration

    Science.gov (United States)

    de Rango, P.; Marty, P.; Fruchart, D.

    2016-02-01

    The paper reviews the state of the art of hydrogen storage systems based on magnesium hydride, emphasizing the role of thermal management, whose effectiveness depends on the effective thermal conductivity of the hydride, but also depends of other limiting factors such as wall contact resistance and convective exchanges with the heat transfer fluid. For daily cycles, the use of phase change material to store the heat of reaction appears to be the most effective solution. The integration with fuel cells (1 kWe proton exchange membrane fuel cell and solid oxide fuel cell) highlights the dynamic behaviour of these systems, which is related to the thermodynamic properties of MgH2. This allows for "self-adaptive" systems that do not require control of the hydrogen flow rate at the inlet of the fuel cell.

  6. Fourier-Domain Analysis of Hydriding Kinetics Using Pneumato-Chemical Impedance Spectroscopy

    Directory of Open Access Journals (Sweden)

    P. Millet

    2007-10-01

    Full Text Available Analysis of phase transformation processes observed in hydrogen absorbing materials (pure metals, alloys, or compounds is still a matter of active research. Using pneumato-chemical impedance spectroscopy (PIS, it is now possible to analyze the mechanism of hydriding reactions induced by the gas phase. Experimental impedance diagrams, measured on activated LaNi5 in single- and two-phase domains, are reported in this paper. It is shown that their shape is mostly affected by the slope of the isotherm at the measurement point. By considering the details of the multistep reaction paths involved in the hydriding reaction, model impedance equations have been derived for single- and two-phase domains, and fitted to experimental impedance diagrams. The possibility of separately measuring surface and phase transformation resistances, hydrogen diffusion coefficient, and hydrogen solubility in each composition domain is discussed.

  7. Degradation Behavior of Electrochemical Performance of Sealed-Type Nickel/Metal Hydride Batteries

    Institute of Scientific and Technical Information of China (English)

    李丽; 吴锋; 杨凯

    2003-01-01

    The degradation mechanism of electrochemical performance of sealed-type nickel/metal hydride batteries was investigated. The results indicate that the degradation behavior of Ni/MH battery is not only owing to the lack of electrolyte, but also the deterioration of the active materials on the positive and negative electrodes of Ni/MH batteries. Scanning electron micrographs (SEM), X-ray diffraction (XRD) and laser granularity analyses are presented. The particle pulverization and oxidation during charge/discharge are identified as the main causes for deterioration of the negative and positive electrode in nickel/metal hydride batteries, as well as the cross-section cracking of both anode and cathode.

  8. Crack growth through the thickness of thin-sheet Hydrided Zircaloy-4

    Science.gov (United States)

    Raynaud, Patrick A. C.

    In recent years, the limits on fuel burnup have been increased to allow an increase in the amount of energy produced by a nuclear fuel assembly thus reducing waste volume and allowing greater capacity factors. As a result, it is paramount to ensure safety after longer reactor exposure times in the case of design-basis accidents, such as reactivity-initiated accidents (RIA). Previously proposed failure criteria do not directly address the particular cladding failure mechanism during a RIA, in which crack initiation in brittle outer-layers is immediately followed by crack growth through the thickness of the thin-wall tubing. In such a case, the fracture toughness of hydrided thin-wall cladding material must be known for the conditions of through-thickness crack growth in order to predict the failure of high-burnup cladding. The fracture toughness of hydrided Zircaloy-4 in the form of thin-sheet has been examined for the condition of through-thickness crack growth as a function of hydride content and distribution at 25°C, 300°C, and 375°C. To achieve this goal, an experimental procedure was developed in which a linear hydride blister formed across the width of a four-point bend specimen was used to inject a sharp crack that was subsequently extended by fatigue pre-cracking. The electrical potential drop method was used to monitor the crack length during fracture toughness testing, thus allowing for correlation of the load-displacement record with the crack length. Elastic-plastic fracture mechanics were used to interpret the experimental test results in terms of fracture toughness, and J-R crack growth resistance curves were generated. Finite element modeling was performed to adapt the classic theories of fracture mechanics applicable to thick-plate specimens to the case of through-thickness crack growth in thin-sheet materials, and to account for non-uniform crack fronts. Finally, the hydride microstructure was characterized in the vicinity of the crack tip by

  9. Mononuclear Phenolate Diamine Zinc Hydride Complexes and Their Reactions With CO2.

    Science.gov (United States)

    Brown, Neil J; Harris, Jonathon E; Yin, Xinning; Silverwood, Ian; White, Andrew J P; Kazarian, Sergei G; Hellgardt, Klaus; Shaffer, Milo S P; Williams, Charlotte K

    2014-03-10

    The synthesis, characterization, and zinc coordination chemistry of the three proligands 2-tert-butyl-4-[tert-butyl (1)/methoxy (2)/nitro (3)]-6-{[(2'-dimethylaminoethyl)methylamino]methyl}phenol are described. Each of the ligands was reacted with diethylzinc to yield zinc ethyl complexes 4-6; these complexes were subsequently reacted with phenylsilanol to yield zinc siloxide complexes 7-9. Finally, the zinc siloxide complexes were reacted with phenylsilane to produce the three new zinc hydride complexes 10-12. The new complexes 4-12 have been fully characterized by NMR spectroscopy, mass spectrometry, and elemental analyses. The structures of the zinc hydride complexes have been probed using VT-NMR spectroscopy and X-ray diffraction experiments. These data indicate that the complexes exhibit mononuclear structures at 298 K, both in the solid state and in solution (d8-toluene). At 203 K, the NMR signals broaden, consistent with an equilibrium between the mononuclear and dinuclear bis(μ-hydrido) complexes. All three zinc hydride complexes react rapidly and quantitatively with carbon dioxide, at 298 K and 1 bar of pressure over 20 min, to form the new zinc formate complexes 13-15. The zinc formate complexes have been analyzed by NMR spectroscopy and VT-NMR studies, which reveal a temperature-dependent monomer-dimer equilibrium that is dominated by the mononuclear species at 298 K.

  10. Results of NDE Technique Evaluation of Clad Hydrides

    Energy Technology Data Exchange (ETDEWEB)

    Kunerth, Dennis C. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2014-09-01

    This report fulfills the M4 milestone, M4FT-14IN0805023, Results of NDE Technique Evaluation of Clad Hydrides, under Work Package Number FT-14IN080502. During service, zirconium alloy fuel cladding will degrade via corrosion/oxidation. Hydrogen, a byproduct of the oxidation process, will be absorbed into the cladding and eventually form hydrides due to low hydrogen solubility limits. The hydride phase is detrimental to the mechanical properties of the cladding and therefore it is important to be able to detect and characterize the presence of this constituent within the cladding. Presently, hydrides are evaluated using destructive examination. If nondestructive evaluation techniques can be used to detect and characterize the hydrides, the potential exists to significantly increase test sample coverage while reducing evaluation time and cost. To demonstrate the viability this approach, an initial evaluation of eddy current and ultrasonic techniques were performed to demonstrate the basic ability to these techniques to detect hydrides or their effects on the microstructure. Conventional continuous wave eddy current techniques were applied to zirconium based cladding test samples thermally processed with hydrogen gas to promote the absorption of hydrogen and subsequent formation of hydrides. The results of the evaluation demonstrate that eddy current inspection approaches have the potential to detect both the physical damage induced by hydrides, e.g. blisters and cracking, as well as the combined effects of absorbed hydrogen and hydride precipitates on the electrical properties of the zirconium alloy. Similarly, measurements of ultrasonic wave velocities indicate changes in the elastic properties resulting from the combined effects of absorbed hydrogen and hydride precipitates as well as changes in geometry in regions of severe degradation. However, for both approaches, the signal responses intended to make the desired measurement incorporate a number of contributing

  11. Nanoindentation measurements of the mechanical properties of zirconium matrix and hydrides in unirradiated pre-hydrided nuclear fuel cladding

    Science.gov (United States)

    Rico, A.; Martin-Rengel, M. A.; Ruiz-Hervias, J.; Rodriguez, J.; Gomez-Sanchez, F. J.

    2014-09-01

    It is well known that the mechanical properties of the nuclear fuel cladding may be affected by the presence of hydrides. The average mechanical properties of hydrided cladding have been extensively investigated from a macroscopic point of view. In addition, the mechanical and fracture properties of bulk hydride samples fabricated from zirconium plates have also been reported. In this paper, Young's modulus, hardness and yield stress are measured for each phase, namely zirconium hydrides and matrix, of pre-hydrided nuclear fuel cladding. To this end, nanoindentation tests were performed on ZIRLO samples in as-received state, on a hydride blister and in samples with 150 and 1200 ppm of hydrogen homogeneously distributed along the hoop direction of the cladding. The results show that the measured mechanical properties of the zirconium hydrides and ZIRLO matrix (Young's modulus, hardness and yield stress) are rather similar. From the experimental data, the hydride volume fraction in the cladding samples with 150 and 1200 ppm was estimated and the average mechanical properties were calculated by means of the rule of mixtures. These values were compared with those obtained from ring compression tests. Good agreement between the results obtained by both methods was found.

  12. Nanoindentation measurements of the mechanical properties of zirconium matrix and hydrides in unirradiated pre-hydrided nuclear fuel cladding

    Energy Technology Data Exchange (ETDEWEB)

    Rico, A., E-mail: alvaro.rico@urjc.es [DIMME, Departamento de Tecnología Mecánica, Universidad Rey Juan Carlos, c/Tulipán s/n, E-28933 Móstoles, Madrid (Spain); Martin-Rengel, M.A., E-mail: mamartin@mater.upm.es [Departamento de Ciencia de los Materiales, UPM, E.T.S.I. Caminos, Canales y Puertos, Profesor Aranguren SN, E-28040 Madrid (Spain); Ruiz-Hervias, J., E-mail: jesus.ruiz@upm.es [Departamento de Ciencia de los Materiales, UPM, E.T.S.I. Caminos, Canales y Puertos, Profesor Aranguren SN, E-28040 Madrid (Spain); Rodriguez, J. [DIMME, Departamento de Tecnología Mecánica, Universidad Rey Juan Carlos, c/Tulipán s/n, E-28933 Móstoles, Madrid (Spain); Gomez-Sanchez, F.J., E-mail: javier.gomez@amsimulation.com [Advanced Material Simulation, S.L, Madrid (Spain)

    2014-09-15

    It is well known that the mechanical properties of the nuclear fuel cladding may be affected by the presence of hydrides. The average mechanical properties of hydrided cladding have been extensively investigated from a macroscopic point of view. In addition, the mechanical and fracture properties of bulk hydride samples fabricated from zirconium plates have also been reported. In this paper, Young’s modulus, hardness and yield stress are measured for each phase, namely zirconium hydrides and matrix, of pre-hydrided nuclear fuel cladding. To this end, nanoindentation tests were performed on ZIRLO samples in as-received state, on a hydride blister and in samples with 150 and 1200 ppm of hydrogen homogeneously distributed along the hoop direction of the cladding. The results show that the measured mechanical properties of the zirconium hydrides and ZIRLO matrix (Young’s modulus, hardness and yield stress) are rather similar. From the experimental data, the hydride volume fraction in the cladding samples with 150 and 1200 ppm was estimated and the average mechanical properties were calculated by means of the rule of mixtures. These values were compared with those obtained from ring compression tests. Good agreement between the results obtained by both methods was found.

  13. Soluble material secreted from Penicillium chrysogenum isolate exhibits antifungal activity against Cryphonectria parasitica- the causative agent of the American Chestnut Blight

    Science.gov (United States)

    Florjanczyk, Aleksandr; Barnes, Rebecca; Kenney, Adam; Horzempa, Joseph

    2016-01-01

    The American chestnut (Castanea dentata) was once the dominant canopy tree along the eastern region of the United States. Cryphonectria parasitica, the causative agent of chestnut blight, was introduced from Asia in the early 1900's, and obliterated the chestnut population within 50 years. We sought to identify environmental microbes capable of producing factors that were fungicidal or inhibited growth of C. parasitica in the hopes developing a biological control of chestnut blight. We isolated a filamentous fungus that significantly inhibited the growth of C. parasitica upon co-cultivation. Extracellular fractions of this fungal isolate prevented C. parasitica growth, indicating that a potential fungicide was produced by the novel isolate. Sequence analysis of 18S rRNA identified this inhibitory fungus as Penicillium chrysogenum. Furthermore, these extracellular fractions were tested as treatments for blight in vivo using chestnut saplings. Scarred saplings that were treated with the P. chrysogenum extracellular fractions healed subjectively better than those without treatment when inoculated with C. parasitica. These data suggest that material secreted by P. chrysogenum could be used as a treatment for the American chestnut blight. This work may assist the reclamation of the American chestnut in association with breeding programs and blight attenuation. Specifically, treatment of small groves under the right conditions may allow them to remain blight free. Future work will explore the mechanism of action and specific target of the extracellular fraction. PMID:27274909

  14. Air-stable nZVI formation mediated by glutamic acid: solid-state storable material exhibiting 2D chain morphology and high reactivity in aqueous environment

    Energy Technology Data Exchange (ETDEWEB)

    Siskova, Karolina, E-mail: karolina.siskova@upol.cz; Tucek, Jiri; Machala, Libor [Palacky University, Regional Centre of Advanced Technologies and Materials, Faculty of Science (Czech Republic); Otyepkova, Eva [Palacky University, Department of Physical Chemistry, Faculty of Science (Czech Republic); Filip, Jan; Safarova, Klara; Pechousek, Jiri; Zboril, Radek, E-mail: zboril@prfnw.upol.cz [Palacky University, Regional Centre of Advanced Technologies and Materials, Faculty of Science (Czech Republic)

    2012-03-15

    We report a new chemical approach toward air-stable nanoscale zero-valent iron (nZVI). The uniformly sized (approx. 80 nm) particles, formed by the reduction of Fe(II) salt by borohydride in the presence of glutamic acid, are coated by a thin inner shell of amorphous ferric oxide/hydroxide and a secondary shell consisting of glutamic acid. The as-prepared nanoparticles stabilized by the inorganic-organic double shell create 2D chain morphologies. They are storable for several months under ambient atmosphere without the loss of Fe(0) relative content. They show one order of magnitude higher rate constant for trichlorethene decomposition compared with the pristine particles possessing only the inorganic shell as a protective layer. This is the first example of the inorganic-organic (consisting of low-molecular weight species) double-shell stabilized nanoscale zero-valent iron material being safely transportable in solid-state, storable on long-term basis under ambient conditions, environmentally acceptable for in situ applications, and extraordinarily reactive if contacted with reducible pollutants, all in one.

  15. Highly Concentrated Palladium Hydrides/Deuterides; Theory

    Energy Technology Data Exchange (ETDEWEB)

    Papaconstantopoulos, Dimitrios

    2013-11-26

    Accomplishments are reported in these areas: tight-binding molecular dynamics study of palladium; First-principles calculations and tight-binding molecular dynamics simulations of the palladium-hydrogen system; tight-binding studies of bulk properties and hydrogen vacancies in KBH{sub 4}; tight-binding study of boron structures; development of angular dependent potentials for Pd-H; and density functional and tight-binding calculations for the light-hydrides NaAlH4 and NaBH4

  16. Development of nickel-metal hydride cell

    Science.gov (United States)

    Kuwajima, Saburo; Kamimori, Nolimits; Nakatani, Kensuke; Yano, Yoshiaki

    1993-01-01

    National Space Development Agency of Japan (NASDA) has conducted the research and development (R&D) of battery cells for space use. A new R&D program about a Nickel-Metal Hydride (Ni-MH) cell for space use from this year, based on good results in evaluations of commercial Ni-MH cells in Tsukuba Space Center (TKSC), was started. The results of those commercial Ni-MH cell's evaluations and recent status about the development of Ni-MH cells for space use are described.

  17. Digital collections and exhibits

    CERN Document Server

    Denzer, Juan

    2015-01-01

    Today's libraries are taking advantage of cutting-edge technologies such as flat panel displays using touch, sound, and hands-free motions to design amazing exhibits using everything from simple computer hardware to advanced technologies such as the Microsoft Kinect. Libraries of all types are striving to add new interactive experiences for their patrons through exciting digital exhibits, both online and off. Digital Collections and Exhibits takes away the mystery of designing stunning digital exhibits to spotlight library trea

  18. The World of Virtual Exhibitions

    Directory of Open Access Journals (Sweden)

    Irena Eiselt

    2013-09-01

    Full Text Available EXTENDED ABSTRACTSpecial collections of the National and University Library (NUK hide a lot of items of precious value. The Slovenian cultural heritage is stored on paper or on other media as a part of the library’s Manuscripts, Incunabula and Rare Books Collection, Old Prints Collection, Maps and Pictorial Collection, Music Collection, Ephemera Collection, Serials Collection, and Slovenian Diaspora Publications Collection. Only a small part of the treasures is temporary revealed to the public on special exhibitions. The idea of virtual exhibitions of library treasures was born in 2005. The library aimed to exhibit precious items of special collections of high historical or artistic value. In 2008 the first two virtual exhibitions were created in-house offering access to the rich collections of old postcards of Ljubljana at the beginning of 20th century kept in the Maps and Pictorial Collection of NUK. They were soon followed by other virtual exhibitions. At the beginning they were organised in the same way as physical exhibitions, afterwards different programs were used for creation of special effects (for ex. 3D wall. About two years ago it was decided that the creation of virtual exhibitions will be simplified. Files of digitised and borndigital library materials in jpg format are imported to MS PowerPoint 2010. Each jpg file is now formatted by adding a frame, a description … to the slides which are saved as jpg files. The last step is the import of jpg files into Cooliris application used for NUK web exhibitions. In the paper the virtual exhibition design and creation, the technical point of view and criteria for the selection of exhibition content are explained following the example of the virtual exhibitions the Old Postcards of Ljubljana, Photo Ateliers in Slovenia, a collection of photographs Four Seasons by Fran Krašovec and photos of Post-Earthquake Ljubljana in 1895.

  19. Etruscan Culture Exhibition

    Institute of Scientific and Technical Information of China (English)

    2004-01-01

    EARLY this year an exhibition on the ancient civilization of Etruria was held at the Beijing-based China Millennium Monument.The theme of the exhibition was Etruscan Culture and on show were the most representative cultural and historical relics of this ancient civilization unearthed in the past 20 years. The 349 exhibits from various

  20. Ethics on Exhibit

    Science.gov (United States)

    Vick, Randy M.

    2011-01-01

    This article discusses ethical questions raised by an exhibition of work by an artist with a history of mental illness and the exhibition's relevance to art therapy and “outsider art” discourse on the subject. Considerations for how such an exhibit could be handled had the circumstances included an art therapist and art therapy client are…

  1. Insight into the kinetics and thermodynamics of the hydride transfer reactions between quinones and lumiflavin: a density functional theory study.

    Science.gov (United States)

    Reinhardt, Clorice R; Jaglinski, Tanner C; Kastenschmidt, Ashly M; Song, Eun H; Gross, Adam K; Krause, Alyssa J; Gollmar, Jonathan M; Meise, Kristin J; Stenerson, Zachary S; Weibel, Tyler J; Dison, Andrew; Finnegan, Mackenzie R; Griesi, Daniel S; Heltne, Michael D; Hughes, Tom G; Hunt, Connor D; Jansen, Kayla A; Xiong, Adam H; Hati, Sanchita; Bhattacharyya, Sudeep

    2016-09-01

    The kinetics and equilibrium of the hydride transfer reaction between lumiflavin and a number of substituted quinones was studied using density functional theory. The impact of electron withdrawing/donating substituents on the redox potentials of quinones was studied. In addition, the role of these substituents on the kinetics of the hydride transfer reaction with lumiflavin was investigated in detail under the transition state (TS) theory assumption. The hydride transfer reactions were found to be more favorable for an electron-withdrawing substituent. The activation barrier exhibited a quadratic relationship with the driving force of these reactions as derived under the formalism of modified Marcus theory. The present study found a significant extent of electron delocalization in the TS that is stabilized by enhanced electrostatic, polarization, and exchange interactions. Analysis of geometry, bond-orders, and energetics revealed a predominant parallel (Leffler-Hammond) effect on the TS. Closer scrutiny reveals that electron-withdrawing substituents, although located on the acceptor ring, reduce the N-H bond order of the donor fragment in the precursor complex. Carried out in the gas-phase, this is the first ever report of a theoretical study of flavin's hydride transfer reactions with quinones, providing an unfiltered view of the electronic effect on the nuclear reorganization of donor-acceptor complexes.

  2. Metal hydrides for lithium-ion batteries.

    Science.gov (United States)

    Oumellal, Y; Rougier, A; Nazri, G A; Tarascon, J-M; Aymard, L

    2008-11-01

    Classical electrodes for Li-ion technology operate via an insertion/de-insertion process. Recently, conversion electrodes have shown the capability of greater capacity, but have so far suffered from a marked hysteresis in voltage between charge and discharge, leading to poor energy efficiency and voltages. Here, we present the electrochemical reactivity of MgH(2) with Li that constitutes the first use of a metal-hydride electrode for Li-ion batteries. The MgH(2) electrode shows a large, reversible capacity of 1,480 mAh g(-1) at an average voltage of 0.5 V versus Li(+)/Li(o) which is suitable for the negative electrode. In addition, it shows the lowest polarization for conversion electrodes. The electrochemical reaction results in formation of a composite containing Mg embedded in a LiH matrix, which on charging converts back to MgH(2). Furthermore, the reaction is not specific to MgH(2), as other metal or intermetallic hydrides show similar reactivity towards Li. Equally promising, the reaction produces nanosized Mg and MgH(2), which show enhanced hydrogen sorption/desorption kinetics. We hope that such findings can pave the way for designing nanoscale active metal elements with applications in hydrogen storage and lithium-ion batteries.

  3. Molecular rare-earth-metal hydrides in non-cyclopentadienyl environments.

    Science.gov (United States)

    Fegler, Waldemar; Venugopal, Ajay; Kramer, Mathias; Okuda, Jun

    2015-02-02

    Molecular hydrides of the rare-earth metals play an important role as homogeneous catalysts and as counterparts of solid-state interstitial hydrides. Structurally well-characterized non-metallocene-type hydride complexes allow the study of elementary reactions that occur at rare-earth-metal centers and of catalytic reactions involving bonds between rare-earth metals and hydrides. In addition to neutral hydrides, cationic derivatives have now become available.

  4. Planarization and Processing of Metamorphic Buffer Layers Grown by Hydride Vapor-Phase Epitaxy

    Science.gov (United States)

    Zutter, Brian T.; Schulte, Kevin L.; Kim, Tae Wan; Mawst, Luke J.; Kuech, T. F.; Foran, Brendan; Sin, Yongkun

    2014-04-01

    Hydride vapor-phase epitaxy (HVPE) is a high-growth-rate, cost-effective means to grow epitaxial semiconductor material. Thick HVPE-based metamorphic buffer layers (MBLs) can serve as "pseudosubstrates" with controllable lattice parameter. In our structures, the indium content in In x Ga1- x As is gradually increased from zero to the final composition corresponding to the desired lattice constant, and then a thick (˜10 μm) constant-composition capping layer is grown. This thick capping layer promotes maximum strain relaxation while permitting use of polishing procedures to achieve surface planarity. Lattice-mismatched growth of MBLs invariably results in rough, cross-hatched surface morphology exhibiting up to 200 nm peak-to-valley roughness. This roughness can be eliminated by chemical mechanical planarization, thus creating a suitable surface for subsequent regrowth. Polishing of In x Ga1- x As is complicated by the sensitivity of the surface layer to the polishing parameters, particularly the applied pressure. Polishing at high applied pressure (12 psi) results in the formation of circular asperities hundreds of nanometers high and tens of microns in diameter. When lower applied pressure (4 psi) was used, the cross-hatching height of MBLs was lowered from 200 nm to <10 nm over a 350 μm lateral scale. The successfully planarized In0.20Ga0.80As MBLs were used as a substrate for a superlattice (SL) structure such as that used in quantum cascade lasers. Use of planarization before regrowth of the SL resulted in a reduction of the high-resolution x-ray diffraction peak full-width at half-maximum from 389″ to 159″.

  5. Electrolytic hydriding of LaFe{sub 13-x}Si{sub x} alloys for energy efficient magnetic cooling

    Energy Technology Data Exchange (ETDEWEB)

    Lyubina, Julia; Hannemann, Ullrich; Ryan, Mary P. [Department of Materials, Imperial College London (United Kingdom); Cohen, Lesley F. [Department of Physics, Imperial College London (United Kingdom)

    2012-04-17

    An effective, low-temperature and readily available electrochemical method for tuning the operation temperature of LaFe{sub 13-x}Si{sub x}-type alloys is demonstrated. Electrolytically hydrided materials have the same high level magnetic properties as in high temperature gas-phase processed materials and offer an advantage of higher hydrogen absorption rate in the ferromagnetic state. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  6. OPTIMIZATION OF INTERNAL HEAT EXCHANGERS FOR HYDROGEN STORAGE TANKS UTILIZING METAL HYDRIDES

    Energy Technology Data Exchange (ETDEWEB)

    Garrison, S.; Tamburello, D.; Hardy, B.; Anton, D.; Gorbounov, M.; Cognale, C.; van Hassel, B.; Mosher, D.

    2011-07-14

    Two detailed, unit-cell models, a transverse fin design and a longitudinal fin design, of a combined hydride bed and heat exchanger are developed in COMSOL{reg_sign} Multiphysics incorporating and accounting for heat transfer and reaction kinetic limitations. MatLab{reg_sign} scripts for autonomous model generation are developed and incorporated into (1) a grid-based and (2) a systematic optimization routine based on the Nelder-Mead downhill simplex method to determine the geometrical parameters that lead to the optimal structure for each fin design that maximizes the hydrogen stored within the hydride. The optimal designs for both the transverse and longitudinal fin designs point toward closely-spaced, small cooling fluid tubes. Under the hydrogen feed conditions studied (50 bar), a 25 times improvement or better in the hydrogen storage kinetics will be required to simultaneously meet the Department of Energy technical targets for gravimetric capacity and fill time. These models and methodology can be rapidly applied to other hydrogen storage materials, such as other metal hydrides or to cryoadsorbents, in future work.

  7. True boundary for the formation of homoleptic transition-metal hydride complexes.

    Science.gov (United States)

    Takagi, Shigeyuki; Iijima, Yuki; Sato, Toyoto; Saitoh, Hiroyuki; Ikeda, Kazutaka; Otomo, Toshiya; Miwa, Kazutoshi; Ikeshoji, Tamio; Aoki, Katsutoshi; Orimo, Shin-ichi

    2015-05-04

    Despite many exploratory studies over the past several decades, the presently known transition metals that form homoleptic transition-metal hydride complexes are limited to the Groups 7-12. Here we present evidence for the formation of Mg3 CrH8 , containing the first Group 6 hydride complex [CrH7 ](5-) . Our theoretical calculations reveal that pentagonal-bipyramidal H coordination allows the formation of σ-bonds between H and Cr. The results are strongly supported by neutron diffraction and IR spectroscopic measurements. Given that the Group 3-5 elements favor ionic/metallic bonding with H, along with the current results, the true boundary for the formation of homoleptic transition-metal hydride complexes should be between Group 5 and 6. As the H coordination number generally tends to increase with decreasing atomic number of transition metals, the revised boundary suggests high potential for further discovery of hydrogen-rich materials that are of both technological and fundamental interest.

  8. The Planck Sorption Cooler: Using Metal Hydrides to Produce 20 K

    Science.gov (United States)

    Pearson, David P.; Bowman, R.; Prina, M.; Wilson, P.

    2006-01-01

    The Jet Propulsion Laboratory has built and delivered two continuous closed cycle hydrogen Joule-Thomson (JT) cryocoolers for the ESA Planck mission, which will measure the anisotropy in the cosmic microwave background. The metal hydride compressor consists of six sorbent beds containing LaNi4.78Sn0.22 alloy and a low pressure storage bed of the same material. Each sorbent bed contains a separate gas-gap heat switch that couples or isolates the bed with radiators during the compressor operating cycle. ZrNiHx hydride is used in this heat switch. The Planck compressor produces hydrogen gas at a pressure of 48 Bar by heating the hydride to approx.450 K. This gas passes through a cryogenic cold end consisting of a tube-in-tube heat exchanger, three pre-cooling stages to bring the gas to nominally 52 K, a JT value to expand the gas into the two-phase regime at approx.20 K, and two liquid - vapor heat exchangers that must remove 190 and 646 mW of heat respectively.

  9. Feasibility study for the recycling of nickel metal hydride electric vehicle batteries. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Sabatini, J.C.; Field, E.L.; Wu, I.C.; Cox, M.R.; Barnett, B.M.; Coleman, J.T. [Little (Arthur D.), Inc., Cambridge, MA (United States)

    1994-01-01

    This feasibility study examined three possible recycling processes for two compositions (AB{sub 2} and AB{sub 5}) of nickel metal hydride electric vehicle batteries to determine possible rotes for recovering battery materials. Analysts examined the processes, estimated the costs for capital equipment and operation, and estimated the value of the reclaimed material. They examined the following three processes: (1) a chemical process that leached battery powders using hydrochloric acid, (2) a pyrometallurical process, and (3) a physical separation/chemical process. The economic analysis revealed that the physical separation/chemical process generated the most revenue.

  10. Exhibiting Mozart: Rethinking Biography

    OpenAIRE

    Spring, Ulrike

    2010-01-01

    Abstract: The article analyses the new permanent exhibition in the composer Wolfgang A. Mozart’s apartment in Vienna, opened in 2006, from the curator’s perspective. The exhibition presents an approach to biographical display in which the exhibited person becomes part of a multifaceted web of contexts, and the article argues for the active deployment of the polysemic character of objects as a means of grasping the complexity of a person’s biography. Presenting a concept for the...

  11. Technical and economic aspects of hydrogen storage in metal hydrides

    Science.gov (United States)

    Schmitt, R.

    1981-01-01

    The recovery of hydrogen from such metal hydrides as LiH, MgH2, TiH2, CaH2 and FeTiH compounds is studied, with the aim of evaluating the viability of the technique for the storage of hydrogen fuel. The pressure-temperature dependence of the reactions, enthalpies of formation, the kinetics of the hydrogen absorption and desorption, and the mechanical and chemical stability of the metal hydrides are taken into account in the evaluation. Economic aspects are considered. Development of portable metal hydride hydrogen storage reservoirs is also mentioned.

  12. PIE techniques for hydride reorientation test at NDC

    Energy Technology Data Exchange (ETDEWEB)

    Tsuda, Tomohiro; Shinohara, Yasunari; Yamaguchi, Yoichiro [Nuclear Development Corporation, Ibaraki (Japan)

    2008-11-15

    Dry storage of spent fuels in the interim storage facility is being planned in Japan. However, the gradual deterioration of the mechanical property of fuel cladding due to internal pressure and temperature during the storage term is known. Therefore, the integrity of stored fuel rods should be confirmed before the start of dry storage. For the last several years, NDC had a lot of experiences on the hydride reorientation test. The specimen preparation techniques on the hydride reorientation test and the mechanical testing techniques after the hydride reorientation are shown in this paper.

  13. Effect of variable thermal conductivity and specific heat capacity on the calculation of the critical metal hydride thickness for Ti1.1CrMn

    DEFF Research Database (Denmark)

    Mazzucco, Andrea; Rokni, Masoud

    2014-01-01

    High pressure metal hydrides have been recently considered as one of the most promising hydrogen solid storage options for on - board applications. Unfortunately the high purchasing costs related to these materials and the complexity related to building a scaled high pressure tank system with act......High pressure metal hydrides have been recently considered as one of the most promising hydrogen solid storage options for on - board applications. Unfortunately the high purchasing costs related to these materials and the complexity related to building a scaled high pressure tank system...

  14. Microscopy Techniques for Analysis of Nickel Metal Hydride Batteries Constituents.

    Science.gov (United States)

    Carpenter, Graham J C; Wronski, Zbigniew

    2015-12-01

    With the need for improvements in the performance of rechargeable batteries has come the necessity to better characterize cell electrodes and their component materials. Electron microscopy has been shown to reveal many important features of microstructure that are becoming increasingly important for understanding the behavior of the components during the many charge/discharge cycles required in modern applications. The aim of this paper is to present an overview of how the full suite of techniques available using transmission electron microscopy (TEM) and scanning transmission electron microscopy was applied to the case of materials for the positive electrode in nickel metal hydride rechargeable battery electrodes. Embedding and sectioning of battery-grade powders with an ultramicrotome was used to produce specimens that could be readily characterized by TEM. Complete electrodes were embedded after drying, and also after dehydration from the original wet state, for examination by optical microscopy and using focused ion beam techniques. Results of these studies are summarized to illustrate the significance of the microstructural information obtained.

  15. NASICON-Type Mg0.5Ti2(PO4)3 Negative Electrode Material Exhibits Different Electrochemical Energy Storage Mechanisms in Na-Ion and Li-Ion Batteries.

    Science.gov (United States)

    Zhao, Yingying; Wei, Zhixuan; Pang, Qiang; Wei, Yingjin; Cai, Yongmao; Fu, Qiang; Du, Fei; Sarapulova, Angelina; Ehrenberg, Helmut; Liu, Bingbing; Chen, Gang

    2017-02-08

    A carbon-coated Mg0.5Ti2(PO4)3 polyanion material was prepared by the sol-gel method and then studied as the negative electrode materials for lithium-ion and sodium-ion batteries. The material showed a specific capacity of 268.6 mAh g(-1) in the voltage window of 0.01-3.0 V vs Na(+)/Na(0). Due to the fast diffusion of Na(+) in the NASICON framework, the material exhibited superior rate capability with a specific capacity of 94.4 mAh g(-1) at a current density of 5A g(-1). Additionally, 99.1% capacity retention was achieved after 300 cycles, demonstrating excellent cycle stability. By comparison, Mg0.5Ti2(PO4)3 delivered 629.2 mAh g(-1) in 0.01-3.0 V vs Li(+)/Li(0), much higher than that of the sodium-ion cells. During the first discharge, the material decomposed to Ti/Mg nanoparticles, which were encapsulated in an amorphous SEI and Li3PO4 matrix. Li(+) ions were stored in the Li3PO4 matrix and the SEI film formed/decomposed in subsequent cycles, contributing to the large Li(+) capacity of Mg0.5Ti2(PO4)3. However, the lithium-ion cells exhibited inferior rate capability and cycle stability compared to the sodium-ion cells due to the sluggish electrochemical kinetics of the electrode.

  16. Development of complex hydride-based all-solid-state lithium ion battery applying low melting point electrolyte

    Science.gov (United States)

    Suzuki, Shohei; Kawaji, Jun; Yoshida, Koji; Unemoto, Atsushi; Orimo, Shin-ichi

    2017-08-01

    A thermally durable all-solid-state lithium ion battery composed of a complex hydride, oxide electrolytes, and LiNi1/3Mn1/3Co1/3O2 active material is developed. This battery exhibits a discharge capacity of 56 mAh g-1, and the tenth capacity retention ratio is 29% at 150 °C owing to the large contact resistance between the electrolyte layer and the composite positive electrode layer. This large contact resistance is reduced by introducing an adhesive layer comprised of a mixture of LiBH4 and LiNH2 that is easily melted by thermal treatment and fills the voids and pores at the interface between the two layers. As a result, repeated charge-discharge cycles are successfully demonstrated at 150 °C with a high discharge capacity and discharge capacity retention ratio. The first discharge capacity is enhanced to 114 mAh g-1 and the capacity retention ratio at the tenth cycle is improved to 71%. These results demonstrate that using an adhesive layer is an effective measure to reduce the contact resistance and thereby enhance the performance of the battery.

  17. Texture and hydride orientation relationship of Zircaloy-4 fuel clad tube during its fabrication for pressurized heavy water reactors

    Science.gov (United States)

    Vaibhaw, Kumar; Rao, S. V. R.; Jha, S. K.; Saibaba, N.; Jayaraj, R. N.

    2008-12-01

    Zircaloy-4 material is used for cladding tube in pressurized heavy water reactors (PHWRs) of 220 MWe and 540 MWe capacity in India. These tubes are fabricated by using various combinations of thermo-mechanical processes to achieve desired mechanical and corrosion properties. Cladding tube develops crystallographic texture during its fabrication, which has significant influence on its in-reactor performance. Due to radiolytic decomposition of water Zircaloy-4 picks-up hydrogen. This hydrogen in excess of its maximum solubility in reactor operating condition (˜300 °C), precipitates as zirconium hydrides causing embrittlement of cladding tube. Hydride orientation in the radial direction of the tube limits the service life and lowers the fuel burn-up in reactor. The orientation of the hydride primarily depends on texture developed during fabrication. A correlation between hydride orientation ( F n) with the texture in the tube during its fabrication has been developed using a second order polynomial. The present work is aimed at quantification and correlation of texture evolved in Zircaloy-4 cladding tube using Kearn's f-parameter during its fabrication process.

  18. Texture and hydride orientation relationship of Zircaloy-4 fuel clad tube during its fabrication for pressurized heavy water reactors

    Energy Technology Data Exchange (ETDEWEB)

    Vaibhaw, Kumar [Nuclear Fuel Complex, ECIL Post, Hyderabad 500 062 (India)], E-mail: krvaibhaw@yahoo.co.in; Rao, S.V.R.; Jha, S.K.; Saibaba, N.; Jayaraj, R.N. [Nuclear Fuel Complex, ECIL Post, Hyderabad 500 062 (India)

    2008-12-15

    Zircaloy-4 material is used for cladding tube in pressurized heavy water reactors (PHWRs) of 220 MWe and 540 MWe capacity in India. These tubes are fabricated by using various combinations of thermo-mechanical processes to achieve desired mechanical and corrosion properties. Cladding tube develops crystallographic texture during its fabrication, which has significant influence on its in-reactor performance. Due to radiolytic decomposition of water Zircaloy-4 picks-up hydrogen. This hydrogen in excess of its maximum solubility in reactor operating condition ({approx}300 deg. C), precipitates as zirconium hydrides causing embrittlement of cladding tube. Hydride orientation in the radial direction of the tube limits the service life and lowers the fuel burn-up in reactor. The orientation of the hydride primarily depends on texture developed during fabrication. A correlation between hydride orientation (F{sub n}) with the texture in the tube during its fabrication has been developed using a second order polynomial. The present work is aimed at quantification and correlation of texture evolved in Zircaloy-4 cladding tube using Kearn's f-parameter during its fabrication process.

  19. LDA or GGA? A combined experimental inelastic neutron scattering and ab initio lattice dynamics study of alkali metal hydrides

    Energy Technology Data Exchange (ETDEWEB)

    Barrera, G.D. [ISIS Facility, Rutherford Appleton Laboratory, Chilton, Didcot, Oxon OX11 0QX (United Kingdom); Departamento de Quimica, Universidad Nacional de la Patagonia SJB, Ciudad Universitaria, 9005 Comodoro Rivadavia (Argentina); Colognesi, D. [Consiglio Nazionale delle Ricerche, Istituto dei Sistemi Complessi, via Madonna del Piano s.n.c., 50019 Sesto Fiorentino (Finland) (Italy); Mitchell, P.C.H. [School of Chemistry, University of Reading, RG6 6AD (United Kingdom); Ramirez-Cuesta, A.J. [ISIS Facility, Rutherford Appleton Laboratory, Chilton, Didcot, Oxon OX11 0QX (United Kingdom); School of Chemistry, University of Reading, RG6 6AD (United Kingdom)], E-mail: a.j.ramirez-cuesta@rl.ac.uk

    2005-10-31

    In a previous work, we carried out inelastic neutron scattering (INS) spectroscopy experiments and preliminary first principles calculations on alkali metal hydrides. The complete series of alkali metal hydrides, LiH, NaH, KH, RbH and CsH was measured in the high-resolution TOSCA INS spectrometer at ISIS. Here, we present the results of ab initio electronic structure calculations of the properties of the alkali metal hydrides using both the local density approximation (LDA) and the generalized gradient approximation (GGA), using the Perdew-Burke-Ernzerhof (PBE) parameterization. Properties calculated were lattice parameters, bulk moduli, dielectric constants, effective charges, electronic densities and inelastic neutron scattering (INS) spectra. We took advantage of the currently available computer power to use full lattice dynamics theory to calculate thermodynamic properties for these materials. For the alkali metal hydrides (LiH, NaH, KH, RbH and CsH) using lattice dynamics, we found that the INS spectra calculated using LDA agreed better with the experimental data than the spectra calculated using GGA. Both zero-point effects and thermal contributions to free energies had an important effect on INS and several thermodynamic properties.

  20. Prediction and characterization of a chalcogen-hydride interaction with metal hybrids as an electron donor in F2CS-HM and F2CSe-HM (M = Li, Na, BeH, MgH, MgCH3) complexes.

    Science.gov (United States)

    Li, Qing-Zhong; Qi, Hui; Li, Ran; Liu, Xiao-Feng; Li, Wen-Zuo; Cheng, Jian-Bo

    2012-03-07

    A novel type of σ-hole bonding has been predicted and characterized in F(2)CS-HM and F(2)CSe-HM (M = Li, Na, BeH, MgH) complexes at the MP2/aug-cc-pVTZ level. This interaction, termed a chalcogen-hydride interaction, was analyzed in terms of geometric, energetic and spectroscopic features of the complexes. It exhibits similar properties to hydrogen bonding and halogen bonding. The methyl group in metal hydrides makes a positive contribution to the formation of chalcogen-hydride bonded complexes. In the F(2)CSe-HLi-OH(2) complex, the chalcogen-hydride bonding shows synergetic effects with lithium bonding. These complexes have been analyzed with the atoms in molecules (AIM) theory and symmetry adapted perturbation theory (SAPT) method. The results show that the chalcogen-hydride bonding is dominated with an electrostatic interaction.

  1. "Long-range" metal-ligand cooperation in H2 activation and ammonia-promoted hydride transfer with a ruthenium-acridine pincer complex.

    Science.gov (United States)

    Gunanathan, Chidambaram; Gnanaprakasam, Boopathy; Iron, Mark A; Shimon, Linda J W; Milstein, David

    2010-10-27

    The acridine-based pincer complex 1 exhibits an unprecedented mode of metal-ligand cooperation involving a "long-range" interaction between the distal acridine C9 position and the metal center. Reaction of 1 with H(2)/KOH results in H(2) splitting between the Ru center and C9 with concomitant dearomatization of the acridine moiety. DFT calculations show that this process involves the formation of a Ru dihydride intermediate bearing a bent acridine ligand in which C9 is in close proximity to a hydride ligand followed by through-space hydride transfer. Ammonia induces transfer of a hydride from the Ru center of 1 to C9 of the flexible acridine pincer ligand, forming an unusual dearomatized fac-acridine PNP complex.

  2. Acute arsenious hydride intoxication. Four cases

    Energy Technology Data Exchange (ETDEWEB)

    Gosselin, B.; Mathieu, D.; Desprez-Nolf, M.; Cosson, A.; Goudemand, J.; Haguenoer, J.M.; Wattel, F.

    1982-02-06

    While engaged in the repair of a zinc furnace, 4 workers were accidentally exposed to arsenious hydride (AsH3) fumes. Acute intravascular haemolysis developed within a few hours. On admission, the patients immediately underwent exsanguino-transfusion; 8.2 to 10.2 l of blood were exchanged through a continuous perfusion pump at the rate of 1 l/hour. Two patients resumed diuresis during transfusion, but the other two required repeated haemodialysis. Between the 10th and 30th days, while renal function was gradually returning to normal, mildly megaloblastic anaemia developed. This was followed during the 3rd month by clinical and electric signs of polyneuritis of the lower and upper limbs, which subsequently regressed. Regular measurements of arsenic levels in the blood and urine were performed between and during exsanguino-transfusion and haemodialysis.

  3. Hydrogen desorption from nanostructured magnesium hydride composites

    Directory of Open Access Journals (Sweden)

    Brdarić Tanja P.

    2007-01-01

    Full Text Available The influence of 3d transition metal addition (Fe, Co and Ni on the desorption properties of magnesium hydride were studied. The ball milling of MgH2-3d metal blends was performed under Ar. Microstructural and morphological characterization were performed by XRD and SEM analysis, while the hydrogen desorption properties were investigated by DSC. The results show a strong correlation between the morphology and thermal stability of the composites. The complex desorption behavior (the existence of more than one desorption peak was correlated with the dispersion of the metal additive particles that appear to play the main role in the desorption. The desorption temperature can be reduced by more than 100 degrees if Fe is added as additive. The activation energy for H2 desorption from the MgH2-Fe composite is 120 kJ/mol, implying that diffusion controls the dehydration process.

  4. Direct observation of hydrides formation in cavity-grade niobium

    Directory of Open Access Journals (Sweden)

    F. Barkov

    2012-12-01

    Full Text Available Niobium is an important technological superconductor used to make radio frequency cavities for particle accelerators. Using laser confocal microscopy we have directly investigated hydride precipitates formation in cavity-grade niobium at 77 and 140 K. We have found that large hydrides were usually formed after chemical or mechanical treatments, which are known to lead to a strong degradation of the quality factor known as Q disease. From our experiments we can conclude that hydrides causing Q disease are islands with a characteristic thickness of ≳100  nm and in-plane dimensions 1–10  μm. Our results show that mechanical polishing uploads a lot of hydrogen into bulk niobium while electropolishing leads to a mild contamination. Vacuum treatments at 600–800°C are demonstrated to preclude large hydride formation in line with the absence of Q disease in similarly treated cavities.

  5. Structure and bonding of second-row hydrides

    OpenAIRE

    Blinder, S. M.

    2014-01-01

    The atomic orbitals, hybridization and chemical bonding of the most common hydrides of boron, carbon, nitrogen and oxygen are described. This can be very instructive for beginning students in chemistry and chemical physics.

  6. DETERMINATION OF METAL HYDRIDE SYSTEMS CHARACTERISTICS WHILE HEATING

    Directory of Open Access Journals (Sweden)

    Yu. Kluchka

    2012-01-01

    Full Text Available Experimental dependence of the pressure of hydrogen in the hydride cartridge when it is heated is obtained. Experimental data prove the theoretical values with an accuracy of ≈ 6%.

  7. Bipolar Nickel-Metal Hydride Battery Being Developed

    Science.gov (United States)

    Manzo, Michelle A.

    1998-01-01

    The NASA Lewis Research Center has contracted with Electro Energy, Inc., to develop a bipolar nickel-metal hydride battery design for energy storage on low-Earth-orbit satellites. The objective of the bipolar nickel-metal hydride battery development program is to approach advanced battery development from a systems level while incorporating technology advances from the lightweight nickel electrode field, hydride development, and design developments from nickel-hydrogen systems. This will result in a low-volume, simplified, less-expensive battery system that is ideal for small spacecraft applications. The goals of the program are to develop a 1-kilowatt, 28-volt (V), bipolar nickel-metal hydride battery with a specific energy of 100 watt-hours per kilogram (W-hr/kg), an energy density of 250 W-hr/liter and a 5-year life in low Earth orbit at 40-percent depth-of-discharge.

  8. Out-of-pile accelerated hydriding of Zircaloy fasteners

    Energy Technology Data Exchange (ETDEWEB)

    Clayton, J.C.

    1979-10-01

    Mechanical joints between Zircaloy and nickel-bearing alloys, mainly the Zircaloy-4/Inconel-600 combination, were exposed to water at 450/sup 0/F and 520/sup 0/F to study hydriding of Zircaloy in contact with a dissimilar metal. Accelerated hydriding of the Zircaloy occurred at both temperatures. At 450/sup 0/F the dissolved hydrogen level of the water was over ten times that at 520/sup 0/F. At 520/sup 0/F the initially high hydrogen ingress rate decreased rapidly as exposure time increased and was effectively shut off in about 25 days. Severely hydrided Zircaloy components successfully withstood thermal cycling and mechanical testing. Chromium plating of the nickel-bearing parts was found to be an effective and practical barrier in preventing nickel-alloy smearing and accelerated hydriding of Zircaloy.

  9. First-Principles Modeling of Hydrogen Storage in Metal Hydride Systems

    Energy Technology Data Exchange (ETDEWEB)

    J. Karl Johnson

    2011-05-20

    The objective of this project is to complement experimental efforts of MHoCE partners by using state-of-the-art theory and modeling to study the structure, thermodynamics, and kinetics of hydrogen storage materials. Specific goals include prediction of the heats of formation and other thermodynamic properties of alloys from first principles methods, identification of new alloys that can be tested experimentally, calculation of surface and energetic properties of nanoparticles, and calculation of kinetics involved with hydrogenation and dehydrogenation processes. Discovery of new metal hydrides with enhanced properties compared with existing materials is a critical need for the Metal Hydride Center of Excellence. New materials discovery can be aided by the use of first principles (ab initio) computational modeling in two ways: (1) The properties, including mechanisms, of existing materials can be better elucidated through a combined modeling/experimental approach. (2) The thermodynamic properties of novel materials that have not been made can, in many cases, be quickly screened with ab initio methods. We have used state-of-the-art computational techniques to explore millions of possible reaction conditions consisting of different element spaces, compositions, and temperatures. We have identified potentially promising single- and multi-step reactions that can be explored experimentally.

  10. Electronic structure of ternary hydrides based on light elements

    Energy Technology Data Exchange (ETDEWEB)

    Orgaz, E. [Departamento de Fisica y Quimica Teorica, Facultad de Quimica, Universidad Nacional Autonoma de Mexico, CP 04510 Coyoacan, Mexico, D.F. (Mexico)]. E-mail: orgaz@eros.pquim.unam.mx; Membrillo, A. [Departamento de Fisica y Quimica Teorica, Facultad de Quimica, Universidad Nacional Autonoma de Mexico, CP 04510 Coyoacan, Mexico, D.F. (Mexico); Castaneda, R. [Departamento de Fisica y Quimica Teorica, Facultad de Quimica, Universidad Nacional Autonoma de Mexico, CP 04510 Coyoacan, Mexico, D.F. (Mexico); Aburto, A. [Departamento de Fisica, Facultad de Ciencias, Universidad Nacional Autonoma de Mexico, CP 04510 Coyoacan, Mexico, D.F. (Mexico)

    2005-12-08

    Ternary hydrides based on light elements are interesting owing to the high available energy density. In this work we focused into the electronic structure of a series of known systems having the general formula AMH{sub 4}(A=Li,Na,M=B,Al). We computed the energy bands and the total and partial density of states using the linear-augmented plane waves method. In this report, we discuss the chemical bonding in this series of complex hydrides.

  11. Ab-Initio Study of the Group 2 Hydride Anions

    Science.gov (United States)

    Harris, Joe P.; Wright, Timothy G.; Manship, Daniel R.

    2013-06-01

    The beryllium hydride (BeH)- dimer has recently been shown to be surprisingly strongly bound, with an electronic structure which is highly dependent on internuclear separation. At the equilibrium distance, the negative charge is to be found on the beryllium atom, despite the higher electronegativity of the hydrogen. The current study expands this investigation to the other Group 2 hydrides, and attempts to explain these effects. M. Verdicchio, G. L. Bendazzoli, S. Evangelisti, T. Leininger J. Phys. Chem. A, 117, 192, (2013)

  12. Method of selective reduction of polyhalosilanes with alkyltin hydrides

    Science.gov (United States)

    Sharp, Kenneth G.; D'Errico, John J.

    1989-01-01

    The invention relates to the selective and stepwise reduction of polyhalosilanes by reacting at room temperature or below with alkyltin hydrides without the use of free radical intermediates. Alkyltin hydrides selectively and stepwise reduce the Si--Br, Si--Cl, or Si--I bonds while leaving intact any Si--F bonds. When two or more different halogens are present on the polyhalosilane, the halogen with the highest atomic weight is preferentially reduced.

  13. Method of selective reduction of halodisilanes with alkyltin hydrides

    Science.gov (United States)

    D'Errico, John J.; Sharp, Kenneth G.

    1989-01-01

    The invention relates to the selective and sequential reduction of halodisilanes by reacting these compounds at room temperature or below with trialkyltin hydrides or dialkyltin dihydrides without the use of free radical intermediates. The alkyltin hydrides selectively and sequentially reduce the Si-Cl, Si-Br or Si-I bonds while leaving intact the Si-Si and Si-F bonds present.

  14. Electronic structure and optical properties of lightweight metal hydrides

    NARCIS (Netherlands)

    Setten, van M.J.; Popa, V.A.; Wijs, de G.A.; Brocks, G.

    2007-01-01

    We study the dielectric functions of the series of simple hydrides LiH, NaH, MgH2, and AlH3, and of the complex hydrides Li3AlH6, Na3AlH6, LiAlH4, NaAlH4, and Mg(AlH4)2, using first-principles density-functional theory and GW calculations. All compounds are large gap insulators with GW single-partic

  15. High temperature nanoindentation hardness and Young's modulus measurement in a neutron-irradiated fuel cladding material

    Science.gov (United States)

    Kese, K.; Olsson, P. A. T.; Alvarez Holston, A.-M.; Broitman, E.

    2017-04-01

    Nanoindentation, in combination with scanning probe microscopy, has been used to measure the hardness and Young's modulus in the hydride and matrix of a high burn-up neutron-irradiated Zircaloy-2 cladding material in the temperature range 25-300 °C. The matrix hardness was found to decrease only slightly with increasing temperature while the hydride hardness was essentially constant within the temperature range. Young's modulus decreased with increasing temperature for both the hydride and the matrix of the high burn-up fuel cladding material. The hydride Young's modulus and hardness were higher than those of the matrix in the temperature range.

  16. 目的论与政府主导下的会展宣传文本英译%Skopostheorie and Chinese-English Translation of Publicity Material of Government-led Exhibition

    Institute of Scientific and Technical Information of China (English)

    王芳; 崔晓燕; 陈继祥

    2014-01-01

    会展经济对世界经济的发展起着不可忽视的作用。中外会展的组织机构、功能及语言表达习惯存在很大的差异,传统的“等效”翻译理论很难达到此类翻译的预期效果。结合国内会展宣传文本,以目的论为视角,根据译文的预期目的及功能,删减、重构原文,使译文更加符合预期读者的需求,从而达到会展宣传的目的。%The exhibition economy plays an important role in the development of the world economy .There is a big difference in the organization , function and language expression of Chinese and foreign exhibitions , so the“Equiva-lent”translation theory is not suitable for this translation activity .Based on the domestic publicity material and sko-postheorie , this paper puts forward such translation methods as deletion and reconstruction in order to make the translation better meet the readers'needs and to reach the aim of the exhibition publicit .

  17. Optimization of Hydride Rim Formation in Unirradiated Zr 4 Cladding

    Energy Technology Data Exchange (ETDEWEB)

    Shimskey, Rick W.; Hanson, Brady D.; MacFarlan, Paul J.

    2013-09-30

    The purpose of this work is to build on the results reported in the M2 milestone M2FT 13PN0805051, document number FCRD-USED-2013-000151 (Hanson, 2013). In that work, it was demonstrated that unirradiated samples of zircaloy-4 cladding could be pre-hydrided at temperatures below 400°C in pure hydrogen gas and that the growth of hydrides on the surface could be controlled by changing the surface condition of the samples and form a desired hydride rim on the outside diameter of the cladding. The work performed at Pacific Northwest National Laboratory since the issuing of the M2 milestone has focused its efforts to optimize the formation of a hydride rim on available zircaloy-4 cladding samples by controlling temperature variation and gas flow control during pre-hydriding treatments. Surface conditioning of the outside surface was also examined as a variable. The results of test indicate that much of the variability in the hydride thickness is due to temperature variation occurring in the furnaces as well as how hydrogen gas flows across the sample surface. Efforts to examine other alloys, gas concentrations, and different surface conditioning plan to be pursed in the next FY as more cladding samples become available

  18. Mechanochemical synthesis of nanostructured chemical hydrides in hydrogen alloying mills

    Energy Technology Data Exchange (ETDEWEB)

    Wronski, Z. [CANMET' s Materials Technology Laboratory, Natural Resources Canada, Ottawa (Canada) and Department of Mechanical Engineering, University of Waterloo, Waterloo, Ont., Canada N2L 3G1 (Canada)]. E-mail: zwronski@nrcan.gc.ca; Varin, R.A. [Department of Mechanical Engineering, University of Waterloo, Waterloo, Ont., Canada N2L 3G1 (Canada); Chiu, C. [Department of Mechanical Engineering, University of Waterloo, Waterloo, Ont., Canada N2L 3G1 (Canada); Czujko, T. [Department of Mechanical Engineering, University of Waterloo, Waterloo, Ont., Canada N2L 3G1 (Canada); Calka, A. [Department of Materials Science and Engineering, University of Wollongong, NSW 2518 (Australia)

    2007-05-31

    Mechanical alloying of magnesium metal powders with hydrogen in specialized hydrogen ball mills can be used as a direct route for mechanochemical synthesis of emerging chemical hydrides and hydride mixtures for advanced solid-state hydrogen storage. In the 2Mg-Fe system, we have successfully synthesized the ternary complex hydride Mg{sub 2}FeH{sub 6} in a mixture with nanometric Fe particles. The mixture of complex magnesium-iron hydride and nano-iron released 3-4 wt.%H{sub 2} in a thermally programmed desorption experiment at the range 285-295 {sup o}C. Milling of the Mg-2Al powder mixture revealed a strong competition between formation of the Al(Mg) solid solution and the {beta}-MgH{sub 2} hydride. The former decomposes upon longer milling as the Mg atoms react with hydrogen to form the hydride phase, and drive the Al out of the solid solution. The mixture of magnesium dihydride and nano-aluminum released 2.1 wt.%H{sub 2} in the temperature range 329-340 {sup o}C in the differential scanning calorimetry experiment. The formation of MgH{sub 2} was suppressed in the Mg-B system; instead, a hydrogenated amorphous phase (Mg,B)H {sub x}, was formed in a mixture with nanometric MgB{sub 2}. Annealing of the hydrogen-stabilized amorphous mixture produced crystalline MgB{sub 2}.

  19. Metal Hydrides for High-Temperature Power Generation

    Directory of Open Access Journals (Sweden)

    Ewa C. E. Rönnebro

    2015-08-01

    Full Text Available Metal hydrides can be utilized for hydrogen storage and for thermal energy storage (TES applications. By using TES with solar technologies, heat can be stored from sun energy to be used later, which enables continuous power generation. We are developing a TES technology based on a dual-bed metal hydride system, which has a high-temperature (HT metal hydride operating reversibly at 600–800 °C to generate heat, as well as a low-temperature (LT hydride near room temperature that is used for hydrogen storage during sun hours until there is the need to produce electricity, such as during night time, a cloudy day or during peak hours. We proceeded from selecting a high-energy density HT-hydride based on performance characterization on gram-sized samples scaled up to kilogram quantities with retained performance. COMSOL Multiphysics was used to make performance predictions for cylindrical hydride beds with varying diameters and thermal conductivities. Based on experimental and modeling results, a ~200-kWh/m3 bench-scale prototype was designed and fabricated, and we demonstrated the ability to meet or exceed all performance targets.

  20. The use of metal hydrides in fuel cell applications

    Directory of Open Access Journals (Sweden)

    Mykhaylo V. Lototskyy

    2017-02-01

    Full Text Available This paper reviews state-of-the-art developments in hydrogen energy systems which integrate fuel cells with metal hydride-based hydrogen storage. The 187 reference papers included in this review provide an overview of all major publications in the field, as well as recent work by several of the authors of the review. The review contains four parts. The first part gives an overview of the existing types of fuel cells and outlines the potential of using metal hydride stores as a source of hydrogen fuel. The second part of the review considers the suitability and optimisation of different metal hydrides based on their energy efficient thermal integration with fuel cells. The performances of metal hydrides are considered from the viewpoint of the reversible heat driven interaction of the metal hydrides with gaseous H2. Efficiencies of hydrogen and heat exchange in hydrogen stores to control H2 charge/discharge flow rates are the focus of the third section of the review and are considered together with metal hydride – fuel cell system integration issues and the corresponding engineering solutions. Finally, the last section of the review describes specific hydrogen-fuelled systems presented in the available reference data.

  1. Test Control Center exhibit

    Science.gov (United States)

    2000-01-01

    Have you ever wondered how the engineers at John C. Stennis Space Center in Hancock County, Miss., test fire a Space Shuttle Main Engine? The Test Control Center exhibit at StenniSphere can answer your questions by simulating the test firing of a Space Shuttle Main Engine. A recreation of one of NASA's test control centers, the exhibit explains and portrays the 'shake, rattle and roar' that happens during a real test firing.

  2. Trialkylborane-Assisted CO(2) Reduction by Late Transition Metal Hydrides.

    Science.gov (United States)

    Miller, Alexander J M; Labinger, Jay A; Bercaw, John E

    2011-01-01

    Trialkylborane additives promote reduction of CO(2) to formate by bis(diphosphine) Ni(II) and Rh(III) hydride complexes. The late transition metal hydrides, which can be formed from dihydrogen, transfer hydride to CO(2) to give a formate-borane adduct. The borane must be of appropriate Lewis acidity: weaker acids do not show significant hydride transfer enhancement, while stronger acids abstract hydride without CO(2) reduction. The mechanism likely involves a pre-equilibrium hydride transfer followed by formation of a stabilizing formate-borane adduct.

  3. Characterization and Development of Advanced Materials: Role & Understanding of Interfacial Phenomena (Congressional)

    Science.gov (United States)

    2007-12-01

    Activities/Progress (a) Hydride-borohydride, borohydride-imides and other mixed materials as probable hydrogen storage material: LiBH4- MgH2 has...JAm Chem Soc. 2008 7. Role of catalysis in the regeneration of MgH2 -LiBH 4 mixed hydride-borohydride systems, Santanu Chaudhuri, Jason Graetz

  4. Synthesis and Hydrogen Desorption Properties of Aluminum Hydrides.

    Science.gov (United States)

    Jeong, Wanseop; Lee, Sang-Hwa; Kim, Jaeyong

    2016-03-01

    Aluminum hydride (AlH3 or alane) is known to store maximum 10.1 wt.% of hydrogen at relatively low temperature (hydrogen desorption are still not clear. To understand the desorption properties of hydrogen in alane, thermodynamically stable α-AlH3 was synthesized by employing an ethereal reaction method. The dependence of pathways on phase formation and the properties of hydrogen evolution were investigated, and the results were compared with the ones for γ-AlH3. It was found that γ-AlH3 requires 10 degrees C higher than that of γ-AlH3 to form, and its decomposition rate demonstrated enhanced endothermic stabilities. For desorption, all hydrogen atoms of alane evolved under an isothermal condition at 138 degrees C in less than 1 hour, and the sample completely transformed to pure aluminum. Our results show that the total amount of desorbed hydrogen from α-AlH3 exceeded 9.05 wt.%, with a possibility of further increase. Easy synthesis, thermal stability, and a large amount of hydrogen desorption of alane fulfill the requirements for light-weight hydrogen storage materials once the pathway of hydrogen cycling is provided.

  5. Influence of surface contaminations on the hydrogen storage behaviour of metal hydride alloys.

    Science.gov (United States)

    Schülke, Mark; Paulus, Hubert; Lammers, Martin; Kiss, Gábor; Réti, Ferenc; Müller, Karl-Heinz

    2008-03-01

    Hydrogen storage in metal hydrides is a promising alternative to common storage methods. The surface of a metal hydride plays an important part in the absorption of hydrogen, since important partial reaction steps take place here. The development of surface contaminations and their influence on hydrogen absorption is examined by means of absorption experiments and surface analysis, using X-ray photoelectron spectroscopy (XPS), thermal desorption mass spectrometry (TDMS) and secondary neutral mass spectrometry (SNMS), in this work. All investigations were carried out on a modern AB(2) metal hydride alloy, namely Ti(0.96)Zr(0.04)Mn(1.43)V(0.45)Fe(0.08). Surface analysis (SNMS, XPS) shows that long-term air storage (several months) leads to oxide layers about 15 nm thick, with complete oxidation of all main alloy components. By means of in situ oxygen exposure at room temperature and XPS analysis, it can be shown that an oxygen dose of about 100 Langmuirs produces an oxide layer comparable to that after air storage. Manganese enrichment (segregation) is also clearly observed and is theoretically described here. This oxide layer hinders hydrogen absorption, so an activation procedure is necessary in order to use the full capacity of the metal hydride. This procedure consists of heating (T = 120 degrees C) in vacuum and hydrogen flushing at pressures like p = 18 bar. During the activation process the alloy is pulverized to particles of approximately 20 microm through lattice stretches. It is shown that this pulverization of the metal hydride (creating clean surface) during hydrogen flushing is essential for complete activation of the material. Re-activation of powder contaminated by small doses of air (p approximately 0.1 bar) does not lead to full absorption capacity. In ultrahigh vacuum, hydrogen is only taken up by the alloy after sputtering of the surface (which is done in order to remove oxide layers from it), thus creating adsorption sites for the hydrogen. This

  6. Correlations between the zeta potentials of silica hydride-based stationary phases, analyte retention behaviour and their ionic interaction descriptors.

    Science.gov (United States)

    Kulsing, Chadin; Yang, Yuanzhong; Munera, Caesar; Tse, Colby; Matyska, Maria T; Pesek, Joseph J; Boysen, Reinhard I; Hearn, Milton T W

    2014-03-19

    In this study, the zeta potentials of type-B silica, bare silica hydride, the so-called Diamond Hydride™ and phenyl substituted silica hydride stationary phases have been measured in aqueous-organic media and correction procedures developed to account for the more negative zeta potential values in media containing different acetonitrile contents. Retention studies of 16 basic, acidic and neutral compounds were also performed with these four stationary phases with mobile phases containing 0.1% (v/v) formic acid and various acetonitrile-water compositions ranging from 0-90% (v/v) acetonitrile. The retention properties of these analytes were correlated to the corrected stationary phase zeta potentials measured under these different mobile phase conditions with R(2) values ranging from 0.01 to 1.00, depending on the stationary phase and analyte type. Using linear solvation energy relationships, stationary phase descriptors for each stationary phase have been developed for the different mobile phase conditions. Very high correlations of the zeta potentials with the ionic interaction descriptors were obtained for the type-B silica and the Diamond Hydride™ phases and good correlation with bare silica hydride material whilst there was no correlation observed for the phenyl substituted silica hydride phase. The nature of the retention mechanisms which gives rise to these different observations is discussed. The described methods represent a useful new approach to characterize and assess the retention properties of silica-hydride based chromatographic stationary phases of varying bonded-phase coverage and chemistries, as would be broadly applicable to other types of stationary phase used in the separation sciences.

  7. The sup 252 Cf-source-driven noise measurements of unreflected uranium hydride cylinder subcriticality

    Energy Technology Data Exchange (ETDEWEB)

    Mihalczo, J.T.; Pare, V.K.; Blakeman, E.D. (Oak Ridge National Lab., TN (United States))

    1991-01-01

    Subcritical neutron multiplication factors have been measured by the {sup 252}Cf-source-driven noise analysis method for unreflected, 15.0-cm-diam uranium hydride cylinders of varying heights. Because of the difficulty and cost of controlling the H/U ratio in damp uranium (93.2 wt% {sup 235}U) oxide power and fabricating sufficient material for experiments, few experiments have been performed with materials of low H/U ratios. These measurements may provide alternate information that can be used for verifying calculational methods since the H/U ratio for this material is 3.00. These measurements, which are the first application of this method to uranium hydride, were performed at the Los Alamos National Laboratory Critical Experiments Facility in 1989. These measurements were used to demonstrate the capability of this measurement method for this type of material and to provide a benchmark experiment for calculational methods with slightly moderated systems. Previous experiments by this method were for a wide variety of well-moderated systems or unmoderated uranium metal cylinders.

  8. A quantitative phase field model for hydride precipitation in zirconium alloys: Part II. Modeling of temperature dependent hydride precipitation

    Energy Technology Data Exchange (ETDEWEB)

    Xiao, Zhihua [The Hong Kong Polytechnic University, Shenzhen Research Institute, Shenzhen (China); PolyU Base (Shenzhen) Limited, Shenzhen (China); Department of Mechanical Engineering, Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong (China); Hao, Mingjun [The Hong Kong Polytechnic University, Shenzhen Research Institute, Shenzhen (China); Department of Mechanical Engineering, Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong (China); Guo, Xianghua [State Key Laboratory of Explosion and Safety Science, Beijing Institute of Technology, Beijing 100081 (China); Tang, Guoyi [Advanced Materials Institute, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055 (China); Shi, San-Qiang, E-mail: mmsqshi@polyu.edu.hk [The Hong Kong Polytechnic University, Shenzhen Research Institute, Shenzhen (China); PolyU Base (Shenzhen) Limited, Shenzhen (China); Department of Mechanical Engineering, Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong (China)

    2015-04-15

    A quantitative free energy functional developed in Part I (Shi and Xiao, 2014 [1]) was applied to model temperature dependent δ-hydride precipitation in zirconium in real time and real length scale. At first, the effect of external tensile load on reorientation of δ-hydrides was calibrated against experimental observations, which provides a modification factor for the strain energy in free energy formulation. Then, two types of temperature-related problems were investigated. In the first type, the effect of temperature transient was studied by cooling the Zr–H system at different cooling rates from high temperature while an external tensile stress was maintained. At the end of temperature transients, the average hydride size as a function of cooling rate was compared to experimental data. In the second type, the effect of temperature gradients was studied in a one or two dimensional temperature field. Different boundary conditions were applied. The results show that the hydride precipitation concentrated in low temperature regions and that it eventually led to the formation of hydride blisters in zirconium. A brief discussion on how to implement the hysteresis of hydrogen solid solubility on hydride precipitation and dissolution in the developed phase field scheme is also presented.

  9. EXHIBITION: Accelerated Particles

    CERN Multimedia

    2004-01-01

    An exhibition of plastic arts and two evenings of performances by sound and visual artists as part of CERN's 50th anniversary celebrations. Fifty candles for CERN, an international laboratory renowned for fundamental research, is a cause for celebration. Since March this year, Geneva and neighbouring parts of France have been the venues for a wealth of small and large-scale events, which will continue until November. Given CERN's location in the commune of Meyrin, the ForuMeyrin is hosting exhibitions of plastic arts and performances entitled: Accelerated Particles. Several works will be exhibited and performed in two 'salons'. Salon des matières: An exhibition of plastic arts From Tues 12 October to Wed 3 November 2004 Tuesdays to Fridays: 16:00 to 19:00 Saturdays: 14:00 to 18:00 Exhibition open late on performance nights, entrance free Salon des particules: Musical and visual performances Tues 12 and Mon 25 October from 20:00 to 23:00 Preview evening for both events: Tues 12 October from 18:...

  10. Council Chamber exhibition

    CERN Multimedia

    CERN Bulletin

    2010-01-01

    To complete the revamp of CERN’s Council Chamber, a new exhibition is being installed just in time for the June Council meetings.   Panels will showcase highlights of CERN’s history, using some of the content prepared for the exhibitions marking 50 years of the PS, which were displayed in the main building last November. The previous photo exhibition in the Council Chamber stopped at the 1970s. To avoid the new panels becoming quickly out of date, photos are grouped together around specific infrastructures, rather than following a classic time-line. “We have put the focus on the accelerators – the world-class facilities that CERN has been offering researchers over the years, from the well-known large colliders to the lesser-known smaller facilities,” says Emma Sanders, who worked on the content. The new exhibition will be featured in a future issue of the Bulletin with photos and an interview with Fabienne Marcastel, designer of the exhibit...

  11. Designing metal hydride complexes for water splitting reactions: a molecular electrostatic potential approach.

    Science.gov (United States)

    Sandhya, K S; Suresh, Cherumuttathu H

    2014-08-28

    The hydridic character of octahedral metal hydride complexes of groups VI, VII and VIII has been systematically studied using molecular electrostatic potential (MESP) topography. The absolute minimum of MESP at the hydride ligand (Vmin) and the MESP value at the hydride nucleus (VH) are found to be very good measures of the hydridic character of the hydride ligand. The increasing/decreasing electron donating feature of the ligand environment is clearly reflected in the increasing/decreasing negative character of Vmin and VH. The formation of an outer sphere metal hydride-water complex showing the HH dihydrogen interaction is supported by the location and the value of Vmin near the hydride ligand. A higher negative MESP suggested lower activation energy for H2 elimination. Thus, MESP features provided a way to fine-tune the ligand environment of a metal-hydride complex to achieve high hydridicity for the hydride ligand. The applicability of an MESP based hydridic descriptor in designing water splitting reactions is tested for group VI metal hydride model complexes of tungsten.

  12. Cesium Platinide Hydride 4Cs 2 Pt-CsH: An Intermetallic Double Salt Featuring Metal Anions

    Energy Technology Data Exchange (ETDEWEB)

    Smetana, Volodymyr [Ames Laboratory, US Department of Energy, and Critical Materials Institute, Ames Iowa 50011-3020 USA; Mudring, Anja-Verena [Ames Laboratory, US Department of Energy, and Critical Materials Institute, Ames Iowa 50011-3020 USA; Department of Materials Sciences and Engineering, Iowa State University, Ames Iowa 50011-3111 USA

    2016-10-24

    With Cs9Pt4H a new representative of ionic compounds featuring metal anions can be added to this rare-membered family. Cs9Pt4H exhibits a complex crystal structure containing Cs+ cations, Pt2- and H- anions. Being a red, transparent compound its band gap is in the visible range of the electromagnetic spectrum and the ionic type of bonding is confirmed by quantum chemical calculations. This cesium platinide hydride can formally be considered as a double salt of the “alloy” cesium–platinum, or better cesium platinide, Cs2Pt, and the salt cesium hydride CsH according to Cs9Pt4H≡4 Cs2Pt∙CsH.

  13. Cesium Platinide Hydride 4Cs2 Pt⋅CsH: An Intermetallic Double Salt Featuring Metal Anions.

    Science.gov (United States)

    Smetana, Volodymyr; Mudring, Anja-Verena

    2016-11-14

    With Cs9 Pt4 H a new representative of ionic compounds featuring metal anions can be added to this rare-membered family. Cs9 Pt4 H exhibits a complex crystal structure containing Cs(+) cations, Pt(2-) and H(-) anions. Being a red, transparent compound its band gap is in the visible range of the electromagnetic spectrum and the ionic type of bonding is confirmed by quantum chemical calculations. This cesium platinide hydride can formally be considered as a double salt of the "alloy" cesium-platinum, or better cesium platinide, Cs2 Pt, and the salt cesium hydride CsH according to Cs9 Pt4 H≡4 Cs2 Pt⋅CsH.

  14. Cesium platinide hydride 4Cs{sub 2}Pt.CsH: an intermetallic double salt featuring metal anions

    Energy Technology Data Exchange (ETDEWEB)

    Smetana, Volodymyr [Ames Laboratory, US Department of Energy, and Critical Materials Institute, Ames, Iowa, 50011-3020 (United States); Mudring, Anja-Verena [Ames Laboratory, US Department of Energy, and Critical Materials Institute, Ames, Iowa, 50011-3020 (United States); Department of Materials Sciences and Engineering, Iowa State University, Ames, Iowa, 50011-3111 (United States)

    2016-11-14

    With Cs{sub 9}Pt{sub 4}H a new representative of ionic compounds featuring metal anions can be added to this rare-membered family. Cs{sub 9}Pt{sub 4}H exhibits a complex crystal structure containing Cs{sup +} cations, Pt{sup 2-} and H{sup -} anions. Being a red, transparent compound its band gap is in the visible range of the electromagnetic spectrum and the ionic type of bonding is confirmed by quantum chemical calculations. This cesium platinide hydride can formally be considered as a double salt of the ''alloy'' cesium-platinum, or better cesium platinide, Cs{sub 2}Pt, and the salt cesium hydride CsH according to Cs{sub 9}Pt{sub 4}H≡4 Cs{sub 2}Pt.CsH. (copyright 2016 Wiley-VCH Verlag GmbH and Co. KGaA, Weinheim)

  15. Chemical Hydride Slurry for Hydrogen Production and Storage

    Energy Technology Data Exchange (ETDEWEB)

    McClaine, Andrew W

    2008-09-30

    The purpose of this project was to investigate and evaluate the attractiveness of using a magnesium chemical hydride slurry as a hydrogen storage, delivery, and production medium for automobiles. To fully evaluate the potential for magnesium hydride slurry to act as a carrier of hydrogen, potential slurry compositions, potential hydrogen release techniques, and the processes (and their costs) that will be used to recycle the byproducts back to a high hydrogen content slurry were evaluated. A 75% MgH2 slurry was demonstrated, which was just short of the 76% goal. This slurry is pumpable and storable for months at a time at room temperature and pressure conditions and it has the consistency of paint. Two techniques were demonstrated for reacting the slurry with water to release hydrogen. The first technique was a continuous mixing process that was tested for several hours at a time and demonstrated operation without external heat addition. Further work will be required to reduce this design to a reliable, robust system. The second technique was a semi-continuous process. It was demonstrated on a 2 kWh scale. This system operated continuously and reliably for hours at a time, including starts and stops. This process could be readily reduced to practice for commercial applications. The processes and costs associated with recycling the byproducts of the water/slurry reaction were also evaluated. This included recovering and recycling the oils of the slurry, reforming the magnesium hydroxide and magnesium oxide byproduct to magnesium metal, hydriding the magnesium metal with hydrogen to form magnesium hydride, and preparing the slurry. We found that the SOM process, under development by Boston University, offers the lowest cost alternative for producing and recycling the slurry. Using the H2A framework, a total cost of production, delivery, and distribution of $4.50/kg of hydrogen delivered or $4.50/gge was determined. Experiments performed at Boston

  16. Electrochemical cell comprising stable hydride-forming material

    Energy Technology Data Exchange (ETDEWEB)

    Willems, J. J. G. S. A.; van Beek, J. R. G. C. M.; Buschow, K. H. J.

    1984-12-11

    An electrochemical cell having a negative electrode comprising a compound derived from LaNi/sub 5/, in which La is optionally substituted by a plateau pressure-increasing element and in which Ni is substituted entirely or partly by a plateau pressure-reducing element, for example, Co and/or Cu, with the object of considerably reducing volume steps and hence crack formation of the intermetallic compound during charging and discharging. Moreover, the corrosion of the intermetallic compound is counteracted by adding small quantities of Al, Cr and/or Si, Which metals enhance the formation of a protecting oxide layer.

  17. A model to describe the mechanical behavior and the ductile failure of hydrided Zircaloy-4 fuel claddings between 25 °C and 480 °C

    Energy Technology Data Exchange (ETDEWEB)

    Le Saux, M., E-mail: matthieu.lesaux@cea.fr [CEA, DEN, DMN, SRMA, 91191 Gif-sur-Yvette Cedex (France); Besson, J. [Mines ParisTech, Centre des Matériaux, CNRS UMR 7633, BP 87, 91003 Evry Cedex (France); Carassou, S. [CEA, DEN, DMN, SRMA, 91191 Gif-sur-Yvette Cedex (France)

    2015-11-15

    A model is proposed to describe the mechanical behavior and the ductile failure at 25, 350 and 480 °C of Zircaloy-4 cladding tubes, as-received and hydrided up to 1200 wt. ppm (circumferential hydrides). The model is based on the Gurson–Tvergaard–Needleman model extended to account for plastic anisotropy and viscoplasticity. The model considers damage nucleation by both hydride cracking and debonding of the interface between the Laves phase precipitates and the matrix. The damage nucleation rate due to hydride cracking is directly deduced from quantitative microstructural observations. The other model parameters are identified from several experimental tests. Finite element simulations of axial tension, hoop tension, expansion due to compression and hoop plane strain tension experiments are performed to assess the model prediction capability. The calibrated model satisfactorily reproduces the effects of hydrogen and temperature on both the viscoplastic and the failure properties of the material. The results suggest that damage is anisotropic and influenced by the stress state for the non-hydrided or moderately hydrided material and becomes more isotropic for high hydrogen contents.

  18. Hydriding and Dehydriding Properties of Zinc Borohydride, Nickel, and Titanium-Added Magnesium Hydride

    Energy Technology Data Exchange (ETDEWEB)

    Kwak, Young Jun; Kwon, Sung Nam; Song, Myoung Youp [Chonbuk National University, Jeonju (Korea, Republic of)

    2015-11-15

    A Zn(BH{sub 4}){sub 2} sample was prepared by milling ZnCl{sub 2} and NaBH{sub 4} in a planetary ball mill under Ar gas. This sample contained NaCl. Then, 90 wt% MgH{sub 2}-5 wt% Zn(BH{sub 4}){sub 2}-2.5 wt% Ni-2.5 wt% Ti samples [named 90MgH{sub 2}-5Zn(BH{sub 4}){sub 2}-2.5Ni-2.5Ti] were prepared by milling in a planetary ball mill under H{sub 2} gas. The hydrogen absorption and release properties of the prepared samples were investigated. In particular, the variations of the initial hydriding and dehydriding rates with temperature were examined. SEM micrographs and XRD patterns of 90MgH{sub 2}-5Zn(BH{sub 4}){sub 2}-2.5Ni-2.5Ti after reactive mechanical grinding and after hydriding-dehydriding were also studied. Particle size distributions and BET specific surface areas of 90MgH{sub 2}-5Zn(BH{sub 4}){sub 2}-2.5Ni-2.5Ti after reactive mechanical grinding and after 11 hydriding-dehydriding cycles were analyzed. The 90MgH{sub 2}-5Zn(BH{sub 4}){sub 2}-2.5Ni-2.5Ti had an effective hydrogen storage capacity (the quantity of hydrogen absorbed for 60 min) of near 5 wt% (4.91 wt% at 593 K).

  19. Computational study of sodium magnesium hydride for hydrogen storage applications

    Science.gov (United States)

    Soto Valle, Fernando Antonio

    Hydrogen offers considerable potential benefits as an energy carrier. However, safe and convenient storage of hydrogen is one of the biggest challenges to be resolved in the near future. Sodium magnesium hydride (NaMgH 3) has attracted attention as a hydrogen storage material due to its light weight and high volumetric hydrogen density of 88 kg/m3. Despite the advantages, hydrogen release in this material occurs at approximately 670 K, which is well above the operable range for on-board hydrogen storage applications. In this regard, hydrogen release may be facilitated by substitution doping of transition-metals. This dissertation describes first-principles computational methods that enable an examination of the hydrogen storage properties of NaMgH3. The novel contribution of this dissertation includes a combination of crystal, supercell, and surface slab calculations that provides new and relevant insights about the thermodynamic and kinetic properties of NaMgH3. First-principles calculations on the pristine crystal structure provide a starting reference point for the study of this material as a hydrogen storage material. To the best of our knowledge, it is reported for the first time that a 25% mol doping concentration of Ti, V, Cu, and Zn dopants reduce the reaction enthalpy of hydrogen release for NaMgH3. The largest decrease in the DeltaH(298 K) value corresponds to the Zn-doped model (67.97 kJ/(mol H2)). Based on cohesive energy calculations, it is reported that at the 6.25% mol doping concentration, Ti and Zn dopants are the only transition metals that destabilize the NaMgH3 hydride. In terms of hydrogen removal energy, it is quantified that the energy cost to remove a single H from the Ti-doped supercell model is 0.76 eV, which is lower with respect to the pristine model and other prototypical hydrogen storage materials. From the calculation of electronic properties such as density of states, electron density difference, and charge population analysis

  20. Exhibition in Sight

    Science.gov (United States)

    Wasserman, Burton

    1978-01-01

    Ludwig Mies van der Rohe is known primarily as an architect. However, he also designed chairs and tables. Discusses an exhibit held in New York City a few months ago which showed how well the famous architect achieved his goals in the area of furniture design. (Author/RK)

  1. Exhibitions in Sight

    Science.gov (United States)

    Wasserman, Burton

    1977-01-01

    Today, few artists make serving vessels on a monumental scale. Here artists compete in this unique area of specialization prompted by the Campbell Museum in Camden, New Jersey, which is dedicated to collecting and exhibiting the very best in soup tureens. (Author/RK)

  2. EXHIBITION: Accelerated Particles

    CERN Multimedia

    2004-01-01

    http://www.cern.ch/cern50/ An exhibition of plastic arts and two evenings of performances by sound and visual artists as part of CERN's fiftieth anniversary celebrations. The fiftieth anniversary of a world famous organization like CERN, an international laboratory specializing in fundamental research, is a cause for celebration. Since March this year, Geneva and neighbouring parts of France have been the venues for a wealth of small and large-scale events, which will continue until November. Given CERN's location in the commune of Meyrin, the ForuMeyrin is hosting two "salons" consisting of an exhibition of plastic arts and evenings of music and visual arts performances with the collective title of "Accelerated Particles". Several works will be exhibited and performed. Salon des matières: An exhibition of plastic arts Until Wednesday 3 November 2004. Tuesdays to Fridays: 4.00 p.m. to 7.00 p.m. Saturdays: 2.00 p.m. to 6.00 p.m. Doors open late on the evening of the performances. Salon des ...

  3. Dehydrogenation kinetics for pure and nickel-doped magnesium hydride investigated by in-situ, time-resolved powder diffraction (poster)

    DEFF Research Database (Denmark)

    Jensen, T.R.; Andreasen, A.; Vegge, T.

    2004-01-01

    temperatures. Apparent activation energies were calculated from Arrhenius plots revealing values of ca. 300 and 250 kJ/mol for the dehydrogenationof pure and nickel-doped magnesium hydride, respectively, in accord with EA= 270 kJ/mol measured by thermal desorption spectroscopy for these non-activated materials...

  4. Hydrogen storage as a hydride. Citations from the International Aerospace Abstracts data base

    Science.gov (United States)

    Zollars, G. F.

    1980-01-01

    These citations from the international literature concern the storage of hydrogen in various metal hydrides. Binary and intermetallic hydrides are considered. Specific alloys discussed are iron titanium, lanthanium nickel, magnesium copper and magnesium nickel among others.

  5. Hydrogen storage as a hydride. Citations from the International Aerospace Abstracts data base

    Science.gov (United States)

    Zollars, G. F.

    1980-01-01

    These citations from the international literature concern the storage of hydrogen in various metal hydrides. Binary and intermetallic hydrides are considered. Specific alloys discussed are iron titanium, lanthanium nickel, magnesium copper and magnesium nickel among others.

  6. Numerical simulation and performance test of metal hydride hydrogen storage system

    Directory of Open Access Journals (Sweden)

    Tzu-Hsiang Yen, Bin-Hao Chen, Bao-Dong Chen

    2011-05-01

    Full Text Available Metal hydride reactors are widely used in many industrial applications, such as hydrogen storage, thermal compression, heat pump, etc. According to the research requirement of metal hydride hydrogen storage, the thermal analyses have been implemented in the paper. The metal hydride reaction beds are considered as coupled cylindrical tube modules which combine the chemical absorption and desorption in metal hydride. The model is then used metal hydride LaNi5 as an example to predict the performance of metal hydride hydrogen storage devices, such as the position of hydration front and the thermal flux. Under the different boundary condition the characteristics of heat transfer and mass transfer in metal hydride have influence on the hydrogen absorption and desorption. The researches revealed that the scroll design can improve the temperature distribution in the reactor and the porous tube for directing hydrogen can increase the penetration depth of hydride reaction to decrease the hydrogen absorption time.

  7. Micro-scale fracture experiments on zirconium hydrides and phase boundaries

    Science.gov (United States)

    Chan, H.; Roberts, S. G.; Gong, J.

    2016-07-01

    Fracture properties of micro-scale zirconium hydrides and phase boundaries were studied using microcantilever testing methods. FIB-machined microcantilevers were milled on cross-sectional surfaces of hydrided samples, with the most highly-stressed regions within the δ-hydride film, within the α-Zr or along the Zr-hydride interface. Cantilevers were notched using the FIB and then tested in bending using a nanoindenter. Load-displacement results show that three types of cantilevers have distinct deformation properties. Zr cantilevers deformed plastically. Hydride cantilevers fractured after a small amount of plastic flow; the fracture toughness of the δ-hydride was found to be 3.3 ± 0.4 MPam1/2 and SEM examination showed transgranular cleavage on the fracture surfaces. Cantilevers notched at the Zr-hydride interface developed interfacial voids during loading, at loads considerably lower than that which initiate brittle fracture of hydrides.

  8. Aging Effects on the Hydrogen Storage Characteristics of Li-Mg-B-N-H Complex Hydrides

    Science.gov (United States)

    Srinivasan, Sesha; Vickers, Eric; Mulharan, James; Darkazalli, Gazi; Goswami, Yogi; Stefanakos, Elias; FLPoly-CERC Collaboration

    2015-03-01

    The aging effects on the hydrogen storage characteristics and chemical formulations of the complex hydrides are discussed in this study. The aging effects due to atmospheric events such as oxygen and moisture coverage and self-decomposition are currently under investigation. The candidate material chosen for this study is Lithium/Magnesium based complex hydride LiBH4/LiNH2/MgH2. These materials were prepared using high energy ball milling under Ar/H2 atmosphere with different milling durations. The chemical, structural and microstructural characteristics of the synthesized and aged materials were compared and investigated using TGA/DSC, FTIR, XRD, BET and SEM analytical tools. Hydrogen storage properties such as hydrogen sorption kinetics, cycle life and pressure-composition isotherm (PCI) was examined via high pressure, high temperature Sievert's type apparatus. This current study will shed light to compare and contrast the above mentioned characteristics for the aged samples practically at the same experimental conditions. Furthermore, we have investigated the relationship between the aging effects with respect to the crystallite sizes of the candidate compounds and their nano-dopant variants. We acknowledge the grant from Florida Energy Systems Consortium and support from Florida Polytechnic University.

  9. Effect of external stress on deuteride (hydride) precipitation in Zircaloy-4 using in situ neutron diffraction

    Science.gov (United States)

    Lin, Jun-li; An, Ke; Stoica, Alexandru D.; Heuser, Brent J.

    2017-04-01

    In situ neutron diffraction is utilized to study the deuteride (hydride) precipitation behavior in a cold-worked stress-relieved (CWSR) Zircaloy-4 material upon cooling from 420 °C to room temperature with a 78 MPa external stress applied along the rolling direction (RD) of the material. Two banks detector capture the diffraction signal from two principal directions of the specimen, the normal direction (ND) and the rolling direction (RD). The evolution of deuterium concentration in zirconium solid solution along the two specimen directions is measured by studying the δ-(220) peak intensity, applying the Rietveld refinement method to the diffraction data and using the measured zirconium c-axis lattice distortion. The deuterium concentration is observed to be higher for zirconium grains in the ND than the RD. The terminal solid solubility of precipitation (TSSp) for deuterium in the solution is then described using the Arrhenius equation. It is observed that the applied stress reduces the energy term Q in the Arrhenius equation when compared with the unstressed Q values from the work of others. A model by Puls is applied to study the effect of stress on deuterium solubility, with polycrystalline hydride precipitation strain calculated using the Kearns factor representative of the studied material. The experimental result does not agree with the model prediction of Puls.

  10. Determination of tellurium by hydride generation with in situ trapping flame atomic absorption spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Matusiewicz, H.; Krawczyk, M. [Politechn Poznanska, Poznan (Poland)

    2007-03-15

    The analytical performance of coupled hydride generation - integrated atom trap (HG-IAT) atomizer flame atomic absorption spectrometry (FAAS) system was evaluated for determination of Te in reference material (GBW 07302 Stream Sediment), coal fly ash and garlic. Tellurium, using formation of H{sub 2}Te vapors, is atomized in air-acetylene flame-heated IAT. A new design HG-IAT-FAAS hyphenated technique that would exceed the operational capabilities of existing arrangernents (a water-cooled single silica tube, double-slotted quartz tube or an 'integrated trap') was investigated. An improvement in detection limit was achieved compared with using either of the above atom trapping techniques separately. The concentration detection limit, defined as 3 times the blank standard deviation (3{sigma}), was 0.9 ng mL{sup -1} for Te. For a 2 min in situ preconcentration time (sample volume of 2 mL), sensitivity enhancement compared to flame AAS, was 222 fold, using the hydride generation atom trapping technique. The sensitivity can be further improved by increasing the collection time. The precision, expressed as RSD, was 7.0% (n = 6) for Te. The accuracy of the method was verified using a certified reference material (GBW 07302 Stream Sediment) by aqueous standard calibration curves. The measured Te contents of the reference material was in agreement with the information value. The method was successfully applied to the determination of tellurium in coal fly ash and garlic.

  11. Transition-Metal Hydride Radical Cations.

    Science.gov (United States)

    Hu, Yue; Shaw, Anthony P; Estes, Deven P; Norton, Jack R

    2016-08-10

    Transition-metal hydride radical cations (TMHRCs) are involved in a variety of chemical and biochemical reactions, making a more thorough understanding of their properties essential for explaining observed reactivity and for the eventual development of new applications. Generally, these species may be treated as the ones formed by one-electron oxidation of diamagnetic analogues that are neutral or cationic. Despite the importance of TMHRCs, the generally sensitive nature of these complexes has hindered their development. However, over the last four decades, many more TMHRCs have been synthesized, characterized, isolated, or hypothesized as reaction intermediates. This comprehensive review focuses on experimental studies of TMHRCs reported through the year 2014, with an emphasis on isolated and observed species. The methods used for the generation or synthesis of TMHRCs are surveyed, followed by a discussion about the stability of these complexes. The fundamental properties of TMHRCs, especially those pertaining to the M-H bond, are described, followed by a detailed treatment of decomposition pathways. Finally, reactions involving TMHRCs as intermediates are described.

  12. CERN permanent exhibitions

    CERN Multimedia

    2016-01-01

    Explore by yourself the issues CERN's physicists are trying to solve: given that the entire universe is made of particles, where do they come from? Why do they behave in the way they do? Discover the massive apparatus used by physicists at CERN, like the LHC, and see how each part works. And if you have more time on site, follow the LHC circuit at ground level to understand in situ this giant machine. Enter our exhibitions. Welcome!

  13. Droplet Lamp Design exhibition

    OpenAIRE

    Unver, Ertu; Dean, Lionel Theodore

    2011-01-01

    This paper describes experiments in the use of digital fluid simulation techniques within a\\ud product design context. It discusses the adoption and adaptation of virtual modelling tools in\\ud 3D creative practice. This work is exhibited at EuroMold, the world-wide fair in Germany for\\ud mold making, tooling, design and application development with around 60.000 visitors and lasts\\ud 4 days. The fair brings together professionals from design, prototyping and manufacturing.

  14. Comparison of the interactions in the rare gas hydride and Group 2 metal hydride anions.

    Science.gov (United States)

    Harris, Joe P; Manship, Daniel R; Breckenridge, W H; Wright, Timothy G

    2014-02-28

    We study both the rare gas hydride anions, RG-H(-) (RG = He-Rn) and Group 2 (Group IIa) metal hydride anions, MIIaH(-) (MIIa = Be-Ra), calculating potential energy curves at the CCSD(T) level with augmented quadruple and quintuple basis sets, and extrapolating the results to the basis set limit. We report spectroscopic parameters obtained from these curves; additionally, we study the Be-He complex. While the RG-H(-) and Be-He species are weakly bound, we show that, as with the previously studied BeH(-) and MgH(-) species, the other MIIaH(-) species are strongly bound, despite the interactions nominally also being between two closed shell species: M(ns(2)) and H(-)(1s(2)). We gain insight into the interactions using contour plots of the electron density changes and population analyses. For both series, the calculated dissociation energy is significantly less than the ion/induced-dipole attraction term, confirming that electron repulsion is important in these species; this effect is more dramatic for the MIIaH(-) species than for RG-H(-). Our analyses lead us to conclude that the stronger interaction in the case of the MIIaH(-) species arises from sp and spd hybridization, which allows electron density on the MIIa atom to move away from the incoming H(-).

  15. Upcycling CERN Exhibitions

    CERN Multimedia

    Katarina Anthony

    2015-01-01

    Summer is coming - and with it, a new Microcosm exhibition showcasing CERN (see here). But while the new exhibit is preparing to enchant visitors, many have been asking about the site's former content. Will it simply be out with the old and in with the new? Not as such!   The plasma ball from Microcosm is now on display at the LHCb site. As Microcosm's new content is moving in, its old content is moving up. From LHCb to IdeaSquare, former Microcosm displays and objects are being installed across the CERN site. "Microcosm featured many elements that were well suited to life outside of the exhibition," says Emma Sanders, Microcosm project leader in the EDU group. "We didn't want this popular content to go to waste, and so set out to find them new homes across CERN." The LHCb experiment has received a number of Microcosm favourites, including the Rutherford experiment, the cosmic ray display and the Thomson experiment. "We&...

  16. Multidimensional simulations of hydrides during fuel rod lifecycle

    Science.gov (United States)

    Stafford, D. S.

    2015-11-01

    In light water reactor fuel rods, waterside corrosion of zirconium-alloy cladding introduces hydrogen into the cladding, where it is slightly soluble. When the solubility limit is reached, the hydrogen precipitates into crystals of zirconium hydride which decrease the ductility of the cladding and may lead to cladding failure during dry storage or transportation events. The distribution of the hydride phase and the orientation of the crystals depend on the history of the spatial temperature and stress profiles in the cladding. In this work, we have expanded the existing hydride modeling capability in the BISON fuel performance code with the goal of predicting both global and local effects on the radial, azimuthal and axial distribution of the hydride phase. We compare results from 1D simulations to published experimental data. We demonstrate the new capability by simulating in 2D a fuel rod throughout a lifecycle that includes irradiation, short-term storage in the spent fuel pool, drying, and interim storage in a dry cask. Using the 2D simulations, we present qualitative predictions of the effects of the inter-pellet gap and the drying conditions on the growth of a hydride rim.

  17. Online Exhibits & Concept Maps

    Science.gov (United States)

    Douma, M.

    2009-12-01

    Presenting the complexity of geosciences to the public via the Internet poses a number of challenges. For example, utilizing various - and sometimes redundant - Web 2.0 tools can quickly devour limited time. Do you tweet? Do you write press releases? Do you create an exhibit or concept map? The presentation will provide participants with a context for utilizing Web 2.0 tools by briefly highlighting methods of online scientific communication across several dimensions. It will address issues of: * breadth and depth (e.g. from narrow topics to well-rounded views), * presentation methods (e.g. from text to multimedia, from momentary to enduring), * sources and audiences (e.g. for experts or for the public, content developed by producers to that developed by users), * content display (e.g. from linear to non-linear, from instructive to entertaining), * barriers to entry (e.g. from an incumbent advantage to neophyte accessible, from amateur to professional), * cost and reach (e.g. from cheap to expensive), and * impact (e.g. the amount learned, from anonymity to brand awareness). Against this backdrop, the presentation will provide an overview of two methods of online information dissemination, exhibits and concept maps, using the WebExhibits online museum (www.webexhibits.org) and SpicyNodes information visualization tool (www.spicynodes.org) as examples, with tips on how geoscientists can use either to communicate their science. Richly interactive online exhibits can serve to engage a large audience, appeal to visitors with multiple learning styles, prompt exploration and discovery, and present a topic’s breadth and depth. WebExhibits, which was among the first online museums, delivers interactive information, virtual experiments, and hands-on activities to the public. While large, multidisciplinary exhibits on topics like “Color Vision and Art” or “Calendars Through the Ages” require teams of scholars, user interface experts, professional writers and editors

  18. Comparison of Hydrogen Elimination from Molecular Zinc and Magnesium Hydride Clusters

    NARCIS (Netherlands)

    Intemann, J.; Sirsch, Peter; Harder, Sjoerd

    2014-01-01

    In analogy to the previously reported tetranuclear magnesium hydride cluster with a bridged dianionic bis-beta-diketiminate ligand, a related zinc hydride cluster has been prepared. The crystal structures of these magnesium and zinc hydride complexes are similar: the metal atoms are situated at the

  19. Use of triammonium salt of aurin tricarboxylic acid as risk mitigant for aluminum hydride

    Science.gov (United States)

    Cortes-Concepcion, Jose A.; Anton, Donald L.

    2017-08-08

    A process and a resulting product by process of an aluminum hydride which is modified with by physically combining in a ball milling process an aluminum hydride with a triammonium salt of aurin tricarboxylic acid. The resulting product is an aluminum hydride which is resistant to air, ambient moisture, and liquid water while maintaining useful hydrogen storage and release kinetics.

  20. Comparison of Hydrogen Elimination from Molecular Zinc and Magnesium Hydride Clusters

    NARCIS (Netherlands)

    Intemann, J.; Sirsch, Peter; Harder, Sjoerd

    2014-01-01

    In analogy to the previously reported tetranuclear magnesium hydride cluster with a bridged dianionic bis-beta-diketiminate ligand, a related zinc hydride cluster has been prepared. The crystal structures of these magnesium and zinc hydride complexes are similar: the metal atoms are situated at the

  1. Iron Hydride Detection and Intramolecular Hydride Transfer in a Synthetic Model of Mono-Iron Hydrogenase with a CNS Chelate.

    Science.gov (United States)

    Durgaprasad, Gummadi; Xie, Zhu-Lin; Rose, Michael J

    2016-01-19

    We report the identification and reactivity of an iron hydride species in a synthetic model complex of monoiron hydrogenase. The hydride complex is derived from a phosphine-free CNS chelate that includes a Fe-C(NH)(═O) bond (carbamoyl) as a mimic of the active site iron acyl. The reaction of [((O═)C(HN)N(py)S(Me))Fe(CO)2(Br)] (1) with NaHBEt3 generates the iron hydride intermediate [((O═)C(HN)N(py)S(Me))Fe(H)(CO)2] (2; δFe-H = -5.08 ppm). Above -40 °C, the hydride species extrudes CH3S(-) via intramolecular hydride transfer, which is stoichiometrically trapped in the structurally characterized dimer μ2-(CH3S)2-[((O═)C(HN)N(Ph))Fe(CO)2]2 (3). Alternately, when activated by base ((t)BuOK), 1 undergoes desulfurization to form a cyclometalated species, [((O═)C(NH)NC(Ph))Fe(CO)2] (5); derivatization of 5 with PPh3 affords the structurally characterized species [((O═)C(NH)NC)Fe(CO)(PPh3)2] (6), indicating complex 6 as the common intermediate along each pathway of desulfurization.

  2. Simultaneous determination of hydride and non-hydride forming elements by inductively coupled plasma optical emission spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Benzo, Z. [Instituto Venezolano de Investigaciones Cientificas, IVIC, Altos de Pipe, Caracas (Venezuela, Bolivarian Republic of); Matos-Reyes, M.N.; Cervera, M.L.; Guardia, M. de la, E-mail: m.luisa.cervera@uv.es [Department of Analytical Chemistry, University of Valencia, Valencia (Spain)

    2011-09-15

    The operating characteristics of a dual nebulization system were studied including instrumental and chemical conditions for the hydride generation and analytical figures of merit for both, hydride and non hydride forming elements. Analytical performance of the nebulization system was characterized by detection limits from 0.002 to 0.0026 {mu}g mL{sup -1} for the hydride forming elements and between 0.0034 and 0.0121 {mu}g mL{sup -1} for the non-hydride forming elements, relative standard deviation for 10 replicate measurements at 0.25 mg L{sup -1} level and recovery percentages between 97 and 103%. The feasibility of the system was demonstrated in the simultaneous determination of Ca, Cd, Co, Cr, Cu, Fe, Mg, Mn, Mo, Ni, Zn, As, Bi, Sb, Se, and Te in the NIST 1549 (non-fat milk powder), NIST 1570a (spinach leaves), DORM-2 (dogfish muscle) and TORT-2 (lobster hepatopancreas) certified samples for trace elements. Results found were in good agreement with the certified ones. (author)

  3. Investigating Design Research Landscapes through Exhibition

    DEFF Research Database (Denmark)

    Jönsson, Li; Hansen, Flemming Tvede; Mäkelä, Maarit;

    2013-01-01

    What characterizes a design research exhibition compared to a traditional design and art exhibition? How do you show the very materialities of the design experiments as a means for communicating knowledge of research and of practice? How do you present, review and utilize such an exhibition......? With those questions in mind, the intention and challenge for the Nordes 2013 Design Research Exhibition was to expand on current notions of staging research enquires in design research conference contexts. Artefacts, installations, performances, and other materialities that relate to the theme...... of the conference - Experiments in Design Research – were displayed as tools to express and communicate different design research enquires. Through this paper we will describe the Nordes exhibition as a specific case that renders questions visible in relation to how to utilize a design research exhibition...

  4. Space Shuttle Cockpit exhibit

    Science.gov (United States)

    2000-01-01

    Want to sit in the cockpit of the Space Shuttle and watch astronauts work in outer space? At StenniSphere, you can do that and much more. StenniSphere, the visitor center at John C. Stennis Space Center in Hancock County, Miss., presents 14,000-square-feet of interactive exhibits that depict America's race for space as well as a glimpse of the future. StenniSphere is open free of charge from 9 a.m. to 5 p.m. daily.

  5. Theoretical Estimate of Hydride Affinities of Aromatic Carbonyl Compounds

    Institute of Scientific and Technical Information of China (English)

    AI Teng; ZHU Xiao-Qing; CHENG Jin-Pei

    2003-01-01

    @@ Aromatic carbonyl compounds are one type of the most important organic compounds, and the reductions ofthem by hydride agents such as LiAlH4 or NaBH4 are widely used in organic synthesis. The reactivity of carbonyl compounds generally increases in the following order: ketone < aldehyde, and amide < acid < ester < acid halide, which could be related to their hydride affinities (HA). In the previous paper, Robert[1] calculated the absolute HAof a series of small non-aromatic carbonyl compounds. In this paper, we use DFT method at B3LYP/6-311 + + G (2d, 2p)∥B3LYP/6-31 + G* level to estimate hydride affinities of five groups of aromatic carbonyl compounds. The detailed results are listed in Table 1.

  6. CO2 hydrogenation on a metal hydride surface.

    Science.gov (United States)

    Kato, Shunsuke; Borgschulte, Andreas; Ferri, Davide; Bielmann, Michael; Crivello, Jean-Claude; Wiedenmann, Daniel; Parlinska-Wojtan, Magdalena; Rossbach, Peggy; Lu, Ye; Remhof, Arndt; Züttel, Andreas

    2012-04-28

    The catalytic hydrogenation of CO(2) at the surface of a metal hydride and the corresponding surface segregation were investigated. The surface processes on Mg(2)NiH(4) were analyzed by in situ X-ray photoelectron spectroscopy (XPS) combined with thermal desorption spectroscopy (TDS) and mass spectrometry (MS), and time-of-flight secondary ion mass spectrometry (ToF-SIMS). CO(2) hydrogenation on the hydride surface during hydrogen desorption was analyzed by catalytic activity measurement with a flow reactor, a gas chromatograph (GC) and MS. We conclude that for the CO(2) methanation reaction, the dissociation of H(2) molecules at the surface is not the rate controlling step but the dissociative adsorption of CO(2) molecules on the hydride surface.

  7. Zirconium hydride formation in Hanford production reactor process tubes

    Energy Technology Data Exchange (ETDEWEB)

    Winegardner, W.K.; Griggs, B.

    1967-12-01

    Examination of Zircaloy-2 process tubes from Hanford Production Reactors has revealed extensive zirconium hydride formation. In general, attack is limited to the downstream portions of tubes where aluminum spacers are located. Most of the hydride platelets are contained in a case or layer on the inner surface of the tube. It is not unusual to find cases 0.004 to 0.005 in. thick. Analyses of the 0.037 in. wall tubes with such cases intact often reveal hydrogen concentrations greater than 1000 ppM. Investigation indicates that the hydriding is the result of galvanic contact between aluminum and Zircaloy-2. The galvanic couple (contact between dissimilar metals in the presence of reactor cooling water which serves as the electrolyte) results in the cathodic charging of hydrogen into the Zircaloy.

  8. Single walled carbon nanotubes functionalized with hydrides as potential hydrogen storage media: A survey of intermolecular interactions

    Energy Technology Data Exchange (ETDEWEB)

    Surya, V.J.; Iyakutti, K. [School of Physics, Madurai Kamaraj University, Madurai, Tamil Nadu (India); Venkataramanan, N.S.; Mizuseki, H.; Kawazoe, Y. [Institute for Materials Research, Tohoku University, Katahira Aoba-ku, Sendai (Japan)

    2011-09-15

    In this paper, we have analyzed the intermolecular interactions between H{sub 2} and single walled carbon nanotube (SWCNT)-hydride complexes and project their capability as a practicable hydrogen storage medium (HSM). In this respect, we have investigated the type of interactions namely van der Waals, electrostatic, and orbital interactions to understand the molecular hydrogen binding affinity of various systems. We found that the charge transfer effects coupled with induced electrostatic interactions are responsible for synergetic action of SWCNT and hydrides on adsorption of H{sub 2} molecules at ambient conditions. Also we have calculated the thermodynamically usable capacity of hydrogen in all the systems. This study enables one to identify and design potential hydrogen storage materials. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  9. Scattering influences in quantitative fission neutron radiography for the in situ analysis of hydrogen distribution in metal hydrides

    Science.gov (United States)

    Börries, S.; Metz, O.; Pranzas, P. K.; Bücherl, T.; Söllradl, S.; Dornheim, M.; Klassen, T.; Schreyer, A.

    2015-10-01

    In situ neutron radiography allows for the time-resolved study of hydrogen distribution in metal hydrides. However, for a precise quantitative investigation of a time-dependent hydrogen content within a host material, an exact knowledge of the corresponding attenuation coefficient is necessary. Additionally, the effect of scattering has to be considered as it is known to violate Beer's law, which is used to determine the amount of hydrogen from a measured intensity distribution. Within this study, we used a metal hydride inside two different hydrogen storage tanks as host systems, consisting of steel and aluminum. The neutron beam attenuation by hydrogen was investigated in these two different setups during the hydrogen absorption process. A linear correlation to the amount of absorbed hydrogen was found, allowing for a readily quantitative investigation. Further, an analysis of scattering contributions on the measured intensity distributions was performed and is described in detail.

  10. Scattering influences in quantitative fission neutron radiography for the in situ analysis of hydrogen distribution in metal hydrides

    Energy Technology Data Exchange (ETDEWEB)

    Börries, S., E-mail: stefan.boerries@hzg.de [Helmholtz-Zentrum Geesthacht, Centre for Materials and Coastal Research, Max-Planck-Strasse 1, D-21502 Geesthacht (Germany); Metz, O.; Pranzas, P.K. [Helmholtz-Zentrum Geesthacht, Centre for Materials and Coastal Research, Max-Planck-Strasse 1, D-21502 Geesthacht (Germany); Bücherl, T. [ZTWB Radiochemie München (RCM), Technische Universität München (TUM), Walther-Meissner-Str. 3, D-85748 Garching (Germany); Söllradl, S. [Forschungs-Neutronenquelle Heinz Maier-Leibnitz (FRMII), Technische Universität München (TUM), Lichtenbergstr. 1, D-85748 Garching (Germany); Dornheim, M.; Klassen, T.; Schreyer, A. [Helmholtz-Zentrum Geesthacht, Centre for Materials and Coastal Research, Max-Planck-Strasse 1, D-21502 Geesthacht (Germany)

    2015-10-11

    In situ neutron radiography allows for the time-resolved study of hydrogen distribution in metal hydrides. However, for a precise quantitative investigation of a time-dependent hydrogen content within a host material, an exact knowledge of the corresponding attenuation coefficient is necessary. Additionally, the effect of scattering has to be considered as it is known to violate Beer's law, which is used to determine the amount of hydrogen from a measured intensity distribution. Within this study, we used a metal hydride inside two different hydrogen storage tanks as host systems, consisting of steel and aluminum. The neutron beam attenuation by hydrogen was investigated in these two different setups during the hydrogen absorption process. A linear correlation to the amount of absorbed hydrogen was found, allowing for a readily quantitative investigation. Further, an analysis of scattering contributions on the measured intensity distributions was performed and is described in detail.

  11. Material Effectiveness for Radiation Shielding

    Science.gov (United States)

    2003-01-01

    Materials with a smaller mean atomic mass, such as lithium (Li) hydride and polyethylene, make the best radiation shields for astronauts. The materials have a higher density of nuclei and are better able to block incoming radiation. Also, they tend to produce fewer and less dangerous secondary particles after impact with incoming radiation.

  12. Optimization and comprehensive characterization of metal hydride based hydrogen storage systems using in-situ Neutron Radiography

    Science.gov (United States)

    Börries, S.; Metz, O.; Pranzas, P. K.; Bellosta von Colbe, J. M.; Bücherl, T.; Dornheim, M.; Klassen, T.; Schreyer, A.

    2016-10-01

    For the storage of hydrogen, complex metal hydrides are considered as highly promising with respect to capacity, reversibility and safety. The optimization of corresponding storage tanks demands a precise and time-resolved investigation of the hydrogen distribution in scaled-up metal hydride beds. In this study it is shown that in situ fission Neutron Radiography provides unique insights into the spatial distribution of hydrogen even for scaled-up compacts and therewith enables a direct study of hydrogen storage tanks. A technique is introduced for the precise quantification of both time-resolved data and a priori material distribution, allowing inter alia for an optimization of compacts manufacturing process. For the first time, several macroscopic fields are combined which elucidates the great potential of Neutron Imaging for investigations of metal hydrides by going further than solely 'imaging' the system: A combination of in-situ Neutron Radiography, IR-Thermography and thermodynamic quantities can reveal the interdependency of different driving forces for a scaled-up sodium alanate pellet by means of a multi-correlation analysis. A decisive and time-resolved, complex influence of material packing density is derived. The results of this study enable a variety of new investigation possibilities that provide essential information on the optimization of future hydrogen storage tanks.

  13. NUMERICAL ANALYSIS FOR HYDRIDING IN METAL HYDRIDE HYDROGEN STORAGE TANK%金属氢化物储氢器吸氢过程的数值分析

    Institute of Scientific and Technical Information of China (English)

    叶建华; 蒋利军; 李志念; 刘晓鹏; 王树茂

    2011-01-01

    Based on the principle of hydride adsorption, a one-dimensional mathematical model for hydriding in a cylindrical metal hydride hydrogen storage tank was established. The heat and mass transfer of metal hydride beds was computed by finite difference method. The variation in temperature and hydrogen concentration at different radial positions of the hydride layer was analyzed during the process of hydriding. The effects of supply pressure, heat convection coefficient and hydride layer radial thickness on the hydriding was studied. It is shown that hydride formation initially takes place uniformly all over the metal hydride layer, but with the process of hydriding, the hydriding rate at the core region is gradually slower than one at surface region. The increase of supply pressure and heat convection coefficient can accelerate the hydriding of the hydrogen storage tank. The effect of hydride layer radial thickness is significant on the hydriding rate, and the thinner hydride layer, the higher the hydriding rate.%基于金属氢化物吸氢基本特性,建立圆柱形金属氢化物储氢器吸氢过程的-维数学物理模型.采用有限差分法对金属氢化物床体的传热传质进行计算.分别研究金属氢化物床体各处温度和氢含量在吸氢过程中的变化以及氢气压力、对流传热系数和金属氢化物床体径向厚度对金属氢化物吸氢过程的影响.计算结果表明:初始阶段金属氢化物床均匀吸氢,但随着氢化过程的进行,其中心区域的吸氢速率逐渐低于边缘区域;增加吸氢压力、提高对流传热系数均可促进储氢器的吸氢;金属氢化物床的径向厚度对吸氢速率影响很大,金属氢化物床越薄,氢化反应的速度越快.

  14. A nickel hydride complex in the active site of methyl-coenzyme m reductase: implications for the catalytic cycle.

    Science.gov (United States)

    Harmer, Jeffrey; Finazzo, Cinzia; Piskorski, Rafal; Ebner, Sieglinde; Duin, Evert C; Goenrich, Meike; Thauer, Rudolf K; Reiher, Markus; Schweiger, Arthur; Hinderberger, Dariush; Jaun, Bernhard

    2008-08-20

    Methanogenic archaea utilize a specific pathway in their metabolism, converting C1 substrates (i.e., CO2) or acetate to methane and thereby providing energy for the cell. Methyl-coenzyme M reductase (MCR) catalyzes the key step in the process, namely methyl-coenzyme M (CH3-S-CoM) plus coenzyme B (HS-CoB) to methane and CoM-S-S-CoB. The active site of MCR contains the nickel porphinoid F430. We report here on the coordinated ligands of the two paramagnetic MCR red2 states, induced when HS-CoM (a reversible competitive inhibitor) and the second substrate HS-CoB or its analogue CH3-S-CoB are added to the enzyme in the active MCR red1 state (Ni(I)F430). Continuous wave and pulse EPR spectroscopy are used to show that the MCR red2a state exhibits a very large proton hyperfine interaction with principal values A((1)H) = [-43,-42,-5] MHz and thus represents formally a Ni(III)F430 hydride complex formed by oxidative addition to Ni(I). In view of the known ability of nickel hydrides to activate methane, and the growing body of evidence for the involvement of MCR in "reverse" methanogenesis (anaerobic oxidation of methane), we believe that the nickel hydride complex reported here could play a key role in helping to understand both the mechanism of "reverse" and "forward" methanogenesis.

  15. Metal hydride/chemical heat-pump development project. Phase I. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Argabright, T.A.

    1982-02-01

    The metal hydride/chemical heat pump (MHHP) is a chemical heat pump containing two hydrides for the storage and/or recovery of thermal energy. It utilizes the heat of reaction of hydrogen with specific metal alloys. The MHHP design can be tailored to provide heating and/or cooling or temperature upgrading over a wide range of input and ambient temperatures. The system can thus be used with a variety of heat sources including waste heat, solar energy or a fossil fuel. The conceptual design of the MHHP was developed. A national market survey including a study of applications and market sectors was conducted. The technical tasks including conceptual development, thermal and mechanical design, laboratory verification of design and material performance, cost analysis and the detailed design of the Engineering Development Test Unit (EDTU) were performed. As a result of the market study, the temperature upgrade cycle of the MHHP was chosen for development. Operating temperature ranges for the upgrader were selected to be from 70 to 110/sup 0/C (160 to 230/sup 0/F) for the source heat and 140 to 190/sup 0/C (280 to 375/sup 0/F) for the product heat. These ranges are applicable to many processes in industries such as food, textile, paper and pulp, and chemical. The hydride pair well suited for these temperatures is LaNi/sub 5//LaNi/sub 4/ /sub 5/Al/sub 0/ /sub 5/. The EDTU was designed for the upgrade cycle. It is a compact finned tube arrangement enclosed in a pressure vessel. This design incorporates high heat transfer and low thermal mass in a system which maximizes the coefficient of performance (COP). It will be constructed in Phase II. Continuation of this effort is recommended.

  16. Hydrides in Young Stellar Objects: Radiation tracers in a protostar-disk-outflow system

    CERN Document Server

    Benz, Arnold O; van Dishoeck, Ewine F

    2010-01-01

    Context: Hydrides of the most abundant heavier elements are fundamental molecules in cosmic chemistry. Some of them trace gas irradiated by UV or X-rays. Aims: We explore the abundances of major hydrides in W3 IRS5, a prototypical region of high-mass star formation. Methods: W3 IRS5 was observed by HIFI on the Herschel Space Observatory with deep integration (about 2500 s) in 8 spectral regions. Results: The target lines including CH, NH, H3O+, and the new molecules SH+, H2O+, and OH+ are detected. The H2O+ and OH+ J=1-0 lines are found mostly in absorption, but also appear to exhibit weak emission (P-Cyg-like). Emission requires high density, thus originates most likely near the protostar. This is corroborated by the absence of line shifts relative to the young stellar object (YSO). In addition, H2O+ and OH+ also contain strong absorption components at a velocity shifted relative to W3 IRS5, which are attributed to foreground clouds. Conclusions: The molecular column densities derived from observations corre...

  17. Effect of design parameters on enhancement of hydrogen charging in metal hydride reactors

    Energy Technology Data Exchange (ETDEWEB)

    Kaplan, Y. [Mechanical Engineering Department, Nigde University, 51100 Nigde (Turkey)

    2009-03-15

    The effects of heat transfer mechanisms on the charging process in metal hydride reactors are studied under various charging pressures. Three different cylindrical reactors with the same base dimensions are designed and manufactured. The first one is a closed cylinder cooled with natural convection, the fins are manufactured around the second reactor and the third reactor is cooled with water circulating around the reactor. The temperatures of the reactor at several locations are measured during charging with a range of pressure of 1-10 bar. The third reactor shows the lowest temperature increase with the fastest charging time under all charging pressures investigated. The effective heat transfer coefficients of the reactors are also calculated according to the experimental results and they are found to be 5.5 {+-} 1 W m{sup -2} K{sup -1}, 35 {+-} 2 W m{sup -2} K{sup -1} and 113 {+-} 1 W m{sup -2} K{sup -1}, respectively. The experimental results showed that the charging of hydride reactors is mainly heat transfer dependent and the reactor with better cooling exhibits the fastest charging characteristics. (author)

  18. Ionic Liquid-Based Non-Aqueous Electrolytes for Nickel/Metal Hydride Batteries

    Directory of Open Access Journals (Sweden)

    Tiejun Meng

    2017-02-01

    Full Text Available The voltage of an alkaline electrolyte-based battery is often limited by the narrow electrochemical stability window of water (1.23 V. As an alternative to water, ionic liquid (IL-based electrolyte has been shown to exhibit excellent proton conducting properties and a wide electrochemical stability window, and can be used in proton conducting batteries. In this study, we used IL/acid mixtures to replace the 30 wt % KOH aqueous electrolyte in nickel/metal hydride (Ni/MH batteries, and verified the proton conducting character of these mixtures through electrochemical charge/discharge experiments. Dilution of ILs with acetic acid was found to effectively increase proton conductivity. By using 2 M acetic acid in 1-ethyl-3-methylimidazolium acetate, stable charge/discharge characteristics were obtained, including low charge/discharge overpotentials, a discharge voltage plateau at ~1.2 V, a specific capacity of 161.9 mAh·g−1, and a stable cycling performance for an AB5 metal hydride anode with a (Ni,Co,Zn(OH2 cathode.

  19. High-Spin Cobalt Hydrides for Catalysis

    Energy Technology Data Exchange (ETDEWEB)

    Holland, Patrick L. [Univ. of Rochester, NY (United States)

    2013-08-29

    Organometallic chemists have traditionally used catalysts with strong-field ligands that give low-spin complexes. However, complexes with a weak ligand field have weaker bonds and lower barriers to geometric changes, suggesting that they may lead to more rapid catalytic reactions. Developing our understanding of high-spin complexes requires the use of a broader range of spectroscopic techniques, but has the promise of changing the mechanism and/or selectivity of known catalytic reactions. These changes may enable the more efficient utilization of chemical resources. A special advantage of cobalt and iron catalysts is that the metals are more abundant and cheaper than those currently used for major industrial processes that convert unsaturated organic molecules and biofeedstocks into useful chemicals. This project specifically evaluated the potential of high-spin cobalt complexes for small-molecule reactions for bond rearrangement and cleavage reactions relevant to hydrocarbon transformations. We have learned that many of these reactions proceed through crossing to different spin states: for example, high-spin complexes can flip one electron spin to access a lower-energy reaction pathway for beta-hydride elimination. This reaction enables new, selective olefin isomerization catalysis. The high-spin cobalt complexes also cleave the C-O bond of CO2 and the C-F bonds of fluoroarenes. In each case, the detailed mechanism of the reaction has been determined. Importantly, we have discovered that the cobalt catalysts described here give distinctive selectivities that are better than known catalysts. These selectivities come from a synergy between supporting ligand design and electronic control of the spin-state crossing in the reactions.

  20. Metal Hydrides, MOFs, and Carbon Composites as Space Radiation Shielding Mitigators

    Science.gov (United States)

    Atwell, William; Rojdev, Kristina; Liang, Daniel; Hill, Matthew

    2014-01-01

    Recently, metal hydrides and MOFs (Metal-Organic Framework/microporous organic polymer composites - for their hydrogen and methane storage capabilities) have been studied with applications in fuel cell technology. We have investigated a dual-use of these materials and carbon composites (CNT-HDPE) to include space radiation shielding mitigation. In this paper we present the results of a detailed study where we have analyzed 64 materials. We used the Band fit spectra for the combined 19-24 October 1989 solar proton events as the input source term radiation environment. These computational analyses were performed with the NASA high energy particle transport/dose code HZETRN. Through this analysis we have identified several of the materials that have excellent radiation shielding properties and the details of this analysis will be discussed further in the paper.

  1. A new regeneration process for spent nickel/metal hydride batteries

    Institute of Scientific and Technical Information of China (English)

    LI Li; WU Feng; CHEN Ren-jie; GAO Xue-ping; SHAN Zhong-qiang

    2005-01-01

    Ultrasonic method was used to recycle nickel/metal hydride(MH-Ni) batteries under undestroyed state.The effects of ultrasonic on electrode material performance of MH-Ni batteries were investigated by using SEM,EDAX and XRD. The results indicate that with the ultrasonic time increasing, there are obvious dispersing phenomena in the positive and negative electrodes. This can make the inertia oxidation layer break off from the negative electrode, and the fresh surface comes out. These changes can increase the reaction centers of the active materials, as well as improve the catalysis capability and discharge ability. But if the ultrasonic time is too long, it can make the active materials reunite and accelerate its pulverization, and lead to its degradation. The improvement of electrochemical performance for MH-Ni batteries is obvious by ultrasonic for 6 h continuously.

  2. Hydrogen storage properties of Na-Li-Mg-Al-H complex hydrides

    Energy Technology Data Exchange (ETDEWEB)

    Tang Xia [United Technologies Research Center, 411 Silver Lane, East Hartford, CT 06108 (United States)], E-mail: tangx@utrc.utc.com; Opalka, Susanne M.; Laube, Bruce L. [United Technologies Research Center, 411 Silver Lane, East Hartford, CT 06108 (United States); Wu Fengjung; Strickler, Jamie R. [Albemarle Corporation, Gulf States Road, Baton Rouge, LA 70805 (United States); Anton, Donald L. [Savannah River National Laboratory, 227 Gateway Dr., Aiken, SC 29808 (United States)

    2007-10-31

    Lightweight complex hydrides have attracted attention for their high storage hydrogen capacity. NaAlH{sub 4} has been widely studied as a hydrogen storage material for its favorable reversible operating temperature and pressure range for automotive fuel cell applications. The increased understanding of NaAlH{sub 4} has led to an expanded search for high capacity materials in mixed alkali and akali/alkaline earth alanates. In this study, promising candidates in the Na-Li-Mg-Al-H system were evaluated using a combination of experimental chemistry, atomic modeling, and thermodynamic modeling. New materials were synthesized using solid state and solution based processing methods. Their hydrogen storage properties were measured experimentally, and the test results were compared with theoretical modeling assessments.

  3. Polarization of modified titanium and titanium–zirconium creates nano-structures while hydride formation is modulated

    Energy Technology Data Exchange (ETDEWEB)

    Frank, Matthias J.; Walter, Martin S. [Department of Biomaterials, Institute for Clinical Dentistry, University of Oslo, PO Box 1109 Blindern, NO-0317 Oslo (Norway); Institute of Medical and Polymer Engineering, Chair of Medical Engineering, Technische Universität München, Boltzmannstrasse 15, D-85748 Garching (Germany); Bucko, Miroslaw M. [Department of Ceramics and Refractory Materials, Faculty of Materials Science and Ceramics, AGH University of Science and Technology, Al Mickiewicza 30, 30-059 Krakow (Poland); Pamula, Elzbieta [Department of Biomaterials, Faculty of Materials Science and Ceramics, AGH University of Science and Technology, Al Mickiewicza 30, 30-059 Krakow (Poland); Lyngstadaas, S. Petter [Department of Biomaterials, Institute for Clinical Dentistry, University of Oslo, PO Box 1109 Blindern, NO-0317 Oslo (Norway); Haugen, Håvard J., E-mail: h.j.haugen@odont.uio.no [Department of Biomaterials, Institute for Clinical Dentistry, University of Oslo, PO Box 1109 Blindern, NO-0317 Oslo (Norway)

    2013-10-01

    The majority of titanium based bone-level dental implants available on the market today feature a sand-blasted and acid-etched (SBAE) surface that contains comparably high hydrogen levels. Cathodic polarization of titanium in acidic solutions is known to further increase titanium hydride on the surface. The aim of this study was to explore the effect of cathodic reduction on titanium (Ti) and titanium–zirconium (TiZr) with a SBAE surface in order to investigate the potential of such a process for further improving surfaces for bone anchored dental implants. Samples of both materials were cathodically polarized in acidic solution at different current densities and for different process times. Chemical analysis of the hydrogen levels by SIMS showed that cathodic reduction re-arranged the hydride already present on the surfaces from the etching process but could not significantly increase hydride levels. The hydrogen layer created by the preceding hot acid etching appeared to modulate further hydride creation. Analysis of the surface topography by SEM showed changes to the nano-topography of both materials after polarization. TiZr showed homogeneously distributed nano-spheres as they were already observed for TiZr SBAE at increased size of 80–100 nm on the whole surface. By contrast, polarization of Ti created nano-nodules and nano-spheres of 150–200 nm on the surface. These spheres were interconnected to form flower-like structures along the ridges and peaks of the surface. Moreover the flanks were covered by a rippled structure of isotropically distributed small-diameter (10–20 nm) nano-nodules.

  4. Hydride formation in core-shell alloyed metal nanoparticles

    Science.gov (United States)

    Zhdanov, Vladimir P.

    2016-07-01

    The model and analysis presented are focused on hydride formation in nanoparticles with a Pd shell and a core formed by another metal. The arrangement of metal atoms is assumed to be coherent (no dislocations). The lattice strain distribution, elastic energy, and chemical potential of hydrogen atoms are scrutinized. The slope of the chemical potential (as a function of hydrogen uptake) is demonstrated to decrease with increasing the core volume, and accordingly the critical temperature for hydride formation and the corresponding hysteresis loops are predicted to decrease as well.

  5. Hydrogen Desorption from Mg Hydride: An Ab Initio Study

    Directory of Open Access Journals (Sweden)

    Simone Giusepponi

    2012-07-01

    Full Text Available Hydrogen desorption from hydride matrix is still an open field of research. By means of accurate first-principle molecular dynamics (MD simulations an Mg–MgH2 interface is selected, studied and characterized. Electronic structure calculations are used to determine the equilibrium properties and the behavior of the surfaces in terms of structural deformations and total energy considerations. Furthermore, extensive ab-initio molecular dynamics simulations are performed at several temperatures to characterize the desorption process at the interface. The numerical model successfully reproduces the experimental desorption temperature for the hydride.

  6. Ab-initio study of transition metal hydrides

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, Ramesh [Dept. of Physics, Feroze Gandhi Insititute of Engineering and Technology, Raebareli-229001 (India); Shukla, Seema, E-mail: sharma.yamini62@gmail.com; Dwivedi, Shalini, E-mail: sharma.yamini62@gmail.com; Sharma, Yamini, E-mail: sharma.yamini62@gmail.com [Theoretical Condensed Matter Physics Laboratory, Dept. of Physics Feroze Gandhi College, Raebareli-229001 (India)

    2014-04-24

    We have performed ab initio self consistent calculations based on Full potential linearized augmented plane wave (FP-LAPW) method to investigate the optical and thermal properties of yttrium hydrides. From the band structure and density of states, the optical absorption spectra and specific heats have been calculated. The band structure of Yttrium metal changes dramatically due to hybridization of Y sp orbitals with H s orbitals and there is a net charge transfer from metal to hydrogen site. The electrical resistivity and specific heats of yttrium hydrides are lowered but the thermal conductivity is slightly enhanced due to increase in scattering from hydrogen sites.

  7. Anniversary Exhibition. Nechvolodov.

    Directory of Open Access Journals (Sweden)

    - -

    2006-03-01

    Full Text Available On the 10th of August, 2005 in Tartu (the second biggest educational and cultural city in Estonia Stanislav Nechvolodov's exhibition was opened to show the 5-year cycle of his work, traditional for the author and his admirers. At the opening ceremony Nechvolodov said that the exhibition was the last one and appointed on his 70th anniversary.The architectural and building society in Irkutsk remembers Stanislav Nechvolodov as an architect working on dwelling and civil buildings in 1960-70s. Below are some extracts from the Estonian press.«Postimees» newspaper, December 1993. The interview «Expressionistic naturalist, conservative Nechvolodov» by journalist Eric Linnumyagi. He asks about all the details and describes the troubles experienced by Nechvolodov during the perestroika period in Estonia, for example: the Tartu University refused to install the sculpture of Socrat, the art school refused to engage him as an instructor, the sculpture of Socrat moved to Vrotzlav, Poland, and Nechvolodov moved to Poland to read lectures there.«Tartu» newspaper, November 2000. Mats Oun, artist, says in the article «Nechvolodov: a man of Renaissance»: «Nechvolodov works in Estonia, his works are placed in many local and foreign museums. Regardless some insignificant faults, he deserves a high estimation, and his manysided open exhibition can be an example for other artists. He is a man of Renaissance».

  8. Phase Equilibria, Crystal Structure and Hydriding/Dehydriding Mechanism of Nd4Mg80Ni8 Compound.

    Science.gov (United States)

    Luo, Qun; Gu, Qin-Fen; Zhang, Jie-Yu; Chen, Shuang-Lin; Chou, Kuo-Chih; Li, Qian

    2015-10-16

    In order to find out the optimal composition of novel Nd-Mg-Ni alloys for hydrogen storage, the isothermal section of Nd-Mg-Ni system at 400 °C is established by examining the equilibrated alloys. A new ternary compound Nd4Mg80Ni8 is discovered in the Mg-rich corner. It has the crystal structure of space group I41/amd with lattice parameters of a = b = 11.2743(1) Å and c = 15.9170(2) Å, characterized by the synchrotron powder X-ray diffraction (SR-PXRD). High-resolution transmission electron microscopy (HR-TEM) is used to investigate the microstructure of Nd4Mg80Ni8 and its hydrogen-induced microstructure evolution. The hydrogenation leads to Nd4Mg80Ni8 decomposing into NdH2.61-MgH2-Mg2NiH0.3 nanocomposites, where the high density phase boundaries provide a great deal of hydrogen atoms diffusion channels and nucleation sites of hydrides, which greatly enhances the hydriding/dehydriding (H/D) properties. The Nd4Mg80Ni8 exhibits a good cycle ability. The kinetic mechanisms of H/D reactions are studied by Real Physical Picture (RPP) model. The rate controlling steps are diffusion for hydriding reaction in the temperature range of 100 ~ 350 °C and surface penetration for dehydriding reaction at 291 ~ 347 °C. In-situ SR-PXRD results reveal the phase transformations of Mg to MgH2 and Mg2Ni to Mg2NiH4 as functions of hydrogen pressure and hydriding time.

  9. Phase Equilibria, Crystal Structure and Hydriding/Dehydriding Mechanism of Nd4Mg80Ni8 Compound

    Science.gov (United States)

    Luo, Qun; Gu, Qin-Fen; Zhang, Jie-Yu; Chen, Shuang-Lin; Chou, Kuo-Chih; Li, Qian

    2015-10-01

    In order to find out the optimal composition of novel Nd-Mg-Ni alloys for hydrogen storage, the isothermal section of Nd-Mg-Ni system at 400 °C is established by examining the equilibrated alloys. A new ternary compound Nd4Mg80Ni8 is discovered in the Mg-rich corner. It has the crystal structure of space group I41/amd with lattice parameters of a = b = 11.2743(1) Å and c = 15.9170(2) Å, characterized by the synchrotron powder X-ray diffraction (SR-PXRD). High-resolution transmission electron microscopy (HR-TEM) is used to investigate the microstructure of Nd4Mg80Ni8 and its hydrogen-induced microstructure evolution. The hydrogenation leads to Nd4Mg80Ni8 decomposing into NdH2.61-MgH2-Mg2NiH0.3 nanocomposites, where the high density phase boundaries provide a great deal of hydrogen atoms diffusion channels and nucleation sites of hydrides, which greatly enhances the hydriding/dehydriding (H/D) properties. The Nd4Mg80Ni8 exhibits a good cycle ability. The kinetic mechanisms of H/D reactions are studied by Real Physical Picture (RPP) model. The rate controlling steps are diffusion for hydriding reaction in the temperature range of 100 ~ 350 °C and surface penetration for dehydriding reaction at 291 ~ 347 °C. In-situ SR-PXRD results reveal the phase transformations of Mg to MgH2 and Mg2Ni to Mg2NiH4 as functions of hydrogen pressure and hydriding time.

  10. In operando neutron diffraction study of LaNdMgNi9H13 as a metal hydride battery anode

    Science.gov (United States)

    Nazer, N. S.; Denys, R. V.; Yartys, V. A.; Hu, Wei-Kang; Latroche, M.; Cuevas, F.; Hauback, B. C.; Henry, P. F.; Arnberg, L.

    2017-03-01

    La2MgNi9-related alloys are superior metal hydride battery anodes as compared to the commercial AB5 alloys. Nd-substituted La2-yNdyMgNi9 intermetallics are of particular interest because of increased diffusion rate of hydrogen and thus improved performance at high discharge currents. The present work presents in operando characterization of the LaNdMgNi9 intermetallic as anode for the nickel metal hydride (Ni-MH) battery. We have studied the structural evolution of LaNdMgNi9 during its charge and discharge using in situ neutron powder diffraction. The work included experiments using deuterium gas and electrochemical charge-discharge measurements. The alloy exhibited a high electrochemical discharge capacity (373 mAh/g) which is 20% higher than the AB5 type alloys. A saturated β-deuteride synthesized by solid-gas reaction at PD2 = 1.6 MPa contained 12.9 deuterium atoms per formula unit (D/f.u.) which resulted in a volume expansion of 26.1%. During the electrochemical charging, the volume expansion (23.4%) and D-contents were found to be slightly reduced. The reversible electrochemical cycling is performed through the formation of a two-phase mixture of the α-solid solution and β-hydride phases. Nd substitution contributes to the high-rate dischargeability, while maintaining a good cyclic stability. Electrochemical Impedance Spectroscopy (EIS) was used to characterize the anode electrode on cycling. A mathematical model for the impedance response of a porous electrode was utilized. The EIS showed a decreased hydrogen transport rate during the long-term cycling, which indicated a corresponding slowing down of the electrochemical processes at the surface of the metal hydride anode.

  11. Exploring "aerogen-hydride" interactions between ZOF2 (Z = Kr, Xe) and metal hydrides: An ab initio study

    Science.gov (United States)

    Esrafili, Mehdi D.; Mohammadian-Sabet, Fariba

    2016-06-01

    In this work, a new σ-hole interaction formed between ZOF2 (Z = Kr and Xe) as the Lewis acid and a series of metal-hydrides HMX (M = Be, Mg, Zn and X = H, F, CN, CH3) is reported. The nature of this interaction, called "aerogen-hydride" interaction, is unveiled by molecular electrostatic potential, non-covalent interaction, quantum theory of atoms in molecules and natural bond orbital analyses. Our results indicate that the aerogen-hydride interactions are quite strong and can be comparable in strength to other σ-hole bonds. An important charge-transfer interaction is also associated with the formation of OF2Z⋯HMX complexes.

  12. Structural and magnetic properties of C15 HoMn{sub 2} hydrides

    Energy Technology Data Exchange (ETDEWEB)

    Budziak, A., E-mail: andrzej.budziak@ifj.edu.pl [H.Niewodniczanski Institute of Nuclear Physics PAN, ul. Radzikowskiego 152, 31-342 Krakow (Poland); Zachariasz, P. [Institute of Atomic Energy POLATOM, 05-400 Otwock-Swierk (Poland); Kolwicz-Chodak, L.; Figiel, H. [Faculty of Physics and Applied Computer Science, University of Science and Technology, Al. Mickiewicza 30, 30-059 Krakow (Poland); Pacyna, A. [H.Niewodniczanski Institute of Nuclear Physics PAN, ul. Radzikowskiego 152, 31-342 Krakow (Poland); Zukrowski, J. [Faculty of Physics and Applied Computer Science, University of Science and Technology, Al. Mickiewicza 30, 30-059 Krakow (Poland)

    2011-02-03

    Research highlights: > Full structural and magnetic phase diagrams are presented for the HoMn{sub 2}H{sub x}(0 < x {<=} 4.3) hydrides, where x = 4.3 is a typical maximal hydrogen concentration obtained for RMn{sub 2}H{sub x} (R: rare earth) under low pressure of H{sub 2} (ca {approx} 1 bar). > For x < {approx} 1.6: (1) The spinodal decompositions into two structurally different phases are observed. The lattice parameters of one of them correspond to those of the pure host HoMn{sub 2} material, while the lattice parameters of the other phase correspond to those of HoMn{sub 2}H{sub 1.6}. (2) Abundances of both phases change with hydrogen concentration x. (3) No intermediate phase appears, which is typical for other hydrides based on the C15 Laves phase type compounds (e.g. (Tb, Gd)Mn{sub 2}). Instead of that, structural transformations to monoclinic structures are observed. > For x = 2.5 splitting into two phases with different hydrogen concentrations x (x{sub 1} {approx} 2.3 and x{sub 2} {approx} 2.8) appears again, which was observed only for hydrides based on the C14 Laves phase type compounds (e.g. in (Sm, Er, Nd)Mn{sub 2}H{sub x}) in the range 2 < x < 3. > For samples with 2 < x < 2.2 no structural transformations are detected. > The effects of hydrogen absorption on structural properties are shown to be reflected in magnetic behavior. > A huge jump of magnetic ordering temperatures from {approx}24 K for HoMn{sub 2} to {approx} (200-380) K for its hydrides is observed. - Abstract: Powder samples of cubic HoMn{sub 2}H{sub x} hydrides, with 0 {<=} x {<=} 4.3, have been investigated by X-ray diffraction and AC/DC magnetometry as a function of temperature and external magnetic field. Hydrogen is demonstrated to strongly modify structural and magnetic properties. X-ray studies revealed many structural transformations placed at low temperatures. In particular, a transformation from the cubic to the monoclinic structure was detected, which so far has not been reported

  13. Chemical Hydride Slurry for Hydrogen Production and Storage

    Energy Technology Data Exchange (ETDEWEB)

    McClaine, Andrew W

    2008-09-30

    The purpose of this project was to investigate and evaluate the attractiveness of using a magnesium chemical hydride slurry as a hydrogen storage, delivery, and production medium for automobiles. To fully evaluate the potential for magnesium hydride slurry to act as a carrier of hydrogen, potential slurry compositions, potential hydrogen release techniques, and the processes (and their costs) that will be used to recycle the byproducts back to a high hydrogen content slurry were evaluated. A 75% MgH2 slurry was demonstrated, which was just short of the 76% goal. This slurry is pumpable and storable for months at a time at room temperature and pressure conditions and it has the consistency of paint. Two techniques were demonstrated for reacting the slurry with water to release hydrogen. The first technique was a continuous mixing process that was tested for several hours at a time and demonstrated operation without external heat addition. Further work will be required to reduce this design to a reliable, robust system. The second technique was a semi-continuous process. It was demonstrated on a 2 kWh scale. This system operated continuously and reliably for hours at a time, including starts and stops. This process could be readily reduced to practice for commercial applications. The processes and costs associated with recycling the byproducts of the water/slurry reaction were also evaluated. This included recovering and recycling the oils of the slurry, reforming the magnesium hydroxide and magnesium oxide byproduct to magnesium metal, hydriding the magnesium metal with hydrogen to form magnesium hydride, and preparing the slurry. We found that the SOM process, under development by Boston University, offers the lowest cost alternative for producing and recycling the slurry. Using the H2A framework, a total cost of production, delivery, and distribution of $4.50/kg of hydrogen delivered or $4.50/gge was determined. Experiments performed at Boston

  14. The influence of hydride on fracture toughness of recrystallized Zircaloy-4 cladding

    Energy Technology Data Exchange (ETDEWEB)

    Hsu, Hsiao-Hung, E-mail: 175877@mail.csc.com.tw [Institute of Nuclear Energy Research (INER), Lungtan Township, Taoyuan County 32546, Taiwan, ROC (China); China Steel Corporation, Hsiao Kang District, Kaohsiung 81233, Taiwan, ROC (China); Chiang, Ming-Feng [China Steel Corporation, Hsiao Kang District, Kaohsiung 81233, Taiwan, ROC (China); Chen, Yen-Chen [Institute of Nuclear Energy Research (INER), Lungtan Township, Taoyuan County 32546, Taiwan, ROC (China)

    2014-04-01

    In this work, RXA cladding tubes were hydrogen-charged to target hydrogen content levels between 150 and 800 wppm (part per million by weight). The strings of zirconium hydrides observed in the cross sections are mostly oriented in the circumferential direction. The fracture toughness of hydrided RXA Zircaloy-4 cladding was measured to evaluate its hydride embrittlement susceptibility. With increasing hydrogen content, the fracture toughness of hydrided RXA cladding decreases at both 25 °C and 300 °C. Moreover, highly localized hydrides (forming a hydride rim) aggravate the degradation of the fracture properties of RXA Zircaloy-4 cladding at both 25 °C and 300 °C. Brittle features in the form of quasi-cleavages and secondary cracks were observed on the fracture surface of the hydride rim, even for RXA cladding tested at 300 °C.

  15. Transition metal (Co, Ni) nanoparticles wrapped with carbon and their superior catalytic activities for the reversible hydrogen storage of magnesium hydride.

    Science.gov (United States)

    Huang, Xu; Xiao, Xuezhang; Zhang, Wei; Fan, Xiulin; Zhang, Liuting; Cheng, Changjun; Li, Shouquan; Ge, Hongwei; Wang, Qidong; Chen, Lixin

    2017-02-01

    Magnesium hydride (MgH2) exhibits long-term stability and has recently been developed as a safe alternative to store hydrogen in the solid state, due to its high capacity of 7.6 wt% H2 and low cost compared to other metal hydrides. However, the high activation energy and poor kinetics of MgH2 lead to inadequate hydrogen storage properties, resulting in low energy efficiency. Nano-catalysis is deemed to be the most effective strategy in improving the kinetics performance of hydrogen storage materials. In this work, robust and efficient architectures of carbon-wrapped transition metal (Co/C, Ni/C) nanoparticles (8-16 nm) were prepared and used as catalysts in the MgH2 system via ball milling to improve its de/rehydrogenation kinetics. Between the two kinds of nano-catalysts, the Ni/C nanoparticles exhibit a better catalytic efficiency. MgH2 doped with 6% Ni/C (MgH2-6%Ni/C) exhibits a peak dehydrogenation temperature of 275.7 °C, which is 142.7, 54.2 and 32.5 °C lower than that of commercial MgH2, milled MgH2 and MgH2 doped with 6% Co/C (MgH2-6%Co/C), respectively. MgH2 doped with 6% Ni/C can release about 6.1 wt% H2 at 250 °C. More importantly, the dehydrogenated MgH2-6%Ni/C is even able to uptake 5.0 wt% H2 at 100 °C within 20 s. Moreover, a cycling test of MgH2 doped with 8% Ni/C demonstrates its excellent hydrogen absorption/desorption stability with respect to both capacity (up to 6.5 wt%) and kinetics (within 8 min at 275 °C for dehydrogenation and within 10 s at 200 °C for rehydrogenation). Mechanistic research reveals that the in situ formed Mg2Ni and Mg2NiH4 nanoparticles can be regarded as advanced catalytically active species in the MgH2-Ni/C system. Meanwhile, the carbon attached around the surface of transition metal nanoparticles can successfully inhibit the aggregation of the catalysts and achieve the steadily, prompting de/rehydrogenation during the subsequent cycling process. The intrinsic catalytic effects and the uniform distributions of Mg2Ni

  16. Hydride-induced amplification of performance and binding enthalpies in chromium hydrazide gels for Kubas-type hydrogen storage.

    Science.gov (United States)

    Hamaed, Ahmad; Hoang, Tuan K A; Moula, Golam; Aroca, Ricardo; Trudeau, Michel L; Antonelli, David M

    2011-10-05

    Hydrogen is the ideal fuel because it contains the most energy per gram of any chemical substance and forms water as the only byproduct of consumption. However, storage still remains a formidable challenge because of the thermodynamic and kinetic issues encountered when binding hydrogen to a carrier. In this study, we demonstrate how the principal binding sites in a new class of hydrogen storage materials based on the Kubas interaction can be tuned by variation of the coordination sphere about the metal to dramatically increase the binding enthalpies and performance, while also avoiding the shortcomings of hydrides and physisorpion materials, which have dominated most research to date. This was accomplished through hydrogenation of chromium alkyl hydrazide gels, synthesized from bis(trimethylsilylmethyl) chromium and hydrazine, to form materials with low-coordinate Cr hydride centers as the principal H(2) binding sites, thus exploiting the fact that metal hydrides form stronger Kubas interactions than the corresponding metal alkyls. This led to up to a 6-fold increase in storage capacity at room temperature. The material with the highest capacity has an excess reversible storage of 3.23 wt % at 298 K and 170 bar without saturation, corresponding to 40.8 kg H(2)/m(3), comparable to the 2015 DOE system goal for volumetric density (40 kg/m(3)) at a safe operating pressure. These materials possess linear isotherms and enthalpies that rise on coverage, retain up to 100% of their adsorption capacities on warming from 77 to 298 K, and have no kinetic barrier to adsorption or desorption. In a practical system, these materials would use pressure instead of temperature as a toggle and can thus be used in compressed gas tanks, currently employed in the majority of hydrogen test vehicles, to dramatically increase the amount of hydrogen stored, and therefore range of any vehicle.

  17. Novel baker's yeast catalysed hydride reduction of an epoxide moiety

    CSIR Research Space (South Africa)

    Horak, RM

    1995-02-27

    Full Text Available -4039(95)00043-7 Tetrahedron Letters, Vol. 36, No. 9, pp. 1541-1544, 1995 Elsevier Science Ltd Printed in Great Britain 0040-4039/95 $9.50+0.00 A Novel Baker's Yeast Catalysed Hydride Reduction of an Epoxide Moiety R. Marthinus Horak, Robin A...

  18. Process of forming a sol-gel/metal hydride composite

    Science.gov (United States)

    Congdon, James W.

    2009-03-17

    An external gelation process is described which produces granules of metal hydride particles contained within a sol-gel matrix. The resulting granules are dimensionally stable and are useful for applications such as hydrogen separation and hydrogen purification. An additional coating technique for strengthening the granules is also provided.

  19. Hydrogen adsorption on palladium and palladium hydride at 1 bar

    DEFF Research Database (Denmark)

    Johansson, Martin; Skulason, Egill; Nielsen, Gunver

    2010-01-01

    The dissociative sticking probability for H-2 on Pd films supported on sputtered Highly Ordered Pyrolytic Graphite (HOPG) has been derived from measurements of the rate of the H-D exchange reaction at 1 bar. The sticking probability for H-2, S. is higher on Pd hydride than on Pd (a factor of 1...

  20. Optimization of Internal Cooling Fins for Metal Hydride Reactors

    Directory of Open Access Journals (Sweden)

    Vamsi Krishna Kukkapalli

    2016-06-01

    Full Text Available Metal hydride alloys are considered as a promising alternative to conventional hydrogen storage cylinders and mechanical hydrogen compressors. Compared to storing in a classic gas tank, metal hydride alloys can store hydrogen at nearly room pressure and use less volume to store the same amount of hydrogen. However, this hydrogen storage method necessitates an effective way to reject the heat released from the exothermic hydriding reaction. In this paper, a finned conductive insert is adopted to improve the heat transfer in the cylindrical reactor. The fins collect the heat that is volumetrically generated in LaNi5 metal hydride alloys and deliver it to the channel located in the center, through which a refrigerant flows. A multiple-physics modeling is performed to analyze the transient heat and mass transfer during the hydrogen absorption process. Fin design is made to identify the optimum shape of the finned insert for the best heat rejection. For the shape optimization, use of a predefined transient heat generation function is proposed. Simulations show that there exists an optimal length for the fin geometry.

  1. Superconductivity and unexpected chemistry of germanium hydrides under pressure

    Science.gov (United States)

    Davari Esfahani, M. Mahdi; Oganov, Artem R.; Niu, Haiyang; Zhang, Jin

    2017-04-01

    Following the idea that hydrogen-rich compounds might be high-Tc superconductors at high pressures, and the very recent breakthrough in predicting and synthesizing hydrogen sulfide with record-high Tc=203 K , an ab initio evolutionary algorithm for crystal structure prediction was employed to find stable germanium hydrides. In addition to the earlier structure of germane with space group Ama2, we propose a C2/m structure, which is energetically more favorable at pressures above 278 GPa (with inclusion of zero-point energy). Our calculations indicate that the C2/m phase of germane is a superconductor with Tc=67 K at 280 GPa. Germane is found to become thermodynamically unstable to decomposition to hydrogen and the compound Ge3H11 at pressures above 300 GPa. Ge3H11 with space group I 4 ¯m 2 is found to become stable at above 285 GPa with Tc=43 K . We find that the pressure-induced phase stability of germanium hydrides is distinct from analogous isoelectronic systems, e.g., Si hydrides and Sn hydrides. Superconductivity stems from large electron-phonon coupling associated with the wagging, bending, and stretching intermediate-frequency modes derived mainly from hydrogen.

  2. Structural stability of complex hydrides LiBH4 revisited

    DEFF Research Database (Denmark)

    Lodziana, Zbigniew; Vegge, Tejs

    2004-01-01

    A systematic approach to study the phase stability of LiBH4 based on ab initio calculations is presented. Three thermodynamically stable phases are identified and a new phase of Cc symmetry is proposed for the first time for a complex hydride. The x-ray diffraction pattern and vibrational spectra...

  3. Hydride encapsulation by molecular alkali-metal clusters.

    Science.gov (United States)

    Haywood, Joanna; Wheatley, Andrew E H

    2008-07-14

    The sequential treatment of group 12 and 13 Lewis acids with alkali-metal organometallics is well established to yield so-called ''ate' complexes, whereby the Lewis-acid metal undergoes nucleophilic attack to give an anion, at least one group 1 metal acting to counter this charge. However, an alternative, less well recognised, reaction pathway involves the Lewis acid abstracting hydride from the organolithium reagent via a beta-elimination mechanism. It has recently been shown that in the presence of N,N'-bidentate ligands this chemistry can be harnessed to yield a new type of molecular main-group metal cluster in which the abstracted LiH is effectively trapped, with the hydride ion occupying an interstitial site in the cluster core. Discussion focuses on the development of this field, detailing advances in our understanding of the roles of Lewis acid, organolithium, and amine substrates in the syntheses of these compounds. Structure-types are discussed, as are efforts to manipulate cluster geometry and composition as well as hydride-coordination. Embryonic mechanistic studies are reported, as well as attempts to generate hydride-encapsulation clusters under catalytic control.

  4. Optimizing Misch-Metal Compositions In Metal Hydride Anodes

    Science.gov (United States)

    Bugga, Ratnakumar V.; Halpert, Gerald

    1995-01-01

    Electrochemical cells based on metal hydride anodes investigated experimentally in effort to find anode compositions maximizing charge/discharge-cycle performances. Experimental anodes contained misch metal alloyed with various proportions of Ni, Co, Mn, and Al, and experiments directed toward optimization of composition of misch metal.

  5. Well-defined transition metal hydrides in catalytic isomerizations.

    Science.gov (United States)

    Larionov, Evgeny; Li, Houhua; Mazet, Clément

    2014-09-07

    This Feature Article intends to provide an overview of a variety of catalytic isomerization reactions that have been performed using well-defined transition metal hydride precatalysts. A particular emphasis is placed on the underlying mechanistic features of the transformations discussed. These have been categorized depending upon the nature of the substrate and in most cases discussed following a chronological order.

  6. Nanocrystalline Metal Hydrides Obtained by Severe Plastic Deformations

    Directory of Open Access Journals (Sweden)

    Jacques Huot

    2012-01-01

    Full Text Available It has recently been shown that Severe Plastic Deformation (SPD techniques could be used to obtain nanostructured metal hydrides with enhanced hydrogen sorption properties. In this paper we review the different SPD techniques used on metal hydrides and present some specific cases of the effect of cold rolling on the hydrogen storage properties and crystal structure of various types of metal hydrides such as magnesium-based alloys and body centered cubic (BCC alloys. Results show that generally cold rolling is as effective as ball milling to enhance hydrogen sorption kinetics. However, for some alloys such as TiV0.9Mn1.1 alloy ball milling and cold rolling have detrimental effect on hydrogen capacity. The exact mechanism responsible for the change in hydrogenation properties may not be the same for ball milling and cold rolling. Nevertheless, particle size reduction and texture seems to play a leading role in the hydrogen sorption enhancement of cold rolled metal hydrides.

  7. Metal hydrides for smart window and sensor applications

    NARCIS (Netherlands)

    Yoshimura, K.; Langhammer, C.; Dam, B.

    2013-01-01

    The hydrogenation of metals often leads to changes in optical properties in the visible range. This allows for fundamental studies of the hydrogenation process, as well as the exploration of various applications using these optical effects. Here, we focus on recent developments in metal hydride-base

  8. Tribochemical Decomposition of Light Ionic Hydrides at Room Temperature.

    Science.gov (United States)

    Nevshupa, Roman; Ares, Jose Ramón; Fernández, Jose Francisco; Del Campo, Adolfo; Roman, Elisa

    2015-07-16

    Tribochemical decomposition of magnesium hydride (MgH2) induced by deformation at room temperature was studied on a micrometric scale, in situ and in real time. During deformation, a near-full depletion of hydrogen in the micrometric affected zone is observed through an instantaneous (t MgH2 with reduced crystal size by mechanical deformation.

  9. KNH2-KH: a metal amide-hydride solid solution.

    Science.gov (United States)

    Santoru, Antonio; Pistidda, Claudio; Sørby, Magnus H; Chierotti, Michele R; Garroni, Sebastiano; Pinatel, Eugenio; Karimi, Fahim; Cao, Hujun; Bergemann, Nils; Le, Thi T; Puszkiel, Julián; Gobetto, Roberto; Baricco, Marcello; Hauback, Bjørn C; Klassen, Thomas; Dornheim, Martin

    2016-09-27

    We report for the first time the formation of a metal amide-hydride solid solution. The dissolution of KH into KNH2 leads to an anionic substitution, which decreases the interaction among NH2(-) ions. The rotational properties of the high temperature polymorphs of KNH2 are thereby retained down to room temperature.

  10. Facile synthesis of Ba1-xKxFe₂As₂ superconductors via hydride route

    Energy Technology Data Exchange (ETDEWEB)

    Zaikina, Julia V. [Univ. of California at Davis, Davis, CA (United States); Batuk, Maria [Univ. of Antwerp, Antwerp (Belgium); Abakumov, Artem M. [Univ. of Antwerp, Antwerp (Belgium); Navrotsky, Alexandra [Univ. of California at Davis, Davis, CA (United States); Kauzlarich, Susan M. [Univ. of California at Davis, Davis, CA (United States)

    2014-12-03

    We have developed a fast, easy, and scalable synthesis method for Ba1-xKxFe₂As₂ (0 ≤ x ≤ 1) superconductors using hydrides BaH₂ and KH as a source of barium and potassium metals. Synthesis from hydrides provides better mixing and easier handling of the starting materials, consequently leading to faster reactions and/or lower synthesis temperatures. The reducing atmosphere provided by the evolved hydrogen facilitates preparation of oxygen-free powders. By a combination of methods we have shown that Ba1-xKxFe₂As₂ obtained via hydride route has the same characteristics as when it is prepared by traditional solid-state synthesis. Refinement from synchrotron powder X-ray diffraction data confirms a linear dependence of unit cell parameters upon K content as well as the tetragonal to orthorhombic transition at low temperatures for compositions with x < 0.2. Magnetic measurements revealed dome-like dependence of superconducting transition temperature Tc upon K content with a maximum of 38 K for x close to 0.4. Electron diffraction and high-resolution high-angle annular dark-field scanning transmission electron microscopy indicates an absence of Ba/K ordering, while local inhomogeneity in the Ba/K distribution takes place at a scale of several angstroms along [110] crystallographic direction.

  11. Flow injection on-line solid phase extraction for ultra-trace lead screening with hydride generation atomic fluorescence spectrometry.

    Science.gov (United States)

    Wan, Zhuo; Xu, Zhangrun; Wang, Jianhua

    2006-01-01

    A flow injection (FI) on-line solid phase extraction (SPE) procedure for ultra-trace lead separation and preconcentration was developed, followed by hydride generation and atomic fluorescence spectrometric (AFS) detection. Lead is retained on an iminodiacetate chelating resin packed microcolumn, and is afterward eluted with 2.5% (v/v) hydrochloric acid to facilitate the hydride generation by reaction with alkaline tetrahydroborate solution with 1% (m/v) potassium ferricyanide as an oxidizing (or sensitizing) reagent. The hydride was separated from the reaction medium in the gas-liquid separator and swept into the atomizer for quantification. The chemical variables and the FI flow parameters were carefully optimized. With a sample loading volume of 4.8 ml, quantitative retention of lead was obtained, along with an enrichment factor of 11.3 and a sampling frequency of 50 h(-1). A detection limit of 4 ng l(-1), defined as 3 times the blank standard deviation (3 sigma), was achieved along with a RSD value of 1.6% at the 0.4 microg l(-1) level. The procedure was validated by determining lead contents in two certified reference materials, and its practical applicability was further demonstrated by analysing a variety of biological and environmental samples.

  12. Ultratrace determination of tin by hydride generation in-atomizer trapping atomic absorption spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Průša, Libor [Institute of Analytical Chemistry of the ASCR, v. v. i., Veveří 97, 602 00 Brno (Czech Republic); Charles University in Prague, Faculty of Science, Department of Analytical Chemistry, Hlavova 8, Prague 2, CZ 128 43 Czech Republic (Czech Republic); Dědina, Jiří [Institute of Analytical Chemistry of the ASCR, v. v. i., Veveří 97, 602 00 Brno (Czech Republic); Kratzer, Jan, E-mail: jkratzer@biomed.cas.cz [Institute of Analytical Chemistry of the ASCR, v. v. i., Veveří 97, 602 00 Brno (Czech Republic)

    2013-12-04

    Graphical abstract: -- Highlights: •In-atomizer trapping HG-AAS was optimized for Sn. •A compact quartz trap-and-atomizer device was employed. •Generation, preconcentration and atomization steps were investigated in detail. •Hundred percent preconcentration efficiency for tin was reached. •Routine analytical method was developed for Sn determination (LOD of 0.03 ng mL{sup −1} Sn). -- Abstract: A quartz multiatomizer with its inlet arm modified to serve as a trap (trap-and-atomizer device) was employed to trap tin hydride and subsequently to volatilize collected analyte species with atomic absorption spectrometric detection. Generation, atomization and preconcentration conditions were optimized and analytical figures of merit of both on-line atomization as well as preconcentration modes were quantified. Preconcentration efficiency of 95 ± 5% was found. The detection limits reached were 0.029 and 0.14 ng mL{sup −1} Sn, respectively, for 120 s preconcentration period and on-line atomization mode without any preconcentration. The interference extent of other hydride forming elements (As, Se, Sb and Bi) on tin determination was found negligible in both modes of operation. The applicability of the developed preconcentration method was verified by Sn determination in a certified reference material as well as by analysis of real samples.

  13. EXPERIMENTAL RESULTS FOR THE ISOTOPIC EXCHANGE OF A 1600 LITER TITANIUM HYDRIDE STORAGE VESSEL

    Energy Technology Data Exchange (ETDEWEB)

    Klein, J.

    2010-12-14

    Titanium is used as a low pressure tritium storage material. The absorption/desorption rates and temperature rise during air passivation have been reported previously for a 4400 gram prototype titanium hydride storage vessel (HSV). A desorption limit of roughly 0.25 Q/M was obtained when heating to 700 C which represents a significant residual tritium process vessel inventory. To prepare an HSV for disposal, batchwise isotopic exchange has been proposed to reduce the tritium content to acceptable levels. A prototype HSV was loaded with deuterium and exchanged with protium to determine the effectiveness of a batch-wise isotopic exchange process. A total of seven exchange cycles were performed. Gas samples were taken nominally at the beginning, middle, and end of each desorption cycle. Sample analyses showed the isotopic exchange process does not follow the standard dilution model commonly reported. Samples taken at the start of the desorption process were lower in deuterium (the gas to be removed) than those taken later in the desorption cycle. The results are explained in terms of incomplete mixing of the exchange gas in the low pressure hydride.

  14. A Novel Zr-1Nb Alloy and a New Look at Hydriding

    Energy Technology Data Exchange (ETDEWEB)

    Robert D. Mariani; James I. Cole; Assel Aitkaliyeva

    2013-09-01

    A novel Zr-1Nb has begun development based on a working model that takes into account the hydrogen permeabilities for zirconium and niobium metals. The beta-Nb secondary phase particles (SPPs) in Zr-1Nb are believed to promote more rapid hydrogen dynamics in the alloy in comparison to other zirconium alloys. Furthermore, some hydrogen release is expected at the lower temperatures corresponding to outages when the partial pressure of H2 in the coolant is less. These characteristics lessen the negative synergism between corrosion and hydriding that is otherwise observed in cladding alloys without niobium. In accord with the working model, development of nanoscale precursors was initiated to enhance the performance of existing Zr-1Nb alloys. Their characteristics and properties can be compared to oxide-dispersion strengthened alloys, and material additions have been proposed to zirconium-based LWR cladding to guard further against hydriding and to fix the size of the SPPs for microstructure stability enhancements. A preparative route is being investigated that does not require mechanical alloying, and 10 nanometer molybdenum particles have been prepared which are part of the nanoscale precursors. If successful, the approach has implications for long term dry storage of used fuel and for new routes to nanoferritic and ODS alloys.

  15. Atoms and Nanoparticles of Transition Metals as Catalysts for Hydrogen Desorption from Magnesium Hydride

    Directory of Open Access Journals (Sweden)

    N. Bazzanella

    2011-01-01

    Full Text Available The hydrogen desorption kinetics of composite materials made of magnesium hydride with transition metal additives (TM: Nb, Fe, and Zr was studied by several experimental techniques showing that (i a few TM at.% concentrations catalyse the H2 desorption process, (ii the H2 desorption kinetics results stabilized after a few H2 sorption cycles when TM atoms aggregate by forming nanoclusters; (iii the catalytic process occurs also at TM concentration as low as 0.06 at.% when TM atoms clustering is negligible, and (iv mixed Fe and Zr additives produce faster H2 desorption kinetics than single additive. The improved H2 desorption kinetics of the composite materials can be explained by assuming that the interfaces between the MgH2 matrix and the TM nanoclusters act as heterogeneous sites for the nucleation of the Mg phase in the MgH2 matrix and promote the formation of fast diffusion channels for H migrating atoms.

  16. 2005 Fairs & Exhibitions in China

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    @@ Harbin China International Winter Goods Exhibition DATE: Jan. 5-9 FREQUENCY: Annual FOUNDED TIME: Dec. 2001 VENUE: Harbin China International Conference & Exhibition Center EXHIBITS: winter sports goods and outdoor devices

  17. Allestimenti museali, mostre e aura dei materiali tra le due guerre nel pensiero di Amedeo Maiuri / Museum displays, exhibitions and aura of materials between WWI and the WWII in Amedeo Maiuri’s thinking

    Directory of Open Access Journals (Sweden)

    Gabriella Prisco

    2016-12-01

    use of images, archival documents and antique texts, particularly with regard to what is illustrated in the same Maiuri contributions dedicated to individual installations, but above all in the report prepared on the occasion of the Madrid Conference of 1934 dedicated to the museums. This study reveals a portrait of a Maiuri well informed on the latest trends on the subject, some of which – such as dual path dedicated one to the general public and the other to scholars, the reduction of the objects to be exhibited, the clearing of the walls – he applied consistently, within arrangements where you may catch an echo of the environment museums. In its participation in two major exhibitions (“Augustea della Romanità” and “Prima Mostra Triennale delle Terre Italiane d’Oltremare” where protagonist was the archeology, finally it seizes an attachment to the display of the original, which contrasts with the prevailing will of the era to abdicate to the aura of materials in favor of more free equipment, but also more bent to the needs of propaganda, up to confl ict with the very foundations of the archaeological discipline in which Maiuri was a distinguished representative.

  18. Photorechargeable Properties of Metal Hydride-SrTiO3 Electrode

    Institute of Scientific and Technical Information of China (English)

    Wen Kui ZHANG; Xi Li TONG; Hui HUANG; Yong Ping GAN; Na HUANG

    2005-01-01

    A photosensitive metal hydride electrode was prepared by modification with perovskite-type SrTiO3 photocatalyst. The photorechargeable properties of the prepared electrodes were investigated by using electrochemical cyclic voltammetry and EIS measurements. The results showed that the modified electrode exhibited the obvious photorechargeable properties. The reduction current increased remarkably under the xeon light irradiation compared with the unmodified electrode. During the photocharging process, the potential of the modified electrode shifted quickly to negative direction and a potential plateau of about -0.90V (vs. Hg/HgO) occurred at the end of light irradiation. The corresponding discharge capacity of the electrode was about 5.4mAh/g.

  19. Hydride structures in Ti-aluminides subjected to high temperature and hydrogen pressure charging conditions

    Science.gov (United States)

    Legzdina, D.; Robertson, I. M.; Birnbaum, H. K.

    1991-01-01

    The distribution and chemistry of hydrides produced in single and dual phase alloys with a composition near TiAl have been investigated by using a combination of TEM and X-ray diffraction techniques. The alloys were exposed at 650 C to 13.8 MPa of gaseous H2 for 100 h. In the single-phase gamma alloy, large hydrides preferentially nucleated on the grain boundaries and matrix dislocations and a population of small hydrides was distributed throughout the matrix. X-ray and electron diffraction patterns from these hydrides indicated that they have an fcc structure with a lattice parameter of 0.45 nm. EDAX analysis of the hydrides showed that they were enriched in Ti. The hydrides were mostly removed by vacuum annealing at 800 C for 24 h. On dissolution of the hydrides, the chemistry of hydride-free regions of the grain boundary returned to the matrix composition, suggesting that Ti segregation accompanied the hydride formation rather than Ti enrichment causing the formation of the hydride.

  20. Hydriding performances and modeling of a small-scale ZrCo bed

    Energy Technology Data Exchange (ETDEWEB)

    Koo, D.; Lee, J.; Park, J.; Paek, S.; Chung, H. [KAERI-UST, Yuseong, Daejeon (Korea, Republic of); Chang, M.H.; Yun, S.H.; Cho, S.; Jung, K.J. [NFRI, Yuseong, Daejeon (Korea, Republic of)

    2015-03-15

    In order to evaluate the performance of the hydriding of a ZrCo bed, a small-scale getter bed of ZrCo was designed and fabricated. The results show that the hydriding time at room temperature was somewhat shorter than that at higher temperatures of ZrCo and that the performance of hydriding at low temperatures of ZrCo was better than that at high temperatures of ZrCo. The experimental results of the hydrogen pressure of hydriding (ZrCoH{sub 2.8}) at different temperatures were in agreement with the computed values using a numerical modeling equation but with a small difference during the first 10 minutes of the hydriding of ZrCo. The model is based on the Kozeny-Carman equation. The effect of a helium blanket on hydriding was measured and analyzed. The hydriding with no helium blanket in the primary vessel of ZrCo is much faster than that with a helium blanket. The hydriding at a helium concentration of 8% is slower than that at 0%. As the helium concentration increases, the hydriding of ZrCo decreases. The experimental results of the hydriding with 0 %, 4%, and 8% of helium concentration are in agreement with the calculated values but with minimal differences during the first 10 minutes.

  1. Production and characterization of thin film group IIIB, IVB and rare earth hydrides by reactive evaporation

    Energy Technology Data Exchange (ETDEWEB)

    Provo, James L., E-mail: jlprovo@verizon.net [Consultant, J.L. Provo Consulting, Trinity, Florida 34655-7179 (United States)

    2015-07-15

    A recent short history of reactive evaporation by D. M. Mattox [History Corner—A Short History of Reactive Evaporation, SVC Bulletin (Society of Vacuum Coaters, Spring 2014), p. 50–51] describes various methods for producing oxides, nitrides, carbides, and some compounds, but hydrides were not mentioned. A study was performed in the mid-1970s at the General Electric Company Neutron Devices Department in Largo, FL, by the author to study preparation of thin film hydrides using reactive evaporation and to determine their unique characteristics and properties. Films were produced of scandium (Sc), yttrium (Y), titanium (Ti), zirconium (Zr), and the rare earth praseodymium (Pr), neodymium (Nd), gadolinium (Gd), dysprosium (Dy), and erbium (Er) hydrides by hot crucible filament and electron beam evaporation in atmospheres of deuterium and tritium gases. All-metal vacuum systems were used and those used with tritium were dedicated for this processing. Thin film test samples 1000 nm thick were prepared on 1.27 cm diameter molybdenum disk substrates for each occluder (i.e., an element that can react with hydrogen to form a hydride) material. Loading characteristics as determined by gas-to-metal atomic ratios, oxidation characteristics as determined by argon–sputter Auger analysis, film structure as determined by scanning electron microscope analysis, and film stress properties as determined by a double resonator technique were used to define properties of interest. Results showed hydrogen-to-metal atomic ratios varied from 1.5 to 2.0 with near maximum loading for all but Pr and Nd occluders which correlated with the oxidation levels observed, with all occluder oxidation levels being variable due to vacuum system internal processing conditions and the materials used. Surface oxide levels varied from ∼80 Å to over 1000 Å. For most films studied, results showed that a maximum loading ratio of near 2.0 and a minimum surface oxide level of ∼80 Å could be

  2. SSH2S: Hydrogen storage in complex hydrides for an auxiliary power unit based on high temperature proton exchange membrane fuel cells

    Science.gov (United States)

    Baricco, Marcello; Bang, Mads; Fichtner, Maximilian; Hauback, Bjorn; Linder, Marc; Luetto, Carlo; Moretto, Pietro; Sgroi, Mauro

    2017-02-01

    The main objective of the SSH2S (Fuel Cell Coupled Solid State Hydrogen Storage Tank) project was to develop a solid state hydrogen storage tank based on complex hydrides and to fully integrate it with a High Temperature Proton Exchange Membrane (HT-PEM) fuel cell stack. A mixed lithium amide/magnesium hydride system was used as the main storage material for the tank, due to its high gravimetric storage capacity and relatively low hydrogen desorption temperature. The mixed lithium amide/magnesium hydride system was coupled with a standard intermetallic compound to take advantage of its capability to release hydrogen at ambient temperature and to ensure a fast start-up of the system. The hydrogen storage tank was designed to feed a 1 kW HT-PEM stack for 2 h to be used for an Auxiliary Power Unit (APU). A full thermal integration was possible thanks to the high operation temperature of the fuel cell and to the relative low temperature (170 °C) for hydrogen release from the mixed lithium amide/magnesium hydride system.

  3. Effect of amorphous Mg{sub 50}Ni{sub 50} on hydriding and dehydriding behavior of Mg{sub 2}Ni alloy

    Energy Technology Data Exchange (ETDEWEB)

    Guzman, D., E-mail: danny.guzman@uda.cl [Departamento de Ingenieria en Metalurgia, Facultad de Ingenieria, Universidad de Atacama y Centro Regional de Investigacion y Desarrollo Sustentable de Atacama (CRIDESAT), Av. Copayapu 485, Copiapo (Chile); Ordonez, S. [Departamento de Ingenieria Metalurgica, Facultad de Ingenieria, Universidad de Santiago de Chile, Av. Lib. Bernardo O' Higgins 3363, Santiago (Chile); Fernandez, J.F.; Sanchez, C. [Departamento de Fisica de Materiales, Facultad de Ciencias, Universidad Autonoma de Madrid, Cantoblanco 28049, Madrid (Spain); Serafini, D. [Departamento de Fisica, Facultad de Ciencias, Universidad de Santiago de Chile and Center for Interdisciplinary Research in Materials, CIMAT, Av. Lib. Bernardo O' Higgins 3363, Santiago (Chile); Rojas, P.A. [Escuela de Ingenieria Mecanica, Facultad de Ingenieria, Av. Los Carrera 01567, Quilpue, Pontificia Universidad Catolica de Valparaiso, PUCV (Chile); Aguilar, C. [Departamento de Ingenieria Metalurgica y Materiales, Universidad Tecnica Federico Santa Maria, Av. Espana 1680, Valparaiso (Chile); Tapia, P. [Departamento de Ingenieria en Metalurgia, Facultad de Ingenieria, Universidad de Atacama, Av. Copayapu 485, Copiapo (Chile)

    2011-04-15

    Composite Mg{sub 2}Ni (25 wt.%) amorphous Mg{sub 50}Ni{sub 50} was prepared by mechanical milling starting with nanocrystalline Mg{sub 2}Ni and amorphous Mg{sub 50}Ni{sub 50} powders, by using a SPEX 8000 D mill. The morphological and microstructural characterization of the powders was performed via scanning electron microscopy and X-ray diffraction. The hydriding characterization of the composite was performed via a solid gas reaction method in a Sievert's-type apparatus at 363 K under an initial hydrogen pressure of 2 MPa. The dehydriding behavior was studied by differential thermogravimetry. On the basis of the results, it is possible to conclude that amorphous Mg{sub 50}Ni{sub 50} improved the hydriding and dehydriding kinetics of Mg{sub 2}Ni alloy upon cycling. A tentative rationalization of experimental observations is proposed. - Research Highlights: {yields} First study of the hydriding behavior of composite Mg{sub 2}Ni (25 wt.%) amorphous Mg{sub 50}Ni{sub 50}. {yields} Microstructural characterization of composite material using XRD and SEM was obtained. {yields} An improved effect of Mg{sub 50}Ni{sub 50} on the Mg{sub 2}Ni hydriding behavior was verified. {yields} The apparent activation energy for the hydrogen desorption of composite was obtained.

  4. Dissociation potential curves of low-lying states in transition metal hydrides. 3. Hydrides of groups 6 and 7.

    Science.gov (United States)

    Koseki, Shiro; Matsushita, Takeshi; Gordon, Mark S

    2006-02-23

    The dissociation curves of low-lying spin-mixed states in monohydrides of groups 6 and 7 were calculated by using an effective core potential (ECP) approach. This approach is based on the multiconfiguration self-consistent field (MCSCF) method, followed by first-order configuration interaction (FOCI) calculations, in which the method employs an ECP basis set proposed by Stevens and co-workers (SBKJC) augmented by a set of polarization functions. Spin-orbit coupling (SOC) effects are estimated within the one-electron approximation by using effective nuclear charges, since SOC splittings obtained with the full Breit-Pauli Hamitonian are underestimated when ECP basis sets are used. The ground states of group 6 hydrides have Omega = (1)/(2)(X(6)Sigma(+)(1/2)), where Omega is the z component of the total angular momentum quantum number. Although the ground states of group 7 hydrides have Omega = 0(+), their main adiabatic components are different; the ground state in MnH originates from the lowest (7)Sigma(+), while in TcH and ReH the main component of the ground state is the lowest (5)Sigma(+). The present paper reports a comprehensive set of theoretical results including the dissociation energies, equilibrium distances, electronic transition energies, harmonic frequencies, anharmonicities, and rotational constants for several low-lying spin-mixed states in these hydrides. Transition dipole moments were also computed among the spin-mixed states and large peak positions of electronic transitions are suggested theoretically for these hydrides. The periodic trends of physical properties of metal hydrides are discussed, based on the results reported in this and other recent studies.

  5. Hydrogen storage properties of Mg-Ni-Fe composites prepared by hydriding combustion synthesis and mechanical milling

    Energy Technology Data Exchange (ETDEWEB)

    Zhu Yunfeng, E-mail: yfzhu@njut.edu.cn [College of Materials Science and Engineering, Nanjing University of Technology, Nanjing 210009 (China); Yang Yang; Wei Lingjun; Zhao Zelun; Li Liquan [College of Materials Science and Engineering, Nanjing University of Technology, Nanjing 210009 (China)

    2012-04-15

    Highlights: Black-Right-Pointing-Pointer Mg-Ni-Fe composite was prepared by the process of HCS + MM. Black-Right-Pointing-Pointer Fe is favorable to grain and particle refinement of the composite. Black-Right-Pointing-Pointer Mg-Ni-Fe composite exhibits superior hydrogen storage properties. Black-Right-Pointing-Pointer Mg{sub 2}Ni and Fe have synergistic catalysis on hydrogen storage properties. - Abstract: We reported the structures and superior hydrogen storage properties of the composites Mg{sub 90}Ni{sub 10-x}Fe{sub x} (x = 0, 2, 4, 6 and 8) prepared by the process of HCS + MM, i.e., the hydriding combustion synthesis followed by mechanical milling. By means of X-ray diffraction (XRD), scanning electron microscopy (SEM) with an energy dispersive X-ray spectrometer (EDX) and gas reaction controller (GRC), the crystal structures, surface morphologies and hydriding/dehydriding properties of the composites were studied in detail. The Mg{sub 90}Ni{sub 10-x}Fe{sub x} (x = 2, 4, 6 and 8) composites consist of MgH{sub 2}, Mg, Mg{sub 2}NiH{sub 4}, Mg{sub 2}NiH{sub 0.3} and Fe phases, while Mg{sub 90}Ni{sub 10} is composed of MgH{sub 2}, Mg, Mg{sub 2}NiH{sub 4} and Mg{sub 2}NiH{sub 0.3}. It is found that Mg{sub 90}Ni{sub 2}Fe{sub 8} has the best hydriding properties, requiring only 30 s to absorb 97% of its saturated hydrogen capacity of 4.80 wt.% at 373 K. The best dehydriding result is obtained with Mg{sub 90}Ni{sub 8}Fe{sub 2}, which desorbs 2.02 and 4.40 wt.% hydrogen at 493 and 523 K, respectively. The microstructures of the composites prepared by HCS + MM have remarkable influences on the enhanced hydriding/dehydriding properties. In addition, the catalytic effects of Mg{sub 2}Ni and Fe phases during hydriding/dehydriding were discussed in this study.

  6. Heavy hydrides: H2Te ultraviolet photochemistry

    Science.gov (United States)

    Underwood, J.; Chastaing, D.; Lee, S.; Wittig, C.

    2005-08-01

    The room-temperature ultraviolet absorption spectrum of H2Te has been recorded. Unlike other group-6 hydrides, it displays a long-wavelength tail that extends to 400 nm. Dissociation dynamics have been examined at photolysis wavelengths of 266 nm (which lies in the main absorption feature) and 355 nm (which lies in the long-wavelength tail) by using high-n Rydberg time-of-flight spectroscopy to obtain center-of-mass translational energy distributions for the channels that yield H atoms. Photodissociation at 355 nm yields TeH(Π1/22) selectively relative to the TeH(Π3/22) ground state. This is attributed to the role of the 3A' state, which has a shallow well at large RH-TeH and correlates to H +TeH(Π1/22). Note that the Π1/22 state is analogous to the P1/22 spin-orbit excited state of atomic iodine, which is isoelectronic with TeH. The 3A' state is crossed at large R only by 2A″, with which it does not interact. The character of 3A' at large R is influenced by a strong spin-orbit interaction in the TeH product. Namely, Π1/22 has a higher degree of spherical symmetry than does Π3/22 (recall that I(P1/22) is spherically symmetric), and consequently Π1/22 is not inclined to form either strongly bonding or antibonding orbitals with the H atom. The 3A'←X transition dipole moment dominates in the long-wavelength region and increases with R. Structure observed in the absorption spectrum in the 380-400 nm region is attributed to vibrations on 3A'. The main absorption feature that is peaked at ˜240nm might arise from several excited surfaces. On the basis of the high degree of laboratory system spatial anisotropy of the fragments from 266 nm photolysis, as well as high-level theoretical studies, the main contribution is believed to be due to the 4A″ surface. The 4A″←X transition dipole moment dominates in the Franck-Condon region, and its polarization is in accord with the experimental observations. An extensive secondary photolysis (i.e., of nascent TeH) is

  7. Complex transition metal hydrides incorporating ionic hydrogen: Synthesis and characterization of Na{sub 2}Mg{sub 2}FeH{sub 8} and Na{sub 2}Mg{sub 2}RuH{sub 8}

    Energy Technology Data Exchange (ETDEWEB)

    Humphries, Terry D., E-mail: terry_humphries81@hotmail.com [WPI-Advanced Institute for Materials Research, Tohoku University, Sendai 980-8577 (Japan); Takagi, Shigeyuki; Li, Guanqiao; Matsuo, Motoaki; Sato, Toyoto [Institute for Materials Research, Tohoku University, Sendai 980-8577 (Japan); Sørby, Magnus H.; Deledda, Stefano; Hauback, Bjørn C. [Physics Department, Institute for Energy Technology, Kjeller NO-2027 (Norway); Orimo, Shin-ichi [WPI-Advanced Institute for Materials Research, Tohoku University, Sendai 980-8577 (Japan); Institute for Materials Research, Tohoku University, Sendai 980-8577 (Japan)

    2015-10-05

    Highlights: • Structures of Na{sub 2}Mg{sub 2}FeH{sub 8} and Na{sub 2}Mg{sub 2}RuH{sub 8} have been determined by XRD and PND. • Compounds incorporate independently coordinated ionic and covalent hydrogen. • [TH{sub 6}]{sup 4−} anion is surrounded by a cubic array of four Mg{sup 2+} and four Na{sup +} cations. • H{sup −} anions are octahedrally coordinated by four Na{sup +} and two Mg{sup 2+} cations. • Vibrational modes of the H{sup −} anions and complex hydride anion are observed. - Abstract: A new class of quaternary complex transition metal hydrides (Na{sub 2}Mg{sub 2}TH{sub 8} (T = Fe, Ru)) have been synthesized and their structures determined by combined synchrotron radiation X-ray and powder neutron diffraction. The compounds can be considered as a link between ionic and complex hydrides in terms of incorporating independently coordinated ionic and covalent hydrogen. These novel isostructural complex transition metal hydrides crystallize in the orthorhombic space group Pbam, where the octahedral complex hydride anion is surrounded by a cubic array of four Mg{sup 2+} and four Na{sup +} cations, forming distinct two-dimensional layers. An intriguing feature of these materials is the distorted octahedral coordination of the isolated H{sup −} anions by four Na{sup +} and two Mg{sup 2+} cations, which form layers between the transition metal containing layers. The vibrational modes of the H{sup −} anions and complex hydride anion are independently observed for the first time in a quaternary complex transition metal hydride system by Raman and IR spectroscopy.

  8. [All-Russian hygienic exhibitions and museums].

    Science.gov (United States)

    Kuzybaeva, M P

    2011-01-01

    The material about the popularization of hygiene and health education in Russia in the second half of the 19th century to early 20th century through exhibition and museum activities has been collected for the first time and analyzed in the paper. The role of scientists and scientific medical societies in this process is noted. The significance of museum and exhibition activities in this area for the development of medical science is defined.

  9. Effect of thermo-mechanical cycling on zirconium hydride reorientation studied in situ with synchrotron X-ray diffraction

    Science.gov (United States)

    Colas, Kimberly B.; Motta, Arthur T.; Daymond, Mark R.; Almer, Jonathan D.

    2013-09-01

    The circumferential hydrides normally present in nuclear reactor fuel cladding after reactor exposure may dissolve during drying for dry storage and re-precipitate when cooled under load into a more radial orientation, which could embrittle the fuel cladding. It is necessary to study the rates and conditions under which hydride reorientation may happen in order to assess fuel integrity in dry storage. The objective of this work is to study the effect of applied stress and thermal cycling on the hydride morphology in cold-worked stress-relieved Zircaloy-4 by combining conventional metallography and in situ X-ray diffraction techniques. Metallography is used to study the evolution of hydride morphology after several thermo-mechanical cycles. In situ X-ray diffraction performed at the Advanced Photon Source synchrotron provides real-time information on the process of hydride dissolution and precipitation under stress during several thermal cycles. The detailed study of diffracted intensity, peak position and full-width at half-maximum provides information on precipitation kinetics, elastic strains and other characteristics of the hydride precipitation process. The results show that thermo-mechanical cycling significantly increases the radial hydride fraction as well as the hydride length and connectivity. The radial hydrides are observed to precipitate at a lower temperature than circumferential hydrides. Variations in the magnitude and range of hydride strains due to reorientation and cycling have also been observed. These results are discussed in light of existing models and experiments on hydride reorientation. The study of hydride elastic strains during precipitation shows marked differences between circumferential and radial hydrides, which can be used to investigate the reorientation process. Cycling under stress above the threshold stress for reorientation drastically increases both the reoriented hydride fraction and the hydride size. The reoriented hydride

  10. Oxidation of Group 8 transition-Metal Hydrides and Ionic Hydrogenation of Ketones and Aldehydes

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Kjell-Tore

    1996-08-01

    Transition-metal hydrides have received considerable attention during the last decades because of their unusual reactivity and their potential as homogeneous catalysts for hydrogenation and other reactions of organic substrates. An important class of catalytic processes where transition-metal hydrides are involved is the homogeneous hydrogenation of alkenes, alkynes, ketones, aldehydes, arenes and nitro compounds. This thesis studies the oxidation of Group 8 transition-metal hydrides and the ionic hydrogenation of ketones and aldehydes.

  11. Orbital-like motion of hydride ligands around low-coordinate metal centers.

    Science.gov (United States)

    Ortuño, Manuel A; Vidossich, Pietro; Conejero, Salvador; Lledós, Agustí

    2014-12-15

    Hydrogen atoms in the coordination sphere of a transition metal are highly mobile ligands. Here, a new type of dynamic process involving hydrides has been characterized by computational means. This dynamic event consists of an orbital-like motion of hydride ligands around low-coordinate metal centers containing N-heterocyclic carbenes. The hydride movement around the carbene-metal-carbene axis is the lowest energy mode connecting energy equivalent isomers. This understanding provides crucial information for the interpretation of NMR spectra.

  12. Neutral binuclear rare-earth metal complexes with four μ₂-bridging hydrides.

    Science.gov (United States)

    Rong, Weifeng; He, Dongliang; Wang, Meiyan; Mou, Zehuai; Cheng, Jianhua; Yao, Changguang; Li, Shihui; Trifonov, Alexander A; Lyubov, Dmitrii M; Cui, Dongmei

    2015-03-25

    The first neutral rare-earth metal dinuclear dihydrido complexes [(NPNPN)LnH2]2 (2-Ln; Ln = Y, Lu; NPNPN: N[Ph2PNC6H3((i)Pr)2]2) bearing μ2-bridging hydride ligands have been synthesized. In the presence of THF, 2-Y undergoes intramolecular activation of the sp(2) C-H bond to form dinuclear aryl-hydride complex 3-Y containing three μ2-bridging hydride ligands.

  13. The reactivity of sodium alanates with O[2], H[2]O, and CO[2] : an investigation of complex metal hydride contamination in the context of automotive systems.

    Energy Technology Data Exchange (ETDEWEB)

    Dedrick, Daniel E.; Bradshaw, Robert W.; Behrens, Richard, Jr.

    2007-08-01

    Safe and efficient hydrogen storage is a significant challenge inhibiting the use of hydrogen as a primary energy carrier. Although energy storage performance properties are critical to the success of solid-state hydrogen storage systems, operator and user safety is of highest importance when designing and implementing consumer products. As researchers are now integrating high energy density solid materials into hydrogen storage systems, quantification of the hazards associated with the operation and handling of these materials becomes imperative. The experimental effort presented in this paper focuses on identifying the hazards associated with producing, storing, and handling sodium alanates, and thus allowing for the development and implementation of hazard mitigation procedures. The chemical changes of sodium alanates associated with exposure to oxygen and water vapor have been characterized by thermal decomposition analysis using simultaneous thermogravimetric modulated beam mass spectrometry (STMBMS) and X-ray diffraction methods. Partial oxidation of sodium alanates, an alkali metal complex hydride, results in destabilization of the remaining hydrogen-containing material. At temperatures below 70 C, reaction of sodium alanate with water generates potentially combustible mixtures of H{sub 2} and O{sub 2}. In addition to identifying the reaction hazards associated with the oxidation of alkali-metal containing complex hydrides, potential treatment methods are identified that chemically stabilize the oxidized material and reduce the hazard associated with handling the contaminated metal hydrides.

  14. Development of a novel metal hydride-air secondary battery

    Energy Technology Data Exchange (ETDEWEB)

    Gamburzev, S.; Zhang, W.; Velev, O.A.; Srinivasan, S.; Appleby, A.J. [Texas A and M University, College Station (United States). Center for Electrochemical Systems and Hydrogen Research; Visintin, A. [Universidad Nacional de La Plata (Argentina). Insituto Nacional de Investigaciones Fisicoquimica Teoricas y Applicadas

    1998-05-01

    A laboratory metal hydride/air cell was evaluated. Charging was via a bifunctional air gas-diffusion electrode. Mixed nickel and cobalt oxides, supported on carbon black and activated carbon, were used as catalysts in this electrode. At 30 mA cm{sup -2} in 6 M KOH, the air electrode potentials were -0.2 V (oxygen reduction) and +0.65 V (oxygen evolution) vs Hg/HgO. The laboratory cell was cycled for 50 cycles at the C/2 rate (10 mA cm{sup -2}). The average discharge/charge voltages of the cell were 0.65 and 1.6 V, respectively. The initial capacity of the metal hydride electrode decreased by about 15% after 50 cycles. (author)

  15. Detecting low concentrations of plutonium hydride with magnetization measurements

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jae Wook; Mun, E. D.; Baiardo, J. P.; Zapf, V. S.; Mielke, C. H. [National High Magnetic Field Laboratory, MPA-CMMS, Los Alamos National Laboratory (LANL), Los Alamos, New Mexico 87545 (United States); Smith, A. I.; Richmond, S.; Mitchell, J.; Schwartz, D. [Nuclear Material Science Group, MST-16, LANL, Los Alamos, New Mexico 87545 (United States)

    2015-02-07

    We report the formation of plutonium hydride in 2 at. % Ga-stabilized δ-Pu, with 1 at. % H charging. We show that magnetization measurements are a sensitive, quantitative measure of ferromagnetic plutonium hydride against the nonmagnetic background of plutonium. It was previously shown that at low hydrogen concentrations, hydrogen forms super-abundant vacancy complexes with plutonium, resulting in a bulk lattice contraction. Here, we use magnetization, X-ray, and neutron diffraction measurements to show that in addition to forming vacancy complexes, at least 30% of the H atoms bond with Pu to precipitate PuH{sub x} on the surface of the sample with x ∼ 1.9. We observe magnetic hysteresis loops below 40 K with magnetic remanence, consistent with ferromagnetic PuH{sub 1.9}.

  16. Optical studies of neutron-irradiated lithium hydride single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Oparin, D.V.; Pilipenko, G.I.; Tyutyunnik, O.I.; Gavrilov, F.F.; Sulimov, E.M. (Ural' skij Politekhnicheskij Inst., Sverdlovsk (USSR))

    1984-09-01

    Lithium hydride single crystals irradiated with neutrons were studied by the optical method. Wide bands belonging to the large F-aggregate and quasimetallic F-centres and to the metallic lithium colloids were discovered in the absorption spectra at room temperature. The small Fsub(n)-centres and molecular lithium centres were detected at 77 K. From the electron-vibrational structure of the absorption spectra of these centres the energies of acoustic phonons in X, W, L points of the Brillouin zone of lithium hydride have been found out: TA(L)-235 cm/sup -1/, TA(X)-27g cm/sup -1/, TA(W)-327 cm/sup -1/, LA(W)-384 cm/sup -1/, LA(X)-426 cm/sup -1/.

  17. Irradiation effects on thermal properties of LWR hydride fuel

    Science.gov (United States)

    Terrani, Kurt; Balooch, Mehdi; Carpenter, David; Kohse, Gordon; Keiser, Dennis; Meyer, Mitchell; Olander, Donald

    2017-04-01

    Three hydride mini-fuel rods were fabricated and irradiated at the MIT nuclear reactor with a maximum burnup of 0.31% FIMA or ∼5 MWd/kgU equivalent oxide fuel burnup. Fuel rods consisted of uranium-zirconium hydride (U (30 wt%)ZrH1.6) pellets clad inside a LWR Zircaloy-2 tubing. The gap between the fuel and the cladding was filled with lead-bismuth eutectic alloy to eliminate the gas gap and the large temperature drop across it. Each mini-fuel rod was instrumented with two thermocouples with tips that are axially located halfway through the fuel centerline and cladding surface. In-pile temperature measurements enabled calculation of thermal conductivity in this fuel as a function of temperature and burnup. In-pile thermal conductivity at the beginning of test agreed well with out-of-pile measurements on unirradiated fuel and decreased rapidly with burnup.

  18. Pyrophoric behaviour of uranium hydride and uranium powders

    Energy Technology Data Exchange (ETDEWEB)

    Le Guyadec, F., E-mail: fabienne.leguyadec@cea.f [CEA Marcoule DEN/DTEC/SDTC, 30207 Bagnols sur Ceze, BP 17171 (France); Genin, X.; Bayle, J.P. [CEA Marcoule DEN/DTEC/SDTC, 30207 Bagnols sur Ceze, BP 17171 (France); Dugne, O. [DEN/DTEC/SGCS, 30207 Bagnols sur Ceze, BP 17171 (France); Duhart-Barone, A.; Ablitzer, C. [CEA Cadarache DEN/DEC/SPUA, 13108 St. Paul lez Durance (France)

    2010-01-31

    Thermal stability and spontaneous ignition conditions of uranium hydride and uranium metal fine powders have been studied and observed in an original and dedicated experimental device placed inside a glove box under flowing pure argon. Pure uranium hydride powder with low amount of oxide (<0.5 wt.%) was obtained by heat treatment at low temperature in flowing Ar/5%H{sub 2}. Pure uranium powder was obtained by dehydration in flowing pure argon. Those fine powders showed spontaneous ignition at room temperature in air. An in situ CCD-camera displayed ignition associated with powder temperature measurement. Characterization of powders before and after ignition was performed by XRD measurements and SEM observations. Oxidation mechanisms are proposed.

  19. Reversible metal-hydride phase transformation in epitaxial films.

    Science.gov (United States)

    Roytburd, Alexander L; Boyerinas, Brad M; Bruck, Hugh A

    2015-03-11

    Metal-hydride phase transformations in solids commonly proceed with hysteresis. The extrinsic component of hysteresis is the result of the dissipation of energy of internal stress due to plastic deformation and fracture. It can be mitigated on the nanoscale, where plastic deformation and fracture are suppressed and the transformation proceeds through formation and evolution of coherent phases. However, the phase coherency introduces intrinsic thermodynamic hysteresis, preventing reversible transformation. In this paper, it is shown that thermodynamic hysteresis of coherent metal-hydride transformation can be eliminated in epitaxial film due to substrate constraint. Film-substrate interaction leads to formation of heterophase polydomain nanostructure with variable phase fraction which can change reversibly by varying temperature in a closed system or chemical potential in an open system.

  20. Structural isotope effects in metal hydrides and deuterides.

    Science.gov (United States)

    Ting, Valeska P; Henry, Paul F; Kohlmann, Holger; Wilson, Chick C; Weller, Mark T

    2010-03-07

    Historically the extraction of high-quality crystallographic information from inorganic samples having high hydrogen contents, such as metal hydrides, has involved preparing deuterated samples prior to study using neutron powder diffraction. We demonstrate, through direct comparison of the crystal structure refinements of the binary hydrides SrH(2) and BaH(2) with their deuteride analogues at 2 K and as a function of temperature, that precise and accurate structural information can be obtained from rapid data collections from samples containing in excess of 60 at.% hydrogen using modern high-flux, medium resolution, continuous wavelength neutron powder diffraction instruments. Furthermore, observed isotope-effects in the extracted lattice parameters and atomic positions illustrate the importance of investigating compounds in their natural hydrogenous form whenever possible.

  1. Effects of metastability on hydrogen sorption in fluorine substituted hydrides

    Energy Technology Data Exchange (ETDEWEB)

    Pinatel, E.R.; Corno, M.; Ugliengo, P.; Baricco, M., E-mail: marcello.baricco@unito.it

    2014-12-05

    Highlights: • Fluorine substitution in simple metal hydrides has been modelled. • The stability of the MH{sub (1−x)}F{sub x} solid solutions has been discussed. • Conditions for reversibility of sorption reactions have been suggested. - Abstract: In this work ab initio calculations and Calphad modelling have been coupled to describe the effect of fluorine substitution on the thermodynamics of hydrogenation–dehydrogenation in simple hydrides (NaH, AlH{sub 3} and CaH{sub 2}). These example systems have been used to discuss the conditions required for the formation of a stable hydride–fluoride solid solution necessary to obtain a reversible hydrogenation reaction.

  2. Influence of partial substitution of cerium for lanthanum on magnetocaloric properties of La1-xCexFe11.44Si1.56 and their hydrides

    Institute of Scientific and Technical Information of China (English)

    慕利娟; 黄焦宏; 张文佳; 刘翠兰; 王高峰; 赵增祺

    2014-01-01

    The structure and magnetocaloric properties of La1–xCexFe11.44Si1.56 and their hydrides La1–xCexFe11.44Si1.56Hy (x=0, 0.1, 0.2, 0.3, 0.4) were investigated. The samples crystallized mainly in the cubic NaZn13-type structure with a small amount ofα-Fe phase as impurity. The lattice constants and Curie temperature presented the same change tendency with increasing of Ce content. For the hydrides, the influence of Ce content on lattice constants was weakened and the values of H concentration y were approximate to be 1.56. The La1–xCexFe11.44Si1.56 compounds exhibited large values of isothermal entropy change –ΔSm around the Curie tem-perature TC under a low magnetic field change of 1.5 T. The value of–ΔSm increased and then decreased with increasing Ce con-tent, reached the maximum, 26.07 J/kg·K for x=0.3. TC increased up to the vicinity of room temperature by hydrogen absorption for the Ce substituted compounds, but TC only slightly decreased with increasing Ce content. The first-order metamagnetic transi-tion was still kept in the hydrides and the maximum values of–ΔSm were lower than those of the La1–xCexFe11.44Si1.56 compounds, but still remained large values, about 10.5 J/kgK under a magnetic field change of 1.5 T. The values of–ΔSm were nearly inde-pendent of the Ce content and did not increase with increasing x for the hydrides. The La1–xCexFe11.44Si1.56Hy (x=0–0.4) hydrides exhibited large magnetic entropy changes, small hysteresis loss and effective refrigerant capacity covered the room temperature range from 305 to 317 K. These hydrides are very useful for the magnetic refrigeration applications near room temperature under low magnetic field change.

  3. Crystal structure of 200 K-superconducting phase in sulfur hydride system

    Energy Technology Data Exchange (ETDEWEB)

    Einaga, Mari; Sakata, Masafumi; Ishikawa, Takahiro; Shimizu, Katsuya [KYOKUGEN, Graduate School of Engineering Science, Osaka Univ. (Japan); Eremets, Mikhail; Drozdov, Alexander; Troyan, Ivan [Max Planck Institut fuer Chemie, Mainz (Germany); Hirao, Naohisa; Ohishi, Yasuo [JASRI/SPring-8, Hyogo (Japan)

    2016-07-01

    Superconductivity with the critical temperature T{sub c} above 200 K has been recently discovered by compression of H{sub 2}S (or D{sub 2}S) under extreme pressure. It was proposed that these materials decompose under high pressure to elemental sulfur and hydride with higher content of hydrogen which is responsible for the high temperature superconductivity. In this study, we have investigated that the crystal structure of the superconducting compressed H{sub 2}S and D{sub 2}S by synchrotron x-ray diffraction measurements combined with electrical resistance measurements at room and low temperatures. We found that the superconducting phase is in good agreement with theoretically predicted body-centered cubic structure, and coexists with elemental sulfur, which claims that the formation of 3H{sub 2}S → 2H{sub 3}S + S is occured under high pressure.

  4. Recent advances in additive-enhanced magnesium hydride for hydrogen storage

    Directory of Open Access Journals (Sweden)

    Ying Wang

    2017-02-01

    Full Text Available The discovery of new hydrogen storage materials has greatly driven the entire hydrogen storage technology forward in the past decades. Magnesium hydride, which has a high hydrogen capacity and low cost, has been considered as one of the most promising candidates for hydrogen storage. Unfortunately, extensive efforts are still needed to better improve its hydrogen storage performance, since MgH2 suffers from high operation temperature, poor dehydrogenation kinetic, and unsatisfactory thermal management. In this paper, we present an overview of recent progress in improving the hydrogenation/de-hydrogenation performance of MgH2, with special emphases on the additive-enhanced MgH2 composites. Other widely used strategies (e. g. alloying, nanoscaling, nanoconfinement in tuning the kinetics and thermodynamics of MgH2 are also presented. A realistic perspective regarding to the challenges and opportunities for further researches in MgH2 is proposed.

  5. The Influence of Magnesium Hydride on the Thermal Decomposition Properties of Nitrocellulose

    Science.gov (United States)

    Jin, Limei; Du, Ping; Yao, Miao

    2014-05-01

    Magnesium hydride is a kind of attractive hydrogen storage material. In this article, the thermal decomposition characteristic of the pure nitrocellulose and the mixture of nitrocellulose with 5% MgH2 was investigated using an accelerating rate calorimeter. The kinetic parameters such as activation energy, Ea; preexponential factor, A; and self-accelerating decomposition temperature, TSADT, were also calculated. We easily showed that the decomposition reaction could be accelerated by adding MgH2, which indicated that MgH2 has an obvious catalytic influence on the decomposition of nitrocellulose. On the other hand, the calculated values of Ea and TSADT showed a decrease in thermal sensitivity with the addition of MgH2. These results were in accordance with our objectives. Therefore, MgH2 is very likely to be an important additive in propellants.

  6. Influence of superficial oxidation on the pyrophoric behaviour of uranium hydride and uranium powders in air

    Energy Technology Data Exchange (ETDEWEB)

    Ablitzer, C., E-mail: carine.ablitzer@cea.fr [CEA, DEN, DEC/SPUA/LCU, 13108 Saint-Paul lez Durance (France); Le Guyadec, F. [CEA, DEN, DTEC/SDTC, 30207 Bagnols sur Ceze (France); Raynal, J. [CEA, DEN, DEC/SPUA/LCU, 13108 Saint-Paul lez Durance (France); Genin, X. [CEA, DEN, DTEC/SDTC, 30207 Bagnols sur Ceze (France); Duhart-Barone, A. [CEA, DEN, DEC/SPUA/LCU, 13108 Saint-Paul lez Durance (France)

    2013-01-15

    Pyrophoric behaviours in air of uranium hydride and uranium powders have been studied on samples of small mass - several tens of milligrams - in a thermogravimetric device and on samples of several grams in an instrumented furnace. Results show that ignition can occur at room temperature for both materials but only in the second device and provided that powders are not superficially oxidized. Chemisorption of oxygen on particles is suspected to be responsible for ignition at room temperature. This phenomenon is not taken into account in classical theories of ignition. When ignition does not occur at room temperature, it occurs above at least 90 Degree-Sign C when heating at a rate of 5 Degree-Sign C min{sup -1}. Ignition seems then to result principally from the large increase of oxidation rates with temperature.

  7. Effect of Overcharge on Electrochemical Performance of Sealed-Type Nickel/Metal Hydride Batteries

    Institute of Scientific and Technical Information of China (English)

    LI Li; WU Feng; CHEN Ren-jie; CHEN Shi

    2005-01-01

    The effects of overcharge on electrochemical performance of AA size sealed-type nickel/metal hydride(Ni/MH) batteries and its degradation mechanism were investigated. The results indicated that the relationship between the effects of different overcharge currents on the increasing velocity of inner pressure and the degradation velocity of cycle life and discharge voltage remains in almost direct proportion. After overcharge cycles, the positive electrode materials remain the original structure, but there occur some breaks because of the irreversible expand of crystal lattice. And the negative electrode alloy particles have inconspicuous pulverization, but are covered with lots of corrosive products and its main component is rare earth hydroxide or oxide. These are all the main reasons leading to the degradation behavior of the discharge capacity and cycle life of Ni/MH batteries.

  8. Exhibition

    CERN Multimedia

    Staff Association

    2017-01-01

    Gaïa Manuella Cany Du 10 au 28 avril 2017 CERN Meyrin, Bâtiment principal Oiseau - Manuella Cany. Tableaux abstraits inspirés de vues satellites ou photos prises du ciel. Certains sont à la frontière du figuratif alors que d'autres permettent de laisser libre cours à son imagination. Aux détails infinis, ces tableaux sont faits pour être vus de loin et de près grâce à une attention toute particulière apportée aux effets de matières et aux couleurs le long de volutes tantôt nuancées tantôt contrastées.   Pour plus d’informations : staff.association@cern.ch | Tél: 022 766 37 38

  9. Exhibition

    CERN Multimedia

    Staff Association

    2014-01-01

      Parallels vision Astronomical subjects which evoke extrasensory kinetic visions Alberto Di Fabio From 8 to 10 October, CERN Meyrin, Main Building In the framework of Italy@cern, the Staff Association presents Alberto Di Fabio. Di Fabio’s work is inspired by the fundamental laws of the physical world, as well as organic elements and their interrelation. His paintings and works on paper merge the worlds of art and science, depicting natural forms and biological structures in vivid colour and imaginative detail. For all additional information: staff.association@cern.ch | Tel: 022 767 28 19

  10. Exhibition

    CERN Multimedia

    Staff Association

    2011-01-01

    Jan Hladky, physicien de l'Institut de Physique de l'Académie des Sciences de la République tchèque, et membre de la collaboration Alice, expose ses œuvres au Bâtiment principal du 20 avril au 6 mai. Son exposition est dédiée aux victimes du séisme de Sendai. Des copies de ses œuvres seront mises en vente et les sommes récoltées seront versées au profit des victimes.

  11. Exhibition

    CERN Multimedia

    Staff Association

    2016-01-01

    La mosaïque ou quand détruire permet de construire Lauren Decamps Du 28 novembre au 9 décembre 2016 CERN Meyrin, Bâtiment principal Paysage d'Amsterdam - Lauren Decamps On ne doit jamais rien détruire qu'on ne soit sûr de pouvoir remplacer aussi avantageusement " écrivait Plutarque dans ses Œuvres morales du 1er siècle après JC. L'artiste mosaïste Lauren Decamps adhère à cette idée et tente à sa manière de donner une nouvelle vie à ses matériaux en les taillant puis les réassemblant, créant ainsi des œuvres abstraites et figuratives.

  12. Exhibition

    CERN Multimedia

    Staff Association

    2017-01-01

    Le Point Isabelle Gailland Du 20 février au 3 mars 2017 CERN Meyrin, Bâtiment principal La Diagonale - Isabelle Gailland. Au départ, un toujours même point minuscule posé au centre de ce que la toile est un espace. Une réplique d'autres points, condensés, alignés, isolés, disséminés construiront dans leur extension, la ligne. Ces lignes, croisées, courbées, déviées, prolongées, seront la structure contenant et séparant la matière des couleurs. La rotation de chaque toile en cours d'exécution va offrir un accès illimité à la non-forme et à la forme. Le point final sera l'ouverture sur différents points de vue de ce que le point et la ligne sont devenus une représentation pour l'œil et l'im...

  13. Exhibition

    CERN Multimedia

    Staff Association

    2016-01-01

    COLORATION Sandra Duchêne From September 5 to 16, 2016 CERN Meyrin, Main Building La recherche de l’Universel. Après tout ! C’est de l’Amour ! What else to say ? …La couleur, l’ENERGIE de la vie…

  14. Exhibition

    CERN Multimedia

    Staff Association

    2017-01-01

    Œuvres recentes Fabienne Wyler Du 6 au 17 février 2017 CERN Meyrin, Bâtiment principal L'escalier du diable B - aquarelle, encre de Chine XLV - Fabienne Wyler. En relation avec certains procédés d’écriture contemporaine (par ex. Webern ou certaines musiques conçues par ordinateur), les compositions picturales de Fabienne Wyler s’élaborent à partir de « modules » (groupes de quadrangles) qu’elle reproduit en leur faisant subir toutes sortes de transformations et de déplacements : étirements, renversements, rotations, effet miroir, transpositions, déphasages, superpositions, etc., et ceci à toutes les échelles. Au fil des œuvres sont apparues des séries intitulées, Bifurcations, Intermittences, Attracteurs étranges, Polyrythmies. Ces titres ont un lien &e...

  15. Exhibition

    CERN Multimedia

    Staff Association

    2014-01-01

    Energie sombre, matière noire J.-J. Dalmais - J. Maréchal Du 11 au 27 novembre 2014, CERN Meyrin, Bâtiment principal A l’image des particules atomiques qui ont tissé des liens pour créer la matière, deux artistes haut bugistes croisent leurs regards et conjuguent leurs expressions singulières pour faire naître une vision commune de l’univers, produit des forces primordiales. Les sculptures de Jean-Jacques Dalmais et les peintures de Jacki Maréchal se rencontrent pour la première fois et se racontent par un enrichissement mutuel la belle histoire de la Vie. Dialogue magique des œuvres en mouvement qui questionnent en écho l’énergie sombre et la matière noire. Cette harmonieuse confluence de jeux de miroir et de résonnance illumine de poésie et de sobriété l’espace expos&...

  16. Exhibition

    CERN Multimedia

    Staff Association

    2017-01-01

    Harmonie Nathalie Lenoir Du 4 au 15 septembre 2017 CERN Meyrin, Bâtiment principal Peindre est un langage. Le tracé du pinceau sur le lin en est l'expression. A qui appartient un tableau en définitive ? A celui qui l'a peint ? A celui qui le regarde ? A celui qui l'emporte ? La peinture est une émotion partagée... Laissez-vous projeter de l'autre côté de la toile, prenez un moment pour rêver, en harmonie avec les éléments, parce-que la peinture parle à votre âme… Pour plus d’informations et demandes d’accès : staff.association@cern.ch | Tél : 022 766 37 38

  17. Exhibition

    CERN Document Server

    Staff Association

    2017-01-01

    Firmament des toiles Joëlle Lalagüe Du 6 au 16 juin 2017 CERN Meyrin, Bâtiment principal Phylaë Voyage - Joëlle Lalagüe. Each picture is an invitation for a cosmic trip. This is a whispering of soul, which comes from origins. A symphony of the world, some notes of love, a harmony for us to fly to infinity. Pour plus d’informations et demandes d'accès : staff.association@cern.ch | Tél: 022 766 37 38

  18. Exhibition

    CERN Multimedia

    Staff Association

    2017-01-01

    La couleur des jours oriSio Du 2 au 12 mai 2017 CERN Meyrin, Bâtiment principal oriSio - Motus Suite à un fort intérêt pour la Chine et une curiosité pour un médium très ancien, la laque ! Je réinterprète cet art à travers un style abstrait. Je présente ici des laques sur aluminium, travaillés au plasma et ensuite colorés à l’aide de pigments pour l’essentiel. Mes œuvres je les veux brutes, déchirées, évanescentes, gondolées, voire trouées mais avec une belle approche de profondeur de la couleur.   Pour plus d’informations : staff.association@cern.ch | Tél: 022 766 37 38

  19. Exhibition

    CERN Multimedia

    Staff Association

    2016-01-01

    La mosaïque ou quand détruire permet de construire Lauren Decamps Du 28 novembre au 9 décembre 2016 CERN Meyrin, Bâtiment principal Paysage d'Amsterdam - Lauren Decamps On ne doit jamais rien détruire qu'on ne soit sûr de pouvoir remplacer aussi avantageusement " écrivait Plutarque dans ses Œuvres morales du 1er siècle après JC. L'artiste mosaïste Lauren Decamps adhère à cette idée et tente à sa manière de donner une nouvelle vie à ses matériaux en les taillant puis les réassemblant, créant ainsi des œuvres abstraites et figuratives.

  20. Exhibition

    CERN Multimedia

    Staff Association

    2017-01-01

    Still Life Jérémy Bajulaz Du 25 septembre au 6 octobre 2017 CERN Meyrin, Main Building (Aubergine - Jérémy Bajulaz) Né en 1991 en Haute-Savoie, France. Diplômé de l'Ecole Emile Cohl à Lyon, Jérémy Bajulaz intègre en 2014 le programme d'artiste en résidence au Centre Genevois de Gravure Contemporaine. C'est là que son travail prendra corps, autour de la lumière et de ses vibrations aux travers de sujets comme le portrait et la nature morte, dans le souci de l'observation; le regard prenant une place importante dans le processus créatif. Lauréat 2017 du VII Premio AAAC, son travail a été présenté dans de nombreuses expositions collectives, en 2015 au Bâtiment d’Art Contemporain de Genève, en 2016 au 89e Salon de Lyon et du S...