WorldWideScience

Sample records for hydride donor abilities

  1. Naphthalene proton sponges as hydride donors: diverse appearances of the tert-amino-effect.

    Science.gov (United States)

    Pozharskii, Alexander F; Povalyakhina, Maria A; Degtyarev, Alexander V; Ryabtsova, Oxana V; Ozeryanskii, Valery A; Dyablo, Olga V; Tkachuk, Anna V; Kazheva, Olga N; Chekhlov, Anatolii N; Dyachenko, Oleg A

    2011-03-21

    It has been shown that the 1-NMe(2) group in the 2-substituted 1,8-bis(dimethylamino)naphthalenes (proton sponges) can intramolecularly donate a hydride ion to an appropriate electron-accepting ortho-substituent such as diarylcarbenium ion, β,β'-dicyanovinyl or methyleneiminium group. This produces the 1-N(+)(Me)=CH(2) functionality and triggers a number of further transformations (tert-amino effect) including peri-cyclization, ortho-cyclization or hydrolytic demethylation. In each particular case, the course of the reaction is determined by the nature of the ortho-substituent and the most potent nucleophile presenting in the reaction mixture. For 2,7-disubstituted 1,8-bis(dimethylamino)naphthalenes, two types of tandem tert-amino effect with the involvement of both peri-NMe(2) groups have been registered. The conclusion was made that proton sponges are generally more active in the tert-amino reactions than the corresponding monodimethylaminoarenes. This is ascribed both to higher electron donor ability of proton sponges and markedly shortened distance between electrophilic C(α)-atom in the ortho-substituent and hydrogen atoms of the nearest NMe(2) group. Most conversions observed proceed in good to high yields and are useful for the preparation of derivatives of benzo[h]quinoline, quino[7,8:7',8']quinoline, 2,3-dihydroperimidine, N,N,N'-trimethyl-1,8-diaminonaphthalene and proton sponge itself.

  2. CO2 activation through silylimido and silylamido zirconium hydrides supported on N-donor chelating SBA15 surface ligand

    KAUST Repository

    Pasha, Fahran Ahmad

    2016-01-04

    Density functional theory calculations and 2D 1H-13C HETCOR solid state NMR spectroscopy prove that CO2 can probe, by its own reactivity, different types of N-donor surface ligands on SBA15-supported ZrIV hydrides: [(≡Si-O-)(≡Si-N=)[Zr]H] and [(≡Si-NH-)(≡Si-X-)[Zr]H2] (X = O or NH). Moreover, [(≡Si-O-)(≡Si-N=)[Zr]H] activates CO2 more efficiently than the other complexes and leads to a carbimato Zr formate.

  3. Photogeneration of Hydride Donors and Their Use Toward CO2 Reduction

    Energy Technology Data Exchange (ETDEWEB)

    Fujita,E.; Muckerman, J.T.; Polyansky, D.E.

    2009-06-07

    Despite substantial effort, no one has succeeded in efficiently producing methanol from CO2 using homogeneous photocatalytic systems. We are pursuing reaction schemes based on a sequence of hydride-ion transfers to carry out stepwise reduction of CO2 to methanol. We are using hydride-ion transfer from photoproduced C-H bonds in metal complexes with bio-inspired ligands (i.e., NADH-like ligands) that are known to store one proton and two electrons.

  4. Different Donor Cell Culture Methods Can Influence the Developmental Ability of Cloned Sheep Embryos.

    Directory of Open Access Journals (Sweden)

    LiBing Ma

    Full Text Available It was proposed that arresting nuclear donor cells in G0/G1 phase facilitates the development of embryos that are derived from somatic cell nuclear transfer (SCNT. Full confluency or serum starvation is commonly used to arrest in vitro cultured somatic cells in G0/G1 phase. However, it is controversial as to whether these two methods have the same efficiency in arresting somatic cells in G0/G1 phase. Moreover, it is unclear whether the cloned embryos have comparable developmental ability after somatic cells are subjected to one of these methods and then used as nuclear donors in SCNT. In the present study, in vitro cultured sheep skin fibroblasts were divided into four groups: (1 cultured to 70-80% confluency (control group, (2 cultured to full confluency, (3 starved in low serum medium for 4 d, or (4 cultured to full confluency and then further starved for 4 d. Flow cytometry was used to assay the percentage of fibroblasts in G0/G1 phase, and cell counting was used to assay the viability of the fibroblasts. Then, real-time reverse transcription PCR was used to determine the levels of expression of several cell cycle-related genes. Subsequently, the four groups of fibroblasts were separately used as nuclear donors in SCNT, and the developmental ability and the quality of the cloned embryos were compared. The results showed that the percentage of fibroblasts in G0/G1 phase, the viability of fibroblasts, and the expression levels of cell cycle-related genes was different among the four groups of fibroblasts. Moreover, the quality of the cloned embryos was comparable after these four groups of fibroblasts were separately used as nuclear donors in SCNT. However, cloned embryos derived from fibroblasts that were cultured to full confluency combined with serum starvation had the highest developmental ability. The results of the present study indicate that there are synergistic effects of full confluency and serum starvation on arresting fibroblasts in

  5. Thermodynamic Hydricity of Transition Metal Hydrides.

    Science.gov (United States)

    Wiedner, Eric S; Chambers, Matthew B; Pitman, Catherine L; Bullock, R Morris; Miller, Alexander J M; Appel, Aaron M

    2016-08-10

    Transition metal hydrides play a critical role in stoichiometric and catalytic transformations. Knowledge of free energies for cleaving metal hydride bonds enables the prediction of chemical reactivity, such as for the bond-forming and bond-breaking events that occur in a catalytic reaction. Thermodynamic hydricity is the free energy required to cleave an M-H bond to generate a hydride ion (H(-)). Three primary methods have been developed for hydricity determination: the hydride transfer method establishes hydride transfer equilibrium with a hydride donor/acceptor pair of known hydricity, the H2 heterolysis method involves measuring the equilibrium of heterolytic cleavage of H2 in the presence of a base, and the potential-pKa method considers stepwise transfer of a proton and two electrons to give a net hydride transfer. Using these methods, over 100 thermodynamic hydricity values for transition metal hydrides have been determined in acetonitrile or water. In acetonitrile, the hydricity of metal hydrides spans a range of more than 50 kcal/mol. Methods for using hydricity values to predict chemical reactivity are also discussed, including organic transformations, the reduction of CO2, and the production and oxidation of hydrogen.

  6. Application of the donor-acceptor concept to intercept low oxidation state group 14 element hydrides using a Wittig reagent as a Lewis base.

    Science.gov (United States)

    Swarnakar, Anindya K; McDonald, Sean M; Deutsch, Kelsey C; Choi, Paul; Ferguson, Michael J; McDonald, Robert; Rivard, Eric

    2014-08-18

    This article outlines our attempts to stabilize the Group 14 element dihydrides, GeH2 and SnH2, using commonly employed phosphine and pyridine donors; in each case, elemental Ge and Sn extrusion was noted. However, when these phosphorus and nitrogen donors were replaced with the ylidic Wittig ligand Ph3P═CMe2, stable inorganic methylene complexes (EH2) were obtained, demonstrating the utility of this under-explored ligand class in advancing main group element coordination chemistry.

  7. Boron Hydrides

    Science.gov (United States)

    1946-07-01

    of direct interest could be b.P.4d. ’Thus the discovory of a now proj.ect, since silano is probably too readily infla-zmablo for practical usc’ this...devoted, ho specc4fie compounds vhitih a’-ould be tocdte at prescnt arc: nron tiy * silano , %;2.SiFi3 , diothyl sila~no, (C2 115 )2 Si112, mono r.-rop; ! (n...Bcrohydrido or Li h.... I .A-4A- The prepuation of Silano med of Stannane by the interaction or lithium aluzirun hydride v-ithl silicon tetrtchiorido and

  8. Advanced Hydride Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Motyka, T.

    1989-01-01

    Metal hydrides have been used at the Savannah River Tritium Facilities since 1984. However, the most extensive application of metal hydride technology at the Savannah River Site is being planned for the Replacement Tritium Facility, a $140 million facility schedules for completion in 1990 and startup in 1991. In the new facility, metal hydride technology will be used to store, separate, isotopically purify, pump, and compress hydrogen isotopes. In support of the Replacement Tritium Facility, a $3.2 million, cold,'' process demonstration facility, the Advanced Hydride Laboratory began operation in November of 1987. The purpose of the Advanced Hydride Laboratory is to demonstrate the Replacement Tritium Facility's metal hydride technology by integrating the various unit operations into an overall process. This paper will describe the Advanced Hydride Laboratory, its role and its impact on the application of metal hydride technology to tritium handling.

  9. Advanced Hydride Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Motyka, T.

    1989-12-31

    Metal hydrides have been used at the Savannah River Tritium Facilities since 1984. However, the most extensive application of metal hydride technology at the Savannah River Site is being planned for the Replacement Tritium Facility, a $140 million facility schedules for completion in 1990 and startup in 1991. In the new facility, metal hydride technology will be used to store, separate, isotopically purify, pump, and compress hydrogen isotopes. In support of the Replacement Tritium Facility, a $3.2 million, ``cold,`` process demonstration facility, the Advanced Hydride Laboratory began operation in November of 1987. The purpose of the Advanced Hydride Laboratory is to demonstrate the Replacement Tritium Facility`s metal hydride technology by integrating the various unit operations into an overall process. This paper will describe the Advanced Hydride Laboratory, its role and its impact on the application of metal hydride technology to tritium handling.

  10. Restricted rotation of σ-bonds through a rigidified donor structure to increase the ICT ability of platinum-acetylide-based DSSCs.

    Science.gov (United States)

    Li, Zhong-Yu; Wu, Wenjun; Zhang, Qiong; Jin, Bin; Hua, Jianli; Yang, Hai-Bo; Tian, He

    2013-11-01

    A series of new triarylamine-based platinum-acetylide complexes (WYs) have been designed and synthesized as new sensitizers for applications in dye-sensitized solar cells (DSSCs). With the aim of investigating the effect of a rigidifying donor structure on the photoelectrical parameters of the corresponding DSSCs, two new sensitizers, WY1 and WY2, with rigid and coplanar fluorene units as an electron donor, were prepared. Moreover, two sensitizers that contained triphenylamine units as an electron donor, WY3 and WY4, were also synthesized for comparison. The photo- and electrochemical properties of all of these new complexes have been extensively explored. We found that the dimethyl-fluorene unit exhibited a stronger electron-donating ability and better photovoltaic performance compared to the triphenylamine unit, owing to its rigidifying structure, which restricted the rotation of σ bonds, thus increasing the conjugation efficiency. Furthermore, WY2, which contained a dimethyl-fluorene unit as an electron donor and bithiophene as a π bridge, showed a relatively high open-circuit voltage (V(oc)) of 640 mV and a PCE of 4.09%. This work has not only expanded the choice of platinum-acetylide sensitizers, but also demonstrates the advantages of restricted rotation of donor σ bonds for improved behavior of the corresponding DSSCs.

  11. Iron Group Hydrides in Noyori Bifunctional Catalysis.

    Science.gov (United States)

    Morris, Robert H

    2016-12-01

    This is an overview of the hydride-containing catalysts prepared in the Morris group for the efficient hydrogenation of simple ketones, imines, nitriles and esters and the asymmetric hydrogenation and transfer hydrogenation of prochiral ketones and imines. The work was inspired by and makes use of Noyori metal-ligand bifunctional concepts involving the hydride-ruthenium amine-hydrogen HRuNH design. It describes the synthesis and some catalytic properties of hydridochloro, dihydride and amide complexes of ruthenium and in one case, osmium, with monodentate, bidentate and tetradentate phosphorus and nitrogen donor ligands. The iron hydride that has been identified in a very effective asymmetric transfer hydrogenation process is also mentioned. The link between the HMNH structure and the sense of enantioinduction is demonstrated by use of simple transition state models.

  12. Synthesis of ruthenium hydride

    Science.gov (United States)

    Kuzovnikov, M. A.; Tkacz, M.

    2016-02-01

    Ruthenium hydride was synthesized at a hydrogen pressure of about 14 GPa in a diamond-anvil cell. Energy-dispersive x-ray diffraction was used to monitor the ruthenium crystal structure as a function of hydrogen pressure up to 30 GPa. The hydride formation was accompanied by phase transition from the original hcp structure of the pristine metal to the fcc structure. Our results confirmed the theoretical prediction of ruthenium hydride formation under hydrogen pressure. The standard Gibbs free energy of the ruthenium hydride formation reaction was calculated assuming the pressure of decomposition as the equilibrium pressure.

  13. Push-Pull Type Porphyrin Based Sensitizers: The Effect of Donor Structure on the Light-Harvesting Ability and Photovoltaic Performance

    KAUST Repository

    Qi, Qingbiao

    2015-06-23

    Push-pull type porphyrin-based sensitizers have become promising candidates for high-efficiency dye sensitized solar cells (DSCs). It is of importance to understand the fundamental structure-physical property-photovoltaic performance relationships by varying the donor and acceptor moieties. In this work, two new porphyrin-based sensitizers, WW-7 and WW-8, were synthesized and compared with the known sensitizer YD20. All the three dyes have the same porphyrin core and acceptor group (ethynylbenzoic acid) but their donor groups vary from the triphenylamine in YD20 to meso-diphenylaminoanthracene in WW-7 to N-phenyl carbazole in WW-8. Co(II/III)-based DSC device characterizations revealed that WW-7 showed enhanced light harvesting ability in comparison to YD20 with improved incident photon-to-collected electron conversion efficiencies (IPCEs). As a result, WW-7 displayed much higher short circuit current (Jsc: 13.54 mA cm-2) and open-circuit voltage (Voc: 0.829 V), with a power conversion efficiency (η) as high as 7.7%. Under the same conditions, YD20 cell exhibited a power conversion efficiency of 6.6% and the dye WW-8 showed even lower efficiency (η = 4.6%). Detailed physical measurements and theoretic calculations were conducted to understand the difference and reveal how three different donor structures affect their molecular orbital profile, light-harvesting ability, energy level alignment, and eventually the photovoltaic performance.

  14. Hysteresis in Metal Hydrides.

    Science.gov (United States)

    Flanagan, Ted B., And Others

    1987-01-01

    This paper describes a reproducible process where the irreversibility can be readily evaluated and provides a thermodynamic description of the important phenomenon of hysteresis. A metal hydride is used because hysteresis is observed during the formation and decomposition of the hydride phase. (RH)

  15. C-H and C-C activation of n -butane with zirconium hydrides supported on SBA15 containing N-donor ligands: [(≡SiNH-)(≡SiX-)ZrH2], [(≡SiNH-)(≡SiX-)2ZrH], and[(≡SiN=)(≡SiX-)ZrH] (X = -NH-, -O-). A DFT study

    KAUST Repository

    Pasha, Farhan Ahmad

    2014-07-01

    Density functional theory (DFT) was used to elucidate the mechanism of n-butane hydrogenolysis (into propane, ethane, and methane) on well-defined zirconium hydrides supported on SBA15 coordinated to the surface via N-donor surface pincer ligands: [(≡SiNH-)(≡SiO-)ZrH2] (A), [(≡SiNH-)2ZrH2] (B), [(≡SiNH-)(≡SiO-) 2ZrH] (C), [(≡SiNH-)2(≡SiO-)ZrH] (D), [(≡SiN=)(≡Si-O-)ZrH] (E), and [(≡SiN=)(≡SiNH-)ZrH] (F). The roles of these hydrides have been investigated in C-H/C-C bond activation and cleavage. The dihydride A linked via a chelating [N,O] surface ligand was found to be more active than B, linked to the chelating [N,N] surface ligand. Moreover, the dihydride zirconium complexes are also more active than their corresponding monohydrides C-F. The C-C cleavage step occurs preferentially via β-alkyl transfer, which is the rate-limiting step in the alkane hydrogenolysis. The energetics of the comparative pathways over the potential energy surface diagram (PES) reveals the hydrogenolysis of n-butane into propane and ethane. © 2014 American Chemical Society.

  16. Regenerative Hydride Heat Pump

    Science.gov (United States)

    Jones, Jack A.

    1992-01-01

    Hydride heat pump features regenerative heating and single circulation loop. Counterflow heat exchangers accommodate different temperatures of FeTi and LaNi4.7Al0.3 subloops. Heating scheme increases efficiency.

  17. Regenerative Hydride Heat Pump

    Science.gov (United States)

    Jones, Jack A.

    1992-01-01

    Hydride heat pump features regenerative heating and single circulation loop. Counterflow heat exchangers accommodate different temperatures of FeTi and LaNi4.7Al0.3 subloops. Heating scheme increases efficiency.

  18. Lightweight hydride storage materials

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, G.J.; Guthrie, S.E.; Bauer, W. [Sandia National Labs., Livermore, CA (United States)

    1995-09-01

    The need for lightweight hydrides in vehicular applications has prompted considerable research into the use of magnesium and its alloys. Although this earlier work has provided some improved performance in operating temperature and pressure, substantial improvements are needed before these materials will significantly enhance the performance of an engineered system on a vehicle. We are extending the work of previous investigators on Mg alloys to reduce the operating temperature and hydride heat of formation in light weight materials. Two important results will be discussed in this paper: (1) a promising new alloy hydride was found which has better pressure-temperature characteristics than any previous Mg alloy and, (2) a new fabrication process for existing Mg alloys was developed and demonstrated. The new alloy hydride is composed of magnesium, aluminum and nickel. It has an equilibrium hydrogen overpressure of 1.3 atm. at 200{degrees}C and a storage capacity between 3 and 4 wt.% hydrogen. A hydrogen release rate of approximately 5 x 10{sup -4} moles-H{sub 2}/gm-min was measured at 200{degrees}C. The hydride heat of formation was found to be 13.5 - 14 kcal/mole-H{sub 2}, somewhat lower than Mg{sub 2}Ni. The new fabrication method takes advantage of the high vapor transport of magnesium. It was found that Mg{sub 2}Ni produced by our low temperature process was better than conventional materials because it was single phase (no Mg phase) and could be fabricated with very small particle sizes. Hydride measurements on this material showed faster kinetic response than conventional material. The technique could potentially be applied to in-situ hydride bed fabrication with improved packing density, release kinetics, thermal properties and mechanical stability.

  19. Results of NDE Technique Evaluation of Clad Hydrides

    Energy Technology Data Exchange (ETDEWEB)

    Kunerth, Dennis C. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2014-09-01

    This report fulfills the M4 milestone, M4FT-14IN0805023, Results of NDE Technique Evaluation of Clad Hydrides, under Work Package Number FT-14IN080502. During service, zirconium alloy fuel cladding will degrade via corrosion/oxidation. Hydrogen, a byproduct of the oxidation process, will be absorbed into the cladding and eventually form hydrides due to low hydrogen solubility limits. The hydride phase is detrimental to the mechanical properties of the cladding and therefore it is important to be able to detect and characterize the presence of this constituent within the cladding. Presently, hydrides are evaluated using destructive examination. If nondestructive evaluation techniques can be used to detect and characterize the hydrides, the potential exists to significantly increase test sample coverage while reducing evaluation time and cost. To demonstrate the viability this approach, an initial evaluation of eddy current and ultrasonic techniques were performed to demonstrate the basic ability to these techniques to detect hydrides or their effects on the microstructure. Conventional continuous wave eddy current techniques were applied to zirconium based cladding test samples thermally processed with hydrogen gas to promote the absorption of hydrogen and subsequent formation of hydrides. The results of the evaluation demonstrate that eddy current inspection approaches have the potential to detect both the physical damage induced by hydrides, e.g. blisters and cracking, as well as the combined effects of absorbed hydrogen and hydride precipitates on the electrical properties of the zirconium alloy. Similarly, measurements of ultrasonic wave velocities indicate changes in the elastic properties resulting from the combined effects of absorbed hydrogen and hydride precipitates as well as changes in geometry in regions of severe degradation. However, for both approaches, the signal responses intended to make the desired measurement incorporate a number of contributing

  20. Hydrogen, lithium, and lithium hydride production

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Sam W.; Spencer, Larry S.; Phillips, Michael R.; Powell, G. Louis; Campbell, Peggy J.

    2017-06-20

    A method is provided for extracting hydrogen from lithium hydride. The method includes (a) heating lithium hydride to form liquid-phase lithium hydride; (b) extracting hydrogen from the liquid-phase lithium hydride, leaving residual liquid-phase lithium metal; (c) hydriding the residual liquid-phase lithium metal to form refined lithium hydride; and repeating steps (a) and (b) on the refined lithium hydride.

  1. Nickel metal hydride LEO cycle testing

    Science.gov (United States)

    Lowery, Eric

    1995-01-01

    The George C. Marshall Space Flight Center is working to characterize aerospace AB5 Nickel Metal Hydride (NiMH) cells. The cells are being evaluated in terms of storage, low earth orbit (LEO) cycling, and response to parametric testing (high rate charge and discharge, charge retention, pulse current ability, etc.). Cells manufactured by Eagle Picher are the subjects of the evaluation. There is speculation that NiMH cells may become direct replacements for current Nickel Cadmium cells in the near future.

  2. Electronic and Spatial Structures of Water-Soluble Dinitrosyl Iron Complexes with Thiol-Containing Ligands Underlying Their Ability to Act as Nitric Oxide and Nitrosonium Ion Donors

    Science.gov (United States)

    Vanin, Anatoly F.; Burbaev, Dosymzhan Sh.

    2011-01-01

    The ability of mononuclear dinitrosyl iron commplexes (M-DNICs) with thiolate ligands to act as NO donors and to trigger S-nitrosation of thiols can be explain only in the paradigm of the model of the [Fe+(NO+)2] core ({Fe(NO)2}7 according to the Enemark-Feltham classification). Similarly, the {(RS−)2Fe+(NO+)2}+ structure describing the distribution of unpaired electron density in M-DNIC corresponds to the low-spin (S = 1/2) state with a d7 electron configuration of the iron atom and predominant localization of the unpaired electron on MO(dz2) and the square planar structure of M-DNIC. On the other side, the formation of molecular orbitals of M-DNIC including orbitals of the iron atom, thiolate and nitrosyl ligands results in a transfer of electron density from sulfur atoms to the iron atom and nitrosyl ligands. Under these conditions, the positive charge on the nitrosyl ligands diminishes appreciably, the interaction of the ligands with hydroxyl ions or with thiols slows down and the hydrolysis of nitrosyl ligands and the S-nitrosating effect of the latter are not manifested. Most probably, the S-nitrosating effect of nitrosyl ligands is a result of weak binding of thiolate ligands to the iron atom under conditions favoring destabilization of M-DNIC. PMID:22505886

  3. Air and metal hydride battery

    Energy Technology Data Exchange (ETDEWEB)

    Lampinen, M.; Noponen, T. [Helsinki Univ. of Technology, Otaniemi (Finland). Lab. of Applied Thermodynamics

    1998-12-31

    The main goal of the air and metal hydride battery project was to enhance the performance and manufacturing technology of both electrodes to such a degree that an air-metal hydride battery could become a commercially and technically competitive power source for electric vehicles. By the end of the project it was possible to demonstrate the very first prototype of the air-metal hydride battery at EV scale, achieving all the required design parameters. (orig.)

  4. Hydrogen Outgassing from Lithium Hydride

    Energy Technology Data Exchange (ETDEWEB)

    Dinh, L N; Schildbach, M A; Smith, R A; Balazs1, B; McLean II, W

    2006-04-20

    Lithium hydride is a nuclear material with a great affinity for moisture. As a result of exposure to water vapor during machining, transportation, storage and assembly, a corrosion layer (oxide and/or hydroxide) always forms on the surface of lithium hydride resulting in the release of hydrogen gas. Thermodynamically, lithium hydride, lithium oxide and lithium hydroxide are all stable. However, lithium hydroxides formed near the lithium hydride substrate (interface hydroxide) and near the sample/vacuum interface (surface hydroxide) are much less thermally stable than their bulk counterpart. In a dry environment, the interface/surface hydroxides slowly degenerate over many years/decades at room temperature into lithium oxide, releasing water vapor and ultimately hydrogen gas through reaction of the water vapor with the lithium hydride substrate. This outgassing can potentially cause metal hydriding and/or compatibility issues elsewhere in the device. In this chapter, the morphology and the chemistry of the corrosion layer grown on lithium hydride (and in some cases, its isotopic cousin, lithium deuteride) as a result of exposure to moisture are investigated. The hydrogen outgassing processes associated with the formation and subsequent degeneration of this corrosion layer are described. Experimental techniques to measure the hydrogen outgassing kinetics from lithium hydride and methods employing the measured kinetics to predict hydrogen outgassing as a function of time and temperature are presented. Finally, practical procedures to mitigate the problem of hydrogen outgassing from lithium hydride are discussed.

  5. Metal Hydrides for High-Temperature Power Generation

    Directory of Open Access Journals (Sweden)

    Ewa C. E. Rönnebro

    2015-08-01

    Full Text Available Metal hydrides can be utilized for hydrogen storage and for thermal energy storage (TES applications. By using TES with solar technologies, heat can be stored from sun energy to be used later, which enables continuous power generation. We are developing a TES technology based on a dual-bed metal hydride system, which has a high-temperature (HT metal hydride operating reversibly at 600–800 °C to generate heat, as well as a low-temperature (LT hydride near room temperature that is used for hydrogen storage during sun hours until there is the need to produce electricity, such as during night time, a cloudy day or during peak hours. We proceeded from selecting a high-energy density HT-hydride based on performance characterization on gram-sized samples scaled up to kilogram quantities with retained performance. COMSOL Multiphysics was used to make performance predictions for cylindrical hydride beds with varying diameters and thermal conductivities. Based on experimental and modeling results, a ~200-kWh/m3 bench-scale prototype was designed and fabricated, and we demonstrated the ability to meet or exceed all performance targets.

  6. Prediction and characterization of a chalcogen-hydride interaction with metal hybrids as an electron donor in F2CS-HM and F2CSe-HM (M = Li, Na, BeH, MgH, MgCH3) complexes.

    Science.gov (United States)

    Li, Qing-Zhong; Qi, Hui; Li, Ran; Liu, Xiao-Feng; Li, Wen-Zuo; Cheng, Jian-Bo

    2012-03-07

    A novel type of σ-hole bonding has been predicted and characterized in F(2)CS-HM and F(2)CSe-HM (M = Li, Na, BeH, MgH) complexes at the MP2/aug-cc-pVTZ level. This interaction, termed a chalcogen-hydride interaction, was analyzed in terms of geometric, energetic and spectroscopic features of the complexes. It exhibits similar properties to hydrogen bonding and halogen bonding. The methyl group in metal hydrides makes a positive contribution to the formation of chalcogen-hydride bonded complexes. In the F(2)CSe-HLi-OH(2) complex, the chalcogen-hydride bonding shows synergetic effects with lithium bonding. These complexes have been analyzed with the atoms in molecules (AIM) theory and symmetry adapted perturbation theory (SAPT) method. The results show that the chalcogen-hydride bonding is dominated with an electrostatic interaction.

  7. Equilibrium of low- and high-spin states of Ni(II) complexes controlled by the donor ability of the bidentate ligands.

    Science.gov (United States)

    Ohtsu, Hideki; Tanaka, Koji

    2004-05-03

    Low-spin nickel(II) complexes containing bidentate ligands with modulated nitrogen donor ability, Py(Bz)2 or MePy(Bz)2 (Py(Bz)2 = N,N-bis(benzyl)-N-[(2-pyridyl)methyl]amine, MePy(Bz)2 = N,N-bis(benzyl)-N-[(6-methyl-2-pyridyl)methyl]amine), and a beta-diketonate derivative, tBuacacH (tBuacacH = 2,2,6,6-tetramethyl-3,5-heptanedione), represented as [Ni(Py(Bz)2)(tBuacac)](PF6) (1) and [Ni(MePy(Bz)2)(tBuacac)](PF6) (2) have been synthesized. In addition, the corresponding high-spin nickel(II) complexes having a nitrate ion, [Ni(Py(Bz)2)(tBuacac)(NO3)] (3) and [Ni(MePy(Bz)2)(tBuacac)(NO3)] (4), have also been synthesized for comparison. Complexes 1 and 2 have tetracoordinate low-spin square-planar structures, whereas the coordination environment of the nickel ion in 4 is a hexacoordinate high-spin octahedral geometry. The absorption spectra of low-spin complexes 1 and 2 in a noncoordinating solvent, dichloromethane (CH2Cl2), display the characteristic absorption bands at 500 and 540 nm, respectively. On the other hand, the spectra of a CH2Cl2 solution of high-spin complexes 3 and 4 exhibit the absorption bands centered at 610 and 620 nm, respectively. The absorption spectra of 1 and 2 in N,N-dimethylformamide (DMF), being a coordinating solvent, are quite different from those in CH2Cl2, which are nearly the same as those of 3 and 4 in CH2Cl2. This result indicates that the structures of 1 and 2 are converted from a low-spin square-planar to a high-spin octahedral configuration by the coordination of two DMF molecules to the nickel ion. Moreover, complex 1 shows thermochromic behavior resulting from the equilibrium between low-spin square-planar and high-spin octahedral structures in acetone, while complex 2 exists only as a high-spin octahedral configuration in acetone at any temperature. Such drastic differences in the binding constants and thermochromic properties can be ascribed to the enhancement of the acidity of the nickel ion of 2 by the steric effect of the o

  8. Concerted proton-coupled electron transfer from a metal-hydride complex.

    Science.gov (United States)

    Bourrez, Marc; Steinmetz, Romain; Ott, Sascha; Gloaguen, Frederic; Hammarström, Leif

    2014-02-01

    Metal hydrides are key intermediates in the catalytic reduction of protons and CO2 as well as in the oxidation of H2. In these reactions, electrons and protons are transferred to or from separate acceptors or donors in bidirectional protoncoupled electron transfer (PCET) steps. The mechanistic interpretation of PCET reactions of metal hydrides has focused on the stepwise transfer of electrons and protons. A concerted transfer may, however, occur with a lower reaction barrier and therefore proceed at higher catalytic rates. Here we investigate the feasibility of such a reaction by studying the oxidation–deprotonation reactions of a tungsten hydride complex. The rate dependence on the driving force for both electron transfer and proton transfer—employing different combinations of oxidants and bases—was used to establish experimentally the concerted, bidirectional PCET of a metal-hydride species. Consideration of the findings presented here in future catalyst designs may lead to more-efficient catalysts.

  9. Metal Hydride Compression

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Terry A. [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Bowman, Robert [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Smith, Barton [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Anovitz, Lawrence [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Jensen, Craig [Hawaii Hydrogen Carriers LLC, Honolulu, HI (United States)

    2017-07-01

    Conventional hydrogen compressors often contribute over half of the cost of hydrogen stations, have poor reliability, and have insufficient flow rates for a mature FCEV market. Fatigue associated with their moving parts including cracking of diaphragms and failure of seal leads to failure in conventional compressors, which is exacerbated by the repeated starts and stops expected at fueling stations. Furthermore, the conventional lubrication of these compressors with oil is generally unacceptable at fueling stations due to potential fuel contamination. Metal hydride (MH) technology offers a very good alternative to both conventional (mechanical) and newly developed (electrochemical, ionic liquid pistons) methods of hydrogen compression. Advantages of MH compression include simplicity in design and operation, absence of moving parts, compactness, safety and reliability, and the possibility to utilize waste industrial heat to power the compressor. Beyond conventional H2 supplies of pipelines or tanker trucks, another attractive scenario is the on-site generating, pressuring and delivering pure H2 at pressure (≥ 875 bar) for refueling vehicles at electrolysis, wind, or solar generating production facilities in distributed locations that are too remote or widely distributed for cost effective bulk transport. MH hydrogen compression utilizes a reversible heat-driven interaction of a hydride-forming metal alloy with hydrogen gas to form the MH phase and is a promising process for hydrogen energy applications [1,2]. To deliver hydrogen continuously, each stage of the compressor must consist of multiple MH beds with synchronized hydrogenation & dehydrogenation cycles. Multistage pressurization allows achievement of greater compression ratios using reduced temperature swings compared to single stage compressors. The objectives of this project are to investigate and demonstrate on a laboratory scale a two-stage MH hydrogen (H2) gas compressor with a

  10. Erbium hydride decomposition kinetics.

    Energy Technology Data Exchange (ETDEWEB)

    Ferrizz, Robert Matthew

    2006-11-01

    Thermal desorption spectroscopy (TDS) is used to study the decomposition kinetics of erbium hydride thin films. The TDS results presented in this report are analyzed quantitatively using Redhead's method to yield kinetic parameters (E{sub A} {approx} 54.2 kcal/mol), which are then utilized to predict hydrogen outgassing in vacuum for a variety of thermal treatments. Interestingly, it was found that the activation energy for desorption can vary by more than 7 kcal/mol (0.30 eV) for seemingly similar samples. In addition, small amounts of less-stable hydrogen were observed for all erbium dihydride films. A detailed explanation of several approaches for analyzing thermal desorption spectra to obtain kinetic information is included as an appendix.

  11. Hydride development for hydrogen storage

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, G.J.; Guthrie, S.E.; Bauer, W.; Yang, N.Y.C. [Sandia National Lab., Livermore, CA (United States); Sandrock, G. [SunaTech, Inc., Ringwood, NJ (United States)

    1996-10-01

    The purpose of this project is to develop and demonstrate improved hydride materials for hydrogen storage. The work currently is organized into four tasks: hydride development, bed fabrication, materials support for engineering systems, and IEA Annex 12 activities. At the present time, hydride development is focused on Mg alloys. These materials generally have higher weight densities for storing hydrogen than rare earth or transition metal alloys, but suffer from high operating temperatures, slow kinetic behavior and material stability. The authors approach is to study bulk alloy additions which increase equilibrium overpressure, in combination with stable surface alloy modification and particle size control to improve kinetic properties. This work attempts to build on the considerable previous research in this area, but examines specific alloy systems in greater detail, with attention to known phase properties and structures. The authors have found that specific phases can be produced which have significantly improved hydride properties compared to previous studies.

  12. Metal hydride air conditioner

    Institute of Scientific and Technical Information of China (English)

    YANG; Ke; DU; Ping; LU; Man-qi

    2005-01-01

    The relationship among the hydrogen storage properties, cycling characteristics and thermal parameters of the metal hydride air conditioning systems was investigated. Based on a new alloy selection model, three pairs of hydrogen storage alloys, LaNi4.4 Mn0.26 Al0.34 / La0.6 Nd0.4 Ni4.8 Mn0.2 Cu0. 1, LaNi4.61Mn0. 26 Al0.13/La0.6 Nd0.4 Ni4.8 Mn0.2 Cu0. 1 and LaNi4.61 Mn0.26 Al0.13/La0.6 Y0.4 Ni4.8 Mn0. 2, were selected as the working materials for the metal hydride air conditioning system. Studies on the factors affecting the COP of the system showed that higher COP and available hydrogen content need the proper operating temperature and cycling time,large hydrogen storage capacity, flat plateau and small hysterisis of hydrogen alloys, proper original input hydrogen content and mass ratio of the pair of alloys. It also needs small conditioning system was established by using LaNi4.61 Mn0.26 Al0. 13/La0.6 Y0.4 Ni4.8 Mn0.2 alloys as the working materials, which showed that under the operating temperature of 180℃/40℃, a low temperature of 13℃ was reached, with COP =0.38 and Wnet =0.09 kW/kg.

  13. Geoneutrino and Hydridic Earth model

    CERN Document Server

    Bezrukov, Leonid

    2013-01-01

    Uranium, Thorium and Potassium-40 abundances in the Earth were calculated in the frame of Hydridic Earth model. Terrestrial heat producton from U, Th and K40 decays was calculated also. We must admit the existance of Earth expansion process to understand the obtained large value of terrestrial heat producton. The geoneutrino detector with volume more than 5 kT (LENA type) must be constructed to definitely separate between Bulk Silicat Earth model and Hydridic Earth model.

  14. Physics of hydride fueled PWR

    Science.gov (United States)

    Ganda, Francesco

    The first part of the work presents the neutronic results of a detailed and comprehensive study of the feasibility of using hydride fuel in pressurized water reactors (PWR). The primary hydride fuel examined is U-ZrH1.6 having 45w/o uranium: two acceptable design approaches were identified: (1) use of erbium as a burnable poison; (2) replacement of a fraction of the ZrH1.6 by thorium hydride along with addition of some IFBA. The replacement of 25 v/o of ZrH 1.6 by ThH2 along with use of IFBA was identified as the preferred design approach as it gives a slight cycle length gain whereas use of erbium burnable poison results in a cycle length penalty. The feasibility of a single recycling plutonium in PWR in the form of U-PuH2-ZrH1.6 has also been assessed. This fuel was found superior to MOX in terms of the TRU fractional transmutation---53% for U-PuH2-ZrH1.6 versus 29% for MOX---and proliferation resistance. A thorough investigation of physics characteristics of hydride fuels has been performed to understand the reasons of the trends in the reactivity coefficients. The second part of this work assessed the feasibility of multi-recycling plutonium in PWR using hydride fuel. It was found that the fertile-free hydride fuel PuH2-ZrH1.6, enables multi-recycling of Pu in PWR an unlimited number of times. This unique feature of hydride fuels is due to the incorporation of a significant fraction of the hydrogen moderator in the fuel, thereby mitigating the effect of spectrum hardening due to coolant voiding accidents. An equivalent oxide fuel PuO2-ZrO2 was investigated as well and found to enable up to 10 recycles. The feasibility of recycling Pu and all the TRU using hydride fuels were investigated as well. It was found that hydride fuels allow recycling of Pu+Np at least 6 times. If it was desired to recycle all the TRU in PWR using hydrides, the number of possible recycles is limited to 3; the limit is imposed by positive large void reactivity feedback.

  15. A New Reducing Regent: Dichloroindium Hydride

    Institute of Scientific and Technical Information of China (English)

    A. BABA; I. SHIBATA; N. HAYASHI

    2005-01-01

    @@ 1Introduction Among the hydride derivatives of group 13 elements, various types of aluminum hydrides and boron hydrides have been employed as powerful reduction tools. Indium hydrides have not received much attention,whereas the synthesis of indium trihydride (InH3) was reported several decades ago[1]. There have been no precedents for monometallic indium hydrides having practical reactivity, while activated hydrides such as an ate complex LiPhn InH4-n (n = 0- 2) and phosphine-coordinated indium hydrides readily reduce carbonyl compounds. In view of this background, we focused on the development of dichloroindium hydrides (Cl2InH) as novel reducing agents that bear characteristic features in both ionic and radical reactions.

  16. Hydride Olefin complexes of tantalum and niobium

    NARCIS (Netherlands)

    Klazinga, Aan Hendrik

    1979-01-01

    This thesis describes investigations on low-valent tantalum and niobium hydride and alkyl complexes, particularly the dicyclopentadienyl tantalum hydride olefin complexes Cp2Ta(H)L (L=olefin). ... Zie: Summary

  17. Complex and liquid hydrides for energy storage

    Energy Technology Data Exchange (ETDEWEB)

    Callini, Elsa; Atakli, Zuleyha Özlem Kocabas; Hauback, Bjørn C.; Orimo, Shin-ichi; Jensen, Craig; Dornheim, Martin; Grant, David; Cho, Young Whan; Chen, Ping; Hjörvarsson, Bjørgvin; de Jongh, Petra; Weidenthaler, Claudia; Baricco, Marcello; Paskevicius, Mark; Jensen, Torben R.; Bowden, Mark E.; Autrey, Thomas S.; Züttel, Andreas

    2016-03-10

    The research on complex hydrides for hydrogen storage was imitated by the discovery of Ti as a hydrogen sorption catalyst in NaAlH4 by Boris Bogdanovic in 1996. A large number of new complex hydride materials in various forms and combinations have been synthesized and characterized and the knowledge on the properties of complex hydrides and the synthesis methods has grown enormously since then. A significant part of the research groups active in the field of complex hydrides are collaborators in the IEA task 32. This paper reports about the important issues in the field of the complex hydride research, i.e. the synthesis of borohydrides, the thermodynamics of complex hydrides and their thermodynamic properties, the effects of size and confinement, the hydrogen sorption mechanism and the complex hydride composites as well as the properties of liquid complex hydrides. This paper is the result of the collaboration of several groups and excellent summary of the recent achievements.

  18. Brønsted-Lowry Acid Strength of Metal Hydride and Dihydrogen Complexes.

    Science.gov (United States)

    Morris, Robert H

    2016-08-10

    Transition metal hydride complexes are usually amphoteric, not only acting as hydride donors, but also as Brønsted-Lowry acids. A simple additive ligand acidity constant equation (LAC for short) allows the estimation of the acid dissociation constant Ka(LAC) of diamagnetic transition metal hydride and dihydrogen complexes. It is remarkably successful in systematizing diverse reports of over 450 reactions of acids with metal complexes and bases with metal hydrides and dihydrogen complexes, including catalytic cycles where these reactions are proposed or observed. There are links between pKa(LAC) and pKa(THF), pKa(DCM), pKa(MeCN) for neutral and cationic acids. For the groups from chromium to nickel, tables are provided that order the acidity of metal hydride and dihydrogen complexes from most acidic (pKa(LAC) -18) to least acidic (pKa(LAC) 50). Figures are constructed showing metal acids above the solvent pKa scales and organic acids below to summarize a large amount of information. Acid-base features are analyzed for catalysts from chromium to gold for ionic hydrogenations, bifunctional catalysts for hydrogen oxidation and evolution electrocatalysis, H/D exchange, olefin hydrogenation and isomerization, hydrogenation of ketones, aldehydes, imines, and carbon dioxide, hydrogenases and their model complexes, and palladium catalysts with hydride intermediates.

  19. Solvent influence on the thermodynamics for hydride transfer from bis(diphosphine) complexes of nickel.

    Science.gov (United States)

    Connelly Robinson, Samantha J; Zall, Christopher M; Miller, Deanna L; Linehan, John C; Appel, Aaron M

    2016-06-14

    The thermodynamic hydricity of a metal hydride can vary considerably between solvents. This parameter can be used to determine the favourability of a hydride-transfer reaction, such as the reaction between a metal hydride and CO2 to produce formate. Because the hydricities of these species do not vary consistently between solvents, reactions that are thermodynamically unfavourable in one solvent can be favourable in others. The hydricity of a water-soluble, bis-phosphine nickel hydride complex was compared to the hydricity of formate in water and in acetonitrile. Formate is a better hydride donor than [HNi(dmpe)2](+) by 7 kcal mol(-1) in acetonitrile, and no hydride transfer from [HNi(dmpe)2](+) to CO2 occurs in this solvent. The hydricity of [HNi(dmpe)2](+) is greatly improved in water relative to acetonitrile, in that reduction of CO2 to formate by [HNi(dmpe)2](+) was found to be thermodynamically downhill by 8 kcal mol(-1). Catalysis for the hydrogenation of CO2 was pursued, but the regeneration of [HNi(dmpe)2] under catalytic conditions was unfavourable. However, the present results demonstrate that the solvent dependence of thermodynamic parameters such as hydricity and acidity can be exploited in order to produce systems with balanced or favourable overall thermodynamics. This approach should be advantageous for the design of future water-soluble catalysts.

  20. Luminescent properties of aluminum hydride

    Energy Technology Data Exchange (ETDEWEB)

    Baraban, A.P.; Gabis, I.E.; Dmitriev, V.A. [Saint-Petersburg State University, Department of Physics, Saint-Petersburg 198504 (Russian Federation); Dobrotvorskii, M.A., E-mail: mstislavd@gmail.com [Saint-Petersburg State University, Department of Physics, Saint-Petersburg 198504 (Russian Federation); Kuznetsov, V.G. [Saint-Petersburg State University, Department of Physics, Saint-Petersburg 198504 (Russian Federation); Matveeva, O.P. [National Mineral Resources University, Saint Petersburg 199106 (Russian Federation); Titov, S.A. [Petersburg State University of Railway Transport, Saint-Petersburg 190031 (Russian Federation); Voyt, A.P.; Elets, D.I. [Saint-Petersburg State University, Department of Physics, Saint-Petersburg 198504 (Russian Federation)

    2015-10-15

    We studied cathodoluminescence and photoluminescence of α-AlH{sub 3}– a likely candidate for use as possible hydrogen carrier in hydrogen-fueled vehicles. Luminescence properties of original α-AlH{sub 3} and α-AlH{sub 3} irradiated with ultraviolet were compared. The latter procedure leads to activation of thermal decomposition of α-AlH{sub 3} and thus has a practical implementation. We showed that the original and UV-modified aluminum hydride contain luminescence centers ‐ structural defects of the same type, presumably hydrogen vacancies, characterized by a single set of characteristic bands of radiation. The observed luminescence is the result of radiative intracenter relaxation of the luminescence center (hydrogen vacancy) excited by electrons or photons, and its intensity is defined by the concentration of vacancies, and the area of their possible excitation. UV-activation of the dehydrogenation process of aluminum hydride leads to changes in the spatial distribution of the luminescence centers. For short times of exposure their concentration increases mainly in the surface regions of the crystals. At high exposures, this process extends to the bulk of the aluminum hydride and ends with a decrease in concentration of luminescence centers in the surface region. - Highlights: • Aluminum hydride contains hydrogen vacancies which serve as luminescence centers. • The luminescence is the result of radiative relaxation of excited centers. • Hydride UV-irradiation alters distribution and concentration of luminescence centers.

  1. Photochemistry of Transition Metal Hydrides.

    Science.gov (United States)

    Perutz, Robin N; Procacci, Barbara

    2016-08-10

    Photochemical reactivity associated with metal-hydrogen bonds is widespread among metal hydride complexes and has played a critical part in opening up C-H bond activation. It has been exploited to design different types of photocatalytic reactions and to obtain NMR spectra of dilute solutions with a single pulse of an NMR spectrometer. Because photolysis can be performed on fast time scales and at low temperature, metal-hydride photochemistry has enabled determination of the molecular structure and rates of reaction of highly reactive intermediates. We identify five characteristic photoprocesses of metal monohydride complexes associated with the M-H bond, of which the most widespread are M-H homolysis and R-H reductive elimination. For metal dihydride complexes, the dominant photoprocess is reductive elimination of H2. Dihydrogen complexes typically lose H2 photochemically. The majority of photochemical reactions are likely to be dissociative, but hydride complexes may be designed with equilibrated excited states that undergo different photochemical reactions, including proton transfer or hydride transfer. The photochemical mechanisms of a few reactions have been analyzed by computational methods, including quantum dynamics. A section on specialist methods (time-resolved spectroscopy, matrix isolation, NMR, and computational methods) and a survey of transition metal hydride photochemistry organized by transition metal group complete the Review.

  2. Method of producing a chemical hydride

    Science.gov (United States)

    Klingler, Kerry M.; Zollinger, William T.; Wilding, Bruce M.; Bingham, Dennis N.; Wendt, Kraig M.

    2007-11-13

    A method of producing a chemical hydride is described and which includes selecting a composition having chemical bonds and which is capable of forming a chemical hydride; providing a source of a hydrocarbon; and reacting the composition with the source of the hydrocarbon to generate a chemical hydride.

  3. Hydrogen, lithium, and lithium hydride production

    Science.gov (United States)

    Brown, Sam W; Spencer, Larry S; Phillips, Michael R; Powell, G. Louis; Campbell, Peggy J

    2014-03-25

    A method of producing high purity lithium metal is provided, where gaseous-phase lithium metal is extracted from lithium hydride and condensed to form solid high purity lithium metal. The high purity lithium metal may be hydrided to provide high purity lithium hydride.

  4. Solvent-dependent switch of ligand donor ability and catalytic activity of ruthenium(II) complexes containing pyridinylidene amide (PYA) N-heterocyclic carbene hybrid ligands.

    Science.gov (United States)

    Leigh, Vivienne; Carleton, Daniel J; Olguin, Juan; Mueller-Bunz, Helge; Wright, L James; Albrecht, Martin

    2014-08-04

    Chelating ligands incorporating both N-[1-alkylpyridin-4(1H)-ylidene]amide (PYA) and N-heterocyclic carbene (NHC) donor sites were prepared and used for the synthesis of ruthenium(II) complexes. Cyclic voltammetry, NMR, and UV-vis spectroscopy of the complexes indicate a solvent-dependent contribution of the limiting resonance structures associated with the ligand in solution. The neutral pyridylidene imine structure is more pronounced in apolar solvents (CH2Cl2), while the mesoionic pyridinium amide form is predominant in polar solvents (MeOH, DMSO). The distinct electronic properties of these hybrid PYA-NHC ligands in different solvents have a direct influence on the catalytic activity of the ruthenium center, e.g., in the dehydrogenation of benzyl alcohol to benzaldehyde. The activity in different solvents qualitatively correlates with the solvent permittivity.

  5. Anodematerials for Metal Hydride Batteries

    DEFF Research Database (Denmark)

    Jensen, Jens Oluf

    1997-01-01

    This report describes the work on development of hydride forming alloys for use as electrode materials in metal hydride batteries. The work has primarily been concentrated on calcium based alloys derived from the compound CaNi5. This compound has a higher capacity compared with alloys used in today......’s hydride batteries, but a much poorer stability towards repeated charge/discharge cycling. The aim was to see if the cycleability of CaNi5 could be enhanced enough by modifications to make the compound a suitable electrode material. An alloying method based on mechanical alloying in a planetary ball mill...... by annealing at 700°C for 12 hours. The alloys appeared to be nanocrystalline with an average crystallite size around 10 nm before annealing. Special steel containers was developed for the annealing of the metal powders in inert atmosphere. The use of various annealing temperatures was investigated...

  6. Hydrogen Storage in Metal Hydrides

    Science.gov (United States)

    1990-08-01

    Hydrogen Storage Capacity Hydride by weight (%) [1) by volume (g/ml) [2] MgH2 7.00 0.101 Mg2NiH4 3.84 0,081 Mg2CuH4 2.04 - - 27 ...Include Security Classification) Hydrogen Storage in Metal Hydrides (U) 12. PERSONAL AUTHOR(S) DelaRosa, Mark J. 13a. TYPE OF REPORT 13b. TIME...objective of this program was to develop an economical process for pr-ducing a lightweight hydrogen storage medium by the chemical vapor infiltration

  7. Crystallography of shear transformations in zirconium hydrides

    Energy Technology Data Exchange (ETDEWEB)

    Cassidy, Michael Philip [Univ. of Illinois, Urbana-Champaign, IL (United States)

    1978-01-01

    The crystallography and substructure of the transformations which have been hypothesized as involving a martensitic shear, and which occur between zirconium hydrides were investigated. Specifically, the formation of gamma zirconium hydride from delta hydride and the delta hydride to epsilon hydride transformation were studied. The habit planes, orientation relationships, lattice invariant shears, and interface structures were determined by transmission electron microscopy and diffraction. Surface tilts were observed and measured with an interference microscope. The direction and magnitude of the shape strain produced by the formation of gamma were determined by the measurement of fiducial scratch displacements. These results were compared with the phenomenological crystallographic theory of martensitic transformations.

  8. Characteristics and Applications of Metal Hydrides

    Science.gov (United States)

    Egan, G. J.; Lynch, F. E.

    1987-01-01

    Report discusses engineering principles of uses of metal hydrides in spacecraft. Metal hydrides absorb, store, pump, compress, and expand hydrogen gas. Additionally, they release or absorb sizeable amounts of heat as they form and decompose - property adapted for thermal-energy management or for propulsion. Describes efforts to: Identify heat sources and sinks suitable for driving metal hydride thermal cycles in spacecraft; develop concepts for hydride subsystems employing available heating and cooling methods; and produce data base on estimated sizes, masses, and performances of hydride devices for spacecraft.

  9. Characterization of hydrides and delayed hydride cracking in zirconium alloys

    Science.gov (United States)

    Fang, Qiang

    This thesis tries to fill some of the missing gaps in the study of zirconium hydrides with state-of-art experiments, cutting edge tomographical technique, and a novel numerical algorithm. A new hydriding procedure is proposed. The new anode material and solution combination overcomes many drawbacks of the AECLRTM hydriding method and leads to superior hydriding result compared to the AECL RTM hydriding procedure. The DHC crack growth velocity of as-received Excel alloy and Zr-2.5Nb alloy together with several different heat treated Excel alloy samples are measured. While it already known that the DHC crack growth velocity increases with the increase of base metal strength, the finding that the transverse plane is the weaker plane for fatigue crack growth despite having higher resistance to DHC crack growth was unexpected. The morphologies of hydrides in a coarse grained Zircally-2 sample have been studied using synchrotron x-rays at ESRF with a new technique called Diffraction Contrast Tomography that uses simultaneous collection of tomographic data and diffraction data to determine the crystallographic orientation of crystallites (grains) in 3D. It has been previously limited to light metals such as Al or Mg (due to the use of low energy x-rays). Here we show the first DCT measurements using high energy x-rays (60 keV), allowing measurements in zirconium. A new algorithm of a computationally effcient way to characterize distributions of hydrides - in particular their orientation and/or connectivity - has been proposed. It is a modification of the standard Hough transform, which is an extension of the Hough transform widely used in the line detection of EBSD patterns. Finally, a basic model of hydrogen migration is built using ABAQUS RTM, which is a mature finite element package with tested modeling modules of a variety of physical laws. The coupling of hydrogen diffusion, lattice expansion, matrix deformation and phase transformation is investigated under

  10. Properties of nanoscale metal hydrides.

    Science.gov (United States)

    Fichtner, Maximilian

    2009-05-20

    Nanoscale hydride particles may exhibit chemical stabilities which differ from those of a macroscopic system. The stabilities are mainly influenced by a surface energy term which contains size-dependent values of the surface tension, the molar volume and an additional term which takes into account a potential reduction of the excess surface energy. Thus, the equilibrium of a nanoparticular hydride system may be shifted to the hydrogenated or to the dehydrogenated side, depending on the size and on the prefix of the surface energy term of the hydrogenated and dehydrogenated material. Additional complexity appears when solid-state reactions of complex hydrides are considered and phase segregation has to be taken into account. In such a case the reversibility of complex hydrides may be reduced if the nanoparticles are free standing on a surface. However, it may be enhanced if the system is enclosed by a nanoscale void which prevents the reaction partners on the dehydrogenated side from diffusing away from each other. Moreover, the generally enhanced diffusivity in nanocrystalline systems may lower the kinetic barriers for the material's transformation and, thus, facilitate hydrogen absorption and desorption.

  11. Elements located upstream and downstream of the major splice donor site influence the ability of HIV-2 leader RNA to dimerize in vitro.

    Science.gov (United States)

    Lanchy, Jean-Marc; Rentz, Casey A; Ivanovitch, John D; Lodmell, J Stephen

    2003-03-11

    An essential step in the replication cycle of all retroviruses is the dimerization of genomic RNA prior to or during budding and maturation of the viral particle. In HIV-1, a 5' leader region site termed stem-loop 1 (SL1) promotes RNA dimerization in vitro and influences dimerization in vivo. In HIV-2, two sequences promote dimerization of RNA fragments in vitro: the 5'-end of the primer-binding site (PBS) and a stem-loop region homologous to the HIV-1 SL1 sequence. Because HIV-2 RNA constructs of different lengths use these two dimerization signals disproportionately, we hypothesized that other sequences could modulate their relative utilization. Here, we characterized the influence of sequences upstream and downstream of the major splice donor site on the formation of HIV-2 RNA dimers in vitro using a variety of RNA constructs and dimerization and electrophoresis protocols. We first assayed the formation of loose or tight dimers for 1-444 and 1-561 model RNAs. Although both RNAs could form PBS-dependent loose dimers, the 1-561 RNA was unable to make SL1-dependent tight dimers. Using RNAs truncated at their 5'- and/or 3'-ends and by making compensatory base substitutions, we found that two elements interfere with the formation of SL1-dependent tight dimers. The cores of these elements are located at nucleotides 189-196 and 543-550. Our results suggest that base pairing between these sequences prevents the formation of SL1-dependent tight dimers, probably by sequestering SL1 in a stable intramolecular arrangement. Moreover, we found that nucleotides downstream of SL1 decreased the rate of tight dimerization. Interestingly, dimerization at 37 degrees C in the presence of nucleocapsid protein increased the yield of SL1-mediated tight dimerization in vitro, even in the presence of the two interfering elements, suggesting a relationship between the nucleocapsid protein and activation of the SL1 dimerization signal in vivo.

  12. A micromechanical model for predicting hydride embrittlement in nuclear fuel cladding material

    Science.gov (United States)

    Chan, K. S.

    1996-01-01

    A major concern about nuclear fuel cladding under waste repository conditions is that the slow cooling rate anticipated in the repository may lead to the formation of excessive radial hydrides, and cause embrittlement of the cladding materials. In this paper, the development of a micromechanical model for predicting hydride-induced embrittlement in nuclear fuel cladding is presented. The important features of the proposed model are: (1) the capability to predict the orientation, morphology, and types of hydrides under the influence of key variables such as cooling rate, internal pressure, and time, and (2) the ability to predict the influence of hydride orientation and morphology on the tensile ductility and fracture toughness of the cladding material. Various model calculations are presented to illustrate the characteristics and utilities of the proposed methodology. A series of experiments was also performed to check assumptions used and to verify some of the model predictions.

  13. Influence of the structure of polyfluorinated alcohols on Brønsted acidity/hydrogen-bond donor ability and consequences on the promoter effect.

    Science.gov (United States)

    Vuluga, Daniela; Legros, Julien; Crousse, Benoit; Slawin, Alexandra M Z; Laurence, Christian; Nicolet, Pierre; Bonnet-Delpon, Danièle

    2011-02-18

    The influence of substituents on the properties of tri- and hexafluorinated alcohols derived from 2,2,2-trifluoroethanol (TFE) and 1,1,1,3,3,3-hexafluoro-2-propanol (HFIP) was examined. Measurements of specific solvent-solute interactions revealed that H-bond donation (HBD) of fluorinated alcohols is sensitive to the steric hindrance of the OH group, whereas their Brønsted acidity is dependent only on the number of fluorine atoms. For hexafluorinated alcohols (HFAs), their association with amines characterized by X-ray diffraction showed that the balance between HBD and acidity is influenced by their structure. Moreover, the ability of HFAs to donate H-bonds is exerted in synclinal (sc), synperiplanar (sp), and also antiperiplanar (ap) conformations along the C-O bond. Comparison of the effects of fluorinated alcohols as promoting solvents in three reactions is reported. The positive correlation between rate constants and H-bonding donation ability for sulfide oxidation and imino Diels-Alder reaction brings to light the role of this property, while acidity might have a minor influence. In the third reaction, epoxide opening by piperidine, none of these properties can clearly be put forward at this stage.

  14. Intermolecular hydrogen bonding between neutral transition metal hydrides (eta(5)-C5H5)M(CO)3H (M = Mo, W) and bases.

    Science.gov (United States)

    Belkova, Natalia V; Gutsul, Evgenii I; Filippov, Oleg A; Levina, Vladislava A; Valyaev, Dmitriy A; Epstein, Lina M; Lledos, Agusti; Shubina, Elena S

    2006-03-22

    The interaction of CpM(CO)3H (M = Mo, W) hydrides as proton donors with different bases (B = pyridine, (n-Oc)3PO, ((CH3)2N)3PO, H3BNEt3) was studied by variable temperature IR spectroscopy and theoretically by DFT/B3LYP calculations. The data obtained show for the first time the formation of intermolecular hydrogen bonds between the neutral transition metal hydrides and bases in solutions of low polarity. These M-H...B hydrogen bonds are shown to precede the hydrides' deprotonation.

  15. Donor Tag Game

    Science.gov (United States)

    ... Donor Community > Games > Donor Tag Game Donor Tag Game This feature requires version 6 or later of ... of Needles LGBTQ+ Donors Blood Donor Community SleevesUp Games Facebook Avatars and Badges Banners eCards Make a ...

  16. Retroperitoneal less donor nephrectomy

    Directory of Open Access Journals (Sweden)

    A. Van Der Merwe

    2010-10-01

    Full Text Available Donor nephrectomy with laparo-endoscopic single site (LESS surgery has been reported via the transperitoneal approach. We describe a novel technique of retroperitoneal donor nephrectomy using a single surgical incision in the groin, below the abdominal skin crease or "bikini line". The LESS groin incision offers superior cosmesis, while the retroperitoneal approach has distinct advantages, such as the ability to identify the renal vessels early. The new procedure has been performed in two obese patients (body mass index 32 and 33 kg/m2, respectively. The operative times were 4 and 5 hours, warm ischemic times 135 and 315 seconds, blood loss 100 and 250 mL, and hospitalization 3 and 2 days, respectively. Retroperitoneal LESS donor nephrectomy through a single, inconspicuous groin incision is feasible and safe. Further evaluation of the technique in a larger patient cohort is indicated.

  17. The renaissance of hydrides as energy materials

    Science.gov (United States)

    Mohtadi, Rana; Orimo, Shin-Ichi

    2017-02-01

    Materials based on hydrides have been the linchpin in the development of several practical energy storage technologies, of which the most prominent example is nickel-metal hydride batteries. Motivated by the need to meet the future's energy demand, the past decade has witnessed substantial advancements in the research and development of hydrides as media for hydrogen energy storage. More recently, new and rapidly evolving discoveries have positioned hydrides as highly promising materials for future electrochemical energy storage, such as electrolytes for mono- and divalent batteries, and anodes for lithium-ion batteries. In addition, the potential of hydrides in efficient power transmission has been recently revealed. In this Review, we highlight key advances and illustrate how the versatility of hydrides has not only yielded a meaningful past, but also ensures a very bright future.

  18. Rechargeable metal hydrides for spacecraft application

    Science.gov (United States)

    Perry, J. L.

    1988-01-01

    Storing hydrogen on board the Space Station presents both safety and logistics problems. Conventional storage using pressurized bottles requires large masses, pressures, and volumes to handle the hydrogen to be used in experiments in the U.S. Laboratory Module and residual hydrogen generated by the ECLSS. Rechargeable metal hydrides may be competitive with conventional storage techniques. The basic theory of hydride behavior is presented and the engineering properties of LaNi5 are discussed to gain a clear understanding of the potential of metal hydrides for handling spacecraft hydrogen resources. Applications to Space Station and the safety of metal hydrides are presented and compared to conventional hydride storage. This comparison indicates that metal hydrides may be safer and require lower pressures, less volume, and less mass to store an equivalent mass of hydrogen.

  19. Nanostructured, complex hydride systems for hydrogen generation

    Directory of Open Access Journals (Sweden)

    Robert A. Varin

    2015-02-01

    Full Text Available Complex hydride systems for hydrogen (H2 generation for supplying fuel cells are being reviewed. In the first group, the hydride systems that are capable of generating H2 through a mechanical dehydrogenation phenomenon at the ambient temperature are discussed. There are few quite diverse systems in this group such as lithium alanate (LiAlH4 with the following additives: nanoiron (n-Fe, lithium amide (LiNH2 (a hydride/hydride system and manganese chloride MnCl2 (a hydride/halide system. Another hydride/hydride system consists of lithium amide (LiNH2 and magnesium hydride (MgH2, and finally, there is a LiBH4-FeCl2 (hydride/halide system. These hydride systems are capable of releasing from ~4 to 7 wt.% H2 at the ambient temperature during a reasonably short duration of ball milling. The second group encompasses systems that generate H2 at slightly elevated temperature (up to 100 °C. In this group lithium alanate (LiAlH4 ball milled with the nano-Fe and nano-TiN/TiC/ZrC additives is a prominent system that can relatively quickly generate up to 7 wt.% H2 at 100 °C. The other hydride is manganese borohydride (Mn(BH42 obtained by mechano-chemical activation synthesis (MCAS. In a ball milled (2LiBH4 + MnCl2 nanocomposite, Mn(BH42 co-existing with LiCl can desorb ~4.5 wt.% H2 at 100 °C within a reasonable duration of dehydrogenation. Practical application aspects of hydride systems for H2 generation/storage are also briefly discussed.

  20. Use of reversible hydrides for hydrogen storage

    Science.gov (United States)

    Darriet, B.; Pezat, M.; Hagenmuller, P.

    1980-01-01

    The addition of metals or alloys whose hydrides have a high dissociation pressure allows a considerable increase in the hydrogenation rate of magnesium. The influence of temperature and hydrogen pressure on the reaction rate were studied. Results concerning the hydriding of magnesium rich alloys such as Mg2Ca, La2Mg17 and CeMg12 are presented. The hydriding mechanism of La2Mg17 and CeMg12 alloys is given.

  1. Inhibited solid propellant composition containing beryllium hydride

    Science.gov (United States)

    Thompson, W. W. (Inventor)

    1978-01-01

    An object of this invention is to provide a composition of beryllium hydride and carboxy-terminated polybutadiene which is stable. Another object of this invention is to provide a method for inhibiting the reactivity of beryllium hydride toward carboxy-terminated polybutadiene. It was found that a small amount of lecithin inhibits the reaction of beryllium hydride with the acid groups in carboxy terminated polybutadiene.

  2. Anodematerials for Metal Hydride Batteries

    DEFF Research Database (Denmark)

    Jensen, Jens Oluf

    1997-01-01

    by annealing at 700°C for 12 hours. The alloys appeared to be nanocrystalline with an average crystallite size around 10 nm before annealing. Special steel containers was developed for the annealing of the metal powders in inert atmosphere. The use of various annealing temperatures was investigated......This report describes the work on development of hydride forming alloys for use as electrode materials in metal hydride batteries. The work has primarily been concentrated on calcium based alloys derived from the compound CaNi5. This compound has a higher capacity compared with alloys used in today...... was developed. The parameters milling time, milling intensity, number of balls and form of the alloying metals were investigated. Based on this a final alloying technique for the subsequent preparation of electrode materials was established. The technique comprises milling for 4 hours twice possibly followed...

  3. Iron coordination chemistry with new ligands containing triazole and pyridine moieties. Comparison of the coordination ability of the N-donors.

    Science.gov (United States)

    Ségaud, Nathalie; Rebilly, Jean-Noël; Sénéchal-David, Katell; Guillot, Régis; Billon, Laurianne; Baltaze, Jean-Pierre; Farjon, Jonathan; Reinaud, Olivia; Banse, Frédéric

    2013-01-18

    We report the synthesis, characterization, and solution chemistry of a series of new Fe(II) complexes based on the tetradentate ligand N-methyl-N,N'-bis(2-pyridyl-methyl)-1,2-diaminoethane or the pentadentate ones N,N',N'-tris(2-pyridyl-methyl)-1,2-diaminoethane and N,N',N'-tris(2-pyridyl-methyl)-1,3-diaminopropane, modified by propynyl or methoxyphenyltriazolyl groups on the amino functions. Six of these complexes are characterized by X-ray crystallography. In particular, two of them exhibit an hexadentate coordination environment around Fe(II) with two amino, three pyridyl, and one triazolyl groups. UV-visible and cyclic voltammetry experiments of acetonitrile solutions of the complexes allow to deduce accurately the structure of all Fe(II) species in equilibrium. The stability of the complexes could be ranked as follows: [L(5)Fe(II)-py](2+) > [L(5)Fe(II)-Cl](+) > [L(5)Fe(II)-triazolyl](2+) > [L(5)Fe(II)-(NCMe)](2+), where L(5) designates a pentadentate coordination sphere composed of the two amines of ethanediamine and three pyridines. For complexes based on propanediamine, the hierarchy determined is [L(5)Fe(II)-Cl](+) > [L(5)Fe(II)(OTf)](+) > [L(5)Fe(II)-(NCMe)](2+), and no ligand exchange could be evidenced for [L(5)Fe(II)-triazolyl](2+). Reactivity of the [L(5)Fe(II)-triazolyl](2+) complexes with hydrogen peroxide and PhIO is similar to the one of the parent complexes that lack this peculiar group, that is, generation of Fe(III)(OOH) and Fe(IV)(O), respectively. Accordingly, the ability of these complexes at catalyzing the oxidation of small organic molecules by these oxidants follows the tendencies of their previously reported counterparts. Noteworthy is the remarkable cyclooctene epoxidation activity by these complexes in the presence of PhIO.

  4. Predicting formation enthalpies of metal hydrides

    DEFF Research Database (Denmark)

    Andreasen, A.

    2004-01-01

    In order for the hydrogen based society viz. a society in which hydrogen is the primary energy carrier to become realizable an efficient way of storing hydrogen is required. For this purpose metal hydrides are serious candidates. Metal hydrides are formedby chemical reaction between hydrogen...... and metal and for the stable hydrides this is associated with release of heat (#DELTA#H_f ). The more thermodynamically stable the hydride, the larger DHf, and the higher temperature is needed in order to desorphydrogen (reverse reaction) and vice versa. For practical application the temperature needed...

  5. Research on Metal Hydride Compressor System

    Institute of Scientific and Technical Information of China (English)

    1999-01-01

    Ti-Zr series Laves phase hydrogen storage alloys with good hydrogen storage properties, such as large hydrogen capacity, rapid hydriding and dehydriding rate, high compression ratio, gentle plateau, small hysteresis, easily being activated and long cyclic stability etc. for metal hydride compressor have been investigated. In addition, a hydride compressor with special characteristics, namely, advanced filling method, good heat transfer effect and reasonable structural design etc. has also been constructed. A hydride compressor cryogenic system has been assembled coupling the compressor with a J-T micro-throttling refrigeration device and its cooling capacity can reach 0.4 W at 25 K.

  6. Coinage Metal Hydrides: Synthesis, Characterization, and Reactivity.

    Science.gov (United States)

    Jordan, Abraham J; Lalic, Gojko; Sadighi, Joseph P

    2016-08-10

    Hydride complexes of copper, silver, and gold encompass a broad array of structures, and their distinctive reactivity has enabled dramatic recent advances in synthesis and catalysis. This Review summarizes the synthesis, characterization, and key stoichiometric reactions of isolable or observable coinage metal hydrides. It discusses catalytic processes in which coinage metal hydrides are known or probable intermediates, and presents mechanistic studies of selected catalytic reactions. The purpose of this Review is to convey how developments in coinage metal hydride chemistry have led to new organic transformations, and how developments in catalysis have in turn inspired the synthesis of reactive new complexes.

  7. Transition-metal-free coupling reaction of vinylcyclopropanes with aldehydes catalyzed by tin hydride.

    Science.gov (United States)

    Ieki, Ryosuke; Kani, Yuria; Tsunoi, Shinji; Shibata, Ikuya

    2015-04-13

    Donor-acceptor cyclopropanes are useful building blocks for catalytic cycloaddition reactions with a range of electrophiles to give various cyclic products. In contrast, relatively few methods are available for the synthesis of homoallylic alcohols through coupling of vinylcyclopropanes (VCPs) with aldehydes, even with transition-metal catalysts. Here, we report that the hydrostannation of vinylcyclopropanes (VCPs) was effectively promoted by dibutyliodotin hydride (Bu2 SnIH). The resultant allylic tin compounds reacted easily with aldehydes. Furthermore, the use of Bu2 SnIH was effectively catalytic in the presence of hydrosilane as a hydride source, which established a coupling reaction of VCPs with aldehydes for the synthesis of homoallylic alcohols without the use of transition-metal catalysts. In contrast to conventional catalytic reactions of VCPs, the presented method allowed the use of several VCPs in addition to conventional donor-acceptor cyclopropanes.

  8. Crystal structure of gold hydride

    Energy Technology Data Exchange (ETDEWEB)

    Degtyareva, Valentina F., E-mail: degtyar@issp.ac.ru

    2015-10-05

    Highlights: • Volume expansion of metal hydrides is due to the increase in the s-band filling. • AuH structure is similar to that of Hg having one more s electron compared to Au. • Structure stability of both Hg and AuH is governed by the Hume-Rothery rule. - Abstract: A number of transition metal hydrides with close-packed metal sublattices of fcc or hcp structures with hydrogen in octahedral interstitial positions were obtained by the high-pressure-hydrogen technique described by Ponyatovskii et al. (1982). In this paper we consider volume increase of metals by hydrogenation and possible crystal structure of gold hydride in relation with the structure of mercury, the nearest neighbor of Au in the Periodic table. Suggested structure of AuH has a basic tetragonal body-centered cell that is very similar to the mercury structure Hg-t I 2. The reasons of stability for this structure are discussed within the model of Fermi sphere–Brillouin zone interactions.

  9. Fundamental experiments on hydride reorientation in zircaloy

    Science.gov (United States)

    Colas, Kimberly B.

    In the current study, an in-situ X-ray diffraction technique using synchrotron radiation was used to follow directly the kinetics of hydride dissolution and precipitation during thermomechanical cycles. This technique was combined with conventional microscopy (optical, SEM and TEM) to gain an overall understanding of the process of hydride reorientation. Thus this part of the study emphasized the time-dependent nature of the process, studying large volume of hydrides in the material. In addition, a micro-diffraction technique was also used to study the spatial distribution of hydrides near stress concentrations. This part of the study emphasized the spatial variation of hydride characteristics such as strain and morphology. Hydrided samples in the shape of tensile dog-bones were used in the time-dependent part of the study. Compact tension specimens were used during the spatial dependence part of the study. The hydride elastic strains from peak shift and size and strain broadening were studied as a function of time for precipitating hydrides. The hydrides precipitate in a very compressed state of stress, as measured by the shift in lattice spacing. As precipitation proceeds the average shift decreases, indicating average stress is reduced, likely due to plastic deformation and morphology changes. When nucleation ends the hydrides follow the zirconium matrix thermal contraction. When stress is applied below the threshold stress for reorientation, hydrides first nucleate in a very compressed state similar to that of unstressed hydrides. After reducing the average strain similarly to unstressed hydrides, the average hydride strain reaches a constant value during cool-down to room temperature. This could be due to a greater ease of deforming the matrix due to the applied far-field strain which would compensate for the strains due to thermal contraction. Finally when hydrides reorient, the average hydride strains become tensile during the first precipitation regime and

  10. Investigation of Lithium Metal Hydride Materials for Mitigation of Deep Space Radiation

    Science.gov (United States)

    Rojdev, Kristina; Atwell, William

    2016-01-01

    Radiation exposure to crew, electronics, and non-metallic materials is one of many concerns with long-term, deep space travel. Mitigating this exposure is approached via a multi-faceted methodology focusing on multi-functional materials, vehicle configuration, and operational or mission constraints. In this set of research, we are focusing on new multi-functional materials that may have advantages over traditional shielding materials, such as polyethylene. Metal hydride materials are of particular interest for deep space radiation shielding due to their ability to store hydrogen, a low-Z material known to be an excellent radiation mitigator and a potential fuel source. We have previously investigated 41 different metal hydrides for their radiation mitigation potential. Of these metal hydrides, we found a set of lithium hydrides to be of particular interest due to their excellent shielding of galactic cosmic radiation. Given these results, we will continue our investigation of lithium hydrides by expanding our data set to include dose equivalent and to further understand why these materials outperformed polyethylene in a heavy ion environment. For this study, we used HZETRN 2010, a one-dimensional transport code developed by NASA Langley Research Center, to simulate radiation transport through the lithium hydrides. We focused on the 1977 solar minimum Galactic Cosmic Radiation environment and thicknesses of 1, 5, 10, 20, 30, 50, and 100 g/cm2 to stay consistent with our previous studies. The details of this work and the subsequent results will be discussed in this paper.

  11. Metal Hydrides for Rechargeable Batteries

    Energy Technology Data Exchange (ETDEWEB)

    Valoeen, Lars Ole

    2000-03-01

    Rechargeable battery systems are paramount in the power supply of modern electronic and electromechanical equipment. For the time being, the most promising secondary battery systems for the future are the lithium-ion and the nickel metal hydride (NiMH) batteries. In this thesis, metal hydrides and their properties are described with the aim of characterizing and improving those. The thesis has a special focus on the AB{sub 5} type hydrogen storage alloys, where A is a rare earth metal like lanthanum, or more commonly misch metal, which is a mixture of rare earth metals, mainly lanthanum, cerium, neodymium and praseodymium. B is a transition metal, mainly nickel, commonly with additions of aluminium, cobalt, and manganese. The misch metal composition was found to be very important for the geometry of the unit cell in AB{sub 5} type alloys, and consequently the equilibrium pressure of hydrogen in these types of alloys. The A site substitution of lanthanum by misch metal did not decrease the surface catalytic properties of AB{sub 5} type alloys. B-site substitution of nickel with other transition elements, however, substantially reduced the catalytic activity of the alloy. If the internal pressure within the electrochemical test cell was increased using inert argon gas, a considerable increase in the high rate charge/discharge performance of LaNi{sub 5} was observed. An increased internal pressure would enable the utilisation of alloys with a high hydrogen equivalent pressure in batteries. Such alloys often have favourable kinetics and high hydrogen diffusion rates and thus have a potential for improving the high current discharge rates in metal hydride batteries. The kinetic properties of metal hydride electrodes were found to improve throughout their lifetime. The activation properties were found highly dependent on the charge/discharge current. Fewer charge/discharge cycles were needed to activate the electrodes if a small current was used instead of a higher

  12. Metal Hydrides for Rechargeable Batteries

    Energy Technology Data Exchange (ETDEWEB)

    Valoeen, Lars Ole

    2000-03-01

    Rechargeable battery systems are paramount in the power supply of modern electronic and electromechanical equipment. For the time being, the most promising secondary battery systems for the future are the lithium-ion and the nickel metal hydride (NiMH) batteries. In this thesis, metal hydrides and their properties are described with the aim of characterizing and improving those. The thesis has a special focus on the AB{sub 5} type hydrogen storage alloys, where A is a rare earth metal like lanthanum, or more commonly misch metal, which is a mixture of rare earth metals, mainly lanthanum, cerium, neodymium and praseodymium. B is a transition metal, mainly nickel, commonly with additions of aluminium, cobalt, and manganese. The misch metal composition was found to be very important for the geometry of the unit cell in AB{sub 5} type alloys, and consequently the equilibrium pressure of hydrogen in these types of alloys. The A site substitution of lanthanum by misch metal did not decrease the surface catalytic properties of AB{sub 5} type alloys. B-site substitution of nickel with other transition elements, however, substantially reduced the catalytic activity of the alloy. If the internal pressure within the electrochemical test cell was increased using inert argon gas, a considerable increase in the high rate charge/discharge performance of LaNi{sub 5} was observed. An increased internal pressure would enable the utilisation of alloys with a high hydrogen equivalent pressure in batteries. Such alloys often have favourable kinetics and high hydrogen diffusion rates and thus have a potential for improving the high current discharge rates in metal hydride batteries. The kinetic properties of metal hydride electrodes were found to improve throughout their lifetime. The activation properties were found highly dependent on the charge/discharge current. Fewer charge/discharge cycles were needed to activate the electrodes if a small current was used instead of a higher

  13. Kinetics of hydride front in Zircaloy-2 and H release from a fractional hydrided surface

    Energy Technology Data Exchange (ETDEWEB)

    Diaz, M.; Gonzalez-Gonzalez, A.; Moya, J. S.; Remartinez, B.; Perez, S.; Sacedon, J. L. [Instituto de Ciencia de Materiales de Madrid (CSIC), Sor Juana Ines de la Cruz 3, Cantoblanco, 28049 Madrid (Spain); Iberdrola, Tomas Redondo 3, 28033 Madrid (Spain); Instituto de Ciencia de Materiales de Madrid (CSIC), Sor Juana Ines de la Cruz 3, Cantoblanco, 28049 Madrid (Spain)

    2009-07-15

    The authors study the hydriding process on commercial nuclear fuel claddings from their inner surface using an ultrahigh vacuum method. The method allows determining the incubation and failure times of the fuel claddings, as well as the dissipated energy and the partial pressure of the desorbed H{sub 2} from the outer surface of fuel claddings during the hydriding process. The correlation between the hydriding dissipated energy and the amount of zirconium hydride (formed at different stages of the hydriding process) leads to a near t{sup 1/2} potential law corresponding to the time scaling of the reaction for the majority of the tested samples. The calibrated relation between energy and hydride thickness allows one to calculate the enthalpy of the {delta}-ZrH{sub 1.5} phase. The measured H{sub 2} desorption from the external surface is in agreement with a proposed kinetic desorption model from the hydrides precipitated at the surface.

  14. Bio-inspired transition metal-organic hydride conjugates for catalysis of transfer hydrogenation: experiment and theory.

    Science.gov (United States)

    McSkimming, Alex; Chan, Bun; Bhadbhade, Mohan M; Ball, Graham E; Colbran, Stephen B

    2015-02-09

    Taking inspiration from yeast alcohol dehydrogenase (yADH), a benzimidazolium (BI(+) ) organic hydride-acceptor domain has been coupled with a 1,10-phenanthroline (phen) metal-binding domain to afford a novel multifunctional ligand (L(BI+) ) with hydride-carrier capacity (L(BI+) +H(-) ⇌L(BI) H). Complexes of the type [Cp*M(L(BI) )Cl][PF6 ]2 (M=Rh, Ir) have been made and fully characterised by cyclic voltammetry, UV/Vis spectroelectrochemistry, and, for the Ir(III) congener, X-ray crystallography. [Cp*Rh(L(BI) )Cl][PF6 ]2 catalyses the transfer hydrogenation of imines by formate ion in very goods yield under conditions where the corresponding [Cp*Ir(L(BI) )Cl][PF6 ] and [Cp*M(phen)Cl][PF6 ] (M=Rh, Ir) complexes are almost inert as catalysts. Possible alternatives for the catalysis pathway are canvassed, and the free energies of intermediates and transition states determined by DFT calculations. The DFT study supports a mechanism involving formate-driven RhH formation (90 kJ mol(-1) free-energy barrier), transfer of hydride between the Rh and BI(+) centres to generate a tethered benzimidazoline (BIH) hydride donor, binding of imine substrate at Rh, back-transfer of hydride from the BIH organic hydride donor to the Rh-activated imine substrate (89 kJ mol(-1) barrier), and exergonic protonation of the metal-bound amide by formic acid with release of amine product to close the catalytic cycle. Parallels with the mechanism of biological hydride transfer in yADH are discussed.

  15. Protonation of transition-metal hydrides: a not so simple process.

    Science.gov (United States)

    Besora, Maria; Lledós, Agustí; Maseras, Feliu

    2009-04-01

    The protonation of a transition-metal hydride is a formally simple process between a proton donor and a proton acceptor with several potential basic centres. The detailed mechanism is however quite subtle, with multistep reactions and involvement of different intermediates. The process is furthermore very sensitive to the nature of both the proton donor and the transition-metal complex, as well as to the solvent and to the presence and identity of eventual counteranions. This tutorial review summarizes the recent progress in the understanding of the reaction, obtained through the joint application of a number of computational and experimental techniques.

  16. Ionic conduction of lithium hydride single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Pilipenko, G.I.; Oparin, D.V.; Zhuravlev, N.A.; Gavrilov, F.F.

    1987-09-01

    Using the electrical-conductivity- and NMR-measurement- methods, the ionic-conduction mechanism is established in stoichiometric lithium hydride single crystals. The activation energies of migration of anion- and cation-vacancies and the formation of Schottky-pair defects are determined. They assume that the mechanisms of self-diffusion and conductivity are different in lithium hydride.

  17. Submillimeter Spectroscopy of Hydride Molecules

    Science.gov (United States)

    Phillips, T. G.

    1998-05-01

    Simple hydride molecules are of great importance in astrophysics and astrochemistry. Physically they dominate the cooling of dense, warm phases of the ISM, such as the cores and disks of YSOs. Chemically they are often stable end points of chemical reactions, or may represent important intermediate stages of the reaction chains, which can be used to test the validity of the process. Through the efforts of astronomers, physicists, chemists, and laboratory spectroscopists we have an approximate knowledge of the abundance of some of the important species, but a great deal of new effort will be required to achieve the comprehensive and accurate data set needed to determine the energy balance and firmly establish the chemical pathways. Due to the low moment of inertia, the hydrides rotate rapidly and so have their fundamental spectral lines in the submillimeter. Depending on the cloud geometry and temperature profile they may be observed in emission or absorption. Species such as HCl, HF, OH, CH, CH(+) , NH_2, NH_3, H_2O, H_2S, H_3O(+) and even H_3(+) have been detected, but this is just a fraction of the available set. Also, most deduced abundances are not nearly sufficiently well known to draw definitive conclusions about the chemical processes. For example, the most important coolant for many regions, H_2O, has a possible range of deduced abundance of a factor of 1000. The very low submillimeter opacity at the South Pole site will be a significant factor in providing a new capabilty for interstellar hydride spectroscopy. The new species and lines made available in this way will be discussed.

  18. Hydrogen-storing hydride complexes

    Science.gov (United States)

    Srinivasan, Sesha S [Tampa, FL; Niemann, Michael U [Venice, FL; Goswami, D Yogi [Tampa, FL; Stefanakos, Elias K [Tampa, FL

    2012-04-10

    A ternary hydrogen storage system having a constant stoichiometric molar ratio of LiNH.sub.2:MgH.sub.2:LiBH.sub.4 of 2:1:1. It was found that the incorporation of MgH.sub.2 particles of approximately 10 nm to 20 nm exhibit a lower initial hydrogen release temperature of 150.degree. C. Furthermore, it is observed that the particle size of LiBNH quaternary hydride has a significant effect on the hydrogen sorption concentration with an optimum size of 28 nm. The as-synthesized hydrides exhibit two main hydrogen release temperatures, one around 160.degree. C. and the other around 300.degree. C., with the main hydrogen release temperature reduced from 310.degree. C. to 270.degree. C., while hydrogen is first reversibly released at temperatures as low as 150.degree. C. with a total hydrogen capacity of 6 wt. % to 8 wt. %. Detailed thermal, capacity, structural and microstructural properties have been demonstrated and correlated with the activation energies of these materials.

  19. Hydride heat pump with heat regenerator

    Science.gov (United States)

    Jones, Jack A. (Inventor)

    1991-01-01

    A regenerative hydride heat pump process and system is provided which can regenerate a high percentage of the sensible heat of the system. A series of at least four canisters containing a lower temperature performing hydride and a series of at least four canisters containing a higher temperature performing hydride is provided. Each canister contains a heat conductive passageway through which a heat transfer fluid is circulated so that sensible heat is regenerated. The process and system are useful for air conditioning rooms, providing room heat in the winter or for hot water heating throughout the year, and, in general, for pumping heat from a lower temperature to a higher temperature.

  20. Hydrogen storage in complex metal hydrides

    National Research Council Canada - National Science Library

    Bogdanovic, Borislav; Felderhoff, Michael; Streukens, Guido

    2009-01-01

    ...) are solid-state hydrogen-storage materials with high hydrogen capacities. They can be used in combination with fuel cells as a hydrogen source thus enabling longer operation times compared with classical metal hydrides...

  1. Method of forming metal hydride films

    Science.gov (United States)

    Steinberg, R.; Alger, D. L.; Cooper, D. W. (Inventor)

    1977-01-01

    The substrate to be coated (which may be of metal, glass or the like) is cleaned, both chemically and by off-sputtering in a vacuum chamber. In an ultra-high vacuum system, vapor deposition by a sublimator or vaporizer coats a cooled shroud disposed around the substrate with a thin film of hydride forming metal which getters any contaminant gas molecules. A shutter is then opened to allow hydride forming metal to be deposited as a film or coating on the substrate. After the hydride forming metal coating is formed, deuterium or other hydrogen isotopes are bled into the vacuum system and diffused into the metal film or coating to form a hydride of metal film. Higher substrate temperatures and pressures may be used if various parameters are appropriately adjusted.

  2. Sealed aerospace metal-hydride batteries

    Science.gov (United States)

    Coates, Dwaine

    1992-01-01

    Nickel metal hydride and silver metal hydride batteries are being developed for aerospace applications. There is a growing market for smaller, lower cost satellites which require higher energy density power sources than aerospace nickel-cadmium at a lower cost than space nickel-hydrogen. These include small LEO satellites, tactical military satellites and satellite constellation programs such as Iridium and Brilliant Pebbles. Small satellites typically do not have the spacecraft volume or the budget required for nickel-hydrogen batteries. NiCd's do not have adequate energy density as well as other problems such as overcharge capability and memory effort. Metal hydride batteries provide the ideal solution for these applications. Metal hydride batteries offer a number of advantages over other aerospace battery systems.

  3. Probing the cerium/cerium hydride interface using nanoindentation

    Energy Technology Data Exchange (ETDEWEB)

    Brierley, Martin, E-mail: martin.brierley@awe.co.uk [Atomic Weapons Establishment, Aldermaston, Berkshire RG7 4PR (United Kingdom); University of Manchester, Manchester M13 9PL (United Kingdom); Knowles, John, E-mail: john.knowles@awe.co.uk [Atomic Weapons Establishment, Aldermaston, Berkshire RG7 4PR (United Kingdom)

    2015-10-05

    Highlights: • A disparity exists between the minimum energy and actual shape of a cerium hydride. • Cerium hydride is found to be harder than cerium metal by a ratio of 1.7:1. • A zone of material under compressive stress was identified surrounding the hydride. • No distribution of hardness was apparent within the hydride. - Abstract: A cerium hydride site was sectioned and the mechanical properties of the exposed phases (cerium metal, cerium hydride, oxidised cerium hydride) were measured using nanoindentation. An interfacial region under compressive stress was observed in the cerium metal surrounding a surface hydride that formed as a consequence of strain energy generated by the volume expansion associated with precipitation of the hydride phase.

  4. Destabilization of magnesium hydride through interface engineering

    OpenAIRE

    Mooij, L.P.A.

    2013-01-01

    The aim of this thesis is to study the thermodynamics of hydrogenation of nanoconfined magnesium within a thin film multilayer model system. Magnesium hydride is a potential material for hydrogen storage, which is a key component in a renewable energy system based on hydrogen. In bulk form, magnesium hydride is very stable, which means that hydrogen is released only at elevated temperature. Furthermore, the kinetics of hydrogen sorption is slow, which further hampers the practical use of this...

  5. Insight into the kinetics and thermodynamics of the hydride transfer reactions between quinones and lumiflavin: a density functional theory study.

    Science.gov (United States)

    Reinhardt, Clorice R; Jaglinski, Tanner C; Kastenschmidt, Ashly M; Song, Eun H; Gross, Adam K; Krause, Alyssa J; Gollmar, Jonathan M; Meise, Kristin J; Stenerson, Zachary S; Weibel, Tyler J; Dison, Andrew; Finnegan, Mackenzie R; Griesi, Daniel S; Heltne, Michael D; Hughes, Tom G; Hunt, Connor D; Jansen, Kayla A; Xiong, Adam H; Hati, Sanchita; Bhattacharyya, Sudeep

    2016-09-01

    The kinetics and equilibrium of the hydride transfer reaction between lumiflavin and a number of substituted quinones was studied using density functional theory. The impact of electron withdrawing/donating substituents on the redox potentials of quinones was studied. In addition, the role of these substituents on the kinetics of the hydride transfer reaction with lumiflavin was investigated in detail under the transition state (TS) theory assumption. The hydride transfer reactions were found to be more favorable for an electron-withdrawing substituent. The activation barrier exhibited a quadratic relationship with the driving force of these reactions as derived under the formalism of modified Marcus theory. The present study found a significant extent of electron delocalization in the TS that is stabilized by enhanced electrostatic, polarization, and exchange interactions. Analysis of geometry, bond-orders, and energetics revealed a predominant parallel (Leffler-Hammond) effect on the TS. Closer scrutiny reveals that electron-withdrawing substituents, although located on the acceptor ring, reduce the N-H bond order of the donor fragment in the precursor complex. Carried out in the gas-phase, this is the first ever report of a theoretical study of flavin's hydride transfer reactions with quinones, providing an unfiltered view of the electronic effect on the nuclear reorganization of donor-acceptor complexes.

  6. A dehydrogenation mechanism of metal hydrides based on interactions between Hdelta+ and H-.

    Science.gov (United States)

    Lu, Jun; Fang, Zhigang Zak; Sohn, Hong Yong

    2006-10-16

    This paper describes a reaction mechanism that explains the dehydrogenation reactions of alkali and alkaline-earth metal hydrides. These light metal hydrides, e.g., lithium-based compounds such as LiH, LiAlH4, and LiNH2, are the focus of intense research recently as the most promising candidate materials for on-board hydrogen storage applications. Although several interesting and promising reactions and materials have been reported, most of these reported reactions and materials have been discovered by empirical means because of a general lack of understanding of any underlying principles. This paper describes an understanding of the dehydrogenation reactions on the basis of the interaction between negatively charged hydrogen (H-, electron donor) and positively charged hydrogen (Hdelta+, electron acceptor) and experimental evidence that captures and explains many observations that have been reported to date. This reaction mechanism can be used as a guidance for screening new material systems for hydrogen storage.

  7. gamma-Zr-Hydride Precipitate in Irradiated Massive delta- Zr-Hydride

    DEFF Research Database (Denmark)

    Warren, M. R.; Bhattacharya, D. K.

    1975-01-01

    During examination of A Zircaloy-2-clad fuel pin, which had been part of a test fuel assembly in a boiling water reactor, several regions of severe internal hydriding were noticed in the upper-plenum end of the pin. Examination of similar fuel pins has shown that hydride of this type is caused...

  8. The Effect of Hydrogen and Hydrides on the Integrity of Zirconium Alloy Components Delayed Hydride Cracking

    CERN Document Server

    Puls, Manfred P

    2012-01-01

    By drawing together the current theoretical and experimental understanding of the phenomena of delayed hydride cracking (DHC) in zirconium alloys, The Effect of Hydrogen and Hydrides on the Integrity of Zirconium Alloy Components: Delayed Hydride Cracking provides a detailed explanation focusing on the properties of hydrogen and hydrides in these alloys. Whilst the focus lies on zirconium alloys, the combination of both the empirical and mechanistic approaches creates a solid understanding that can also be applied to other hydride forming metals.   This up-to-date reference focuses on documented research surrounding DHC, including current methodologies for design and assessment of the results of periodic in-service inspections of pressure tubes in nuclear reactors. Emphasis is placed on showing that our understanding of DHC is supported by progress across a broad range of fields. These include hysteresis associated with first-order phase transformations; phase relationships in coherent crystalline metallic...

  9. Preliminary development of flaw evaluation procedures for delayed hydride cracking initiation under hydride non-ratcheting conditions

    Energy Technology Data Exchange (ETDEWEB)

    Xu, S.; Cui, J.; Kawa, D.; Shek, G.K.; Scarth, D.A. [Kinectrics Inc., Toronto, Ontario (Canada)

    2006-07-01

    The flaw evaluation procedure for Delayed Hydride Cracking (DHC) initiation currently provided in the CSA Standard N285.8 was developed for hydride ratcheting conditions, in which flaw-tip hydrides do not completely dissolve at peak temperature. Test results have shown that hydrided regions formed under non-ratcheting conditions, in which flaw-tip hydrides completely dissolve at peak temperature, have significantly higher resistance to cracking than those formed under ratcheting conditions. This paper presents some preliminary work on the development of a procedure for the evaluation of DHC initiation for flaws under hydride non-ratcheting conditions. (author)

  10. Angle-dependent hard X-ray photoemission study of Nb hydride formation in high-pressure supercritical water

    Energy Technology Data Exchange (ETDEWEB)

    Soda, Kazuo, E-mail: j45880a@cc.nagoya-u.ac.jp [Department of Quantum Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603 (Japan); Kondo, Hiroki; Yamaguchi, Kanta; Kato, Masahiko [Department of Quantum Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603 (Japan); Shiraki, Tatsuhito; Niwa, Ken; Kusaba, Keiji; Hasegawa, Masashi [Department of Crystalline Materials Science, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603 (Japan); Xeniya, Kozina; Ikenaga, Eiji [Japan Synchrotron Radiation Research Institute, 1-1-1, Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5198 (Japan)

    2015-09-15

    Highlights: • Nb hydrides in 10-GPa supercritical water are studied by photoelectron spectroscopy. • The hydride components of the Nb 3d core-level spectra are increased with the depth. • The bulk valence-band spectrum shows a split band due to the Nb–H bond formation. • The hydrides are formed in the bulk and their surfaces are covered with Nb oxides. - Abstract: Nb hydrides formation in 10-GPa supercritical water has been investigated by angle-dependent micro-beam hard X-ray photoemission spectroscopy. In the Nb 3d core-level spectra, Nb hydride components are found in the slightly high binding energy side of the metallic components, and the oxide ones are observed even though little oxides are recognized in X-ray diffraction patterns. Obtained emission-angle dependence of the Nb 3d core-level spectra of Nb hydride specimens shows that the Nb hydride components increase with the emission angle decreased i.e. the sampling depth increased, while the oxide ones decrease. The bulk valence-band spectrum is obtained by decomposing the measured valence-band spectra into a bulk and surface components with use of the emission-angle dependence of the core-level and valence-band spectra; it consists of two bands. This implies the Nb–H chemical bond formation and Nb in an oxidation state, consistent with reported band structure calculations and the observed core-level chemical shifts. Thus it is confirmed by valence-band and core-level photoelectron spectroscopy that the Nb hydrides are formed inside the specimen, irrespective to the well-known high oxidation ability of supercritical water.

  11. A thermodynamic and kinetic study of hydride transfer of a caffeine derivative.

    Science.gov (United States)

    Han, Xiaozhen; Hao, Weifang; Zhu, Xiao-Qing; Parker, Vernon D

    2012-08-03

    One representative type of heterocyclic compound that can release a hydride ion is 7,8-dihydro-9-methylcaffeine (CAFH). The one-electron oxidation potential of CAFH [-0.294 (V vs Fc(+/0))] and the one-electron reduction potential of CAF(+) [-2.120 (V vs Fc(+/0))] were obtained using two different methods, CV and OSWV. Applying titration calorimetry data in thermodynamic cycles, the enthalpies of CAFH releasing a hydride ion [57.6 kcal/mol] and releasing a hydrogen atom [80.3 kcal/mol] and of its radical cation CAFH(•+) releasing a proton [33.0 kcal/mol] and releasing a hydrogen atom [38.4 kcal/mol] have been determined. Several conclusions can be drawn from the thermodynamic results: (1) CAFH is a very good single-electron donor whose single-electron oxidation potential is much less positive than that of NAD(P)H model compound BNAH [E(ox) = 0.219 V vs Fc(+/0)]. (2) The single-electron reduction potential of CAF(+) is much more negative than that of BNA(+) [E(red) = -1.419 V], which means that CAF(+) is not a good electron acceptor. Furthermore, CAFH is a very good hydride donor compared to BNAH. The results of non-steady-state kinetic studies, for the reaction of CAFH and AcrH(+)ClO(4)(-), show that the ratio of t(0.50)/t(0.05) is larger than 13.5 and the ratio of k(init)/k(pfo) is larger than 1. The pseudo-first-order rate constants obtained at different reaction stages decrease with the time, and the kinetic isotope was observed to be small at a short reaction time and slowly increases to 3.72 with the progress of the reaction. These kinetic results clearly display that the hydride transfer of CAFH to AcrH(+) in acetonitrile is not a one-step mechanism, while the thermodynamic results show that CAFH is a very good electron donor. The combination of the kinetic results with the thermodynamics analysis shows that the hydride transfer of the caffeine derivative CAFH takes place by a two-step reversible mechanism and there is an intermediate in the reaction.

  12. Thin-film metal hydrides.

    Science.gov (United States)

    Remhof, Arndt; Borgschulte, Andreas

    2008-12-01

    The goal of the medieval alchemist, the chemical transformation of common metals into nobel metals, will forever be a dream. However, key characteristics of metals, such as their electronic band structure and, consequently, their electric, magnetic and optical properties, can be tailored by controlled hydrogen doping. Due to their morphology and well-defined geometry with flat, coplanar surfaces/interfaces, novel phenomena may be observed in thin films. Prominent examples are the eye-catching hydrogen switchable mirror effect, the visualization of solid-state diffusion and the formation of complex surface morphologies. Thin films do not suffer as much from embrittlement and/or decrepitation as bulk materials, allowing the study of cyclic absorption and desorption. Therefore, thin-metal hydride films are used as model systems to study metal-insulator transitions, for high throughput combinatorial research or they may be used as indicator layers to study hydrogen diffusion. They can be found in technological applications as hydrogen sensors, in electrochromic and thermochromic devices. In this review, we discuss the effect of hydrogen loading of thin niobium and yttrium films as archetypical examples of a transition metal and a rare earth metal, respectively. Our focus thereby lies on the hydrogen induced changes of the electronic structure and the morphology of the thin films, their optical properties, the visualization and the control of hydrogen diffusion and on the study of surface phenomena and catalysis.

  13. High H- ionic conductivity in barium hydride

    Science.gov (United States)

    Verbraeken, Maarten C.; Cheung, Chaksum; Suard, Emmanuelle; Irvine, John T. S.

    2015-01-01

    With hydrogen being seen as a key renewable energy vector, the search for materials exhibiting fast hydrogen transport becomes ever more important. Not only do hydrogen storage materials require high mobility of hydrogen in the solid state, but the efficiency of electrochemical devices is also largely determined by fast ionic transport. Although the heavy alkaline-earth hydrides are of limited interest for their hydrogen storage potential, owing to low gravimetric densities, their ionic nature may prove useful in new electrochemical applications, especially as an ionically conducting electrolyte material. Here we show that barium hydride shows fast pure ionic transport of hydride ions (H-) in the high-temperature, high-symmetry phase. Although some conductivity studies have been reported on related materials previously, the nature of the charge carriers has not been determined. BaH2 gives rise to hydride ion conductivity of 0.2 S cm-1 at 630 °C. This is an order of magnitude larger than that of state-of-the-art proton-conducting perovskites or oxide ion conductors at this temperature. These results suggest that the alkaline-earth hydrides form an important new family of materials, with potential use in a number of applications, such as separation membranes, electrochemical reactors and so on.

  14. Comprehensive thermochemistry of W-H bonding in the metal hydrides CpW(CO)2(IMes)H, [CpW(CO)2(IMes)H](•+), and [CpW(CO)2(IMes)(H)2]+. Influence of an N-heterocyclic carbene ligand on metal hydride bond energies.

    Science.gov (United States)

    Roberts, John A S; Appel, Aaron M; DuBois, Daniel L; Bullock, R Morris

    2011-09-21

    The free energies interconnecting nine tungsten complexes have been determined from chemical equilibria and electrochemical data in MeCN solution (T = 22 °C). Homolytic W-H bond dissociation free energies are 59.3(3) kcal mol(-1) for CpW(CO)(2)(IMes)H and 59(1) kcal mol(-1) for the dihydride [CpW(CO)(2)(IMes)(H)(2)](+) (where IMes = 1,3-bis(2,4,6-trimethylphenyl)imidazol-2-ylidene), indicating that the bonds are the same within experimental uncertainty for the neutral hydride and the cationic dihydride. For the radical cation, [CpW(CO)(2)(IMes)H](•+), W-H bond homolysis to generate the 16-electron cation [CpW(CO)(2)(IMes)](+) is followed by MeCN uptake, with free energies for these steps being 51(1) and -16.9(5) kcal mol(-1), respectively. Based on these two steps, the free energy change for the net conversion of [CpW(CO)(2)(IMes)H](•+) to [CpW(CO)(2)(IMes)(MeCN)](+) in MeCN is 34(1) kcal mol(-1), indicating a much lower bond strength for the 17-electron radical cation of the metal hydride compared to the 18-electron hydride or dihydride. The pK(a) of CpW(CO)(2)(IMes)H in MeCN was determined to be 31.9(1), significantly higher than the 26.6 reported for the related phosphine complex, CpW(CO)(2)(PMe(3))H. This difference is attributed to the electron donor strength of IMes greatly exceeding that of PMe(3). The pK(a) values for [CpW(CO)(2)(IMes)H](•+) and [CpW(CO)(2)(IMes)(H)(2)](+) were determined to be 6.3(5) and 6.3(8), much closer to the pK(a) values reported for the PMe(3) analogues. The free energy of hydride abstraction from CpW(CO)(2)(IMes)H is 74(1) kcal mol(-1), and the resultant [CpW(CO)(2)(IMes)](+) cation is significantly stabilized by binding MeCN to form [CpW(CO)(2)(IMes)(MeCN)](+), giving an effective hydride donor ability of 57(1) kcal mol(-1) in MeCN. Electrochemical oxidation of [CpW(CO)(2)(IMes)](-) is fully reversible at all observed scan rates in cyclic voltammetry experiments (E° = -1.65 V vs Cp(2)Fe(+/0) in MeCN), whereas CpW(CO)(2

  15. Lattice contraction in photochromic yttrium hydride

    Energy Technology Data Exchange (ETDEWEB)

    Maehlen, Jan Petter, E-mail: jepe@ife.no; Mongstad, Trygve T.; You, Chang Chuan; Karazhanov, Smagul

    2013-12-15

    Highlights: •Photochromic yttrium hydride films (YH:O) were prepared by reactive sputtering. •Black and transparent YH:O films were studied by time-resolved synchrotron XRD. •Both YH:O samples showed a lattice contraction upon illumination. •Also exposure to the X-ray beam itself results in a lattice contraction. -- Abstract: A strong photochromic effect was recently discovered in thin films of oxygen-containing yttrium hydride taking place at room temperature and reacting to ultraviolet and visible light. In this paper, we report on a lattice contraction upon illumination observed for thin-film samples of photochromic yttrium hydride, recorded by time-resolved X-ray diffraction using synchrotron radiation. The time dependence of the lattice contraction is consistent with the observed photochromic response of the samples.

  16. Atom probe analysis of titanium hydride precipitates.

    Science.gov (United States)

    Takahashi, J; Kawakami, K; Otsuka, H; Fujii, H

    2009-04-01

    It is expected that the three-dimensional atom probe (3DAP) will be used as a tool to visualize the atomic scale of hydrogen atoms in steel is expected, due to its high spatial resolution and very low detection limit. In this paper, the first 3DAP analysis of titanium hydride precipitates in metal titanium is reported in terms of the quantitative detection of hydrogen. FIB fabrication techniques using the lift-out method have enabled the production of needle tips of hydride precipitates, of several tens of microns in size, within a titanium matrix. The hydrogen concentration estimated from 3DAP analysis was slightly smaller than that of the hydride phase predicted from the phase diagram. We discuss the origin of the difference between the experimental and predicted values and the performance of 3DAP for the quantitative detection of hydrogen.

  17. Hydrogen storage in complex metal hydrides

    Directory of Open Access Journals (Sweden)

    BORISLAV BOGDANOVIĆ

    2009-02-01

    Full Text Available Complex metal hydrides such as sodium aluminohydride (NaAlH4 and sodium borohydride (NaBH4 are solid-state hydrogen-storage materials with high hydrogen capacities. They can be used in combination with fuel cells as a hydrogen source thus enabling longer operation times compared with classical metal hydrides. The most important point for a wide application of these materials is the reversibility under moderate technical conditions. At present, only NaAlH4 has favourable thermodynamic properties and can be employed as a thermally reversible means of hydrogen storage. By contrast, NaBH4 is a typical non- -reversible complex metal hydride; it reacts with water to produce hydrogen.

  18. Evidence of stress-induced hydrogen ordering in zirconium hydrides

    Energy Technology Data Exchange (ETDEWEB)

    Steuwer, A. [FaME38 at the ESRF-ILL, 6 rue J Horowitz, 38042 Grenoble (France); ESS Scandinavia, University of Lund, Stora Algatan 4, 22350 Lund (Sweden)], E-mail: steuwer@ill.fr; Santisteban, J.R. [Centro Atomico Bariloche, CNEA, San Carlos de Bariloche (Argentina); Preuss, M. [University of Manchester, Grosvenor Street, Manchester M1 7HS (United Kingdom); Peel, M.J.; Buslaps, T. [European Synchrotron Radiation Facility, 6 rue J Horowitz, 38042 Grenoble (France); Harada, M. [R and D Section, Chofu-Kita Plant, Kobe Special Tube Co, Shimonoseki 752-0953 (Japan)

    2009-01-15

    The formation of hydrides in zirconium alloys significantly affects their mechanical properties and is considered to play a critical role in their failure mechanisms, yet relatively little is known about the micromechanical behavior of hydrides in the bulk. This paper presents the result of in situ uniaxial mechanical tensioning experiments on hydrided zircaloy-2 and zircaloy-4 specimens using energy-dispersive synchrotron X-ray diffraction, which suggests that a stress-induced transformation of the {delta}-hydride to {gamma}-hydride via ordering of the hydrogen atoms occurs, akin to a Snoek-type relaxation. Subsequent annealing was found to reverse the ordering phenomenon.

  19. Draft of M2 Report on Integration of the Hybrid Hydride Model into INL's MBM Framework for Review

    Energy Technology Data Exchange (ETDEWEB)

    Tikare, Veena; Weck, Philippe F.; Schultz, Peter Andrew; Clark, Blythe; Glazoff, Michael V.; Homer, Eric R.

    2014-07-01

    This report documents the development, demonstration and validation of a mesoscale, microstructural evolution model for simulation of zirconium hydride {delta}-ZrH{sub 1.5} precipitation in the cladding of used nuclear fuels that may occur during long-term dry storage. While the Zr-based claddings are manufactured free of any hydrogen, they absorb hydrogen during service, in the reactor by a process commonly termed ‘hydrogen pick-up’. The precipitation and growth of zirconium hydrides during dry storage is one of the most likely fuel rod integrity failure mechanisms either by embrittlement or delayed hydride cracking of the cladding. While the phenomenon is well documented and identified as a potential key failure mechanism during long-term dry storage (NUREG/CR-7116), the ability to actually predict the formation of hydrides is poor. The model being documented in this work is a computational capability for the prediction of hydride formation in different claddings of used nuclear fuels. This work supports the Used Fuel Disposition Research and Development Campaign in assessing the structural engineering performance of the cladding during and after long-term dry storage. This document demonstrates a basic hydride precipitation model that is built on a recently developed hybrid Potts-phase field model that combines elements of Potts-Monte Carlo and the phase-field models. The model capabilities are demonstrated along with the incorporation of the starting microstructure, thermodynamics of the Zr-H system and the hydride formation mechanism.

  20. Hydride formation on deformation twin in zirconium alloy

    Science.gov (United States)

    Kim, Ju-Seong; Kim, Sung-Dae; Yoon, Jonghun

    2016-12-01

    Hydrides deteriorate the mechanical properties of zirconium (Zr) alloys used in nuclear reactors. Intergranular hydrides that form along grain boundaries have been extensively studied due to their detrimental effects on cracking. However, it has been little concerns on formation of Zr hydrides correlated with deformation twins which is distinctive heterogeneous nucleation site in hexagonal close-packed metals. In this paper, the heterogeneous precipitation of Zr hydrides at the twin boundaries was visualized using transmission electron microscopy. It demonstrates that intragranular hydrides in the twinned region precipitates on the rotated habit plane by the twinning and intergranular hydrides precipitate along the coherent low energy twin boundaries independent of the conventional habit planes. Interestingly, dislocations around the twin boundaries play a substantial role in the nucleation of Zr hydrides by reducing the misfit strain energy.

  1. Synthesis and Characterization of Metal Hydride/Carbon Aerogel Composites for Hydrogen Storage

    Directory of Open Access Journals (Sweden)

    Kuen-Song Lin

    2012-01-01

    Full Text Available Two materials currently of interest for onboard lightweight hydrogen storage applications are sodium aluminum hydride (NaAlH4, a complex metal hydride, and carbon aerogels (CAs, a light porous material connected by several spherical nanoparticles. The objectives of the present work have been to investigate the synthesis, characterization, and hydrogenation behavior of Pd-, Ti- or Fe-doped CAs, NaAlH4, and MgH2 nanocomposites. The diameters of Pd nanoparticles onto CA’s surface and BET surface area of CAs were 3–10 nm and 700–900 m2g−1, respectively. The H2 storage capacity of metal hydrides has been studied using high-pressure TGA microbalance and they were 4.0, 2.7, 2.1, and 1.2 wt% for MgH2-FeTi-CAs, MgH2-FeTi, CAs-Pd, and 8 mol% Ti-doped NaAlH4, respectively, at room temperature. Carbon aerogels with higher surface area and mesoporous structures facilitated hydrogen diffusion and adsorption, which accounted for its extraordinary hydrogen storage phenomenon. The hydrogen adsorption abilities of CAs notably increased after inclusion of metal hydrides by the “hydrogen spillover” mechanisms.

  2. Destabilization of magnesium hydride through interface engineering

    NARCIS (Netherlands)

    Mooij, L.P.A.

    2013-01-01

    The aim of this thesis is to study the thermodynamics of hydrogenation of nanoconfined magnesium within a thin film multilayer model system. Magnesium hydride is a potential material for hydrogen storage, which is a key component in a renewable energy system based on hydrogen. In bulk form,

  3. Destabilization of magnesium hydride through interface engineering

    NARCIS (Netherlands)

    Mooij, L.P.A.

    2013-01-01

    The aim of this thesis is to study the thermodynamics of hydrogenation of nanoconfined magnesium within a thin film multilayer model system. Magnesium hydride is a potential material for hydrogen storage, which is a key component in a renewable energy system based on hydrogen. In bulk form, magnesiu

  4. Destabilization of magnesium hydride through interface engineering

    NARCIS (Netherlands)

    Mooij, L.P.A.

    2013-01-01

    The aim of this thesis is to study the thermodynamics of hydrogenation of nanoconfined magnesium within a thin film multilayer model system. Magnesium hydride is a potential material for hydrogen storage, which is a key component in a renewable energy system based on hydrogen. In bulk form, magnesiu

  5. Amphiphilic NO-donor antioxidants.

    Science.gov (United States)

    Chegaev, Konstantin; Lazzarato, Loretta; Rolando, Barbara; Marini, Elisabetta; Lopez, Gloria V; Bertinaria, Massimo; Di Stilo, Antonella; Fruttero, Roberta; Gasco, Alberto

    2007-02-01

    Models of amphiphilic NO-donor antioxidants 24-26 were designed and synthesized. The products were obtained by linking a lipophilic tail (C(6), C(8), C(10)) with a polar head constituted by the 2,6-dimethoxyphenol antioxidant joined to the NO-donor 3-furoxancarboxamide substructure through a bridge containing a quaternary ammonium group. Compound 23, containing the shortest C(2)-alkyl chain, was also studied as a reference. The antioxidant properties (TBARS and LDL oxidation assays) and the vasodilator properties of the compounds were studied in vitro. The ability of these products to interact with phospholipid vesicles was also investigated by NMR techniques. The results indicate that both activities are modulated by the ability of the compounds to accumulate on phospholipid layers.

  6. High performance nickel-metal hydride battery in bipolar stack design

    Science.gov (United States)

    Ohms, D.; Kohlhase, M.; Benczúr-Ürmössy, G.; Wiesener, K.; Harmel, J.

    The consumption of fuel in cars can be reduced by using hybrid concepts. Even for fuel cell vehicles, a high power battery may cut costs and allow the recovery of energy during retarding. Alkaline batteries, such as nickel-metal hydride batteries, have displayed long cycle life combined with high power ability. In order to improve the power/energy ratio of Ni/MH to even higher values, the cells may be arranged in a bipolar stack design.

  7. Metal hydrides form halogen bonds: measurement of energetics of binding.

    Science.gov (United States)

    Smith, Dan A; Brammer, Lee; Hunter, Christopher A; Perutz, Robin N

    2014-01-29

    The formation of halogen bonds from iodopentafluorobenzene and 1-iodoperfluorohexane to a series of bis(η(5)-cyclopentadienyl)metal hydrides (Cp2TaH3, 1; Cp2MH2, M = Mo, 2, M = W, 3; Cp2ReH, 4; Cp2Ta(H)CO, 5; Cp = η(5)-cyclopentadienyl) is demonstrated by (1)H NMR spectroscopy. Interaction enthalpies and entropies for complex 1 with C6F5I and C6F13I are reported (ΔH° = -10.9 ± 0.4 and -11.8 ± 0.3 kJ/mol; ΔS° = -38 ± 2 and -34 ± 2 J/(mol·K), respectively) and found to be stronger than those for 1 with the hydrogen-bond donor indole (ΔH° = -7.3 ± 0.1 kJ/mol, ΔS° = -24 ± 1 J/(mol·K)). For the more reactive complexes 2-5, measurements are limited to determination of their low-temperature (212 K) association constants with C6F5I as 2.9 ± 0.2, 2.5 ± 0.1, <1.5, and 12.5 ± 0.3 M(-1), respectively.

  8. Hydrogen bonding to carbonyl hydride complex Cp*Mo(PMe(3))(2)(CO)H and its role in proton transfer.

    Science.gov (United States)

    Dub, Pavel A; Filippov, Oleg A; Belkova, Natalia V; Daran, Jean-Claude; Epstein, Lina M; Poli, Rinaldo; Shubina, Elena S

    2010-02-28

    The interaction of the carbonyl hydride complex Cp*Mo(PMe(3))(2)(CO)H with Brønsted (fluorinated alcohols, (CF(3))(n)CH(3-n)OH (n = 1-3), and CF(3)COOH) and Lewis (Hg(C(6)F(5))(2), BF(3).OEt(2)) acids was studied by variable temperature IR and NMR ((1)H, (31)P, (13)C) spectroscopies in combination with DFT/B3LYP calculations. Among the two functionalities potentially capable of the interaction - carbonyl and hydride ligands - the first was found to be the preferential binding site for weak acids, yielding CO...HOR or CO...Hg complexes as well as CO...(HOR)(2) adducts. For stronger proton donors ((CF(3))(3)COH, CF(3)COOH) hydrogen-bonding to the hydride ligand can be revealed as an intermediate of the proton transfer reaction. Whereas proton transfer to the CO ligand is not feasible, protonation of the hydride ligand yields an (eta(2)-H(2)) complex. Above 230 K dihydrogen evolution is observed leading to decomposition. Among the decomposition products compound [Cp*Mo(PMe(3))(3)(CO)](+)[(CF(3))(3)CO.2HOC(CF(3))(3)](-) resulting from a phosphine transfer reaction was characterized by X-ray diffraction. Reaction with BF(3).OEt(2) was found to produce [Cp*Mo(PMe(3))(2)(CO)BF(4)] via initial attack of the hydride ligand.

  9. Numerical study of a magnesium hydride tank

    Science.gov (United States)

    Delhomme, Baptiste; de Rango, Patricia; Marty, Philippe

    2012-11-01

    Hydrogen storage in metal hydride tanks (MHT) is a very promising solution. Several experimental tanks, studied by different teams, have already proved the feasibility and the interesting performances of this solution. However, in much cases, an optimization of tank geometry is still needed in order to perform fast hydrogen loading. The development of efficient numerical tools is a key issue for MHT design and optimization. We propose a simple model representing a metal hydride tank exchanging its heat of reaction with a thermal fluid flow. In this model, the radial and axial discretisations have been decoupled by using Matlab® one-dimensional tools. Calculations are compared to experimental results obtained in a previous study. A good agreement is found for the loading case. The discharging case shows some discrepancies, which are discussed in this paper.

  10. The electrochemical impedance of metal hydride electrodes

    DEFF Research Database (Denmark)

    Valøen, Lars Ole; Lasia, Andrzej; Jensen, Jens Oluf

    2002-01-01

    The electrochemical impedance responses for different laboratory type metal hydride electrodes were successfully modeled and fitted to experimental data for AB5 type hydrogen storage alloys as well as one MgNi type electrode. The models fitted the experimental data remarkably well. Several AC......, explaining the experimental impedances in a wide frequency range for electrodes of hydride forming materials mixed with copper powder, were obtained. Both charge transfer and spherical diffusion of hydrogen in the particles are important sub processes that govern the total rate of the electrochemical...... hydrogen absorption/desorption reaction. To approximate the experimental data, equations describing the current distribution in porous electrodes were needed. Indications of one or more parallel reduction/oxidation processes competing with the electrochemical hydrogen absorption/desorption reaction were...

  11. Storing hydrogen in the form of light alloy hydrides

    Science.gov (United States)

    Freund, E.; Gillerm, C.

    1981-01-01

    Different hydrides are investigated to find a system with a sufficiently high storage density (at least 3%). The formation of hydrides with light alloys is examined. Reaction kinetics for hydride formation were defined and applied to the systems Mg-Al-H, Mg-Al-Cu-H, Ti-Al-H, Ti-Al-Cu-H, and Ti-Al-Ni-H. Results indicate that the addition of Al destabilizes MgH2 and TiH2 hydrides while having only a limited effect on the storage density.

  12. Plasmonic hydrogen sensing with nanostructured metal hydrides.

    Science.gov (United States)

    Wadell, Carl; Syrenova, Svetlana; Langhammer, Christoph

    2014-12-23

    In this review, we discuss the evolution of localized surface plasmon resonance and surface plasmon resonance hydrogen sensors based on nanostructured metal hydrides, which has accelerated significantly during the past 5 years. We put particular focus on how, conceptually, plasmonic resonances can be used to study metal-hydrogen interactions at the nanoscale, both at the ensemble and at the single-nanoparticle level. Such efforts are motivated by a fundamental interest in understanding the role of nanosizing on metal hydride formation processes in the quest to develop efficient solid-state hydrogen storage materials with fast response times, reasonable thermodynamics, and acceptable long-term stability. Therefore, a brief introduction to the thermodynamics of metal hydride formation is also given. However, plasmonic hydrogen sensors not only are of academic interest as research tool in materials science but also are predicted to find more practical use as all-optical gas detectors in industrial and medical applications, as well as in a future hydrogen economy, where hydrogen is used as a carbon free energy carrier. Therefore, the wide range of different plasmonic hydrogen sensor designs already available is reviewed together with theoretical efforts to understand their fundamentals and optimize their performance in terms of sensitivity. In this context, we also highlight important challenges to be addressed in the future to take plasmonic hydrogen sensors from the laboratory to real applications in devices, including poisoning/deactivation of the active materials, sensor lifetime, and cross-sensitivity toward other gas species.

  13. Laparoscopic donor nephrectomy

    Directory of Open Access Journals (Sweden)

    Gupta Nitin

    2005-01-01

    Full Text Available Of the various options for patients with end stage renal disease, kidney transplantation is the treatment of choice for a suitable patient. The kidney for transplantation is retrieved from either a cadaver or a live donor. Living donor nephrectomy has been developed as a method to address the shortfall in cadaveric kidneys available for transplantation. Laparoscopic living donor nephrectomy (LLDN, by reducing postoperative pain, shortening convalescence, and improving the cosmetic outcome of the donor nephrectomy, has shown the potential to increase the number of living kidney donations further by removing some of the disincentives inherent to donation itself. The technique of LLDN has undergone evolution at different transplant centers and many modifications have been done to improve donor safety and recipient outcome. Virtually all donors eligible for an open surgical procedure may also undergo the laparoscopic operation. Various earlier contraindications to LDN, such as right donor kidney, multiple vessels, anomalous vasculature and obesity have been overcome with increasing experience. Laparoscopic live donor nephrectomy can be done transperitoneally or retroperitoneally on either side. The approach is most commonly transperitoneal, which allows adequate working space and easy dissection. A review of literature and our experience with regards to standard approach and the modifications is presented including a cost saving model for the developing countries. An assessment has been made, of the impact of LDN on the outcome of donor and the recipient.

  14. Method of making crack-free zirconium hydride

    Science.gov (United States)

    Sullivan, Richard W.

    1980-01-01

    Crack-free hydrides of zirconium and zirconium-uranium alloys are produced by alloying the zirconium or zirconium-uranium alloy with beryllium, or nickel, or beryllium and scandium, or nickel and scandium, or beryllium and nickel, or beryllium, nickel and scandium and thereafter hydriding.

  15. Creating nanoshell on the surface of titanium hydride bead

    Directory of Open Access Journals (Sweden)

    PAVLENKO Vyacheslav Ivanovich

    2016-12-01

    Full Text Available The article presents data on the modification of titanium hydride bead by creating titanium nanoshell on its surface by ion-plasma vacuum magnetron sputtering. To apply titanium nanoshell on the titanium hydride bead vacuum coating plant of multifunctional nanocomposite coatings QVADRA 500 located in the center of high technology was used. Analysis of the micrographs of the original surface of titanium hydride bead showed that the microstructure of the surface is flat, smooth, in addition the analysis of the microstructure of material surface showed the presence of small porosity, roughness, mainly cavities, as well as shallow longitudinal cracks. The presence of oxide film in titanium hydride prevents the free release of hydrogen and fills some micro-cracks on the surface. Differential thermal analysis of both samples was conducted to determine the thermal stability of the initial titanium hydride bead and bead with applied titanium nanoshell. Hydrogen thermal desorption spectra of the samples of the initial titanium hydride bead and bead with applied titanium nanoshell show different thermal stability of compared materials in the temperature range from 550 to 860о C. Titanium nanoshells applied in this way allows increasing the heat resistance of titanium hydride bead – the temperature of starting decomposition is 695о C and temperature when decomposition finishes is more than 1000о C. Modified in this way titanium hydride bead can be used as a filler in the radiation protective materials used in the construction or upgrading biological protection of nuclear power plants.

  16. Hydrogen storage in the form of metal hydrides

    Science.gov (United States)

    Zwanziger, M. G.; Santana, C. C.; Santos, S. C.

    1984-01-01

    Reversible reactions between hydrogen and such materials as iron/titanium and magnesium/ nickel alloy may provide a means for storing hydrogen fuel. A demonstration model of an iron/titanium hydride storage bed is described. Hydrogen from the hydride storage bed powers a converted gasoline electric generator.

  17. Electrochemical and Optical Properties of Magnesium-Alloy Hydrides Reviewed

    Directory of Open Access Journals (Sweden)

    Thirugnasambandam G. Manivasagam

    2012-10-01

    Full Text Available As potential hydrogen storage media, magnesium based hydrides have been systematically studied in order to improve reversibility, storage capacity, kinetics and thermodynamics. The present article deals with the electrochemical and optical properties of Mg alloy hydrides. Electrochemical hydrogenation, compared to conventional gas phase hydrogen loading, provides precise control with only moderate reaction conditions. Interestingly, the alloy composition determines the crystallographic nature of the metal-hydride: a structural change is induced from rutile to fluorite at 80 at.% of Mg in Mg-TM alloy, with ensuing improved hydrogen mobility and storage capacity. So far, 6 wt.% (equivalent to 1600 mAh/g of reversibly stored hydrogen in MgyTM(1-yHx (TM: Sc, Ti has been reported. Thin film forms of these metal-hydrides reveal interesting electrochromic properties as a function of hydrogen content. Optical switching occurs during (dehydrogenation between the reflective metal and the transparent metal hydride states. The chronological sequence of the optical improvements in optically active metal hydrides starts with the rare earth systems (YHx, followed by Mg rare earth alloy hydrides (MgyGd(1-yHx and concludes with Mg transition metal hydrides (MgyTM(1-yHx. In-situ optical characterization of gradient thin films during (dehydrogenation, denoted as hydrogenography, enables the monitoring of alloy composition gradients simultaneously.

  18. High energy density battery based on complex hydrides

    Science.gov (United States)

    Zidan, Ragaiy

    2016-04-26

    A battery and process of operating a battery system is provided using high hydrogen capacity complex hydrides in an organic non-aqueous solvent that allows the transport of hydride ions such as AlH.sub.4.sup.- and metal ions during respective discharging and charging steps.

  19. High energy density battery based on complex hydrides

    Energy Technology Data Exchange (ETDEWEB)

    Zidan, Ragaiy

    2016-04-26

    A battery and process of operating a battery system is provided using high hydrogen capacity complex hydrides in an organic non-aqueous solvent that allows the transport of hydride ions such as AlH.sub.4.sup.- and metal ions during respective discharging and charging steps.

  20. Synthesis, characterization and properties of some organozinc hydride complexes

    NARCIS (Netherlands)

    Koning, A.J. de; Boersma, J.; Kerk, G.J.M. van der

    1980-01-01

    The synthesis and characterization of the monopyridine complexes of ethylzinc hydride and phenylzinc hydride are described. On treatment with TMED these complexes are converted into R2Zn3H4. TMED species through a combination of ligand-exchange and disproportionation. The formation of organozinc hyd

  1. Hydride morphology and striation formation during delayed hydride cracking in Zr-2.5% Nb

    Energy Technology Data Exchange (ETDEWEB)

    Shek, G.K. [Ontario Hydro Technol., Ont. (Canada). Mater. Technol. Unit; Jovanovic, M.T. [Alberta Univ., Edmonton, AB (Canada). Dept. of Mining, Metallurgical and Petroleum Engineering; Seahra, H. [Ontario Hydro Technol., Ont. (Canada). Mater. Technol. Unit; Ma, Y. [Alberta Univ., Edmonton, AB (Canada). Dept. of Mining, Metallurgical and Petroleum Engineering; Li, D. [Alberta Univ., Edmonton, AB (Canada). Dept. of Mining, Metallurgical and Petroleum Engineering; Eadie, R.L. [Alberta Univ., Edmonton, AB (Canada). Dept. of Mining, Metallurgical and Petroleum Engineering

    1996-08-01

    These experiments were designed to study hydride formation at the crack tip, acoustic emission (AE), potential drop (PD) and striation formation during DHC (delayed hydride cracking) in Zr-2.5% Nb. The test material was taken from an especially extruded pressure tube, which showed similar strength properties to normal pressure tube material but somewhat coarser microstructure. In testing at K{sub I} below 12 MPa {radical}m at both 200 and 250 C very large striations (>40 {mu}m at 200 and >50 {mu}m at 250 C) were produced. In simultaneous monitoring with acoustic emission and potential drop, both AE and PD jumps were shown to be monolithic. The number of striations on the fracture surface corresponded to the number of monolithic AE/PD jumps. Tapered shaped hydrides with the thick end adjacent to the crack tip were observed. These hydrides grew in size during the incubation period until they reached the striation length and then fractured monolithically. However, when K{sub I} was increased beyond about 12 MPa {radical}m for these same specimens, the striation spacing decreased below 30 {mu}m, the monolithic jumping dissolved into more continuous changes in signals, although the smaller striations were still visible on the fracture surface. (orig.).

  2. Hydride morphology and striation formation during delayed hydride cracking in Zr-2.5% Nb

    Science.gov (United States)

    Shek, G. K.; Jovanoviċ, M. T.; Seahra, H.; Ma, Y.; Li, D.; Eadie, R. L.

    1996-08-01

    These experiments were designed to study hydride formation at the crack tip, acoustic emission (AE), potential drop (PD) and striation formation during DHC (delayed hydride cracking) in Zr-2.5% Nb. The test material was taken from an especially extrude pressure tube, which showed similar strength properties to normal pressure tube material but somewhat coarser microstructure. In testing at KI below 12 MPa √m at both 200 and 250°C very large striations (> 40 μ at 200 and >50 μm at 250°C) were produced. In simultaneous monitoring with acoustic emission and potential drop, both AE and PD jumps were shown to be monolithic. The number of striations on the fracture surface corresponded to the number of monolithic AE/PD jumps. Tapered shaped hydrides with the thick end adjacent to the crack tip were observed. These hydrides grew in size during the incubation period until they reached the striation length and then fractured monolithically. However, when KI was increased beyond about 12 MPa √m for these same specimens, the striation spacing decreased below 30 μ, the monolithic jumping dissolved into more continuous changes in signals, although the smaller striations were still visible on the fracture surface.

  3. High ramp rate thermogravimetric analysis of zirconium(II) hydride and titanium(II) hydride

    Energy Technology Data Exchange (ETDEWEB)

    Licavoli, Joseph J., E-mail: jjlicavo@mtu.edu; Sanders, Paul G., E-mail: sanders@mtu.edu

    2015-09-20

    Highlights: • A unique arc image device has been proposed for high ramp rate thermogravimetry. • Powder oxidation influences decomposition kinetics at temperatures below 933 K. • Particle size has a negligible effect on TiH{sub 2} decomposition behavior. • Improvements to the device are required to conduct accurate kinetic analysis. - Abstract: Zirconium and titanium hydride are utilized in liquid phase metal foam processing techniques. This application results in immediate exposure to molten metal and almost immediate decomposition at high temperatures. Most decomposition characterization techniques utilize slow heating rates and are unable to capture the decomposition behavior of hydrides under foam processing conditions. In order to address this issue a specialized high ramp rate thermogravimetric analyzer was created from a xenon arc image refiner. In addition to thermogravimetry, complimentary techniques including X-ray diffraction and scanning electron microscopy were used to characterize hydride decomposition and compare the results to literature. Hydrides were partially oxidized and separated into particles size ranges to evaluate the influence of these factors on decomposition. Oxidizing treatments were found to decrease decomposition rate only at temperatures below 933 K (660 °C) while particle size effects appeared to be negligible. Several improvements to the unique TGA apparatus presented in the current work are suggested to allow reliable kinetic modeling and analysis.

  4. ORNL Interim Progress Report on Hydride Reorientation CIRFT Tests

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jy-An John [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Yan, Yong [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Wang, Hong [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2016-10-28

    A systematic study of H. B. Robinson (HBR) high burnup spent nuclear fuel (SNF) vibration integrity was performed in Phase I project under simulated transportation environments, using the Cyclic Integrated Reversible-Bending Fatigue Tester (CIRFT) hot cell testing technology developed at Oak Ridge National Laboratory in 2013–14. The data analysis on the as-irradiated HBR SNF rods demonstrated that the load amplitude is the dominant factor that controls the fatigue life of bending rods. However, previous studies have shown that the hydrogen content and hydride morphology has an important effect on zirconium alloy mechanical properties. To address the effect of radial hydrides in SNF rods, in Phase II a test procedure was developed to simulate the effects of elevated temperatures, pressures, and stresses during transfer-drying operations. Pressurized and sealed fuel segments were heated to the target temperature for a preset hold time and slow-cooled at a controlled rate. The procedure was applied to both non-irradiated/prehydrided and high-burnup Zircaloy-4 fueled cladding segments using the Nuclear Regulatory Commission-recommended 400°C maximum temperature limit at various cooling rates. Before testing high-burnup cladding, four out-of-cell tests were conducted to optimize the hydride reorientation (R) test condition with pre-hydride Zircaloy-4 cladding, which has the same geometry as the high burnup fuel samples. Test HR-HBR#1 was conducted at the maximum hoop stress of 145 MPa, at a 400°C maximum temperature and a 5°C/h cooling rate. On the other hand, thermal cycling was performed for tests HR-HBR#2, HR-HBR#3, and HR-HBR#4 to generate more radial hydrides. It is clear that thermal cycling increases the ratio of the radial hydride to circumferential hydrides. The internal pressure also has a significant effect on the radial hydride morphology. This report describes a procedure and experimental results of the four out-of-cell hydride reorientation tests of

  5. Living Donor Liver Transplantation

    Science.gov (United States)

    ... be a husband or wife. What are Some Benefits of a Living-donor Liver Transplant? In the ... Not have a selfish motive for donating. Paid donation is illegal in the ... leave for being organ donors. Other employers have similar programs, so check ...

  6. National Marrow Donor Program

    Science.gov (United States)

    2011-04-29

    Collection and Apheresis Centers Closed 7 IIC. Immunogenetic Studies 8 IIC.1 Objective 1 – Influence of HLA Mismatches 8 Task 1 – Donor Recipient... Apheresis Centers – This task is closed. National Marrow Donor Program® N000014-11-1-0339 QUARTER PROGRESS REPORT Development of Medical Technology

  7. Donor Telomere Length SAA

    Science.gov (United States)

    A new NCI study has found that, among patients with severe aplastic anemia who received a hematopoietic cell transplant from an unrelated donor, those whose donor white blood cells had longer telomeres had higher survival rates five-years after transplant

  8. Growth and decomposition of Lithium and Lithium hydride on Nickel

    DEFF Research Database (Denmark)

    Engbæk, Jakob; Nielsen, Gunver; Nielsen, Jane Hvolbæk

    2006-01-01

    In this paper we have investigated the deposition, structure and decomposition of lithium and lithium-hydride films on a nickel substrate. Using surface sensitive techniques it was possible to quantify the deposited Li amount, and to optimize the deposition procedure for synthesizing lithium......-hydride films. By only making thin films of LiH it is possible to study the stability of these hydride layers and compare it directly with the stability of pure Li without having any transport phenomena or adsorbed oxygen to obscure the results. The desorption of metallic lithium takes place at a lower...... temperature than the decomposition of the lithium-hydride, confirming the high stability and sintering problems of lithium-hydride making the storage potential a challenge. (c) 2006 Elsevier B.V. All rights reserved....

  9. Helium trapping at erbium oxide precipitates in erbium hydride

    Energy Technology Data Exchange (ETDEWEB)

    Foiles, Stephen M. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Battaile, Corbett Chandler [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2016-02-01

    The formation of He bubbles in erbium tritides is a significant process in the aging of these materials. Due to the long-standing uncertainty about the initial nucleation process of these bubbles, there is interest in mechanisms that can lead to the localization of He in erbium hydrides. Previous work has been unable to identify nucleation sites in homogeneous erbium hydride. This work builds on the experimental observation that erbium hydrides have nano- scale erbium oxide precipitates due to the high thermodynamic stability of erbium oxide and the ubiquitous presence of oxygen during materials processing. Fundamental DFT calculations indicate that the He is energetically favored in the oxide relative to the bulk hydride. Activation energies for the motion of He in the oxide and at the oxide-hydride interface indicate that trapping is kinetically feasible. A simple kinetic Monte Carlo model is developed that demonstrates the degree of trapping of He as a function of temperature and oxide fraction.

  10. Photochromism of rare-earth metal-oxy-hydrides

    Science.gov (United States)

    Nafezarefi, F.; Schreuders, H.; Dam, B.; Cornelius, S.

    2017-09-01

    Recently, thin films of yttrium oxy-hydride (YOxHy) were reported to show an unusual color-neutral photochromic effect promising for application in smart windows. Our present work demonstrates that also oxy-hydrides based on Gd, Dy, and Er have photochromic properties and crystal structures similar to YOxHy. Compared to YOxHy, the optical bandgaps of the lanthanide based oxy-hydrides are smaller while photochromic contrast and kinetics show large variation among different cations. Based on these findings, we propose that cation alloying is a viable pathway to tailor the photochromic properties of oxy-hydride materials. Furthermore, we predict that the oxy-hydrides of the other lanthanides are also potentially photochromic.

  11. Metal hydrides for concentrating solar thermal power energy storage

    Science.gov (United States)

    Sheppard, D. A.; Paskevicius, M.; Humphries, T. D.; Felderhoff, M.; Capurso, G.; Bellosta von Colbe, J.; Dornheim, M.; Klassen, T.; Ward, P. A.; Teprovich, J. A.; Corgnale, C.; Zidan, R.; Grant, D. M.; Buckley, C. E.

    2016-04-01

    The development of alternative methods for thermal energy storage is important for improving the efficiency and decreasing the cost of concentrating solar thermal power. We focus on the underlying technology that allows metal hydrides to function as thermal energy storage (TES) systems and highlight the current state-of-the-art materials that can operate at temperatures as low as room temperature and as high as 1100 °C. The potential of metal hydrides for thermal storage is explored, while current knowledge gaps about hydride properties, such as hydride thermodynamics, intrinsic kinetics and cyclic stability, are identified. The engineering challenges associated with utilising metal hydrides for high-temperature TES are also addressed.

  12. Significantly improved electrochemical hydrogen storage properties of magnesium nickel hydride modified with nano-nickel

    Science.gov (United States)

    Chen, Wei; Zhu, Yunfeng; Yang, Chen; Zhang, Jiguang; Li, Menghuai; Li, Liquan

    2015-04-01

    Magnesium nickel hydride (Mg2NiH4) used as negative electrode material in nickel-metal hydride (Ni-MH) secondary battery is modified by nano-nickel via mechanical milling. In this paper, we systematically investigate the microstructure and electrochemical properties of the modified system with different milling durations. X-ray diffraction (XRD) and high resolution transmission electron microscopy (HRTEM) analyses confirm the amorphous transformation of Mg2Ni-based hydride and a novel NiH0.75 nanocrystalline with a diameter of about 5 nm embedding or covering on the surface of the base particle has been observed. Its formation mechanism and positive effects on electrochemical properties of the Mg2NiH4 have also been elaborated. Electrochemical measurements show that the 5 h milled composite possesses markedly increased discharge capacity up to 896 mAh g-1. With prolonging the milling duration from 5 h to 40 h, the discharge capacity at the 10th cycle increases from 99 mAh g-1 to 359 mAh g-1. Besides, the discharging procedure changes from stepwise processes to one single-step process with increasing the milling duration. Tafel polarization test shows that the nano-nickel modified system exhibits a much better anti-corrosion ability during charging/discharging cycles. Meanwhile, both the charge-transfer reaction on the alloy surface and hydrogen diffusion inside the alloy bulk are enhanced with nano-nickel modification.

  13. Nanoindentation measurements of the mechanical properties of zirconium matrix and hydrides in unirradiated pre-hydrided nuclear fuel cladding

    Science.gov (United States)

    Rico, A.; Martin-Rengel, M. A.; Ruiz-Hervias, J.; Rodriguez, J.; Gomez-Sanchez, F. J.

    2014-09-01

    It is well known that the mechanical properties of the nuclear fuel cladding may be affected by the presence of hydrides. The average mechanical properties of hydrided cladding have been extensively investigated from a macroscopic point of view. In addition, the mechanical and fracture properties of bulk hydride samples fabricated from zirconium plates have also been reported. In this paper, Young's modulus, hardness and yield stress are measured for each phase, namely zirconium hydrides and matrix, of pre-hydrided nuclear fuel cladding. To this end, nanoindentation tests were performed on ZIRLO samples in as-received state, on a hydride blister and in samples with 150 and 1200 ppm of hydrogen homogeneously distributed along the hoop direction of the cladding. The results show that the measured mechanical properties of the zirconium hydrides and ZIRLO matrix (Young's modulus, hardness and yield stress) are rather similar. From the experimental data, the hydride volume fraction in the cladding samples with 150 and 1200 ppm was estimated and the average mechanical properties were calculated by means of the rule of mixtures. These values were compared with those obtained from ring compression tests. Good agreement between the results obtained by both methods was found.

  14. Nanoindentation measurements of the mechanical properties of zirconium matrix and hydrides in unirradiated pre-hydrided nuclear fuel cladding

    Energy Technology Data Exchange (ETDEWEB)

    Rico, A., E-mail: alvaro.rico@urjc.es [DIMME, Departamento de Tecnología Mecánica, Universidad Rey Juan Carlos, c/Tulipán s/n, E-28933 Móstoles, Madrid (Spain); Martin-Rengel, M.A., E-mail: mamartin@mater.upm.es [Departamento de Ciencia de los Materiales, UPM, E.T.S.I. Caminos, Canales y Puertos, Profesor Aranguren SN, E-28040 Madrid (Spain); Ruiz-Hervias, J., E-mail: jesus.ruiz@upm.es [Departamento de Ciencia de los Materiales, UPM, E.T.S.I. Caminos, Canales y Puertos, Profesor Aranguren SN, E-28040 Madrid (Spain); Rodriguez, J. [DIMME, Departamento de Tecnología Mecánica, Universidad Rey Juan Carlos, c/Tulipán s/n, E-28933 Móstoles, Madrid (Spain); Gomez-Sanchez, F.J., E-mail: javier.gomez@amsimulation.com [Advanced Material Simulation, S.L, Madrid (Spain)

    2014-09-15

    It is well known that the mechanical properties of the nuclear fuel cladding may be affected by the presence of hydrides. The average mechanical properties of hydrided cladding have been extensively investigated from a macroscopic point of view. In addition, the mechanical and fracture properties of bulk hydride samples fabricated from zirconium plates have also been reported. In this paper, Young’s modulus, hardness and yield stress are measured for each phase, namely zirconium hydrides and matrix, of pre-hydrided nuclear fuel cladding. To this end, nanoindentation tests were performed on ZIRLO samples in as-received state, on a hydride blister and in samples with 150 and 1200 ppm of hydrogen homogeneously distributed along the hoop direction of the cladding. The results show that the measured mechanical properties of the zirconium hydrides and ZIRLO matrix (Young’s modulus, hardness and yield stress) are rather similar. From the experimental data, the hydride volume fraction in the cladding samples with 150 and 1200 ppm was estimated and the average mechanical properties were calculated by means of the rule of mixtures. These values were compared with those obtained from ring compression tests. Good agreement between the results obtained by both methods was found.

  15. Nanostructured Magnesium Hydride for Reversible Hydrogen Storage

    Science.gov (United States)

    de Rango, P.; Chaise, A.; Fruchart, D.; Miraglia, S.; Marty, Ph.

    2013-05-01

    The aim of this work was to develop suitable materials to store hydrogen in a solid state. A systematic investigation of the co-milling process of magnesium hydride with a transition metal was undertaken in order to produce nanostructured and highly reactive powders. The initiating role of the transition metal was evidenced by in situ neutron diffraction experiments. High performances in terms of thermal and mechanical behavior were achieved introducing expanded graphite and compacting the mixture to form composite materials. Absorption and desorption kinetics have been measured versus temperature and H2 pressure.

  16. Lithium hydride - A space age shielding material

    Science.gov (United States)

    Welch, F. H.

    1974-01-01

    Men and materials performing in the environment of an operating nuclear reactor require shielding from the escaping neutron particles and gamma rays. For efficient shielding from gamma rays, dense, high atomic number elements such as iron, lead, or tungsten are required, whereas light, low atomic number elements such as hydrogen, lithium, or beryllium are required for efficient neutron shielding. The use of lithium hydride (LiH) as a highly efficient neutron-shielding material is considered. It contains, combined into a single, stable compound, two of the elements most effective in attenuating and absorbing neutrons.

  17. Highly Concentrated Palladium Hydrides/Deuterides; Theory

    Energy Technology Data Exchange (ETDEWEB)

    Papaconstantopoulos, Dimitrios

    2013-11-26

    Accomplishments are reported in these areas: tight-binding molecular dynamics study of palladium; First-principles calculations and tight-binding molecular dynamics simulations of the palladium-hydrogen system; tight-binding studies of bulk properties and hydrogen vacancies in KBH{sub 4}; tight-binding study of boron structures; development of angular dependent potentials for Pd-H; and density functional and tight-binding calculations for the light-hydrides NaAlH4 and NaBH4

  18. Development of nickel-metal hydride cell

    Science.gov (United States)

    Kuwajima, Saburo; Kamimori, Nolimits; Nakatani, Kensuke; Yano, Yoshiaki

    1993-01-01

    National Space Development Agency of Japan (NASDA) has conducted the research and development (R&D) of battery cells for space use. A new R&D program about a Nickel-Metal Hydride (Ni-MH) cell for space use from this year, based on good results in evaluations of commercial Ni-MH cells in Tsukuba Space Center (TKSC), was started. The results of those commercial Ni-MH cell's evaluations and recent status about the development of Ni-MH cells for space use are described.

  19. Hydriding-dehydriding properties of Mg2Ni alloy modified by ball-milling in tetrahydrofuran

    Institute of Scientific and Technical Information of China (English)

    CHEN Changpin; WANG Wei; CHEN Yun; CHEN Lixin; WANG Qidong

    2004-01-01

    A new approach of ball-milled Mg2Ni in tetrahydrofuran (THF) to improve the hydriding kinetics of Mg2Ni alloy is suggested and studied. It is found that the modified alloy displayed the improved activity for hydriding even at relatively low temperature (e.g., 323-373 K). In the case of the sample milled in THF for 20 h, the hydrogen content (mass fraction)reaches 1.6 % at 323 K, 2.1% at 348 K and 3.4% at 448 K, respectively. The use of THF during grinding led to the change of the structure, which is reflected by the broadening and weakening of the diffraction peaks in the XRD spectra. The XPS analysis shows that Mg (2s) binding energy peak of Mg2Ni after modification shifted from a lower binding energy to a higher one, indicating the charge transference between Mg and THF and the formation of catalytically active electron donor-acceptor (EDA) complexes on the surface of modified Mg2Ni alloy.

  20. Insurability of living organ donors: a systematic review.

    Science.gov (United States)

    Yang, R C; Thiessen-Philbrook, H; Klarenbach, S; Vlaicu, S; Garg, A X

    2007-06-01

    Being an organ donor may affect one's ability to obtain life, disability and health insurance. We conducted a systematic review to determine if insurability is affected by living organ donation, and if concern about insurability affects donor decision making. We searched MEDLINE, EMBASE, SCI, EconLit and Cochrane databases for articles in any language, and reviewed reference lists from 1966 until June 2006. All studies discussing the insurability of living organ donors or its impact on donor decision making were included. Data were independently abstracted by two authors, and the methodological quality appraised. Twenty-three studies, from 1972 to 2006, provided data on 2067 living organ donors, 385 potential donors and 239 responses from insurance companies. Almost all companies would provide life and health insurance to living organ donors, usually with no higher premiums. However, concern about insurability was still expressed by 2%-14% of living organ donors in follow-up studies, and 3%-11% of donors actually encountered difficulties with their insurance. In one study, donors whose insurance premiums increased were less likely to reaffirm their decision to donate. Based on available evidence, some living organ donors had difficulties with insurance despite companies reporting otherwise. If better understood, this potential barrier to donation could be corrected through fair health and underwriting policies.

  1. [Evaluation and follow-up of living kidney donors].

    Science.gov (United States)

    Giessing, M; Schönberger, B; Fritsche, L; Budde, K

    2004-01-23

    An increase in waiting time for a cadaveric organs and a better graft-function, graft- and patient-survival with kidneys from a living donors have lead to an increase in living-donor renal transplantation in the therapy of end-stage renal disease. In Germany, with the implementation of a transplantation law in 1997 and due to improved surgical techniques (laparoscopy) the proportion of living renal donors has almost tripled during the last five years. The transplantation law also names the potential donors, including not only genetically related but also emotionally related donors. Inclusion criteria for living donation are age > 18 years, mental ability to give consent and an altruistic motivation (exclusion of financial benefits for the donor). If ABO blood group compatibility between donor and recipient is given and a cross match does not reveal immunologic obstacles a thorough medical and psychological examination must be performed with the potential donor. All risk factors for the donor beyond the actual operation must be excluded. Therefore all organ-systems have to be evaluated and risks for the donor as well as transferable pathologies and infections must be ruled out. International guidelines help to perform an efficient evaluation. Following organ donation the donor should be medically controlled as requested by law. Also, psychological counselling should be offered. The aim is to minimize risks for the single kidney and to recognize early potentially kidney damaging affections.

  2. NATO Advanced Study Institute on Metal Hydrides

    CERN Document Server

    1981-01-01

    In the last five years, the study of metal hydrides has ex­ panded enormously due to the potential technological importance of this class of materials in hydrogen based energy conversion schemes. The scope of this activity has been worldwide among the industrially advanced nations. There has been a consensus among researchers in both fundamental and applied areas that a more basic understanding of the properties of metal/hydrogen syster;,s is required in order to provide a rational basis for the selection of materials for specific applications. The current worldwide need for and interest in research in metal hydrides indicated the timeliness of an Advanced Study Insti­ tute to provide an in-depth view of the field for those active in its various aspects. The inclusion of speakers from non-NATO coun­ tries provided the opportunity for cross-fertilization of ideas for future research. While the emphasis of the Institute was on basic properties, there was a conscious effort to stimulate interest in the applic...

  3. From permanent magnets to rechargeable hydride electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Willems, J.J.G.; Buschow, K.H.J.

    1987-02-15

    A brief historical survey is given of how the study of coercitivity mechanisms in SmCo/sub 5/ permanent-magnet materials eventually led to the discovery of the favourable hydrogen sorption properties of the compound LaNi/sub 5/. It is shown how continued research by many investigators dealing with a variety of different physical and chemical properties has resulted in an advanced understanding of some of the principles that govern hydrogen absorption and which are responsible for the changes in physical properties that accompany it. The problems associated with various applications of LaNi/sub 5/-based hydrogen-storage materials are also briefly discussed. A large part of this paper is devoted to the applicability of LaNi/sub 5/-type materials in batteries. Research in this area has resulted in the development of a new type of rechargeable battery: the nickel-hydride cell. This battery can be charged and discharged at high rates and is relatively insensitive to overcharging and overdischarging. Special attention is given to the nature of the electrode degradation process and the effect of composition variations in LaNi/sub 5/-related materials on the lifetime of the corresponding hydride electrodes when subjected to severe electrochemical charge-discharge cycles.

  4. Metal hydrides for lithium-ion batteries.

    Science.gov (United States)

    Oumellal, Y; Rougier, A; Nazri, G A; Tarascon, J-M; Aymard, L

    2008-11-01

    Classical electrodes for Li-ion technology operate via an insertion/de-insertion process. Recently, conversion electrodes have shown the capability of greater capacity, but have so far suffered from a marked hysteresis in voltage between charge and discharge, leading to poor energy efficiency and voltages. Here, we present the electrochemical reactivity of MgH(2) with Li that constitutes the first use of a metal-hydride electrode for Li-ion batteries. The MgH(2) electrode shows a large, reversible capacity of 1,480 mAh g(-1) at an average voltage of 0.5 V versus Li(+)/Li(o) which is suitable for the negative electrode. In addition, it shows the lowest polarization for conversion electrodes. The electrochemical reaction results in formation of a composite containing Mg embedded in a LiH matrix, which on charging converts back to MgH(2). Furthermore, the reaction is not specific to MgH(2), as other metal or intermetallic hydrides show similar reactivity towards Li. Equally promising, the reaction produces nanosized Mg and MgH(2), which show enhanced hydrogen sorption/desorption kinetics. We hope that such findings can pave the way for designing nanoscale active metal elements with applications in hydrogen storage and lithium-ion batteries.

  5. Molecular rare-earth-metal hydrides in non-cyclopentadienyl environments.

    Science.gov (United States)

    Fegler, Waldemar; Venugopal, Ajay; Kramer, Mathias; Okuda, Jun

    2015-02-02

    Molecular hydrides of the rare-earth metals play an important role as homogeneous catalysts and as counterparts of solid-state interstitial hydrides. Structurally well-characterized non-metallocene-type hydride complexes allow the study of elementary reactions that occur at rare-earth-metal centers and of catalytic reactions involving bonds between rare-earth metals and hydrides. In addition to neutral hydrides, cationic derivatives have now become available.

  6. Filiform-mode hydride corrosion of uranium surfaces

    Science.gov (United States)

    Hill, M. A.; Schulze, R. K.; Bingert, J. F.; Field, R. D.; McCabe, R. J.; Papin, P. A.

    2013-11-01

    Hydride nucleation and growth has previously been studied in uranium with an air-formed oxide. Preferred directional growth of uranium hydride has not been observed, presumably due to the constraint of the oxide layer and/or the presence of a surface layer distorted by mechanical grinding and polishing. Instead, hydrides typically first form as subsurface blisters that do not exhibit preferred growth directionality. By eliminating the strained surface layer through electropolishing, removing the natural oxide through ion sputtering, avoiding exposure of the uranium to air, and then exposing uranium to high purity hydrogen in an environmental cell, hydride growth patterns emerge that correspond to defect structures within the microstructure. These hydride growth patterns are similar to filiform corrosion, a type of corrosion that frequently forms under thin protective films. This work describes the first reported observation of filiform-like corrosion in uranium. The uranium hydride initiates at defects, but grows into filaments up to 20 μm wide, and tends to form in straight lines, largely propagating along twin boundaries. Propagation is driven by hydrogen reaction at the filament head, promoted by more efficient delivery of reactant. However, this phenomenon does not involve an electrochemical process associated with conventional filiform corrosion and is therefore described as filiform-like. Hydride growth was observed using optical microscopy for a period of nearly three years. Sample characterization included automated electron backscatter diffraction (EBSD) measurements to determine growth directions. Observation of this anomalous hydride growth provides clues as to the mechanisms operating in uranium hydriding for more conventionally prepared sample surfaces.

  7. National Marrow Donor Program

    Science.gov (United States)

    2008-08-05

    Disease Marker screen and Cord Information (Detailed and Summary) and Cord Lab Summary Reports o The Chagas EIA test text was changed to Chagas (screening...ID field. • Per FDA regulations, CORD Link was modified to include CMS laboratory certification status on the (Infectious Disease Marker) IDM...Communications Period 2 Activity: SEARCH Link™ application upgrades • Donor Information Infectious Disease Markers (IDMs) screen and Donor

  8. Cadaveric donor selection and management.

    Science.gov (United States)

    Studer, Sean M; Orens, Jonathan B

    2006-10-01

    While there is little doubt that proper donor selection is extremely important to achieve good outcomes from transplantation, there are only limited data regarding the current criteria utilized to select the "ideal donor". Importantly, there are not enough donor lungs available for all of those in need. Until an adequate supply of donor organs exists, lives will be lost on the transplant waiting list. While efforts have been made to increase donor awareness, additional transplants can be realized by improving donor utilization. This can be achieved by active participation of transplant teams in donor management and by utilizing "extended criteria" organs. Further studies are needed to assess the impact of using "extended criteria" donors, as this practice could result in increased posttransplant morbidity and mortality. This article summarizes the approach to identification of potential lung donors, optimal donor management, and the clinical importance of various donor factors upon recipient outcomes.

  9. Technical and economic aspects of hydrogen storage in metal hydrides

    Science.gov (United States)

    Schmitt, R.

    1981-01-01

    The recovery of hydrogen from such metal hydrides as LiH, MgH2, TiH2, CaH2 and FeTiH compounds is studied, with the aim of evaluating the viability of the technique for the storage of hydrogen fuel. The pressure-temperature dependence of the reactions, enthalpies of formation, the kinetics of the hydrogen absorption and desorption, and the mechanical and chemical stability of the metal hydrides are taken into account in the evaluation. Economic aspects are considered. Development of portable metal hydride hydrogen storage reservoirs is also mentioned.

  10. PIE techniques for hydride reorientation test at NDC

    Energy Technology Data Exchange (ETDEWEB)

    Tsuda, Tomohiro; Shinohara, Yasunari; Yamaguchi, Yoichiro [Nuclear Development Corporation, Ibaraki (Japan)

    2008-11-15

    Dry storage of spent fuels in the interim storage facility is being planned in Japan. However, the gradual deterioration of the mechanical property of fuel cladding due to internal pressure and temperature during the storage term is known. Therefore, the integrity of stored fuel rods should be confirmed before the start of dry storage. For the last several years, NDC had a lot of experiences on the hydride reorientation test. The specimen preparation techniques on the hydride reorientation test and the mechanical testing techniques after the hydride reorientation are shown in this paper.

  11. Hydrogen storage in metal hydrides and complex hydrides; Wasserstoffspeicherung in Metall- und komplexen Hydriden - Schlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Bielmann, M.; Zuettel, A.

    2007-07-01

    This final report for the Swiss Federal Office of Energy (SFOE), reports on work done in 2007 at the Swiss Federal Laboratories for Materials Science and Technology EMPA on the storage of hydrogen in metal hydrides and complex hydrides. In particular, the use of tetrahydroborates is noted. The potential of this class of materials is stressed. The structures at room-temperature were examined using neutron and X-ray diffraction methods. Thermodynamic methods helped determine the thermodynamic stability of the materials. Also, a complete energy diagram for the materials was developed. The use of silicon oxide to reduce activation energy and its catalytic effects are discussed. The challenges placed by desorption mechanisms are noted. The authors note that reversibility is basically proven.

  12. N -annulated perylene as an efficient electron donor for porphyrin-based dyes: Enhanced light-harvesting ability and high-efficiency Co(II/III)-based dye-sensitized solar cells

    KAUST Repository

    Luo, Jie

    2014-01-08

    Porphyrin-based dyes recently have become good candidates for dye-sensitized solar cells (DSCs). However, the bottleneck is how to further improve their light-harvesting ability. In this work, N-annulated perylene (NP) was used to functionalize the Zn-porphyrin, and four "push-pull"-type NP-substituted and fused porphyrin dyes with intense absorption in the visible and even in the near-infrared (NIR) region were synthesized. Co(II/III)-based DSC device characterizations revealed that dyes WW-5 and WW-6, in which an ethynylene spacer is incorporated between the NP and porphyrin core, showed pantochromatic photon-to-current conversion efficiency action spectra in the visible and NIR region, with a further red-shift of about 90 and 60 nm, respectively, compared to the benchmark molecule YD2-o-C8. As a result, the short-circuit current density was largely increased, and the devices displayed power conversion efficiencies as high as 10.3% and 10.5%, respectively, which is comparable to that of the YD2-o-C8 cell (η = 10.5%) under the same conditions. On the other hand, the dye WW-3 in which the NP unit is directly attached to the porphyrin core showed a moderate power conversion efficiency (η = 5.6%) due to the inefficient π-conjugation, and the NP-fused dye WW-4 exhibited even poorer performance due to its low-lying LUMO energy level and nondisjointed HOMO/LUMO profile. Our detailed physical measurements (optical and electrochemical), density functional theory calculations, and photovoltaic characterizations disclosed that the energy level alignment, the molecular orbital profile, and dye aggregation all played very important roles on the interface electron transfer and charge recombination kinetics. © 2013 American Chemical Society.

  13. N-annulated perylene as an efficient electron donor for porphyrin-based dyes: enhanced light-harvesting ability and high-efficiency Co(II/III)-based dye-sensitized solar cells.

    Science.gov (United States)

    Luo, Jie; Xu, Mingfei; Li, Renzhi; Huang, Kuo-Wei; Jiang, Changyun; Qi, Qingbiao; Zeng, Wangdong; Zhang, Jie; Chi, Chunyan; Wang, Peng; Wu, Jishan

    2014-01-08

    Porphyrin-based dyes recently have become good candidates for dye-sensitized solar cells (DSCs). However, the bottleneck is how to further improve their light-harvesting ability. In this work, N-annulated perylene (NP) was used to functionalize the Zn-porphyrin, and four "push-pull"-type NP-substituted and fused porphyrin dyes with intense absorption in the visible and even in the near-infrared (NIR) region were synthesized. Co(II/III)-based DSC device characterizations revealed that dyes WW-5 and WW-6, in which an ethynylene spacer is incorporated between the NP and porphyrin core, showed pantochromatic photon-to-current conversion efficiency action spectra in the visible and NIR region, with a further red-shift of about 90 and 60 nm, respectively, compared to the benchmark molecule YD2-o-C8. As a result, the short-circuit current density was largely increased, and the devices displayed power conversion efficiencies as high as 10.3% and 10.5%, respectively, which is comparable to that of the YD2-o-C8 cell (η = 10.5%) under the same conditions. On the other hand, the dye WW-3 in which the NP unit is directly attached to the porphyrin core showed a moderate power conversion efficiency (η = 5.6%) due to the inefficient π-conjugation, and the NP-fused dye WW-4 exhibited even poorer performance due to its low-lying LUMO energy level and nondisjointed HOMO/LUMO profile. Our detailed physical measurements (optical and electrochemical), density functional theory calculations, and photovoltaic characterizations disclosed that the energy level alignment, the molecular orbital profile, and dye aggregation all played very important roles on the interface electron transfer and charge recombination kinetics.

  14. Acute arsenious hydride intoxication. Four cases

    Energy Technology Data Exchange (ETDEWEB)

    Gosselin, B.; Mathieu, D.; Desprez-Nolf, M.; Cosson, A.; Goudemand, J.; Haguenoer, J.M.; Wattel, F.

    1982-02-06

    While engaged in the repair of a zinc furnace, 4 workers were accidentally exposed to arsenious hydride (AsH3) fumes. Acute intravascular haemolysis developed within a few hours. On admission, the patients immediately underwent exsanguino-transfusion; 8.2 to 10.2 l of blood were exchanged through a continuous perfusion pump at the rate of 1 l/hour. Two patients resumed diuresis during transfusion, but the other two required repeated haemodialysis. Between the 10th and 30th days, while renal function was gradually returning to normal, mildly megaloblastic anaemia developed. This was followed during the 3rd month by clinical and electric signs of polyneuritis of the lower and upper limbs, which subsequently regressed. Regular measurements of arsenic levels in the blood and urine were performed between and during exsanguino-transfusion and haemodialysis.

  15. Hydrogen desorption from nanostructured magnesium hydride composites

    Directory of Open Access Journals (Sweden)

    Brdarić Tanja P.

    2007-01-01

    Full Text Available The influence of 3d transition metal addition (Fe, Co and Ni on the desorption properties of magnesium hydride were studied. The ball milling of MgH2-3d metal blends was performed under Ar. Microstructural and morphological characterization were performed by XRD and SEM analysis, while the hydrogen desorption properties were investigated by DSC. The results show a strong correlation between the morphology and thermal stability of the composites. The complex desorption behavior (the existence of more than one desorption peak was correlated with the dispersion of the metal additive particles that appear to play the main role in the desorption. The desorption temperature can be reduced by more than 100 degrees if Fe is added as additive. The activation energy for H2 desorption from the MgH2-Fe composite is 120 kJ/mol, implying that diffusion controls the dehydration process.

  16. Review of magnesium hydride-based materials: development and optimisation

    NARCIS (Netherlands)

    Crivello, J. -C.; Dam, B.; Denys, R. V.; Dornheim, M.; Grant, D. M.; Huot, J.; Jensen, T. R.; de Jongh, P.|info:eu-repo/dai/nl/186125372; Latroche, M.; Milanese, C.; Milcius, D.; Walker, G. S.; Webb, C. J.; Zlotea, C.; Yartys, V. A.

    Magnesium hydride has been studied extensively for applications as a hydrogen storage material owing to the favourable cost and high gravimetric and volumetric hydrogen densities. However, its high enthalpy of decomposition necessitates high working temperatures for hydrogen desorption while the

  17. Direct observation of hydrides formation in cavity-grade niobium

    Directory of Open Access Journals (Sweden)

    F. Barkov

    2012-12-01

    Full Text Available Niobium is an important technological superconductor used to make radio frequency cavities for particle accelerators. Using laser confocal microscopy we have directly investigated hydride precipitates formation in cavity-grade niobium at 77 and 140 K. We have found that large hydrides were usually formed after chemical or mechanical treatments, which are known to lead to a strong degradation of the quality factor known as Q disease. From our experiments we can conclude that hydrides causing Q disease are islands with a characteristic thickness of ≳100  nm and in-plane dimensions 1–10  μm. Our results show that mechanical polishing uploads a lot of hydrogen into bulk niobium while electropolishing leads to a mild contamination. Vacuum treatments at 600–800°C are demonstrated to preclude large hydride formation in line with the absence of Q disease in similarly treated cavities.

  18. Materials science of Mg-Ni-based new hydrides

    Energy Technology Data Exchange (ETDEWEB)

    Orimo, S.; Fujii, H. [Hiroshima Univ. (Japan). Faculty of Integrated Arts and Sciences

    2001-02-01

    One of the advantageous functional properties of Mg alloys (or compounds) is to exhibit the reversible hydriding reaction. In this paper, we present our systematic studies regarding the relationship between nanometer- or atomistic-scale structures and the specific hydriding properties of the Mg-Ni binary system, such as(1) nanostructured (n)-Mg{sub 2}Ni, (2) a mixture of n-Mg{sub 2}Ni and amorphous (a)-MgNi,(3) pure a-MgNi, and(4) n-MgNi{sub 2}. Further studies on(5) an a-MgNi-based system for clarifying the effect of the short-range ordering on the structural and hydriding properties and(6) a MgNi{sub 2}-based system for synthesizing the new Laves phase structure are also presented. The materials science of Mg-Ni-based new hydrides will provide indispensable knowledge for practically developing the Mg alloys as hydrogen-storage materials. (orig.)

  19. Structure and bonding of second-row hydrides

    OpenAIRE

    Blinder, S. M.

    2014-01-01

    The atomic orbitals, hybridization and chemical bonding of the most common hydrides of boron, carbon, nitrogen and oxygen are described. This can be very instructive for beginning students in chemistry and chemical physics.

  20. Artificial exomuscle investigations for applications--metal hydride.

    Science.gov (United States)

    Crevier, Marie-Charlotte; Richard, Martin; Rittenhouse, D Matheson; Roy, Pierre-Olivier; Bédard, Stéphane

    2007-03-01

    In pursuing the development of bionic devices, Victhom identified a need for technologies that could replace current motorized systems and be better integrated into the human body motion. The actuators used to obtain large displacements are noisy, heavy, and do not adequately reproduce human muscle behavior. Subsequently, a project at Victhom was devoted to the development of active materials to obtain an artificial exomuscle actuator. An exhaustive literature review was done at Victhom to identify promising active materials for the development of artificial muscles. According to this review, metal hydrides were identified as a promising technology for artificial muscle development. Victhom's investigations focused on determining metal hydride actuator potential in the context of bionics technology. Based on metal hydride properties and artificial muscle requirements such as force, displacement and rise time, an exomuscle was built. In addition, a finite element model, including heat and mass transfer in the metal hydride, was developed and implemented in FEMLAB software.

  1. DETERMINATION OF METAL HYDRIDE SYSTEMS CHARACTERISTICS WHILE HEATING

    Directory of Open Access Journals (Sweden)

    Yu. Kluchka

    2012-01-01

    Full Text Available Experimental dependence of the pressure of hydrogen in the hydride cartridge when it is heated is obtained. Experimental data prove the theoretical values with an accuracy of ≈ 6%.

  2. Bipolar Nickel-Metal Hydride Battery Being Developed

    Science.gov (United States)

    Manzo, Michelle A.

    1998-01-01

    The NASA Lewis Research Center has contracted with Electro Energy, Inc., to develop a bipolar nickel-metal hydride battery design for energy storage on low-Earth-orbit satellites. The objective of the bipolar nickel-metal hydride battery development program is to approach advanced battery development from a systems level while incorporating technology advances from the lightweight nickel electrode field, hydride development, and design developments from nickel-hydrogen systems. This will result in a low-volume, simplified, less-expensive battery system that is ideal for small spacecraft applications. The goals of the program are to develop a 1-kilowatt, 28-volt (V), bipolar nickel-metal hydride battery with a specific energy of 100 watt-hours per kilogram (W-hr/kg), an energy density of 250 W-hr/liter and a 5-year life in low Earth orbit at 40-percent depth-of-discharge.

  3. High-pressure synthesis of noble metal hydrides.

    Science.gov (United States)

    Donnerer, Christian; Scheler, Thomas; Gregoryanz, Eugene

    2013-04-07

    The formation of hydride phases in the noble metals copper, silver, and gold was investigated by in situ x-ray diffraction at high hydrogen pressures. In the case of copper, a novel hexagonal hydride phase, Cu2H, was synthesised at pressures above 18.6 GPa. This compound exhibits an anti-CdI2-type structure, where hydrogen atoms occupy every second layer of octahedral interstitial sites. In contrast to chemically produced CuH, this phase does not show a change in compressibility compared to pure copper. Furthermore, repeated compression (after decomposition of Cu2H) led to the formation of cubic copper hydride at 12.5 GPa, a phenomenon attributed to an alteration of the microstructure during dehydrogenation. No hydrides of silver (up to 87 GPa) or gold (up to 113 GPa) were found at both room and high temperatures.

  4. Artificial exomuscle investigations for applications-metal hydride

    Energy Technology Data Exchange (ETDEWEB)

    Crevier, Marie-Charlotte; Richard, Martin; Rittenhouse, D Matheson; Roy, Pierre-Olivier; Bedard, Stephane [Victhom Human Bionics Inc., Saint-Augustin-de-Desmaures, QC (Canada)

    2007-03-01

    In pursuing the development of bionic devices, Victhom identified a need for technologies that could replace current motorized systems and be better integrated into the human body motion. The actuators used to obtain large displacements are noisy, heavy, and do not adequately reproduce human muscle behavior. Subsequently, a project at Victhom was devoted to the development of active materials to obtain an artificial exomuscle actuator. An exhaustive literature review was done at Victhom to identify promising active materials for the development of artificial muscles. According to this review, metal hydrides were identified as a promising technology for artificial muscle development. Victhom's investigations focused on determining metal hydride actuator potential in the context of bionics technology. Based on metal hydride properties and artificial muscle requirements such as force, displacement and rise time, an exomuscle was built. In addition, a finite element model, including heat and mass transfer in the metal hydride, was developed and implemented in FEMLAB software. (review article)

  5. Out-of-pile accelerated hydriding of Zircaloy fasteners

    Energy Technology Data Exchange (ETDEWEB)

    Clayton, J.C.

    1979-10-01

    Mechanical joints between Zircaloy and nickel-bearing alloys, mainly the Zircaloy-4/Inconel-600 combination, were exposed to water at 450/sup 0/F and 520/sup 0/F to study hydriding of Zircaloy in contact with a dissimilar metal. Accelerated hydriding of the Zircaloy occurred at both temperatures. At 450/sup 0/F the dissolved hydrogen level of the water was over ten times that at 520/sup 0/F. At 520/sup 0/F the initially high hydrogen ingress rate decreased rapidly as exposure time increased and was effectively shut off in about 25 days. Severely hydrided Zircaloy components successfully withstood thermal cycling and mechanical testing. Chromium plating of the nickel-bearing parts was found to be an effective and practical barrier in preventing nickel-alloy smearing and accelerated hydriding of Zircaloy.

  6. Hydrogen storage in sodium aluminum hydride.

    Energy Technology Data Exchange (ETDEWEB)

    Ozolins, Vidvuds; Herberg, J.L. (Lawrence Livermore National Laboratories, Livermore, CA); McCarty, Kevin F.; Maxwell, Robert S. (Lawrence Livermore National Laboratories, Livermore, CA); Stumpf, Roland Rudolph; Majzoub, Eric H.

    2005-11-01

    Sodium aluminum hydride, NaAlH{sub 4}, has been studied for use as a hydrogen storage material. The effect of Ti, as a few mol. % dopant in the system to increase kinetics of hydrogen sorption, is studied with respect to changes in lattice structure of the crystal. No Ti substitution is found in the crystal lattice. Electronic structure calculations indicate that the NaAlH{sub 4} and Na{sub 3}AlH{sub 6} structures are complex-ionic hydrides with Na{sup +} cations and AlH{sub 4}{sup -} and AlH{sub 6}{sup 3-} anions, respectively. Compound formation studies indicate the primary Ti-compound formed when doping the material at 33 at. % is TiAl{sub 3} , and likely Ti-Al compounds at lower doping rates. A general study of sorption kinetics of NaAlH{sub 4}, when doped with a variety of Ti-halide compounds, indicates a uniform response with the kinetics similar for all dopants. NMR multiple quantum studies of solution-doped samples indicate solvent interaction with the doped alanate. Raman spectroscopy was used to study the lattice dynamics of NaAlH{sub 4}, and illustrated the molecular ionic nature of the lattice as a separation of vibrational modes between the AlH{sub 4}{sup -} anion-modes and lattice-modes. In-situ Raman measurements indicate a stable AlH{sub 4}{sup -} anion that is stable at the melting temperature of NaAlH{sub 4}, indicating that Ti-dopants must affect the Al-H bond strength.

  7. Electronic structure of ternary hydrides based on light elements

    Energy Technology Data Exchange (ETDEWEB)

    Orgaz, E. [Departamento de Fisica y Quimica Teorica, Facultad de Quimica, Universidad Nacional Autonoma de Mexico, CP 04510 Coyoacan, Mexico, D.F. (Mexico)]. E-mail: orgaz@eros.pquim.unam.mx; Membrillo, A. [Departamento de Fisica y Quimica Teorica, Facultad de Quimica, Universidad Nacional Autonoma de Mexico, CP 04510 Coyoacan, Mexico, D.F. (Mexico); Castaneda, R. [Departamento de Fisica y Quimica Teorica, Facultad de Quimica, Universidad Nacional Autonoma de Mexico, CP 04510 Coyoacan, Mexico, D.F. (Mexico); Aburto, A. [Departamento de Fisica, Facultad de Ciencias, Universidad Nacional Autonoma de Mexico, CP 04510 Coyoacan, Mexico, D.F. (Mexico)

    2005-12-08

    Ternary hydrides based on light elements are interesting owing to the high available energy density. In this work we focused into the electronic structure of a series of known systems having the general formula AMH{sub 4}(A=Li,Na,M=B,Al). We computed the energy bands and the total and partial density of states using the linear-augmented plane waves method. In this report, we discuss the chemical bonding in this series of complex hydrides.

  8. Ab-Initio Study of the Group 2 Hydride Anions

    Science.gov (United States)

    Harris, Joe P.; Wright, Timothy G.; Manship, Daniel R.

    2013-06-01

    The beryllium hydride (BeH)- dimer has recently been shown to be surprisingly strongly bound, with an electronic structure which is highly dependent on internuclear separation. At the equilibrium distance, the negative charge is to be found on the beryllium atom, despite the higher electronegativity of the hydrogen. The current study expands this investigation to the other Group 2 hydrides, and attempts to explain these effects. M. Verdicchio, G. L. Bendazzoli, S. Evangelisti, T. Leininger J. Phys. Chem. A, 117, 192, (2013)

  9. Suppression of the critical temperature in binary vanadium hydrides

    Energy Technology Data Exchange (ETDEWEB)

    Dolan, M.D., E-mail: michael.dolan@csiro.au [CSIRO Energy Technology, 1 Technology Court, Pullenvale, QLD 4069 (Australia); McLennan, K.G. [CSIRO Energy Technology, 1 Technology Court, Pullenvale, QLD 4069 (Australia); Chandra, D. [Department of Chemical and Materials Engineering, University of Nevada, Reno, Reno, NV 89557 (United States); Kochanek, M.A. [CSIRO Energy Technology, 1 Technology Court, Pullenvale, QLD 4069 (Australia); Song, G. [CSIRO Process Science and Engineering, Gate 4, Normanby Rd, Clayton, VIC 3168 (Australia)

    2014-02-15

    Highlights: • Addition of 10 mol% Cr to V increases the β-hydride T{sub C} to >200 °C. • Addition of 10 mol% Ni to V increases the β-hydride T{sub C} to >400 °C. • Addition of 10 mol% Al to V decreases the β-hydride T{sub C} to <30 °C. • V{sub 90}Al{sub 10} membrane can be cycled to <30 °C under H{sub 2} without β-hydride formation. -- Abstract: The tendency of vanadium-based alloy membranes to embrittle is the biggest commercialisation barrier for this hydrogen separation technology. Excessive hydrogen absorption and the α → β hydride transition both contribute to brittle failure of these membranes. Alloying is known to reduce absorption, but the influence of alloying on hydride phase formation under conditions relevant to membrane operation has not been studied in great detail previously. Here, the effect of Cr, Ni, and Al alloying additions on V–H phase equilibrium has been studied using hydrogen absorption measurements and in situ X-ray diffraction studies. The addition of 10 mol% Ni increases the critical temperature for α + β hydride formation to greater than 400 °C, compared to 170 °C for V. Cr also increases the critical temperature, to between 200 and 300 °C. The addition of 10 mol% Al, however, suppresses the critical temperature to less than 30 °C, thereby enabling this material to be cycled thermally and hydrostatically while precluding formation of the β-hydride phase. This is despite Al also decreasing hydrogen absorption. The implication of this finding is that one of the mechanisms of brittle failure in vanadium-based hydrogen-selective membranes has been eliminated, thereby increasing the robustness of this material relative to V.

  10. Method of selective reduction of polyhalosilanes with alkyltin hydrides

    Science.gov (United States)

    Sharp, Kenneth G.; D'Errico, John J.

    1989-01-01

    The invention relates to the selective and stepwise reduction of polyhalosilanes by reacting at room temperature or below with alkyltin hydrides without the use of free radical intermediates. Alkyltin hydrides selectively and stepwise reduce the Si--Br, Si--Cl, or Si--I bonds while leaving intact any Si--F bonds. When two or more different halogens are present on the polyhalosilane, the halogen with the highest atomic weight is preferentially reduced.

  11. Method of selective reduction of halodisilanes with alkyltin hydrides

    Science.gov (United States)

    D'Errico, John J.; Sharp, Kenneth G.

    1989-01-01

    The invention relates to the selective and sequential reduction of halodisilanes by reacting these compounds at room temperature or below with trialkyltin hydrides or dialkyltin dihydrides without the use of free radical intermediates. The alkyltin hydrides selectively and sequentially reduce the Si-Cl, Si-Br or Si-I bonds while leaving intact the Si-Si and Si-F bonds present.

  12. Electronic structure and optical properties of lightweight metal hydrides

    NARCIS (Netherlands)

    Setten, van M.J.; Popa, V.A.; Wijs, de G.A.; Brocks, G.

    2007-01-01

    We study the dielectric functions of the series of simple hydrides LiH, NaH, MgH2, and AlH3, and of the complex hydrides Li3AlH6, Na3AlH6, LiAlH4, NaAlH4, and Mg(AlH4)2, using first-principles density-functional theory and GW calculations. All compounds are large gap insulators with GW single-partic

  13. Systems of donor transfer.

    Science.gov (United States)

    de Charro, F T; Akveld, H E; Hessing, D J

    1993-10-01

    The development of medical knowledge has resulted in a demand in society for donor organs, but the recruitment of donor organs for transplantation is difficult. This paper aims to provide some general insights into the complex interaction processes involved. A laissez-faire policy, in which market forces are relied on, is not acceptable from an ethical and legal point of view in most western European countries. Especially at the demand side of the exchange of donor organs, commercialism is to be opposed. We judge the use of commercial incentives at the supply side less unacceptable in theory but not feasible in western European countries. Since market forces are deemed unacceptable as instruments for coordinating demand and supply of donor organs, donor procurement has to be considered as a collective good, and therefore governments are faced with the responsibility of making sure that alternative interaction and distribution mechanisms function. The role of organ procurement agencies (OPAs) in societal interaction concerning postmortem organ donation is described using a two-dimensional conceptualisation scheme. Medical aspects of living organ donation are described. An international comparative description of legal systems to regulate living organ donation in western European countries completes this survey.

  14. Optimization of Hydride Rim Formation in Unirradiated Zr 4 Cladding

    Energy Technology Data Exchange (ETDEWEB)

    Shimskey, Rick W.; Hanson, Brady D.; MacFarlan, Paul J.

    2013-09-30

    The purpose of this work is to build on the results reported in the M2 milestone M2FT 13PN0805051, document number FCRD-USED-2013-000151 (Hanson, 2013). In that work, it was demonstrated that unirradiated samples of zircaloy-4 cladding could be pre-hydrided at temperatures below 400°C in pure hydrogen gas and that the growth of hydrides on the surface could be controlled by changing the surface condition of the samples and form a desired hydride rim on the outside diameter of the cladding. The work performed at Pacific Northwest National Laboratory since the issuing of the M2 milestone has focused its efforts to optimize the formation of a hydride rim on available zircaloy-4 cladding samples by controlling temperature variation and gas flow control during pre-hydriding treatments. Surface conditioning of the outside surface was also examined as a variable. The results of test indicate that much of the variability in the hydride thickness is due to temperature variation occurring in the furnaces as well as how hydrogen gas flows across the sample surface. Efforts to examine other alloys, gas concentrations, and different surface conditioning plan to be pursed in the next FY as more cladding samples become available

  15. Mechanochemical synthesis of nanostructured chemical hydrides in hydrogen alloying mills

    Energy Technology Data Exchange (ETDEWEB)

    Wronski, Z. [CANMET' s Materials Technology Laboratory, Natural Resources Canada, Ottawa (Canada) and Department of Mechanical Engineering, University of Waterloo, Waterloo, Ont., Canada N2L 3G1 (Canada)]. E-mail: zwronski@nrcan.gc.ca; Varin, R.A. [Department of Mechanical Engineering, University of Waterloo, Waterloo, Ont., Canada N2L 3G1 (Canada); Chiu, C. [Department of Mechanical Engineering, University of Waterloo, Waterloo, Ont., Canada N2L 3G1 (Canada); Czujko, T. [Department of Mechanical Engineering, University of Waterloo, Waterloo, Ont., Canada N2L 3G1 (Canada); Calka, A. [Department of Materials Science and Engineering, University of Wollongong, NSW 2518 (Australia)

    2007-05-31

    Mechanical alloying of magnesium metal powders with hydrogen in specialized hydrogen ball mills can be used as a direct route for mechanochemical synthesis of emerging chemical hydrides and hydride mixtures for advanced solid-state hydrogen storage. In the 2Mg-Fe system, we have successfully synthesized the ternary complex hydride Mg{sub 2}FeH{sub 6} in a mixture with nanometric Fe particles. The mixture of complex magnesium-iron hydride and nano-iron released 3-4 wt.%H{sub 2} in a thermally programmed desorption experiment at the range 285-295 {sup o}C. Milling of the Mg-2Al powder mixture revealed a strong competition between formation of the Al(Mg) solid solution and the {beta}-MgH{sub 2} hydride. The former decomposes upon longer milling as the Mg atoms react with hydrogen to form the hydride phase, and drive the Al out of the solid solution. The mixture of magnesium dihydride and nano-aluminum released 2.1 wt.%H{sub 2} in the temperature range 329-340 {sup o}C in the differential scanning calorimetry experiment. The formation of MgH{sub 2} was suppressed in the Mg-B system; instead, a hydrogenated amorphous phase (Mg,B)H {sub x}, was formed in a mixture with nanometric MgB{sub 2}. Annealing of the hydrogen-stabilized amorphous mixture produced crystalline MgB{sub 2}.

  16. Novel fuel cell stack with coupled metal hydride containers

    Science.gov (United States)

    Liu, Zhixiang; Li, Yan; Bu, Qingyuan; Guzy, Christopher J.; Li, Qi; Chen, Weirong; Wang, Cheng

    2016-10-01

    Air-cooled, self-humidifying hydrogen fuel cells are often used for backup and portable power sources, with a metal hydride used as the hydrogen storage material. To provide a stable hydrogen flow to the fuel cell stack, heat must be provided to the metal hydride. Conventionally, the heat released from the exothermic reaction of hydrogen and oxygen in the fuel cell stack to the exhaust air is used to heat a separate metal hydride container. In this case, the heat is only partially used instead of being more closely coupled because of the heat transfer resistances in the system. To achieve better heat integration, a novel scheme is proposed whereby hydrogen storage and single fuel cells are more closely coupled. Based on this idea, metal hydride containers in the form of cooling plates were assembled between each pair of cells in the stack so that the heat could be directly transferred to a metal hydride container of much larger surface-to-volume ratio than conventional separate containers. A heat coupled fuel cell portable power source with 10 cells and 11 metal hydride containers was constructed and the experimental results show that this scheme is beneficial for the heat management of fuel cell stack.

  17. The use of metal hydrides in fuel cell applications

    Directory of Open Access Journals (Sweden)

    Mykhaylo V. Lototskyy

    2017-02-01

    Full Text Available This paper reviews state-of-the-art developments in hydrogen energy systems which integrate fuel cells with metal hydride-based hydrogen storage. The 187 reference papers included in this review provide an overview of all major publications in the field, as well as recent work by several of the authors of the review. The review contains four parts. The first part gives an overview of the existing types of fuel cells and outlines the potential of using metal hydride stores as a source of hydrogen fuel. The second part of the review considers the suitability and optimisation of different metal hydrides based on their energy efficient thermal integration with fuel cells. The performances of metal hydrides are considered from the viewpoint of the reversible heat driven interaction of the metal hydrides with gaseous H2. Efficiencies of hydrogen and heat exchange in hydrogen stores to control H2 charge/discharge flow rates are the focus of the third section of the review and are considered together with metal hydride – fuel cell system integration issues and the corresponding engineering solutions. Finally, the last section of the review describes specific hydrogen-fuelled systems presented in the available reference data.

  18. Metal hydrides based high energy density thermal battery

    Energy Technology Data Exchange (ETDEWEB)

    Fang, Zhigang Zak, E-mail: zak.fang@utah.edu [Department of Metallurgical Engineering, The University of Utah, 135 South 1460 East, Room 412, Salt Lake City, UT 84112-0114 (United States); Zhou, Chengshang; Fan, Peng [Department of Metallurgical Engineering, The University of Utah, 135 South 1460 East, Room 412, Salt Lake City, UT 84112-0114 (United States); Udell, Kent S. [Department of Metallurgical Engineering, The University of Utah, 50 S. Central Campus Dr., Room 2110, Salt Lake City, UT 84112-0114 (United States); Bowman, Robert C. [Department of Metallurgical Engineering, The University of Utah, 135 South 1460 East, Room 412, Salt Lake City, UT 84112-0114 (United States); Vajo, John J.; Purewal, Justin J. [HRL Laboratories, LLC, 3011 Malibu Canyon Road, Malibu, CA 90265 (United States); Kekelia, Bidzina [Department of Metallurgical Engineering, The University of Utah, 50 S. Central Campus Dr., Room 2110, Salt Lake City, UT 84112-0114 (United States)

    2015-10-05

    Highlights: • The principle of the thermal battery using advanced metal hydrides was demonstrated. • The thermal battery used MgH{sub 2} and TiMnV as a working pair. • High energy density can be achieved by the use of MgH{sub 2} to store thermal energy. - Abstract: A concept of thermal battery based on advanced metal hydrides was studied for heating and cooling of cabins in electric vehicles. The system utilized a pair of thermodynamically matched metal hydrides as energy storage media. The pair of hydrides that was identified and developed was: (1) catalyzed MgH{sub 2} as the high temperature hydride material, due to its high energy density and enhanced kinetics; and (2) TiV{sub 0.62}Mn{sub 1.5} alloy as the matching low temperature hydride. Further, a proof-of-concept prototype was built and tested, demonstrating the potential of the system as HVAC for transportation vehicles.

  19. Metallographic and fractographic observations of hydrides during delayed hydride cracking in Zr-2.5% Nb alloy

    Energy Technology Data Exchange (ETDEWEB)

    Jovanovic, M.T.; Eadie, R.L. [Univ. of Alberta, Edmonton, Alberta (Canada). Dept. of Chemical and Materials Engineering; Shek, G.K.; Seahra, H. [Ontario Hydro Technologies, Toronto, Ontario (Canada)

    1998-01-01

    Potential drop measurements, optical microscopy, and scanning electron microscopy were performed to study the mechanism of delayed hydride cracking (DHC), the relation of the fracture to the hydride morphology, and the fractography of the DHC mechanism. The material used in this study was taken from modified extrusions of the material used to manufacture Zr-2.5% Nb pressure tubes. The material was electrolytically hydrided to approximately 60 {micro}g/g before testing. Cracking tests were carried out at 250 C with an applied K{sub 1} of 12 MPa {radical}m. The number of potential jumps was strongly correlated to the number of striations on the fracture surface. The results indicate that the DHC process occurs in these samples in an intermittent fashion. Brittle fracture is the operating fracture mechanism for the hydrides that cover most of the fracture surface, but there are some regions of ductile fracture both within the fracture and at the striations.

  20. Trialkylborane-Assisted CO(2) Reduction by Late Transition Metal Hydrides.

    Science.gov (United States)

    Miller, Alexander J M; Labinger, Jay A; Bercaw, John E

    2011-01-01

    Trialkylborane additives promote reduction of CO(2) to formate by bis(diphosphine) Ni(II) and Rh(III) hydride complexes. The late transition metal hydrides, which can be formed from dihydrogen, transfer hydride to CO(2) to give a formate-borane adduct. The borane must be of appropriate Lewis acidity: weaker acids do not show significant hydride transfer enhancement, while stronger acids abstract hydride without CO(2) reduction. The mechanism likely involves a pre-equilibrium hydride transfer followed by formation of a stabilizing formate-borane adduct.

  1. A quantitative phase field model for hydride precipitation in zirconium alloys: Part II. Modeling of temperature dependent hydride precipitation

    Energy Technology Data Exchange (ETDEWEB)

    Xiao, Zhihua [The Hong Kong Polytechnic University, Shenzhen Research Institute, Shenzhen (China); PolyU Base (Shenzhen) Limited, Shenzhen (China); Department of Mechanical Engineering, Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong (China); Hao, Mingjun [The Hong Kong Polytechnic University, Shenzhen Research Institute, Shenzhen (China); Department of Mechanical Engineering, Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong (China); Guo, Xianghua [State Key Laboratory of Explosion and Safety Science, Beijing Institute of Technology, Beijing 100081 (China); Tang, Guoyi [Advanced Materials Institute, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055 (China); Shi, San-Qiang, E-mail: mmsqshi@polyu.edu.hk [The Hong Kong Polytechnic University, Shenzhen Research Institute, Shenzhen (China); PolyU Base (Shenzhen) Limited, Shenzhen (China); Department of Mechanical Engineering, Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong (China)

    2015-04-15

    A quantitative free energy functional developed in Part I (Shi and Xiao, 2014 [1]) was applied to model temperature dependent δ-hydride precipitation in zirconium in real time and real length scale. At first, the effect of external tensile load on reorientation of δ-hydrides was calibrated against experimental observations, which provides a modification factor for the strain energy in free energy formulation. Then, two types of temperature-related problems were investigated. In the first type, the effect of temperature transient was studied by cooling the Zr–H system at different cooling rates from high temperature while an external tensile stress was maintained. At the end of temperature transients, the average hydride size as a function of cooling rate was compared to experimental data. In the second type, the effect of temperature gradients was studied in a one or two dimensional temperature field. Different boundary conditions were applied. The results show that the hydride precipitation concentrated in low temperature regions and that it eventually led to the formation of hydride blisters in zirconium. A brief discussion on how to implement the hysteresis of hydrogen solid solubility on hydride precipitation and dissolution in the developed phase field scheme is also presented.

  2. Cross-Species Analysis of Protein Dynamics Associated with Hydride and Proton Transfer in the Catalytic Cycle of the Light-Driven Enzyme Protochlorophyllide Oxidoreductase.

    Science.gov (United States)

    Hoeven, Robin; Hardman, Samantha J O; Heyes, Derren J; Scrutton, Nigel S

    2016-02-16

    Experimental interrogation of the relationship between protein dynamics and enzyme catalysis is challenging. Light-activated protochlorophyllide oxidoreductase (POR) is an excellent model for investigating this relationship because photoinitiation of the reaction cycle enables coordinated turnover in a "dark-assembled" ternary enzyme-substrate complex. The catalytic cycle involves sequential hydride and proton transfers (from NADPH and an active site tyrosine residue, respectively) to the substrate protochlorophyllide. Studies with a limited cross-species subset of POR enzymes (n = 4) have suggested that protein dynamics associated with hydride and proton transfer are distinct [Heyes, D. J., Levy, C., Sakuma, M., Robertson, D. L., and Scrutton, N. S. (2011) J. Biol. Chem. 286, 11849-11854]. Here, we use steady-state assays and single-turnover laser flash spectroscopy to analyze hydride and proton transfer dynamics in an extended series of POR enzymes taken from many species, including cyanobacteria, algae, embryophytes, and angiosperms. Hydride/proton transfer in all eukaryotic PORs is faster compared to prokaryotic PORs, suggesting active site architecture has been optimized in eukaryotic PORs following endosymbiosis. Visible pump-probe spectroscopy was also used to demonstrate a common photoexcitation mechanism for representative POR enzymes from different branches of the phylogenetic tree. Dynamics associated with hydride transfer are localized to the active site of all POR enzymes and are conserved. However, dynamics associated with proton transfer are variable. Protein dynamics associated with proton transfer are also coupled to solvent dynamics in cyanobacterial PORs, and these networks are likely required to optimize (shorten) the donor-acceptor distance for proton transfer. These extended networks are absent in algal and plant PORs. Our analysis suggests that extended networks of dynamics are disfavored, possibly through natural selection. Implications for

  3. Square-Planar Alkylidyne-Osmium and Five-Coordinate Alkylidene-Osmium Complexes: Controlling the Transformation from Hydride-Alkylidyne to Alkylidene.

    Science.gov (United States)

    Buil, María L; Cardo, Juan J F; Esteruelas, Miguel A; Oñate, Enrique

    2016-08-03

    Square-planar alkylidyne and five-coordinate alkylidene mixed (i)Pr3P-Os-IPr (IPr = 1,3-bis(diisopropylphenyl)imidazolylidene) complexes have been discovered and characterized, and their formation has been rationalized. The cationic five-coordinate hydride-alkylidyne compounds [OsHX(≡CPh)(IPr)(P(i)Pr3)]OTf (X = Cl (1), F (4); OTf = CF3SO3) undergo deprotonation with KO(t)Bu to afford the trans-halide-alkylidyne square-planar derivatives OsX(≡CPh)(IPr)(P(i)Pr3) (X = Cl (2), F (5)). Oxidative addition of the C(sp)-H bond of phenylacetylene and methyl propiolate along the Cl-Os-CPh axis of 2 with the hydrogen atom directed to the alkylidyne leads to alkynyl-cis-hydride-alkylidyne intermediates, which rapidly evolve into the five-coordinate alkylidene complexes Os(C≡CR)Cl(═CHPh)(IPr)(P(i)Pr3) (R = Ph (6), CO2Me (7)) as a consequence of the migration of the hydride from the metal center to the Cα atom of the alkylidyne. Oxidative addition of the C(sp)-H bond of methyl propiolate along the X-Os-CPh axis of 2 and 5 with the hydrogen atom directed to the halide gives the alkynyl-trans-hydride-alkylidyne derivatives OsH(C≡CCO2Me)X(≡CPh)(IPr)(P(i)Pr3) (X = Cl (8), F (9)). Complex 8 evolves into 7. However, complex 9 containing the stronger π-donor fluoride is stable. The oxidative addition of HCl to 2 selectively yields the cis-hydride-alkylidyne compound OsHCl2(≡CPh)(IPr)(P(i)Pr3) (10), which is also stable.

  4. Steric Effect for Proton, Hydrogen-Atom, andHydride Transfer Reactions with Geometric Isomers of NADH-Model Ruthenium Complexes

    Energy Technology Data Exchange (ETDEWEB)

    Fujita E.; Cohen, B.W.; Polyansky, D.E.; Achord, P.; Cabelli, D.; Muckerman, J.T.; Tanaka, K.; Thummel, R.P.; Zong, R.

    2012-01-01

    Two isomers, [Ru(1)]{sup 2+} (Ru = Ru(bpy){sub 2}, bpy = 2,2{prime}-bipyridine, 1 = 2-(pyrid-2{prime}-yl)-1-azaacridine) and [Ru(2)]{sup 2+} (2 = 3-(pyrid-2{prime}-yl)-4-azaacridine), are bio-inspired model compounds containing the nicotinamide functionality and can serve as precursors for the photogeneration of C-H hydrides for studying reactions pertinent to the photochemical reduction of metal-C{sub 1} complexes and/or carbon dioxide. While it has been shown that the structural differences between the azaacridine ligands of [Ru(1)]{sup 2+} and [Ru(2)]{sup 2+} have a significant effect on the mechanism of formation of the hydride donors, [Ru(1HH)]{sup 2+} and [Ru(2HH)]{sup 2+}, in aqueous solution, we describe the steric implications for proton, net-hydrogen-atom and net-hydride transfer reactions in this work. Protonation of [Ru(2{sup {sm_bullet}-})]{sup +} in aprotic and even protic media is slow compared to that of [Ru(1{sup {sm_bullet}-})]{sup +}. The net hydrogen-atom transfer between *[Ru(1)]{sup 2+} and hydroquinone (H{sub 2}Q) proceeds by one-step EPT, rather than stepwise electron-proton transfer. Such a reaction was not observed for *[Ru(2)]{sup 2+} because the non-coordinated N atom is not easily available for an interaction with H{sub 2}Q. Finally, the rate of the net hydride ion transfer from [Ru(1HH)]{sup 2+} to [Ph{sub 3}C]{sup +} is significantly slower than that of [Ru(2HH)]{sup 2+} owing to steric congestion at the donor site.

  5. Designing metal hydride complexes for water splitting reactions: a molecular electrostatic potential approach.

    Science.gov (United States)

    Sandhya, K S; Suresh, Cherumuttathu H

    2014-08-28

    The hydridic character of octahedral metal hydride complexes of groups VI, VII and VIII has been systematically studied using molecular electrostatic potential (MESP) topography. The absolute minimum of MESP at the hydride ligand (Vmin) and the MESP value at the hydride nucleus (VH) are found to be very good measures of the hydridic character of the hydride ligand. The increasing/decreasing electron donating feature of the ligand environment is clearly reflected in the increasing/decreasing negative character of Vmin and VH. The formation of an outer sphere metal hydride-water complex showing the HH dihydrogen interaction is supported by the location and the value of Vmin near the hydride ligand. A higher negative MESP suggested lower activation energy for H2 elimination. Thus, MESP features provided a way to fine-tune the ligand environment of a metal-hydride complex to achieve high hydridicity for the hydride ligand. The applicability of an MESP based hydridic descriptor in designing water splitting reactions is tested for group VI metal hydride model complexes of tungsten.

  6. Chemical Hydride Slurry for Hydrogen Production and Storage

    Energy Technology Data Exchange (ETDEWEB)

    McClaine, Andrew W

    2008-09-30

    The purpose of this project was to investigate and evaluate the attractiveness of using a magnesium chemical hydride slurry as a hydrogen storage, delivery, and production medium for automobiles. To fully evaluate the potential for magnesium hydride slurry to act as a carrier of hydrogen, potential slurry compositions, potential hydrogen release techniques, and the processes (and their costs) that will be used to recycle the byproducts back to a high hydrogen content slurry were evaluated. A 75% MgH2 slurry was demonstrated, which was just short of the 76% goal. This slurry is pumpable and storable for months at a time at room temperature and pressure conditions and it has the consistency of paint. Two techniques were demonstrated for reacting the slurry with water to release hydrogen. The first technique was a continuous mixing process that was tested for several hours at a time and demonstrated operation without external heat addition. Further work will be required to reduce this design to a reliable, robust system. The second technique was a semi-continuous process. It was demonstrated on a 2 kWh scale. This system operated continuously and reliably for hours at a time, including starts and stops. This process could be readily reduced to practice for commercial applications. The processes and costs associated with recycling the byproducts of the water/slurry reaction were also evaluated. This included recovering and recycling the oils of the slurry, reforming the magnesium hydroxide and magnesium oxide byproduct to magnesium metal, hydriding the magnesium metal with hydrogen to form magnesium hydride, and preparing the slurry. We found that the SOM process, under development by Boston University, offers the lowest cost alternative for producing and recycling the slurry. Using the H2A framework, a total cost of production, delivery, and distribution of $4.50/kg of hydrogen delivered or $4.50/gge was determined. Experiments performed at Boston

  7. BLOOD DONORS CAMPAIGN

    CERN Multimedia

    2001-01-01

    A blood donors campaign, organized by the Centre de Transfusion Sanguine of Geneva will be held at CERN on Tuesday 13 March 2001 in restaurant nr 2, from 9.00 to 16.30 hrs If you already have a card giving your blood group, please bring this with you.

  8. BLOOD DONORS CAMPAIGN

    CERN Multimedia

    2001-01-01

    A blood donors campaign, organized by the Centre de Transfusion d'Annemasse will be held at CERN on Tuesday 14 November 2001 in restaurant nr 2, from 9.00 to 16.30 hrs If you already have a card giving your blood group, please bring this with you.

  9. BLOOD DONORS CAMPAIGN

    CERN Multimedia

    Medical Service

    2002-01-01

    Tuesday 19 March 2002 in restaurant nr 2, from 9.00 to 16.30 hrs A blood donors campaign, organized by the Centre de Transfusion sanguine of Geneva If you already have a card giving your blood group, please bring this with you.

  10. BLOOD DONORS CAMPAIGN

    CERN Document Server

    2000-01-01

    A blood donors campaign, organized by the Établissement de Transfusion de Rhône-Alpes will be held at CERN on Tuesday 14 November 2000 in restaurant nr 2, from 8.30 to 16.30 hrs If you already have a card giving your blood group, please bring this with you.

  11. BLOOD DONORS CAMPAIGN

    CERN Document Server

    2002-01-01

    Wednesday 13 November 2002 in restaurant nr 2, from 8.30 to 16.30 hrs will be held a blood donors campaign, organized by the Etablissement de Transfusion de Haute-Savoie If you already have a card giving your blood group, please bring this with you.

  12. Nyretransplantation med levende donor

    DEFF Research Database (Denmark)

    Kamper, A L; Løkkegaard, H; Rasmussen, F

    2000-01-01

    with only few complications. The long-term outcome for kidney donors is good without increase in mortality or risk for development of hypertension and renal failure; proteinuria may be seen. Living kidney transplantation is the optimal treatment of end-stage renal disease with better graft survival than...

  13. Hydriding and Dehydriding Properties of Zinc Borohydride, Nickel, and Titanium-Added Magnesium Hydride

    Energy Technology Data Exchange (ETDEWEB)

    Kwak, Young Jun; Kwon, Sung Nam; Song, Myoung Youp [Chonbuk National University, Jeonju (Korea, Republic of)

    2015-11-15

    A Zn(BH{sub 4}){sub 2} sample was prepared by milling ZnCl{sub 2} and NaBH{sub 4} in a planetary ball mill under Ar gas. This sample contained NaCl. Then, 90 wt% MgH{sub 2}-5 wt% Zn(BH{sub 4}){sub 2}-2.5 wt% Ni-2.5 wt% Ti samples [named 90MgH{sub 2}-5Zn(BH{sub 4}){sub 2}-2.5Ni-2.5Ti] were prepared by milling in a planetary ball mill under H{sub 2} gas. The hydrogen absorption and release properties of the prepared samples were investigated. In particular, the variations of the initial hydriding and dehydriding rates with temperature were examined. SEM micrographs and XRD patterns of 90MgH{sub 2}-5Zn(BH{sub 4}){sub 2}-2.5Ni-2.5Ti after reactive mechanical grinding and after hydriding-dehydriding were also studied. Particle size distributions and BET specific surface areas of 90MgH{sub 2}-5Zn(BH{sub 4}){sub 2}-2.5Ni-2.5Ti after reactive mechanical grinding and after 11 hydriding-dehydriding cycles were analyzed. The 90MgH{sub 2}-5Zn(BH{sub 4}){sub 2}-2.5Ni-2.5Ti had an effective hydrogen storage capacity (the quantity of hydrogen absorbed for 60 min) of near 5 wt% (4.91 wt% at 593 K).

  14. Hydrogen storage as a hydride. Citations from the International Aerospace Abstracts data base

    Science.gov (United States)

    Zollars, G. F.

    1980-01-01

    These citations from the international literature concern the storage of hydrogen in various metal hydrides. Binary and intermetallic hydrides are considered. Specific alloys discussed are iron titanium, lanthanium nickel, magnesium copper and magnesium nickel among others.

  15. Hydrogen storage as a hydride. Citations from the International Aerospace Abstracts data base

    Science.gov (United States)

    Zollars, G. F.

    1980-01-01

    These citations from the international literature concern the storage of hydrogen in various metal hydrides. Binary and intermetallic hydrides are considered. Specific alloys discussed are iron titanium, lanthanium nickel, magnesium copper and magnesium nickel among others.

  16. Numerical simulation and performance test of metal hydride hydrogen storage system

    Directory of Open Access Journals (Sweden)

    Tzu-Hsiang Yen, Bin-Hao Chen, Bao-Dong Chen

    2011-05-01

    Full Text Available Metal hydride reactors are widely used in many industrial applications, such as hydrogen storage, thermal compression, heat pump, etc. According to the research requirement of metal hydride hydrogen storage, the thermal analyses have been implemented in the paper. The metal hydride reaction beds are considered as coupled cylindrical tube modules which combine the chemical absorption and desorption in metal hydride. The model is then used metal hydride LaNi5 as an example to predict the performance of metal hydride hydrogen storage devices, such as the position of hydration front and the thermal flux. Under the different boundary condition the characteristics of heat transfer and mass transfer in metal hydride have influence on the hydrogen absorption and desorption. The researches revealed that the scroll design can improve the temperature distribution in the reactor and the porous tube for directing hydrogen can increase the penetration depth of hydride reaction to decrease the hydrogen absorption time.

  17. Micro-scale fracture experiments on zirconium hydrides and phase boundaries

    Science.gov (United States)

    Chan, H.; Roberts, S. G.; Gong, J.

    2016-07-01

    Fracture properties of micro-scale zirconium hydrides and phase boundaries were studied using microcantilever testing methods. FIB-machined microcantilevers were milled on cross-sectional surfaces of hydrided samples, with the most highly-stressed regions within the δ-hydride film, within the α-Zr or along the Zr-hydride interface. Cantilevers were notched using the FIB and then tested in bending using a nanoindenter. Load-displacement results show that three types of cantilevers have distinct deformation properties. Zr cantilevers deformed plastically. Hydride cantilevers fractured after a small amount of plastic flow; the fracture toughness of the δ-hydride was found to be 3.3 ± 0.4 MPam1/2 and SEM examination showed transgranular cleavage on the fracture surfaces. Cantilevers notched at the Zr-hydride interface developed interfacial voids during loading, at loads considerably lower than that which initiate brittle fracture of hydrides.

  18. Investigation of Cracked Lithium Hydride Reactor Vessels

    Energy Technology Data Exchange (ETDEWEB)

    bird, e.l.; mustaleski, t.m.

    1999-06-01

    Visual examination of lithium hydride reactor vessels revealed cracks that were adjacent to welds, most of which were circumferentially located in the bottom portion of the vessels. Sections were cut from the vessels containing these cracks and examined by use of the metallograph, scanning electron microscope, and microprobe to determine the cause of cracking. Most of the cracks originated on the outer surface just outside the weld fusion line in the base material and propagated along grain boundaries. Crack depths of those examined sections ranged from {approximately}300 to 500 {micro}m. Other cracks were reported to have reached a maximum depth of 1/8 in. The primary cause of cracking was the creation of high tensile stresses associated with the differences in the coefficients of thermal expansion between the filler metal and the base metal during operation of the vessel in a thermally cyclic environment. This failure mechanism could be described as creep-type fatigue, whereby crack propagation may have been aided by the presence of brittle chromium carbides along the grain boundaries, which indicates a slightly sensitized microstructure.

  19. Transition-Metal Hydride Radical Cations.

    Science.gov (United States)

    Hu, Yue; Shaw, Anthony P; Estes, Deven P; Norton, Jack R

    2016-08-10

    Transition-metal hydride radical cations (TMHRCs) are involved in a variety of chemical and biochemical reactions, making a more thorough understanding of their properties essential for explaining observed reactivity and for the eventual development of new applications. Generally, these species may be treated as the ones formed by one-electron oxidation of diamagnetic analogues that are neutral or cationic. Despite the importance of TMHRCs, the generally sensitive nature of these complexes has hindered their development. However, over the last four decades, many more TMHRCs have been synthesized, characterized, isolated, or hypothesized as reaction intermediates. This comprehensive review focuses on experimental studies of TMHRCs reported through the year 2014, with an emphasis on isolated and observed species. The methods used for the generation or synthesis of TMHRCs are surveyed, followed by a discussion about the stability of these complexes. The fundamental properties of TMHRCs, especially those pertaining to the M-H bond, are described, followed by a detailed treatment of decomposition pathways. Finally, reactions involving TMHRCs as intermediates are described.

  20. Metal hydride heat pump engineering demonstration and evaluation model

    Science.gov (United States)

    Lynch, Franklin E.

    1993-01-01

    Future generations of portable life support systems (PLSS's) for space suites (extravehicular mobility units or EMU's) may require regenerable nonventing thermal sinks (RNTS's). For purposes of mobility, a PLSS must be as light and compact as possible. Previous venting PLSS's have employed water sublimators to reject metabolic and equipment heat from EMU's. It is desirable for long-duration future space missions to minimize the use of water and other consumables that need to be periodically resupplied. The emission of water vapor also interferes with some types of instrumentation that might be used in future space exploration. The test article is a type of RNTS based on a metal hydride heat pump (MHHP). The task of reservicing EMU's after use must be made less demanding in terms of time, procedures, and equipment. The capability for quick turnaround post-EVA servicing (30 minutes) is a challenging requirement for many of the RNTS options. The MHHP is a very simple option that can be regenerated in the airlock within the 30 minute limit by the application of a heating source and a cooling sink. In addition, advanced PLSS's must provide a greater degree of automatic control, relieving astronauts of the need to manually adjust temperatures in their liquid cooled ventilation garments (LCVG's). The MHHP includes automatic coolant controls with the ability to follow thermal load swings from minimum to maximum in seconds. The MHHP includes a coolant loop subsystem with pump and controls, regeneration equipment for post-EVA servicing, and a PC-based data acquisition and control system (DACS).

  1. Living Kidney Donors and ESRD

    OpenAIRE

    Ross, Lainie Friedman

    2015-01-01

    There are over 325 living kidney donors who have developed end-stage renal disease (ESRD) and have been listed on the Organ Procurement and Transplantation Network (OPTN)/United Network for Organ Sharing (UNOS) deceased donor kidney wait list. The OPTN/UNOS database records where these kidney donors are listed and, if they donated after April 1994, where that donation occurred. These two locations are often not the same. In this commentary, I examine whether a national living donor registry s...

  2. Comparison of the interactions in the rare gas hydride and Group 2 metal hydride anions.

    Science.gov (United States)

    Harris, Joe P; Manship, Daniel R; Breckenridge, W H; Wright, Timothy G

    2014-02-28

    We study both the rare gas hydride anions, RG-H(-) (RG = He-Rn) and Group 2 (Group IIa) metal hydride anions, MIIaH(-) (MIIa = Be-Ra), calculating potential energy curves at the CCSD(T) level with augmented quadruple and quintuple basis sets, and extrapolating the results to the basis set limit. We report spectroscopic parameters obtained from these curves; additionally, we study the Be-He complex. While the RG-H(-) and Be-He species are weakly bound, we show that, as with the previously studied BeH(-) and MgH(-) species, the other MIIaH(-) species are strongly bound, despite the interactions nominally also being between two closed shell species: M(ns(2)) and H(-)(1s(2)). We gain insight into the interactions using contour plots of the electron density changes and population analyses. For both series, the calculated dissociation energy is significantly less than the ion/induced-dipole attraction term, confirming that electron repulsion is important in these species; this effect is more dramatic for the MIIaH(-) species than for RG-H(-). Our analyses lead us to conclude that the stronger interaction in the case of the MIIaH(-) species arises from sp and spd hybridization, which allows electron density on the MIIa atom to move away from the incoming H(-).

  3. Multidimensional simulations of hydrides during fuel rod lifecycle

    Science.gov (United States)

    Stafford, D. S.

    2015-11-01

    In light water reactor fuel rods, waterside corrosion of zirconium-alloy cladding introduces hydrogen into the cladding, where it is slightly soluble. When the solubility limit is reached, the hydrogen precipitates into crystals of zirconium hydride which decrease the ductility of the cladding and may lead to cladding failure during dry storage or transportation events. The distribution of the hydride phase and the orientation of the crystals depend on the history of the spatial temperature and stress profiles in the cladding. In this work, we have expanded the existing hydride modeling capability in the BISON fuel performance code with the goal of predicting both global and local effects on the radial, azimuthal and axial distribution of the hydride phase. We compare results from 1D simulations to published experimental data. We demonstrate the new capability by simulating in 2D a fuel rod throughout a lifecycle that includes irradiation, short-term storage in the spent fuel pool, drying, and interim storage in a dry cask. Using the 2D simulations, we present qualitative predictions of the effects of the inter-pellet gap and the drying conditions on the growth of a hydride rim.

  4. The effect of stress state on zirconium hydride reorientation

    Science.gov (United States)

    Cinbiz, Mahmut Nedim

    Prior to storage in a dry-cask facility, spent nuclear fuel must undergo a vacuum drying cycle during which the spent fuel rods are heated up to elevated temperatures of ≤ 400°C to remove moisture the canisters within the cask. As temperature increases during heating, some of the hydride particles within the cladding dissolve while the internal gas pressure in fuel rods increases generating multi-axial hoop and axial stresses in the closed-end thin-walled cladding tubes. As cool-down starts, the hydrogen in solid solution precipitates as hydride platelets, and if the multiaxial stresses are sufficiently large, the precipitating hydrides reorient from their initial circumferential orientation to radial orientation. Radial hydrides can severely embrittle the spent nuclear fuel cladding at low temperature in response to hoop stress loading. Because the cladding can experience a range of stress states during the thermo-mechanical treatment induced during vacuum drying, this study has investigated the effect of stress state on the process of hydride reorientation during controlled thermo-mechanical treatments utilizing the combination of in situ X-ray diffraction and novel mechanical testing analyzed by the combination of metallography and finite element analysis. The study used cold worked and stress relieved Zircaloy-4 sheet containing approx. 180 wt. ppm hydrogen as its material basis. The failure behavior of this material containing radial hydrides was also studied over a range of temperatures. Finally, samples from reactor-irradiated cladding tubes were examined by X-ray diffraction using synchrotron radiation. To reveal the stress state effect on hydride reorientation, the critical threshold stress to reorient hydrides was determined by designing novel mechanical test samples which produce a range of stress states from uniaxial to "near-equibiaxial" tension when a load is applied. The threshold stress was determined after thermo-mechanical treatments by

  5. Sodium-based hydrides for thermal energy applications

    Science.gov (United States)

    Sheppard, D. A.; Humphries, T. D.; Buckley, C. E.

    2016-04-01

    Concentrating solar-thermal power (CSP) with thermal energy storage (TES) represents an attractive alternative to conventional fossil fuels for base-load power generation. Sodium alanate (NaAlH4) is a well-known sodium-based complex metal hydride but, more recently, high-temperature sodium-based complex metal hydrides have been considered for TES. This review considers the current state of the art for NaH, NaMgH3- x F x , Na-based transition metal hydrides, NaBH4 and Na3AlH6 for TES and heat pumping applications. These metal hydrides have a number of advantages over other classes of heat storage materials such as high thermal energy storage capacity, low volume, relatively low cost and a wide range of operating temperatures (100 °C to more than 650 °C). Potential safety issues associated with the use of high-temperature sodium-based hydrides are also addressed.

  6. Comparison of Hydrogen Elimination from Molecular Zinc and Magnesium Hydride Clusters

    NARCIS (Netherlands)

    Intemann, J.; Sirsch, Peter; Harder, Sjoerd

    2014-01-01

    In analogy to the previously reported tetranuclear magnesium hydride cluster with a bridged dianionic bis-beta-diketiminate ligand, a related zinc hydride cluster has been prepared. The crystal structures of these magnesium and zinc hydride complexes are similar: the metal atoms are situated at the

  7. Use of triammonium salt of aurin tricarboxylic acid as risk mitigant for aluminum hydride

    Science.gov (United States)

    Cortes-Concepcion, Jose A.; Anton, Donald L.

    2017-08-08

    A process and a resulting product by process of an aluminum hydride which is modified with by physically combining in a ball milling process an aluminum hydride with a triammonium salt of aurin tricarboxylic acid. The resulting product is an aluminum hydride which is resistant to air, ambient moisture, and liquid water while maintaining useful hydrogen storage and release kinetics.

  8. Comparison of Hydrogen Elimination from Molecular Zinc and Magnesium Hydride Clusters

    NARCIS (Netherlands)

    Intemann, J.; Sirsch, Peter; Harder, Sjoerd

    2014-01-01

    In analogy to the previously reported tetranuclear magnesium hydride cluster with a bridged dianionic bis-beta-diketiminate ligand, a related zinc hydride cluster has been prepared. The crystal structures of these magnesium and zinc hydride complexes are similar: the metal atoms are situated at the

  9. Investigation of metal hydride materials as hydrogen reservoirs for metal-hydrogen batteries

    Science.gov (United States)

    ONISCHAK

    1976-01-01

    The performance and suitability of various metal hydride materials were examined for use as possible hydrogen storage reservoirs for secondary metal-hydrogen batteries. Lanthanum pentanickel hydride appears as a probable candidate in terms of stable hydrogen supply under feasible thermal conditions. A kinetic model describing the decomposition rate data of the hydride has been developed.

  10. A study of advanced magnesium-based hydride and development of a metal hydride thermal battery system

    Science.gov (United States)

    Zhou, Chengshang

    Metal hydrides are a group of important materials known as energy carriers for renewable energy and thermal energy storage. A concept of thermal battery based on advanced metal hydrides is studied for heating and cooling of cabins in electric vehicles. The system utilizes a pair of thermodynamically matched metal hydrides as energy storage media. The hot hydride that is identified and developed is catalyzed MgH2 due to its high energy density and enhanced kinetics. TiV0.62Mn1.5, TiMn2, and LaNi5 alloys are selected as the matching cold hydride. A systematic experimental survey is carried out in this study to compare a wide range of additives including transitions metals, transition metal oxides, hydrides, intermetallic compounds, and carbon materials, with respect to their effects on dehydrogenation properties of MgH2. The results show that additives such as Ti and V-based metals, hydride, and certain intermetallic compounds have strong catalytic effects. Solid solution alloys of magnesium are exploited as a way to destabilize magnesium hydride thermodynamically. Various elements are alloyed with magnesium to form solid solutions, including indium and aluminum. Thermodynamic properties of the reactions between the magnesium solid solution alloys and hydrogen are investigated, showing that all the solid solution alloys that are investigated in this work have higher equilibrium hydrogen pressures than that of pure magnesium. Cyclic stability of catalyzed MgH2 is characterized and analyzed using a PCT Sievert-type apparatus. Three systems, including MgH2-TiH 2, MgH2-TiMn2, and MgH2-VTiCr, are examined. The hydrogenating and dehydrogenating kinetics at 300°C are stable after 100 cycles. However, the low temperature (25°C to 150°C) hydrogenation kinetics suffer a severe degradation during hydrogen cycling. Further experiments confirm that the low temperature kinetic degradation can be mainly related the extended hydrogenation-dehydrogenation reactions. Proof

  11. Iron Hydride Detection and Intramolecular Hydride Transfer in a Synthetic Model of Mono-Iron Hydrogenase with a CNS Chelate.

    Science.gov (United States)

    Durgaprasad, Gummadi; Xie, Zhu-Lin; Rose, Michael J

    2016-01-19

    We report the identification and reactivity of an iron hydride species in a synthetic model complex of monoiron hydrogenase. The hydride complex is derived from a phosphine-free CNS chelate that includes a Fe-C(NH)(═O) bond (carbamoyl) as a mimic of the active site iron acyl. The reaction of [((O═)C(HN)N(py)S(Me))Fe(CO)2(Br)] (1) with NaHBEt3 generates the iron hydride intermediate [((O═)C(HN)N(py)S(Me))Fe(H)(CO)2] (2; δFe-H = -5.08 ppm). Above -40 °C, the hydride species extrudes CH3S(-) via intramolecular hydride transfer, which is stoichiometrically trapped in the structurally characterized dimer μ2-(CH3S)2-[((O═)C(HN)N(Ph))Fe(CO)2]2 (3). Alternately, when activated by base ((t)BuOK), 1 undergoes desulfurization to form a cyclometalated species, [((O═)C(NH)NC(Ph))Fe(CO)2] (5); derivatization of 5 with PPh3 affords the structurally characterized species [((O═)C(NH)NC)Fe(CO)(PPh3)2] (6), indicating complex 6 as the common intermediate along each pathway of desulfurization.

  12. Simultaneous determination of hydride and non-hydride forming elements by inductively coupled plasma optical emission spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Benzo, Z. [Instituto Venezolano de Investigaciones Cientificas, IVIC, Altos de Pipe, Caracas (Venezuela, Bolivarian Republic of); Matos-Reyes, M.N.; Cervera, M.L.; Guardia, M. de la, E-mail: m.luisa.cervera@uv.es [Department of Analytical Chemistry, University of Valencia, Valencia (Spain)

    2011-09-15

    The operating characteristics of a dual nebulization system were studied including instrumental and chemical conditions for the hydride generation and analytical figures of merit for both, hydride and non hydride forming elements. Analytical performance of the nebulization system was characterized by detection limits from 0.002 to 0.0026 {mu}g mL{sup -1} for the hydride forming elements and between 0.0034 and 0.0121 {mu}g mL{sup -1} for the non-hydride forming elements, relative standard deviation for 10 replicate measurements at 0.25 mg L{sup -1} level and recovery percentages between 97 and 103%. The feasibility of the system was demonstrated in the simultaneous determination of Ca, Cd, Co, Cr, Cu, Fe, Mg, Mn, Mo, Ni, Zn, As, Bi, Sb, Se, and Te in the NIST 1549 (non-fat milk powder), NIST 1570a (spinach leaves), DORM-2 (dogfish muscle) and TORT-2 (lobster hepatopancreas) certified samples for trace elements. Results found were in good agreement with the certified ones. (author)

  13. Investigation of metal hydride nanoparticles templated in metal organic frameworks.

    Energy Technology Data Exchange (ETDEWEB)

    Jacobs, Benjamin W.; Herberg, Julie L. (Lawrence Livermore National Laboratory, Livermore, CA); Highley, Aaron M.; Grossman, Jeffrey (MIT, Cambridge, MA); Wagner, Lucas (MIT, Cambridge, MA); Bhakta, Raghu; Peaslee, D. (University of Missouri, St. Louis, MO); Allendorf, Mark D.; Liu, X. (University of Missouri, St. Louis, MO); Behrens, Richard, Jr.; Majzoub, Eric H. (University of Missouri, St. Louis, MO)

    2010-11-01

    Hydrogen is proposed as an ideal carrier for storage, transport, and conversion of energy. However, its storage is a key problem in the development of hydrogen economy. Metal hydrides hold promise in effectively storing hydrogen. For this reason, metal hydrides have been the focus of intensive research. The chemical bonds in light metal hydrides are predominantly covalent, polar covalent or ionic. These bonds are often strong, resulting in high thermodynamic stability and low equilibrium hydrogen pressures. In addition, the directionality of the covalent/ionic bonds in these systems leads to large activation barriers for atomic motion, resulting in slow hydrogen sorption kinetics and limited reversibility. One method for enhancing reaction kinetics is to reduce the size of the metal hydrides to nano scale. This method exploits the short diffusion distances and constrained environment that exist in nanoscale hydride materials. In order to reduce the particle size of metal hydrides, mechanical ball milling is widely used. However, microscopic mechanisms responsible for the changes in kinetics resulting from ball milling are still being investigated. The objective of this work is to use metal organic frameworks (MOFs) as templates for the synthesis of nano-scale NaAlH4 particles, to measure the H2 desorption kinetics and thermodynamics, and to determine quantitative differences from corresponding bulk properties. Metal-organic frameworks (MOFs) offer an attractive alternative to traditional scaffolds because their ordered crystalline lattice provides a highly controlled and understandable environment. The present work demonstrates that MOFs are stable hosts for metal hydrides and their reactive precursors and that they can be used as templates to form metal hydride nanoclusters on the scale of their pores (1-2 nm). We find that using the MOF HKUST-1 as template, NaAlH4 nanoclusters as small as 8 formula units can be synthesized inside the pores. A detailed picture of

  14. Theoretical Estimate of Hydride Affinities of Aromatic Carbonyl Compounds

    Institute of Scientific and Technical Information of China (English)

    AI Teng; ZHU Xiao-Qing; CHENG Jin-Pei

    2003-01-01

    @@ Aromatic carbonyl compounds are one type of the most important organic compounds, and the reductions ofthem by hydride agents such as LiAlH4 or NaBH4 are widely used in organic synthesis. The reactivity of carbonyl compounds generally increases in the following order: ketone < aldehyde, and amide < acid < ester < acid halide, which could be related to their hydride affinities (HA). In the previous paper, Robert[1] calculated the absolute HAof a series of small non-aromatic carbonyl compounds. In this paper, we use DFT method at B3LYP/6-311 + + G (2d, 2p)∥B3LYP/6-31 + G* level to estimate hydride affinities of five groups of aromatic carbonyl compounds. The detailed results are listed in Table 1.

  15. A nickel metal hydride battery for electric vehicles.

    Science.gov (United States)

    Ovshinsky, S R; Fetcenko, M A; Ross, J

    1993-04-09

    Widespread use of electric vehicles can have significant impact on urban air quality, national energy independence, and international balance of trade. An efficient battery is the key technological element to the development of practical electric vehicles. The science and technology of a nickel metal hydride battery, which stores hydrogen in the solid hydride phase and has high energy density, high power, long life, tolerance to abuse, a wide range of operating temperature, quick-charge capability, and totally sealed maintenance-free operation, is described. A broad range of multi-element metal hydride materials that use structural and compositional disorder on several scales of length has been engineered for use as the negative electrode in this battery. The battery operates at ambient temperature, is made of nontoxic materials, and is recyclable. Demonstration of the manufacturing technology has been achieved.

  16. CO2 hydrogenation on a metal hydride surface.

    Science.gov (United States)

    Kato, Shunsuke; Borgschulte, Andreas; Ferri, Davide; Bielmann, Michael; Crivello, Jean-Claude; Wiedenmann, Daniel; Parlinska-Wojtan, Magdalena; Rossbach, Peggy; Lu, Ye; Remhof, Arndt; Züttel, Andreas

    2012-04-28

    The catalytic hydrogenation of CO(2) at the surface of a metal hydride and the corresponding surface segregation were investigated. The surface processes on Mg(2)NiH(4) were analyzed by in situ X-ray photoelectron spectroscopy (XPS) combined with thermal desorption spectroscopy (TDS) and mass spectrometry (MS), and time-of-flight secondary ion mass spectrometry (ToF-SIMS). CO(2) hydrogenation on the hydride surface during hydrogen desorption was analyzed by catalytic activity measurement with a flow reactor, a gas chromatograph (GC) and MS. We conclude that for the CO(2) methanation reaction, the dissociation of H(2) molecules at the surface is not the rate controlling step but the dissociative adsorption of CO(2) molecules on the hydride surface.

  17. Zirconium hydride formation in Hanford production reactor process tubes

    Energy Technology Data Exchange (ETDEWEB)

    Winegardner, W.K.; Griggs, B.

    1967-12-01

    Examination of Zircaloy-2 process tubes from Hanford Production Reactors has revealed extensive zirconium hydride formation. In general, attack is limited to the downstream portions of tubes where aluminum spacers are located. Most of the hydride platelets are contained in a case or layer on the inner surface of the tube. It is not unusual to find cases 0.004 to 0.005 in. thick. Analyses of the 0.037 in. wall tubes with such cases intact often reveal hydrogen concentrations greater than 1000 ppM. Investigation indicates that the hydriding is the result of galvanic contact between aluminum and Zircaloy-2. The galvanic couple (contact between dissimilar metals in the presence of reactor cooling water which serves as the electrolyte) results in the cathodic charging of hydrogen into the Zircaloy.

  18. Computational Replication of the Primary Isotope Dependence of Secondary Kinetic Isotope Effects in Solution Hydride Transfer Reactions: Supporting the Isotopically Different Tunneling Ready State Conformations

    OpenAIRE

    2016-01-01

    We recently reported a study of the steric effect on the 1° isotope dependence of 2° KIEs for several hydride transfer reactions in solution (J. Am. Chem. Soc. 2015, 137, 6653). The unusual 2° KIEs decrease as the 1° isotope changes from H to D, and more in the sterically hindered systems. These were explained in terms of a more crowded tunneling ready state (TRS) conformation in D-tunneling, which has a shorter donor-acceptor distance (DAD), than in H-tunneling. In order to examine the isoto...

  19. A nickel hydride complex in the active site of methyl-coenzyme m reductase: implications for the catalytic cycle.

    Science.gov (United States)

    Harmer, Jeffrey; Finazzo, Cinzia; Piskorski, Rafal; Ebner, Sieglinde; Duin, Evert C; Goenrich, Meike; Thauer, Rudolf K; Reiher, Markus; Schweiger, Arthur; Hinderberger, Dariush; Jaun, Bernhard

    2008-08-20

    Methanogenic archaea utilize a specific pathway in their metabolism, converting C1 substrates (i.e., CO2) or acetate to methane and thereby providing energy for the cell. Methyl-coenzyme M reductase (MCR) catalyzes the key step in the process, namely methyl-coenzyme M (CH3-S-CoM) plus coenzyme B (HS-CoB) to methane and CoM-S-S-CoB. The active site of MCR contains the nickel porphinoid F430. We report here on the coordinated ligands of the two paramagnetic MCR red2 states, induced when HS-CoM (a reversible competitive inhibitor) and the second substrate HS-CoB or its analogue CH3-S-CoB are added to the enzyme in the active MCR red1 state (Ni(I)F430). Continuous wave and pulse EPR spectroscopy are used to show that the MCR red2a state exhibits a very large proton hyperfine interaction with principal values A((1)H) = [-43,-42,-5] MHz and thus represents formally a Ni(III)F430 hydride complex formed by oxidative addition to Ni(I). In view of the known ability of nickel hydrides to activate methane, and the growing body of evidence for the involvement of MCR in "reverse" methanogenesis (anaerobic oxidation of methane), we believe that the nickel hydride complex reported here could play a key role in helping to understand both the mechanism of "reverse" and "forward" methanogenesis.

  20. NUMERICAL ANALYSIS FOR HYDRIDING IN METAL HYDRIDE HYDROGEN STORAGE TANK%金属氢化物储氢器吸氢过程的数值分析

    Institute of Scientific and Technical Information of China (English)

    叶建华; 蒋利军; 李志念; 刘晓鹏; 王树茂

    2011-01-01

    Based on the principle of hydride adsorption, a one-dimensional mathematical model for hydriding in a cylindrical metal hydride hydrogen storage tank was established. The heat and mass transfer of metal hydride beds was computed by finite difference method. The variation in temperature and hydrogen concentration at different radial positions of the hydride layer was analyzed during the process of hydriding. The effects of supply pressure, heat convection coefficient and hydride layer radial thickness on the hydriding was studied. It is shown that hydride formation initially takes place uniformly all over the metal hydride layer, but with the process of hydriding, the hydriding rate at the core region is gradually slower than one at surface region. The increase of supply pressure and heat convection coefficient can accelerate the hydriding of the hydrogen storage tank. The effect of hydride layer radial thickness is significant on the hydriding rate, and the thinner hydride layer, the higher the hydriding rate.%基于金属氢化物吸氢基本特性,建立圆柱形金属氢化物储氢器吸氢过程的-维数学物理模型.采用有限差分法对金属氢化物床体的传热传质进行计算.分别研究金属氢化物床体各处温度和氢含量在吸氢过程中的变化以及氢气压力、对流传热系数和金属氢化物床体径向厚度对金属氢化物吸氢过程的影响.计算结果表明:初始阶段金属氢化物床均匀吸氢,但随着氢化过程的进行,其中心区域的吸氢速率逐渐低于边缘区域;增加吸氢压力、提高对流传热系数均可促进储氢器的吸氢;金属氢化物床的径向厚度对吸氢速率影响很大,金属氢化物床越薄,氢化反应的速度越快.

  1. High-Spin Cobalt Hydrides for Catalysis

    Energy Technology Data Exchange (ETDEWEB)

    Holland, Patrick L. [Univ. of Rochester, NY (United States)

    2013-08-29

    Organometallic chemists have traditionally used catalysts with strong-field ligands that give low-spin complexes. However, complexes with a weak ligand field have weaker bonds and lower barriers to geometric changes, suggesting that they may lead to more rapid catalytic reactions. Developing our understanding of high-spin complexes requires the use of a broader range of spectroscopic techniques, but has the promise of changing the mechanism and/or selectivity of known catalytic reactions. These changes may enable the more efficient utilization of chemical resources. A special advantage of cobalt and iron catalysts is that the metals are more abundant and cheaper than those currently used for major industrial processes that convert unsaturated organic molecules and biofeedstocks into useful chemicals. This project specifically evaluated the potential of high-spin cobalt complexes for small-molecule reactions for bond rearrangement and cleavage reactions relevant to hydrocarbon transformations. We have learned that many of these reactions proceed through crossing to different spin states: for example, high-spin complexes can flip one electron spin to access a lower-energy reaction pathway for beta-hydride elimination. This reaction enables new, selective olefin isomerization catalysis. The high-spin cobalt complexes also cleave the C-O bond of CO2 and the C-F bonds of fluoroarenes. In each case, the detailed mechanism of the reaction has been determined. Importantly, we have discovered that the cobalt catalysts described here give distinctive selectivities that are better than known catalysts. These selectivities come from a synergy between supporting ligand design and electronic control of the spin-state crossing in the reactions.

  2. Phase I. Lanthanum-based Start Materials for Hydride Batteries

    Energy Technology Data Exchange (ETDEWEB)

    Gschneidner, K. A. [Ames Lab., Ames, IA (United States); Schmidt, F. A. [Ames Lab., Ames, IA (United States); Frerichs, A. E. [Ames Lab., Ames, IA (United States); Ament, K. A. [Ames Lab., Ames, IA (United States)

    2013-08-20

    The purpose of Phase I of this work is to focus on developing a La-based start material for making nickel-metal (lanthanum)-hydride batteries based on our carbothermic-silicon process. The goal is to develop a protocol for the manufacture of (La1-xRx)(Ni1-yMy)(Siz), where R is a rare earth metal and M is a non-rare earth metal, to be utilized as the negative electrode in nickel-metal hydride (NiMH) rechargeable batteries.

  3. Review of magnesium hydride-based materials: development and optimisation

    Science.gov (United States)

    Crivello, J.-C.; Dam, B.; Denys, R. V.; Dornheim, M.; Grant, D. M.; Huot, J.; Jensen, T. R.; de Jongh, P.; Latroche, M.; Milanese, C.; Milčius, D.; Walker, G. S.; Webb, C. J.; Zlotea, C.; Yartys, V. A.

    2016-02-01

    Magnesium hydride has been studied extensively for applications as a hydrogen storage material owing to the favourable cost and high gravimetric and volumetric hydrogen densities. However, its high enthalpy of decomposition necessitates high working temperatures for hydrogen desorption while the slow rates for some processes such as hydrogen diffusion through the bulk create challenges for large-scale implementation. The present paper reviews fundamentals of the Mg-H system and looks at the recent advances in the optimisation of magnesium hydride as a hydrogen storage material through the use of catalytic additives, incorporation of defects and an understanding of the rate-limiting processes during absorption and desorption.

  4. Hydride formation in core-shell alloyed metal nanoparticles

    Science.gov (United States)

    Zhdanov, Vladimir P.

    2016-07-01

    The model and analysis presented are focused on hydride formation in nanoparticles with a Pd shell and a core formed by another metal. The arrangement of metal atoms is assumed to be coherent (no dislocations). The lattice strain distribution, elastic energy, and chemical potential of hydrogen atoms are scrutinized. The slope of the chemical potential (as a function of hydrogen uptake) is demonstrated to decrease with increasing the core volume, and accordingly the critical temperature for hydride formation and the corresponding hysteresis loops are predicted to decrease as well.

  5. Hydrogen Desorption from Mg Hydride: An Ab Initio Study

    Directory of Open Access Journals (Sweden)

    Simone Giusepponi

    2012-07-01

    Full Text Available Hydrogen desorption from hydride matrix is still an open field of research. By means of accurate first-principle molecular dynamics (MD simulations an Mg–MgH2 interface is selected, studied and characterized. Electronic structure calculations are used to determine the equilibrium properties and the behavior of the surfaces in terms of structural deformations and total energy considerations. Furthermore, extensive ab-initio molecular dynamics simulations are performed at several temperatures to characterize the desorption process at the interface. The numerical model successfully reproduces the experimental desorption temperature for the hydride.

  6. Ab-initio study of transition metal hydrides

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, Ramesh [Dept. of Physics, Feroze Gandhi Insititute of Engineering and Technology, Raebareli-229001 (India); Shukla, Seema, E-mail: sharma.yamini62@gmail.com; Dwivedi, Shalini, E-mail: sharma.yamini62@gmail.com; Sharma, Yamini, E-mail: sharma.yamini62@gmail.com [Theoretical Condensed Matter Physics Laboratory, Dept. of Physics Feroze Gandhi College, Raebareli-229001 (India)

    2014-04-24

    We have performed ab initio self consistent calculations based on Full potential linearized augmented plane wave (FP-LAPW) method to investigate the optical and thermal properties of yttrium hydrides. From the band structure and density of states, the optical absorption spectra and specific heats have been calculated. The band structure of Yttrium metal changes dramatically due to hybridization of Y sp orbitals with H s orbitals and there is a net charge transfer from metal to hydrogen site. The electrical resistivity and specific heats of yttrium hydrides are lowered but the thermal conductivity is slightly enhanced due to increase in scattering from hydrogen sites.

  7. Phase Equilibria, Crystal Structure and Hydriding/Dehydriding Mechanism of Nd4Mg80Ni8 Compound.

    Science.gov (United States)

    Luo, Qun; Gu, Qin-Fen; Zhang, Jie-Yu; Chen, Shuang-Lin; Chou, Kuo-Chih; Li, Qian

    2015-10-16

    In order to find out the optimal composition of novel Nd-Mg-Ni alloys for hydrogen storage, the isothermal section of Nd-Mg-Ni system at 400 °C is established by examining the equilibrated alloys. A new ternary compound Nd4Mg80Ni8 is discovered in the Mg-rich corner. It has the crystal structure of space group I41/amd with lattice parameters of a = b = 11.2743(1) Å and c = 15.9170(2) Å, characterized by the synchrotron powder X-ray diffraction (SR-PXRD). High-resolution transmission electron microscopy (HR-TEM) is used to investigate the microstructure of Nd4Mg80Ni8 and its hydrogen-induced microstructure evolution. The hydrogenation leads to Nd4Mg80Ni8 decomposing into NdH2.61-MgH2-Mg2NiH0.3 nanocomposites, where the high density phase boundaries provide a great deal of hydrogen atoms diffusion channels and nucleation sites of hydrides, which greatly enhances the hydriding/dehydriding (H/D) properties. The Nd4Mg80Ni8 exhibits a good cycle ability. The kinetic mechanisms of H/D reactions are studied by Real Physical Picture (RPP) model. The rate controlling steps are diffusion for hydriding reaction in the temperature range of 100 ~ 350 °C and surface penetration for dehydriding reaction at 291 ~ 347 °C. In-situ SR-PXRD results reveal the phase transformations of Mg to MgH2 and Mg2Ni to Mg2NiH4 as functions of hydrogen pressure and hydriding time.

  8. Phase Equilibria, Crystal Structure and Hydriding/Dehydriding Mechanism of Nd4Mg80Ni8 Compound

    Science.gov (United States)

    Luo, Qun; Gu, Qin-Fen; Zhang, Jie-Yu; Chen, Shuang-Lin; Chou, Kuo-Chih; Li, Qian

    2015-10-01

    In order to find out the optimal composition of novel Nd-Mg-Ni alloys for hydrogen storage, the isothermal section of Nd-Mg-Ni system at 400 °C is established by examining the equilibrated alloys. A new ternary compound Nd4Mg80Ni8 is discovered in the Mg-rich corner. It has the crystal structure of space group I41/amd with lattice parameters of a = b = 11.2743(1) Å and c = 15.9170(2) Å, characterized by the synchrotron powder X-ray diffraction (SR-PXRD). High-resolution transmission electron microscopy (HR-TEM) is used to investigate the microstructure of Nd4Mg80Ni8 and its hydrogen-induced microstructure evolution. The hydrogenation leads to Nd4Mg80Ni8 decomposing into NdH2.61-MgH2-Mg2NiH0.3 nanocomposites, where the high density phase boundaries provide a great deal of hydrogen atoms diffusion channels and nucleation sites of hydrides, which greatly enhances the hydriding/dehydriding (H/D) properties. The Nd4Mg80Ni8 exhibits a good cycle ability. The kinetic mechanisms of H/D reactions are studied by Real Physical Picture (RPP) model. The rate controlling steps are diffusion for hydriding reaction in the temperature range of 100 ~ 350 °C and surface penetration for dehydriding reaction at 291 ~ 347 °C. In-situ SR-PXRD results reveal the phase transformations of Mg to MgH2 and Mg2Ni to Mg2NiH4 as functions of hydrogen pressure and hydriding time.

  9. Exploring "aerogen-hydride" interactions between ZOF2 (Z = Kr, Xe) and metal hydrides: An ab initio study

    Science.gov (United States)

    Esrafili, Mehdi D.; Mohammadian-Sabet, Fariba

    2016-06-01

    In this work, a new σ-hole interaction formed between ZOF2 (Z = Kr and Xe) as the Lewis acid and a series of metal-hydrides HMX (M = Be, Mg, Zn and X = H, F, CN, CH3) is reported. The nature of this interaction, called "aerogen-hydride" interaction, is unveiled by molecular electrostatic potential, non-covalent interaction, quantum theory of atoms in molecules and natural bond orbital analyses. Our results indicate that the aerogen-hydride interactions are quite strong and can be comparable in strength to other σ-hole bonds. An important charge-transfer interaction is also associated with the formation of OF2Z⋯HMX complexes.

  10. Uranium Hydride Nucleation and Growth Model FY'16 ESC Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    Hill, Mary Ann [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Richards, Andrew Walter [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Holby, Edward F. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Schulze, Roland K. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-12-20

    Uranium hydride corrosion is of great interest to the nuclear industry. Uranium reacts with water and/or hydrogen to form uranium hydride which adversely affects material performance. Hydride nucleation is influenced by thermal history, mechanical defects, oxide thickness, and chemical defects. Information has been gathered from past hydride experiments to formulate a uranium hydride model to be used in a Canned Subassembly (CSA) lifetime prediction model. This multi-scale computer modeling effort started in FY’13, and the fourth generation model is now complete. Additional high-resolution experiments will be run to further test the model.

  11. Iron deficiency in blood donors

    Directory of Open Access Journals (Sweden)

    Armando Cortés

    2005-03-01

    Full Text Available Context: Blood donation results in a substantial loss of iron (200 to 250 mg at each bleeding procedure (425 to 475 ml and subsequent mobilization of iron from body stores. Recent reports have shown that body iron reserves generally are small and iron depletion is more frequent in blood donors than in non-donors. Objective: The aim of this study was to evaluate the frequency of iron deficiency in blood donors and to establish the frequency of iron deficiency in blood donors according to sex, whether they were first-time or multi-time donors. Design: From march 20 to April 5, 2004, three hundred potential blood donors from Hemocentro del Café y Tolima Grande were studied. Diagnostic tests: Using a combination of biochemical measurements of iron status: serum ferritin (RIA, ANNAR and the hemoglobin pre and post-donation (HEMOCUE Vital technology medical . Results: The frequency of iron deficiency in potential blood donors was 5%, and blood donors accepted was 5.1%; in blood donors rejected for low hemoglobin the frequency of iron deficiency was 3.7% and accepted blood donors was 1.7% in male and 12.6% in female. The frequency of iron deficiency was higher in multi-time blood donors than in first-time blood donors, but not stadistic significative. Increase nivel accepted hemoglobina in 1 g/dl no incidence in male; in female increase of 0.5 g/dl low in 25% blood donors accepted with iron deficiency, but increased rejected innecesary in 16.6% and increased is 1 g/dl low blood donors female accepted in 58% (7/12, but increased the rejected innecesary in 35.6%. Conclusions: We conclude that blood donation not is a important factor for iron deficiency in blood donors. The high frequency of blood donors with iron deficiency found in this study suggests a need for a more accurate laboratory trial, as hemoglobin or hematocrit measurement alone is not sufficient for detecting and excluding blood donors with iron deficiency without anemia, and ajustes hacia

  12. National Marrow Donor Program

    Science.gov (United States)

    2011-04-29

    this quarter. for Selected Donors er P iod 4 Activity: IIB 1 Task 6: Maintain a Quality Control Program – This task is closed. National Marrow...interpret incoming SBT typings and process version 3 nomenclature on incoming typings. • Code moved to production on March 30th, 2011. IIB. Rapid...as DRB3/4/5 typing intent is known. • Calculated 6-locus A~C~B~DRB3/4/5~DRB1~DQB1 haplotype frequencies for HapLogic III evaluation. In contrast

  13. Chemical Hydride Slurry for Hydrogen Production and Storage

    Energy Technology Data Exchange (ETDEWEB)

    McClaine, Andrew W

    2008-09-30

    The purpose of this project was to investigate and evaluate the attractiveness of using a magnesium chemical hydride slurry as a hydrogen storage, delivery, and production medium for automobiles. To fully evaluate the potential for magnesium hydride slurry to act as a carrier of hydrogen, potential slurry compositions, potential hydrogen release techniques, and the processes (and their costs) that will be used to recycle the byproducts back to a high hydrogen content slurry were evaluated. A 75% MgH2 slurry was demonstrated, which was just short of the 76% goal. This slurry is pumpable and storable for months at a time at room temperature and pressure conditions and it has the consistency of paint. Two techniques were demonstrated for reacting the slurry with water to release hydrogen. The first technique was a continuous mixing process that was tested for several hours at a time and demonstrated operation without external heat addition. Further work will be required to reduce this design to a reliable, robust system. The second technique was a semi-continuous process. It was demonstrated on a 2 kWh scale. This system operated continuously and reliably for hours at a time, including starts and stops. This process could be readily reduced to practice for commercial applications. The processes and costs associated with recycling the byproducts of the water/slurry reaction were also evaluated. This included recovering and recycling the oils of the slurry, reforming the magnesium hydroxide and magnesium oxide byproduct to magnesium metal, hydriding the magnesium metal with hydrogen to form magnesium hydride, and preparing the slurry. We found that the SOM process, under development by Boston University, offers the lowest cost alternative for producing and recycling the slurry. Using the H2A framework, a total cost of production, delivery, and distribution of $4.50/kg of hydrogen delivered or $4.50/gge was determined. Experiments performed at Boston

  14. The influence of hydride on fracture toughness of recrystallized Zircaloy-4 cladding

    Energy Technology Data Exchange (ETDEWEB)

    Hsu, Hsiao-Hung, E-mail: 175877@mail.csc.com.tw [Institute of Nuclear Energy Research (INER), Lungtan Township, Taoyuan County 32546, Taiwan, ROC (China); China Steel Corporation, Hsiao Kang District, Kaohsiung 81233, Taiwan, ROC (China); Chiang, Ming-Feng [China Steel Corporation, Hsiao Kang District, Kaohsiung 81233, Taiwan, ROC (China); Chen, Yen-Chen [Institute of Nuclear Energy Research (INER), Lungtan Township, Taoyuan County 32546, Taiwan, ROC (China)

    2014-04-01

    In this work, RXA cladding tubes were hydrogen-charged to target hydrogen content levels between 150 and 800 wppm (part per million by weight). The strings of zirconium hydrides observed in the cross sections are mostly oriented in the circumferential direction. The fracture toughness of hydrided RXA Zircaloy-4 cladding was measured to evaluate its hydride embrittlement susceptibility. With increasing hydrogen content, the fracture toughness of hydrided RXA cladding decreases at both 25 °C and 300 °C. Moreover, highly localized hydrides (forming a hydride rim) aggravate the degradation of the fracture properties of RXA Zircaloy-4 cladding at both 25 °C and 300 °C. Brittle features in the form of quasi-cleavages and secondary cracks were observed on the fracture surface of the hydride rim, even for RXA cladding tested at 300 °C.

  15. Donor demographic and laboratory predictors of single donor platelet yield

    Directory of Open Access Journals (Sweden)

    R. Arun

    2013-10-01

    Full Text Available Background: Platelet transfusions are essential to prevent morbidity and mortality in patients who are severely thrombocytopenic and are at risk of spontaneous bleeding. Platelets are currently obtained either by fractionation of whole blood or by platelet apheresis. The quality of single donor platelets (SDP in terms of yield influences platelet recovery in the recipient and allows prolonging intervals between transfusions. Material and Methods: Donor demographic and laboratory data were analyzed prior to performing plateletpheresis to identify donor factors that influence platelet yield. The study was conducted on 130 healthy, first-time plateletpheresis donors over a period of 4 years. The plateletpheresis procedures were performed using Fresenius Kabi COM.TEC and Hemonetics MCS plus separator. A relationship between pre-donation donor variables and yield of platelets was studied using the Pearson correlation. Results: The mean platelet yield was 3.160.62x1011 per unit. A positive correlation was observed between platelet yield and pre-donation platelet count, body mass index (BMI; Kg/m2 of the donor, while a negative correlation was observed between age and the platelet yield. Conclusion: Donor pre-donation platelet count, BMI and donor age influence platelet yield. Young healthy donors with a high platelet count and better BMI can give a better platelet yield in the SDP.

  16. Hydrogen Storage in Porous Materials and Magnesium Hydrides

    NARCIS (Netherlands)

    Grzech, A.

    2013-01-01

    In this thesis representatives of two different types of materials for potential hydrogen storage application are presented. Usage of either nanoporous materials or metal hydrides has both operational advantages and disadvantages. A main objective of this thesis is to characterize the hydrogen

  17. Pore confined synthesis of magnesium boron hydride nanoparticles

    NARCIS (Netherlands)

    Au, Yuen S.; Yan, Yigang; De Jong, Krijn P.; Remhof, Arndt; De Jongh, Petra E.

    2014-01-01

    Nanostructured materials based on light elements such as Li, Mg, and Na are essential for energy storage and conversion applications, but often difficult to prepare with control over size and structure. We report a new strategy that is illustrated for the formation of magnesium boron hydrides,

  18. Novel baker's yeast catalysed hydride reduction of an epoxide moiety

    CSIR Research Space (South Africa)

    Horak, RM

    1995-02-27

    Full Text Available -4039(95)00043-7 Tetrahedron Letters, Vol. 36, No. 9, pp. 1541-1544, 1995 Elsevier Science Ltd Printed in Great Britain 0040-4039/95 $9.50+0.00 A Novel Baker's Yeast Catalysed Hydride Reduction of an Epoxide Moiety R. Marthinus Horak, Robin A...

  19. Release of hydrogen from nanoconfined hydrides by application of microwaves

    Science.gov (United States)

    Sanz-Moral, Luis Miguel; Navarrete, Alexander; Sturm, Guido; Link, Guido; Rueda, Miriam; Stefanidis, Georgios; Martín, Ángel

    2017-06-01

    The release of hydrogen from solid hydrides by thermolysis can be improved by nanoconfinement of the hydride in a suitable micro/mesoporous support, but the slow heat transfer by conduction through the support can be a limitation. In this work, a C/SiO2 mesoporous material has been synthesized and employed as matrix for nanoconfinement of hydrides. The matrix showed high surface area and pore volume (386 m2/g and 1.41 cm3/g), which enabled the confinement of high concentrations of hydride. Furthermore, by modification of the proportion between C and SiO2, the dielectric properties of the complex could be modified, making it susceptible to microwave heating. As with this heating method the entire sample is heated simultaneously, the heat transfer resistances associated to conduction were eliminated. To demonstrate this possibility, ethane 1,2-diaminoborane (EDAB) was embedded on the C/SiO2 matrix at concentrations ranging from 11 to 31%wt using a wet impregnation method, and a device appropriate for hydrogen release from this material by application of microwaves was designed with the aid of a numerical simulation. Hydrogen liberation tests by conventional heating and microwaves were compared, showing that by microwave heating hydrogen release can be initiated and stopped in shorter times.

  20. Hydrogen Storage in Porous Materials and Magnesium Hydrides

    NARCIS (Netherlands)

    Grzech, A.

    2013-01-01

    In this thesis representatives of two different types of materials for potential hydrogen storage application are presented. Usage of either nanoporous materials or metal hydrides has both operational advantages and disadvantages. A main objective of this thesis is to characterize the hydrogen stora

  1. Review of magnesium hydride-based materials: development and optimisation

    NARCIS (Netherlands)

    Crivello, J. -C.; Dam, B.; Denys, R. V.; Dornheim, M.; Grant, D. M.; Huot, J.; Jensen, T. R.; de Jongh, P.; Latroche, M.; Milanese, C.; Milcius, D.; Walker, G. S.; Webb, C. J.; Zlotea, C.; Yartys, V. A.

    2016-01-01

    Magnesium hydride has been studied extensively for applications as a hydrogen storage material owing to the favourable cost and high gravimetric and volumetric hydrogen densities. However, its high enthalpy of decomposition necessitates high working temperatures for hydrogen desorption while the slo

  2. Process of forming a sol-gel/metal hydride composite

    Science.gov (United States)

    Congdon, James W.

    2009-03-17

    An external gelation process is described which produces granules of metal hydride particles contained within a sol-gel matrix. The resulting granules are dimensionally stable and are useful for applications such as hydrogen separation and hydrogen purification. An additional coating technique for strengthening the granules is also provided.

  3. Hydrogen adsorption on palladium and palladium hydride at 1 bar

    DEFF Research Database (Denmark)

    Johansson, Martin; Skulason, Egill; Nielsen, Gunver

    2010-01-01

    The dissociative sticking probability for H-2 on Pd films supported on sputtered Highly Ordered Pyrolytic Graphite (HOPG) has been derived from measurements of the rate of the H-D exchange reaction at 1 bar. The sticking probability for H-2, S. is higher on Pd hydride than on Pd (a factor of 1...

  4. Pore confined synthesis of magnesium boron hydride nanoparticles

    NARCIS (Netherlands)

    Au, Yuen S.; Yan, Yigang; De Jong, Krijn P.; Remhof, Arndt; De Jongh, Petra E.

    2014-01-01

    Nanostructured materials based on light elements such as Li, Mg, and Na are essential for energy storage and conversion applications, but often difficult to prepare with control over size and structure. We report a new strategy that is illustrated for the formation of magnesium boron hydrides, relev

  5. Optimization of Internal Cooling Fins for Metal Hydride Reactors

    Directory of Open Access Journals (Sweden)

    Vamsi Krishna Kukkapalli

    2016-06-01

    Full Text Available Metal hydride alloys are considered as a promising alternative to conventional hydrogen storage cylinders and mechanical hydrogen compressors. Compared to storing in a classic gas tank, metal hydride alloys can store hydrogen at nearly room pressure and use less volume to store the same amount of hydrogen. However, this hydrogen storage method necessitates an effective way to reject the heat released from the exothermic hydriding reaction. In this paper, a finned conductive insert is adopted to improve the heat transfer in the cylindrical reactor. The fins collect the heat that is volumetrically generated in LaNi5 metal hydride alloys and deliver it to the channel located in the center, through which a refrigerant flows. A multiple-physics modeling is performed to analyze the transient heat and mass transfer during the hydrogen absorption process. Fin design is made to identify the optimum shape of the finned insert for the best heat rejection. For the shape optimization, use of a predefined transient heat generation function is proposed. Simulations show that there exists an optimal length for the fin geometry.

  6. Superconductivity and unexpected chemistry of germanium hydrides under pressure

    Science.gov (United States)

    Davari Esfahani, M. Mahdi; Oganov, Artem R.; Niu, Haiyang; Zhang, Jin

    2017-04-01

    Following the idea that hydrogen-rich compounds might be high-Tc superconductors at high pressures, and the very recent breakthrough in predicting and synthesizing hydrogen sulfide with record-high Tc=203 K , an ab initio evolutionary algorithm for crystal structure prediction was employed to find stable germanium hydrides. In addition to the earlier structure of germane with space group Ama2, we propose a C2/m structure, which is energetically more favorable at pressures above 278 GPa (with inclusion of zero-point energy). Our calculations indicate that the C2/m phase of germane is a superconductor with Tc=67 K at 280 GPa. Germane is found to become thermodynamically unstable to decomposition to hydrogen and the compound Ge3H11 at pressures above 300 GPa. Ge3H11 with space group I 4 ¯m 2 is found to become stable at above 285 GPa with Tc=43 K . We find that the pressure-induced phase stability of germanium hydrides is distinct from analogous isoelectronic systems, e.g., Si hydrides and Sn hydrides. Superconductivity stems from large electron-phonon coupling associated with the wagging, bending, and stretching intermediate-frequency modes derived mainly from hydrogen.

  7. Structural stability of complex hydrides LiBH4 revisited

    DEFF Research Database (Denmark)

    Lodziana, Zbigniew; Vegge, Tejs

    2004-01-01

    A systematic approach to study the phase stability of LiBH4 based on ab initio calculations is presented. Three thermodynamically stable phases are identified and a new phase of Cc symmetry is proposed for the first time for a complex hydride. The x-ray diffraction pattern and vibrational spectra...

  8. Hydride encapsulation by molecular alkali-metal clusters.

    Science.gov (United States)

    Haywood, Joanna; Wheatley, Andrew E H

    2008-07-14

    The sequential treatment of group 12 and 13 Lewis acids with alkali-metal organometallics is well established to yield so-called ''ate' complexes, whereby the Lewis-acid metal undergoes nucleophilic attack to give an anion, at least one group 1 metal acting to counter this charge. However, an alternative, less well recognised, reaction pathway involves the Lewis acid abstracting hydride from the organolithium reagent via a beta-elimination mechanism. It has recently been shown that in the presence of N,N'-bidentate ligands this chemistry can be harnessed to yield a new type of molecular main-group metal cluster in which the abstracted LiH is effectively trapped, with the hydride ion occupying an interstitial site in the cluster core. Discussion focuses on the development of this field, detailing advances in our understanding of the roles of Lewis acid, organolithium, and amine substrates in the syntheses of these compounds. Structure-types are discussed, as are efforts to manipulate cluster geometry and composition as well as hydride-coordination. Embryonic mechanistic studies are reported, as well as attempts to generate hydride-encapsulation clusters under catalytic control.

  9. Optimizing Misch-Metal Compositions In Metal Hydride Anodes

    Science.gov (United States)

    Bugga, Ratnakumar V.; Halpert, Gerald

    1995-01-01

    Electrochemical cells based on metal hydride anodes investigated experimentally in effort to find anode compositions maximizing charge/discharge-cycle performances. Experimental anodes contained misch metal alloyed with various proportions of Ni, Co, Mn, and Al, and experiments directed toward optimization of composition of misch metal.

  10. Well-defined transition metal hydrides in catalytic isomerizations.

    Science.gov (United States)

    Larionov, Evgeny; Li, Houhua; Mazet, Clément

    2014-09-07

    This Feature Article intends to provide an overview of a variety of catalytic isomerization reactions that have been performed using well-defined transition metal hydride precatalysts. A particular emphasis is placed on the underlying mechanistic features of the transformations discussed. These have been categorized depending upon the nature of the substrate and in most cases discussed following a chronological order.

  11. Nanocrystalline Metal Hydrides Obtained by Severe Plastic Deformations

    Directory of Open Access Journals (Sweden)

    Jacques Huot

    2012-01-01

    Full Text Available It has recently been shown that Severe Plastic Deformation (SPD techniques could be used to obtain nanostructured metal hydrides with enhanced hydrogen sorption properties. In this paper we review the different SPD techniques used on metal hydrides and present some specific cases of the effect of cold rolling on the hydrogen storage properties and crystal structure of various types of metal hydrides such as magnesium-based alloys and body centered cubic (BCC alloys. Results show that generally cold rolling is as effective as ball milling to enhance hydrogen sorption kinetics. However, for some alloys such as TiV0.9Mn1.1 alloy ball milling and cold rolling have detrimental effect on hydrogen capacity. The exact mechanism responsible for the change in hydrogenation properties may not be the same for ball milling and cold rolling. Nevertheless, particle size reduction and texture seems to play a leading role in the hydrogen sorption enhancement of cold rolled metal hydrides.

  12. Metal hydrides for smart window and sensor applications

    NARCIS (Netherlands)

    Yoshimura, K.; Langhammer, C.; Dam, B.

    2013-01-01

    The hydrogenation of metals often leads to changes in optical properties in the visible range. This allows for fundamental studies of the hydrogenation process, as well as the exploration of various applications using these optical effects. Here, we focus on recent developments in metal hydride-base

  13. Tribochemical Decomposition of Light Ionic Hydrides at Room Temperature.

    Science.gov (United States)

    Nevshupa, Roman; Ares, Jose Ramón; Fernández, Jose Francisco; Del Campo, Adolfo; Roman, Elisa

    2015-07-16

    Tribochemical decomposition of magnesium hydride (MgH2) induced by deformation at room temperature was studied on a micrometric scale, in situ and in real time. During deformation, a near-full depletion of hydrogen in the micrometric affected zone is observed through an instantaneous (t MgH2 with reduced crystal size by mechanical deformation.

  14. KNH2-KH: a metal amide-hydride solid solution.

    Science.gov (United States)

    Santoru, Antonio; Pistidda, Claudio; Sørby, Magnus H; Chierotti, Michele R; Garroni, Sebastiano; Pinatel, Eugenio; Karimi, Fahim; Cao, Hujun; Bergemann, Nils; Le, Thi T; Puszkiel, Julián; Gobetto, Roberto; Baricco, Marcello; Hauback, Bjørn C; Klassen, Thomas; Dornheim, Martin

    2016-09-27

    We report for the first time the formation of a metal amide-hydride solid solution. The dissolution of KH into KNH2 leads to an anionic substitution, which decreases the interaction among NH2(-) ions. The rotational properties of the high temperature polymorphs of KNH2 are thereby retained down to room temperature.

  15. Thin-film metal hydrides for solar energy applications

    Energy Technology Data Exchange (ETDEWEB)

    Mongstad, Trygve Tveiteraas

    2012-11-01

    Thin-film metal hydrides may become important solar energy materials in the future. This thesis demonstrates interesting material properties of metal hydride films, relevant for applications as semiconducting materials for photovoltaic (PV) solar cells and for regulation of light using smart window technology.The work presented here has comprised an experimental study, focusing on three different materials: Magnesium hydride (MgH2), magnesium nickel hydride (Mg2NiH4) and yttrium hydride (YHx). Reactive sputter deposition was used to prepare the metal hydride film samples.This synthesis method is relatively uncommon for metal hydrides. Here,the first demonstration of reactive sputtering synthesis for YHx and Mg2NiH4 is given. Different challenges in forming singlephase, pure metal hydrides were identified: MgH2 could not be deposited without 3-16% metallic Mg present in the films, and YHx was found to react strong-ly to oxygen (O) during the deposition process. On the other hand, Mg2NiH4 films formed easily and apparently without major metallic clusters and with low O content.Mg2NiH4 is a semiconductor with an optical band gap that is suitable for PV solar cells. This study has showed that films with promising electrical and optical properties can be synthesized using reactive cosputtering of Mg and Ni. Using optical methods, the band gap for the as deposited samples was estimated to 1.54-1.76 eV, depending on the Mg-Ni composition. The asdeposited films were amorphous or nano-crystalline, but could be crystallized into the high-temperature fcc structure of Mg2NiH4 using heat treatment at 523 K. The band gap of the crystalline films was 2.1-2.2 eV, depending on the composition.A pronounced photochromic reaction to visible and UV light was observed for transparent yttrium hydride (T-YHx) samples. The optical transmission was reduced when the samples were illuminated, and the original optical transmission was restored when the samples were kept under dark conditions

  16. Activation and discharge kinetics of metal hydride electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Johnsen, Stein Egil

    2003-07-01

    Potential step chronoamperometry and Electrochemical Impedance Spectroscopy (eis) measurements were performed on single metal hydride particles. For the {alpha}-phase, the bulk diffusion coefficient and the absorption/adsorption rate parameters were determined. Materials produced by atomisation, melt spinning and conventional casting were investigated. The melt spun and conventional cast materials were identical and the atomised material similar in composition. The particles from the cast and the melt spun material were shaped like parallelepipeds. A corresponding equation, for this geometry, for diffusion coupled to an absorption/adsorption reaction was developed. It was found that materials produced by melt spinning exhibited lower bulk diffusion (1.7E-14 m2/s) and absorption/adsorption reaction rate (1.0E-8 m/s), compared to materials produced by conventionally casting (1.1E-13 m2/s and 5.5E-8 m/s respectively). In addition, the influence of particle active surface and relative diffusion length were discussed. It was concluded that there are uncertainties connected to these properties, which may explain the large distribution in the kinetic parameters measured on metal hydride particles. Activation of metal hydride forming materials has been studied and an activation procedure, for porous electrodes, was investigated. Cathodic polarisation of the electrode during a hot alkaline surface treatment gave the maximum discharge capacity on the first discharge of the electrode. The studied materials were produced by gas atomisation and the spherical shape was retained during the activation. Both an AB{sub 5} and an AB{sub 2} alloy was successfully activated and discharge rate properties determined. The AB{sub 2} material showed a higher maximum discharge capacity, but poor rate properties, compared to the AB{sub 5} material. Reduction of surface oxides, and at the same time protection against corrosion of active metallic nickel, can explain the satisfying results of

  17. Donor deactivation in silicon nanostructures

    Science.gov (United States)

    Björk, Mikael T.; Schmid, Heinz; Knoch, Joachim; Riel, Heike; Riess, Walter

    2009-02-01

    The operation of electronic devices relies on the density of free charge carriers available in the semiconductor; in most semiconductor devices this density is controlled by the addition of doping atoms. As dimensions are scaled down to achieve economic and performance benefits, the presence of interfaces and materials adjacent to the semiconductor will become more important and will eventually completely determine the electronic properties of the device. To sustain further improvements in performance, novel field-effect transistor architectures, such as FinFETs and nanowire field-effect transistors, have been proposed as replacements for the planar devices used today, and also for applications in biosensing and power generation. The successful operation of such devices will depend on our ability to precisely control the location and number of active impurity atoms in the host semiconductor during the fabrication process. Here, we demonstrate that the free carrier density in semiconductor nanowires is dependent on the size of the nanowires. By measuring the electrical conduction of doped silicon nanowires as a function of nanowire radius, temperature and dielectric surrounding, we show that the donor ionization energy increases with decreasing nanowire radius, and that it profoundly modifies the attainable free carrier density at values of the radius much larger than those at which quantum and dopant surface segregation effects set in. At a nanowire radius of 15 nm the carrier density is already 50% lower than in bulk silicon due to the dielectric mismatch between the conducting channel and its surroundings.

  18. Metal Hydrides as hot carrier cell absorber materials

    Science.gov (United States)

    Wang, Pei; Wen, Xiaoming; Shrestha, Santosh; Conibeer, Gavin; Aguey-Zinsou, Kondo-Francois

    2016-09-01

    The hot Carrier Solar Cell (HCSC) allows the photon-induced hot carriers (the carriers with energy larger than the band gap) to be collected before they completely thermalise. The absorber of the HCSC should have a large phononic band gap to supress Klemens Decay, which results in a slow carrier cooling speed. In fact, a large phononic band gap likely exists in a binary compound whose constituent elements have a large mass ratio between each other. Binary hydrides with their overwhelming mass ratio of the constituent elements are important absorber candidates. Study on different types of binary hydrides as potential absorber candidates is presented in this paper. Many binary transition metal hydrides have reported theoretical or experimental phonon dispersion charts which show large phononic band gaps. Among these hydrides, the titanium hydride (TiHX) is outstanding because of its low cost, easy fabrication process and is relatively inert to air and water. A TiHX thin film is fabricated by directly hydrogenating an evaporated titanium thin film. Characterisation shows good crystal quality and the hydrogenation process is believed to be successful. Ultrafast transient absorption (TA) spectroscopy is used to study the electron cooling time of TiHX. The result is very noisy due to the low absorption and transmission of the sample. The evolution of the TA curves has been explained by band to band transition using the calculated band structure of TiH2. Though not reliable due to the high noise, decay time fitting at 700nm and 600nm shows a considerably slow carrier cooling speed of the sample.

  19. Synthesis of hydrides by interaction of intermetallic compounds with ammonia

    Energy Technology Data Exchange (ETDEWEB)

    Tarasov, Boris P., E-mail: tarasov@icp.ac.ru [Institute of Problems of Chemical Physics of the Russian Academy of Sciences, Chernogolovka 142432 (Russian Federation); Fokin, Valentin N.; Fokina, Evelina E. [Institute of Problems of Chemical Physics of the Russian Academy of Sciences, Chernogolovka 142432 (Russian Federation); Yartys, Volodymyr A., E-mail: volodymyr.yartys@ife.no [Institute for Energy Technology, Kjeller NO 2027 (Norway); Department of Materials Science and Engineering, Norwegian University of Science and Technology, Trondheim NO 7491 (Norway)

    2015-10-05

    Highlights: • Interaction of the intermetallics A{sub 2}B, AB, AB{sub 2}, AB{sub 5} and A{sub 2}B{sub 17} with NH{sub 3} was studied. • The mechanism of interaction of the alloys with ammonia is temperature-dependent. • Hydrides, hydridonitrides, disproportionation products or metal–N–H compounds are formed. • NH{sub 4}Cl was used as an activator of the reaction between ammonia and intermetallics. • Interaction with ammonia results in the synthesis of the nanopowders. - Abstract: Interaction of intermetallic compounds with ammonia was studied as a processing route to synthesize hydrides and hydridonitrides of intermetallic compounds having various stoichiometries and types of crystal structures, including A{sub 2}B, AB, AB{sub 2}, AB{sub 5} and A{sub 2}B{sub 17} (A = Mg, Ti, Zr, Sc, Nd, Sm; B = transition metals, including Fe, Co, Ni, Ti and nontransition elements, Al and B). In presence of NH{sub 4}Cl used as an activator of the reaction between ammonia and intermetallic alloys, their interaction proceeds at rather mild P–T conditions, at temperatures 100–200 °C and at pressures of 0.6–0.8 MPa. The mechanism of interaction of the alloys with ammonia appears to be temperature-dependent and, following a rise of the interaction temperature, it leads to the formation of interstitial hydrides; interstitial hydridonitrides; disproportionation products (binary hydride; new intermetallic hydrides and binary nitrides) or new metal–nitrogen–hydrogen compounds like magnesium amide Mg(NH{sub 2}){sub 2}. The interaction results in the synthesis of the nanopowders where hydrogen and nitrogen atoms become incorporated into the crystal lattices of the intermetallic alloys. The nitrogenated materials have the smallest particle size, down to 40 nm, and a specific surface area close to 20 m{sup 2}/g.

  20. A new regeneration process for spent nickel/metal hydride batteries

    Institute of Scientific and Technical Information of China (English)

    LI Li; WU Feng; CHEN Ren-jie; GAO Xue-ping; SHAN Zhong-qiang

    2005-01-01

    Ultrasonic method was used to recycle nickel/metal hydride(MH-Ni) batteries under undestroyed state.The effects of ultrasonic on electrode material performance of MH-Ni batteries were investigated by using SEM,EDAX and XRD. The results indicate that with the ultrasonic time increasing, there are obvious dispersing phenomena in the positive and negative electrodes. This can make the inertia oxidation layer break off from the negative electrode, and the fresh surface comes out. These changes can increase the reaction centers of the active materials, as well as improve the catalysis capability and discharge ability. But if the ultrasonic time is too long, it can make the active materials reunite and accelerate its pulverization, and lead to its degradation. The improvement of electrochemical performance for MH-Ni batteries is obvious by ultrasonic for 6 h continuously.

  1. Structure improvement and electrochemical studies of bipolar nickel metal hydride batteries for hybrid electric vehicles

    Institute of Scientific and Technical Information of China (English)

    DENG Chao; SHI Peng-fei

    2006-01-01

    Nickel metal hydride battery in bipolar design offers some advantages for its application as a power storage system for electric and hybrid vehicles. This paper deals with the structure design and electrochemical studies of bipolar Ni/MH batteries for hybrid vehicles. An improvement is applied in bipolar battery design,and such bipolar Ni/MH batteries with 5 sub-cells have been assembled and investigated. Testing results show that bipolar batteries with improved structure have better compression tolerance and cycle performance than conventional ones. In addition, the improved bipolar batteries display excellent large current discharge ability and high power density. As simulating working conditions for hybrid vehicles, the batteries show good stability during pulse cycles, which verifies the possibility of being used as a power storage device on hybrid vehicles.

  2. Hydride structures in Ti-aluminides subjected to high temperature and hydrogen pressure charging conditions

    Science.gov (United States)

    Legzdina, D.; Robertson, I. M.; Birnbaum, H. K.

    1991-01-01

    The distribution and chemistry of hydrides produced in single and dual phase alloys with a composition near TiAl have been investigated by using a combination of TEM and X-ray diffraction techniques. The alloys were exposed at 650 C to 13.8 MPa of gaseous H2 for 100 h. In the single-phase gamma alloy, large hydrides preferentially nucleated on the grain boundaries and matrix dislocations and a population of small hydrides was distributed throughout the matrix. X-ray and electron diffraction patterns from these hydrides indicated that they have an fcc structure with a lattice parameter of 0.45 nm. EDAX analysis of the hydrides showed that they were enriched in Ti. The hydrides were mostly removed by vacuum annealing at 800 C for 24 h. On dissolution of the hydrides, the chemistry of hydride-free regions of the grain boundary returned to the matrix composition, suggesting that Ti segregation accompanied the hydride formation rather than Ti enrichment causing the formation of the hydride.

  3. Hydriding performances and modeling of a small-scale ZrCo bed

    Energy Technology Data Exchange (ETDEWEB)

    Koo, D.; Lee, J.; Park, J.; Paek, S.; Chung, H. [KAERI-UST, Yuseong, Daejeon (Korea, Republic of); Chang, M.H.; Yun, S.H.; Cho, S.; Jung, K.J. [NFRI, Yuseong, Daejeon (Korea, Republic of)

    2015-03-15

    In order to evaluate the performance of the hydriding of a ZrCo bed, a small-scale getter bed of ZrCo was designed and fabricated. The results show that the hydriding time at room temperature was somewhat shorter than that at higher temperatures of ZrCo and that the performance of hydriding at low temperatures of ZrCo was better than that at high temperatures of ZrCo. The experimental results of the hydrogen pressure of hydriding (ZrCoH{sub 2.8}) at different temperatures were in agreement with the computed values using a numerical modeling equation but with a small difference during the first 10 minutes of the hydriding of ZrCo. The model is based on the Kozeny-Carman equation. The effect of a helium blanket on hydriding was measured and analyzed. The hydriding with no helium blanket in the primary vessel of ZrCo is much faster than that with a helium blanket. The hydriding at a helium concentration of 8% is slower than that at 0%. As the helium concentration increases, the hydriding of ZrCo decreases. The experimental results of the hydriding with 0 %, 4%, and 8% of helium concentration are in agreement with the calculated values but with minimal differences during the first 10 minutes.

  4. Application of CART Algorithm in Blood Donors Classification

    Directory of Open Access Journals (Sweden)

    T. Santhanam

    2010-01-01

    Full Text Available Problem statement: This study used data mining modeling techniques to examine the blood donor classification. The availability of blood in blood banks is a critical and important aspect in a healthcare system. Blood banks (in the developing countries context are typically based on a healthy person voluntarily donating blood and is used for transfusions or made into medications. The ability to identify regular blood donors will enable blood banks and voluntary organizations to plan systematically for organizing blood donation camps in an effective manner. Approach: Identify the blood donation behavior using the classification algorithms of data mining. The analysis had been carried out using a standard blood transfusion dataset and using the CART decision tree algorithm implemented in Weka. Results: Numerical experimental results on the UCI ML blood transfusion data with the enhancements helped to identify donor classification. Conclusion: The CART derived model along with the extended definition for identifying regular voluntary donors provided a good classification accuracy based model.

  5. 密封双极性MH/Ni电池结构改进与研制%Structure improvement and development of sealed nickel metal hydride batteries in bipolar design

    Institute of Scientific and Technical Information of China (English)

    邓超; 史鹏飞

    2005-01-01

    Nickel metal hydride batteries in bipolar design offer significant advantages as a power storage system for electric vehicles. This study deals with some aspects in structure design and development of bipolar nickel metal hydride batteries. An improvement on conventional bipolar structure was made, and some novel sealed bipolar nickel metal hydride batteries with 6 cells were assembled and studied. Testing results showed that the improved structure effectively protected the worst single cell of bipolar battery, and led to a better pressure and cycle performances of novel batteries compared with conventional ones. In addition, the improved bipolar batteries showed excellent discharge and recharge ability, and low resistance in electrochemical tests. As simulating hybrid electric vehicle working conditions, the batteries displayed good stability during pulse cycles, which indicated the possibility of being used on electric vehicles.

  6. Dissociation potential curves of low-lying states in transition metal hydrides. 3. Hydrides of groups 6 and 7.

    Science.gov (United States)

    Koseki, Shiro; Matsushita, Takeshi; Gordon, Mark S

    2006-02-23

    The dissociation curves of low-lying spin-mixed states in monohydrides of groups 6 and 7 were calculated by using an effective core potential (ECP) approach. This approach is based on the multiconfiguration self-consistent field (MCSCF) method, followed by first-order configuration interaction (FOCI) calculations, in which the method employs an ECP basis set proposed by Stevens and co-workers (SBKJC) augmented by a set of polarization functions. Spin-orbit coupling (SOC) effects are estimated within the one-electron approximation by using effective nuclear charges, since SOC splittings obtained with the full Breit-Pauli Hamitonian are underestimated when ECP basis sets are used. The ground states of group 6 hydrides have Omega = (1)/(2)(X(6)Sigma(+)(1/2)), where Omega is the z component of the total angular momentum quantum number. Although the ground states of group 7 hydrides have Omega = 0(+), their main adiabatic components are different; the ground state in MnH originates from the lowest (7)Sigma(+), while in TcH and ReH the main component of the ground state is the lowest (5)Sigma(+). The present paper reports a comprehensive set of theoretical results including the dissociation energies, equilibrium distances, electronic transition energies, harmonic frequencies, anharmonicities, and rotational constants for several low-lying spin-mixed states in these hydrides. Transition dipole moments were also computed among the spin-mixed states and large peak positions of electronic transitions are suggested theoretically for these hydrides. The periodic trends of physical properties of metal hydrides are discussed, based on the results reported in this and other recent studies.

  7. Heavy hydrides: H2Te ultraviolet photochemistry

    Science.gov (United States)

    Underwood, J.; Chastaing, D.; Lee, S.; Wittig, C.

    2005-08-01

    The room-temperature ultraviolet absorption spectrum of H2Te has been recorded. Unlike other group-6 hydrides, it displays a long-wavelength tail that extends to 400 nm. Dissociation dynamics have been examined at photolysis wavelengths of 266 nm (which lies in the main absorption feature) and 355 nm (which lies in the long-wavelength tail) by using high-n Rydberg time-of-flight spectroscopy to obtain center-of-mass translational energy distributions for the channels that yield H atoms. Photodissociation at 355 nm yields TeH(Π1/22) selectively relative to the TeH(Π3/22) ground state. This is attributed to the role of the 3A' state, which has a shallow well at large RH-TeH and correlates to H +TeH(Π1/22). Note that the Π1/22 state is analogous to the P1/22 spin-orbit excited state of atomic iodine, which is isoelectronic with TeH. The 3A' state is crossed at large R only by 2A″, with which it does not interact. The character of 3A' at large R is influenced by a strong spin-orbit interaction in the TeH product. Namely, Π1/22 has a higher degree of spherical symmetry than does Π3/22 (recall that I(P1/22) is spherically symmetric), and consequently Π1/22 is not inclined to form either strongly bonding or antibonding orbitals with the H atom. The 3A'←X transition dipole moment dominates in the long-wavelength region and increases with R. Structure observed in the absorption spectrum in the 380-400 nm region is attributed to vibrations on 3A'. The main absorption feature that is peaked at ˜240nm might arise from several excited surfaces. On the basis of the high degree of laboratory system spatial anisotropy of the fragments from 266 nm photolysis, as well as high-level theoretical studies, the main contribution is believed to be due to the 4A″ surface. The 4A″←X transition dipole moment dominates in the Franck-Condon region, and its polarization is in accord with the experimental observations. An extensive secondary photolysis (i.e., of nascent TeH) is

  8. Composite Materials for Hazard Mitigation of Reactive Metal Hydrides.

    Energy Technology Data Exchange (ETDEWEB)

    Pratt, Joseph William; Cordaro, Joseph Gabriel; Sartor, George B.; Dedrick, Daniel E.; Reeder, Craig L.

    2012-02-01

    In an attempt to mitigate the hazards associated with storing large quantities of reactive metal hydrides, polymer composite materials were synthesized and tested under simulated usage and accident conditions. The composites were made by polymerizing vinyl monomers using free-radical polymerization chemistry, in the presence of the metal hydride. Composites with vinyl-containing siloxane oligomers were also polymerized with and without added styrene and divinyl benzene. Hydrogen capacity measurements revealed that addition of the polymer to the metal hydride reduced the inherent hydrogen storage capacity of the material. The composites were found to be initially effective at reducing the amount of heat released during oxidation. However, upon cycling the composites, the mitigating behavior was lost. While the polymer composites we investigated have mitigating potential and are physically robust, they undergo a chemical change upon cycling that makes them subsequently ineffective at mitigating heat release upon oxidation of the metal hydride. Acknowledgements The authors would like to thank the following people who participated in this project: Ned Stetson (U.S. Department of Energy) for sponsorship and support of the project. Ken Stewart (Sandia) for building the flow-through calorimeter and cycling test stations. Isidro Ruvalcaba, Jr. (Sandia) for qualitative experiments on the interaction of sodium alanate with water. Terry Johnson (Sandia) for sharing his expertise and knowledge of metal hydrides, and sodium alanate in particular. Marcina Moreno (Sandia) for programmatic assistance. John Khalil (United Technologies Research Corp) for insight into the hazards of reactive metal hydrides and real-world accident scenario experiments. Summary In an attempt to mitigate and/or manage hazards associated with storing bulk quantities of reactive metal hydrides, polymer composite materials (a mixture of a mitigating polymer and a metal hydride) were synthesized and tested

  9. World marrow donor association crisis response, business continuity, and disaster recovery guidelines.

    Science.gov (United States)

    Pingel, Julia; Case, Cullen; Amer, Beth; Hornung, Raymond A; Schmidt, Alexander H

    2012-12-01

    Multiple institutions, such as donor registries, donor centers, transplantation centers, collection centers, and courier companies, are involved in the international exchange of hematopoietic stem cells. The ability to safely and efficiently ensure continued operation of a donor registry relies on an organization's resiliency in the face of an incident that could impede donor search, donor selection, stem cell collection, or transportation. The Quality Assurance Working Group of the World Marrow Donor Association has developed guidelines on how to establish an organizational resiliency program intended for donor registries initiating an emergency preparedness process. These guidelines cover the minimal requirements of preparedness in prevention and mitigation, crisis response, business continuity, and disaster recovery, and the need for continued maintenance and revision. Issues of international cooperation are addressed as well.

  10. Oxidation of alcohols by hydrogen peroxide, catalyzed by methyltrioxorhenium (MTO): A hydride abstraction

    Energy Technology Data Exchange (ETDEWEB)

    Zauche, T.H.; Espenson, J.H. [Ames Lab., IA (United States)]|[Iowa State Univ., Ames, IA (United States). Dept. of Chemistry

    1998-12-28

    Primary and secondary alcohols are oxidized using hydrogen peroxide as an oxygen donor and methyltrioxorhenium (MTO) as a catalyst. The methylrhenium di-peroxide, CH{sub 3}Re(O)({eta}{sub 2}-O{sub 2}){sub 2}(H{sub 2}O), was the dominant and reactive form of the catalyst. Representative rate constants k/L/mol s are 1.02 {times} 10{sup {minus}4} for 4-Me-{alpha}-methylbenzyl alcohol and 4.9 {times} 10{sup {minus}5} for 4-Cl-{alpha}-methylbenzyl alcohol. There was a kinetic isotope effect of 3.2 for the {alpha} C-H bond. When sec-phenethyl alcohol was labeled with {sup 18}O, 80% of the oxygen was retained in the ketone. Tests for the possible intervention of a free radical intermediate were carried out; the evidence was entirely negative. A mechanism featuring hydride abstraction is proposed, the first time for the H{sub 2}O{sub 2}/MTO system. Also, a cocatalytic set of reaction conditions has been developed on the synthetic scale, using bromide and MTO as cocatalysts, which cuts the reaction time from hours to minutes.

  11. Heart transplantation from older donors

    Directory of Open Access Journals (Sweden)

    V. N. Poptsov

    2017-01-01

    Full Text Available In the current situation of the shortage of suitable donor organs, heart transplantation from older donors is one of the ways to increase the performance of more heart transplants, particularly, in patients with urgent need of transplantation. While planning a heart transplantation from older donor one should consider increased risk of early cardiac allograft dysfunction, preexisting coronary artery disease, accelerated transplant vasculopathy which may adversely affect early and long-term survival of recipients. Subject to careful selection of donor–recipient pairs, effective prevention and treatment of early cardiac allograft dysfunction, pre-existing atherosclerosis and transplant vasculopathy the early and long-term survival of heart transplant recipients from older donors is comparable to heart transplantation from young donors.

  12. Effect of thermo-mechanical cycling on zirconium hydride reorientation studied in situ with synchrotron X-ray diffraction

    Science.gov (United States)

    Colas, Kimberly B.; Motta, Arthur T.; Daymond, Mark R.; Almer, Jonathan D.

    2013-09-01

    The circumferential hydrides normally present in nuclear reactor fuel cladding after reactor exposure may dissolve during drying for dry storage and re-precipitate when cooled under load into a more radial orientation, which could embrittle the fuel cladding. It is necessary to study the rates and conditions under which hydride reorientation may happen in order to assess fuel integrity in dry storage. The objective of this work is to study the effect of applied stress and thermal cycling on the hydride morphology in cold-worked stress-relieved Zircaloy-4 by combining conventional metallography and in situ X-ray diffraction techniques. Metallography is used to study the evolution of hydride morphology after several thermo-mechanical cycles. In situ X-ray diffraction performed at the Advanced Photon Source synchrotron provides real-time information on the process of hydride dissolution and precipitation under stress during several thermal cycles. The detailed study of diffracted intensity, peak position and full-width at half-maximum provides information on precipitation kinetics, elastic strains and other characteristics of the hydride precipitation process. The results show that thermo-mechanical cycling significantly increases the radial hydride fraction as well as the hydride length and connectivity. The radial hydrides are observed to precipitate at a lower temperature than circumferential hydrides. Variations in the magnitude and range of hydride strains due to reorientation and cycling have also been observed. These results are discussed in light of existing models and experiments on hydride reorientation. The study of hydride elastic strains during precipitation shows marked differences between circumferential and radial hydrides, which can be used to investigate the reorientation process. Cycling under stress above the threshold stress for reorientation drastically increases both the reoriented hydride fraction and the hydride size. The reoriented hydride

  13. FEASIBILITY OF RECYCLING PLUTONIUM AND MINOR ACTINIDES IN LIGHT WATER REACTORS USING HYDRIDE FUEL

    Energy Technology Data Exchange (ETDEWEB)

    Greenspan, Ehud; Todreas, Neil; Taiwo, Temitope

    2009-03-10

    The objective of this DOE NERI program sponsored project was to assess the feasibility of improving the plutonium (Pu) and minor actinide (MA) recycling capabilities of pressurized water reactors (PWRs) by using hydride instead of oxide fuels. There are four general parts to this assessment: 1) Identifying promising hydride fuel assembly designs for recycling Pu and MAs in PWRs 2) Performing a comprehensive systems analysis that compares the fuel cycle characteristics of Pu and MA recycling in PWRs using the promising hydride fuel assembly designs identified in Part 1 versus using oxide fuel assembly designs 3) Conducting a safety analysis to assess the likelihood of licensing hydride fuel assembly designs 4) Assessing the compatibility of hydride fuel with cladding materials and water under typical PWR operating conditions Hydride fuel was found to offer promising transmutation characteristics and is recommended for further examination as a possible preferred option for recycling plutonium in PWRs.

  14. Heat transfer analysis of metal hydrides in metal-hydrogen secondary batteries

    Science.gov (United States)

    Onischak, M.; Dharia, D.; Gidaspow, D.

    1976-01-01

    The heat transfer between a metal-hydrogen secondary battery and a hydrogen-storing metal hydride was studied. Temperature profiles of the endothermic metal hydrides and the metal-hydrogen battery were obtained during discharging of the batteries assuming an adiabatic system. Two hydride materials were considered in two physical arrangements within the battery system. In one case the hydride is positioned in a thin annular region about the battery stack; in the other the hydride is held in a tube down the center of the stack. The results show that for a typical 20 ampere-hour battery system with lanthanum pentanickel hydride as the hydrogen reservoir the system could perform successfully.

  15. Molecular early main group metal hydrides: synthetic challenge, structures and applications.

    Science.gov (United States)

    Harder, Sjoerd

    2012-11-25

    Within the general area of early main group metal chemistry, the controlled synthesis of well-defined metal hydride complexes is a rapidly developing research field. As group 1 and 2 metal complexes are generally highly dynamic and lattice energies for their [MH](∞) and [MH(2)](∞) salts are high, the synthesis of well-defined soluble hydride complexes is an obvious challenge. Access to molecular early main group metal hydrides, however, is rewarding: these hydrocarbon-soluble metal hydrides are highly reactive, have found use in early main group metal catalysis and are potentially also valuable molecular model systems for polar metal hydrides as a hydrogen storage material. The article focusses specifically on alkali and alkaline-earth metal hydride complexes and discusses the synthetic challenge, molecular structures, reactivity and applications.

  16. Oxidation of Group 8 transition-Metal Hydrides and Ionic Hydrogenation of Ketones and Aldehydes

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Kjell-Tore

    1996-08-01

    Transition-metal hydrides have received considerable attention during the last decades because of their unusual reactivity and their potential as homogeneous catalysts for hydrogenation and other reactions of organic substrates. An important class of catalytic processes where transition-metal hydrides are involved is the homogeneous hydrogenation of alkenes, alkynes, ketones, aldehydes, arenes and nitro compounds. This thesis studies the oxidation of Group 8 transition-metal hydrides and the ionic hydrogenation of ketones and aldehydes.

  17. Orbital-like motion of hydride ligands around low-coordinate metal centers.

    Science.gov (United States)

    Ortuño, Manuel A; Vidossich, Pietro; Conejero, Salvador; Lledós, Agustí

    2014-12-15

    Hydrogen atoms in the coordination sphere of a transition metal are highly mobile ligands. Here, a new type of dynamic process involving hydrides has been characterized by computational means. This dynamic event consists of an orbital-like motion of hydride ligands around low-coordinate metal centers containing N-heterocyclic carbenes. The hydride movement around the carbene-metal-carbene axis is the lowest energy mode connecting energy equivalent isomers. This understanding provides crucial information for the interpretation of NMR spectra.

  18. High Temperature Metal Hydrides as Heat Storage Materials for Solar and Related Applications

    Directory of Open Access Journals (Sweden)

    Borislav Bogdanović

    2009-01-01

    Full Text Available For the continuous production of electricity with solar heat power plants the storage of heat at a temperature level around 400 °C is essential. High temperature metal hydrides offer high heat storage capacities around this temperature. Based on Mg-compounds, these hydrides are in principle low-cost materials with excellent cycling stability. Relevant properties of these hydrides and their possible applications as heat storage materials are described.

  19. High temperature metal hydrides as heat storage materials for solar and related applications.

    Science.gov (United States)

    Felderhoff, Michael; Bogdanović, Borislav

    2009-01-01

    For the continuous production of electricity with solar heat power plants the storage of heat at a temperature level around 400 degrees C is essential. High temperature metal hydrides offer high heat storage capacities around this temperature. Based on Mg-compounds, these hydrides are in principle low-cost materials with excellent cycling stability. Relevant properties of these hydrides and their possible applications as heat storage materials are described.

  20. Neutral binuclear rare-earth metal complexes with four μ₂-bridging hydrides.

    Science.gov (United States)

    Rong, Weifeng; He, Dongliang; Wang, Meiyan; Mou, Zehuai; Cheng, Jianhua; Yao, Changguang; Li, Shihui; Trifonov, Alexander A; Lyubov, Dmitrii M; Cui, Dongmei

    2015-03-25

    The first neutral rare-earth metal dinuclear dihydrido complexes [(NPNPN)LnH2]2 (2-Ln; Ln = Y, Lu; NPNPN: N[Ph2PNC6H3((i)Pr)2]2) bearing μ2-bridging hydride ligands have been synthesized. In the presence of THF, 2-Y undergoes intramolecular activation of the sp(2) C-H bond to form dinuclear aryl-hydride complex 3-Y containing three μ2-bridging hydride ligands.

  1. Development of a novel metal hydride-air secondary battery

    Energy Technology Data Exchange (ETDEWEB)

    Gamburzev, S.; Zhang, W.; Velev, O.A.; Srinivasan, S.; Appleby, A.J. [Texas A and M University, College Station (United States). Center for Electrochemical Systems and Hydrogen Research; Visintin, A. [Universidad Nacional de La Plata (Argentina). Insituto Nacional de Investigaciones Fisicoquimica Teoricas y Applicadas

    1998-05-01

    A laboratory metal hydride/air cell was evaluated. Charging was via a bifunctional air gas-diffusion electrode. Mixed nickel and cobalt oxides, supported on carbon black and activated carbon, were used as catalysts in this electrode. At 30 mA cm{sup -2} in 6 M KOH, the air electrode potentials were -0.2 V (oxygen reduction) and +0.65 V (oxygen evolution) vs Hg/HgO. The laboratory cell was cycled for 50 cycles at the C/2 rate (10 mA cm{sup -2}). The average discharge/charge voltages of the cell were 0.65 and 1.6 V, respectively. The initial capacity of the metal hydride electrode decreased by about 15% after 50 cycles. (author)

  2. Detecting low concentrations of plutonium hydride with magnetization measurements

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jae Wook; Mun, E. D.; Baiardo, J. P.; Zapf, V. S.; Mielke, C. H. [National High Magnetic Field Laboratory, MPA-CMMS, Los Alamos National Laboratory (LANL), Los Alamos, New Mexico 87545 (United States); Smith, A. I.; Richmond, S.; Mitchell, J.; Schwartz, D. [Nuclear Material Science Group, MST-16, LANL, Los Alamos, New Mexico 87545 (United States)

    2015-02-07

    We report the formation of plutonium hydride in 2 at. % Ga-stabilized δ-Pu, with 1 at. % H charging. We show that magnetization measurements are a sensitive, quantitative measure of ferromagnetic plutonium hydride against the nonmagnetic background of plutonium. It was previously shown that at low hydrogen concentrations, hydrogen forms super-abundant vacancy complexes with plutonium, resulting in a bulk lattice contraction. Here, we use magnetization, X-ray, and neutron diffraction measurements to show that in addition to forming vacancy complexes, at least 30% of the H atoms bond with Pu to precipitate PuH{sub x} on the surface of the sample with x ∼ 1.9. We observe magnetic hysteresis loops below 40 K with magnetic remanence, consistent with ferromagnetic PuH{sub 1.9}.

  3. Optical studies of neutron-irradiated lithium hydride single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Oparin, D.V.; Pilipenko, G.I.; Tyutyunnik, O.I.; Gavrilov, F.F.; Sulimov, E.M. (Ural' skij Politekhnicheskij Inst., Sverdlovsk (USSR))

    1984-09-01

    Lithium hydride single crystals irradiated with neutrons were studied by the optical method. Wide bands belonging to the large F-aggregate and quasimetallic F-centres and to the metallic lithium colloids were discovered in the absorption spectra at room temperature. The small Fsub(n)-centres and molecular lithium centres were detected at 77 K. From the electron-vibrational structure of the absorption spectra of these centres the energies of acoustic phonons in X, W, L points of the Brillouin zone of lithium hydride have been found out: TA(L)-235 cm/sup -1/, TA(X)-27g cm/sup -1/, TA(W)-327 cm/sup -1/, LA(W)-384 cm/sup -1/, LA(X)-426 cm/sup -1/.

  4. Hydrorefining distillates from coal liquefaction using intermetallic compound hydrides

    Energy Technology Data Exchange (ETDEWEB)

    Kadiev, Kh.M.; Pivovarova, N.A.; Askhabova, Kh.N.; Taramov, Kh.K.

    1986-07-01

    Investigations are discussed into hydrorefining of coal liquefaction distillate using ZrNi intermetallic compound hydride as catalyst. The paper shows that 70-75% reduction in content of unsaturated and sulfur-containing compounds takes place in the presence of this catalyst at low temperature (200-250 C) and pressure (0.1 MPa), and establishes that preliminary preparation of starting material (removal of phenols and nitrous bases) produces significant effect on hydrorefining results and product stability. Tests have also shown that although intermetallic compound hydride catalyst has fairly low stability, it is capable of recovering its catalytic properties on reduction-oxidation treatment. Description of the tests and characteristics of hydrorefining products of coal liquefaction distillate are given. 8 references.

  5. ALUMINUM HYDRIDE: A REVERSIBLE STORAGE MATERIAL FOR HYDROGEN STORAGE

    Energy Technology Data Exchange (ETDEWEB)

    Zidan, R; Christopher Fewox, C; Brenda Garcia-Diaz, B; Joshua Gray, J

    2009-01-09

    One of the challenges of implementing the hydrogen economy is finding a suitable solid H{sub 2} storage material. Aluminium (alane, AlH{sub 3}) hydride has been examined as a potential hydrogen storage material because of its high weight capacity, low discharge temperature, and volumetric density. Recycling the dehydride material has however precluded AlH{sub 3} from being implemented due to the large pressures required (>10{sup 5} bar H{sub 2} at 25 C) and the thermodynamic expense of chemical synthesis. A reversible cycle to form alane electrochemically using NaAlH{sub 4} in THF been successfully demonstrated. Alane is isolated as the triethylamine (TEA) adduct and converted to unsolvated alane by heating under vacuum. To complete the cycle, the starting alanate can be regenerated by direct hydrogenation of the dehydrided alane and the alkali hydride (NaH) This novel reversible cycle opens the door for alane to fuel the hydrogen economy.

  6. Irradiation effects on thermal properties of LWR hydride fuel

    Science.gov (United States)

    Terrani, Kurt; Balooch, Mehdi; Carpenter, David; Kohse, Gordon; Keiser, Dennis; Meyer, Mitchell; Olander, Donald

    2017-04-01

    Three hydride mini-fuel rods were fabricated and irradiated at the MIT nuclear reactor with a maximum burnup of 0.31% FIMA or ∼5 MWd/kgU equivalent oxide fuel burnup. Fuel rods consisted of uranium-zirconium hydride (U (30 wt%)ZrH1.6) pellets clad inside a LWR Zircaloy-2 tubing. The gap between the fuel and the cladding was filled with lead-bismuth eutectic alloy to eliminate the gas gap and the large temperature drop across it. Each mini-fuel rod was instrumented with two thermocouples with tips that are axially located halfway through the fuel centerline and cladding surface. In-pile temperature measurements enabled calculation of thermal conductivity in this fuel as a function of temperature and burnup. In-pile thermal conductivity at the beginning of test agreed well with out-of-pile measurements on unirradiated fuel and decreased rapidly with burnup.

  7. Pyrophoric behaviour of uranium hydride and uranium powders

    Energy Technology Data Exchange (ETDEWEB)

    Le Guyadec, F., E-mail: fabienne.leguyadec@cea.f [CEA Marcoule DEN/DTEC/SDTC, 30207 Bagnols sur Ceze, BP 17171 (France); Genin, X.; Bayle, J.P. [CEA Marcoule DEN/DTEC/SDTC, 30207 Bagnols sur Ceze, BP 17171 (France); Dugne, O. [DEN/DTEC/SGCS, 30207 Bagnols sur Ceze, BP 17171 (France); Duhart-Barone, A.; Ablitzer, C. [CEA Cadarache DEN/DEC/SPUA, 13108 St. Paul lez Durance (France)

    2010-01-31

    Thermal stability and spontaneous ignition conditions of uranium hydride and uranium metal fine powders have been studied and observed in an original and dedicated experimental device placed inside a glove box under flowing pure argon. Pure uranium hydride powder with low amount of oxide (<0.5 wt.%) was obtained by heat treatment at low temperature in flowing Ar/5%H{sub 2}. Pure uranium powder was obtained by dehydration in flowing pure argon. Those fine powders showed spontaneous ignition at room temperature in air. An in situ CCD-camera displayed ignition associated with powder temperature measurement. Characterization of powders before and after ignition was performed by XRD measurements and SEM observations. Oxidation mechanisms are proposed.

  8. Reversible metal-hydride phase transformation in epitaxial films.

    Science.gov (United States)

    Roytburd, Alexander L; Boyerinas, Brad M; Bruck, Hugh A

    2015-03-11

    Metal-hydride phase transformations in solids commonly proceed with hysteresis. The extrinsic component of hysteresis is the result of the dissipation of energy of internal stress due to plastic deformation and fracture. It can be mitigated on the nanoscale, where plastic deformation and fracture are suppressed and the transformation proceeds through formation and evolution of coherent phases. However, the phase coherency introduces intrinsic thermodynamic hysteresis, preventing reversible transformation. In this paper, it is shown that thermodynamic hysteresis of coherent metal-hydride transformation can be eliminated in epitaxial film due to substrate constraint. Film-substrate interaction leads to formation of heterophase polydomain nanostructure with variable phase fraction which can change reversibly by varying temperature in a closed system or chemical potential in an open system.

  9. Structural isotope effects in metal hydrides and deuterides.

    Science.gov (United States)

    Ting, Valeska P; Henry, Paul F; Kohlmann, Holger; Wilson, Chick C; Weller, Mark T

    2010-03-07

    Historically the extraction of high-quality crystallographic information from inorganic samples having high hydrogen contents, such as metal hydrides, has involved preparing deuterated samples prior to study using neutron powder diffraction. We demonstrate, through direct comparison of the crystal structure refinements of the binary hydrides SrH(2) and BaH(2) with their deuteride analogues at 2 K and as a function of temperature, that precise and accurate structural information can be obtained from rapid data collections from samples containing in excess of 60 at.% hydrogen using modern high-flux, medium resolution, continuous wavelength neutron powder diffraction instruments. Furthermore, observed isotope-effects in the extracted lattice parameters and atomic positions illustrate the importance of investigating compounds in their natural hydrogenous form whenever possible.

  10. Effects of metastability on hydrogen sorption in fluorine substituted hydrides

    Energy Technology Data Exchange (ETDEWEB)

    Pinatel, E.R.; Corno, M.; Ugliengo, P.; Baricco, M., E-mail: marcello.baricco@unito.it

    2014-12-05

    Highlights: • Fluorine substitution in simple metal hydrides has been modelled. • The stability of the MH{sub (1−x)}F{sub x} solid solutions has been discussed. • Conditions for reversibility of sorption reactions have been suggested. - Abstract: In this work ab initio calculations and Calphad modelling have been coupled to describe the effect of fluorine substitution on the thermodynamics of hydrogenation–dehydrogenation in simple hydrides (NaH, AlH{sub 3} and CaH{sub 2}). These example systems have been used to discuss the conditions required for the formation of a stable hydride–fluoride solid solution necessary to obtain a reversible hydrogenation reaction.

  11. Shielding efficiency of metal hydrides and borohydrides in fusion reactors

    OpenAIRE

    Singh Vishvanath P.; Badiger Nagappa M.; Gerward Leif

    2016-01-01

    Mass attenuation coefficients, mean free paths and exposure buildup factors have been used to characterize the shielding efficiency of metal hydrides and borohydrides, with high density of hydrogen. Gamma ray exposure buildup factors were computed using five-parameter geometric progression fitting at energies 0.015 MeV to15 MeV, and for penetration depths up to 40 mean free paths. Fast-neutron shielding efficiency has been characterized by the effective neu...

  12. Photoelectron spectroscopic study of carbon aluminum hydride cluster anions

    Science.gov (United States)

    Zhang, Xinxing; Wang, Haopeng; Ganteför, Gerd; Eichhorn, Bryan W.; Kiran, Boggavarapu; Bowen, Kit H.

    2016-10-01

    Numerous previously unknown carbon aluminum hydride cluster anions were generated in the gas phase, identified by time-of-flight mass spectrometry and characterized by anion photoelectron spectroscopy, revealing their electronic structure. Density functional theory calculations on the CAl5-9H- and CAl5-7H2- found that several of them possess unusually high carbon atom coordination numbers. These cluster compositions have potential as the basis for new energetic materials.

  13. METHOD OF MAKING DELTA ZIRCONIUM HYDRIDE MONOLITHIC MODERATOR PIECES

    Science.gov (United States)

    Vetrano, J.B.

    1962-01-23

    A method is given for preparing large, sound bodies of delta zirconium hydride. The method includes the steps of heating a zirconium body to a temperature of not less than l000 deg C, providing a hydrogen atmosphere for the zirconium body at a pressure not greater than one atmosphere, reducing the temperature slowly to 800 deg C at such a rate that cracks do not form while maintaining the hydrogen pressure substantially constant, and cooling in an atmosphere of hydrogen. (AEC)

  14. Aluminum Hydride as a Fuel Supplement to NanoThermites

    Science.gov (United States)

    2014-01-01

    explosives and as a hydrogen storage medium. There are as many as six crystalline phases of alane, of which α-alane is themost stable and is also the...a pure nanoaluminum-corresponding metal oxide thermite. As Fig. 2 shows, the addition ofmicron-scale aluminum hydride to a nanoaluminum–copper-oxide... hydrogen does not participate in the thermite reaction. It is quite possible that the hydrogen may react with oxygen and or the metal oxide as an

  15. Gas chromatographic separation of hydrogen isotopes using metal hydrides

    Energy Technology Data Exchange (ETDEWEB)

    Aldridge, F.T.

    1984-05-09

    A study was made of the properties of metal hydrides which may be suitable for use in chromatographic separation of hydrogen isotopes. Sixty-five alloys were measured, with the best having a hydrogen-deuterium separation factor of 1.35 at 60/sup 0/C. Chromatographic columns using these alloys produced deuterium enrichments of up to 3.6 in a single pass, using natural abundance hydrogen as starting material. 25 references, 16 figures, 4 tables.

  16. Bone density in apheresis donors and whole blood donors.

    Science.gov (United States)

    Boot, C L; Luken, J S; van den Burg, P J M; de Kort, W L A M; Koopman, M M W; Vrielink, H; van Schoor, N M; den Heijer, M; Lips, P

    2015-11-01

    Apheresis donation using citrate causes acute decrease in serum calcium and increase in serum parathyroid hormone. Long-term consequences, such as decrease in bone mineral density (BMD), are not known. In this study, we compared the BMD of 20 postmenopausal apheresis donors (mean donation number 115 times in up to 15 years) with that of 20 whole blood donors (for 15 years or more) aged 55-70. BMD in the lumbar spine was not lower in apheresis donors than in blood donors (mean ± SD 1.00 ± 0.18 vs. 0.92 ± 0.12, P = 0.09). In the hip, BMD was not different between the groups.

  17. Synthesis of Renewable Energy Materials, Sodium Aluminum Hydride by Grignard Reagent of Al

    Directory of Open Access Journals (Sweden)

    Jun-qin Wang

    2015-01-01

    Full Text Available The research on hydrogen generation and application has attracted widespread attention around the world. This paper is to demonstrate that sodium aluminum hydride can be synthesized under simple and mild reaction condition. Being activated through organics, aluminum powder reacts with hydrogen and sodium hydride to produce sodium aluminum hydride under atmospheric pressure. The properties and composition of the sample were characterized by FTIR, XRD, SEM, and so forth. The results showed that the product through this synthesis method is sodium aluminum hydride, and it has higher purity, perfect crystal character, better stability, and good hydrogen storage property. The reaction mechanism is also discussed in detail.

  18. Pressure-driven formation and stabilization of superconductive chromium hydrides

    Science.gov (United States)

    Yu, Shuyin; Jia, Xiaojing; Frapper, Gilles; Li, Duan; Oganov, Artem R.; Zeng, Qingfeng; Zhang, Litong

    2015-01-01

    Chromium hydride is a prototype stoichiometric transition metal hydride. The phase diagram of Cr-H system at high pressures remains largely unexplored due to the challenges in dealing with the high activation barriers and complications in handing hydrogen under pressure. We have performed an extensive structural study on Cr-H system at pressure range 0 ∼ 300 GPa using an unbiased structure prediction method based on evolutionary algorithm. Upon compression, a number of hydrides are predicted to become stable in the excess hydrogen environment and these have compositions of Cr2Hn (n = 2–4, 6, 8, 16). Cr2H3, CrH2 and Cr2H5 structures are versions of the perfect anti-NiAs-type CrH with ordered tetrahedral interstitial sites filled by H atoms. CrH3 and CrH4 exhibit host-guest structural characteristics. In CrH8, H2 units are also identified. Our study unravels that CrH is a superconductor at atmospheric pressure with an estimated transition temperature (T c) of 10.6 K, and superconductivity in CrH3 is enhanced by the metallic hydrogen sublattice with T c of 37.1 K at 81 GPa, very similar to the extensively studied MgB2. PMID:26626579

  19. Metal hydride-based thermal energy storage systems

    Energy Technology Data Exchange (ETDEWEB)

    Vajo, John J.; Fang, Zhigang

    2017-10-03

    The invention provides a thermal energy storage system comprising a metal-containing first material with a thermal energy storage density of about 1300 kJ/kg to about 2200 kJ/kg based on hydrogenation; a metal-containing second material with a thermal energy storage density of about 200 kJ/kg to about 1000 kJ/kg based on hydrogenation; and a hydrogen conduit for reversibly transporting hydrogen between the first material and the second material. At a temperature of 20.degree. C. and in 1 hour, at least 90% of the metal is converted to the hydride. At a temperature of 0.degree. C. and in 1 hour, at least 90% of the metal hydride is converted to the metal and hydrogen. The disclosed metal hydride materials have a combination of thermodynamic energy storage densities and kinetic power capabilities that previously have not been demonstrated. This performance enables practical use of thermal energy storage systems for electric vehicle heating and cooling.

  20. Air passivation of metal hydride beds for waste disposal

    Energy Technology Data Exchange (ETDEWEB)

    Klein, J. E.; Hsu, R. H. [Savannah River National Laboratory, Aiken, SC 29808 (United States)

    2008-07-15

    One waste acceptance criteria for hydride bed waste disposal is that the bed be non-pyrophoric. Batch-wise air ingress tests were performed which determined the amount of air consumed by a metal hydride bed. A desorbed, 4.4 kg titanium prototype hydride storage vessel (HSV) produced a 4.4 deg.C internal temperature rise upon the first air exposure cycle and a 0.1 deg.C temperature rise upon a second air exposure. A total of 346 sec air was consumed by the bed (0.08 sec per gram Ti). A desorbed, 9.66 kg LaNi{sub 4.25}Al{sub 0.75} prototype storage bed experienced larger temperature rises over successive cycles of air ingress and evacuation. The cycles were performed over a period of days with the bed effectively passivated after the 12. cycle. Nine to ten STP-L of air reacted with the bed producing both oxidized metal and water. (authors)

  1. Modellization of Metal Hydride Canister for Hydrogen Storage

    Directory of Open Access Journals (Sweden)

    Rocio Maceiras

    2015-06-01

    Full Text Available Hydrogen shows very interesting features for its use on-board applications as fuel cell vehicles. This paper presents the modelling of a tank with a metal hydride alloy for on-board applications, which provides good performance under ambient conditions. The metal hydride contained in the tank is Ti0.98Zr0.02V0.43Fe0.09Cr0.05Mn1.5. A two-dimensional model has been performed for the refuelling process (absorption and the discharge process (desorption. For that, individual models of mass balance, energy balance, reaction kinetics and behaviour of hydrogen gas has been modelled. The model has been developed under Matlab / Simulink© environment. Finally, individual models have been integrated into a global model, and simulated under ambient conditions. With the aim to analyse the temperature influence on the state of charge and filling and emptying time, other simulations were performed at different temperatures. The obtained results allow to conclude that this alloy offers a good behaviour with the discharge process under normal ambient conditions. Keywords: Hydrogen storage; metal hydrides; fuel cell; simulation; board applications

  2. Investigation of long term stability in metal hydrides

    Science.gov (United States)

    Marmaro, Roger W.; Lynch, Franklin E.; Chandra, Dhanesh; Lambert, Steve; Sharma, Archana

    1991-01-01

    It is apparent from the literature and the results of this study that cyclic degradation of AB(5) type metal hydrides varies widely according to the details of how the specimens are cycled. The Rapid Cycle Apparatus (RCA) used produced less degradation in 5000 to 10000 cycles than earlier work with a Slow Cycle Apparatus (SCA) produced in 1500 cycles. Evidence is presented that the 453 K (356 F) Thermal Aging (TA) time spent in the saturated condition causes hydride degradation. But increasing the cooling (saturation) period in the RCA did not greatly increase the rate of degradation. It appears that TA type degradation is secondary at low temperatures to another degradation mechanism. If rapid cycles are less damaging than slow cycles when the saturation time is equal, the rate of hydriding/dehydriding may be an important factor. The peak temperatures in the RCA were about 30 C lower than the SCA. The difference in peak cycle temperatures (125 C in the SCA, 95 C in RCA) cannot explain the differences in degradation. TA type degradation is similar to cyclic degradation in that nickel peaks and line broadening are observed in X ray diffraction patterns after either form of degradation.

  3. Performance study of a hydrogen powered metal hydride actuator

    Science.gov (United States)

    Mainul Hossain Bhuiya, Md; Kim, Kwang J.

    2016-04-01

    A thermally driven hydrogen powered actuator integrating metal hydride hydrogen storage reactor, which is compact, noiseless, and able to generate smooth actuation, is presented in this article. To test the plausibility of a thermally driven actuator, a conventional piston type actuator was integrated with LaNi5 based hydrogen storage system. Copper encapsulation followed by compaction of particles into pellets, were adopted to improve overall thermal conductivity of the reactor. The operation of the actuator was thoroughly investigated for an array of operating temperature ranges. Temperature swing of the hydride reactor triggering smooth and noiseless actuation over several operating temperature ranges were monitored for quantification of actuator efficiency. Overall, the actuator generated smooth and consistent strokes during repeated cycles of operation. The efficiency of the actuator was found to be as high as 13.36% for operating a temperature range of 20 °C-50 °C. Stress-strain characteristics, actuation hysteresis etc were studied experimentally. Comparison of stress-strain characteristics of the proposed actuator with traditional actuators, artificial muscles and so on was made. The study suggests that design modification and use of high pressure hydride may enhance the performance and broaden the application horizon of the proposed actuator in future.

  4. How to Motivate Whole Blood Donors to Become Plasma Donors

    Directory of Open Access Journals (Sweden)

    Gaston Godin

    2014-01-01

    Full Text Available This study tested the efficacy of interventions to recruit new plasma donors among whole blood donors. A sample of 924 donors was randomized to one of three conditions: control; information only by nurse; and information plus self-positive image message by nurse (SPI. Participants in the control condition only received a leaflet describing the plasma donation procedure. In the two experimental conditions the leaflet was explained face-to-face by a nurse. The dependent variables were the proportion of new plasma donors and the number of donations at six months. Overall, 141 (15.3% new plasma donors were recruited at six months. There were higher proportions of new plasma donors in the two experimental conditions compared to the control condition (P<.001; the two experimental conditions did not differ. Also, compared to the control condition, those in the experimental conditions (all Ps<.001 gave plasma more often (information only by nurse:  d=.26; SPI: d=.32; the SPI intervention significantly outperformed (P<.05 the information only by nurse condition. The results suggest that references to feelings of SPI such as feeling good and being proud and that giving plasma is a rewarding personal experience favor a higher frequency of plasma donation.

  5. Donor milk: current perspectives

    Directory of Open Access Journals (Sweden)

    Giuliani F

    2014-07-01

    Full Text Available Francesca Giuliani,1 Ilaria Rovelli,1 Chiara Peila,1 Stefania Alfonsina Liguori,2 Enrico Bertino,1 Alessandra Coscia1 1SCDU Neonatologia, Dipartimento di Scienze Pediatriche e dell'Adolescenza, Università degli Studi di Torino, Torino, Italy; 2SC Neonatologia, Ospedale Maria Vittoria, Torino, Italy Abstract: Mother's own milk is widely recognized as the optimal feeding for term infants, but increasing evidence exists of its benefits also for sick and preterm infants in neonatal intensive care units. However, the nutritional needs for appropriate growth and neurodevelopmental outcomes of such a particular population of infants should be attentively evaluated, considering also the indication to an appropriate fortification of human milk. The target is to achieve growth potential for preterm newborns while ensuring good metabolic outcomes and normal neurological development. When mother's milk is unavailable or in short supply, donor human milk (DHM represents the second best choice and, although somewhat modified by the Holder pasteurization process, it preserves many benefits when compared to formula, as documented by more and more reports, randomized controlled trials, and meta-analyses published in the past few years. Evidence exists of the protection exerted by DHM from necrotizing enterocolitis, while further studies are required to look at possible beneficial effects regarding infections, bronchopulmonary dysplasia, long-term cardiovascular risk factors, feeding tolerance, neurological outcome, and allergy. Finally, the concern that the use of DHM might decrease preterm infant breastfeeding is being raised. Conversely, publications exist showing that the use of DHM in the neonatal unit increases breastfeeding rates at discharge for infants of very low birth weight. Keywords: human milk, preterm infant feeding, milk bank, breast milk, mother's own milk, pasteurized human milk, fortification

  6. Dual-mode chemical vapor generation for simultaneous determination of hydride-forming and non-hydride-forming elements by atomic fluorescence spectrometry.

    Science.gov (United States)

    Wang, Yu; Xu, Kailai; Jiang, Xiaoming; Hou, Xiandeng; Zheng, Chengbin

    2014-05-21

    A dual-mode chemical vapor generation integrating hydride generation and photochemical vapor generation was developed for simultaneous multi-element analysis of hydride-forming and non-hydride-forming elements by atomic fluorescence spectrometry. Four elements were selected as model elements of hydride-forming (As, Cd) and non-hydride-forming (Ni, Fe) elements to validate this proposed method. Standard or sample solutions were separately pumped to mix with tetrahydroborate, and concentrated formic acid and ammonia, and then directed to a hydride generator and a photochemical reactor to realize simultaneous hydride generation and photochemical vapor generation, respectively. Optimum conditions for dual-mode chemical vapor generation were carefully investigated. Under the optimized conditions, limits of detection of 0.05, 0.008, 0.8 and 0.1 μg L(-1) were obtained for As, Cd, Fe and Ni, respectively. The precisions were 5.0, 5.5, 4.3 and 4.5% (n = 6, RSDs) for 2 μg L(-1) of As, 1 μg L(-1) of Cd, 50 μg L(-1) of Fe and 10 μg L(-1) of Ni, respectively. This method was validated for accuracy with three certified reference water samples and applied to the simultaneous determination of these elements in a tap water sample with spike recoveries in the range of 95-99%.

  7. Science Letters: Hydrogen transfer reduction of ketones using formic acid as a hydrogen donor under hydrothermal conditions

    Institute of Scientific and Technical Information of China (English)

    Zheng SHEN; Fang-ming JIN; Ya-lei ZHANG; Bing WU; Jiang-lin CAO

    2009-01-01

    The hydrothermal experiments with ketones and formic acid showed that the hydrogen transfer reduction of ketones can be conducted using formic acid as a hydride donor in the presence of NaOH at 300℃. The yield of alcohols was considerably higher at a much lower ratio of hydrogen source to ketones than the traditional Meerwein-Ponndorf-Verley (MPV) reduction,reaching 60% for isopropanol from acetone and 70% for lactic acid from pyruvic acid. Water molecules may act as a catalyst in the hydrogen transfer reduction of ketones under hydrothermal conditions.

  8. Hydrogen storage and evolution catalysed by metal hydride complexes.

    Science.gov (United States)

    Fukuzumi, Shunichi; Suenobu, Tomoyoshi

    2013-01-07

    The storage and evolution of hydrogen are catalysed by appropriate metal hydride complexes. Hydrogenation of carbon dioxide by hydrogen is catalysed by a [C,N] cyclometalated organoiridium complex, [Ir(III)(Cp*)(4-(1H-pyrazol-1-yl-κN(2))benzoic acid-κC(3))(OH(2))](2)SO(4) [Ir-OH(2)](2)SO(4), under atmospheric pressure of H(2) and CO(2) in weakly basic water (pH 7.5) at room temperature. The reverse reaction, i.e., hydrogen evolution from formate, is also catalysed by [Ir-OH(2)](+) in acidic water (pH 2.8) at room temperature. Thus, interconversion between hydrogen and formic acid in water at ambient temperature and pressure has been achieved by using [Ir-OH(2)](+) as an efficient catalyst in both directions depending on pH. The Ir complex [Ir-OH(2)](+) also catalyses regioselective hydrogenation of the oxidised form of β-nicotinamide adenine dinucleotide (NAD(+)) to produce the 1,4-reduced form (NADH) under atmospheric pressure of H(2) at room temperature in weakly basic water. In weakly acidic water, the complex [Ir-OH(2)](+) also catalyses the reverse reaction, i.e., hydrogen evolution from NADH to produce NAD(+) at room temperature. Thus, interconversion between NADH (and H(+)) and NAD(+) (and H(2)) has also been achieved by using [Ir-OH(2)](+) as an efficient catalyst and by changing pH. The iridium hydride complex formed by the reduction of [Ir-OH(2)](+) by H(2) and NADH is responsible for the hydrogen evolution. Photoirradiation (λ > 330 nm) of an aqueous solution of the Ir-hydride complex produced by the reduction of [Ir-OH(2)](+) with alcohols resulted in the quantitative conversion to a unique [C,C] cyclometalated Ir-hydride complex, which can catalyse hydrogen evolution from alcohols in a basic aqueous solution (pH 11.9). The catalytic mechanisms of the hydrogen storage and evolution are discussed by focusing on the reactivity of Ir-hydride complexes.

  9. Reactivity patterns of transition metal hydrides and alkyls

    Energy Technology Data Exchange (ETDEWEB)

    Jones, W.D. II

    1979-05-01

    The complex PPN/sup +/ CpV(CO)/sub 3/H/sup -/ (Cp=eta/sup 5/-C/sub 5/H/sub 5/ and PPN = (Ph/sub 3/P)/sub 2/) was prepared in 70% yield and its physical properties and chemical reactions investigated. PPN/sup +/ CpV(CO)/sub 3/H/sup -/ reacts with a wide range of organic halides. The organometallic products of these reactions are the vanadium halides PPN/sup +/(CpV(C)/sub 3/X)/sup -/ and in some cases the binuclear bridging hydride PPN/sup +/ (CpV(CO)/sub 3/)/sub 2/H/sup -/. The borohydride salt PPN/sup +/(CpV(CO)/sub 3/BH/sub 4/)/sup -/ has also been prepared. The reaction between CpV(CO)/sub 3/H/sup -/ and organic halides was investigated and compared with halide reductions carried out using tri-n-butyltin hydride. Results demonstrate that in almost all cases, the reduction reaction proceeds via free radical intermediates which are generated in a chain process, and are trapped by hydrogen transfer from CpV(CO)/sub 3/H/sup -/. Sodium amalgam reduction of CpRh(CO)/sub 2/ or a mixture of CpRh(CO)/sub 2/ and CpCo(CO)/sub 2/ affords two new anions, PPN/sup +/ (Cp/sub 2/Rh/sub 3/(CO)/sub 4/)/sup -/ and PPN/sup +/(Cp/sub 2/RhCo(CO)/sub 2/)/sup -/. CpMo(CO)/sub 3/H reacts with CpMo(CO)/sub 3/R (R=CH/sub 3/,C/sub 2/H/sub 5/, CH/sub 2/C/sub 6/H/sub 5/) at 25 to 50/sup 0/C to produce aldehyde RCHO and the dimers (CpMo(CO)/sub 3/)/sub 2/ and (CpMo(CO)/sub 2/)/sub 2/. In general, CpV(CO)/sub 3/H/sup -/ appears to transfer a hydrogen atom to the metal radical anion formed in an electron transfer process, whereas CpMo(CO)/sub 3/H transfers hydride in a 2-electron process to a vacant coordination site. The chemical consequences are that CpV(CO)/sub 3/H/sup -/ generally reacts with metal alkyls to give alkanes via intermediate alkyl hydride species whereas CpMo(CO)/sub 3/H reacts with metal alkyls to produce aldehyde, via an intermediate acyl hydride species.

  10. Reactivity patterns of transition metal hydrides and alkyls

    Energy Technology Data Exchange (ETDEWEB)

    Jones, W.D. II

    1979-05-01

    The complex PPN/sup +/ CpV(CO)/sub 3/H/sup -/ (Cp=eta/sup 5/-C/sub 5/H/sub 5/ and PPN = (Ph/sub 3/P)/sub 2/) was prepared in 70% yield and its physical properties and chemical reactions investigated. PPN/sup +/ CpV(CO)/sub 3/H/sup -/ reacts with a wide range of organic halides. The organometallic products of these reactions are the vanadium halides PPN/sup +/(CpV(C)/sub 3/X)/sup -/ and in some cases the binuclear bridging hydride PPN/sup +/ (CpV(CO)/sub 3/)/sub 2/H/sup -/. The borohydride salt PPN/sup +/(CpV(CO)/sub 3/BH/sub 4/)/sup -/ has also been prepared. The reaction between CpV(CO)/sub 3/H/sup -/ and organic halides was investigated and compared with halide reductions carried out using tri-n-butyltin hydride. Results demonstrate that in almost all cases, the reduction reaction proceeds via free radical intermediates which are generated in a chain process, and are trapped by hydrogen transfer from CpV(CO)/sub 3/H/sup -/. Sodium amalgam reduction of CpRh(CO)/sub 2/ or a mixture of CpRh(CO)/sub 2/ and CpCo(CO)/sub 2/ affords two new anions, PPN/sup +/ (Cp/sub 2/Rh/sub 3/(CO)/sub 4/)/sup -/ and PPN/sup +/(Cp/sub 2/RhCo(CO)/sub 2/)/sup -/. CpMo(CO)/sub 3/H reacts with CpMo(CO)/sub 3/R (R=CH/sub 3/,C/sub 2/H/sub 5/, CH/sub 2/C/sub 6/H/sub 5/) at 25 to 50/sup 0/C to produce aldehyde RCHO and the dimers (CpMo(CO)/sub 3/)/sub 2/ and (CpMo(CO)/sub 2/)/sub 2/. In general, CpV(CO)/sub 3/H/sup -/ appears to transfer a hydrogen atom to the metal radical anion formed in an electron transfer process, whereas CpMo(CO)/sub 3/H transfers hydride in a 2-electron process to a vacant coordination site. The chemical consequences are that CpV(CO)/sub 3/H/sup -/ generally reacts with metal alkyls to give alkanes via intermediate alkyl hydride species whereas CpMo(CO)/sub 3/H reacts with metal alkyls to produce aldehyde, via an intermediate acyl hydride species.

  11. Carbene-metal hydrides can be much less acidic than phosphine-metal hydrides: significance in hydrogenations.

    Science.gov (United States)

    Zhu, Ye; Fan, Yubo; Burgess, Kevin

    2010-05-05

    Acidities of iridium hydride intermediates were shown to be critical in some transformations mediated by the chiral analogues of Crabtree's catalyst, 1-3. To do this, several experiments were undertaken to investigate the acidities of hydrogenation mixtures formed using these iridium-oxazoline complexes. DFT calculations indicated that the acidity difference for Ir-H intermediates in these hydrogenations were astounding; iridium hydride from the N-heterocyclic carbene catalyst 1 was calculated to be around seven pK(a) units less acidic than those from the P-based complexes 2 and 3. Consistent with this, the carbene complex 1 was shown to be more effective for hydrogenations of acid-sensitive substrates. In deuteration experiments, less "abnormal" deuteration was observed, corresponding to fewer complications from acid-mediated alkene isomerization preceding the D(2)-addition step. Finally, simple tests with pH indicators provided visual evidence that phosphine-based catalyst precursors give significantly more acidic reaction mixtures than the corresponding N-heterocyclic carbene ones. These observations indicate carbene-for-phosphine (and similar) ligand substitutions may impact the outcome of catalytic reactions by modifying the acidities of the metal hydrides formed.

  12. Low-Cost Metal Hydride Thermal Energy Storage System for Concentrating Solar Power Systems

    Energy Technology Data Exchange (ETDEWEB)

    Zidan, Ragaiy [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Hardy, B. J. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Corgnale, C. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Teprovich, J. A. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Ward, P. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Motyka, Ted [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-01-31

    The objective of this research was to evaluate and demonstrate a metal hydride-based TES system for use with a CSP system. A unique approach has been applied to this project that combines our modeling experience with the extensive material knowledge and expertise at both SRNL and Curtin University (CU). Because of their high energy capacity and reasonable kinetics many metal hydride systems can be charged rapidly. Metal hydrides for vehicle applications have demonstrated charging rates in minutes and tens of minutes as opposed to hours. This coupled with high heat of reaction allows metal hydride TES systems to produce very high thermal power rates (approx. 1kW per 6-8 kg of material). A major objective of this work is to evaluate some of the new metal hydride materials that have recently become available. A problem with metal hydride TES systems in the past has been selecting a suitable high capacity low temperature metal hydride material to pair with the high temperature material. A unique aspect of metal hydride TES systems is that many of these systems can be located on or near dish/engine collectors due to their high thermal capacity and small size. The primary objective of this work is to develop a high enthalpy metal hydride that is capable of reversibly storing hydrogen at high temperatures (> 650 °C) and that can be paired with a suitable low enthalpy metal hydride with low cost materials. Furthermore, a demonstration of hydrogen cycling between the two hydride beds is desired.

  13. Gas atomization processing of tin and silicon modified LaNi{sub 5} for nickel-metal hydride battery applications

    Energy Technology Data Exchange (ETDEWEB)

    Ting, J.

    1999-02-12

    Numerous researchers have studied the relevant material properties of so-called AB{sub 5} alloys for battery applications. These studies involved LaNi{sub 5} substituted alloys which were prepared using conventional cast and crush alloying techniques. While valuable to the understanding of metal hydride effects, the previous work nearly ignored the potential for alternative direct powder production methods, like high pressure gas atomization (HPGA). Thus, there is a need to understand the relationship between gas atomization processes, powder particle solidification phases, and hydrogen absorption properties of ultra fine (< 25 {micro}m) atomized powders with high surface area for enhanced battery performance. Concurrently, development of a gas atomization nozzle that is more efficient than all current designs is needed to increase the yield of ultrafine AB{sub 5} alloy powder for further processing advantage. Gas atomization processing of the AB{sub 5} alloys was demonstrated to be effective in producing ultrafine spherical powders that were resilient to hydrogen cycling for the benefit of improving corrosion resistance in battery application. These ultrafine powders benefited from the rapid solidification process by having refined solute segregation in the microstructure of the gas atomized powders which enabled a rapid anneal treatment of the powders. The author has demonstrated the ability to produce high yields of ultrafine powder efficiently and cost effectively, using the new HPGA-III technology. Thus, the potential benefits of processing AB{sub 5} alloys using the new HPGA technology could reduce manufacturing cost of nickel-metal hydride powder. In the near future, the manufacture of AB{sub 5} alloy powders could become a continuous and rapid production process. The economic benefit of an improved AB{sub 5} production process may thereby encourage the use of nickel-metal hydride rechargeable batteries in electrical vehicle applications in the foreseeable

  14. Crack initiation at long radial hydrides in Zr-2. 5Nb pressure tube material at elevated temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Choubey, R.; Puls, M.P. (AECL Research, Pinawa, Manitoba (Canada). Whiteshell Labs.)

    1994-05-01

    Crack initiation at hydrides in smooth tensile specimens of Zr-2.5Nb pressure tube material was investigated at elevated temperatures up to 300 C using an acoustic emission (AE) technique. The test specimens contained long, radial hydride platelets. These hydrides have their plate normals oriented in the applied stress direction. Below [approximately]100 C, widespread hydride cracking was initiated at stresses close to the yield stress. An estimate of the hydride's fracture strength from this data yielded a value of [approximately]520 MPa at 100 C. Metallography showed that up to this temperature, cracking occurred along the length of the hydrides. However, at higher temperatures, there was no clear evidence of lengthwise cracking of hydrides, and fewer of the total hydride population fractured during deformation, as indicated by the AE record and the metallography. Moreover, the hydrides showed significant plasticity by-being able to flow along with the matrix material and align themselves parallel to the applied stress direction without fracturing. Near the fracture surface of the specimen, transverse cracking of the flow-reoriented hydrides had occurred at various points along the lengths of the hydrides. These fractures appear to be the result of stresses produced by large plastic strains imposed by the surrounding matrix on the less ductile hydrides.

  15. Well-Defined Molecular Magnesium Hydride Clusters : Relationship between Size and Hydrogen-Elimination Temperature

    NARCIS (Netherlands)

    Intemann, Julia; Spielmann, Jan; Sirsch, Peter; Harder, Sjoerd

    A new tetranuclear magnesium hydride cluster, [{NN-(MgH)2}2], which was based on a NN-coupled bis--diketiminate ligand (NN2-), was obtained from the reaction of [{NN-(MgnBu)2}2] with PhSiH3. Its crystal structure reveals an almost-tetrahedral arrangement of Mg atoms and two different sets of hydride

  16. Zirconium hydrides and Fe redistribution in Zr-2.5%Nb alloy under ion irradiation

    Science.gov (United States)

    Idrees, Y.; Yao, Z.; Cui, J.; Shek, G. K.; Daymond, M. R.

    2016-11-01

    Zr-2.5%Nb alloy is used to fabricate the pressure tubes of the CANDU reactor. The pressure tube is the primary pressure boundary for coolant in the CANDU design and is susceptible to delayed hydride cracking, reduction in fracture toughness upon hydride precipitation and potentially hydride blister formation. The morphology and nature of hydrides in Zr-2.5%Nb with 100 wppm hydrogen has been investigated using transmission electron microscopy. The effect of hydrides on heavy ion irradiation induced decomposition of the β phase has been reported. STEM-EDX mapping was employed to investigate the distribution of alloying elements. The results show that hydrides are present in the form of stacks of different sizes, with length scales from nano- to micro-meters. Heavy ion irradiation experiments at 250 °C on as-received and hydrided Zr-2.5%Nb alloy, show interesting effects of hydrogen on the irradiation induced redistribution of Fe. It was found that Fe is widely redistributed from the β phase into the α phase in the as-received material, however, the loss of Fe from the β phase and subsequent precipitation is retarded in the hydrided material. This preliminary work will further the current understanding of microstructural evolution of Zr based alloys in the presence of hydrogen.

  17. Arsenic speciation analysis by HPLC postcolumn hydride generation and detection by atomic fluorescence spectrometry

    OpenAIRE

    Marschner, K; Musil, S. (Stanislav); Rychlovský, P.; Dědina, J. (Jiří)

    2014-01-01

    The aim of this contribution is to present a new method of hydride generation that enables to generate arsines from iAs , iAs , MMA and DMA in a flow injection mode with the same efficiency and in the next step connection of this hydride generator with HPLC column.

  18. Pore-Confined Light Metal Hydrides for Energy Storage and Catalysis

    NARCIS (Netherlands)

    Bramwell, P.L.

    2017-01-01

    Light metal hydrides have enjoyed several decades of attention in the field of hydrogen storage, but their applications have recently begun to diversify more and more into the broader field of energy storage. For example, light metal hydrides have shown great promise as battery materials, in sensors

  19. Experimental comparison on heat transfer-enhancing component of metal hydride bed

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Hyun-goo, E-mail: hgkang@nfri.re.kr; Chung, Dong-you; Oh, Yun Hee; Chang, Min Ho; Yun, Sei-Hun

    2016-11-01

    Highlights: • Two small ZrCo metal hydride beds were developed. • Copper foam or fin as heat transfer-enhancing component are experimentally compared. • Copper foam bed is more efficient for uniform and rapid heating of metal hydride. • Copper foam bed is more efficient in removal of reaction heat during absorption. - Abstract: Metal hydride bed will be one of the key components for safe handling of tritium in fusion fuel cycle. In case of normal or emergency shutdown of fuel cycle, metal hydride bed installed in storage and delivery system (SDS) of tritium plant will absorb tritium gas in the system as soon as possible. Supply of hydrogen isotope gas to fueling system of fusion reactor will start from the metal hydride beds. Rapid delivery, rapid recovery including rapid heating and cooling are key issues. For better performance of metal hydride bed, various forms of heat transfer enhancing component or design can be applied. This study aims to help the selection of heat transfer enhancing component. Two small ZrCo beds with copper foam and copper fin were developed and experimented with hydrogen gas. Recovery and delivery performance, heating and cooling performance are compared. Experimental results show metal hydride bed with copper foam has improved performance. Uniform heating of metal hydride during desorption and removal of reaction heat during absorption are more efficient with copper foam bed than copper fin bed.

  20. Study on the Use of Hydride Fuel in High-Performance Light Water Reactor Concept

    Directory of Open Access Journals (Sweden)

    Haileyesus Tsige-Tamirat

    2015-01-01

    Full Text Available Hydride fuels have features which could make their use attractive in future advanced power reactors. The potential benefit of use of hydride fuel in HPLWR without introducing significant modification in the current core design concept of the high-performance light water reactor (HPLWR has been evaluated. Neutronics and thermal hydraulic analyses were performed for a single assembly model of HPLWR with oxide and hydride fuels. The hydride assembly shows higher moderation with softer neutron spectrum and slightly more uniform axial power distribution. It achieves a cycle length of 18 months with sufficient excess reactivity. At Beginning of Cycle the fuel temperature coefficient of the hydride assembly is higher whereas the moderator and void coefficients are lower. The thermal hydraulic results show that the achievable fuel temperature in the hydride assembly is well below the design limits. The potential benefits of the use of hydride fuel in the current design of the HPLWR with the achieved improvements in the core neutronics characteristics are not sufficient to justify the replacement of the oxide fuel. Therefore for a final evaluation of the use of hydride fuels in HPLWR concepts additional studies which include modification of subassembly and core layout designs are required.

  1. Theoretical study on hydrogenation catalysts containing a metal hydride as additional hydrogen supply

    NARCIS (Netherlands)

    Snijder, E.D.; Versteeg, G.F.; Swaaij, W.P.M. van

    1992-01-01

    A hypothetical hydrogenation catalyst consisting of porous, catalytically active particles embedded with metal hydride powder was evaluated. The metal hydride provides temporarily additional hydrogen if the mass transfer rate of the hydrogen to the internal of the particle is not sufficient. A numer

  2. First-principles study of superabundant vacancy formation in metal hydrides.

    Science.gov (United States)

    Zhang, Changjun; Alavi, Ali

    2005-07-13

    Recent experiments have established the generality of superabundant vacancies (SAV) formation in metal hydrides. Aiming to elucidate this intriguing phenomenon and to clarify previous interpretations, we employ density-functional theory to investigate atomic mechanisms of SAV formation in fcc hydrides of Ni, Cu, Rh, Pd, Ag, Ir, Pt, and Au. We have found that upon H insertion, vacancy formation energies reduce substantially. This is consistent with experimental suggestions. We demonstrate that the entropy effect, which has been proposed to explain SAV formation, is not the main cause. Instead, it is the drastic change of electronic structure induced by the H in the SAV hydrides, which is to a large extent responsible. Interesting trends in systems investigated are also found: ideal hydrides of 5d metals and noble metals are unstable compared to the corresponding pure metals, but the SAV hydrides are more stable than the corresponding ideal hydrides, whereas opposite results exist in the cases of Ni, Rh, and Pd. These trends of stabilities of the SAV hydrides are discussed in detail and a general understanding for SAV formation is provided. Finally, we propose an alternative reaction pathway to generate a SAV hydride from a metal alloy.

  3. Complex transition metal hydrides: linear correlation of countercation electronegativity versus T-D bond lengths.

    Science.gov (United States)

    Humphries, T D; Sheppard, D A; Buckley, C E

    2015-06-30

    For homoleptic 18-electron complex hydrides, an inverse linear correlation has been established between the T-deuterium bond length (T = Fe, Co, Ni) and the average electronegativity of the metal countercations. This relationship can be further employed towards aiding structural solutions and predicting physical properties of novel complex transition metal hydrides.

  4. Evaluation of sustainable electron donors for nitrate removal in different water media.

    Science.gov (United States)

    Fowdar, Harsha S; Hatt, Belinda E; Breen, Peter; Cook, Perran L M; Deletic, Ana

    2015-11-15

    An external electron donor is usually included in wastewater and groundwater treatment systems to enhance nitrate removal through denitrification. The choice of electron donor is critical for both satisfactory denitrification rates and sustainable long-term performance. Electron donors that are waste products are preferred to pure organic chemicals. Different electron donors have been used to treat different water types and little is known as to whether there are any electron donors that are suitable for multiple applications. Seven different carbon rich waste products, including liquid and solid electron donors, were studied in comparison to pure acetate. Batch-scale tests were used to measure their ability to reduce nitrate concentrations in a pure nutrient solution, light greywater, secondary-treated wastewater and tertiary-treated wastewater. The tested electron donors removed oxidised nitrogen (NOx) at varying rates, ranging from 48 mg N/L/d (acetate) to 0.3 mg N/L/d (hardwood). The concentrations of transient nitrite accumulation also varied across the electron donors. The different water types had an influence on NOx removal rates, the extent of which was dependent on the type of electron donor. Overall, the highest rates were recorded in light greywater, followed by the pure nutrient solution and the two partially treated wastewaters. Cotton wool and rice hulls were found to be promising electron donors with good NOx removal rates, lower leachable nutrients and had the least variation in performance across water types.

  5. Single-Site Tetracoordinated Aluminum Hydride Supported on Mesoporous Silica. From Dream to Reality!

    KAUST Repository

    Werghi, Baraa

    2016-09-26

    The reaction of mesoporous silica (SBA15) dehydroxylated at 700 °C with diisobutylaluminum hydride, i-Bu2AlH, gives after thermal treatment a single-site tetrahedral aluminum hydride with high selectivity. The starting aluminum isobutyl and the final aluminum hydride have been fully characterized by FT-IR, advanced SS NMR spectroscopy (1H, 13C, multiple quanta (MQ) 2D 1H-1H, and 27Al), and elemental analysis, while DFT calculations provide a rationalization of the occurring reactivity. Trimeric i-Bu2AlH reacts selectively with surface silanols without affecting the siloxane bridges. Its analogous hydride catalyzes ethylene polymerization. Indeed, catalytic tests show that this single aluminum hydride site is active in the production of a high-density polyethylene (HDPE). © 2016 American Chemical Society.

  6. A mechanical-force-driven physical vapour deposition approach to fabricating complex hydride nanostructures

    Science.gov (United States)

    Pang, Yuepeng; Liu, Yongfeng; Gao, Mingxia; Ouyang, Liuzhang; Liu, Jiangwen; Wang, Hui; Zhu, Min; Pan, Hongge

    2014-03-01

    Nanoscale hydrides desorb and absorb hydrogen at faster rates and lower temperatures than bulk hydrides because of their high surface areas, abundant grain boundaries and short diffusion distances. No current methods exist for the direct fabrication of nanoscale complex hydrides (for example, alanates, borohydrides) with unique morphologies because of their extremely high reducibility, relatively low thermodynamic stability and complicated elemental composition. Here, we demonstrate a mechanical-force-driven physical vapour deposition procedure for preparing nanoscale complex hydrides without scaffolds or supports. Magnesium alanate nanorods measuring 20-40 nm in diameter and lithium borohydride nanobelts measuring 10-40 nm in width are successfully synthesised on the basis of the one-dimensional structure of the corresponding organic coordination polymers. The dehydrogenation kinetics of the magnesium alanate nanorods are improved, and the nanorod morphology persists through the dehydrogenation-hydrogenation process. Our findings may facilitate the fabrication of such hydrides with improved hydrogen storage properties for practical applications.

  7. Another Look at the Mechanisms of Hydride Transfer Enzymes with Quantum and Classical Transition Path Sampling.

    Science.gov (United States)

    Dzierlenga, Michael W; Antoniou, Dimitri; Schwartz, Steven D

    2015-04-02

    The mechanisms involved in enzymatic hydride transfer have been studied for years, but questions remain due, in part, to the difficulty of probing the effects of protein motion and hydrogen tunneling. In this study, we use transition path sampling (TPS) with normal mode centroid molecular dynamics (CMD) to calculate the barrier to hydride transfer in yeast alcohol dehydrogenase (YADH) and human heart lactate dehydrogenase (LDH). Calculation of the work applied to the hydride allowed for observation of the change in barrier height upon inclusion of quantum dynamics. Similar calculations were performed using deuterium as the transferring particle in order to approximate kinetic isotope effects (KIEs). The change in barrier height in YADH is indicative of a zero-point energy (ZPE) contribution and is evidence that catalysis occurs via a protein compression that mediates a near-barrierless hydride transfer. Calculation of the KIE using the difference in barrier height between the hydride and deuteride agreed well with experimental results.

  8. Hydrogenation reaction characteristics and properties of its hydrides for magnetic regenerative material HoCu2

    Institute of Scientific and Technical Information of China (English)

    金滔; 吴梦茜; 黄迦乐; 汤珂; 陈立新

    2016-01-01

    The hydrogenation reaction characteristics and the properties of its hydrides for the magnetic regenerative material HoCu2 (CeCu2-type) of a cryocooler were investigated. The XRD testing reveals that the hydrides of HoCu2 were a mixture of Cu, unknown hydride I, and unknown hydride II. Based on the PCT (pressure−concentration−temperature) curves under different reaction temperatures, the relationships among reaction temperature, equilibrium pressure, and maximum hydrogen absorption capacity were analyzed and discussed. The enthalpy changeΔH and entropy changeΔS as a result of the whole hydrogenation process were also calculated from the PCT curves. The magnetization and volumetric specific heat capacity of the hydride were also measured by SQUID magnetometer and PPMS, respectively.

  9. Complex rare-earth aluminum hydrides: mechanochemical preparation, crystal structure and potential for hydrogen storage.

    Science.gov (United States)

    Weidenthaler, Claudia; Pommerin, André; Felderhoff, Michael; Sun, Wenhao; Wolverton, Christopher; Bogdanović, Borislav; Schüth, Ferdi

    2009-11-25

    A novel type of complex rare-earth aluminum hydride was prepared by mechanochemical preparation. The crystal structure of the REAlH(6) (with RE = La, Ce, Pr, Nd) compounds was calculated by DFT methods and confirmed by preliminary structure refinements. The trigonal crystal structure consists of isolated [AlH(6)](3-) octahedra bridged via [12] coordinated RE cations. The investigation of the rare-earth aluminum hydrides during thermolysis shows a decrease of thermal stability with increasing atomic number of the RE element. Rare-earth hydrides (REH(x)) are formed as primary dehydrogenation products; the final products are RE-aluminum alloys. The calculated decomposition enthalpies of the rare-earth aluminum hydrides are at the lower end for reversible hydrogenation under moderate conditions. Even though these materials may require somewhat higher pressures and/or lower temperatures for rehydrogenation, they are interesting examples of low-temperature metal hydrides for which reversibility might be reached.

  10. Strategies for the improvement of the hydrogen storage properties of metal hydride materials.

    Science.gov (United States)

    Wu, Hui

    2008-10-24

    Metal hydrides are an important family of materials that can potentially be used for safe, efficient and reversible on-board hydrogen storage. Light-weight metal hydrides in particular have attracted intense interest due to their high hydrogen density. However, most of these hydrides have rather slow absorption kinetics, relatively high thermal stability, and/or problems with the reversibility of hydrogen absorption/desorption cycling. This paper discusses a number of different approaches for the improvement of the hydrogen storage properties of these materials, with emphasis on recent research on tuning the ionic mobility in mixed hydrides. This concept opens a promising pathway to accelerate hydrogenation kinetics, reduce the activation energy for hydrogen release, and minimize deleterious possible by-products often associated with complex hydride systems.

  11. Getting metal-hydrides to do what you want them to

    Energy Technology Data Exchange (ETDEWEB)

    Gruen, D.M.

    1981-01-01

    With the discovery of AB/sub 5/ compounds, intermetallic hydrides with unusual properties began to be developed (H dissociation pressures of one to several atmospheres, extremely rapid and reversible adsorption/desorption very large amounts of H adsorbed). This paper reviews the factors that must be controlled in order to modify these hydrides to make them useful. The system LaNi/sub 5/ + H/sub 2/ is used as example. Use of AB/sub 5/ hydrides to construct a chemical heat pumps is discussed. Results of a systematic study substituting Al for Ni are reported; the HYCSOS pump is described briefly. Use of hydrides as hydrogen getters (substituted ZrV/sub 2/) is also discussed. Finally, possible developments in intermetallic hydride research in the 1980's and the hydrogen economy are discussed. 10 figures. (DLC)

  12. Evaluation of hydride blisters in zirconium pressure tube in CANDU reactor

    Energy Technology Data Exchange (ETDEWEB)

    Cheong, Y. M.; Kim, Y. S.; Gong, U. S.; Kwon, S. C.; Kim, S. S.; Choo, K.N

    2000-09-01

    When the garter springs for maintaining the gap between the pressure tube and the calandria tube are displaced in the CANDU reactor, the sagging of pressure tube results in a contact to the calandria tube. This causes a temperature difference between the inner and outer surface of the pressure tube. The hydride can be formed at the cold spot of outer surface and the volume expansion by hydride dormation causes the blistering in the zirconium alloys. An incident of pressure tube rupture due to the hydride blisters had happened in the Canadian CANDU reactor. This report describes the theoretical development and models on the formation and growth of hydride blister and some experimental results. The evaluation methodology and non-destructive testing for hydride blister in operating reactors are also described.

  13. Assessing nanoparticle size effects on metal hydride thermodynamics using the Wulff construction.

    Science.gov (United States)

    Kim, Ki Chul; Dai, Bing; Karl Johnson, J; Sholl, David S

    2009-05-20

    The reaction thermodynamics of metal hydrides are crucial to the use of these materials for reversible hydrogen storage. In addition to altering the kinetics of metal hydride reactions, the use of nanoparticles can also change the overall reaction thermodynamics. We use density functional theory to predict the equilibrium crystal shapes of seven metals and their hydrides via the Wulff construction. These calculations allow the impact of nanoparticle size on the thermodynamics of hydrogen release from these metal hydrides to be predicted. Specifically, we study the temperature required for the hydride to generate a H(2) pressure of 1 bar as a function of the radius of the nanoparticle. In most, but not all, cases the hydrogen release temperature increases slightly as the particle size is reduced.

  14. Hydrogenase Enzymes and Their Synthetic Models: The Role of Metal Hydrides.

    Science.gov (United States)

    Schilter, David; Camara, James M; Huynh, Mioy T; Hammes-Schiffer, Sharon; Rauchfuss, Thomas B

    2016-08-10

    Hydrogenase enzymes efficiently process H2 and protons at organometallic FeFe, NiFe, or Fe active sites. Synthetic modeling of the many H2ase states has provided insight into H2ase structure and mechanism, as well as afforded catalysts for the H2 energy vector. Particularly important are hydride-bearing states, with synthetic hydride analogues now known for each hydrogenase class. These hydrides are typically prepared by protonation of low-valent cores. Examples of FeFe and NiFe hydrides derived from H2 have also been prepared. Such chemistry is more developed than mimicry of the redox-inactive monoFe enzyme, although functional models of the latter are now emerging. Advances in physical and theoretical characterization of H2ase enzymes and synthetic models have proven key to the study of hydrides in particular, and will guide modeling efforts toward more robust and active species optimized for practical applications.

  15. DFT study on the mechanism of water-assisted dihydrogen elimination in group 6 octahedral metal hydride complexes.

    Science.gov (United States)

    Sandhya, K S; Suresh, Cherumuttathu H

    2012-08-28

    The reaction of water with octahedral bis-, tris- and tetrakis-(phosphine)tungsten, (phosphine)molybdenum and (phosphine)chromium complexes has been studied using B3LYP/def2-TZVPP level of DFT to elucidate dissociative, associative and hydride migratory insertion mechanisms for hydrogen elimination. In the dissociative mechanism, phosphine dissociation requires 19.3-28.5 kcal mol(-1) of energy. The phosphine-water ligand exchange is endergonic due to poor coordination ability of water to group 6 metals (binding energy 8.8-15.5 kcal mol(-1)). The ligand exchange leads to intermolecular M-H···H(2)O dihydrogen interaction and facilitates dihydrogen elimination (G(act) = 6.8-15.5 kcal mol(-1)). In the associative mechanism, a water molecule in the first solvation shell interacts with the M-H bond through a dihydrogen bond (interaction energy 2.7-4.0 kcal mol(-1)) and leads to the elimination of H(2) by forming a hydroxide complex. Compared to the dissociative mechanism, G(act) of associative mechanisms are ~22 kcal mol(-1) higher. In the hydride migratory insertion mechanism, the hydride ligand shifts to the CO ligand (G(act) = 25.4-30.4 kcal mol(-1)) to afford a formyl complex and subsequently the H-H bond coupling occurs between formyl and water ligand (G(act) = 2.8-4.4 kcal mol(-1)). In many cases, the migratory insertion mechanism can simultaneously operate with the dissociative mechanism as a minor pathway, whereas owing to high G(act) value, the associative mechanism can be described as inactive in the reaction. The general argument that dihydrogen elimination is preceded by the formation of a dihydrogen intermediate is not applicable for the systems studied herein as the most favoured dissociative mechanism does not pass through such an intermediate. On the other hand, irrespective of the mechanisms, dihydrogen elimination invariably occurs with the formation of a dihydrogen bonded transition state. Our results also suggest that group 6 octahedral metal

  16. Mathematical modeling of the nickel/metal hydride battery system

    Energy Technology Data Exchange (ETDEWEB)

    Paxton, Blaine Kermit [Univ. of California, Berkeley, CA (United States). Dept. of Chemical Engineering

    1995-09-01

    A group of compounds referred to as metal hydrides, when used as electrode materials, is a less toxic alternative to the cadmium hydroxide electrode found in nickel/cadmium secondary battery systems. For this and other reasons, the nickel/metal hydride battery system is becoming a popular rechargeable battery for electric vehicle and consumer electronics applications. A model of this battery system is presented. Specifically the metal hydride material, LaNi{sub 5}H{sub 6}, is chosen for investigation due to the wealth of information available in the literature on this compound. The model results are compared to experiments found in the literature. Fundamental analyses as well as engineering optimizations are performed from the results of the battery model. In order to examine diffusion limitations in the nickel oxide electrode, a ``pseudo 2-D model`` is developed. This model allows for the theoretical examination of the effects of a diffusion coefficient that is a function of the state of charge of the active material. It is found using present data from the literature that diffusion in the solid phase is usually not an important limitation in the nickel oxide electrode. This finding is contrary to the conclusions reached by other authors. Although diffusion in the nickel oxide active material is treated rigorously with the pseudo 2-D model, a general methodology is presented for determining the best constant diffusion coefficient to use in a standard one-dimensional battery model. The diffusion coefficients determined by this method are shown to be able to partially capture the behavior that results from a diffusion coefficient that varies with the state of charge of the active material.

  17. ALUMINUM HYDRIDE: A REVERSIBLE MATERIAL FOR HYDROGEN STORAGE

    Energy Technology Data Exchange (ETDEWEB)

    Zidan, R; Christopher Fewox, C; Brenda Garcia-Diaz, B; Joshua Gray, J

    2009-01-09

    Hydrogen storage is one of the challenges to be overcome for implementing the ever sought hydrogen economy. Here we report a novel cycle to reversibly form high density hydrogen storage materials such as aluminium hydride. Aluminium hydride (AlH{sub 3}, alane) has a hydrogen storage capacity of 10.1 wt% H{sub 2}, 149 kg H{sub 2}/m{sup 3} volumetric density and can be discharged at low temperatures (< 100 C). However, alane has been precluded from use in hydrogen storage systems because of the lack of practical regeneration methods. The direct hydrogenation of aluminium to form AlH{sub 3} requires over 10{sup 5} bars of hydrogen pressure at room temperature and there are no cost effective synthetic means. Here we show an unprecedented reversible cycle to form alane electrochemically, using alkali metal alanates (e.g. NaAlH{sub 4}, LiAlH{sub 4}) in aprotic solvents. To complete the cycle, the starting alanates can be regenerated by direct hydrogenation of the dehydrided alane and the alkali hydride being the other compound formed in the electrochemical cell. The process of forming NaAlH{sub 4} from NaH and Al is well established in both solid state and solution reactions. The use of adducting Lewis bases is an essential part of this cycle, in the isolation of alane from the mixtures of the electrochemical cell. Alane is isolated as the triethylamine (TEA) adduct and converted to pure, unsolvated alane by heating under vacuum.

  18. ALUMINUM HYDRIDE: A REVERSIBLE MATERIAL FOR HYDROGEN STORAGE

    Energy Technology Data Exchange (ETDEWEB)

    Fewox, C; Ragaiy Zidan, R; Brenda Garcia-Diaz, B

    2008-12-31

    Hydrogen storage is one of the greatest challenges for implementing the ever sought hydrogen economy. Here we report a novel cycle to reversibly form high density hydrogen storage materials such as aluminium hydride. Aluminium hydride (AlH{sub 3}, alane) has a hydrogen storage capacity of 10.1 wt% H{sub 2}, 149 kg H{sub 2}/m{sup 3} volumetric density and can be discharged at low temperatures (< 100 C). However, alane has been precluded from use in hydrogen storage systems because of the lack of practical regeneration methods; the direct hydrogenation of aluminium to form AlH{sub 3} requires over 10{sup 5} bars of hydrogen pressure at room temperature and there are no cost effective synthetic means. Here we show an unprecedented reversible cycle to form alane electrochemically, using alkali alanates (e.g. NaAlH{sub 4}, LiAlH{sub 4}) in aprotic solvents. To complete the cycle, the starting alanates can be regenerated by direct hydrogenation of the dehydrided alane and the alkali hydride being the other compound formed in the electrochemical cell. The process of forming NaAlH{sub 4} from NaH and Al is well established in both solid state and solution reactions. The use of adducting Lewis bases is an essential part of this cycle, in the isolation of alane from the mixtures of the electrochemical cell. Alane is isolated as the triethylamine (TEA) adduct and converted to pure, unsolvated alane by heating under vacuum.

  19. Mn in misch-metal based superlattice metal hydride alloy - Part 1 structural, hydrogen storage and electrochemical properties

    Science.gov (United States)

    Young, K.; Wong, D. F.; Wang, L.; Nei, J.; Ouchi, T.; Yasuoka, S.

    2015-03-01

    The structural, gaseous phase hydrogen storage, and electrochemical properties of a series of Mn-modified misch-metal based superlattice metal hydride alloys were investigated in part one of this two-part series of papers. X-ray diffraction analysis showed that these alloys are all multi-phased compositions with different abundances of AB2, AB3, A2B7, AB4, and AB5 phases. Substitution of Ni in the B-site by Mn promotes AB5 phase formation and decreases both gaseous phase and electrochemical capacities due to the reduction in the abundance of main hexagonal A2B7 phase. AC impedance and magnetic susceptibility measurement were employed to characterize the surface of Mn-free and Mn-modified alloys and show deterioration in surface catalytic ability as the Mn-content increases. Mn-modification adversely affected misch-metal based superlattice metal hydride alloy properties such as phase homogeneity, capacity, cycle stability, high-rate performance, and surface reaction.

  20. Ca2LiC3H: a new complex carbide hydride phase grown in metal flux.

    Science.gov (United States)

    Lang, David A; Zaikina, Julia V; Lovingood, Derek D; Gedris, Thomas E; Latturner, Susan E

    2010-12-15

    The reaction of carbon and CaH2 in a calcium/lithium flux mixture produces crystals of the new compound Ca2LiC3H. This phase forms with a new structure type in tetragonal space group P4/mbm (a = 6.8236(1) Å, c = 3.7518(1) Å, Z = 2, R1 = 0.0151). This is a stuffed variant of the Cs2(NH2)N3 structure, containing hydride anions in octahedral sites; the structure determination by single-crystal X-ray diffraction surprisingly allowed the hydrogen to be detected. The Ca2LiC3H structure also features the rarely seen C3(4-) carbide anion; the protolysis reaction of this compound with ammonium chloride produces C3H4. The electronic properties of Ca2LiC3H were studied by quantum-chemical calculations including band structure and electron localization function (ELF) analysis; the phase is a charge-balanced semiconductor with a calculated band gap of 0.48 eV. This is in agreement with (7)Li, (13)C, and (1)H MAS NMR data, which show resonances in the ionic region instead of the Knight shifted region. ELF analysis of the theoretical nonhydrided Ca2LiC3 structure confirms the ability of these calculations to properly locate hydrides and supports the structural model based on X-ray diffraction data.

  1. Effects of Ca additions on some Mg-alloy hydrides

    Energy Technology Data Exchange (ETDEWEB)

    Lupu, D.; Biris, A.; Indrea, E.; Bucur, R.V.

    1983-01-01

    The hydrogenation of the alloy of composition CaMg/sub 1/ /sub 8/Ni/sub 0/ /sub 5/ containing CaMg/sub 2/ and MgNi/sub 2/ shows fast activation kinetics. The Mg/sub 2/Ni phase is observed in the dehydrided samples. The three plateaus on the hydrogen desorption isotherms correspond to the most stable magnesium hydrides observed up to now in Mg-alloy (..delta.. H = 20 to 24 kcal/mol H/sub 2/). The effects of Ca additions on the hydrogen storage capacity and desorption rates of some Mg-rich alloys have been studied. 16 references, 3 figures, 1 table.

  2. Alkyl and Hydride-Olefin Complexes of Niobocene

    NARCIS (Netherlands)

    Klazinga, A.H.; Teuben, J.H.

    1980-01-01

    Reactions of Cp2NbCl2 with RMgCl (R = n-C3H7, i-C3H7, n-C4H9, s-C4H9 and n-C5H11) give niobocene hydride olefin complexes Cp2Nb(H)L (L = C3H6, C4H8 and C5H10). The last step of the reaction probably proceeds via a stereospecific β-H elimination from the monoalkyl species Cp2NbR. Decomposition of n-a

  3. Geoneutrinos and Hydridic Earth (or primordially Hydrogen-Rich Planet)

    CERN Document Server

    Bezrukov, L

    2014-01-01

    Geoneutrino is a new channel of information about geochemical composition of the Earth. We alnalysed here the following problem. What statistics do we need to distinguish between predictions of Bulk Silicate Earth model and Hydridic Earth model for Th/U signal ratio? We obtained the simple formula for estimation of error of Th/U signal ratio. Our calculations show that we need more than $22 kt \\cdot year$ exposition for Gran-Sasso underground laboratory and Sudbury Neutrino Observatory. We need more than $27 kt \\cdot year$ exposition for Kamioka site in the case of stopping of all Japanese nuclear power plants.

  4. Electrochemical process and production of novel complex hydrides

    Science.gov (United States)

    Zidan, Ragaiy

    2013-06-25

    A process of using an electrochemical cell to generate aluminum hydride (AlH.sub.3) is provided. The electrolytic cell uses a polar solvent to solubilize NaAlH.sub.4. The resulting electrochemical process results in the formation of AlH.sub.3. The AlH.sub.3 can be recovered and used as a source of hydrogen for the automotive industry. The resulting spent aluminum can be regenerated into NaAlH.sub.4 as part of a closed loop process of AlH.sub.3 generation.

  5. Comparison between different reactions of group IV hydride with H

    Institute of Scientific and Technical Information of China (English)

    ZHANG; Shaolong; ZHANG; Xuqiang; ZHANG; Qinggang; ZHANG; Yici

    2006-01-01

    The four-dimensional time-dependent quantum dynamics calculations for reactions of group IV hydride with H are carried out by employing the semirigid vibrating rotor target model and the time-dependent wave packet method. The reaction possibility, cross section and rate constants for reactions (H+SiH4 and H+GeH4) in different initial vibrational and rotational states are obtained. The common feature for such kind of reaction process is summarized. The theoretical result is consistent with available measurement, which indicates the credibility of this theory and the potential energy surface.

  6. Modeling of Gallium Nitride Hydride Vapor Phase Epitaxy

    Science.gov (United States)

    Meyyappan, Meyya; Arnold, James O. (Technical Monitor)

    1997-01-01

    A reactor model for the hydride vapor phase epitaxy of GaN is presented. The governing flow, energy, and species conservation equations are solved in two dimensions to examine the growth characteristics as a function of process variables and reactor geometry. The growth rate varies with GaCl composition but independent of NH3 and H2 flow rates. A change in carrier gas for Ga source from H2 to N2 affects the growth rate and uniformity for a fixed reactor configuration. The model predictions are in general agreement with observed experimental behavior.

  7. Equilibrium composition for the reaction of plutonium hydride with air

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    There are six independent constituents with 4 chemical elements, i.e. PuH2.7(s), PuN(s), Pu2O3(s), N2, O2 and H2, therefore , the system described involves of 2 independent reactions ,both those of the experimental, which indicates that the chemical equilibrium is nearly completely approached. Therefore, it is believed that the reaction rate of plutonium hydride with air is extremely rapid. The present paper has briefly discussed the simultaneous reactions and its thermodynamic coupling effect.

  8. Bipolar Nickel-Metal Hydride Battery Development Project

    Science.gov (United States)

    Cole, John H.

    1999-01-01

    This paper reviews the development of the Electro Energy, Inc.'s bipolar nickel metal hydride battery. The advantages of the design are that each cell is individually sealed, and that there are no external cell terminals, no electrode current collectors, it is compatible with plastic bonded electrodes, adaptable to heat transfer fins, scalable to large area, capacity and high voltage. The design will allow for automated flexible manufacturing, improved energy and power density and lower cost. The development and testing of the battery's component are described. Graphic presentation of the results of many of the tests are included.

  9. Research in Nickel/Metal Hydride Batteries 2016

    Directory of Open Access Journals (Sweden)

    Kwo-Hsiung Young

    2016-10-01

    Full Text Available Nineteen papers focusing on recent research investigations in the field of nickel/metal hydride (Ni/MH batteries have been selected for this Special Issue of Batteries. These papers summarize the joint efforts in Ni/MH battery research from BASF, Wayne State University, the National Institute of Standards and Technology, Michigan State University, and FDK during 2015–2016 through reviews of basic operational concepts, previous academic publications, issued US Patent and filed Japan Patent Applications, descriptions of current research results in advanced components and cell constructions, and projections of future works.

  10. Phosphenium Hydride Reduction of [(cod)MX2] (M = Pd, Pt; X = Cl, Br): Snapshots on the Way to Phosphenium Metal(0) Halides and Synthesis of Metal Nanoparticles.

    Science.gov (United States)

    Nickolaus, Jan; Imbrich, Dominik A; Schlindwein, Simon H; Geyer, Adrian H; Nieger, Martin; Gudat, Dietrich

    2017-03-06

    The outcome of the reduction of [(cod)PtX2] (X = Cl, Br; cod = 1,5-cyclooctadiene) with N-heterocyclic phosphenium hydrides (R)NHP-H depends strongly on the steric demand of the N-aryl group R and the nature of X. Reaction of [(cod)PtCl2] with (Dipp)NHP-H featuring bulky N-Dipp groups produced an unprecedented monomeric phosphenium metal(0) halide [((Dipp)NHP)((Dipp)NHP-H)PtCl] stabilized by a single phosphine ligand. The phosphenium unit exhibits a pyramidal coordination geometry at the phosphorus atom and may according to DFT calculations be classified as a Z-type ligand. In contrast, reaction of [(cod)PtBr2] with the sterically less protected (Mes)NHP-H afforded a mixture of donor-ligand free oligonuclear complexes [{((Mes)NHP)PtBr}n] (n = 2, 3), which are structural analogues of known palladium complexes with μ2-bridging phosphenium units. All reductions studied proceed via spectroscopically detectable intermediates, several of which could be unambiguously identified by means of multinuclear ((1)H, (31)P, (195)Pt) NMR spectroscopy and computational studies. The experimental findings reveal that the phosphenium hydrides in these multistep processes adopt a dual function as ligands and hydride transfer reagents. The preference for the observed intricate pathways over seemingly simpler ligand exchange processes is presumably due to kinetic reasons. The attempt to exchange the bulky phosphine ligand in [((Dipp)NHP)((Dipp)NHP-H)PtCl] by Me3P resulted in an unexpected isomerization to a platinum(0) chlorophosphine complex via a formal chloride migration from platinum to phosphorus, which accentuates the electrophilic nature of the phosphenium ligand. Phosphenium metal(0) halides of platinum further show a surprising thermal stability, whereas the palladium complexes easily disintegrate upon gentle heating in dimethyl sulfoxide to yield metal nanoparticles, which were characterized by TEM and XRD studies.

  11. [Living donor transplantation. Surgical complications].

    Science.gov (United States)

    Karam, Georges

    2008-02-01

    Although nephrectomy by open surgery is the most used technique for the extraction of kidney transplants in the living donor, nephrectomy under laparaoscopy is increasingly practiced. Laparoscopic nephrectomy is less invasive and performed under videoscopy control, after insufflation of the peritoneal cavity. Three to four incisions are done in order to enter the surgical instruments. The kidney is extracted through a horizontal sus-pubic incision. The exposition is either exclusively transperitoneal, retroperitoneal or hand assisted. The advantages of laparoscopy are esthetical, financial due to a shorter hospitalisation and a quicker recovery, as well a confort for the donor. The disadvantages are a longer warm ischemia time and possibly a higher risk of delayed graft function. Randomised studies having compared laparoscopy and open surgery in the living donor have not find any significant difference regarding the per- and perioperative in the complications.

  12. Development of a component design tool for metal hydride heat pumps

    Science.gov (United States)

    Waters, Essene L.

    Given current demands for more efficient and environmentally friendly energy sources, hydrogen based energy systems are an increasingly popular field of interest. Within the field, metal hydrides have become a prominent focus of research due to their large hydrogen storage capacity and relative system simplicity and safety. Metal hydride heat pumps constitute one such application, in which heat and hydrogen are transferred to and from metal hydrides. While a significant amount of work has been done to study such systems, the scope of materials selection has been quite limited. Typical studies compare only a few metal hydride materials and provide limited justification for the choice of those few. In this work, a metal hydride component design tool has been developed to enable the targeted down-selection of an extensive database of metal hydrides to identify the most promising materials for use in metal hydride thermal systems. The material database contains over 300 metal hydrides with various physical and thermodynamic properties included for each material. Sub-models for equilibrium pressure, thermophysical data, and default properties are used to predict the behavior of each material within the given system. For a given thermal system, this tool can be used to identify optimal materials out of over 100,000 possible hydride combinations. The selection tool described herein has been applied to a stationary combined heat and power system containing a high-temperature proton exchange membrane (PEM) fuel cell, a hot water tank, and two metal hydride beds used as a heat pump. A variety of factors can be used to select materials including efficiency, maximum and minimum system pressures, pressure difference, coefficient of performance (COP), and COP sensitivity. The targeted down-selection of metal hydrides for this system focuses on the system's COP for each potential pair. The values of COP and COP sensitivity have been used to identify pairs of highest interest for

  13. Transmission electron microscope studies in the surface oxide on the La-containing AB{sub 2} metal hydride alloy

    Energy Technology Data Exchange (ETDEWEB)

    Young, K., E-mail: kwo.young@basf.com; Chao, B.; Pawlik, D.; Shen, H.T.

    2016-07-05

    La-addition to a Laves-phase based AB{sub 2} metal hydride alloy improves the high-rate discharge and −40 °C charge-transfer resistance significantly. Surface oxide formation and embedded Ni inclusions of the alloy were studied using magnetic susceptibility, BET surface area and pore size measurements, scanning electron microscopy (SEM), and transmission electron microscopy (TEM). BET measurements correlate with the double-layer capacitance measured at −40 °C, indicating a factor 3 increase in surface area with 5 at.% La replacement of Zr. Surface catalytic ability of the same alloy improves by a factor of 13. TEM reveals the surface of the La-free sample as lightly oxidized Ni, Ti, and Zr, while the La-containing sample is randomly distributed and heavily-oxidized (Ni, Cr)O{sub x} coating the grain/oxide channel wall. These catalytic channels are believed to be the source of improvement in the low-temperature performance of these La-containing AB{sub 2} metal hydride alloys. - Highlights: • Surface area and catalytic ability improve with La-addition in an AB{sub 2} MH alloy. • TEM is used to study the surface oxide structure in the La-containing AB{sub 2} MH alloy. • Catalytic ability improvement was linked to the aligned channels in grain boundaries. • The open channel can transport both electrolyte and soluble ions. • Surface Ni-clusters have no direct impact on the La-containing AB{sub 2} MH alloys.

  14. Identification and characterization of a new zirconium hydride; Identification et caracterisation d'un nouvel hydrure de zirconium

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Zhao; Morniroli, J.P.; Legris, A.; Thuinet, L. [Universite des Sciences et Technologies de Lille, USTL, ENSCL, CNRS, 59 - Villeneuve d' Ascq (France); Zhao, Zhao; Blat-Yrieix, M.; Ambard, A.; Legras, L. [Electricite de France (EDF/RD), Centre des Renardieres, 77 - Moret sur Loing (France); Kihn, Y. [CEMES-CNRS, 31 - Toulouse (France)

    2007-07-01

    A study of hydrides characterization has been carried out in using the transmission electron microscopy technique. It has revealed the presence of small hydrides of acicular form whose length does not exceed 500 nm, among the zircaloy-4 samples hydrided by cathodic way. The electronic diffraction has shown that these small hydrides have a crystallographic structure different of those of the hydrides phases already index in literature. A more complete identification study has then been carried out. In combining the different electronic microscopy techniques (precession electronic micro diffraction and EELS) with ab initio calculations, a new hydride phase has been identified. It is called hydride {zeta}, is of trigonal structure with lattice parameters a{sub {zeta}} = a{sub {alpha}}{sub Zr} = 0.33 nm and c{sub {zeta}} 2c{sub {alpha}}{sub Zr} = 1.029 nm, its spatial group being P3m1. (O.M.)

  15. Thermodynamic properties of the cubic plutonium hydride solid solution

    Energy Technology Data Exchange (ETDEWEB)

    Haschke, J M

    1981-12-01

    Pressure, temperature, and composition data for the cubic solid solution plutonium hydride phase, PuH/sub x/, have been measured by microbalance methods. Integral enthalpies and entropies of formation have been evaluated for the composition range 1.90 less than or equal to X less than or equal to 3.00. At 550/sup 0/K, ..delta..H/sup 0/ /sub f/(PuH/sub x/(s)) varies linearly from approximately (-38 +- 1) kcal mol/sup -1/ at PuH/sub 190/ to (-50 +- 1 kcal mol/sup -1/) at PuH/sub 3/ /sub 00/. Thermochemical values obtained by reevaluating tensimetric data from the literature are in excellent agreement with these results. Isotopic effects have been quantified by comparing the results for hydride and deuteride, and equations are presented for predicting ..delta..H/sup 0/ /sub f/ and ..delta..S/sup 0/ /sub f/ values for PuH/sub x/(s) and PuD/sub x/(s).

  16. Lab-size rechargeable metal hydride-air cells

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Wei-Kang; Noreus, Dag [Department of Materials and Enviromental Chemistry, Arrhenius Laboratory, Stockholm University, S-106 91 Stockholm (Sweden)

    2010-09-01

    Lab-size rechargeable metal hydride-air (MH-air) cells with a gas management device were designed in order to minimize the loss of electrolyte. An AB{sub 5}-type hydrogen storage alloy was used as anode materials of the MH-air. The thickness of the metal hydride electrodes was in the range of 3.0-3.4 mm. Porous carbon-based air electrodes with Ag{sub 2}O catalysts were used as bi-functional electrodes for oxygen reduction and generation. The electrodes were first examined in half-cells to evaluate their performance and then assembled into one MH-air cell. The results showed the good cycling stability of the rechargeable MH-air cell with a capacity of 1990 mAh. The discharge voltage was 0.69 V at 0.05-0.1 C. The charge efficiency was about 90%. The specific and volumetric energy densities were about 95Wh kg{sup -1} and 140 Wh L{sup -1}, respectively. (author)

  17. Thermodynamic Calculation on the Formation of Titanium Hydride

    Institute of Scientific and Technical Information of China (English)

    Jing-wei Zhao; Hua Ding; Xue-feng Tian; Wen-juan Zhao; Hong-liang Hou

    2008-01-01

    A modified Miedema model, using interrelationship among the basic properties of elements Ti and H, is employed to calculate the standard enthalpy of formation of titanium hydride TiHx (1≤x≤2). Based on Debye theories of solid thermal capacity, the vibrational entropy, as well as electronic entropy, is acquired by quantum mechanics and statistic thermodynamics methods, and a new approach is presented to calculate the standard entropy of formation of Till2. The values of standard enthalpy of formation of TiHx decrease linearly with increase of x. The calculated results of standard enthalpy, entropy, and free energy of forma- tion of Till2 at 298.16 K are -142.39 kJ/mol, -143.0 J/(mol-K) and -99.75 k J/tool, respectively, which is consistent with the previously-reported data obtained by either experimental or theoretical calculation methods. The results show that the thermodynamic model for titanium hydride is reasonable.

  18. Effects of Alkaline Pre-Etching to Metal Hydride Alloys

    Directory of Open Access Journals (Sweden)

    Tiejun Meng

    2017-10-01

    Full Text Available The responses of one AB5, two AB2, four A2B7, and one C14-related body-centered-cubic (BCC metal hydrides to an alkaline-etch (45% KOH at 110 °C for 2 h were studied by internal resistance, X-ray diffraction, scanning electron microscope, inductively coupled plasma, and AC impedance measurements. Results show that while the etched rare earth–based AB5 and A2B7 alloys surfaces are covered with hydroxide/oxide (weight gain, the transition metal–based AB2 and BCC-C14 alloys surfaces are corroded and leach into electrolyte (weight loss. The C14-predominated AB2, La-only A2B7, and Sm-based A2B7 showed the most reduction in the internal resistance with the alkaline-etch process. Etched A2B7 alloys with high La-contents exhibited the lowest internal resistance and are suggested for use in the high-power application of nickel/metal hydride batteries.

  19. Gallium Nitride Nanowires Grown by Hydride Vapor Phase Epitaxy

    Institute of Scientific and Technical Information of China (English)

    LIU Zhan-Hui; XIU Xiang-Qan; YAN Huai-Yue; ZHANG Rong; XIE Zi-Li; HAN Ping; SHI Yi; ZHENG You-Dou

    2011-01-01

    @@ GaN nanowires are grown by hydride vapor phase epitaxy using nickel as a catalyst.The properties of the obtained GaN nanowires are characterized by scanning and transmission electron microscopy,electron diffraction,roomtemperature photoluminescence and energy dispersive spectroscopy.The results show that the nanowires are wurtzite single crystals growing along the[0001]direction and a redshift in the photoluminescence is observed due to a superposition of several effects.The Raman spectra are close to those of the bulk GaN and the significantly broadening of those modes indicates the phonon confinement effects associated with the nanoscale dimensions of the system.%GaN nanowires are grown by hydride vapor phase epitaxy using nickel as a catalyst. The properties of the obtained GaN nanowires are characterized by scanning and transmission electron microscopy, electron diffraction, room-temperature photoluminescence and energy dispersive spectroscopy. The results show that the nanowires are wurtzite single crystals growing along the [0001] direction and a redshift in the photoluminescence is observed due to a superposition of several effects. The Raman spectra are close to those of the bulk GaN and the significantly broadening of those modes indicates the phonon confinement effects associated with the nanoscale dimensions of the system.

  20. Measurement of nuclear fuel pin hydriding utilizing epithermal neutron scattering

    Energy Technology Data Exchange (ETDEWEB)

    Miller, W.H. [Univ. of Missouri, Columbia, MO (United States); Farkas, D.M.; Lutz, D.R. [General Electric Co., Pleasanton, CA (United States)

    1996-12-31

    The measurement of hydrogen or zirconium hydriding in fuel cladding has long been of interest to the nuclear power industry. The detection of this hydrogen currently requires either destructive analysis (with sensitivities down to 1 {mu}g/g) or nondestructive thermal neutron radiography (with sensitivities on the order of a few weight percent). The detection of hydrogen in metals can also be determined by measuring the slowing down of neutrons as they collide and rapidly lose energy via scattering with hydrogen. This phenomenon is the basis for the {open_quotes}notched neutron spectrum{close_quotes} technique, also referred to as the Hysen method. This technique has been improved with the {open_quotes}modified{close_quotes} notched neutron spectrum technique that has demonstrated detection of hydrogen below 1 {mu}g/g in steel. The technique is nondestructive and can be used on radioactive materials. It is proposed that this technique be applied to the measurement of hydriding in zirconium fuel pins. This paper summarizes a method for such measurements.

  1. Interstellar chemistry of nitrogen hydrides in dark clouds

    CERN Document Server

    Gal, Romane Le; Faure, Alexandre; Forêts, Guillaume Pineau des; Rist, Claire; Maret, Sébastien

    2013-01-01

    The aim of the present work is to perform a comprehensive analysis of the interstellar chemistry of nitrogen, focussing on the gas-phase formation of the smallest polyatomic species and in particular nitrogen hydrides. We present a new chemical network in which the kinetic rates of critical reactions have been updated based on recent experimental and theoretical studies, including nuclear spin branching ratios. Our network thus treats the different spin symmetries of the nitrogen hydrides self-consistently together with the ortho and para forms of molecular hydrogen. This new network is used to model the time evolution of the chemical abundances in dark cloud conditions. The steady-state results are analysed, with special emphasis on the influence of the overall amounts of carbon, oxygen, and sulphur. Our calculations are also compared with Herschel/HIFI observations of NH, NH$_2$, and NH$_3$ detected towards the external envelope of the protostar IRAS 16293-2422. The observed abundances and abundance ratios ...

  2. Superconductive "sodalite"-like clathrate calcium hydride at high pressures

    CERN Document Server

    Wang, Hui; Tanaka, Kaori; Iitaka, Toshiaki; Ma, Yanming

    2012-01-01

    Hydrogen-rich compounds hold promise as high-temperature superconductors under high pressures. Recent theoretical hydride structures on achieving high-pressure superconductivity are composed mainly of H2 fragments. Through a systematic investigation of Ca hydrides with different hydrogen contents using particle-swam optimization structural search, we show that in the stoichiometry CaH6 a body-centred cubic structure with hydrogen that forms unusual "sodalite" cages containing enclathrated Ca stabilizes above pressure 150 GPa. The stability of this structure is derived from the acceptance by two H2 of electrons donated by Ca forming a "H4" unit as the building block in the construction of the 3-dimensional sodalite cage. This unique structure has a partial occupation of the degenerated orbitals at the zone centre. The resultant dynamic Jahn-Teller effect helps to enhance electron-phonon coupling and leads to superconductivity of CaH6. A superconducting critical temperature (Tc) of 220-235 K at 150 GPa obtained...

  3. Electronic structure of the palladium hydride studied by compton scattering

    CERN Document Server

    Mizusaki, S; Yamaguchi, M; Hiraoka, N; Itou, M; Sakurai, Y

    2003-01-01

    The hydrogen-induced changes in the electronic structure of Pd have been investigated by Compton scattering experiments associated with theoretical calculations. Compton profiles (CPs) of single crystal of Pd and beta phase hydride PdH sub x (x=0.62-0.74) have been measured along the [100], [110] and [111] directions with a momentum resolution of 0.14-0.17 atomic units using 115 keV x-rays. The theoretical Compton profiles have been calculated from the wavefunctions obtained utilizing the full potential linearized augmented plane wave method within the local density approximation for Pd and stoichiometric PdH. The experimental and the theoretical results agreed well with respect to the difference in the CPs between PdH sub x and Pd, and the anisotropy in the CPs of Pd or PdH sub x. This study provides lines of evidence that upon hydride formation the lowest valance band of Pd is largely modified due to hybridization with H 1s-orbitals and the Fermi energy is raised into the sp-band. (author)

  4. Electronic Principles of Hydrogen Incorporation and Dynamics in Metal Hydrides

    Directory of Open Access Journals (Sweden)

    Ljiljana Matović

    2012-08-01

    Full Text Available An approach to various metal hydrides based on electronic principles is presented. The effective medium theory (EMT is used to illustrate fundamental aspects of metal-hydrogen interaction and clarify the most important processes taking place during the interaction. The elaboration is extended using the numerous existing results of experiment and calculations, as well as using some new material. In particular, the absorption/desorption of H in the Mg/MgH2 system is analyzed in detail, and all relevant initial structures and processes explained. Reasons for the high stability and slow sorption in this system are noted, and possible solutions proposed. The role of the transition-metal impurities in MgH2 is briefly discussed, and some interesting phenomena, observed in complex intermetallic compounds, are mentioned. The principle mechanism governing the Li-amide/imide transformation is also discussed. Latterly, some perspectives for the metal-hydrides investigation from the electronic point of view are elucidated.

  5. ACCEPTABILITY ENVELOPE FOR METAL HYDRIDE-BASED HYDROGEN STORAGE SYSTEMS

    Energy Technology Data Exchange (ETDEWEB)

    Hardy, B.; Corgnale, C.; Tamburello, D.; Garrison, S.; Anton, D.

    2011-07-18

    The design and evaluation of media based hydrogen storage systems requires the use of detailed numerical models and experimental studies, with significant amount of time and monetary investment. Thus a scoping tool, referred to as the Acceptability Envelope, was developed to screen preliminary candidate media and storage vessel designs, identifying the range of chemical, physical and geometrical parameters for the coupled media and storage vessel system that allow it to meet performance targets. The model which underpins the analysis allows simplifying the storage system, thus resulting in one input-one output scheme, by grouping of selected quantities. Two cases have been analyzed and results are presented here. In the first application the DOE technical targets (Year 2010, Year 2015 and Ultimate) are used to determine the range of parameters required for the metal hydride media and storage vessel. In the second case the most promising metal hydrides available are compared, highlighting the potential of storage systems, utilizing them, to achieve 40% of the 2010 DOE technical target. Results show that systems based on Li-Mg media have the best potential to attain these performance targets.

  6. A deformation and thermodynamic model for hydride precipitation kinetics in spent fuel cladding

    Energy Technology Data Exchange (ETDEWEB)

    Stout, R.B.

    1989-10-01

    Hydrogen is contained in the Zircaloy cladding of spent fuel rods from nuclear reactors. All the spent fuel rods placed in a nuclear waste repository will have a temperature history that decreases toward ambient; and as a result, most all of the hydrogen in the Zircaloy will eventually precipitate as zirconium hydride platelets. A model for the density of hydride platelets is a necessary sub-part for predicting Zircaloy cladding failure rate in a nuclear waste repository. A model is developed to describe statistically the hydride platelet density, and the density function includes the orientation as a physical attribute. The model applies concepts from statistical mechanics to derive probable deformation and thermodynamic functionals for cladding material response that depend explicitly on the hydride platelet density function. From this model, hydride precipitation kinetics depend on a thermodynamic potential for hydride density change and on the inner product of a stress tensor and a tensor measure for the incremental volume change due to hydride platelets. The development of a failure response model for Zircaloy cladding exposed to the expected conditions in a nuclear waste repository is supported by the US DOE Yucca Mountain Project. 19 refs., 3 figs.

  7. [Investigation of enhancing effect for hydride generation-atomic fluorescence of transition metal elements].

    Science.gov (United States)

    Sun, Han-Wen; Suo, Ran

    2008-11-01

    A mechanism of hydride generation based on disassembly reaction of hydrogen-transferred interim state [M(BH4)m]* was developed by investigating the effect of reaction medium acidity on hydride generation. The effects of Co2+ and Ni2+, phenanthroline and 8-hydroxyquinoline on hydride generation-atomic fluorescence signals of Zn, Cd, Cu and Ni were studied, respectively, and their enhancing mechnism was discussed. The enhancing effect Co2+ and Ni2+ on the fluorescence signals of Zn and Cd was due to the increase in transmission efficiency of hydride of Zn and Cd. There was a synergic enhancing effect between phenanthroline or 8-hydroxyquinoline and Co2+ on the fluorescence signals of Zn and Cd, however no synergic enhancing effect between phenanthroline and 8-hydroxyquinoline on the fluorescence signals of Zn and Cd. The simulative action of cationic surfactant, anion surfactant and non-ionic surfactant surfactant to hydride generation was investigated. It is shown that both cationic surfactant and non-ionic surfactant have obvious enhancing effect on the fluorescence signals of analytes because of the decrease in surface tension of reaction solution. The release characteristics of hydride from the absorption solution containing surfactant was ulteriorly examined by using graphite furnace atomic absorption spectrometry, and the mechanism of enhancing effect of surfactant on hydride generation and transmission was proposed.

  8. Main Group Lewis Acid-Mediated Transformations of Transition-Metal Hydride Complexes.

    Science.gov (United States)

    Maity, Ayan; Teets, Thomas S

    2016-08-10

    This Review highlights stoichiometric reactions and elementary steps of catalytic reactions involving cooperative participation of transition-metal hydrides and main group Lewis acids. Included are reactions where the transition-metal hydride acts as a reactant as well as transformations that form the metal hydride as a product. This Review is divided by reaction type, illustrating the diverse roles that Lewis acids can play in mediating transformations involving transition-metal hydrides as either reactants or products. We begin with a discussion of reactions where metal hydrides form direct adducts with Lewis acids, elaborating the structure and dynamics of the products of these reactions. The bulk of this Review focuses on reactions where the transition metal and Lewis acid act in cooperation, and includes sections on carbonyl reduction, H2 activation, and hydride elimination reactions, all of which can be promoted by Lewis acids. Also included is a section on Lewis acid-base secondary coordination sphere interactions, which can influence the reactivity of hydrides. Work from the past 50 years is included, but the majority of this Review focuses on research from the past decade, with the intent of showcasing the rapid emergence of this field and the potential for further development into the future.

  9. Insertion of Group 12-16 Hydrides into NHCs: A Theoretical Investigation.

    Science.gov (United States)

    Iversen, Kalon J; Dutton, Jason L; Wilson, David

    2017-03-06

    The endocyclic ring expansion of N-heterocyclic carbene (NHC) rings by transition metal (Group 12) and main group (Group 13-16) element hydrides has been investigated in a computational study. In addition to previously reported insertion reactivity with Si, B, Be and Zn, similar reactivity is predicted to be feasible for heavier group 13 elements (Al, Ga, In, Tl), with the reaction barriers for Al-Tl calculated to be lower than for boron. Insertion is not expected with group 15-16 element hydrides, as the initial adduct formation is thermodynamically unfavourable. The reaction pathway with group 12 hydrides is calculated to be more favourable with two NHCs rather than a single NHC (analogous to Be), however hydride ring insertion with metal dihydrides is not feasible, but rather a reduced NHC is thermodynamically favoured. For group 14, ring-insertion reactivity is predicted to be feasible with the heavier dihydrides. Trends in reactivity of element hydrides may be related to the protic or hydridic character of the element hydrides.

  10. Lewis acid-water/alcohol complexes as hydrogen atom donors in radical reactions.

    Science.gov (United States)

    Povie, Guillaume; Renaud, Philippe

    2013-01-01

    Water or low molecular weight alcohols are, due to their availability, low price and low toxicity ideal reagents for organic synthesis. Recently, it was reported that, despite the very strong BDE of the O-H bond, they can be used as hydrogen atom donors in place of expensive and/or toxic group 14 metal hydrides when boron and titanium(III) Lewis acids are present. This finding represents a considerable innovation and uncovers a new perspective on the paradigm of hydrogen atom transfers to radicals. We discuss here the influence of complex formation and other association processes on the efficacy of the hydrogen transfer step. A delicate balance between activation by complex formation and deactivation by further hydrogen bonding is operative.

  11. Development of a used fuel cladding damage model incorporating circumferential and radial hydride responses

    Science.gov (United States)

    Chen, Qiushi; Ostien, Jakob T.; Hansen, Glen

    2014-04-01

    At the completion of the fuel drying process, used fuel Zry4 cladding typically exhibits a significant population of δ-hydride inclusions. These inclusions are in the form of small platelets that are generally oriented both circumferentially and radially within the cladding material. There is concern that radially-oriented hydride inclusions may weaken the cladding material and lead to issues during used fuel storage and transportation processes. A high fidelity model of the mechanical behavior of hydrides has utility in both designing fuel cladding to be more resistant to this hydride-induced weakening and also in suggesting modifications to drying, storage, and transport operations to reduce the impact of hydride formation and/or the avoidance of loading scenarios that could overly stress the radial inclusions. We develop a mechanical model for the Zry4-hydride system that, given a particular morphology of hydride inclusions, allows the calculation of the response of the hydrided cladding under various loading scenarios. The model treats the Zry4 matrix material as J2 elastoplastic, and treats the hydrides as platelets oriented in predefined directions (e.g., circumferentially and radially). The model is hosted by the Albany analysis framework, where a finite element approximation of the weak form of the cladding boundary value problem is solved using a preconditioned Newton-Krylov approach. Instead of forming the required system Jacobian operator directly or approximating its action with a differencing operation, Albany leverages the Trilinos Sacado package to form the Jacobian via automatic differentiation. We present results that describe the performance of the model in comparison with as-fabricated Zry4 as well as HB Robinson fuel cladding. Further, we also present performance results that demonstrate the efficacy of the overall solution method employed to host the model.

  12. Development of a used fuel cladding damage model incorporating circumferential and radial hydride responses

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Qiushi, E-mail: qiushi@clemson.edu [Glenn Department of Civil Engineering, Clemson University, Clemson, SC 29634 (United States); Ostien, Jakob T., E-mail: jtostie@sandia.gov [Mechanics of Materials Dept. 8256, Sandia National Laboratories, P.O. Box 969, Livermore, CA 94551-0969 (United States); Hansen, Glen, E-mail: gahanse@sandia.gov [Computational Multiphysics Dept. 1443, Sandia National Laboratories, P.O. Box 5800, Albuquerque, NM 87185-1321 (United States)

    2014-04-01

    At the completion of the fuel drying process, used fuel Zry4 cladding typically exhibits a significant population of δ-hydride inclusions. These inclusions are in the form of small platelets that are generally oriented both circumferentially and radially within the cladding material. There is concern that radially-oriented hydride inclusions may weaken the cladding material and lead to issues during used fuel storage and transportation processes. A high fidelity model of the mechanical behavior of hydrides has utility in both designing fuel cladding to be more resistant to this hydride-induced weakening and also in suggesting modifications to drying, storage, and transport operations to reduce the impact of hydride formation and/or the avoidance of loading scenarios that could overly stress the radial inclusions. We develop a mechanical model for the Zry4-hydride system that, given a particular morphology of hydride inclusions, allows the calculation of the response of the hydrided cladding under various loading scenarios. The model treats the Zry4 matrix material as J{sub 2} elastoplastic, and treats the hydrides as platelets oriented in predefined directions (e.g., circumferentially and radially). The model is hosted by the Albany analysis framework, where a finite element approximation of the weak form of the cladding boundary value problem is solved using a preconditioned Newton–Krylov approach. Instead of forming the required system Jacobian operator directly or approximating its action with a differencing operation, Albany leverages the Trilinos Sacado package to form the Jacobian via automatic differentiation. We present results that describe the performance of the model in comparison with as-fabricated Zry4 as well as HB Robinson fuel cladding. Further, we also present performance results that demonstrate the efficacy of the overall solution method employed to host the model.

  13. Solid hydrides as hydrogen storage reservoirs; Hidruros solidos como acumuladores de hidrogeno

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez, A.; Sanchez, C.; Friedrichs, O.; Ares, J. R.; Leardini, F.; Bodega, J.; Fernandez, J. F.

    2010-07-01

    Metal hydrides as hydrogen storage materials are briefly reviewed in this paper. Fundamental properties of metal-hydrogen (gas) system such as Pressure-Composition-Temperature (P-C-T) characteristics are discussed on the light of the metal-hydride thermodynamics. Attention is specially paid to light metal hydrides which might have application in the car and transport sector. The pros and cons of MgH{sub 2} as a light material are outlined. Researches in course oriented to improve the behaviour of MgH{sub 2} are presented. Finally, other very promising alternative materials such as Al compounds (alanates) or borohydrides as light hydrogen accumulators are also considered. (Author)

  14. The storage of hydrogen in the form of metal hydrides: An application to thermal engines

    Science.gov (United States)

    Gales, C.; Perroud, P.

    1981-01-01

    The possibility of using LaNi56, FeTiH2, or MgH2 as metal hydride storage sytems for hydrogen fueled automobile engines is discussed. Magnesium copper and magnesium nickel hydrides studies indicate that they provide more stable storage systems than pure magnesium hydrides. Several test engines employing hydrogen fuel have been developed: a single cylinder motor originally designed for use with air gasoline mixture; a four-cylinder engine modified to run on an air hydrogen mixture; and a gas turbine.

  15. Hückel's Rule of Aromaticity Categorizes Aromatic Closo Boron Hydride Clusters

    OpenAIRE

    Poater i Teixidor, Jordi; Solà i Puig, Miquel; Viñas, Clara; Teixidor, Francesc

    2016-01-01

    A direct connection is established between tridimensional aromatic closo boron hydride clusters and planar aromatic [n]annulenes for medium and large size boron clusters. In particular, our results prove the existence of a link between the two-dimensional Hückel rule followed by aromatic [n]-annulenes and Wade-Mingos' rule of three-dimensional aromaticity applied to the aromatic [BnHn]2- closo boron hydride clusters. Our results show that closo boron hydride clusters can be categorized into d...

  16. Electrolyser-metal hydride-fuel cell system for seasonal energy storage

    Energy Technology Data Exchange (ETDEWEB)

    Vanhanen, J.P.; Lund, P.D.; Tolonen, J.S. [Helsinki Univ. of Technology, Engineering Physics and Mathematics Dept., Helsinki (Finland)

    1998-12-01

    A small-scale seasonal energy storage system, comprising an electrolyser, metal hydride hydrogen store and fuel cell, has been studied. According to the feasibility study, solid polymer electrolysers and fuel cells are the best options for the electrolyser-metal hydride-fuel cell energy storage systems. A round-trip efficiency of 30% has already been demonstrated, and the next target is to reach a round-trip efficiency close to 40%. The electyrolyser-metal hydride-fuel cell systems are suitable for small-scale self-sufficient applications in which high volumetric capacity is needed and safety aspects are appreciated. (Author)

  17. Generalized computational model for high-pressure metal hydrides with variable thermal properties

    DEFF Research Database (Denmark)

    Mazzucco, Andrea; Rokni, Masoud

    2015-01-01

    This study considers a detailed 1D fueling model applied to a metal hydride system, with Ti1.1CrMn as the absorbing alloy, to predict the weight fraction of the absorbed hydrogen and the solid bed temperature. Dependencies of thermal conductivity and specific heat capacity upon pressure...... and hydrogen content, respectively, are accounted for by interpolating experimental data. The effect of variable parameters on the critical metal hydride thickness is investigated and compared to results obtained from a constant-parameter analysis. Finally, the discrepancy in the metal hydride thickness value...

  18. Thermal decomposition kinetics of titanium hydride and Al alloy melt foaming process

    Institute of Scientific and Technical Information of China (English)

    YANG; Donghui; HE; Deping; YANG; Shangrun

    2004-01-01

    A temperature programmed decomposition (TPD) apparatus with metal tube structure, in which Ar is used as the carrier gas, is established and the TPD spectrum of titanium hydride is acquired. Using consulting table method (CTM), spectrum superposition method (SSM) and differential spectrum technique, TPD spectrum of titanium hydride is separated and a set of thermal decomposition kinetics equations are acquired. According to these equations, the relationship between decomposition quantity and time for titanium hydride at the temperature of 940 K is obtained and the result well coincides with the Al alloy melt foaming process.

  19. Interaction of electrons with light metal hydrides in the transmission electron microscope.

    Science.gov (United States)

    Wang, Yongming; Wakasugi, Takenobu; Isobe, Shigehito; Hashimoto, Naoyuki; Ohnuki, Somei

    2014-12-01

    Transmission electron microscope (TEM) observation of light metal hydrides is complicated by the instability of these materials under electron irradiation. In this study, the electron kinetic energy dependences of the interactions of incident electrons with lithium, sodium and magnesium hydrides, as well as the constituting element effect on the interactions, were theoretically discussed, and electron irradiation damage to these hydrides was examined using in situ TEM. The results indicate that high incident electron kinetic energy helps alleviate the irradiation damage resulting from inelastic or elastic scattering of the incident electrons in the TEM. Therefore, observations and characterizations of these materials would benefit from increased, instead decreased, TEM operating voltage.

  20. An HLA matched donor! An HLA matched donor? What do you mean by: HLA matched donor?

    Science.gov (United States)

    van Rood, J J; Oudshoorn, M

    1998-07-01

    The term 'an HLA matched donor' is in general used without giving exact information on the level of resolution of the HLA typing. This can lead to misunderstandings. A proposal is formulated to agree on using six match categories according to the HLA typing technique used to indicate the level of confidence of the matching.

  1. Becoming a Blood Stem Cell Donor

    Medline Plus

    Full Text Available ... total__ Find out why Close Becoming a Blood Stem Cell Donor NCIcancertopics Loading... Unsubscribe from NCIcancertopics? Cancel Unsubscribe ... Ever considered becoming a bone marrow or blood stem cell donor? Follow this true story of a former ...

  2. Becoming a Blood Stem Cell Donor

    Medline Plus

    Full Text Available ... total__ Find out why Close Becoming a Blood Stem Cell Donor NCIcancertopics Loading... Unsubscribe from NCIcancertopics? Cancel Unsubscribe ... Ever considered becoming a bone marrow or blood stem cell donor? Follow this true story of a former ...

  3. Becoming a Blood Stem Cell Donor

    Science.gov (United States)

    ... total__ Find out why Close Becoming a Blood Stem Cell Donor NCIcancertopics Loading... Unsubscribe from NCIcancertopics? Cancel Unsubscribe ... Ever considered becoming a bone marrow or blood stem cell donor? Follow this true story of a former ...

  4. Becoming a Blood Stem Cell Donor

    Medline Plus

    Full Text Available ... Marrow Donor Program® (NMDP), a federally funded nonprofit organization that maintains an international registry of volunteers willing ... her German stem cell donor for the first time in Germany. #priceless - Duration: 1:04. Jacque Brohawn ...

  5. Becoming a Blood Stem Cell Donor

    Medline Plus

    Full Text Available ... Find out why Close Becoming a Blood Stem Cell Donor NCIcancertopics Loading... Unsubscribe from NCIcancertopics? Cancel Unsubscribe ... considered becoming a bone marrow or blood stem cell donor? Follow this true story of a former ...

  6. Becoming a Blood Stem Cell Donor

    Medline Plus

    Full Text Available ... Find out why Close Becoming a Blood Stem Cell Donor NCIcancertopics Loading... Unsubscribe from NCIcancertopics? Cancel Unsubscribe ... considered becoming a bone marrow or blood stem cell donor? Follow this true story of a former ...

  7. One-step uniform growth of magnesium hydride nanoparticles on graphene

    Directory of Open Access Journals (Sweden)

    Yuqin Huang

    2017-02-01

    Full Text Available A simple solvent-free method to synthesize MgH2 nanoparticles (MgH2 NPs uniformly grown on graphene nanosheets (GNs has been reported in this paper. Based on the formation of MgH2 by di-n-butylmagnesium ((C4H92Mg thermal decomposition under hydrogen pressure, the GNs were added as matrix to hinder the agglomeration and growing of MgH2 NPs. The fabricated MgH2/GNs nanocomposites, in which MgH2 NPs were homogenously growing in the graphene matrix, have been synthesized by the favorable adsorption energy between (C4H92Mg and GNs. Resulting from the one-step solvent-free route, the generated MgH2 NPs shows high hydrogen capacity and steady hydriding and dehydriding properties, without the interference of the synthetic medium. At the same time, the size of the fabricated MgH2 NPs can be controlled by adjusting the mass ratio of MgH2 to graphene, the various hydrogen pressure and temperature. Attributed to smaller size effect, well uniform distribution of high density MgH2 NPs, and the agglomeration blocking ability of graphene, the MgH2/GNs-40 wt% exhibits the favorite hydrogen storage performance.

  8. Atomic-Scale Chemical, Physical and Electronic Properties of the Subsurface Hydride of Palladium

    Energy Technology Data Exchange (ETDEWEB)

    Weiss, Paul

    2014-01-20

    We employed low-temperature, extreme-high vacuum scanning tunneling microscopy (STM) to investigate the roles of subsurface hydride (H) and deuteride (D) in the surface reconstruction and surface reactivity of Pd{110}. Specifically, we gained the ability to tailor the surface structure of Pd{110} both by preparation method and by deposition of deuterium from the gas phase. We observed thiophene at low coverage on Pd{110} to determine its adsorption orientation and electronic structure through scanning tunneling spectroscopy (STS) – namely, conductance spectroscopy and differential conductance imaging. We developed the methods necessary to coadsorb D adatoms with thiophene molecules, and to induce the reaction of individual molecules with predefined subsurface H or D features. In the case of Pd{110}, we found a much more pronounced effect from subsurface D, as it is influenced by the surface directionality. These experiments facilitate an understanding of the role of surface and subsurface H and D in heterogeneous catalytic processes, specifically in the hydrodesulfuization (HDS) of thiophene, an important and ubiquitous component found to be detrimental to petroleum refining.

  9. An XAS investigation of corrosion characteristics in AB{sub 5} type metal hydride electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Mukerjee, S.; McBreen, J.; Reilly, J.J.; Johnson, J.R.; Adzic, G.D. [Brookhaven National Lab., Upton, NY (United States); Marrero, M.R. [Texas A& M Univ., College Station, TX (United States). Dept. of Chemistry

    1997-08-01

    Apart from the stress cracking due to lattice expansion and contraction during cycling, several substituents such as Ce and Co, and additions to the electrolyte such as ZnO have the ability to significantly improve the cycle life and corrosion characteristics in AB5 type metal hydride alloys. In situ XANES and SVET studies reveal that Ce substitution causes a protective passivation layer comprising of Ce oxides. This significantly reduces the extent of corrosion of substituents such as Ni despite greater percent volume expansion and contraction cycle compared with non Ce substituted samples. The Co substitution reduces the extent of percent volume expansion in the lattice cycle and hence the extent of stress cracking. It also segregates to the surface as Co(OH)2 which due to its higher conductivity counters the resistive effects due to build up of surface Ni(OH)2. Addition of ZnO to the electrolyte suppresses corrosion of substituents such as Ni in non Ce substituted alloys resulting in improved cycle life. The effects on Ce substituted alloys is negligible.

  10. Understanding of hydriding mechanisms of zircaloy-4 alloy during corrosion in PWR simulated conditions and influence of zirconium hydrides on zircaloy-4 corrosion

    Energy Technology Data Exchange (ETDEWEB)

    Bisor-Melloul, C.; Tupin, M.; Bossis, P. [DEN/DANS/DMN/SEMI, CEA/Saclay, 91191 Gif-sur-Yvette (France); Chene, J. [DEN/DANS/DPC/SCCME, CEA/Saclay, 91191 Gif-sur-Yvette (France); Bechade, J.L. [DEN/DANS/DMN/SRMA, CEA/Saclay, 91191 Gif-sur-Yvette (France); Motta, A. [Mechanical and Nuclear Engineering Department, Penn State University, 227 Reber Building, University Park, PA 16802 (United States)

    2010-07-01

    Zirconium alloys are widely used as fuel claddings in Power Water Reactors. As they represent the first containment barrier to fission products, their mechanical integrity is essential for nuclear safety. During their corrosion in primary water, some of the hydrogen involved in the oxidation reaction with water ingresses into the alloy through the oxide layer. In the metallic matrix, once the solid solution limit is reached at the irradiation temperature, hydrogen precipitates as Zr hydrides mainly located just under the metal/oxide interface due to the thermal gradient across the cladding. As these hydrides may contribute to a larger oxide thickness and to a more fragile behaviour of the cladding, the minimization of hydrogen pick-up is required. Accordingly, since the Zircaloy-4 (Zr-1.3Sn-0.2Fe-0.1Cr) alloy is known to be sensitive to this phenomenon, the understanding of its hydriding mechanism and of the influence of zirconium hydrides on its corrosion behaviour is needed. Regarding the study of the hydriding mechanism, isotopic exchanges were carried out in D{sub 2}O environment at 360 deg. C and led to the localization, in the oxide scales, of the limiting step for the hydrogen diffusion. To estimate an apparent diffusion coefficient of hydrogen in the oxide formed on Zircaloy-4, we firstly based on SIMS profiles and penetration depth of deuterium in the dense part of the oxide film. Secondly, ERDA estimation of the hydrogen content in zirconia and fusion measurements of the hydrogen content in both metal and oxide were used to estimate a hydrogen flux absorbed by the alloy and hence to deduce an apparent diffusion coefficient. Finally, these two methods lead to quite similar values (between 2.10{sup -14} cm{sup 2}/s and 6.10{sup -14} cm{sup 2}/s) which are in accordance with bibliography. Concerning the impact of hydrides on the corrosion of Zircaloy-4, several pre-hydrided and reference samples were corroded simultaneously in primary water at 360 deg. C

  11. Hydrogen Storage Engineering Center of Excellence Metal Hydride Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Motyka, T. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2014-05-31

    The Hydrogen Storage Engineering Center of Excellence (HSECoE) was established in 2009 by the U.S. Department of Energy (DOE) to advance the development of materials-based hydrogen storage systems for hydrogen-fueled light-duty vehicles. The overall objective of the HSECoE is to develop complete, integrated system concepts that utilize reversible metal hydrides, adsorbents, and chemical hydrogen storage materials through the use of advanced engineering concepts and designs that can simultaneously meet or exceed all the DOE targets. This report describes the activities and accomplishments during Phase 1 of the reversible metal hydride portion of the HSECoE, which lasted 30 months from February 2009 to August 2011. A complete list of all the HSECoE partners can be found later in this report but for the reversible metal hydride portion of the HSECoE work the major contributing organizations to this effort were the United Technology Research Center (UTRC), General Motors (GM), Pacific Northwest National Laboratory (PNNL), the National Renewable Energy Laboratory (NREL) and the Savannah River National Laboratory (SRNL). Specific individuals from these and other institutions that supported this effort and the writing of this report are included in the list of contributors and in the acknowledgement sections of this report. The efforts of the HSECoE are organized into three phases each approximately 2 years in duration. In Phase I, comprehensive system engineering analyses and assessments were made of the three classes of storage media that included development of system level transport and thermal models of alternative conceptual storage configurations to permit detailed comparisons against the DOE performance targets for light-duty vehicles. Phase 1 tasks also included identification and technical justifications for candidate storage media and configurations that should be capable of reaching or exceeding the DOE targets. Phase 2 involved bench-level testing and

  12. Hydride-induced embrittlement of Zircaloy-4 cladding under plane-strain tension

    Science.gov (United States)

    Daum, Robert S.

    The mechanical response of high-burnup Zircaloy-4 fuel cladding subjected to a postulated reactivity initiated accident (referred to as a rod ejection accident (REA) in a pressurized water reactor) can be affected by hydrogen embrittlement. This study addresses the hydrogen embrittlement of non-irradiated, stress-relieved Zircaloy-4 cladding under conditions (state of stress and temperature) relevant to those of a reactivity initiated accident. Specifically, the study has investigated the effects of a concentrated density of hydride particles (in the form of a rim at the outer surface of the cladding tube introduced by gas-charging) on the cladding ductility when tested under a near-plane-strain tension at 25, 300, and 375°C. The influence of the hydride-rim thickness and local hydrogen contents on cladding ductility is studied as a function of temperature and correlated with the hydride microstructure. Using synchrotron x-ray diffraction, this study has found that the delta-hydride phase (i.e., ZrHx, where x ≈ 1.66) is the predominant hydride phase to precipitate in stress-relieved Zircaloy-4 cladding for hydrogen contents up to 1250 wt ppm. At hydrogen contents above 2700 wt ppm, although delta-hydride is still the majority phase, both gamma- and epsilon-hydride phases are also observed. The volume fraction of hydrides was estimated as a function of hydrogen content, using the diffracted x-ray intensities. These estimated values agree well with calculated values assuming hydride precipitates are delta-hydride. Under near-plane-strain hoop tension, the ductility and fracture of the cladding is highly dependent on both the hydride-rim thickness and the testing temperature. At room temperature, due to a high density of hydride particles within the rim, a Mode I crack is injected shortly after yielding. This limits cladding ductility, such that it decreases with increasing thickness of the hydride rim. Cladding containing hydride rims with a thickness of ≥100

  13. High-Frequency (1)H NMR Chemical Shifts of Sn(II) and Pb(II) Hydrides Induced by Relativistic Effects: Quest for Pb(II) Hydrides.

    Science.gov (United States)

    Vícha, Jan; Marek, Radek; Straka, Michal

    2016-10-17

    The role of relativistic effects on (1)H NMR chemical shifts of Sn(II) and Pb(II) hydrides is investigated by using fully relativistic DFT calculations. The stability of possible Pb(II) hydride isomers is studied together with their (1)H NMR chemical shifts, which are predicted in the high-frequency region, up to 90 ppm. These (1)H signals are dictated by sizable relativistic contributions due to spin-orbit coupling at the heavy atom and can be as large as 80 ppm for a hydrogen atom bound to Pb(II). Such high-frequency (1)H NMR chemical shifts of Pb(II) hydride resonances cannot be detected in the (1)H NMR spectra with standard experimental setup. Extended (1)H NMR spectral ranges are thus suggested for studies of Pb(II) compounds. Modulation of spin-orbit relativistic contribution to (1)H NMR chemical shift is found to be important also in the experimentally known Sn(II) hydrides. Because the (1)H NMR chemical shifts were found to be rather sensitive to the changes in the coordination sphere of the central metal in both Sn(II) and Pb(II) hydrides, their application for structural investigation is suggested.

  14. 21 CFR 630.6 - Donor notification.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 7 2010-04-01 2010-04-01 false Donor notification. 630.6 Section 630.6 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) BIOLOGICS GENERAL REQUIREMENTS FOR BLOOD, BLOOD COMPONENTS, AND BLOOD DERIVATIVES § 630.6 Donor notification. (a) Notification of donors. You, an...

  15. Heat transfer characteristics of the metal hydride vessel based on the plate-fin type heat exchanger

    Science.gov (United States)

    Oi, Tsutomu; Maki, Kohei; Sakaki, Yoshinori

    Heat transfer characteristics of the metal hydride vessel based on the plate-fin type heat exchanger were investigated. Metal hydride beds were filled with AB 2 type hydrogen-storage alloy's particles, Ti 0.42Zr 0.58Cr 0.78Fe 0.57Ni 0.2Mn 0.39Cu 0.03, with a storage capacity of 0.92 wt.%. Heat transfer model in the metal hydride bed based on the heat transfer mechanism for packed bed proposed by Kunii and co-workers is presented. The time-dependent hydrogen absorption/desorption rate and pressure in the metal hydride vessel calculated by the model were compared with the experimental results. During the hydriding, calculated hydrogen absorption rates agreed with measured ones. Calculated thermal equilibrium hydrogen pressures were slightly lower than the measured hydrogen pressures at the inlet of metal hydride vessel. Taking account of the pressure gradient between the inlet of metal hydride vessel and the metal hydride bed, it is considered that this discrepancy is reasonable. During the dehydriding, there were big differences between the calculated hydrogen desorption rates and measured ones. As calculated hydrogen desorption rates were lower than measured ones, there were big differences between the calculated thermal equilibrium hydrogen pressures and the measured hydrogen pressures at the inlet of metal hydride vessel. It is considered that those differences are due to the differences of the heat transfer characteristics such as thermal conductivity of metal hydride particles and porosity between the assumed and actual ones. It is important to obtain the heat transfer characteristics such as thermal conductivity of metal hydride particles and porosity both during the hydriding and dehydriding to design a metal hydride vessel.

  16. Blood donor: nursing care plan

    Directory of Open Access Journals (Sweden)

    Marco Antonio Zapata Sampedro

    2008-11-01

    Full Text Available The standardized nursing care plan can be used as a means through which the nurse will assess and identify the particular needs of the blood donor.To draw up the care plan, we have conducted the evaluation on the basis of the Marjory Gordon’s functional health patterns.The more prevailing diagnosis according to the NANDA taxonomy have been identified, results have been established according to the NOC (Nursing Outcomes Classification taxonomy, and nursing interventions have been suggested according to the NIC (Nursing Interventions Classification taxonomy. Also, certain potential complications, which are infrequent, must be observed and controlled in the blood donation process. Our main aim with this article has been to offer to professionals resources that grant to the caring activity scientific rigor, professional recognition and an unique and valid tool to evaluate the assistance with the best levels of quality for the blood donor.

  17. Donor conversion rates depend on the assessment tools used in the evaluation of potential organ donors

    NARCIS (Netherlands)

    Y.J. de Groot (Yorick); E.F.M. Wijdicks (Eelco); M. van der Jagt (Mathieu); J. Bakker (Jan); B. Roozenbeek (Bob); J.N.M. IJzermans (Jan); E.J.O. Kompanje (Erwin)

    2011-01-01

    textabstractPurpose: It is desirable to identify a potential organ donor (POD) as early as possible to achieve a donor conversion rate (DCR) as high as possible which is defined as the actual number of organ donors divided by the number of patients who are regarded as a potential organ donor. The DC

  18. Designing shallow donors in diamond

    Science.gov (United States)

    Moussa, Jonathan

    2015-03-01

    The production of n-type semiconducting diamond has been a long-standing experimental challenge. The first-principles simulation of shallow dopants in semiconductors has been a long-standing theoretical challenge. A desirable theoretical goal is to identify impurities that will act as shallow donors in diamond and assess their experimental viability. I will discuss this identification process for the LiN4 donor complex. It builds a scientific argument from several models and computational results in the absence of computational tools that are both trustworthy and computationally tractable for this task. I will compare the theoretical assessment of viability with recent experimental efforts to co-dope diamond with lithium and nitrogen. Finally, I discuss the computational tools needed to facilitate future work on this problem and some preliminary simulations of donors near diamond surfaces. Sandia National Laboratories is a multi-program lab managed and operated by Sandia Corp., a wholly owned subsidiary of Lockheed Martin Corp., for the U.S. Department of Energy's National Nuclear Security Administration under Contract DE-AC04-94AL85000.

  19. Hyperbilirubinemia in normal healthy donors

    Directory of Open Access Journals (Sweden)

    Arora Veena

    2009-01-01

    Full Text Available The present study was carried out in B.A.R.C. Hospital Blood Bank over a span of five years, and includes 2734 donors. All the bags were screened for HIV, HBsAg, HCV and VDRL and the plasma in the pilot tubes of the blood bags was observed to detect any abnormality in color. In 27 cases plasma was found to be icteric and liver function tests were carried out on these samples. Two donors showed higher SGPT level, and were excluded. No significant increases in liver enzymes were recorded in the others. Causes of icteric plasma in these apparently healthy donors are discussed. Differential diagnosis includes Gilbert′s disease, hemolytic anemia, drug-induced anemia and other hepatic causes of hyperbilirubinemia, of which Gilbert′s disease is most probable cause with a prevalence of 0.91% in our population. As there are no studies to document the safety of the recipients receiving such abnormal colored plasma as well as to document the hazards in its transfusion, the question arises whether to transfuse such units or not. This study highlights this dilemma. A reassessment of existing policies and regulations is merited.

  20. Modelling zirconium hydrides using the special quasirandom structure approach

    KAUST Repository

    Wang, Hao

    2013-01-01

    The study of the structure and properties of zirconium hydrides is important for understanding the embrittlement of zirconium alloys used as cladding in light water nuclear reactors. Simulation of the defect processes is complicated due to the random distribution of the hydrogen atoms. We propose the use of the special quasirandom structure approach as a computationally efficient way to describe this random distribution. We have generated six special quasirandom structure cells based on face centered cubic and face centered tetragonal unit cells to describe ZrH2-x (x = 0.25-0.5). Using density functional theory calculations we investigate the mechanical properties, stability, and electronic structure of the alloys. © the Owner Societies 2013.

  1. Pressure-induced transformations of molecular boron hydride

    CERN Document Server

    Nakano, S; Gregoryanz, E A; Goncharov, A F; Mao Ho Kwang

    2002-01-01

    Decaborane, a molecular boron hydride, was compressed to 131 GPa at room temperature to explore possible non-molecular phases in this system and their physical properties. Decaborane changed its colour from transparent yellow to orange/red above 50 GPa and then to black above 100 GPa, suggesting some transformations. Raman scattering and infrared (IR) absorption spectroscopy reveal significant structural changes. Above 100 GPa, B-B skeletal, B-H and B-H-B Raman/IR peaks gradually disappeared, which implies a transformation into a non-molecular phase in which conventional borane-type bonding is lost. The optical band gap of the material at 100 GPa was estimated to be about 1.0 eV.

  2. Modeling of hydride precipitation and re-orientation

    Energy Technology Data Exchange (ETDEWEB)

    Tikare, Veena [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Weck, Philippe F. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Mitchell, John Anthony [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-09-18

    In this report, we present a thermodynamic-­based model of hydride precipitation in Zr-based claddings. The model considers the state of the cladding immediately following drying, after removal from cooling-pools, and presents the evolution of precipitate formation upon cooling as follows: The pilgering process used to form Zr-based cladding imparts strong crystallographic and grain shape texture, with the basal plane of the hexagonal α-Zr grains being strongly aligned in the rolling-­direction and the grains are elongated with grain size being approximately twice as long parallel to the rolling direction, which is also the long axis of the tubular cladding, as it is in the orthogonal directions.

  3. Shielding efficiency of metal hydrides and borohydrides in fusion reactors

    Directory of Open Access Journals (Sweden)

    Singh Vishvanath P.

    2016-01-01

    Full Text Available Mass attenuation coefficients, mean free paths and exposure buildup factors have been used to characterize the shielding efficiency of metal hydrides and borohydrides, with high density of hydrogen. Gamma ray exposure buildup factors were computed using five-parameter geometric progression fitting at energies 0.015 MeV to15 MeV, and for penetration depths up to 40 mean free paths. Fast-neutron shielding efficiency has been characterized by the effective neutron removal cross-section. It is shown that ZrH2 and VH2 are very good shielding materials for gamma rays and fast neutrons due to their suitable combination of low- and high-Z elements. The present work should be useful for the selection and design of blankets and shielding, and for dose evaluation for components in fusion reactors.

  4. Final report for the DOE Metal Hydride Center of Excellence.

    Energy Technology Data Exchange (ETDEWEB)

    Keller, Jay O.; Klebanoff, Leonard E.

    2012-01-01

    This report summarizes the R&D activities within the U.S. Department of Energy Metal Hydride Center of Excellence (MHCoE) from March 2005 to June 2010. The purpose of the MHCoE has been to conduct highly collaborative and multi-disciplinary applied R&D to develop new reversible hydrogen storage materials that meet or exceed DOE 2010 and 2015 system goals for hydrogen storage materials. The MHCoE combines three broad areas: mechanisms and modeling (which provide a theoretically driven basis for pursuing new materials), materials development (in which new materials are synthesized and characterized) and system design and engineering (which allow these new materials to be realized as practical automotive hydrogen storage systems). This Final Report summarizes the organization and execution of the 5-year research program to develop practical hydrogen storage materials for light duty vehicles. Major results from the MHCoE are summarized, along with suggestions for future research areas.

  5. Niche applications of metal hydrides and related thermal management issues

    Energy Technology Data Exchange (ETDEWEB)

    Lototskyy, M., E-mail: mlototskyy@uwc.ac.za [HySA Systems Competence Centre, South African Institute for Advanced Materials Chemistry, Faculty of Natural Sciences, University of the Western Cape, Private Bag X17, Bellville 7535 (South Africa); Satya Sekhar, B. [HySA Systems Competence Centre, South African Institute for Advanced Materials Chemistry, Faculty of Natural Sciences, University of the Western Cape, Private Bag X17, Bellville 7535 (South Africa); Muthukumar, P. [Mechanical Department, Indian Institute of Technology Guwahati, Guwahati 781039 (India); Linkov, V.; Pollet, B.G. [HySA Systems Competence Centre, South African Institute for Advanced Materials Chemistry, Faculty of Natural Sciences, University of the Western Cape, Private Bag X17, Bellville 7535 (South Africa)

    2015-10-05

    Highlights: • MH H{sub 2} storage, compression & heat management: developments/thermal management. • Thermodynamic criteria for proper selection of MH for different gas phase applications. • Factors influencing on H{sub 2} charge/discharge dynamic performance and energy efficiency. • The improvement of MH heat transfer characteristics is crucial. • Ways of improvement of heat transfer in the MH systems. - Abstract: This short review highlights and discusses the recent developments and thermal management issues related to metal hydride (MH) systems for hydrogen storage, hydrogen compression and heat management (refrigeration, pump and upgrade, etc.). Special attention is paid to aligning the system features with the requirements of the specific application. The considered system features include the MH material, the MH bed on the basis of its corresponding MH container, as well as the layout of the integrated system.

  6. Crystal structure of the superconducting phase of sulfur hydride

    Science.gov (United States)

    Einaga, Mari; Sakata, Masafumi; Ishikawa, Takahiro; Shimizu, Katsuya; Eremets, Mikhail I.; Drozdov, Alexander P.; Troyan, Ivan A.; Hirao, Naohisa; Ohishi, Yasuo

    2016-09-01

    A superconducting critical temperature above 200 K has recently been discovered in H2S (or D2S) under high hydrostatic pressure. These measurements were interpreted in terms of a decomposition of these materials into elemental sulfur and a hydrogen-rich hydride that is responsible for the superconductivity, although direct experimental evidence for this mechanism has so far been lacking. Here we report the crystal structure of the superconducting phase of hydrogen sulfide (and deuterium sulfide) in the normal and superconducting states obtained by means of synchrotron X-ray diffraction measurements, combined with electrical resistance measurements at both room and low temperatures. We find that the superconducting phase is mostly in good agreement with the theoretically predicted body-centred cubic (bcc) structure for H3S. The presence of elemental sulfur is also manifest in the X-ray diffraction patterns, thus proving the decomposition mechanism of H2S to H3S + S under pressure.

  7. Capture of liquid hydrogen boiloff with metal hydride absorbers

    Science.gov (United States)

    Rosso, M. J.; Golben, P. M.

    1984-01-01

    A procedure which uses metal hydrides to capture some of this low pressure (,1 psig) hydrogen for subsequent reliquefaction is described. Of the five normally occurring sources of boil-off vapor the stream associated with the off-loading of liquid tankers during dewar refill was identified as the most cost effective and readily recoverable. The design, fabrication and testing of a proof-of-concept capture device, operating at a rate that is commensurate with the evolution of vapor by the target stream, is described. Liberation of the captured hydrogen gas at pressure .15 psig at normal temperatures (typical liquefier compressor suction pressure) are also demonstrated. A payback time of less than three years is projected.

  8. Ovonic nickel metal hydride batteries for space applications

    Science.gov (United States)

    Venkatesan, S.; Corrigan, D. A.; Fetcenko, M. A.; Gifford, P. R.; Dhar, S. K.; Ovshinsky, S. R.

    1993-01-01

    Ovonic nickel-metal hydride (NiMH) rechargeable batteries are easily adaptable to a variety of applications. Small consumer NiMH cells were developed and are now being manufactured by licensees throughout the world. This technology was successfully scaled up in larger prismatic cells aimed at electric vehicle applications. Sealed cells aimed at satellite power applications were also built and cycle tested by OBC and other outside agencies. Prototype batteries with high specific energy (over 80 Wh/kg), high energy density (245 Wh/L), and excellent power capability (400 W/kg) were produced. Ovonic NiMH batteries demonstrated an excellent cycle life of over 10,000 cycles at 30 percent DOD. Presently, Ovonic Battery Company is working on an advanced version of this battery for space applications as part of an SBIR contract from NASA.

  9. Metal hydride hydrogen compression: recent advances and future prospects

    Science.gov (United States)

    Yartys, Volodymyr A.; Lototskyy, Mykhaylo; Linkov, Vladimir; Grant, David; Stuart, Alastair; Eriksen, Jon; Denys, Roman; Bowman, Robert C.

    2016-04-01

    Metal hydride (MH) thermal sorption compression is one of the more important applications of the MHs. The present paper reviews recent advances in the field based on the analysis of the fundamental principles of this technology. The performances when boosting hydrogen pressure, along with two- and three-step compression units, are analyzed. The paper includes also a theoretical modelling of a two-stage compressor aimed at describing the performance of the experimentally studied systems, their optimization and design of more advanced MH compressors. Business developments in the field are reviewed for the Norwegian company HYSTORSYS AS and the South African Institute for Advanced Materials Chemistry. Finally, future prospects are outlined presenting the role of the MH compression in the overall development of the hydrogen-driven energy systems. The work is based on the analysis of the development of the technology in Europe, USA and South Africa.

  10. Hydrogen generation from magnesium hydride by using organic acid

    Science.gov (United States)

    Ho, Yen-Hsi

    In this paper, the hydrolysis of solid magnesium hydride has been studied with the high concentration of catalyst at the varying temperature. An organic acid (acetic acid, CH3COOH) has been chosen as the catalyst. The study has three objectives: first, using three different weights of MgH 2 react with aqueous solution of acid for the hydrogen generation experiments. Secondly, utilizing acetic acid as the catalyst accelerates hydrogen generation. Third, emphasizing the combination of the three operating conditions (the weight of MgH2, the concentration of acetic acid, and the varying temperature) influence the amount of hydrogen generation. The experiments results show acetic acid truly can increase the rate of hydrogen generation and the weight of MgH2 can affect the amount of hydrogen generation more than the varying temperature.

  11. Hydride precipitation kinetics in Zircaloy-4 studied using synchrotron X-ray diffraction

    Science.gov (United States)

    Courty, Olivier F.; Motta, Arthur T.; Piotrowski, Christopher J.; Almer, Jonathan D.

    2015-06-01

    As a result of in-reactor corrosion during operation in nuclear reactors, hydrogen can enter the zirconium fuel cladding and precipitate as brittle hydride particles, which may reduce cladding ductility. Dissolved hydrogen responds to temperature gradients, resulting in transport and precipitation into cold spots so that the distribution of hydrides in the cladding is inhomogeneous. The hydrogen precipitation kinetics plays a strong role in the spatial distribution of the hydrides in the cladding. The precipitation rate is normally described as proportional to the supersaturation of hydrogen in solid solution. The proportionality constant, α2, for hydride precipitation in Zircaloy-4 is measured directly using in situ synchrotron X-Ray diffraction, at different temperatures and with three different initial hydrogen concentrations. The results validate the linear approximation of the phenomenological model and a near constant value of α2 = 4.5 × 10-4 s-1 was determined for the temperature range studied.

  12. The two steps thermal decomposition of titanium hydride and two steps foaming of Al alloy

    Institute of Scientific and Technical Information of China (English)

    SHANG Jintang; HE Deping

    2005-01-01

    Two steps foaming (TSF) technique was proposed to prepare shaped Al alloy foam. Based on the thermal decomposition kinetics equation of titanium hydride, the relationship between two steps thermal decomposition kinetics of titanium hydride and two steps foaming Al alloy melt was studied. Two steps thermal decomposition curve of titanium hydride under increasing and constant temperature was calculated respectively. The hydrogen mass needed in the second foaming step was also calculated. Results showed that the hydrogen mass of the second thermal decomposition of titanium hydride is enough for the second foaming step in the condition of as-received Al melt foaming. Experimental and theoretical results indicate that two steps foaming technique can be used to prepare Al alloy foam with high porosity, shaped components and sandwich with Al alloy foam core.

  13. In situ probing of surface hydrides on hydrogenated amorphous silicon using attenuated total reflection infrared spectroscopy

    CERN Document Server

    Kessels, W M M; Sanden, M C M; Aydil, E S

    2002-01-01

    An in situ method based on attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR) is presented for detecting surface silicon hydrides on plasma deposited hydrogenated amorphous silicon (a-Si:H) films and for determining their surface concentrations. Surface silicon hydrides are desorbed by exposing the a-Si:H films to low energy ions from a low density Ar plasma and by comparing the infrared spectrum before and after this low energy ion bombardment, the absorptions by surface hydrides can sensitively be separated from absorptions by bulk hydrides incorporated into the film. An experimental comparison with other methods that utilize isotope exchange of the surface hydrogen with deuterium showed good agreement and the advantages and disadvantages of the different methods are discussed. Furthermore, the determination of the composition of the surface hydrogen bondings on the basis of the literature data on hydrogenated crystalline silicon surfaces is presented, and quantification of the h...

  14. Solar conversion by concentration cells with hydrides. [Based on hydrogen pressure differential across protonic conductor

    Energy Technology Data Exchange (ETDEWEB)

    Salomon, R.E.

    1979-01-01

    The efficiency of solar energy conversion in an electrochemical concentration cell which uses a metal hydride chemisorber is evaluated. It is shown that both constant volume and constant pressure cells can achieve the Carnot efficiency in principle. (SPH)

  15. Compensation Effect in the Hydrogenation/Dehydrogenation Kinetics of Metal Hydrides

    DEFF Research Database (Denmark)

    Andreasen, A.; Vegge, T.; Pedersen, Allan Schrøder

    2005-01-01

    The possible existence of a compensation effect, i.e. concurrent changes in activation energy and prefactor, is investigated for the hydrogenation and dehydrogenation kinetics of metal hydrides, by analyzing a series of reported kinetic studies on Mg and LaNi5 based hydrides. For these systems, we...... find a clear linear relation between apparent prefactors and apparent activation energies, as obtained from an Arrhenius analysis, indicating the existence of a compensation effect. Large changes in apparent activation energies in the case of Mg based hydrides are rationalized in terms of a dependency...... analysis rather than a physical phenomenon. In the case of LaNi5 based hydrides, observed scatter in reported apparent activation energies is less pronounced supporting the general experience that LaNi5 is less sensitive toward surface contamination....

  16. The diastereoselective synthesis of octahedral cationic iridium hydride complexes with a stereogenic metal centre.

    Science.gov (United States)

    Humbert, Nicolas; Mazet, Clément

    2016-08-23

    We report herein the highly diastereoselective synthesis of octahedral cationic Ir(iii) hydride complexes with a stereogenic metal centre following various strategies. The configurational stability of these compounds has also been investigated.

  17. Speculations on the existence of hydride ions in proton conducting oxides

    DEFF Research Database (Denmark)

    Poulsen, F.W.

    2001-01-01

    The chemical and physical nature of the hydride ion is briefly treated. Several reactions of the hydride ion in oxides or oxygen atmosphere are given, A number of perovskites and inverse perovskites are listed. which contain the H- ion on the oxygen or B-anion sites in the archetype ABO(3) System....... H- is stable with respect to oxide and halide anions but, among cations only with respect to oxides and halides of strongly electropositive metals such as alkaline, alkaline-earth and main group III metals. H- is only stable in combination with transition metal ions of certain elements...... in their lowest positive oxidation state. Mixed oxide/hydride containing perovskites may thus exist. Steinsvik et al. have recently suggested a defect model for a perovskite including substitutional hydride ions on the oxygen site, H-O(.), and protons associated with a lattice oxygen, OHO.. The defect equations...

  18. Kinetics of hydrogen desorption from MgH2 and AlH3 hydrides

    Science.gov (United States)

    Terent'ev, P. B.; Gerasimov, E. G.; Mushnikov, N. V.; Uimin, M. A.; Maikov, V. V.; Gaviko, V. S.; Golovatenko, V. D.

    2015-12-01

    Kinetic parameters of the process of thermal decomposition of the MgH2 hydride (obtained by the method of the mechanoactivation of magnesium in a hydrogen atmosphere) and of the commercial AlH3 hydride have been studied upon the rapid heating in the range of temperatures of 150-510°C at hydrogen pressures of 0-2 atm. The time dependences of the amount of hydrogen released by the metal hydrides at different temperatures and pressures have been determined. It has been shown that the activation energies of the hydrogen desorption are 135 kJ/mol for MgH2 and 107 kJ/mol for AlH3. The maximum rates of hydrogen desorption from the investigated metal hydrides have been established, and the temperatures and initial pressures that ensure the maximum rate and maximum volume of the hydrogen release have been determined.

  19. Role of Pyridine as a Biomimetic Organo-Hydride for Homogeneous Reduction of CO2 to Methanol

    CERN Document Server

    Lim, Chern-Hooi; Hynes, James T; Musgrave, Charles B

    2014-01-01

    We use quantum chemical calculations to elucidate a viable homogeneous mechanism for pyridine-catalyzed reduction of CO2 to methanol. In the first component of the catalytic cycle, pyridine (Py) undergoes a H+ transfer (PT) to form pyridinium (PyH+) followed by an e- transfer (ET) to produce pyridinium radical (PyH0). Examples of systems to effect this ET to populate the LUMO of PyH+(E0calc ~ -1.3V vs. SCE) to form the solution phase PyH0 via highly reducing electrons include the photo-electrochemical p-GaP system (ECBM ~ -1.5V vs. SCE at pH= 5) and the photochemical [Ru(phen)3]2+/ascorbate system. We predict that PyH0 undergoes further PT-ET steps to form the key closed-shell, dearomatized 1,2-dihydropyridine (PyH2) species. Our proposed sequential PT-ET-PT-ET mechanism transforming Py into PyH2 is consistent with the mechanism described in the formation of related dihydropyridines. Because it is driven by its proclivity to regain aromaticity, PyH2 is a potent recyclable organo-hydride donor that mimics the ...

  20. A review of catalyst-enhanced magnesium hydride as a hydrogen storage material

    Science.gov (United States)

    Webb, C. J.

    2015-09-01

    Magnesium hydride remains an attractive hydrogen storage material due to the high hydrogen capacity and low cost of production. A high activation energy and poor kinetics at practical temperatures for the pure material have driven research into different additives to improve the sorption properties. This review details the development of catalytic additives and their effect on the activation energy, kinetics and thermodynamic properties of magnesium hydride.

  1. Direct hydride derivatization of methyl- and ethylmercury chlorides in aqueous solution with KBH4

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    A convenient hydride derivatization procedure of methyl-and ethylmercury chlorides to volatile hydrides was reported. In sealed vials methylmercury and ethylmercury compounds in acidic aqueous solutions were converted into their volatile forms by the reaction with potassium tetrahydroborate(KBH4) and elvolved to the headspace of the vials. The gaseous analytes in the headspace were extracted and concentrated by solid phase microextraction(SPME) and injected into gas chromatography (GC) for separation and identified by mass selective detector(MS).

  2. Heteroaromatic donors in donor-acceptor-donor based fluorophores facilitate zinc ion sensing and cell imaging.

    Science.gov (United States)

    Sreejith, Sivaramapanicker; Divya, Kizhumuri P; Jayamurthy, Purushothaman; Mathew, Jomon; Anupama, V N; Philips, Divya Susan; Anees, Palappuravan; Ajayaghosh, Ayyappanpillai

    2012-11-01

    The excited state intra molecular charge transfer (ICT) property of fluorophores has been extensively used for the design of fluorescent chemosensors. Herein, we report the synthesis and properties of three donor–π-acceptor–π-donor (D–π-A–π-D) based molecular probes BP, BT and BA. Two heteroaromatic rings, pyrrole (BP), and thiophene (BT) and a non-heteroaromatic ring N-alkoxy aniline (BA) were selected as donor moieties which were linked to a bipyridine binding site through a vinylic linkage. The heteroaromatic systems BP and BT perform selective and ratiometric emission signalling for zinc ions whereas the non-heteroaromatic probe BA does not. The advantages of the D–π-A–π-D design strategy in the design of ICT based probes for the selective fluorescent ratiometric signalling of zinc ions in biological media is discussed. Further, the use of BP, BT and BA for imaging Zn(2+) ions from MCF-7 cell lines is demonstrated.

  3. Role of H2S Donors in Cancer Biology.

    Science.gov (United States)

    Lee, Zheng-Wei; Deng, Lih-Wen

    2015-01-01

    Hydrogen sulfide (H2S) donors including organosulfur compounds (OSC), inorganic sulfide salts, and synthetic compounds are useful tools in studies to elucidate the effects of H2S in cancer biology. Studies using such donors have shown the ability of H2S to suppress tumor growth both in vitro and in vivo, with some of them suggesting the selectivity of its cytotoxic effects to cancer cells. In addition to promoting cancer cell death, H2S donors were also found to inhibit cancer angiogenesis and metastasis. The underlying mechanisms for the anticancer activities of H2S involve (1) cell signaling pathways, such as MAPK and STAT; (2) cell cycle regulation; (3) microRNAs regulation; and (4) cancer metabolism and pH regulation. Altogether, compiling evidences have demonstrated the great potential of using H2S donors as anticancer agents. Nevertheless, the application and development of H2S for therapy are still facing challenges as identification of molecular targets of H2S awaits further investigation.

  4. Renal Transplantation from Elderly Living Donors

    Directory of Open Access Journals (Sweden)

    Jacob A. Akoh

    2013-01-01

    Full Text Available Acceptance of elderly living kidney donors remains controversial due to the higher incidence of comorbidity and greater risk of postoperative complications. This is a review of publications in the English language between 2000 and 2013 about renal transplantation from elderly living donors to determine trends and effects of donation, and the outcomes of such transplantation. The last decade witnessed a 50% increase in living kidney donor transplants, with a disproportionate increase in donors >60 years. There is no accelerated loss of kidney function following donation, and the incidence of established renal failure (ERF and hypertension among donors is similar to that of the general population. The overall incidence of ERF in living donors is about 0.134 per 1000 years. Elderly donors require rigorous assessment and should have a predicted glomerular filtration rate of at least 37.5 mL/min/1.73 m2 at the age of 80. Though elderly donors had lower glomerular filtration rate before donation, proportionate decline after donation was similar in both young and elderly groups. The risks of delayed graft function, acute rejection, and graft failure in transplants from living donors >65 years are significantly higher than transplants from younger donors. A multicentred, long-term, and prospective database addressing the outcomes of kidneys from elderly living donors is recommended.

  5. Fracture mechanism of TiAl intermetallics caused by hydride and atomic hydrogen

    Institute of Scientific and Technical Information of China (English)

    高克玮; 王燕斌; 林志; 乔利杰; 褚武扬

    1999-01-01

    Hydrogen embrittlement (HE) of TiAl intermetallics was studied at room temperature. The results showed that there were two forms of HE in TiAl intermetallics, i.e. hydride HE and atomic HE. Most of hydrogen in TiAl intermetallics was transformed into hydrides at room temperature. The hydride exists as (TiAl)Hx for a low hydrogen concentration while it exists in several forms for a higher hydrogen concentration. Stress intensity factor KIC decreased with increase in hydride concentration. KIC decreased further when TiAl intermetallics were charged cathodically with hydrogen in 1 mol/L H2SO4 solution. Stress intensity factor during hydrogen charging KIH was about 50% KIC. 20% of the decrease was caused by hydrides while 30% was caused by atomic hydrogen. Mechanism of HE caused hydrides was the same as any other second phase in nature. Delayed fracture caused by atomic hydrogen resulted from hydrogen induced local plastic deformation.

  6. On the chemistry of hydrides of N atoms and O$^+$ ions

    CERN Document Server

    Awad, Zainab; Williams, David A

    2016-01-01

    Previous work by various authors has suggested that the detection by Herschel/HIFI of nitrogen hydrides along the low density lines of sight towards G10.6-0.4 (W31C) cannot be accounted for by gas-phase chemical models. In this paper we investigate the role of surface reactions on dust grains in diffuse regions, and we find that formation of the hydrides by surface reactions on dust grains with efficiency comparable to that for H$_2$ formation reconciles models with observations of nitrogen hydrides. However, similar surface reactions do not contribute significantly to the hydrides of O$^+$ ions detected by Herschel/HIFI present along many sight lines in the Galaxy. The O$^+$ hydrides can be accounted for by conventional gas-phase chemistry either in diffuse clouds of very low density with normal cosmic ray fluxes or in somewhat denser diffuse clouds with high cosmic ray fluxes. Hydride chemistry in dense dark clouds appears to be dominated by gas-phase ion-molecule reactions.

  7. Influence of Milling Conditions on the Hydriding Properties of Mg-C Nanocomposites

    Directory of Open Access Journals (Sweden)

    Hristina Stoyadinova

    2015-01-01

    Full Text Available Mg75 at.%, CB25 at.% (CB: carbon black composites were synthesized at different ball milling conditions (milling energy, milling duration, and environment and their hydriding properties were characterized by high-pressure DSC. The SEM observations revealed that the samples consist of 5–15 μm Mg particles, surrounded and in some cases coated by carbon particles. X-ray diffraction analysis showed that the Mg phase of all as-obtained composite powders is nanocrystalline with average crystallite size in the range 20–30 nm, depending on the milling conditions. The best hydriding properties, expressed in low-temperature hydriding (below 150°C and improved cycle life, showed the composites milled at dry conditions. This is obviously due mainly to the successful Mg surface protection by the carbon. Additional decrease of the hydriding temperature (<100°C was achieved applying higher-energy milling, but at the same time the cycling stability deteriorated, due to the extremely fine particles and microstructure achieved under these conditions. The composites milled in the presence of heptane showed rapid capacity decline during cycling as well. The observed difference in the hydriding behavior of the Mg-CB composites is attributed to the different coating efficiency of the carbon milled under different conditions with Mg, which is supposed to protect magnesium from oxidation and plays a catalytic role for the hydriding reaction.

  8. First-principles calculations of niobium hydride formation in superconducting radio-frequency cavities

    Energy Technology Data Exchange (ETDEWEB)

    Ford, Denise C.; Cooley, Lance D.; Seidman, David N.

    2013-09-01

    Niobium hydride is suspected to be a major contributor to degradation of the quality factor of niobium superconducting radio-frequency (SRF) cavities. In this study, we connect the fundamental properties of hydrogen in niobium to SRF cavity performance and processing. We modeled several of the niobium hydride phases relevant to SRF cavities and present their thermodynamic, electronic, and geometric properties determined from calculations based on density-functional theory. We find that the absorption of hydrogen from the gas phase into niobium is exothermic and hydrogen becomes somewhat anionic. The absorption of hydrogen by niobium lattice vacancies is strongly preferred over absorption into interstitial sites. A single vacancy can accommodate six hydrogen atoms in the symmetrically equivalent lowest-energy sites and additional hydrogen in the nearby interstitial sites affected by the strain field: this indicates that a vacancy can serve as a nucleation center for hydride phase formation. Small hydride precipitates may then occur near lattice vacancies upon cooling. Vacancy clusters and extended defects should also be enriched in hydrogen, potentially resulting in extended hydride phase regions upon cooling. We also assess the phase changes in the niobium-hydrogen system based on charge transfer between niobium and hydrogen, the strain field associated with interstitial hydrogen, and the geometry of the hydride phases. The results of this study stress the importance of not only the hydrogen content in niobium, but also the recovery state of niobium for the performance of SRF cavities.

  9. Influence of lanthanon hydride catalysts on hydrogen storage properties of sodium alanates

    Institute of Scientific and Technical Information of China (English)

    WU Zhe; CHEN Lixin; XIAO Xuezhang; FAN Xiulin; LI Shouquan; WANG Qidong

    2013-01-01

    NaAlH4 complex hydrides doped with lanthanon hydrides were prepared by hydrogenation of the ball-milled NaH/Al+xmol.% RE-H composites (RE=La,Ce; x=2,4,6) using NaHl and A1 powder as raw materials.The influence of lanthanon hydride catalysts on the hydriding and dehydriding behaviors of the as-synthesized composites were investigated.It was found that the composite doped with 2 mol.% La.H3.01 displayed the highest hydrogen absorption capacity of 4.78 wt.% and desorption capacity of 4.66wt.%,respectively.Moreover,the composite doped with 6 mol% CeH2.51 showed the best hydriding/dehydriding reaction kinetics.The proposed catalytic mechanism for reversible hydrogen storage properties of the composite was attributed to the presence of active LaH3.01 and CeH2.51 particles,which were scattering on the surface of NaH and A1 particles,acting as the catalytic active sites for hydrogen diffusion and playing an important catalytic role in the improved hydriding/dehydriding reaction.

  10. The identification of potential cadaveric organ donors.

    Science.gov (United States)

    Thompson, J F; McCosker, C J; Hibberd, A D; Chapman, J R; Compton, J S; Mahony, J F; Mohacsi, P J; MacDonald, G J; Spratt, P M

    1995-02-01

    Most Australian transplantation programs are severely restricted in their activities by a limited availability of cadaveric donor organs. To investigate possible reasons for this problem, an audit was undertaken over three 12-month periods of all deaths in 13 hospitals in New South Wales and the Australian Capital Territory. From 7406 deaths, 271 patients were classified as having been realistic, medically suitable potential donors. Of these, only 60 (22%) became actual donors. In the other 211 patients, donation did not occur because of unsuccessful resuscitation (30%), permission refusal by relatives (34%), and failure to identify or support the potential donors (36%). If the impediments to organ donation which were identified in this study could be overcome, allowing a greater number of potential donors to become actual donors, the chronic shortage of cadaveric donor organs for transplantation could be at least partly relieved.

  11. Hydrogen generation using silicon nanoparticles and their mixtures with alkali metal hydrides

    Science.gov (United States)

    Patki, Gauri Dilip

    mole of Si. We compare our silicon nanoparticles (˜10nm diameter) with commercial silicon nanopowder (hydrogen production rate increased by a factor of 150. However, in all cases, silicon requires a base (e.g. NaOH, KOH, hydrazine) to catalyze its reaction with water. Metal hydrides are also promising hydrogen storage materials. The optimum metal hydride would possess high hydrogen storage density at moderate temperature and pressure, release hydrogen safely and controllably, and be stable in air. Alkali metal hydrides have high hydrogen storage density, but exhibit high uncontrollable reactivity with water. In an attempt to control this explosive nature while maintaining high storage capacity, we mixed our silicon nanoparticles with the hydrides. This has dual benefits: (1) the hydride- water reaction produces the alkali hydroxide needed for base-catalyzed silicon oxidation, and (2) dilution with 10nm coating by, the silicon may temper the reactivity of the hydride, making the process more controllable. Initially, we analyzed hydrolysis of pure alkali metal hydrides and alkaline earth metal hydrides. Lithium hydride has particularly high hydrogen gravimetric density, along with faster reaction kinetics than sodium hydride or magnesium hydride. On analysis of hydrogen production we found higher hydrogen yield from the silicon nanoparticle—metal hydride mixture than from pure hydride hydrolysis. The silicon-hydride mixtures using our 10nm silicon nanoparticles produced high hydrogen yield, exceeding the theoretical yield. Some evidence of slowing of the hydride reaction rate upon addition of silicon nanoparticles was observed.

  12. A DFT based investigation into the electronic structure and properties of hydride rich rhodium clusters.

    Science.gov (United States)

    Brayshaw, Simon K; Green, Jennifer C; Hazari, Nilay; Weller, Andrew S

    2007-05-14

    Density functional theory has been used to investigate the structures, bonding and properties of a family of hydride rich late transition metal clusters of the type [Rh(6)(PH(3))(6)H(12)](x) (x = 0, +1, +2, +3 or +4), [Rh(6)(PH(3))(6)H(16)](x) (x = +1 or +2) and [Rh(6)(PH(3))(6)H(14)](x) (x = 0, +1 or +2). The positions of the hydrogen atoms around the pseudo-octahedral Rh(6) core in the optimized structures of [Rh(6)(PH(3))(6)H(12)](x) (x = 0, +1, +2, +3 or +4) varied depending on the overall charge on the cluster. The number of semi-bridging hydrides increased (semi-bridging hydrides have two different Rh-H bond distances) as the charge on the cluster increased and simultaneously the number of perfectly bridging hydrides (equidistant between two Rh centers) decreased. This distortion maximized the bonding between the hydrides and the metal centers and resulted in the stabilization of orbitals related to the 2T(2g) set in a perfectly octahedral cluster. In contrast, the optimized structures of the 16-hydride clusters [Rh(6)(PH(3))(6)H(12)](x) (x = +1 or +2) were similar and both clusters contained an interstitial hydride, along with one terminal hydride, ten bridging hydrides and two coordinated H(2) molecules which were bound to two rhodium centers in an eta(2):eta(1)-fashion. All the hydrides were on the outside of the Rh(6) core in the lowest energy structures of the 14-hydride clusters [Rh(6)(PH(3))(6)H(14)] and [Rh(6)(PH(3))(6)H(14)](+), which both contained eleven bridging hydrides, one terminal hydride and one coordinated H(2) molecule. Unfortunately, the precise structure of [Rh(6)(PH(3))(6)H(14)](2+) could not be determined as structures both with and without an interstitial hydride were of similar energy. The reaction energetics for the uptake and release of two molecule of H(2) by a cycle consisting of [Rh(6)(PH(3))(6)H(12)](2+), [Rh(6)(PH(3))(6)H(16)](2+), [Rh(6)(PH(3))(6)H(14)](+), [Rh(6)(PH(3))(6)H(12)](+) and [Rh(6)(PH(3))(6)H(14)](2+) were modelled

  13. Design and Fabricate a Metallic Hydride Heat Pump with a Cooling Capacity of 9000 BTU/H

    Science.gov (United States)

    1989-02-07

    I ERGENICS, INC. N 681 Lawl Ins Road Wyckoff. NJ 07481 DESIGN AND FABRICATE A METALLIC HYDRIDE HEAT PUMP WITH A COOLING CAPACITY OF 9000 BTU/H...air conditioning unit employing a metal hydride heat pump and a silicone heat transfer fluid. The contract was subsequently modified on 29 September 3...for thermally driven ECE systems. Metal hydride heat pumps were proposed as for this application.. However, only laboratory bench experiments have

  14. Development of Novel Metal Hydride-Carbon Nanomaterial Based Nanocomposites as Anode Electrode Materials for Lithium Ion Battery

    Science.gov (United States)

    2014-06-30

    Final Progress Report (27-02-2012 To 26-02-2014) Project Title:- Development of novel metal hydride -carbon nanomaterial based nanocomposites as...anode electrode materials for Lithium ion battery Objectives:- The aim of this study is to develop metal hydride –carbon nanomaterial based...be as follows:- Milestone I • Synthesis of nanosized metal hydrides (NMH)-carbon nanotubes (CNT) hybridizing with G (NMH- CNT-G) nanocomposites

  15. Laparoscopic nephrectomy in live donor

    Directory of Open Access Journals (Sweden)

    Mitre Anuar I.

    2004-01-01

    Full Text Available OBJECTIVE: To present the initial experience of videolaparoscopic nephrectomy in live renal donor. MATERIALS AND METHODS: In the period from April 2000 to August 2003, 50 left nephrectomies in live donor were performed by videolaparoscopy for transplantation. Twenty-eight patients were male (56% and 22 female (44%. Mean age was 37.2 years, and the mean body mass index (BMI was 27.1 kg/m². RESULTS: Mean surgical time was 179.5 minutes, and warm ischemia time of the graft was 3.79 minutes. The mean estimated bleeding was 141 mL. There was no need of blood transfusion or conversion to open surgery. In 42 cases (84%, the vascular portion of the graft was considered good by the recipient's surgical team and in all cases, the ureter was considered of proper size, though in one of them (2% its vascularization was considered improper. The transplanted kidneys produced urine still in the surgical room in 46 of the 50 transplantations considered. In only 2 cases opioid was required for analgesia. In average, 3.1 doses of dipyrone were used for each patient during hospital stay, and hospital discharge occurred, in average, after 3.2 days post-operatively. Two patients required re-operations and one of them evolved to death. CONCLUSIONS: The laparoscopic nephrectomy in live donor for renal transplantation is an alternative to conventional open surgery. In relation to the graft, no alteration, either anatomic or functional, was detected. Though there is already a large documentation in the international literature regarding this procedure, in our setting a prospective randomized study with the usual surgical study is still necessary in order to prove the advantages and disadvantages of the method.

  16. Hydrides of Alkaline Earth–Tetrel (AeTt) Zintl Phases: Covalent Tt–H Bonds from Silicon to Tin

    Energy Technology Data Exchange (ETDEWEB)

    Auer, Henry; Guehne, Robin; Bertmer, Marko; Weber, Sebastian; Wenderoth, Patrick; Hansen, Thomas Christian; Haase, Jürgen; Kohlmann, Holger

    2017-01-18

    Zintl phases form hydrides either by incorporating hydride anions (interstitial hydrides) or by covalent bonding of H to the polyanion (polyanionic hydrides), which yields a variety of different compositions and bonding situations. Hydrides (deuterides) of SrGe, BaSi, and BaSn were prepared by hydrogenation (deuteration) of the CrB-type Zintl phases AeTt and characterized by laboratory X-ray, synchrotron, and neutron diffraction, NMR spectroscopy, and quantum-chemical calculations. SrGeD4/3–x and BaSnD4/3–x show condensed boatlike six-membered rings of Tt atoms, formed by joining three of the zigzag chains contained in the Zintl phase. These new polyanionic motifs are terminated by covalently bound H atoms with d(Ge–D) = 1.521(9) Å and d(Sn–D) = 1.858(8) Å. Additional hydride anions are located in Ae4 tetrahedra; thus, the features of both interstitial hydrides and polyanionic hydrides are represented. BaSiD2–x retains the zigzag Si chain as in the parent Zintl phase, but in the hydride (deuteride), it is terminated by H (D) atoms, thus forming a linear (SiD) chain with d(Si–D) = 1.641(5) Å.

  17. Metal hydrides: an innovative and challenging conversion reaction anode for lithium-ion batteries

    Directory of Open Access Journals (Sweden)

    Luc Aymard

    2015-08-01

    Full Text Available The state of the art of conversion reactions of metal hydrides (MH with lithium is presented and discussed in this review with regard to the use of these hydrides as anode materials for lithium-ion batteries. A focus on the gravimetric and volumetric storage capacities for different examples from binary, ternary and complex hydrides is presented, with a comparison between thermodynamic prediction and experimental results. MgH2 constitutes one of the most attractive metal hydrides with a reversible capacity of 1480 mA·h·g−1 at a suitable potential (0.5 V vs Li+/Li0 and the lowest electrode polarization (2, TiH2, complex hydrides Mg2MHx and other Mg-based hydrides. The reversible conversion reaction mechanism of MgH2, which is lithium-controlled, can be extended to others hydrides as: MHx + xLi+ + xe− in equilibrium with M + xLiH. Other reaction paths—involving solid solutions, metastable distorted phases, and phases with low hydrogen content—were recently reported for TiH2 and Mg2FeH6, Mg2CoH5 and Mg2NiH4. The importance of fundamental aspects to overcome technological difficulties is discussed with a focus on conversion reaction limitations in the case of MgH2. The influence of MgH2 particle size, mechanical grinding, hydrogen sorption cycles, grinding with carbon, reactive milling under hydrogen, and metal and catalyst addition to the MgH2/carbon composite on kinetics improvement and reversibility is presented. Drastic technological improvement in order to the enhance conversion process efficiencies is needed for practical applications. The main goals are minimizing the impact of electrode volume variation during lithium extraction and overcoming the poor electronic conductivity of LiH. To use polymer binders to improve the cycle life of the hydride-based electrode and to synthesize nanoscale composite hydride can be helpful to address these drawbacks. The development of high-capacity hydride anodes should be inspired by the emergent

  18. Metal hydrides: an innovative and challenging conversion reaction anode for lithium-ion batteries.

    Science.gov (United States)

    Aymard, Luc; Oumellal, Yassine; Bonnet, Jean-Pierre

    2015-01-01

    The state of the art of conversion reactions of metal hydrides (MH) with lithium is presented and discussed in this review with regard to the use of these hydrides as anode materials for lithium-ion batteries. A focus on the gravimetric and volumetric storage capacities for different examples from binary, ternary and complex hydrides is presented, with a comparison between thermodynamic prediction and experimental results. MgH2 constitutes one of the most attractive metal hydrides with a reversible capacity of 1480 mA·h·g(-1) at a suitable potential (0.5 V vs Li(+)/Li(0)) and the lowest electrode polarization (hydrides Mg2MH x and other Mg-based hydrides. The reversible conversion reaction mechanism of MgH2, which is lithium-controlled, can be extended to others hydrides as: MH x + xLi(+) + xe(-) in equilibrium with M + xLiH. Other reaction paths-involving solid solutions, metastable distorted phases, and phases with low hydrogen content-were recently reported for TiH2 and Mg2FeH6, Mg2CoH5 and Mg2NiH4. The importance of fundamental aspects to overcome technological difficulties is discussed with a focus on conversion reaction limitations in the case of MgH2. The influence of MgH2 particle size, mechanical grinding, hydrogen sorption cycles, grinding with carbon, reactive milling under hydrogen, and metal and catalyst addition to the MgH2/carbon composite on kinetics improvement and reversibility is presented. Drastic technological improvement in order to the enhance conversion process efficiencies is needed for practical applications. The main goals are minimizing the impact of electrode volume variation during lithium extraction and overcoming the poor electronic conductivity of LiH. To use polymer binders to improve the cycle life of the hydride-based electrode and to synthesize nanoscale composite hydride can be helpful to address these drawbacks. The development of high-capacity hydride anodes should be inspired by the emergent nano-research prospects which

  19. Complex Hydride Compounds with Enhanced Hydrogen Storage Capacity

    Energy Technology Data Exchange (ETDEWEB)

    Mosher, Daniel A.; Opalka, Susanne M.; Tang, Xia; Laube, Bruce L.; Brown, Ronald J.; Vanderspurt, Thomas H.; Arsenault, Sarah; Wu, Robert; Strickler, Jamie; Anton, Donald L.; Zidan, Ragaiy; Berseth, Polly

    2008-02-18

    The United Technologies Research Center (UTRC), in collaboration with major partners Albemarle Corporation (Albemarle) and the Savannah River National Laboratory (SRNL), conducted research to discover new hydride materials for the storage of hydrogen having on-board reversibility and a target gravimetric capacity of ≥ 7.5 weight percent (wt %). When integrated into a system with a reasonable efficiency of 60% (mass of hydride / total mass), this target material would produce a system gravimetric capacity of ≥ 4.5 wt %, consistent with the DOE 2007 target. The approach established for the project combined first principles modeling (FPM - UTRC) with multiple synthesis methods: Solid State Processing (SSP - UTRC), Solution Based Processing (SBP - Albemarle) and Molten State Processing (MSP - SRNL). In the search for novel compounds, each of these methods has advantages and disadvantages; by combining them, the potential for success was increased. During the project, UTRC refined its FPM framework which includes ground state (0 Kelvin) structural determinations, elevated temperature thermodynamic predictions and thermodynamic / phase diagram calculations. This modeling was used both to precede synthesis in a virtual search for new compounds and after initial synthesis to examine reaction details and options for modifications including co-reactant additions. The SSP synthesis method involved high energy ball milling which was simple, efficient for small batches and has proven effective for other storage material compositions. The SBP method produced very homogeneous chemical reactions, some of which cannot be performed via solid state routes, and would be the preferred approach for large scale production. The MSP technique is similar to the SSP method, but involves higher temperature and hydrogen pressure conditions to achieve greater species mobility. During the initial phases of the project, the focus was on higher order alanate complexes in the phase space

  20. Development of delayed hydride cracking resistant-pressure tube

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Young Suk; Kwon, Sang Chul; Kim, S. S.; Yim, K. S

    2000-10-01

    For the first time, we demonstrate that the pattern of nucleation and growth of a DHC crack is governed by the precipitation of hydrides so that the DHC velocity and K{sub IH} are determined by an angle of the cracking plane and the hydride habit plane 10.7. Since texture controls the distribution of the 10.7 habit plane in Zr-2.5Nb pressure tube, we draw a conclusion that a textural change in Zr-2.5Nb tube from a strong tangential texture to the radial texture shall increase the threshold stress intensity factor, K{sub IH}, and decrease the delayed hydride cracking velocity. This conclusion is also verified by a complimentary experiment showing a linear dependence of DHCV and K{sub IH} with an increase in the basal component in the cracking plane. On the basis of the study on the DHC mechanism and the effect of manufacturing processes on the properties of Zr-2.5Nb tube, we have established a manufacturing procedure to make pressure tubes with improved DHC resistance. The main features of the established manufacturing process consist in the two step-cold pilgering process and the intermediate heat treatment in the {alpha} + {beta} phase for Zr-2.5Nb alloy and in the {alpha} phase for Zr-1Nb-1.2Sn-0.4Fe alloy. The manufacturing of DHC resistant-pressure tubes of Zr-2.5Nb and Zr-1N-1.2Sn-0.4Fe was made in the ChMP zirconium plant in Russia under a joint research with Drs. Nikulina and Markelov in VNIINM (Russia). Zr-2.5Nb pressure tube made with the established manufacturing process has met all the specification requirements put by KAERI. Chracterization tests have been jointly conducted by VNIINM and KAERI. As expected, the Zr-2.5Nb tube made with the established procedure has improved DHC resistance compared to that of CANDU Zr-2.5Nb pressure tube used currently. The measured DHC velocity of the Zr-2.5Nb tube meets the target value (DHCV <5x10{sup -8} m/s) and its other properties also were equivalent to those of the CANDU Zr-2.5Nb tube used currently. The Zr-1Nb-1

  1. Effect of hydrogen atoms on the structures of trinuclear metal carbonyl clusters: trinuclear manganese carbonyl hydrides.

    Science.gov (United States)

    Liu, Xian-mei; Wang, Chao-yang; Li, Qian-shu; Xie, Yaoming; King, R Bruce; Schaefer, Henry F

    2009-05-18

    The structures of the trinuclear manganese carbonyl hydrides H(3)Mn(3)(CO)(n) (n = 12, 11, 10, 9) have been investigated by density functional theory (DFT). Optimization of H(3)Mn(3)(CO)(12) gives the experimentally known structure in which all carbonyl groups are terminal and each edge of a central Mn(3) equilateral triangle is bridged by a single hydrogen atom. This structure establishes the canonical distance 3.11 A for the Mn-Mn single bond satisfying the 18-electron rule. The central triangular (mu-H)(3)Mn(3) unit is retained in the lowest energy structure of H(3)Mn(3)(CO)(11), which may thus be derived from the H(3)Mn(3)(CO)(12) structure by removal of a carbonyl group with concurrent conversion of one of the remaining carbonyl groups into a semibridging carbonyl group to fill the resulting hole. The potential energy surface of H(3)Mn(3)(CO)(10) is relatively complicated with six singlet and five triplet structures. One of the lower energy H(3)Mn(3)(CO)(10) structures has one of the hydrogen atoms bridging the entire Mn(3) triangle and the other two hydrogen atoms bridging Mn-Mn edges. This H(3)Mn(3)(CO)(10) structure achieves the favored 18-electron configuration with a very short MnMn triple bond of 2.36 A. The other low energy H(3)Mn(3)(CO)(10) structure retains the (mu-H)(3)Mn(3) core of H(3)Mn(3)(CO)(12) but has a unique six-electron donor eta(2)-mu(3) carbonyl group bridging the entire Mn(3) triangle similar to the unique carbonyl group in the known compound Cp(3)Nb(3)(CO)(6)(eta(2)-mu(3)-CO). For H(3)Mn(3)(CO)(9) a structure with a central (mu(3)-H)(2)Mn(3) trigonal bipyramid lies >20 kcal/mol below any of the other structures. Triplet structures were found for the unsaturated H(3)Mn(3)(CO)(n) (n = 11, 10, 9) systems but at significantly higher energies than the lowest lying singlet structures.

  2. Influence of hydrides orientation on strain, damage and failure of hydrided zircaloy-4; Influence de l'orientation des hydrures sur les modes de deformation, d'endommagement et de rupture du zircaloy-4 hydrure

    Energy Technology Data Exchange (ETDEWEB)

    Racine, A

    2005-09-15

    In pressurized water reactors of nuclear power plants, fuel pellets are contained in cladding tubes, made of Zirconium alloy, for instance Zircaloy-4. During their life in the primary water of the reactor (155 bars, 300 C), cladding tubes are oxidized and consequently hydrided. A part of the hydrogen given off precipitates as Zirconium hydrides in the bulk material and embrittles the material. This embrittlement depends on many parameters, among which hydrogen content and orientation of hydrides with respect to the applied stress. This investigation is devoted to the influence of the orientation of hydrides with respect to the applied stress on strain, damage and failure mechanisms. Macroscopic and SEM in-situ ring tensile tests are performed on cladding tube material (unirradiated cold worked stress-relieved Zircaloy-4) hydrided with about 200 and 500 wppm hydrogen, and with different main hydrides orientation: either parallel or perpendicular to the circumferential tensile direction. We get the mechanical response of the material as a function of hydride orientation and hydrogen content and we investigate the deformation, damage and failure mechanisms. In both cases, digital image correlation techniques are used to estimate local and global strain distributions. Neither the tensile stress-strain response nor the global and local strain modes are significantly affected by hydrogen content or hydride orientation, but the failure modes are strongly modified. Indeed, only 200 wppm radial hydrides embrittle Zy-4: sample fail in the elastic domain at about 350 MPa before strain bands could develop; whereas in other cases sample reach at least 750 MPa before necking and final failure, in ductile or brittle mode. To model this particular heterogeneous material behavior, a non-coupled damage approach which takes into account the anisotropic distribution of the hydrides is proposed. Its parameters are identified from the macroscopic strain field measurements and a

  3. Conceptions of Ability.

    Science.gov (United States)

    Jagacinski, Carolyn M.; Nicholls, John G.

    Two different conceptions of ability are proposed. The first conception of ability is more differentiated and generally employed by adults and older children. Here ability level is defined with reference to the performance of others assuming that optimum effort was employed. High ability means higher than others. The second conception of ability…

  4. Donor Considerations in Fecal Microbiota Transplantation.

    Science.gov (United States)

    Barnes, Danielle; Park, K T

    2017-03-01

    Tremendous acceleration has been made in understanding the gut microbiota in the past decade and, with it, further understanding of the pathologic role of dysbiosis and the use of fecal microbiota transplantation (FMT) as therapy. FMT has been studied in many disease states including the most common indication of Clostridium difficile infection (CDI), though many questions regarding stool donor selection remain. Though traditionally, one donor has provided stool for one patient, research is underway to explore many donor selection considerations from the use of pooled donor stool to selection of a high diversity donor. It is well-known that dietary intake shapes the gut microbiota and the potential implications of this on FMT donor selection are being explored. Though further high-quality research is needed, optimizing the fecal microbiota inoculum holds great promise.

  5. Proton and hydride affinities in excited states: magnitude reversals in proton and hydride affinities between the lowest singlet and triplet states of annulenyl and benzannulenyl anions and cations

    DEFF Research Database (Denmark)

    Rosenberg, Martin; Ottosson, Henrik; Kilså, Kristine

    2010-01-01

    Aromaticity has importance for proton and hydride affinities in the singlet ground state (S(0)) of annulenyl anions and cations so that, e.g., cyclopentadiene is an acidic hydrocarbon. For the lowest pipi* excited triplet state (T(1)), Baird's rule concludes that annulenes with 4n pi-electrons ar......Aromaticity has importance for proton and hydride affinities in the singlet ground state (S(0)) of annulenyl anions and cations so that, e.g., cyclopentadiene is an acidic hydrocarbon. For the lowest pipi* excited triplet state (T(1)), Baird's rule concludes that annulenes with 4n pi......-electrons are aromatic and those with 4n+2 pi-electrons are antiaromatic, opposite to Huckel's rule for aromaticity in S(0). Our hypothesis is now that the relative magnitudes of proton and hydride affinities of annulenyl anions and cations reverts systematically as one goes from S(0) to T(1) as a result of the opposite...... electron counting rules for aromaticity in the two states. Using quantum chemical calculations at the G3(MP2)//(U)B3LYP/6-311+G(d,p) level we have examined the validity of this hypothesis for eight proton and eight hydride addition reactions of anions and cations, respectively, of annulenyl...

  6. Clinical Practice Guidelines for Potential Donors Management

    Directory of Open Access Journals (Sweden)

    José Roque Nodal Arruebarrena

    2009-03-01

    Full Text Available Clinical Practice Guidelines for Potential Donors Management. It has been defined as the patient in Glasgow coma with scale higher or equal to 8 who doesn´t present contradictions for transplant (possible donor and who has been diagnosed of encephalic death. This document reviews and updates concepts, lists indications and contraindications for different organs donation, clinical assessment of the donor and its treatment. It includes assessment guidelines focused on the most important aspects to be accomplished.

  7. Understanding of Hydriding Mechanisms of Zircaloy-4 Alloy during Corrosion in PWR Simulated Conditions and Influence of Zirconium Hydrides on Zircaloy-4 Corrosion

    Energy Technology Data Exchange (ETDEWEB)

    Bisor-Melloul, C.; Tupin, M.; Bossis, P.; Chene, J.; Bechade, J.L. [CEA Saclay, 91 - Gif sur Yvette (France); Motta, A. [Pennsylvania State Univ. (United States)

    2011-03-15

    Zirconium alloys represent the first containment barrier to fission products, their mechanical integrity is essential for nuclear safety in PWR. During their corrosion in primary water, some of the hydrogen involved in the oxidation reaction with water ingresses into the alloy through the oxide layer. In the metallic matrix, once the solid solution limit is reached at the irradiation temperature, hydrogen precipitates as Zr hydrides mainly located just under the metal/oxide interface due to the thermal gradient across the cladding. As these hydrides may contribute to a larger oxide thickness and to a more fragile behaviour of the cladding, the minimization of hydrogen pick-up is required. Accordingly, since the Zircaloy-4 (Zr-1.3Sn-0.2Fe-0.1Cr) alloy is known to be sensitive to this phenomenon, the understanding of its hydriding mechanism, isotopic exchanges were carried out in D{sub 2}O environment at 360 C and led to the localization, in the oxide scales, of the limiting step for the hydrogen diffusion. To estimate an apparent diffusion coefficient of hydrogen in the oxide formed on Zircaloy-4, we based on SIMS profiles and penetration depth of deuterium in the dense part of the oxide film. Then ERDA estimation of the hydrogen content in zirconia and fusion measurement of the hydrogen content in both metal and oxide were used to estimate a hydrogen flux absorbed by the alloy and hence to deduce an apparent diffusion coefficient. Finally, these 2 methods lead to quite similar values (between 1.10{sup -14} cm{sup 2}/s and 6.10{sup -14} cm{sup 2}/s) which are in accordance with bibliography. Concerning the impact of hydrides on the corrosion of Zircaloy-4, several pre-hydrided and reference samples were corroded simultaneously at 360 C. The characterization of the pre-hydrided samples revealed some changes, as the presence of the Zr{sub 3}O sub-oxide at the inner metal/oxide interface, a lower fraction of -ZrO{sub 2} in the oxide and a faster diffusion of oxygen

  8. Real-Time Blood Donor Management Using Dashboards Based on Data Mining Models

    Directory of Open Access Journals (Sweden)

    Santhanam T

    2011-09-01

    Full Text Available This study uses data mining modeling techniques to examine the blood donor classification and extending this to facilitate the development of realtime blood donor management using dashboards with blood profile and geo-location data. This enables decision makers the ability to manage and plan the blood donation activities based on key metrics. This capability provides the ability to plan effective targeted blood donation campaigns. The scoring algorithm implemented for the dashboard also helps in the optimized deployment of budget resources and budget allocation determination for blood donation campaigns.

  9. Metal hydride and pyrophoric fuel additives for dicyclopentadiene based hybrid propellants

    Science.gov (United States)

    Shark, Steven C.

    The purpose of this study is to investigate the use of reactive energetic fuel additives that have the potential to increase the combustion performance of hybrid rocket propellants in terms of solid fuel regression rate and combustion efficiency. Additives that can augment the combustion flame zone in a hybrid rocket motor by means of increased energy feedback to the fuel grain surface are of great interest. Metal hydrides have large volumetric hydrogen densities, which gives these materials high performance potential as fuel additives in terms of specifc impulse. The excess hydrogen and corresponding base metal may also cause an increase in the hybrid rocket solid fuel regression rate. Pyrophoric additives also have potential to increase the solid fuel regression rate by reacting more readily near the burning fuel surface providing rapid energy feedback. An experimental performance evaluation of metal hydride fuel additives for hybrid rocket motor propulsion systems is examined in this study. Hypergolic ignition droplet tests and an accelerated aging study revealed the protection capabilities of Dicyclopentadiene (DCPD) as a fuel binder, and the ability for unaided ignition. Static hybrid rocket motor experiments were conducted using DCPD as the fuel. Sodium borohydride (NabH4) and aluminum hydride (AlH3) were examined as fuel additives. Ninety percent rocket grade hydrogen peroxide (RGHP) was used as the oxidizer. In this study, the sensitivity of solid fuel regression rate and characteristic velocity (C*) efficiency to total fuel grain port mass flux and particle loading is examined. These results were compared to HTPB combustion performance as a baseline. Chamber pressure histories revealed steady motor operation in most tests, with reduced ignition delays when using NabH4 as a fuel additive. The addition of NabH4 and AlH3 produced up to a 47% and 85% increase in regression rate over neat DCPD, respectively. For all test conditions examined C* efficiency ranges

  10. Donor Centers in a Gaussian Potential

    Institute of Scientific and Technical Information of China (English)

    XIE Wen-Fang

    2007-01-01

    We study a neutral donor center (D0) and a negatively charged donor center (D-) trapped by a quantum dot, which is subjected to a Gaussian potential confinement. Calculations are made by using the method of numerical diagonalization of Hamiltonian within the effective-mass approximation. The dependence of the ground state of the neutral shallow donor and the negatively charged donor on the dot size and the potential depth is investigated. The same calculations performed with the parabolic approximation of the Gaussian potential lead to the results that are qualitatively and quantitatively different from each other.

  11. Gamete donation: ethical implications for donors.

    Science.gov (United States)

    Shenfield, Francoise

    1999-01-01

    The interests of gamete donors have only recently been recognized in assisted reproduction; traditionally, the interests of the patients (typically a couple) and the prospective child are paramount. However, assisted reproduction would not be possible without donors, and the simple utilitarian view would be to place their interests first to maximize the availability of the practice. There are several ethical issues on both sides of the donor--recipient equation, some of which are mutual and others are in conflict. For example, the word 'donation' implies there is no payment. Informed consent for donation is essential if the autonomy of the donor is to be respected, and includes information about the results of screening. This is a sensitive issue, especially when pathology is found in a donor who is not being screened for his or her own immediate benefit. Counselling may result in donors refusing to take part, but may also lead to selection by the person recruiting the donors, sometimes as a consequence of examining the motivation of the donor. In this case, the main problem is the ethical basis of the selection process. Other aspects of gamete donation may lead to a conflict of interests between the donor, the recipients and even the prospective child, particularly in terms of anonymity and the information that is made available about the specific circumstances of donation. Implications and support counselling are essential tools in achieving an acceptable balance for all parties involved.

  12. [Living donor liver transplantation in adults].

    Science.gov (United States)

    Neumann, U P; Neuhaus, P; Schmeding, M

    2010-09-01

    The worldwide shortage of adequate donor organs implies that living donor liver transplantation represents a valuable alternative to cadaveric transplantation. In addition to the complex surgical procedure the correct identification of eligible donors and recipients plays a decisive role in living donor liver transplantation. Donor safety must be of ultimate priority and overrules all other aspects involved. In contrast to the slightly receding numbers in Europe and North America, in recent years Asian programs have enjoyed constantly increasing living donor activity. The experience of the past 15 years has clearly demonstrated that technical challenges of both bile duct anastomosis and venous outflow of the graft significantly influence postoperative outcome. While short-term in-hospital morbidity remains increased compared to cadaveric transplantation, long-term survival of both graft and patient are comparable or even better than in deceased donor transplantation. Especially for patients expecting long waiting times under the MELD allocation system, living donor liver transplantation offers an excellent therapeutic alternative. Expanding the so-called "Milan criteria" for HCC patients with the option for living donor liver transplantation is currently being controversially debated.

  13. Historical perspective of living donor liver transplantation

    Institute of Scientific and Technical Information of China (English)

    See Ching Chan; Sheung Tat Fan

    2008-01-01

    Living donor liver transplantation (LDLT) has gone through its formative years and established as a legitimate treatment when a deceased donor liver graft is not timely or simply not available at all. Nevertheless,LDLT is characterized by its technical complexity and ethical controversy. These are the consequences of a single organ having to serve two subjects, the donor and the recipient, instantaneously. The transplant community has a common ground on assuring donor safety while achieving predictable recipient success. With this background, a reflection of the development of LDLT may be appropriate to direct future research and patient- care efforts on this life-saving treatment alternative.

  14. Gas atomization processing of tin and silicon modified LaNi5 for nickel-metal hydride battery applications

    Energy Technology Data Exchange (ETDEWEB)

    Ting, Jason [Iowa State Univ., Ames, IA (United States)

    1999-02-12

    Numerous researchers have studied the relevant material properties of so-called AB5 alloys for battery applications. These studies involved LaNi5 substituted alloys which were prepared using conventional cast and crush alloying techniques. While valuable to the understanding of metal hydride effects, the previous work nearly ignored the potential for alternative direct powder production methods, like high pressure gas atomization (HPGA). Thus, there is a need to understand the relationship between gas atomization processes, powder particle solidification phases, and hydrogen absorption properties of ultra fine (< 25 μm) atomized powders with high surface area for enhanced battery performance. Concurrently, development of a gas atomization nozzle that is more efficient than all current designs is needed to increase the yield of ultrafine AB5 alloy powder for further processing advantage. Gas atomization processing of the AB5 alloys was demonstrated to be effective in producing ultrafine spherical powders that were resilient to hydrogen cycling for the benefit of improving corrosion resistance in battery application. These ultrafine powders benefited from the rapid solidification process by having refined solute segregation in the microstructure of the gas atomized powders which enabled a rapid anneal treatment of the powders. The author has demonstrated the ability to produce high yields of ultrafine powder efficiently and cost effectively, using the new HPGA-III technology. Thus, the potential benefits of processing AB5 alloys using the new HPGA technology could reduce manufacturing cost of nickel-metal hydride powder. In the near future, the manufacture of AB5 alloy powders could become a continuous and rapid production process. The economic benefit of an improved AB5 production process may thereby encourage the use of nickel-metal hydride rechargeable batteries in electrical vehicle

  15. Imaging evaluation of potential donors in living-donor liver transplantation

    Energy Technology Data Exchange (ETDEWEB)

    Low, G. [Department of Radiology and Diagnostic Imaging, University of Alberta Hospital (Canada)], E-mail: timgy@yahoo.com; Wiebe, E. [Department of Radiology and Diagnostic Imaging, University of Alberta Hospital (Canada); Walji, A.H. [Division of Anatomy, Faculty of Medicine, University of Alberta (Canada); Bigam, D.L. [Department of Surgery, University of Alberta Hospital (Canada)

    2008-02-15

    Liver transplants, originally obtained from deceased donors, can now be harvested from living donors as well. This technique, called living-donor liver transplantation (LDLT), provides an effective alternative means of liver transplantation and is a method of expanding the donor pool in light of the demand and supply imbalance for organ transplants. Imaging plays an important role in LDLT programmes by providing robust evaluation of potential donors to ensure that only anatomically suitable donors with no significant co-existing pathology are selected and that crucial information that allows detailed preoperative planning is available. Imaging evaluation helps to improve the outcome of LDLT for both donors and recipients, by improving the chances of graft survival and reducing the postoperative complication rate. In this review, we describe the history of LDLT and discuss in detail the application of imaging in donor assessment with emphasis on use of modern computed tomography (CT) and magnetic resonance imaging (MRI) techniques.

  16. Synthesis and Hydrogen Desorption Properties of Aluminum Hydrides.

    Science.gov (United States)

    Jeong, Wanseop; Lee, Sang-Hwa; Kim, Jaeyong

    2016-03-01

    Aluminum hydride (AlH3 or alane) is known to store maximum 10.1 wt.% of hydrogen at relatively low temperature (hydrogen desorption are still not clear. To understand the desorption properties of hydrogen in alane, thermodynamically stable α-AlH3 was synthesized by employing an ethereal reaction method. The dependence of pathways on phase formation and the properties of hydrogen evolution were investigated, and the results were compared with the ones for γ-AlH3. It was found that γ-AlH3 requires 10 degrees C higher than that of γ-AlH3 to form, and its decomposition rate demonstrated enhanced endothermic stabilities. For desorption, all hydrogen atoms of alane evolved under an isothermal condition at 138 degrees C in less than 1 hour, and the sample completely transformed to pure aluminum. Our results show that the total amount of desorbed hydrogen from α-AlH3 exceeded 9.05 wt.%, with a possibility of further increase. Easy synthesis, thermal stability, and a large amount of hydrogen desorption of alane fulfill the requirements for light-weight hydrogen storage materials once the pathway of hydrogen cycling is provided.

  17. On the thermodynamics of phase transitions in metal hydrides

    Science.gov (United States)

    Vita, Andrea

    2012-02-01

    Metal hydrides are solutions of hydrogen in a metal, where phase transitions may occur depending on temperature, pressure etc. We apply Le Chatelier's principle of thermodynamics to a particular phase transition in TiHx, which can approximately be described as a second-order phase transition. We show that the fluctuations of the order parameter correspond to fluctuations both of the density of H+ ions and of the distance between adjacent H+ ions. Moreover, as the system approaches the transition and the correlation radius increases, we show -with the help of statistical mechanics-that the statistical weight of modes involving a large number of H+ ions (`collective modes') increases sharply, in spite of the fact that the Boltzmann factor of each collective mode is exponentially small. As a result, the interaction of the H+ ions with collective modes makes a tiny suprathermal fraction of the H+ population appear. Our results hold for similar transitions in metal deuterides, too. A violation of an -insofar undisputed-upper bound on hydrogen loading follows.

  18. Superhalogens as Building Blocks of Complex Hydrides for Hydrogen Storage

    CERN Document Server

    Srivastava, Ambrish Kumar

    2016-01-01

    Superhalogens are species whose electron affinity (EA) or vertical detachment energy (VDE) exceed to those of halogen. These species typically consist of a central electropositive atom with electronegative ligands. The EA or VDE of species can be further increased by using superhalogen as ligands, which are termed as hyperhalogen. Having established BH4- as a superhalogen, we have studied BH4-x(BH4)x- (x = 1 to 4) hyperhalogen anions and their Li-complexes, LiBH4-x(BH4)x using density functional theory. The VDE of these anions is larger than that of BH4-, which increases with the increase in the number of peripheral BH4 moieties (x). The hydrogen storage capacity of LiBH4-x(BH4)x complexes is higher but binding energy is smaller than that of LiBH4, a typical complex hydride. The linear correlation between dehydrogenation energy of LiBH4-x(BH4)x complexes and VDE of BH4-x(BH4)x- anions is established. These complexes are found to be thermodynamically stable against dissociation into LiBH4 and borane. This stud...

  19. Improved hydrogen desorption from lithium hydrazide by alkali metal hydride

    Energy Technology Data Exchange (ETDEWEB)

    Zeng, Liang, E-mail: liangzeng@hiroshima-u.ac.jp [Institute for Advanced Materials Research, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima 739-8530 (Japan); Miyaoka, Hiroki [Institute for Sustainable Sciences and Development, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima 739-8530 (Japan); Ichikawa, Takayuki; Kojima, Yoshitsugu [Institute for Advanced Materials Research, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima 739-8530 (Japan)

    2013-12-15

    Highlights: •LiH can dramatically improve the hydrogen desorption properties of LiNHNH{sub 2}. •KH doping had positive effect in promoting the hydrogen desorption properties of LiNHNH{sub 2}–LiH mixture. •The reaction mechanism between LiNHNH{sub 2} and LiH was studied and discussed. -- Abstract: Lithium hydrazide (LiNHNH{sub 2}), which is a white solid with 8.0 mass% of theoretical hydrogen content, was synthesized from a reaction between anhydrous hydrazine and n-butyllithium in diethyl ether. The thermodynamic properties of this compound and its detailed decomposition pathways had been investigated in our previous work. However, a number of undesired gaseous products such as hydrazine (N{sub 2}H{sub 4}) and ammonia (NH{sub 3}) were generated during the thermal decomposition of LiNHNH{sub 2}. In this work, alkali metal hydride was used to suppress the impurities in the desorbed hydrogen and improved the hydrogen desorption properties. The reaction mechanism between LiNHNH{sub 2} and LiH was also studied and discussed in this paper.

  20. Unloading Effect on Delayed Hydride Cracking in Zirconium Alloys

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Young Suk; Kim, Sung Soo [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2010-05-15

    It is well-known that a tensile overload retards not only the crack growth rate (CGR) in zirconium alloys during the delayed hydride cracking (DHC) tests but also the fatigue crack growth rate in metals, the cause of which is unclear to date. A considerable decrease in the fatigue crack growth rate due to overload is suggested to occur due either to the crack closure or to compressive stresses or strains arising from unloading of the overload. However, the role of the crack closure or the compressive stress in the crack growth rate remains yet to be understood because of incomplete understanding of crack growth kinetics. The aim of this study is to resolve the effect of unloading on the CGR of zirconium alloys, which comes in last among the unresolved issues as listed above. To this end, the CGRs of the Zr-2.5Nb tubes were determined at a constant temperature under the cyclic load with the load ratio, R changing from 0.13 to 0.66 where the extent of unloading became higher at the lower R. More direct evidence for the effect of unloading after an overload is provided using Simpson's experiment investigating the effect on the CGR of a Zr-2.5Nb tube of the stress states of the prefatigue crack tip by unloading or annealing after the formation of a pre-fatigue crack

  1. Improved Electrochemical Performance of Surface-Modified Metal Hydride Electrodes

    Institute of Scientific and Technical Information of China (English)

    YANG Kai; WU Feng; CHEN Shi; ZHANG Cun-zhong

    2005-01-01

    A novel plating process was applied to the surface modification of the metal hydride (MH) electrode of the MH/Ni batteries. The electrode was plated with a thin nickel film about 0.1 μm thick by using multi-arc ion plating technique. The X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and scanning electron microscope (SEM) were used to analyze the electrodes. Influence of the surface modification on the performance of the MH/Ni batteries was studied. It is shown that the surface modification could enhance the electrode conductivity and decrease the batteries ohimic resistance by 28.2 %. After surface modification, the discharge capacity of modification also improves the cyclic durability of the batteries. The inner pressure of the batteries with modified electrode during overcharging is much lower than that with unmodified electrode. The experimental results demonstrate that this process is an effective way for the surface modification of the electrode of MH/Ni batteries.

  2. Microscopy Techniques for Analysis of Nickel Metal Hydride Batteries Constituents.

    Science.gov (United States)

    Carpenter, Graham J C; Wronski, Zbigniew

    2015-12-01

    With the need for improvements in the performance of rechargeable batteries has come the necessity to better characterize cell electrodes and their component materials. Electron microscopy has been shown to reveal many important features of microstructure that are becoming increasingly important for understanding the behavior of the components during the many charge/discharge cycles required in modern applications. The aim of this paper is to present an overview of how the full suite of techniques available using transmission electron microscopy (TEM) and scanning transmission electron microscopy was applied to the case of materials for the positive electrode in nickel metal hydride rechargeable battery electrodes. Embedding and sectioning of battery-grade powders with an ultramicrotome was used to produce specimens that could be readily characterized by TEM. Complete electrodes were embedded after drying, and also after dehydration from the original wet state, for examination by optical microscopy and using focused ion beam techniques. Results of these studies are summarized to illustrate the significance of the microstructural information obtained.

  3. Development of nickel-metal hydride cell: An update

    Science.gov (United States)

    Kuwajima, S.; Kusawake, Hiroaki; Nakatani, Kensuke; Yano, Y.

    1994-01-01

    This paper presents in viewgraph format an overview of NASDA's evaluation of commercial nickel metal-hydride (Ni-MH) cells and the development and testing of Ni-MH cells for use in space. The commercial cells are concluded to be feasible and suitable for use in LEO; for GEO, the durability for overcharge is needed because long-term charge retention is required. For the aerospace Ni-MH cell design, two activation procedures are applied to evaluate the effect of the difference in the amount of overcharge protection and precharge. Specific energy of the Ni-MH cell is nearly accomplished at 50 Wh/kg. Initial characteristics indicate the effect derived from precharge. Thirty-five amp-hour class Ni-MH cells have good performance for LEO cycle of 25 and 40 percent DOD up to 3000 cycles as similar to commercial cells. The effect of the difference in the amount of overcharge protection will appear in life test.

  4. Properties of Zr-Ti-V-Mn-Ni hydride alloy

    Institute of Scientific and Technical Information of China (English)

    文明芬; 翟玉春; 王新海; 陈廉

    2002-01-01

    Six kinds of Zr-based hydride alloy were designed. XRD analyses show that the main phase of Zr1-xTix-(NiCoMnV)2.1 alloy is Laves C15 when x is between 0 and 0.5,but the more the content of Ti, the more the Laves C14 phases. The amount of Laves C14 can be up to the amount of Laves C15 after substituted V and Fe by V-Fe alloy in Zr0.6-Ti0.4(NiCoMnVFeCr)1.7 alloy. The electrochemical measurements show that the discharge capacity of Zr0.9Ti0.1-(NiCoMnV)2.1 electrode is about 340mA * h/g at 60mA/g, but with increasing the amount of Ti, the discharge capacity of alloy electrode abruptly decreases; at 300mA/g current density, its Kr can be up to 91%. The discharge capacity of Zr0.6-Ti0.4-(NiCoMn(V-Fe)Cr)1.62 alloy electrode is about 200mA * h/g at first cycle, the maximum capacity is more than that of the electrode with pure V, and about 315mA * h/g.

  5. Hydrogen and Dihydrogen Bonds in the Reactions of Metal Hydrides.

    Science.gov (United States)

    Belkova, Natalia V; Epstein, Lina M; Filippov, Oleg A; Shubina, Elena S

    2016-08-10

    The dihydrogen bond-an interaction between a transition-metal or main-group hydride (M-H) and a protic hydrogen moiety (H-X)-is arguably the most intriguing type of hydrogen bond. It was discovered in the mid-1990s and has been intensively explored since then. Herein, we collate up-to-date experimental and computational studies of the structural, energetic, and spectroscopic parameters and natures of dihydrogen-bonded complexes of the form M-H···H-X, as such species are now known for a wide variety of hydrido compounds. Being a weak interaction, dihydrogen bonding entails the lengthening of the participating bonds as well as their polarization (repolarization) as a result of electron density redistribution. Thus, the formation of a dihydrogen bond allows for the activation of both the MH and XH bonds in one step, facilitating proton transfer and preparing these bonds for further transformations. The implications of dihydrogen bonding in different stoichiometric and catalytic reactions, such as hydrogen exchange, alcoholysis and aminolysis, hydrogen evolution, hydrogenation, and dehydrogenation, are discussed.

  6. Atomistic simulation of hydrogen dynamics near dislocations in vanadium hydrides

    Energy Technology Data Exchange (ETDEWEB)

    Ogawa, Hiroshi, E-mail: h.ogawa@aist.go.jp

    2015-10-05

    Highlights: • Hydrogen–dislocation interaction was simulated by molecular dynamics method. • Different distribution of H atoms were observed at edge and screw dislocation. • Planner distribution of hydrogen may be caused by partialized edge dislocation. • Hydrogen diffusivity was reduced in both edge and screw dislocation models. • Pipe diffusion was observed for edge dislocation but not for screw dislocation. - Abstract: Kinetics of interstitial hydrogen atoms near dislocation cores were analyzed by atomistic simulation. Classical molecular dynamics method was applied to model structures of edge and screw dislocations in α-phase vanadium hydride. Simulation showed that hydrogen atoms aggregate near dislocation cores. The spatial distribution of hydrogen has a planner shape at edge dislocation due to dislocation partialization, and a cylindrical shape at screw dislocation. Simulated self-diffusion coefficients of hydrogen atoms in dislocation models were a half- to one-order lower than that of dislocation-free model. Arrhenius plot of self-diffusivity showed slightly different activation energies for edge and screw dislocations. Directional dependency of hydrogen diffusion near dislocation showed high and low diffusivity along edge and screw dislocation lines, respectively, hence so called ‘pipe diffusion’ possibly occur at edge dislocation but does not at screw dislocation.

  7. Fluorine substituent effects on dihydrogen bonding of transition metal hydrides.

    Science.gov (United States)

    Jacobsen, Heiko

    2009-09-07

    Hydrogen and dihydrogen bonding of the fluorinated alcohol (CF(3))(2)CHOH with the transition metal complex WH(CO)(2)(NO)(PMe(3))(2) has been explored by a set of four exemplary density functional theory methods that comprises the BP86, PBE, B3LYP and TPSS functionals. The hydride, nitrosyl and carbonyl ligands of the tungsten complex have been considered as sites of protonation. The main effect of fluorination is an increased dihydrogen bond strength by about 15 kJ mol(-1). The [see equation in text] dihydrogen bond is about 10 kJ mol(-1) stronger than the [W]-NOH-OR hydrogen bond. Of the four DFT methods investigated, the BP86 functional provides the most satisfying quantitative as well as qualitative agreement with experiment. The geometry of the [see equation in text] linkage is significantly influenced by secondary dispersive intermolecular bonding. Linear and bent dihydrogen bonds are separated in energy only by about 1 kJ mol(-1), and represent local minima on the corresponding energy hypersurface.

  8. A web-based application for initial screening of living kidney donors: development, implementation and evaluation.

    Science.gov (United States)

    Moore, D R; Feurer, I D; Zavala, E Y; Shaffer, D; Karp, S; Hoy, H; Moore, D E

    2013-02-01

    Most centers utilize phone or written surveys to screen candidates who self-refer to be living kidney donors. To increase efficiency and reduce resource utilization, we developed a web-based application to screen kidney donor candidates. The aim of this study was to evaluate the use of this web-based application. Method and time of referral were tabulated and descriptive statistics summarized demographic characteristics. Time series analyses evaluated use over time. Between January 1, 2011 and March 31, 2012, 1200 candidates self-referred to be living kidney donors at our center. Eight hundred one candidates (67%) completed the web-based survey and 399 (33%) completed a phone survey. Thirty-nine percent of donors accessed the application on nights and weekends. Postimplementation of the web-based application, there was a statistically significant increase (p web-based application as opposed to telephone contact. Also, there was a significant increase (p = 0.025) in the total number of self-referrals post-implementation from 61 to 116 per month. An interactive web-based application is an effective strategy for the initial screening of donor candidates. The web-based application increased the ability to interface with donors, process them efficiently and ultimately increased donor self-referral at our center. © Copyright 2012 The American Society of Transplantation and the American Society of Transplant Surgeons.

  9. Stimulation of KatG catalase activity by peroxidatic electron donors.

    Science.gov (United States)

    Ndontsa, Elizabeth N; Moore, Robert L; Goodwin, Douglas C

    2012-09-15

    Catalase-peroxidases (KatGs) use a peroxidase scaffold to support robust catalase activity, an ability no other member of its superfamily possesses. Because catalase turnover requires H(2)O(2) oxidation, whereas peroxidase turnover requires oxidation of an exogenous electron donor, it has been anticipated that the latter should inhibit catalase activity. To the contrary, we report peroxidatic electron donors stimulated catalase activity up to 14-fold, particularly under conditions favorable to peroxidase activity (i.e., acidic pH and low H(2)O(2) concentrations). We observed a "low-" and "high-K(M)" component for catalase activity at pH 5.0. Electron donors increased the apparent k(cat) for the "low-K(M)" component. During stimulated catalase activity, less than 0.008 equivalents of oxidized donor accumulated for every H(2)O(2) consumed. Several classical peroxidatic electron donors were effective stimulators of catalase activity, but pyrogallol and ascorbate showed little effect. Stopped-flow evaluation showed that a Fe(III)-O(2)(·-)-like intermediate dominated during donor-stimulated catalatic turnover, and this intermediate converted directly to the ferric state upon depletion of H(2)O(2). In this respect, the Fe(III)-O(2)(·-) -like species was more prominent and persistent than in the absence of the donor. These results point toward a much more central role for peroxidase substrates in the unusual catalase mechanism of KatG.

  10. Opting out: confidentiality and availability of an 'alibi' for potential living kidney donors in the USA.

    Science.gov (United States)

    Thiessen, Carrie; Kim, Yunsoo A; Formica, Richard; Bia, Margaret; Kulkarni, Sanjay

    2015-07-01

    Ethicists and guidelines have suggested that potential living kidney donors who withdraw from evaluation be offered an 'alibi.' We sought to determine what potential living kidney donors are told about their ability to opt out, alibi availability and postwithdrawal confidentiality. We reviewed 148 consent forms for living kidney donor evaluation from US transplant centres that performed >5 living kidney transplants in 2010-2011 (response rate 87%). We found that while 98% of centres used evaluation consent forms that indicated that the donor could withdraw, only 21% of these documents offered an alibi. Another 23% of centres' consent forms indicated that the transplant team would be willing to inform the intended recipient that an individual was not a potential donor. Relatively few consent documents explicitly addressed the confidentiality of the donor's health information (31%), candidacy status (18%), decision (24%) or reasons (23%) following withdrawal. To preserve potential donors' autonomy and relationships, we advocate that all transplant centres offer general alibis in their evaluation consent forms. We conclude by offering recommendations for evaluation consent discussions of opting out, alibis and postwithdrawal confidentiality. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  11. Kinetic behaviour of low-Co AB{sub 5}-type metal hydride electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Tliha, M., E-mail: Mohamed.Tliha@esstt.rnu.tn [Laboratoire de Mecanique, Materiaux et Procedes, ESSTT, 5 Avenue Taha Hussein, 1008 Tunis (Tunisia); Boussami, S.; Mathlouthi, H.; Lamloumi, J. [Laboratoire de Mecanique, Materiaux et Procedes, ESSTT, 5 Avenue Taha Hussein, 1008 Tunis (Tunisia); Percheron-Guegan, A. [Laboratoire de Chimie Metallurgique des Terres Rares, GLVT, 2-8 Rue Henri Dunant 94320, Thiais Cedex (France)

    2010-11-15

    The kinetic behaviour of the LaNi{sub 3.55}Mn{sub 0.4}Al{sub 0.3}Co{sub 0.4}Fe{sub 0.35} metal hydride, used as a negative electrode in the nickel/metal hydride (Ni/MH) batteries, was investigated using electrochemical impedance spectroscopy (EIS) at different state of charge (SOC). Impedance measurements were performed in the frequency range from 50 kHz to 1 mHz. Electrochemical impedance spectrum of the metal hydride electrode was interpreted by an equivalent circuit including the different electrochemical processes taking place on the interface between the MH electrode and the electrolyte. Electrochemical kinetic parameters such as the charge-transfer resistance R{sub tc}, the exchange current density I{sub 0} and the hydrogen diffusion coefficient D{sub H} were determined at different state of charge. The results of EIS measurements indicate that the electrochemical reaction activity of the LaNi{sub 3.55}Mn{sub 0.4}Al{sub 0.3}Co{sub 0.4}Fe{sub 0.35} metal hydride electrode was markedly improved with increasing state of charge (SOC). The transformation {alpha}-{beta} is probably a limiting step in the mechanisms of hydrogenation of metal hydride electrode.

  12. Hydrogen transmission/storage with a metal hydride/organic slurry

    Energy Technology Data Exchange (ETDEWEB)

    Breault, R.W.; Rolfe, J.; McClaine, A. [Thermo Power Corp., Waltham, MA (United States)

    1998-08-01

    Thermo Power Corporation has developed a new approach for the production, transmission, and storage of hydrogen. In this approach, a chemical hydride slurry is used as the hydrogen carrier and storage media. The slurry protects the hydride from unanticipated contact with moisture in the air and makes the hydride pumpable. At the point of storage and use, a chemical hydride/water reaction is used to produce high-purity hydrogen. An essential feature of this approach is the recovery and recycle of the spent hydride at centralized processing plants, resulting in an overall low cost for hydrogen. This approach has two clear benefits: it greatly improves energy transmission and storage characteristics of hydrogen as a fuel, and it produces the hydrogen carrier efficiently and economically from a low cost carbon source. The preliminary economic analysis of the process indicates that hydrogen can be produced for $3.85 per million Btu based on a carbon cost of $1.42 per million Btu and a plant sized to serve a million cars per day. This compares to current costs of approximately $9.00 per million Btu to produce hydrogen from $3.00 per million Btu natural gas, and $25 per million Btu to produce hydrogen by electrolysis from $0.05 per Kwh electricity. The present standard for production of hydrogen from renewable energy is photovoltaic-electrolysis at $100 to $150 per million Btu.

  13. Obtention of the constitutive equation of hydride blisters in fuel cladding from nanoindentation tests

    Science.gov (United States)

    Martin Rengel, M. A.; Gomez, F. J.; Rico, A.; Ruiz-Hervias, J.; Rodriguez, J.

    2017-04-01

    It is well known that the presence of hydrides in nuclear fuel cladding may reduce its mechanical and fracture properties. This situation may be worsened as a consequence of the formation of hydride blisters. These blisters are zones with an extremely high hydrogen concentration and they are usually associated to the oxide spalling which may occur at the outer surface of the cladding. In this work, a method which allows us to reproduce, in a reliable way, hydride blisters in the laboratory has been devised. Depth-sensing indentation tests with a spherical indenter were conducted on a hydride blister produced in the laboratory with the aim of measuring its mechanical behaviour. The plastic stress-strain curve of the hydride blister was calculated for first time by combining depth-sensing indentation tests results with an iterative algorithm using finite element simulations. The algorithm employed reduces, in each iteration, the differences between the numerical and the experimental results by modifying the stress-strain curve. In this way, an almost perfect adjustment of the experimental data was achieved after several iterations. The calculation of the constitutive equation of the blister from nanoindentation tests, may involve a lack of uniqueness. To evaluate it, a method based on the optimization of parameters of analytical equations has been proposed in this paper. An estimation of the error which involves this method is also provided.

  14. Formation and characterization of hydride blisters in Zircaloy-4 cladding tubes

    Energy Technology Data Exchange (ETDEWEB)

    Hellouin de Menibus, Arthur, E-mail: arthur.hellouin-de-menibus@cea.fr [French Atomic Energy Comission - CEA Saclay/DEN/DANS/DMN/SRMA, 91191 Gif-sur-Yvette (France); Mines ParisTech/Centre des matériaux, CNRS UMR 7633, 91003 Evry (France); Auzoux, Quentin; Dieye, Ousmane [French Atomic Energy Comission - CEA Saclay/DEN/DANS/DMN/SEMI, 91191 Gif-sur-Yvette (France); Berger, Pascal [French Atomic Energy Comission - CEA Saclay/DSM/IRAMIS/SIS2M, 91191 Gif-sur-Yvette (France); CNRS UMR 3299, CEA-Saclay, 91191 Gif-sur-Yvette (France); Bosonnet, Sophie [French Atomic Energy Comission - CEA Saclay/DEN/DANS/DMN/SRMA, 91191 Gif-sur-Yvette (France); Foy, Eddy [French Atomic Energy Comission - CEA Saclay/DSM/IRAMIS/SIS2M, 91191 Gif-sur-Yvette (France); CNRS UMR 3299, CEA-Saclay, 91191 Gif-sur-Yvette (France); Macdonald, Vincent [French Atomic Energy Comission - CEA Saclay/DEN/DANS/DMN/SEMI, 91191 Gif-sur-Yvette (France); Besson, Jacques; Crépin, Jerome [Mines ParisTech/Centre des matériaux, CNRS UMR 7633, 91003 Evry (France)

    2014-06-01

    This article is focused on the formation of hydride blisters in zirconium alloys an experimental and theoretical standpoint, and their characterization in terms of morphology, hydrides crystallographic phases, hardness and hydrogen concentration. An experimental setup was developed to grow hydride blisters on pre-hydrided Zircaloy-4 cladding tubes by thermo-diffusion. The thermal conditions were optimized based on thermo-diffusion calculations, that take into account the hysteresis in the hydrogen solubility limit, to obtain a high blister growth rate. Micro-X-ray Diffraction (XRD), nano-hardness and Elastic Recoil Detection Analysis (ERDA) showed that the blisters contain a hydrogen gradient, with pure δ-hydride phase close to the external surface over one third of the blister depth. Thermo-diffusion calculations showed these half thickness blisters should grow in only a few days in PWR conditions. Eventually, the Diffusion Equilibrium Threshold (DET) was defined as a criterion that limits the blister growth, and emphasizes that the hysteresis in the hydrogen solubility limit in zirconium must be taken into account to model hydrogen thermo-diffusion in zirconium alloys.

  15. Cooldown-induced hydride reorientation of hydrogen-charged zirconium alloy cladding tubes

    Science.gov (United States)

    Won, Ju-Jin; Min, Su-Jeong; Kim, Kyu-Tae

    2015-01-01

    Radial hydride precipitation behaviors of Zr-Nb alloy cladding tubes were investigated using 250 and 500 ppm hydrogen-charged Zr-Nb alloy cladding tubes, cooldown processes from 400 to 300, 200°C and room temperature with five kinds of cooling rates of 0.3, 2.0, 4.0, 7.0 15.0 °C/min under a tensile hoop stress of 150 MPa, which can simulate various cooldown processes during an interim dry storage of PWR nuclear fuel. The slower cooling rate and the lower terminal cooldown temperature generated the more hydrides precipitated during the cooldown as well as the larger fraction and the longer length of radial hydrides. These phenomena can be explained by the difference in the terminal solid solubility of hydrogen for dissolution and precipitation occurring during the heatup and cooldown processes and the cooling rate-dependent hydride nucleation and growth rates. In addition, a drastic decrease in ultimate tensile strength and plastic strain of the tensile tested specimens experiencing the cool-down processes appear to be correlated with the amount of the radial hydrides precipitated during the cooldown.

  16. Surface hydride on titanium by cathodic polarization promotes human gingival fibroblast growth.

    Science.gov (United States)

    Xing, Rui; Salou, Laëtitia; Taxt-Lamolle, Sébastien; Reseland, Janne E; Lyngstadaas, Ståle P; Haugen, Håvard J

    2014-05-01

    Connective tissue seal to dental abutment is crucial for peri-implant health. Several efforts have been made previously to optimize abutment surfaces, but no consensus has been reached regarding the optimal surface architecture and/or composition for soft tissue seal. Here, we report on experiments using cathodic polarization in organic acids to optimize titanium (Ti) surfaces for use as abutments. The three main factors affecting surface topography and chemistry were electrolyte composition, current density, and polarization time. Under identical conditions, oxalic acid created rougher surfaces than tartaric acid and acetic acid, and acetic acid produced more surface hydride. Surface hydride amount was suggested to first increase and then decrease with current density from 1 mA/cm(2) to 15 mA/cm(2) . The complexity of the surface topography and hydride production both increased with polarization time. Proliferation rate of human gingival fibroblasts (HGFs) was positively correlated with surface hydride content, suggesting the positive effect of surface hydride on connective tissue growth around dental abutment. Changes in surface topography and hydrophilicity did not significantly influence HGF growth.

  17. Crack growth in the through-thickness direction of hydrided thin-wall Zircaloy sheet

    Science.gov (United States)

    Raynaud, Patrick A.; Koss, Donald A.; Motta, Arthur T.

    2012-01-01

    In a reactivity-initiated accident, cladding failure may occur by crack initiation within a defect such as a hydride rim or blister and subsequent crack propagation through the thickness of the thin-wall cladding. In such a circumstance, determining the cladding resistance to crack propagation in the through-thickness direction is crucial to predicting cladding failure. To address this issue, through-thickness crack propagation in hydrided Zircaloy-4 sheet was analyzed at 25 °C, 300 °C, and 375 °C. At 25 °C, the fracture toughness decreased with increasing hydrogen content and with an increasing fraction of radial hydrides. Hydride particles fractured ahead of the crack tip, creating a path for crack growth. At both 300 °C and 375 °C, the resistance to crack-growth initiation was sufficiently high that crack extension was often caused by crack-tip blunting. There was no evidence of hydride particles fracturing near the crack tip, and no significant effect of hydrogen content on fracture toughness was observed at these elevated temperatures.

  18. First Evidence of Rh Nano-Hydride Formation at Low Pressure.

    Science.gov (United States)

    Zlotea, Claudia; Oumellal, Yassine; Msakni, Mariem; Bourgon, Julie; Bastide, Stéphane; Cachet-Vivier, Christine; Latroche, Michel

    2015-07-08

    Rh-based nanoparticles supported on a porous carbon host were prepared with tunable average sizes ranging from 1.3 to 3.0 nm. Depending on the vacuum or hydrogen environment during thermal treatment, either Rh metal or hydride is formed at nanoscale, respectively. In contrast to bulk Rh that can form a hydride phase under 4 GPa pressure, the metallic Rh nanoparticles (∼2.3 nm) absorb hydrogen and form a hydride phase at pressure below 0.1 MPa, as evidenced by the presence of a plateau pressure in the pressure-composition isotherm curves at room temperature. Larger metal nanoparticles (∼3.0 nm) form only a solid solution with hydrogen under similar conditions. This suggests a nanoscale effect that drastically changes the Rh-H thermodynamics. The nanosized Rh hydride phase is stable at room temperature and only desorbs hydrogen above 175 °C. Within the present hydride particle size range (1.3-2.3 nm), the hydrogen desorption is size-dependent, as proven by different thermal analysis techniques.

  19. Effects of electron doping on the stability of the metal hydride NaH

    Science.gov (United States)

    Olea-Amezcua, M. A.; Rivas-Silva, J. F.; de la Peña-Seaman, O.; Heid, R.; Bohnen, K. P.

    2017-04-01

    Alkali and alkali-earth metal hydrides have high volumetric and gravimetric hydrogen densities, but due to their high thermodynamic stability, they possess high dehydrogenation temperatures which may be reduced by transforming these compounds into less stable states/configurations. We present a systematic computational study of the electron doping effects on the stability of the alkali metal hydride NaH substituted with Mg, using the self-consistent version of the virtual crystal approximation to model the alloy Na1-x Mg x H. The phonon dispersions were studied paying special attention to the crystal stability and the correlations with the electronic structure taking into account the zero point energy contribution. We found that substitution of Na by Mg in the hydride invokes a reduction of the frequencies, leading to dynamical instabilities for Mg content of 25%. The microscopic origin of these instabilities could be related to the formation of ellipsoidal Fermi surfaces centered at the L point due to the metallization of the hydride by the Mg substitution. Applying the quasiharmonic approximation, thermodynamic properties like heat capacities, vibrational entropies and vibrational free energies as a function of temperature at zero pressure are obtained. These properties determine an upper temperature for the thermodynamic stability of the hydride, which decreases from 600 K for NaH to 300 K at 20% Mg concentration. This significant reduction of the stability range indicates that dehydrogenation could be favoured by electron doping of NaH.

  20. Multislice simulations for in-situ HRTEM studies of nanostructured magnesium hydride at ambient hydrogen pressure.

    Science.gov (United States)

    Surrey, Alexander; Schultz, Ludwig; Rellinghaus, Bernd

    2017-01-31

    The use of transmission electron microscopy (TEM) for the structural characterization of many nanostructured hydrides, which are relevant for solid state hydrogen storage, is hindered due to a rapid decomposition of the specimen upon irradiation with the electron beam. Environmental TEM allows to stabilize the hydrides by applying a hydrogen back pressure of up to 4.5 bar in a windowed environmental cell. The feasibility of high-resolution TEM (HRTEM) investigations of light weight metals and metal hydrides in such a "nanoreactor" is studied theoretically by means of multislice HRTEM contrast simulations using Mg and its hydride phase, MgH2, as model system. Such a setup provides the general opportunity to study dehydrogenation and hydrogenation reactions at the nanoscale under technological application conditions. We analyze the dependence of both the spatial resolution and the HRTEM image contrast on parameters such as the defocus, the metal/hydride thickness, and the hydrogen pressure in order to explore the possibilities and limitations of in-situ experiments with windowed environmental cells. Such simulations may be highly valuable to pre-evaluate future experimental studies.

  1. Effects of electron doping on the stability of the metal hydride NaH.

    Science.gov (United States)

    Olea-Amezcua, M A; Rivas-Silva, J F; de la Peña-Seaman, O; Heid, R; Bohnen, K P

    2017-04-12

    Alkali and alkali-earth metal hydrides have high volumetric and gravimetric hydrogen densities, but due to their high thermodynamic stability, they possess high dehydrogenation temperatures which may be reduced by transforming these compounds into less stable states/configurations. We present a systematic computational study of the electron doping effects on the stability of the alkali metal hydride NaH substituted with Mg, using the self-consistent version of the virtual crystal approximation to model the alloy Na1-x Mg x H. The phonon dispersions were studied paying special attention to the crystal stability and the correlations with the electronic structure taking into account the zero point energy contribution. We found that substitution of Na by Mg in the hydride invokes a reduction of the frequencies, leading to dynamical instabilities for Mg content of 25%. The microscopic origin of these instabilities could be related to the formation of ellipsoidal Fermi surfaces centered at the L point due to the metallization of the hydride by the Mg substitution. Applying the quasiharmonic approximation, thermodynamic properties like heat capacities, vibrational entropies and vibrational free energies as a function of temperature at zero pressure are obtained. These properties determine an upper temperature for the thermodynamic stability of the hydride, which decreases from 600 K for NaH to 300 K at 20% Mg concentration. This significant reduction of the stability range indicates that dehydrogenation could be favoured by electron doping of NaH.

  2. Low-pressure pneumoperitoneum during laparoscopic donor nephrectomy to optimize live donors' comfort

    NARCIS (Netherlands)

    Warle, M.C.; Berkers, A.W.; Langenhuijsen, J.F.; Jagt, M.F.P. van der; Dooper, P.M.M.; Kloke, H.J.; Pilzecker, D.; Renes, S.H.; Wever, K.E.; Hoitsma, A.J.; Vliet, J.A. van der; D'Ancona, F.C.H.

    2013-01-01

    Nowadays, laparoscopic donor nephrectomy (LDN) has become the gold standard to procure live donor kidneys. As the relationship between donor and recipient loosens, it becomes of even greater importance to optimize safety and comfort of the surgical procedure. Low-pressure pneumoperitoneum has been s

  3. Focus on the donor : aspects of stem cell donation and the donor search process

    NARCIS (Netherlands)

    Walraven, Suzanna Maria van

    2015-01-01

    This thesis focuses on the experience of haematopoietic stem cell donation by unrelated and related donors (minors and adults), aspects of donor care management, and the process of the unrelated donor search. The theme linking these topics is providing patients in need of haematopoietic stem cell

  4. Fecal microbiota transplantation and donor standardization.

    Science.gov (United States)

    Owens, Casey; Broussard, Elizabeth; Surawicz, Christina

    2013-09-01

    Clostridium difficile diarrhea is a common and severe infectious disease. Antibiotics, which are standard initial treatment, are less effective for treating refractory or recurrent infection. Fecal microbiota transplantation, where healthy donor stool is transplanted into a patient, is an alternative to antibiotic therapy that requires standardization for donors and patients. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. Donor policy rules and aid effectiveness

    DEFF Research Database (Denmark)

    Dalgaard, Carl-Johan Lars

    2008-01-01

    The present paper examines the macroeconomic impact of aid, by introducing endogenous aid allocations into a neoclassical growth framework. On this basis it is shown that donor policies can have important implications for the trajectory of recipients' GDP per capita. Depending on specific donor...

  6. Payment for donor kidneys: pros and cons.

    Science.gov (United States)

    Friedman, E A; Friedman, A L

    2006-03-01

    Continuous growth of the end stage renal disease population treated by dialysis, outpaces deceased donor kidneys available, lengthens the waiting time for a deceased donor transplant. As estimated by the United States Department of Health & Human Services: '17 people die each day waiting for transplants that can't take place because of the shortage of donated organs.' Strategies to expand the donor pool--public relations campaigns and Drivers' license designation--have been mainly unsuccessful. Although illegal in most nations, and viewed as unethical by professional medical organizations, the voluntary sale of purchased donor kidneys now accounts for thousands of black market transplants. The case for legalizing kidney purchase hinges on the key premise that individuals are entitled to control of their body parts even to the point of inducing risk of life. One approach to expanding the pool of kidney donors is to legalize payment of a fair market price of about 40,000 dollars to donors. Establishing a federal agency to manage marketing and purchase of donor kidneys in collaboration with the United Network for Organ Sharing might be financially self-sustaining as reduction in costs of dialysis balances the expense of payment to donors.

  7. Formation and physical properties of uranium hydride under conditions relevant to metallic fuel and nuclear waste storage

    Science.gov (United States)

    Orr, Robin; Godfrey, Hugh; Broan, Chris; Goddard, Dave; Woodhouse, Guy; Durham, Peter; Diggle, Andrew; Bradshaw, John

    2016-08-01

    The formation of uranium hydride is recognised as a hazard during the storage of uranium metal owing to its potentially pyrophoric properties. This study has assessed the influence of water vapour on the potential for uranium hydride to form at low temperatures and shows that it increases the duration of the induction period but does not necessarily prevent uranium hydride formation and also does not significantly change the reaction rate with hydrogen. It is further shown that the α-UH3 fraction in the uranium hydride gradually increases at decreasing temperatures and is likely to be the dominant phase formed under typical storage conditions. Particle morphology and specific surface area of uranium hydride prepared between 30 °C and 200 °C have also been characterised but show only modest variation compared with the phase composition.

  8. A first principles study of the thermal stability of A{sub m}(MH{sub 4}){sub n} light complex hydrides

    Energy Technology Data Exchange (ETDEWEB)

    Wang Yongli; Liu Shi; Rong Lijian [Materials for Special Environment Department, Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang 110016 (China); Wang Yuanming, E-mail: ymwang@imr.ac.c [Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang 110016 (China)

    2010-05-05

    From the physical point of view, the cohesive energy of a reactant is preferable to its formation energy for characterizing its influence on the reaction processes from the reactants to the products. In fact it has been found that there is a certain correlation between the experimental hydrogen desorption temperature and the cohesive energy calculated by a first principles method for a series of A{sub m}(MH{sub 4}){sub n} (A = Li, Na, Mg; M = Be, B, Al) light complex hydrides (including Na{sub 2}BeH{sub 4}, Li{sub 2}BeH{sub 4}, NaAlH{sub 4}, LiAlH{sub 4}, Mg(AlH{sub 4}){sub 2}, LiBH{sub 4} and NaBH{sub 4}), which suggests that cohesive energy may be a useful physical quantity for evaluating the hydrogen desorption ability of complex hydrides, especially in cases when dehydrogenation products have unknown crystal structures, or may even be unknown. To understand this correlation more deeply, the ionic interaction between A and the MH{sub 4} complex and the covalent interaction between M and H were calculated and their contributions to the cohesive energy evaluated quantitatively. The calculated results show that the covalent M-H interaction in the MH{sub 4} complex is the dominant part of the cohesive energy E{sub coh} (up to more than 75%) and hardly changes during high-pressure structural transitions of A{sub m}(MH{sub 4}){sub n}. It was also found that low electronegativity of M or high electronegativity of A is responsible for the weak covalent M-H interaction and finally leads to the low thermodynamic stability of A{sub m}(MH{sub 4}){sub n}, suggesting that complex hydrides A{sub m}(MH{sub 4}){sub n} can be destabilized by partial substitution of M (A) with an element with electronegativity lower (higher) than Ms (As). This conclusion has been confirmed by lots of experimental results and may be a useful guideline for the future design of new complex hydrides of the type A{sub m}(MH{sub 4}){sub n}.

  9. Properties of hydrogen permeation barrier on the surface of zirconium hydride

    Institute of Scientific and Technical Information of China (English)

    CHEN Weidong; WANG Lijun; HAN Lin; CHEN Song

    2008-01-01

    A hydrogen permeation barrier was manufactured by the in situ reaction of zirconium hydride with oxygen.A reduction in the hydrogen permeation of the oxide films was detected by measuring the mass difference of the zirconium hydride samples after the dehydrogenation experiment.The reaction of zirconium hydride with oxygen occurs only under the condition that the temperature is higher than 673 K in the oxygen partial pressure of 0.1 MPa.The oxide film is composed of two layers,a permeable oxide layer and a dense oxide layer,and the main phase of the oxide film is ZrO2 with baddeleyite structure.The XPS analysis shows that O-H bonds exist in the oxide film,which are helpful for resisting hydrogen diffusion through the oxide film.

  10. Impedance and self-discharge mechanism studies of nickel metal hydride batteries for energy storage applications

    Science.gov (United States)

    Zhu, Wenhua; Zhu, Ying; Tatarchuk, Bruce

    2013-04-01

    Nickel metal hydride battery packs have been found wide applications in the HEVs (hybrid electric vehicles) through the on-board rapid energy conservation and efficient storage to decrease the fossil fuel consumption rate and reduce CO2 emissions as well as other harmful exhaust gases. In comparison to the conventional Ni-Cd battery, the Ni-MH battery exhibits a relatively higher self-discharge rate. In general, there are quite a few factors that speed up the self-discharge of the electrodes in the sealed nickel metal hydride batteries. This disadvantage eventually reduces the overall efficiency of the energy conversion and storage system. In this work, ac impedance data were collected from the nickel metal hydride batteries. The self-discharge mechanism and battery capacity degradation were analyzed and discussed for further performance improvement.

  11. Titanium tritide radioisotope heat source development : palladium-coated titanium hydriding kinetics and tritium loading tests.

    Energy Technology Data Exchange (ETDEWEB)

    Van Blarigan, Peter; Shugard, Andrew D.; Walters, R. Tom (Savannah River National Labs, Aiken, SC)

    2012-01-01

    We have found that a 180 nm palladium coating enables titanium to be loaded with hydrogen isotopes without the typical 400-500 C vacuum activation step. The hydriding kinetics of Pd coated Ti can be described by the Mintz-Bloch adherent film model, where the rate of hydrogen absorption is controlled by diffusion through an adherent metal-hydride layer. Hydriding rate constants of Pd coated and vacuum activated Ti were found to be very similar. In addition, deuterium/tritium loading experiments were done on stacks of Pd coated Ti foil in a representative-size radioisotope heat source vessel. The experiments demonstrated that such a vessel could be loaded completely, at temperatures below 300 C, in less than 10 hours, using existing department-of-energy tritium handling infrastructure.

  12. Strain evolution during hydride precipitation in Zircaloy-4 observed with synchrotron X-ray diffraction

    Science.gov (United States)

    Blackmur, M. S.; Preuss, M.; Robson, J. D.; Zanellato, O.; Cernik, R. J.; Ribeiro, F.; Andrieux, J.

    2016-06-01

    Synchrotron X-ray diffraction was used to evaluate strain evolution observed in Zircaloy-4 undergoing hydride precipitation during a range of thermal operations. During continuous heating, a change in the constraining effect of the matrix was observed at a temperature of 280 °C, thought to be the result of matrix dilatation from interstitial hydrogen. A deconvolution of the thermal, chemical and mechanical sources of strain during quench and dwell operations identified a non-negligible mechanical effect in the matrix. During these dwells, slow strain rate relaxation of elastic strains was seen in the matrix and hydride, suggesting that time dependent relaxation of misfit stresses may be possible at reactor relevant temperatures. Notable anisotropy was observed between the rolling and transverse directions, identified as being the likely product of a similar anisotropy in the relaxation of the hydride misfit between the α and α matrix directions, owing to the differing coherency of these two interfaces.

  13. High Density Hydrogen Storage System Demonstration Using NaAlH4 Based Complex Compound Hydrides

    Energy Technology Data Exchange (ETDEWEB)

    Daniel A. Mosher; Xia Tang; Ronald J. Brown; Sarah Arsenault; Salvatore Saitta; Bruce L. Laube; Robert H. Dold; Donald L. Anton

    2007-07-27

    This final report describes the motivations, activities and results of the hydrogen storage independent project "High Density Hydrogen Storage System Demonstration Using NaAlH4 Based Complex Compound Hydrides" performed by the United Technologies Research Center under the Department of Energy Hydrogen Program, contract # DE-FC36-02AL67610. The objectives of the project were to identify and address the key systems technologies associated with applying complex hydride materials, particularly ones which differ from those for conventional metal hydride based storage. This involved the design, fabrication and testing of two prototype systems based on the hydrogen storage material NaAlH4. Safety testing, catalysis studies, heat exchanger optimization, reaction kinetics modeling, thermochemical finite element analysis, powder densification development and material neutralization were elements included in the effort.

  14. Development of Hydrogen Storage Tank Systems Based on Complex Metal Hydrides

    Directory of Open Access Journals (Sweden)

    Morten B. Ley

    2015-09-01

    Full Text Available This review describes recent research in the development of tank systems based on complex metal hydrides for thermolysis and hydrolysis. Commercial applications using complex metal hydrides are limited, especially for thermolysis-based systems where so far only demonstration projects have been performed. Hydrolysis-based systems find their way in space, naval, military and defense applications due to their compatibility with proton exchange membrane (PEM fuel cells. Tank design, modeling, and development for thermolysis and hydrolysis systems as well as commercial applications of hydrolysis systems are described in more detail in this review. For thermolysis, mostly sodium aluminum hydride containing tanks were developed, and only a few examples with nitrides, ammonia borane and alane. For hydrolysis, sodium borohydride was the preferred material whereas ammonia borane found less popularity. Recycling of the sodium borohydride spent fuel remains an important part for their commercial viability.

  15. Deuterium distributions on delayed hydride crack fracture surfaces of Zr-2.5Nb

    Energy Technology Data Exchange (ETDEWEB)

    Laursen, T. [Queen`s Univ., Kingston, ON (Canada); Palmer, G.R. [Queen`s Univ., Kingston, ON (Canada); Shek, G.K. [Ontario Hydro Technologies, Toronto, Ontario (Canada)

    1995-02-01

    Delayed hydride cracking (DHC) fracture surfaces on unirradiated Zr-2.5Nb pressure tube material have been characterized by nuclear reaction analysis (NRA). Although the fracture surface is rough and oxidized, NRA was able to detect the deuteride on the surface and to determine an average deuteride thickness. This thickness, which represents half of the fractured hydride thickness, was 1 {mu}m in the case of a specimen containing an average D concentration of 68 wppm and fractured at 517-525 K. On a specimen selected for its large ligament zones, D distributions on a tunnelled DHC crack was compared to those on the adjacent ligament zones. The hydriding of these ligament zones - in spite of their different appearance - is consistent with fracture by a DHC mechanism. ((orig.))

  16. Zirconium hydride precipitation kinetics in Zircaloy-4 observed with synchrotron X-ray diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Blackmur, M.S., E-mail: matthew.blackmur@postgrad.manchester.ac.uk [Materials Performance Centre, School of Materials, The University of Manchester, Manchester M1 7HS (United Kingdom); Robson, J.D.; Preuss, M. [Materials Performance Centre, School of Materials, The University of Manchester, Manchester M1 7HS (United Kingdom); Zanellato, O. [PIMM, Ensam – Cnam – CNRS, 151 Boulevard de l’Hôpital, 75013 Paris (France); Cernik, R.J. [Materials Performance Centre, School of Materials, The University of Manchester, Manchester M1 7HS (United Kingdom); Shi, S.-Q. [Department of Mechanical Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong (China); Ribeiro, F. [Institut de Radioprotection et de Sûreté Nucléaire, CEN Cadarache, 13115 St. Paul Les Durance (France); Andrieux, J. [Beamline ID15, European Synchrotron Radiation Facility, Grenoble (France)

    2015-09-15

    High-energy synchrotron X-ray diffraction was used to investigate the isothermal precipitation of δ-hydride platelets in Zircaloy-4 at a range of temperatures relevant to reactor conditions, during both normal operation and thermal transients. From an examination of the rate kinetics of the precipitation process, precipitation slows with increasing temperature above 200 °C, due to a reduction in the thermodynamic driving force. A model for nucleation rate as a function of temperature was developed, to interpret the precipitation rates seen experimentally. While the strain energy associated with the misfit between hydrides and the matrix makes a significant contribution to the energy barrier for nucleation, a larger contribution arises from the interfacial energy. Diffusion distance calculations show that hydrogen is highly mobile in the considered thermal range and on the scale of inter-hydride spacing and it is not expected to be significantly rate limiting on the precipitation process that takes place under reactor operating conditions.

  17. An Investigation on the Persistence of Uranium Hydride during Storage of Simulant Nuclear Waste Packages.

    Directory of Open Access Journals (Sweden)

    C A Stitt

    Full Text Available Synchrotron X-rays have been used to study the oxidation of uranium and uranium hydride when encapsulated in grout and stored in de-ionised water for 10 months. Periodic synchrotron X-ray tomography and X-ray powder diffraction have allowed measurement and identification of the arising corrosion products and the rates of corrosion. The oxidation rates of the uranium metal and uranium hydride were slower than empirically derived rates previously reported for each reactant in an anoxic water system, but without encapsulation in grout. This was attributed to the grout acting as a physical barrier limiting the access of oxidising species to the uranium surface. Uranium hydride was observed to persist throughout the 10 month storage period and industrial consequences of this observed persistence are discussed.

  18. An Investigation on the Persistence of Uranium Hydride during Storage of Simulant Nuclear Waste Packages.

    Science.gov (United States)

    Stitt, C A; Harker, N J; Hallam, K R; Paraskevoulakos, C; Banos, A; Rennie, S; Jowsey, J; Scott, T B

    2015-01-01

    Synchrotron X-rays have been used to study the oxidation of uranium and uranium hydride when encapsulated in grout and stored in de-ionised water for 10 months. Periodic synchrotron X-ray tomography and X-ray powder diffraction have allowed measurement and identification of the arising corrosion products and the rates of corrosion. The oxidation rates of the uranium metal and uranium hydride were slower than empirically derived rates previously reported for each reactant in an anoxic water system, but without encapsulation in grout. This was attributed to the grout acting as a physical barrier limiting the access of oxidising species to the uranium surface. Uranium hydride was observed to persist throughout the 10 month storage period and industrial consequences of this observed persistence are discussed.

  19. Tailoring Thermodynamics and Kinetics for Hydrogen Storage in Complex Hydrides towards Applications.

    Science.gov (United States)

    Liu, Yongfeng; Yang, Yaxiong; Gao, Mingxia; Pan, Hongge

    2016-02-01

    Solid-state hydrogen storage using various materials is expected to provide the ultimate solution for safe and efficient on-board storage. Complex hydrides have attracted increasing attention over the past two decades due to their high gravimetric and volumetric hydrogen densities. In this account, we review studies from our lab on tailoring the thermodynamics and kinetics for hydrogen storage in complex hydrides, including metal alanates, borohydrides and amides. By changing the material composition and structure, developing feasible preparation methods, doping high-performance catalysts, optimizing multifunctional additives, creating nanostructures and understanding the interaction mechanisms with hydrogen, the operating temperatures for hydrogen storage in metal amides, alanates and borohydrides are remarkably reduced. This temperature reduction is associated with enhanced reaction kinetics and improved reversibility. The examples discussed in this review are expected to provide new inspiration for the development of complex hydrides with high hydrogen capacity and appropriate thermodynamics and kinetics for hydrogen storage.

  20. Influence of the crack-tip hydride concentration on the fracture toughness of Zircaloy-4

    Energy Technology Data Exchange (ETDEWEB)

    Bertolino, G. [LMS, CNRS UMR7649, Ecole Polytechnique, 91128 Palaiseau cedex (France)]. E-mail: bertolin@cab.cnea.gov.ar; Perez Ipina, J. [CONICET (Argentina); Universidad Nacional del Comahue, 8300 Neuquen (Argentina); Meyer, G. [Centro Atomico Bariloche, CNEA, 8400 Bariloche (Argentina); CONICET (Argentina)

    2006-01-01

    The influence of a hydrogen concentration gradient at the crack-tip and hydride platelet orientation on the fracture toughness, fracture mode and micromechanisms of a Zircaloy-4 commercial alloy was studied. Fracture toughness was measured on CT specimens and the analysis was performed in terms of J-integral resistance curves at temperatures ranging from 293 to 473 K. Fracture toughness results of specimens containing higher hydrides concentration near the crack-tip region, preferentially orientated in the crack plane, were compared to those obtained from specimens with a homogeneous hydrogen distribution and different platelet orientation; specimens were obtained by charging them in loaded and unloaded condition, respectively. Changes on both macroscopic and microscopic fracture behaviour were observed at temperatures ranging from 293 to 343 K, and the results show the relevance of both hydride concentration and platelet orientation. The existence of a ductile-to-brittle transition is discussed at the light of these new results.