WorldWideScience

Sample records for hydride fueled bwrs

  1. Laguna Verde BWRs operational experience: steady-state fuel performance

    Energy Technology Data Exchange (ETDEWEB)

    Cuevas V, G. F.; Bravo S, J. M. [Global Nuclear Fuel - Americas, 3901 Castle Hayne Road, Wilmington, 28401 North Carolina (United States); Casillas, J. L., E-mail: gabriel.cuevas-vivas@gnf.co [General Electric Hitachi Nuclear Energy, 1989 Little Orchard St. Romm 239, San Jose, 95125 California (United States)

    2010-10-15

    The two BWR at Laguna Verde nuclear power station are finishing 21 and 15 years of continuous successful operation as of 2010. During Unit 1 and 2 commercial operations only Ge/GNF fuel designs have been employed; fuel lattice designs 8 x 8 and 10 x 10 were used at the reactor, with an original licensed thermal power (OLTP: 1931 MWt) and the reactor's first power up-rates of 5%. GNF fuel will be also used for the second EPU to reach 120% of OLTP in the near future. Thermal and gamma traversing in-core probes (Tip) are used for power monitoring purposes along with the Ge (now GNF-A) core monitoring system, 3-dimensional Monicore{sup TM}. GNF-A has also participated by preparing the core management plan that is regularly fine-tuned in collaboration with Comision Federal de Electricidad (CFE owner of the Laguna Verde reactors). For determination of thermal margins and eigenvalue prediction, GNF-A employs the NRC-licensed steady-state core simulator PANAC11. Tip comparisons are routinely used to adapt power distributions for a better thermal margin calculation. Over the years, several challenges have appeared in the near and long term fuel management planning such as increasing cycle length, optimization of the thermal margins, rated power increase, etc. Each challenge has been successfully overcome via operational strategy, code improvements and better fuel designs. This paper summarizes Laguna Verde Unit 1 and 2 steady-state performance from initial commercial operation, with a discussion of the nuclear and thermal-hydraulic design features, as well as of the operational strategies that set and interesting benchmark for future fuel applications, code development and operation of the BWRs. (Author)

  2. Physics of hydride fueled PWR

    Science.gov (United States)

    Ganda, Francesco

    The first part of the work presents the neutronic results of a detailed and comprehensive study of the feasibility of using hydride fuel in pressurized water reactors (PWR). The primary hydride fuel examined is U-ZrH1.6 having 45w/o uranium: two acceptable design approaches were identified: (1) use of erbium as a burnable poison; (2) replacement of a fraction of the ZrH1.6 by thorium hydride along with addition of some IFBA. The replacement of 25 v/o of ZrH 1.6 by ThH2 along with use of IFBA was identified as the preferred design approach as it gives a slight cycle length gain whereas use of erbium burnable poison results in a cycle length penalty. The feasibility of a single recycling plutonium in PWR in the form of U-PuH2-ZrH1.6 has also been assessed. This fuel was found superior to MOX in terms of the TRU fractional transmutation---53% for U-PuH2-ZrH1.6 versus 29% for MOX---and proliferation resistance. A thorough investigation of physics characteristics of hydride fuels has been performed to understand the reasons of the trends in the reactivity coefficients. The second part of this work assessed the feasibility of multi-recycling plutonium in PWR using hydride fuel. It was found that the fertile-free hydride fuel PuH2-ZrH1.6, enables multi-recycling of Pu in PWR an unlimited number of times. This unique feature of hydride fuels is due to the incorporation of a significant fraction of the hydrogen moderator in the fuel, thereby mitigating the effect of spectrum hardening due to coolant voiding accidents. An equivalent oxide fuel PuO2-ZrO2 was investigated as well and found to enable up to 10 recycles. The feasibility of recycling Pu and all the TRU using hydride fuels were investigated as well. It was found that hydride fuels allow recycling of Pu+Np at least 6 times. If it was desired to recycle all the TRU in PWR using hydrides, the number of possible recycles is limited to 3; the limit is imposed by positive large void reactivity feedback.

  3. Shutdown Margin for High Conversion BWRs Operating in Th-233U Fuel Cycle

    CERN Document Server

    Shaposhnik, Yaniv; Elias, Ezra

    2013-01-01

    Several reactivity control system design options are explored in order to satisfy shutdown margin (SDM) requirements in a high conversion BWRs operating in Th-233U fuel cycle (Th-RBWR). The studied has an axially heterogeneous fuel assembly structure with a single fissile zone sandwiched between two fertile blanket zones. The utilization of an originally suggested RBWR Y-shape control rod in Th-RBWR is shown to be insufficient for maintaining adequate SDM to balance the high negative reactivity feedbacks, while maintaining fuel breeding potential, core power rating, and minimum Critical Power Ratio (CPR). Instead, an alternative assembly design, also relying on heterogeneous fuel zoning, is proposed for achieving fissile inventory ratio (FIR) above unity, adequate SDM and meeting minimum CPR limit at thermal core output matching the ABWR power. The new concept was modeled as a single 3-dimensional fuel assembly having reflective radial boundaries, using the BGCore system, which consists of the MCNP code coupl...

  4. Shutdown margin for high conversion BWRs operating in Th-{sup 233}U fuel cycle

    Energy Technology Data Exchange (ETDEWEB)

    Shaposhnik, Y., E-mail: shaposhy@bgu.ac.il [NRCN – Nuclear Research Center Negev, POB 9001, Beer Sheva 84190 (Israel); Department of Nuclear Engineering, Ben-Gurion University of the Negev, POB 653, Beer Sheva 84105 (Israel); Shwageraus, E. [Department of Nuclear Engineering, Ben-Gurion University of the Negev, POB 653, Beer Sheva 84105 (Israel); Elias, E. [Faculty of Mechanical Engineering, Technion – Israel Institute of Technology, Technion City 32000, Haifa (Israel)

    2014-09-15

    Highlights: • BWR core operating in a closed self-sustainable Th-{sup 233}U fuel cycle. • Shutdown Margin in Th-RBWR design. • Fully coupled MC with fuel depletion and thermo-hydraulic feedback modules. • Thermal–hydraulic analysis includes MCPR observation. - Abstract: Several reactivity control system design options are explored in order to satisfy shutdown margin (SDM) requirements in a high conversion BWRs operating in Th-{sup 233}U fuel cycle (Th-RBWR). The studied core has an axially heterogeneous fuel assembly structure with a single fissile zone “sandwiched” between two fertile blanket zones. The utilization of an originally suggested RBWR Y-shape control rod in Th-RBWR is shown to be insufficient for maintaining adequate SDM to balance the high negative reactivity feedbacks, while maintaining fuel breeding potential, core power rating, and minimum Critical Power Ratio (CPR). Implementation of alternative reactivity control materials, reducing axial leakage through non-uniform enrichment distribution, use of burnable poisons, reducing number of pins as well as increasing pin diameter are also shown to be incapable of meeting the SDM requirements. Instead, an alternative assembly design, based on Rod Cluster Control Assembly with absorber rods was investigated. This design matches the reference ABWR core power and has adequate shutdown margin. The new concept was modeled as a single three-dimensional fuel assembly having reflective radial boundaries, using the BGCore system, which consists of the MCNP code coupled with fuel depletion and thermo-hydraulic feedback modules.

  5. On-line fuel and control rod integrity surveillance in BWRs

    Energy Technology Data Exchange (ETDEWEB)

    Sihver, L.; Larsson, I. [CHalmers Univ. of Technology, Nuclear Engineering, Gothenberg (Sweden); Loner, H. [Kernkraftwerk Leibstadt, Leibstadt (Switzerland); Grundin, A.; Helmersson, J-O.; Ledergerber, G. [Forsmarks Kraftgrupp AB, Osthammar (Sweden)

    2013-07-01

    Surveillance of fuel and control rod integrity in a BWR core is essential to maintain a safe and reliable operation of the nuclear power plant. Any actions to be taken in the event of a fuel failure during reactor operation should be based on the best available information regarding the failure and expected consequences. The detection of fuel and control rod failures in BWRs is usually performed by analyzing samples of off-gases and coolant taken with a certain time intervals, e.g. once a week or once a month. This procedure can, however, leave the failure undetected in the core for quite some time. Therefore, a sufficient improvement of the surveillance of fuel and control rods can be achieved by simultaneous measurements of He and gamma emitting noble gases on-line in the off gas system. In this paper, experiences of such measurements performed at Kernkraftwerk Leibstadt (KKL) in Switzerland and Forsmark nuclear power plant (NPP) in Sweden will be presented. (author)

  6. Axial design of fuel for BWRs using neural networks; Diseno axial de combustible para BWRs usando redes neuronales

    Energy Technology Data Exchange (ETDEWEB)

    Ortiz, J.J.; Castillo, A.; Montes, J.L.; Perusquia, R. [ININ, Carretera Mexico-Toluca s/n, 52750 La Marquesa, Ocoyoacac, Estado de Mexico (Mexico)]. e-mail: jjortiz@nuclear.inin.mx

    2007-07-01

    In this work a new system of axial optimization of fuel is presented based on a recurrent multi state neural net called RENODC. They are described with detail the main characteristics of this type of neural net (architecture, energy function and actualization of neural states) and like was adapted to the assemble design of nuclear fuel. The fuel design is proven by means of a fuel recharge and pre determined control rod patterns. By this way a good axial fuel design one has, when the thermal limits are fulfilled along the cycle, the reactor stays critic and at least the wanted longitude of the cycle is reached; also the margin of in cold turned off is verified. The assemble of fuel created with RENODC it is substituted by a recharge assemble and it is sought to verify that the energy requirements and aspects of safety are completed. The used cycle corresponds to a balance cycle of 18 months that it can be applied to the Laguna Verde Nucleo electric Central. The tests demonstrate the effectiveness of the system to reach satisfactory results in times of CPU of around 4 hours. This way, it could be proven that the design proposed with a lightly superior enrichment to that of the substituted design, fulfills the energy requirements. In later stages of this project this system will be coupled to the other optimization modules that are already had. (Author)

  7. Severe Accident Scoping Simulations of Accident Tolerant Fuel Concepts for BWRs

    Energy Technology Data Exchange (ETDEWEB)

    Robb, Kevin R. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-08-01

    Accident-tolerant fuels (ATFs) are fuels and/or cladding that, in comparison with the standard uranium dioxide Zircaloy system, can tolerate loss of active cooling in the core for a considerably longer time period while maintaining or improving the fuel performance during normal operations [1]. It is important to note that the currently used uranium dioxide Zircaloy fuel system tolerates design basis accidents (and anticipated operational occurrences and normal operation) as prescribed by the US Nuclear Regulatory Commission. Previously, preliminary simulations of the plant response have been performed under a range of accident scenarios using various ATF cladding concepts and fully ceramic microencapsulated fuel. Design basis loss of coolant accidents (LOCAs) and station blackout (SBO) severe accidents were analyzed at Oak Ridge National Laboratory (ORNL) for boiling water reactors (BWRs) [2]. Researchers have investigated the effects of thermal conductivity on design basis accidents [3], investigated silicon carbide (SiC) cladding [4], as well as the effects of ATF concepts on the late stage accident progression [5]. These preliminary analyses were performed to provide initial insight into the possible improvements that ATF concepts could provide and to identify issues with respect to modeling ATF concepts. More recently, preliminary analyses for a range of ATF concepts have been evaluated internationally for LOCA and severe accident scenarios for the Chinese CPR1000 [6] and the South Korean OPR-1000 [7] pressurized water reactors (PWRs). In addition to these scoping studies, a common methodology and set of performance metrics were developed to compare and support prioritizing ATF concepts [8]. A proposed ATF concept is based on iron-chromium-aluminum alloys (FeCrAl) [9]. With respect to enhancing accident tolerance, FeCrAl alloys have substantially slower oxidation kinetics compared to the zirconium alloys typically employed. During a severe accident, Fe

  8. Fuel Performance Calculations for FeCrAl Cladding in BWRs

    Energy Technology Data Exchange (ETDEWEB)

    George, Nathan [Univ. of Tennessee, Knoxville, TN (United States). Dept. of Nuclear Engineering; Sweet, Ryan [Univ. of Tennessee, Knoxville, TN (United States). Dept. of Nuclear Engineering; Maldonado, G. Ivan [Univ. of Tennessee, Knoxville, TN (United States). Dept. of Nuclear Engineering; Wirth, Brian D. [Univ. of Tennessee, Knoxville, TN (United States). Dept. of Nuclear Engineering; Powers, Jeffrey J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Worrall, Andrew [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-01-01

    This study expands upon previous neutronics analyses of the reactivity impact of alternate cladding concepts in boiling water reactor (BWR) cores and directs focus toward contrasting fuel performance characteristics of FeCrAl cladding against those of traditional Zircaloy. Using neutronics results from a modern version of the 3D nodal simulator NESTLE, linear power histories were generated and supplied to the BISON-CASL code for fuel performance evaluations. BISON-CASL (formerly Peregrine) expands on material libraries implemented in the BISON fuel performance code and the MOOSE framework by providing proprietary material data. By creating material libraries for Zircaloy and FeCrAl cladding, the thermomechanical behavior of the fuel rod (e.g., strains, centerline fuel temperature, and time to gap closure) were investigated and contrasted.

  9. Searching of fuel recharges by means of genetic algorithms and neural networks in BWRs; Busqueda de recargas de combustible mediante algoritmos geneticos y redes neuronales en BWRs

    Energy Technology Data Exchange (ETDEWEB)

    Ortiz S, J.J.; Montes T, J.L.; Castillo M, J.A.; Perusquia del C, R. [ININ, Carretera Mexico-Toluca Km. 36.5, 52045 Estado de Mexico (Mexico)

    2004-07-01

    In this work improvements to the systems RENOR and RECOPIA are presented, that were developed to optimize fuel recharges in boiling water reactors. The RENOR system is based on a Multi state recurrent neural network while RECOPIA is based on a Genetic Algorithm. In the new versions of these systems there is incorporate the execution of the Turned off Margin in Cold and the Excess of Reactivity in Hot. The new systems were applied to an operation cycle of the Unit 1 of the Nuclear Power station of Laguna Verde. The recharges of fuel obtained by both methods are compared among if being observed that RENOR has better performance that RECOPIA, due to the nature of its search process. RECOPIA requires of approximately 1.4 times more time that RENOR to find a satisfactory recharge of fuel. (Author)

  10. FIBWR2 evaluation of fuel thermal limits during density wave oscillaions in BWRs

    Energy Technology Data Exchange (ETDEWEB)

    Nik, N.; Rajan, S.R.; Karasulu, M. [New York Power Authority, White Plains, NY (United States)

    1995-09-01

    Analyses were performed to evaluate hydraulic and thermal margin responses of three different BWR fuel designs subjected to the same periodic power/flow oscillations, such as those that might be exhibited during an instability event. The power/flow versus time information from the oscillations was used as a forcing function to calculate the hydraulic response and the MCPR performance of the limiting fuel bundles during the regional oscillations using the analytical code FIBWR2. The results of the calculations were used to determine the thermal margin variation as a function of oscillation magnitude.

  11. Application of genetic algorithms and CASMO to fuel optimization of BWRs; Aplicacion de algoritmos geneticos y CASMO a la optimizacion de combustible de BWRs

    Energy Technology Data Exchange (ETDEWEB)

    Carmona H, R.; Martin del Campo M, C.; Oropeza C, I.P. [UNAM, Facultad de Ingenieria, Departamento de Sistemas Energeticos, Paseo Cuauhnahuac 8532, Jiutepec, Morelos 62550 (Mexico)]. e-mail: rockbert@ieee.org

    2008-07-01

    It was developed a system for the optimization of the radial distribution of enrichment in a fuel cell of a boiling water reactor based on genetic algorithms (GA's). The objective function includes four parameters: Average of the cell enrichment, average of gadolinium concentration of the cell, radial peak power factor and multiplication k-infinite factor. In order to be able to calculate the parameters that take part in the objective function, the process of evaluation of GA's was tied to the code CASMO-4, which is a code of transport in neutronic simulation groups of fuel assemblies that have been validated and it is used thoroughly for the calculation of nuclear data banks for boiling water reactors. A good radial distribution of fuel rods looks for, with different enrichment of U{sup 2}35 and contents of consumable poison in gadolinium form. For it is necessary to define the representation of the solution, the objective function and the implementation of the specific optimization process to the solution problem. The optimization process was codified in language C in the operating system LINUX. It was automated the creation of the entrances to the simulator, the execution of simulator CASMO-4 and the obtaining of the parameters that take part in the objective function from the exit of the simulator. It was applied to the fuel cell design of lOxlO that can be used in the fuel designs which are used at the moment in the nuclear power plant of Laguna Verde. They were considered 10 different fuel compositions from which four contain gadolinium. Three heuristic rules were applied: the peripheral positions of the fuel cell cannot contain burning poison, are placed the compositions with the smallest enrichment in the cell corners and, it is fixed the placement of the water rods. Nevertheless, the placement of the rods with gadolinium cell inside left free. Designs were obtained that complete with the wanted reactivity and the radial peak power factor. The

  12. Project DORIS - Dose reduction in Swedish BWRs

    Energy Technology Data Exchange (ETDEWEB)

    Lundgren, K.; Elkert, J.; Ingemansson, T.

    1994-12-01

    Radiation exposures show an increasing trend in Swedish BWRs. The corresponding trend in foreign BWRs is decreasing exposures. The overall result is that the Swedish BWRs no longer can be regarded as low-exposure plants in an international comparison. The changed situation has called for the establishment of more fundamental ALARA programs in the Swedish BWRs, and the purpose of the DORIS project, ordered by SSI, is to serve as a basis for such utility efforts. The base of the investigation is a comprehensive analysis of exposure and radiation data from the ABB Atom BWRs. The analysis shows, that the main reason for the increasing exposures in the Swedish BWRs is gradually increasing radiation levels, and this increase is mainly due to the buildup of Co60 activity on system surfaces. Extensive computer simulations have been performed to find the factors responsible for this radiation buildup. The following main factors have been identified: Cobalt inflow to the reactor circuit from erosion-corrosion of Stellite in turbine and reactor systems.; Higher and higher burnup levels for BWR fuel.; A tendency of too low iron inflow during recent years in some of the reactors.; Fuel failures resulting in considerable contamination of the fuel with tramp uranium.; Lower inflow of zinc due to replacement of brass tubes in turbine condensers with titanium tubes.; and High moisture content in the reactor steam, especially after uprated power levels. 22 refs.

  13. Novel fuel cell stack with coupled metal hydride containers

    Science.gov (United States)

    Liu, Zhixiang; Li, Yan; Bu, Qingyuan; Guzy, Christopher J.; Li, Qi; Chen, Weirong; Wang, Cheng

    2016-10-01

    Air-cooled, self-humidifying hydrogen fuel cells are often used for backup and portable power sources, with a metal hydride used as the hydrogen storage material. To provide a stable hydrogen flow to the fuel cell stack, heat must be provided to the metal hydride. Conventionally, the heat released from the exothermic reaction of hydrogen and oxygen in the fuel cell stack to the exhaust air is used to heat a separate metal hydride container. In this case, the heat is only partially used instead of being more closely coupled because of the heat transfer resistances in the system. To achieve better heat integration, a novel scheme is proposed whereby hydrogen storage and single fuel cells are more closely coupled. Based on this idea, metal hydride containers in the form of cooling plates were assembled between each pair of cells in the stack so that the heat could be directly transferred to a metal hydride container of much larger surface-to-volume ratio than conventional separate containers. A heat coupled fuel cell portable power source with 10 cells and 11 metal hydride containers was constructed and the experimental results show that this scheme is beneficial for the heat management of fuel cell stack.

  14. The use of metal hydrides in fuel cell applications

    Directory of Open Access Journals (Sweden)

    Mykhaylo V. Lototskyy

    2017-02-01

    Full Text Available This paper reviews state-of-the-art developments in hydrogen energy systems which integrate fuel cells with metal hydride-based hydrogen storage. The 187 reference papers included in this review provide an overview of all major publications in the field, as well as recent work by several of the authors of the review. The review contains four parts. The first part gives an overview of the existing types of fuel cells and outlines the potential of using metal hydride stores as a source of hydrogen fuel. The second part of the review considers the suitability and optimisation of different metal hydrides based on their energy efficient thermal integration with fuel cells. The performances of metal hydrides are considered from the viewpoint of the reversible heat driven interaction of the metal hydrides with gaseous H2. Efficiencies of hydrogen and heat exchange in hydrogen stores to control H2 charge/discharge flow rates are the focus of the third section of the review and are considered together with metal hydridefuel cell system integration issues and the corresponding engineering solutions. Finally, the last section of the review describes specific hydrogen-fuelled systems presented in the available reference data.

  15. Irradiation effects on thermal properties of LWR hydride fuel

    Science.gov (United States)

    Terrani, Kurt; Balooch, Mehdi; Carpenter, David; Kohse, Gordon; Keiser, Dennis; Meyer, Mitchell; Olander, Donald

    2017-04-01

    Three hydride mini-fuel rods were fabricated and irradiated at the MIT nuclear reactor with a maximum burnup of 0.31% FIMA or ∼5 MWd/kgU equivalent oxide fuel burnup. Fuel rods consisted of uranium-zirconium hydride (U (30 wt%)ZrH1.6) pellets clad inside a LWR Zircaloy-2 tubing. The gap between the fuel and the cladding was filled with lead-bismuth eutectic alloy to eliminate the gas gap and the large temperature drop across it. Each mini-fuel rod was instrumented with two thermocouples with tips that are axially located halfway through the fuel centerline and cladding surface. In-pile temperature measurements enabled calculation of thermal conductivity in this fuel as a function of temperature and burnup. In-pile thermal conductivity at the beginning of test agreed well with out-of-pile measurements on unirradiated fuel and decreased rapidly with burnup.

  16. Multidimensional simulations of hydrides during fuel rod lifecycle

    Science.gov (United States)

    Stafford, D. S.

    2015-11-01

    In light water reactor fuel rods, waterside corrosion of zirconium-alloy cladding introduces hydrogen into the cladding, where it is slightly soluble. When the solubility limit is reached, the hydrogen precipitates into crystals of zirconium hydride which decrease the ductility of the cladding and may lead to cladding failure during dry storage or transportation events. The distribution of the hydride phase and the orientation of the crystals depend on the history of the spatial temperature and stress profiles in the cladding. In this work, we have expanded the existing hydride modeling capability in the BISON fuel performance code with the goal of predicting both global and local effects on the radial, azimuthal and axial distribution of the hydride phase. We compare results from 1D simulations to published experimental data. We demonstrate the new capability by simulating in 2D a fuel rod throughout a lifecycle that includes irradiation, short-term storage in the spent fuel pool, drying, and interim storage in a dry cask. Using the 2D simulations, we present qualitative predictions of the effects of the inter-pellet gap and the drying conditions on the growth of a hydride rim.

  17. FEASIBILITY OF RECYCLING PLUTONIUM AND MINOR ACTINIDES IN LIGHT WATER REACTORS USING HYDRIDE FUEL

    Energy Technology Data Exchange (ETDEWEB)

    Greenspan, Ehud; Todreas, Neil; Taiwo, Temitope

    2009-03-10

    The objective of this DOE NERI program sponsored project was to assess the feasibility of improving the plutonium (Pu) and minor actinide (MA) recycling capabilities of pressurized water reactors (PWRs) by using hydride instead of oxide fuels. There are four general parts to this assessment: 1) Identifying promising hydride fuel assembly designs for recycling Pu and MAs in PWRs 2) Performing a comprehensive systems analysis that compares the fuel cycle characteristics of Pu and MA recycling in PWRs using the promising hydride fuel assembly designs identified in Part 1 versus using oxide fuel assembly designs 3) Conducting a safety analysis to assess the likelihood of licensing hydride fuel assembly designs 4) Assessing the compatibility of hydride fuel with cladding materials and water under typical PWR operating conditions Hydride fuel was found to offer promising transmutation characteristics and is recommended for further examination as a possible preferred option for recycling plutonium in PWRs.

  18. The oxidation and hydriding of zircaloy fuel cladding in high temperature aqueous solutions

    Science.gov (United States)

    Chen, Yingzi

    Nearly 90% of today's fission reactors use Zr based fuel cladding materials. The Boiling Water Reactors (BWRs) and Pressurized Water Reactors (PWRs) are the two most common water-cooled nuclear reactors. Corrosion is the principal threat to the failure of the fuel in these reactors, resulting in the release of fission products to the coolant and hence to the establishment of radiation fields in out-of-core regions of the coolant circuit (e.g., steam generators in PWRs and turbines in BWRs). As is well known, corrosion is an electrochemical phenomenon; however, electrochemical effects are often neglected in corrosion studies on zirconium and its alloys, because of the difficulty in performing well-defined experiments under the appropriate conditions (high temperatures and pressures). In-situ studies have been carried out to examine the electrochemistry of passive zirconium under simulated BWR and PWR coolant conditions by using a controlled hydrodynamic, high temperature/high pressure test cell. The oxidation/hydriding mechanisms are elucidated by measuring the current, impedance, and capacitance of passive zirconium as a function of formation potential. The data are interpreted in terms of a modified point defect model (PDM) that recognize the existence of a passive film comprising a thick oxide outer layer over a thin barrier layer. From the composition of the zirconium passive film and thermodynamic analysis, it is postulated that a hydride barrier layer forms under PWR coolant conditions whereas an oxide barrier layer forms under BWR primary coolant conditions. Transients in current density and the thickness of the passive film formed on zirconium, when stepping the potential in either the positive or negative directions, have confirmed that the rate law afforded by the PDM adequately describes the growth and thinning of the passive film at high temperatures. The experimental results demonstrate that the kinetics of either oxygen or hydrogen vacancy generation

  19. Nanoindentation measurements of the mechanical properties of zirconium matrix and hydrides in unirradiated pre-hydrided nuclear fuel cladding

    Science.gov (United States)

    Rico, A.; Martin-Rengel, M. A.; Ruiz-Hervias, J.; Rodriguez, J.; Gomez-Sanchez, F. J.

    2014-09-01

    It is well known that the mechanical properties of the nuclear fuel cladding may be affected by the presence of hydrides. The average mechanical properties of hydrided cladding have been extensively investigated from a macroscopic point of view. In addition, the mechanical and fracture properties of bulk hydride samples fabricated from zirconium plates have also been reported. In this paper, Young's modulus, hardness and yield stress are measured for each phase, namely zirconium hydrides and matrix, of pre-hydrided nuclear fuel cladding. To this end, nanoindentation tests were performed on ZIRLO samples in as-received state, on a hydride blister and in samples with 150 and 1200 ppm of hydrogen homogeneously distributed along the hoop direction of the cladding. The results show that the measured mechanical properties of the zirconium hydrides and ZIRLO matrix (Young's modulus, hardness and yield stress) are rather similar. From the experimental data, the hydride volume fraction in the cladding samples with 150 and 1200 ppm was estimated and the average mechanical properties were calculated by means of the rule of mixtures. These values were compared with those obtained from ring compression tests. Good agreement between the results obtained by both methods was found.

  20. Nanoindentation measurements of the mechanical properties of zirconium matrix and hydrides in unirradiated pre-hydrided nuclear fuel cladding

    Energy Technology Data Exchange (ETDEWEB)

    Rico, A., E-mail: alvaro.rico@urjc.es [DIMME, Departamento de Tecnología Mecánica, Universidad Rey Juan Carlos, c/Tulipán s/n, E-28933 Móstoles, Madrid (Spain); Martin-Rengel, M.A., E-mail: mamartin@mater.upm.es [Departamento de Ciencia de los Materiales, UPM, E.T.S.I. Caminos, Canales y Puertos, Profesor Aranguren SN, E-28040 Madrid (Spain); Ruiz-Hervias, J., E-mail: jesus.ruiz@upm.es [Departamento de Ciencia de los Materiales, UPM, E.T.S.I. Caminos, Canales y Puertos, Profesor Aranguren SN, E-28040 Madrid (Spain); Rodriguez, J. [DIMME, Departamento de Tecnología Mecánica, Universidad Rey Juan Carlos, c/Tulipán s/n, E-28933 Móstoles, Madrid (Spain); Gomez-Sanchez, F.J., E-mail: javier.gomez@amsimulation.com [Advanced Material Simulation, S.L, Madrid (Spain)

    2014-09-15

    It is well known that the mechanical properties of the nuclear fuel cladding may be affected by the presence of hydrides. The average mechanical properties of hydrided cladding have been extensively investigated from a macroscopic point of view. In addition, the mechanical and fracture properties of bulk hydride samples fabricated from zirconium plates have also been reported. In this paper, Young’s modulus, hardness and yield stress are measured for each phase, namely zirconium hydrides and matrix, of pre-hydrided nuclear fuel cladding. To this end, nanoindentation tests were performed on ZIRLO samples in as-received state, on a hydride blister and in samples with 150 and 1200 ppm of hydrogen homogeneously distributed along the hoop direction of the cladding. The results show that the measured mechanical properties of the zirconium hydrides and ZIRLO matrix (Young’s modulus, hardness and yield stress) are rather similar. From the experimental data, the hydride volume fraction in the cladding samples with 150 and 1200 ppm was estimated and the average mechanical properties were calculated by means of the rule of mixtures. These values were compared with those obtained from ring compression tests. Good agreement between the results obtained by both methods was found.

  1. Study on the Use of Hydride Fuel in High-Performance Light Water Reactor Concept

    Directory of Open Access Journals (Sweden)

    Haileyesus Tsige-Tamirat

    2015-01-01

    Full Text Available Hydride fuels have features which could make their use attractive in future advanced power reactors. The potential benefit of use of hydride fuel in HPLWR without introducing significant modification in the current core design concept of the high-performance light water reactor (HPLWR has been evaluated. Neutronics and thermal hydraulic analyses were performed for a single assembly model of HPLWR with oxide and hydride fuels. The hydride assembly shows higher moderation with softer neutron spectrum and slightly more uniform axial power distribution. It achieves a cycle length of 18 months with sufficient excess reactivity. At Beginning of Cycle the fuel temperature coefficient of the hydride assembly is higher whereas the moderator and void coefficients are lower. The thermal hydraulic results show that the achievable fuel temperature in the hydride assembly is well below the design limits. The potential benefits of the use of hydride fuel in the current design of the HPLWR with the achieved improvements in the core neutronics characteristics are not sufficient to justify the replacement of the oxide fuel. Therefore for a final evaluation of the use of hydride fuels in HPLWR concepts additional studies which include modification of subassembly and core layout designs are required.

  2. Measurement of nuclear fuel pin hydriding utilizing epithermal neutron scattering

    Energy Technology Data Exchange (ETDEWEB)

    Miller, W.H. [Univ. of Missouri, Columbia, MO (United States); Farkas, D.M.; Lutz, D.R. [General Electric Co., Pleasanton, CA (United States)

    1996-12-31

    The measurement of hydrogen or zirconium hydriding in fuel cladding has long been of interest to the nuclear power industry. The detection of this hydrogen currently requires either destructive analysis (with sensitivities down to 1 {mu}g/g) or nondestructive thermal neutron radiography (with sensitivities on the order of a few weight percent). The detection of hydrogen in metals can also be determined by measuring the slowing down of neutrons as they collide and rapidly lose energy via scattering with hydrogen. This phenomenon is the basis for the {open_quotes}notched neutron spectrum{close_quotes} technique, also referred to as the Hysen method. This technique has been improved with the {open_quotes}modified{close_quotes} notched neutron spectrum technique that has demonstrated detection of hydrogen below 1 {mu}g/g in steel. The technique is nondestructive and can be used on radioactive materials. It is proposed that this technique be applied to the measurement of hydriding in zirconium fuel pins. This paper summarizes a method for such measurements.

  3. Electrolyser-metal hydride-fuel cell system for seasonal energy storage

    Energy Technology Data Exchange (ETDEWEB)

    Vanhanen, J.P.; Lund, P.D.; Tolonen, J.S. [Helsinki Univ. of Technology, Engineering Physics and Mathematics Dept., Helsinki (Finland)

    1998-12-01

    A small-scale seasonal energy storage system, comprising an electrolyser, metal hydride hydrogen store and fuel cell, has been studied. According to the feasibility study, solid polymer electrolysers and fuel cells are the best options for the electrolyser-metal hydride-fuel cell energy storage systems. A round-trip efficiency of 30% has already been demonstrated, and the next target is to reach a round-trip efficiency close to 40%. The electyrolyser-metal hydride-fuel cell systems are suitable for small-scale self-sufficient applications in which high volumetric capacity is needed and safety aspects are appreciated. (Author)

  4. Development of a used fuel cladding damage model incorporating circumferential and radial hydride responses

    Science.gov (United States)

    Chen, Qiushi; Ostien, Jakob T.; Hansen, Glen

    2014-04-01

    At the completion of the fuel drying process, used fuel Zry4 cladding typically exhibits a significant population of δ-hydride inclusions. These inclusions are in the form of small platelets that are generally oriented both circumferentially and radially within the cladding material. There is concern that radially-oriented hydride inclusions may weaken the cladding material and lead to issues during used fuel storage and transportation processes. A high fidelity model of the mechanical behavior of hydrides has utility in both designing fuel cladding to be more resistant to this hydride-induced weakening and also in suggesting modifications to drying, storage, and transport operations to reduce the impact of hydride formation and/or the avoidance of loading scenarios that could overly stress the radial inclusions. We develop a mechanical model for the Zry4-hydride system that, given a particular morphology of hydride inclusions, allows the calculation of the response of the hydrided cladding under various loading scenarios. The model treats the Zry4 matrix material as J2 elastoplastic, and treats the hydrides as platelets oriented in predefined directions (e.g., circumferentially and radially). The model is hosted by the Albany analysis framework, where a finite element approximation of the weak form of the cladding boundary value problem is solved using a preconditioned Newton-Krylov approach. Instead of forming the required system Jacobian operator directly or approximating its action with a differencing operation, Albany leverages the Trilinos Sacado package to form the Jacobian via automatic differentiation. We present results that describe the performance of the model in comparison with as-fabricated Zry4 as well as HB Robinson fuel cladding. Further, we also present performance results that demonstrate the efficacy of the overall solution method employed to host the model.

  5. Development of a used fuel cladding damage model incorporating circumferential and radial hydride responses

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Qiushi, E-mail: qiushi@clemson.edu [Glenn Department of Civil Engineering, Clemson University, Clemson, SC 29634 (United States); Ostien, Jakob T., E-mail: jtostie@sandia.gov [Mechanics of Materials Dept. 8256, Sandia National Laboratories, P.O. Box 969, Livermore, CA 94551-0969 (United States); Hansen, Glen, E-mail: gahanse@sandia.gov [Computational Multiphysics Dept. 1443, Sandia National Laboratories, P.O. Box 5800, Albuquerque, NM 87185-1321 (United States)

    2014-04-01

    At the completion of the fuel drying process, used fuel Zry4 cladding typically exhibits a significant population of δ-hydride inclusions. These inclusions are in the form of small platelets that are generally oriented both circumferentially and radially within the cladding material. There is concern that radially-oriented hydride inclusions may weaken the cladding material and lead to issues during used fuel storage and transportation processes. A high fidelity model of the mechanical behavior of hydrides has utility in both designing fuel cladding to be more resistant to this hydride-induced weakening and also in suggesting modifications to drying, storage, and transport operations to reduce the impact of hydride formation and/or the avoidance of loading scenarios that could overly stress the radial inclusions. We develop a mechanical model for the Zry4-hydride system that, given a particular morphology of hydride inclusions, allows the calculation of the response of the hydrided cladding under various loading scenarios. The model treats the Zry4 matrix material as J{sub 2} elastoplastic, and treats the hydrides as platelets oriented in predefined directions (e.g., circumferentially and radially). The model is hosted by the Albany analysis framework, where a finite element approximation of the weak form of the cladding boundary value problem is solved using a preconditioned Newton–Krylov approach. Instead of forming the required system Jacobian operator directly or approximating its action with a differencing operation, Albany leverages the Trilinos Sacado package to form the Jacobian via automatic differentiation. We present results that describe the performance of the model in comparison with as-fabricated Zry4 as well as HB Robinson fuel cladding. Further, we also present performance results that demonstrate the efficacy of the overall solution method employed to host the model.

  6. A micromechanical model for predicting hydride embrittlement in nuclear fuel cladding material

    Science.gov (United States)

    Chan, K. S.

    1996-01-01

    A major concern about nuclear fuel cladding under waste repository conditions is that the slow cooling rate anticipated in the repository may lead to the formation of excessive radial hydrides, and cause embrittlement of the cladding materials. In this paper, the development of a micromechanical model for predicting hydride-induced embrittlement in nuclear fuel cladding is presented. The important features of the proposed model are: (1) the capability to predict the orientation, morphology, and types of hydrides under the influence of key variables such as cooling rate, internal pressure, and time, and (2) the ability to predict the influence of hydride orientation and morphology on the tensile ductility and fracture toughness of the cladding material. Various model calculations are presented to illustrate the characteristics and utilities of the proposed methodology. A series of experiments was also performed to check assumptions used and to verify some of the model predictions.

  7. A deformation and thermodynamic model for hydride precipitation kinetics in spent fuel cladding

    Energy Technology Data Exchange (ETDEWEB)

    Stout, R.B.

    1989-10-01

    Hydrogen is contained in the Zircaloy cladding of spent fuel rods from nuclear reactors. All the spent fuel rods placed in a nuclear waste repository will have a temperature history that decreases toward ambient; and as a result, most all of the hydrogen in the Zircaloy will eventually precipitate as zirconium hydride platelets. A model for the density of hydride platelets is a necessary sub-part for predicting Zircaloy cladding failure rate in a nuclear waste repository. A model is developed to describe statistically the hydride platelet density, and the density function includes the orientation as a physical attribute. The model applies concepts from statistical mechanics to derive probable deformation and thermodynamic functionals for cladding material response that depend explicitly on the hydride platelet density function. From this model, hydride precipitation kinetics depend on a thermodynamic potential for hydride density change and on the inner product of a stress tensor and a tensor measure for the incremental volume change due to hydride platelets. The development of a failure response model for Zircaloy cladding exposed to the expected conditions in a nuclear waste repository is supported by the US DOE Yucca Mountain Project. 19 refs., 3 figs.

  8. Evaluation of U-Zr hydride fuel for a thorium fuel cycle in an RTR concept

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Kyung Taek; Cho, Nam Zin [Korea Advanced Institute of Science and Technology, Taejon (Korea, Republic of)

    1998-12-31

    In this paper, we performed a design study of a thorium fueled reactor according to the design concept of the Radkowsky Thorium Reactor (RTR) and evaluated its overall performance. To enhance its performance and alleviate its problems, we introduced a new metallic uranium fuel, uranium-zirconium hydride (U-ZrH{sub 1.6}), as a seed fuel. For comparison, typical ABB/CE-type PWR based on SYSTEM 80+and standard RTR-type thorium reactor were also studied. From the results of performance analysis, we could ascertain advantages of RTR-type thorium fueled reactor in proliferation resistance, fuel cycle economics, and back-end fuel cycle. Also, we found that enhancement of proliferation resistance and safer operating conditions may be achieved by using the U-ZrH{sub 1.6} fuel in the seed region without additional penalties in comparison with the standard RTR`s U-Zr fuel. 6 refs., 2 figs., 6 tabs. (Author)

  9. Internal hydriding in irradiated defected Zircaloy fuel rods: A review (LWBR Development Program)

    Energy Technology Data Exchange (ETDEWEB)

    Clayton, J C

    1987-10-01

    Although not a problem in recent commercial power reactors, including the Shippingport Light Water Breeder Reactor, internal hydriding of Zircaloy cladding was a persistent cause of gross cladding failures during the 1960s. It occurred in the fuel rods of water-cooled nuclear power reactors that had a small cladding defect. This report summarizes the experimental findings, causes, mechanisms, and methods of minimizing internal hydriding in defected Zircaloy-clad fuel rods. Irradiation test data on the different types of defected fuel rods, intentionally fabricated defected and in-pile operationally defected rods, are compared. Significant factors affecting internal hydriding in defected Zircaloy-clad fuel rods (defect hole size, internal and external sources of hydrogen, Zircaloy cladding surface properties, nickel alloy contamination of Zircaloy, the effect of heat flux and fluence) are discussed. Pertinent in-pile and out-of-pile test results from Bettis and other laboratories are used as a data base in constructing a qualitative model which explains hydrogen generation and distribution in Zircaloy cladding of defected water-cooled reactor fuel rods. Techniques for minimizing internal hydride failures in Zircaloy-clad fuel rods are evaluated.

  10. Advanced chemical hydride-based hydrogen generation/storage system for fuel cell vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Breault, R.W.; Rolfe, J. [Thermo Power Corp., Waltham, MA (United States)

    1998-08-01

    Because of the inherent advantages of high efficiency, environmental acceptability, and high modularity, fuel cells are potentially attractive power supplies. Worldwide concerns over clean environments have revitalized research efforts on developing fuel cell vehicles (FCV). As a result of intensive research efforts, most of the subsystem technology for FCV`s are currently well established. These include: high power density PEM fuel cells, control systems, thermal management technology, and secondary power sources for hybrid operation. For mobile applications, however, supply of hydrogen or fuel for fuel cell operation poses a significant logistic problem. To supply high purity hydrogen for FCV operation, Thermo Power`s Advanced Technology Group is developing an advanced hydrogen storage technology. In this approach, a metal hydride/organic slurry is used as the hydrogen carrier and storage media. At the point of use, high purity hydrogen will be produced by reacting the metal hydride/organic slurry with water. In addition, Thermo Power has conceived the paths for recovery and regeneration of the spent hydride (practically metal hydroxide). The fluid-like nature of the spent hydride/organic slurry will provide a unique opportunity for pumping, transporting, and storing these materials. The final product of the program will be a user-friendly and relatively high energy storage density hydrogen supply system for fuel cell operation. In addition, the spent hydride can relatively easily be collected at the pumping station and regenerated utilizing renewable sources, such as biomass, natural, or coal, at the central processing plants. Therefore, the entire process will be economically favorable and environmentally friendly.

  11. Hydrogen storage systems based on magnesium hydride: from laboratory tests to fuel cell integration

    Science.gov (United States)

    de Rango, P.; Marty, P.; Fruchart, D.

    2016-02-01

    The paper reviews the state of the art of hydrogen storage systems based on magnesium hydride, emphasizing the role of thermal management, whose effectiveness depends on the effective thermal conductivity of the hydride, but also depends of other limiting factors such as wall contact resistance and convective exchanges with the heat transfer fluid. For daily cycles, the use of phase change material to store the heat of reaction appears to be the most effective solution. The integration with fuel cells (1 kWe proton exchange membrane fuel cell and solid oxide fuel cell) highlights the dynamic behaviour of these systems, which is related to the thermodynamic properties of MgH2. This allows for "self-adaptive" systems that do not require control of the hydrogen flow rate at the inlet of the fuel cell.

  12. Aluminum Hydride as a Fuel Supplement to NanoThermites

    Science.gov (United States)

    2014-01-01

    explosives and as a hydrogen storage medium. There are as many as six crystalline phases of alane, of which α-alane is themost stable and is also the...a pure nanoaluminum-corresponding metal oxide thermite. As Fig. 2 shows, the addition ofmicron-scale aluminum hydride to a nanoaluminum–copper-oxide... hydrogen does not participate in the thermite reaction. It is quite possible that the hydrogen may react with oxygen and or the metal oxide as an

  13. Obtention of the constitutive equation of hydride blisters in fuel cladding from nanoindentation tests

    Science.gov (United States)

    Martin Rengel, M. A.; Gomez, F. J.; Rico, A.; Ruiz-Hervias, J.; Rodriguez, J.

    2017-04-01

    It is well known that the presence of hydrides in nuclear fuel cladding may reduce its mechanical and fracture properties. This situation may be worsened as a consequence of the formation of hydride blisters. These blisters are zones with an extremely high hydrogen concentration and they are usually associated to the oxide spalling which may occur at the outer surface of the cladding. In this work, a method which allows us to reproduce, in a reliable way, hydride blisters in the laboratory has been devised. Depth-sensing indentation tests with a spherical indenter were conducted on a hydride blister produced in the laboratory with the aim of measuring its mechanical behaviour. The plastic stress-strain curve of the hydride blister was calculated for first time by combining depth-sensing indentation tests results with an iterative algorithm using finite element simulations. The algorithm employed reduces, in each iteration, the differences between the numerical and the experimental results by modifying the stress-strain curve. In this way, an almost perfect adjustment of the experimental data was achieved after several iterations. The calculation of the constitutive equation of the blister from nanoindentation tests, may involve a lack of uniqueness. To evaluate it, a method based on the optimization of parameters of analytical equations has been proposed in this paper. An estimation of the error which involves this method is also provided.

  14. Improving the neutronic characteristics of a boiling water reactor by using uranium zirconium hydride fuel instead of uranium dioxide fuel

    Energy Technology Data Exchange (ETDEWEB)

    Galahom, Ahmed Abdelghafar [Higher Technological Institute, Ramadan (Egypt)

    2016-06-15

    The present work discusses two different models of boiling water reactor (BWR) bundle to compare the neutronic characteristics of uranium dioxide (UO{sub 2}) and uranium zirconium hydride (UZrH{sub 1.6}) fuel. Each bundle consists of four assemblies. The BWR assembly fueled with UO{sub 2} contains 8 × 8 fuel rods while that fueled with UZrH{sub 1.6} contains 9 × 9 fuel rods. The Monte Carlo N-Particle Transport code, based on the Mont Carlo method, is used to design three dimensional models for BWR fuel bundles at typical operating temperatures and pressure conditions. These models are used to determine the multiplication factor, pin-by-pin power distribution, axial power distribution, thermal neutron flux distribution, and axial thermal neutron flux. The moderator and coolant (water) are permitted to boil within the BWR core forming steam bubbles, so it is important to calculate the reactivity effect of voiding at different values. It is found that the hydride fuel bundle design can be simplified by eliminating water rods and replacing the control blade with control rods. UZrH{sub 1.6} fuel improves the performance of the BWR in different ways such as increasing the energy extracted per fuel assembly, reducing the uranium ore, and reducing the plutonium accumulated in the BWR through burnup.

  15. State of the art of water chemistry of Japanese BWRs

    Energy Technology Data Exchange (ETDEWEB)

    Ishigure, K. [Tokyo Univ. (Japan). Dept. of Quantum Eng. and Syst. Sci.

    1996-02-01

    Nuclear power generation is now one of the most important technologies in the energy supply in Japan. The operational experience of nuclear power plants for more than 20 years in Japan has shown that water chemistry is a key technology for safer and more economical operation of nuclear power plants. Extensive efforts have been made in the field of water chemistry to achieve the targets of radiation field control, to keep the integrities of piping and fuel elements and to reduce the radioactive waste generation. This paper briefly describes the present status of Japanese water chemistry technology with the main emphasis placed on BWRs. (orig.).

  16. Delayed hydride cracking properties of the endplate resistance welds of CANDU fuel bundles

    Energy Technology Data Exchange (ETDEWEB)

    Shek, G.K.; Wasiluk, B.S., E-mail: Gordon.Shek@kinectrics.com [Kinectrics Inc., Toronto, Ontario (Canada); Freire-Canosa, J. [Nuclear Waste Management Organization, Toronto, Ontario (Canada); Lampman, T. [AMEC NSS, Toronto, Ontario (Canada)

    2010-07-01

    In order to assess the susceptibility of CANDU fuel bundles endplate resistance welds to Delayed Hydride Cracking (DHC) during long term dry storage, the threshold stress intensity factor (KIH) and crack velocity of DHC in endplate welds of three unirradiated fuel bundles were determined. The three bundles tested covered the 28-element and 37-element designs and two Canadian manufacturers. The range of KIH values and DHC velocities obtained from the endplate welds of the three bundles are consistent with previous results obtained from a 37-element bundle produced by one of the manufacturers. (author)

  17. Study of intermediate configurations during the fuel reload in BWRs; Estudio de configuraciones intermedias durante la recarga de combustible en BWR's

    Energy Technology Data Exchange (ETDEWEB)

    Fuentes M, L.; Castillo M, J. A.; Ortiz S, J. J.; Perusquia del C, R. [ININ, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico); Jacinto C, S., E-mail: luis.fuentes@inin.gob.mx [Universidad Autonoma del Estado de Yucatan, Calle 60 No. 491-A por 57, 97000 Merida, Yucatan (Mexico)

    2012-10-15

    The criticality state of the core of a boiling water reactor (BWR) was evaluated, during the reload process for the intermediate states between the load pattern of cycle end and the beginning of the next, using the information of the load pattern of the operation cycles 13 and 14 of Unit 1 of the nuclear power plant of Laguna Verde. For this evaluation the codes CASMO-4 and Simulate-3 for conditions of the core in cold were used. The strategy consisted on moving assemblies with 4 burned cycles of the reactor core. Later on were re situated the remaining assemblies, placing them in the positions to occupy in the next operation cycle. Finally, was carried out the assemblies load of fresh fuel. In each realized change, it was observing the behavior of the k-effective value that is the parameter used to evaluate the criticality state of each state of the core change. In a second stage, was designed a program that builds in automatic way each one of the intermediate cores and also analyzes the criticality state of the reactor core after each withdrawal, re situated and load of fuel assemblies. (Author)

  18. Metal hydride and pyrophoric fuel additives for dicyclopentadiene based hybrid propellants

    Science.gov (United States)

    Shark, Steven C.

    The purpose of this study is to investigate the use of reactive energetic fuel additives that have the potential to increase the combustion performance of hybrid rocket propellants in terms of solid fuel regression rate and combustion efficiency. Additives that can augment the combustion flame zone in a hybrid rocket motor by means of increased energy feedback to the fuel grain surface are of great interest. Metal hydrides have large volumetric hydrogen densities, which gives these materials high performance potential as fuel additives in terms of specifc impulse. The excess hydrogen and corresponding base metal may also cause an increase in the hybrid rocket solid fuel regression rate. Pyrophoric additives also have potential to increase the solid fuel regression rate by reacting more readily near the burning fuel surface providing rapid energy feedback. An experimental performance evaluation of metal hydride fuel additives for hybrid rocket motor propulsion systems is examined in this study. Hypergolic ignition droplet tests and an accelerated aging study revealed the protection capabilities of Dicyclopentadiene (DCPD) as a fuel binder, and the ability for unaided ignition. Static hybrid rocket motor experiments were conducted using DCPD as the fuel. Sodium borohydride (NabH4) and aluminum hydride (AlH3) were examined as fuel additives. Ninety percent rocket grade hydrogen peroxide (RGHP) was used as the oxidizer. In this study, the sensitivity of solid fuel regression rate and characteristic velocity (C*) efficiency to total fuel grain port mass flux and particle loading is examined. These results were compared to HTPB combustion performance as a baseline. Chamber pressure histories revealed steady motor operation in most tests, with reduced ignition delays when using NabH4 as a fuel additive. The addition of NabH4 and AlH3 produced up to a 47% and 85% increase in regression rate over neat DCPD, respectively. For all test conditions examined C* efficiency ranges

  19. Testing the susceptibility of CANDU fuel bundle endcap/endplate welds to delayed hydride cracking

    Energy Technology Data Exchange (ETDEWEB)

    Shek, G.K.; Wasiluk, B.S. [Kinectrics Inc., Toronto, Ontario (Canada); Lampman, T. [Nuclear Safety Solutions Inc., Toronto, Ontario (Canada); Freire-Canosa, J. [Nuclear Waste Management Organization, Toronto, Ontario (Canada)

    2008-07-01

    Among degradation mechanisms that could potentially impact CANDU fuel bundle integrity during long-term dry storage, Delayed Hydride Cracking (DHC) of the bundle endcap/endplate welds was identified as posing the most likely risk. An apparatus developed and tested on non-irradiated CANDU fuel bundle endcap/endplate welds showed DHC could be operative at welds with about 10 ppm hydrogen at 130 C. Further testing of welds with 40 ppm hydrogen at 150 C gave K{sub IH} values of 7.6 to 13.6 MPa{radical}m. Preliminary stress calculations indicate the K{sub I} values at the welds during dry storage are significantly lower than the found K{sub IH} values. (author)

  20. FY 2016 Status Report: CIRFT Testing on Spent Nuclear Fuels and Hydride Reorientation Study

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jy-An John [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Materials Science and Technology Division; Wang, Hong [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Materials Science and Technology Division; Yan, Yong [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Materials Science and Technology Division; Bevard, Bruce B. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Materials Science and Technology Division; Scaglione, John M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Materials Science and Technology Division

    2016-08-04

    This report provides a detailed description of the Cyclic Integrated Reversible-Bending Fatigue Tester (CIRFT) testing conducted on spent nuclear fuel (SNF) rods in FY 2016, including hydride reorientation test results. Contact-based measurement, or three-LVDT-based curvature measurement, of SNF rods has proven to be quite reliable in CIRFT testing. However, how the linear variable differential transformer (LVDT) head contacts the SNF rod may have a significant effect on the curvature measurement, depending on the magnitude and direction of rod curvature. To correct such contact/curvature issues, sensor spacing, defined as the amount of separation between the three LVDT probes, is a critical measurement that can be used to calculate rod curvature once the deflections are obtained. Recently developed CIRFT data analyses procedures were integrated into FY 2016 CIRFT testing results for the curvature measurements. The variations in fatigue life are provided in terms of moment, equivalent stress, curvature, and equivalent strain for the tested SNFs. The equivalent stress plot collapsed the data points from all of the SNFs into a single zone. A detailed examination revealed that, at same stress level, fatigue lives display a descending order as follows: H. B. Robinson Nuclear Power Station (HBR), Limerick Nuclear Power Station (LMK), mixed uranium-plutonium oxide (MOX). If looking at the strain, then LMK fuel has a slightly longer fatigue life than HBR fuel, but the difference is subtle. The knee point of endurance limit in the curve of moment and curvature or equivalent quantities is more clearly defined for LMK and HBR fuels. The treatment affects the fatigue life of specimens. Both a drop of 12 in. and radial hydride treatment (RHT) have a negative impact on fatigue life. The effect of thermal annealing on MOX fuel rods was relatively small at higher amplitude but became significant at low amplitude of moment. Thermal annealing tended to extend the fatigue life of

  1. Reproduction in laboratory of the morphology distribution and orientation of hydrides in different stages fuel cycle; Reproduccion en laboratorio de la morfologia, distribucion y orientacion de hidruros en distintas etapas del ciclo de combustible

    Energy Technology Data Exchange (ETDEWEB)

    Martin-Rengel, M. A.; Gomez, F. J.; Ruiz-Hervias, J.

    2013-07-01

    In this paper, the experimental techniques employed to reproduce in the laboratory the distribution, morphology and orientation of the hydrides during the different steps of the nuclear fuel cycle are reported. A cathodic charging technique was employed to produce ZIRLO cladding samples with an homogeneous distribution of hydrides and concentrations of 150, 250, 500, 1200 and 2000 ppm of hydrogen. The treatments developed to produce radial hydride reorientation, hydride blisters and a peripheral rim of hydrides are described.

  2. Modeling and Simulation of Used Nuclear Fuel During Transportation with Consideration of Hydride Effects and Cyclic Fatigue

    Energy Technology Data Exchange (ETDEWEB)

    Chakraborty, Pritam [Idaho National Lab. (INL), Idaho Falls, ID (United States); Sabharwall, Piyush [Idaho National Lab. (INL), Idaho Falls, ID (United States); Spears, Robert Edward [Idaho National Lab. (INL), Idaho Falls, ID (United States); Coleman, Justin Leigh [Idaho National Lab. (INL), Idaho Falls, ID (United States); Sener, Kadir [STANEX (United States); Varma, Amit H. [STANEX (United States)

    2015-09-30

    The objective of this work is to understand the integrity of Used Nuclear Fuel (UNF) during transportation. Previous analysis work has been performed to look at the integrity of UNF during transportation but these analyses have neglected to analyze the effect of hydrides and flaws (fracture mechanics models to capture radial cracking in the cladding). In this study, the clad regions of interest are near the pellet-pellet interfaces. These regions can experience more complex stress-states than the rest of the clad during cooling and have a greater possibility to develop radially reoriented hydrides during vacuum drying.

  3. Anisotropic Azimuthal Power and Temperature distribution on FuelRod. Impact on Hydride Distribution

    Energy Technology Data Exchange (ETDEWEB)

    Motta, Arthur [Pennsylvania State Univ., State College, PA (United States); Ivanov, Kostadin [Pennsylvania State Univ., State College, PA (United States); Arramova, Maria [Pennsylvania State Univ., State College, PA (United States); Hales, Jason [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-04-29

    The degradation of the zirconium cladding may limit nuclear fuel performance. In the high temperature environment of a reactor, the zirconium in the cladding corrodes, releasing hydrogen in the process. Some of this hydrogen is absorbed by the cladding in a highly inhomogeneous manner. The distribution of the absorbed hydrogen is extremely sensitive to temperature and stress concentration gradients. The absorbed hydrogen tends to concentrate near lower temperatures. This hydrogen absorption and hydride formation can cause cladding failure. This project set out to improve the hydrogen distribution prediction capabilities of the BISON fuel performance code. The project was split into two primary sections, first was the use of a high fidelity multi-physics coupling to accurately predict temperature gradients as a function of r, θ , and z, and the second was to use experimental data to create an analytical hydrogen precipitation model. The Penn State version of thermal hydraulics code COBRA-TF (CTF) was successfully coupled to the DeCART neutronics code. This coupled system was verified by testing and validated by comparison to FRAPCON data. The hydrogen diffusion and precipitation experiments successfully calculated the heat of transport and precipitation rate constant values to be used within the hydrogen model in BISON. These values can only be determined experimentally. These values were successfully implemented in precipitation, diffusion and dissolution kernels that were implemented in the BISON code. The coupled output was fed into BISON models and the hydrogen and hydride distributions behaved as expected. Simulations were conducted in the radial, axial and azimuthal directions to showcase the full capabilities of the hydrogen model.

  4. Texture and hydride orientation relationship of Zircaloy-4 fuel clad tube during its fabrication for pressurized heavy water reactors

    Science.gov (United States)

    Vaibhaw, Kumar; Rao, S. V. R.; Jha, S. K.; Saibaba, N.; Jayaraj, R. N.

    2008-12-01

    Zircaloy-4 material is used for cladding tube in pressurized heavy water reactors (PHWRs) of 220 MWe and 540 MWe capacity in India. These tubes are fabricated by using various combinations of thermo-mechanical processes to achieve desired mechanical and corrosion properties. Cladding tube develops crystallographic texture during its fabrication, which has significant influence on its in-reactor performance. Due to radiolytic decomposition of water Zircaloy-4 picks-up hydrogen. This hydrogen in excess of its maximum solubility in reactor operating condition (˜300 °C), precipitates as zirconium hydrides causing embrittlement of cladding tube. Hydride orientation in the radial direction of the tube limits the service life and lowers the fuel burn-up in reactor. The orientation of the hydride primarily depends on texture developed during fabrication. A correlation between hydride orientation ( F n) with the texture in the tube during its fabrication has been developed using a second order polynomial. The present work is aimed at quantification and correlation of texture evolved in Zircaloy-4 cladding tube using Kearn's f-parameter during its fabrication process.

  5. Texture and hydride orientation relationship of Zircaloy-4 fuel clad tube during its fabrication for pressurized heavy water reactors

    Energy Technology Data Exchange (ETDEWEB)

    Vaibhaw, Kumar [Nuclear Fuel Complex, ECIL Post, Hyderabad 500 062 (India)], E-mail: krvaibhaw@yahoo.co.in; Rao, S.V.R.; Jha, S.K.; Saibaba, N.; Jayaraj, R.N. [Nuclear Fuel Complex, ECIL Post, Hyderabad 500 062 (India)

    2008-12-15

    Zircaloy-4 material is used for cladding tube in pressurized heavy water reactors (PHWRs) of 220 MWe and 540 MWe capacity in India. These tubes are fabricated by using various combinations of thermo-mechanical processes to achieve desired mechanical and corrosion properties. Cladding tube develops crystallographic texture during its fabrication, which has significant influence on its in-reactor performance. Due to radiolytic decomposition of water Zircaloy-4 picks-up hydrogen. This hydrogen in excess of its maximum solubility in reactor operating condition ({approx}300 deg. C), precipitates as zirconium hydrides causing embrittlement of cladding tube. Hydride orientation in the radial direction of the tube limits the service life and lowers the fuel burn-up in reactor. The orientation of the hydride primarily depends on texture developed during fabrication. A correlation between hydride orientation (F{sub n}) with the texture in the tube during its fabrication has been developed using a second order polynomial. The present work is aimed at quantification and correlation of texture evolved in Zircaloy-4 cladding tube using Kearn's f-parameter during its fabrication process.

  6. NSRR experiment with un-irradiated uranium-zirconium hydride fuel. Design, fabrication process and inspection data of test fuel rod

    Energy Technology Data Exchange (ETDEWEB)

    Sasajima, Hideo; Fuketa, Toyoshi; Ishijima, Kiyomi; Kuroha, Hiroshi; Ikeda, Yoshikazu [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Aizawa, Keiichi

    1998-08-01

    An experiment plan is progressing in the Nuclear Safety Research Reactor (NSRR) to perform pulse-irradiation with uranium-zirconium hydride (U-ZrH{sub x}) fuel. This fuel is widely used in the training research and isotope production reactor of GA (TRIGA). The objectives of the experiment are to determine the fuel rod failure threshold and to investigate fuel behavior under simulated reactivity initiated accident (RIA) conditions. This report summarizes design, fabrication process and inspection data of the test fuel rods before pulse-irradiation. The experiment with U-ZrH{sub x} fuel will realize precise safety evaluation, and improve the TRIGA reactor performance. The data to be obtained in this program will also contribute development of next-generation TRIGA reactor and its safety evaluation. (author)

  7. An enhanced microfluidic control system for improving power density of a hydride-based micro fuel cell

    Energy Technology Data Exchange (ETDEWEB)

    Moghaddam, Saeed; Shannon, Mark [Mechanical Science and Engineering, 1206 West Green St., University of Illinois, Urbana, IL 61801 (United States); Chemical and Biomolecular Engineering, 213 Roger Adams Lab, 600 S. Mathews, Urbana, IL 61801 (United States); Pengwang, Eakkachai [Mechanical Science and Engineering, 1206 West Green St., University of Illinois, Urbana, IL 61801 (United States); Masel, Richard I. [Chemical and Biomolecular Engineering, 213 Roger Adams Lab, 600 S. Mathews, Urbana, IL 61801 (United States)

    2010-04-02

    Microfuel cells (MFCs) can potentially power emerging technologies that require power sources in the microliter size range. The recent development of a microfluidic mechanism for self-regulated generation of hydrogen has enabled fabrication of MFCs orders of magnitude smaller than previously possible. In this study, we report an order of magnitude enhancement in the power density of a microliter-scale fuel cell incorporating a new microfluidic design. The microfluidic mechanism is part of an on-board hydrogen generator that uses a reaction between a metal hydride, LiAlH{sub 4}, and water vapor to generate hydrogen. The hydrogen generated exits the hydride reactor through a porous silicon wall to reach a Nafion-based membrane electrode assembly (MEA). The microfluidic design increased the water vapor release rate to the hydride reactor by one order of magnitude over a previous design. A 9 {mu}L device incorporating the enhanced microfluidic design delivered a power density of 92 W L{sup -1}. Details of a parametric study conducted to improve the water vapor release rate of the microfluidic mechanism and performance analysis of the integrated device are presented in this paper. (author)

  8. An enhanced microfluidic control system for improving power density of a hydride-based micro fuel cell

    Science.gov (United States)

    Moghaddam, Saeed; Pengwang, Eakkachai; Masel, Richard I.; Shannon, Mark

    Microfuel cells (MFCs) can potentially power emerging technologies that require power sources in the microliter size range. The recent development of a microfluidic mechanism for self-regulated generation of hydrogen has enabled fabrication of MFCs orders of magnitude smaller than previously possible. In this study, we report an order of magnitude enhancement in the power density of a microliter-scale fuel cell incorporating a new microfluidic design. The microfluidic mechanism is part of an on-board hydrogen generator that uses a reaction between a metal hydride, LiAlH 4, and water vapor to generate hydrogen. The hydrogen generated exits the hydride reactor through a porous silicon wall to reach a Nafion-based membrane electrode assembly (MEA). The microfluidic design increased the water vapor release rate to the hydride reactor by one order of magnitude over a previous design. A 9 μL device incorporating the enhanced microfluidic design delivered a power density of 92 W L -1. Details of a parametric study conducted to improve the water vapor release rate of the microfluidic mechanism and performance analysis of the integrated device are presented in this paper.

  9. Surface modification of a proton exchange membrane and hydrogen storage in a metal hydride for fuel cells

    Science.gov (United States)

    Andrews, Lisa

    promising option. Effective hydrogen storage methods must be used as sources of available hydrogen. One possibility is to use hydrogen stored in a solid chemical compound such as magnesium hydride. The kinetics of hydrogen release from the hydrolysis of magnesium hydride with 2 wt% acetic acid was examined. The hydrogen produced was supplied to a fuel cell and the amount of hydrogen consumed by the fuel cell was determined. Carbon nanotubes also can play a role in energy sources and as components in fuel cells. VUV photo-oxidized single walled carbon nanotubes (SWNT) paper was grafted with polyacrylic acid and analyzed using XPS.

  10. SSH2S: Hydrogen storage in complex hydrides for an auxiliary power unit based on high temperature proton exchange membrane fuel cells

    Science.gov (United States)

    Baricco, Marcello; Bang, Mads; Fichtner, Maximilian; Hauback, Bjorn; Linder, Marc; Luetto, Carlo; Moretto, Pietro; Sgroi, Mauro

    2017-02-01

    The main objective of the SSH2S (Fuel Cell Coupled Solid State Hydrogen Storage Tank) project was to develop a solid state hydrogen storage tank based on complex hydrides and to fully integrate it with a High Temperature Proton Exchange Membrane (HT-PEM) fuel cell stack. A mixed lithium amide/magnesium hydride system was used as the main storage material for the tank, due to its high gravimetric storage capacity and relatively low hydrogen desorption temperature. The mixed lithium amide/magnesium hydride system was coupled with a standard intermetallic compound to take advantage of its capability to release hydrogen at ambient temperature and to ensure a fast start-up of the system. The hydrogen storage tank was designed to feed a 1 kW HT-PEM stack for 2 h to be used for an Auxiliary Power Unit (APU). A full thermal integration was possible thanks to the high operation temperature of the fuel cell and to the relative low temperature (170 °C) for hydrogen release from the mixed lithium amide/magnesium hydride system.

  11. Thermal coupling potential of Solid Oxide Fuel Cells with metal hydride tanks: Thermodynamic and design considerations towards integrated systems

    Science.gov (United States)

    Yiotis, Andreas G.; Kainourgiakis, Michael E.; Kosmidis, Lefteris I.; Charalambopoulou, Georgia C.; Stubos, Athanassios K.

    2014-12-01

    We study the thermal coupling potential between a high temperature metal hydride (MH) tank and a Solid Oxide Fuel Cell (SOFC) aiming towards the design of an efficient integrated system, where the thermal power produced during normal SOFC operation is redirected towards the MH tank in order to maintain H2 desorption without the use of external heating sources. Based on principles of thermodynamics, we calculate the energy balance in the SOFC/MH system and derive analytical expressions for both the thermal power produced during SOFC operation and the corresponding thermal power required for H2 desorption, as a function of the operating temperature, efficiency and fuel utilization ratio in the SOFC, and the MH enthalpy of desorption in the tank. Based on these calculations, we propose an integrated SOFC/MH design where heat is transferred primarily by radiation to the tank in order to maintain steady-state desorption conditions. We develop a mathematical model for this particular design that accounts for heat/mass transfer and desorption kinetics in the tank, and solve for the dynamics of the system assuming MgH2 as a storage material. Our results focus primarily on tank operating conditions, such as pressure, temperature and H2 saturation profiles vs operation time.

  12. Formation and physical properties of uranium hydride under conditions relevant to metallic fuel and nuclear waste storage

    Science.gov (United States)

    Orr, Robin; Godfrey, Hugh; Broan, Chris; Goddard, Dave; Woodhouse, Guy; Durham, Peter; Diggle, Andrew; Bradshaw, John

    2016-08-01

    The formation of uranium hydride is recognised as a hazard during the storage of uranium metal owing to its potentially pyrophoric properties. This study has assessed the influence of water vapour on the potential for uranium hydride to form at low temperatures and shows that it increases the duration of the induction period but does not necessarily prevent uranium hydride formation and also does not significantly change the reaction rate with hydrogen. It is further shown that the α-UH3 fraction in the uranium hydride gradually increases at decreasing temperatures and is likely to be the dominant phase formed under typical storage conditions. Particle morphology and specific surface area of uranium hydride prepared between 30 °C and 200 °C have also been characterised but show only modest variation compared with the phase composition.

  13. Experimental and Analytical Modeling of Natural Circulation and Forced Circulation BWRs : Thermal-Hydraulic, Core-Wide, and Regional Stability Phenomena

    OpenAIRE

    2006-01-01

    Currently, 434 nuclear power plants are in operation worldwide. 21% of them are known as Boiling Water Reactors (BWRs). These BWRs have pumps that cool their reactor cores (the forced circulation BWRs). In the design of new BWRs, ways to cool the core by a natural circulation flow, without pumps, also called natural circulation BWRs, are being considered. A possible disadvantage of natural circulation BWRs might be their susceptibility to instabilities, which could then lead to both flow and ...

  14. Bed geometries, fueling strategies and optimization of heat exchanger designs in metal hydride storage systems for automotive applications: A review

    DEFF Research Database (Denmark)

    Mazzucco, Andrea; Dornheim, Martin; Sloth, Michael

    2014-01-01

    given to metal hydride storage tanks for light duty vehicles, since this application is the most promising one for such storage materials and has been widely studied in the literature. Enhancing cooling/heating during hydrogen uptake and discharge has found to be essential to improve storage systems......This review presents recent developments for effective heat management systems to be integrated in metal hydride storage tanks, and investigates the performance improvements and limitations of each particular solution. High pressures and high temperatures metal hydrides can lead to different design...

  15. Summary of a workshop on severe accident management for BWRs

    Energy Technology Data Exchange (ETDEWEB)

    Kastenberg, W.E. [ed.; Apostolakis, G.; Jae, M.; Milici, T.; Park, H.; Xing, L.; Dhir, V.K.; Lim, H.; Okrent, D.; Swider, J.; Yu, D. [California Univ., Los Angeles, CA (United States). Dept. of Mechanical, Aerospace and Nuclear Engineering

    1991-11-01

    Severe accident management can be defined as the use of existing and/or alternative resources, systems and actions to prevent or mitigate a core-melt accident. For each accident sequence and each combination of strategies there may be several options available to the operator; and each involves phenomenological and operational considerations regarding uncertainty. Operational uncertainties include operator, system and instrument behavior during an accident. During the period September 26--28, 1990, a workshop was held at the University of California, Los Angeles, to address these uncertainties for Boiling Water Reactors (BWRs). This report contains a summary of the workshop proceedings.

  16. gamma-Zr-Hydride Precipitate in Irradiated Massive delta- Zr-Hydride

    DEFF Research Database (Denmark)

    Warren, M. R.; Bhattacharya, D. K.

    1975-01-01

    During examination of A Zircaloy-2-clad fuel pin, which had been part of a test fuel assembly in a boiling water reactor, several regions of severe internal hydriding were noticed in the upper-plenum end of the pin. Examination of similar fuel pins has shown that hydride of this type is caused...

  17. Hydrogen production for micro-fuel-cell from activated Al-Sn-Zn-X (X: hydride or halide) mixture in water

    Energy Technology Data Exchange (ETDEWEB)

    Fan, Mei Qiang [Materials and Thermochemistry Laboratory, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023 (China); Department of Materials Science and Engineering, China Jiliang University, Hangzhou, 310018 (China); Sun, Li Xian [Materials and Thermochemistry Laboratory, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023 (China); Xu, Fen [College of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian 116029 (China)

    2011-02-15

    A systematic investigation of hydrogen production from milled Al-Sn-Zn-X (X: hydride or halide) mixtures in pure water was performed at room temperature. The hydrolysis mechanism of the mixtures was based on the work of micro-galvanic cell between aluminum and tin in water where aluminum reacted with water to generate AlOOH (Boehmite) and hydrogen. It was found that many effects such as milling time, temperature, additives and mass ratio had a significant role in the hydrogen production rate, especially that of the additives (hydride or halide) led to reduction of crystallite size and accumulation of uniform mixing. They also produced a lot of heat and the conductive ions which simulated the work of micro-galvanic cell. The milled Al-Sn-Zn-X (X: hydride or halide) mixtures had high reactivity and Al-Sn-Zn-MgH{sub 2} mixture produced 790 mL g{sup -1} hydrogen in 5 min of the hydrolysis reaction with the activation energy of 17.570 kJ mol{sup -1}, corresponding to 7.04 wt.% hydrogen excluding water mass. Therefore, a new method of CO{sub 2} free and safe hydrogen production for micro-fuel-cell was obtained from the activated aluminum alloys in water. (author)

  18. Cladding corrosion and hydriding in irradiated defected zircaloy fuel rods (LWBR Development Program)

    Energy Technology Data Exchange (ETDEWEB)

    Clayton, J.C.

    1985-08-01

    Twenty-one LWBR irradiation test rods containing ThO/sub 2/-UO/sub 2/ fuel and Zircaloy cladding with holes or cracks operated successfully. Zircaloy cladding corrosion on the inside and outside diameter surfaces and hydrogen pickup in the cladding were measured. The observed outer surface Zircaloy cladding corrosion oxide thicknesses of the test rods were similar to thicknesses measured for nondefected irradiation test rods. An analysis model, which was developed to calculate outer surface oxide thickness of non-defected rods, gave results which were in reasonable agreement with the outer surface oxide thicknesses of defected rods. When the analysis procedure was modified to account for additional corrosion proportional to fission rate and to time, the calculated values agreed well with measured inner oxide corrosion film values. Hydrogen pickup in the defected rods was not directly proportional to local corrosion oxide weight gain as was the case for non-defected rods. 16 refs., 6 figs., 8 tabs.

  19. Kinetics of hydride front in Zircaloy-2 and H release from a fractional hydrided surface

    Energy Technology Data Exchange (ETDEWEB)

    Diaz, M.; Gonzalez-Gonzalez, A.; Moya, J. S.; Remartinez, B.; Perez, S.; Sacedon, J. L. [Instituto de Ciencia de Materiales de Madrid (CSIC), Sor Juana Ines de la Cruz 3, Cantoblanco, 28049 Madrid (Spain); Iberdrola, Tomas Redondo 3, 28033 Madrid (Spain); Instituto de Ciencia de Materiales de Madrid (CSIC), Sor Juana Ines de la Cruz 3, Cantoblanco, 28049 Madrid (Spain)

    2009-07-15

    The authors study the hydriding process on commercial nuclear fuel claddings from their inner surface using an ultrahigh vacuum method. The method allows determining the incubation and failure times of the fuel claddings, as well as the dissipated energy and the partial pressure of the desorbed H{sub 2} from the outer surface of fuel claddings during the hydriding process. The correlation between the hydriding dissipated energy and the amount of zirconium hydride (formed at different stages of the hydriding process) leads to a near t{sup 1/2} potential law corresponding to the time scaling of the reaction for the majority of the tested samples. The calibrated relation between energy and hydride thickness allows one to calculate the enthalpy of the {delta}-ZrH{sub 1.5} phase. The measured H{sub 2} desorption from the external surface is in agreement with a proposed kinetic desorption model from the hydrides precipitated at the surface.

  20. 3D pin-by-pin power distributions in the vicinity of control blade tips in BWRs based on Monte Carlo calculations

    Energy Technology Data Exchange (ETDEWEB)

    Delto, Ralf; Winterholer, Benoit; Bender, Dieter [AREVA NP, Erlangen (Germany); Kierkegaard, Jesper [Vattenfall Nuclear Fuel AB, Vallingby (Sweden); Loberg, John [Uppsala Univ. (Sweden). Dept. of Applied Nuclear Physics

    2010-05-15

    For a deeper investigation of the pellet cladding interaction (PCI) phenomenon in BWRs a detailed knowledge of the pin power distribution in the vicinity of the control blade (CB) tip is required. The spatial resolution of nodal-core simulators like MICROBURN-B2 is normally not fine enough to give reliable information on the linear heat generation rate (LHGR) on a scaling of 1 cm and is not capable of describing the control rod handle precisely. Such fine-resolution LHGR calculations have been performed with MCNP in order to better understand the PCI phenomenon in BWRs. Two cases have been studied which correspond to two loading strategies in two different plants. These cases also have different CB geometry, different burnup of the fuel assemblies (FA) in the controlled cell and different void level. (orig.)

  1. Revisiting the method to obtain the mechanical properties of hydrided fuel cladding in the hoop direction

    Energy Technology Data Exchange (ETDEWEB)

    Martin-Rengel, M.A., E-mail: mamartin@mater.upm.es [Departamento de Ciencia de Materiales, UPM, ETSI Caminos, Canales y Puertos, Profesor Aranguren s/n, E-28040 Madrid (Spain); Gomez Sanchez, F.J., E-mail: javier.gomez@amsimulation.com [Advanced Material Simulation, S.L (Spain); Ruiz-Hervias, J.; Caballero, L.; Valiente, A. [Departamento de Ciencia de Materiales, UPM, ETSI Caminos, Canales y Puertos, Profesor Aranguren s/n, E-28040 Madrid (Spain)

    2012-10-15

    The method reported in the literature to calculate the stress-strain curve of nuclear fuel cladding from ring tensile test is revisited in this paper and a new alternative is presented. In the former method, two universal curves are introduced under the assumption of small strain. In this paper it is shown that these curves are not universal, but material-dependent if geometric nonlinearity is taken into account. The new method is valid beyond small strains, takes geometric nonlinearity into consideration and does not need universal curves. The stress-strain curves in the hoop direction are determined by combining numerical calculations with experimental results in a convergent loop. To this end, ring tensile tests were performed in unirradiated hydrogen-charged samples. The agreement among the simulations and the experimental results is excellent for the range of concentrations tested (up to 2000 wppm hydrogen). The calculated stress-strain curves show that the mechanical properties do not depend strongly on the hydrogen concentration, and that no noticeable strain hardening occurs. However, ductility decreases with the hydrogen concentration, especially beyond 500 wppm hydrogen. The fractographic results indicate that as-received samples fail in a ductile fashion, whereas quasicleavage is observed in the hydrogen-charged samples.

  2. Formation and physical properties of uranium hydride under conditions relevant to metallic fuel and nuclear waste storage

    Energy Technology Data Exchange (ETDEWEB)

    Orr, Robin, E-mail: robin.orr@nnl.co.uk [National Nuclear Laboratory, Central Laboratory, Sellafield, Seascale, Cumbria, CA20 1PG (United Kingdom); Godfrey, Hugh [National Nuclear Laboratory, Workington Laboratory, Havelock Road, Derwent Howe, Workington, Cumbria, CA14 3YQ (United Kingdom); Broan, Chris; Goddard, Dave; Woodhouse, Guy; Durham, Peter [National Nuclear Laboratory, Preston Laboratory, Springfields, Salwick, Preston, Lancashire, PR4 0XJ (United Kingdom); Diggle, Andrew [Sellafield Ltd., Sellafield, Seascale, Cumbria, CA20 1PG (United Kingdom); Bradshaw, John [Sellafield Ltd., Hinton House, Risley, Warrington, WA3 6GR (United Kingdom)

    2016-08-15

    The formation of uranium hydride is recognised as a hazard during the storage of uranium metal owing to its potentially pyrophoric properties. This study has assessed the influence of water vapour on the potential for uranium hydride to form at low temperatures and shows that it increases the duration of the induction period but does not necessarily prevent uranium hydride formation and also does not significantly change the reaction rate with hydrogen. It is further shown that the α-UH{sub 3} fraction in the uranium hydride gradually increases at decreasing temperatures and is likely to be the dominant phase formed under typical storage conditions. Particle morphology and specific surface area of uranium hydride prepared between 30 °C and 200 °C have also been characterised but show only modest variation compared with the phase composition. - Highlights: • The reaction of uranium in dry hydrogen and hydrogen/water vapour has been measured between 30 and 200 °C. • Water vapour extends the induction period but does not necessarily prevent UH{sub 3} formation or affect the reaction rate. • X-ray diffraction analysis shows a gradual increase in α-UH{sub 3} and reduction in β-UH{sub 3} with decreasing preparation temperature. • Particle morphology and specific surface area show only a modest variation with temperature.

  3. Experimental and Analytical Modeling of Natural Circulation and Forced Circulation BWRs : Thermal-Hydraulic, Core-Wide, and Regional Stability Phenomena

    NARCIS (Netherlands)

    Furuya, M.

    2006-01-01

    Currently, 434 nuclear power plants are in operation worldwide. 21% of them are known as Boiling Water Reactors (BWRs). These BWRs have pumps that cool their reactor cores (the forced circulation BWRs). In the design of new BWRs, ways to cool the core by a natural circulation flow, without pumps, al

  4. Experimental and Analytical Modeling of Natural Circulation and Forced Circulation BWRs : Thermal-Hydraulic, Core-Wide, and Regional Stability Phenomena

    NARCIS (Netherlands)

    Furuya, M.

    2006-01-01

    Currently, 434 nuclear power plants are in operation worldwide. 21% of them are known as Boiling Water Reactors (BWRs). These BWRs have pumps that cool their reactor cores (the forced circulation BWRs). In the design of new BWRs, ways to cool the core by a natural circulation flow, without pumps,

  5. Experimental and Analytical Modeling of Natural Circulation and Forced Circulation BWRs : Thermal-Hydraulic, Core-Wide, and Regional Stability Phenomena

    NARCIS (Netherlands)

    Furuya, M.

    2006-01-01

    Currently, 434 nuclear power plants are in operation worldwide. 21% of them are known as Boiling Water Reactors (BWRs). These BWRs have pumps that cool their reactor cores (the forced circulation BWRs). In the design of new BWRs, ways to cool the core by a natural circulation flow, without pumps, al

  6. Azcatl-CRP: An ant colony-based system for searching full power control rod patterns in BWRs

    Energy Technology Data Exchange (ETDEWEB)

    Ortiz, Juan Jose [Dpto. Sistemas Nucleares, ININ, Carr. Mexico-Toluca Km. 36.5, Salazar, Edo. de Mexico (Mexico)]. E-mail: jjortiz@nuclear.inin.mx; Requena, Ignacio [Dpto. Ciencias Computacion e I.A. ETSII Informatica, University of Granada, C. Daniel Saucedo Aranda s/n, 18071 Granada (Spain)]. E-mail: requena@decsai.ugr.es

    2006-01-15

    We show a new system named AZCATL-CRP to design full power control rod patterns in BWRs. Azcatl-CRP uses an ant colony system and a reactor core simulator for this purpose. Transition and equilibrium cycles of Laguna Verde Nuclear Power Plant (LVNPP) reactor core in Mexico were used to test Azcatl-CRP. LVNPP has 109 control rods grouped in four sequences and currently uses control cell core (CCC) strategy in its fuel reload design. With CCC method only one sequence is employed for reactivity control at full power operation. Several operation scenarios are considered, including core water flow variation throughout the cycle, target different axial power distributions and Haling conditions. Azcatl-CRP designs control rod patterns (CRP) taking into account safety aspects such as k {sub eff} core value and thermal limits. Axial power distributions are also adjusted to a predetermined power shape.

  7. Hydrogen storage in complex metal hydrides

    National Research Council Canada - National Science Library

    Bogdanovic, Borislav; Felderhoff, Michael; Streukens, Guido

    2009-01-01

    ...) are solid-state hydrogen-storage materials with high hydrogen capacities. They can be used in combination with fuel cells as a hydrogen source thus enabling longer operation times compared with classical metal hydrides...

  8. Prevention of organic iodide formation in BWR`s

    Energy Technology Data Exchange (ETDEWEB)

    Karjunen, T. [Finnish Centre for Radiation and Nuclear Safety, Helsinki (Finland); Laitinen, T.; Piippo, J.; Sirkiae, P. [VTT Manufacturing Technology (Finland)

    1996-12-01

    During an accident, many different forms of iodine may emerge. Organic iodides, such as methyl iodide and ethyl iodide, are relatively volatile, and thus their appearance leads to increased concentration of gaseous iodine. Since organic iodides are also relatively immune to most accident mitigation measures, such as sprays and filters, they can affect the accident source term significantly even when only a small portion of iodine is in organic form. Formation of organic iodides may not be limited by the amount of organic substances available. Excessive amounts of methane can be produced, for example, during oxidation of boron carbide, which is used in BWR`s as a neutron absorber material. Another important source is cable insulation. In a BWR, a large quantity of cables is placed below the pressure vessel. Thus a large quantity of pyrolyse gases will be produced, should the vessel fail. Organic iodides can be formed as a result of many different reactions, but at least in certain conditions the main reaction takes place between an organic radical produced by radiolysis and elemental iodine. A necessary requirement for prevention of organic iodide production is therefore that the pH in the containment water pools is kept high enough to eliminate formation of elemental iodine. In a typical BWR the suppression pool water is usually unbuffered. As a result, the pH may be dominated by chemicals introduced during an accident. If no system for adding basic chemicals is operable, the main factor affecting pool water pH may be hydrochloric acid released during cable degradation. Should this occur, the conditions could be very favorable for production of elemental iodine and, consequently, formation of organic iodides. Although high pH is necessary for iodine retention, it could have also adverse effects. High pH may, for example, accelerate corrosion of containment materials and alter the characteristics of the solid corrosion products. (author) 6 figs., 1 tab., 13 refs.

  9. On the effect of temperature on the threshold stress intensity factor of delayed hydride cracking in light water reactor fuel cladding

    Energy Technology Data Exchange (ETDEWEB)

    Holston, Anna-MariaAlvarez; Stjarnsater, Johan [Studsvik Nuclear AB, Nykoping (Sweden)

    2017-06-15

    Delayed hydride cracking (DHC) was first observed in pressure tubes in Canadian CANDU reactors. In light water reactors, DHC was not observed until the late 1990s in high-burnup boiling water reactor (BWR) fuel cladding. In recent years, the focus on DHC has resurfaced in light of the increased interest in the cladding integrity during interim conditions. In principle, all spent fuel in the wet pools has sufficient hydrogen content for DHC to operate below 300°C. It is therefore of importance to establish the critical parameters for DHC to operate. This work studies the threshold stress intensity factor (K{sub IH}) to initiate DHC as a function of temperature in Zry-4 for temperatures between 227°C and 315°C. The experimental technique used in this study was the pin-loading testing technique. To determine the K{sub IH}, an unloading method was used where the load was successively reduced in a stepwise manner until no cracking was observed during 24 hours. The results showed that there was moderate temperature behavior at lower temperatures. Around 300°C, there was a sharp increase in K{sub IH} indicating the upper temperature limit for DHC. The value for K{sub IH} at 227°C was determined to be 2.6 ± 0.3 MPa √m.

  10. Linear and nonlinear stability analysis in BWRs applying a reduced order model

    Energy Technology Data Exchange (ETDEWEB)

    Olvera G, O. A.; Espinosa P, G.; Prieto G, A., E-mail: omar_olverag@hotmail.com [Universidad Autonoma Metropolitana, Unidad Iztapalapa, San Rafael Atlixco No. 186, Col. Vicentina, 09340 Ciudad de Mexico (Mexico)

    2016-09-15

    Boiling Water Reactor (BWR) stability studies are generally conducted through nonlinear reduced order models (Rom) employing various techniques such as bifurcation analysis and time domain numerical integration. One of those models used for these studies is the March-Leuba Rom. Such model represents qualitatively the dynamic behavior of a BWR through a one-point reactor kinetics, a one node representation of the heat transfer process in fuel, and a two node representation of the channel Thermal hydraulics to account for the void reactivity feedback. Here, we study the effect of this higher order model on the overall stability of the BWR. The change in the stability boundaries is determined by evaluating the eigenvalues of the Jacobian matrix. The nonlinear model is also integrated numerically to show that in the nonlinear region, the system evolves to stable limit cycles when operating close to the stability boundary. We also applied a new technique based on the Empirical Mode Decomposition (Emd) to estimate a parameter linked with stability in a BWR. This instability parameter is not exactly the classical Decay Ratio (Dr), but it will be linked with it. The proposed method allows decomposing the analyzed signal in different levels or mono-component functions known as intrinsic mode functions (Imf). One or more of these different modes can be associated to the instability problem in BWRs. By tracking the instantaneous frequencies (calculated through Hilbert Huang Transform (HHT) and the autocorrelation function (Acf) of the Imf linked to instability. The estimation of the proposed parameter can be achieved. The current methodology was validated with simulated signals of the studied model. (Author)

  11. Fresh-Core Reload of the Neutron Radiography (NRAD) Reactor with Uranium(20)-Erbium-Zirconium-Hydride Fuel

    Energy Technology Data Exchange (ETDEWEB)

    John D. Bess; Thomas L. Maddock; Margaret A. Marshall; Leland M. Montierth

    2014-03-01

    The neutron radiography (NRAD) reactor is a 250 kW TRIGA® (Training, Research, Isotopes, General Atomics) Mark II , tank-type research reactor currently located in the basement, below the main hot cell, of the Hot Fuel Examination Facility (HFEF) at the Idaho National Laboratory (INL). It is equipped with two beam tubes with separate radiography stations for the performance of neutron radiography irradiation on small test components. The 60-fuel-element operational core configuration of the NRAD LEU TRIGA reactor has been evaluated as an acceptable benchmark experiment. The initial critical configuration developed during the fuel loading process, which contains only 56 fuel elements, has not been evaluated as it is very similar to the evaluated core configuration. The benchmark eigenvalue is 1.0012 ± 0.0029. Calculated eigenvalues differ significantly (~±1%) from the benchmark eigenvalue and have demonstrated sensitivity to the thermal scattering treatment of hydrogen in the U-Er-Zr-H fuel.

  12. Fresh-Core Reload of the Neutron Radiography (NRAD) Reactor with Uranium(20)-Erbium-Zirconium-Hydride Fuel

    Energy Technology Data Exchange (ETDEWEB)

    John D. Bess; Thomas L. Maddock; Margaret A. Marshall; Leland M. Montierth

    2013-03-01

    The neutron radiography (NRAD) reactor is a 250 kW TRIGA® (Training, Research, Isotopes, General Atomics) Mark II , tank-type research reactor currently located in the basement, below the main hot cell, of the Hot Fuel Examination Facility (HFEF) at the Idaho National Laboratory (INL). It is equipped with two beam tubes with separate radiography stations for the performance of neutron radiography irradiation on small test components. The initial critical configuration developed during the fuel loading process, which contains only 56 fuel elements, has been evaluated as an acceptable benchmark experiment. The 60-fuel-element operational core configuration of the NRAD LEU TRIGA reactor has also been evaluated as an acceptable benchmark experiment. Calculated eigenvalues differ significantly (~±1%) from the benchmark eigenvalue and have demonstrated sensitivity to the thermal scattering treatment of hydrogen in the U-Er-Zr-H fuel.

  13. Fresh-Core Reload of the Neutron Radiography (NRAD) Reactor with Uranium(20)-Erbium-Zirconium-Hydride Fuel

    Energy Technology Data Exchange (ETDEWEB)

    John D. Bess; Thomas L. Maddock; Margaret A. Marshall; Leland M. Montierth

    2011-03-01

    The neutron radiography (NRAD) reactor is a 250 kW TRIGA® (Training, Research, Isotopes, General Atomics) Mark II , tank-type research reactor currently located in the basement, below the main hot cell, of the Hot Fuel Examination Facility (HFEF) at the Idaho National Laboratory (INL). It is equipped with two beam tubes with separate radiography stations for the performance of neutron radiography irradiation on small test components. The 60-fuel-element operational core configuration of the NRAD LEU TRIGA reactor has been evaluated as an acceptable benchmark experiment. The initial critical configuration developed during the fuel loading process, which contains only 56 fuel elements, has not been evaluated as it is very similar to the evaluated core configuration. The benchmark eigenvalue is 1.0012 ± 0.0029. Calculated eigenvalues differ significantly (~±1%) from the benchmark eigenvalue and have demonstrated sensitivity to the thermal scattering treatment of hydrogen in the U-Er-Zr-H fuel.

  14. Nanostructured, complex hydride systems for hydrogen generation

    Directory of Open Access Journals (Sweden)

    Robert A. Varin

    2015-02-01

    Full Text Available Complex hydride systems for hydrogen (H2 generation for supplying fuel cells are being reviewed. In the first group, the hydride systems that are capable of generating H2 through a mechanical dehydrogenation phenomenon at the ambient temperature are discussed. There are few quite diverse systems in this group such as lithium alanate (LiAlH4 with the following additives: nanoiron (n-Fe, lithium amide (LiNH2 (a hydride/hydride system and manganese chloride MnCl2 (a hydride/halide system. Another hydride/hydride system consists of lithium amide (LiNH2 and magnesium hydride (MgH2, and finally, there is a LiBH4-FeCl2 (hydride/halide system. These hydride systems are capable of releasing from ~4 to 7 wt.% H2 at the ambient temperature during a reasonably short duration of ball milling. The second group encompasses systems that generate H2 at slightly elevated temperature (up to 100 °C. In this group lithium alanate (LiAlH4 ball milled with the nano-Fe and nano-TiN/TiC/ZrC additives is a prominent system that can relatively quickly generate up to 7 wt.% H2 at 100 °C. The other hydride is manganese borohydride (Mn(BH42 obtained by mechano-chemical activation synthesis (MCAS. In a ball milled (2LiBH4 + MnCl2 nanocomposite, Mn(BH42 co-existing with LiCl can desorb ~4.5 wt.% H2 at 100 °C within a reasonable duration of dehydrogenation. Practical application aspects of hydride systems for H2 generation/storage are also briefly discussed.

  15. Best mix of primary energy resources by renewable energy and fossil fuel with CCS in view of security,stability and sustainability——A vision on hydrogen supply chain by organic chemical hydride method

    Institute of Scientific and Technical Information of China (English)

    Junichi; SAKAGUCHI

    2010-01-01

    The best mix scenario by renewable energy and fossil fuel with or without CCS(Carbon Dioxide Capture and Storage) would be a solution to compromise Greenhouse Gases emission issue caused by carbon dioxide(CO2),and depletion of crude oil and natural gas reserves.As fossil fuel with pre-combustion CCS means hydrogen manufacturing and also hydrogen can be produced via electrolysis with renewable energy,it is desirable to establish transportation and storage systems of hydrogen as a clean energy.In this paper a vision on Hydrogen Supply Chain by Organic Chemical Hydride(OCH) Method as well as comparison of CCS configuration are discussed.

  16. Development of Optimized Core Design and Analysis Methods for High Power Density BWRs

    Science.gov (United States)

    Shirvan, Koroush

    Increasing the economic competitiveness of nuclear energy is vital to its future. Improving the economics of BWRs is the main goal of this work, focusing on designing cores with higher power density, to reduce the BWR capital cost. Generally, the core power density in BWRs is limited by the thermal Critical Power of its assemblies, below which heat removal can be accomplished with low fuel and cladding temperatures. The present study investigates both increases in the heat transfer area between ~he fuel and coolant and changes in operating parameters to achieve higher power levels while meeting the appropriate thermal as well as materials and neutronic constraints. A scoping study is conducted under the constraints of using fuel with cylindrical geometry, traditional materials and enrichments below 5% to enhance its licensability. The reactor vessel diameter is limited to the largest proposed thus far. The BWR with High power Density (BWR-HD) is found to have a power level of 5000 MWth, equivalent to 26% uprated ABWR, resulting into 20% cheaper O&M and Capital costs. This is achieved by utilizing the same number of assemblies, but with wider 16x16 assemblies and 50% shorter active fuel than that of the ABWR. The fuel rod diameter and pitch are reduced to just over 45% of the ABWR values. Traditional cruciform form control rods are used, which restricts the assembly span to less than 1.2 times the current GE14 design due to limitation on shutdown margin. Thus, it is possible to increase the power density and specific power by 65%, while maintaining the nominal ABWR Minimum Critical Power Ratio (MCPR) margin. The plant systems outside the vessel are assumed to be the same as the ABWR-Il design, utilizing a combination of active and passive safety systems. Safety analyses applied a void reactivity coefficient calculated by SIMULA TE-3 for an equilibrium cycle core that showed a 15% less negative coefficient for the BWR-HD compared to the ABWR. The feedwater

  17. Power excursion analysis for BWR`s at high burnup

    Energy Technology Data Exchange (ETDEWEB)

    Diamond, D.J.; Neymoith, L.; Kohut, P. [Brookhaven National Lab., Upton, NY (United States)

    1996-03-01

    A study has been undertaken to determine the fuel enthalpy during a rod drop accident and during two thermal-hydraulic transients. The objective was to understand the consequences to high burnup fuel and the sources of uncertainty in the calculations. The analysis was done with RAMONA-4B, a computer code that models the neutron kinetics throughout the core along with the thermal-hydraulics in the core, vessel, and steamline. The results showed that the maximum fuel enthalpy in high burnup fuel will be affected by core design, initial conditions, and modeling assumptions. The important parameters in each of these categories are discussed in the paper.

  18. Luminescent properties of aluminum hydride

    Energy Technology Data Exchange (ETDEWEB)

    Baraban, A.P.; Gabis, I.E.; Dmitriev, V.A. [Saint-Petersburg State University, Department of Physics, Saint-Petersburg 198504 (Russian Federation); Dobrotvorskii, M.A., E-mail: mstislavd@gmail.com [Saint-Petersburg State University, Department of Physics, Saint-Petersburg 198504 (Russian Federation); Kuznetsov, V.G. [Saint-Petersburg State University, Department of Physics, Saint-Petersburg 198504 (Russian Federation); Matveeva, O.P. [National Mineral Resources University, Saint Petersburg 199106 (Russian Federation); Titov, S.A. [Petersburg State University of Railway Transport, Saint-Petersburg 190031 (Russian Federation); Voyt, A.P.; Elets, D.I. [Saint-Petersburg State University, Department of Physics, Saint-Petersburg 198504 (Russian Federation)

    2015-10-15

    We studied cathodoluminescence and photoluminescence of α-AlH{sub 3}– a likely candidate for use as possible hydrogen carrier in hydrogen-fueled vehicles. Luminescence properties of original α-AlH{sub 3} and α-AlH{sub 3} irradiated with ultraviolet were compared. The latter procedure leads to activation of thermal decomposition of α-AlH{sub 3} and thus has a practical implementation. We showed that the original and UV-modified aluminum hydride contain luminescence centers ‐ structural defects of the same type, presumably hydrogen vacancies, characterized by a single set of characteristic bands of radiation. The observed luminescence is the result of radiative intracenter relaxation of the luminescence center (hydrogen vacancy) excited by electrons or photons, and its intensity is defined by the concentration of vacancies, and the area of their possible excitation. UV-activation of the dehydrogenation process of aluminum hydride leads to changes in the spatial distribution of the luminescence centers. For short times of exposure their concentration increases mainly in the surface regions of the crystals. At high exposures, this process extends to the bulk of the aluminum hydride and ends with a decrease in concentration of luminescence centers in the surface region. - Highlights: • Aluminum hydride contains hydrogen vacancies which serve as luminescence centers. • The luminescence is the result of radiative relaxation of excited centers. • Hydride UV-irradiation alters distribution and concentration of luminescence centers.

  19. Boron Hydrides

    Science.gov (United States)

    1946-07-01

    of direct interest could be b.P.4d. ’Thus the discovory of a now proj.ect, since silano is probably too readily infla-zmablo for practical usc’ this...devoted, ho specc4fie compounds vhitih a’-ould be tocdte at prescnt arc: nron tiy * silano , %;2.SiFi3 , diothyl sila~no, (C2 115 )2 Si112, mono r.-rop; ! (n...Bcrohydrido or Li h.... I .A-4A- The prepuation of Silano med of Stannane by the interaction or lithium aluzirun hydride v-ithl silicon tetrtchiorido and

  20. Fundamental experiments on hydride reorientation in zircaloy

    Science.gov (United States)

    Colas, Kimberly B.

    reoriented hydride fraction and connectivity increase with number of cycles which could lead to more dangerous microstructure for storage of spent fuel. Pre-existing cracks were also found to affect hydride connectivity and morphology which directly impacts DHC and fuel integrity. (Abstract shortened by UMI.).

  1. A model to describe the mechanical behavior and the ductile failure of hydrided Zircaloy-4 fuel claddings between 25 °C and 480 °C

    Science.gov (United States)

    Le Saux, M.; Besson, J.; Carassou, S.

    2015-11-01

    A model is proposed to describe the mechanical behavior and the ductile failure at 25, 350 and 480 °C of Zircaloy-4 cladding tubes, as-received and hydrided up to 1200 wt. ppm (circumferential hydrides). The model is based on the Gurson-Tvergaard-Needleman model extended to account for plastic anisotropy and viscoplasticity. The model considers damage nucleation by both hydride cracking and debonding of the interface between the Laves phase precipitates and the matrix. The damage nucleation rate due to hydride cracking is directly deduced from quantitative microstructural observations. The other model parameters are identified from several experimental tests. Finite element simulations of axial tension, hoop tension, expansion due to compression and hoop plane strain tension experiments are performed to assess the model prediction capability. The calibrated model satisfactorily reproduces the effects of hydrogen and temperature on both the viscoplastic and the failure properties of the material. The results suggest that damage is anisotropic and influenced by the stress state for the non-hydrided or moderately hydrided material and becomes more isotropic for high hydrogen contents.

  2. Metal Hydride Compression

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Terry A. [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Bowman, Robert [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Smith, Barton [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Anovitz, Lawrence [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Jensen, Craig [Hawaii Hydrogen Carriers LLC, Honolulu, HI (United States)

    2017-07-01

    Conventional hydrogen compressors often contribute over half of the cost of hydrogen stations, have poor reliability, and have insufficient flow rates for a mature FCEV market. Fatigue associated with their moving parts including cracking of diaphragms and failure of seal leads to failure in conventional compressors, which is exacerbated by the repeated starts and stops expected at fueling stations. Furthermore, the conventional lubrication of these compressors with oil is generally unacceptable at fueling stations due to potential fuel contamination. Metal hydride (MH) technology offers a very good alternative to both conventional (mechanical) and newly developed (electrochemical, ionic liquid pistons) methods of hydrogen compression. Advantages of MH compression include simplicity in design and operation, absence of moving parts, compactness, safety and reliability, and the possibility to utilize waste industrial heat to power the compressor. Beyond conventional H2 supplies of pipelines or tanker trucks, another attractive scenario is the on-site generating, pressuring and delivering pure H2 at pressure (≥ 875 bar) for refueling vehicles at electrolysis, wind, or solar generating production facilities in distributed locations that are too remote or widely distributed for cost effective bulk transport. MH hydrogen compression utilizes a reversible heat-driven interaction of a hydride-forming metal alloy with hydrogen gas to form the MH phase and is a promising process for hydrogen energy applications [1,2]. To deliver hydrogen continuously, each stage of the compressor must consist of multiple MH beds with synchronized hydrogenation & dehydrogenation cycles. Multistage pressurization allows achievement of greater compression ratios using reduced temperature swings compared to single stage compressors. The objectives of this project are to investigate and demonstrate on a laboratory scale a two-stage MH hydrogen (H2) gas compressor with a

  3. PIE techniques for hydride reorientation test at NDC

    Energy Technology Data Exchange (ETDEWEB)

    Tsuda, Tomohiro; Shinohara, Yasunari; Yamaguchi, Yoichiro [Nuclear Development Corporation, Ibaraki (Japan)

    2008-11-15

    Dry storage of spent fuels in the interim storage facility is being planned in Japan. However, the gradual deterioration of the mechanical property of fuel cladding due to internal pressure and temperature during the storage term is known. Therefore, the integrity of stored fuel rods should be confirmed before the start of dry storage. For the last several years, NDC had a lot of experiences on the hydride reorientation test. The specimen preparation techniques on the hydride reorientation test and the mechanical testing techniques after the hydride reorientation are shown in this paper.

  4. Hydrogen storage in the form of metal hydrides

    Science.gov (United States)

    Zwanziger, M. G.; Santana, C. C.; Santos, S. C.

    1984-01-01

    Reversible reactions between hydrogen and such materials as iron/titanium and magnesium/ nickel alloy may provide a means for storing hydrogen fuel. A demonstration model of an iron/titanium hydride storage bed is described. Hydrogen from the hydride storage bed powers a converted gasoline electric generator.

  5. Advanced Hydride Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Motyka, T.

    1989-01-01

    Metal hydrides have been used at the Savannah River Tritium Facilities since 1984. However, the most extensive application of metal hydride technology at the Savannah River Site is being planned for the Replacement Tritium Facility, a $140 million facility schedules for completion in 1990 and startup in 1991. In the new facility, metal hydride technology will be used to store, separate, isotopically purify, pump, and compress hydrogen isotopes. In support of the Replacement Tritium Facility, a $3.2 million, cold,'' process demonstration facility, the Advanced Hydride Laboratory began operation in November of 1987. The purpose of the Advanced Hydride Laboratory is to demonstrate the Replacement Tritium Facility's metal hydride technology by integrating the various unit operations into an overall process. This paper will describe the Advanced Hydride Laboratory, its role and its impact on the application of metal hydride technology to tritium handling.

  6. Advanced Hydride Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Motyka, T.

    1989-12-31

    Metal hydrides have been used at the Savannah River Tritium Facilities since 1984. However, the most extensive application of metal hydride technology at the Savannah River Site is being planned for the Replacement Tritium Facility, a $140 million facility schedules for completion in 1990 and startup in 1991. In the new facility, metal hydride technology will be used to store, separate, isotopically purify, pump, and compress hydrogen isotopes. In support of the Replacement Tritium Facility, a $3.2 million, ``cold,`` process demonstration facility, the Advanced Hydride Laboratory began operation in November of 1987. The purpose of the Advanced Hydride Laboratory is to demonstrate the Replacement Tritium Facility`s metal hydride technology by integrating the various unit operations into an overall process. This paper will describe the Advanced Hydride Laboratory, its role and its impact on the application of metal hydride technology to tritium handling.

  7. Optimization of operation cycles in BWRs using neural networks; Optimizacion de ciclos de operacion en BWRs usando redes neuronales

    Energy Technology Data Exchange (ETDEWEB)

    Ortiz S, J. J.; Castillo, A. [ININ, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico); Alejandro P, D., E-mail: juanjose.ortiz@inin.gob.mx [Universidad de Granada, ETS de Ingenierias, Informatica y de Telecomunicacion, C/Daniel Saucedo Aranda s/n, 18071 Granada (Spain)

    2011-11-15

    The first results of a system for the optimization of operation cycles in boiling water reactors by means of a multi state recurrent neural network are present in this work. The neural network finds the best combination of fuel cells; fuel reloads and control bars patterns previously designed, according to an energy function that qualifies the performance of the three partial solutions for the solution of the whole problem. The partial solutions are designed by means of optimization systems non couple among them and that can use any optimization technique. The phase of the fuel axial design is not made and the size of the axial areas is fixed during the optimization process. The methodology was applied to design a balance cycle of 18 months for the reactors of the nuclear power station of Laguna Verde. The results show that is possible to find combinations of partial solutions that in set represent good solutions to the complete design problem of an operation cycle of a nuclear reactor. The results are compared with others obtained previously by other techniques. This system was developed in platform Li nux and programmed in Fortran 95 taking advantage of the 8 nuclei of a work station Dell Precision T7400. (Author)

  8. ORNL Interim Progress Report on Hydride Reorientation CIRFT Tests

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jy-An John [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Yan, Yong [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Wang, Hong [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2016-10-28

    A systematic study of H. B. Robinson (HBR) high burnup spent nuclear fuel (SNF) vibration integrity was performed in Phase I project under simulated transportation environments, using the Cyclic Integrated Reversible-Bending Fatigue Tester (CIRFT) hot cell testing technology developed at Oak Ridge National Laboratory in 2013–14. The data analysis on the as-irradiated HBR SNF rods demonstrated that the load amplitude is the dominant factor that controls the fatigue life of bending rods. However, previous studies have shown that the hydrogen content and hydride morphology has an important effect on zirconium alloy mechanical properties. To address the effect of radial hydrides in SNF rods, in Phase II a test procedure was developed to simulate the effects of elevated temperatures, pressures, and stresses during transfer-drying operations. Pressurized and sealed fuel segments were heated to the target temperature for a preset hold time and slow-cooled at a controlled rate. The procedure was applied to both non-irradiated/prehydrided and high-burnup Zircaloy-4 fueled cladding segments using the Nuclear Regulatory Commission-recommended 400°C maximum temperature limit at various cooling rates. Before testing high-burnup cladding, four out-of-cell tests were conducted to optimize the hydride reorientation (R) test condition with pre-hydride Zircaloy-4 cladding, which has the same geometry as the high burnup fuel samples. Test HR-HBR#1 was conducted at the maximum hoop stress of 145 MPa, at a 400°C maximum temperature and a 5°C/h cooling rate. On the other hand, thermal cycling was performed for tests HR-HBR#2, HR-HBR#3, and HR-HBR#4 to generate more radial hydrides. It is clear that thermal cycling increases the ratio of the radial hydride to circumferential hydrides. The internal pressure also has a significant effect on the radial hydride morphology. This report describes a procedure and experimental results of the four out-of-cell hydride reorientation tests of

  9. ;Study of secondary hydriding at high temperature in zirconium based nuclear fuel cladding tubes by coupling information from neutron radiography/tomography, electron probe micro analysis, micro elastic recoil detection analysis and laser induced breakdown spectroscopy microprobe

    Science.gov (United States)

    Brachet, Jean-Christophe; Hamon, Didier; Le Saux, Matthieu; Vandenberghe, Valérie; Toffolon-Masclet, Caroline; Rouesne, Elodie; Urvoy, Stéphane; Béchade, Jean-Luc; Raepsaet, Caroline; Lacour, Jean-Luc; Bayon, Guy; Ott, Frédéric

    2017-05-01

    This paper gives an overview of a multi-scale experimental study of the secondary hydriding phenomena that can occur in nuclear fuel cladding materials exposed to steam at high temperature (HT) after having burst (loss-of-coolant accident conditions). By coupling information from several facilities, including neutron radiography/tomography, electron probe micro analysis, micro elastic recoil detection analysis and micro laser induced breakdown spectroscopy, it was possible to map quantitatively, at different scales, the distribution of oxygen and hydrogen within M5™ clad segments having experienced ballooning and burst at HT followed by steam oxidation at 1100 and 1200 °C and final direct water quenching down to room temperature. The results were very reproducible and it was confirmed that internal oxidation and secondary hydriding at HT of a cladding after burst can lead to strong axial and azimuthal gradients of hydrogen and oxygen concentrations, reaching 3000-4000 wt ppm and 1.0-1.2 wt% respectively within the β phase layer for the investigated conditions. Consistent with thermodynamic and kinetics considerations, oxygen diffusion into the prior-β layer was enhanced in the regions highly enriched in hydrogen, where the α(O) phase layer is thinner and the prior-β layer thicker. Finally the induced post-quenching hardening of the prior-β layer was mainly related to the local oxygen enrichment. Hardening directly induced by hydrogen was much less significant.

  10. Synthesis of ruthenium hydride

    Science.gov (United States)

    Kuzovnikov, M. A.; Tkacz, M.

    2016-02-01

    Ruthenium hydride was synthesized at a hydrogen pressure of about 14 GPa in a diamond-anvil cell. Energy-dispersive x-ray diffraction was used to monitor the ruthenium crystal structure as a function of hydrogen pressure up to 30 GPa. The hydride formation was accompanied by phase transition from the original hcp structure of the pristine metal to the fcc structure. Our results confirmed the theoretical prediction of ruthenium hydride formation under hydrogen pressure. The standard Gibbs free energy of the ruthenium hydride formation reaction was calculated assuming the pressure of decomposition as the equilibrium pressure.

  11. Reproduction in Laboratory and characterization of Blister of Hydride of zirconium in nuclear fuel pods; Reproduccion en laboratorio y caracterizacion de Blisters de hidroduro de circonio en muestras de vaina de combustible nuclear

    Energy Technology Data Exchange (ETDEWEB)

    Martin Rengel, M. A.; Ruiz-Hervias, J.; Munoz, P.

    2014-07-01

    This paper have replicated in laboratory blisters of different size in samples of pod of ZIRLO pre-hydrided evenly with 500 ppm of hydrogen. For these samples was used a technique of cathodic charging in basic medium. To produce the blister was heated up to about 350 degree centigrade in its outer surface sample. With the aim of producing a point cold on the surface of the sheath contacted the surface with a piece of aluminum water-cooled (cold finger). Was held a morphological characterization of the blisters by means of optical microscopy and found that the size of the produced blister is function of the contact time between fuel pod and cold finger. (Author)

  12. Hydrogen storage in complex metal hydrides

    Directory of Open Access Journals (Sweden)

    BORISLAV BOGDANOVIĆ

    2009-02-01

    Full Text Available Complex metal hydrides such as sodium aluminohydride (NaAlH4 and sodium borohydride (NaBH4 are solid-state hydrogen-storage materials with high hydrogen capacities. They can be used in combination with fuel cells as a hydrogen source thus enabling longer operation times compared with classical metal hydrides. The most important point for a wide application of these materials is the reversibility under moderate technical conditions. At present, only NaAlH4 has favourable thermodynamic properties and can be employed as a thermally reversible means of hydrogen storage. By contrast, NaBH4 is a typical non- -reversible complex metal hydride; it reacts with water to produce hydrogen.

  13. Hysteresis in Metal Hydrides.

    Science.gov (United States)

    Flanagan, Ted B., And Others

    1987-01-01

    This paper describes a reproducible process where the irreversibility can be readily evaluated and provides a thermodynamic description of the important phenomenon of hysteresis. A metal hydride is used because hysteresis is observed during the formation and decomposition of the hydride phase. (RH)

  14. Computational Design, Theoretical and Experimental Investigation of Carbon Nanotube (CNT) - Metal Oxide/Metal Hydride Composite - A Practicable Hydrogen Storage Medium for Fuel Cell - 3

    Science.gov (United States)

    2012-08-29

    18 2 Theoretical Investigation First Principles Study of Hydrogen Storage in SWCNT Functionalized with metal complexes ( MgH2 , TiO2 & SnO2...10,10) armchair single walled carbon nanotube (SWCNT) functionalized with some metal complexes (Magnesium hydride ( MgH2 ), Titanium dioxide (TiO2...points scheme. As a beginning, single molecule of MgH2 (TiO2, SnO2) is attached to the CNT. The molecules are attached at a large distance in the outer

  15. Technical and economic aspects of hydrogen storage in metal hydrides

    Science.gov (United States)

    Schmitt, R.

    1981-01-01

    The recovery of hydrogen from such metal hydrides as LiH, MgH2, TiH2, CaH2 and FeTiH compounds is studied, with the aim of evaluating the viability of the technique for the storage of hydrogen fuel. The pressure-temperature dependence of the reactions, enthalpies of formation, the kinetics of the hydrogen absorption and desorption, and the mechanical and chemical stability of the metal hydrides are taken into account in the evaluation. Economic aspects are considered. Development of portable metal hydride hydrogen storage reservoirs is also mentioned.

  16. Effect of thermo-mechanical cycling on zirconium hydride reorientation studied in situ with synchrotron X-ray diffraction

    Science.gov (United States)

    Colas, Kimberly B.; Motta, Arthur T.; Daymond, Mark R.; Almer, Jonathan D.

    2013-09-01

    The circumferential hydrides normally present in nuclear reactor fuel cladding after reactor exposure may dissolve during drying for dry storage and re-precipitate when cooled under load into a more radial orientation, which could embrittle the fuel cladding. It is necessary to study the rates and conditions under which hydride reorientation may happen in order to assess fuel integrity in dry storage. The objective of this work is to study the effect of applied stress and thermal cycling on the hydride morphology in cold-worked stress-relieved Zircaloy-4 by combining conventional metallography and in situ X-ray diffraction techniques. Metallography is used to study the evolution of hydride morphology after several thermo-mechanical cycles. In situ X-ray diffraction performed at the Advanced Photon Source synchrotron provides real-time information on the process of hydride dissolution and precipitation under stress during several thermal cycles. The detailed study of diffracted intensity, peak position and full-width at half-maximum provides information on precipitation kinetics, elastic strains and other characteristics of the hydride precipitation process. The results show that thermo-mechanical cycling significantly increases the radial hydride fraction as well as the hydride length and connectivity. The radial hydrides are observed to precipitate at a lower temperature than circumferential hydrides. Variations in the magnitude and range of hydride strains due to reorientation and cycling have also been observed. These results are discussed in light of existing models and experiments on hydride reorientation. The study of hydride elastic strains during precipitation shows marked differences between circumferential and radial hydrides, which can be used to investigate the reorientation process. Cycling under stress above the threshold stress for reorientation drastically increases both the reoriented hydride fraction and the hydride size. The reoriented hydride

  17. Results of NDE Technique Evaluation of Clad Hydrides

    Energy Technology Data Exchange (ETDEWEB)

    Kunerth, Dennis C. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2014-09-01

    This report fulfills the M4 milestone, M4FT-14IN0805023, Results of NDE Technique Evaluation of Clad Hydrides, under Work Package Number FT-14IN080502. During service, zirconium alloy fuel cladding will degrade via corrosion/oxidation. Hydrogen, a byproduct of the oxidation process, will be absorbed into the cladding and eventually form hydrides due to low hydrogen solubility limits. The hydride phase is detrimental to the mechanical properties of the cladding and therefore it is important to be able to detect and characterize the presence of this constituent within the cladding. Presently, hydrides are evaluated using destructive examination. If nondestructive evaluation techniques can be used to detect and characterize the hydrides, the potential exists to significantly increase test sample coverage while reducing evaluation time and cost. To demonstrate the viability this approach, an initial evaluation of eddy current and ultrasonic techniques were performed to demonstrate the basic ability to these techniques to detect hydrides or their effects on the microstructure. Conventional continuous wave eddy current techniques were applied to zirconium based cladding test samples thermally processed with hydrogen gas to promote the absorption of hydrogen and subsequent formation of hydrides. The results of the evaluation demonstrate that eddy current inspection approaches have the potential to detect both the physical damage induced by hydrides, e.g. blisters and cracking, as well as the combined effects of absorbed hydrogen and hydride precipitates on the electrical properties of the zirconium alloy. Similarly, measurements of ultrasonic wave velocities indicate changes in the elastic properties resulting from the combined effects of absorbed hydrogen and hydride precipitates as well as changes in geometry in regions of severe degradation. However, for both approaches, the signal responses intended to make the desired measurement incorporate a number of contributing

  18. Regenerative Hydride Heat Pump

    Science.gov (United States)

    Jones, Jack A.

    1992-01-01

    Hydride heat pump features regenerative heating and single circulation loop. Counterflow heat exchangers accommodate different temperatures of FeTi and LaNi4.7Al0.3 subloops. Heating scheme increases efficiency.

  19. Regenerative Hydride Heat Pump

    Science.gov (United States)

    Jones, Jack A.

    1992-01-01

    Hydride heat pump features regenerative heating and single circulation loop. Counterflow heat exchangers accommodate different temperatures of FeTi and LaNi4.7Al0.3 subloops. Heating scheme increases efficiency.

  20. Lightweight hydride storage materials

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, G.J.; Guthrie, S.E.; Bauer, W. [Sandia National Labs., Livermore, CA (United States)

    1995-09-01

    The need for lightweight hydrides in vehicular applications has prompted considerable research into the use of magnesium and its alloys. Although this earlier work has provided some improved performance in operating temperature and pressure, substantial improvements are needed before these materials will significantly enhance the performance of an engineered system on a vehicle. We are extending the work of previous investigators on Mg alloys to reduce the operating temperature and hydride heat of formation in light weight materials. Two important results will be discussed in this paper: (1) a promising new alloy hydride was found which has better pressure-temperature characteristics than any previous Mg alloy and, (2) a new fabrication process for existing Mg alloys was developed and demonstrated. The new alloy hydride is composed of magnesium, aluminum and nickel. It has an equilibrium hydrogen overpressure of 1.3 atm. at 200{degrees}C and a storage capacity between 3 and 4 wt.% hydrogen. A hydrogen release rate of approximately 5 x 10{sup -4} moles-H{sub 2}/gm-min was measured at 200{degrees}C. The hydride heat of formation was found to be 13.5 - 14 kcal/mole-H{sub 2}, somewhat lower than Mg{sub 2}Ni. The new fabrication method takes advantage of the high vapor transport of magnesium. It was found that Mg{sub 2}Ni produced by our low temperature process was better than conventional materials because it was single phase (no Mg phase) and could be fabricated with very small particle sizes. Hydride measurements on this material showed faster kinetic response than conventional material. The technique could potentially be applied to in-situ hydride bed fabrication with improved packing density, release kinetics, thermal properties and mechanical stability.

  1. Estimation of most probable power distribution in BWRs by least squares method using in-core measurements

    Energy Technology Data Exchange (ETDEWEB)

    Ezure, Hideo

    1988-09-01

    Effective combination of measured data with theoretical analysis has permitted deriving a mehtod for more accurately estimating the power distribution in BWRs. Use is made of least squares method for the combination between relationship of the power distribution with measured values and the model used in FLARE or in the three-dimensional two-group diffusion code. Trial application of the new method to estimating the power distribution in JPDR-1 has proved the method to provide reliable results.

  2. Hydrogen, lithium, and lithium hydride production

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Sam W.; Spencer, Larry S.; Phillips, Michael R.; Powell, G. Louis; Campbell, Peggy J.

    2017-06-20

    A method is provided for extracting hydrogen from lithium hydride. The method includes (a) heating lithium hydride to form liquid-phase lithium hydride; (b) extracting hydrogen from the liquid-phase lithium hydride, leaving residual liquid-phase lithium metal; (c) hydriding the residual liquid-phase lithium metal to form refined lithium hydride; and repeating steps (a) and (b) on the refined lithium hydride.

  3. Experimental comparison on heat transfer-enhancing component of metal hydride bed

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Hyun-goo, E-mail: hgkang@nfri.re.kr; Chung, Dong-you; Oh, Yun Hee; Chang, Min Ho; Yun, Sei-Hun

    2016-11-01

    Highlights: • Two small ZrCo metal hydride beds were developed. • Copper foam or fin as heat transfer-enhancing component are experimentally compared. • Copper foam bed is more efficient for uniform and rapid heating of metal hydride. • Copper foam bed is more efficient in removal of reaction heat during absorption. - Abstract: Metal hydride bed will be one of the key components for safe handling of tritium in fusion fuel cycle. In case of normal or emergency shutdown of fuel cycle, metal hydride bed installed in storage and delivery system (SDS) of tritium plant will absorb tritium gas in the system as soon as possible. Supply of hydrogen isotope gas to fueling system of fusion reactor will start from the metal hydride beds. Rapid delivery, rapid recovery including rapid heating and cooling are key issues. For better performance of metal hydride bed, various forms of heat transfer enhancing component or design can be applied. This study aims to help the selection of heat transfer enhancing component. Two small ZrCo beds with copper foam and copper fin were developed and experimented with hydrogen gas. Recovery and delivery performance, heating and cooling performance are compared. Experimental results show metal hydride bed with copper foam has improved performance. Uniform heating of metal hydride during desorption and removal of reaction heat during absorption are more efficient with copper foam bed than copper fin bed.

  4. Performance of electric forklift with low-temperature polymer exchange membrane fuel cell power module and metal hydride hydrogen storage extension tank

    Science.gov (United States)

    Lototskyy, Mykhaylo V.; Tolj, Ivan; Parsons, Adrian; Smith, Fahmida; Sita, Cordellia; Linkov, Vladimir

    2016-06-01

    We present test results of a commercial 3-tonne electric forklift (STILL) equipped with a commercial fuel cell power module (Plug Power) and a MH hydrogen storage tank (HySA Systems and TF Design). The tests included: (i) performance evaluation of "hybrid" hydrogen storage system during refuelling at low (pressures; (ii) comparison of the forklift performances during heavy-duty operation when changing the powering in the series: standard battery - fuel cell power module (alone) - power module with integrated MH tank; and (iii) performance tests of the forklift during its operation under working conditions. It was found that (a) the forklift with power module and MH tank can achieve 83% of maximum hydrogen storage capacity during 6 min refuelling (for full capacity 12-15 min); (b) heavy-duty operation of the forklift is characterised by 25% increase in energy consumption, and during system operation more uniform power distribution occurs when operating in the fuel cell powering mode with MH, in comparison to the battery powering mode; (c) use of the fully refuelled fuel cell power module with the MH extension tank allows for uninterrupted operation for 3 h 6 min and 7 h 15 min, for heavy- and light-duty operation, respectively.

  5. The storage of hydrogen in the form of metal hydrides: An application to thermal engines

    Science.gov (United States)

    Gales, C.; Perroud, P.

    1981-01-01

    The possibility of using LaNi56, FeTiH2, or MgH2 as metal hydride storage sytems for hydrogen fueled automobile engines is discussed. Magnesium copper and magnesium nickel hydrides studies indicate that they provide more stable storage systems than pure magnesium hydrides. Several test engines employing hydrogen fuel have been developed: a single cylinder motor originally designed for use with air gasoline mixture; a four-cylinder engine modified to run on an air hydrogen mixture; and a gas turbine.

  6. A model to describe the mechanical behavior and the ductile failure of hydrided Zircaloy-4 fuel claddings between 25 °C and 480 °C

    Energy Technology Data Exchange (ETDEWEB)

    Le Saux, M., E-mail: matthieu.lesaux@cea.fr [CEA, DEN, DMN, SRMA, 91191 Gif-sur-Yvette Cedex (France); Besson, J. [Mines ParisTech, Centre des Matériaux, CNRS UMR 7633, BP 87, 91003 Evry Cedex (France); Carassou, S. [CEA, DEN, DMN, SRMA, 91191 Gif-sur-Yvette Cedex (France)

    2015-11-15

    A model is proposed to describe the mechanical behavior and the ductile failure at 25, 350 and 480 °C of Zircaloy-4 cladding tubes, as-received and hydrided up to 1200 wt. ppm (circumferential hydrides). The model is based on the Gurson–Tvergaard–Needleman model extended to account for plastic anisotropy and viscoplasticity. The model considers damage nucleation by both hydride cracking and debonding of the interface between the Laves phase precipitates and the matrix. The damage nucleation rate due to hydride cracking is directly deduced from quantitative microstructural observations. The other model parameters are identified from several experimental tests. Finite element simulations of axial tension, hoop tension, expansion due to compression and hoop plane strain tension experiments are performed to assess the model prediction capability. The calibrated model satisfactorily reproduces the effects of hydrogen and temperature on both the viscoplastic and the failure properties of the material. The results suggest that damage is anisotropic and influenced by the stress state for the non-hydrided or moderately hydrided material and becomes more isotropic for high hydrogen contents.

  7. Air and metal hydride battery

    Energy Technology Data Exchange (ETDEWEB)

    Lampinen, M.; Noponen, T. [Helsinki Univ. of Technology, Otaniemi (Finland). Lab. of Applied Thermodynamics

    1998-12-31

    The main goal of the air and metal hydride battery project was to enhance the performance and manufacturing technology of both electrodes to such a degree that an air-metal hydride battery could become a commercially and technically competitive power source for electric vehicles. By the end of the project it was possible to demonstrate the very first prototype of the air-metal hydride battery at EV scale, achieving all the required design parameters. (orig.)

  8. Information to be requested from the NSSS vendor for fuel management capability for BWR

    Energy Technology Data Exchange (ETDEWEB)

    Minguez, E.; Esteban, A.; Gomez, M.; Leira, G.; Martinez, R.; Serrano, J.

    1975-07-01

    A set of the nuclear, thermal-hydraulic, and mechanical parameters necessary according to the design of BWRs, is listed. This parameters are necessary to perform the fuel elements management and design, and it must be supplied by the Reactor Manufacturer to the Utility. (Author) 18 refs.

  9. Hydrogen Outgassing from Lithium Hydride

    Energy Technology Data Exchange (ETDEWEB)

    Dinh, L N; Schildbach, M A; Smith, R A; Balazs1, B; McLean II, W

    2006-04-20

    Lithium hydride is a nuclear material with a great affinity for moisture. As a result of exposure to water vapor during machining, transportation, storage and assembly, a corrosion layer (oxide and/or hydroxide) always forms on the surface of lithium hydride resulting in the release of hydrogen gas. Thermodynamically, lithium hydride, lithium oxide and lithium hydroxide are all stable. However, lithium hydroxides formed near the lithium hydride substrate (interface hydroxide) and near the sample/vacuum interface (surface hydroxide) are much less thermally stable than their bulk counterpart. In a dry environment, the interface/surface hydroxides slowly degenerate over many years/decades at room temperature into lithium oxide, releasing water vapor and ultimately hydrogen gas through reaction of the water vapor with the lithium hydride substrate. This outgassing can potentially cause metal hydriding and/or compatibility issues elsewhere in the device. In this chapter, the morphology and the chemistry of the corrosion layer grown on lithium hydride (and in some cases, its isotopic cousin, lithium deuteride) as a result of exposure to moisture are investigated. The hydrogen outgassing processes associated with the formation and subsequent degeneration of this corrosion layer are described. Experimental techniques to measure the hydrogen outgassing kinetics from lithium hydride and methods employing the measured kinetics to predict hydrogen outgassing as a function of time and temperature are presented. Finally, practical procedures to mitigate the problem of hydrogen outgassing from lithium hydride are discussed.

  10. Possibilities with OHWC. Development and application of ECP-simulation in Swedish BWRs; Moejligheter med OHWC. Utveckling och tillaempning av ECP-simulering i svenska BWR

    Energy Technology Data Exchange (ETDEWEB)

    Lundgren, K. [ALARA Engineering, Skultuna (Sweden); Wikmark, G. [Advanced Nuclear Technology, Uppsala (Sweden)

    2000-02-01

    Hydrogen injection (HWC) to boiling water reactors has been used for two decades in Sweden, in order to reduce the impact of pipe cracking. The effect of HWC is to establish a sufficiently reducing environment in the systems to protect and hence mitigate the growth of existing stress corrosion cracks. Some disadvantages of HWC have been identified. One is the transitional increase of the dose rate of the main steam lines by up to seven times, another the corrosion release of systems with carbon steel components as a result of the reducing chemistry. In some cases, especially in the USA, an elevated activity build-up has been observed in a few plants in connection to the application of HWC. There is also a fear for increased hydrogen pick-up in fuel cladding and fuel channels by HWC operation. The hydrogen pick-up is already today in many cases limiting for fuel life. The objective of the current work has been to investigate the conditions by application of so called Optimised HWC. This implies a HWC operation with lower hydrogen addition rates than normally used. For this purpose, a computer model in order to simulate the radiolysis chemistry and the ECP (electrochemical corrosion potentials) in BWR systems has been developed. A previously developed radiolysis code, BwrChem, as well as a hydrogen peroxide decomposition code for piping, PEROX, have hence been equipped with ECP calculation modules. The ECP calculation algorithms have been based on fundamental electrochemical theory. The new model has been applied to simulate the radiolysis conditions in a large number of locations in typical BWRs. For the simulation, the external mechanical pump plant Barsebaeck-1 and the internal pump plant Forsmark-1 have been used. A wide range of hydrogen injection rates, down to 0. 1 ppm in the feed water, have been studied. The electrochemical model based on fundamental theory required adequate fundamental parameters. Significant effort has been used to scrutinise and evaluate

  11. Development of a surrogate model for analysis of ex-vessel steam explosion in Nordic type BWRs

    Energy Technology Data Exchange (ETDEWEB)

    Grishchenko, Dmitry, E-mail: dmitry@safety.sci.kth.se; Basso, Simone, E-mail: simoneb@kth.se; Kudinov, Pavel, E-mail: pavel@safety.sci.kth.se

    2016-12-15

    Highlights: • Severe accident. • Steam explosion. • Surrogate model. • Sensitivity study. • Artificial neural networks. - Abstract: Severe accident mitigation strategy adopted in Nordic type Boiling Water Reactors (BWRs) employs ex-vessel core melt cooling in a deep pool of water below reactor vessel. Energetic fuel–coolant interaction (steam explosion) can occur during molten core release into water. Dynamic loads can threaten containment integrity increasing the risk of fission products release to the environment. Comprehensive uncertainty analysis is necessary in order to assess the risks. Computational costs of the existing fuel–coolant interaction (FCI) codes is often prohibitive for addressing the uncertainties, including the effect of stochastic triggering time. This paper discusses development of a computationally efficient surrogate model (SM) for prediction of statistical characteristics of steam explosion impulses in Nordic BWRs. The TEXAS-V code was used as the Full Model (FM) for the calculation of explosion impulses. The surrogate model was developed using artificial neural networks (ANNs) and the database of FM solutions. Statistical analysis was employed in order to treat chaotic response of steam explosion impulse to variations in the triggering time. Details of the FM and SM implementation and their verification are discussed in the paper.

  12. Chemical Hydride Slurry for Hydrogen Production and Storage

    Energy Technology Data Exchange (ETDEWEB)

    McClaine, Andrew W

    2008-09-30

    University have demonstrated the technical viability of the process and have provided data for the cost analyses that have been performed. We also concluded that a carbothermic process could also produce magnesium at acceptable costs. The use of slurry as a medium to carry chemical hydrides has been shown during this project to offer significant advantages for storing, delivering, and distributing hydrogen: • Magnesium hydride slurry is stable for months and pumpable. • The oils of the slurry minimize the contact of oxygen and moisture in the air with the metal hydride in the slurry. Thus reactive chemicals, such as lithium hydride, can be handled safely in the air when encased in the oils of the slurry. • Though magnesium hydride offers an additional safety feature of not reacting readily with water at room temperatures, it does react readily with water at temperatures above the boiling point of water. Thus when hydrogen is needed, the slurry and water are heated until the reaction begins, then the reaction energy provides heat for more slurry and water to be heated. • The reaction system can be relatively small and light and the slurry can be stored in conventional liquid fuel tanks. When transported and stored, the conventional liquid fuel infrastructure can be used. • The particular metal hydride of interest in this project, magnesium hydride, forms benign byproducts, magnesium hydroxide (“Milk of Magnesia”) and magnesium oxide. • We have estimated that a magnesium hydride slurry system (including the mixer device and tanks) could meet the DOE 2010 energy density goals. During the investigation of hydriding techniques, we learned that magnesium hydride in a slurry can also be cycled in a rechargeable fashion. Thus, magnesium hydride slurry can act either as a chemical hydride storage medium or as a rechargeable hydride storage system. Hydrogen can be stored and delivered and then stored again thus significantly reducing the cost of storing and delivering

  13. Study of the reorienting of hydrides in pods of nuclear fuel in storage in dry conditions It has been reproduced in the laboratory reorientation of hydrides in pods; Estudio de la reorientacion de hidroduros en vainas de combustible nuclear en condiciones de almacenamiento en seco

    Energy Technology Data Exchange (ETDEWEB)

    Ruiz Hervias, J.; Martin-Rengel, M. A.; Gomez, F. J.

    2012-07-01

    As a starting point, samples were taken at different concentrations of hydrogen, 150, 500 and 1200 ppm. Hydrogen therein was precipitated as hydrides homogeneously distributed in circumferential cross section of the cladding. These samples were subjected to thermomechanical processes representative of dry storage.

  14. The effect of stress state on zirconium hydride reorientation

    Science.gov (United States)

    Cinbiz, Mahmut Nedim

    Prior to storage in a dry-cask facility, spent nuclear fuel must undergo a vacuum drying cycle during which the spent fuel rods are heated up to elevated temperatures of ≤ 400°C to remove moisture the canisters within the cask. As temperature increases during heating, some of the hydride particles within the cladding dissolve while the internal gas pressure in fuel rods increases generating multi-axial hoop and axial stresses in the closed-end thin-walled cladding tubes. As cool-down starts, the hydrogen in solid solution precipitates as hydride platelets, and if the multiaxial stresses are sufficiently large, the precipitating hydrides reorient from their initial circumferential orientation to radial orientation. Radial hydrides can severely embrittle the spent nuclear fuel cladding at low temperature in response to hoop stress loading. Because the cladding can experience a range of stress states during the thermo-mechanical treatment induced during vacuum drying, this study has investigated the effect of stress state on the process of hydride reorientation during controlled thermo-mechanical treatments utilizing the combination of in situ X-ray diffraction and novel mechanical testing analyzed by the combination of metallography and finite element analysis. The study used cold worked and stress relieved Zircaloy-4 sheet containing approx. 180 wt. ppm hydrogen as its material basis. The failure behavior of this material containing radial hydrides was also studied over a range of temperatures. Finally, samples from reactor-irradiated cladding tubes were examined by X-ray diffraction using synchrotron radiation. To reveal the stress state effect on hydride reorientation, the critical threshold stress to reorient hydrides was determined by designing novel mechanical test samples which produce a range of stress states from uniaxial to "near-equibiaxial" tension when a load is applied. The threshold stress was determined after thermo-mechanical treatments by

  15. Sodium-based hydrides for thermal energy applications

    Science.gov (United States)

    Sheppard, D. A.; Humphries, T. D.; Buckley, C. E.

    2016-04-01

    Concentrating solar-thermal power (CSP) with thermal energy storage (TES) represents an attractive alternative to conventional fossil fuels for base-load power generation. Sodium alanate (NaAlH4) is a well-known sodium-based complex metal hydride but, more recently, high-temperature sodium-based complex metal hydrides have been considered for TES. This review considers the current state of the art for NaH, NaMgH3- x F x , Na-based transition metal hydrides, NaBH4 and Na3AlH6 for TES and heat pumping applications. These metal hydrides have a number of advantages over other classes of heat storage materials such as high thermal energy storage capacity, low volume, relatively low cost and a wide range of operating temperatures (100 °C to more than 650 °C). Potential safety issues associated with the use of high-temperature sodium-based hydrides are also addressed.

  16. Generalized computational model for high-pressure metal hydrides with variable thermal properties

    DEFF Research Database (Denmark)

    Mazzucco, Andrea; Rokni, Masoud

    2015-01-01

    This study considers a detailed 1D fueling model applied to a metal hydride system, with Ti1.1CrMn as the absorbing alloy, to predict the weight fraction of the absorbed hydrogen and the solid bed temperature. Dependencies of thermal conductivity and specific heat capacity upon pressure...... and hydrogen content, respectively, are accounted for by interpolating experimental data. The effect of variable parameters on the critical metal hydride thickness is investigated and compared to results obtained from a constant-parameter analysis. Finally, the discrepancy in the metal hydride thickness value...

  17. Fuel Cell Electrodes for Hydrogen-Air Fuel Cell Assemblies.

    Science.gov (United States)

    The report describes the design and evaluation of a hydrogen-air fuel cell module for use in a portable hydrid fuel cell -battery system. The fuel ... cell module consists of a stack of 20 single assemblies. Each assembly contains 2 electrically independent cells with a common electrolyte compartment

  18. Erbium hydride decomposition kinetics.

    Energy Technology Data Exchange (ETDEWEB)

    Ferrizz, Robert Matthew

    2006-11-01

    Thermal desorption spectroscopy (TDS) is used to study the decomposition kinetics of erbium hydride thin films. The TDS results presented in this report are analyzed quantitatively using Redhead's method to yield kinetic parameters (E{sub A} {approx} 54.2 kcal/mol), which are then utilized to predict hydrogen outgassing in vacuum for a variety of thermal treatments. Interestingly, it was found that the activation energy for desorption can vary by more than 7 kcal/mol (0.30 eV) for seemingly similar samples. In addition, small amounts of less-stable hydrogen were observed for all erbium dihydride films. A detailed explanation of several approaches for analyzing thermal desorption spectra to obtain kinetic information is included as an appendix.

  19. Hydride development for hydrogen storage

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, G.J.; Guthrie, S.E.; Bauer, W.; Yang, N.Y.C. [Sandia National Lab., Livermore, CA (United States); Sandrock, G. [SunaTech, Inc., Ringwood, NJ (United States)

    1996-10-01

    The purpose of this project is to develop and demonstrate improved hydride materials for hydrogen storage. The work currently is organized into four tasks: hydride development, bed fabrication, materials support for engineering systems, and IEA Annex 12 activities. At the present time, hydride development is focused on Mg alloys. These materials generally have higher weight densities for storing hydrogen than rare earth or transition metal alloys, but suffer from high operating temperatures, slow kinetic behavior and material stability. The authors approach is to study bulk alloy additions which increase equilibrium overpressure, in combination with stable surface alloy modification and particle size control to improve kinetic properties. This work attempts to build on the considerable previous research in this area, but examines specific alloy systems in greater detail, with attention to known phase properties and structures. The authors have found that specific phases can be produced which have significantly improved hydride properties compared to previous studies.

  20. Metal hydride air conditioner

    Institute of Scientific and Technical Information of China (English)

    YANG; Ke; DU; Ping; LU; Man-qi

    2005-01-01

    The relationship among the hydrogen storage properties, cycling characteristics and thermal parameters of the metal hydride air conditioning systems was investigated. Based on a new alloy selection model, three pairs of hydrogen storage alloys, LaNi4.4 Mn0.26 Al0.34 / La0.6 Nd0.4 Ni4.8 Mn0.2 Cu0. 1, LaNi4.61Mn0. 26 Al0.13/La0.6 Nd0.4 Ni4.8 Mn0.2 Cu0. 1 and LaNi4.61 Mn0.26 Al0.13/La0.6 Y0.4 Ni4.8 Mn0. 2, were selected as the working materials for the metal hydride air conditioning system. Studies on the factors affecting the COP of the system showed that higher COP and available hydrogen content need the proper operating temperature and cycling time,large hydrogen storage capacity, flat plateau and small hysterisis of hydrogen alloys, proper original input hydrogen content and mass ratio of the pair of alloys. It also needs small conditioning system was established by using LaNi4.61 Mn0.26 Al0. 13/La0.6 Y0.4 Ni4.8 Mn0.2 alloys as the working materials, which showed that under the operating temperature of 180℃/40℃, a low temperature of 13℃ was reached, with COP =0.38 and Wnet =0.09 kW/kg.

  1. Geoneutrino and Hydridic Earth model

    CERN Document Server

    Bezrukov, Leonid

    2013-01-01

    Uranium, Thorium and Potassium-40 abundances in the Earth were calculated in the frame of Hydridic Earth model. Terrestrial heat producton from U, Th and K40 decays was calculated also. We must admit the existance of Earth expansion process to understand the obtained large value of terrestrial heat producton. The geoneutrino detector with volume more than 5 kT (LENA type) must be constructed to definitely separate between Bulk Silicat Earth model and Hydridic Earth model.

  2. A fuel cell energy storage system for Space Station extravehicular activity

    Science.gov (United States)

    Rosso, Matthew J., Jr.; Adlhart, Otto J.; Marmolejo, Jose A.

    1988-01-01

    The development of a fuel cell energy storage system for the Space Station Extravehicular Mobility Unit (EMU) is discussed. The ion-exchange membrane fuel cell uses hydrogen stored as a metal hydride. Several features of the hydrogen-oxygen fuel cell are examined, including its construction, hydrogen storage, hydride recharge, water heat, water removal, and operational parameters.

  3. Hydride precipitation kinetics in Zircaloy-4 studied using synchrotron X-ray diffraction

    Science.gov (United States)

    Courty, Olivier F.; Motta, Arthur T.; Piotrowski, Christopher J.; Almer, Jonathan D.

    2015-06-01

    As a result of in-reactor corrosion during operation in nuclear reactors, hydrogen can enter the zirconium fuel cladding and precipitate as brittle hydride particles, which may reduce cladding ductility. Dissolved hydrogen responds to temperature gradients, resulting in transport and precipitation into cold spots so that the distribution of hydrides in the cladding is inhomogeneous. The hydrogen precipitation kinetics plays a strong role in the spatial distribution of the hydrides in the cladding. The precipitation rate is normally described as proportional to the supersaturation of hydrogen in solid solution. The proportionality constant, α2, for hydride precipitation in Zircaloy-4 is measured directly using in situ synchrotron X-Ray diffraction, at different temperatures and with three different initial hydrogen concentrations. The results validate the linear approximation of the phenomenological model and a near constant value of α2 = 4.5 × 10-4 s-1 was determined for the temperature range studied.

  4. A New Reducing Regent: Dichloroindium Hydride

    Institute of Scientific and Technical Information of China (English)

    A. BABA; I. SHIBATA; N. HAYASHI

    2005-01-01

    @@ 1Introduction Among the hydride derivatives of group 13 elements, various types of aluminum hydrides and boron hydrides have been employed as powerful reduction tools. Indium hydrides have not received much attention,whereas the synthesis of indium trihydride (InH3) was reported several decades ago[1]. There have been no precedents for monometallic indium hydrides having practical reactivity, while activated hydrides such as an ate complex LiPhn InH4-n (n = 0- 2) and phosphine-coordinated indium hydrides readily reduce carbonyl compounds. In view of this background, we focused on the development of dichloroindium hydrides (Cl2InH) as novel reducing agents that bear characteristic features in both ionic and radical reactions.

  5. Hydride Olefin complexes of tantalum and niobium

    NARCIS (Netherlands)

    Klazinga, Aan Hendrik

    1979-01-01

    This thesis describes investigations on low-valent tantalum and niobium hydride and alkyl complexes, particularly the dicyclopentadienyl tantalum hydride olefin complexes Cp2Ta(H)L (L=olefin). ... Zie: Summary

  6. Complex and liquid hydrides for energy storage

    Energy Technology Data Exchange (ETDEWEB)

    Callini, Elsa; Atakli, Zuleyha Özlem Kocabas; Hauback, Bjørn C.; Orimo, Shin-ichi; Jensen, Craig; Dornheim, Martin; Grant, David; Cho, Young Whan; Chen, Ping; Hjörvarsson, Bjørgvin; de Jongh, Petra; Weidenthaler, Claudia; Baricco, Marcello; Paskevicius, Mark; Jensen, Torben R.; Bowden, Mark E.; Autrey, Thomas S.; Züttel, Andreas

    2016-03-10

    The research on complex hydrides for hydrogen storage was imitated by the discovery of Ti as a hydrogen sorption catalyst in NaAlH4 by Boris Bogdanovic in 1996. A large number of new complex hydride materials in various forms and combinations have been synthesized and characterized and the knowledge on the properties of complex hydrides and the synthesis methods has grown enormously since then. A significant part of the research groups active in the field of complex hydrides are collaborators in the IEA task 32. This paper reports about the important issues in the field of the complex hydride research, i.e. the synthesis of borohydrides, the thermodynamics of complex hydrides and their thermodynamic properties, the effects of size and confinement, the hydrogen sorption mechanism and the complex hydride composites as well as the properties of liquid complex hydrides. This paper is the result of the collaboration of several groups and excellent summary of the recent achievements.

  7. Development of a component design tool for metal hydride heat pumps

    Science.gov (United States)

    Waters, Essene L.

    Given current demands for more efficient and environmentally friendly energy sources, hydrogen based energy systems are an increasingly popular field of interest. Within the field, metal hydrides have become a prominent focus of research due to their large hydrogen storage capacity and relative system simplicity and safety. Metal hydride heat pumps constitute one such application, in which heat and hydrogen are transferred to and from metal hydrides. While a significant amount of work has been done to study such systems, the scope of materials selection has been quite limited. Typical studies compare only a few metal hydride materials and provide limited justification for the choice of those few. In this work, a metal hydride component design tool has been developed to enable the targeted down-selection of an extensive database of metal hydrides to identify the most promising materials for use in metal hydride thermal systems. The material database contains over 300 metal hydrides with various physical and thermodynamic properties included for each material. Sub-models for equilibrium pressure, thermophysical data, and default properties are used to predict the behavior of each material within the given system. For a given thermal system, this tool can be used to identify optimal materials out of over 100,000 possible hydride combinations. The selection tool described herein has been applied to a stationary combined heat and power system containing a high-temperature proton exchange membrane (PEM) fuel cell, a hot water tank, and two metal hydride beds used as a heat pump. A variety of factors can be used to select materials including efficiency, maximum and minimum system pressures, pressure difference, coefficient of performance (COP), and COP sensitivity. The targeted down-selection of metal hydrides for this system focuses on the system's COP for each potential pair. The values of COP and COP sensitivity have been used to identify pairs of highest interest for

  8. Rod internal pressure of spent nuclear fuel and its effects on cladding degradation during dry storage

    Science.gov (United States)

    Kim, Ju-Seong; Hong, Jong-Dae; Yang, Yong-Sik; Kook, Dong-Hak

    2017-08-01

    Temperature and hoop stress limits have been used to prevent the gross rupture of spent nuclear fuel during dry storage. The stress due to rod internal pressure can induce cladding degradation such as creep, hydride reorientation, and delayed hydride cracking. Creep is a self-limiting phenomenon in a dry storage system; in contrast, hydride reorientation and delayed hydride cracking are potential degradation mechanisms activated at low temperatures when the cladding material is brittle. In this work, a conservative rod internal pressure and corresponding hoop stress were calculated using FRAPCON-4.0 fuel performance code. Based on the hoop stresses during storage, a study on the onset of hydride reorientation and delayed hydride cracking in spent nuclear fuel was conducted under the current storage guidelines. Hydride reorientation is hard to occur in most of the low burn-up fuel while some high burn-up fuel can experience hydride reorientation, but their effect may not be significant. On the other hand, delayed hydride cracking will not occur in spent nuclear fuel from pressurized water reactor; however, there is a lack of confirmatory data on threshold intensity factor for delayed hydride cracking and crack size distribution in the fuel.

  9. Generalized computational model for high-pressure metal hydrides with variable thermal properties

    DEFF Research Database (Denmark)

    Mazzucco, Andrea; Rokni, Masoud

    2015-01-01

    This study considers a detailed 1D fueling model applied to a metal hydride system, with Ti1.1CrMn as the absorbing alloy, to predict the weight fraction of the absorbed hydrogen and the solid bed temperature. Dependencies of thermal conductivity and specific heat capacity upon pressure and hydro......This study considers a detailed 1D fueling model applied to a metal hydride system, with Ti1.1CrMn as the absorbing alloy, to predict the weight fraction of the absorbed hydrogen and the solid bed temperature. Dependencies of thermal conductivity and specific heat capacity upon pressure...

  10. Determination of the mechanical properties of the hydrides of zirconium by nano indentation techniques; Determinacion de las propiedades mecanicas de los hidruros de circonio mediante tecnicas de nanoindentacion

    Energy Technology Data Exchange (ETDEWEB)

    Ruiz Hervias, J.; Rico, A.; Martin Rengel, M. A.

    2013-07-01

    The mechanical properties of nuclear fuel cladding may be affected by the presence of hydrides. In most studies until now, the average mechanical properties of the zirconium matrix and the hydrides have been measured. In this paper, nano indentation techniques were used to assess the mechanical properties of both phases, namely the zirconium hydrides and matrix, separately. To this end, pre-hydrided cladding samples with 150 and 1200 ppm hydrogen were employed, and the elastic modulus, hardness and yield stress were obtained for both phases.

  11. Photochemistry of Transition Metal Hydrides.

    Science.gov (United States)

    Perutz, Robin N; Procacci, Barbara

    2016-08-10

    Photochemical reactivity associated with metal-hydrogen bonds is widespread among metal hydride complexes and has played a critical part in opening up C-H bond activation. It has been exploited to design different types of photocatalytic reactions and to obtain NMR spectra of dilute solutions with a single pulse of an NMR spectrometer. Because photolysis can be performed on fast time scales and at low temperature, metal-hydride photochemistry has enabled determination of the molecular structure and rates of reaction of highly reactive intermediates. We identify five characteristic photoprocesses of metal monohydride complexes associated with the M-H bond, of which the most widespread are M-H homolysis and R-H reductive elimination. For metal dihydride complexes, the dominant photoprocess is reductive elimination of H2. Dihydrogen complexes typically lose H2 photochemically. The majority of photochemical reactions are likely to be dissociative, but hydride complexes may be designed with equilibrated excited states that undergo different photochemical reactions, including proton transfer or hydride transfer. The photochemical mechanisms of a few reactions have been analyzed by computational methods, including quantum dynamics. A section on specialist methods (time-resolved spectroscopy, matrix isolation, NMR, and computational methods) and a survey of transition metal hydride photochemistry organized by transition metal group complete the Review.

  12. Method of producing a chemical hydride

    Science.gov (United States)

    Klingler, Kerry M.; Zollinger, William T.; Wilding, Bruce M.; Bingham, Dennis N.; Wendt, Kraig M.

    2007-11-13

    A method of producing a chemical hydride is described and which includes selecting a composition having chemical bonds and which is capable of forming a chemical hydride; providing a source of a hydrocarbon; and reacting the composition with the source of the hydrocarbon to generate a chemical hydride.

  13. Hydrogen, lithium, and lithium hydride production

    Science.gov (United States)

    Brown, Sam W; Spencer, Larry S; Phillips, Michael R; Powell, G. Louis; Campbell, Peggy J

    2014-03-25

    A method of producing high purity lithium metal is provided, where gaseous-phase lithium metal is extracted from lithium hydride and condensed to form solid high purity lithium metal. The high purity lithium metal may be hydrided to provide high purity lithium hydride.

  14. Chemical Hydride Slurry for Hydrogen Production and Storage

    Energy Technology Data Exchange (ETDEWEB)

    McClaine, Andrew W

    2008-09-30

    University have demonstrated the technical viability of the process and have provided data for the cost analyses that have been performed. We also concluded that a carbothermic process could also produce magnesium at acceptable costs. The use of slurry as a medium to carry chemical hydrides has been shown during this project to offer significant advantages for storing, delivering, and distributing hydrogen: • Magnesium hydride slurry is stable for months and pumpable. • The oils of the slurry minimize the contact of oxygen and moisture in the air with the metal hydride in the slurry. Thus reactive chemicals, such as lithium hydride, can be handled safely in the air when encased in the oils of the slurry. • Though magnesium hydride offers an additional safety feature of not reacting readily with water at room temperatures, it does react readily with water at temperatures above the boiling point of water. Thus when hydrogen is needed, the slurry and water are heated until the reaction begins, then the reaction energy provides heat for more slurry and water to be heated. • The reaction system can be relatively small and light and the slurry can be stored in conventional liquid fuel tanks. When transported and stored, the conventional liquid fuel infrastructure can be used. • The particular metal hydride of interest in this project, magnesium hydride, forms benign byproducts, magnesium hydroxide (“Milk of Magnesia”) and magnesium oxide. • We have estimated that a magnesium hydride slurry system (including the mixer device and tanks) could meet the DOE 2010 energy density goals. During the investigation of hydriding techniques, we learned that magnesium hydride in a slurry can also be cycled in a rechargeable fashion. Thus, magnesium hydride slurry can act either as a chemical hydride storage medium or as a rechargeable hydride storage system. Hydrogen can be stored and delivered and then stored again thus significantly reducing the cost of storing and delivering

  15. Influence of hydrides orientation on strain, damage and failure of hydrided zircaloy-4; Influence de l'orientation des hydrures sur les modes de deformation, d'endommagement et de rupture du zircaloy-4 hydrure

    Energy Technology Data Exchange (ETDEWEB)

    Racine, A

    2005-09-15

    In pressurized water reactors of nuclear power plants, fuel pellets are contained in cladding tubes, made of Zirconium alloy, for instance Zircaloy-4. During their life in the primary water of the reactor (155 bars, 300 C), cladding tubes are oxidized and consequently hydrided. A part of the hydrogen given off precipitates as Zirconium hydrides in the bulk material and embrittles the material. This embrittlement depends on many parameters, among which hydrogen content and orientation of hydrides with respect to the applied stress. This investigation is devoted to the influence of the orientation of hydrides with respect to the applied stress on strain, damage and failure mechanisms. Macroscopic and SEM in-situ ring tensile tests are performed on cladding tube material (unirradiated cold worked stress-relieved Zircaloy-4) hydrided with about 200 and 500 wppm hydrogen, and with different main hydrides orientation: either parallel or perpendicular to the circumferential tensile direction. We get the mechanical response of the material as a function of hydride orientation and hydrogen content and we investigate the deformation, damage and failure mechanisms. In both cases, digital image correlation techniques are used to estimate local and global strain distributions. Neither the tensile stress-strain response nor the global and local strain modes are significantly affected by hydrogen content or hydride orientation, but the failure modes are strongly modified. Indeed, only 200 wppm radial hydrides embrittle Zy-4: sample fail in the elastic domain at about 350 MPa before strain bands could develop; whereas in other cases sample reach at least 750 MPa before necking and final failure, in ductile or brittle mode. To model this particular heterogeneous material behavior, a non-coupled damage approach which takes into account the anisotropic distribution of the hydrides is proposed. Its parameters are identified from the macroscopic strain field measurements and a

  16. Anodematerials for Metal Hydride Batteries

    DEFF Research Database (Denmark)

    Jensen, Jens Oluf

    1997-01-01

    This report describes the work on development of hydride forming alloys for use as electrode materials in metal hydride batteries. The work has primarily been concentrated on calcium based alloys derived from the compound CaNi5. This compound has a higher capacity compared with alloys used in today......’s hydride batteries, but a much poorer stability towards repeated charge/discharge cycling. The aim was to see if the cycleability of CaNi5 could be enhanced enough by modifications to make the compound a suitable electrode material. An alloying method based on mechanical alloying in a planetary ball mill...... by annealing at 700°C for 12 hours. The alloys appeared to be nanocrystalline with an average crystallite size around 10 nm before annealing. Special steel containers was developed for the annealing of the metal powders in inert atmosphere. The use of various annealing temperatures was investigated...

  17. Modellization of Metal Hydride Canister for Hydrogen Storage

    Directory of Open Access Journals (Sweden)

    Rocio Maceiras

    2015-06-01

    Full Text Available Hydrogen shows very interesting features for its use on-board applications as fuel cell vehicles. This paper presents the modelling of a tank with a metal hydride alloy for on-board applications, which provides good performance under ambient conditions. The metal hydride contained in the tank is Ti0.98Zr0.02V0.43Fe0.09Cr0.05Mn1.5. A two-dimensional model has been performed for the refuelling process (absorption and the discharge process (desorption. For that, individual models of mass balance, energy balance, reaction kinetics and behaviour of hydrogen gas has been modelled. The model has been developed under Matlab / Simulink© environment. Finally, individual models have been integrated into a global model, and simulated under ambient conditions. With the aim to analyse the temperature influence on the state of charge and filling and emptying time, other simulations were performed at different temperatures. The obtained results allow to conclude that this alloy offers a good behaviour with the discharge process under normal ambient conditions. Keywords: Hydrogen storage; metal hydrides; fuel cell; simulation; board applications

  18. On-line monitoring of control rod integrity in BWRs using a mass spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Larsson, I., E-mail: irina@nephy.chalmers.se [Chalmers University of Technology, SE-412 96 Gothenburg (Sweden); Loner, H.; Ammon, K. [Kernkraftwerk Leibstadt, CH-5325 Leibstadt (Switzerland); Sihver, L. [Chalmers University of Technology, SE-412 96 Gothenburg (Sweden); Ledergerber, G. [Kernkraftwerk Leibstadt, CH-5325 Leibstadt (Switzerland)

    2013-01-11

    Surveillance of fuel and control rod integrity in the core of a boiling water reactor is essential for maintaining a safe and reliable operation. Control rods of a boiling water reactor are mainly filled with boron carbide as a neutron absorber. Due to the irradiation of boron with neutrons, a continuous production of lithium and helium will occur inside a control rod. Most of the created helium will be retained in the boron carbide lattice; however a small part will escape into the void volume of the control blade. Therefore the integrity of control rods during operation can efficiently be followed by on-line measurements of helium concentration in the reactor off-gas system using a mass spectrometer. Since helium is a fill gas in fuel rods, the same method is a useful early warning system for primary fuel failures. In this paper, we introduce an on-line helium detector system which is installed at the nuclear power plant in Leibstadt. Furthermore the measuring experiences of control rod failure detection at the plant are presented. Different causes of increased helium levels in the off-gas system have been distinguished. There are spontaneous helium releases as well as helium releases caused by changed conditions in the reactor (power reduction, control rod movement, etc.). Helium peaks can also be characterized according to the released amount of helium, the peak shape and the duration of the release, which leads to different interpretations of the release mechanisms. In addition, the measured amount of released helium from a 50 days period (280 l) is also compared to the calculated amount of produced helium from the washed out boron during the same time period (190 l).

  19. On-line monitoring of control rod integrity in BWRs using a mass spectrometer

    Science.gov (United States)

    Larsson, I.; Loner, H.; Ammon, K.; Sihver, L.; Ledergerber, G.

    2013-01-01

    Surveillance of fuel and control rod integrity in the core of a boiling water reactor is essential for maintaining a safe and reliable operation. Control rods of a boiling water reactor are mainly filled with boron carbide as a neutron absorber. Due to the irradiation of boron with neutrons, a continuous production of lithium and helium will occur inside a control rod. Most of the created helium will be retained in the boron carbide lattice; however a small part will escape into the void volume of the control blade. Therefore the integrity of control rods during operation can efficiently be followed by on-line measurements of helium concentration in the reactor off-gas system using a mass spectrometer. Since helium is a fill gas in fuel rods, the same method is a useful early warning system for primary fuel failures. In this paper, we introduce an on-line helium detector system which is installed at the nuclear power plant in Leibstadt. Furthermore the measuring experiences of control rod failure detection at the plant are presented. Different causes of increased helium levels in the off-gas system have been distinguished. There are spontaneous helium releases as well as helium releases caused by changed conditions in the reactor (power reduction, control rod movement, etc.). Helium peaks can also be characterized according to the released amount of helium, the peak shape and the duration of the release, which leads to different interpretations of the release mechanisms. In addition, the measured amount of released helium from a 50 days period (280 l) is also compared to the calculated amount of produced helium from the washed out boron during the same time period (190 l).

  20. Development of guidelines on the application of noble metals to BWRs

    Energy Technology Data Exchange (ETDEWEB)

    Wood, C.J. [EPRI, Palo Alto, CA (United States); Cowan, R.L

    2002-07-01

    Water Chemistry plays a critical role in determining the economics of BWR (boiling water reactor) operation. The chemistry controls the probability of repairs due to stress corrosion cracking of piping and internals, the operating and shutdown dose rates (and thus personnel exposure), radiation waste generation and fuel corrosion performance. Simultaneously addressing the adverse effects from these phenomena requires a delicate balance of chemistry variables. Earlier papers have reviewed the technologies that have evolved to provide this balance including specific impurity limits, hydrogen water chemistry, and isotopically depleted zinc injection. This paper addresses the experience with the latest technology, noble metal chemical addition (NMCA). (authors)

  1. Hydrogen Storage in Metal Hydrides

    Science.gov (United States)

    1990-08-01

    Hydrogen Storage Capacity Hydride by weight (%) [1) by volume (g/ml) [2] MgH2 7.00 0.101 Mg2NiH4 3.84 0,081 Mg2CuH4 2.04 - - 27 ...Include Security Classification) Hydrogen Storage in Metal Hydrides (U) 12. PERSONAL AUTHOR(S) DelaRosa, Mark J. 13a. TYPE OF REPORT 13b. TIME...objective of this program was to develop an economical process for pr-ducing a lightweight hydrogen storage medium by the chemical vapor infiltration

  2. Crystallography of shear transformations in zirconium hydrides

    Energy Technology Data Exchange (ETDEWEB)

    Cassidy, Michael Philip [Univ. of Illinois, Urbana-Champaign, IL (United States)

    1978-01-01

    The crystallography and substructure of the transformations which have been hypothesized as involving a martensitic shear, and which occur between zirconium hydrides were investigated. Specifically, the formation of gamma zirconium hydride from delta hydride and the delta hydride to epsilon hydride transformation were studied. The habit planes, orientation relationships, lattice invariant shears, and interface structures were determined by transmission electron microscopy and diffraction. Surface tilts were observed and measured with an interference microscope. The direction and magnitude of the shape strain produced by the formation of gamma were determined by the measurement of fiducial scratch displacements. These results were compared with the phenomenological crystallographic theory of martensitic transformations.

  3. Characteristics and Applications of Metal Hydrides

    Science.gov (United States)

    Egan, G. J.; Lynch, F. E.

    1987-01-01

    Report discusses engineering principles of uses of metal hydrides in spacecraft. Metal hydrides absorb, store, pump, compress, and expand hydrogen gas. Additionally, they release or absorb sizeable amounts of heat as they form and decompose - property adapted for thermal-energy management or for propulsion. Describes efforts to: Identify heat sources and sinks suitable for driving metal hydride thermal cycles in spacecraft; develop concepts for hydride subsystems employing available heating and cooling methods; and produce data base on estimated sizes, masses, and performances of hydride devices for spacecraft.

  4. ALUMINUM HYDRIDE: A REVERSIBLE STORAGE MATERIAL FOR HYDROGEN STORAGE

    Energy Technology Data Exchange (ETDEWEB)

    Zidan, R; Christopher Fewox, C; Brenda Garcia-Diaz, B; Joshua Gray, J

    2009-01-09

    One of the challenges of implementing the hydrogen economy is finding a suitable solid H{sub 2} storage material. Aluminium (alane, AlH{sub 3}) hydride has been examined as a potential hydrogen storage material because of its high weight capacity, low discharge temperature, and volumetric density. Recycling the dehydride material has however precluded AlH{sub 3} from being implemented due to the large pressures required (>10{sup 5} bar H{sub 2} at 25 C) and the thermodynamic expense of chemical synthesis. A reversible cycle to form alane electrochemically using NaAlH{sub 4} in THF been successfully demonstrated. Alane is isolated as the triethylamine (TEA) adduct and converted to unsolvated alane by heating under vacuum. To complete the cycle, the starting alanate can be regenerated by direct hydrogenation of the dehydrided alane and the alkali hydride (NaH) This novel reversible cycle opens the door for alane to fuel the hydrogen economy.

  5. Characterization of hydrides and delayed hydride cracking in zirconium alloys

    Science.gov (United States)

    Fang, Qiang

    This thesis tries to fill some of the missing gaps in the study of zirconium hydrides with state-of-art experiments, cutting edge tomographical technique, and a novel numerical algorithm. A new hydriding procedure is proposed. The new anode material and solution combination overcomes many drawbacks of the AECLRTM hydriding method and leads to superior hydriding result compared to the AECL RTM hydriding procedure. The DHC crack growth velocity of as-received Excel alloy and Zr-2.5Nb alloy together with several different heat treated Excel alloy samples are measured. While it already known that the DHC crack growth velocity increases with the increase of base metal strength, the finding that the transverse plane is the weaker plane for fatigue crack growth despite having higher resistance to DHC crack growth was unexpected. The morphologies of hydrides in a coarse grained Zircally-2 sample have been studied using synchrotron x-rays at ESRF with a new technique called Diffraction Contrast Tomography that uses simultaneous collection of tomographic data and diffraction data to determine the crystallographic orientation of crystallites (grains) in 3D. It has been previously limited to light metals such as Al or Mg (due to the use of low energy x-rays). Here we show the first DCT measurements using high energy x-rays (60 keV), allowing measurements in zirconium. A new algorithm of a computationally effcient way to characterize distributions of hydrides - in particular their orientation and/or connectivity - has been proposed. It is a modification of the standard Hough transform, which is an extension of the Hough transform widely used in the line detection of EBSD patterns. Finally, a basic model of hydrogen migration is built using ABAQUS RTM, which is a mature finite element package with tested modeling modules of a variety of physical laws. The coupling of hydrogen diffusion, lattice expansion, matrix deformation and phase transformation is investigated under

  6. Development of Hydrogen Storage Tank Systems Based on Complex Metal Hydrides

    Directory of Open Access Journals (Sweden)

    Morten B. Ley

    2015-09-01

    Full Text Available This review describes recent research in the development of tank systems based on complex metal hydrides for thermolysis and hydrolysis. Commercial applications using complex metal hydrides are limited, especially for thermolysis-based systems where so far only demonstration projects have been performed. Hydrolysis-based systems find their way in space, naval, military and defense applications due to their compatibility with proton exchange membrane (PEM fuel cells. Tank design, modeling, and development for thermolysis and hydrolysis systems as well as commercial applications of hydrolysis systems are described in more detail in this review. For thermolysis, mostly sodium aluminum hydride containing tanks were developed, and only a few examples with nitrides, ammonia borane and alane. For hydrolysis, sodium borohydride was the preferred material whereas ammonia borane found less popularity. Recycling of the sodium borohydride spent fuel remains an important part for their commercial viability.

  7. Properties of nanoscale metal hydrides.

    Science.gov (United States)

    Fichtner, Maximilian

    2009-05-20

    Nanoscale hydride particles may exhibit chemical stabilities which differ from those of a macroscopic system. The stabilities are mainly influenced by a surface energy term which contains size-dependent values of the surface tension, the molar volume and an additional term which takes into account a potential reduction of the excess surface energy. Thus, the equilibrium of a nanoparticular hydride system may be shifted to the hydrogenated or to the dehydrogenated side, depending on the size and on the prefix of the surface energy term of the hydrogenated and dehydrogenated material. Additional complexity appears when solid-state reactions of complex hydrides are considered and phase segregation has to be taken into account. In such a case the reversibility of complex hydrides may be reduced if the nanoparticles are free standing on a surface. However, it may be enhanced if the system is enclosed by a nanoscale void which prevents the reaction partners on the dehydrogenated side from diffusing away from each other. Moreover, the generally enhanced diffusivity in nanocrystalline systems may lower the kinetic barriers for the material's transformation and, thus, facilitate hydrogen absorption and desorption.

  8. Investigation of Lithium Metal Hydride Materials for Mitigation of Deep Space Radiation

    Science.gov (United States)

    Rojdev, Kristina; Atwell, William

    2016-01-01

    Radiation exposure to crew, electronics, and non-metallic materials is one of many concerns with long-term, deep space travel. Mitigating this exposure is approached via a multi-faceted methodology focusing on multi-functional materials, vehicle configuration, and operational or mission constraints. In this set of research, we are focusing on new multi-functional materials that may have advantages over traditional shielding materials, such as polyethylene. Metal hydride materials are of particular interest for deep space radiation shielding due to their ability to store hydrogen, a low-Z material known to be an excellent radiation mitigator and a potential fuel source. We have previously investigated 41 different metal hydrides for their radiation mitigation potential. Of these metal hydrides, we found a set of lithium hydrides to be of particular interest due to their excellent shielding of galactic cosmic radiation. Given these results, we will continue our investigation of lithium hydrides by expanding our data set to include dose equivalent and to further understand why these materials outperformed polyethylene in a heavy ion environment. For this study, we used HZETRN 2010, a one-dimensional transport code developed by NASA Langley Research Center, to simulate radiation transport through the lithium hydrides. We focused on the 1977 solar minimum Galactic Cosmic Radiation environment and thicknesses of 1, 5, 10, 20, 30, 50, and 100 g/cm2 to stay consistent with our previous studies. The details of this work and the subsequent results will be discussed in this paper.

  9. Draft of M2 Report on Integration of the Hybrid Hydride Model into INL's MBM Framework for Review

    Energy Technology Data Exchange (ETDEWEB)

    Tikare, Veena; Weck, Philippe F.; Schultz, Peter Andrew; Clark, Blythe; Glazoff, Michael V.; Homer, Eric R.

    2014-07-01

    This report documents the development, demonstration and validation of a mesoscale, microstructural evolution model for simulation of zirconium hydride {delta}-ZrH{sub 1.5} precipitation in the cladding of used nuclear fuels that may occur during long-term dry storage. While the Zr-based claddings are manufactured free of any hydrogen, they absorb hydrogen during service, in the reactor by a process commonly termed ‘hydrogen pick-up’. The precipitation and growth of zirconium hydrides during dry storage is one of the most likely fuel rod integrity failure mechanisms either by embrittlement or delayed hydride cracking of the cladding. While the phenomenon is well documented and identified as a potential key failure mechanism during long-term dry storage (NUREG/CR-7116), the ability to actually predict the formation of hydrides is poor. The model being documented in this work is a computational capability for the prediction of hydride formation in different claddings of used nuclear fuels. This work supports the Used Fuel Disposition Research and Development Campaign in assessing the structural engineering performance of the cladding during and after long-term dry storage. This document demonstrates a basic hydride precipitation model that is built on a recently developed hybrid Potts-phase field model that combines elements of Potts-Monte Carlo and the phase-field models. The model capabilities are demonstrated along with the incorporation of the starting microstructure, thermodynamics of the Zr-H system and the hydride formation mechanism.

  10. The impact of carbon materials on the hydrogen storage properties of light metal hydrides

    NARCIS (Netherlands)

    Adelhelm, P.A.|info:eu-repo/dai/nl/313907854; de Jongh, P.E.|info:eu-repo/dai/nl/186125372

    2011-01-01

    The safe and efficient storage of hydrogen is still one of the remaining challenges towards fuel cell powered cars. Metal hydrides are a promising class of materials as they allow the storage of large amounts of hydrogen in a small volume at room temperature and low pressures. However, usually the

  11. The impact of carbon materials on the hydrogen storage properties of light metal hydrides

    NARCIS (Netherlands)

    Adelhelm, P.A.; de Jongh, P.E.

    2011-01-01

    The safe and efficient storage of hydrogen is still one of the remaining challenges towards fuel cell powered cars. Metal hydrides are a promising class of materials as they allow the storage of large amounts of hydrogen in a small volume at room temperature and low pressures. However, usually the k

  12. Hydrogen generation using silicon nanoparticles and their mixtures with alkali metal hydrides

    Science.gov (United States)

    Patki, Gauri Dilip

    Hydrogen is a promising energy carrier, for use in fuel cells, engines, and turbines for transportation or mobile applications. Hydrogen is desirable as an energy carrier, because its oxidation by air releases substantial energy (thermally or electrochemically) and produces only water as a product. In contrast, hydrocarbon energy carriers inevitably produce CO2, contributing to global warming. While CO2 capture may prove feasible in large stationary applications, implementing it in transportation and mobile applications is a daunting challenge. Thus a zero-emission energy carrier like hydrogen is especially needed in these cases. Use of H2 as an energy carrier also brings new challenges such as safe handling of compressed hydrogen and implementation of new transport, storage, and delivery processes and infrastructure. With current storage technologies, hydrogen's energy per volume is very low compared to other automobile fuels. High density storage of compressed hydrogen requires combinations of high pressure and/or low temperature that are not very practical. An alternative for storage is use of solid light weight hydrogenous material systems which have long durability, good adsorption properties and high activity. Substantial research has been conducted on carbon materials like activated carbon, carbon nanofibers, and carbon nanotubes due to their high theoretical hydrogen capacities. However, the theoretical values have not been achieved, and hydrogen uptake capacities in these materials are below 10 wt. %. In this thesis we investigated the use of silicon for hydrogen generation. Hydrogen generation via water oxidation of silicon had been ignored due to slow reaction kinetics. We hypothesized that the hydrogen generation rate could be improved by using high surface area silicon nanoparticles. Our laser-pyrolysis-produced nanoparticles showed surprisingly rapid hydrogen generation and high hydrogen yield, exceeding the theoretical maximum of two moles of H2 per

  13. High performance nickel-metal hydride battery in bipolar stack design

    Science.gov (United States)

    Ohms, D.; Kohlhase, M.; Benczúr-Ürmössy, G.; Wiesener, K.; Harmel, J.

    The consumption of fuel in cars can be reduced by using hybrid concepts. Even for fuel cell vehicles, a high power battery may cut costs and allow the recovery of energy during retarding. Alkaline batteries, such as nickel-metal hydride batteries, have displayed long cycle life combined with high power ability. In order to improve the power/energy ratio of Ni/MH to even higher values, the cells may be arranged in a bipolar stack design.

  14. The renaissance of hydrides as energy materials

    Science.gov (United States)

    Mohtadi, Rana; Orimo, Shin-Ichi

    2017-02-01

    Materials based on hydrides have been the linchpin in the development of several practical energy storage technologies, of which the most prominent example is nickel-metal hydride batteries. Motivated by the need to meet the future's energy demand, the past decade has witnessed substantial advancements in the research and development of hydrides as media for hydrogen energy storage. More recently, new and rapidly evolving discoveries have positioned hydrides as highly promising materials for future electrochemical energy storage, such as electrolytes for mono- and divalent batteries, and anodes for lithium-ion batteries. In addition, the potential of hydrides in efficient power transmission has been recently revealed. In this Review, we highlight key advances and illustrate how the versatility of hydrides has not only yielded a meaningful past, but also ensures a very bright future.

  15. Rechargeable metal hydrides for spacecraft application

    Science.gov (United States)

    Perry, J. L.

    1988-01-01

    Storing hydrogen on board the Space Station presents both safety and logistics problems. Conventional storage using pressurized bottles requires large masses, pressures, and volumes to handle the hydrogen to be used in experiments in the U.S. Laboratory Module and residual hydrogen generated by the ECLSS. Rechargeable metal hydrides may be competitive with conventional storage techniques. The basic theory of hydride behavior is presented and the engineering properties of LaNi5 are discussed to gain a clear understanding of the potential of metal hydrides for handling spacecraft hydrogen resources. Applications to Space Station and the safety of metal hydrides are presented and compared to conventional hydride storage. This comparison indicates that metal hydrides may be safer and require lower pressures, less volume, and less mass to store an equivalent mass of hydrogen.

  16. Use of reversible hydrides for hydrogen storage

    Science.gov (United States)

    Darriet, B.; Pezat, M.; Hagenmuller, P.

    1980-01-01

    The addition of metals or alloys whose hydrides have a high dissociation pressure allows a considerable increase in the hydrogenation rate of magnesium. The influence of temperature and hydrogen pressure on the reaction rate were studied. Results concerning the hydriding of magnesium rich alloys such as Mg2Ca, La2Mg17 and CeMg12 are presented. The hydriding mechanism of La2Mg17 and CeMg12 alloys is given.

  17. Inhibited solid propellant composition containing beryllium hydride

    Science.gov (United States)

    Thompson, W. W. (Inventor)

    1978-01-01

    An object of this invention is to provide a composition of beryllium hydride and carboxy-terminated polybutadiene which is stable. Another object of this invention is to provide a method for inhibiting the reactivity of beryllium hydride toward carboxy-terminated polybutadiene. It was found that a small amount of lecithin inhibits the reaction of beryllium hydride with the acid groups in carboxy terminated polybutadiene.

  18. Anodematerials for Metal Hydride Batteries

    DEFF Research Database (Denmark)

    Jensen, Jens Oluf

    1997-01-01

    by annealing at 700°C for 12 hours. The alloys appeared to be nanocrystalline with an average crystallite size around 10 nm before annealing. Special steel containers was developed for the annealing of the metal powders in inert atmosphere. The use of various annealing temperatures was investigated......This report describes the work on development of hydride forming alloys for use as electrode materials in metal hydride batteries. The work has primarily been concentrated on calcium based alloys derived from the compound CaNi5. This compound has a higher capacity compared with alloys used in today...... was developed. The parameters milling time, milling intensity, number of balls and form of the alloying metals were investigated. Based on this a final alloying technique for the subsequent preparation of electrode materials was established. The technique comprises milling for 4 hours twice possibly followed...

  19. Hydride-induced embrittlement of Zircaloy-4 cladding under plane-strain tension

    Science.gov (United States)

    Daum, Robert S.

    The mechanical response of high-burnup Zircaloy-4 fuel cladding subjected to a postulated reactivity initiated accident (referred to as a rod ejection accident (REA) in a pressurized water reactor) can be affected by hydrogen embrittlement. This study addresses the hydrogen embrittlement of non-irradiated, stress-relieved Zircaloy-4 cladding under conditions (state of stress and temperature) relevant to those of a reactivity initiated accident. Specifically, the study has investigated the effects of a concentrated density of hydride particles (in the form of a rim at the outer surface of the cladding tube introduced by gas-charging) on the cladding ductility when tested under a near-plane-strain tension at 25, 300, and 375°C. The influence of the hydride-rim thickness and local hydrogen contents on cladding ductility is studied as a function of temperature and correlated with the hydride microstructure. Using synchrotron x-ray diffraction, this study has found that the delta-hydride phase (i.e., ZrHx, where x ≈ 1.66) is the predominant hydride phase to precipitate in stress-relieved Zircaloy-4 cladding for hydrogen contents up to 1250 wt ppm. At hydrogen contents above 2700 wt ppm, although delta-hydride is still the majority phase, both gamma- and epsilon-hydride phases are also observed. The volume fraction of hydrides was estimated as a function of hydrogen content, using the diffracted x-ray intensities. These estimated values agree well with calculated values assuming hydride precipitates are delta-hydride. Under near-plane-strain hoop tension, the ductility and fracture of the cladding is highly dependent on both the hydride-rim thickness and the testing temperature. At room temperature, due to a high density of hydride particles within the rim, a Mode I crack is injected shortly after yielding. This limits cladding ductility, such that it decreases with increasing thickness of the hydride rim. Cladding containing hydride rims with a thickness of ≥100

  20. Predicting formation enthalpies of metal hydrides

    DEFF Research Database (Denmark)

    Andreasen, A.

    2004-01-01

    In order for the hydrogen based society viz. a society in which hydrogen is the primary energy carrier to become realizable an efficient way of storing hydrogen is required. For this purpose metal hydrides are serious candidates. Metal hydrides are formedby chemical reaction between hydrogen...... and metal and for the stable hydrides this is associated with release of heat (#DELTA#H_f ). The more thermodynamically stable the hydride, the larger DHf, and the higher temperature is needed in order to desorphydrogen (reverse reaction) and vice versa. For practical application the temperature needed...

  1. Research on Metal Hydride Compressor System

    Institute of Scientific and Technical Information of China (English)

    1999-01-01

    Ti-Zr series Laves phase hydrogen storage alloys with good hydrogen storage properties, such as large hydrogen capacity, rapid hydriding and dehydriding rate, high compression ratio, gentle plateau, small hysteresis, easily being activated and long cyclic stability etc. for metal hydride compressor have been investigated. In addition, a hydride compressor with special characteristics, namely, advanced filling method, good heat transfer effect and reasonable structural design etc. has also been constructed. A hydride compressor cryogenic system has been assembled coupling the compressor with a J-T micro-throttling refrigeration device and its cooling capacity can reach 0.4 W at 25 K.

  2. Thermodynamic Hydricity of Transition Metal Hydrides.

    Science.gov (United States)

    Wiedner, Eric S; Chambers, Matthew B; Pitman, Catherine L; Bullock, R Morris; Miller, Alexander J M; Appel, Aaron M

    2016-08-10

    Transition metal hydrides play a critical role in stoichiometric and catalytic transformations. Knowledge of free energies for cleaving metal hydride bonds enables the prediction of chemical reactivity, such as for the bond-forming and bond-breaking events that occur in a catalytic reaction. Thermodynamic hydricity is the free energy required to cleave an M-H bond to generate a hydride ion (H(-)). Three primary methods have been developed for hydricity determination: the hydride transfer method establishes hydride transfer equilibrium with a hydride donor/acceptor pair of known hydricity, the H2 heterolysis method involves measuring the equilibrium of heterolytic cleavage of H2 in the presence of a base, and the potential-pKa method considers stepwise transfer of a proton and two electrons to give a net hydride transfer. Using these methods, over 100 thermodynamic hydricity values for transition metal hydrides have been determined in acetonitrile or water. In acetonitrile, the hydricity of metal hydrides spans a range of more than 50 kcal/mol. Methods for using hydricity values to predict chemical reactivity are also discussed, including organic transformations, the reduction of CO2, and the production and oxidation of hydrogen.

  3. Coinage Metal Hydrides: Synthesis, Characterization, and Reactivity.

    Science.gov (United States)

    Jordan, Abraham J; Lalic, Gojko; Sadighi, Joseph P

    2016-08-10

    Hydride complexes of copper, silver, and gold encompass a broad array of structures, and their distinctive reactivity has enabled dramatic recent advances in synthesis and catalysis. This Review summarizes the synthesis, characterization, and key stoichiometric reactions of isolable or observable coinage metal hydrides. It discusses catalytic processes in which coinage metal hydrides are known or probable intermediates, and presents mechanistic studies of selected catalytic reactions. The purpose of this Review is to convey how developments in coinage metal hydride chemistry have led to new organic transformations, and how developments in catalysis have in turn inspired the synthesis of reactive new complexes.

  4. Crystal structure of gold hydride

    Energy Technology Data Exchange (ETDEWEB)

    Degtyareva, Valentina F., E-mail: degtyar@issp.ac.ru

    2015-10-05

    Highlights: • Volume expansion of metal hydrides is due to the increase in the s-band filling. • AuH structure is similar to that of Hg having one more s electron compared to Au. • Structure stability of both Hg and AuH is governed by the Hume-Rothery rule. - Abstract: A number of transition metal hydrides with close-packed metal sublattices of fcc or hcp structures with hydrogen in octahedral interstitial positions were obtained by the high-pressure-hydrogen technique described by Ponyatovskii et al. (1982). In this paper we consider volume increase of metals by hydrogenation and possible crystal structure of gold hydride in relation with the structure of mercury, the nearest neighbor of Au in the Periodic table. Suggested structure of AuH has a basic tetragonal body-centered cell that is very similar to the mercury structure Hg-t I 2. The reasons of stability for this structure are discussed within the model of Fermi sphere–Brillouin zone interactions.

  5. PEM Fuel Cell System Replacement for BA-559O Battery

    Science.gov (United States)

    2007-11-02

    H Power Corp. developed a fuel cell system to demonstrate that fuel cells can be effectively designed for missions requiring a high degree of...equivalent in size to that of a BA-5590 battery. The system comprised an air-cooled fuel cell stack, a metal-hydride-based fuel storage section, and a

  6. Understanding of hydriding mechanisms of zircaloy-4 alloy during corrosion in PWR simulated conditions and influence of zirconium hydrides on zircaloy-4 corrosion

    Energy Technology Data Exchange (ETDEWEB)

    Bisor-Melloul, C.; Tupin, M.; Bossis, P. [DEN/DANS/DMN/SEMI, CEA/Saclay, 91191 Gif-sur-Yvette (France); Chene, J. [DEN/DANS/DPC/SCCME, CEA/Saclay, 91191 Gif-sur-Yvette (France); Bechade, J.L. [DEN/DANS/DMN/SRMA, CEA/Saclay, 91191 Gif-sur-Yvette (France); Motta, A. [Mechanical and Nuclear Engineering Department, Penn State University, 227 Reber Building, University Park, PA 16802 (United States)

    2010-07-01

    Zirconium alloys are widely used as fuel claddings in Power Water Reactors. As they represent the first containment barrier to fission products, their mechanical integrity is essential for nuclear safety. During their corrosion in primary water, some of the hydrogen involved in the oxidation reaction with water ingresses into the alloy through the oxide layer. In the metallic matrix, once the solid solution limit is reached at the irradiation temperature, hydrogen precipitates as Zr hydrides mainly located just under the metal/oxide interface due to the thermal gradient across the cladding. As these hydrides may contribute to a larger oxide thickness and to a more fragile behaviour of the cladding, the minimization of hydrogen pick-up is required. Accordingly, since the Zircaloy-4 (Zr-1.3Sn-0.2Fe-0.1Cr) alloy is known to be sensitive to this phenomenon, the understanding of its hydriding mechanism and of the influence of zirconium hydrides on its corrosion behaviour is needed. Regarding the study of the hydriding mechanism, isotopic exchanges were carried out in D{sub 2}O environment at 360 deg. C and led to the localization, in the oxide scales, of the limiting step for the hydrogen diffusion. To estimate an apparent diffusion coefficient of hydrogen in the oxide formed on Zircaloy-4, we firstly based on SIMS profiles and penetration depth of deuterium in the dense part of the oxide film. Secondly, ERDA estimation of the hydrogen content in zirconia and fusion measurements of the hydrogen content in both metal and oxide were used to estimate a hydrogen flux absorbed by the alloy and hence to deduce an apparent diffusion coefficient. Finally, these two methods lead to quite similar values (between 2.10{sup -14} cm{sup 2}/s and 6.10{sup -14} cm{sup 2}/s) which are in accordance with bibliography. Concerning the impact of hydrides on the corrosion of Zircaloy-4, several pre-hydrided and reference samples were corroded simultaneously in primary water at 360 deg. C

  7. Metal Hydrides for Rechargeable Batteries

    Energy Technology Data Exchange (ETDEWEB)

    Valoeen, Lars Ole

    2000-03-01

    Rechargeable battery systems are paramount in the power supply of modern electronic and electromechanical equipment. For the time being, the most promising secondary battery systems for the future are the lithium-ion and the nickel metal hydride (NiMH) batteries. In this thesis, metal hydrides and their properties are described with the aim of characterizing and improving those. The thesis has a special focus on the AB{sub 5} type hydrogen storage alloys, where A is a rare earth metal like lanthanum, or more commonly misch metal, which is a mixture of rare earth metals, mainly lanthanum, cerium, neodymium and praseodymium. B is a transition metal, mainly nickel, commonly with additions of aluminium, cobalt, and manganese. The misch metal composition was found to be very important for the geometry of the unit cell in AB{sub 5} type alloys, and consequently the equilibrium pressure of hydrogen in these types of alloys. The A site substitution of lanthanum by misch metal did not decrease the surface catalytic properties of AB{sub 5} type alloys. B-site substitution of nickel with other transition elements, however, substantially reduced the catalytic activity of the alloy. If the internal pressure within the electrochemical test cell was increased using inert argon gas, a considerable increase in the high rate charge/discharge performance of LaNi{sub 5} was observed. An increased internal pressure would enable the utilisation of alloys with a high hydrogen equivalent pressure in batteries. Such alloys often have favourable kinetics and high hydrogen diffusion rates and thus have a potential for improving the high current discharge rates in metal hydride batteries. The kinetic properties of metal hydride electrodes were found to improve throughout their lifetime. The activation properties were found highly dependent on the charge/discharge current. Fewer charge/discharge cycles were needed to activate the electrodes if a small current was used instead of a higher

  8. Metal Hydrides for Rechargeable Batteries

    Energy Technology Data Exchange (ETDEWEB)

    Valoeen, Lars Ole

    2000-03-01

    Rechargeable battery systems are paramount in the power supply of modern electronic and electromechanical equipment. For the time being, the most promising secondary battery systems for the future are the lithium-ion and the nickel metal hydride (NiMH) batteries. In this thesis, metal hydrides and their properties are described with the aim of characterizing and improving those. The thesis has a special focus on the AB{sub 5} type hydrogen storage alloys, where A is a rare earth metal like lanthanum, or more commonly misch metal, which is a mixture of rare earth metals, mainly lanthanum, cerium, neodymium and praseodymium. B is a transition metal, mainly nickel, commonly with additions of aluminium, cobalt, and manganese. The misch metal composition was found to be very important for the geometry of the unit cell in AB{sub 5} type alloys, and consequently the equilibrium pressure of hydrogen in these types of alloys. The A site substitution of lanthanum by misch metal did not decrease the surface catalytic properties of AB{sub 5} type alloys. B-site substitution of nickel with other transition elements, however, substantially reduced the catalytic activity of the alloy. If the internal pressure within the electrochemical test cell was increased using inert argon gas, a considerable increase in the high rate charge/discharge performance of LaNi{sub 5} was observed. An increased internal pressure would enable the utilisation of alloys with a high hydrogen equivalent pressure in batteries. Such alloys often have favourable kinetics and high hydrogen diffusion rates and thus have a potential for improving the high current discharge rates in metal hydride batteries. The kinetic properties of metal hydride electrodes were found to improve throughout their lifetime. The activation properties were found highly dependent on the charge/discharge current. Fewer charge/discharge cycles were needed to activate the electrodes if a small current was used instead of a higher

  9. Impedance and self-discharge mechanism studies of nickel metal hydride batteries for energy storage applications

    Science.gov (United States)

    Zhu, Wenhua; Zhu, Ying; Tatarchuk, Bruce

    2013-04-01

    Nickel metal hydride battery packs have been found wide applications in the HEVs (hybrid electric vehicles) through the on-board rapid energy conservation and efficient storage to decrease the fossil fuel consumption rate and reduce CO2 emissions as well as other harmful exhaust gases. In comparison to the conventional Ni-Cd battery, the Ni-MH battery exhibits a relatively higher self-discharge rate. In general, there are quite a few factors that speed up the self-discharge of the electrodes in the sealed nickel metal hydride batteries. This disadvantage eventually reduces the overall efficiency of the energy conversion and storage system. In this work, ac impedance data were collected from the nickel metal hydride batteries. The self-discharge mechanism and battery capacity degradation were analyzed and discussed for further performance improvement.

  10. Ionic conduction of lithium hydride single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Pilipenko, G.I.; Oparin, D.V.; Zhuravlev, N.A.; Gavrilov, F.F.

    1987-09-01

    Using the electrical-conductivity- and NMR-measurement- methods, the ionic-conduction mechanism is established in stoichiometric lithium hydride single crystals. The activation energies of migration of anion- and cation-vacancies and the formation of Schottky-pair defects are determined. They assume that the mechanisms of self-diffusion and conductivity are different in lithium hydride.

  11. Hydrogen transmission/storage with a metal hydride/organic slurry

    Energy Technology Data Exchange (ETDEWEB)

    Breault, R.W.; Rolfe, J.; McClaine, A. [Thermo Power Corp., Waltham, MA (United States)

    1998-08-01

    Thermo Power Corporation has developed a new approach for the production, transmission, and storage of hydrogen. In this approach, a chemical hydride slurry is used as the hydrogen carrier and storage media. The slurry protects the hydride from unanticipated contact with moisture in the air and makes the hydride pumpable. At the point of storage and use, a chemical hydride/water reaction is used to produce high-purity hydrogen. An essential feature of this approach is the recovery and recycle of the spent hydride at centralized processing plants, resulting in an overall low cost for hydrogen. This approach has two clear benefits: it greatly improves energy transmission and storage characteristics of hydrogen as a fuel, and it produces the hydrogen carrier efficiently and economically from a low cost carbon source. The preliminary economic analysis of the process indicates that hydrogen can be produced for $3.85 per million Btu based on a carbon cost of $1.42 per million Btu and a plant sized to serve a million cars per day. This compares to current costs of approximately $9.00 per million Btu to produce hydrogen from $3.00 per million Btu natural gas, and $25 per million Btu to produce hydrogen by electrolysis from $0.05 per Kwh electricity. The present standard for production of hydrogen from renewable energy is photovoltaic-electrolysis at $100 to $150 per million Btu.

  12. Cooldown-induced hydride reorientation of hydrogen-charged zirconium alloy cladding tubes

    Science.gov (United States)

    Won, Ju-Jin; Min, Su-Jeong; Kim, Kyu-Tae

    2015-01-01

    Radial hydride precipitation behaviors of Zr-Nb alloy cladding tubes were investigated using 250 and 500 ppm hydrogen-charged Zr-Nb alloy cladding tubes, cooldown processes from 400 to 300, 200°C and room temperature with five kinds of cooling rates of 0.3, 2.0, 4.0, 7.0 15.0 °C/min under a tensile hoop stress of 150 MPa, which can simulate various cooldown processes during an interim dry storage of PWR nuclear fuel. The slower cooling rate and the lower terminal cooldown temperature generated the more hydrides precipitated during the cooldown as well as the larger fraction and the longer length of radial hydrides. These phenomena can be explained by the difference in the terminal solid solubility of hydrogen for dissolution and precipitation occurring during the heatup and cooldown processes and the cooling rate-dependent hydride nucleation and growth rates. In addition, a drastic decrease in ultimate tensile strength and plastic strain of the tensile tested specimens experiencing the cool-down processes appear to be correlated with the amount of the radial hydrides precipitated during the cooldown.

  13. Submillimeter Spectroscopy of Hydride Molecules

    Science.gov (United States)

    Phillips, T. G.

    1998-05-01

    Simple hydride molecules are of great importance in astrophysics and astrochemistry. Physically they dominate the cooling of dense, warm phases of the ISM, such as the cores and disks of YSOs. Chemically they are often stable end points of chemical reactions, or may represent important intermediate stages of the reaction chains, which can be used to test the validity of the process. Through the efforts of astronomers, physicists, chemists, and laboratory spectroscopists we have an approximate knowledge of the abundance of some of the important species, but a great deal of new effort will be required to achieve the comprehensive and accurate data set needed to determine the energy balance and firmly establish the chemical pathways. Due to the low moment of inertia, the hydrides rotate rapidly and so have their fundamental spectral lines in the submillimeter. Depending on the cloud geometry and temperature profile they may be observed in emission or absorption. Species such as HCl, HF, OH, CH, CH(+) , NH_2, NH_3, H_2O, H_2S, H_3O(+) and even H_3(+) have been detected, but this is just a fraction of the available set. Also, most deduced abundances are not nearly sufficiently well known to draw definitive conclusions about the chemical processes. For example, the most important coolant for many regions, H_2O, has a possible range of deduced abundance of a factor of 1000. The very low submillimeter opacity at the South Pole site will be a significant factor in providing a new capabilty for interstellar hydride spectroscopy. The new species and lines made available in this way will be discussed.

  14. Oxidation of Zircaloy Fuel Cladding in Water-Cooled Nuclear Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Macdonald, Digby; Urquidi-Macdonald, Mirna; Chen, Yingzi; Ai, Jiahe; Park, Pilyeon; Kim, Han-Sang

    2006-12-12

    Our work involved the continued development of the theory of passivity and passivity breakdown, in the form of the Point Defect Model, with emphasis on zirconium and zirconium alloys in reactor coolant environments, the measurement of critically-important parameters, and the development of a code that can be used by reactor operators to actively manage the accumulation of corrosion damage to the fuel cladding and other components in the heat transport circuits in both BWRs and PWRs. In addition, the modified boiling crevice model has been further developed to describe the accumulation of solutes in porous deposits (CRUD) on fuel under boiling (BWRs) and nucleate boiling (PWRs) conditions, in order to accurately describe the environment that is contact with the Zircaloy cladding. In the current report, we have derived expressions for the total steady-state current density and the partial anodic and cathodic current densities to establish a deterministic basis for describing Zircaloy oxidation. The models are “deterministic” because the relevant natural laws are satisfied explicitly, most importantly the conversation of mass and charge and the equivalence of mass and charge (Faraday’s law). Cathodic reactions (oxygen reduction and hydrogen evolution) are also included in the models, because there is evidence that they control the rate of the overall passive film formation process. Under open circuit conditions, the cathodic reactions, which must occur at the same rate as the zirconium oxidation reaction, are instrumental in determining the corrosion potential and hence the thickness of the barrier and outer layers of the passive film. Controlled hydrodynamic methods have been used to measure important parameters in the modified Point Defect Model (PDM), which is now being used to describe the growth and breakdown of the passive film on zirconium and on Zircaloy fuel sheathing in BWRs and PWRs coolant environments. The modified PDMs recognize the existence of a

  15. Using first principles calculations to identify new destabilized metal hydride reactions for reversible hydrogen storage.

    Science.gov (United States)

    Alapati, Sudhakar V; Karl Johnson, J; Sholl, David S

    2007-03-28

    Hydrides of period 2 and 3 elements are promising candidates for hydrogen storage, but typically have heats of reaction that are too high to be of use for fuel cell vehicles. Recent experimental work has focused on destabilizing metal hydrides through mixing metal hydrides with other compounds. A very large number of possible destabilized metal hydride reaction schemes exist, but the thermodynamic data required to assess the enthalpies of these reactions are not available in many cases. We have used density functional theory calculations to predict the reaction enthalpies for more than 300 destabilization reactions that have not previously been reported. The large majority of these reactions are predicted not to be useful for reversible hydrogen storage, having calculated reaction enthalpies that are either too high or too low, and hence these reactions need not be investigated experimentally. Our calculations also identify multiple promising reactions that have large enough hydrogen storage capacities to be useful in practical applications and have reaction thermodynamics that appear to be suitable for use in fuel cell vehicles and are therefore promising candidates for experimental work.

  16. Hydrogen-storing hydride complexes

    Science.gov (United States)

    Srinivasan, Sesha S [Tampa, FL; Niemann, Michael U [Venice, FL; Goswami, D Yogi [Tampa, FL; Stefanakos, Elias K [Tampa, FL

    2012-04-10

    A ternary hydrogen storage system having a constant stoichiometric molar ratio of LiNH.sub.2:MgH.sub.2:LiBH.sub.4 of 2:1:1. It was found that the incorporation of MgH.sub.2 particles of approximately 10 nm to 20 nm exhibit a lower initial hydrogen release temperature of 150.degree. C. Furthermore, it is observed that the particle size of LiBNH quaternary hydride has a significant effect on the hydrogen sorption concentration with an optimum size of 28 nm. The as-synthesized hydrides exhibit two main hydrogen release temperatures, one around 160.degree. C. and the other around 300.degree. C., with the main hydrogen release temperature reduced from 310.degree. C. to 270.degree. C., while hydrogen is first reversibly released at temperatures as low as 150.degree. C. with a total hydrogen capacity of 6 wt. % to 8 wt. %. Detailed thermal, capacity, structural and microstructural properties have been demonstrated and correlated with the activation energies of these materials.

  17. White Paper Summary of 2nd ASTM International Workshop on Hydrides in Zirconium Alloy Cladding

    Energy Technology Data Exchange (ETDEWEB)

    Sindelar, R. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Louthan, M. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); PNNL, B. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2015-05-29

    This white paper recommends that ASTM International develop standards to address the potential impact of hydrides on the long term performance of irradiated zirconium alloys. The need for such standards was apparent during the 2nd ASTM International Workshop on Hydrides in Zirconium Alloy Cladding and Assembly Components, sponsored by ASTM International Committee C26.13 and held on June 10-12, 2014, in Jackson, Wyoming. The potentially adverse impacts of hydrogen and hydrides on the long term performance of irradiated zirconium-alloy cladding on used fuel were shown to depend on multiple factors such as alloy chemistry and processing, irradiation and post irradiation history, residual and applied stresses and stress states, and the service environment. These factors determine the hydrogen content and hydride morphology in the alloy, which, in turn, influence the response of the alloy to the thermo-mechanical conditions imposed (and anticipated) during storage, transport and disposal of used nuclear fuel. Workshop presentations and discussions showed that although hydrogen/hydride induced degradation of zirconium alloys may be of concern, the potential for occurrence and the extent of anticipated degradation vary throughout the nuclear industry because of the variations in hydrogen content, hydride morphology, alloy chemistry and irradiation conditions. The tools and techniques used to characterize hydrides and hydride morphologies and their impacts on material performance also vary. Such variations make site-to-site comparisons of test results and observations difficult. There is no consensus that a single material or system characteristic (e.g., reactor type, burnup, hydrogen content, end-of life stress, alloy type, drying temperature, etc.) is an effective predictor of material response during long term storage or of performance after long term storage. Multi-variable correlations made for one alloy may not represent the behavior of another alloy exposed to

  18. Hydride heat pump with heat regenerator

    Science.gov (United States)

    Jones, Jack A. (Inventor)

    1991-01-01

    A regenerative hydride heat pump process and system is provided which can regenerate a high percentage of the sensible heat of the system. A series of at least four canisters containing a lower temperature performing hydride and a series of at least four canisters containing a higher temperature performing hydride is provided. Each canister contains a heat conductive passageway through which a heat transfer fluid is circulated so that sensible heat is regenerated. The process and system are useful for air conditioning rooms, providing room heat in the winter or for hot water heating throughout the year, and, in general, for pumping heat from a lower temperature to a higher temperature.

  19. Fuel lattice design using heuristics and new strategies

    Energy Technology Data Exchange (ETDEWEB)

    Ortiz S, J. J.; Castillo M, J. A.; Torres V, M.; Perusquia del Cueto, R. [ININ, Carretera Mexico-Toluca s/n, Ocoyoacac 52750, Estado de Mexico (Mexico); Pelta, D. A. [ETS Ingenieria Informatica y Telecomunicaciones, Universidad de Granada, Daniel Saucedo Aranda s/n, 18071 Granada (Spain); Campos S, Y., E-mail: juanjose.ortiz@inin.gob.m [IPN, Escuela Superior de Fisica y Matematicas, Unidad Profesional Adolfo Lopez Mateos, Edif. 9, 07738 Mexico D. F. (Mexico)

    2010-10-15

    This work show some results of the fuel lattice design in BWRs when some allocation pin rod rules are not taking into account. Heuristics techniques like Path Re linking and Greedy to design fuel lattices were used. The scope of this work is to search about how do classical rules in design fuel lattices affect the heuristics techniques results and the fuel lattice quality. The fuel lattices quality is measured by Power Peaking Factor and Infinite Multiplication Factor at the beginning of the fuel lattice life. CASMO-4 code to calculate these parameters was used. The analyzed rules are the following: pin rods with lowest uranium enrichment are only allocated in the fuel lattice corner, and pin rods with gadolinium cannot allocated in the fuel lattice edge. Fuel lattices with and without gadolinium in the main diagonal were studied. Some fuel lattices were simulated in an equilibrium cycle fuel reload, using Simulate-3 to verify their performance. So, the effective multiplication factor and thermal limits can be verified. The obtained results show a good performance in some fuel lattices designed, even thought, the knowing rules were not implemented. A fuel lattice performance and fuel lattice design characteristics analysis was made. To the realized tests, a dell workstation was used, under Li nux platform. (Author)

  20. Verification and Validation Strategy for Implementation of Hybrid Potts-Phase Field Hydride Modeling Capability in MBM

    Energy Technology Data Exchange (ETDEWEB)

    Jason D. Hales; Veena Tikare

    2014-04-01

    The Used Fuel Disposition (UFD) program has initiated a project to develop a hydride formation modeling tool using a hybrid Potts­phase field approach. The Potts model is incorporated in the SPPARKS code from Sandia National Laboratories. The phase field model is provided through MARMOT from Idaho National Laboratory.

  1. Microstructural studies and crystallographic orientation of different zones and δ-hydrides in resistance welded Zircaloy-4 sheets

    Science.gov (United States)

    Kiran Kumar, N. A. P.; Szpunar, Jerzy. A.; He, Zhang

    2011-07-01

    The cold worked stress relieved (CWSR) Zircaloy-4 sheet used as endplate in nuclear fuel bundle is resistance welded with an endcap in argon environment. Later the welded sample is hydrided in a gaseous atmosphere at 400 °C. Optical microscopy (OM), electron backscatter diffraction (EBSD) and X-ray diffraction (XRD) were used to examine the morphology and crystal orientation of the hydrides. The microstructural changes in different areas of the weld zone, heat affected zone (HAZ) and the as-received zone were analyzed using EBSD technique. Optical examination showed complete random morphological orientation of hydrides and predominantly basket-weave structure in the weld zone, with very few colonies of parallel plate structures. Variant selection for α-phase formation inside prior β-grains was identified at the weld centre. As we move from the weld centre to the as-received zone, the variant selection is found to be less probable. The δ-hydride platelets at the weld zone were always found to be growing perpendicular to the α-colonies having angular difference of 60-63° and follow (0 0 0 1) α-Zr//{1 1 1}δ-ZrH 1.5 orientation relationship with the zirconium matrix. Proposed description of complex distribution of hydrides and alloy microstructure at the weld and heat affected zone will contribute to a better understanding of mechanisms of failure of fuel cladding in various types of nuclear reactors.

  2. Spent fuel characteristics & disposal considerations

    Energy Technology Data Exchange (ETDEWEB)

    Oversby, V.M.

    1996-06-01

    The fuel used in commercial nuclear power reactors is uranium, generally in the form of an oxide. The gas-cooled reactors developed in England use metallic uranium enclosed in a thin layer of Magnox. Since this fuel must be processed into a more stable form before disposal, we will not consider the characteristics of the Magnox spent fuel. The vast majority of the remaining power reactors in the world use uranium dioxide pellets in Zircaloy cladding as the fuel material. Reactors that are fueled with uranium dioxide generally use water as the moderator. If ordinary water is used, the reactors are called Light Water Reactors (LWR), while if water enriched in the deuterium isotope of hydrogen is used, the reactors are called Heavy Water reactors. The LWRs can be either pressurized reactors (PWR) or boiling water reactors (BWR). Both of these reactor types use uranium that has been enriched in the 235 isotope to about 3.5 to 4% total abundance. There may be minor differences in the details of the spent fuel characteristics for PWRs and BWRs, but for simplicity we will not consider these second-order effects. The Canadian designed reactor (CANDU) that is moderated by heavy water uses natural uranium without enrichment of the 235 isotope as the fuel. These reactors run at higher linear power density than LWRs and produce spent fuel with lower total burn-up than LWRs. Where these difference are important with respect to spent fuel management, we will discuss them. Otherwise, we will concentrate on spent fuel from LWRs.

  3. Method of forming metal hydride films

    Science.gov (United States)

    Steinberg, R.; Alger, D. L.; Cooper, D. W. (Inventor)

    1977-01-01

    The substrate to be coated (which may be of metal, glass or the like) is cleaned, both chemically and by off-sputtering in a vacuum chamber. In an ultra-high vacuum system, vapor deposition by a sublimator or vaporizer coats a cooled shroud disposed around the substrate with a thin film of hydride forming metal which getters any contaminant gas molecules. A shutter is then opened to allow hydride forming metal to be deposited as a film or coating on the substrate. After the hydride forming metal coating is formed, deuterium or other hydrogen isotopes are bled into the vacuum system and diffused into the metal film or coating to form a hydride of metal film. Higher substrate temperatures and pressures may be used if various parameters are appropriately adjusted.

  4. Sealed aerospace metal-hydride batteries

    Science.gov (United States)

    Coates, Dwaine

    1992-01-01

    Nickel metal hydride and silver metal hydride batteries are being developed for aerospace applications. There is a growing market for smaller, lower cost satellites which require higher energy density power sources than aerospace nickel-cadmium at a lower cost than space nickel-hydrogen. These include small LEO satellites, tactical military satellites and satellite constellation programs such as Iridium and Brilliant Pebbles. Small satellites typically do not have the spacecraft volume or the budget required for nickel-hydrogen batteries. NiCd's do not have adequate energy density as well as other problems such as overcharge capability and memory effort. Metal hydride batteries provide the ideal solution for these applications. Metal hydride batteries offer a number of advantages over other aerospace battery systems.

  5. Probing the cerium/cerium hydride interface using nanoindentation

    Energy Technology Data Exchange (ETDEWEB)

    Brierley, Martin, E-mail: martin.brierley@awe.co.uk [Atomic Weapons Establishment, Aldermaston, Berkshire RG7 4PR (United Kingdom); University of Manchester, Manchester M13 9PL (United Kingdom); Knowles, John, E-mail: john.knowles@awe.co.uk [Atomic Weapons Establishment, Aldermaston, Berkshire RG7 4PR (United Kingdom)

    2015-10-05

    Highlights: • A disparity exists between the minimum energy and actual shape of a cerium hydride. • Cerium hydride is found to be harder than cerium metal by a ratio of 1.7:1. • A zone of material under compressive stress was identified surrounding the hydride. • No distribution of hardness was apparent within the hydride. - Abstract: A cerium hydride site was sectioned and the mechanical properties of the exposed phases (cerium metal, cerium hydride, oxidised cerium hydride) were measured using nanoindentation. An interfacial region under compressive stress was observed in the cerium metal surrounding a surface hydride that formed as a consequence of strain energy generated by the volume expansion associated with precipitation of the hydride phase.

  6. Destabilization of magnesium hydride through interface engineering

    OpenAIRE

    Mooij, L.P.A.

    2013-01-01

    The aim of this thesis is to study the thermodynamics of hydrogenation of nanoconfined magnesium within a thin film multilayer model system. Magnesium hydride is a potential material for hydrogen storage, which is a key component in a renewable energy system based on hydrogen. In bulk form, magnesium hydride is very stable, which means that hydrogen is released only at elevated temperature. Furthermore, the kinetics of hydrogen sorption is slow, which further hampers the practical use of this...

  7. The Effect of Hydrogen and Hydrides on the Integrity of Zirconium Alloy Components Delayed Hydride Cracking

    CERN Document Server

    Puls, Manfred P

    2012-01-01

    By drawing together the current theoretical and experimental understanding of the phenomena of delayed hydride cracking (DHC) in zirconium alloys, The Effect of Hydrogen and Hydrides on the Integrity of Zirconium Alloy Components: Delayed Hydride Cracking provides a detailed explanation focusing on the properties of hydrogen and hydrides in these alloys. Whilst the focus lies on zirconium alloys, the combination of both the empirical and mechanistic approaches creates a solid understanding that can also be applied to other hydride forming metals.   This up-to-date reference focuses on documented research surrounding DHC, including current methodologies for design and assessment of the results of periodic in-service inspections of pressure tubes in nuclear reactors. Emphasis is placed on showing that our understanding of DHC is supported by progress across a broad range of fields. These include hysteresis associated with first-order phase transformations; phase relationships in coherent crystalline metallic...

  8. Preliminary development of flaw evaluation procedures for delayed hydride cracking initiation under hydride non-ratcheting conditions

    Energy Technology Data Exchange (ETDEWEB)

    Xu, S.; Cui, J.; Kawa, D.; Shek, G.K.; Scarth, D.A. [Kinectrics Inc., Toronto, Ontario (Canada)

    2006-07-01

    The flaw evaluation procedure for Delayed Hydride Cracking (DHC) initiation currently provided in the CSA Standard N285.8 was developed for hydride ratcheting conditions, in which flaw-tip hydrides do not completely dissolve at peak temperature. Test results have shown that hydrided regions formed under non-ratcheting conditions, in which flaw-tip hydrides completely dissolve at peak temperature, have significantly higher resistance to cracking than those formed under ratcheting conditions. This paper presents some preliminary work on the development of a procedure for the evaluation of DHC initiation for flaws under hydride non-ratcheting conditions. (author)

  9. Silicon hydride nanocrystals as catalysts for proton production in water-organic liquid mixtures

    KAUST Repository

    Chaieb, Sahraoui

    2014-08-05

    Embodiments of the present methods may be used to produce energy in the form of an electrical current from water without the use of fossil fuel. Silicon hydride is very easy to make. This procedure in conjunction with an enzyme to produce hydrogen gas for fuel cells and other small devices. In fuel cells the production of protons may be bypassed, and an oxidant such as permanganate or oxygen from air may be used to drive the fuel cells. In such an embodiment, an intermediate reaction may not be needed to produce protons. In one embodiment, membrane-less laminar flow fuel cells with an external grid for oxygen supply from the air may be used.

  10. Thin-film metal hydrides.

    Science.gov (United States)

    Remhof, Arndt; Borgschulte, Andreas

    2008-12-01

    The goal of the medieval alchemist, the chemical transformation of common metals into nobel metals, will forever be a dream. However, key characteristics of metals, such as their electronic band structure and, consequently, their electric, magnetic and optical properties, can be tailored by controlled hydrogen doping. Due to their morphology and well-defined geometry with flat, coplanar surfaces/interfaces, novel phenomena may be observed in thin films. Prominent examples are the eye-catching hydrogen switchable mirror effect, the visualization of solid-state diffusion and the formation of complex surface morphologies. Thin films do not suffer as much from embrittlement and/or decrepitation as bulk materials, allowing the study of cyclic absorption and desorption. Therefore, thin-metal hydride films are used as model systems to study metal-insulator transitions, for high throughput combinatorial research or they may be used as indicator layers to study hydrogen diffusion. They can be found in technological applications as hydrogen sensors, in electrochromic and thermochromic devices. In this review, we discuss the effect of hydrogen loading of thin niobium and yttrium films as archetypical examples of a transition metal and a rare earth metal, respectively. Our focus thereby lies on the hydrogen induced changes of the electronic structure and the morphology of the thin films, their optical properties, the visualization and the control of hydrogen diffusion and on the study of surface phenomena and catalysis.

  11. Structural and hydrogen storage capacity evolution of Mg2FeH6 hydride synthesized by reactive mechanical alloying

    Institute of Scientific and Technical Information of China (English)

    LI Song-lin(李松林); R.A.Varin

    2004-01-01

    Mg-based metal hydrides are promising as hydrogen storage materials for fuel cell application. In this work, Mg2 FeH6 complex hydride phase was synthesized by controlled reactive ball milling of 2Mg-Fe (atomic ratio)powder mixture in H2. Mg2 FeH6 is confirmed to be formed via the following three stages: formation of MgH2 via the reaction of Mg with H2, incubation stage and formation of Mg2 FeH6 by reaction of fully refined MgH2 and Fe.The incubation stage is characterized by no traces of Mg or hydride crystalline phase by XRD. On the other hand,Mg is observed uniformly distributed in the milled powder by SEM-EDS. Also, almost the same amount of H2 as the first stage is detected stored in the powders of the second stage by DSC and TGA.

  12. High temperature nanoindentation hardness and Young's modulus measurement in a neutron-irradiated fuel cladding material

    Science.gov (United States)

    Kese, K.; Olsson, P. A. T.; Alvarez Holston, A.-M.; Broitman, E.

    2017-04-01

    Nanoindentation, in combination with scanning probe microscopy, has been used to measure the hardness and Young's modulus in the hydride and matrix of a high burn-up neutron-irradiated Zircaloy-2 cladding material in the temperature range 25-300 °C. The matrix hardness was found to decrease only slightly with increasing temperature while the hydride hardness was essentially constant within the temperature range. Young's modulus decreased with increasing temperature for both the hydride and the matrix of the high burn-up fuel cladding material. The hydride Young's modulus and hardness were higher than those of the matrix in the temperature range.

  13. High H- ionic conductivity in barium hydride

    Science.gov (United States)

    Verbraeken, Maarten C.; Cheung, Chaksum; Suard, Emmanuelle; Irvine, John T. S.

    2015-01-01

    With hydrogen being seen as a key renewable energy vector, the search for materials exhibiting fast hydrogen transport becomes ever more important. Not only do hydrogen storage materials require high mobility of hydrogen in the solid state, but the efficiency of electrochemical devices is also largely determined by fast ionic transport. Although the heavy alkaline-earth hydrides are of limited interest for their hydrogen storage potential, owing to low gravimetric densities, their ionic nature may prove useful in new electrochemical applications, especially as an ionically conducting electrolyte material. Here we show that barium hydride shows fast pure ionic transport of hydride ions (H-) in the high-temperature, high-symmetry phase. Although some conductivity studies have been reported on related materials previously, the nature of the charge carriers has not been determined. BaH2 gives rise to hydride ion conductivity of 0.2 S cm-1 at 630 °C. This is an order of magnitude larger than that of state-of-the-art proton-conducting perovskites or oxide ion conductors at this temperature. These results suggest that the alkaline-earth hydrides form an important new family of materials, with potential use in a number of applications, such as separation membranes, electrochemical reactors and so on.

  14. Lattice contraction in photochromic yttrium hydride

    Energy Technology Data Exchange (ETDEWEB)

    Maehlen, Jan Petter, E-mail: jepe@ife.no; Mongstad, Trygve T.; You, Chang Chuan; Karazhanov, Smagul

    2013-12-15

    Highlights: •Photochromic yttrium hydride films (YH:O) were prepared by reactive sputtering. •Black and transparent YH:O films were studied by time-resolved synchrotron XRD. •Both YH:O samples showed a lattice contraction upon illumination. •Also exposure to the X-ray beam itself results in a lattice contraction. -- Abstract: A strong photochromic effect was recently discovered in thin films of oxygen-containing yttrium hydride taking place at room temperature and reacting to ultraviolet and visible light. In this paper, we report on a lattice contraction upon illumination observed for thin-film samples of photochromic yttrium hydride, recorded by time-resolved X-ray diffraction using synchrotron radiation. The time dependence of the lattice contraction is consistent with the observed photochromic response of the samples.

  15. Atom probe analysis of titanium hydride precipitates.

    Science.gov (United States)

    Takahashi, J; Kawakami, K; Otsuka, H; Fujii, H

    2009-04-01

    It is expected that the three-dimensional atom probe (3DAP) will be used as a tool to visualize the atomic scale of hydrogen atoms in steel is expected, due to its high spatial resolution and very low detection limit. In this paper, the first 3DAP analysis of titanium hydride precipitates in metal titanium is reported in terms of the quantitative detection of hydrogen. FIB fabrication techniques using the lift-out method have enabled the production of needle tips of hydride precipitates, of several tens of microns in size, within a titanium matrix. The hydrogen concentration estimated from 3DAP analysis was slightly smaller than that of the hydride phase predicted from the phase diagram. We discuss the origin of the difference between the experimental and predicted values and the performance of 3DAP for the quantitative detection of hydrogen.

  16. Iron Group Hydrides in Noyori Bifunctional Catalysis.

    Science.gov (United States)

    Morris, Robert H

    2016-12-01

    This is an overview of the hydride-containing catalysts prepared in the Morris group for the efficient hydrogenation of simple ketones, imines, nitriles and esters and the asymmetric hydrogenation and transfer hydrogenation of prochiral ketones and imines. The work was inspired by and makes use of Noyori metal-ligand bifunctional concepts involving the hydride-ruthenium amine-hydrogen HRuNH design. It describes the synthesis and some catalytic properties of hydridochloro, dihydride and amide complexes of ruthenium and in one case, osmium, with monodentate, bidentate and tetradentate phosphorus and nitrogen donor ligands. The iron hydride that has been identified in a very effective asymmetric transfer hydrogenation process is also mentioned. The link between the HMNH structure and the sense of enantioinduction is demonstrated by use of simple transition state models.

  17. Rules and trends of metal cation driven hydride-transfer mechanisms in metal amidoboranes.

    Science.gov (United States)

    Kim, Dong Young; Lee, Han Myoung; Seo, Jongcheol; Shin, Seung Koo; Kim, Kwang S

    2010-01-01

    Group I and II metal amidoboranes have been identified as one of the promising families of materials for efficient H(2) storage. However, the underlying mechanism of the dehydrogenation of these materials is not well understood. Thus, the mechanisms and kinetics of H(2) release in metal amidoboranes are investigated using high level ab initio calculations and kinetic simulations. The metal plays the role of catalyst for the hydride transfer with formation of a metal hydride intermediate towards the dehydrogenation. In this process, with increasing ionic character of the metal hydride bond in the intermediate, the stability of the intermediate decreases, while the dehydrogenation process involving ionic recombination of the hydridic H with the protic H proceeds with a reduced barrier. Such correlations lead directly to a U-shaped relationship between the activation energy barrier for H(2) elimination and the ionicity of metal hydride bond. Oligomerized intermediates are formed by the chain reaction of the size-driven catalytic effects of metals, competing with the non-oligomerization pathway. The kinetic rates at low temperatures are determined by the maximum barrier height in the pathway (a Lambda-shaped relation), while those at moderately high temperatures are determined by most of multiple-barriers. This requires kinetic simulations. At the operating temperatures of proton exchange membrane fuel cells, the metal amidoboranes with lithium and sodium release H(2) along both oligomerization and non-oligomerization paths. The sodium amidoboranes show the most accelerated rates, while others release H(2) at similar rates. In addition, we predict that the novel metal amidoborane-based adducts and mixtures would release H(2) with accelerated rates as well as with enhanced reversibility. This comprehensive study is useful for further developments of active metal-based better hydrogen storage materials.

  18. Nuclear fuels - Present and future

    Science.gov (United States)

    Olander, D.

    2009-06-01

    The important developments in nuclear fuels and their problems are reviewed and compared with the status of present light-water reactor fuels. The limitations of LWR fuels are reviewed with respect to important recent concerns, namely provision of outlet coolant temperatures high enough for use in H 2 production, destruction of plutonium to eliminate proliferation concerns, and burning of the minor actinides to reduce the waste repository heat load and long-term radiation hazard. In addition to current oxide-based fuel rod designs, the hydride fuel with liquid-metal thermal bonding of the fuel-cladding gap is covered. Finally, two of the most promising Generation IV reactor concepts, the very high temperature reactor and the sodium fast reactor, and the accompanying reprocessing technologies, aqueous-based UREX+1a and pyrometallurgical, are summarized. In all of the topics covered, the thermodynamics involved in the fuel's behavior under irradiation and in the reprocessing schemes are emphasized.

  19. Fuel lattice design in a boiling water reactor using a knowledge-based automation system

    Energy Technology Data Exchange (ETDEWEB)

    Tung, Wu-Hsiung, E-mail: wstong@iner.gov.tw; Lee, Tien-Tso; Kuo, Weng-Sheng; Yaur, Shung-Jung

    2015-11-15

    Highlights: • An automation system was developed for the fuel lattice radial design of BWRs. • An enrichment group peaking equalizing method is applied to optimize the design. • Several heuristic rules and restrictions are incorporated to facilitate the design. • The CPU time for the system to design a 10x10 lattice was less than 1.2 h. • The beginning-of-life LPF was improved from 1.319 to 1.272 for one of the cases. - Abstract: A knowledge-based fuel lattice design automation system for BWRs is developed and applied to the design of 10 × 10 fuel lattices. The knowledge implemented in this fuel lattice design automation system includes the determination of gadolinium fuel pin location, the determination of fuel pin enrichment and enrichment distribution. The optimization process starts by determining the gadolinium distribution based on the pin power distribution of a flat enrichment lattice and some heuristic rules. Next, a pin power distribution flattening and an enrichment grouping process are introduced to determine the enrichment of each fuel pin enrichment type and the initial enrichment distribution of a fuel lattice design. Finally, enrichment group peaking equalizing processes are performed to achieve lower lattice peaking. Several fuel lattice design constraints are also incorporated in the automation system such that the system can accomplish a design which meets the requirements of practical use. Depending on the axial position of the lattice, a different method is applied in the design of the fuel lattice. Two typical fuel lattices with U{sup 235} enrichment of 4.471% and 4.386% were taken as references. Application of the method demonstrates that improved lattice designs can be achieved through the enrichment grouping and the enrichment group peaking equalizing method. It takes about 11 min and 1 h 11 min of CPU time for the automation system to accomplish two design cases on an HP-8000 workstation, including the execution of CASMO-4

  20. Evidence of stress-induced hydrogen ordering in zirconium hydrides

    Energy Technology Data Exchange (ETDEWEB)

    Steuwer, A. [FaME38 at the ESRF-ILL, 6 rue J Horowitz, 38042 Grenoble (France); ESS Scandinavia, University of Lund, Stora Algatan 4, 22350 Lund (Sweden)], E-mail: steuwer@ill.fr; Santisteban, J.R. [Centro Atomico Bariloche, CNEA, San Carlos de Bariloche (Argentina); Preuss, M. [University of Manchester, Grosvenor Street, Manchester M1 7HS (United Kingdom); Peel, M.J.; Buslaps, T. [European Synchrotron Radiation Facility, 6 rue J Horowitz, 38042 Grenoble (France); Harada, M. [R and D Section, Chofu-Kita Plant, Kobe Special Tube Co, Shimonoseki 752-0953 (Japan)

    2009-01-15

    The formation of hydrides in zirconium alloys significantly affects their mechanical properties and is considered to play a critical role in their failure mechanisms, yet relatively little is known about the micromechanical behavior of hydrides in the bulk. This paper presents the result of in situ uniaxial mechanical tensioning experiments on hydrided zircaloy-2 and zircaloy-4 specimens using energy-dispersive synchrotron X-ray diffraction, which suggests that a stress-induced transformation of the {delta}-hydride to {gamma}-hydride via ordering of the hydrogen atoms occurs, akin to a Snoek-type relaxation. Subsequent annealing was found to reverse the ordering phenomenon.

  1. Development of a modular room-temperature hydride storage system for vehicular applications

    Science.gov (United States)

    Capurso, Giovanni; Schiavo, Benedetto; Jepsen, Julian; Lozano, Gustavo; Metz, Oliver; Saccone, Adriana; De Negri, Serena; Bellosta von Colbe, José M.; Klassen, Thomas; Dornheim, Martin

    2016-03-01

    The subject of this paper concerns the development of a vehicular hydrogen tank system, using a commercial interstitial metal hydride as storage material. The design of the tank was intended to feed a fuel cell in a light prototype vehicle, and the chosen hydride material, Hydralloy C5 by GfE, was expected to be able to absorb and desorb hydrogen in a range of pressure suitable for this purpose. A systematic analysis of the material in laboratory scale allows an extrapolation of the thermodynamic and reaction kinetics data. The following development of the modular tank was done according to the requirements of the prototype vehicle propulsion system and led to promising intermediate results. The modular approach granted flexibility in the design, allowing both to reach carefully the design goals and to learn the limiting factors in the sorption process. Proper heat management and suitable equipment remain key factors in order to achieve the best performances.

  2. Hydride formation on deformation twin in zirconium alloy

    Science.gov (United States)

    Kim, Ju-Seong; Kim, Sung-Dae; Yoon, Jonghun

    2016-12-01

    Hydrides deteriorate the mechanical properties of zirconium (Zr) alloys used in nuclear reactors. Intergranular hydrides that form along grain boundaries have been extensively studied due to their detrimental effects on cracking. However, it has been little concerns on formation of Zr hydrides correlated with deformation twins which is distinctive heterogeneous nucleation site in hexagonal close-packed metals. In this paper, the heterogeneous precipitation of Zr hydrides at the twin boundaries was visualized using transmission electron microscopy. It demonstrates that intragranular hydrides in the twinned region precipitates on the rotated habit plane by the twinning and intergranular hydrides precipitate along the coherent low energy twin boundaries independent of the conventional habit planes. Interestingly, dislocations around the twin boundaries play a substantial role in the nucleation of Zr hydrides by reducing the misfit strain energy.

  3. Multiphysics phase field modeling of hydrogen diffusion and delta-hydride precipitation in alpha-zirconium

    Science.gov (United States)

    Jokisaari, Andrea M.

    Hydride precipitation in zirconium is a significant factor limiting the lifetime of nuclear fuel cladding, because hydride microstructures play a key role in the degradation of fuel cladding. However, the behavior of hydrogen in zirconium has typically been modeled using mean field approaches, which do not consider microstructural evolution. This thesis describes a quantitative microstructural evolution model for the alpha-zirconium/delta-hydride system and the associated numerical methods and algorithms that were developed. The multiphysics, phase field-based model incorporates CALPHAD free energy descriptions, linear elastic solid mechanics, and classical nucleation theory. A flexible simulation software implementing the model, Hyrax, is built on the Multiphysics Object Oriented Simulation Environment (MOOSE) finite element framework. Hyrax is open-source and freely available; moreover, the numerical methods and algorithms that have been developed are generalizable to other systems. The algorithms are described in detail, and verification studies for each are discussed. In addition, analyses of the sensitivity of the simulation results to the choice of numerical parameters are presented. For example, threshold values for the CALPHAD free energy algorithm and the use of mesh and time adaptivity when employing the nucleation algorithm are studied. Furthermore, preliminary insights into the nucleation behavior of delta-hydrides are described. These include a) the sensitivities of the nucleation rate to temperature, interfacial energy, composition and elastic energy, b) the spatial variation of the nucleation rate around a single precipitate, and c) the effect of interfacial energy and nucleation rate on the precipitate microstructure. Finally, several avenues for future work are discussed. Topics encompass the terminal solid solubility hysteresis of hydrogen in zirconium and the effects of the alpha/delta interfacial energy, as well as thermodiffusion, plasticity

  4. Destabilization of magnesium hydride through interface engineering

    NARCIS (Netherlands)

    Mooij, L.P.A.

    2013-01-01

    The aim of this thesis is to study the thermodynamics of hydrogenation of nanoconfined magnesium within a thin film multilayer model system. Magnesium hydride is a potential material for hydrogen storage, which is a key component in a renewable energy system based on hydrogen. In bulk form,

  5. Destabilization of magnesium hydride through interface engineering

    NARCIS (Netherlands)

    Mooij, L.P.A.

    2013-01-01

    The aim of this thesis is to study the thermodynamics of hydrogenation of nanoconfined magnesium within a thin film multilayer model system. Magnesium hydride is a potential material for hydrogen storage, which is a key component in a renewable energy system based on hydrogen. In bulk form, magnesiu

  6. Destabilization of magnesium hydride through interface engineering

    NARCIS (Netherlands)

    Mooij, L.P.A.

    2013-01-01

    The aim of this thesis is to study the thermodynamics of hydrogenation of nanoconfined magnesium within a thin film multilayer model system. Magnesium hydride is a potential material for hydrogen storage, which is a key component in a renewable energy system based on hydrogen. In bulk form, magnesiu

  7. SOLID STATE HYDRIDE SYSTEM ENGINEERING

    Energy Technology Data Exchange (ETDEWEB)

    Anton, D; Mark Jones, M; Bruce Hardy, B

    2007-10-31

    A typical hydrogen refueling station was designed based on DOE targets and existing gasoline filling station operations. The purpose of this design was to determine typical heat loads, how these heat loads will be handled, and approximate equipment sizes. For the station model, two DOE targets that had the most impact on the design were vehicle driving range and refueling time. The target that hydrogen fueled vehicles should have the equivalent driving range as present automobiles, requires 5 kg hydrogen storage. Assuming refueling occurs when the tank is 80% empty yields a refueling quantity of 4 kg. The DOE target for 2010 of a refueling time of 3 minutes was used in this design. There is additional time needed for payment of the fuel, and connecting and disconnecting hoses and grounds. It was assumed that this could be accomplished in 5 minutes. Using 8 minutes for each vehicle refueling gives a maximum hourly refueling rate of 7.5 cars per hour per fueling point.

  8. Hydrogen Storage Engineering Center of Excellence Metal Hydride Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Motyka, T. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2014-05-31

    The Hydrogen Storage Engineering Center of Excellence (HSECoE) was established in 2009 by the U.S. Department of Energy (DOE) to advance the development of materials-based hydrogen storage systems for hydrogen-fueled light-duty vehicles. The overall objective of the HSECoE is to develop complete, integrated system concepts that utilize reversible metal hydrides, adsorbents, and chemical hydrogen storage materials through the use of advanced engineering concepts and designs that can simultaneously meet or exceed all the DOE targets. This report describes the activities and accomplishments during Phase 1 of the reversible metal hydride portion of the HSECoE, which lasted 30 months from February 2009 to August 2011. A complete list of all the HSECoE partners can be found later in this report but for the reversible metal hydride portion of the HSECoE work the major contributing organizations to this effort were the United Technology Research Center (UTRC), General Motors (GM), Pacific Northwest National Laboratory (PNNL), the National Renewable Energy Laboratory (NREL) and the Savannah River National Laboratory (SRNL). Specific individuals from these and other institutions that supported this effort and the writing of this report are included in the list of contributors and in the acknowledgement sections of this report. The efforts of the HSECoE are organized into three phases each approximately 2 years in duration. In Phase I, comprehensive system engineering analyses and assessments were made of the three classes of storage media that included development of system level transport and thermal models of alternative conceptual storage configurations to permit detailed comparisons against the DOE performance targets for light-duty vehicles. Phase 1 tasks also included identification and technical justifications for candidate storage media and configurations that should be capable of reaching or exceeding the DOE targets. Phase 2 involved bench-level testing and

  9. Light metal hydrides and complex hydrides for hydrogen storage.

    Science.gov (United States)

    Schüth, F; Bogdanović, B; Felderhoff, M

    2004-10-21

    The availability of feasible methods for hydrogen storage is one of the key-maybe the key-requirements for the large scale application of PEM fuel cells in cars. There are in principle four different approaches, i.e. cryostorage in liquid form, high pressure storage, storage in the form of a chemical compound which is converted to hydrogen by on-board reforming, or reversible chemical storage in different kinds of storage materials. New developments in the field of chemical storage make such systems attractive compared to the other options. This review will discuss the different possibilities for chemical storage of hydrogen and the focus on the presently most advanced system with respect to storage capacity and kinetics, i.e. catalyzed alanates, especially NaAlH(4).

  10. Crack growth through the thickness of thin-sheet Hydrided Zircaloy-4

    Science.gov (United States)

    Raynaud, Patrick A. C.

    In recent years, the limits on fuel burnup have been increased to allow an increase in the amount of energy produced by a nuclear fuel assembly thus reducing waste volume and allowing greater capacity factors. As a result, it is paramount to ensure safety after longer reactor exposure times in the case of design-basis accidents, such as reactivity-initiated accidents (RIA). Previously proposed failure criteria do not directly address the particular cladding failure mechanism during a RIA, in which crack initiation in brittle outer-layers is immediately followed by crack growth through the thickness of the thin-wall tubing. In such a case, the fracture toughness of hydrided thin-wall cladding material must be known for the conditions of through-thickness crack growth in order to predict the failure of high-burnup cladding. The fracture toughness of hydrided Zircaloy-4 in the form of thin-sheet has been examined for the condition of through-thickness crack growth as a function of hydride content and distribution at 25°C, 300°C, and 375°C. To achieve this goal, an experimental procedure was developed in which a linear hydride blister formed across the width of a four-point bend specimen was used to inject a sharp crack that was subsequently extended by fatigue pre-cracking. The electrical potential drop method was used to monitor the crack length during fracture toughness testing, thus allowing for correlation of the load-displacement record with the crack length. Elastic-plastic fracture mechanics were used to interpret the experimental test results in terms of fracture toughness, and J-R crack growth resistance curves were generated. Finite element modeling was performed to adapt the classic theories of fracture mechanics applicable to thick-plate specimens to the case of through-thickness crack growth in thin-sheet materials, and to account for non-uniform crack fronts. Finally, the hydride microstructure was characterized in the vicinity of the crack tip by

  11. Standardized hydrogen storage module with high utilization factor based on metal hydride-graphite composites

    Science.gov (United States)

    Bürger, Inga; Dieterich, Mila; Pohlmann, Carsten; Röntzsch, Lars; Linder, Marc

    2017-02-01

    In view of hydrogen based backup power systems or small-scale power2gas units, hydrogen storages based on metal hydrides offer a safe and reliable solution. By using Hydralloy C5 as suitable hydride forming alloy, the present tank design guarantees very simple operating conditions: pressures between 4 bar and 30 bar, temperatures between 15 °C and 40 °C and minimal efforts for thermal management in combination with fast and constant charging and discharging capabilities. The modular tank consists of 4 layers with 5 reactor tubes each that are filled with metal hydride-graphite composites of a diameter of 21 mm. Experiments show that each layer of this tank is able to desorb the desired amount of hydrogen for a fuel cell operation at electrical power of 160 Wel for 100 min reaching a utilization factor of 93% of the stored hydrogen at RC. Furthermore, the experimental results of modularity, increasing loads and the electric air ventilation are presented.

  12. Identification of destabilized metal hydrides for hydrogen storage using first principles calculations.

    Science.gov (United States)

    Alapati, Sudhakar V; Johnson, J Karl; Sholl, David S

    2006-05-04

    Hydrides of period 2 and 3 elements are promising candidates for hydrogen storage but typically have heats of reaction that are too high to be of use for fuel cell vehicles. Recent experimental work has focused on destabilizing metal hydrides through alloying with other elements. A very large number of possible destabilized metal hydride reaction schemes exist. The thermodynamic data required to assess the enthalpies of these reactions, however, are not available in many cases. We have used first principles density functional theory calculations to predict the reaction enthalpies for more than 100 destabilization reactions that have not previously been reported. Many of these reactions are predicted not be useful for reversible hydrogen storage, having calculated reaction enthalpies that are either too high or too low. More importantly, our calculations identify five promising reaction schemes that merit experimental study: 3LiNH(2) + 2LiH + Si --> Li(5)N(3)Si + 4H(2), 4LiBH(4) + MgH(2) --> 4LiH + MgB(4) + 7H(2), 7LiBH(4) + MgH(2) --> 7LiH + MgB(7) + 11.5H(2), CaH(2) + 6LiBH(4) --> CaB(6) + 6LiH + 10H(2), and LiNH(2) + MgH(2) --> LiMgN + 2H(2).

  13. Fuel safety research 2001

    Energy Technology Data Exchange (ETDEWEB)

    Uetsuka, Hiroshi (ed.) [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2002-11-01

    The Fuel Safety Research Laboratory is in charge of research activity which covers almost research items related to fuel safety of water reactor in JAERI. Various types of experimental and analytical researches are being conducted by using some unique facilities such as the Nuclear Safety Research Reactor (NSRR), the Japan Material Testing Reactor (JMTR), the Japan Research Reactor 3 (JRR-3) and the Reactor Fuel Examination Facility (RFEF) of JAERI. The research to confirm the safety of high burn-up fuel and MOX fuel under accident conditions is the most important item among them. The laboratory consists of following five research groups corresponding to each research fields; Research group of fuel behavior under the reactivity initiated accident conditions (RIA group). Research group of fuel behavior under the loss-of-coolant accident conditions (LOCA group). Research group of fuel behavior under the normal operation conditions (JMTR/BOCA group). Research group of fuel behavior analysis (FEMAXI group). Research group of radionuclides release and transport behavior from irradiated fuel under severe accident conditions (VEGA group). The research conducted in the year 2001 produced many important data and information. They are, for example, the fuel behavior data under BWR power oscillation conditions in the NSRR, the data on failure-bearing capability of hydrided cladding under LOCA conditions and the FP release data at very high temperature in steam which simulate the reactor core condition during severe accidents. This report summarizes the outline of research activities and major outcomes of the research executed in 2001 in the Fuel Safety Research Laboratory. (author)

  14. Metal hydride hydrogen and heat storage systems as enabling technology for spacecraft applications

    Energy Technology Data Exchange (ETDEWEB)

    Reissner, Alexander, E-mail: reissner@fotec.at [FOTEC Forschungs- und Technologietransfer GmbH, Viktor Kaplan Straße 2, 2700 Wiener Neustadt (Austria); University of Applied Sciences Wiener Neustadt, Johannes Gutenberg-Straße 3, 2700 Wiener Neustadt (Austria); Pawelke, Roland H.; Hummel, Stefan; Cabelka, Dusan [FOTEC Forschungs- und Technologietransfer GmbH, Viktor Kaplan Straße 2, 2700 Wiener Neustadt (Austria); Gerger, Joachim [University of Applied Sciences Wiener Neustadt, Johannes Gutenberg-Straße 3, 2700 Wiener Neustadt (Austria); Farnes, Jarle, E-mail: Jarle.farnes@prototech.no [CMR Prototech AS, Fantoftvegen 38, PO Box 6034, 5892 Bergen (Norway); Vik, Arild; Wernhus, Ivar; Svendsen, Tjalve [CMR Prototech AS, Fantoftvegen 38, PO Box 6034, 5892 Bergen (Norway); Schautz, Max, E-mail: max.schautz@esa.int [European Space Agency, ESTEC – Keplerlaan 1, 2201 AZ Noordwijk Zh (Netherlands); Geneste, Xavier, E-mail: xavier.geneste@esa.int [European Space Agency, ESTEC – Keplerlaan 1, 2201 AZ Noordwijk Zh (Netherlands)

    2015-10-05

    Highlights: • A metal hydride tank concept for heat and hydrogen storage is presented. • The tank is part of a closed-loop reversible fuel cell system for space application. • For several engineering issues specific to the spacecraft application, solutions have been developed. • The effect of water contamination has been approximated for Ti-doped NaAlH{sub 4}. • A novel heat exchanger design has been realized by Selective Laser Melting. - Abstract: The next generation of telecommunication satellites will demand a platform payload performance in the range of 30+ kW within the next 10 years. At this high power output, a Regenerative Fuel Cell Systems (RFCS) offers an efficiency advantage in specific energy density over lithium ion batteries. However, a RFCS creates a substantial amount of heat (60–70 kJ per mol H{sub 2}) during fuel cell operation. This requires a thermal hardware that accounts for up to 50% of RFCS mass budget. Thus the initial advantage in specific energy density is reduced. A metal hydride tank for combined storage of heat and hydrogen in a RFCS may overcome this constraint. Being part of a consortium in an ongoing European Space Agency project, FOTEC is building a technology demonstrator for such a combined hydrogen and heat storage system.

  15. Numerical study of a magnesium hydride tank

    Science.gov (United States)

    Delhomme, Baptiste; de Rango, Patricia; Marty, Philippe

    2012-11-01

    Hydrogen storage in metal hydride tanks (MHT) is a very promising solution. Several experimental tanks, studied by different teams, have already proved the feasibility and the interesting performances of this solution. However, in much cases, an optimization of tank geometry is still needed in order to perform fast hydrogen loading. The development of efficient numerical tools is a key issue for MHT design and optimization. We propose a simple model representing a metal hydride tank exchanging its heat of reaction with a thermal fluid flow. In this model, the radial and axial discretisations have been decoupled by using Matlab® one-dimensional tools. Calculations are compared to experimental results obtained in a previous study. A good agreement is found for the loading case. The discharging case shows some discrepancies, which are discussed in this paper.

  16. The electrochemical impedance of metal hydride electrodes

    DEFF Research Database (Denmark)

    Valøen, Lars Ole; Lasia, Andrzej; Jensen, Jens Oluf

    2002-01-01

    The electrochemical impedance responses for different laboratory type metal hydride electrodes were successfully modeled and fitted to experimental data for AB5 type hydrogen storage alloys as well as one MgNi type electrode. The models fitted the experimental data remarkably well. Several AC......, explaining the experimental impedances in a wide frequency range for electrodes of hydride forming materials mixed with copper powder, were obtained. Both charge transfer and spherical diffusion of hydrogen in the particles are important sub processes that govern the total rate of the electrochemical...... hydrogen absorption/desorption reaction. To approximate the experimental data, equations describing the current distribution in porous electrodes were needed. Indications of one or more parallel reduction/oxidation processes competing with the electrochemical hydrogen absorption/desorption reaction were...

  17. Nickel metal hydride LEO cycle testing

    Science.gov (United States)

    Lowery, Eric

    1995-01-01

    The George C. Marshall Space Flight Center is working to characterize aerospace AB5 Nickel Metal Hydride (NiMH) cells. The cells are being evaluated in terms of storage, low earth orbit (LEO) cycling, and response to parametric testing (high rate charge and discharge, charge retention, pulse current ability, etc.). Cells manufactured by Eagle Picher are the subjects of the evaluation. There is speculation that NiMH cells may become direct replacements for current Nickel Cadmium cells in the near future.

  18. Experimental Hydrogen Plant with Metal Hydrides to Store and Generate Electrical Power

    Science.gov (United States)

    Gonzatti, Frank; Nizolli, Vinícius; Ferrigolo, Fredi Zancan; Farret, Felix Alberto; de Mello, Marcos Augusto Silva

    2016-02-01

    Generation of electrical energy with renewable sources is interruptible due to the primary energy characteristics (sun, wind, hydro, etc.). In these cases, it is necessary to use energy storage so increasing penetrability of these sources connected to the distribution system. This paper discusses in details some equipment and accessories of an integrated power plant using fuel cell stack, electrolyzer and metal hydrides. During the plant operation were collected the power consumption data and established the efficiency of each plant component. These data demonstrated an overall efficiency of about 11% due to the low efficiencies of the commercial electrolyzers and power inverters used in the experiments.

  19. Storing hydrogen in the form of light alloy hydrides

    Science.gov (United States)

    Freund, E.; Gillerm, C.

    1981-01-01

    Different hydrides are investigated to find a system with a sufficiently high storage density (at least 3%). The formation of hydrides with light alloys is examined. Reaction kinetics for hydride formation were defined and applied to the systems Mg-Al-H, Mg-Al-Cu-H, Ti-Al-H, Ti-Al-Cu-H, and Ti-Al-Ni-H. Results indicate that the addition of Al destabilizes MgH2 and TiH2 hydrides while having only a limited effect on the storage density.

  20. Plasmonic hydrogen sensing with nanostructured metal hydrides.

    Science.gov (United States)

    Wadell, Carl; Syrenova, Svetlana; Langhammer, Christoph

    2014-12-23

    In this review, we discuss the evolution of localized surface plasmon resonance and surface plasmon resonance hydrogen sensors based on nanostructured metal hydrides, which has accelerated significantly during the past 5 years. We put particular focus on how, conceptually, plasmonic resonances can be used to study metal-hydrogen interactions at the nanoscale, both at the ensemble and at the single-nanoparticle level. Such efforts are motivated by a fundamental interest in understanding the role of nanosizing on metal hydride formation processes in the quest to develop efficient solid-state hydrogen storage materials with fast response times, reasonable thermodynamics, and acceptable long-term stability. Therefore, a brief introduction to the thermodynamics of metal hydride formation is also given. However, plasmonic hydrogen sensors not only are of academic interest as research tool in materials science but also are predicted to find more practical use as all-optical gas detectors in industrial and medical applications, as well as in a future hydrogen economy, where hydrogen is used as a carbon free energy carrier. Therefore, the wide range of different plasmonic hydrogen sensor designs already available is reviewed together with theoretical efforts to understand their fundamentals and optimize their performance in terms of sensitivity. In this context, we also highlight important challenges to be addressed in the future to take plasmonic hydrogen sensors from the laboratory to real applications in devices, including poisoning/deactivation of the active materials, sensor lifetime, and cross-sensitivity toward other gas species.

  1. Modeling and simulation of hydrogen behavior in Zircaloy-4 fuel cladding

    Energy Technology Data Exchange (ETDEWEB)

    Jason D. Hales; Various

    2014-09-01

    As a result of corrosion during normal operation in nuclear reactors, hydrogen can enter the zirconium-alloy fuel cladding and precipitate as brittle hydride platelets, which can severely degrade the cladding ductility. Under a heterogeneous temperature distribution, hydrides tend to accumulate in the colder areas, creating local spots of degraded cladding that can favor crack initiation. Therefore, an estimation of the local hydride distribution is necessary to help predict the risk of cladding failure. The hydride distribution is governed by three competing phenomena. Hydrogen in solid solution diffuses under a concentration gradient due to Fick’s law and under a temperature gradient due to the Soret effect. Precipitation of the hydride platelets occurs once the hydrogen solubility limit is reached. A model of these phenomena was implemented in the 3D fuel performance code BISON in order to calculate the hydrogen distribution for arbitrary geometries, such as a nuclear fuel rod, and is now available for BISON users. Simulations have been performed on simple geometries to validate the model and its implementation. The simulations predict that before precipitation occurs, hydrogen tends to accumulate in the colder spots due to the Soret effect. Once the solubility limit is reached, hydrogen precipitates and forms a rim close to the outer edge of the cladding. The simulations also predict that the reactor shut down has little effect on already precipitated hydrides but causes the remaining hydrogen to precipitate homogeneously into hydrides.

  2. Modeling and simulation of hydrogen behavior in Zircaloy-4 fuel cladding

    Energy Technology Data Exchange (ETDEWEB)

    Courty, Olivier, E-mail: o.courty@gmail.com [Pennsylvania State University, 45 Bd Gouvion Saint Cyr, 75017 Paris (France); Motta, Arthur T., E-mail: atm2@psu.edu [Department of Mechanical and Nuclear Engineering, 227 Reber Building, Penn State University, University Park, PA 16802 (United States); Hales, Jason D., E-mail: jason.hales@inl.gov [Fuels Modeling and Simulation Department, Idaho National Laboratory (United States)

    2014-09-15

    As a result of corrosion during normal operation in nuclear reactors, hydrogen can enter the zirconium-alloy fuel cladding and precipitate as brittle hydride platelets, which can severely degrade the cladding ductility. Under a heterogeneous temperature distribution, hydrides tend to accumulate in the colder areas, creating local spots of degraded cladding that can favor crack initiation. Therefore, an estimation of the local hydride distribution is necessary to help predict the risk of cladding failure. The hydride distribution is governed by three competing phenomena. Hydrogen in solid solution diffuses under a concentration gradient due to Fick’s law and under a temperature gradient due to the Soret effect. Precipitation of the hydride platelets occurs once the hydrogen solubility limit is reached. A model of these phenomena was implemented in the 3D fuel performance code BISON in order to calculate the hydrogen distribution for arbitrary geometries, such as a nuclear fuel rod, and is now available for BISON users. Simulations have been performed on simple geometries to validate the model and its implementation. The simulations predict that before precipitation occurs, hydrogen tends to accumulate in the colder spots due to the Soret effect. Once the solubility limit is reached, hydrogen precipitates and forms a rim close to the outer edge of the cladding. The simulations also predict that the reactor shut down has little effect on already precipitated hydrides but causes the remaining hydrogen to precipitate homogeneously into hydrides.

  3. Modeling and simulation of hydrogen behavior in Zircaloy-4 fuel cladding

    Science.gov (United States)

    Courty, Olivier; Motta, Arthur T.; Hales, Jason D.

    2014-09-01

    As a result of corrosion during normal operation in nuclear reactors, hydrogen can enter the zirconium-alloy fuel cladding and precipitate as brittle hydride platelets, which can severely degrade the cladding ductility. Under a heterogeneous temperature distribution, hydrides tend to accumulate in the colder areas, creating local spots of degraded cladding that can favor crack initiation. Therefore, an estimation of the local hydride distribution is necessary to help predict the risk of cladding failure. The hydride distribution is governed by three competing phenomena. Hydrogen in solid solution diffuses under a concentration gradient due to Fick's law and under a temperature gradient due to the Soret effect. Precipitation of the hydride platelets occurs once the hydrogen solubility limit is reached. A model of these phenomena was implemented in the 3D fuel performance code BISON in order to calculate the hydrogen distribution for arbitrary geometries, such as a nuclear fuel rod, and is now available for BISON users. Simulations have been performed on simple geometries to validate the model and its implementation. The simulations predict that before precipitation occurs, hydrogen tends to accumulate in the colder spots due to the Soret effect. Once the solubility limit is reached, hydrogen precipitates and forms a rim close to the outer edge of the cladding. The simulations also predict that the reactor shut down has little effect on already precipitated hydrides but causes the remaining hydrogen to precipitate homogeneously into hydrides.

  4. Characterization of Hydrogen Content in ZIRCALOY-4 Nuclear Fuel Cladding

    Science.gov (United States)

    Pfeif, E. A.; Lasseigne, A. N.; Krzywosz, K.; Mader, E. V.; Mishra, B.; Olson, D. L.

    2010-02-01

    Assessment of hydrogen uptake of underwater nuclear fuel clad and component materials will enable improved monitoring of fuel health. Zirconium alloys are used in nuclear reactors as fuel cladding, fuel channels, guide tubes and spacer grids, and are available for inspection in spent fuel pools. With increasing reactor exposure zirconium alloys experience hydrogen ingress due to neutron interactions and water-side corrosion that is not easily quantified without destructive hot cell examination. Contact and non-contact nondestructive techniques, using Seebeck coefficient measurements and low frequency impedance spectroscopy, to assess the hydrogen content and hydride formation within zircaloy 4 material that are submerged to simulate spent fuel pools are presented.

  5. Low temperature hydrogenolysis of waxes to diesel range gasoline and light alkanes: Comparison of catalytic properties of group 4, 5 and 6 metal hydrides supported on silica-alumina

    KAUST Repository

    Norsic, Sébastien

    2012-01-01

    A series of metal hydrides (M = Zr, Hf, Ta, W) supported on silica-alumina were studied for the first time in hydrogenolysis of light alkanes in a continuous flow reactor. It was found that there is a difference in the reaction mechanism between d 0 metal hydrides of group 4 and d 0 ↔ d 2 metal hydrides of group 5 and group 6. Furthermore, the potential application of these catalysts has been demonstrated by the transformation of Fischer-Tropsch wax in a reactive distillation set-up into typical gasoline and diesel molecules in high selectivity (up to 86 wt%). Current results show that the group 4 metal hydrides have a promising yield toward liquid fuels.

  6. Fuel flexible fuel injector

    Science.gov (United States)

    Tuthill, Richard S; Davis, Dustin W; Dai, Zhongtao

    2015-02-03

    A disclosed fuel injector provides mixing of fuel with airflow by surrounding a swirled fuel flow with first and second swirled airflows that ensures mixing prior to or upon entering the combustion chamber. Fuel tubes produce a central fuel flow along with a central airflow through a plurality of openings to generate the high velocity fuel/air mixture along the axis of the fuel injector in addition to the swirled fuel/air mixture.

  7. Method of making crack-free zirconium hydride

    Science.gov (United States)

    Sullivan, Richard W.

    1980-01-01

    Crack-free hydrides of zirconium and zirconium-uranium alloys are produced by alloying the zirconium or zirconium-uranium alloy with beryllium, or nickel, or beryllium and scandium, or nickel and scandium, or beryllium and nickel, or beryllium, nickel and scandium and thereafter hydriding.

  8. Creating nanoshell on the surface of titanium hydride bead

    Directory of Open Access Journals (Sweden)

    PAVLENKO Vyacheslav Ivanovich

    2016-12-01

    Full Text Available The article presents data on the modification of titanium hydride bead by creating titanium nanoshell on its surface by ion-plasma vacuum magnetron sputtering. To apply titanium nanoshell on the titanium hydride bead vacuum coating plant of multifunctional nanocomposite coatings QVADRA 500 located in the center of high technology was used. Analysis of the micrographs of the original surface of titanium hydride bead showed that the microstructure of the surface is flat, smooth, in addition the analysis of the microstructure of material surface showed the presence of small porosity, roughness, mainly cavities, as well as shallow longitudinal cracks. The presence of oxide film in titanium hydride prevents the free release of hydrogen and fills some micro-cracks on the surface. Differential thermal analysis of both samples was conducted to determine the thermal stability of the initial titanium hydride bead and bead with applied titanium nanoshell. Hydrogen thermal desorption spectra of the samples of the initial titanium hydride bead and bead with applied titanium nanoshell show different thermal stability of compared materials in the temperature range from 550 to 860о C. Titanium nanoshells applied in this way allows increasing the heat resistance of titanium hydride bead – the temperature of starting decomposition is 695о C and temperature when decomposition finishes is more than 1000о C. Modified in this way titanium hydride bead can be used as a filler in the radiation protective materials used in the construction or upgrading biological protection of nuclear power plants.

  9. Electrochemical and Optical Properties of Magnesium-Alloy Hydrides Reviewed

    Directory of Open Access Journals (Sweden)

    Thirugnasambandam G. Manivasagam

    2012-10-01

    Full Text Available As potential hydrogen storage media, magnesium based hydrides have been systematically studied in order to improve reversibility, storage capacity, kinetics and thermodynamics. The present article deals with the electrochemical and optical properties of Mg alloy hydrides. Electrochemical hydrogenation, compared to conventional gas phase hydrogen loading, provides precise control with only moderate reaction conditions. Interestingly, the alloy composition determines the crystallographic nature of the metal-hydride: a structural change is induced from rutile to fluorite at 80 at.% of Mg in Mg-TM alloy, with ensuing improved hydrogen mobility and storage capacity. So far, 6 wt.% (equivalent to 1600 mAh/g of reversibly stored hydrogen in MgyTM(1-yHx (TM: Sc, Ti has been reported. Thin film forms of these metal-hydrides reveal interesting electrochromic properties as a function of hydrogen content. Optical switching occurs during (dehydrogenation between the reflective metal and the transparent metal hydride states. The chronological sequence of the optical improvements in optically active metal hydrides starts with the rare earth systems (YHx, followed by Mg rare earth alloy hydrides (MgyGd(1-yHx and concludes with Mg transition metal hydrides (MgyTM(1-yHx. In-situ optical characterization of gradient thin films during (dehydrogenation, denoted as hydrogenography, enables the monitoring of alloy composition gradients simultaneously.

  10. High energy density battery based on complex hydrides

    Science.gov (United States)

    Zidan, Ragaiy

    2016-04-26

    A battery and process of operating a battery system is provided using high hydrogen capacity complex hydrides in an organic non-aqueous solvent that allows the transport of hydride ions such as AlH.sub.4.sup.- and metal ions during respective discharging and charging steps.

  11. High energy density battery based on complex hydrides

    Energy Technology Data Exchange (ETDEWEB)

    Zidan, Ragaiy

    2016-04-26

    A battery and process of operating a battery system is provided using high hydrogen capacity complex hydrides in an organic non-aqueous solvent that allows the transport of hydride ions such as AlH.sub.4.sup.- and metal ions during respective discharging and charging steps.

  12. Synthesis, characterization and properties of some organozinc hydride complexes

    NARCIS (Netherlands)

    Koning, A.J. de; Boersma, J.; Kerk, G.J.M. van der

    1980-01-01

    The synthesis and characterization of the monopyridine complexes of ethylzinc hydride and phenylzinc hydride are described. On treatment with TMED these complexes are converted into R2Zn3H4. TMED species through a combination of ligand-exchange and disproportionation. The formation of organozinc hyd

  13. Hydride morphology and striation formation during delayed hydride cracking in Zr-2.5% Nb

    Energy Technology Data Exchange (ETDEWEB)

    Shek, G.K. [Ontario Hydro Technol., Ont. (Canada). Mater. Technol. Unit; Jovanovic, M.T. [Alberta Univ., Edmonton, AB (Canada). Dept. of Mining, Metallurgical and Petroleum Engineering; Seahra, H. [Ontario Hydro Technol., Ont. (Canada). Mater. Technol. Unit; Ma, Y. [Alberta Univ., Edmonton, AB (Canada). Dept. of Mining, Metallurgical and Petroleum Engineering; Li, D. [Alberta Univ., Edmonton, AB (Canada). Dept. of Mining, Metallurgical and Petroleum Engineering; Eadie, R.L. [Alberta Univ., Edmonton, AB (Canada). Dept. of Mining, Metallurgical and Petroleum Engineering

    1996-08-01

    These experiments were designed to study hydride formation at the crack tip, acoustic emission (AE), potential drop (PD) and striation formation during DHC (delayed hydride cracking) in Zr-2.5% Nb. The test material was taken from an especially extruded pressure tube, which showed similar strength properties to normal pressure tube material but somewhat coarser microstructure. In testing at K{sub I} below 12 MPa {radical}m at both 200 and 250 C very large striations (>40 {mu}m at 200 and >50 {mu}m at 250 C) were produced. In simultaneous monitoring with acoustic emission and potential drop, both AE and PD jumps were shown to be monolithic. The number of striations on the fracture surface corresponded to the number of monolithic AE/PD jumps. Tapered shaped hydrides with the thick end adjacent to the crack tip were observed. These hydrides grew in size during the incubation period until they reached the striation length and then fractured monolithically. However, when K{sub I} was increased beyond about 12 MPa {radical}m for these same specimens, the striation spacing decreased below 30 {mu}m, the monolithic jumping dissolved into more continuous changes in signals, although the smaller striations were still visible on the fracture surface. (orig.).

  14. Hydride morphology and striation formation during delayed hydride cracking in Zr-2.5% Nb

    Science.gov (United States)

    Shek, G. K.; Jovanoviċ, M. T.; Seahra, H.; Ma, Y.; Li, D.; Eadie, R. L.

    1996-08-01

    These experiments were designed to study hydride formation at the crack tip, acoustic emission (AE), potential drop (PD) and striation formation during DHC (delayed hydride cracking) in Zr-2.5% Nb. The test material was taken from an especially extrude pressure tube, which showed similar strength properties to normal pressure tube material but somewhat coarser microstructure. In testing at KI below 12 MPa √m at both 200 and 250°C very large striations (> 40 μ at 200 and >50 μm at 250°C) were produced. In simultaneous monitoring with acoustic emission and potential drop, both AE and PD jumps were shown to be monolithic. The number of striations on the fracture surface corresponded to the number of monolithic AE/PD jumps. Tapered shaped hydrides with the thick end adjacent to the crack tip were observed. These hydrides grew in size during the incubation period until they reached the striation length and then fractured monolithically. However, when KI was increased beyond about 12 MPa √m for these same specimens, the striation spacing decreased below 30 μ, the monolithic jumping dissolved into more continuous changes in signals, although the smaller striations were still visible on the fracture surface.

  15. High ramp rate thermogravimetric analysis of zirconium(II) hydride and titanium(II) hydride

    Energy Technology Data Exchange (ETDEWEB)

    Licavoli, Joseph J., E-mail: jjlicavo@mtu.edu; Sanders, Paul G., E-mail: sanders@mtu.edu

    2015-09-20

    Highlights: • A unique arc image device has been proposed for high ramp rate thermogravimetry. • Powder oxidation influences decomposition kinetics at temperatures below 933 K. • Particle size has a negligible effect on TiH{sub 2} decomposition behavior. • Improvements to the device are required to conduct accurate kinetic analysis. - Abstract: Zirconium and titanium hydride are utilized in liquid phase metal foam processing techniques. This application results in immediate exposure to molten metal and almost immediate decomposition at high temperatures. Most decomposition characterization techniques utilize slow heating rates and are unable to capture the decomposition behavior of hydrides under foam processing conditions. In order to address this issue a specialized high ramp rate thermogravimetric analyzer was created from a xenon arc image refiner. In addition to thermogravimetry, complimentary techniques including X-ray diffraction and scanning electron microscopy were used to characterize hydride decomposition and compare the results to literature. Hydrides were partially oxidized and separated into particles size ranges to evaluate the influence of these factors on decomposition. Oxidizing treatments were found to decrease decomposition rate only at temperatures below 933 K (660 °C) while particle size effects appeared to be negligible. Several improvements to the unique TGA apparatus presented in the current work are suggested to allow reliable kinetic modeling and analysis.

  16. Hydrogen fuel - Universal energy

    Science.gov (United States)

    Prince, A. G.; Burg, J. A.

    The technology for the production, storage, transmission, and consumption of hydrogen as a fuel is surveyed, with the physical and chemical properties of hydrogen examined as they affect its use as a fuel. Sources of hydrogen production are described including synthesis from coal or natural gas, biomass conversion, thermochemical decomposition of water, and electrolysis of water, of these only electrolysis is considered economicially and technologically feasible in the near future. Methods of production of the large quantities of electricity required for the electrolysis of sea water are explored: fossil fuels, hydroelectric plants, nuclear fission, solar energy, wind power, geothermal energy, tidal power, wave motion, electrochemical concentration cells, and finally ocean thermal energy conversion (OTEC). The wind power and OTEC are considered in detail as the most feasible approaches. Techniques for transmission (by railcar or pipeline), storage (as liquid in underwater or underground tanks, as granular metal hydride, or as cryogenic liquid), and consumption (in fuel cells in conventional power plants, for home usage, for industrial furnaces, and for cars and aircraft) are analyzed. The safety problems of hydrogen as a universal fuel are discussed, noting that they are no greater than those for conventional fuels.

  17. Growth and decomposition of Lithium and Lithium hydride on Nickel

    DEFF Research Database (Denmark)

    Engbæk, Jakob; Nielsen, Gunver; Nielsen, Jane Hvolbæk

    2006-01-01

    In this paper we have investigated the deposition, structure and decomposition of lithium and lithium-hydride films on a nickel substrate. Using surface sensitive techniques it was possible to quantify the deposited Li amount, and to optimize the deposition procedure for synthesizing lithium......-hydride films. By only making thin films of LiH it is possible to study the stability of these hydride layers and compare it directly with the stability of pure Li without having any transport phenomena or adsorbed oxygen to obscure the results. The desorption of metallic lithium takes place at a lower...... temperature than the decomposition of the lithium-hydride, confirming the high stability and sintering problems of lithium-hydride making the storage potential a challenge. (c) 2006 Elsevier B.V. All rights reserved....

  18. Helium trapping at erbium oxide precipitates in erbium hydride

    Energy Technology Data Exchange (ETDEWEB)

    Foiles, Stephen M. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Battaile, Corbett Chandler [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2016-02-01

    The formation of He bubbles in erbium tritides is a significant process in the aging of these materials. Due to the long-standing uncertainty about the initial nucleation process of these bubbles, there is interest in mechanisms that can lead to the localization of He in erbium hydrides. Previous work has been unable to identify nucleation sites in homogeneous erbium hydride. This work builds on the experimental observation that erbium hydrides have nano- scale erbium oxide precipitates due to the high thermodynamic stability of erbium oxide and the ubiquitous presence of oxygen during materials processing. Fundamental DFT calculations indicate that the He is energetically favored in the oxide relative to the bulk hydride. Activation energies for the motion of He in the oxide and at the oxide-hydride interface indicate that trapping is kinetically feasible. A simple kinetic Monte Carlo model is developed that demonstrates the degree of trapping of He as a function of temperature and oxide fraction.

  19. Photochromism of rare-earth metal-oxy-hydrides

    Science.gov (United States)

    Nafezarefi, F.; Schreuders, H.; Dam, B.; Cornelius, S.

    2017-09-01

    Recently, thin films of yttrium oxy-hydride (YOxHy) were reported to show an unusual color-neutral photochromic effect promising for application in smart windows. Our present work demonstrates that also oxy-hydrides based on Gd, Dy, and Er have photochromic properties and crystal structures similar to YOxHy. Compared to YOxHy, the optical bandgaps of the lanthanide based oxy-hydrides are smaller while photochromic contrast and kinetics show large variation among different cations. Based on these findings, we propose that cation alloying is a viable pathway to tailor the photochromic properties of oxy-hydride materials. Furthermore, we predict that the oxy-hydrides of the other lanthanides are also potentially photochromic.

  20. Metal hydrides for concentrating solar thermal power energy storage

    Science.gov (United States)

    Sheppard, D. A.; Paskevicius, M.; Humphries, T. D.; Felderhoff, M.; Capurso, G.; Bellosta von Colbe, J.; Dornheim, M.; Klassen, T.; Ward, P. A.; Teprovich, J. A.; Corgnale, C.; Zidan, R.; Grant, D. M.; Buckley, C. E.

    2016-04-01

    The development of alternative methods for thermal energy storage is important for improving the efficiency and decreasing the cost of concentrating solar thermal power. We focus on the underlying technology that allows metal hydrides to function as thermal energy storage (TES) systems and highlight the current state-of-the-art materials that can operate at temperatures as low as room temperature and as high as 1100 °C. The potential of metal hydrides for thermal storage is explored, while current knowledge gaps about hydride properties, such as hydride thermodynamics, intrinsic kinetics and cyclic stability, are identified. The engineering challenges associated with utilising metal hydrides for high-temperature TES are also addressed.

  1. A self-regulating hydrogen generator for micro fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Moghaddam, Saeed; Pengwang, Eakkachai; Shannon, Mark A. [Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, 1206 West Green Street, Urbana, IL 61801 (United States); Masel, Richard I. [Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, 213 Roger Adams Lab, 600 S. Mathews, Urbana, IL 61801 (United States)

    2008-10-15

    The ever-increasing power demands and miniaturization of portable electronics, micro-sensors and actuators, and emerging technologies such as cognitive arthropods have created a significant interest in development of micro fuel cells. One of the major challenges in development of hydrogen micro fuel cells is the fabrication and integration of auxiliary systems for generating, regulating, and delivering hydrogen gas to the membrane electrode assembly (MEA). In this paper, we report the development of a hydrogen gas generator with a micro-scale control system that does not consume any power. The hydrogen generator consists of a hydride reactor and a water reservoir, with a regulating valve separating them. The regulating valve consists of a port from the water reservoir and a movable membrane with via holes that permit water to flow from the reservoir to the hydride reactor. Water flows towards the hydride reactor, but stops within the membrane via holes due to capillary forces. Water vapor then diffuses from the via holes into the hydride reactor resulting in generation of hydrogen gas. When the rate of hydrogen consumed by the MEA is lower than the generation rate, gas pressure builds up inside the hydride reactor, deflecting the membrane, closing the water regulator valve, until the pressure drops, whereby the valve reopens. We have integrated the self-regulating micro hydrogen generator to a MEA and successfully conducted fuel cell tests under varying load conditions. (author)

  2. A self-regulating hydrogen generator for micro fuel cells

    Science.gov (United States)

    Moghaddam, Saeed; Pengwang, Eakkachai; Masel, Richard I.; Shannon, Mark A.

    The ever-increasing power demands and miniaturization of portable electronics, micro-sensors and actuators, and emerging technologies such as cognitive arthropods have created a significant interest in development of micro fuel cells. One of the major challenges in development of hydrogen micro fuel cells is the fabrication and integration of auxiliary systems for generating, regulating, and delivering hydrogen gas to the membrane electrode assembly (MEA). In this paper, we report the development of a hydrogen gas generator with a micro-scale control system that does not consume any power. The hydrogen generator consists of a hydride reactor and a water reservoir, with a regulating valve separating them. The regulating valve consists of a port from the water reservoir and a movable membrane with via holes that permit water to flow from the reservoir to the hydride reactor. Water flows towards the hydride reactor, but stops within the membrane via holes due to capillary forces. Water vapor then diffuses from the via holes into the hydride reactor resulting in generation of hydrogen gas. When the rate of hydrogen consumed by the MEA is lower than the generation rate, gas pressure builds up inside the hydride reactor, deflecting the membrane, closing the water regulator valve, until the pressure drops, whereby the valve reopens. We have integrated the self-regulating micro hydrogen generator to a MEA and successfully conducted fuel cell tests under varying load conditions.

  3. Monitoring and control of a hydrogen production and storage system consisting of water electrolysis and metal hydrides

    Energy Technology Data Exchange (ETDEWEB)

    Perez-Herranz, V.; Perez-Page, M. [Departamento de Ingenieria Quimica y Nuclear. Universidad Politecnica de Valencia. Camino de Vera S/N, 46022 Valencia (Spain); Beneito, R. [Area de Energia. Departamento de Gestion e Innovacion. Instituto Tecnologico del Juguete (AIJU). Avda. Industria 23, 03440 Ibi, Alicante (Spain)

    2010-02-15

    Renewable energy sources such as wind turbines and solar photovoltaic are energy sources that cannot generate continuous electric power. The seasonal storage of solar or wind energy in the form of hydrogen can provide the basis for a completely renewable energy system. In this way, water electrolysis is a convenient method for converting electrical energy into a chemical form. The power required for hydrogen generation can be supplied through a photovoltaic array. Hydrogen can be stored as metal hydrides and can be converted back into electricity using a fuel cell. The elements of these systems, i.e. the photovoltaic array, electrolyzer, fuel cell and hydrogen storage system in the form of metal hydrides, need a control and monitoring system for optimal operation. This work has been performed within a Research and Development contract on Hydrogen Production granted by Solar Iniciativas Tecnologicas, S.L. (SITEC), to the Politechnic University of Valencia and to the AIJU, and deals with the development of a system to control and monitor the operation parameters of an electrolyzer and a metal hydride storage system that allow to get a continuous production of hydrogen. (author)

  4. Heterogeneous reduction of carbon dioxide by hydride-terminated silicon nanocrystals

    Science.gov (United States)

    Sun, Wei; Qian, Chenxi; He, Le; Ghuman, Kulbir Kaur; Wong, Annabelle P. Y.; Jia, Jia; Jelle, Abdinoor A.; O'Brien, Paul G.; Reyes, Laura M.; Wood, Thomas E.; Helmy, Amr S.; Mims, Charles A.; Singh, Chandra Veer; Ozin, Geoffrey A.

    2016-08-01

    Silicon constitutes 28% of the earth's mass. Its high abundance, lack of toxicity and low cost coupled with its electrical and optical properties, make silicon unique among the semiconductors for converting sunlight into electricity. In the quest for semiconductors that can make chemicals and fuels from sunlight and carbon dioxide, unfortunately the best performers are invariably made from rare and expensive elements. Here we report the observation that hydride-terminated silicon nanocrystals with average diameter 3.5 nm, denoted ncSi:H, can function as a single component heterogeneous reducing agent for converting gaseous carbon dioxide selectively to carbon monoxide, at a rate of hundreds of μmol h-1 g-1. The large surface area, broadband visible to near infrared light harvesting and reducing power of SiH surface sites of ncSi:H, together play key roles in this conversion. Making use of the reducing power of nanostructured hydrides towards gaseous carbon dioxide is a conceptually distinct and commercially interesting strategy for making fuels directly from sunlight.

  5. Nanostructured Magnesium Hydride for Reversible Hydrogen Storage

    Science.gov (United States)

    de Rango, P.; Chaise, A.; Fruchart, D.; Miraglia, S.; Marty, Ph.

    2013-05-01

    The aim of this work was to develop suitable materials to store hydrogen in a solid state. A systematic investigation of the co-milling process of magnesium hydride with a transition metal was undertaken in order to produce nanostructured and highly reactive powders. The initiating role of the transition metal was evidenced by in situ neutron diffraction experiments. High performances in terms of thermal and mechanical behavior were achieved introducing expanded graphite and compacting the mixture to form composite materials. Absorption and desorption kinetics have been measured versus temperature and H2 pressure.

  6. Lithium hydride - A space age shielding material

    Science.gov (United States)

    Welch, F. H.

    1974-01-01

    Men and materials performing in the environment of an operating nuclear reactor require shielding from the escaping neutron particles and gamma rays. For efficient shielding from gamma rays, dense, high atomic number elements such as iron, lead, or tungsten are required, whereas light, low atomic number elements such as hydrogen, lithium, or beryllium are required for efficient neutron shielding. The use of lithium hydride (LiH) as a highly efficient neutron-shielding material is considered. It contains, combined into a single, stable compound, two of the elements most effective in attenuating and absorbing neutrons.

  7. Highly Concentrated Palladium Hydrides/Deuterides; Theory

    Energy Technology Data Exchange (ETDEWEB)

    Papaconstantopoulos, Dimitrios

    2013-11-26

    Accomplishments are reported in these areas: tight-binding molecular dynamics study of palladium; First-principles calculations and tight-binding molecular dynamics simulations of the palladium-hydrogen system; tight-binding studies of bulk properties and hydrogen vacancies in KBH{sub 4}; tight-binding study of boron structures; development of angular dependent potentials for Pd-H; and density functional and tight-binding calculations for the light-hydrides NaAlH4 and NaBH4

  8. Development of nickel-metal hydride cell

    Science.gov (United States)

    Kuwajima, Saburo; Kamimori, Nolimits; Nakatani, Kensuke; Yano, Yoshiaki

    1993-01-01

    National Space Development Agency of Japan (NASDA) has conducted the research and development (R&D) of battery cells for space use. A new R&D program about a Nickel-Metal Hydride (Ni-MH) cell for space use from this year, based on good results in evaluations of commercial Ni-MH cells in Tsukuba Space Center (TKSC), was started. The results of those commercial Ni-MH cell's evaluations and recent status about the development of Ni-MH cells for space use are described.

  9. Fuel cells : a viable fossil fuel alternative

    Energy Technology Data Exchange (ETDEWEB)

    Paduada, M.

    2007-02-15

    This article presented a program initiated by Natural Resources Canada (NRCan) to develop proof-of-concept of underground mining vehicles powered by fuel cells in order to eliminate emissions. Recent studies on American and Canadian underground mines provided the basis for estimating the operational cost savings of switching from diesel to fuel cells. For the Canadian mines evaluated, the estimated ventilation system operating cost reductions ranged from 29 per cent to 75 per cent. In order to demonstrate the viability of a fuel cell-powered vehicle, NRCan has designed a modified Caterpillar R1300 loader with a 160 kW hybrid power plant in which 3 stacks of fuel cells deliver up to 90 kW continuously, and a nickel-metal hydride battery provides up to 70 kW. The battery subsystem transiently boosts output to meet peak power requirements and also accommodates regenerative braking. Traction for the loader is provided by a brushless permanent magnet traction motor. The hydraulic pump motor is capable of a 55 kW load continuously. The loader's hydraulic and traction systems are operated independently. Future fuel cell-powered vehicles designed by the program may include a locomotive and a utility vehicle. Future mines running their operations with hydrogen-fueled equipment may also gain advantages by employing fuel cells in the operation of handheld equipment such as radios, flashlights, and headlamps. However, the proton exchange membrane (PEM) fuel cells used in the project are prohibitively expensive. The catalytic content of a fuel cell can add hundreds of dollars per kW of electric output. Production of catalytic precious metals will be strongly connected to the scale of use and acceptance of fuel cells in vehicles. In addition, the efficiency of hydrogen production and delivery is significantly lower than the well-to-tank efficiency of many conventional fuels. It was concluded that an adequate hydrogen infrastructure will be required for the mining industry

  10. Hydrogen vehicle fueling station

    Energy Technology Data Exchange (ETDEWEB)

    Daney, D.E.; Edeskuty, F.J.; Daugherty, M.A. [Los Alamos National Lab., NM (United States)] [and others

    1995-09-01

    Hydrogen fueling stations are an essential element in the practical application of hydrogen as a vehicle fuel, and a number of issues such as safety, efficiency, design, and operating procedures can only be accurately addressed by a practical demonstration. Regardless of whether the vehicle is powered by an internal combustion engine or fuel cell, or whether the vehicle has a liquid or gaseous fuel tank, the fueling station is a critical technology which is the link between the local storage facility and the vehicle. Because most merchant hydrogen delivered in the US today (and in the near future) is in liquid form due to the overall economics of production and delivery, we believe a practical refueling station should be designed to receive liquid. Systems studies confirm this assumption for stations fueling up to about 300 vehicles. Our fueling station, aimed at refueling fleet vehicles, will receive hydrogen as a liquid and dispense it as either liquid, high pressure gas, or low pressure gas. Thus, it can refuel any of the three types of tanks proposed for hydrogen-powered vehicles -- liquid, gaseous, or hydride. The paper discusses the fueling station design. Results of a numerical model of liquid hydrogen vehicle tank filling, with emphasis on no vent filling, are presented to illustrate the usefulness of the model as a design tool. Results of our vehicle performance model illustrate our thesis that it is too early to judge what the preferred method of on-board vehicle fuel storage will be in practice -- thus our decision to accommodate all three methods.

  11. NATO Advanced Study Institute on Metal Hydrides

    CERN Document Server

    1981-01-01

    In the last five years, the study of metal hydrides has ex­ panded enormously due to the potential technological importance of this class of materials in hydrogen based energy conversion schemes. The scope of this activity has been worldwide among the industrially advanced nations. There has been a consensus among researchers in both fundamental and applied areas that a more basic understanding of the properties of metal/hydrogen syster;,s is required in order to provide a rational basis for the selection of materials for specific applications. The current worldwide need for and interest in research in metal hydrides indicated the timeliness of an Advanced Study Insti­ tute to provide an in-depth view of the field for those active in its various aspects. The inclusion of speakers from non-NATO coun­ tries provided the opportunity for cross-fertilization of ideas for future research. While the emphasis of the Institute was on basic properties, there was a conscious effort to stimulate interest in the applic...

  12. From permanent magnets to rechargeable hydride electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Willems, J.J.G.; Buschow, K.H.J.

    1987-02-15

    A brief historical survey is given of how the study of coercitivity mechanisms in SmCo/sub 5/ permanent-magnet materials eventually led to the discovery of the favourable hydrogen sorption properties of the compound LaNi/sub 5/. It is shown how continued research by many investigators dealing with a variety of different physical and chemical properties has resulted in an advanced understanding of some of the principles that govern hydrogen absorption and which are responsible for the changes in physical properties that accompany it. The problems associated with various applications of LaNi/sub 5/-based hydrogen-storage materials are also briefly discussed. A large part of this paper is devoted to the applicability of LaNi/sub 5/-type materials in batteries. Research in this area has resulted in the development of a new type of rechargeable battery: the nickel-hydride cell. This battery can be charged and discharged at high rates and is relatively insensitive to overcharging and overdischarging. Special attention is given to the nature of the electrode degradation process and the effect of composition variations in LaNi/sub 5/-related materials on the lifetime of the corresponding hydride electrodes when subjected to severe electrochemical charge-discharge cycles.

  13. Metal hydrides for lithium-ion batteries.

    Science.gov (United States)

    Oumellal, Y; Rougier, A; Nazri, G A; Tarascon, J-M; Aymard, L

    2008-11-01

    Classical electrodes for Li-ion technology operate via an insertion/de-insertion process. Recently, conversion electrodes have shown the capability of greater capacity, but have so far suffered from a marked hysteresis in voltage between charge and discharge, leading to poor energy efficiency and voltages. Here, we present the electrochemical reactivity of MgH(2) with Li that constitutes the first use of a metal-hydride electrode for Li-ion batteries. The MgH(2) electrode shows a large, reversible capacity of 1,480 mAh g(-1) at an average voltage of 0.5 V versus Li(+)/Li(o) which is suitable for the negative electrode. In addition, it shows the lowest polarization for conversion electrodes. The electrochemical reaction results in formation of a composite containing Mg embedded in a LiH matrix, which on charging converts back to MgH(2). Furthermore, the reaction is not specific to MgH(2), as other metal or intermetallic hydrides show similar reactivity towards Li. Equally promising, the reaction produces nanosized Mg and MgH(2), which show enhanced hydrogen sorption/desorption kinetics. We hope that such findings can pave the way for designing nanoscale active metal elements with applications in hydrogen storage and lithium-ion batteries.

  14. Molecular rare-earth-metal hydrides in non-cyclopentadienyl environments.

    Science.gov (United States)

    Fegler, Waldemar; Venugopal, Ajay; Kramer, Mathias; Okuda, Jun

    2015-02-02

    Molecular hydrides of the rare-earth metals play an important role as homogeneous catalysts and as counterparts of solid-state interstitial hydrides. Structurally well-characterized non-metallocene-type hydride complexes allow the study of elementary reactions that occur at rare-earth-metal centers and of catalytic reactions involving bonds between rare-earth metals and hydrides. In addition to neutral hydrides, cationic derivatives have now become available.

  15. Filiform-mode hydride corrosion of uranium surfaces

    Science.gov (United States)

    Hill, M. A.; Schulze, R. K.; Bingert, J. F.; Field, R. D.; McCabe, R. J.; Papin, P. A.

    2013-11-01

    Hydride nucleation and growth has previously been studied in uranium with an air-formed oxide. Preferred directional growth of uranium hydride has not been observed, presumably due to the constraint of the oxide layer and/or the presence of a surface layer distorted by mechanical grinding and polishing. Instead, hydrides typically first form as subsurface blisters that do not exhibit preferred growth directionality. By eliminating the strained surface layer through electropolishing, removing the natural oxide through ion sputtering, avoiding exposure of the uranium to air, and then exposing uranium to high purity hydrogen in an environmental cell, hydride growth patterns emerge that correspond to defect structures within the microstructure. These hydride growth patterns are similar to filiform corrosion, a type of corrosion that frequently forms under thin protective films. This work describes the first reported observation of filiform-like corrosion in uranium. The uranium hydride initiates at defects, but grows into filaments up to 20 μm wide, and tends to form in straight lines, largely propagating along twin boundaries. Propagation is driven by hydrogen reaction at the filament head, promoted by more efficient delivery of reactant. However, this phenomenon does not involve an electrochemical process associated with conventional filiform corrosion and is therefore described as filiform-like. Hydride growth was observed using optical microscopy for a period of nearly three years. Sample characterization included automated electron backscatter diffraction (EBSD) measurements to determine growth directions. Observation of this anomalous hydride growth provides clues as to the mechanisms operating in uranium hydriding for more conventionally prepared sample surfaces.

  16. Hydrogen storage in metal hydrides and complex hydrides; Wasserstoffspeicherung in Metall- und komplexen Hydriden - Schlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Bielmann, M.; Zuettel, A.

    2007-07-01

    This final report for the Swiss Federal Office of Energy (SFOE), reports on work done in 2007 at the Swiss Federal Laboratories for Materials Science and Technology EMPA on the storage of hydrogen in metal hydrides and complex hydrides. In particular, the use of tetrahydroborates is noted. The potential of this class of materials is stressed. The structures at room-temperature were examined using neutron and X-ray diffraction methods. Thermodynamic methods helped determine the thermodynamic stability of the materials. Also, a complete energy diagram for the materials was developed. The use of silicon oxide to reduce activation energy and its catalytic effects are discussed. The challenges placed by desorption mechanisms are noted. The authors note that reversibility is basically proven.

  17. Metal hydride/chemical heat-pump development project. Phase I. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Argabright, T.A.

    1982-02-01

    The metal hydride/chemical heat pump (MHHP) is a chemical heat pump containing two hydrides for the storage and/or recovery of thermal energy. It utilizes the heat of reaction of hydrogen with specific metal alloys. The MHHP design can be tailored to provide heating and/or cooling or temperature upgrading over a wide range of input and ambient temperatures. The system can thus be used with a variety of heat sources including waste heat, solar energy or a fossil fuel. The conceptual design of the MHHP was developed. A national market survey including a study of applications and market sectors was conducted. The technical tasks including conceptual development, thermal and mechanical design, laboratory verification of design and material performance, cost analysis and the detailed design of the Engineering Development Test Unit (EDTU) were performed. As a result of the market study, the temperature upgrade cycle of the MHHP was chosen for development. Operating temperature ranges for the upgrader were selected to be from 70 to 110/sup 0/C (160 to 230/sup 0/F) for the source heat and 140 to 190/sup 0/C (280 to 375/sup 0/F) for the product heat. These ranges are applicable to many processes in industries such as food, textile, paper and pulp, and chemical. The hydride pair well suited for these temperatures is LaNi/sub 5//LaNi/sub 4/ /sub 5/Al/sub 0/ /sub 5/. The EDTU was designed for the upgrade cycle. It is a compact finned tube arrangement enclosed in a pressure vessel. This design incorporates high heat transfer and low thermal mass in a system which maximizes the coefficient of performance (COP). It will be constructed in Phase II. Continuation of this effort is recommended.

  18. Mechanistic Insights into Ring Cleavage and Contraction of Benzene over a Titanium Hydride Cluster.

    Science.gov (United States)

    Kang, Xiaohui; Luo, Gen; Luo, Lun; Hu, Shaowei; Luo, Yi; Hou, Zhaomin

    2016-09-14

    Carbon-carbon bond cleavage of benzene by transition metals is of great fundamental interest and practical importance, as this transformation is involved in the production of fuels and other important chemicals in the industrial hydrocracking of naphtha on solid catalysts. Although this transformation is thought to rely on cooperation of multiple metal sites, molecular-level information on the reaction mechanism has remained scarce to date. Here, we report the DFT studies of the ring cleavage and contraction of benzene by a molecular trinuclear titanium hydride cluster. Our studies suggest that the reaction is initiated by benzene coordination, followed by H2 release, C6H6 hydrometalation, repeated C-C and C-H bond cleavage and formation to give a MeC5H4 unit, and insertion of a Ti atom into the MeC5H4 unit with release of H2 to give a metallacycle product. The C-C bond cleavage and ring contraction of toluene can also occur in a similar fashion, though some details are different due to the presence of the methyl substituent. Obviously, the facile release of H2 from the metal hydride cluster to provide electrons and to alter the charge population at the metal centers, in combination with the flexible metal-hydride connections and dynamic redox behavior of the trimetallic framework, has enabled this unusual transformation to occur. This work has not only provided unprecedented insights into the activation and transformation of benzene over a multimetallic framework but it may also offer help in the design of new molecular catalysts for the activation and transformation of inactive aromatics.

  19. Acute arsenious hydride intoxication. Four cases

    Energy Technology Data Exchange (ETDEWEB)

    Gosselin, B.; Mathieu, D.; Desprez-Nolf, M.; Cosson, A.; Goudemand, J.; Haguenoer, J.M.; Wattel, F.

    1982-02-06

    While engaged in the repair of a zinc furnace, 4 workers were accidentally exposed to arsenious hydride (AsH3) fumes. Acute intravascular haemolysis developed within a few hours. On admission, the patients immediately underwent exsanguino-transfusion; 8.2 to 10.2 l of blood were exchanged through a continuous perfusion pump at the rate of 1 l/hour. Two patients resumed diuresis during transfusion, but the other two required repeated haemodialysis. Between the 10th and 30th days, while renal function was gradually returning to normal, mildly megaloblastic anaemia developed. This was followed during the 3rd month by clinical and electric signs of polyneuritis of the lower and upper limbs, which subsequently regressed. Regular measurements of arsenic levels in the blood and urine were performed between and during exsanguino-transfusion and haemodialysis.

  20. Hydrogen desorption from nanostructured magnesium hydride composites

    Directory of Open Access Journals (Sweden)

    Brdarić Tanja P.

    2007-01-01

    Full Text Available The influence of 3d transition metal addition (Fe, Co and Ni on the desorption properties of magnesium hydride were studied. The ball milling of MgH2-3d metal blends was performed under Ar. Microstructural and morphological characterization were performed by XRD and SEM analysis, while the hydrogen desorption properties were investigated by DSC. The results show a strong correlation between the morphology and thermal stability of the composites. The complex desorption behavior (the existence of more than one desorption peak was correlated with the dispersion of the metal additive particles that appear to play the main role in the desorption. The desorption temperature can be reduced by more than 100 degrees if Fe is added as additive. The activation energy for H2 desorption from the MgH2-Fe composite is 120 kJ/mol, implying that diffusion controls the dehydration process.

  1. Review of magnesium hydride-based materials: development and optimisation

    NARCIS (Netherlands)

    Crivello, J. -C.; Dam, B.; Denys, R. V.; Dornheim, M.; Grant, D. M.; Huot, J.; Jensen, T. R.; de Jongh, P.|info:eu-repo/dai/nl/186125372; Latroche, M.; Milanese, C.; Milcius, D.; Walker, G. S.; Webb, C. J.; Zlotea, C.; Yartys, V. A.

    Magnesium hydride has been studied extensively for applications as a hydrogen storage material owing to the favourable cost and high gravimetric and volumetric hydrogen densities. However, its high enthalpy of decomposition necessitates high working temperatures for hydrogen desorption while the

  2. Direct observation of hydrides formation in cavity-grade niobium

    Directory of Open Access Journals (Sweden)

    F. Barkov

    2012-12-01

    Full Text Available Niobium is an important technological superconductor used to make radio frequency cavities for particle accelerators. Using laser confocal microscopy we have directly investigated hydride precipitates formation in cavity-grade niobium at 77 and 140 K. We have found that large hydrides were usually formed after chemical or mechanical treatments, which are known to lead to a strong degradation of the quality factor known as Q disease. From our experiments we can conclude that hydrides causing Q disease are islands with a characteristic thickness of ≳100  nm and in-plane dimensions 1–10  μm. Our results show that mechanical polishing uploads a lot of hydrogen into bulk niobium while electropolishing leads to a mild contamination. Vacuum treatments at 600–800°C are demonstrated to preclude large hydride formation in line with the absence of Q disease in similarly treated cavities.

  3. Materials science of Mg-Ni-based new hydrides

    Energy Technology Data Exchange (ETDEWEB)

    Orimo, S.; Fujii, H. [Hiroshima Univ. (Japan). Faculty of Integrated Arts and Sciences

    2001-02-01

    One of the advantageous functional properties of Mg alloys (or compounds) is to exhibit the reversible hydriding reaction. In this paper, we present our systematic studies regarding the relationship between nanometer- or atomistic-scale structures and the specific hydriding properties of the Mg-Ni binary system, such as(1) nanostructured (n)-Mg{sub 2}Ni, (2) a mixture of n-Mg{sub 2}Ni and amorphous (a)-MgNi,(3) pure a-MgNi, and(4) n-MgNi{sub 2}. Further studies on(5) an a-MgNi-based system for clarifying the effect of the short-range ordering on the structural and hydriding properties and(6) a MgNi{sub 2}-based system for synthesizing the new Laves phase structure are also presented. The materials science of Mg-Ni-based new hydrides will provide indispensable knowledge for practically developing the Mg alloys as hydrogen-storage materials. (orig.)

  4. Structure and bonding of second-row hydrides

    OpenAIRE

    Blinder, S. M.

    2014-01-01

    The atomic orbitals, hybridization and chemical bonding of the most common hydrides of boron, carbon, nitrogen and oxygen are described. This can be very instructive for beginning students in chemistry and chemical physics.

  5. Artificial exomuscle investigations for applications--metal hydride.

    Science.gov (United States)

    Crevier, Marie-Charlotte; Richard, Martin; Rittenhouse, D Matheson; Roy, Pierre-Olivier; Bédard, Stéphane

    2007-03-01

    In pursuing the development of bionic devices, Victhom identified a need for technologies that could replace current motorized systems and be better integrated into the human body motion. The actuators used to obtain large displacements are noisy, heavy, and do not adequately reproduce human muscle behavior. Subsequently, a project at Victhom was devoted to the development of active materials to obtain an artificial exomuscle actuator. An exhaustive literature review was done at Victhom to identify promising active materials for the development of artificial muscles. According to this review, metal hydrides were identified as a promising technology for artificial muscle development. Victhom's investigations focused on determining metal hydride actuator potential in the context of bionics technology. Based on metal hydride properties and artificial muscle requirements such as force, displacement and rise time, an exomuscle was built. In addition, a finite element model, including heat and mass transfer in the metal hydride, was developed and implemented in FEMLAB software.

  6. DETERMINATION OF METAL HYDRIDE SYSTEMS CHARACTERISTICS WHILE HEATING

    Directory of Open Access Journals (Sweden)

    Yu. Kluchka

    2012-01-01

    Full Text Available Experimental dependence of the pressure of hydrogen in the hydride cartridge when it is heated is obtained. Experimental data prove the theoretical values with an accuracy of ≈ 6%.

  7. Bipolar Nickel-Metal Hydride Battery Being Developed

    Science.gov (United States)

    Manzo, Michelle A.

    1998-01-01

    The NASA Lewis Research Center has contracted with Electro Energy, Inc., to develop a bipolar nickel-metal hydride battery design for energy storage on low-Earth-orbit satellites. The objective of the bipolar nickel-metal hydride battery development program is to approach advanced battery development from a systems level while incorporating technology advances from the lightweight nickel electrode field, hydride development, and design developments from nickel-hydrogen systems. This will result in a low-volume, simplified, less-expensive battery system that is ideal for small spacecraft applications. The goals of the program are to develop a 1-kilowatt, 28-volt (V), bipolar nickel-metal hydride battery with a specific energy of 100 watt-hours per kilogram (W-hr/kg), an energy density of 250 W-hr/liter and a 5-year life in low Earth orbit at 40-percent depth-of-discharge.

  8. High-pressure synthesis of noble metal hydrides.

    Science.gov (United States)

    Donnerer, Christian; Scheler, Thomas; Gregoryanz, Eugene

    2013-04-07

    The formation of hydride phases in the noble metals copper, silver, and gold was investigated by in situ x-ray diffraction at high hydrogen pressures. In the case of copper, a novel hexagonal hydride phase, Cu2H, was synthesised at pressures above 18.6 GPa. This compound exhibits an anti-CdI2-type structure, where hydrogen atoms occupy every second layer of octahedral interstitial sites. In contrast to chemically produced CuH, this phase does not show a change in compressibility compared to pure copper. Furthermore, repeated compression (after decomposition of Cu2H) led to the formation of cubic copper hydride at 12.5 GPa, a phenomenon attributed to an alteration of the microstructure during dehydrogenation. No hydrides of silver (up to 87 GPa) or gold (up to 113 GPa) were found at both room and high temperatures.

  9. Artificial exomuscle investigations for applications-metal hydride

    Energy Technology Data Exchange (ETDEWEB)

    Crevier, Marie-Charlotte; Richard, Martin; Rittenhouse, D Matheson; Roy, Pierre-Olivier; Bedard, Stephane [Victhom Human Bionics Inc., Saint-Augustin-de-Desmaures, QC (Canada)

    2007-03-01

    In pursuing the development of bionic devices, Victhom identified a need for technologies that could replace current motorized systems and be better integrated into the human body motion. The actuators used to obtain large displacements are noisy, heavy, and do not adequately reproduce human muscle behavior. Subsequently, a project at Victhom was devoted to the development of active materials to obtain an artificial exomuscle actuator. An exhaustive literature review was done at Victhom to identify promising active materials for the development of artificial muscles. According to this review, metal hydrides were identified as a promising technology for artificial muscle development. Victhom's investigations focused on determining metal hydride actuator potential in the context of bionics technology. Based on metal hydride properties and artificial muscle requirements such as force, displacement and rise time, an exomuscle was built. In addition, a finite element model, including heat and mass transfer in the metal hydride, was developed and implemented in FEMLAB software. (review article)

  10. Out-of-pile accelerated hydriding of Zircaloy fasteners

    Energy Technology Data Exchange (ETDEWEB)

    Clayton, J.C.

    1979-10-01

    Mechanical joints between Zircaloy and nickel-bearing alloys, mainly the Zircaloy-4/Inconel-600 combination, were exposed to water at 450/sup 0/F and 520/sup 0/F to study hydriding of Zircaloy in contact with a dissimilar metal. Accelerated hydriding of the Zircaloy occurred at both temperatures. At 450/sup 0/F the dissolved hydrogen level of the water was over ten times that at 520/sup 0/F. At 520/sup 0/F the initially high hydrogen ingress rate decreased rapidly as exposure time increased and was effectively shut off in about 25 days. Severely hydrided Zircaloy components successfully withstood thermal cycling and mechanical testing. Chromium plating of the nickel-bearing parts was found to be an effective and practical barrier in preventing nickel-alloy smearing and accelerated hydriding of Zircaloy.

  11. Hydrogen storage in sodium aluminum hydride.

    Energy Technology Data Exchange (ETDEWEB)

    Ozolins, Vidvuds; Herberg, J.L. (Lawrence Livermore National Laboratories, Livermore, CA); McCarty, Kevin F.; Maxwell, Robert S. (Lawrence Livermore National Laboratories, Livermore, CA); Stumpf, Roland Rudolph; Majzoub, Eric H.

    2005-11-01

    Sodium aluminum hydride, NaAlH{sub 4}, has been studied for use as a hydrogen storage material. The effect of Ti, as a few mol. % dopant in the system to increase kinetics of hydrogen sorption, is studied with respect to changes in lattice structure of the crystal. No Ti substitution is found in the crystal lattice. Electronic structure calculations indicate that the NaAlH{sub 4} and Na{sub 3}AlH{sub 6} structures are complex-ionic hydrides with Na{sup +} cations and AlH{sub 4}{sup -} and AlH{sub 6}{sup 3-} anions, respectively. Compound formation studies indicate the primary Ti-compound formed when doping the material at 33 at. % is TiAl{sub 3} , and likely Ti-Al compounds at lower doping rates. A general study of sorption kinetics of NaAlH{sub 4}, when doped with a variety of Ti-halide compounds, indicates a uniform response with the kinetics similar for all dopants. NMR multiple quantum studies of solution-doped samples indicate solvent interaction with the doped alanate. Raman spectroscopy was used to study the lattice dynamics of NaAlH{sub 4}, and illustrated the molecular ionic nature of the lattice as a separation of vibrational modes between the AlH{sub 4}{sup -} anion-modes and lattice-modes. In-situ Raman measurements indicate a stable AlH{sub 4}{sup -} anion that is stable at the melting temperature of NaAlH{sub 4}, indicating that Ti-dopants must affect the Al-H bond strength.

  12. Transmutation, Burn-Up and Fuel Fabrication Trade-Offs in Reduced-Moderation Water Reactor Thorium Fuel Cycles - 13502

    Energy Technology Data Exchange (ETDEWEB)

    Lindley, Benjamin A.; Parks, Geoffrey T. [University of Cambridge, Cambridge (United Kingdom); Franceschini, Fausto [Westinghouse Electric Company LLC, Cranberry Township, PA (United States)

    2013-07-01

    Multiple recycle of long-lived actinides has the potential to greatly reduce the required storage time for spent nuclear fuel or high level nuclear waste. This is generally thought to require fast reactors as most transuranic (TRU) isotopes have low fission probabilities in thermal reactors. Reduced-moderation LWRs are a potential alternative to fast reactors with reduced time to deployment as they are based on commercially mature LWR technology. Thorium (Th) fuel is neutronically advantageous for TRU multiple recycle in LWRs due to a large improvement in the void coefficient. If Th fuel is used in reduced-moderation LWRs, it appears neutronically feasible to achieve full actinide recycle while burning an external supply of TRU, with related potential improvements in waste management and fuel utilization. In this paper, the fuel cycle of TRU-bearing Th fuel is analysed for reduced-moderation PWRs and BWRs (RMPWRs and RBWRs). RMPWRs have the advantage of relatively rapid implementation and intrinsically low conversion ratios. However, it is challenging to simultaneously satisfy operational and fuel cycle constraints. An RBWR may potentially take longer to implement than an RMPWR due to more extensive changes from current BWR technology. However, the harder neutron spectrum can lead to favourable fuel cycle performance. A two-stage fuel cycle, where the first pass is Th-Pu MOX, is a technically reasonable implementation of either concept. The first stage of the fuel cycle can therefore be implemented at relatively low cost as a Pu disposal option, with a further policy option of full recycle in the medium term. (authors)

  13. Electronic structure of ternary hydrides based on light elements

    Energy Technology Data Exchange (ETDEWEB)

    Orgaz, E. [Departamento de Fisica y Quimica Teorica, Facultad de Quimica, Universidad Nacional Autonoma de Mexico, CP 04510 Coyoacan, Mexico, D.F. (Mexico)]. E-mail: orgaz@eros.pquim.unam.mx; Membrillo, A. [Departamento de Fisica y Quimica Teorica, Facultad de Quimica, Universidad Nacional Autonoma de Mexico, CP 04510 Coyoacan, Mexico, D.F. (Mexico); Castaneda, R. [Departamento de Fisica y Quimica Teorica, Facultad de Quimica, Universidad Nacional Autonoma de Mexico, CP 04510 Coyoacan, Mexico, D.F. (Mexico); Aburto, A. [Departamento de Fisica, Facultad de Ciencias, Universidad Nacional Autonoma de Mexico, CP 04510 Coyoacan, Mexico, D.F. (Mexico)

    2005-12-08

    Ternary hydrides based on light elements are interesting owing to the high available energy density. In this work we focused into the electronic structure of a series of known systems having the general formula AMH{sub 4}(A=Li,Na,M=B,Al). We computed the energy bands and the total and partial density of states using the linear-augmented plane waves method. In this report, we discuss the chemical bonding in this series of complex hydrides.

  14. Ab-Initio Study of the Group 2 Hydride Anions

    Science.gov (United States)

    Harris, Joe P.; Wright, Timothy G.; Manship, Daniel R.

    2013-06-01

    The beryllium hydride (BeH)- dimer has recently been shown to be surprisingly strongly bound, with an electronic structure which is highly dependent on internuclear separation. At the equilibrium distance, the negative charge is to be found on the beryllium atom, despite the higher electronegativity of the hydrogen. The current study expands this investigation to the other Group 2 hydrides, and attempts to explain these effects. M. Verdicchio, G. L. Bendazzoli, S. Evangelisti, T. Leininger J. Phys. Chem. A, 117, 192, (2013)

  15. Suppression of the critical temperature in binary vanadium hydrides

    Energy Technology Data Exchange (ETDEWEB)

    Dolan, M.D., E-mail: michael.dolan@csiro.au [CSIRO Energy Technology, 1 Technology Court, Pullenvale, QLD 4069 (Australia); McLennan, K.G. [CSIRO Energy Technology, 1 Technology Court, Pullenvale, QLD 4069 (Australia); Chandra, D. [Department of Chemical and Materials Engineering, University of Nevada, Reno, Reno, NV 89557 (United States); Kochanek, M.A. [CSIRO Energy Technology, 1 Technology Court, Pullenvale, QLD 4069 (Australia); Song, G. [CSIRO Process Science and Engineering, Gate 4, Normanby Rd, Clayton, VIC 3168 (Australia)

    2014-02-15

    Highlights: • Addition of 10 mol% Cr to V increases the β-hydride T{sub C} to >200 °C. • Addition of 10 mol% Ni to V increases the β-hydride T{sub C} to >400 °C. • Addition of 10 mol% Al to V decreases the β-hydride T{sub C} to <30 °C. • V{sub 90}Al{sub 10} membrane can be cycled to <30 °C under H{sub 2} without β-hydride formation. -- Abstract: The tendency of vanadium-based alloy membranes to embrittle is the biggest commercialisation barrier for this hydrogen separation technology. Excessive hydrogen absorption and the α → β hydride transition both contribute to brittle failure of these membranes. Alloying is known to reduce absorption, but the influence of alloying on hydride phase formation under conditions relevant to membrane operation has not been studied in great detail previously. Here, the effect of Cr, Ni, and Al alloying additions on V–H phase equilibrium has been studied using hydrogen absorption measurements and in situ X-ray diffraction studies. The addition of 10 mol% Ni increases the critical temperature for α + β hydride formation to greater than 400 °C, compared to 170 °C for V. Cr also increases the critical temperature, to between 200 and 300 °C. The addition of 10 mol% Al, however, suppresses the critical temperature to less than 30 °C, thereby enabling this material to be cycled thermally and hydrostatically while precluding formation of the β-hydride phase. This is despite Al also decreasing hydrogen absorption. The implication of this finding is that one of the mechanisms of brittle failure in vanadium-based hydrogen-selective membranes has been eliminated, thereby increasing the robustness of this material relative to V.

  16. Method of selective reduction of polyhalosilanes with alkyltin hydrides

    Science.gov (United States)

    Sharp, Kenneth G.; D'Errico, John J.

    1989-01-01

    The invention relates to the selective and stepwise reduction of polyhalosilanes by reacting at room temperature or below with alkyltin hydrides without the use of free radical intermediates. Alkyltin hydrides selectively and stepwise reduce the Si--Br, Si--Cl, or Si--I bonds while leaving intact any Si--F bonds. When two or more different halogens are present on the polyhalosilane, the halogen with the highest atomic weight is preferentially reduced.

  17. Method of selective reduction of halodisilanes with alkyltin hydrides

    Science.gov (United States)

    D'Errico, John J.; Sharp, Kenneth G.

    1989-01-01

    The invention relates to the selective and sequential reduction of halodisilanes by reacting these compounds at room temperature or below with trialkyltin hydrides or dialkyltin dihydrides without the use of free radical intermediates. The alkyltin hydrides selectively and sequentially reduce the Si-Cl, Si-Br or Si-I bonds while leaving intact the Si-Si and Si-F bonds present.

  18. Electronic structure and optical properties of lightweight metal hydrides

    NARCIS (Netherlands)

    Setten, van M.J.; Popa, V.A.; Wijs, de G.A.; Brocks, G.

    2007-01-01

    We study the dielectric functions of the series of simple hydrides LiH, NaH, MgH2, and AlH3, and of the complex hydrides Li3AlH6, Na3AlH6, LiAlH4, NaAlH4, and Mg(AlH4)2, using first-principles density-functional theory and GW calculations. All compounds are large gap insulators with GW single-partic

  19. Optimization of Hydride Rim Formation in Unirradiated Zr 4 Cladding

    Energy Technology Data Exchange (ETDEWEB)

    Shimskey, Rick W.; Hanson, Brady D.; MacFarlan, Paul J.

    2013-09-30

    The purpose of this work is to build on the results reported in the M2 milestone M2FT 13PN0805051, document number FCRD-USED-2013-000151 (Hanson, 2013). In that work, it was demonstrated that unirradiated samples of zircaloy-4 cladding could be pre-hydrided at temperatures below 400°C in pure hydrogen gas and that the growth of hydrides on the surface could be controlled by changing the surface condition of the samples and form a desired hydride rim on the outside diameter of the cladding. The work performed at Pacific Northwest National Laboratory since the issuing of the M2 milestone has focused its efforts to optimize the formation of a hydride rim on available zircaloy-4 cladding samples by controlling temperature variation and gas flow control during pre-hydriding treatments. Surface conditioning of the outside surface was also examined as a variable. The results of test indicate that much of the variability in the hydride thickness is due to temperature variation occurring in the furnaces as well as how hydrogen gas flows across the sample surface. Efforts to examine other alloys, gas concentrations, and different surface conditioning plan to be pursed in the next FY as more cladding samples become available

  20. Mechanochemical synthesis of nanostructured chemical hydrides in hydrogen alloying mills

    Energy Technology Data Exchange (ETDEWEB)

    Wronski, Z. [CANMET' s Materials Technology Laboratory, Natural Resources Canada, Ottawa (Canada) and Department of Mechanical Engineering, University of Waterloo, Waterloo, Ont., Canada N2L 3G1 (Canada)]. E-mail: zwronski@nrcan.gc.ca; Varin, R.A. [Department of Mechanical Engineering, University of Waterloo, Waterloo, Ont., Canada N2L 3G1 (Canada); Chiu, C. [Department of Mechanical Engineering, University of Waterloo, Waterloo, Ont., Canada N2L 3G1 (Canada); Czujko, T. [Department of Mechanical Engineering, University of Waterloo, Waterloo, Ont., Canada N2L 3G1 (Canada); Calka, A. [Department of Materials Science and Engineering, University of Wollongong, NSW 2518 (Australia)

    2007-05-31

    Mechanical alloying of magnesium metal powders with hydrogen in specialized hydrogen ball mills can be used as a direct route for mechanochemical synthesis of emerging chemical hydrides and hydride mixtures for advanced solid-state hydrogen storage. In the 2Mg-Fe system, we have successfully synthesized the ternary complex hydride Mg{sub 2}FeH{sub 6} in a mixture with nanometric Fe particles. The mixture of complex magnesium-iron hydride and nano-iron released 3-4 wt.%H{sub 2} in a thermally programmed desorption experiment at the range 285-295 {sup o}C. Milling of the Mg-2Al powder mixture revealed a strong competition between formation of the Al(Mg) solid solution and the {beta}-MgH{sub 2} hydride. The former decomposes upon longer milling as the Mg atoms react with hydrogen to form the hydride phase, and drive the Al out of the solid solution. The mixture of magnesium dihydride and nano-aluminum released 2.1 wt.%H{sub 2} in the temperature range 329-340 {sup o}C in the differential scanning calorimetry experiment. The formation of MgH{sub 2} was suppressed in the Mg-B system; instead, a hydrogenated amorphous phase (Mg,B)H {sub x}, was formed in a mixture with nanometric MgB{sub 2}. Annealing of the hydrogen-stabilized amorphous mixture produced crystalline MgB{sub 2}.

  1. Metal Hydrides for High-Temperature Power Generation

    Directory of Open Access Journals (Sweden)

    Ewa C. E. Rönnebro

    2015-08-01

    Full Text Available Metal hydrides can be utilized for hydrogen storage and for thermal energy storage (TES applications. By using TES with solar technologies, heat can be stored from sun energy to be used later, which enables continuous power generation. We are developing a TES technology based on a dual-bed metal hydride system, which has a high-temperature (HT metal hydride operating reversibly at 600–800 °C to generate heat, as well as a low-temperature (LT hydride near room temperature that is used for hydrogen storage during sun hours until there is the need to produce electricity, such as during night time, a cloudy day or during peak hours. We proceeded from selecting a high-energy density HT-hydride based on performance characterization on gram-sized samples scaled up to kilogram quantities with retained performance. COMSOL Multiphysics was used to make performance predictions for cylindrical hydride beds with varying diameters and thermal conductivities. Based on experimental and modeling results, a ~200-kWh/m3 bench-scale prototype was designed and fabricated, and we demonstrated the ability to meet or exceed all performance targets.

  2. Metal hydrides based high energy density thermal battery

    Energy Technology Data Exchange (ETDEWEB)

    Fang, Zhigang Zak, E-mail: zak.fang@utah.edu [Department of Metallurgical Engineering, The University of Utah, 135 South 1460 East, Room 412, Salt Lake City, UT 84112-0114 (United States); Zhou, Chengshang; Fan, Peng [Department of Metallurgical Engineering, The University of Utah, 135 South 1460 East, Room 412, Salt Lake City, UT 84112-0114 (United States); Udell, Kent S. [Department of Metallurgical Engineering, The University of Utah, 50 S. Central Campus Dr., Room 2110, Salt Lake City, UT 84112-0114 (United States); Bowman, Robert C. [Department of Metallurgical Engineering, The University of Utah, 135 South 1460 East, Room 412, Salt Lake City, UT 84112-0114 (United States); Vajo, John J.; Purewal, Justin J. [HRL Laboratories, LLC, 3011 Malibu Canyon Road, Malibu, CA 90265 (United States); Kekelia, Bidzina [Department of Metallurgical Engineering, The University of Utah, 50 S. Central Campus Dr., Room 2110, Salt Lake City, UT 84112-0114 (United States)

    2015-10-05

    Highlights: • The principle of the thermal battery using advanced metal hydrides was demonstrated. • The thermal battery used MgH{sub 2} and TiMnV as a working pair. • High energy density can be achieved by the use of MgH{sub 2} to store thermal energy. - Abstract: A concept of thermal battery based on advanced metal hydrides was studied for heating and cooling of cabins in electric vehicles. The system utilized a pair of thermodynamically matched metal hydrides as energy storage media. The pair of hydrides that was identified and developed was: (1) catalyzed MgH{sub 2} as the high temperature hydride material, due to its high energy density and enhanced kinetics; and (2) TiV{sub 0.62}Mn{sub 1.5} alloy as the matching low temperature hydride. Further, a proof-of-concept prototype was built and tested, demonstrating the potential of the system as HVAC for transportation vehicles.

  3. Metallographic and fractographic observations of hydrides during delayed hydride cracking in Zr-2.5% Nb alloy

    Energy Technology Data Exchange (ETDEWEB)

    Jovanovic, M.T.; Eadie, R.L. [Univ. of Alberta, Edmonton, Alberta (Canada). Dept. of Chemical and Materials Engineering; Shek, G.K.; Seahra, H. [Ontario Hydro Technologies, Toronto, Ontario (Canada)

    1998-01-01

    Potential drop measurements, optical microscopy, and scanning electron microscopy were performed to study the mechanism of delayed hydride cracking (DHC), the relation of the fracture to the hydride morphology, and the fractography of the DHC mechanism. The material used in this study was taken from modified extrusions of the material used to manufacture Zr-2.5% Nb pressure tubes. The material was electrolytically hydrided to approximately 60 {micro}g/g before testing. Cracking tests were carried out at 250 C with an applied K{sub 1} of 12 MPa {radical}m. The number of potential jumps was strongly correlated to the number of striations on the fracture surface. The results indicate that the DHC process occurs in these samples in an intermittent fashion. Brittle fracture is the operating fracture mechanism for the hydrides that cover most of the fracture surface, but there are some regions of ductile fracture both within the fracture and at the striations.

  4. Trialkylborane-Assisted CO(2) Reduction by Late Transition Metal Hydrides.

    Science.gov (United States)

    Miller, Alexander J M; Labinger, Jay A; Bercaw, John E

    2011-01-01

    Trialkylborane additives promote reduction of CO(2) to formate by bis(diphosphine) Ni(II) and Rh(III) hydride complexes. The late transition metal hydrides, which can be formed from dihydrogen, transfer hydride to CO(2) to give a formate-borane adduct. The borane must be of appropriate Lewis acidity: weaker acids do not show significant hydride transfer enhancement, while stronger acids abstract hydride without CO(2) reduction. The mechanism likely involves a pre-equilibrium hydride transfer followed by formation of a stabilizing formate-borane adduct.

  5. A Novel Zr-1Nb Alloy and a New Look at Hydriding

    Energy Technology Data Exchange (ETDEWEB)

    Robert D. Mariani; James I. Cole; Assel Aitkaliyeva

    2013-09-01

    A novel Zr-1Nb has begun development based on a working model that takes into account the hydrogen permeabilities for zirconium and niobium metals. The beta-Nb secondary phase particles (SPPs) in Zr-1Nb are believed to promote more rapid hydrogen dynamics in the alloy in comparison to other zirconium alloys. Furthermore, some hydrogen release is expected at the lower temperatures corresponding to outages when the partial pressure of H2 in the coolant is less. These characteristics lessen the negative synergism between corrosion and hydriding that is otherwise observed in cladding alloys without niobium. In accord with the working model, development of nanoscale precursors was initiated to enhance the performance of existing Zr-1Nb alloys. Their characteristics and properties can be compared to oxide-dispersion strengthened alloys, and material additions have been proposed to zirconium-based LWR cladding to guard further against hydriding and to fix the size of the SPPs for microstructure stability enhancements. A preparative route is being investigated that does not require mechanical alloying, and 10 nanometer molybdenum particles have been prepared which are part of the nanoscale precursors. If successful, the approach has implications for long term dry storage of used fuel and for new routes to nanoferritic and ODS alloys.

  6. A quantitative phase field model for hydride precipitation in zirconium alloys: Part II. Modeling of temperature dependent hydride precipitation

    Energy Technology Data Exchange (ETDEWEB)

    Xiao, Zhihua [The Hong Kong Polytechnic University, Shenzhen Research Institute, Shenzhen (China); PolyU Base (Shenzhen) Limited, Shenzhen (China); Department of Mechanical Engineering, Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong (China); Hao, Mingjun [The Hong Kong Polytechnic University, Shenzhen Research Institute, Shenzhen (China); Department of Mechanical Engineering, Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong (China); Guo, Xianghua [State Key Laboratory of Explosion and Safety Science, Beijing Institute of Technology, Beijing 100081 (China); Tang, Guoyi [Advanced Materials Institute, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055 (China); Shi, San-Qiang, E-mail: mmsqshi@polyu.edu.hk [The Hong Kong Polytechnic University, Shenzhen Research Institute, Shenzhen (China); PolyU Base (Shenzhen) Limited, Shenzhen (China); Department of Mechanical Engineering, Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong (China)

    2015-04-15

    A quantitative free energy functional developed in Part I (Shi and Xiao, 2014 [1]) was applied to model temperature dependent δ-hydride precipitation in zirconium in real time and real length scale. At first, the effect of external tensile load on reorientation of δ-hydrides was calibrated against experimental observations, which provides a modification factor for the strain energy in free energy formulation. Then, two types of temperature-related problems were investigated. In the first type, the effect of temperature transient was studied by cooling the Zr–H system at different cooling rates from high temperature while an external tensile stress was maintained. At the end of temperature transients, the average hydride size as a function of cooling rate was compared to experimental data. In the second type, the effect of temperature gradients was studied in a one or two dimensional temperature field. Different boundary conditions were applied. The results show that the hydride precipitation concentrated in low temperature regions and that it eventually led to the formation of hydride blisters in zirconium. A brief discussion on how to implement the hysteresis of hydrogen solid solubility on hydride precipitation and dissolution in the developed phase field scheme is also presented.

  7. Activity and Stability of Rare Earth-Based Hydride Alloys as Catalysts of Hydrogen Absorption-Oxidation Reactions

    Institute of Scientific and Technical Information of China (English)

    Ying Taokai(应桃开); Gao Xueping(高学平); Hu Weikang(胡伟康); Noréus Dag

    2004-01-01

    Rare earth-based AB5-type hydrogen storage alloys as catalysts of hydrogen-diffusion electrodes for hydrogen absorption and oxidation reactions in alkaline fuel cells were investigated. It is demonstrated that the meta-hydride hydrogen-diffusion electrodes could be charged by hydrogen gas and electrochemically discharged at the same time to retain a stable oxidation potential for a long period. The catalytic activities and stability are almost comparable with a Pt catalyst on the active carbon. Further improvement of performances is expected via reduction of catalyst size into nanometers.

  8. Influence of hydrides on the mechanical behaviour of zircaloy nuclear cladding along the hoop direction; Efecto de los hidruros en el comportamiento mecanico de vainas de zircaly y de combustible nuclear en direccion anular

    Energy Technology Data Exchange (ETDEWEB)

    Martin-Rengel, M. a.; Ruiz-Hervias, J.; Gomez, F. J.; Caballero, L.; Valiente, A.

    2009-07-01

    The effect of hydrides on the mechanical behaviour of the zirconium-alloy cladding employed as nuclear fuel barrier was studied in this paper. Ring tensile tests were performed on samples with different hydrogen concentrations and a 3D finite element model was developed to simulate the test. Hydrides were introduced by cathodic charging with hydrogen and subsequent thermal treatment of cladding samples. The tests show that there is not a significant degradation of the mechanical behaviour at the hydrogen concentrations tested, although the fracture micro mechanisms depend on the hydrogen content. (Author) 8 refs.

  9. Designing metal hydride complexes for water splitting reactions: a molecular electrostatic potential approach.

    Science.gov (United States)

    Sandhya, K S; Suresh, Cherumuttathu H

    2014-08-28

    The hydridic character of octahedral metal hydride complexes of groups VI, VII and VIII has been systematically studied using molecular electrostatic potential (MESP) topography. The absolute minimum of MESP at the hydride ligand (Vmin) and the MESP value at the hydride nucleus (VH) are found to be very good measures of the hydridic character of the hydride ligand. The increasing/decreasing electron donating feature of the ligand environment is clearly reflected in the increasing/decreasing negative character of Vmin and VH. The formation of an outer sphere metal hydride-water complex showing the HH dihydrogen interaction is supported by the location and the value of Vmin near the hydride ligand. A higher negative MESP suggested lower activation energy for H2 elimination. Thus, MESP features provided a way to fine-tune the ligand environment of a metal-hydride complex to achieve high hydridicity for the hydride ligand. The applicability of an MESP based hydridic descriptor in designing water splitting reactions is tested for group VI metal hydride model complexes of tungsten.

  10. Hydriding and Dehydriding Properties of Zinc Borohydride, Nickel, and Titanium-Added Magnesium Hydride

    Energy Technology Data Exchange (ETDEWEB)

    Kwak, Young Jun; Kwon, Sung Nam; Song, Myoung Youp [Chonbuk National University, Jeonju (Korea, Republic of)

    2015-11-15

    A Zn(BH{sub 4}){sub 2} sample was prepared by milling ZnCl{sub 2} and NaBH{sub 4} in a planetary ball mill under Ar gas. This sample contained NaCl. Then, 90 wt% MgH{sub 2}-5 wt% Zn(BH{sub 4}){sub 2}-2.5 wt% Ni-2.5 wt% Ti samples [named 90MgH{sub 2}-5Zn(BH{sub 4}){sub 2}-2.5Ni-2.5Ti] were prepared by milling in a planetary ball mill under H{sub 2} gas. The hydrogen absorption and release properties of the prepared samples were investigated. In particular, the variations of the initial hydriding and dehydriding rates with temperature were examined. SEM micrographs and XRD patterns of 90MgH{sub 2}-5Zn(BH{sub 4}){sub 2}-2.5Ni-2.5Ti after reactive mechanical grinding and after hydriding-dehydriding were also studied. Particle size distributions and BET specific surface areas of 90MgH{sub 2}-5Zn(BH{sub 4}){sub 2}-2.5Ni-2.5Ti after reactive mechanical grinding and after 11 hydriding-dehydriding cycles were analyzed. The 90MgH{sub 2}-5Zn(BH{sub 4}){sub 2}-2.5Ni-2.5Ti had an effective hydrogen storage capacity (the quantity of hydrogen absorbed for 60 min) of near 5 wt% (4.91 wt% at 593 K).

  11. Assessment of reactivity transient experiments with high burnup fuel

    Energy Technology Data Exchange (ETDEWEB)

    Ozer, O.; Yang, R.L.; Rashid, Y.R.; Montgomery, R.O.

    1996-03-01

    A few recent experiments aimed at determining the response of high-burnup LWR fuel during a reactivity initiated accident (RIA) have raised concerns that existing failure criteria may be inappropriate for such fuel. In particular, three experiments (SPERT CDC-859, NSRR HBO-1 and CABRI REP Na-1) appear to have resulted in fuel failures at only a fraction of the anticipated enthalpy levels. In evaluating the results of such RIA simulation experiments, however, it is necessary that the following two key considerations be taken into account: (1) Are the experiments representative of conditions that LWR fuel would experience during an in-reactor RIA event? (2) Is the fuel that is being utilized in the tests representative of the present (or anticipated) population of LWR fuel? Conducting experiments under conditions that can not occur in-reactor can trigger response modes that could not take place during in-reactor operation. Similarly, using unrepresentative fuel samples for the tests will produce failure information that is of limited relevance to commercial LWR fuel. This is particularly important for high-burnup fuel since the manner under which the test samples are base-irradiated prior to the test will impact the mechanical properties of the cladding and will therefore affect the RIA response. A good example of this effect can be seen in the results of the SPERT CDC-859 test and in the NSRR JM-4 and JM-5 tests. The conditions under which the fuel used for these tests was fabricated and/or base-irradiated prior to the RIA pulse resulted in the formation of multiple cladding defects in the form of hydride blisters. When this fuel was subjected to the RIA power pulse, it failed by developing multiple cracks that were closely correlated with the locations of the pre-existing hydride blisters. In the case of the JM tests, many of the cracks formed within the blisters themselves and did not propagate beyond the heavily hydrided regions.

  12. System for operating solid oxide fuel cell generator on diesel fuel

    Science.gov (United States)

    Singh, Prabhu (Inventor); George, Raymond A. (Inventor)

    1997-01-01

    A system is provided for operating a solid oxide fuel cell generator on diesel fuel. The system includes a hydrodesulfurizer which reduces the sulfur content of commercial and military grade diesel fuel to an acceptable level. Hydrogen which has been previously separated from the process stream is mixed with diesel fuel at low pressure. The diesel/hydrogen mixture is then pressurized and introduced into the hydrodesulfurizer. The hydrodesulfurizer comprises a metal oxide such as ZnO which reacts with hydrogen sulfide in the presence of a metal catalyst to form a metal sulfide and water. After desulfurization, the diesel fuel is reformed and delivered to a hydrogen separator which removes most of the hydrogen from the reformed fuel prior to introduction into a solid oxide fuel cell generator. The separated hydrogen is then selectively delivered to the diesel/hydrogen mixer or to a hydrogen storage unit. The hydrogen storage unit preferably comprises a metal hydride which stores hydrogen in solid form at low pressure. Hydrogen may be discharged from the metal hydride to the diesel/hydrogen mixture at low pressure upon demand, particularly during start-up and shut-down of the system.

  13. Metal Hydrides, MOFs, and Carbon Composites as Space Radiation Shielding Mitigators

    Science.gov (United States)

    Atwell, William; Rojdev, Kristina; Liang, Daniel; Hill, Matthew

    2014-01-01

    Recently, metal hydrides and MOFs (Metal-Organic Framework/microporous organic polymer composites - for their hydrogen and methane storage capabilities) have been studied with applications in fuel cell technology. We have investigated a dual-use of these materials and carbon composites (CNT-HDPE) to include space radiation shielding mitigation. In this paper we present the results of a detailed study where we have analyzed 64 materials. We used the Band fit spectra for the combined 19-24 October 1989 solar proton events as the input source term radiation environment. These computational analyses were performed with the NASA high energy particle transport/dose code HZETRN. Through this analysis we have identified several of the materials that have excellent radiation shielding properties and the details of this analysis will be discussed further in the paper.

  14. A high-efficiency power cycle in which hydrogen is compressed by absorption in metal hydrides.

    Science.gov (United States)

    Powell, J R; Salzano, F J; Yu, W S; Milau, J S

    1976-07-23

    A high-efficiency power cycle is proposed in which molecular hydrogen gas is used as a working fluid in a regenerative closed Brayton cycle. The hydrogen gas is compressed by an absorption-desorption cycle on metal hydride (FeTiH(x)) beds. Low-temperature solar or geothermal heat (temperature about 100 degrees C) is used for the compression process, and high-temperature fossil fuel or nuclear heat (temperature about 700 degrees C) supplies the expansion work in the turbine. Typically, about 90 percent of the high-temperature heat input is converted to electricity, while about 3 kilowatts of low-temperature heat is required per kilowatt of electrical output.

  15. Hydrogen storage properties of Na-Li-Mg-Al-H complex hydrides

    Energy Technology Data Exchange (ETDEWEB)

    Tang Xia [United Technologies Research Center, 411 Silver Lane, East Hartford, CT 06108 (United States)], E-mail: tangx@utrc.utc.com; Opalka, Susanne M.; Laube, Bruce L. [United Technologies Research Center, 411 Silver Lane, East Hartford, CT 06108 (United States); Wu Fengjung; Strickler, Jamie R. [Albemarle Corporation, Gulf States Road, Baton Rouge, LA 70805 (United States); Anton, Donald L. [Savannah River National Laboratory, 227 Gateway Dr., Aiken, SC 29808 (United States)

    2007-10-31

    Lightweight complex hydrides have attracted attention for their high storage hydrogen capacity. NaAlH{sub 4} has been widely studied as a hydrogen storage material for its favorable reversible operating temperature and pressure range for automotive fuel cell applications. The increased understanding of NaAlH{sub 4} has led to an expanded search for high capacity materials in mixed alkali and akali/alkaline earth alanates. In this study, promising candidates in the Na-Li-Mg-Al-H system were evaluated using a combination of experimental chemistry, atomic modeling, and thermodynamic modeling. New materials were synthesized using solid state and solution based processing methods. Their hydrogen storage properties were measured experimentally, and the test results were compared with theoretical modeling assessments.

  16. Hydrogen storage as a hydride. Citations from the International Aerospace Abstracts data base

    Science.gov (United States)

    Zollars, G. F.

    1980-01-01

    These citations from the international literature concern the storage of hydrogen in various metal hydrides. Binary and intermetallic hydrides are considered. Specific alloys discussed are iron titanium, lanthanium nickel, magnesium copper and magnesium nickel among others.

  17. Hydrogen storage as a hydride. Citations from the International Aerospace Abstracts data base

    Science.gov (United States)

    Zollars, G. F.

    1980-01-01

    These citations from the international literature concern the storage of hydrogen in various metal hydrides. Binary and intermetallic hydrides are considered. Specific alloys discussed are iron titanium, lanthanium nickel, magnesium copper and magnesium nickel among others.

  18. Numerical simulation and performance test of metal hydride hydrogen storage system

    Directory of Open Access Journals (Sweden)

    Tzu-Hsiang Yen, Bin-Hao Chen, Bao-Dong Chen

    2011-05-01

    Full Text Available Metal hydride reactors are widely used in many industrial applications, such as hydrogen storage, thermal compression, heat pump, etc. According to the research requirement of metal hydride hydrogen storage, the thermal analyses have been implemented in the paper. The metal hydride reaction beds are considered as coupled cylindrical tube modules which combine the chemical absorption and desorption in metal hydride. The model is then used metal hydride LaNi5 as an example to predict the performance of metal hydride hydrogen storage devices, such as the position of hydration front and the thermal flux. Under the different boundary condition the characteristics of heat transfer and mass transfer in metal hydride have influence on the hydrogen absorption and desorption. The researches revealed that the scroll design can improve the temperature distribution in the reactor and the porous tube for directing hydrogen can increase the penetration depth of hydride reaction to decrease the hydrogen absorption time.

  19. Micro-scale fracture experiments on zirconium hydrides and phase boundaries

    Science.gov (United States)

    Chan, H.; Roberts, S. G.; Gong, J.

    2016-07-01

    Fracture properties of micro-scale zirconium hydrides and phase boundaries were studied using microcantilever testing methods. FIB-machined microcantilevers were milled on cross-sectional surfaces of hydrided samples, with the most highly-stressed regions within the δ-hydride film, within the α-Zr or along the Zr-hydride interface. Cantilevers were notched using the FIB and then tested in bending using a nanoindenter. Load-displacement results show that three types of cantilevers have distinct deformation properties. Zr cantilevers deformed plastically. Hydride cantilevers fractured after a small amount of plastic flow; the fracture toughness of the δ-hydride was found to be 3.3 ± 0.4 MPam1/2 and SEM examination showed transgranular cleavage on the fracture surfaces. Cantilevers notched at the Zr-hydride interface developed interfacial voids during loading, at loads considerably lower than that which initiate brittle fracture of hydrides.

  20. Investigation of Cracked Lithium Hydride Reactor Vessels

    Energy Technology Data Exchange (ETDEWEB)

    bird, e.l.; mustaleski, t.m.

    1999-06-01

    Visual examination of lithium hydride reactor vessels revealed cracks that were adjacent to welds, most of which were circumferentially located in the bottom portion of the vessels. Sections were cut from the vessels containing these cracks and examined by use of the metallograph, scanning electron microscope, and microprobe to determine the cause of cracking. Most of the cracks originated on the outer surface just outside the weld fusion line in the base material and propagated along grain boundaries. Crack depths of those examined sections ranged from {approximately}300 to 500 {micro}m. Other cracks were reported to have reached a maximum depth of 1/8 in. The primary cause of cracking was the creation of high tensile stresses associated with the differences in the coefficients of thermal expansion between the filler metal and the base metal during operation of the vessel in a thermally cyclic environment. This failure mechanism could be described as creep-type fatigue, whereby crack propagation may have been aided by the presence of brittle chromium carbides along the grain boundaries, which indicates a slightly sensitized microstructure.

  1. Transition-Metal Hydride Radical Cations.

    Science.gov (United States)

    Hu, Yue; Shaw, Anthony P; Estes, Deven P; Norton, Jack R

    2016-08-10

    Transition-metal hydride radical cations (TMHRCs) are involved in a variety of chemical and biochemical reactions, making a more thorough understanding of their properties essential for explaining observed reactivity and for the eventual development of new applications. Generally, these species may be treated as the ones formed by one-electron oxidation of diamagnetic analogues that are neutral or cationic. Despite the importance of TMHRCs, the generally sensitive nature of these complexes has hindered their development. However, over the last four decades, many more TMHRCs have been synthesized, characterized, isolated, or hypothesized as reaction intermediates. This comprehensive review focuses on experimental studies of TMHRCs reported through the year 2014, with an emphasis on isolated and observed species. The methods used for the generation or synthesis of TMHRCs are surveyed, followed by a discussion about the stability of these complexes. The fundamental properties of TMHRCs, especially those pertaining to the M-H bond, are described, followed by a detailed treatment of decomposition pathways. Finally, reactions involving TMHRCs as intermediates are described.

  2. Comparison of the interactions in the rare gas hydride and Group 2 metal hydride anions.

    Science.gov (United States)

    Harris, Joe P; Manship, Daniel R; Breckenridge, W H; Wright, Timothy G

    2014-02-28

    We study both the rare gas hydride anions, RG-H(-) (RG = He-Rn) and Group 2 (Group IIa) metal hydride anions, MIIaH(-) (MIIa = Be-Ra), calculating potential energy curves at the CCSD(T) level with augmented quadruple and quintuple basis sets, and extrapolating the results to the basis set limit. We report spectroscopic parameters obtained from these curves; additionally, we study the Be-He complex. While the RG-H(-) and Be-He species are weakly bound, we show that, as with the previously studied BeH(-) and MgH(-) species, the other MIIaH(-) species are strongly bound, despite the interactions nominally also being between two closed shell species: M(ns(2)) and H(-)(1s(2)). We gain insight into the interactions using contour plots of the electron density changes and population analyses. For both series, the calculated dissociation energy is significantly less than the ion/induced-dipole attraction term, confirming that electron repulsion is important in these species; this effect is more dramatic for the MIIaH(-) species than for RG-H(-). Our analyses lead us to conclude that the stronger interaction in the case of the MIIaH(-) species arises from sp and spd hybridization, which allows electron density on the MIIa atom to move away from the incoming H(-).

  3. EFFECT OF FUEL IMPURITIES ON FUEL CELL PERFORMANCE AND DURABILITY

    Energy Technology Data Exchange (ETDEWEB)

    Colon-Mercado, H.

    2010-09-28

    A fuel cell is an electrochemical energy conversion device that produces electricity during the combination of hydrogen and oxygen to produce water. Proton exchange membranes fuel cells are favored for portable applications as well as stationary ones due to their high power density, low operating temperature, and low corrosion of components. In real life operation, the use of pure fuel and oxidant gases results in an impractical system. A more realistic and cost efficient approach is the use of air as an oxidant gas and hydrogen from hydrogen carriers (i.e., ammonia, hydrocarbons, hydrides). However, trace impurities arising from different hydrogen sources and production increases the degradation of the fuel cell. These impurities include carbon monoxide, ammonia, sulfur, hydrocarbons, and halogen compounds. The International Organization for Standardization (ISO) has set maximum limits for trace impurities in the hydrogen stream; however fuel cell data is needed to validate the assumption that at those levels the impurities will cause no degradation. This report summarizes the effect of selected contaminants tested at SRNL at ISO levels. Runs at ISO proposed concentration levels show that model hydrocarbon compound such as tetrahydrofuran can cause serious degradation. However, the degradation is only temporary as when the impurity is removed from the hydrogen stream the performance completely recovers. Other molecules at the ISO concentration levels such as ammonia don't show effects on the fuel cell performance. On the other hand carbon monoxide and perchloroethylene shows major degradation and the system can only be recovered by following recovery procedures.

  4. Comparison of Hydrogen Elimination from Molecular Zinc and Magnesium Hydride Clusters

    NARCIS (Netherlands)

    Intemann, J.; Sirsch, Peter; Harder, Sjoerd

    2014-01-01

    In analogy to the previously reported tetranuclear magnesium hydride cluster with a bridged dianionic bis-beta-diketiminate ligand, a related zinc hydride cluster has been prepared. The crystal structures of these magnesium and zinc hydride complexes are similar: the metal atoms are situated at the

  5. Use of triammonium salt of aurin tricarboxylic acid as risk mitigant for aluminum hydride

    Science.gov (United States)

    Cortes-Concepcion, Jose A.; Anton, Donald L.

    2017-08-08

    A process and a resulting product by process of an aluminum hydride which is modified with by physically combining in a ball milling process an aluminum hydride with a triammonium salt of aurin tricarboxylic acid. The resulting product is an aluminum hydride which is resistant to air, ambient moisture, and liquid water while maintaining useful hydrogen storage and release kinetics.

  6. Comparison of Hydrogen Elimination from Molecular Zinc and Magnesium Hydride Clusters

    NARCIS (Netherlands)

    Intemann, J.; Sirsch, Peter; Harder, Sjoerd

    2014-01-01

    In analogy to the previously reported tetranuclear magnesium hydride cluster with a bridged dianionic bis-beta-diketiminate ligand, a related zinc hydride cluster has been prepared. The crystal structures of these magnesium and zinc hydride complexes are similar: the metal atoms are situated at the

  7. Investigation of metal hydride materials as hydrogen reservoirs for metal-hydrogen batteries

    Science.gov (United States)

    ONISCHAK

    1976-01-01

    The performance and suitability of various metal hydride materials were examined for use as possible hydrogen storage reservoirs for secondary metal-hydrogen batteries. Lanthanum pentanickel hydride appears as a probable candidate in terms of stable hydrogen supply under feasible thermal conditions. A kinetic model describing the decomposition rate data of the hydride has been developed.

  8. A study of advanced magnesium-based hydride and development of a metal hydride thermal battery system

    Science.gov (United States)

    Zhou, Chengshang

    Metal hydrides are a group of important materials known as energy carriers for renewable energy and thermal energy storage. A concept of thermal battery based on advanced metal hydrides is studied for heating and cooling of cabins in electric vehicles. The system utilizes a pair of thermodynamically matched metal hydrides as energy storage media. The hot hydride that is identified and developed is catalyzed MgH2 due to its high energy density and enhanced kinetics. TiV0.62Mn1.5, TiMn2, and LaNi5 alloys are selected as the matching cold hydride. A systematic experimental survey is carried out in this study to compare a wide range of additives including transitions metals, transition metal oxides, hydrides, intermetallic compounds, and carbon materials, with respect to their effects on dehydrogenation properties of MgH2. The results show that additives such as Ti and V-based metals, hydride, and certain intermetallic compounds have strong catalytic effects. Solid solution alloys of magnesium are exploited as a way to destabilize magnesium hydride thermodynamically. Various elements are alloyed with magnesium to form solid solutions, including indium and aluminum. Thermodynamic properties of the reactions between the magnesium solid solution alloys and hydrogen are investigated, showing that all the solid solution alloys that are investigated in this work have higher equilibrium hydrogen pressures than that of pure magnesium. Cyclic stability of catalyzed MgH2 is characterized and analyzed using a PCT Sievert-type apparatus. Three systems, including MgH2-TiH 2, MgH2-TiMn2, and MgH2-VTiCr, are examined. The hydrogenating and dehydrogenating kinetics at 300°C are stable after 100 cycles. However, the low temperature (25°C to 150°C) hydrogenation kinetics suffer a severe degradation during hydrogen cycling. Further experiments confirm that the low temperature kinetic degradation can be mainly related the extended hydrogenation-dehydrogenation reactions. Proof

  9. Iron Hydride Detection and Intramolecular Hydride Transfer in a Synthetic Model of Mono-Iron Hydrogenase with a CNS Chelate.

    Science.gov (United States)

    Durgaprasad, Gummadi; Xie, Zhu-Lin; Rose, Michael J

    2016-01-19

    We report the identification and reactivity of an iron hydride species in a synthetic model complex of monoiron hydrogenase. The hydride complex is derived from a phosphine-free CNS chelate that includes a Fe-C(NH)(═O) bond (carbamoyl) as a mimic of the active site iron acyl. The reaction of [((O═)C(HN)N(py)S(Me))Fe(CO)2(Br)] (1) with NaHBEt3 generates the iron hydride intermediate [((O═)C(HN)N(py)S(Me))Fe(H)(CO)2] (2; δFe-H = -5.08 ppm). Above -40 °C, the hydride species extrudes CH3S(-) via intramolecular hydride transfer, which is stoichiometrically trapped in the structurally characterized dimer μ2-(CH3S)2-[((O═)C(HN)N(Ph))Fe(CO)2]2 (3). Alternately, when activated by base ((t)BuOK), 1 undergoes desulfurization to form a cyclometalated species, [((O═)C(NH)NC(Ph))Fe(CO)2] (5); derivatization of 5 with PPh3 affords the structurally characterized species [((O═)C(NH)NC)Fe(CO)(PPh3)2] (6), indicating complex 6 as the common intermediate along each pathway of desulfurization.

  10. Simultaneous determination of hydride and non-hydride forming elements by inductively coupled plasma optical emission spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Benzo, Z. [Instituto Venezolano de Investigaciones Cientificas, IVIC, Altos de Pipe, Caracas (Venezuela, Bolivarian Republic of); Matos-Reyes, M.N.; Cervera, M.L.; Guardia, M. de la, E-mail: m.luisa.cervera@uv.es [Department of Analytical Chemistry, University of Valencia, Valencia (Spain)

    2011-09-15

    The operating characteristics of a dual nebulization system were studied including instrumental and chemical conditions for the hydride generation and analytical figures of merit for both, hydride and non hydride forming elements. Analytical performance of the nebulization system was characterized by detection limits from 0.002 to 0.0026 {mu}g mL{sup -1} for the hydride forming elements and between 0.0034 and 0.0121 {mu}g mL{sup -1} for the non-hydride forming elements, relative standard deviation for 10 replicate measurements at 0.25 mg L{sup -1} level and recovery percentages between 97 and 103%. The feasibility of the system was demonstrated in the simultaneous determination of Ca, Cd, Co, Cr, Cu, Fe, Mg, Mn, Mo, Ni, Zn, As, Bi, Sb, Se, and Te in the NIST 1549 (non-fat milk powder), NIST 1570a (spinach leaves), DORM-2 (dogfish muscle) and TORT-2 (lobster hepatopancreas) certified samples for trace elements. Results found were in good agreement with the certified ones. (author)

  11. Nuclear Fuels: Present and Future

    Directory of Open Access Journals (Sweden)

    Donald R. Olander

    2009-02-01

    Full Text Available The important new developments in nuclear fuels and their problems are reviewed and compared with the status of present light-water reactor fuels. The limitations of these fuels and the reactors they power are reviewed with respect to important recent concerns, namely provision of outlet coolant temperatures high enough for use in H2 production, destruction of plutonium to eliminate proliferation concerns, and burning of the minor actinides to reduce the waste repository heat load and long-term radiation hazard. In addition to current oxide-based fuel-rod designs, the hydride fuel with liquid metal thermal bonding of the fuel-cladding gap is covered. Finally, two of the most promising Generation IV reactor concepts, the Very High Temperature Reactor and the Sodium Fast Reactor, and the accompanying reprocessing technologies, aqueous-based UREX and pyrometallurgical, are summarized. In all of the topics covered, the thermodynamics involved in the material's behavior under irradiation and in the reprocessing schemes are emphasized.

  12. Investigation of metal hydride nanoparticles templated in metal organic frameworks.

    Energy Technology Data Exchange (ETDEWEB)

    Jacobs, Benjamin W.; Herberg, Julie L. (Lawrence Livermore National Laboratory, Livermore, CA); Highley, Aaron M.; Grossman, Jeffrey (MIT, Cambridge, MA); Wagner, Lucas (MIT, Cambridge, MA); Bhakta, Raghu; Peaslee, D. (University of Missouri, St. Louis, MO); Allendorf, Mark D.; Liu, X. (University of Missouri, St. Louis, MO); Behrens, Richard, Jr.; Majzoub, Eric H. (University of Missouri, St. Louis, MO)

    2010-11-01

    Hydrogen is proposed as an ideal carrier for storage, transport, and conversion of energy. However, its storage is a key problem in the development of hydrogen economy. Metal hydrides hold promise in effectively storing hydrogen. For this reason, metal hydrides have been the focus of intensive research. The chemical bonds in light metal hydrides are predominantly covalent, polar covalent or ionic. These bonds are often strong, resulting in high thermodynamic stability and low equilibrium hydrogen pressures. In addition, the directionality of the covalent/ionic bonds in these systems leads to large activation barriers for atomic motion, resulting in slow hydrogen sorption kinetics and limited reversibility. One method for enhancing reaction kinetics is to reduce the size of the metal hydrides to nano scale. This method exploits the short diffusion distances and constrained environment that exist in nanoscale hydride materials. In order to reduce the particle size of metal hydrides, mechanical ball milling is widely used. However, microscopic mechanisms responsible for the changes in kinetics resulting from ball milling are still being investigated. The objective of this work is to use metal organic frameworks (MOFs) as templates for the synthesis of nano-scale NaAlH4 particles, to measure the H2 desorption kinetics and thermodynamics, and to determine quantitative differences from corresponding bulk properties. Metal-organic frameworks (MOFs) offer an attractive alternative to traditional scaffolds because their ordered crystalline lattice provides a highly controlled and understandable environment. The present work demonstrates that MOFs are stable hosts for metal hydrides and their reactive precursors and that they can be used as templates to form metal hydride nanoclusters on the scale of their pores (1-2 nm). We find that using the MOF HKUST-1 as template, NaAlH4 nanoclusters as small as 8 formula units can be synthesized inside the pores. A detailed picture of

  13. Theoretical Estimate of Hydride Affinities of Aromatic Carbonyl Compounds

    Institute of Scientific and Technical Information of China (English)

    AI Teng; ZHU Xiao-Qing; CHENG Jin-Pei

    2003-01-01

    @@ Aromatic carbonyl compounds are one type of the most important organic compounds, and the reductions ofthem by hydride agents such as LiAlH4 or NaBH4 are widely used in organic synthesis. The reactivity of carbonyl compounds generally increases in the following order: ketone < aldehyde, and amide < acid < ester < acid halide, which could be related to their hydride affinities (HA). In the previous paper, Robert[1] calculated the absolute HAof a series of small non-aromatic carbonyl compounds. In this paper, we use DFT method at B3LYP/6-311 + + G (2d, 2p)∥B3LYP/6-31 + G* level to estimate hydride affinities of five groups of aromatic carbonyl compounds. The detailed results are listed in Table 1.

  14. A nickel metal hydride battery for electric vehicles.

    Science.gov (United States)

    Ovshinsky, S R; Fetcenko, M A; Ross, J

    1993-04-09

    Widespread use of electric vehicles can have significant impact on urban air quality, national energy independence, and international balance of trade. An efficient battery is the key technological element to the development of practical electric vehicles. The science and technology of a nickel metal hydride battery, which stores hydrogen in the solid hydride phase and has high energy density, high power, long life, tolerance to abuse, a wide range of operating temperature, quick-charge capability, and totally sealed maintenance-free operation, is described. A broad range of multi-element metal hydride materials that use structural and compositional disorder on several scales of length has been engineered for use as the negative electrode in this battery. The battery operates at ambient temperature, is made of nontoxic materials, and is recyclable. Demonstration of the manufacturing technology has been achieved.

  15. CO2 hydrogenation on a metal hydride surface.

    Science.gov (United States)

    Kato, Shunsuke; Borgschulte, Andreas; Ferri, Davide; Bielmann, Michael; Crivello, Jean-Claude; Wiedenmann, Daniel; Parlinska-Wojtan, Magdalena; Rossbach, Peggy; Lu, Ye; Remhof, Arndt; Züttel, Andreas

    2012-04-28

    The catalytic hydrogenation of CO(2) at the surface of a metal hydride and the corresponding surface segregation were investigated. The surface processes on Mg(2)NiH(4) were analyzed by in situ X-ray photoelectron spectroscopy (XPS) combined with thermal desorption spectroscopy (TDS) and mass spectrometry (MS), and time-of-flight secondary ion mass spectrometry (ToF-SIMS). CO(2) hydrogenation on the hydride surface during hydrogen desorption was analyzed by catalytic activity measurement with a flow reactor, a gas chromatograph (GC) and MS. We conclude that for the CO(2) methanation reaction, the dissociation of H(2) molecules at the surface is not the rate controlling step but the dissociative adsorption of CO(2) molecules on the hydride surface.

  16. Zirconium hydride formation in Hanford production reactor process tubes

    Energy Technology Data Exchange (ETDEWEB)

    Winegardner, W.K.; Griggs, B.

    1967-12-01

    Examination of Zircaloy-2 process tubes from Hanford Production Reactors has revealed extensive zirconium hydride formation. In general, attack is limited to the downstream portions of tubes where aluminum spacers are located. Most of the hydride platelets are contained in a case or layer on the inner surface of the tube. It is not unusual to find cases 0.004 to 0.005 in. thick. Analyses of the 0.037 in. wall tubes with such cases intact often reveal hydrogen concentrations greater than 1000 ppM. Investigation indicates that the hydriding is the result of galvanic contact between aluminum and Zircaloy-2. The galvanic couple (contact between dissimilar metals in the presence of reactor cooling water which serves as the electrolyte) results in the cathodic charging of hydrogen into the Zircaloy.

  17. FY13 Summary Report on the Augmentation of the Spent Fuel Composition Dataset for Nuclear Forensics: SFCOMPO/NF

    Energy Technology Data Exchange (ETDEWEB)

    Brady Raap, Michaele C.; Lyons, Jennifer A.; Collins, Brian A.; Livingston, James V.

    2014-03-31

    This report documents the FY13 efforts to enhance a dataset of spent nuclear fuel isotopic composition data for use in developing intrinsic signatures for nuclear forensics. A review and collection of data from the open literature was performed in FY10. In FY11, the Spent Fuel COMPOsition (SFCOMPO) excel-based dataset for nuclear forensics (NF), SFCOMPO/NF was established and measured data for graphite production reactors, Boiling Water Reactors (BWRs) and Pressurized Water Reactors (PWRs) were added to the dataset and expanded to include a consistent set of data simulated by calculations. A test was performed to determine whether the SFCOMPO/NF dataset will be useful for the analysis and identification of reactor types from isotopic ratios observed in interdicted samples.

  18. Opportunities for portable Ballard Fuel Cells

    Energy Technology Data Exchange (ETDEWEB)

    Voss, H.H.; Huff, J.R. [Ballard Power Systems Inc., Burnaby, British Columbia (Canada)

    1996-12-31

    With the increasing proliferation and sophistication of portable electronic devices in both commercial and military markets, the need has arisen for small, lightweight power supplies that can provide increased operating life over those presently available. A solution to this power problem is the development of portable Ballard Fuel Cell power systems that operate with a hydrogen fuel source and air. Ballard has developed PEM fuel cell stacks and power systems in the 25 to 100 watt range for both of these markets. For military use, Ballard has teamed with Ball Corporation and Hydrogen Consultants, Inc. and has provided the Ballard Fuel Cell stack for an ambient PEM fuel cell power system for the DoD. The system provides power from idle to I 00 watts and has the capability of delivering overloads of 125 watts for short periods of time. The system is designed to operate over a wide range of temperature, relative humidity and altitude. Hydrogen is supplied as a compressed gas, metal hydride or chemical hydride packaged in a unit that is mated to the power/control unit. The hydrogen sources provide 1.5, 5 and 15 kWh of operation, respectively. The design of the fuel cell power system enables the unit to operate at 12 volts or 24 volts depending upon the equipment being used. For commercial applications, as with the military, fuel cell power sources in the 25 to 500 watt range will be competing with advanced batteries. Ambient PEM fuel cell designs and demonstrators are being developed at 25 watts and other low power levels. Goals are minimum stack volume and weight and greatly enhanced operating life with reasonable system weight and volume. This paper will discuss ambient PEM fuel cell designs and performance and operating parameters for a number of power levels in the multiwatt range.

  19. NUMERICAL ANALYSIS FOR HYDRIDING IN METAL HYDRIDE HYDROGEN STORAGE TANK%金属氢化物储氢器吸氢过程的数值分析

    Institute of Scientific and Technical Information of China (English)

    叶建华; 蒋利军; 李志念; 刘晓鹏; 王树茂

    2011-01-01

    Based on the principle of hydride adsorption, a one-dimensional mathematical model for hydriding in a cylindrical metal hydride hydrogen storage tank was established. The heat and mass transfer of metal hydride beds was computed by finite difference method. The variation in temperature and hydrogen concentration at different radial positions of the hydride layer was analyzed during the process of hydriding. The effects of supply pressure, heat convection coefficient and hydride layer radial thickness on the hydriding was studied. It is shown that hydride formation initially takes place uniformly all over the metal hydride layer, but with the process of hydriding, the hydriding rate at the core region is gradually slower than one at surface region. The increase of supply pressure and heat convection coefficient can accelerate the hydriding of the hydrogen storage tank. The effect of hydride layer radial thickness is significant on the hydriding rate, and the thinner hydride layer, the higher the hydriding rate.%基于金属氢化物吸氢基本特性,建立圆柱形金属氢化物储氢器吸氢过程的-维数学物理模型.采用有限差分法对金属氢化物床体的传热传质进行计算.分别研究金属氢化物床体各处温度和氢含量在吸氢过程中的变化以及氢气压力、对流传热系数和金属氢化物床体径向厚度对金属氢化物吸氢过程的影响.计算结果表明:初始阶段金属氢化物床均匀吸氢,但随着氢化过程的进行,其中心区域的吸氢速率逐渐低于边缘区域;增加吸氢压力、提高对流传热系数均可促进储氢器的吸氢;金属氢化物床的径向厚度对吸氢速率影响很大,金属氢化物床越薄,氢化反应的速度越快.

  20. High-Spin Cobalt Hydrides for Catalysis

    Energy Technology Data Exchange (ETDEWEB)

    Holland, Patrick L. [Univ. of Rochester, NY (United States)

    2013-08-29

    Organometallic chemists have traditionally used catalysts with strong-field ligands that give low-spin complexes. However, complexes with a weak ligand field have weaker bonds and lower barriers to geometric changes, suggesting that they may lead to more rapid catalytic reactions. Developing our understanding of high-spin complexes requires the use of a broader range of spectroscopic techniques, but has the promise of changing the mechanism and/or selectivity of known catalytic reactions. These changes may enable the more efficient utilization of chemical resources. A special advantage of cobalt and iron catalysts is that the metals are more abundant and cheaper than those currently used for major industrial processes that convert unsaturated organic molecules and biofeedstocks into useful chemicals. This project specifically evaluated the potential of high-spin cobalt complexes for small-molecule reactions for bond rearrangement and cleavage reactions relevant to hydrocarbon transformations. We have learned that many of these reactions proceed through crossing to different spin states: for example, high-spin complexes can flip one electron spin to access a lower-energy reaction pathway for beta-hydride elimination. This reaction enables new, selective olefin isomerization catalysis. The high-spin cobalt complexes also cleave the C-O bond of CO2 and the C-F bonds of fluoroarenes. In each case, the detailed mechanism of the reaction has been determined. Importantly, we have discovered that the cobalt catalysts described here give distinctive selectivities that are better than known catalysts. These selectivities come from a synergy between supporting ligand design and electronic control of the spin-state crossing in the reactions.

  1. Development and investigation of novel nanostructures and complex hydrides for hydrogen storage

    Science.gov (United States)

    Niemann, Michael Ulrich

    2009-12-01

    Over the past few years, the need for a clean and renewable fuel has sharply risen. This is due to increasing fossil fuel costs and the desire to limit or eliminate harmful byproducts which are created during the burning of these fuels. Hydrogen is the most abundant element in the universe and can be used in either fuel cells or traditional internal combustion engines to produce energy with no harmful emissions. One of the main obstacles facing the implementation of a hydrogen economy is its storage. Classical methods of storage involve either high and unsafe pressures or liquid storage involving a large amount of energy. Two alternative hydrogen storage methods are investigated---physisorption, which is the weak chemical bonding to a material, as well as chemisorption, which is a strong chemical bond of hydrogen to a host material. Polyaniline, a conducting polymer, is investigated in both its bulk form as well as in nanostructured forms, more precisely nanofibers and nanospheres, to store hydrogen via physisorption. It is found the bulk form of polyaniline can store only approximately 0.5wt.% hydrogen, which is far short of the 6wt.% required for practical applications. Nanofibers and nanospheres, however, have been developed, which can store between 4wt.% and 10wt.% of hydrogen at room temperature with varying kinetics. A new complex metal hydride comprised of LiBH4, LiNH 2 and MgH2 has been developed to store hydrogen via chemisorption. While the parent compounds require high temperatures and suffer of slow kinetics for hydrogen sorption, the work performed as part of this dissertation shows that optimized processing conditions reduce the hydrogen release temperature from 250°C to approximately 150°C, while the addition of nano sized materials has been found to increase the kinetics of hydrogen sorption as well as further decrease the hydrogen release temperature, making this one of the first viable hydrogen storage materials available. This is the first time

  2. Phase I. Lanthanum-based Start Materials for Hydride Batteries

    Energy Technology Data Exchange (ETDEWEB)

    Gschneidner, K. A. [Ames Lab., Ames, IA (United States); Schmidt, F. A. [Ames Lab., Ames, IA (United States); Frerichs, A. E. [Ames Lab., Ames, IA (United States); Ament, K. A. [Ames Lab., Ames, IA (United States)

    2013-08-20

    The purpose of Phase I of this work is to focus on developing a La-based start material for making nickel-metal (lanthanum)-hydride batteries based on our carbothermic-silicon process. The goal is to develop a protocol for the manufacture of (La1-xRx)(Ni1-yMy)(Siz), where R is a rare earth metal and M is a non-rare earth metal, to be utilized as the negative electrode in nickel-metal hydride (NiMH) rechargeable batteries.

  3. Review of magnesium hydride-based materials: development and optimisation

    Science.gov (United States)

    Crivello, J.-C.; Dam, B.; Denys, R. V.; Dornheim, M.; Grant, D. M.; Huot, J.; Jensen, T. R.; de Jongh, P.; Latroche, M.; Milanese, C.; Milčius, D.; Walker, G. S.; Webb, C. J.; Zlotea, C.; Yartys, V. A.

    2016-02-01

    Magnesium hydride has been studied extensively for applications as a hydrogen storage material owing to the favourable cost and high gravimetric and volumetric hydrogen densities. However, its high enthalpy of decomposition necessitates high working temperatures for hydrogen desorption while the slow rates for some processes such as hydrogen diffusion through the bulk create challenges for large-scale implementation. The present paper reviews fundamentals of the Mg-H system and looks at the recent advances in the optimisation of magnesium hydride as a hydrogen storage material through the use of catalytic additives, incorporation of defects and an understanding of the rate-limiting processes during absorption and desorption.

  4. Hydride formation in core-shell alloyed metal nanoparticles

    Science.gov (United States)

    Zhdanov, Vladimir P.

    2016-07-01

    The model and analysis presented are focused on hydride formation in nanoparticles with a Pd shell and a core formed by another metal. The arrangement of metal atoms is assumed to be coherent (no dislocations). The lattice strain distribution, elastic energy, and chemical potential of hydrogen atoms are scrutinized. The slope of the chemical potential (as a function of hydrogen uptake) is demonstrated to decrease with increasing the core volume, and accordingly the critical temperature for hydride formation and the corresponding hysteresis loops are predicted to decrease as well.

  5. Hydrogen Desorption from Mg Hydride: An Ab Initio Study

    Directory of Open Access Journals (Sweden)

    Simone Giusepponi

    2012-07-01

    Full Text Available Hydrogen desorption from hydride matrix is still an open field of research. By means of accurate first-principle molecular dynamics (MD simulations an Mg–MgH2 interface is selected, studied and characterized. Electronic structure calculations are used to determine the equilibrium properties and the behavior of the surfaces in terms of structural deformations and total energy considerations. Furthermore, extensive ab-initio molecular dynamics simulations are performed at several temperatures to characterize the desorption process at the interface. The numerical model successfully reproduces the experimental desorption temperature for the hydride.

  6. Ab-initio study of transition metal hydrides

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, Ramesh [Dept. of Physics, Feroze Gandhi Insititute of Engineering and Technology, Raebareli-229001 (India); Shukla, Seema, E-mail: sharma.yamini62@gmail.com; Dwivedi, Shalini, E-mail: sharma.yamini62@gmail.com; Sharma, Yamini, E-mail: sharma.yamini62@gmail.com [Theoretical Condensed Matter Physics Laboratory, Dept. of Physics Feroze Gandhi College, Raebareli-229001 (India)

    2014-04-24

    We have performed ab initio self consistent calculations based on Full potential linearized augmented plane wave (FP-LAPW) method to investigate the optical and thermal properties of yttrium hydrides. From the band structure and density of states, the optical absorption spectra and specific heats have been calculated. The band structure of Yttrium metal changes dramatically due to hybridization of Y sp orbitals with H s orbitals and there is a net charge transfer from metal to hydrogen site. The electrical resistivity and specific heats of yttrium hydrides are lowered but the thermal conductivity is slightly enhanced due to increase in scattering from hydrogen sites.

  7. Exploring "aerogen-hydride" interactions between ZOF2 (Z = Kr, Xe) and metal hydrides: An ab initio study

    Science.gov (United States)

    Esrafili, Mehdi D.; Mohammadian-Sabet, Fariba

    2016-06-01

    In this work, a new σ-hole interaction formed between ZOF2 (Z = Kr and Xe) as the Lewis acid and a series of metal-hydrides HMX (M = Be, Mg, Zn and X = H, F, CN, CH3) is reported. The nature of this interaction, called "aerogen-hydride" interaction, is unveiled by molecular electrostatic potential, non-covalent interaction, quantum theory of atoms in molecules and natural bond orbital analyses. Our results indicate that the aerogen-hydride interactions are quite strong and can be comparable in strength to other σ-hole bonds. An important charge-transfer interaction is also associated with the formation of OF2Z⋯HMX complexes.

  8. Uranium Hydride Nucleation and Growth Model FY'16 ESC Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    Hill, Mary Ann [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Richards, Andrew Walter [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Holby, Edward F. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Schulze, Roland K. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-12-20

    Uranium hydride corrosion is of great interest to the nuclear industry. Uranium reacts with water and/or hydrogen to form uranium hydride which adversely affects material performance. Hydride nucleation is influenced by thermal history, mechanical defects, oxide thickness, and chemical defects. Information has been gathered from past hydride experiments to formulate a uranium hydride model to be used in a Canned Subassembly (CSA) lifetime prediction model. This multi-scale computer modeling effort started in FY’13, and the fourth generation model is now complete. Additional high-resolution experiments will be run to further test the model.

  9. The influence of hydride on fracture toughness of recrystallized Zircaloy-4 cladding

    Energy Technology Data Exchange (ETDEWEB)

    Hsu, Hsiao-Hung, E-mail: 175877@mail.csc.com.tw [Institute of Nuclear Energy Research (INER), Lungtan Township, Taoyuan County 32546, Taiwan, ROC (China); China Steel Corporation, Hsiao Kang District, Kaohsiung 81233, Taiwan, ROC (China); Chiang, Ming-Feng [China Steel Corporation, Hsiao Kang District, Kaohsiung 81233, Taiwan, ROC (China); Chen, Yen-Chen [Institute of Nuclear Energy Research (INER), Lungtan Township, Taoyuan County 32546, Taiwan, ROC (China)

    2014-04-01

    In this work, RXA cladding tubes were hydrogen-charged to target hydrogen content levels between 150 and 800 wppm (part per million by weight). The strings of zirconium hydrides observed in the cross sections are mostly oriented in the circumferential direction. The fracture toughness of hydrided RXA Zircaloy-4 cladding was measured to evaluate its hydride embrittlement susceptibility. With increasing hydrogen content, the fracture toughness of hydrided RXA cladding decreases at both 25 °C and 300 °C. Moreover, highly localized hydrides (forming a hydride rim) aggravate the degradation of the fracture properties of RXA Zircaloy-4 cladding at both 25 °C and 300 °C. Brittle features in the form of quasi-cleavages and secondary cracks were observed on the fracture surface of the hydride rim, even for RXA cladding tested at 300 °C.

  10. Hydrogen Storage in Porous Materials and Magnesium Hydrides

    NARCIS (Netherlands)

    Grzech, A.

    2013-01-01

    In this thesis representatives of two different types of materials for potential hydrogen storage application are presented. Usage of either nanoporous materials or metal hydrides has both operational advantages and disadvantages. A main objective of this thesis is to characterize the hydrogen

  11. Pore confined synthesis of magnesium boron hydride nanoparticles

    NARCIS (Netherlands)

    Au, Yuen S.; Yan, Yigang; De Jong, Krijn P.; Remhof, Arndt; De Jongh, Petra E.

    2014-01-01

    Nanostructured materials based on light elements such as Li, Mg, and Na are essential for energy storage and conversion applications, but often difficult to prepare with control over size and structure. We report a new strategy that is illustrated for the formation of magnesium boron hydrides,

  12. Novel baker's yeast catalysed hydride reduction of an epoxide moiety

    CSIR Research Space (South Africa)

    Horak, RM

    1995-02-27

    Full Text Available -4039(95)00043-7 Tetrahedron Letters, Vol. 36, No. 9, pp. 1541-1544, 1995 Elsevier Science Ltd Printed in Great Britain 0040-4039/95 $9.50+0.00 A Novel Baker's Yeast Catalysed Hydride Reduction of an Epoxide Moiety R. Marthinus Horak, Robin A...

  13. Release of hydrogen from nanoconfined hydrides by application of microwaves

    Science.gov (United States)

    Sanz-Moral, Luis Miguel; Navarrete, Alexander; Sturm, Guido; Link, Guido; Rueda, Miriam; Stefanidis, Georgios; Martín, Ángel

    2017-06-01

    The release of hydrogen from solid hydrides by thermolysis can be improved by nanoconfinement of the hydride in a suitable micro/mesoporous support, but the slow heat transfer by conduction through the support can be a limitation. In this work, a C/SiO2 mesoporous material has been synthesized and employed as matrix for nanoconfinement of hydrides. The matrix showed high surface area and pore volume (386 m2/g and 1.41 cm3/g), which enabled the confinement of high concentrations of hydride. Furthermore, by modification of the proportion between C and SiO2, the dielectric properties of the complex could be modified, making it susceptible to microwave heating. As with this heating method the entire sample is heated simultaneously, the heat transfer resistances associated to conduction were eliminated. To demonstrate this possibility, ethane 1,2-diaminoborane (EDAB) was embedded on the C/SiO2 matrix at concentrations ranging from 11 to 31%wt using a wet impregnation method, and a device appropriate for hydrogen release from this material by application of microwaves was designed with the aid of a numerical simulation. Hydrogen liberation tests by conventional heating and microwaves were compared, showing that by microwave heating hydrogen release can be initiated and stopped in shorter times.

  14. Hydrogen Storage in Porous Materials and Magnesium Hydrides

    NARCIS (Netherlands)

    Grzech, A.

    2013-01-01

    In this thesis representatives of two different types of materials for potential hydrogen storage application are presented. Usage of either nanoporous materials or metal hydrides has both operational advantages and disadvantages. A main objective of this thesis is to characterize the hydrogen stora

  15. Review of magnesium hydride-based materials: development and optimisation

    NARCIS (Netherlands)

    Crivello, J. -C.; Dam, B.; Denys, R. V.; Dornheim, M.; Grant, D. M.; Huot, J.; Jensen, T. R.; de Jongh, P.; Latroche, M.; Milanese, C.; Milcius, D.; Walker, G. S.; Webb, C. J.; Zlotea, C.; Yartys, V. A.

    2016-01-01

    Magnesium hydride has been studied extensively for applications as a hydrogen storage material owing to the favourable cost and high gravimetric and volumetric hydrogen densities. However, its high enthalpy of decomposition necessitates high working temperatures for hydrogen desorption while the slo

  16. Process of forming a sol-gel/metal hydride composite

    Science.gov (United States)

    Congdon, James W.

    2009-03-17

    An external gelation process is described which produces granules of metal hydride particles contained within a sol-gel matrix. The resulting granules are dimensionally stable and are useful for applications such as hydrogen separation and hydrogen purification. An additional coating technique for strengthening the granules is also provided.

  17. Hydrogen adsorption on palladium and palladium hydride at 1 bar

    DEFF Research Database (Denmark)

    Johansson, Martin; Skulason, Egill; Nielsen, Gunver

    2010-01-01

    The dissociative sticking probability for H-2 on Pd films supported on sputtered Highly Ordered Pyrolytic Graphite (HOPG) has been derived from measurements of the rate of the H-D exchange reaction at 1 bar. The sticking probability for H-2, S. is higher on Pd hydride than on Pd (a factor of 1...

  18. Pore confined synthesis of magnesium boron hydride nanoparticles

    NARCIS (Netherlands)

    Au, Yuen S.; Yan, Yigang; De Jong, Krijn P.; Remhof, Arndt; De Jongh, Petra E.

    2014-01-01

    Nanostructured materials based on light elements such as Li, Mg, and Na are essential for energy storage and conversion applications, but often difficult to prepare with control over size and structure. We report a new strategy that is illustrated for the formation of magnesium boron hydrides, relev

  19. Optimization of Internal Cooling Fins for Metal Hydride Reactors

    Directory of Open Access Journals (Sweden)

    Vamsi Krishna Kukkapalli

    2016-06-01

    Full Text Available Metal hydride alloys are considered as a promising alternative to conventional hydrogen storage cylinders and mechanical hydrogen compressors. Compared to storing in a classic gas tank, metal hydride alloys can store hydrogen at nearly room pressure and use less volume to store the same amount of hydrogen. However, this hydrogen storage method necessitates an effective way to reject the heat released from the exothermic hydriding reaction. In this paper, a finned conductive insert is adopted to improve the heat transfer in the cylindrical reactor. The fins collect the heat that is volumetrically generated in LaNi5 metal hydride alloys and deliver it to the channel located in the center, through which a refrigerant flows. A multiple-physics modeling is performed to analyze the transient heat and mass transfer during the hydrogen absorption process. Fin design is made to identify the optimum shape of the finned insert for the best heat rejection. For the shape optimization, use of a predefined transient heat generation function is proposed. Simulations show that there exists an optimal length for the fin geometry.

  20. Superconductivity and unexpected chemistry of germanium hydrides under pressure

    Science.gov (United States)

    Davari Esfahani, M. Mahdi; Oganov, Artem R.; Niu, Haiyang; Zhang, Jin

    2017-04-01

    Following the idea that hydrogen-rich compounds might be high-Tc superconductors at high pressures, and the very recent breakthrough in predicting and synthesizing hydrogen sulfide with record-high Tc=203 K , an ab initio evolutionary algorithm for crystal structure prediction was employed to find stable germanium hydrides. In addition to the earlier structure of germane with space group Ama2, we propose a C2/m structure, which is energetically more favorable at pressures above 278 GPa (with inclusion of zero-point energy). Our calculations indicate that the C2/m phase of germane is a superconductor with Tc=67 K at 280 GPa. Germane is found to become thermodynamically unstable to decomposition to hydrogen and the compound Ge3H11 at pressures above 300 GPa. Ge3H11 with space group I 4 ¯m 2 is found to become stable at above 285 GPa with Tc=43 K . We find that the pressure-induced phase stability of germanium hydrides is distinct from analogous isoelectronic systems, e.g., Si hydrides and Sn hydrides. Superconductivity stems from large electron-phonon coupling associated with the wagging, bending, and stretching intermediate-frequency modes derived mainly from hydrogen.

  1. Structural stability of complex hydrides LiBH4 revisited

    DEFF Research Database (Denmark)

    Lodziana, Zbigniew; Vegge, Tejs

    2004-01-01

    A systematic approach to study the phase stability of LiBH4 based on ab initio calculations is presented. Three thermodynamically stable phases are identified and a new phase of Cc symmetry is proposed for the first time for a complex hydride. The x-ray diffraction pattern and vibrational spectra...

  2. Hydride encapsulation by molecular alkali-metal clusters.

    Science.gov (United States)

    Haywood, Joanna; Wheatley, Andrew E H

    2008-07-14

    The sequential treatment of group 12 and 13 Lewis acids with alkali-metal organometallics is well established to yield so-called ''ate' complexes, whereby the Lewis-acid metal undergoes nucleophilic attack to give an anion, at least one group 1 metal acting to counter this charge. However, an alternative, less well recognised, reaction pathway involves the Lewis acid abstracting hydride from the organolithium reagent via a beta-elimination mechanism. It has recently been shown that in the presence of N,N'-bidentate ligands this chemistry can be harnessed to yield a new type of molecular main-group metal cluster in which the abstracted LiH is effectively trapped, with the hydride ion occupying an interstitial site in the cluster core. Discussion focuses on the development of this field, detailing advances in our understanding of the roles of Lewis acid, organolithium, and amine substrates in the syntheses of these compounds. Structure-types are discussed, as are efforts to manipulate cluster geometry and composition as well as hydride-coordination. Embryonic mechanistic studies are reported, as well as attempts to generate hydride-encapsulation clusters under catalytic control.

  3. Optimizing Misch-Metal Compositions In Metal Hydride Anodes

    Science.gov (United States)

    Bugga, Ratnakumar V.; Halpert, Gerald

    1995-01-01

    Electrochemical cells based on metal hydride anodes investigated experimentally in effort to find anode compositions maximizing charge/discharge-cycle performances. Experimental anodes contained misch metal alloyed with various proportions of Ni, Co, Mn, and Al, and experiments directed toward optimization of composition of misch metal.

  4. Well-defined transition metal hydrides in catalytic isomerizations.

    Science.gov (United States)

    Larionov, Evgeny; Li, Houhua; Mazet, Clément

    2014-09-07

    This Feature Article intends to provide an overview of a variety of catalytic isomerization reactions that have been performed using well-defined transition metal hydride precatalysts. A particular emphasis is placed on the underlying mechanistic features of the transformations discussed. These have been categorized depending upon the nature of the substrate and in most cases discussed following a chronological order.

  5. Nanocrystalline Metal Hydrides Obtained by Severe Plastic Deformations

    Directory of Open Access Journals (Sweden)

    Jacques Huot

    2012-01-01

    Full Text Available It has recently been shown that Severe Plastic Deformation (SPD techniques could be used to obtain nanostructured metal hydrides with enhanced hydrogen sorption properties. In this paper we review the different SPD techniques used on metal hydrides and present some specific cases of the effect of cold rolling on the hydrogen storage properties and crystal structure of various types of metal hydrides such as magnesium-based alloys and body centered cubic (BCC alloys. Results show that generally cold rolling is as effective as ball milling to enhance hydrogen sorption kinetics. However, for some alloys such as TiV0.9Mn1.1 alloy ball milling and cold rolling have detrimental effect on hydrogen capacity. The exact mechanism responsible for the change in hydrogenation properties may not be the same for ball milling and cold rolling. Nevertheless, particle size reduction and texture seems to play a leading role in the hydrogen sorption enhancement of cold rolled metal hydrides.

  6. Metal hydrides for smart window and sensor applications

    NARCIS (Netherlands)

    Yoshimura, K.; Langhammer, C.; Dam, B.

    2013-01-01

    The hydrogenation of metals often leads to changes in optical properties in the visible range. This allows for fundamental studies of the hydrogenation process, as well as the exploration of various applications using these optical effects. Here, we focus on recent developments in metal hydride-base

  7. Tribochemical Decomposition of Light Ionic Hydrides at Room Temperature.

    Science.gov (United States)

    Nevshupa, Roman; Ares, Jose Ramón; Fernández, Jose Francisco; Del Campo, Adolfo; Roman, Elisa

    2015-07-16

    Tribochemical decomposition of magnesium hydride (MgH2) induced by deformation at room temperature was studied on a micrometric scale, in situ and in real time. During deformation, a near-full depletion of hydrogen in the micrometric affected zone is observed through an instantaneous (t MgH2 with reduced crystal size by mechanical deformation.

  8. KNH2-KH: a metal amide-hydride solid solution.

    Science.gov (United States)

    Santoru, Antonio; Pistidda, Claudio; Sørby, Magnus H; Chierotti, Michele R; Garroni, Sebastiano; Pinatel, Eugenio; Karimi, Fahim; Cao, Hujun; Bergemann, Nils; Le, Thi T; Puszkiel, Julián; Gobetto, Roberto; Baricco, Marcello; Hauback, Bjørn C; Klassen, Thomas; Dornheim, Martin

    2016-09-27

    We report for the first time the formation of a metal amide-hydride solid solution. The dissolution of KH into KNH2 leads to an anionic substitution, which decreases the interaction among NH2(-) ions. The rotational properties of the high temperature polymorphs of KNH2 are thereby retained down to room temperature.

  9. Thin-film metal hydrides for solar energy applications

    Energy Technology Data Exchange (ETDEWEB)

    Mongstad, Trygve Tveiteraas

    2012-11-01

    Thin-film metal hydrides may become important solar energy materials in the future. This thesis demonstrates interesting material properties of metal hydride films, relevant for applications as semiconducting materials for photovoltaic (PV) solar cells and for regulation of light using smart window technology.The work presented here has comprised an experimental study, focusing on three different materials: Magnesium hydride (MgH2), magnesium nickel hydride (Mg2NiH4) and yttrium hydride (YHx). Reactive sputter deposition was used to prepare the metal hydride film samples.This synthesis method is relatively uncommon for metal hydrides. Here,the first demonstration of reactive sputtering synthesis for YHx and Mg2NiH4 is given. Different challenges in forming singlephase, pure metal hydrides were identified: MgH2 could not be deposited without 3-16% metallic Mg present in the films, and YHx was found to react strong-ly to oxygen (O) during the deposition process. On the other hand, Mg2NiH4 films formed easily and apparently without major metallic clusters and with low O content.Mg2NiH4 is a semiconductor with an optical band gap that is suitable for PV solar cells. This study has showed that films with promising electrical and optical properties can be synthesized using reactive cosputtering of Mg and Ni. Using optical methods, the band gap for the as deposited samples was estimated to 1.54-1.76 eV, depending on the Mg-Ni composition. The asdeposited films were amorphous or nano-crystalline, but could be crystallized into the high-temperature fcc structure of Mg2NiH4 using heat treatment at 523 K. The band gap of the crystalline films was 2.1-2.2 eV, depending on the composition.A pronounced photochromic reaction to visible and UV light was observed for transparent yttrium hydride (T-YHx) samples. The optical transmission was reduced when the samples were illuminated, and the original optical transmission was restored when the samples were kept under dark conditions

  10. Activation and discharge kinetics of metal hydride electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Johnsen, Stein Egil

    2003-07-01

    Potential step chronoamperometry and Electrochemical Impedance Spectroscopy (eis) measurements were performed on single metal hydride particles. For the {alpha}-phase, the bulk diffusion coefficient and the absorption/adsorption rate parameters were determined. Materials produced by atomisation, melt spinning and conventional casting were investigated. The melt spun and conventional cast materials were identical and the atomised material similar in composition. The particles from the cast and the melt spun material were shaped like parallelepipeds. A corresponding equation, for this geometry, for diffusion coupled to an absorption/adsorption reaction was developed. It was found that materials produced by melt spinning exhibited lower bulk diffusion (1.7E-14 m2/s) and absorption/adsorption reaction rate (1.0E-8 m/s), compared to materials produced by conventionally casting (1.1E-13 m2/s and 5.5E-8 m/s respectively). In addition, the influence of particle active surface and relative diffusion length were discussed. It was concluded that there are uncertainties connected to these properties, which may explain the large distribution in the kinetic parameters measured on metal hydride particles. Activation of metal hydride forming materials has been studied and an activation procedure, for porous electrodes, was investigated. Cathodic polarisation of the electrode during a hot alkaline surface treatment gave the maximum discharge capacity on the first discharge of the electrode. The studied materials were produced by gas atomisation and the spherical shape was retained during the activation. Both an AB{sub 5} and an AB{sub 2} alloy was successfully activated and discharge rate properties determined. The AB{sub 2} material showed a higher maximum discharge capacity, but poor rate properties, compared to the AB{sub 5} material. Reduction of surface oxides, and at the same time protection against corrosion of active metallic nickel, can explain the satisfying results of

  11. Genusa Bepu methodologies for the safety analysis of BWRs; Metodologias Bepu de Genusa para el analisis de seguridad de reactores BWR

    Energy Technology Data Exchange (ETDEWEB)

    Trueba, M.; Garcia, J.; Goodson, C.; Ibarra, L.

    2016-08-01

    This article describes the BEPU methodologies developed by General Electric-Hitachi (GEH) for the evaluation of the BWR reactor safety analysis based on the TRACG best-estimate code. These methodologies are applicable to a wide range of events, operational transients (AOO), anticipated transients without scram (ATWS), loss of coolant accidents (LOCA) and instability events; to different BWR types operating commercially. General Electric (GE( designs and other vendors, including Generation III+ESBWR; to the new operation strategies, and to all types of BWR fuel. Their application achieves, among other benefits, a better understanding of the overall plant response and an improvement in margins to the operating limits; thus, the increase of flexibility in reactor operation and reduction in generation costs. (Author)

  12. Metal Hydrides as hot carrier cell absorber materials

    Science.gov (United States)

    Wang, Pei; Wen, Xiaoming; Shrestha, Santosh; Conibeer, Gavin; Aguey-Zinsou, Kondo-Francois

    2016-09-01

    The hot Carrier Solar Cell (HCSC) allows the photon-induced hot carriers (the carriers with energy larger than the band gap) to be collected before they completely thermalise. The absorber of the HCSC should have a large phononic band gap to supress Klemens Decay, which results in a slow carrier cooling speed. In fact, a large phononic band gap likely exists in a binary compound whose constituent elements have a large mass ratio between each other. Binary hydrides with their overwhelming mass ratio of the constituent elements are important absorber candidates. Study on different types of binary hydrides as potential absorber candidates is presented in this paper. Many binary transition metal hydrides have reported theoretical or experimental phonon dispersion charts which show large phononic band gaps. Among these hydrides, the titanium hydride (TiHX) is outstanding because of its low cost, easy fabrication process and is relatively inert to air and water. A TiHX thin film is fabricated by directly hydrogenating an evaporated titanium thin film. Characterisation shows good crystal quality and the hydrogenation process is believed to be successful. Ultrafast transient absorption (TA) spectroscopy is used to study the electron cooling time of TiHX. The result is very noisy due to the low absorption and transmission of the sample. The evolution of the TA curves has been explained by band to band transition using the calculated band structure of TiH2. Though not reliable due to the high noise, decay time fitting at 700nm and 600nm shows a considerably slow carrier cooling speed of the sample.

  13. Synthesis of hydrides by interaction of intermetallic compounds with ammonia

    Energy Technology Data Exchange (ETDEWEB)

    Tarasov, Boris P., E-mail: tarasov@icp.ac.ru [Institute of Problems of Chemical Physics of the Russian Academy of Sciences, Chernogolovka 142432 (Russian Federation); Fokin, Valentin N.; Fokina, Evelina E. [Institute of Problems of Chemical Physics of the Russian Academy of Sciences, Chernogolovka 142432 (Russian Federation); Yartys, Volodymyr A., E-mail: volodymyr.yartys@ife.no [Institute for Energy Technology, Kjeller NO 2027 (Norway); Department of Materials Science and Engineering, Norwegian University of Science and Technology, Trondheim NO 7491 (Norway)

    2015-10-05

    Highlights: • Interaction of the intermetallics A{sub 2}B, AB, AB{sub 2}, AB{sub 5} and A{sub 2}B{sub 17} with NH{sub 3} was studied. • The mechanism of interaction of the alloys with ammonia is temperature-dependent. • Hydrides, hydridonitrides, disproportionation products or metal–N–H compounds are formed. • NH{sub 4}Cl was used as an activator of the reaction between ammonia and intermetallics. • Interaction with ammonia results in the synthesis of the nanopowders. - Abstract: Interaction of intermetallic compounds with ammonia was studied as a processing route to synthesize hydrides and hydridonitrides of intermetallic compounds having various stoichiometries and types of crystal structures, including A{sub 2}B, AB, AB{sub 2}, AB{sub 5} and A{sub 2}B{sub 17} (A = Mg, Ti, Zr, Sc, Nd, Sm; B = transition metals, including Fe, Co, Ni, Ti and nontransition elements, Al and B). In presence of NH{sub 4}Cl used as an activator of the reaction between ammonia and intermetallic alloys, their interaction proceeds at rather mild P–T conditions, at temperatures 100–200 °C and at pressures of 0.6–0.8 MPa. The mechanism of interaction of the alloys with ammonia appears to be temperature-dependent and, following a rise of the interaction temperature, it leads to the formation of interstitial hydrides; interstitial hydridonitrides; disproportionation products (binary hydride; new intermetallic hydrides and binary nitrides) or new metal–nitrogen–hydrogen compounds like magnesium amide Mg(NH{sub 2}){sub 2}. The interaction results in the synthesis of the nanopowders where hydrogen and nitrogen atoms become incorporated into the crystal lattices of the intermetallic alloys. The nitrogenated materials have the smallest particle size, down to 40 nm, and a specific surface area close to 20 m{sup 2}/g.

  14. Automated determinations of selenium in thermal power plant wastewater by sequential hydride generation and chemiluminescence detection.

    Science.gov (United States)

    Ezoe, Kentaro; Ohyama, Seiichi; Hashem, Md Abul; Ohira, Shin-Ichi; Toda, Kei

    2016-02-01

    After the Fukushima disaster, power generation from nuclear power plants in Japan was completely stopped and old coal-based power plants were re-commissioned to compensate for the decrease in power generation capacity. Although coal is a relatively inexpensive fuel for power generation, it contains high levels (mgkg(-1)) of selenium, which could contaminate the wastewater from thermal power plants. In this work, an automated selenium monitoring system was developed based on sequential hydride generation and chemiluminescence detection. This method could be applied to control of wastewater contamination. In this method, selenium is vaporized as H2Se, which reacts with ozone to produce chemiluminescence. However, interference from arsenic is of concern because the ozone-induced chemiluminescence intensity of H2Se is much lower than that of AsH3. This problem was successfully addressed by vaporizing arsenic and selenium individually in a sequential procedure using a syringe pump equipped with an eight-port selection valve and hot and cold reactors. Oxidative decomposition of organoselenium compounds and pre-reduction of the selenium were performed in the hot reactor, and vapor generation of arsenic and selenium were performed separately in the cold reactor. Sample transfers between the reactors were carried out by a pneumatic air operation by switching with three-way solenoid valves. The detection limit for selenium was 0.008 mg L(-1) and calibration curve was linear up to 1.0 mg L(-1), which provided suitable performance for controlling selenium in wastewater to around the allowable limit (0.1 mg L(-1)). This system consumes few chemicals and is stable for more than a month without any maintenance. Wastewater samples from thermal power plants were collected, and data obtained by the proposed method were compared with those from batchwise water treatment followed by hydride generation-atomic fluorescence spectrometry.

  15. Hydride structures in Ti-aluminides subjected to high temperature and hydrogen pressure charging conditions

    Science.gov (United States)

    Legzdina, D.; Robertson, I. M.; Birnbaum, H. K.

    1991-01-01

    The distribution and chemistry of hydrides produced in single and dual phase alloys with a composition near TiAl have been investigated by using a combination of TEM and X-ray diffraction techniques. The alloys were exposed at 650 C to 13.8 MPa of gaseous H2 for 100 h. In the single-phase gamma alloy, large hydrides preferentially nucleated on the grain boundaries and matrix dislocations and a population of small hydrides was distributed throughout the matrix. X-ray and electron diffraction patterns from these hydrides indicated that they have an fcc structure with a lattice parameter of 0.45 nm. EDAX analysis of the hydrides showed that they were enriched in Ti. The hydrides were mostly removed by vacuum annealing at 800 C for 24 h. On dissolution of the hydrides, the chemistry of hydride-free regions of the grain boundary returned to the matrix composition, suggesting that Ti segregation accompanied the hydride formation rather than Ti enrichment causing the formation of the hydride.

  16. Hydriding performances and modeling of a small-scale ZrCo bed

    Energy Technology Data Exchange (ETDEWEB)

    Koo, D.; Lee, J.; Park, J.; Paek, S.; Chung, H. [KAERI-UST, Yuseong, Daejeon (Korea, Republic of); Chang, M.H.; Yun, S.H.; Cho, S.; Jung, K.J. [NFRI, Yuseong, Daejeon (Korea, Republic of)

    2015-03-15

    In order to evaluate the performance of the hydriding of a ZrCo bed, a small-scale getter bed of ZrCo was designed and fabricated. The results show that the hydriding time at room temperature was somewhat shorter than that at higher temperatures of ZrCo and that the performance of hydriding at low temperatures of ZrCo was better than that at high temperatures of ZrCo. The experimental results of the hydrogen pressure of hydriding (ZrCoH{sub 2.8}) at different temperatures were in agreement with the computed values using a numerical modeling equation but with a small difference during the first 10 minutes of the hydriding of ZrCo. The model is based on the Kozeny-Carman equation. The effect of a helium blanket on hydriding was measured and analyzed. The hydriding with no helium blanket in the primary vessel of ZrCo is much faster than that with a helium blanket. The hydriding at a helium concentration of 8% is slower than that at 0%. As the helium concentration increases, the hydriding of ZrCo decreases. The experimental results of the hydriding with 0 %, 4%, and 8% of helium concentration are in agreement with the calculated values but with minimal differences during the first 10 minutes.

  17. Dissociation potential curves of low-lying states in transition metal hydrides. 3. Hydrides of groups 6 and 7.

    Science.gov (United States)

    Koseki, Shiro; Matsushita, Takeshi; Gordon, Mark S

    2006-02-23

    The dissociation curves of low-lying spin-mixed states in monohydrides of groups 6 and 7 were calculated by using an effective core potential (ECP) approach. This approach is based on the multiconfiguration self-consistent field (MCSCF) method, followed by first-order configuration interaction (FOCI) calculations, in which the method employs an ECP basis set proposed by Stevens and co-workers (SBKJC) augmented by a set of polarization functions. Spin-orbit coupling (SOC) effects are estimated within the one-electron approximation by using effective nuclear charges, since SOC splittings obtained with the full Breit-Pauli Hamitonian are underestimated when ECP basis sets are used. The ground states of group 6 hydrides have Omega = (1)/(2)(X(6)Sigma(+)(1/2)), where Omega is the z component of the total angular momentum quantum number. Although the ground states of group 7 hydrides have Omega = 0(+), their main adiabatic components are different; the ground state in MnH originates from the lowest (7)Sigma(+), while in TcH and ReH the main component of the ground state is the lowest (5)Sigma(+). The present paper reports a comprehensive set of theoretical results including the dissociation energies, equilibrium distances, electronic transition energies, harmonic frequencies, anharmonicities, and rotational constants for several low-lying spin-mixed states in these hydrides. Transition dipole moments were also computed among the spin-mixed states and large peak positions of electronic transitions are suggested theoretically for these hydrides. The periodic trends of physical properties of metal hydrides are discussed, based on the results reported in this and other recent studies.

  18. Hydride-induced amplification of performance and binding enthalpies in chromium hydrazide gels for Kubas-type hydrogen storage.

    Science.gov (United States)

    Hamaed, Ahmad; Hoang, Tuan K A; Moula, Golam; Aroca, Ricardo; Trudeau, Michel L; Antonelli, David M

    2011-10-05

    Hydrogen is the ideal fuel because it contains the most energy per gram of any chemical substance and forms water as the only byproduct of consumption. However, storage still remains a formidable challenge because of the thermodynamic and kinetic issues encountered when binding hydrogen to a carrier. In this study, we demonstrate how the principal binding sites in a new class of hydrogen storage materials based on the Kubas interaction can be tuned by variation of the coordination sphere about the metal to dramatically increase the binding enthalpies and performance, while also avoiding the shortcomings of hydrides and physisorpion materials, which have dominated most research to date. This was accomplished through hydrogenation of chromium alkyl hydrazide gels, synthesized from bis(trimethylsilylmethyl) chromium and hydrazine, to form materials with low-coordinate Cr hydride centers as the principal H(2) binding sites, thus exploiting the fact that metal hydrides form stronger Kubas interactions than the corresponding metal alkyls. This led to up to a 6-fold increase in storage capacity at room temperature. The material with the highest capacity has an excess reversible storage of 3.23 wt % at 298 K and 170 bar without saturation, corresponding to 40.8 kg H(2)/m(3), comparable to the 2015 DOE system goal for volumetric density (40 kg/m(3)) at a safe operating pressure. These materials possess linear isotherms and enthalpies that rise on coverage, retain up to 100% of their adsorption capacities on warming from 77 to 298 K, and have no kinetic barrier to adsorption or desorption. In a practical system, these materials would use pressure instead of temperature as a toggle and can thus be used in compressed gas tanks, currently employed in the majority of hydrogen test vehicles, to dramatically increase the amount of hydrogen stored, and therefore range of any vehicle.

  19. A portable power system using PEM fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Long, E. [Ball Aerospace and Technologies Corp., Boulder, CO (United States)

    1997-12-31

    Ball has developed a proof-of-concept, small, lightweight, portable power system. The power system uses a proton exchange membrane (PEM) fuel cell stack, stored hydrogen, and atmospheric oxygen as the oxidant to generate electrical power. Electronics monitor the system performance to control cooling air and oxidant flow, and automatically do corrective measures to maintain performance. With the controller monitoring the system health, the system can operate in an ambient environment from 0 C to +50 C. The paper describes system testing, including load testing, thermal and humidity testing, vibration and shock testing, field testing, destructive testing of high-pressure gas tanks, and test results on the fuel cell power system, metal hydride hydrogen storage, high-pressure hydrogen gas storage, and chemical hydride hydrogen storage.

  20. Heavy hydrides: H2Te ultraviolet photochemistry

    Science.gov (United States)

    Underwood, J.; Chastaing, D.; Lee, S.; Wittig, C.

    2005-08-01

    The room-temperature ultraviolet absorption spectrum of H2Te has been recorded. Unlike other group-6 hydrides, it displays a long-wavelength tail that extends to 400 nm. Dissociation dynamics have been examined at photolysis wavelengths of 266 nm (which lies in the main absorption feature) and 355 nm (which lies in the long-wavelength tail) by using high-n Rydberg time-of-flight spectroscopy to obtain center-of-mass translational energy distributions for the channels that yield H atoms. Photodissociation at 355 nm yields TeH(Π1/22) selectively relative to the TeH(Π3/22) ground state. This is attributed to the role of the 3A' state, which has a shallow well at large RH-TeH and correlates to H +TeH(Π1/22). Note that the Π1/22 state is analogous to the P1/22 spin-orbit excited state of atomic iodine, which is isoelectronic with TeH. The 3A' state is crossed at large R only by 2A″, with which it does not interact. The character of 3A' at large R is influenced by a strong spin-orbit interaction in the TeH product. Namely, Π1/22 has a higher degree of spherical symmetry than does Π3/22 (recall that I(P1/22) is spherically symmetric), and consequently Π1/22 is not inclined to form either strongly bonding or antibonding orbitals with the H atom. The 3A'←X transition dipole moment dominates in the long-wavelength region and increases with R. Structure observed in the absorption spectrum in the 380-400 nm region is attributed to vibrations on 3A'. The main absorption feature that is peaked at ˜240nm might arise from several excited surfaces. On the basis of the high degree of laboratory system spatial anisotropy of the fragments from 266 nm photolysis, as well as high-level theoretical studies, the main contribution is believed to be due to the 4A″ surface. The 4A″←X transition dipole moment dominates in the Franck-Condon region, and its polarization is in accord with the experimental observations. An extensive secondary photolysis (i.e., of nascent TeH) is

  1. Composite Materials for Hazard Mitigation of Reactive Metal Hydrides.

    Energy Technology Data Exchange (ETDEWEB)

    Pratt, Joseph William; Cordaro, Joseph Gabriel; Sartor, George B.; Dedrick, Daniel E.; Reeder, Craig L.

    2012-02-01

    In an attempt to mitigate the hazards associated with storing large quantities of reactive metal hydrides, polymer composite materials were synthesized and tested under simulated usage and accident conditions. The composites were made by polymerizing vinyl monomers using free-radical polymerization chemistry, in the presence of the metal hydride. Composites with vinyl-containing siloxane oligomers were also polymerized with and without added styrene and divinyl benzene. Hydrogen capacity measurements revealed that addition of the polymer to the metal hydride reduced the inherent hydrogen storage capacity of the material. The composites were found to be initially effective at reducing the amount of heat released during oxidation. However, upon cycling the composites, the mitigating behavior was lost. While the polymer composites we investigated have mitigating potential and are physically robust, they undergo a chemical change upon cycling that makes them subsequently ineffective at mitigating heat release upon oxidation of the metal hydride. Acknowledgements The authors would like to thank the following people who participated in this project: Ned Stetson (U.S. Department of Energy) for sponsorship and support of the project. Ken Stewart (Sandia) for building the flow-through calorimeter and cycling test stations. Isidro Ruvalcaba, Jr. (Sandia) for qualitative experiments on the interaction of sodium alanate with water. Terry Johnson (Sandia) for sharing his expertise and knowledge of metal hydrides, and sodium alanate in particular. Marcina Moreno (Sandia) for programmatic assistance. John Khalil (United Technologies Research Corp) for insight into the hazards of reactive metal hydrides and real-world accident scenario experiments. Summary In an attempt to mitigate and/or manage hazards associated with storing bulk quantities of reactive metal hydrides, polymer composite materials (a mixture of a mitigating polymer and a metal hydride) were synthesized and tested

  2. Structural and kinetic studies of metal hydride hydrogen storage materials using thin film deposition and characterization techniques

    Science.gov (United States)

    Kelly, Stephen Thomas

    Hydrogen makes an attractive energy carrier for many reasons. It is an abundant chemical fuel that can be produced from a wide variety of sources and stored for very long periods of time. When used in a fuel cell, hydrogen emits only water at the point of use, making it very attractive for mobile applications such as in an automobile. Metal hydrides are promising candidates for on-board reversible hydrogen storage in mobile applications due to their very high volumetric storage capacities---in most cases exceeding even that of liquid hydrogen. The United States Department of Energy (DOE) has set fuel system targets for an automotive hydrogen storage system, but as of yet no single material meets all the requirements. In particular, slow reaction kinetics and/or inappropriate thermodynamics plague many metal hydride hydrogen storage materials. In order to engineer a practical material that meets the DOE targets, we need a detailed understanding of the kinetic and thermodynamic properties of these materials during the phase change. In this work I employed sputter deposited thin films as a platform to study materials with highly controlled chemistry, microstructure and catalyst placement using thin film characterization techniques such as in situ x-ray diffraction (XRD) and neutron reflectivity. I observed kinetic limitations in the destabilized Mg2Si system due to the slow diffusion of the host Mg and Si atoms while forming separate MgH2 and Si phases. Conversely, I observed that the presence of Al in the Mg/Al system inhibits hydrogen diffusion while the host Mg and Al atoms interdiffuse readily, allowing the material to fall into a kinetic and/or thermodynamic trap by forming intermetallic compounds such as Mg17Al 12. By using in situ XRD to analyze epitaxial Mg films grown on (001) oriented Al2O3 substrates I observed hydride growth consistent with a model of a planar hydride layer growing into an existing metal layer. Subsequent film cycling changes the hydrogen

  3. Electrometallurgical treatment of degraded N-reactor fuel

    Energy Technology Data Exchange (ETDEWEB)

    Gourishankar, K. V.; Karell, E. J.; Everhart, R. E.; Indacochea, E.

    2000-03-03

    N-Reactor fuel constitutes almost 80% of the entire mass of the US Department of Energy's (DOE's) spent fuel inventory. The current plan for disposition of this fuel calls for interim dry storage, followed by direct repository disposal. However, this approach may not be viable for the entire inventory of N-Reactor fuel. The physical condition and chemical composition of much of the fuel have changed during the period that it has been in storage. The cladding of many of the fuel elements has been breached, allowing the metallic uranium fuel to react with water in the storage pools producing uranium oxides (U{sub x}O{sub y}) and uranium hydride (UH{sub 3}). Even if the breached fuel is placed in dry storage, it may continue to undergo significant changes caused by the reaction of exposed uranium with any remaining water in the container. Uranium oxides, uranium hydride, and hydrogen gas are expected to form as a result of this reaction. The presence of potentially explosive hydrogen and uranium hydride, which under certain conditions is pyrophoric, raises technical concerns that will need to be addressed. The electrometallurgical treatment process developed by Argonne National Laboratory (ANL) has potential for conditioning degraded N-Reactor fuel for long-term storage or disposal. The first step in evaluating the applicability of this process is the preparation of degraded fuel that is similar to the actual degraded N-Reactor fuel. Subsequently, the simulated degraded fuel can be introduced into an electrorefiner to examine the effect of corrosion products on the electrorefining process. Some of the technical issues to be resolved include the viability of direct electrorefining without a head-end reduction step, the effect of adherent corrosion products on the electrorefining kinetics, and the recovery and treatment of loose corrosion products that pull away from the degraded fuel. This paper presents results from an experimental study of the preparation

  4. Heat transfer analysis of metal hydrides in metal-hydrogen secondary batteries

    Science.gov (United States)

    Onischak, M.; Dharia, D.; Gidaspow, D.

    1976-01-01

    The heat transfer between a metal-hydrogen secondary battery and a hydrogen-storing metal hydride was studied. Temperature profiles of the endothermic metal hydrides and the metal-hydrogen battery were obtained during discharging of the batteries assuming an adiabatic system. Two hydride materials were considered in two physical arrangements within the battery system. In one case the hydride is positioned in a thin annular region about the battery stack; in the other the hydride is held in a tube down the center of the stack. The results show that for a typical 20 ampere-hour battery system with lanthanum pentanickel hydride as the hydrogen reservoir the system could perform successfully.

  5. Molecular early main group metal hydrides: synthetic challenge, structures and applications.

    Science.gov (United States)

    Harder, Sjoerd

    2012-11-25

    Within the general area of early main group metal chemistry, the controlled synthesis of well-defined metal hydride complexes is a rapidly developing research field. As group 1 and 2 metal complexes are generally highly dynamic and lattice energies for their [MH](∞) and [MH(2)](∞) salts are high, the synthesis of well-defined soluble hydride complexes is an obvious challenge. Access to molecular early main group metal hydrides, however, is rewarding: these hydrocarbon-soluble metal hydrides are highly reactive, have found use in early main group metal catalysis and are potentially also valuable molecular model systems for polar metal hydrides as a hydrogen storage material. The article focusses specifically on alkali and alkaline-earth metal hydride complexes and discusses the synthetic challenge, molecular structures, reactivity and applications.

  6. Self-assembled air-stable magnesium hydride embedded in 3-D activated carbon for reversible hydrogen storage.

    Science.gov (United States)

    Shinde, S S; Kim, Dong-Hyung; Yu, Jin-Young; Lee, Jung-Ho

    2017-06-01

    The rational design of stable, inexpensive catalysts with excellent hydrogen dynamics and sorption characteristics under realistic environments for reversible hydrogen storage remains a great challenge. Here, we present a simple and scalable strategy to fabricate a monodispersed, air-stable, magnesium hydride embedded in three-dimensional activated carbon with periodic synchronization of transition metals (MHCH). The high surface area, homogeneous distribution of MgH2 nanoparticles, excellent thermal stability, high energy density, steric confinement by carbon, and robust architecture of the catalyst resulted in a noticeable enhancement of the hydrogen storage performance. The resulting MHCH-5 exhibited outstanding hydrogen storage performance, better than that of most reported Mg-based hydrides, with a high storage density of 6.63 wt% H2, a rapid kinetics loading in hydrogenation compared to that of commercial MgH2. The origin of the intrinsic hydrogen thermodynamics was elucidated via solid state (1)H NMR. This work presents a readily scaled-up strategy towards the design of realistic catalysts with superior functionality and stability for applications in reversible hydrogen storage, lithium ion batteries, and fuel cells.

  7. Oxidation of Group 8 transition-Metal Hydrides and Ionic Hydrogenation of Ketones and Aldehydes

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Kjell-Tore

    1996-08-01

    Transition-metal hydrides have received considerable attention during the last decades because of their unusual reactivity and their potential as homogeneous catalysts for hydrogenation and other reactions of organic substrates. An important class of catalytic processes where transition-metal hydrides are involved is the homogeneous hydrogenation of alkenes, alkynes, ketones, aldehydes, arenes and nitro compounds. This thesis studies the oxidation of Group 8 transition-metal hydrides and the ionic hydrogenation of ketones and aldehydes.

  8. Orbital-like motion of hydride ligands around low-coordinate metal centers.

    Science.gov (United States)

    Ortuño, Manuel A; Vidossich, Pietro; Conejero, Salvador; Lledós, Agustí

    2014-12-15

    Hydrogen atoms in the coordination sphere of a transition metal are highly mobile ligands. Here, a new type of dynamic process involving hydrides has been characterized by computational means. This dynamic event consists of an orbital-like motion of hydride ligands around low-coordinate metal centers containing N-heterocyclic carbenes. The hydride movement around the carbene-metal-carbene axis is the lowest energy mode connecting energy equivalent isomers. This understanding provides crucial information for the interpretation of NMR spectra.

  9. High Temperature Metal Hydrides as Heat Storage Materials for Solar and Related Applications

    Directory of Open Access Journals (Sweden)

    Borislav Bogdanović

    2009-01-01

    Full Text Available For the continuous production of electricity with solar heat power plants the storage of heat at a temperature level around 400 °C is essential. High temperature metal hydrides offer high heat storage capacities around this temperature. Based on Mg-compounds, these hydrides are in principle low-cost materials with excellent cycling stability. Relevant properties of these hydrides and their possible applications as heat storage materials are described.

  10. High temperature metal hydrides as heat storage materials for solar and related applications.

    Science.gov (United States)

    Felderhoff, Michael; Bogdanović, Borislav

    2009-01-01

    For the continuous production of electricity with solar heat power plants the storage of heat at a temperature level around 400 degrees C is essential. High temperature metal hydrides offer high heat storage capacities around this temperature. Based on Mg-compounds, these hydrides are in principle low-cost materials with excellent cycling stability. Relevant properties of these hydrides and their possible applications as heat storage materials are described.

  11. Neutral binuclear rare-earth metal complexes with four μ₂-bridging hydrides.

    Science.gov (United States)

    Rong, Weifeng; He, Dongliang; Wang, Meiyan; Mou, Zehuai; Cheng, Jianhua; Yao, Changguang; Li, Shihui; Trifonov, Alexander A; Lyubov, Dmitrii M; Cui, Dongmei

    2015-03-25

    The first neutral rare-earth metal dinuclear dihydrido complexes [(NPNPN)LnH2]2 (2-Ln; Ln = Y, Lu; NPNPN: N[Ph2PNC6H3((i)Pr)2]2) bearing μ2-bridging hydride ligands have been synthesized. In the presence of THF, 2-Y undergoes intramolecular activation of the sp(2) C-H bond to form dinuclear aryl-hydride complex 3-Y containing three μ2-bridging hydride ligands.

  12. Development of a novel metal hydride-air secondary battery

    Energy Technology Data Exchange (ETDEWEB)

    Gamburzev, S.; Zhang, W.; Velev, O.A.; Srinivasan, S.; Appleby, A.J. [Texas A and M University, College Station (United States). Center for Electrochemical Systems and Hydrogen Research; Visintin, A. [Universidad Nacional de La Plata (Argentina). Insituto Nacional de Investigaciones Fisicoquimica Teoricas y Applicadas

    1998-05-01

    A laboratory metal hydride/air cell was evaluated. Charging was via a bifunctional air gas-diffusion electrode. Mixed nickel and cobalt oxides, supported on carbon black and activated carbon, were used as catalysts in this electrode. At 30 mA cm{sup -2} in 6 M KOH, the air electrode potentials were -0.2 V (oxygen reduction) and +0.65 V (oxygen evolution) vs Hg/HgO. The laboratory cell was cycled for 50 cycles at the C/2 rate (10 mA cm{sup -2}). The average discharge/charge voltages of the cell were 0.65 and 1.6 V, respectively. The initial capacity of the metal hydride electrode decreased by about 15% after 50 cycles. (author)

  13. Detecting low concentrations of plutonium hydride with magnetization measurements

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jae Wook; Mun, E. D.; Baiardo, J. P.; Zapf, V. S.; Mielke, C. H. [National High Magnetic Field Laboratory, MPA-CMMS, Los Alamos National Laboratory (LANL), Los Alamos, New Mexico 87545 (United States); Smith, A. I.; Richmond, S.; Mitchell, J.; Schwartz, D. [Nuclear Material Science Group, MST-16, LANL, Los Alamos, New Mexico 87545 (United States)

    2015-02-07

    We report the formation of plutonium hydride in 2 at. % Ga-stabilized δ-Pu, with 1 at. % H charging. We show that magnetization measurements are a sensitive, quantitative measure of ferromagnetic plutonium hydride against the nonmagnetic background of plutonium. It was previously shown that at low hydrogen concentrations, hydrogen forms super-abundant vacancy complexes with plutonium, resulting in a bulk lattice contraction. Here, we use magnetization, X-ray, and neutron diffraction measurements to show that in addition to forming vacancy complexes, at least 30% of the H atoms bond with Pu to precipitate PuH{sub x} on the surface of the sample with x ∼ 1.9. We observe magnetic hysteresis loops below 40 K with magnetic remanence, consistent with ferromagnetic PuH{sub 1.9}.

  14. Optical studies of neutron-irradiated lithium hydride single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Oparin, D.V.; Pilipenko, G.I.; Tyutyunnik, O.I.; Gavrilov, F.F.; Sulimov, E.M. (Ural' skij Politekhnicheskij Inst., Sverdlovsk (USSR))

    1984-09-01

    Lithium hydride single crystals irradiated with neutrons were studied by the optical method. Wide bands belonging to the large F-aggregate and quasimetallic F-centres and to the metallic lithium colloids were discovered in the absorption spectra at room temperature. The small Fsub(n)-centres and molecular lithium centres were detected at 77 K. From the electron-vibrational structure of the absorption spectra of these centres the energies of acoustic phonons in X, W, L points of the Brillouin zone of lithium hydride have been found out: TA(L)-235 cm/sup -1/, TA(X)-27g cm/sup -1/, TA(W)-327 cm/sup -1/, LA(W)-384 cm/sup -1/, LA(X)-426 cm/sup -1/.

  15. Hydrorefining distillates from coal liquefaction using intermetallic compound hydrides

    Energy Technology Data Exchange (ETDEWEB)

    Kadiev, Kh.M.; Pivovarova, N.A.; Askhabova, Kh.N.; Taramov, Kh.K.

    1986-07-01

    Investigations are discussed into hydrorefining of coal liquefaction distillate using ZrNi intermetallic compound hydride as catalyst. The paper shows that 70-75% reduction in content of unsaturated and sulfur-containing compounds takes place in the presence of this catalyst at low temperature (200-250 C) and pressure (0.1 MPa), and establishes that preliminary preparation of starting material (removal of phenols and nitrous bases) produces significant effect on hydrorefining results and product stability. Tests have also shown that although intermetallic compound hydride catalyst has fairly low stability, it is capable of recovering its catalytic properties on reduction-oxidation treatment. Description of the tests and characteristics of hydrorefining products of coal liquefaction distillate are given. 8 references.

  16. Pyrophoric behaviour of uranium hydride and uranium powders

    Energy Technology Data Exchange (ETDEWEB)

    Le Guyadec, F., E-mail: fabienne.leguyadec@cea.f [CEA Marcoule DEN/DTEC/SDTC, 30207 Bagnols sur Ceze, BP 17171 (France); Genin, X.; Bayle, J.P. [CEA Marcoule DEN/DTEC/SDTC, 30207 Bagnols sur Ceze, BP 17171 (France); Dugne, O. [DEN/DTEC/SGCS, 30207 Bagnols sur Ceze, BP 17171 (France); Duhart-Barone, A.; Ablitzer, C. [CEA Cadarache DEN/DEC/SPUA, 13108 St. Paul lez Durance (France)

    2010-01-31

    Thermal stability and spontaneous ignition conditions of uranium hydride and uranium metal fine powders have been studied and observed in an original and dedicated experimental device placed inside a glove box under flowing pure argon. Pure uranium hydride powder with low amount of oxide (<0.5 wt.%) was obtained by heat treatment at low temperature in flowing Ar/5%H{sub 2}. Pure uranium powder was obtained by dehydration in flowing pure argon. Those fine powders showed spontaneous ignition at room temperature in air. An in situ CCD-camera displayed ignition associated with powder temperature measurement. Characterization of powders before and after ignition was performed by XRD measurements and SEM observations. Oxidation mechanisms are proposed.

  17. Reversible metal-hydride phase transformation in epitaxial films.

    Science.gov (United States)

    Roytburd, Alexander L; Boyerinas, Brad M; Bruck, Hugh A

    2015-03-11

    Metal-hydride phase transformations in solids commonly proceed with hysteresis. The extrinsic component of hysteresis is the result of the dissipation of energy of internal stress due to plastic deformation and fracture. It can be mitigated on the nanoscale, where plastic deformation and fracture are suppressed and the transformation proceeds through formation and evolution of coherent phases. However, the phase coherency introduces intrinsic thermodynamic hysteresis, preventing reversible transformation. In this paper, it is shown that thermodynamic hysteresis of coherent metal-hydride transformation can be eliminated in epitaxial film due to substrate constraint. Film-substrate interaction leads to formation of heterophase polydomain nanostructure with variable phase fraction which can change reversibly by varying temperature in a closed system or chemical potential in an open system.

  18. Structural isotope effects in metal hydrides and deuterides.

    Science.gov (United States)

    Ting, Valeska P; Henry, Paul F; Kohlmann, Holger; Wilson, Chick C; Weller, Mark T

    2010-03-07

    Historically the extraction of high-quality crystallographic information from inorganic samples having high hydrogen contents, such as metal hydrides, has involved preparing deuterated samples prior to study using neutron powder diffraction. We demonstrate, through direct comparison of the crystal structure refinements of the binary hydrides SrH(2) and BaH(2) with their deuteride analogues at 2 K and as a function of temperature, that precise and accurate structural information can be obtained from rapid data collections from samples containing in excess of 60 at.% hydrogen using modern high-flux, medium resolution, continuous wavelength neutron powder diffraction instruments. Furthermore, observed isotope-effects in the extracted lattice parameters and atomic positions illustrate the importance of investigating compounds in their natural hydrogenous form whenever possible.

  19. Effects of metastability on hydrogen sorption in fluorine substituted hydrides

    Energy Technology Data Exchange (ETDEWEB)

    Pinatel, E.R.; Corno, M.; Ugliengo, P.; Baricco, M., E-mail: marcello.baricco@unito.it

    2014-12-05

    Highlights: • Fluorine substitution in simple metal hydrides has been modelled. • The stability of the MH{sub (1−x)}F{sub x} solid solutions has been discussed. • Conditions for reversibility of sorption reactions have been suggested. - Abstract: In this work ab initio calculations and Calphad modelling have been coupled to describe the effect of fluorine substitution on the thermodynamics of hydrogenation–dehydrogenation in simple hydrides (NaH, AlH{sub 3} and CaH{sub 2}). These example systems have been used to discuss the conditions required for the formation of a stable hydride–fluoride solid solution necessary to obtain a reversible hydrogenation reaction.

  20. Thermal Analysis of ZPPR High Pu Content Stored Fuel

    Directory of Open Access Journals (Sweden)

    Charles W. Solbrig

    2014-01-01

    Full Text Available The Zero Power Physics Reactor (ZPPR operated from April 18, 1969, until 1990. ZPPR operated at low power for testing nuclear reactor designs. This paper examines the temperature of Pu content ZPPR fuel while it is in storage. Heat is generated in the fuel due to Pu and Am decay and is a concern for possible cladding damage. Damage to the cladding could lead to fuel hydriding and oxidizing. A series of computer simulations were made to determine the range of temperatures potentially occuring in the ZPPR fuel. The maximum calculated fuel temperature is 292°C (558°F. Conservative assumptions in the model intentionally overestimate temperatures. The stored fuel temperatures are dependent on the distribution of fuel in the surrounding storage compartments, the heat generation rate of the fuel, and the orientation of fuel. Direct fuel temperatures could not be measured but storage bin doors, storage sleeve doors, and storage canister temperatures were measured. Comparison of these three temperatures to the calculations indicates that the temperatures calculated with conservative assumptions are, as expected, higher than the actual temperatures. The maximum calculated fuel temperature with the most conservative assumptions is significantly below the fuel failure criterion of 600°C (1,112°F.

  1. Shielding efficiency of metal hydrides and borohydrides in fusion reactors

    OpenAIRE

    Singh Vishvanath P.; Badiger Nagappa M.; Gerward Leif

    2016-01-01

    Mass attenuation coefficients, mean free paths and exposure buildup factors have been used to characterize the shielding efficiency of metal hydrides and borohydrides, with high density of hydrogen. Gamma ray exposure buildup factors were computed using five-parameter geometric progression fitting at energies 0.015 MeV to15 MeV, and for penetration depths up to 40 mean free paths. Fast-neutron shielding efficiency has been characterized by the effective neu...

  2. Photoelectron spectroscopic study of carbon aluminum hydride cluster anions

    Science.gov (United States)

    Zhang, Xinxing; Wang, Haopeng; Ganteför, Gerd; Eichhorn, Bryan W.; Kiran, Boggavarapu; Bowen, Kit H.

    2016-10-01

    Numerous previously unknown carbon aluminum hydride cluster anions were generated in the gas phase, identified by time-of-flight mass spectrometry and characterized by anion photoelectron spectroscopy, revealing their electronic structure. Density functional theory calculations on the CAl5-9H- and CAl5-7H2- found that several of them possess unusually high carbon atom coordination numbers. These cluster compositions have potential as the basis for new energetic materials.

  3. METHOD OF MAKING DELTA ZIRCONIUM HYDRIDE MONOLITHIC MODERATOR PIECES

    Science.gov (United States)

    Vetrano, J.B.

    1962-01-23

    A method is given for preparing large, sound bodies of delta zirconium hydride. The method includes the steps of heating a zirconium body to a temperature of not less than l000 deg C, providing a hydrogen atmosphere for the zirconium body at a pressure not greater than one atmosphere, reducing the temperature slowly to 800 deg C at such a rate that cracks do not form while maintaining the hydrogen pressure substantially constant, and cooling in an atmosphere of hydrogen. (AEC)

  4. Gas chromatographic separation of hydrogen isotopes using metal hydrides

    Energy Technology Data Exchange (ETDEWEB)

    Aldridge, F.T.

    1984-05-09

    A study was made of the properties of metal hydrides which may be suitable for use in chromatographic separation of hydrogen isotopes. Sixty-five alloys were measured, with the best having a hydrogen-deuterium separation factor of 1.35 at 60/sup 0/C. Chromatographic columns using these alloys produced deuterium enrichments of up to 3.6 in a single pass, using natural abundance hydrogen as starting material. 25 references, 16 figures, 4 tables.

  5. Synthesis of Renewable Energy Materials, Sodium Aluminum Hydride by Grignard Reagent of Al

    Directory of Open Access Journals (Sweden)

    Jun-qin Wang

    2015-01-01

    Full Text Available The research on hydrogen generation and application has attracted widespread attention around the world. This paper is to demonstrate that sodium aluminum hydride can be synthesized under simple and mild reaction condition. Being activated through organics, aluminum powder reacts with hydrogen and sodium hydride to produce sodium aluminum hydride under atmospheric pressure. The properties and composition of the sample were characterized by FTIR, XRD, SEM, and so forth. The results showed that the product through this synthesis method is sodium aluminum hydride, and it has higher purity, perfect crystal character, better stability, and good hydrogen storage property. The reaction mechanism is also discussed in detail.

  6. Pressure-driven formation and stabilization of superconductive chromium hydrides

    Science.gov (United States)

    Yu, Shuyin; Jia, Xiaojing; Frapper, Gilles; Li, Duan; Oganov, Artem R.; Zeng, Qingfeng; Zhang, Litong

    2015-01-01

    Chromium hydride is a prototype stoichiometric transition metal hydride. The phase diagram of Cr-H system at high pressures remains largely unexplored due to the challenges in dealing with the high activation barriers and complications in handing hydrogen under pressure. We have performed an extensive structural study on Cr-H system at pressure range 0 ∼ 300 GPa using an unbiased structure prediction method based on evolutionary algorithm. Upon compression, a number of hydrides are predicted to become stable in the excess hydrogen environment and these have compositions of Cr2Hn (n = 2–4, 6, 8, 16). Cr2H3, CrH2 and Cr2H5 structures are versions of the perfect anti-NiAs-type CrH with ordered tetrahedral interstitial sites filled by H atoms. CrH3 and CrH4 exhibit host-guest structural characteristics. In CrH8, H2 units are also identified. Our study unravels that CrH is a superconductor at atmospheric pressure with an estimated transition temperature (T c) of 10.6 K, and superconductivity in CrH3 is enhanced by the metallic hydrogen sublattice with T c of 37.1 K at 81 GPa, very similar to the extensively studied MgB2. PMID:26626579

  7. Metal hydride-based thermal energy storage systems

    Energy Technology Data Exchange (ETDEWEB)

    Vajo, John J.; Fang, Zhigang

    2017-10-03

    The invention provides a thermal energy storage system comprising a metal-containing first material with a thermal energy storage density of about 1300 kJ/kg to about 2200 kJ/kg based on hydrogenation; a metal-containing second material with a thermal energy storage density of about 200 kJ/kg to about 1000 kJ/kg based on hydrogenation; and a hydrogen conduit for reversibly transporting hydrogen between the first material and the second material. At a temperature of 20.degree. C. and in 1 hour, at least 90% of the metal is converted to the hydride. At a temperature of 0.degree. C. and in 1 hour, at least 90% of the metal hydride is converted to the metal and hydrogen. The disclosed metal hydride materials have a combination of thermodynamic energy storage densities and kinetic power capabilities that previously have not been demonstrated. This performance enables practical use of thermal energy storage systems for electric vehicle heating and cooling.

  8. Air passivation of metal hydride beds for waste disposal

    Energy Technology Data Exchange (ETDEWEB)

    Klein, J. E.; Hsu, R. H. [Savannah River National Laboratory, Aiken, SC 29808 (United States)

    2008-07-15

    One waste acceptance criteria for hydride bed waste disposal is that the bed be non-pyrophoric. Batch-wise air ingress tests were performed which determined the amount of air consumed by a metal hydride bed. A desorbed, 4.4 kg titanium prototype hydride storage vessel (HSV) produced a 4.4 deg.C internal temperature rise upon the first air exposure cycle and a 0.1 deg.C temperature rise upon a second air exposure. A total of 346 sec air was consumed by the bed (0.08 sec per gram Ti). A desorbed, 9.66 kg LaNi{sub 4.25}Al{sub 0.75} prototype storage bed experienced larger temperature rises over successive cycles of air ingress and evacuation. The cycles were performed over a period of days with the bed effectively passivated after the 12. cycle. Nine to ten STP-L of air reacted with the bed producing both oxidized metal and water. (authors)

  9. Investigation of long term stability in metal hydrides

    Science.gov (United States)

    Marmaro, Roger W.; Lynch, Franklin E.; Chandra, Dhanesh; Lambert, Steve; Sharma, Archana

    1991-01-01

    It is apparent from the literature and the results of this study that cyclic degradation of AB(5) type metal hydrides varies widely according to the details of how the specimens are cycled. The Rapid Cycle Apparatus (RCA) used produced less degradation in 5000 to 10000 cycles than earlier work with a Slow Cycle Apparatus (SCA) produced in 1500 cycles. Evidence is presented that the 453 K (356 F) Thermal Aging (TA) time spent in the saturated condition causes hydride degradation. But increasing the cooling (saturation) period in the RCA did not greatly increase the rate of degradation. It appears that TA type degradation is secondary at low temperatures to another degradation mechanism. If rapid cycles are less damaging than slow cycles when the saturation time is equal, the rate of hydriding/dehydriding may be an important factor. The peak temperatures in the RCA were about 30 C lower than the SCA. The difference in peak cycle temperatures (125 C in the SCA, 95 C in RCA) cannot explain the differences in degradation. TA type degradation is similar to cyclic degradation in that nickel peaks and line broadening are observed in X ray diffraction patterns after either form of degradation.

  10. Performance study of a hydrogen powered metal hydride actuator

    Science.gov (United States)

    Mainul Hossain Bhuiya, Md; Kim, Kwang J.

    2016-04-01

    A thermally driven hydrogen powered actuator integrating metal hydride hydrogen storage reactor, which is compact, noiseless, and able to generate smooth actuation, is presented in this article. To test the plausibility of a thermally driven actuator, a conventional piston type actuator was integrated with LaNi5 based hydrogen storage system. Copper encapsulation followed by compaction of particles into pellets, were adopted to improve overall thermal conductivity of the reactor. The operation of the actuator was thoroughly investigated for an array of operating temperature ranges. Temperature swing of the hydride reactor triggering smooth and noiseless actuation over several operating temperature ranges were monitored for quantification of actuator efficiency. Overall, the actuator generated smooth and consistent strokes during repeated cycles of operation. The efficiency of the actuator was found to be as high as 13.36% for operating a temperature range of 20 °C-50 °C. Stress-strain characteristics, actuation hysteresis etc were studied experimentally. Comparison of stress-strain characteristics of the proposed actuator with traditional actuators, artificial muscles and so on was made. The study suggests that design modification and use of high pressure hydride may enhance the performance and broaden the application horizon of the proposed actuator in future.

  11. Transient and stability analysis of a BWR core with thorium-uranium fuel

    Energy Technology Data Exchange (ETDEWEB)

    Nunez-Carrera, Alejandro [Comision Nacional de Seguridad Nuclear y Salvaguardias, Dr. Barragan 779 Col. Narvarte, 03020 Mexico, DF (Mexico); Espinosa-Paredes, Gilberto [Division de Ciencias Basicas e Ingenieria, Universidad Autonoma Metropolitana, Av. San Rafael Atlixco 186, Col. Vicentina, 09340 Mexico, DF (Mexico)], E-mail: gepe@xanum.uam.mx; Francois, Juan-Luis [Departamento de Sistemas Energeticos, Facultad de Ingenieria, Universidad Nacional Autonoma de Mexico, Paseo Cuauhnahuac 8532, 62550 Jiutepec Mor. (Mexico)

    2008-08-15

    The kinetic response of a boiling water reactor (BWR) equilibrium core using thorium as a nuclear material, in an integrated blanket-seed assembly, is presented in this work. Additionally an in-house code was developed to evaluate this core under steady state and transient conditions including a stability analysis. The code has two modules: (a) the time domain module for transient analysis and (b) the frequency domain module for stability analysis. The thermal-hydraulic process is modeled by a set of five equations, considering no homogeneous flow with drift-flux approximation and non-equilibrium thermodynamic. The neutronic process is calculated with a point kinetics model. Typical BWR reactivity effects are considered: void fraction, fuel temperature, moderator temperature and control rod density. Collapsed parameters were included in the code to represent the core using an average fuel channel. For the stability analysis, in the frequency domain, the transfer function is determined by applying Laplace-transforming to the calculated pressure drop perturbations in each of the considered regions where a constant total pressure drop was considered. The transfer function was used to study the system response in the frequency domain when an inlet flow perturbation is applied. The results show that the neutronic behavior of the core with thorium uranium fuel is similar to a UO{sub 2} core, even during transient conditions. The stability and transient analysis show that the thorium-uranium fuel can be operated safely in current BWRs.

  12. Dual-mode chemical vapor generation for simultaneous determination of hydride-forming and non-hydride-forming elements by atomic fluorescence spectrometry.

    Science.gov (United States)

    Wang, Yu; Xu, Kailai; Jiang, Xiaoming; Hou, Xiandeng; Zheng, Chengbin

    2014-05-21

    A dual-mode chemical vapor generation integrating hydride generation and photochemical vapor generation was developed for simultaneous multi-element analysis of hydride-forming and non-hydride-forming elements by atomic fluorescence spectrometry. Four elements were selected as model elements of hydride-forming (As, Cd) and non-hydride-forming (Ni, Fe) elements to validate this proposed method. Standard or sample solutions were separately pumped to mix with tetrahydroborate, and concentrated formic acid and ammonia, and then directed to a hydride generator and a photochemical reactor to realize simultaneous hydride generation and photochemical vapor generation, respectively. Optimum conditions for dual-mode chemical vapor generation were carefully investigated. Under the optimized conditions, limits of detection of 0.05, 0.008, 0.8 and 0.1 μg L(-1) were obtained for As, Cd, Fe and Ni, respectively. The precisions were 5.0, 5.5, 4.3 and 4.5% (n = 6, RSDs) for 2 μg L(-1) of As, 1 μg L(-1) of Cd, 50 μg L(-1) of Fe and 10 μg L(-1) of Ni, respectively. This method was validated for accuracy with three certified reference water samples and applied to the simultaneous determination of these elements in a tap water sample with spike recoveries in the range of 95-99%.

  13. Hydrogen storage and evolution catalysed by metal hydride complexes.

    Science.gov (United States)

    Fukuzumi, Shunichi; Suenobu, Tomoyoshi

    2013-01-07

    The storage and evolution of hydrogen are catalysed by appropriate metal hydride complexes. Hydrogenation of carbon dioxide by hydrogen is catalysed by a [C,N] cyclometalated organoiridium complex, [Ir(III)(Cp*)(4-(1H-pyrazol-1-yl-κN(2))benzoic acid-κC(3))(OH(2))](2)SO(4) [Ir-OH(2)](2)SO(4), under atmospheric pressure of H(2) and CO(2) in weakly basic water (pH 7.5) at room temperature. The reverse reaction, i.e., hydrogen evolution from formate, is also catalysed by [Ir-OH(2)](+) in acidic water (pH 2.8) at room temperature. Thus, interconversion between hydrogen and formic acid in water at ambient temperature and pressure has been achieved by using [Ir-OH(2)](+) as an efficient catalyst in both directions depending on pH. The Ir complex [Ir-OH(2)](+) also catalyses regioselective hydrogenation of the oxidised form of β-nicotinamide adenine dinucleotide (NAD(+)) to produce the 1,4-reduced form (NADH) under atmospheric pressure of H(2) at room temperature in weakly basic water. In weakly acidic water, the complex [Ir-OH(2)](+) also catalyses the reverse reaction, i.e., hydrogen evolution from NADH to produce NAD(+) at room temperature. Thus, interconversion between NADH (and H(+)) and NAD(+) (and H(2)) has also been achieved by using [Ir-OH(2)](+) as an efficient catalyst and by changing pH. The iridium hydride complex formed by the reduction of [Ir-OH(2)](+) by H(2) and NADH is responsible for the hydrogen evolution. Photoirradiation (λ > 330 nm) of an aqueous solution of the Ir-hydride complex produced by the reduction of [Ir-OH(2)](+) with alcohols resulted in the quantitative conversion to a unique [C,C] cyclometalated Ir-hydride complex, which can catalyse hydrogen evolution from alcohols in a basic aqueous solution (pH 11.9). The catalytic mechanisms of the hydrogen storage and evolution are discussed by focusing on the reactivity of Ir-hydride complexes.

  14. Reactivity patterns of transition metal hydrides and alkyls

    Energy Technology Data Exchange (ETDEWEB)

    Jones, W.D. II

    1979-05-01

    The complex PPN/sup +/ CpV(CO)/sub 3/H/sup -/ (Cp=eta/sup 5/-C/sub 5/H/sub 5/ and PPN = (Ph/sub 3/P)/sub 2/) was prepared in 70% yield and its physical properties and chemical reactions investigated. PPN/sup +/ CpV(CO)/sub 3/H/sup -/ reacts with a wide range of organic halides. The organometallic products of these reactions are the vanadium halides PPN/sup +/(CpV(C)/sub 3/X)/sup -/ and in some cases the binuclear bridging hydride PPN/sup +/ (CpV(CO)/sub 3/)/sub 2/H/sup -/. The borohydride salt PPN/sup +/(CpV(CO)/sub 3/BH/sub 4/)/sup -/ has also been prepared. The reaction between CpV(CO)/sub 3/H/sup -/ and organic halides was investigated and compared with halide reductions carried out using tri-n-butyltin hydride. Results demonstrate that in almost all cases, the reduction reaction proceeds via free radical intermediates which are generated in a chain process, and are trapped by hydrogen transfer from CpV(CO)/sub 3/H/sup -/. Sodium amalgam reduction of CpRh(CO)/sub 2/ or a mixture of CpRh(CO)/sub 2/ and CpCo(CO)/sub 2/ affords two new anions, PPN/sup +/ (Cp/sub 2/Rh/sub 3/(CO)/sub 4/)/sup -/ and PPN/sup +/(Cp/sub 2/RhCo(CO)/sub 2/)/sup -/. CpMo(CO)/sub 3/H reacts with CpMo(CO)/sub 3/R (R=CH/sub 3/,C/sub 2/H/sub 5/, CH/sub 2/C/sub 6/H/sub 5/) at 25 to 50/sup 0/C to produce aldehyde RCHO and the dimers (CpMo(CO)/sub 3/)/sub 2/ and (CpMo(CO)/sub 2/)/sub 2/. In general, CpV(CO)/sub 3/H/sup -/ appears to transfer a hydrogen atom to the metal radical anion formed in an electron transfer process, whereas CpMo(CO)/sub 3/H transfers hydride in a 2-electron process to a vacant coordination site. The chemical consequences are that CpV(CO)/sub 3/H/sup -/ generally reacts with metal alkyls to give alkanes via intermediate alkyl hydride species whereas CpMo(CO)/sub 3/H reacts with metal alkyls to produce aldehyde, via an intermediate acyl hydride species.

  15. Reactivity patterns of transition metal hydrides and alkyls

    Energy Technology Data Exchange (ETDEWEB)

    Jones, W.D. II

    1979-05-01

    The complex PPN/sup +/ CpV(CO)/sub 3/H/sup -/ (Cp=eta/sup 5/-C/sub 5/H/sub 5/ and PPN = (Ph/sub 3/P)/sub 2/) was prepared in 70% yield and its physical properties and chemical reactions investigated. PPN/sup +/ CpV(CO)/sub 3/H/sup -/ reacts with a wide range of organic halides. The organometallic products of these reactions are the vanadium halides PPN/sup +/(CpV(C)/sub 3/X)/sup -/ and in some cases the binuclear bridging hydride PPN/sup +/ (CpV(CO)/sub 3/)/sub 2/H/sup -/. The borohydride salt PPN/sup +/(CpV(CO)/sub 3/BH/sub 4/)/sup -/ has also been prepared. The reaction between CpV(CO)/sub 3/H/sup -/ and organic halides was investigated and compared with halide reductions carried out using tri-n-butyltin hydride. Results demonstrate that in almost all cases, the reduction reaction proceeds via free radical intermediates which are generated in a chain process, and are trapped by hydrogen transfer from CpV(CO)/sub 3/H/sup -/. Sodium amalgam reduction of CpRh(CO)/sub 2/ or a mixture of CpRh(CO)/sub 2/ and CpCo(CO)/sub 2/ affords two new anions, PPN/sup +/ (Cp/sub 2/Rh/sub 3/(CO)/sub 4/)/sup -/ and PPN/sup +/(Cp/sub 2/RhCo(CO)/sub 2/)/sup -/. CpMo(CO)/sub 3/H reacts with CpMo(CO)/sub 3/R (R=CH/sub 3/,C/sub 2/H/sub 5/, CH/sub 2/C/sub 6/H/sub 5/) at 25 to 50/sup 0/C to produce aldehyde RCHO and the dimers (CpMo(CO)/sub 3/)/sub 2/ and (CpMo(CO)/sub 2/)/sub 2/. In general, CpV(CO)/sub 3/H/sup -/ appears to transfer a hydrogen atom to the metal radical anion formed in an electron transfer process, whereas CpMo(CO)/sub 3/H transfers hydride in a 2-electron process to a vacant coordination site. The chemical consequences are that CpV(CO)/sub 3/H/sup -/ generally reacts with metal alkyls to give alkanes via intermediate alkyl hydride species whereas CpMo(CO)/sub 3/H reacts with metal alkyls to produce aldehyde, via an intermediate acyl hydride species.

  16. Carbene-metal hydrides can be much less acidic than phosphine-metal hydrides: significance in hydrogenations.

    Science.gov (United States)

    Zhu, Ye; Fan, Yubo; Burgess, Kevin

    2010-05-05

    Acidities of iridium hydride intermediates were shown to be critical in some transformations mediated by the chiral analogues of Crabtree's catalyst, 1-3. To do this, several experiments were undertaken to investigate the acidities of hydrogenation mixtures formed using these iridium-oxazoline complexes. DFT calculations indicated that the acidity difference for Ir-H intermediates in these hydrogenations were astounding; iridium hydride from the N-heterocyclic carbene catalyst 1 was calculated to be around seven pK(a) units less acidic than those from the P-based complexes 2 and 3. Consistent with this, the carbene complex 1 was shown to be more effective for hydrogenations of acid-sensitive substrates. In deuteration experiments, less "abnormal" deuteration was observed, corresponding to fewer complications from acid-mediated alkene isomerization preceding the D(2)-addition step. Finally, simple tests with pH indicators provided visual evidence that phosphine-based catalyst precursors give significantly more acidic reaction mixtures than the corresponding N-heterocyclic carbene ones. These observations indicate carbene-for-phosphine (and similar) ligand substitutions may impact the outcome of catalytic reactions by modifying the acidities of the metal hydrides formed.

  17. Efficient Hydrogenolysis of Alkanes at Low Temperature and Pressure Using Tantalum Hydride on MCM-41, and a Quantum Chemical Study

    KAUST Repository

    Polshettiwar, Vivek

    2012-02-10

    Hydrogenolysis of hydrocarbons is of considerable technological importance for applications such as the hydroprocessing of petrochemical feedstocks to generate high-value and useful chemicals and fuels. We studied the catalytic activity of tantalum hydride supported on MCM-41 for the hydrogenolysis of alkanes at low temperature and low atmospheric pressure in a dynamic reactor. The reactions proceed with good turnover numbers, and the catalyst could be reused for several times, which makes the overall catalytic process sustainable. We derived the plausible mechanism by using DFT calculations and identified the preferred pathways by the analysis of potential energy surface. Our results and the proposed reaction mechanism demonstrate the viability of the "catalyst-by-design" approach. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. FY 2016 Status Report: Documentation of All CIRFT Data including Hydride Reorientation Tests (Draft M2)

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jy-An John [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Materials Science and Technology Division; Wang, Hong [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Materials Science and Technology Division; Jiang, Hao [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Materials Science and Technology Division; Yan, Yong [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Materials Science and Technology Division; Bevard, Bruce B. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Materials Science and Technology Division; Scaglione, John M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Materials Science and Technology Division

    2016-09-04

    The first portion of this report provides a detailed description of fiscal year (FY) 2015 test result corrections and analysis updates based on FY 2016 updates to the Cyclic Integrated Reversible-Bending Fatigue Tester (CIRFT) program methodology, which is used to evaluate the vibration integrity of spent nuclear fuel (SNF) under normal conditions of transport (NCT). The CIRFT consists of a U-frame test setup and a real-time curvature measurement method. The three-component U-frame setup of the CIRFT has two rigid arms and linkages connecting to a universal testing machine. The curvature SNF rod bending is obtained through a three-point deflection measurement method. Three linear variable differential transformers (LVDTs) are clamped to the side connecting plates of the U-frame and used to capture deformation of the rod. The second portion of this report provides the latest CIRFT data, including data for the hydride reorientation test. The variations in fatigue life are provided in terms of moment, equivalent stress, curvature, and equivalent strain for the tested SNFs. The equivalent stress plot collapsed the data points from all of the SNF samples into a single zone. A detailed examination revealed that, at the same stress level, fatigue lives display a descending order as follows: H. B. Robinson Nuclear Power Station (HBR), LMK, and mixed uranium-plutonium oxide (MOX). Just looking at the strain, LMK fuel has a slightly longer fatigue life than HBR fuel, but the difference is subtle. The third portion of this report provides finite element analysis (FEA) dynamic deformation simulation of SNF assemblies . In a horizontal layout under NCT, the fuel assembly’s skeleton, which is formed by guide tubes and spacer grids, is the primary load bearing apparatus carrying and transferring vibration loads within an SNF assembly. These vibration loads include interaction forces between the SNF assembly and the canister basket walls. Therefore, the integrity of the guide

  19. FY 2016 Status Report: Documentation of All CIRFT Data including Hydride Reorientation Tests (Draft M2)

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jy-An John [ORNL; Wang, Hong [ORNL

    2016-09-01

    The first portion of this report provides a detailed description of fiscal year (FY) 2015 test result corrections and analysis updates based on FY 2016 updates to the Cyclic Integrated Reversible-Bending Fatigue Tester (CIRFT) program methodology, which is used to evaluate the vibration integrity of spent nuclear fuel (SNF) under normal conditions of transport (NCT). The CIRFT consists of a U-frame test setup and a real-time curvature measurement method. The three-component U-frame setup of the CIRFT has two rigid arms and linkages connecting to a universal testing machine. The curvature SNF rod bending is obtained through a three-point deflection measurement method. Three linear variable differential transformers (LVDTs) are clamped to the side connecting plates of the U-frame and used to capture deformation of the rod. The second portion of this report provides the latest CIRFT data, including data for the hydride reorientation test. The variations in fatigue life are provided in terms of moment, equivalent stress, curvature, and equivalent strain for the tested SNFs. The equivalent stress plot collapsed the data points from all of the SNF samples into a single zone. A detailed examination revealed that, at the same stress level, fatigue lives display a descending order as follows: H. B. Robinson Nuclear Power Station (HBR), LMK, and mixed uranium-plutonium oxide (MOX). Just looking at the strain, LMK fuel has a slightly longer fatigue life than HBR fuel, but the difference is subtle. The third portion of this report provides finite element analysis (FEA) dynamic deformation simulation of SNF assemblies . In a horizontal layout under NCT, the fuel assembly’s skeleton, which is formed by guide tubes and spacer grids, is the primary load bearing apparatus carrying and transferring vibration loads within an SNF assembly. These vibration loads include interaction forces between the SNF assembly and the canister basket walls. Therefore, the integrity of the guide

  20. Low-Cost Metal Hydride Thermal Energy Storage System for Concentrating Solar Power Systems

    Energy Technology Data Exchange (ETDEWEB)

    Zidan, Ragaiy [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Hardy, B. J. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Corgnale, C. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Teprovich, J. A. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Ward, P. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Motyka, Ted [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-01-31

    The objective of this research was to evaluate and demonstrate a metal hydride-based TES system for use with a CSP system. A unique approach has been applied to this project that combines our modeling experience with the extensive material knowledge and expertise at both SRNL and Curtin University (CU). Because of their high energy capacity and reasonable kinetics many metal hydride systems can be charged rapidly. Metal hydrides for vehicle applications have demonstrated charging rates in minutes and tens of minutes as opposed to hours. This coupled with high heat of reaction allows metal hydride TES systems to produce very high thermal power rates (approx. 1kW per 6-8 kg of material). A major objective of this work is to evaluate some of the new metal hydride materials that have recently become available. A problem with metal hydride TES systems in the past has been selecting a suitable high capacity low temperature metal hydride material to pair with the high temperature material. A unique aspect of metal hydride TES systems is that many of these systems can be located on or near dish/engine collectors due to their high thermal capacity and small size. The primary objective of this work is to develop a high enthalpy metal hydride that is capable of reversibly storing hydrogen at high temperatures (> 650 °C) and that can be paired with a suitable low enthalpy metal hydride with low cost materials. Furthermore, a demonstration of hydrogen cycling between the two hydride beds is desired.

  1. ``HYTEC''—A thermally regenerative fuel cell

    Science.gov (United States)

    Roy, Prodyot; Salamah, Samir A.; Maldonado, Jerry; Narkiewicz, Regina S.

    1993-01-01

    HYTEC (Hydrogen Thermo-Electrochemical Converter) is a thermally regenerative fuel cell for direct conversion of heat into electricity. The principles of basic cell operation involve ionic transport of hydrogen through a hydride-ion (H-) conducting, molten electrolyte, and reaction with alkali metals, oxygen, or air. In order to operate HYTEC in a thermally regenerative mode, pure Li and Na, or a mixture of Li/Na alloy, is used for reaction with hydrogen, to form metal hydride which is subsequently decomposed to metal and hydrogen at higher temperatures. The reactants are then separated and redirected to the electrochemical cell. In the cell the molten, H--conducting electrolyte is immobilized between two thin hydrogen-permeable, solid, metallic electrodes which also act as current collectors. The H2 gas first diffuses through the cathode electrode and forms a hydride ion (H+e→H-) at the cathode-electrolyte interface. The H- ion subsequently migrated through the electrolyte under a chemical potential gradient created by the presence of the alkali metal in the anode chamber. The H- ion releases the electron to form hydrogen atoms (H-→H+e) at the anode-electrolyte interface. The hydrogen atom diffuses through the anode electrode and reacts with the alkali metal to form metal hydride. The electron released passes through the load circuit to complete the cycle. In the regeneration scheme, the fuel cell is operated at temperature T1. The metal hydride formed at the anode is pumped to the decomposition chamber through a recuperator. The metal hydride is decomposed at a higher temperature, T2, by an external heat source. The H2 gas is separated from the alkali metal by a H2-permeable, solid, metallic membrane and fed into the anode chamber of the cell. The hydrogen-depleted alkali metal is directed to the cathode chamber of the cell, via the recuperator, to complete the cycle. To date, electrochemical feasibility of the concept has been experimentally demonstrated. A

  2. Strategy for Used Fuel Acquisition

    Energy Technology Data Exchange (ETDEWEB)

    Steven C. Marschman; Chris Rusch

    2013-09-01

    prototypical of how used nuclear fuel is prepared for dry storage; these fuels are not subjected to the same vacuum drying conditions that can lead to changes in hydride morphology that will affect the mechanical properties of the fuel. It is recognized that sources of used high burnup fuel that can be handled in a manner consistent with how fuel is readied for dry storage is essential to the mission of the UFDC. This report documents what types of fuel are of interest to the campaign, and how those fuels could be acquired and shipped to the Idaho National Laboratory (INL) for incorporation into the campaign R&D mission. It also identifies any gaps in INL capabilities that might preclude working with one fuel type or another.

  3. Design of Hydrogen Storage Alloys/Nanoporous Metals Hybrid Electrodes for Nickel-Metal Hydride Batteries

    Science.gov (United States)

    Li, M. M.; Yang, C. C.; Wang, C. C.; Wen, Z.; Zhu, Y. F.; Zhao, M.; Li, J. C.; Zheng, W. T.; Lian, J. S.; Jiang, Q.

    2016-06-01

    Nickel metal hydride (Ni-MH) batteries have demonstrated key technology advantages for applications in new-energy vehicles, which play an important role in reducing greenhouse gas emissions and the world’s dependence on fossil fuels. However, the poor high-rate dischargeability of the negative electrode materials—hydrogen storage alloys (HSAs) limits applications of Ni-MH batteries in high-power fields due to large polarization. Here we design a hybrid electrode by integrating HSAs with a current collector of three-dimensional bicontinuous nanoporous Ni. The electrode shows enhanced high-rate dischargeability with the capacity retention rate reaching 44.6% at a discharge current density of 3000 mA g-1, which is 2.4 times that of bare HSAs (18.8%). Such a unique hybrid architecture not only enhances charge transfer between nanoporous Ni and HSAs, but also facilitates rapid diffusion of hydrogen atoms in HSAs. The developed HSAs/nanoporous metals hybrid structures exhibit great potential to be candidates as electrodes in high-performance Ni-MH batteries towards applications in new-energy vehicles.

  4. Design of Hydrogen Storage Alloys/Nanoporous Metals Hybrid Electrodes for Nickel-Metal Hydride Batteries

    Science.gov (United States)

    Li, M. M.; Yang, C. C.; Wang, C. C.; Wen, Z.; Zhu, Y. F.; Zhao, M.; Li, J. C.; Zheng, W. T.; Lian, J. S.; Jiang, Q.

    2016-01-01

    Nickel metal hydride (Ni-MH) batteries have demonstrated key technology advantages for applications in new-energy vehicles, which play an important role in reducing greenhouse gas emissions and the world’s dependence on fossil fuels. However, the poor high-rate dischargeability of the negative electrode materials—hydrogen storage alloys (HSAs) limits applications of Ni-MH batteries in high-power fields due to large polarization. Here we design a hybrid electrode by integrating HSAs with a current collector of three-dimensional bicontinuous nanoporous Ni. The electrode shows enhanced high-rate dischargeability with the capacity retention rate reaching 44.6% at a discharge current density of 3000 mA g−1, which is 2.4 times that of bare HSAs (18.8%). Such a unique hybrid architecture not only enhances charge transfer between nanoporous Ni and HSAs, but also facilitates rapid diffusion of hydrogen atoms in HSAs. The developed HSAs/nanoporous metals hybrid structures exhibit great potential to be candidates as electrodes in high-performance Ni-MH batteries towards applications in new-energy vehicles. PMID:27270184

  5. Crack initiation at long radial hydrides in Zr-2. 5Nb pressure tube material at elevated temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Choubey, R.; Puls, M.P. (AECL Research, Pinawa, Manitoba (Canada). Whiteshell Labs.)

    1994-05-01

    Crack initiation at hydrides in smooth tensile specimens of Zr-2.5Nb pressure tube material was investigated at elevated temperatures up to 300 C using an acoustic emission (AE) technique. The test specimens contained long, radial hydride platelets. These hydrides have their plate normals oriented in the applied stress direction. Below [approximately]100 C, widespread hydride cracking was initiated at stresses close to the yield stress. An estimate of the hydride's fracture strength from this data yielded a value of [approximately]520 MPa at 100 C. Metallography showed that up to this temperature, cracking occurred along the length of the hydrides. However, at higher temperatures, there was no clear evidence of lengthwise cracking of hydrides, and fewer of the total hydride population fractured during deformation, as indicated by the AE record and the metallography. Moreover, the hydrides showed significant plasticity by-being able to flow along with the matrix material and align themselves parallel to the applied stress direction without fracturing. Near the fracture surface of the specimen, transverse cracking of the flow-reoriented hydrides had occurred at various points along the lengths of the hydrides. These fractures appear to be the result of stresses produced by large plastic strains imposed by the surrounding matrix on the less ductile hydrides.

  6. Well-Defined Molecular Magnesium Hydride Clusters : Relationship between Size and Hydrogen-Elimination Temperature

    NARCIS (Netherlands)

    Intemann, Julia; Spielmann, Jan; Sirsch, Peter; Harder, Sjoerd

    A new tetranuclear magnesium hydride cluster, [{NN-(MgH)2}2], which was based on a NN-coupled bis--diketiminate ligand (NN2-), was obtained from the reaction of [{NN-(MgnBu)2}2] with PhSiH3. Its crystal structure reveals an almost-tetrahedral arrangement of Mg atoms and two different sets of hydride

  7. Zirconium hydrides and Fe redistribution in Zr-2.5%Nb alloy under ion irradiation

    Science.gov (United States)

    Idrees, Y.; Yao, Z.; Cui, J.; Shek, G. K.; Daymond, M. R.

    2016-11-01

    Zr-2.5%Nb alloy is used to fabricate the pressure tubes of the CANDU reactor. The pressure tube is the primary pressure boundary for coolant in the CANDU design and is susceptible to delayed hydride cracking, reduction in fracture toughness upon hydride precipitation and potentially hydride blister formation. The morphology and nature of hydrides in Zr-2.5%Nb with 100 wppm hydrogen has been investigated using transmission electron microscopy. The effect of hydrides on heavy ion irradiation induced decomposition of the β phase has been reported. STEM-EDX mapping was employed to investigate the distribution of alloying elements. The results show that hydrides are present in the form of stacks of different sizes, with length scales from nano- to micro-meters. Heavy ion irradiation experiments at 250 °C on as-received and hydrided Zr-2.5%Nb alloy, show interesting effects of hydrogen on the irradiation induced redistribution of Fe. It was found that Fe is widely redistributed from the β phase into the α phase in the as-received material, however, the loss of Fe from the β phase and subsequent precipitation is retarded in the hydrided material. This preliminary work will further the current understanding of microstructural evolution of Zr based alloys in the presence of hydrogen.

  8. Arsenic speciation analysis by HPLC postcolumn hydride generation and detection by atomic fluorescence spectrometry

    OpenAIRE

    Marschner, K; Musil, S. (Stanislav); Rychlovský, P.; Dědina, J. (Jiří)

    2014-01-01

    The aim of this contribution is to present a new method of hydride generation that enables to generate arsines from iAs , iAs , MMA and DMA in a flow injection mode with the same efficiency and in the next step connection of this hydride generator with HPLC column.

  9. Pore-Confined Light Metal Hydrides for Energy Storage and Catalysis

    NARCIS (Netherlands)

    Bramwell, P.L.

    2017-01-01

    Light metal hydrides have enjoyed several decades of attention in the field of hydrogen storage, but their applications have recently begun to diversify more and more into the broader field of energy storage. For example, light metal hydrides have shown great promise as battery materials, in sensors

  10. Theoretical study on hydrogenation catalysts containing a metal hydride as additional hydrogen supply

    NARCIS (Netherlands)

    Snijder, E.D.; Versteeg, G.F.; Swaaij, W.P.M. van

    1992-01-01

    A hypothetical hydrogenation catalyst consisting of porous, catalytically active particles embedded with metal hydride powder was evaluated. The metal hydride provides temporarily additional hydrogen if the mass transfer rate of the hydrogen to the internal of the particle is not sufficient. A numer

  11. First-principles study of superabundant vacancy formation in metal hydrides.

    Science.gov (United States)

    Zhang, Changjun; Alavi, Ali

    2005-07-13

    Recent experiments have established the generality of superabundant vacancies (SAV) formation in metal hydrides. Aiming to elucidate this intriguing phenomenon and to clarify previous interpretations, we employ density-functional theory to investigate atomic mechanisms of SAV formation in fcc hydrides of Ni, Cu, Rh, Pd, Ag, Ir, Pt, and Au. We have found that upon H insertion, vacancy formation energies reduce substantially. This is consistent with experimental suggestions. We demonstrate that the entropy effect, which has been proposed to explain SAV formation, is not the main cause. Instead, it is the drastic change of electronic structure induced by the H in the SAV hydrides, which is to a large extent responsible. Interesting trends in systems investigated are also found: ideal hydrides of 5d metals and noble metals are unstable compared to the corresponding pure metals, but the SAV hydrides are more stable than the corresponding ideal hydrides, whereas opposite results exist in the cases of Ni, Rh, and Pd. These trends of stabilities of the SAV hydrides are discussed in detail and a general understanding for SAV formation is provided. Finally, we propose an alternative reaction pathway to generate a SAV hydride from a metal alloy.

  12. Complex transition metal hydrides: linear correlation of countercation electronegativity versus T-D bond lengths.

    Science.gov (United States)

    Humphries, T D; Sheppard, D A; Buckley, C E

    2015-06-30

    For homoleptic 18-electron complex hydrides, an inverse linear correlation has been established between the T-deuterium bond length (T = Fe, Co, Ni) and the average electronegativity of the metal countercations. This relationship can be further employed towards aiding structural solutions and predicting physical properties of novel complex transition metal hydrides.

  13. Development of TRIGA Fuel Fabrication by Powder Technique

    Directory of Open Access Journals (Sweden)

    H. Suwarno

    2014-12-01

    Full Text Available The prospect of operation of the Indonesian TRIGA reactors may be jeopardizes in the future due to the lack of fuel and control rods. Both fuel and control rods may not longer be imported and should be developed domestically. The most specific technology to fabricate TRIGA fuel rod is the production of UZrH1.6 pellet. The steps include converting the massive U metal into powder in by hydriding-dehydriding technique and mixing the U and Zr powders. A research has been planned to conducted by the National Nuclear Energy Agency (BATAN in Indonesia. Fixed amount of U-Zr mixed powders at the ratio of U/Zr = 10 wt% was pressed into a pellet with a diameter of 1.41 in and a thickness of 1 or 1.5 in, sintered at a temperature of 1200oC, followed by hydriding at 800oC to obtained UZrH1.6. The pellets, cladding, and other components were then fabricated into a fuel rod. A detailed discussion of the TRIGA fuel fabrication is presented in the paper.

  14. Single-Site Tetracoordinated Aluminum Hydride Supported on Mesoporous Silica. From Dream to Reality!

    KAUST Repository

    Werghi, Baraa

    2016-09-26

    The reaction of mesoporous silica (SBA15) dehydroxylated at 700 °C with diisobutylaluminum hydride, i-Bu2AlH, gives after thermal treatment a single-site tetrahedral aluminum hydride with high selectivity. The starting aluminum isobutyl and the final aluminum hydride have been fully characterized by FT-IR, advanced SS NMR spectroscopy (1H, 13C, multiple quanta (MQ) 2D 1H-1H, and 27Al), and elemental analysis, while DFT calculations provide a rationalization of the occurring reactivity. Trimeric i-Bu2AlH reacts selectively with surface silanols without affecting the siloxane bridges. Its analogous hydride catalyzes ethylene polymerization. Indeed, catalytic tests show that this single aluminum hydride site is active in the production of a high-density polyethylene (HDPE). © 2016 American Chemical Society.

  15. A mechanical-force-driven physical vapour deposition approach to fabricating complex hydride nanostructures

    Science.gov (United States)

    Pang, Yuepeng; Liu, Yongfeng; Gao, Mingxia; Ouyang, Liuzhang; Liu, Jiangwen; Wang, Hui; Zhu, Min; Pan, Hongge

    2014-03-01

    Nanoscale hydrides desorb and absorb hydrogen at faster rates and lower temperatures than bulk hydrides because of their high surface areas, abundant grain boundaries and short diffusion distances. No current methods exist for the direct fabrication of nanoscale complex hydrides (for example, alanates, borohydrides) with unique morphologies because of their extremely high reducibility, relatively low thermodynamic stability and complicated elemental composition. Here, we demonstrate a mechanical-force-driven physical vapour deposition procedure for preparing nanoscale complex hydrides without scaffolds or supports. Magnesium alanate nanorods measuring 20-40 nm in diameter and lithium borohydride nanobelts measuring 10-40 nm in width are successfully synthesised on the basis of the one-dimensional structure of the corresponding organic coordination polymers. The dehydrogenation kinetics of the magnesium alanate nanorods are improved, and the nanorod morphology persists through the dehydrogenation-hydrogenation process. Our findings may facilitate the fabrication of such hydrides with improved hydrogen storage properties for practical applications.

  16. Another Look at the Mechanisms of Hydride Transfer Enzymes with Quantum and Classical Transition Path Sampling.

    Science.gov (United States)

    Dzierlenga, Michael W; Antoniou, Dimitri; Schwartz, Steven D

    2015-04-02

    The mechanisms involved in enzymatic hydride transfer have been studied for years, but questions remain due, in part, to the difficulty of probing the effects of protein motion and hydrogen tunneling. In this study, we use transition path sampling (TPS) with normal mode centroid molecular dynamics (CMD) to calculate the barrier to hydride transfer in yeast alcohol dehydrogenase (YADH) and human heart lactate dehydrogenase (LDH). Calculation of the work applied to the hydride allowed for observation of the change in barrier height upon inclusion of quantum dynamics. Similar calculations were performed using deuterium as the transferring particle in order to approximate kinetic isotope effects (KIEs). The change in barrier height in YADH is indicative of a zero-point energy (ZPE) contribution and is evidence that catalysis occurs via a protein compression that mediates a near-barrierless hydride transfer. Calculation of the KIE using the difference in barrier height between the hydride and deuteride agreed well with experimental results.

  17. Hydrogenation reaction characteristics and properties of its hydrides for magnetic regenerative material HoCu2

    Institute of Scientific and Technical Information of China (English)

    金滔; 吴梦茜; 黄迦乐; 汤珂; 陈立新

    2016-01-01

    The hydrogenation reaction characteristics and the properties of its hydrides for the magnetic regenerative material HoCu2 (CeCu2-type) of a cryocooler were investigated. The XRD testing reveals that the hydrides of HoCu2 were a mixture of Cu, unknown hydride I, and unknown hydride II. Based on the PCT (pressure−concentration−temperature) curves under different reaction temperatures, the relationships among reaction temperature, equilibrium pressure, and maximum hydrogen absorption capacity were analyzed and discussed. The enthalpy changeΔH and entropy changeΔS as a result of the whole hydrogenation process were also calculated from the PCT curves. The magnetization and volumetric specific heat capacity of the hydride were also measured by SQUID magnetometer and PPMS, respectively.

  18. Complex rare-earth aluminum hydrides: mechanochemical preparation, crystal structure and potential for hydrogen storage.

    Science.gov (United States)

    Weidenthaler, Claudia; Pommerin, André; Felderhoff, Michael; Sun, Wenhao; Wolverton, Christopher; Bogdanović, Borislav; Schüth, Ferdi

    2009-11-25

    A novel type of complex rare-earth aluminum hydride was prepared by mechanochemical preparation. The crystal structure of the REAlH(6) (with RE = La, Ce, Pr, Nd) compounds was calculated by DFT methods and confirmed by preliminary structure refinements. The trigonal crystal structure consists of isolated [AlH(6)](3-) octahedra bridged via [12] coordinated RE cations. The investigation of the rare-earth aluminum hydrides during thermolysis shows a decrease of thermal stability with increasing atomic number of the RE element. Rare-earth hydrides (REH(x)) are formed as primary dehydrogenation products; the final products are RE-aluminum alloys. The calculated decomposition enthalpies of the rare-earth aluminum hydrides are at the lower end for reversible hydrogenation under moderate conditions. Even though these materials may require somewhat higher pressures and/or lower temperatures for rehydrogenation, they are interesting examples of low-temperature metal hydrides for which reversibility might be reached.

  19. Strategies for the improvement of the hydrogen storage properties of metal hydride materials.

    Science.gov (United States)

    Wu, Hui

    2008-10-24

    Metal hydrides are an important family of materials that can potentially be used for safe, efficient and reversible on-board hydrogen storage. Light-weight metal hydrides in particular have attracted intense interest due to their high hydrogen density. However, most of these hydrides have rather slow absorption kinetics, relatively high thermal stability, and/or problems with the reversibility of hydrogen absorption/desorption cycling. This paper discusses a number of different approaches for the improvement of the hydrogen storage properties of these materials, with emphasis on recent research on tuning the ionic mobility in mixed hydrides. This concept opens a promising pathway to accelerate hydrogenation kinetics, reduce the activation energy for hydrogen release, and minimize deleterious possible by-products often associated with complex hydride systems.

  20. Getting metal-hydrides to do what you want them to

    Energy Technology Data Exchange (ETDEWEB)

    Gruen, D.M.

    1981-01-01

    With the discovery of AB/sub 5/ compounds, intermetallic hydrides with unusual properties began to be developed (H dissociation pressures of one to several atmospheres, extremely rapid and reversible adsorption/desorption very large amounts of H adsorbed). This paper reviews the factors that must be controlled in order to modify these hydrides to make them useful. The system LaNi/sub 5/ + H/sub 2/ is used as example. Use of AB/sub 5/ hydrides to construct a chemical heat pumps is discussed. Results of a systematic study substituting Al for Ni are reported; the HYCSOS pump is described briefly. Use of hydrides as hydrogen getters (substituted ZrV/sub 2/) is also discussed. Finally, possible developments in intermetallic hydride research in the 1980's and the hydrogen economy are discussed. 10 figures. (DLC)

  1. Evaluation of hydride blisters in zirconium pressure tube in CANDU reactor

    Energy Technology Data Exchange (ETDEWEB)

    Cheong, Y. M.; Kim, Y. S.; Gong, U. S.; Kwon, S. C.; Kim, S. S.; Choo, K.N

    2000-09-01

    When the garter springs for maintaining the gap between the pressure tube and the calandria tube are displaced in the CANDU reactor, the sagging of pressure tube results in a contact to the calandria tube. This causes a temperature difference between the inner and outer surface of the pressure tube. The hydride can be formed at the cold spot of outer surface and the volume expansion by hydride dormation causes the blistering in the zirconium alloys. An incident of pressure tube rupture due to the hydride blisters had happened in the Canadian CANDU reactor. This report describes the theoretical development and models on the formation and growth of hydride blister and some experimental results. The evaluation methodology and non-destructive testing for hydride blister in operating reactors are also described.

  2. Assessing nanoparticle size effects on metal hydride thermodynamics using the Wulff construction.

    Science.gov (United States)

    Kim, Ki Chul; Dai, Bing; Karl Johnson, J; Sholl, David S

    2009-05-20

    The reaction thermodynamics of metal hydrides are crucial to the use of these materials for reversible hydrogen storage. In addition to altering the kinetics of metal hydride reactions, the use of nanoparticles can also change the overall reaction thermodynamics. We use density functional theory to predict the equilibrium crystal shapes of seven metals and their hydrides via the Wulff construction. These calculations allow the impact of nanoparticle size on the thermodynamics of hydrogen release from these metal hydrides to be predicted. Specifically, we study the temperature required for the hydride to generate a H(2) pressure of 1 bar as a function of the radius of the nanoparticle. In most, but not all, cases the hydrogen release temperature increases slightly as the particle size is reduced.

  3. Hydrogenase Enzymes and Their Synthetic Models: The Role of Metal Hydrides.

    Science.gov (United States)

    Schilter, David; Camara, James M; Huynh, Mioy T; Hammes-Schiffer, Sharon; Rauchfuss, Thomas B

    2016-08-10

    Hydrogenase enzymes efficiently process H2 and protons at organometallic FeFe, NiFe, or Fe active sites. Synthetic modeling of the many H2ase states has provided insight into H2ase structure and mechanism, as well as afforded catalysts for the H2 energy vector. Particularly important are hydride-bearing states, with synthetic hydride analogues now known for each hydrogenase class. These hydrides are typically prepared by protonation of low-valent cores. Examples of FeFe and NiFe hydrides derived from H2 have also been prepared. Such chemistry is more developed than mimicry of the redox-inactive monoFe enzyme, although functional models of the latter are now emerging. Advances in physical and theoretical characterization of H2ase enzymes and synthetic models have proven key to the study of hydrides in particular, and will guide modeling efforts toward more robust and active species optimized for practical applications.

  4. Mathematical modeling of the nickel/metal hydride battery system

    Energy Technology Data Exchange (ETDEWEB)

    Paxton, Blaine Kermit [Univ. of California, Berkeley, CA (United States). Dept. of Chemical Engineering

    1995-09-01

    A group of compounds referred to as metal hydrides, when used as electrode materials, is a less toxic alternative to the cadmium hydroxide electrode found in nickel/cadmium secondary battery systems. For this and other reasons, the nickel/metal hydride battery system is becoming a popular rechargeable battery for electric vehicle and consumer electronics applications. A model of this battery system is presented. Specifically the metal hydride material, LaNi{sub 5}H{sub 6}, is chosen for investigation due to the wealth of information available in the literature on this compound. The model results are compared to experiments found in the literature. Fundamental analyses as well as engineering optimizations are performed from the results of the battery model. In order to examine diffusion limitations in the nickel oxide electrode, a ``pseudo 2-D model`` is developed. This model allows for the theoretical examination of the effects of a diffusion coefficient that is a function of the state of charge of the active material. It is found using present data from the literature that diffusion in the solid phase is usually not an important limitation in the nickel oxide electrode. This finding is contrary to the conclusions reached by other authors. Although diffusion in the nickel oxide active material is treated rigorously with the pseudo 2-D model, a general methodology is presented for determining the best constant diffusion coefficient to use in a standard one-dimensional battery model. The diffusion coefficients determined by this method are shown to be able to partially capture the behavior that results from a diffusion coefficient that varies with the state of charge of the active material.

  5. ALUMINUM HYDRIDE: A REVERSIBLE MATERIAL FOR HYDROGEN STORAGE

    Energy Technology Data Exchange (ETDEWEB)

    Zidan, R; Christopher Fewox, C; Brenda Garcia-Diaz, B; Joshua Gray, J

    2009-01-09

    Hydrogen storage is one of the challenges to be overcome for implementing the ever sought hydrogen economy. Here we report a novel cycle to reversibly form high density hydrogen storage materials such as aluminium hydride. Aluminium hydride (AlH{sub 3}, alane) has a hydrogen storage capacity of 10.1 wt% H{sub 2}, 149 kg H{sub 2}/m{sup 3} volumetric density and can be discharged at low temperatures (< 100 C). However, alane has been precluded from use in hydrogen storage systems because of the lack of practical regeneration methods. The direct hydrogenation of aluminium to form AlH{sub 3} requires over 10{sup 5} bars of hydrogen pressure at room temperature and there are no cost effective synthetic means. Here we show an unprecedented reversible cycle to form alane electrochemically, using alkali metal alanates (e.g. NaAlH{sub 4}, LiAlH{sub 4}) in aprotic solvents. To complete the cycle, the starting alanates can be regenerated by direct hydrogenation of the dehydrided alane and the alkali hydride being the other compound formed in the electrochemical cell. The process of forming NaAlH{sub 4} from NaH and Al is well established in both solid state and solution reactions. The use of adducting Lewis bases is an essential part of this cycle, in the isolation of alane from the mixtures of the electrochemical cell. Alane is isolated as the triethylamine (TEA) adduct and converted to pure, unsolvated alane by heating under vacuum.

  6. ALUMINUM HYDRIDE: A REVERSIBLE MATERIAL FOR HYDROGEN STORAGE

    Energy Technology Data Exchange (ETDEWEB)

    Fewox, C; Ragaiy Zidan, R; Brenda Garcia-Diaz, B

    2008-12-31

    Hydrogen storage is one of the greatest challenges for implementing the ever sought hydrogen economy. Here we report a novel cycle to reversibly form high density hydrogen storage materials such as aluminium hydride. Aluminium hydride (AlH{sub 3}, alane) has a hydrogen storage capacity of 10.1 wt% H{sub 2}, 149 kg H{sub 2}/m{sup 3} volumetric density and can be discharged at low temperatures (< 100 C). However, alane has been precluded from use in hydrogen storage systems because of the lack of practical regeneration methods; the direct hydrogenation of aluminium to form AlH{sub 3} requires over 10{sup 5} bars of hydrogen pressure at room temperature and there are no cost effective synthetic means. Here we show an unprecedented reversible cycle to form alane electrochemically, using alkali alanates (e.g. NaAlH{sub 4}, LiAlH{sub 4}) in aprotic solvents. To complete the cycle, the starting alanates can be regenerated by direct hydrogenation of the dehydrided alane and the alkali hydride being the other compound formed in the electrochemical cell. The process of forming NaAlH{sub 4} from NaH and Al is well established in both solid state and solution reactions. The use of adducting Lewis bases is an essential part of this cycle, in the isolation of alane from the mixtures of the electrochemical cell. Alane is isolated as the triethylamine (TEA) adduct and converted to pure, unsolvated alane by heating under vacuum.

  7. Effects of Ca additions on some Mg-alloy hydrides

    Energy Technology Data Exchange (ETDEWEB)

    Lupu, D.; Biris, A.; Indrea, E.; Bucur, R.V.

    1983-01-01

    The hydrogenation of the alloy of composition CaMg/sub 1/ /sub 8/Ni/sub 0/ /sub 5/ containing CaMg/sub 2/ and MgNi/sub 2/ shows fast activation kinetics. The Mg/sub 2/Ni phase is observed in the dehydrided samples. The three plateaus on the hydrogen desorption isotherms correspond to the most stable magnesium hydrides observed up to now in Mg-alloy (..delta.. H = 20 to 24 kcal/mol H/sub 2/). The effects of Ca additions on the hydrogen storage capacity and desorption rates of some Mg-rich alloys have been studied. 16 references, 3 figures, 1 table.

  8. Alkyl and Hydride-Olefin Complexes of Niobocene

    NARCIS (Netherlands)

    Klazinga, A.H.; Teuben, J.H.

    1980-01-01

    Reactions of Cp2NbCl2 with RMgCl (R = n-C3H7, i-C3H7, n-C4H9, s-C4H9 and n-C5H11) give niobocene hydride olefin complexes Cp2Nb(H)L (L = C3H6, C4H8 and C5H10). The last step of the reaction probably proceeds via a stereospecific β-H elimination from the monoalkyl species Cp2NbR. Decomposition of n-a

  9. Geoneutrinos and Hydridic Earth (or primordially Hydrogen-Rich Planet)

    CERN Document Server

    Bezrukov, L

    2014-01-01

    Geoneutrino is a new channel of information about geochemical composition of the Earth. We alnalysed here the following problem. What statistics do we need to distinguish between predictions of Bulk Silicate Earth model and Hydridic Earth model for Th/U signal ratio? We obtained the simple formula for estimation of error of Th/U signal ratio. Our calculations show that we need more than $22 kt \\cdot year$ exposition for Gran-Sasso underground laboratory and Sudbury Neutrino Observatory. We need more than $27 kt \\cdot year$ exposition for Kamioka site in the case of stopping of all Japanese nuclear power plants.

  10. Electrochemical process and production of novel complex hydrides

    Science.gov (United States)

    Zidan, Ragaiy

    2013-06-25

    A process of using an electrochemical cell to generate aluminum hydride (AlH.sub.3) is provided. The electrolytic cell uses a polar solvent to solubilize NaAlH.sub.4. The resulting electrochemical process results in the formation of AlH.sub.3. The AlH.sub.3 can be recovered and used as a source of hydrogen for the automotive industry. The resulting spent aluminum can be regenerated into NaAlH.sub.4 as part of a closed loop process of AlH.sub.3 generation.

  11. Comparison between different reactions of group IV hydride with H

    Institute of Scientific and Technical Information of China (English)

    ZHANG; Shaolong; ZHANG; Xuqiang; ZHANG; Qinggang; ZHANG; Yici

    2006-01-01

    The four-dimensional time-dependent quantum dynamics calculations for reactions of group IV hydride with H are carried out by employing the semirigid vibrating rotor target model and the time-dependent wave packet method. The reaction possibility, cross section and rate constants for reactions (H+SiH4 and H+GeH4) in different initial vibrational and rotational states are obtained. The common feature for such kind of reaction process is summarized. The theoretical result is consistent with available measurement, which indicates the credibility of this theory and the potential energy surface.

  12. Modeling of Gallium Nitride Hydride Vapor Phase Epitaxy

    Science.gov (United States)

    Meyyappan, Meyya; Arnold, James O. (Technical Monitor)

    1997-01-01

    A reactor model for the hydride vapor phase epitaxy of GaN is presented. The governing flow, energy, and species conservation equations are solved in two dimensions to examine the growth characteristics as a function of process variables and reactor geometry. The growth rate varies with GaCl composition but independent of NH3 and H2 flow rates. A change in carrier gas for Ga source from H2 to N2 affects the growth rate and uniformity for a fixed reactor configuration. The model predictions are in general agreement with observed experimental behavior.

  13. Equilibrium composition for the reaction of plutonium hydride with air

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    There are six independent constituents with 4 chemical elements, i.e. PuH2.7(s), PuN(s), Pu2O3(s), N2, O2 and H2, therefore , the system described involves of 2 independent reactions ,both those of the experimental, which indicates that the chemical equilibrium is nearly completely approached. Therefore, it is believed that the reaction rate of plutonium hydride with air is extremely rapid. The present paper has briefly discussed the simultaneous reactions and its thermodynamic coupling effect.

  14. Bipolar Nickel-Metal Hydride Battery Development Project

    Science.gov (United States)

    Cole, John H.

    1999-01-01

    This paper reviews the development of the Electro Energy, Inc.'s bipolar nickel metal hydride battery. The advantages of the design are that each cell is individually sealed, and that there are no external cell terminals, no electrode current collectors, it is compatible with plastic bonded electrodes, adaptable to heat transfer fins, scalable to large area, capacity and high voltage. The design will allow for automated flexible manufacturing, improved energy and power density and lower cost. The development and testing of the battery's component are described. Graphic presentation of the results of many of the tests are included.

  15. Research in Nickel/Metal Hydride Batteries 2016

    Directory of Open Access Journals (Sweden)

    Kwo-Hsiung Young

    2016-10-01

    Full Text Available Nineteen papers focusing on recent research investigations in the field of nickel/metal hydride (Ni/MH batteries have been selected for this Special Issue of Batteries. These papers summarize the joint efforts in Ni/MH battery research from BASF, Wayne State University, the National Institute of Standards and Technology, Michigan State University, and FDK during 2015–2016 through reviews of basic operational concepts, previous academic publications, issued US Patent and filed Japan Patent Applications, descriptions of current research results in advanced components and cell constructions, and projections of future works.

  16. A comparison of crud phases appearing on some Swedish BWR fuel rods using Laser Raman Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Hermansson, H.P. [Studsvik Nuclear AB, Nykoeping (Sweden)]|[Lulea Univ. of Technology (Sweden)

    2002-07-01

    Previous investigations showed that laser Raman spectroscopy (LRS) can be used as a phase specific analytical tool for radioactive fuel crud samples and also for details in the underlying layer of zirconium dioxide. It is relatively easy to record Raman spectra that discriminate between chemical phases for all crud oxides of interest. The method has therefore been recommended for crud investigations within the Swedish program. At ideal conditions the resolution is about 1 {mu}m, permitting detailed position determination of crud phases in the sample. Therefore LRS is a very good complement to X-ray diffraction (XRD). The methods for sample preparation and handling of radioactive crud samples for LRS turn out to be relatively simple. A detailed LRS study on fuel crud samples from Barsebaeck 2, Forsmark 2, Forsmark 3 and Ringhals 1 was performed in this work. All of those Swedish BWRs were operated at different conditions at the time of sampling. The chemistry regimes covered NWC, HWC and other variable conditions. Also different types of fuel, exposure times and sampling positions were selected. (authors)

  17. Vodonik kao energetski vektor budućnosti - hidridi i baterije na vodonik / Hydrogen as an energy vector of the future: Hydrides and bacteria exploiting the hydrogen

    Directory of Open Access Journals (Sweden)

    Mitar Konjević

    2005-09-01

    Full Text Available Vodonik predstavlja ekološki čist i praktično neiscrpan energent, relativno lak za skladištenje, transport i korišćenje. Međutim, zbog visoke cene dobijanja još uvek ne konkuriše aktuelnim fosilnim gorivima. Ako se pretpostavlja da će vodonik predstavljati vrlo važan energetski vektor u budućnosti, interesantno je pokazati mogućnosti njegovog korišćenja u vidu hidrida i gorivnih ćelija. / Hydrogen represents the ecologically clean and practically inexhaustible energetic element, relatively easy for storage, transportation and exploitation. Nevertheless, due to high price of its production, hydrogen has not yet been a competition to actual fossil fuels. If we suppose that hydrogen will be pretty important vector in future, it is interesting to show the exploitation possibilities of hydrogen informs of hydrides and fuel cells.

  18. Fossil Fuels.

    Science.gov (United States)

    Crank, Ron

    This instructional unit is one of 10 developed by students on various energy-related areas that deals specifically with fossil fuels. Some topics covered are historic facts, development of fuels, history of oil production, current and future trends of the oil industry, refining fossil fuels, and environmental problems. Material in each unit may…

  19. Fossil Fuels.

    Science.gov (United States)

    Crank, Ron

    This instructional unit is one of 10 developed by students on various energy-related areas that deals specifically with fossil fuels. Some topics covered are historic facts, development of fuels, history of oil production, current and future trends of the oil industry, refining fossil fuels, and environmental problems. Material in each unit may…

  20. Jet pump noise analysis for BWRs

    Energy Technology Data Exchange (ETDEWEB)

    Castillo-Duran, R.; Hernandez-lopez, H.; Ortiz-Villafuerte, J.; Alonso-Vargas, G. [Instituto Nacional de Investigaciones Nucleares, Mexico (Mexico); Calleros-Micheland, G. [Comision Federal de Electricidad, Central Nucleoelectrica Laguna Verde, Veracruz (Mexico)

    2004-07-01

    The use of noise analysis for detection of BWR component malfunction is a powerful tool in determining abnormal operation conditions, during the life of a nuclear power plant. Since the eighties, several nuclear reactors have reported problems related with jet pumps and recirculation loops. The NRC (Nuclear Regulatory Commission) recommends performing periodic monitoring to individual pressure drop jet pumps, to prevent structural failure. In this work, noise analysis methods are used for detection of jet pumps abnormal operation conditions in a BWR. Power signals obtained from the backup process computer of a BWR are analyzed with a home-developed software, called NOISE, for noise diagnostic of power signals. The computer program takes individual signals from the tabular report of the process computer. The normalized power spectral density (NPSD) is then obtained, using a Prime Factor Algorithm to calculate the Fast Fourier Transform. The NPSD of the jet pumps pressure drop, of Unit 2 of the Laguna Verde Nuclear Power Plant, showed a noticeable change in jet pump 6 during 2003, considering the period from the startup test to operation during 2003. This abnormal condition was due to that the jet pump throat was partially blocked. The noise analysis methodology is shown to be a useful tool for malfunction detection, and could be applied to create a data bank for monitoring the dynamic behavior of BWR jet pumps. (authors)

  1. Identification and characterization of a new zirconium hydride; Identification et caracterisation d'un nouvel hydrure de zirconium

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Zhao; Morniroli, J.P.; Legris, A.; Thuinet, L. [Universite des Sciences et Technologies de Lille, USTL, ENSCL, CNRS, 59 - Villeneuve d' Ascq (France); Zhao, Zhao; Blat-Yrieix, M.; Ambard, A.; Legras, L. [Electricite de France (EDF/RD), Centre des Renardieres, 77 - Moret sur Loing (France); Kihn, Y. [CEMES-CNRS, 31 - Toulouse (France)

    2007-07-01

    A study of hydrides characterization has been carried out in using the transmission electron microscopy technique. It has revealed the presence of small hydrides of acicular form whose length does not exceed 500 nm, among the zircaloy-4 samples hydrided by cathodic way. The electronic diffraction has shown that these small hydrides have a crystallographic structure different of those of the hydrides phases already index in literature. A more complete identification study has then been carried out. In combining the different electronic microscopy techniques (precession electronic micro diffraction and EELS) with ab initio calculations, a new hydride phase has been identified. It is called hydride {zeta}, is of trigonal structure with lattice parameters a{sub {zeta}} = a{sub {alpha}}{sub Zr} = 0.33 nm and c{sub {zeta}} 2c{sub {alpha}}{sub Zr} = 1.029 nm, its spatial group being P3m1. (O.M.)

  2. Chemical reactivity testing for the National Spent Nuclear Fuel Program. Revision 2

    Energy Technology Data Exchange (ETDEWEB)

    Koester, L.W.

    2000-02-08

    This quality assurance project plan (QAPjP) summarizes requirements used by Lockheed Martin Energy Systems, Incorporated (LMES) Development Division at Y-12 for conducting chemical reactivity testing of Department of Energy (DOE) owned spent nuclear fuel, sponsored by the National Spent Nuclear Fuel Program (NSNFP). The requirements are based on the NSNFP Statement of work PRO-007 (Statement of Work for Laboratory Determination of Uranium Hydride Oxidation Reaction Kinetics.) This QAPjP will utilize the quality assurance program at Y-12, Y60-101PD, Quality Program Description, and existing implementing procedures for the most part in meeting the NSNFP Statement of Work PRO-007 requirements, exceptions will be noted. The project consists of conducting three separate series of related experiments, ''Passivation of Uranium Hydride Powder With Oxygen and Water'', '''Passivation of Uranium Hydride Powder with Surface Characterization'', and ''Electrochemical Measure of Uranium Hydride Corrosion Rate''.

  3. Thermodynamic properties of the cubic plutonium hydride solid solution

    Energy Technology Data Exchange (ETDEWEB)

    Haschke, J M

    1981-12-01

    Pressure, temperature, and composition data for the cubic solid solution plutonium hydride phase, PuH/sub x/, have been measured by microbalance methods. Integral enthalpies and entropies of formation have been evaluated for the composition range 1.90 less than or equal to X less than or equal to 3.00. At 550/sup 0/K, ..delta..H/sup 0/ /sub f/(PuH/sub x/(s)) varies linearly from approximately (-38 +- 1) kcal mol/sup -1/ at PuH/sub 190/ to (-50 +- 1 kcal mol/sup -1/) at PuH/sub 3/ /sub 00/. Thermochemical values obtained by reevaluating tensimetric data from the literature are in excellent agreement with these results. Isotopic effects have been quantified by comparing the results for hydride and deuteride, and equations are presented for predicting ..delta..H/sup 0/ /sub f/ and ..delta..S/sup 0/ /sub f/ values for PuH/sub x/(s) and PuD/sub x/(s).

  4. Lab-size rechargeable metal hydride-air cells

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Wei-Kang; Noreus, Dag [Department of Materials and Enviromental Chemistry, Arrhenius Laboratory, Stockholm University, S-106 91 Stockholm (Sweden)

    2010-09-01

    Lab-size rechargeable metal hydride-air (MH-air) cells with a gas management device were designed in order to minimize the loss of electrolyte. An AB{sub 5}-type hydrogen storage alloy was used as anode materials of the MH-air. The thickness of the metal hydride electrodes was in the range of 3.0-3.4 mm. Porous carbon-based air electrodes with Ag{sub 2}O catalysts were used as bi-functional electrodes for oxygen reduction and generation. The electrodes were first examined in half-cells to evaluate their performance and then assembled into one MH-air cell. The results showed the good cycling stability of the rechargeable MH-air cell with a capacity of 1990 mAh. The discharge voltage was 0.69 V at 0.05-0.1 C. The charge efficiency was about 90%. The specific and volumetric energy densities were about 95Wh kg{sup -1} and 140 Wh L{sup -1}, respectively. (author)

  5. Thermodynamic Calculation on the Formation of Titanium Hydride

    Institute of Scientific and Technical Information of China (English)

    Jing-wei Zhao; Hua Ding; Xue-feng Tian; Wen-juan Zhao; Hong-liang Hou

    2008-01-01

    A modified Miedema model, using interrelationship among the basic properties of elements Ti and H, is employed to calculate the standard enthalpy of formation of titanium hydride TiHx (1≤x≤2). Based on Debye theories of solid thermal capacity, the vibrational entropy, as well as electronic entropy, is acquired by quantum mechanics and statistic thermodynamics methods, and a new approach is presented to calculate the standard entropy of formation of Till2. The values of standard enthalpy of formation of TiHx decrease linearly with increase of x. The calculated results of standard enthalpy, entropy, and free energy of forma- tion of Till2 at 298.16 K are -142.39 kJ/mol, -143.0 J/(mol-K) and -99.75 k J/tool, respectively, which is consistent with the previously-reported data obtained by either experimental or theoretical calculation methods. The results show that the thermodynamic model for titanium hydride is reasonable.

  6. Effects of Alkaline Pre-Etching to Metal Hydride Alloys

    Directory of Open Access Journals (Sweden)

    Tiejun Meng

    2017-10-01

    Full Text Available The responses of one AB5, two AB2, four A2B7, and one C14-related body-centered-cubic (BCC metal hydrides to an alkaline-etch (45% KOH at 110 °C for 2 h were studied by internal resistance, X-ray diffraction, scanning electron microscope, inductively coupled plasma, and AC impedance measurements. Results show that while the etched rare earth–based AB5 and A2B7 alloys surfaces are covered with hydroxide/oxide (weight gain, the transition metal–based AB2 and BCC-C14 alloys surfaces are corroded and leach into electrolyte (weight loss. The C14-predominated AB2, La-only A2B7, and Sm-based A2B7 showed the most reduction in the internal resistance with the alkaline-etch process. Etched A2B7 alloys with high La-contents exhibited the lowest internal resistance and are suggested for use in the high-power application of nickel/metal hydride batteries.

  7. Gallium Nitride Nanowires Grown by Hydride Vapor Phase Epitaxy

    Institute of Scientific and Technical Information of China (English)

    LIU Zhan-Hui; XIU Xiang-Qan; YAN Huai-Yue; ZHANG Rong; XIE Zi-Li; HAN Ping; SHI Yi; ZHENG You-Dou

    2011-01-01

    @@ GaN nanowires are grown by hydride vapor phase epitaxy using nickel as a catalyst.The properties of the obtained GaN nanowires are characterized by scanning and transmission electron microscopy,electron diffraction,roomtemperature photoluminescence and energy dispersive spectroscopy.The results show that the nanowires are wurtzite single crystals growing along the[0001]direction and a redshift in the photoluminescence is observed due to a superposition of several effects.The Raman spectra are close to those of the bulk GaN and the significantly broadening of those modes indicates the phonon confinement effects associated with the nanoscale dimensions of the system.%GaN nanowires are grown by hydride vapor phase epitaxy using nickel as a catalyst. The properties of the obtained GaN nanowires are characterized by scanning and transmission electron microscopy, electron diffraction, room-temperature photoluminescence and energy dispersive spectroscopy. The results show that the nanowires are wurtzite single crystals growing along the [0001] direction and a redshift in the photoluminescence is observed due to a superposition of several effects. The Raman spectra are close to those of the bulk GaN and the significantly broadening of those modes indicates the phonon confinement effects associated with the nanoscale dimensions of the system.

  8. Interstellar chemistry of nitrogen hydrides in dark clouds

    CERN Document Server

    Gal, Romane Le; Faure, Alexandre; Forêts, Guillaume Pineau des; Rist, Claire; Maret, Sébastien

    2013-01-01

    The aim of the present work is to perform a comprehensive analysis of the interstellar chemistry of nitrogen, focussing on the gas-phase formation of the smallest polyatomic species and in particular nitrogen hydrides. We present a new chemical network in which the kinetic rates of critical reactions have been updated based on recent experimental and theoretical studies, including nuclear spin branching ratios. Our network thus treats the different spin symmetries of the nitrogen hydrides self-consistently together with the ortho and para forms of molecular hydrogen. This new network is used to model the time evolution of the chemical abundances in dark cloud conditions. The steady-state results are analysed, with special emphasis on the influence of the overall amounts of carbon, oxygen, and sulphur. Our calculations are also compared with Herschel/HIFI observations of NH, NH$_2$, and NH$_3$ detected towards the external envelope of the protostar IRAS 16293-2422. The observed abundances and abundance ratios ...

  9. Superconductive "sodalite"-like clathrate calcium hydride at high pressures

    CERN Document Server

    Wang, Hui; Tanaka, Kaori; Iitaka, Toshiaki; Ma, Yanming

    2012-01-01

    Hydrogen-rich compounds hold promise as high-temperature superconductors under high pressures. Recent theoretical hydride structures on achieving high-pressure superconductivity are composed mainly of H2 fragments. Through a systematic investigation of Ca hydrides with different hydrogen contents using particle-swam optimization structural search, we show that in the stoichiometry CaH6 a body-centred cubic structure with hydrogen that forms unusual "sodalite" cages containing enclathrated Ca stabilizes above pressure 150 GPa. The stability of this structure is derived from the acceptance by two H2 of electrons donated by Ca forming a "H4" unit as the building block in the construction of the 3-dimensional sodalite cage. This unique structure has a partial occupation of the degenerated orbitals at the zone centre. The resultant dynamic Jahn-Teller effect helps to enhance electron-phonon coupling and leads to superconductivity of CaH6. A superconducting critical temperature (Tc) of 220-235 K at 150 GPa obtained...

  10. Electronic structure of the palladium hydride studied by compton scattering

    CERN Document Server

    Mizusaki, S; Yamaguchi, M; Hiraoka, N; Itou, M; Sakurai, Y

    2003-01-01

    The hydrogen-induced changes in the electronic structure of Pd have been investigated by Compton scattering experiments associated with theoretical calculations. Compton profiles (CPs) of single crystal of Pd and beta phase hydride PdH sub x (x=0.62-0.74) have been measured along the [100], [110] and [111] directions with a momentum resolution of 0.14-0.17 atomic units using 115 keV x-rays. The theoretical Compton profiles have been calculated from the wavefunctions obtained utilizing the full potential linearized augmented plane wave method within the local density approximation for Pd and stoichiometric PdH. The experimental and the theoretical results agreed well with respect to the difference in the CPs between PdH sub x and Pd, and the anisotropy in the CPs of Pd or PdH sub x. This study provides lines of evidence that upon hydride formation the lowest valance band of Pd is largely modified due to hybridization with H 1s-orbitals and the Fermi energy is raised into the sp-band. (author)

  11. Electronic Principles of Hydrogen Incorporation and Dynamics in Metal Hydrides

    Directory of Open Access Journals (Sweden)

    Ljiljana Matović

    2012-08-01

    Full Text Available An approach to various metal hydrides based on electronic principles is presented. The effective medium theory (EMT is used to illustrate fundamental aspects of metal-hydrogen interaction and clarify the most important processes taking place during the interaction. The elaboration is extended using the numerous existing results of experiment and calculations, as well as using some new material. In particular, the absorption/desorption of H in the Mg/MgH2 system is analyzed in detail, and all relevant initial structures and processes explained. Reasons for the high stability and slow sorption in this system are noted, and possible solutions proposed. The role of the transition-metal impurities in MgH2 is briefly discussed, and some interesting phenomena, observed in complex intermetallic compounds, are mentioned. The principle mechanism governing the Li-amide/imide transformation is also discussed. Latterly, some perspectives for the metal-hydrides investigation from the electronic point of view are elucidated.

  12. ACCEPTABILITY ENVELOPE FOR METAL HYDRIDE-BASED HYDROGEN STORAGE SYSTEMS

    Energy Technology Data Exchange (ETDEWEB)

    Hardy, B.; Corgnale, C.; Tamburello, D.; Garrison, S.; Anton, D.

    2011-07-18

    The design and evaluation of media based hydrogen storage systems requires the use of detailed numerical models and experimental studies, with significant amount of time and monetary investment. Thus a scoping tool, referred to as the Acceptability Envelope, was developed to screen preliminary candidate media and storage vessel designs, identifying the range of chemical, physical and geometrical parameters for the coupled media and storage vessel system that allow it to meet performance targets. The model which underpins the analysis allows simplifying the storage system, thus resulting in one input-one output scheme, by grouping of selected quantities. Two cases have been analyzed and results are presented here. In the first application the DOE technical targets (Year 2010, Year 2015 and Ultimate) are used to determine the range of parameters required for the metal hydride media and storage vessel. In the second case the most promising metal hydrides available are compared, highlighting the potential of storage systems, utilizing them, to achieve 40% of the 2010 DOE technical target. Results show that systems based on Li-Mg media have the best potential to attain these performance targets.

  13. Accident source terms for light-water nuclear power plants using high-burnup or MOX fuel.

    Energy Technology Data Exchange (ETDEWEB)

    Salay, Michael (U.S. Nuclear Regulatory Commission, Washington, D.C.); Gauntt, Randall O.; Lee, Richard Y. (U.S. Nuclear Regulatory Commission, Washington, D.C.); Powers, Dana Auburn; Leonard, Mark Thomas

    2011-01-01

    Representative accident source terms patterned after the NUREG-1465 Source Term have been developed for high burnup fuel in BWRs and PWRs and for MOX fuel in a PWR with an ice-condenser containment. These source terms have been derived using nonparametric order statistics to develop distributions for the timing of radionuclide release during four accident phases and for release fractions of nine chemical classes of radionuclides as calculated with the MELCOR 1.8.5 accident analysis computer code. The accident phases are those defined in the NUREG-1465 Source Term - gap release, in-vessel release, ex-vessel release, and late in-vessel release. Important differences among the accident source terms derived here and the NUREG-1465 Source Term are not attributable to either fuel burnup or use of MOX fuel. Rather, differences among the source terms are due predominantly to improved understanding of the physics of core meltdown accidents. Heat losses from the degrading reactor core prolong the process of in-vessel release of radionuclides. Improved understanding of the chemistries of tellurium and cesium under reactor accidents changes the predicted behavior characteristics of these radioactive elements relative to what was assumed in the derivation of the NUREG-1465 Source Term. An additional radionuclide chemical class has been defined to account for release of cesium as cesium molybdate which enhances molybdenum release relative to other metallic fission products.

  14. [Investigation of enhancing effect for hydride generation-atomic fluorescence of transition metal elements].

    Science.gov (United States)

    Sun, Han-Wen; Suo, Ran

    2008-11-01

    A mechanism of hydride generation based on disassembly reaction of hydrogen-transferred interim state [M(BH4)m]* was developed by investigating the effect of reaction medium acidity on hydride generation. The effects of Co2+ and Ni2+, phenanthroline and 8-hydroxyquinoline on hydride generation-atomic fluorescence signals of Zn, Cd, Cu and Ni were studied, respectively, and their enhancing mechnism was discussed. The enhancing effect Co2+ and Ni2+ on the fluorescence signals of Zn and Cd was due to the increase in transmission efficiency of hydride of Zn and Cd. There was a synergic enhancing effect between phenanthroline or 8-hydroxyquinoline and Co2+ on the fluorescence signals of Zn and Cd, however no synergic enhancing effect between phenanthroline and 8-hydroxyquinoline on the fluorescence signals of Zn and Cd. The simulative action of cationic surfactant, anion surfactant and non-ionic surfactant surfactant to hydride generation was investigated. It is shown that both cationic surfactant and non-ionic surfactant have obvious enhancing effect on the fluorescence signals of analytes because of the decrease in surface tension of reaction solution. The release characteristics of hydride from the absorption solution containing surfactant was ulteriorly examined by using graphite furnace atomic absorption spectrometry, and the mechanism of enhancing effect of surfactant on hydride generation and transmission was proposed.

  15. Main Group Lewis Acid-Mediated Transformations of Transition-Metal Hydride Complexes.

    Science.gov (United States)

    Maity, Ayan; Teets, Thomas S

    2016-08-10

    This Review highlights stoichiometric reactions and elementary steps of catalytic reactions involving cooperative participation of transition-metal hydrides and main group Lewis acids. Included are reactions where the transition-metal hydride acts as a reactant as well as transformations that form the metal hydride as a product. This Review is divided by reaction type, illustrating the diverse roles that Lewis acids can play in mediating transformations involving transition-metal hydrides as either reactants or products. We begin with a discussion of reactions where metal hydrides form direct adducts with Lewis acids, elaborating the structure and dynamics of the products of these reactions. The bulk of this Review focuses on reactions where the transition metal and Lewis acid act in cooperation, and includes sections on carbonyl reduction, H2 activation, and hydride elimination reactions, all of which can be promoted by Lewis acids. Also included is a section on Lewis acid-base secondary coordination sphere interactions, which can influence the reactivity of hydrides. Work from the past 50 years is included, but the majority of this Review focuses on research from the past decade, with the intent of showcasing the rapid emergence of this field and the potential for further development into the future.

  16. Insertion of Group 12-16 Hydrides into NHCs: A Theoretical Investigation.

    Science.gov (United States)

    Iversen, Kalon J; Dutton, Jason L; Wilson, David

    2017-03-06

    The endocyclic ring expansion of N-heterocyclic carbene (NHC) rings by transition metal (Group 12) and main group (Group 13-16) element hydrides has been investigated in a computational study. In addition to previously reported insertion reactivity with Si, B, Be and Zn, similar reactivity is predicted to be feasible for heavier group 13 elements (Al, Ga, In, Tl), with the reaction barriers for Al-Tl calculated to be lower than for boron. Insertion is not expected with group 15-16 element hydrides, as the initial adduct formation is thermodynamically unfavourable. The reaction pathway with group 12 hydrides is calculated to be more favourable with two NHCs rather than a single NHC (analogous to Be), however hydride ring insertion with metal dihydrides is not feasible, but rather a reduced NHC is thermodynamically favoured. For group 14, ring-insertion reactivity is predicted to be feasible with the heavier dihydrides. Trends in reactivity of element hydrides may be related to the protic or hydridic character of the element hydrides.

  17. Fuel distribution

    Energy Technology Data Exchange (ETDEWEB)

    Tison, R.R.; Baker, N.R.; Blazek, C.F.

    1979-07-01

    Distribution of fuel is considered from a supply point to the secondary conversion sites and ultimate end users. All distribution is intracity with the maximum distance between the supply point and end-use site generally considered to be 15 mi. The fuels discussed are: coal or coal-like solids, methanol, No. 2 fuel oil, No. 6 fuel oil, high-Btu gas, medium-Btu gas, and low-Btu gas. Although the fuel state, i.e., gas, liquid, etc., can have a major impact on the distribution system, the source of these fuels (e.g., naturally-occurring or coal-derived) does not. Single-source, single-termination point and single-source, multi-termination point systems for liquid, gaseous, and solid fuel distribution are considered. Transport modes and the fuels associated with each mode are: by truck - coal, methanol, No. 2 fuel oil, and No. 6 fuel oil; and by pipeline - coal, methane, No. 2 fuel oil, No. 6 oil, high-Btu gas, medium-Btu gas, and low-Btu gas. Data provided for each distribution system include component makeup and initial costs.

  18. SAVANNAH RIVER NATIONAL LABORATORYREGENERATIVE FUEL CELL PROJECT

    Energy Technology Data Exchange (ETDEWEB)

    Motyka, T

    2008-11-11

    A team comprised of governmental, academic and industrial partners led by the Savannah River National Laboratory developed and demonstrated a regenerative fuel cell system for backup power applications. Recent market assessments have identified emergency response and telecommunication applications as promising near-term markets for fuel cell backup power systems. The Regenerative Fuel Cell System (RFC) consisted of a 2 kg-per-day electrolyzer, metal-hydride based hydrogen storage units and a 5 kW fuel cell. Coupling these components together created a system that can produce and store its own energy from the power grid much like a rechargeable battery. A series of test were conducted to evaluate the performance of the RFC system under both steady-state and transit conditions that might be encountered in typical backup power applications. In almost all cases the RFC functioned effectively. Test results from the demonstration project will be used to support recommendations for future fuel cell and hydrogen component and system designs and support potential commercialization activities. In addition to the work presented in this report, further testing of the RFC system at the Center for Hydrogen Research in Aiken County, SC is planned including evaluating the system as a renewable system coupled with a 20kW-peak solar photovoltaic array.

  19. Solid hydrides as hydrogen storage reservoirs; Hidruros solidos como acumuladores de hidrogeno

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez, A.; Sanchez, C.; Friedrichs, O.; Ares, J. R.; Leardini, F.; Bodega, J.; Fernandez, J. F.

    2010-07-01

    Metal hydrides as hydrogen storage materials are briefly reviewed in this paper. Fundamental properties of metal-hydrogen (gas) system such as Pressure-Composition-Temperature (P-C-T) characteristics are discussed on the light of the metal-hydride thermodynamics. Attention is specially paid to light metal hydrides which might have application in the car and transport sector. The pros and cons of MgH{sub 2} as a light material are outlined. Researches in course oriented to improve the behaviour of MgH{sub 2} are presented. Finally, other very promising alternative materials such as Al compounds (alanates) or borohydrides as light hydrogen accumulators are also considered. (Author)

  20. Hückel's Rule of Aromaticity Categorizes Aromatic Closo Boron Hydride Clusters

    OpenAIRE

    Poater i Teixidor, Jordi; Solà i Puig, Miquel; Viñas, Clara; Teixidor, Francesc

    2016-01-01

    A direct connection is established between tridimensional aromatic closo boron hydride clusters and planar aromatic [n]annulenes for medium and large size boron clusters. In particular, our results prove the existence of a link between the two-dimensional Hückel rule followed by aromatic [n]-annulenes and Wade-Mingos' rule of three-dimensional aromaticity applied to the aromatic [BnHn]2- closo boron hydride clusters. Our results show that closo boron hydride clusters can be categorized into d...

  1. Thermal decomposition kinetics of titanium hydride and Al alloy melt foaming process

    Institute of Scientific and Technical Information of China (English)

    YANG; Donghui; HE; Deping; YANG; Shangrun

    2004-01-01

    A temperature programmed decomposition (TPD) apparatus with metal tube structure, in which Ar is used as the carrier gas, is established and the TPD spectrum of titanium hydride is acquired. Using consulting table method (CTM), spectrum superposition method (SSM) and differential spectrum technique, TPD spectrum of titanium hydride is separated and a set of thermal decomposition kinetics equations are acquired. According to these equations, the relationship between decomposition quantity and time for titanium hydride at the temperature of 940 K is obtained and the result well coincides with the Al alloy melt foaming process.

  2. Interaction of electrons with light metal hydrides in the transmission electron microscope.

    Science.gov (United States)

    Wang, Yongming; Wakasugi, Takenobu; Isobe, Shigehito; Hashimoto, Naoyuki; Ohnuki, Somei

    2014-12-01

    Transmission electron microscope (TEM) observation of light metal hydrides is complicated by the instability of these materials under electron irradiation. In this study, the electron kinetic energy dependences of the interactions of incident electrons with lithium, sodium and magnesium hydrides, as well as the constituting element effect on the interactions, were theoretically discussed, and electron irradiation damage to these hydrides was examined using in situ TEM. The results indicate that high incident electron kinetic energy helps alleviate the irradiation damage resulting from inelastic or elastic scattering of the incident electrons in the TEM. Therefore, observations and characterizations of these materials would benefit from increased, instead decreased, TEM operating voltage.

  3. High Temperature Fuel Cladding Chemical Interactions Between TRIGA Fuels and 304 Stainless Steel

    Energy Technology Data Exchange (ETDEWEB)

    Perez, Emmanuel [Idaho National Lab. (INL), Idaho Falls, ID (United States); Keiser, Jr., Dennis D. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Forsmann, Bryan [Boise State Univ., ID (United States); Janney, Dawn E. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Henley, Jody [Idaho National Lab. (INL), Idaho Falls, ID (United States); Woolstenhulme, Eric C. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2016-02-01

    High-temperature fuel-cladding chemical interactions (FCCI) between TRIGA (Training, Research, Isotopes, General Atomics) fuel elements and the 304 stainless steel (304SS) are of interest to develop an understanding of the fuel behavior during transient reactor scenarios. TRIGA fuels are composed of uranium (U) particles dispersed in a zirconium-hydride (Zr-H) matrix. In reactor, the fuel is encased in 304-stainless-steel (304SS) or Incoloy 800 clad tubes. At high temperatures, the fuel can readily interact with the cladding, resulting in FCCI. A number of FCCI can take place in this system. Interactions can be expected between the cladding and the Zr-H matrix, and/or between the cladding and the U-particles. Other interactions may be expected between the Zr-H matrix and the U-particles. Furthermore, the fuel contains erbium-oxide (Er-O) additions. Interactions can also be expected between the Er-O, the cladding, the Zr-H and the U-particles. The overall result is that very complex interactions may take place as a result of fuel and cladding exposures to high temperatures. This report discusses the characterization of the baseline fuel microstructure in the as-received state (prior to exposure to high temperature), characterization of the fuel after annealing at 950C for 24 hours and the results from diffusion couple experiments carries out at 1000C for 5 and 24 hours. Characterization was carried out via scanning electron microscopy (SEM) and transmission electron microscopy (TEM) with sample preparation via focused ion beam in situ-liftout-technique.

  4. Fuel cell program - Overview reports 2007; Programm Brennstoffzellen inkl. Wasserstoff - Ueberblicksberichte der BFE-Programmleiter 2007

    Energy Technology Data Exchange (ETDEWEB)

    Luzzi, A.; Spirig, M.

    2008-07-01

    This report for the Swiss Federal Office of Energy (SFOE) presents the overview reports made by SFOE Heads of Program on work done in 2007. Projects reported on in the natural gas-fired fuel cell area include the EU-project REAL-SFOC, the long-term testing of anode-supported SOFC stacks, intermediate-temperature fuel cells based on proton conducting electrolytes, the interdisciplinary ONEBAT project and lifetime-enhancement of SOFC stacks for CHP applications. In the polymer-electrolyte fuel cell (PEFC) area, projects concerning proton-conducting polymer membranes, factors limiting the lifetime of fuel cell membranes, a new highly active oxygen reduction electrode for PEM fuel cell and zinc/air battery applications, the enhancement of PEFC durability and reliability, model-based investigation of PEFC performance, and local gas analysis of PE fuel cells are briefly reported on. Long-term research activities in the hydrogen technology area reported on include those concerning the photo-chemical conversion and storage of solar energy and the storage of hydrogen in metallic and complex hydrides. Further projects reported on include those concerning the physical aspects of hydrides for system integration and safety and new, complex metal hydrides. Swiss national and international co-ordination is reviewed in the areas of fuel cell technology and hydrogen technology. Work done in several projects run within the framework of the IEA's Advanced Fuel Cells Program is reviewed. Several pilot and demonstration (P and D) projects are also reported on in the natural-gas SOFC and PEFC areas. Comments on the 2007 results and a review of work to be done in 2008, along with a list of R, D, P and D projects, complete the report.

  5. High-Frequency (1)H NMR Chemical Shifts of Sn(II) and Pb(II) Hydrides Induced by Relativistic Effects: Quest for Pb(II) Hydrides.

    Science.gov (United States)

    Vícha, Jan; Marek, Radek; Straka, Michal

    2016-10-17

    The role of relativistic effects on (1)H NMR chemical shifts of Sn(II) and Pb(II) hydrides is investigated by using fully relativistic DFT calculations. The stability of possible Pb(II) hydride isomers is studied together with their (1)H NMR chemical shifts, which are predicted in the high-frequency region, up to 90 ppm. These (1)H signals are dictated by sizable relativistic contributions due to spin-orbit coupling at the heavy atom and can be as large as 80 ppm for a hydrogen atom bound to Pb(II). Such high-frequency (1)H NMR chemical shifts of Pb(II) hydride resonances cannot be detected in the (1)H NMR spectra with standard experimental setup. Extended (1)H NMR spectral ranges are thus suggested for studies of Pb(II) compounds. Modulation of spin-orbit relativistic contribution to (1)H NMR chemical shift is found to be important also in the experimentally known Sn(II) hydrides. Because the (1)H NMR chemical shifts were found to be rather sensitive to the changes in the coordination sphere of the central metal in both Sn(II) and Pb(II) hydrides, their application for structural investigation is suggested.

  6. Heat transfer characteristics of the metal hydride vessel based on the plate-fin type heat exchanger

    Science.gov (United States)

    Oi, Tsutomu; Maki, Kohei; Sakaki, Yoshinori

    Heat transfer characteristics of the metal hydride vessel based on the plate-fin type heat exchanger were investigated. Metal hydride beds were filled with AB 2 type hydrogen-storage alloy's particles, Ti 0.42Zr 0.58Cr 0.78Fe 0.57Ni 0.2Mn 0.39Cu 0.03, with a storage capacity of 0.92 wt.%. Heat transfer model in the metal hydride bed based on the heat transfer mechanism for packed bed proposed by Kunii and co-workers is presented. The time-dependent hydrogen absorption/desorption rate and pressure in the metal hydride vessel calculated by the model were compared with the experimental results. During the hydriding, calculated hydrogen absorption rates agreed with measured ones. Calculated thermal equilibrium hydrogen pressures were slightly lower than the measured hydrogen pressures at the inlet of metal hydride vessel. Taking account of the pressure gradient between the inlet of metal hydride vessel and the metal hydride bed, it is considered that this discrepancy is reasonable. During the dehydriding, there were big differences between the calculated hydrogen desorption rates and measured ones. As calculated hydrogen desorption rates were lower than measured ones, there were big differences between the calculated thermal equilibrium hydrogen pressures and the measured hydrogen pressures at the inlet of metal hydride vessel. It is considered that those differences are due to the differences of the heat transfer characteristics such as thermal conductivity of metal hydride particles and porosity between the assumed and actual ones. It is important to obtain the heat transfer characteristics such as thermal conductivity of metal hydride particles and porosity both during the hydriding and dehydriding to design a metal hydride vessel.

  7. Fuel Cells

    DEFF Research Database (Denmark)

    Smith, Anders; Pedersen, Allan Schrøder

    2014-01-01

    Fuel cells have been the subject of intense research and development efforts for the past decades. Even so, the technology has not had its commercial breakthrough yet. This entry gives an overview of the technological challenges and status of fuel cells and discusses the most promising applications...... of the different types of fuel cells. Finally, their role in a future energy supply with a large share of fluctuating sustainable power sources, e.g., solar or wind, is surveyed....

  8. Co-generation of acetylene and hydrogen for a carbide-based fuel system

    Energy Technology Data Exchange (ETDEWEB)

    Carreiro, Louis G.; Burke, A. Alan [Naval Undersea Warfare Center Division Newport, Code 8231, 1176 Howell Street, Newport, RI 02841 (United States); Dubois, Lily [Stonehill College, Department of Chemistry, 320 Washington Street, Easton, MA 02357 (United States)

    2010-09-15

    The co-generation of acetylene and hydrogen from the hydrolysis of calcium carbide and calcium hydride was investigated as part of a unique carbide-based fuel system intended for high-temperature fuel cells. To gain better control of this highly energetic reaction, glycerin was used to coat the reactant particles to form slurry prior to their reaction with water. This process was shown to moderate the rate of gas production, as well as to provide a means for preparing slurry that could be pumped into the reactor vessel. It was also observed that the presence of calcium hydroxide, a by-product of hydrolysis, lowered the solubility of acetylene resulting in a higher initial flow rate due to less acetylene being dissolved in solution. However, the buildup of calcium hydroxide with time inhibited the hydrolysis of both calcium carbide and calcium hydride causing the acetylene and hydrogen flow rates to decrease. (author)

  9. Thermal coupling of a high temperature PEM fuel cell with a complex hydride tank

    DEFF Research Database (Denmark)

    Pfeifer, P.; Wall, C.; Jensen, Jens Oluf;

    2009-01-01

    Sodium alanate doped with cerium catalyst has been proven to have fast kinetics for hydrogen ab- and de-sorption as well as a high gravimetric storage density around 5 wt%. The kinetics of hydrogen sorption can be improved by preparing the alanate as nanocrystalline material. However, the second...

  10. Modelling zirconium hydrides using the special quasirandom structure approach

    KAUST Repository

    Wang, Hao

    2013-01-01

    The study of the structure and properties of zirconium hydrides is important for understanding the embrittlement of zirconium alloys used as cladding in light water nuclear reactors. Simulation of the defect processes is complicated due to the random distribution of the hydrogen atoms. We propose the use of the special quasirandom structure approach as a computationally efficient way to describe this random distribution. We have generated six special quasirandom structure cells based on face centered cubic and face centered tetragonal unit cells to describe ZrH2-x (x = 0.25-0.5). Using density functional theory calculations we investigate the mechanical properties, stability, and electronic structure of the alloys. © the Owner Societies 2013.

  11. Pressure-induced transformations of molecular boron hydride

    CERN Document Server

    Nakano, S; Gregoryanz, E A; Goncharov, A F; Mao Ho Kwang

    2002-01-01

    Decaborane, a molecular boron hydride, was compressed to 131 GPa at room temperature to explore possible non-molecular phases in this system and their physical properties. Decaborane changed its colour from transparent yellow to orange/red above 50 GPa and then to black above 100 GPa, suggesting some transformations. Raman scattering and infrared (IR) absorption spectroscopy reveal significant structural changes. Above 100 GPa, B-B skeletal, B-H and B-H-B Raman/IR peaks gradually disappeared, which implies a transformation into a non-molecular phase in which conventional borane-type bonding is lost. The optical band gap of the material at 100 GPa was estimated to be about 1.0 eV.

  12. Modeling of hydride precipitation and re-orientation

    Energy Technology Data Exchange (ETDEWEB)

    Tikare, Veena [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Weck, Philippe F. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Mitchell, John Anthony [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-09-18

    In this report, we present a thermodynamic-­based model of hydride precipitation in Zr-based claddings. The model considers the state of the cladding immediately following drying, after removal from cooling-pools, and presents the evolution of precipitate formation upon cooling as follows: The pilgering process used to form Zr-based cladding imparts strong crystallographic and grain shape texture, with the basal plane of the hexagonal α-Zr grains being strongly aligned in the rolling-­direction and the grains are elongated with grain size being approximately twice as long parallel to the rolling direction, which is also the long axis of the tubular cladding, as it is in the orthogonal directions.

  13. Shielding efficiency of metal hydrides and borohydrides in fusion reactors

    Directory of Open Access Journals (Sweden)

    Singh Vishvanath P.

    2016-01-01

    Full Text Available Mass attenuation coefficients, mean free paths and exposure buildup factors have been used to characterize the shielding efficiency of metal hydrides and borohydrides, with high density of hydrogen. Gamma ray exposure buildup factors were computed using five-parameter geometric progression fitting at energies 0.015 MeV to15 MeV, and for penetration depths up to 40 mean free paths. Fast-neutron shielding efficiency has been characterized by the effective neutron removal cross-section. It is shown that ZrH2 and VH2 are very good shielding materials for gamma rays and fast neutrons due to their suitable combination of low- and high-Z elements. The present work should be useful for the selection and design of blankets and shielding, and for dose evaluation for components in fusion reactors.

  14. Final report for the DOE Metal Hydride Center of Excellence.

    Energy Technology Data Exchange (ETDEWEB)

    Keller, Jay O.; Klebanoff, Leonard E.

    2012-01-01

    This report summarizes the R&D activities within the U.S. Department of Energy Metal Hydride Center of Excellence (MHCoE) from March 2005 to June 2010. The purpose of the MHCoE has been to conduct highly collaborative and multi-disciplinary applied R&D to develop new reversible hydrogen storage materials that meet or exceed DOE 2010 and 2015 system goals for hydrogen storage materials. The MHCoE combines three broad areas: mechanisms and modeling (which provide a theoretically driven basis for pursuing new materials), materials development (in which new materials are synthesized and characterized) and system design and engineering (which allow these new materials to be realized as practical automotive hydrogen storage systems). This Final Report summarizes the organization and execution of the 5-year research program to develop practical hydrogen storage materials for light duty vehicles. Major results from the MHCoE are summarized, along with suggestions for future research areas.

  15. Niche applications of metal hydrides and related thermal management issues

    Energy Technology Data Exchange (ETDEWEB)

    Lototskyy, M., E-mail: mlototskyy@uwc.ac.za [HySA Systems Competence Centre, South African Institute for Advanced Materials Chemistry, Faculty of Natural Sciences, University of the Western Cape, Private Bag X17, Bellville 7535 (South Africa); Satya Sekhar, B. [HySA Systems Competence Centre, South African Institute for Advanced Materials Chemistry, Faculty of Natural Sciences, University of the Western Cape, Private Bag X17, Bellville 7535 (South Africa); Muthukumar, P. [Mechanical Department, Indian Institute of Technology Guwahati, Guwahati 781039 (India); Linkov, V.; Pollet, B.G. [HySA Systems Competence Centre, South African Institute for Advanced Materials Chemistry, Faculty of Natural Sciences, University of the Western Cape, Private Bag X17, Bellville 7535 (South Africa)

    2015-10-05

    Highlights: • MH H{sub 2} storage, compression & heat management: developments/thermal management. • Thermodynamic criteria for proper selection of MH for different gas phase applications. • Factors influencing on H{sub 2} charge/discharge dynamic performance and energy efficiency. • The improvement of MH heat transfer characteristics is crucial. • Ways of improvement of heat transfer in the MH systems. - Abstract: This short review highlights and discusses the recent developments and thermal management issues related to metal hydride (MH) systems for hydrogen storage, hydrogen compression and heat management (refrigeration, pump and upgrade, etc.). Special attention is paid to aligning the system features with the requirements of the specific application. The considered system features include the MH material, the MH bed on the basis of its corresponding MH container, as well as the layout of the integrated system.

  16. Crystal structure of the superconducting phase of sulfur hydride

    Science.gov (United States)

    Einaga, Mari; Sakata, Masafumi; Ishikawa, Takahiro; Shimizu, Katsuya; Eremets, Mikhail I.; Drozdov, Alexander P.; Troyan, Ivan A.; Hirao, Naohisa; Ohishi, Yasuo

    2016-09-01

    A superconducting critical temperature above 200 K has recently been discovered in H2S (or D2S) under high hydrostatic pressure. These measurements were interpreted in terms of a decomposition of these materials into elemental sulfur and a hydrogen-rich hydride that is responsible for the superconductivity, although direct experimental evidence for this mechanism has so far been lacking. Here we report the crystal structure of the superconducting phase of hydrogen sulfide (and deuterium sulfide) in the normal and superconducting states obtained by means of synchrotron X-ray diffraction measurements, combined with electrical resistance measurements at both room and low temperatures. We find that the superconducting phase is mostly in good agreement with the theoretically predicted body-centred cubic (bcc) structure for H3S. The presence of elemental sulfur is also manifest in the X-ray diffraction patterns, thus proving the decomposition mechanism of H2S to H3S + S under pressure.

  17. Capture of liquid hydrogen boiloff with metal hydride absorbers

    Science.gov (United States)

    Rosso, M. J.; Golben, P. M.

    1984-01-01

    A procedure which uses metal hydrides to capture some of this low pressure (,1 psig) hydrogen for subsequent reliquefaction is described. Of the five normally occurring sources of boil-off vapor the stream associated with the off-loading of liquid tankers during dewar refill was identified as the most cost effective and readily recoverable. The design, fabrication and testing of a proof-of-concept capture device, operating at a rate that is commensurate with the evolution of vapor by the target stream, is described. Liberation of the captured hydrogen gas at pressure .15 psig at normal temperatures (typical liquefier compressor suction pressure) are also demonstrated. A payback time of less than three years is projected.

  18. Ovonic nickel metal hydride batteries for space applications

    Science.gov (United States)

    Venkatesan, S.; Corrigan, D. A.; Fetcenko, M. A.; Gifford, P. R.; Dhar, S. K.; Ovshinsky, S. R.

    1993-01-01

    Ovonic nickel-metal hydride (NiMH) rechargeable batteries are easily adaptable to a variety of applications. Small consumer NiMH cells were developed and are now being manufactured by licensees throughout the world. This technology was successfully scaled up in larger prismatic cells aimed at electric vehicle applications. Sealed cells aimed at satellite power applications were also built and cycle tested by OBC and other outside agencies. Prototype batteries with high specific energy (over 80 Wh/kg), high energy density (245 Wh/L), and excellent power capability (400 W/kg) were produced. Ovonic NiMH batteries demonstrated an excellent cycle life of over 10,000 cycles at 30 percent DOD. Presently, Ovonic Battery Company is working on an advanced version of this battery for space applications as part of an SBIR contract from NASA.

  19. Metal hydride hydrogen compression: recent advances and future prospects

    Science.gov (United States)

    Yartys, Volodymyr A.; Lototskyy, Mykhaylo; Linkov, Vladimir; Grant, David; Stuart, Alastair; Eriksen, Jon; Denys, Roman; Bowman, Robert C.

    2016-04-01

    Metal hydride (MH) thermal sorption compression is one of the more important applications of the MHs. The present paper reviews recent advances in the field based on the analysis of the fundamental principles of this technology. The performances when boosting hydrogen pressure, along with two- and three-step compression units, are analyzed. The paper includes also a theoretical modelling of a two-stage compressor aimed at describing the performance of the experimentally studied systems, their optimization and design of more advanced MH compressors. Business developments in the field are reviewed for the Norwegian company HYSTORSYS AS and the South African Institute for Advanced Materials Chemistry. Finally, future prospects are outlined presenting the role of the MH compression in the overall development of the hydrogen-driven energy systems. The work is based on the analysis of the development of the technology in Europe, USA and South Africa.

  20. Hydrogen generation from magnesium hydride by using organic acid

    Science.gov (United States)

    Ho, Yen-Hsi

    In this paper, the hydrolysis of solid magnesium hydride has been studied with the high concentration of catalyst at the varying temperature. An organic acid (acetic acid, CH3COOH) has been chosen as the catalyst. The study has three objectives: first, using three different weights of MgH 2 react with aqueous solution of acid for the hydrogen generation experiments. Secondly, utilizing acetic acid as the catalyst accelerates hydrogen generation. Third, emphasizing the combination of the three operating conditions (the weight of MgH2, the concentration of acetic acid, and the varying temperature) influence the amount of hydrogen generation. The experiments results show acetic acid truly can increase the rate of hydrogen generation and the weight of MgH2 can affect the amount of hydrogen generation more than the varying temperature.

  1. The two steps thermal decomposition of titanium hydride and two steps foaming of Al alloy

    Institute of Scientific and Technical Information of China (English)

    SHANG Jintang; HE Deping

    2005-01-01

    Two steps foaming (TSF) technique was proposed to prepare shaped Al alloy foam. Based on the thermal decomposition kinetics equation of titanium hydride, the relationship between two steps thermal decomposition kinetics of titanium hydride and two steps foaming Al alloy melt was studied. Two steps thermal decomposition curve of titanium hydride under increasing and constant temperature was calculated respectively. The hydrogen mass needed in the second foaming step was also calculated. Results showed that the hydrogen mass of the second thermal decomposition of titanium hydride is enough for the second foaming step in the condition of as-received Al melt foaming. Experimental and theoretical results indicate that two steps foaming technique can be used to prepare Al alloy foam with high porosity, shaped components and sandwich with Al alloy foam core.

  2. In situ probing of surface hydrides on hydrogenated amorphous silicon using attenuated total reflection infrared spectroscopy

    CERN Document Server

    Kessels, W M M; Sanden, M C M; Aydil, E S

    2002-01-01

    An in situ method based on attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR) is presented for detecting surface silicon hydrides on plasma deposited hydrogenated amorphous silicon (a-Si:H) films and for determining their surface concentrations. Surface silicon hydrides are desorbed by exposing the a-Si:H films to low energy ions from a low density Ar plasma and by comparing the infrared spectrum before and after this low energy ion bombardment, the absorptions by surface hydrides can sensitively be separated from absorptions by bulk hydrides incorporated into the film. An experimental comparison with other methods that utilize isotope exchange of the surface hydrogen with deuterium showed good agreement and the advantages and disadvantages of the different methods are discussed. Furthermore, the determination of the composition of the surface hydrogen bondings on the basis of the literature data on hydrogenated crystalline silicon surfaces is presented, and quantification of the h...

  3. Solar conversion by concentration cells with hydrides. [Based on hydrogen pressure differential across protonic conductor

    Energy Technology Data Exchange (ETDEWEB)

    Salomon, R.E.

    1979-01-01

    The efficiency of solar energy conversion in an electrochemical concentration cell which uses a metal hydride chemisorber is evaluated. It is shown that both constant volume and constant pressure cells can achieve the Carnot efficiency in principle. (SPH)

  4. Compensation Effect in the Hydrogenation/Dehydrogenation Kinetics of Metal Hydrides

    DEFF Research Database (Denmark)

    Andreasen, A.; Vegge, T.; Pedersen, Allan Schrøder

    2005-01-01

    The possible existence of a compensation effect, i.e. concurrent changes in activation energy and prefactor, is investigated for the hydrogenation and dehydrogenation kinetics of metal hydrides, by analyzing a series of reported kinetic studies on Mg and LaNi5 based hydrides. For these systems, we...... find a clear linear relation between apparent prefactors and apparent activation energies, as obtained from an Arrhenius analysis, indicating the existence of a compensation effect. Large changes in apparent activation energies in the case of Mg based hydrides are rationalized in terms of a dependency...... analysis rather than a physical phenomenon. In the case of LaNi5 based hydrides, observed scatter in reported apparent activation energies is less pronounced supporting the general experience that LaNi5 is less sensitive toward surface contamination....

  5. Concerted proton-coupled electron transfer from a metal-hydride complex.

    Science.gov (United States)

    Bourrez, Marc; Steinmetz, Romain; Ott, Sascha; Gloaguen, Frederic; Hammarström, Leif

    2014-02-01

    Metal hydrides are key intermediates in the catalytic reduction of protons and CO2 as well as in the oxidation of H2. In these reactions, electrons and protons are transferred to or from separate acceptors or donors in bidirectional protoncoupled electron transfer (PCET) steps. The mechanistic interpretation of PCET reactions of metal hydrides has focused on the stepwise transfer of electrons and protons. A concerted transfer may, however, occur with a lower reaction barrier and therefore proceed at higher catalytic rates. Here we investigate the feasibility of such a reaction by studying the oxidation–deprotonation reactions of a tungsten hydride complex. The rate dependence on the driving force for both electron transfer and proton transfer—employing different combinations of oxidants and bases—was used to establish experimentally the concerted, bidirectional PCET of a metal-hydride species. Consideration of the findings presented here in future catalyst designs may lead to more-efficient catalysts.

  6. The diastereoselective synthesis of octahedral cationic iridium hydride complexes with a stereogenic metal centre.

    Science.gov (United States)

    Humbert, Nicolas; Mazet, Clément

    2016-08-23

    We report herein the highly diastereoselective synthesis of octahedral cationic Ir(iii) hydride complexes with a stereogenic metal centre following various strategies. The configurational stability of these compounds has also been investigated.

  7. Speculations on the existence of hydride ions in proton conducting oxides

    DEFF Research Database (Denmark)

    Poulsen, F.W.

    2001-01-01

    The chemical and physical nature of the hydride ion is briefly treated. Several reactions of the hydride ion in oxides or oxygen atmosphere are given, A number of perovskites and inverse perovskites are listed. which contain the H- ion on the oxygen or B-anion sites in the archetype ABO(3) System....... H- is stable with respect to oxide and halide anions but, among cations only with respect to oxides and halides of strongly electropositive metals such as alkaline, alkaline-earth and main group III metals. H- is only stable in combination with transition metal ions of certain elements...... in their lowest positive oxidation state. Mixed oxide/hydride containing perovskites may thus exist. Steinsvik et al. have recently suggested a defect model for a perovskite including substitutional hydride ions on the oxygen site, H-O(.), and protons associated with a lattice oxygen, OHO.. The defect equations...

  8. Kinetics of hydrogen desorption from MgH2 and AlH3 hydrides

    Science.gov (United States)

    Terent'ev, P. B.; Gerasimov, E. G.; Mushnikov, N. V.; Uimin, M. A.; Maikov, V. V.; Gaviko, V. S.; Golovatenko, V. D.

    2015-12-01

    Kinetic parameters of the process of thermal decomposition of the MgH2 hydride (obtained by the method of the mechanoactivation of magnesium in a hydrogen atmosphere) and of the commercial AlH3 hydride have been studied upon the rapid heating in the range of temperatures of 150-510°C at hydrogen pressures of 0-2 atm. The time dependences of the amount of hydrogen released by the metal hydrides at different temperatures and pressures have been determined. It has been shown that the activation energies of the hydrogen desorption are 135 kJ/mol for MgH2 and 107 kJ/mol for AlH3. The maximum rates of hydrogen desorption from the investigated metal hydrides have been established, and the temperatures and initial pressures that ensure the maximum rate and maximum volume of the hydrogen release have been determined.

  9. MELCOR 1.8.2 assessment: The DF-4 BWR Damaged Fuel experiment

    Energy Technology Data Exchange (ETDEWEB)

    Tautges, T.J.

    1993-10-01

    MELCOR is a fully integrated, engineering-level computer code being developed at Sandia National Laboratories for the USNRC, that models the entire spectrum of severe accident phenomena in a unified framework for both BWRs and PWRs. As a part of an ongoing assessment, program, MELCOR has been used to model the ACRR in-pile DF-4 Damaged Fuel experiment. DF-4 provided data for early phase melt progression in BWR fuel assemblies, particularly for phenomena associated with eutectic interactions in the BWR control blade and zircaloy oxidation in the canister and cladding. MELCOR provided good agreement with experimental data in the key areas of eutectic material behavior and canister and cladding oxidation. Several shortcomings associated with the MELCOR modeling of BWR geometries were found and corrected. Twenty-five sensitivity studies were performed on COR, HS and CVH parameters. These studies showed that the new MELCOR eutectics model played an important role in predicting control blade behavior. These studies revealed slight time step dependence and no machine dependencies. Comparisons made with the results from four best-estimate codes showed that MELCOR did as well as these codes in matching DF-4 experimental data.

  10. Development of nickel/metal-hydride batteries for EVs and HEVs

    Science.gov (United States)

    Taniguchi, Akihiro; Fujioka, Noriyuki; Ikoma, Munehisa; Ohta, Akira

    This paper is to introduce the nickel/metal-hydride (Ni/MH) batteries for electric vehicles (EVs) and hybrid electric vehicles (HEVs) developed and mass-produced by our company. EV-95 for EVs enables a vehicle to drive approximately 200 km per charge. As the specific power is extremely high, more than 200 W/kg at 80% depth of discharge (DOD), the acceleration performance is equivalent to that of gasoline fuel automobiles. The life characteristic is also superior. This battery gives the satisfactory result of more than 1000 cycles in bench tests and approximately 4-year on-board driving. EV-28 developed for small EVs comprises of a compact and light battery module with high specific power of 300 W/kg at 80% DOD by introducing a new technology for internal cell connection. Meanwhile, our cylindrical battery for the HEV was adopted into the first generation Toyota Prius in 1997 which is the world's first mass-product HEV, and has a high specific power of 600 W/kg. Its life characteristic was found to be equivalent to more than 100,000 km driving. Furthermore, a new prismatic module in which six cells are connected internally was used for the second generation Prius in 2000. The prismatic battery comprises of a compact and light battery pack with a high specific power of 1000 W/kg, which is approximately 1.7 times that of conventional cylindrical batteries, as a consequence of the development of a new internal cell connection and a new current collection structure.

  11. A review of catalyst-enhanced magnesium hydride as a hydrogen storage material

    Science.gov (United States)

    Webb, C. J.

    2015-09-01

    Magnesium hydride remains an attractive hydrogen storage material due to the high hydrogen capacity and low cost of production. A high activation energy and poor kinetics at practical temperatures for the pure material have driven research into different additives to improve the sorption properties. This review details the development of catalytic additives and their effect on the activation energy, kinetics and thermodynamic properties of magnesium hydride.

  12. Photogeneration of Hydride Donors and Their Use Toward CO2 Reduction

    Energy Technology Data Exchange (ETDEWEB)

    Fujita,E.; Muckerman, J.T.; Polyansky, D.E.

    2009-06-07

    Despite substantial effort, no one has succeeded in efficiently producing methanol from CO2 using homogeneous photocatalytic systems. We are pursuing reaction schemes based on a sequence of hydride-ion transfers to carry out stepwise reduction of CO2 to methanol. We are using hydride-ion transfer from photoproduced C-H bonds in metal complexes with bio-inspired ligands (i.e., NADH-like ligands) that are known to store one proton and two electrons.

  13. Direct hydride derivatization of methyl- and ethylmercury chlorides in aqueous solution with KBH4

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    A convenient hydride derivatization procedure of methyl-and ethylmercury chlorides to volatile hydrides was reported. In sealed vials methylmercury and ethylmercury compounds in acidic aqueous solutions were converted into their volatile forms by the reaction with potassium tetrahydroborate(KBH4) and elvolved to the headspace of the vials. The gaseous analytes in the headspace were extracted and concentrated by solid phase microextraction(SPME) and injected into gas chromatography (GC) for separation and identified by mass selective detector(MS).

  14. Experimental investigation of paraffin-based fuels for hybrid rocket propulsion

    Science.gov (United States)

    Galfetti, L.; Merotto, L.; Boiocchi, M.; Maggi, F.; DeLuca, L. T.

    2013-03-01

    Solid fuels for hybrid rockets were characterized in the framework of a research project aimed to develop a new generation of solid fuels, combining at the same time good mechanical and ballistic properties. Original techniques were implemented in order to improve paraffin-based fuels. The first strengthening technique involves the use of a polyurethane foam (PUF); a second technique is based on thermoplastic polymers mixed at molecular level with the paraffin binder. A ballistic characterization of paraffin-based hybrid rocket solid fuels was performed, considering pure wax-based fuels and fuels doped with suitable metal additives. Nano-Al powders and metal hydrides (magnesium hydride (MgH2), lithium aluminum hydride (LiAlH4 )) were used as fillers in paraffin matrices. The results of this investigation show a strong correlation between the measured viscosity of the melted paraffin layer and the regression rate: a decrease of viscosity increases the regression rate. This trend is due to the increasing development of entrainment phenomena, which strongly increase the regression rate. Addition of LiAlH4 (mass fraction 10%) can further increase the regression rate up to 378% with respect to the pure HTPB regression rate, taken as baseline reference fuel. The highest regression rates were found for the Solid Wax (SW) composition, added with 5% MgH2 mass fraction; at 350 kg/(m2s) oxygen mass flux, the measured regression rate, averaged in space and time, was 2.5 mm/s, which is approximately five times higher than that of the pure HTPB composition. Compositions added with nanosized aluminum powders were compared with those added with MgH2, using gel or solid wax.

  15. Ruthenium-catalysed decomposition of formic acid: Fuel cell and catalytic applications

    KAUST Repository

    Piola, Lorenzo

    2017-08-08

    The decomposition of formic acid into H2 and CO2 was successfully performed using a ruthenium hydride catalyst, without any concomitant CO evolution. The reaction mechanism is investigated by means of density functional theory calculations (DFT). The generated H2 was further exploited in a fuel cell to produce electricity. The catalytic hydrogenation of conjugated olefins, using this dihydrogen generation procedure, is also reported.

  16. Fracture mechanism of TiAl intermetallics caused by hydride and atomic hydrogen

    Institute of Scientific and Technical Information of China (English)

    高克玮; 王燕斌; 林志; 乔利杰; 褚武扬

    1999-01-01

    Hydrogen embrittlement (HE) of TiAl intermetallics was studied at room temperature. The results showed that there were two forms of HE in TiAl intermetallics, i.e. hydride HE and atomic HE. Most of hydrogen in TiAl intermetallics was transformed into hydrides at room temperature. The hydride exists as (TiAl)Hx for a low hydrogen concentration while it exists in several forms for a higher hydrogen concentration. Stress intensity factor KIC decreased with increase in hydride concentration. KIC decreased further when TiAl intermetallics were charged cathodically with hydrogen in 1 mol/L H2SO4 solution. Stress intensity factor during hydrogen charging KIH was about 50% KIC. 20% of the decrease was caused by hydrides while 30% was caused by atomic hydrogen. Mechanism of HE caused hydrides was the same as any other second phase in nature. Delayed fracture caused by atomic hydrogen resulted from hydrogen induced local plastic deformation.

  17. On the chemistry of hydrides of N atoms and O$^+$ ions

    CERN Document Server

    Awad, Zainab; Williams, David A

    2016-01-01

    Previous work by various authors has suggested that the detection by Herschel/HIFI of nitrogen hydrides along the low density lines of sight towards G10.6-0.4 (W31C) cannot be accounted for by gas-phase chemical models. In this paper we investigate the role of surface reactions on dust grains in diffuse regions, and we find that formation of the hydrides by surface reactions on dust grains with efficiency comparable to that for H$_2$ formation reconciles models with observations of nitrogen hydrides. However, similar surface reactions do not contribute significantly to the hydrides of O$^+$ ions detected by Herschel/HIFI present along many sight lines in the Galaxy. The O$^+$ hydrides can be accounted for by conventional gas-phase chemistry either in diffuse clouds of very low density with normal cosmic ray fluxes or in somewhat denser diffuse clouds with high cosmic ray fluxes. Hydride chemistry in dense dark clouds appears to be dominated by gas-phase ion-molecule reactions.

  18. Influence of Milling Conditions on the Hydriding Properties of Mg-C Nanocomposites

    Directory of Open Access Journals (Sweden)

    Hristina Stoyadinova

    2015-01-01

    Full Text Available Mg75 at.%, CB25 at.% (CB: carbon black composites were synthesized at different ball milling conditions (milling energy, milling duration, and environment and their hydriding properties were characterized by high-pressure DSC. The SEM observations revealed that the samples consist of 5–15 μm Mg particles, surrounded and in some cases coated by carbon particles. X-ray diffraction analysis showed that the Mg phase of all as-obtained composite powders is nanocrystalline with average crystallite size in the range 20–30 nm, depending on the milling conditions. The best hydriding properties, expressed in low-temperature hydriding (below 150°C and improved cycle life, showed the composites milled at dry conditions. This is obviously due mainly to the successful Mg surface protection by the carbon. Additional decrease of the hydriding temperature (<100°C was achieved applying higher-energy milling, but at the same time the cycling stability deteriorated, due to the extremely fine particles and microstructure achieved under these conditions. The composites milled in the presence of heptane showed rapid capacity decline during cycling as well. The observed difference in the hydriding behavior of the Mg-CB composites is attributed to the different coating efficiency of the carbon milled under different conditions with Mg, which is supposed to protect magnesium from oxidation and plays a catalytic role for the hydriding reaction.

  19. First-principles calculations of niobium hydride formation in superconducting radio-frequency cavities

    Energy Technology Data Exchange (ETDEWEB)

    Ford, Denise C.; Cooley, Lance D.; Seidman, David N.

    2013-09-01

    Niobium hydride is suspected to be a major contributor to degradation of the quality factor of niobium superconducting radio-frequency (SRF) cavities. In this study, we connect the fundamental properties of hydrogen in niobium to SRF cavity performance and processing. We modeled several of the niobium hydride phases relevant to SRF cavities and present their thermodynamic, electronic, and geometric properties determined from calculations based on density-functional theory. We find that the absorption of hydrogen from the gas phase into niobium is exothermic and hydrogen becomes somewhat anionic. The absorption of hydrogen by niobium lattice vacancies is strongly preferred over absorption into interstitial sites. A single vacancy can accommodate six hydrogen atoms in the symmetrically equivalent lowest-energy sites and additional hydrogen in the nearby interstitial sites affected by the strain field: this indicates that a vacancy can serve as a nucleation center for hydride phase formation. Small hydride precipitates may then occur near lattice vacancies upon cooling. Vacancy clusters and extended defects should also be enriched in hydrogen, potentially resulting in extended hydride phase regions upon cooling. We also assess the phase changes in the niobium-hydrogen system based on charge transfer between niobium and hydrogen, the strain field associated with interstitial hydrogen, and the geometry of the hydride phases. The results of this study stress the importance of not only the hydrogen content in niobium, but also the recovery state of niobium for the performance of SRF cavities.

  20. Brønsted-Lowry Acid Strength of Metal Hydride and Dihydrogen Complexes.

    Science.gov (United States)

    Morris, Robert H

    2016-08-10

    Transition metal hydride complexes are usually amphoteric, not only acting as hydride donors, but also as Brønsted-Lowry acids. A simple additive ligand acidity constant equation (LAC for short) allows the estimation of the acid dissociation constant Ka(LAC) of diamagnetic transition metal hydride and dihydrogen complexes. It is remarkably successful in systematizing diverse reports of over 450 reactions of acids with metal complexes and bases with metal hydrides and dihydrogen complexes, including catalytic cycles where these reactions are proposed or observed. There are links between pKa(LAC) and pKa(THF), pKa(DCM), pKa(MeCN) for neutral and cationic acids. For the groups from chromium to nickel, tables are provided that order the acidity of metal hydride and dihydrogen complexes from most acidic (pKa(LAC) -18) to least acidic (pKa(LAC) 50). Figures are constructed showing metal acids above the solvent pKa scales and organic acids below to summarize a large amount of information. Acid-base features are analyzed for catalysts from chromium to gold for ionic hydrogenations, bifunctional catalysts for hydrogen oxidation and evolution electrocatalysis, H/D exchange, olefin hydrogenation and isomerization, hydrogenation of ketones, aldehydes, imines, and carbon dioxide, hydrogenases and their model complexes, and palladium catalysts with hydride intermediates.