WorldWideScience

Sample records for hydride cracking velocity

  1. Delayed hydride cracking: theoretical model testing to predict cracking velocity

    International Nuclear Information System (INIS)

    Mieza, Juan I.; Vigna, Gustavo L.; Domizzi, Gladys

    2009-01-01

    Pressure tubes from Candu nuclear reactors as any other component manufactured with Zr alloys are prone to delayed hydride cracking. That is why it is important to be able to predict the cracking velocity during the component lifetime from parameters easy to be measured, such as: hydrogen concentration, mechanical and microstructural properties. Two of the theoretical models reported in literature to calculate the DHC velocity were chosen and combined, and using the appropriate variables allowed a comparison with experimental results of samples from Zr-2.5 Nb tubes with different mechanical and structural properties. In addition, velocities measured by other authors in irradiated materials could be reproduced using the model described above. (author)

  2. Influence of metallurgical variables on the velocity of crack propagation by delayed hydride cracking (DHC) in Zr-Nb

    International Nuclear Information System (INIS)

    Cirimelo, Pablo G.

    2002-01-01

    In the present thesis work the propagation of cracks due to the delayed hydride cracking (DHC) mechanism in Zr-2,5 % Nb pressure tubes is analyzed. For this purpose two different type of tubes of different origin were used: CANDU type (Canada) and RBMK type (Russia). The analyzed figurative parameters were: critical temperature Tc (highest temperature at which DHC phenomenon could occur) and crack propagation velocity by DHC, Vp, in the axial direction. The influence of the memory effect (phenomenon proper of hydride precipitation) was studied, as well as the type of cracks (fatigue or DHC) on Tc. However, no influence of these effects was found. Instead, it was found that Tc varies with the hydrogen content of the specimen, in agreement with previous works. Samples obtained from tubes with different microstructures and similar amounts of hydrogen presented similar Tc values. It was also shown that DHC propagation could occur without precipitated hydrides in the volume. Besides, Vp determinations were performed in temperature ranges and hydrogen amounts of technological importance. Two techniques were set up in order to determine Vp at different temperatures in a single specimen, thus saving time and material. An Arrhenius type variation was found for Vp vs. temperature, for temperatures lower than that corresponding to precipitation. For higher temperatures, but lower than the critical one, velocity decreases with temperature. Determination of Vp vs. temperature was performed for the two above-mentioned materials, whose microstructure and hardness were previously characterized. For RBMK material, which presents a spheroidal β phase, the velocity was lower than the corresponding to CANDU material, in which β phase is formed by continuous plates. In addition, yield stress σ Y is lower in RBMK material, which presents lower Vp. However, it is considered that the effect of microstructure is more important on Vp since it highly affects diffusion of hydrogen from the

  3. Delayed hydride cracking velocity and crack growth measurement using DCPD technique in Zr-2.5Nb pressure tube material

    International Nuclear Information System (INIS)

    Singh, R.N.; Kishore, R.; Roychaudhury, S.; Unnikrishnan, M.; Sinha, T.K.; De, P.K.; Banerjee, S.; Kumar, Santosh

    2000-12-01

    Nuclear structural materials have to perform under most demanding and exotic environmental conditions. Due to its unique properties dilute zirconium alloys are the only choice for in-core structural materials in water cooled nuclear reactors. Hydrogen related problems have been recognized as the life-limiting factor for the core components of Pressurized Heavy Water Reactors (PHWR). Delayed Hydride Cracking (Dhc) is one of them. In this study, Dhc crack growth has been monitored using Direct Current Potential Drop (Dcp) technique. Calibration curve between normalized Dcp output and normalized crack length was established at different test temperatures. Dhc velocity was measured along the axial direction of the Zirconium-2.5Niobium pressure tube material at 203 and 250 degree C. (author)

  4. IAEA co-ordinated research program. 'Round Robin' on measuring the velocity of delayed hydride cracking (DHC)

    International Nuclear Information System (INIS)

    Grigoriev, V.; Jakobsson, R.

    1999-09-01

    The International Atomic Agency (IAEA) has initiated a new Co-ordinated Research Programme (CRP) on Hydrogen and hydride induced degradation of the mechanical and physical properties of Zirconium-based alloys. In the first phase of this CRP the methodology for measuring the velocity of Delayed Hydride Cracking (DHC) should be established and participating laboratories from about nine countries around the world carry out identical tests in 'round robin'. The objective of the present work is to establish at Studsvik laboratory the method of a constant load cracking test on unirradiated Zr-2.5Nb and attain a comparison of results between laboratories. Constant load tests are performed on specimens cut from unirradiated CANDU Zr-2.5Nb pressure tube and the rate of crack propagation is determined in each test. Pre-hydrided specimens for testing are supplied from the host laboratory. Six specimens have been tested for delayed hydride cracking (DHC) at 250 deg C. The axial crack growth velocities measured in the tests are within the interval of 8.62x10 -8 - 1.06x10 -7 m/s. The results obtained agree well with the earlier published data for similar materials and test conditions

  5. Effects of δ-hydride precipitation at a crack tip on crack propagation in delayed hydride cracking of Zircaloy-2

    Energy Technology Data Exchange (ETDEWEB)

    Kubo, T., E-mail: kubo@nfd.co.jp [Nippon Nuclear Fuel Development Co., Ltd., 2163 Narita-cho, Oarai-machi, Ibaraki 311-1313 (Japan); Kobayashi, Y. [M.O.X. Co., Ltd., 1828-520 Hirasu-cho, Mito, Ibaraki 311-0853 (Japan)

    2013-08-15

    Highlights: • Steady state crack velocity of delayed hydride cracking in Zircaloy-2 was analyzed. • A large stress peak is induced at an end of hydride by volume expansion of hydride. • Hydrogen diffuses to the stress peak, thereby accelerating steady hydride growth. • Crack velocity was estimated from the calculated hydrogen flux into the stress peak. • There was good agreement between calculation results and experimental data. -- Abstract: Delayed hydride cracking (DHC) of Zircaloy-2 is one possible mechanism for the failure of boiling water reactor fuel rods in ramp tests at high burnup. Analyses were made for hydrogen diffusion around a crack tip to estimate the crack velocity of DHC in zirconium alloys, placing importance on effects of precipitation of δ-hydride. The stress distribution around the crack tip is significantly altered by precipitation of hydride, which was strictly analyzed using a finite element computer code. Then, stress-driven hydrogen diffusion under the altered stress distribution was analyzed by a differential method. Overlapping of external stress and hydride precipitation at a crack tip induces two stress peaks; one at a crack tip and the other at the front end of the hydride precipitate. Since the latter is larger than the former, more hydrogen diffuses to the front end of the hydride precipitate, thereby accelerating hydride growth compared with that in the absence of the hydride. These results indicated that, after hydride was formed in front of the crack tip, it grew almost steadily accompanying the interaction of hydrogen diffusion, hydride growth and the stress alteration by hydride precipitation. Finally, crack velocity was estimated from the calculated hydrogen flux into the crack tip as a function of temperature, stress intensity factor and material strength. There was qualitatively good agreement between calculation results and experimental data.

  6. Determination of delayed hydride cracking velocity of CANDU Zr-2.5Nb pressure tube

    International Nuclear Information System (INIS)

    Kim, Young Suk; Kim, Chan Jung; Rheem, Y. W.; Im, K. S.; Kwon, Sang Chul

    2000-07-01

    As agreed upon the contract with an IAEA Co-ordinated Research Project 'Hydrogen and Hydride Induced Degradation of the Mechanical and Physical Properties of Zirconium Based Alloys', we conducted DHC tests at 3 different temperatures of 144, 182 and 250 deg C on the curved compact tension specimens made from a Zr-2.5Nb pressure tube. Additional tests were carried out at 200 and 230 deg C with an aim to determine the activation energy for delayed hydride cracking. This report summarizes the results of DHC tests obtained so far. All the DHC tests were conducted in accordance with the procedures suggested by the Host Lab. 7 DHCV values determined at the same temperature such as 250 deg C show very low standard deviation, whose average values are very comparable to those reported by the participants. Thus, one of the most important results we have got is that we establish qualified DHC testing procedure through the IAEA CRP. An activation energy for DHC of unirradiated Zr-2.5Nb pressure tube was 49 KJ/mol which is very similar to the activation energy of 43 KJ/mol for irradiated Zr-2.5Nb pressure tubes. DHCV increased linearly with the hydrogen content up to around 25 ppm and then became saturated at higher hydrogen concentration

  7. Dependency of Delayed Hydride Crack Velocity on the Direction of an Approach to Test Temperatures in Zirconium Alloys

    International Nuclear Information System (INIS)

    Kim, Young Suk; Kim, Kang Soo; Im, Kyung Soo; Ahn, Sang Bok; Cheong, Yong Moo

    2005-01-01

    Recently, Kim proposed a new DHC model where a driving force for the DHC is a supersaturated hydrogen concentration as a result of a hysteresis of the terminal solid solubility (TSS) of hydrogen in zirconium alloys upon a heating and a cooling. This model was demonstrated to be valid through a model experiment where the prior plastic deformation facilitated nucleation of the reoriented hydrides, thus reducing the supersaturated hydrogen concentration at the plastic zone ahead of the crack tip and causing hydrogen to move to the crack tip from the bulk region. Thus, an approach to the test temperature by a cooling is required to create a supersaturation of hydrogen, which is a driving force for the DHC of zirconium alloys. However, despite the absence of the supersaturation of hydrogen due to an approach to the test temperature by a heating, DHC is observed to occur in zirconium alloys at the test temperatures below 180 .deg. C. As to this DHC phenomenon, Kim proposed that stress-induced transformation from γ-hydrides to δ-hydrides is likely to be a cause of this, based on Root's observation that the γ-hydride is a stable phase at temperatures lower than 180 .deg. C. In other words, the hydrides formed at the crack tip would be δ-hydrides due to the stressinduced transformation while the bulk region still maintains the initial hydride phase or γ-hydrides. It should be noted that Ambler has also assumed the crack tip hydrides to be δ-hydrides. When the δ-hydrides or ZrH1.66 are precipitated at the crack tip due to the transformation of the γ-hydrides or ZrH, the crack tip will have a decreased concentration of dissolved hydrogen in zirconium, considering the atomic ratio of hydrogen and zirconium in the γ- and δ-hydrides. In contrast, due to no stress-induced transformation of hydrides, the bulk region maintains the initial concentration of dissolved hydrogen. Hence, there develops a difference in the hydrogen concentration or .C between the bulk and the

  8. Dependency of Delayed Hydride Crack Velocity on the Direction of an Approach to Test Temperatures in Zirconium Alloys

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Young Suk; Kim, Kang Soo; Im, Kyung Soo; Ahn, Sang Bok; Cheong, Yong Moo [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    2005-07-01

    Recently, Kim proposed a new DHC model where a driving force for the DHC is a supersaturated hydrogen concentration as a result of a hysteresis of the terminal solid solubility (TSS) of hydrogen in zirconium alloys upon a heating and a cooling. This model was demonstrated to be valid through a model experiment where the prior plastic deformation facilitated nucleation of the reoriented hydrides, thus reducing the supersaturated hydrogen concentration at the plastic zone ahead of the crack tip and causing hydrogen to move to the crack tip from the bulk region. Thus, an approach to the test temperature by a cooling is required to create a supersaturation of hydrogen, which is a driving force for the DHC of zirconium alloys. However, despite the absence of the supersaturation of hydrogen due to an approach to the test temperature by a heating, DHC is observed to occur in zirconium alloys at the test temperatures below 180 .deg. C. As to this DHC phenomenon, Kim proposed that stress-induced transformation from {gamma}-hydrides to {delta}-hydrides is likely to be a cause of this, based on Root's observation that the {gamma}-hydride is a stable phase at temperatures lower than 180 .deg. C. In other words, the hydrides formed at the crack tip would be {delta}-hydrides due to the stressinduced transformation while the bulk region still maintains the initial hydride phase or {gamma}-hydrides. It should be noted that Ambler has also assumed the crack tip hydrides to be {delta}-hydrides. When the {delta}-hydrides or ZrH1.66 are precipitated at the crack tip due to the transformation of the {gamma}-hydrides or ZrH, the crack tip will have a decreased concentration of dissolved hydrogen in zirconium, considering the atomic ratio of hydrogen and zirconium in the {gamma}- and {delta}-hydrides. In contrast, due to no stress-induced transformation of hydrides, the bulk region maintains the initial concentration of dissolved hydrogen. Hence, there develops a difference in the

  9. IAEA co-ordinated research program. 'Round Robin' on measuring the velocity of delayed hydride cracking (DHC)

    Energy Technology Data Exchange (ETDEWEB)

    Grigoriev, V.; Jakobsson, R. [Studsvik Material AB, Nykoeping (Sweden)

    1999-09-01

    The International Atomic Agency (IAEA) has initiated a new Co-ordinated Research Programme (CRP) on Hydrogen and hydride induced degradation of the mechanical and physical properties of Zirconium-based alloys. In the first phase of this CRP the methodology for measuring the velocity of Delayed Hydride Cracking (DHC) should be established and participating laboratories from about nine countries around the world carry out identical tests in 'round robin'. The objective of the present work is to establish at Studsvik laboratory the method of a constant load cracking test on unirradiated Zr-2.5Nb and attain a comparison of results between laboratories. Constant load tests are performed on specimens cut from unirradiated CANDU Zr-2.5Nb pressure tube and the rate of crack propagation is determined in each test. Pre-hydrided specimens for testing are supplied from the host laboratory. Six specimens have been tested for delayed hydride cracking (DHC) at 250 deg C. The axial crack growth velocities measured in the tests are within the interval of 8.62x10{sup -8} - 1.06x10{sup -7} m/s. The results obtained agree well with the earlier published data for similar materials and test conditions.

  10. Delayed hydride cracking: alternative pre-cracking method

    International Nuclear Information System (INIS)

    Mieza, Juan I.; Ponzoni, Lucio M.E.; Vigna, Gustavo L.; Domizzi, Gladys

    2009-01-01

    The internal components of nuclear reactors built-in Zr alloys are prone to a failure mechanism known as Delayed Hydride Cracking (DHC). This situation has triggered numerous scientific studies in order to measure the crack propagation velocity and the threshold stress intensity factor associated to DHC. Tests are carried out on fatigued pre-crack samples to ensure similar test conditions and comparable results. Due to difficulties in implementing the fatigue pre-crack method it would be desirable to replace it with a pre-crack produced by the same process of DHC, for which is necessary to demonstrate equivalence of this two methods. In this work tests on samples extracted from two Zr-2.5 Nb tubes were conducted. Some of the samples were heat treated to obtain a range in their metallurgical properties as well as different DHC velocities. A comparison between velocities measured in test samples pre-cracked by fatigue and RDIH is done, demonstrating that the pre-cracking method does not affect the measured velocity value. In addition, the incubation (t inc ), which is the time between the application of the load and the first signal of crack propagation, in samples pre-cracked by RDIH, was measured. It was found that these times are sufficiently short, even in the worst cases (lower speed) and similar to the ones of fatigued pre-cracked samples. (author)

  11. Hydride effect on crack instability of Zircaloy cladding

    Energy Technology Data Exchange (ETDEWEB)

    Tseng, Che-Chung, E-mail: cctseng@iner.gov.tw [Institute of Nuclear Energy Research, No. 1000, Wunhua Road, Jiaan Village, Lungtan, Township, Taoyuan County 32546, Taiwan (China); Sun, Ming-Hung [Institute of Nuclear Energy Research, No. 1000, Wunhua Road, Jiaan Village, Lungtan, Township, Taoyuan County 32546, Taiwan (China); Chao, Ching-Kong [Department of Mechanical Engineering, National Taiwan University of Science and Technology, 43 Keelung Road, Section 4, Taipei 106, Taiwan (China)

    2014-04-01

    Highlights: • Radial hydrides near the crack tip had a significant effect on crack propagation. • For radial hydrides off the crack line vertically, the effect on crack propagation was notably reduced. • The longer hydride platelet resulted in a remarkable effect on crack propagation. • A long split in the radial hydride precipitate would enhance crack propagation. • The presence of circumferential hydride among radial hydrides may play an important role in crack propagation. - Abstract: A methodology was proposed to investigate the effect of hydride on the crack propagation in fuel cladding. The analysis was modeled based on an outside-in crack with radial hydrides located near its crack tip. The finite element method was used in the calculation; both stress intensity factor K{sub I} and J integral were applied to evaluate the crack stability. The parameters employed in the analysis included the location of radial hydride, hydride dimensions, number of hydrides, and the presence of circumferential hydride, etc. According to our study, the effective distance between a radial hydride and the assumed cladding surface crack for the enhancement of crack propagation proved to be no greater than 0.06 mm. For a hydride not on the crack line, it would induce a relatively minor effect on crack propagation if the vertical distance was beyond 0.05 mm. However, a longer hydride precipitate as well as double radial hydrides could have a remarkable effect on crack propagation. A combined effect of radial and circumferential hydrides was also discussed.

  12. Delayed hydride cracking in Zr-2.5Nb pressure tubes

    International Nuclear Information System (INIS)

    Mieza, Juan I.; Domizzi, Gladys; Vigna, Gustavo L.

    2007-01-01

    Zr-2.5 Nb alloy from CANDU pressure tubes are prone to failure by hydrogen intake. One of the degradation mechanisms is delayed hydride cracking, which is characterized by the velocity of cracking. In this work, we study the effect of beta zirconium phase transformation over delayed hydride cracking velocity in Zr-2.5 Nb alloy from pressure tubes. Acoustic emission technique was used for cracking detection. (author) [es

  13. Developments in delayed hydride cracking in zirconium alloys

    International Nuclear Information System (INIS)

    Puls, Manfred P.

    2008-01-01

    Delayed hydride cracking (DHC) is a process of diffusion assisted localized hydride embrittlement at flaws or regions of high stress. Models of DHC propagation and initiation have been developed that capture the essential elements of this phenomenon in terms of parameters describing processes occurring at the micro-scale. The models and their predictions of experimental results applied to Zr alloys are assessed. The propagation model allows rationalization of the effect of direction of approach to temperature and of the effect of the state and morphology of the beta phase in Zr-2.5Nb on DHC velocity. The K I dependence of the DHC velocity can only be approximately rationalized by the propagation models. This is thought to be because these models approximate the DHC velocity by a constant and shape-invariant rate of growth of the hydride at the flaw and have not incorporated a coupling between the applied stress field due to the flaw alone and the precipitated hydrides that would result in a variation of the shape and density of the hydrided region with K I . Separately, models have been developed for DHC initiation at cracks and blunt flaws. Expressions are obtained for the threshold stress intensity factor, K IH , for DHC initiation at a crack. A model for K IH has been used to rationalize the experimental result that DHC initiation is not possible above a certain temperature, even when hydrides can form at the crack tip. For blunt flaws with root radii in the μm range, and engineering process zone procedure has been derived to determine the initiation conditions requiring that both a critical stress and a critical flaw tip displacement must be achieved for hydride fracture. The engineering process zone procedure takes account of the dependence of DHC initiation on the flaw's root radius. Although all of the foregoing models are capable of describing the essential features of DHC, they are highly idealized and in need of further refinement. (author)

  14. Application of acoustic emission to hydride cracking

    International Nuclear Information System (INIS)

    Sagat, S.; Ambler, J.F.R.; Coleman, C.E.

    1986-07-01

    Acoustic emission has been used for over a decade to study delayed hydride cracking (DHC) in zirconium alloys. At first acoustic emission was used primarily to detect the onset of DHC. This was possible because DHC was accompanied by very little plastic deformation of the material and furthermore the amplitudes of the acoustic pulses produced during cracking of the brittle hydride phase were much larger than those from dislocation motion and twinning. Acoustic emission was also used for measuring crack growth when it was found that for a suitable amplitude threshold, the total number of acoustic emission counts was linearly related to the cracked area. Once the proportionality constant was established, the acoustic counts could be converted to the crack length. Now the proportionality between the count rate and the crack growth rate is used to provide feedback between the crack length and the applied load, using computer technology. In such a system, the stress at the crack tip can be maintained constant during the test by adjusting the applied load as the crack progresses, or it can be changed in a predetermined manner, for example, to measure the threshold stress for cracking

  15. Minimizing hydride cracking in zirconium alloys

    International Nuclear Information System (INIS)

    Coleman, C.E.; Cheadle, B.A.; Ambler, J.F.R.; Eadie, R.L.

    1985-01-01

    Zirconium alloy components can fail by hydride cracking if they contain large flaws and are highly stressed. If cracking in such components is suspected, crack growth can be minimized by following two simple operating rules: components should be heated up from at least 30K below any operating temperature above 450K, and when the component requires cooling to room temperature from a high temperature, any tensile stress should be reduced as much and as quickly as is practical during cooling. This paper describes the physical basis for these rules

  16. Hydride precipitation crack propagation in zircaloy cladding during a decreasing temperature history

    International Nuclear Information System (INIS)

    Stout, R.B.

    2001-01-01

    An assessment of safety, design, and cost tradeoff issues for short (ten to fifty years) and longer (fifty to hundreds of years) interim dry storage of spent nuclear fuel in Zircaloy rods shall address potential failures of the Zircaloy cladding caused by the precipitation response of zirconium hydride platelets. To perform such assessment analyses rigorously and conservatively will be necessarily complex and difficult. For Zircaloy cladding, a model for zirconium hydride induced crack propagation velocity was developed for a decreasing temperature field and for hydrogen, temperature, and stress dependent diffusive transport of hydrogen to a generic hydride platelet at a crack tip. The development of the quasi-steady model is based on extensions of existing models for hydride precipitation kinetics for an isolated hydride platelet at a crack tip. An instability analysis model of hydride-crack growth was developed using existing concepts in a kinematic equation for crack propagation at a constant thermodynamic crack potential subject to brittle fracture conditions. At the time an instability is initiated, the crack propagation is no longer limited by hydride growth rate kinetics, but is then limited by stress rates. The model for slow hydride-crack growth will be further evaluated using existing available data. (authors)

  17. Hydride precipitation crack propagation in zircaloy cladding during a decreasing temperature history

    Energy Technology Data Exchange (ETDEWEB)

    Stout, R.B. [California Univ., Livermore, CA (United States). Lawrence Livermore National Lab

    2001-07-01

    An assessment of safety, design, and cost tradeoff issues for short (ten to fifty years) and longer (fifty to hundreds of years) interim dry storage of spent nuclear fuel in Zircaloy rods shall address potential failures of the Zircaloy cladding caused by the precipitation response of zirconium hydride platelets. To perform such assessment analyses rigorously and conservatively will be necessarily complex and difficult. For Zircaloy cladding, a model for zirconium hydride induced crack propagation velocity was developed for a decreasing temperature field and for hydrogen, temperature, and stress dependent diffusive transport of hydrogen to a generic hydride platelet at a crack tip. The development of the quasi-steady model is based on extensions of existing models for hydride precipitation kinetics for an isolated hydride platelet at a crack tip. An instability analysis model of hydride-crack growth was developed using existing concepts in a kinematic equation for crack propagation at a constant thermodynamic crack potential subject to brittle fracture conditions. At the time an instability is initiated, the crack propagation is no longer limited by hydride growth rate kinetics, but is then limited by stress rates. The model for slow hydride-crack growth will be further evaluated using existing available data. (authors)

  18. Comparison of delayed hydride cracking behavior of two zirconium alloys

    Energy Technology Data Exchange (ETDEWEB)

    Ponzoni, L.M.E. [CNEA – Centro Atómico Constituyentes, Hidrógeno en Materiales, Av. Gral. Paz 1499, San Martín (B1650KNA), Bs. As. (Argentina); Mieza, J.I. [CNEA – Centro Atómico Constituyentes, Hidrógeno en Materiales, Av. Gral. Paz 1499, San Martín (B1650KNA), Bs. As. (Argentina); Instituto Sabato, UNSAM–CNEA, Av. Gral. Paz 1499, San Martín (B1650KNA), Bs. As. (Argentina); De Las Heras, E. [CNEA – Centro Atómico Constituyentes, Hidrógeno en Materiales, Av. Gral. Paz 1499, San Martín (B1650KNA), Bs. As. (Argentina); Domizzi, G., E-mail: domizzi@cnea.gov.ar [CNEA – Centro Atómico Constituyentes, Hidrógeno en Materiales, Av. Gral. Paz 1499, San Martín (B1650KNA), Bs. As. (Argentina); Instituto Sabato, UNSAM–CNEA, Av. Gral. Paz 1499, San Martín (B1650KNA), Bs. As. (Argentina)

    2013-08-15

    Delayed hydride cracking (DHC) is an important failure mechanism that may occur in Zr alloys during service in water-cooled reactors. Two conditions must be attained to initiate DHC from a crack: the stress intensity factor must be higher than a threshold value called K{sub IH} and, hydrogen concentration must exceed a critical value. Currently the pressure tubes for CANDU reactor are fabricated from Zr–2.5Nb. In this paper the critical hydrogen concentration for DHC and the crack velocity of a developmental pressure tube, Excel, was evaluated and compared with that of Zr–2.5Nb. The DHC velocity values measured in Excel were higher than usually reported in Zr–2.5Nb. Due to the higher hydrogen solubility limits in Excel, its critical hydrogen concentration for DHC initiation is 10–50 wppm over that of Zr–2.5Nb in the range of 150–300 °C.

  19. Evaluation of delayed hydride cracking and fracture toughness in zirconium alloys

    International Nuclear Information System (INIS)

    Oh, Je Yong

    2000-02-01

    The tensile, fracture toughness, and delayed hydride cracking (DHC) test were carried at various temperatures to understand the effect of hydrides on zirconium alloys. And the effects of yield stress and texture on the DHC velocity were discussed. The tensile properties of alloy A were the highest, and the difference between directions in alloy C was small due to texture. The fracture toughness at room temperature decreased sharply when hydrided. Although the alignment of hydride plates was parallel to loading direction, the hydrides were fractured due to the triaxiality at the crack tip region. The fracture toughness over 200 .deg. C was similar regardless of the hydride existence, because the triaxiality region was lost due to the decrease of yield stress with temperature. As the yield stress decreased, the threshold stress intensity factor and the striation spacing increased in alloy A, and the fracture surfaces and striations were affected by microstructures in all alloys. To evaluate the effect of the yield stress on DHC velocity, a normalization method was proposed. When the DHC velocity was normalized with dividing by the terminal solid solubility and the diffusion coefficient of hydrogen, the relationship between the yield stress and the DHC velocity was representable on one master curve. The equation from the master curve was able to explain the difference between the theoretical activation energy and the experimental activation energy in DHC. The difference was found to be ascribed to the decrease of yield stress with temperature. texture affected the delayed hydride cracking velocity by yield stress and by hydride reprecipitation. The relationship between the yield stress and the DHC velocity was expressed as an exponential function, and the relationship between the reprecipitation of hydride and the DHC velocity was expressed as a linear function

  20. Initiation of delayed hydride cracking in zirconium-2.5 wt% niobium

    International Nuclear Information System (INIS)

    Shalabi, A.F.; Meneley, D.A.

    1990-01-01

    Delayed hydride cracking in zirconium alloys is caused by the repeated precipitation and cracking of brittle hydrides. The growth kinetic of the hydrides have been measured to evaluate the critical hydride length for crack initiation. Hydride growth leading to crack initiation follows an approximate (time) 1/3 law on the average; crack propagation proceeds in a stepwise fashion. The critical length of hydride for crack initiation increases with stress and temperature. The fracture criterion for crack initiation predicts the critical hydride length at a give stress level and temperature. The fracture initiation mechanism of the hydride confirms the temperature effects for heating and cooling cycles under services loads. (orig.)

  1. The effect of texture on delayed hydride cracking in Zr-2.5Nb alloy

    Energy Technology Data Exchange (ETDEWEB)

    Resta Levi, R.; Sagat, S

    1999-09-01

    Pressure tubes for CANDU reactors are made of Zr-2.5Nb alloy. They are produced by hot extrusion followed by cold work, which results in a material with a pronounced crystallographic texture with basal plane normals of its hexagonal structure around the circumferential direction. Under certain conditions, this material is susceptible to a cracking mechanism called delayed hydride cracking (DHC). Our work investigated the susceptibility of Zr-2.5Nb alloy pressure tube to DHC in this pressure tube material, in terms of crystallographic texture and grain shape. The results are presented in terms of crack velocity obtained on different planes and directions of the pressure tube. The results show that it is more difficult for a crack to propagate at right angles to crystallographic basal planes (which are close to the precipitation habit plane of hydrides) than for it to propagate parallel to the basal plane. However, if the cracking plane is oriented parallel to preexisting hydrides (hydrides formed as a result of the manufacturing process), the crack propagates along these hydrides easily, even if the hydride habit planes are not oriented favourably. (author)

  2. Effect of Crack Tip Stresses on Delayed Hydride Cracking in Zr-2.5Nb Tubes

    International Nuclear Information System (INIS)

    Kim, Young Suk; Cheong, Yong Moo

    2007-01-01

    Delayed hydride cracking (DHC) tests have shown that the DHC velocity becomes faster in zirconium alloys with a higher yield stress. To account for this yield stress effect on the DHC velocity, they suggested a simple hypothesis that increased crack tip stresses due to a higher yield stress would raise the difference in hydrogen concentration between the crack tip and the bulk region and accordingly the DHC velocity. This hypothesis is also applied to account for a big leap in the DHC velocity of zirconium alloys after neutron irradiation. It should be noted that this is based on the old DHC models that the driving force for DHC is the stress gradient. Puls predicted that an increase in the yield stress of a cold worked Zr-2.5Nb tube due to neutron irradiation by about 300 MPa causes an increase of its DHC velocity by an order of magnitude or 2 to 3 times depending on the accommodation energy values. Recently, we proposed a new DHC model that a driving force for DHC is not the stress gradient but the concentration gradient arising from the stress-induced precipitation of hydrides at the crack tip. Our new DHC model and the supporting experimental results have demonstrated that the DHC velocity is governed primarily by hydrogen diffusion at below 300 .deg. C. Since hydrogen diffusion in Zr-2.5Nb tubes is dictated primarily by the distribution of the β-phase, the DHC velocity of the irradiated Zr-2.5Nb tube must be determined mainly by the distribution of the β-phase, not by the increased yield stress, which is in contrast with the hypothesis of the previous DHC models. In short, a controversy exists as to the effect on the DHC velocity of zirconium alloys of a change in the crack tip stresses by irradiation hardening or cold working or annealing. The aim of this study is to resolve this controversy and furthermore to prove the validity of our DHC model. To this end, we cited Pan et al.'s experiment where the delayed hydride cracking velocity, the tensile strengths

  3. Observations on Hydride Structures at the Tip of Arrested Cracks Grown under Conditions of Delayed Hydride Cracking

    International Nuclear Information System (INIS)

    Pettersson, Kjell; Oskarsson, Magnus; Bergqvist, Hans

    2003-04-01

    One sample of Zr2.5%Nb and one sample of cold worked and stress relieved Zircaloy-4 which have been tested for hydrogen induced crack growth have been examined in the crack tip region with the aim of determining the mechanism behind the growth of cracks. The proposed mechanisms are brittle failure of a crack tip hydride and hydrogen enhanced localized shear. The examinations were done by TEM and SEM. However attempts to produce a TEM specimen with a thinned region at the tip of the crack were unsuccessful in both samples. One feature observed in the Zr2.5%Nb material may however be an indication of intense shear deformation at the tip of the crack. On the other hand all observations on the Zircaloy-4 sample indicate precipitation of hydrides ahead of the crack tip and the presence of hydrides on the crack flanks

  4. Measurements of delayed hydride cracking propagation rate in the radial direction of Zircaloy-2 cladding tubes

    Energy Technology Data Exchange (ETDEWEB)

    Kubo, T., E-mail: kubo@nfd.co.jp [Nippon Nuclear Fuel Development Co., Ltd., 2163 Narita-cho, Oarai-machi, Ibaraki 311-1313 (Japan); Kobayashi, Y. [M.O.X. Co., Ltd., 1828-520 Hirasu-cho, Mito, Ibaraki 311-0853 (Japan); Uchikoshi, H. [Nippon Nuclear Fuel Development Co., Ltd., 2163 Narita-cho, Oarai-machi, Ibaraki 311-1313 (Japan)

    2012-08-15

    Highlights: Black-Right-Pointing-Pointer The delayed hydride cracking (DHC) velocity of Zircaloy-2 was measured. Black-Right-Pointing-Pointer The velocity followed the Arrhenius law up to 270 Degree-Sign C. Activation energy was 49 kJ/mol. Black-Right-Pointing-Pointer The threshold stress intensity factor for the DHC was from 4 to 6 MPa m{sup 1/2}. Black-Right-Pointing-Pointer An increase in material strength accelerated the DHC. Black-Right-Pointing-Pointer Precipitation and fracture of hydrides at a crack tip is responsible for the DHC. - Abstract: Delayed hydride cracking (DHC) tests of Zircaloy-2 cladding tubes were performed in the chamber of a scanning electron microscope (SEM) to directly observe the crack propagation and measure the crack velocity in the radial direction of the tubes. Pre-cracks were produced at the outer surfaces of the tubes. Hydrogen contents of the tubes were from 90 ppm to 130 ppm and test temperatures were from 225 Degree-Sign C to 300 Degree-Sign C. The crack velocity followed the Arrhenius law at temperatures lower than about 270 Degree-Sign C with apparent activation energy of about 49 kJ/mol. The upper temperature limit for DHC, above which DHC did not occur, was about 280 Degree-Sign C. The threshold stress intensity factor for the initiation of the crack propagation, K{sub IH}, was from about 4 MPa m{sup 1/2} to 6 MPa m{sup 1/2}, almost independent of temperature. An increase in 0.2% offset yield stress of the material accelerated the crack velocity and slightly decreased K{sub IH}. Detailed observations of crack tip movement showed that cracks propagated in an intermittent fashion and the propagation gradually approached the steady state as the crack depth increased. The SEM observations also showed that hydrides were formed at a crack tip and a number of micro-cracks were found in the hydrides. It was presumed from these observations that the repetition of precipitation and fracture of hydrides at the crack tip would be

  5. Mechanisms of hydrogen induced delayed cracking in hydride forming materials

    International Nuclear Information System (INIS)

    Dutton, R.; Nuttall, K.; Puls, M.P.; Simpson, L.A.

    1977-01-01

    Mechanisms which have been formulated to describe delayed hydrogen cracking in hydride-forming metals are reviewed and discussed. Particular emphasis is placed on the commercial alloy Zr--2.5% Nb (Cb) which is extensively used in nuclear reactor core components. A quantitative model for hydrogen cracking in this material is presented and compared with available experimental data. The kinetics of crack propagation are controlled by the growth of hydrides at the stressed crack tip by the diffusive ingress of hydrogen into this region. The driving force for the diffusion flux is provided by the local stress gradient which interacts with both hydrogen atoms in solution and hydrogen atoms being dissolved and reprecipitated at the crack tip. The model is developed using concepts of elastoplastic fracture mechanics. Stage I crack growth is controlled by hydrides growing in the elastic stress gradient, while Stage II is controlled by hydride growth in the plastic zone at the crack tip. Recent experimental observations are presented which indicate that the process occurs in an intermittent fashion; hydride clusters accumulate at the crack tip followed by unstable crack advance and subsequent crack arrest in repeated cycles

  6. Mechanisms of hydrogen induced delayed cracking in hydride forming materials

    International Nuclear Information System (INIS)

    Dutton, R.; Nuttall, K.; Puls, M.P.; Simpson, L.A.

    1977-01-01

    Mechanisms which have been formulated to describe delayed hydrogen cracking in hydride-forming metals are reviewed and discussed. Particular emphasis is placed on the commercial alloy Zr-2.5 pct Nb which is extensively used in nuclear reactor core components. A quantitative model for hydrogen cracking in this material is presented and compared with available experimental data. The kinetics of crack propagation are controlled by the growth of hydrides at the stressed crack tip by the diffusive ingress of hydrogen into this region. The driving force for the diffusion flux is provided by the local stress gradient which interacts with both hydrogen atoms in solution and hydrogen atoms being dissolved and reprecipitated at the crack tip. The model is developed using concepts of elastoplastic fracture mechanics. Stage I crack growth is controlled by hydrides growing in the elastic stress gradient, while Stage II is controlled by hydride growth in the plastic zone at the crack tip. Recent experimental observations are presented which indicate that the process occurs in an intermittent fashion; hydride clusters accumulate at the crack tip followed by unstable crack advance and subsequent crack arrest in repeated cycles. 55 refs., 6 figs

  7. A fractographic distinction between hydride cracking and stress corrosion cracking in zircaloys

    International Nuclear Information System (INIS)

    Cox, B.

    1978-06-01

    The fractographic details of SCC and delayed hydride failures are compared by scanning and replica electron microscopy. It is shown that there are distinct features ascribable to the fracture of hydride platelets which are absent from SCC fractures and which distinguish them from fractures produced by delayed hydride cracking. (author)

  8. The Effect of Hydrogen and Hydrides on the Integrity of Zirconium Alloy Components Delayed Hydride Cracking

    CERN Document Server

    Puls, Manfred P

    2012-01-01

    By drawing together the current theoretical and experimental understanding of the phenomena of delayed hydride cracking (DHC) in zirconium alloys, The Effect of Hydrogen and Hydrides on the Integrity of Zirconium Alloy Components: Delayed Hydride Cracking provides a detailed explanation focusing on the properties of hydrogen and hydrides in these alloys. Whilst the focus lies on zirconium alloys, the combination of both the empirical and mechanistic approaches creates a solid understanding that can also be applied to other hydride forming metals.   This up-to-date reference focuses on documented research surrounding DHC, including current methodologies for design and assessment of the results of periodic in-service inspections of pressure tubes in nuclear reactors. Emphasis is placed on showing that our understanding of DHC is supported by progress across a broad range of fields. These include hysteresis associated with first-order phase transformations; phase relationships in coherent crystalline metallic...

  9. Diffusion model of delayed hydride cracking in zirconium alloys

    NARCIS (Netherlands)

    Shmakov, AA; Kalin, BA; Matvienko, YG; Singh, RN; De, PK

    2004-01-01

    We develop a method for the evaluation of the rate of delayed hydride cracking in zirconium alloys. The model is based on the stationary solution of the phenomenological diffusion equation and the detailed analysis of the distribution of hydrostatic stresses in the plane of a sharp tensile crack.

  10. Control of microstructure to increase the tolerance of zirconium alloys to hydride cracking

    International Nuclear Information System (INIS)

    Coleman, C.E.; Sagat, S.; Amouzouvi, K.F.

    1987-12-01

    The microstructure of Zr-2.5 Nb has been altered in three ways in attempts to increase the alloy's tolerance to delayed hydride cracking, namely by breaking up the β-phase which reduces diffusivity of hydrogen and decreases crack velocity, by means of a gettering element (yttrium) which reduces susceptibility to cracking although the yttrium alloy has low toughness and poor corrosion resistance, and by reducing the number of basal plane normals in the main stressing direction which improves resistance to crack growth

  11. Delayed hydride cracking in Zr-2.5% wt Nb pressure tubes

    International Nuclear Information System (INIS)

    Cirimello, Pablo; Haddad, Roberto; Domizzi, Gladys

    2003-01-01

    During service, pressure tubes of CANDU nuclear power reactor are prone to suffer crack growth by delayed hydride cracking (DHC). For a given H 2 plus D 2 concentration there is a critical temperature (T c ) below which DHC may occur. In this work, T c was measured for CCT specimens cut from Zr-2.5 Wt % Nb pressure tubes. Hydrogen was added to the specimens to get concentrations of 40, 59 and 72 ppm. It was found that T c is higher than the corresponding precipitation temperature. The axial crack velocity (V p ) was also measured. Decreasing temperature from T c makes V p increase until a maximum is attained at a temperature close to precipitation temperature. At lower temperatures, in the presence of precipitated hydrides, decreasing temperature implies lower velocities, following an Arrhenius law: Vp=Aexp(-Q/RT), with an activation energy Q= 66 KJ/mol K. (author)

  12. A Study on the Radial Hydride Assisted Delayed Hydride Cracking of Zircaloy

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Jin-Ho; Lee, Ji-Min; Kim, Yong-Soo [Hanyang University, Seoul (Korea, Republic of)

    2015-05-15

    Extensive studies have been done on understanding of DHC(Delayed hydride cracking) phenomenon since several zirconium alloy pressure tubes failed in nuclear reactor in the 1970s. Recently, long-term dry storage strategy has been considered seriously in order to manage spent nuclear fuel in Korea and other countries around the world. Consequentially, many researches have been investigated the degradation mechanisms which will threaten the spent fuel integrity during dry storage and showed that hydrogen related phenomenon such as hydride reorientation and DHC are the critical factors. Especially, DHC is the direct cracking mechanism which can cause not only a through-wall defect but also a radiation leak to the environment. In addition, DHC can be enhanced by radial hydride as reported by Kim who demonstrate that radial hydrides clearly act as crack linkage path. This phenomenon is known as the radial hydride assisted DHC (RHA-DHC). Therefore, study on DHC is essential to ensure the safety of spent fuel. Finite element analysis will be carried out for the stress gradient evaluation around notch tip. A variation in thermal cycle which leads to change in hydrogen solid solution trajectory may be required. If the radial hydride precipitates at notch tip, we will investigate what conditions should be met. Ultimately, we will suggest the regulation criteria for long-term dry storage of spent nuclear fuel.

  13. Development of delayed hydride cracking resistant-pressure tube

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Young Suk; Kwon, Sang Chul; Kim, S. S.; Yim, K. S

    2000-10-01

    For the first time, we demonstrate that the pattern of nucleation and growth of a DHC crack is governed by the precipitation of hydrides so that the DHC velocity and K{sub IH} are determined by an angle of the cracking plane and the hydride habit plane 10.7. Since texture controls the distribution of the 10.7 habit plane in Zr-2.5Nb pressure tube, we draw a conclusion that a textural change in Zr-2.5Nb tube from a strong tangential texture to the radial texture shall increase the threshold stress intensity factor, K{sub IH}, and decrease the delayed hydride cracking velocity. This conclusion is also verified by a complimentary experiment showing a linear dependence of DHCV and K{sub IH} with an increase in the basal component in the cracking plane. On the basis of the study on the DHC mechanism and the effect of manufacturing processes on the properties of Zr-2.5Nb tube, we have established a manufacturing procedure to make pressure tubes with improved DHC resistance. The main features of the established manufacturing process consist in the two step-cold pilgering process and the intermediate heat treatment in the {alpha} + {beta} phase for Zr-2.5Nb alloy and in the {alpha} phase for Zr-1Nb-1.2Sn-0.4Fe alloy. The manufacturing of DHC resistant-pressure tubes of Zr-2.5Nb and Zr-1N-1.2Sn-0.4Fe was made in the ChMP zirconium plant in Russia under a joint research with Drs. Nikulina and Markelov in VNIINM (Russia). Zr-2.5Nb pressure tube made with the established manufacturing process has met all the specification requirements put by KAERI. Chracterization tests have been jointly conducted by VNIINM and KAERI. As expected, the Zr-2.5Nb tube made with the established procedure has improved DHC resistance compared to that of CANDU Zr-2.5Nb pressure tube used currently. The measured DHC velocity of the Zr-2.5Nb tube meets the target value (DHCV <5x10{sup -8} m/s) and its other properties also were equivalent to those of the CANDU Zr-2.5Nb tube used currently. The Zr-1Nb-1

  14. Prevention of delayed hydride cracking in zirconium alloys

    International Nuclear Information System (INIS)

    Cheadle, B.A.; Coleman, C.E.; Ambler, J.F.R.

    1987-01-01

    Zirconium alloys are susceptible to a mechanism for crack initiation and propagation called delayed hydride cracking. From a review of component failures and experimental results, we have developed the requirements for preventing this cracking. The important parameters for cracking are hydrogen concentration, flaws, and stress; each should be minimized. At the design and construction stages hydrogen pickup has to be controlled, quality assurance needs to be at a high enough level to ensure the absence of flaws, and residual stresses must be eliminated by careful fabrication and heat treatment

  15. Unloading Effect on Delayed Hydride Cracking in Zirconium Alloys

    International Nuclear Information System (INIS)

    Kim, Young Suk; Kim, Sung Soo

    2010-01-01

    It is well-known that a tensile overload retards not only the crack growth rate (CGR) in zirconium alloys during the delayed hydride cracking (DHC) tests but also the fatigue crack growth rate in metals, the cause of which is unclear to date. A considerable decrease in the fatigue crack growth rate due to overload is suggested to occur due either to the crack closure or to compressive stresses or strains arising from unloading of the overload. However, the role of the crack closure or the compressive stress in the crack growth rate remains yet to be understood because of incomplete understanding of crack growth kinetics. The aim of this study is to resolve the effect of unloading on the CGR of zirconium alloys, which comes in last among the unresolved issues as listed above. To this end, the CGRs of the Zr-2.5Nb tubes were determined at a constant temperature under the cyclic load with the load ratio, R changing from 0.13 to 0.66 where the extent of unloading became higher at the lower R. More direct evidence for the effect of unloading after an overload is provided using Simpson's experiment investigating the effect on the CGR of a Zr-2.5Nb tube of the stress states of the prefatigue crack tip by unloading or annealing after the formation of a pre-fatigue crack

  16. Delayed hydride cracking behavior for zircaloy-2 plate

    International Nuclear Information System (INIS)

    Mills, J.W.; Huang, F.H.

    1991-01-01

    The delayed hydride cracking (DHC) behaviour for Zircaloy-2 plate was characterized at temperatures ranging from 300 to 550 o F. Specimens with a longitudinal (T-L) orientation exhibited a classic two-stage DHC response. At K values slightly above the threshold level (K th ), crack-growth rates increased dramatically with increasing K values (stage I). The K th value was found to be 11 and 14 ksi√ in at 400 and 500 o F. At high K values (stage II), cracking rates were relatively insensitive to applied K levels. Stage II crack growth was a thermally activated process described by an Arrhenius-type relationship with an activation energy of 65 kJ/mol. This energy level agreed with the theoretical activation energy for hydrogen diffusion into the triaxial stress field ahead of a crack. Above a critical temperature (300 o F), an overtemperature cycle was required to initiate DHC. The magnitude of the thermal excursion required to initiate cracking was found to increase at higher test temperatures. Specimens with a transverse(L-T) orientation showed a very low sensitivity to DHC because of an unfavorable crystallographic orientation for hydride reorientation. Metallographic and fractographic examinations were performed to understand the DHC mechanism. (author)

  17. Delayed hydride cracking in irradiated Zr-2.5 % Nb pressure tubes

    International Nuclear Information System (INIS)

    Cirimello, Pablo; Coronel, Pascual; Haddad, Roberto; Lafont, Claudio; Mizrahi, Rafael

    2003-01-01

    Pressure tubes in CANDU nuclear power plants are made of Zr-2.5 % Nb alloy, which is susceptible to a cracking process called Delayed Hydride Cracking (DHC). Measurement of DHC velocity on irradiated pressure tubes is essential to assure the validity of the Leak Before Break criterion. This work was performed on samples from two pressure tubes taken out of the Embalse NPP in 1995, belonging to fuel channels A-14 and L-12. DHC velocity in the axial direction was measured at 211 C degrees for samples taken from different axial positions, which allowed to study its dependence on fast neutron fluency and irradiation temperature. Non-irradiated material was also tested. It was found that DHC velocity results for the tested material were similar to those obtained for a great number of tubes irradiated in other CANDU plants. (author)

  18. Leak-before-break assessment of RBMK-1500 fuel channel in case of delayed hydride cracking

    International Nuclear Information System (INIS)

    Klimasauskas, A.; Grybenas, A.; Makarevicius, V.; Nedzinskas, L.; Levinskas, R.; Kiselev, V.

    2003-01-01

    One of the factors determining remaining lifetime of Zr-2.5% Nb fuel channel (FC) is the amount of hydrogen dissolved during corrosion process. When the concentration of hydrogen exceeds the terminal solid solubility limit zirconium hydrides are precipitated. As a result form necessary conditions for delayed hydride cracking (DHC). Data from the RBMK-1500 fuel channel tubes (removed from service) shows that hydrogen in some cases distributes unevenly and hydrogen concentration can differ several times between individual FC tubes or separate zones of the same tube and possibly, can reach dangerous levels in the future. Consequently, lacking statistical research data, it is difficult to forecast increase of hydrogen concentration and formation of DHC. So it is important to verify if under the most unfavorable situation leak before break condition will be satisfied in the case of DHC. To estimate possible DHC rates in RBMK 1500 FC pressure tubes experiments were done in the following order: hydriding of the Zr-2.5Nb pressure tube material to the required hydrogen concentration; hydrogen analysis; machining of specimens, fatigue crack formation in the axial direction, DHC testing; average crack length measurement and DHC velocity calculation. During the tests in average DHC values were determined at 283, 250 and 144 degC (with hydrogen concentrations correspondingly 76, 54 and 27 ppm). The fracture resistance dependence from hydrogen concentration was measured at 20 degC. To calculate leak through the postulated flaw, statistical distribution of DHC surface irregularity was determined. Leak before break analysis was carried out according to requirements of RBMK 1500 regulatory documents. J integral and crack opening were calculated using finite element method. Loading of the FC was determined using RELAP5 code. Critical crack length was calculated using R6 and J-integral methods. Coolant flow rate through the postulated crack was estimated using SQUIRT software

  19. A unified model of hydride cracking based on elasto-plastic energy release rate over a finite crack extension

    International Nuclear Information System (INIS)

    Zheng, X.J.; Metzger, D.R.; Sauve, R.G.

    1995-01-01

    A fracture criterion based on energy balance is proposed for elasto-plastic cracking at hydrides in zirconium, assuming a finite length of crack advance. The proposed elasto-plastic energy release rate is applied to the crack initiation at hydrides in smooth and notched surfaces, as well as the subsequent delayed hydride cracking (DHC) considering limited crack-tip plasticity. For a smooth or notched surface of an elastic body, the fracture parameter is related to the stress intensity factor for the initiated crack. For DHC, a unique curve relates the non-dimensionalized elasto-plastic energy release rate with the length of crack extension relative to the plastic zone size. This fracture criterion explains experimental observations concerning DHC in a qualitative manner. Quantitative comparison with experiments is made for fracture toughness and DHC tests on specimens containing certain hydride structures; very good agreement is obtained. ((orig.))

  20. Crack velocity measurement by induced electromagnetic radiation

    International Nuclear Information System (INIS)

    Frid, V.; Rabinovitch, A.; Bahat, D.

    2006-01-01

    Our model of electromagnetic radiation (EMR) emanated from fracture implies that EMR amplitude is proportional to crack velocity. Soda lime glass samples were tested under uniaxial tension. Comparison of crack velocity observed by Wallner line analysis and the peak amplitude of EMR signals registered during the test, showed very good correlation, validating this proportionality

  1. Crack velocity measurement by induced electromagnetic radiation

    Energy Technology Data Exchange (ETDEWEB)

    Frid, V. [Deichmann Rock Mechanics Laboratory of the Negev, Geological and Environmental Sciences Department, Ben Gurion University of the Negev, Beer Sheva (Israel)]. E-mail: vfrid@bgu.ac.il; Rabinovitch, A. [Deichmann Rock Mechanics Laboratory of the Negev, Physics Department, Ben Gurion University of the Negev, Beer Sheva (Israel); Bahat, D. [Deichmann Rock Mechanics Laboratory of the Negev, Geological and Environmental Sciences Department, Ben Gurion University of the Negev, Beer Sheva (Israel)

    2006-07-31

    Our model of electromagnetic radiation (EMR) emanated from fracture implies that EMR amplitude is proportional to crack velocity. Soda lime glass samples were tested under uniaxial tension. Comparison of crack velocity observed by Wallner line analysis and the peak amplitude of EMR signals registered during the test, showed very good correlation, validating this proportionality.

  2. Delayed Hydride Cracking in Zr-2.5Nb Tubes with the Direction of An Approach to Temperature

    International Nuclear Information System (INIS)

    Kim, Young Suk; Im, Kyung Soo; Kim, Kang Soo; Ahn, Sang Bok; Cheong, Yong Moo

    2006-01-01

    One of the unique features of delayed hydride cracking (DHC) of zirconium alloys is that the DHC velocity (DHCV) of zirconium alloys strongly depends on the path to the test temperature. Ambler reported that the DHCV of Zr-2.5Nb tubes at temperatures above 180 .deg. C depended upon the direction of an approach to the test temperatures, and reported on a presence of the DHC arrest temperature or TDAT above which the DHCV decreased upon an approach to the test temperature by a heating. Ambler proposed a hydrogen transfer from the bulk to the crack tip assuming that the hydrides formed at the crack tip and in the bulk region are fully constrained and partially constrained at the crack tip, respectively. In other words, the terminal solid solubility (TSS) of hydrogen would be governed by elastic strain energy induced by the precipitating hydrides, leading to a higher TSS in the bulk region than that at the crack tip. In a sense, his assumption that the hydrogen concentration is higher in the bulk region than that at the crack tip due to a higher TSS in the bulk region is, in a way, similar to Kim's DHC model. Even though Ambler assumed a different strain energy of the matrix hydrides with the direction of an approach to the test temperature, the peak temperature, hydrogen concentration and the hydride phase, a feasible rationale for this assumption is yet to be given. In this study, a path dependence of DHC velocity of Zr-2.5Nb tubes will be investigated using Kim's DHC model where a driving force for DHC is the supersaturated hydrogen concentration between the crack tip and the bulk region. To this ends, the furnace cooled and water-quenched Zr-2.5Nb specimens were subjected to DHC tests at different test temperatures that were approached by a heating or by a cooling. Kim's DHC model predicts that the water-quenched Zr- 2.5Nb will have DHC crack growth even at temperatures above 180 .deg. C where the furnace-cooled Zr-2.5Nb will not. This experiment will provide

  3. Delayed Hydride Cracking in Zr-2.5Nb Tubes with the Direction of An Approach to Temperature

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Young Suk; Im, Kyung Soo; Kim, Kang Soo; Ahn, Sang Bok; Cheong, Yong Moo [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    2006-07-01

    One of the unique features of delayed hydride cracking (DHC) of zirconium alloys is that the DHC velocity (DHCV) of zirconium alloys strongly depends on the path to the test temperature. Ambler reported that the DHCV of Zr-2.5Nb tubes at temperatures above 180 .deg. C depended upon the direction of an approach to the test temperatures, and reported on a presence of the DHC arrest temperature or TDAT above which the DHCV decreased upon an approach to the test temperature by a heating. Ambler proposed a hydrogen transfer from the bulk to the crack tip assuming that the hydrides formed at the crack tip and in the bulk region are fully constrained and partially constrained at the crack tip, respectively. In other words, the terminal solid solubility (TSS) of hydrogen would be governed by elastic strain energy induced by the precipitating hydrides, leading to a higher TSS in the bulk region than that at the crack tip. In a sense, his assumption that the hydrogen concentration is higher in the bulk region than that at the crack tip due to a higher TSS in the bulk region is, in a way, similar to Kim's DHC model. Even though Ambler assumed a different strain energy of the matrix hydrides with the direction of an approach to the test temperature, the peak temperature, hydrogen concentration and the hydride phase, a feasible rationale for this assumption is yet to be given. In this study, a path dependence of DHC velocity of Zr-2.5Nb tubes will be investigated using Kim's DHC model where a driving force for DHC is the supersaturated hydrogen concentration between the crack tip and the bulk region. To this ends, the furnace cooled and water-quenched Zr-2.5Nb specimens were subjected to DHC tests at different test temperatures that were approached by a heating or by a cooling. Kim's DHC model predicts that the water-quenched Zr- 2.5Nb will have DHC crack growth even at temperatures above 180 .deg. C where the furnace-cooled Zr-2.5Nb will not. This experiment

  4. Delayed hydride cracking of Zircaloy-4 fuel cladding

    International Nuclear Information System (INIS)

    Pizarro, Luis M.; Fernandez, Silvia; Lafont, Claudio; Mizrahi, Rafael; Haddad, Roberto

    2007-01-01

    Crack propagation rates, grown by the delayed hydride cracking mechanism, were measured in Zircaloy-4 fuel cladding, according to a Coordinated Research Project (CRP) sponsored by the International Atomic Energy Agency (IAEA). During the first stage of the program a Round Robin Testing was performed on fuel cladding samples provided by Studsvik (Sweden), of the type used in PWR reactors. Crack growth in the axial direction is obtained through the specially developed 'pin load testing' (PLT) device. In these tests, crack propagation rates were determined at 250 C degrees on several samples of the material described above, obtaining a mean value of about 2.5 x 10 -8 m s -1 . The results were analyzed and compared satisfactorily with those obtained by the other laboratories participating in the CRP. At the present moment, similar tests on CANDU and Atucha I type fuel cladding are being performed. It is thought that the obtained results will give valuable information concerning the analysis of possible failures affecting fuel cladding under reactor operation. (author) [es

  5. Influence of hydride microstructure on through-thickness crack growth in zircaloy-4 sheet

    International Nuclear Information System (INIS)

    Raynaud, P.A.; Meholic, M.J.; Koss, D.A.; Motta, A.T.; Chan, K.S.

    2007-01-01

    The fracture toughness of cold-worked and stress-relieved Zircaloy-4 sheet subject to through-thickness crack growth within a 'sunburst' hydride microstructure was determined at 25 o C. The results were obtained utilizing a novel testing procedure in which a narrow linear strip of hydride blister was fractured at small loads under bending to create a well-defined sharp pre-crack that arrested at the blister-substrate interface. The hydriding procedure also forms 'sunburst' hydrides emanating from the blister that were aligned both in the plane of the crack and in the crack growth direction. Subsequent tensile loading caused crack growth initiation into the field of 'sunburst' hydrides. Specimen failure occurred under near-linear elastic behavior, and the fracture toughness for crack growth initiation into sunburst hydrides was in the range K Q ∼10-15 MPa√m. These results, when combined with those of a previous study, indicate that the through-thickness crack growth initiation toughness at 25 o C is very sensitive to the hydride microstructure. (author)

  6. Hydride redistribution and crack growth in Zr-2.5 wt.% Nb stressed in torsion

    International Nuclear Information System (INIS)

    Puls, M.P.; Rogowski, A.J.

    1980-11-01

    The effect of applied shear stresses on zirconium hydride solubility in a zirconium alloy was investigated. Recent studies have shown that zirconium hydride precipiates probably nucleate and grow by means of a shear transformation mechanism. It is postulated that these transformation shear strains can interact with applied shear stress gradients in the same way that the dilatational strains can interact with a dilatational stress gradient, providing a driving force for hydride accumulation, hydride embrittlement and crack propagation. To test this proposition, crack growth experiments were carried out under torsional loading conditions on hydrided, round notched bar specimens of cold-worked Zr-2.5 wt.% Nb cut from Pickering-type pressure tube material. Postmortem metallographic examination of the hydride distribution in these samples showed that, in many cases, the hydrides appeared to have reoriented in response to the applied shear stress and that hydride accumulation at the notch tip had occurred. However, except in a few cases, the rate of accumulation of reoriented hydrides at the notch tip due to applied shear stresses was much less than the rate due to corresponding applied uniaxial stresss. Moreover, the process in shear appears to be more sensitive to the inital hydride size. Attempts to elucidate the fracture mechanism by fractographic examination using scanning and replica transmission electron microscopy proved to be inconclusive because of smearing of the fracture face. (auth)

  7. Delayed hydride cracking of zirconium alloy fuel cladding

    International Nuclear Information System (INIS)

    2010-10-01

    This report describes the work performed in a coordinated research project on Hydrogen and Hydride Degradation of the Mechanical and Physical Properties of Zirconium Alloys. It is the second in the series. In 2005-2009 that work was extended within a new CRP called Delayed Hydride Cracking in Zirconium Alloy Fuel Cladding. The project consisted of adding hydrogen to samples of Zircaloy-4 claddings representing light water reactors (LWRs), CANDU and Atucha, and measuring the rates of delayed hydride cracking (DHC) under specified conditions. The project was overseen by a supervisory group of experts in the field who provided advice and assistance to participants as required. All of the research work undertaken as part of the CRP is described in this report, which includes details of the experimental procedures that led to a consistent set of data for LWR cladding. The participants and many of their co-workers in the laboratories involved in the CRP contributed results and material used in this report, which compiles the results, their analysis, discussions of their interpretation and conclusions and recommendations for future work. The research was coordinated by an advisor and by representatives in three laboratories in industrialized Member States. Besides the basic goal to transfer the technology of the testing technique from an experienced laboratory to those unfamiliar with the methods, the CRP was set up to harmonize the experimental procedures to produce consistent sets of data, both within a single laboratory and between different laboratories. From the first part of this project it was demonstrated that by following a standard set of experimental protocols, consistent results could be obtained. Thus, experimental vagaries were minimized by careful attention to detail of microstructure, temperature history and stress state in the samples. The underlying idea for the test programme was set out at the end of the first part of the project on pressure tubes. The

  8. A comparison of the smeared-dislocation and super-dislocation description of a hydrided region in the context of modelling delayed hydride cracking initiation

    International Nuclear Information System (INIS)

    Smith, E.

    1994-01-01

    In quantifying the stress distribution within a hydrided region in the context of modelling delayed hydride cracking (DHC) initiation in zirconium alloys, this paper highlights the desirability of accounting for image effects, i.e. the interaction between the hydrided region and any free surface, for example a sharp crack, blunt notch or planar surface. The super-dislocation representation of a finite thickness hydrided region is ideal for accounting for image effects. It also adequately accounts for the finite thickness, t, of a hydrided region provided, as is the case in practice, we are concerned with the stress value within the hydride at distances ≥ 0.25 t from an end of the region. (Author)

  9. Delayed hydride cracking in zirconium alloys in pressure tube nuclear reactors. Final report of a coordinated research project 1998-2002

    International Nuclear Information System (INIS)

    2004-10-01

    This report describes all of the research work undertaken as part of the IAEA coordinated research project on hydrogen and hydride induced degradation of the mechanical and physical properties of zirconium based alloys, and includes a review of the state of the art in understanding crack propagation by Delayed Hydride Cracking (DHC), and details of the experimental procedures that have produced the most consistent set of DHC rates reported in an international round-robin exercise to this date. It was concluded that 1) the techniques for performing measurements of the rate of delayed hydride cracking in zirconium alloys have been transferred from the host laboratory to other countries; 2) by following a strict procedure, a very consistent set of values of crack velocity were obtained by both individual laboratories and between the different laboratories; 3) the results over a wide range of test temperatures from materials with various microstructures fitted into the current theoretical framework for delayed hydride cracking; 4) an inter-laboratory comparison of hydrogen analysis revealed the importance of calibration and led to improvements in measurement in the participating laboratories and 5) the success of the CRP in achieving its goals has led to the initiation of some national programmes

  10. Delayed hydride cracking behavior of Zr-2.5Nb alloy pressure tubes for PHWR700

    Energy Technology Data Exchange (ETDEWEB)

    Sunil, S.; Bind, A.K.; Khandelwal, H.K.; Singh, R.N., E-mail: rnsingh@barc.gov.in; Chakravartty, J.K.

    2015-11-15

    In order to attain improved in-reactor performance few prototypes pressure tubes of Zr-2.5Nb alloy were manufactured by employing forging to break the cast structure and to obtain more homogeneous microstructure. Both double forging and single forging were employed. The forged material was further processed by employing hot extrusion, cold pilgering and autoclaving. A detailed characterization in terms of mechanical properties and microstructure of the prototype tubes were carried for qualifying it for intended use as pressure tubes in PHWR700 reactors. In this work, Delayed Hydride Cracking (DHC) behavior of the forged Zr-2.5Nb pressure tube material characterized in terms of DHC velocity and threshold stress intensity factor associated with DHC (K{sub IH}) was compared with that of conventionally manufactured material in the temperature range of 200–283 °C. Activation energy associated with the DHC in this alloy was found to be ∼60 kJ/mol for the forged materials.

  11. Delayed hydride cracking and elastic properties of Excel, a candidate CANDU-SCWR pressure tube material

    International Nuclear Information System (INIS)

    Pan, Z.L.

    2010-01-01

    Excel, a Zr alloy which contains 3.5%Sn, 0.8%Nb and 0.8%Mo, shows high strength, good corrosion resistance, excellent creep-resistance and dimension stability and thus is selected as a candidate pressure tube material for CANDU-SCWR. In the present work, the delayed hydride cracking properties (K IH and the DHC growth rates), the hydrogen solubility and elastic modulus were measured in the irradiated and unirradiated Excel pressure tube material. (author)

  12. Probabilistic modeling of material resistance to crack initiation due to hydrided region overloads in CANDU Zr-2.5%Nb pressure tubes

    International Nuclear Information System (INIS)

    Gutkin, L.; Scarth, D.A.

    2014-01-01

    Zr-2.5%Nb pressure tubes in CANDU nuclear reactors are susceptible to hydride-assisted cracking at the locations of stress concentration, such as in-service flaws. Probabilistic methodology is being developed to evaluate such flaws for crack initiation due to hydrided region overloads, which occur when the applied stress acting on a flaw with an existing hydrided region at its tip exceeds the stress at which the hydrided region is formed. As part of this development, probabilistic modeling of pressure tube material resistance to overload crack initiation has been performed on the basis of a set of test data specifically designed to study the effects of non-ratcheting hydride formation conditions and load reduction prior to hydride formation. In the modeling framework, the overload resistance is represented as a power-law function of the material resistance to initiation of delayed hydride cracking under constant loading, where both the overload crack initiation coefficient and the overload crack initiation exponent vary with the flaw geometry. In addition, the overload crack initiation coefficient varies with the extent of load reduction prior to hydride formation as well as the number of non-ratcheting hydride formation thermal cycles. (author)

  13. Probabilistic modeling of material resistance to crack initiation due to hydrided region overloads in CANDU Zr-2.5%Nb pressure tubes

    Energy Technology Data Exchange (ETDEWEB)

    Gutkin, L.; Scarth, D.A. [Kinectrics Inc., Toronto, ON (Canada)

    2014-07-01

    Zr-2.5%Nb pressure tubes in CANDU nuclear reactors are susceptible to hydride-assisted cracking at the locations of stress concentration, such as in-service flaws. Probabilistic methodology is being developed to evaluate such flaws for crack initiation due to hydrided region overloads, which occur when the applied stress acting on a flaw with an existing hydrided region at its tip exceeds the stress at which the hydrided region is formed. As part of this development, probabilistic modeling of pressure tube material resistance to overload crack initiation has been performed on the basis of a set of test data specifically designed to study the effects of non-ratcheting hydride formation conditions and load reduction prior to hydride formation. In the modeling framework, the overload resistance is represented as a power-law function of the material resistance to initiation of delayed hydride cracking under constant loading, where both the overload crack initiation coefficient and the overload crack initiation exponent vary with the flaw geometry. In addition, the overload crack initiation coefficient varies with the extent of load reduction prior to hydride formation as well as the number of non-ratcheting hydride formation thermal cycles. (author)

  14. Size determinations, by ultrasonic techniques, of cracks in hydride blisters formed in Zr-2.5 % Nb pressure tubes

    International Nuclear Information System (INIS)

    Trujillo Badillo, Giovanna; Desimone, Carlos; Domizzi, Gladys

    1999-01-01

    Non destructive techniques (NDT) are very useful in the detection of flaws produced in structural components in service. During the service of CANDU nuclear power reactors, it is possible that pressure tubes (PT) may contact calandria tubes (CT). After the PT/CT contact, zirconium hydride blisters may form at the point of contact depending on the concentration of hydrogen/deuterium. Zirconium hydride is brittle and is therefore prone to cracking under stress. Ultrasonic NDT is routinely use during PT in service inspection. In order to be able of detecting cracked blisters, it is of great importance the development of standards to calibrate the employed equipment. On this purpose, hydride blisters were grown, in laboratory, on sections of pressure tube. The cracks in the blisters were detected and measured by ultrasonic techniques. The obtained results were compared with measurements carried out in optic microscope, on successive sections of the samples. The crack tip diffraction technique was found to be the more effective for the mentioned ends. (author)

  15. Fatigue crack initiation at complex flaws in hydrided Zr-2.5%Nb samples from CANDU pressure tubes

    International Nuclear Information System (INIS)

    Stoica, L.; Radu, V.

    2016-01-01

    The paper addresses the phenomena which occur at locations where the oxide layer of the inner surface of CANDU tube pressure is damaged by the contact with the fuel element or due to the action of hard particles at the interface between the tube pressure and bearing pad of fuel element. In such situations generate defects, which most often are defects known as ''bearing pad fretting flaws'' or ''debris fretting flaws''. In this paper the experiments are completed in a series of previous works on the mechanical fatigue phenomenon on samples prepared from the pressure tube Zr-2.5% Nb alloy. The phenomenon of variable mechanical stress (or fatigue) may lead to initiation of cracks at the tip of volumetric flaws, according to the accumulation of hydrides, which then fractures and can propagate through the tube wall pressure due to the mechanism of type DHC (Delayed Hydride Cracking). (authors)

  16. The effect of texture variation on delayed hydride cracking behavior of Zr-2.5%Nb plate

    International Nuclear Information System (INIS)

    Kim, S.-S.; Kim, Y.S.; Kuk, I.-H.

    1999-01-01

    In order to investigate the effect of texture variation on the delayed hydride cracking behavior in Zr-2.5%Nb plates, crack growth rate and K IH tests have been carried out at temperature ranges varying from 415 to 506 K after texture modification by rolling. The texture variation of plates was achieved by direct-rolling and cross-rolling. Texture was measured through the determination of inverse pole figures, from which the basal pole components were calculated. The results have shown that the texture of a plate in which the basal poles are concentrated in the transverse direction can be changed significantly by cross-rolling. The crack growth rate increases exponentially with the basal pole component in the direction normal to the cracking plane. The increase in stress relieving temperature on cold worked material reduces crack growth rate. K IH decreases linearly with the basal pole component, and a behavior of which could be explained by the uniformly dispersed aggregate composite theory. (orig.)

  17. Effect of the hydrogen content and cooling velocity in the hydrides precipitation in α-zirconium

    International Nuclear Information System (INIS)

    Ramanathan, L.V.

    1983-01-01

    Zirconium specimens containing 50-300 ppm hydrogen have been cooled from the hydrogen solution treatment temperature at different rates by furnace cooling, air cooling and oil quenching. Optical and electron microscopical investigations have revealed grain boundary Δ - hydrides in slowly cooled specimens. At higher cooling rates γ and Δ hydrides have been found precipitated both intergranularly and intragranularly. Grain boundary Δ hydrides have been also observed in oil quenched specimens with 300 ppm hydrogen. Quenched specimens have revealed Widmanstatten and parallel plate type hydride morphologies. (Author) [pt

  18. Threshold stress intensity factor for delayed hydride cracking of a recrystallized N18 alloy plate along the rolling direction

    Energy Technology Data Exchange (ETDEWEB)

    Sun Chao, E-mail: sunchaonpic@yahoo.com.c [National Key Laboratory for Nuclear Fuel and Materials, Nuclear Power Institute of China, P.O. Box 436, Chengdu 610041 (China); Tan Jun; Ying Shihao; Peng Qian [National Key Laboratory for Nuclear Fuel and Materials, Nuclear Power Institute of China, P.O. Box 436, Chengdu 610041 (China); Li Cong [Department of R and D, State Nuclear Power Technology Corporation Limited, Beijing (China)

    2010-11-15

    The objective of this study is to obtain the threshold stress intensity factor, K{sub IH}, for an initiation of delayed hydride cracking in a recrystallized N18 (Zr-Sn-Nb-Fe-Cr) alloy plate which was manufactured in China, gaseously charged with 60 ppm of hydrogen by weight. By using both the load increasing method and load drop method, the K{sub IH}'s along the rolling direction were investigated over a temperature range of 150-255 {sup o}C. The results showed that K{sub IH} along the rolling direction was found to be higher in the load increasing method than that in the load drop method. In the load increasing method, K{sub IH}'s of the N18 alloy plate appeared to be in the range of 31-32.5MPa{radical}(m), and K{sub IH} in the load drop method appeared to be in the range of 27.5-28.6MPa{radical}(m). This means that the N18 alloy plate has high tolerance for DHC initiation along the rolling direction. The texture of a N18 alloy plate was investigated using an X-ray diffraction and the K{sub IH} was discussed based on texture and analytically as a function of the tilting angle of hydride habit planes to the cracking plane.

  19. Threshold stress intensity factor for delayed hydride cracking of a recrystallized N18 alloy plate along the rolling direction

    International Nuclear Information System (INIS)

    Sun Chao; Tan Jun; Ying Shihao; Peng Qian; Li Cong

    2010-01-01

    The objective of this study is to obtain the threshold stress intensity factor, K IH , for an initiation of delayed hydride cracking in a recrystallized N18 (Zr-Sn-Nb-Fe-Cr) alloy plate which was manufactured in China, gaseously charged with 60 ppm of hydrogen by weight. By using both the load increasing method and load drop method, the K IH 's along the rolling direction were investigated over a temperature range of 150-255 o C. The results showed that K IH along the rolling direction was found to be higher in the load increasing method than that in the load drop method. In the load increasing method, K IH 's of the N18 alloy plate appeared to be in the range of 31-32.5MPa√(m), and K IH in the load drop method appeared to be in the range of 27.5-28.6MPa√(m). This means that the N18 alloy plate has high tolerance for DHC initiation along the rolling direction. The texture of a N18 alloy plate was investigated using an X-ray diffraction and the K IH was discussed based on texture and analytically as a function of the tilting angle of hydride habit planes to the cracking plane.

  20. Delayed Hydride Cracking Mechanism in Zirconium Alloys and Technical Requirements for In-Service Evaluation of Zr-2.5Nb Tubes with Flaws

    International Nuclear Information System (INIS)

    Kim, Young Suk

    2007-01-01

    In association with periodic inspection of CANDU nuclear power plant components, Canadian Standards Association issued CSA N285.8 in 2005 as technical requirements for in-service evaluation of zirconium alloy pressure tubes in CANDU reactors. This first version, CSA N285.8 involves procedures for, firstly, the evaluation of pressure tube flaws, secondly, the evaluation of pressure tube to calandria tube contact and, thirdly, the assessment of a reactor core, and material properties and derived quantities. The evaluation of pressure tube flaws includes delayed hydride cracking evaluation the procedures of which are stipulated based on the existing delayed hydride cracking models. For example, the evaluation of flaw-tip hydride precipitation during reactor cooldown involves a procedure to calculate the equilibrium hydrogen equivalent concentration in solution at the flaw tip, Htipas follows: Htip=Hfexp[- (VH delta no.)/RT], where Hf is the total bulk hydrogen equivalent concentration, VH partial molar volume of hydrogen in zirconium, δ a difference in hydrostatic stress between the bulk and the crack tip. When Htip ≥TSSP at temperature, then flaw-tip hydride is predicted to precipitate. Eq. (1) suggests that hydrogen concentration at the crack tip would increase due to an work energy given by the difference in the hydrostatic stress

  1. Threshold velocity for environmentally-assisted cracking in low alloy steels

    International Nuclear Information System (INIS)

    Wire, G.L.; Kandra, J.T.

    1997-01-01

    Environmentally Assisted Cracking (EAC) in low alloy steels is generally believed to be activated by dissolution of MnS inclusions at the crack tip in high temperature LWR environments. EAC is the increase of fatigue crack growth rate of up to 40 to 100 times the rate in air that occurs in high temperature LWR environments. A steady state theory developed by Combrade, suggested that EAC will initiate only above a critical crack velocity and cease below this same velocity. A range of about twenty in critical crack tip velocities was invoked by Combrade, et al., to describe data available at that time. This range was attributed to exposure of additional sulfides above and below the crack plane. However, direct measurements of exposed sulfide densities on cracked specimens were performed herein and the results rule out significant additional sulfide exposure as a plausible explanation. Alternatively, it is proposed herein that localized EAC starting at large sulfide clusters reduces the calculated threshold velocity from the value predicted for a uniform distribution of sulfides. Calculations are compared with experimental results where the threshold velocity has been measured, and the predicted wide range of threshold values for steels of similar sulfur content but varying sulfide morphology is observed. The threshold velocity decreases with the increasing maximum sulfide particle size, qualitatively consistent with the theory. The calculation provides a basis for a conservative minimum velocity threshold tied directly to the steel sulfur level, in cases where no details of sulfide distribution are known

  2. Comparison of Effective Medium Schemes For Seismic Velocities in Cracked Anisotropic Rock

    Science.gov (United States)

    Morshed, S.; Chesnokov, E.

    2017-12-01

    Understanding of elastic properties of reservoir rock is necessary for meaningful interpretation and analysis of seismic measurements. The elastic properties of a rock are controlled by the microstructural properties such as mineralogical composition, pore and crack distribution, texture and pore connectivity. However, seismic scale is much larger than microstructure scale. Understanding of macroscopic properties at relevant seismic scale (e.g. borehole sonic data) comes from effective medium theory (EMT). However, most of the effective medium theories fail at high crack density as the interactions of strain fields of the cracks can't be ignored. We compare major EMT schemes from low to high crack density. While at low crack density all method gives similar results, at high crack density they differ significantly. Then, we focus on generalized singular approximation (GSA) and effective field (EF) method as they allow cracks beyond the limit of dilute concentrations. Additionally, we use grain contact (GC) method to examine the stiffness constants of the rock matrix. We prepare simple models of a multiphase media containing low to high concentrations of isolated pores. Randomly oriented spherical pores and horizontally oriented ellipsoidal (aspect ratio =0.1) pores have been considered. For isolated spherical pores, all the three methods show exactly same or similar results. However, inclusion interactions are different in different directions in case of horizontal ellipsoidal pores and individual stiffness constants differ greatly from one method to another at different crack density. Stiffness constants remain consistent in GSA method whereas some components become unusual in EF method at a higher crack density (>0.15). Finally, we applied GSA method to interpret ultrasonic velocities of core samples. Mineralogical composition from X-ray diffraction (XRD) data and lab measured porosity data have been utilized. Both compressional and shear wave velocities from GSA

  3. A study on the delayed hydride cracking mechanism in cold worked Zr-2.5Nb, heat treated Zr-2.5Nb and zircaloy-2 pressure tubes

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Kwang Sik

    1992-02-15

    Cold worked Zr-2.5Nb, heat treated Zr-2.5Nb and Zircaloy-2 pressure tubes were hydrided to the hydrogen concentration of 68 ppm, 49 ppm and 242-411 ppm, respectively, and compact tension specimens were machined from the hydrided materials. The crack growth rate by delayed hydride cracking was measured by potential drop method at various temperatures on the above mentioned three types of specimens. The activation energy obtained were 43 KJ/mol for cold worked Zr-2.5Nb and 37 KJ/mol for heat treated Zr-2.5Nb, which were in good agreements with that of Coleman (1977), while they were lower than the activation energy of 65.5 KJ/mol obtained by Simpson-puls (1979) and 71.5 KJ/mol by Ambler (1984). The DHC growth rate in Zircaloy-2 were about one fifth of that of Zr-2.5Nb, which is due to the texture and material strength effects. Striations which indicate stepwise DHC growth were observed at fracture surface by scanning electron microscope and unsymmetric crack tunnellings were also observed, which seems to be due to the difference in hydrogen diffusion rate caused by the difference in stress fields between inner and outer surface. The comparison of test results with the DHC growth rate calculated by Simpson-puls model showed good agreement at high temperatures, whereas at the lower temperatures the crack growth rates were 2.5 times higher than the calculated values.

  4. A study on the delayed hydride cracking mechanism in cold worked Zr-2.5Nb, heat treated Zr-2.5Nb and zircaloy-2 pressure tubes

    International Nuclear Information System (INIS)

    Choi, Kwang Sik

    1992-02-01

    Cold worked Zr-2.5Nb, heat treated Zr-2.5Nb and Zircaloy-2 pressure tubes were hydrided to the hydrogen concentration of 68 ppm, 49 ppm and 242-411 ppm, respectively, and compact tension specimens were machined from the hydrided materials. The crack growth rate by delayed hydride cracking was measured by potential drop method at various temperatures on the above mentioned three types of specimens. The activation energy obtained were 43 KJ/mol for cold worked Zr-2.5Nb and 37 KJ/mol for heat treated Zr-2.5Nb, which were in good agreements with that of Coleman (1977), while they were lower than the activation energy of 65.5 KJ/mol obtained by Simpson-puls (1979) and 71.5 KJ/mol by Ambler (1984). The DHC growth rate in Zircaloy-2 were about one fifth of that of Zr-2.5Nb, which is due to the texture and material strength effects. Striations which indicate stepwise DHC growth were observed at fracture surface by scanning electron microscope and unsymmetric crack tunnellings were also observed, which seems to be due to the difference in hydrogen diffusion rate caused by the difference in stress fields between inner and outer surface. The comparison of test results with the DHC growth rate calculated by Simpson-puls model showed good agreement at high temperatures, whereas at the lower temperatures the crack growth rates were 2.5 times higher than the calculated values

  5. Cracked rocks with positive and negative Poisson's ratio: real-crack properties extracted from pressure dependence of elastic-wave velocities

    Science.gov (United States)

    Zaitsev, Vladimir Y.; Radostin, Andrey V.; Dyskin, Arcady V.; Pasternak, Elena

    2017-04-01

    We report results of analysis of literature data on P- and S-wave velocities of rocks subjected to variable hydrostatic pressure. Out of about 90 examined samples, in more than 40% of the samples the reconstructed Poisson's ratios are negative for lowest confining pressure with gradual transition to the conventional positive values at higher pressure. The portion of rocks exhibiting negative Poisson's ratio appeared to be unexpectedly high. To understand the mechanism of negative Poisson's ratio, pressure dependences of P- and S-wave velocities were analyzed using the effective medium model in which the reduction in the elastic moduli due to cracks is described in terms of compliances with respect to shear and normal loading that are imparted to the rock by the presence of cracks. This is in contrast to widely used descriptions of effective cracked medium based on a specific crack model (e.g., penny-shape crack) in which the ratio between normal and shear compliances of such a crack is strictly predetermined. The analysis of pressure-dependences of the elastic wave velocities makes it possible to reveal the ratio between pure normal and shear compliances (called q-ratio below) for real defects and quantify their integral content in the rock. The examination performed demonstrates that a significant portion (over 50%) of cracks exhibit q-ratio several times higher than that assumed for the conventional penny-shape cracks. This leads to faster reduction of the Poisson's ratio with increasing the crack concentration. Samples with negative Poisson's ratio are characterized by elevated q-ratio and simultaneously crack concentration. Our results clearly indicate that the traditional crack model is not adequate for a significant portion of rocks and that the interaction between the opposite crack faces leading to domination of the normal compliance and reduced shear displacement discontinuity can play an important role in the mechanical behavior of rocks.

  6. Study of crack propagation velocity in steel tanks of PWR type reactor

    International Nuclear Information System (INIS)

    Amzallac, C.; Bernard, J.L.; Slama, G.

    1983-05-01

    Description and results of a serie of tests carried out on crack propagation velocity of steels in PWR environment (pressurized high temperature water), in order to examine the effects of metallurgical parameters such as chemical composition of steel, especially sulfur and carbon content, and steel type (laminate or forged steels), effects of mechanical parameters such as loading ratio, cycle form, frequency and application mode of loads and of chemical parameters (anodal dissolution or fatigue with hydrogen) [fr

  7. Hydride embrittlement in zircaloy components

    Energy Technology Data Exchange (ETDEWEB)

    Lobo, Raquel M.; Andrade, Arnaldo H.P.; Castagnet, Mariano, E-mail: rmlobo@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2011-07-01

    Zirconium alloys are used in nuclear reactor cores under high-temperature water environment. During service, hydrogen is generated by corrosion processes, and it is readily absorbed by these materials. When hydrogen concentration exceeds the terminal solid solubility, the excess hydrogen precipitates as zirconium hydride (ZrH{sub 2}) platelets or needles. Zirconium alloys components can fail by hydride cracking if they contain large flaws and are highly stressed. Zirconium alloys are susceptible to a mechanism for crack initiation and propagation termed delayed hydride cracking (DHC). The presence of brittle hydrides, with a K{sub Ic} fracture toughness of only a few MPa{radical}m, results in a severe loss in ductility and toughness when platelet normal is oriented parallel to the applied stress. In plate or tubing, hydrides tend to form perpendicular to the thickness direction due to the texture developed during fabrication. Hydrides in this orientation do not generally cause structural problems because applied stresses in the through-thickness direction are very low. However, the high mobility of hydrogen in a zirconium lattice enables redistribution of hydrides normal to the applied stress direction, which can result in localized embrittlement. When a platelet reaches a critical length it ruptures. If the tensile stress is sufficiently great, crack initiation starts at some of these hydrides. Crack propagation occurs by repeating the same process at the crack tip. Delayed hydride cracking can degrade the structural integrity of zirconium alloys during reactor service. The paper focuses on the fracture mechanics and fractographic aspects of hydride material. (author)

  8. Tests at constant extension velocity CERT for the evaluation of environmental assisted cracking

    International Nuclear Information System (INIS)

    Arganis J, C.R.

    1994-01-01

    The test at constant velocity extension (CERT) is firmly established as a technique for the study of environmentally cracking (stress corrosion and hydrogen embrittlement) and is widely used, mainly in mechanistic studies. In CERT test, an increasing charge is applied to a sample and the extension velocity is hold up constant to allow that corrosion interplay in the process. The type of crack and ductility measurements with the conditions for testing are compared with a cracked sample in an inert media. Required equipment: 1) A charge mechanism capable to control the elongation of test samples in a rank of 1 x 10 -5 to 1 x 10 -7 inch/inch sec and capable to hold up constant such elongation. 2) A suitable standard (Astm standard A-370). 3) A chamber or cell for the media in which the chemical composition of the solution, the gas composition, the pressure, temperature and electrochemical potential can be controlled in order to simulate with anticipation the service conditions. The cell must allow the mechanical access of the test sample to the charge train of the machine. (Author)

  9. Crack wave propagation along fracture with an induced low-velocity layer; Teisokudo no chika kiretsu zone wo denpasuru kiretsuha no bunsan tokusei

    Energy Technology Data Exchange (ETDEWEB)

    Nagano, K [Muroran Institute of Technology, Hokkaido (Japan)

    1997-10-22

    A study has been performed on underground cracks working as a geothermy reservoir layer, with respect to characteristics of elastic waves propagating with their energy concentrated on a boundary between rocks around the cracks and fluid in the underground cracks, or `crack waves`. The study has modeled a multi-crack reservoir layer according to the three-layer structure of the fluid layer and low-velocity solid layers around the former layer, whereas crack waves propagating therein were discussed for their dispersion characteristics. As a result of discussions, a guideline to the crack wave measurement at actual fields was put together as follows: because the low-velocity layer affects the dispersion characteristics of the crack waves, the structure and characteristics of the multi-crack reservoir layer may possibly be evaluated by measuring the velocity of the crack waves; evaluating the low-velocity layers requires proper selection of frequency of the crack wave to be measured; for example, at the Higashi Hachimantai field, a crack wave of several hundred hertz must be analyzed; and thickness of the low-velocity layers around main cracks, which can be estimated from the velocity of the crack wave is two meters at the greatest. 6 refs., 3 figs., 2 tabs.

  10. On the effect of temperature on the threshold stress intensity factor of delayed hydride cracking in light water reactor fuel cladding

    Energy Technology Data Exchange (ETDEWEB)

    Holston, Anna-MariaAlvarez; Stjarnsater, Johan [Studsvik Nuclear AB, Nykoping (Sweden)

    2017-06-15

    Delayed hydride cracking (DHC) was first observed in pressure tubes in Canadian CANDU reactors. In light water reactors, DHC was not observed until the late 1990s in high-burnup boiling water reactor (BWR) fuel cladding. In recent years, the focus on DHC has resurfaced in light of the increased interest in the cladding integrity during interim conditions. In principle, all spent fuel in the wet pools has sufficient hydrogen content for DHC to operate below 300°C. It is therefore of importance to establish the critical parameters for DHC to operate. This work studies the threshold stress intensity factor (K{sub IH}) to initiate DHC as a function of temperature in Zry-4 for temperatures between 227°C and 315°C. The experimental technique used in this study was the pin-loading testing technique. To determine the K{sub IH}, an unloading method was used where the load was successively reduced in a stepwise manner until no cracking was observed during 24 hours. The results showed that there was moderate temperature behavior at lower temperatures. Around 300°C, there was a sharp increase in K{sub IH} indicating the upper temperature limit for DHC. The value for K{sub IH} at 227°C was determined to be 2.6 ± 0.3 MPa √m.

  11. On the effect of temperature on the threshold stress intensity factor of delayed hydride cracking in light water reactor fuel cladding

    Directory of Open Access Journals (Sweden)

    Anna-Maria Alvarez Holston

    2017-06-01

    Full Text Available Delayed hydride cracking (DHC was first observed in pressure tubes in Canadian CANDU reactors. In light water reactors, DHC was not observed until the late 1990s in high-burnup boiling water reactor (BWR fuel cladding. In recent years, the focus on DHC has resurfaced in light of the increased interest in the cladding integrity during interim conditions. In principle, all spent fuel in the wet pools has sufficient hydrogen content for DHC to operate below 300°C. It is therefore of importance to establish the critical parameters for DHC to operate. This work studies the threshold stress intensity factor (KIH to initiate DHC as a function of temperature in Zry-4 for temperatures between 227°C and 315°C. The experimental technique used in this study was the pin-loading testing technique. To determine the KIH, an unloading method was used where the load was successively reduced in a stepwise manner until no cracking was observed during 24 hours. The results showed that there was moderate temperature behavior at lower temperatures. Around 300°C, there was a sharp increase in KIH indicating the upper temperature limit for DHC. The value for KIH at 227°C was determined to be 2.6 ± 0.3 MPa √m.

  12. Crack

    Science.gov (United States)

    ... spending time in a rehab facility or getting cognitive-behavioral therapy or other treatments. Right now, there are no medicines to treat a crack addiction. If you smoke crack, talking with a counselor ...

  13. Effect of membrane and through-wall bending stresses on fatigue crack growth behavior and coolant leakage velocity

    International Nuclear Information System (INIS)

    Yoo, Yeon-Sik

    2003-11-01

    This study clarified the effect of a membrane and a through-wall bending stresses on fatigue crack growth behavior and coolant leakage velocity due to irregularity of crack surface. Each stress component relates to fatigue crack growth behavior directly in general and thus the wild-used K I solutions are anticipated to give good evaluation results on it. Meanwhile, it is necessary to notify that surface irregularity for coolant leakage assessment is made by stress history in nature. Surface irregularity is known to be largely classified into the following two aspects: surface roughness due to continuous crack opening and closure behavior and surface turnover due to cyclic bending stress dominance. Therefore, the deterministic parameters on resistance of coolant leakage by surface irregularity are considered to be not only stress history but crack opening behavior. (author)

  14. Mechanical properties and fracture of titanium hydrides

    International Nuclear Information System (INIS)

    Koketsu, Hideyuki; Taniyama, Yoshihiro; Yonezu, Akio; Cho, Hideo; Ogawa, Takeshi; Takemoto, Mikio; Nakayama, Gen

    2006-01-01

    Titanium hydrides tend to suffer fracture when their thicknesses reach a critical thickness. Morphology and mechanical property of the hydrides are, however, not well known. The study aims to reveal the hydride morphology and fracture types of the hydrides. Chevron shaped plate hydrides were found to be produced on the surface of pure titanium (Grade 1) and Grade 7 titanium absorbing hydrogen. There were tree types of fracture of the hydrides, i.e., crack in hydride layer, exfoliation of the layer and shear-type fracture of the hydride plates, during the growth of the hydrides and deformation. We next estimated the true stress-strain curves of the hydrides on Grade 1 and 7 titanium using the dual Vickers indentation method, and the critical strain causing the Mode-I fine crack by indentation. Fracture strength and strain of the hydrides in Grade 1 titanium were estimated as 566 MPa and 4.5%, respectively. Those of the hydride in Grade 7 titanium were 498 MPa and 16%. Though the fracture strains estimated from the plastic instability of true stress-strain curves were approximately the half of those estimated by finite element method, the titanium hydrides were estimated to possess some extent of toughness or plastic deformation capability. (author)

  15. Influence of zeolite pore structure on product selectivities for protolysis and hydride transfer reactions in the cracking of n-pentane.

    Science.gov (United States)

    Miyaji, Akimitsu; Iwase, Yasuyoshi; Nishitoba, Toshiki; Long, Nguyen Quang; Motokura, Ken; Baba, Toshihide

    2015-02-21

    The conversion of n-pentane was carried out to examine the effects of reaction conditions on changes in product selectivities at 823 K, using zeolites with 10- and 12-membered rings. We also investigated the influence of the pore structure of these zeolites on their catalytic activities for both protolysis and hydride transfer reactions. In the first half of this work, we examined the influence of acidic proton concentration and n-pentane pressure on the reaction rates for protolysis and hydride transfer reactions using ZSM-5 zeolites. The rates of hydride transfer reactions were more influenced by pentane pressure compared to protolysis reactions, and were proportional to the square of n-pentane pressure and the concentration of acidic protons. In the second half of this work, the influence of the zeolite pore structure on changes in product selectivities with n-pentane conversion and that on the rates of protolysis and the hydride transfer reactions were revealed using various zeolites with 10- and 12-membered rings. The catalytic activities of zeolites for the protolysis and hydride transfer reactions were influenced more by the spatial volume of the zeolite cavity than the acid strength of protons on the zeolite.

  16. Thermal Cracking in Westerly Granite Monitored Using Direct Wave Velocity, Coda Wave Interferometry, and Acoustic Emissions

    Science.gov (United States)

    Griffiths, L.; Lengliné, O.; Heap, M. J.; Baud, P.; Schmittbuhl, J.

    2018-03-01

    To monitor both the permanent (thermal microcracking) and the nonpermanent (thermo-elastic) effects of temperature on Westerly Granite, we combine acoustic emission monitoring and ultrasonic velocity measurements at ambient pressure during three heating and cooling cycles to a maximum temperature of 450°C. For the velocity measurements we use both P wave direct traveltime and coda wave interferometry techniques, the latter being more sensitive to changes in S wave velocity. During the first cycle, we observe a high acoustic emission rate and large—and mostly permanent—apparent reductions in velocity with temperature (P wave velocity is reduced by 50% of the initial value at 450°C, and 40% upon cooling). Our measurements are indicative of extensive thermal microcracking during the first cycle, predominantly during the heating phase. During the second cycle we observe further—but reduced—microcracking, and less still during the third cycle, where the apparent decrease in velocity with temperature is near reversible (at 450°C, the P wave velocity is decreased by roughly 10% of the initial velocity). Our results, relevant for thermally dynamic environments such as geothermal reservoirs, highlight the value of performing measurements of rock properties under in situ temperature conditions.

  17. Velocity of crack growing of Inconel-600, sensitized, contaminated with sulphur in PWR type reactors

    International Nuclear Information System (INIS)

    Castano, M. L.; Blazquez, F.; Gomez Briceno, D.; Lagares, A.

    1998-01-01

    The origin of the vessel head penetration cracking of Jose Cabrera NPP has been attributed to an IGA/SCC process in a highly sensitized Alloy 600 assisted by sulphur species, as both acid sulphates and reduced species originated by the thermal breakdown of the cationic resins present in the primary coolant. The thermal degradation of the cationic resins leads sulphonic acid group scission and sulphates. Under the operating conditions the reduction of sulphates to sulphides is produced. The sulphides formed from the reduction of sulphate can precipitate with metallic cations and be incorporated into the oxide layers of the materials, preferably into nickel alloys. Others components at Jose Cabrera NPP are fabricated from sensitized alloy 600, as bottom vessel penetrations. In order to determine the influence of sulphur incorporated to the oxide layers of bottom vessel penetration alloy 600, an experimental work has been performed to obtained crack growth rate data under PWR primary conditions on sensitized alloy 600. (Author) 5 refs

  18. Fundamental experiments on hydride reorientation in zircaloy

    Science.gov (United States)

    Colas, Kimberly B.

    remain constant in the tensile direction during the second precipitation regime. This could be due to the fact that the face of reoriented hydride platelet is in compression once these platelets have grown to a sufficient size. The second goal of this study was to perform a spatially resolved study of the effect of a stress concentration such as a notch or a crack on hydride reorientation. Using SEM and image analysis, it was found that a sharp crack induces a different hydride microstructure than a blunt notch. In the case of sharp crack, hydrides are more localized and align more with the defect than for blunt notches. The hydride connectivity also increases close to a stress concentration which will assist in crack propagation during DHC. Using TEM, the microstructure of hydrides grown near crack tips were observed to be similar to that of circumferential hydrides grown in the bulk. The orientation relationship studied with SEM and micro-X-ray diffraction was found to be in most cases δ(111)// α(0002) for hydrides grown both near and far from stress concentrations. Using the same micro-X-ray diffraction technique local hydride and matrix elastic strains were measured and observed to vary significantly from grain to grain. It was however observed that hydrides grown close to the stress concentration are in tension in the face of the platelet, similar to reoriented hydrides, while those grown far from the stress concentration are in tension, similar to circumferential hydrides. The orders of magnitude of the measured strains in the hydrides and the zirconium matrix compared well to those predicted by finite element models. This study shows that it is possible to study hydride dissolution and precipitation in-situ using time-dependent techniques. It was found that the precipitation temperature is lowered by hydride reorientation. The evolution of hydride strains during precipitation was found to be different for unstressed, stressed and reoriented hydrides. The

  19. Break Differed Induced by Hydrides (BDIH) in Zr-2,5Nb: Microstructure effect

    International Nuclear Information System (INIS)

    Mieza, J. Ignacio; Domizzi, Gladys; Vigna, Gustavo L

    2006-01-01

    The alloys of Zr-2,5%Nb are susceptible to be degraded for the incorporation of hydrogen in their matrix. One of the mechanisms of the damage by hydrogen known as Break Differed Induced by Hydrides (BDIH) consists of the evolution, in discreet steps, of a crack inside the matrix by the fragile break of the hydride phase. The parameter utilized to characterize the severity of the process of BDIH is the velocity of advance of the crack. The variables that affect to the velocity are the solicitations of external load, the thermal cycles, the content of hydrogen and the microstructure of the material. The Zr-2, 5% Nb of nuclear use is a two-phase alloy (α-β) constituted by the phase alpha (rich in Zr) and β-Zr (rich in Nb) retained since high temperature. In service, the phase metastable evolves toward the stable phase depending on the time and the temperature of operation. In this work the effects of the evolution of the phase β-Zr on the velocity of BDIH are studied, measure with emission acoustics. The microstructural characterization was done by means of obtained dust X-rays diffraction by anodic dissolution of the material. The results obtained show the decrease of the velocity of propagation of the crack with the degree of advance of the transformation toward the phase β-Nb, consistent effect with the differences observed in the coefficients of diffusion of each phase (AG)

  20. Hydrogen induced crack growth in Grade-12 titanium

    International Nuclear Information System (INIS)

    Ahn, T.M.; Lee, K.S.

    1984-01-01

    Internal hydrogen induced crack growth rates were measured in Grade-12 titanium which is a candidate material for high-level nuclear waste containers. As-received and hydrogen charged samples (5 ppM to 330 ppM hydrogen) were used for slow crack growth measurements at constant loads using a Krak Gauge. The testing temperature ranged from room temperature to 148 0 C. The crack growth kinetics under low to moderate loads are linear, but this linear rate is interrupted by discrete fast crack jump segments with parabolic or cubic type kinetics. These fast jump segments are thought to be associated with the passage of the crack front through the alpha-beta interface phase or with the initial loading sequence. By measuring striation spacings on the fracture surface, most crack growth rates observed are found to be in stage II. The striations are considered to be associated with hydride fracture. The crack path is either transgranular in the alpha phase or interfacial in the alpha phase adjacent to the beta phase. For transgranular growth, crack growth rates are constant and slower than those for interfacial growth which is associated with fast crack growth through a high hydrogen concentration region. Most stage II crack growth rates depend slightly on the stress intensity suggesting the contribution of plastic tearing process to stage II kinetics. The activation energies for crack growth are much lower than the activation energy of hydrogen diffusion through the alpha phase, implying that hydrogen is transported along dislocations, grain boundaries or interfaces. When the temperature is increased, the crack velocity first reaches a maximum and then decreases at higher temperatures. These temperature effects come from lower hydrogen concentration trapped at dislocations or from slower hydride nucleation kinetics, both at higher temperatures

  1. HYDRIDE-RELATED DEGRADATION OF SNF CLADDING UNDER REPOSITORY CONDITIONS

    International Nuclear Information System (INIS)

    McCoy, K.

    2000-01-01

    The purpose and scope of this analysis/model report is to analyze the degradation of commercial spent nuclear fuel (CSNF) cladding under repository conditions by the hydride-related metallurgical processes, such as delayed hydride cracking (DHC), hydride reorientation and hydrogen embrittlement, thereby providing a better understanding of the degradation process and clarifying which aspects of the process are known and which need further evaluation and investigation. The intended use is as an input to a more general analysis of cladding degradation

  2. Characterisation of hydrides in a zirconium alloy, by EBSD

    International Nuclear Information System (INIS)

    Ubhi, H.S.; Larsen, K.

    2012-01-01

    Zirconium alloys are used in nuclear reactors owing to their low capture cross-section for thermal neutrons and good mechanical and corrosion properties. However, they do suffer from delayed hydrogen cracking (DHC) due to formation of hydride particles. This study shows how the electron back-scatter diffraction (EBSD) technique can be used to characterise hydrides and their orientation relationship with the matrix. Hydrided EB weld specimens were prepared by electro-polishing, characterised using Oxford instruments AZtecHKL EBSD apparatus and software attached to a FEG SEM. Hydrides were found to exist as fine intra granular plates and having the Blackburn orientation relationship, i.e. (0002)Zr//(111)hydride and (1120)Zr//(1-10)hydride. The hydrides were also found to contain sigma 3 boundaries as well as local misorientations. (author)

  3. Hydride formation on deformation twin in zirconium alloy

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Ju-Seong [Korea Atomic Energy Research Institute, 989-111 Daedeokdaero, Yuseong-gu, Daejeon, 305-353 (Korea, Republic of); Kim, Sung-Dae [Korea Institute of Material Science (KIMS), 797 Changwondaero, Changwon, Gyeongnam, 642-831 (Korea, Republic of); Yoon, Jonghun, E-mail: yooncsmd@gmail.com [Department of Mechanical Engineering, Hanyang University, 1271 Sa3-dong, Sangrok-gu, Ansan-si, Gyeonggi-do, 426-791 (Korea, Republic of)

    2016-12-15

    Hydrides deteriorate the mechanical properties of zirconium (Zr) alloys used in nuclear reactors. Intergranular hydrides that form along grain boundaries have been extensively studied due to their detrimental effects on cracking. However, it has been little concerns on formation of Zr hydrides correlated with deformation twins which is distinctive heterogeneous nucleation site in hexagonal close-packed metals. In this paper, the heterogeneous precipitation of Zr hydrides at the twin boundaries was visualized using transmission electron microscopy. It demonstrates that intragranular hydrides in the twinned region precipitates on the rotated habit plane by the twinning and intergranular hydrides precipitate along the coherent low energy twin boundaries independent of the conventional habit planes. Interestingly, dislocations around the twin boundaries play a substantial role in the nucleation of Zr hydrides by reducing the misfit strain energy.

  4. Seismic velocity anisotropy of phyllosilicate-rich rocks: characteristics inferred from experimental and crack-model studies of biotite-rich schist

    Science.gov (United States)

    Nishizawa, O.; Kanagawa, K.

    2010-07-01

    Seismic velocity anisotropy of biotite schist (30 per cent-mode biotite) was measured under confining pressures up to 150 MPa. The rock shows weak orthotropy which was altered from transverse isotropy (TI) generated by biotite-preferred orientation. The orthotropy was caused by microfolding in the rock. The velocity increase under confining pressure indicates that most crack planes are aligned parallel to the cleavage planes (silicate sheet) of the oriented biotite minerals. The anisotropy of the rock is basically TI due to both the aligned biotite minerals and cracks, which have a common symmetry axis. We found that other sheet silicate-rich rocks have a similar anisotropy with the biotite schist, in which the TI-type anisotropy is characterized by the slow P- and S-wave velocities along the symmetry axis. This is caused by the preferred orientation of sheet silicate minerals and the extremely slow P- and S-wave velocities along the axis perpendicular to the silicate sheet compared to the directions along the silicate sheet. When rock contains a large percentage of highly oriented sheet silicates, the fast and slow shear waves exchange their polarities at some off-symmetry axis directions, indicating that the qS-wave (quasi-S wave) velocity exceeds the SH-wave velocity. The phase velocity distribution of qS wave shows an asymmetry with respect to the angle from the symmetry axis, which is characterized by a bulge in this distribution located near the symmetric axis. This is inherent to most sheet silicate minerals. When crack density of aligned cracks increases, the P-wave velocity along the symmetry axis decreases considerably. The qS-wave phase velocity in the off-axis directions also decreases, in accordance with the decrease of the P velocity along the symmetry axis. The asymmetry of the qS-wave phase velocity distribution increases as the P-wave velocity decreases along the symmetry axis. This relationship can be well understood by means of Berryman

  5. The role of inversion domain boundaries in fabricating crack-free GaN films on sapphire substrates by hydride vapor phase epitaxy

    Energy Technology Data Exchange (ETDEWEB)

    Ahn, Yong Nam, E-mail: ynahn81@gmail.com; Lee, Sung Hoon, E-mail: sunghoon.lee@corning.com; Lim, Sung Keun, E-mail: sk96.lim@samsung.com; Woo, Kwang Je, E-mail: kwangje.woo@corning.com; Kim, Hyunbin, E-mail: hyunbin.kim@corning.com

    2015-03-15

    Highlights: • Atomistic simulations of inversion domain boundary (IDB) in GaN were performed. • The existence of IDBs in GaN films leads to the reduction of the film stiffness. • A sudden reduction of IDB density induces a strong tensile stress within the films. • The density of IDB in GaN film can be controlled by adjusting GaCl/NH{sub 3} flow ratio. • A microstructure of GaN buffer layer for minimization of stress was proposed. - Abstract: Inversion domain boundaries (IDBs) are frequently found in GaN films grown on sapphire substrates. However, the lack of atomic-level understandings about the effects of the IDBs on the properties of GaN films has hindered to utilize the IDBs for the stress release that minimizes the crack-formation in GaN films. This study performed atomistic computational analyses to fundamentally understand the roles of the IDBs in the development of the stresses in the GaN films. A sudden reduction of the IDB density induces a strong intrinsic stress in the GaN films, possibly leading to the mud-cracking of the films. A gradual decrease in the IDB density was achieved by slowly reducing the GaCl flux during the growth process of GaN buffer layer on sapphire substrates, and allowed us to experimentally demonstrate the successful fabrication of 4-in. crack-free GaN films. This approach may contribute to the fabrication of larger crack-free GaN films.

  6. The role of inversion domain boundaries in fabricating crack-free GaN films on sapphire substrates by hydride vapor phase epitaxy

    International Nuclear Information System (INIS)

    Ahn, Yong Nam; Lee, Sung Hoon; Lim, Sung Keun; Woo, Kwang Je; Kim, Hyunbin

    2015-01-01

    Highlights: • Atomistic simulations of inversion domain boundary (IDB) in GaN were performed. • The existence of IDBs in GaN films leads to the reduction of the film stiffness. • A sudden reduction of IDB density induces a strong tensile stress within the films. • The density of IDB in GaN film can be controlled by adjusting GaCl/NH 3 flow ratio. • A microstructure of GaN buffer layer for minimization of stress was proposed. - Abstract: Inversion domain boundaries (IDBs) are frequently found in GaN films grown on sapphire substrates. However, the lack of atomic-level understandings about the effects of the IDBs on the properties of GaN films has hindered to utilize the IDBs for the stress release that minimizes the crack-formation in GaN films. This study performed atomistic computational analyses to fundamentally understand the roles of the IDBs in the development of the stresses in the GaN films. A sudden reduction of the IDB density induces a strong intrinsic stress in the GaN films, possibly leading to the mud-cracking of the films. A gradual decrease in the IDB density was achieved by slowly reducing the GaCl flux during the growth process of GaN buffer layer on sapphire substrates, and allowed us to experimentally demonstrate the successful fabrication of 4-in. crack-free GaN films. This approach may contribute to the fabrication of larger crack-free GaN films

  7. Implementation of a constant load method, for determination of crack growth velocities in MEX-03 system of National Institute of Nuclear Research

    International Nuclear Information System (INIS)

    Diaz S, A.; Fuentes C, P.; Merino C, F.

    2009-10-01

    Whit the objective of to complete the existent techniques for susceptibility evaluation to phenomenon of stress corrosion cracking in laboratories of Applied Sciences Area of National Institute of Nuclear Research; was realized and documented the modification of a high pressure and temperature equipment, identified as MEX-03 to carry out the implementation of a growth and crack propagation assay, using a constant load method. The assay was realized to a specimen of stainless steel AISI 304l type CT of an inch, which was previously thermally sensitize, simulating the typical degradation of this materials type below operation conditions in a BWR. The MEX-03 system, consist from an annexed auto key to a load system which originally was controlled by displacement; therefore were carried out modifications to achieve the control by load. The realized adjustments allowed to maintain a constant load during all the experiment, and as much the temperature conditions (T = 288 C) as of pressure (P = 8 Mpa) were controlled during the assay realization. The steel was exposed to a conditioned ambient with hydrogen gas addition; simulating a well-known alternative chemistry as hydrogen water chemistry that is used to mitigate the phenomenon of stress corrosion cracking, main degradation mechanism of austenitic stainless steels. The continuation of the crack behavior was realized by means of electric potential fall technique and later was validated of visual form through the fractographic analysis of cracked surface. The modification and control of equipment for realization of this experiment is necessary, for what should be carried out new assays, whose results will allow to establish the effect of dynamic and static methods in velocity determination of crack growth to laboratory level; to be considered in the existent models of crack propagation in systems and components in operation. (Author)

  8. Crack closure and healing studies in WIPP [Waste Isolation Pilot Plant] salt using compressional wave velocity and attenuation measurements: Test methods and results

    International Nuclear Information System (INIS)

    Brodsky, N.S.

    1990-11-01

    Compressional wave ultrasonic data were used to qualitatively assess the extent of crack closure during hydrostatic compression of damaged specimens of WIPP salt. Cracks were introduced during constant strain-rate triaxial tests at low confining pressure (0.5 MPa) as specimens were taken to either 0.5, 1.0, or 1.5 percent axial strain. For three specimens taken to 1.0 percent axial strain, the pressure was increased to 5, 10 or 15 MPa. For the remaining specimens, pressure was raised to 15 MPa. Waveforms for compressional waves traveling both parallel and perpendicular to the direction of maximum principal stress were measured in the undamaged state, during constant strain-rate tests, and then monitored as functions of time while the specimens were held at pressure. Both wave velocities and amplitudes increased over time at pressure, indicating that cracks closed and perhaps healed. The recovery of ultrasonic wave characteristics depended upon both pressure and damage level. The higher the pressure, the greater the velocity recovery; however, amplitude recovery showed no clear correlation with pressure. For both amplitudes and velocities, recoveries were greatest in the specimens with the least damage. 13 refs., 15 figs., 1 tab

  9. Metal Hydride Compression

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Terry A. [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Bowman, Robert [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Smith, Barton [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Anovitz, Lawrence [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Jensen, Craig [Hawaii Hydrogen Carriers LLC, Honolulu, HI (United States)

    2017-07-01

    Conventional hydrogen compressors often contribute over half of the cost of hydrogen stations, have poor reliability, and have insufficient flow rates for a mature FCEV market. Fatigue associated with their moving parts including cracking of diaphragms and failure of seal leads to failure in conventional compressors, which is exacerbated by the repeated starts and stops expected at fueling stations. Furthermore, the conventional lubrication of these compressors with oil is generally unacceptable at fueling stations due to potential fuel contamination. Metal hydride (MH) technology offers a very good alternative to both conventional (mechanical) and newly developed (electrochemical, ionic liquid pistons) methods of hydrogen compression. Advantages of MH compression include simplicity in design and operation, absence of moving parts, compactness, safety and reliability, and the possibility to utilize waste industrial heat to power the compressor. Beyond conventional H2 supplies of pipelines or tanker trucks, another attractive scenario is the on-site generating, pressuring and delivering pure H2 at pressure (≥ 875 bar) for refueling vehicles at electrolysis, wind, or solar generating production facilities in distributed locations that are too remote or widely distributed for cost effective bulk transport. MH hydrogen compression utilizes a reversible heat-driven interaction of a hydride-forming metal alloy with hydrogen gas to form the MH phase and is a promising process for hydrogen energy applications [1,2]. To deliver hydrogen continuously, each stage of the compressor must consist of multiple MH beds with synchronized hydrogenation & dehydrogenation cycles. Multistage pressurization allows achievement of greater compression ratios using reduced temperature swings compared to single stage compressors. The objectives of this project are to investigate and demonstrate on a laboratory scale a two-stage MH hydrogen (H2) gas compressor with a

  10. Creating nanoshell on the surface of titanium hydride bead

    Directory of Open Access Journals (Sweden)

    PAVLENKO Vyacheslav Ivanovich

    2016-12-01

    Full Text Available The article presents data on the modification of titanium hydride bead by creating titanium nanoshell on its surface by ion-plasma vacuum magnetron sputtering. To apply titanium nanoshell on the titanium hydride bead vacuum coating plant of multifunctional nanocomposite coatings QVADRA 500 located in the center of high technology was used. Analysis of the micrographs of the original surface of titanium hydride bead showed that the microstructure of the surface is flat, smooth, in addition the analysis of the microstructure of material surface showed the presence of small porosity, roughness, mainly cavities, as well as shallow longitudinal cracks. The presence of oxide film in titanium hydride prevents the free release of hydrogen and fills some micro-cracks on the surface. Differential thermal analysis of both samples was conducted to determine the thermal stability of the initial titanium hydride bead and bead with applied titanium nanoshell. Hydrogen thermal desorption spectra of the samples of the initial titanium hydride bead and bead with applied titanium nanoshell show different thermal stability of compared materials in the temperature range from 550 to 860о C. Titanium nanoshells applied in this way allows increasing the heat resistance of titanium hydride bead – the temperature of starting decomposition is 695о C and temperature when decomposition finishes is more than 1000о C. Modified in this way titanium hydride bead can be used as a filler in the radiation protective materials used in the construction or upgrading biological protection of nuclear power plants.

  11. Hydrogen-induced cracking: 2

    International Nuclear Information System (INIS)

    Puls, M.P.

    1984-12-01

    There is a strong motivation for understanding the factors controlling zirconium hydride reorientation under stress because of the important role this plays in hydrogen-induced crack growth and/or crack initiation in zirconium and its alloys, particularly under thermal cycling conditions. Following an approach developed by Sauthoff, an analysis of the orienting effect of external stress on the nucleation, growth and coarsening of γ- and delta-zirconium hydride precipitates in zirconium and its alloys is presented. The analysis is based on a previous theoretical study of some of the factors affecting hydride solubility in stressed and unstressed solids. Expressions are derived for the effect of stress on nucleation, growth and coarsening. We conclude, on the basis of these that the preferential orientation of hydride precipitates under stress is most efficient during the nucleation stage. The reason for this is that the overall driving force for nucleation, for the chosen parameters and the usual experimental conditions, is fairly small. Therefore, the driving force for orientating under stress can be a substantial fraction of the overall driving force. The analysis shows that hydride growth is unlikely to play a role in preferential orientation, but coarsening could be important under carefully chosen experimental conditions, which may be relevant to the hydride-cracking process

  12. The influence of hydride on fracture toughness of recrystallized Zircaloy-4 cladding

    Energy Technology Data Exchange (ETDEWEB)

    Hsu, Hsiao-Hung, E-mail: 175877@mail.csc.com.tw [Institute of Nuclear Energy Research (INER), Lungtan Township, Taoyuan County 32546, Taiwan, ROC (China); China Steel Corporation, Hsiao Kang District, Kaohsiung 81233, Taiwan, ROC (China); Chiang, Ming-Feng [China Steel Corporation, Hsiao Kang District, Kaohsiung 81233, Taiwan, ROC (China); Chen, Yen-Chen [Institute of Nuclear Energy Research (INER), Lungtan Township, Taoyuan County 32546, Taiwan, ROC (China)

    2014-04-01

    In this work, RXA cladding tubes were hydrogen-charged to target hydrogen content levels between 150 and 800 wppm (part per million by weight). The strings of zirconium hydrides observed in the cross sections are mostly oriented in the circumferential direction. The fracture toughness of hydrided RXA Zircaloy-4 cladding was measured to evaluate its hydride embrittlement susceptibility. With increasing hydrogen content, the fracture toughness of hydrided RXA cladding decreases at both 25 °C and 300 °C. Moreover, highly localized hydrides (forming a hydride rim) aggravate the degradation of the fracture properties of RXA Zircaloy-4 cladding at both 25 °C and 300 °C. Brittle features in the form of quasi-cleavages and secondary cracks were observed on the fracture surface of the hydride rim, even for RXA cladding tested at 300 °C.

  13. Zirconium hydride containing explosive composition

    Science.gov (United States)

    Walker, Franklin E.; Wasley, Richard J.

    1981-01-01

    An improved explosive composition is disclosed and comprises a major portion of an explosive having a detonation velocity between about 1500 and 10,000 meters per second and a minor amount of a donor additive comprising a non-explosive compound or mixture of non-explosive compounds which when subjected to an energy fluence of 1000 calories/cm.sup.2 or less is capable of releasing free radicals each having a molecular weight between 1 and 120. Exemplary donor additives are dibasic acids, polyamines and metal hydrides.

  14. Solubility of hydrogen isotopes in stressed hydride-forming metals

    International Nuclear Information System (INIS)

    Coleman, C.E.; Ambler, J.F.R.

    1983-01-01

    Components made from hydride-forming metals can be brittle when particles of hydride are present. The solid solubility limit of hydrogen in these metals needs to be known so that fracture resistance can be properly assessed. Stress affects the solubility of hydrogen in metals. As hydrogen dissolves the metal volume increases, an applied hydrostatic tensile stress supplies work to increase the solubility. Precipitation of hydrides increases the volume further. A hydrostatic tensile stress promotes the formation of hydrides and tends to reduce the terminal solubility. For materials containing hydrogen in solution in equilibrium with hydrides, the effect of stress on the terminal solubility is given. Hydrogen migrates up tensile stress gradients because of the effect of stress on the solubility and solubility limit. Consequently, hydrogen concentrates at flaws. When hydrides are present in the metal matrix, those remote from the flaw tip will preferentially dissolve in favor of those precipitated at the flaw. If the stress is large enough, at some critical condition the hydrides at the flaw will crack. This is delayed hydrogen cracking. Notched and fatigue-cracked cantilever beam specimens (6) (38 x 4 x 3 mm) were machined from the circumferential direction of several cold-worked Zr-2.5 at. % Nb pressure tubes. The chemical compositions had the ranges (in atomic %) Nb - 2.5 to 2.7; O - 0.58 to 0.71; H - 0.018 to 0.18. The effect of test temperature is for a specimen containing 0.13 at. % protium and 0.29 at .% deuterium. Between 505 K and 530 K was less than 1 hr, between 530 K and 537 K it increased to 25.8 h, while at 538 K no cracking was observed up to the 54 h

  15. Preparation of beryllium hydride

    International Nuclear Information System (INIS)

    Roberts, C.B.

    1975-01-01

    A process is described for preparing beryllium hydride by the direct reaction of beryllium borohydride and aluminum hydride trimethylamine adduct. Volatile by-products and unreacted reactants are readily removed from the product mass by sublimation and/or evaporation. (U.S.)

  16. Digital image correlation, acoustic emission and ultrasonic pulse velocity for the detection of cracks in the concrete buffer of the Belgian nuclear supercontainer

    International Nuclear Information System (INIS)

    Iliopoulos, Sokratis; Tsangouri, Eleni; Aggelis, Dimitrios G.; Pyl, Lincy; Areias, Lou; Vrije Univ., Brussels

    2014-01-01

    The long term management of high-level and heat emitting radioactive waste is a worldwide concern, as it directly influences the environment and future generations. To address this issue, the Belgian Agency for Radioactive Waste and Enriched Fissile Materials has come up with the conceptual design of a massive concrete structure called Supercontainer. The feasibility to construct these structures is being evaluated through a number of scaled models that are tested using classical as well as state of the art measurement techniques. In the current paper, the results obtained from the simultaneous application of the Digital Image Correlation (DIC), the Acoustic Emission (AE) and the Ultrasonic Pulse Velocity (UPV) nondestructive testing techniques on the second scaled model for the detection and monitoring of cracks will be presented.

  17. Regenerative Hydride Heat Pump

    Science.gov (United States)

    Jones, Jack A.

    1992-01-01

    Hydride heat pump features regenerative heating and single circulation loop. Counterflow heat exchangers accommodate different temperatures of FeTi and LaNi4.7Al0.3 subloops. Heating scheme increases efficiency.

  18. Alkali metal hydride formation

    International Nuclear Information System (INIS)

    1976-01-01

    The present invention relates to a method of producing alkali metal hydrides by absorbing hydrogen gas under pressure into a mixture of lower alkyl mono amines and alkali metal alkyl amides selected from sodium and potassium amides formed from said amines. The present invention also includes purification of a mixture of the amines and amides which contain impurities, such as is used as a catalytic exchange liquid in the enrichment of deuterium, involving the formation of the alkali metal hydride

  19. Blistering and hydride embrittlement

    International Nuclear Information System (INIS)

    Louthan, M.R. Jr.

    1975-01-01

    The effects of hydrogen on the mechanical properties of metals have been categorized into several groups. Two of the groups, hydrogen blistering and hydride embrittlement, are reasonably well understood, and problems relating to their occurrence may be avoided if that understanding is used as a basis for selecting alloys for hydrogen service. Blistering and hydride embrittlement are described along with several techniques of materials selection and used to minimize their adverse effects. (U.S.)

  20. Criteria for fracture initiation at hydrides in zirconium alloys. Pt. 1

    International Nuclear Information System (INIS)

    Shi, S.Q.; Puls, M.P.

    1994-01-01

    A theoretical framework for the initiation of delayed hydride cracking (DHC) in zirconium is proposed for two different types of initiating sites, i.e., a sharp crack tip (considered in this part) and a shallow notch (considered in part II). In the present part I, an expression for K IH is derived which shows that K IH depends on the size and shape of the hydride precipitated at the crack tip, the yield stress and elastic moduli of the material and the fracture stress of the hydride. If the hydride at the crack tip extends in length at constant thickness, then K IH increases as the square root of the hydride thickness. Thus a microstructure favouring the formation of thicker hydrides at the crack tip would result in an increased K IH . K IH increases slightly with temperature up to a temperature at which there is a more rapid increase. The temperature at which there is a more rapid increase in K IH will increase as the yield stress increases. The model also predicts that an increase in yield stress due to irradiation will cause an overall slight decrease in K IH compared to unirradiated material. There is good agreement between the overall predictions of the theory and experimental results. It is suggested that more careful evaluations of some key parameters are required to improve on the theoretical estimates. (orig.)

  1. Examination of parameters affecting overload fracture behavior of flaw-tip hydrides in Zr-2.5Nb pressure tubes in Candu reactors

    International Nuclear Information System (INIS)

    Cui, J.; Shek, G.K.; Wang, Z.R.

    2007-01-01

    Service-induced flaws in Zr-2.5Nb alloy pressure tubes in Candu (Canada Deuterium Uranium Reactors) nuclear reactors are susceptible to a crack initiation and growth mechanism known as Delayed Hydride Cracking (DHC), which is a repetitive process that involves hydrogen diffusion, hydride precipitation, growth and fracture of a hydride region at the flaw-tip under a constant load. Crack initiation may also occur under another loading condition when the hydride region is subjected to an overload. An overload occurs when the hydride region at the flaw tip is loaded to a stress higher than that at which this region is formed such as when the reactor experiences a transient pressure higher than the normal operating pressure where the hydride region is formed. Flaw disposition requires justification that the hydride region overload will not fracture the hydride region, and initiate DHC. In this work, monotonically increasing load experiments were performed on unirradiated Zr-2.5Nb pressure tube specimens containing simulated debris frets (V-notch) and bearing pad frets (BPF, U-shape notch) to examine overload fracture behavior of flaw-tip hydrides formed under hydride ratcheting conditions. Hydride cracking in the overload tests was detected by the acoustic emission technique and confirmed by post-test metallurgical examination. Test results indicate that the resistance to overload fracture is affected by a number of parameters including hydride formation stress, flaw shape (V-notch vs. BPF) and flaw radius (0.015 mm vs. 0.1 mm). The notch-tip hydride morphologies were examined by optical microscopy and scanning electron microscopy (SEM) which show that they are affected by the hydride formation conditions, resulting in different overload fracture resistance. Finite element stress analyses were also performed to obtain flaw-tip stress distributions for interpretation of the test results. (authors)

  2. Conference 'Chemistry of hydrides' Proceedings

    International Nuclear Information System (INIS)

    1991-07-01

    This collection of thesis of conference of Chemistry hydrides presents the results of investigations concerning of base questions of chemistry of nonorganic hydrides, including synthesis questions, studying of physical and chemical properties, thermodynamics, analytical chemistry, investigation of structure, equilibriums in the systems of metal-hydrogen, behaviour of nonorganic hydrides in non-water mediums and applying investigations in the chemistry area and technology of nonorganic hydrides

  3. Stress corrosion cracking of titanium alloys

    Science.gov (United States)

    May, R. C.; Beck, F. H.; Fontana, M. G.

    1971-01-01

    Experiments were conducted to study (1) the basic electrochemical behavior of titanium in acid chloride solutions and (2) the response of the metal to dynamic straining in the same evironment. The aim of this group of experiments was to simulate, as nearly as possible, the actual conditions which exist at the tip of a crack. One of the foremost theories proposed to explain the propagation of stress corrosion cracks is a hydrogen embrittlement theory involving the precipitation of embrittling titanium hydrides inside the metal near the crack tip. An initial survey of the basic electrochemical literature indicated that surface hydrides play a critical role in the electrochemistry of titanium in acid solutions. A comprehensive analysis of the effect of surface films, particularly hydrides, on the electrochemical behavior of titanium in these solution is presented.

  4. Preparation of beryllium hydride

    International Nuclear Information System (INIS)

    Lowrance, B.R.

    1975-01-01

    A process is described for the preparation of beryllium hydride which comprises pyrolyzing, while in solution in a solvent inert under the reaction conditions, with respect to reactants and products and at a temperature in the range of about 100 0 to about 200 0 C, sufficient to result in the formation of beryllium hydride, a di-t-alkyl beryllium etherate wherein each tertiary alkyl radical contains from 4 to 20 carbon atoms. The pyrolysis is carried out under an atmosphere inert under the reaction conditions, with respect to reactants and products. (U.S.)

  5. Accommodation stresses in hydride precipitates by synchrotron x-ray diffraction

    International Nuclear Information System (INIS)

    Santisteban, J R; Vicente, M A; Vizcaino, P; Banchik, A D; Almer, J

    2012-01-01

    Hydride-forming materials (Zr, Ti, Nb, etc) are affected by a sub-critical crack growth mechanism that involves the diffusion of H to the stressed region ahead of a crack, followed by nucleation and fracture of hydrides at the crack tip [1]. The phenomenon is intermittent, with the crack propagating through the hydride and stopping when it reaches the matrix. By repeating these processes, the crack propagates through a component at a rate that is highly dependent on the temperature history of the component. Most research effort to understand this phenomenon has occurred within the nuclear industry, as it affects the safe operation of pressure tubes (Zr2.5%Nb) and the long-term storage of nuclear fuel (Zircaloy cladding). Stress-induced hydride formation is a consequence of the volume dilatation that accompanies hydride formation (of the order of 15%), which is elastoplastically accommodated by the matrix and precipitate. Compressive stresses are expected within hydride precipitates due to the constraint imposed by the matrix. Such 'accommodation' stresses are essential ingredients in all theoretical models developed to assess the crack growth rate dependence on operational variables such as temperature, applied stress intensity factor, or overall H concentration [2]. Yet little experimental information is available about the magnitude and directionality of such accommodation stresses. Synchrotron X-ray diffraction is the only technique capable of quantifying such stresses. Here we briefly describe the fundaments of the technique, when used through an area detector placed in transmission geometry. The results of the experiments have allowed us to produce a comprehensive picture about the magnitude and origin of accommodation stresses in δ zirconium hydride platelets (author)

  6. Crack Velocities in Natural Rubber.

    Science.gov (United States)

    1982-05-01

    vulcanized natural rubber (3). The surprisingly low value for natural rubber was attributed to highly anisotropic elastic behavior at high strains...Dr. R.L. Rabie Hercules Incorporated WX-2, MS-952 Alleghany Ballistic Lab Los Alamos National Lab. P.O. Box 210 P.O. Box 1663 Washington, D.C. 21502

  7. Zirconium hydrides and Fe redistribution in Zr-2.5%Nb alloy under ion irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Idrees, Y.; Yao, Z. [Department of Mechanical and Materials Engineering, Queen' s University, Kingston, ON, Canada, K7L 3N6 (Canada); Cui, J.; Shek, G.K. [Kinetrics, Mississauga, ON (Canada); Daymond, M.R., E-mail: daymond@queensu.ca [Department of Mechanical and Materials Engineering, Queen' s University, Kingston, ON, Canada, K7L 3N6 (Canada)

    2016-11-15

    Zr-2.5%Nb alloy is used to fabricate the pressure tubes of the CANDU reactor. The pressure tube is the primary pressure boundary for coolant in the CANDU design and is susceptible to delayed hydride cracking, reduction in fracture toughness upon hydride precipitation and potentially hydride blister formation. The morphology and nature of hydrides in Zr-2.5%Nb with 100 wppm hydrogen has been investigated using transmission electron microscopy. The effect of hydrides on heavy ion irradiation induced decomposition of the β phase has been reported. STEM-EDX mapping was employed to investigate the distribution of alloying elements. The results show that hydrides are present in the form of stacks of different sizes, with length scales from nano- to micro-meters. Heavy ion irradiation experiments at 250 °C on as-received and hydrided Zr-2.5%Nb alloy, show interesting effects of hydrogen on the irradiation induced redistribution of Fe. It was found that Fe is widely redistributed from the β phase into the α phase in the as-received material, however, the loss of Fe from the β phase and subsequent precipitation is retarded in the hydrided material. This preliminary work will further the current understanding of microstructural evolution of Zr based alloys in the presence of hydrogen. - Graphical abstract: STEM HAADF micrographs at low magnification showing the hydride structure in Zr-2.5Nb alloy.

  8. Electrolytic hydriding and hydride distribution in zircaloy-4

    International Nuclear Information System (INIS)

    Gomes, M.H.L.

    1974-01-01

    A study has been made of the electrolytic hydriding of zircaloy-4 in the range 20-80 0 C, for reaction times from 5 to 30 hours, and the effect of potential, pH and dissolved oxygen has been investigated. The hydriding reaction was more sensitive to time and temperature conditions than to the electrochemical variables. It has been shown that a controlled introduction of hydrides in zircaloy is feasible. Hydrides were found to be plate like shaped and distributed mainly along grain-boundaries. It has been shown that hydriding kinetics do not follow a simple law but may be described by a Johnson-Mehl empirical equation. On the basis of this equation an activation energy of 9.400 cal/mol has been determined, which is close to the activation energy for diffusion of hydrogen in the hydride. (author)

  9. Delayed hydrogen cracking test design for pressure tubes

    International Nuclear Information System (INIS)

    Haddad, Roberto; Loberse, Antonio N.; Yawny, Alejandro A.; Riquelme, Pablo

    1999-01-01

    CANDU nuclear power stations pressure tubes of alloy Zr-2,5 % Nb present a cracking phenomenon known as delayed hydrogen cracking (DHC). This is a brittle fracture of zirconium hydrides that are developed by hydrogen due to aqueous corrosion on the metal surface. This hydrogen diffuses to the crack tip where brittle zirconium hydrides develops and promotes the crack propagation. A direct current potential decay (DCPD) technique has been developed to measure crack propagation rates on compact test (CT) samples machined from a non irradiated pressure tube. Those test samples were hydrogen charged by cathodic polarization in an acid solution and then pre cracked in a fatigue machine. This technique proved to be useful to measure crack propagation rates with at least 1% accuracy for DHC in pressure tubes. (author)

  10. Tests at constant extension velocity CERT for the evaluation of environmental assisted cracking; Pruebas a velocidad de extension constante CERT, para evaluar el agrietamiento asistido por el ambiente (EAC)

    Energy Technology Data Exchange (ETDEWEB)

    Arganis J, C R [Instituto Nacional de Investigaciones Nucleares, Mexico City (Mexico)

    1994-12-31

    The test at constant velocity extension (CERT) is firmly established as a technique for the study of environmentally cracking (stress corrosion and hydrogen embrittlement) and is widely used, mainly in mechanistic studies. In CERT test, an increasing charge is applied to a sample and the extension velocity is hold up constant to allow that corrosion interplay in the process. The type of crack and ductility measurements with the conditions for testing are compared with a cracked sample in an inert media. Required equipment: (1) A charge mechanism capable to control the elongation of test samples in a rank of 1 x 10{sup -5} to 1 x 10{sup -7} inch/inch sec and capable to hold up constant such elongation. (2) A suitable standard (Astm standard A-370). (3) A chamber or cell for the media in which the chemical composition of the solution, the gas composition, the pressure, temperature and electrochemical potential can be controlled in order to simulate with anticipation the service conditions. The cell must allow the mechanical access of the test sample to the charge train of the machine. (Author).

  11. Preparation of beryllium hydride

    International Nuclear Information System (INIS)

    Bergeron, C.R.; Baker, R.W.

    1975-01-01

    Beryllium hydride of high bulk density, suitable for use as a component of high-energy fuels, is prepared by the pyrolysis, in solution in an inert solvent, of a ditertiary-alkyl beryllium. An agitator introduces mechanical energy into the reaction system, during the pyrolysis, at the rate of 0.002 to 0.30 horsepower per gallon of reaction mixture. (U.S.)

  12. Air and metal hydride battery

    Energy Technology Data Exchange (ETDEWEB)

    Lampinen, M.; Noponen, T. [Helsinki Univ. of Technology, Otaniemi (Finland). Lab. of Applied Thermodynamics

    1998-12-31

    The main goal of the air and metal hydride battery project was to enhance the performance and manufacturing technology of both electrodes to such a degree that an air-metal hydride battery could become a commercially and technically competitive power source for electric vehicles. By the end of the project it was possible to demonstrate the very first prototype of the air-metal hydride battery at EV scale, achieving all the required design parameters. (orig.)

  13. Hydriding of metallic thorium

    International Nuclear Information System (INIS)

    Miyake, Masanobu; Katsura, Masahiro; Matsuki, Yuichi; Uno, Masayoshi

    1983-01-01

    Powdered thorium is usually prepared through a combination of hydriding and dehydriding processes of metallic thorium in massive form, in which the hydriding process consists of two steps: the formation of ThH 2 , and the formation of Th 4 H 15 . However, little has yet been known as to on what stage of hydriding process the pulverization takes place. It is found in the present study that the formation of Th 4 H 15 by the reaction of ThH 2 with H 2 is responsible for pulverization. Temperature of 70 deg C adopted in this work for the reaction of formation Th 4 H 15 seems to be much more effective for production of powdered thorium than 200 - 300 deg C in the literature. The pressure-composition-temperature relationships for Th-H system are determined at 200, 300, 350, and 800 deg C. From these results, a tentative equilibrium phase diagram for the Th-H system is proposed, attention being focused on the two-phase region of ThH 2 and Th 4 H 15 . Pulverization process is discussed in terms of the tentative phase diagram. (author)

  14. Hydrogen Outgassing from Lithium Hydride

    Energy Technology Data Exchange (ETDEWEB)

    Dinh, L N; Schildbach, M A; Smith, R A; Balazs1, B; McLean II, W

    2006-04-20

    Lithium hydride is a nuclear material with a great affinity for moisture. As a result of exposure to water vapor during machining, transportation, storage and assembly, a corrosion layer (oxide and/or hydroxide) always forms on the surface of lithium hydride resulting in the release of hydrogen gas. Thermodynamically, lithium hydride, lithium oxide and lithium hydroxide are all stable. However, lithium hydroxides formed near the lithium hydride substrate (interface hydroxide) and near the sample/vacuum interface (surface hydroxide) are much less thermally stable than their bulk counterpart. In a dry environment, the interface/surface hydroxides slowly degenerate over many years/decades at room temperature into lithium oxide, releasing water vapor and ultimately hydrogen gas through reaction of the water vapor with the lithium hydride substrate. This outgassing can potentially cause metal hydriding and/or compatibility issues elsewhere in the device. In this chapter, the morphology and the chemistry of the corrosion layer grown on lithium hydride (and in some cases, its isotopic cousin, lithium deuteride) as a result of exposure to moisture are investigated. The hydrogen outgassing processes associated with the formation and subsequent degeneration of this corrosion layer are described. Experimental techniques to measure the hydrogen outgassing kinetics from lithium hydride and methods employing the measured kinetics to predict hydrogen outgassing as a function of time and temperature are presented. Finally, practical procedures to mitigate the problem of hydrogen outgassing from lithium hydride are discussed.

  15. Zircaloy-4 hydridation

    International Nuclear Information System (INIS)

    Vizcaino, Pablo

    1997-01-01

    The objectives of this work can be summarized as: 1) To reproduce, by heat treatments, matrix microstructures and hydride morphologies similar to those observed in structural components of the CNA-1 and CNE nuclear power plants; 2) To study the evolution of the mechanical properties of the original material with different hydrogen concentrations, such as microhardness, and its capacity to distinguish these materials; 3) To find parameters that allow to estimate the hydrogen content of a material by quantitative metallographic techniques, to be used as complementary in the study of the radioactive materials from reactors

  16. Anodematerials for Metal Hydride Batteries

    DEFF Research Database (Denmark)

    Jensen, Jens Oluf

    1997-01-01

    This report describes the work on development of hydride forming alloys for use as electrode materials in metal hydride batteries. The work has primarily been concentrated on calcium based alloys derived from the compound CaNi5. This compound has a higher capacity compared with alloys used in today......’s hydride batteries, but a much poorer stability towards repeated charge/discharge cycling. The aim was to see if the cycleability of CaNi5 could be enhanced enough by modifications to make the compound a suitable electrode material. An alloying method based on mechanical alloying in a planetary ball mill...

  17. Corrosion cracking

    International Nuclear Information System (INIS)

    Goel, V.S.

    1985-01-01

    This book presents the papers given at a conference on alloy corrosion cracking. Topics considered at the conference included the effect of niobium addition on intergranular stress corrosion cracking, corrosion-fatigue cracking in fossil-fueled-boilers, fracture toughness, fracture modes, hydrogen-induced thresholds, electrochemical and hydrogen permeation studies, the effect of seawater on fatigue crack propagation of wells for offshore structures, the corrosion fatigue of carbon steels in seawater, and stress corrosion cracking and the mechanical strength of alloy 600

  18. Erbium hydride decomposition kinetics.

    Energy Technology Data Exchange (ETDEWEB)

    Ferrizz, Robert Matthew

    2006-11-01

    Thermal desorption spectroscopy (TDS) is used to study the decomposition kinetics of erbium hydride thin films. The TDS results presented in this report are analyzed quantitatively using Redhead's method to yield kinetic parameters (E{sub A} {approx} 54.2 kcal/mol), which are then utilized to predict hydrogen outgassing in vacuum for a variety of thermal treatments. Interestingly, it was found that the activation energy for desorption can vary by more than 7 kcal/mol (0.30 eV) for seemingly similar samples. In addition, small amounts of less-stable hydrogen were observed for all erbium dihydride films. A detailed explanation of several approaches for analyzing thermal desorption spectra to obtain kinetic information is included as an appendix.

  19. Complex Hydrides for Hydrogen Storage

    Energy Technology Data Exchange (ETDEWEB)

    Slattery, Darlene; Hampton, Michael

    2003-03-10

    This report describes research into the use of complex hydrides for hydrogen storage. The synthesis of a number of alanates, (AIH4) compounds, was investigated. Both wet chemical and mechano-chemical methods were studied.

  20. The effect of stress state on zirconium hydride reorientation

    Science.gov (United States)

    Cinbiz, Mahmut Nedim

    correlating the finite element stress-state results with the spatial distribution of hydride microstructures observed within the optical micrographs for each sample. Experiments showed that the hydride reorientation was enhanced as the stress biaxiality increased. The threshold stress decreased from 150 MPa to 80 MPa when stress biaxiality ratio increased from uniaxial tension to near-equibiaxial tension. This behavior was also predicted by classical nucleation theory based on the Gibbs free energy of transformation being assisted by the far-field stress. An analysis of in situ X-ray diffraction data obtained during a thermo-mechanical cycle typical of vacuum drying showed a complex lattice-spacing behavior of the hydride phase during the dissolution and precipitation. The in-plane hydrides showed bilinear lattice expansion during heating with the intrinsic thermal expansion rate of the hydrides being observed only at elevated temperatures as they dissolve. For radial hydrides that precipitate during cooling under stress, the spacing of the close-packed {111} planes oriented normal to the maximum applied stress was permanently higher than the corresponding {111} plane spacing in the other directions. This behavior is believed to be a result of a complex stress state within the precipitating plate-like hydrides that induces a strain component within the hydrides normal to its "plate" face (i.e., the applied stress direction) that exceeds the lattice spacing strains in the other directions. During heat-up, the lattice spacing of these same "plate" planes actually contract due to the reversion of the stress state within the plate-like hydrides as they dissolve. The presence of radial hydrides and their connectivity with in-plane hydrides was shown to increase the ductile-to-brittle transition temperature during tensile testing. This behavior can be understood in terms of the role of radial hydrides in promoting the initiation of a long crack that subsequently propagates under

  1. Influence of temperature and hydrogen content on stress-induced radial hydride precipitation in Zircaloy-4 cladding

    Energy Technology Data Exchange (ETDEWEB)

    Desquines, J., E-mail: jean.desquines@irsn.fr; Drouan, D.; Billone, M.; Puls, M.P.; March, P.; Fourgeaud, S.; Getrey, C.; Elbaz, V.; Philippe, M.

    2014-10-15

    Radial hydride precipitation in stress relieved Zircaloy-4 fuel claddings is studied using a new thermal–mechanical test. Two maximum temperatures for radial hydride precipitation heat treatment are studied, 350 and 450 °C with hydrogen contents ranging between 50 and 600 wppm. The new test provides two main results of interest: the minimum hoop stress required to precipitate radial hydrides and a maximum stress above which, all hydrides precipitate in the radial direction. Based on these two extreme stress conditions, a model is derived to determine the stress level required to obtain a given fraction of radial hydrides after high temperature thermal–mechanical heat treatment. The proposed model is validated using metallographic observation data on pressurized tubes cooled down under constant pressure. Most of the samples with reoriented hydrides are further subjected to a ductility test. Using finite element modeling, the test results are analyzed in terms of crack nucleation within radial hydrides at the outer diameter and crack growth through the thickness of the tubular samples. The combination of test results shows that samples with hydrogen contents of about 100 wppm had the lowest ductility.

  2. Hydriding failure in water reactor fuel elements

    International Nuclear Information System (INIS)

    Sah, D.N.; Ramadasan, E.; Unnikrishnan, K.

    1980-01-01

    Hydriding of the zircaloy cladding has been one of the important causes of failure in water reactor fuel elements. This report reviews the causes, the mechanisms and the methods for prevention of hydriding failure in zircaloy clad water reactor fuel elements. The different types of hydriding of zircaloy cladding have been classified. Various factors influencing zircaloy hydriding from internal and external sources in an operating fuel element have been brought out. The findings of post-irradiation examination of fuel elements from Indian reactors, with respect to clad hydriding and features of hydriding failure are included. (author)

  3. High-pressure hydriding of Zircaloy

    International Nuclear Information System (INIS)

    Kim, Y.S.

    1996-01-01

    The hydriding characteristics of Zircaloy-2(Zry), sponge zirconium (as a liner on Zry plate), and crystal-bar zirconium exposed to pure H 2 at 0.1 MPa or 7 MPa and 400 C were determined in a thermogravimetric apparatus. The morphology of the hydrided specimens was also examined by optical microscopy. For all specimen types, the rate of hydriding in 7 MPa H 2 was two orders of magnitude greater than in 0.1 MPa H 2 . For Zry, uniform bulk hydriding was revealed by hydride precipitates at room temperature and on one occasion, a sunburst hydride. In addition, all specimen types exhibited a hydride surface layer. In a duplex Zry/sponge-Zr specimen, Zry is more heavily hydrided than the sponge Zr layer. (orig.)

  4. Hydride Olefin complexes of tantalum and niobium

    NARCIS (Netherlands)

    Klazinga, Aan Hendrik

    1979-01-01

    This thesis describes investigations on low-valent tantalum and niobium hydride and alkyl complexes, particularly the dicyclopentadienyl tantalum hydride olefin complexes Cp2Ta(H)L (L=olefin). ... Zie: Summary

  5. Modelling the gas transport and chemical processes related to clad oxidation and hydriding

    Energy Technology Data Exchange (ETDEWEB)

    Montgomery, R O; Rashid, Y R [ANATECH Research Corp., San Diego, CA (United States)

    1997-08-01

    Models are developed for the gas transport and chemical processes associated with the ingress of steam into a LWR fuel rod through a small defect. These models are used to determine the cladding regions in a defective fuel rod which are susceptible to massive hydriding and the creation of sunburst hydrides. The brittle nature of zirconium hydrides (ZrH{sub 2}) in these susceptible regions produces weak spots in the cladding which can act as initiation sites for cladding cracks under certain cladding stress conditions caused by fuel cladding mechanical interaction. The modeling of the axial gas transport is based on gaseous bimolar diffusion coupled with convective mass transport using the mass continuity equation. Hydrogen production is considered from steam reaction with cladding inner surface, fission products and internal components. Eventually, the production of hydrogen and its diffusion along the length results in high hydrogen concentration in locations remote from the primary defect. Under these conditions, the hydrogen can attack the cladding inner surface and breakdown the protective ZrO{sub 2} layer locally, initiating massive localized hydriding leading to sunburst hydride. The developed hydrogen evolution model is combined with a general purpose fuel behavior program to integrate the effects of power and burnup into the hydriding kinetics. Only in this manner can the behavior of a defected fuel rod be modeled to determine the conditions the result in fuel rod degradation. (author). 14 refs, 6 figs.

  6. Development of transmutation technologies of radioactive waste by actinoid hydride

    International Nuclear Information System (INIS)

    Konashi, Kenji; Matsui, Hideki; Yamawaki, Michio

    2001-01-01

    Two waste treatment methods, geological disposal and transmutation, have been studied. The transmutation method changes long-lived radioactive nuclides to short-lived one or stabilizes them by nuclear transformation. The transmutation by actinoid hydride is exactly alike that transformation method from actinoid disposal waste to Pu fuel. For this object, OMEGA project is processing now. The transmutation is difficult by two causes such as large amount of long-lived radioactive nuclides and not enough development of control technologies of nuclear reaction except atomic reactor. The transmutation using actinoid hydride has merits that the amount of actinoid charged in the target increases and the effect of thermal neutrons on fuel decreases depending on homogeneous transmutation velocity in the target. Development of stable actinoid hydride under the conditions of reactor temperature and irradiation environment is important. The experimental results of U-ZrH 1.6 are shown in this paper. The irradiation experiment using Th hydride has been proceeding. (S.Y.)

  7. Metal hydride compositions and lithium ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Young, Kwo; Nei, Jean

    2018-04-24

    Heterogeneous metal hydride (MH) compositions comprising a main region comprising a first metal hydride and a secondary region comprising one or more additional components selected from the group consisting of second metal hydrides, metals, metal alloys and further metal compounds are suitable as anode materials for lithium ion cells. The first metal hydride is for example MgH.sub.2. Methods for preparing the composition include coating, mechanical grinding, sintering, heat treatment and quenching techniques.

  8. Activation and discharge kinetics of metal hydride electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Johnsen, Stein Egil

    2003-07-01

    this activation procedure. Studies of the activity of single metal hydride particles show that each particle has different properties after activation, by hot polarisation, in a porous electrode. The differences in activation among single particles may be due to differences in contact resistance between the individual metal hydride particle and the current collector in the porous electrode, which would result in a current distribution. Annealing of the gas atomised AB{sub 5} type alloy increases the discharge capacity but does not otherwise affect the activation. The corrosion and passivation of metal hydride electrodes of AB{sub 5} type alloys was studied. A high depth of discharge (DOD) decreases the discharge rate capability of the metal hydride electrodes and this is explained by passivation. A surface passivation may enhance particle cracking, which would make the electrode more susceptible to corrosion. The passivation of metal hydride electrodes increases for increasing cut-off-potential (COP) during discharging. This can be explained by an increasing corrosion of the particle surfaces. A corrosion phenomenon was measured at high DOD and correlated to the passivation of the metal hydride particle surface. Lowering the COP can reduce the negative effect of this phenomenon. The cycle life of the gas-atomised material is slightly improved by decreasing the COP but is independent of hot-polarisation activation treatment. Annealing this material significantly improves both discharge capacity and cycle life. A change of surface morphology due to the annealing has been identified and may contribute to the decreased electrode degradation. The formation of hydroxides on the particle surfaces is in general regarded to be negative for the electrode kinetics and is probably responsible for the long time degradation of metal hydride electrodes.

  9. Crack Tip Parameters for Growing Cracks in Linear Viscoelastic Materials

    DEFF Research Database (Denmark)

    Brincker, Rune

    In this paper the problem of describing the asymptotic fields around a slowly growing crack in a linearly viscoelastic material is considered. It is shown that for plane mixed mode problems the asymptotic fields must be described by 6 parameters: 2 stress intensity factors and 4 deformation...... intensity factors. In the special case of a constant Poisson ratio only 2 deformation intensity factors are needed. Closed form solutions are given both for a slowly growing crack and for a crack that is suddenly arrested at a point at the crack extension path. Two examples are studied; a stress boundary...... value problem, and a displacement boundary value problem. The results show that the stress intensity factors and the displacement intensity factors do not depend explicitly upon the velocity of the crack tip....

  10. Predicting Hydride Donor Strength via Quantum Chemical Calculations of Hydride Transfer Activation Free Energy.

    Science.gov (United States)

    Alherz, Abdulaziz; Lim, Chern-Hooi; Hynes, James T; Musgrave, Charles B

    2018-01-25

    We propose a method to approximate the kinetic properties of hydride donor species by relating the nucleophilicity (N) of a hydride to the activation free energy ΔG ⧧ of its corresponding hydride transfer reaction. N is a kinetic parameter related to the hydride transfer rate constant that quantifies a nucleophilic hydridic species' tendency to donate. Our method estimates N using quantum chemical calculations to compute ΔG ⧧ for hydride transfers from hydride donors to CO 2 in solution. A linear correlation for each class of hydrides is then established between experimentally determined N values and the computationally predicted ΔG ⧧ ; this relationship can then be used to predict nucleophilicity for different hydride donors within each class. This approach is employed to determine N for four different classes of hydride donors: two organic (carbon-based and benzimidazole-based) and two inorganic (boron and silicon) hydride classes. We argue that silicon and boron hydrides are driven by the formation of the more stable Si-O or B-O bond. In contrast, the carbon-based hydrides considered herein are driven by the stability acquired upon rearomatization, a feature making these species of particular interest, because they both exhibit catalytic behavior and can be recycled.

  11. Behavior and failure of fresh, hydrided and irradiated Zircaloy-4 fuel claddings under RIA conditions

    International Nuclear Information System (INIS)

    Le Saux, M.

    2008-01-01

    The purpose of this study is to characterize and simulate the mechanical behaviour and failure of fresh, hydrided and irradiated (in pressurized water reactors) cold-worked stress relieved Zircaloy-4 fuel claddings under reactivity initiated accident conditions. A model is proposed to describe the anisotropic viscoplastic mechanical behavior of the material as a function of temperature (from 20 C up to 1100 C), strain rate (from 3.10 -4 s -1 up to 5 s -1 ), fluence (from 0 up to 1026 n.m -2 ) and irradiation conditions. Axial tensile, hoop tensile, expansion due to compression and hoop plane strain tensile tests are performed at 25 C, 350 C and 480 C in order to analyse the anisotropic plastic and failure properties of the non-irradiated material hydrided up to 1200 ppm. Material strength and strain hardening depend on temperature and hydrogen in solid solution and precipitated hydride contents. Plastic anisotropy is not significantly modified by hydrogen. The material is embrittled by hydrides at room temperature. The plastic strain that leads to hydride cracking decreases with increasing hydrogen content. The material ductility, which increases with increasing temperature, is not deteriorated by hydrogen at 350 C and 480 C. Macroscopic fracture modes and damage mechanisms depend on specimen geometry, temperature and hydrogen content. A Gurson type model is finally proposed to describe both the anisotropic viscoplastic behavior and the ductile fracture of the material as a function of temperature and hydrogen content. (author) [fr

  12. High speed cinematography of cracks spreading under failure of amorphous metallic alloys

    Energy Technology Data Exchange (ETDEWEB)

    Tabachnikova, E.D.; Golovin, Y.I.; Makarov, M.V. [AN Ukrainskoj SSR, Kharkov (Ukraine). Fiziko-Tekhnicheskij Inst. Nizkikh Temperatur; Shibkov, A.A.

    1997-08-01

    The results of experimental investigation of crack propagation velocity in amorphous alloys are presented. It is shown that there exists some correlation between crack velocity and fracture mode and morphology (orig.). 4 refs.

  13. High speed cinematography of cracks spreading under failure of amorphous metallic alloys

    International Nuclear Information System (INIS)

    Tabachnikova, E.D.; Golovin, Y.I.; Makarov, M.V.; Shibkov, A.A.

    1997-01-01

    The results of experimental investigation of crack propagation velocity in amorphous alloys are presented. It is shown that there exists some correlation between crack velocity and fracture mode and morphology (orig.)

  14. Tritium processing using metal hydrides

    International Nuclear Information System (INIS)

    Mallett, M.W.

    1986-01-01

    E.I. duPont de Nemours and Company is commissioned by the US Department of Energy to operate the Savannah River Plant and Laboratory. The primary purpose of the plant is to produce radioactive materials for national defense. In keeping with current technology, new processes for the production of tritium are being developed. Three main objectives of this new technology are to ease the processing of, ease the storage of, and to reduce the operating costs of the tritium production facility. Research has indicated that the use of metal hydrides offers a viable solution towards satisfying these objectives. The Hydrogen and Fuels Technology Division has the responsibility to conduct research in support of the tritium production process. Metal hydride technology and its use in the storage and transportation of hydrogen will be reviewed

  15. Hydride Molecules towards Nearby Galaxies

    Science.gov (United States)

    Monje, Raquel R.; La, Ngoc; Goldsmith, Paul

    2018-06-01

    Observations carried out by the Herschel Space Observatory revealed strong spectroscopic signatures from light hydride molecules within the Milky Way and nearby active galaxies. To better understand the chemical and physical conditions of the interstellar medium, we conducted the first comprehensive survey of hydrogen fluoride (HF) and water molecular lines observed through the SPIRE Fourier Transform Spectrometer. By collecting and analyzing the sub-millimeter spectra of over two hundred sources, we found that the HF J = 1 - 0 rotational transition which occurs at approximately 1232 GHz was detected in a total of 39 nearby galaxies both in absorption and emission. The analysis will determine the main excitation mechanism of HF in nearby galaxies and provide steady templates of the chemistry and physical conditions of the ISM to be used in the early universe, where observations of hydrides are more scarce.

  16. Rechargeable metal hydrides for spacecraft application

    Science.gov (United States)

    Perry, J. L.

    1988-01-01

    Storing hydrogen on board the Space Station presents both safety and logistics problems. Conventional storage using pressurized bottles requires large masses, pressures, and volumes to handle the hydrogen to be used in experiments in the U.S. Laboratory Module and residual hydrogen generated by the ECLSS. Rechargeable metal hydrides may be competitive with conventional storage techniques. The basic theory of hydride behavior is presented and the engineering properties of LaNi5 are discussed to gain a clear understanding of the potential of metal hydrides for handling spacecraft hydrogen resources. Applications to Space Station and the safety of metal hydrides are presented and compared to conventional hydride storage. This comparison indicates that metal hydrides may be safer and require lower pressures, less volume, and less mass to store an equivalent mass of hydrogen.

  17. Complex hydrides for hydrogen storage

    Science.gov (United States)

    Zidan, Ragaiy

    2006-08-22

    A hydrogen storage material and process of forming the material is provided in which complex hydrides are combined under conditions of elevated temperatures and/or elevated temperature and pressure with a titanium metal such as titanium butoxide. The resulting fused product exhibits hydrogen desorption kinetics having a first hydrogen release point which occurs at normal atmospheres and at a temperature between 50.degree. C. and 90.degree. C.

  18. Some considerations regarding the creep crack growth threshold

    International Nuclear Information System (INIS)

    Thouless, M.D.; Evans, A.G.

    1984-01-01

    The preceding analysis reveals that the existence of a threshold determined by the sintering stress does not influence the post threshold crack velocity. Considerations of the sintering stress can thus be conveniently excluded from analysis of the post threshold crack velocity. The presence of a crack growth threshold has been predicted, based on the existence of cavity nucleation controlled crack growth. A preliminary analysis of cavity nucleation rates within the damage zone reveals that this threshold is relatively abrupt, in accord with experimental observations. Consequently, at stress intensities below K /SUB th/ growth becomes nucleation limited and crack blunting occurs in preference to crack growth

  19. Nanostructured, complex hydride systems for hydrogen generation

    Directory of Open Access Journals (Sweden)

    Robert A. Varin

    2015-02-01

    Full Text Available Complex hydride systems for hydrogen (H2 generation for supplying fuel cells are being reviewed. In the first group, the hydride systems that are capable of generating H2 through a mechanical dehydrogenation phenomenon at the ambient temperature are discussed. There are few quite diverse systems in this group such as lithium alanate (LiAlH4 with the following additives: nanoiron (n-Fe, lithium amide (LiNH2 (a hydride/hydride system and manganese chloride MnCl2 (a hydride/halide system. Another hydride/hydride system consists of lithium amide (LiNH2 and magnesium hydride (MgH2, and finally, there is a LiBH4-FeCl2 (hydride/halide system. These hydride systems are capable of releasing from ~4 to 7 wt.% H2 at the ambient temperature during a reasonably short duration of ball milling. The second group encompasses systems that generate H2 at slightly elevated temperature (up to 100 °C. In this group lithium alanate (LiAlH4 ball milled with the nano-Fe and nano-TiN/TiC/ZrC additives is a prominent system that can relatively quickly generate up to 7 wt.% H2 at 100 °C. The other hydride is manganese borohydride (Mn(BH42 obtained by mechano-chemical activation synthesis (MCAS. In a ball milled (2LiBH4 + MnCl2 nanocomposite, Mn(BH42 co-existing with LiCl can desorb ~4.5 wt.% H2 at 100 °C within a reasonable duration of dehydrogenation. Practical application aspects of hydride systems for H2 generation/storage are also briefly discussed.

  20. Use of reversible hydrides for hydrogen storage

    Science.gov (United States)

    Darriet, B.; Pezat, M.; Hagenmuller, P.

    1980-01-01

    The addition of metals or alloys whose hydrides have a high dissociation pressure allows a considerable increase in the hydrogenation rate of magnesium. The influence of temperature and hydrogen pressure on the reaction rate were studied. Results concerning the hydriding of magnesium rich alloys such as Mg2Ca, La2Mg17 and CeMg12 are presented. The hydriding mechanism of La2Mg17 and CeMg12 alloys is given.

  1. NMR study of hydride systems

    International Nuclear Information System (INIS)

    Peretz, M.

    1980-02-01

    The hydrides of thorium (ThH 2 , Th 4 H 15 and Th 4 D 15 ) and the intermetallic compound system (Zr(Vsub(1-x)Cosub(x)) 2 and its hydrides were investigated using the nuclear magnetic resonance (NMR) technique. From the results for the thorium hydride samples it was concluded that the density of states at the Fermi level n(Esub(f)) is higher in Th 4 H 15 than in ThH 2 ; there is an indirect reaction between the protons and the d electrons belonging to the Th atoms in Th 4 H 15 ; n(E) has a sharp structure near Esub(f). It was also found that the hydrogen diffusion mechanism changes with temperature. From the results for the intermetallic compound system conclusions were drawn concerning variations in the electronic structure, which explain the behavior of the system. In hydrogen diffusion studies in several samples it was found that Co atoms slow the diffusion rate. Quadrupole spectra obtained at low temperatures show that the H atoms preferably occupy tetrahedral sites formed by three V atoms and one Z atom. (H.K.)

  2. The increase in fatigue crack growth rates observed for Zircaloy-4 in a PWR environment

    Science.gov (United States)

    Cockeram, B. V.; Kammenzind, B. F.

    2018-02-01

    Cyclic stresses produced during the operation of nuclear reactors can result in the extension of cracks by processes of fatigue. Although fatigue crack growth rate (FCGR) data for Zircaloy-4 in air are available, little testing has been performed in a PWR primary water environment. Test programs have been performed by Gee et al., in 1989 and Picker and Pickles in 1984 by the UK Atomic Energy Authority, and by Wisner et al., in 1994, that have shown an enhancement in FCGR for Zircaloy-2 and Zircaloy-4 in high-temperature water. In this work, FCGR testing is performed on Zircaloy-4 in a PWR environment in the hydrided and non-hydrided condition over a range of stress-intensity. Measurements of crack extension are performed using a direct current potential drop (DCPD) method. The cyclic rate in the PWR primary water environment is varied between 1 cycle per minute to 0.1 cycle per minute. Faster FCGR rates are observed in water in comparison to FCGR testing performed in air for the hydrided material. Hydrided and non-hydrided materials had similar FCGR values in air, but the non-hydrided material exhibited much lower rates of FCGR in a PWR primary water environment than for hydrided material. Hydrides are shown to exhibit an increased tendency for cracking or decohesion in a PWR primary water environment that results in an enhancement in FCGR values. The FCGR in the PWR primary water only increased slightly with decreasing cycle frequency in the range of 1 cycle per minute to 0.1 cycle per minute. Comparisons between the FCGR in water and air show the enhancement from the PWR environment is affected by the applied stress intensity.

  3. Hydrogen isotope exchange in a metal hydride tube

    Energy Technology Data Exchange (ETDEWEB)

    Robinson, David B. [Sandia National Lab. (SNL-CA), Livermore, CA (United States)

    2014-09-01

    This report describes a model of the displacement of one hydrogen isotope within a metal hydride tube by a different isotope in the gas phase that is blown through the tube. The model incorporates only the most basic parameters to make a clear connection to the theory of open-tube gas chromatography, and to provide a simple description of how the behavior of the system scales with controllable parameters such as gas velocity and tube radius. A single tube can be seen as a building block for more complex architectures that provide higher molar flow rates or other advanced design goals.

  4. Implementation of a constant load method, for determination of crack growth velocities in MEX-03 system of National Institute of Nuclear Research; Implementacion de un metodo de carga constante, para la determinacion de velocidades de crecimiento de grieta en el sistema MEX-03 del ININ

    Energy Technology Data Exchange (ETDEWEB)

    Diaz S, A.; Fuentes C, P.; Merino C, F. [ININ, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico)], e-mail: angeles.diaz@inin.gob.mx

    2009-10-15

    Whit the objective of to complete the existent techniques for susceptibility evaluation to phenomenon of stress corrosion cracking in laboratories of Applied Sciences Area of National Institute of Nuclear Research; was realized and documented the modification of a high pressure and temperature equipment, identified as MEX-03 to carry out the implementation of a growth and crack propagation assay, using a constant load method. The assay was realized to a specimen of stainless steel AISI 304l type CT of an inch, which was previously thermally sensitize, simulating the typical degradation of this materials type below operation conditions in a BWR. The MEX-03 system, consist from an annexed auto key to a load system which originally was controlled by displacement; therefore were carried out modifications to achieve the control by load. The realized adjustments allowed to maintain a constant load during all the experiment, and as much the temperature conditions (T = 288 C) as of pressure (P = 8 Mpa) were controlled during the assay realization. The steel was exposed to a conditioned ambient with hydrogen gas addition; simulating a well-known alternative chemistry as hydrogen water chemistry that is used to mitigate the phenomenon of stress corrosion cracking, main degradation mechanism of austenitic stainless steels. The continuation of the crack behavior was realized by means of electric potential fall technique and later was validated of visual form through the fractographic analysis of cracked surface. The modification and control of equipment for realization of this experiment is necessary, for what should be carried out new assays, whose results will allow to establish the effect of dynamic and static methods in velocity determination of crack growth to laboratory level; to be considered in the existent models of crack propagation in systems and components in operation. (Author)

  5. Manufacture of titanium and zirconium hydrides

    International Nuclear Information System (INIS)

    Mares, F.; Hanslik, T.

    1973-01-01

    A method is described of manufacturing titanium and zirconium hydrides by hydrogenation of said metals characterized by the reaction temperature ranging between 250 to 500 degC, hydrogen pressure of 20 to 300 atm and possibly by the presence of a hydride of the respective metal. (V.V.)

  6. Obtaining zircaloy powder through hydriding

    International Nuclear Information System (INIS)

    Dupim, Ivaldete da Silva; Moreira, Joao M.L.

    2009-01-01

    Zirconium alloys are good options for the metal matrix in dispersion fuels for power reactors due to their low thermal neutron absorption cross-section, good corrosion resistance, good mechanical strength and high thermal conductivity. A necessary step for obtaining such fuels is producing Zr alloy powder for the metal matrix composite material. This article presents results from the Zircaloy-4 hydrogenation tests with the purpose to embrittle the alloy as a first step for comminuting. Several hydrogenation tests were performed and studied through thermogravimetric analysis. They included H 2 pressures of 25 and 50 kPa and temperatures ranging between from 20 to 670 deg C. X-ray diffraction analysis showed in the hydrogenated samples the predominant presence of ZrH 2 and some ZrO 2 . Some kinetics parameters for the Zircaloy-4 hydrogenation reaction were obtained: the time required to reach the equilibrium state at the dwell temperature was about 100 minutes; the hydrogenation rate during the heating process from 20 to 670 deg C was about 21 mg/h, and at constant temperature of 670 deg C, the hydride rate was about 1.15 mg/h. The hydrogenation rate is largest during the heating process and most of it occurs during this period. After hydrogenated, the samples could easily be comminuted indicating that this is a possible technology to obtain Zircaloy powder. The results show that only few minutes of hydrogenation are necessary to reach the hydride levels required for comminuting the Zircaloy. The final hydride stoichiometry was between 2.7 and 2.8 H for each Zr atom in the sample (author)

  7. Universal Shapes formed by Interacting Cracks

    Science.gov (United States)

    Fender, Melissa; Lechenault, Frederic; Daniels, Karen

    2011-03-01

    Brittle failure through multiple cracks occurs in a wide variety of contexts, from microscopic failures in dental enamel and cleaved silicon to geological faults and planetary ice crusts. In each of these situations, with complicated curvature and stress geometries, pairwise interactions between approaching cracks nonetheless produce characteristically curved fracture paths known in the geologic literature as en passant cracks. While the fragmentation of solids via many interacting cracks has seen wide investigation, less attention has been paid to the details of individual crack-crack interactions. We investigate the origins of this widely observed crack pattern using a rectangular elastic plate which is notched on each long side and then subjected to quasistatic uniaxial strain from the short side. The two cracks propagate along approximately straight paths until the pass each other, after which they curve and release a lenticular fragment. We find that, for materials with diverse mechanical properties, the shape of this fragment has an aspect ratio of 2:1, with the length scale set by the initial cracks offset s and the time scale set by the ratio of s to the pulling velocity. The cracks have a universal square root shape, which we understand by using a simple geometric model and the crack-crack interaction.

  8. Metal Hydrides for Rechargeable Batteries

    Energy Technology Data Exchange (ETDEWEB)

    Valoeen, Lars Ole

    2000-03-01

    Rechargeable battery systems are paramount in the power supply of modern electronic and electromechanical equipment. For the time being, the most promising secondary battery systems for the future are the lithium-ion and the nickel metal hydride (NiMH) batteries. In this thesis, metal hydrides and their properties are described with the aim of characterizing and improving those. The thesis has a special focus on the AB{sub 5} type hydrogen storage alloys, where A is a rare earth metal like lanthanum, or more commonly misch metal, which is a mixture of rare earth metals, mainly lanthanum, cerium, neodymium and praseodymium. B is a transition metal, mainly nickel, commonly with additions of aluminium, cobalt, and manganese. The misch metal composition was found to be very important for the geometry of the unit cell in AB{sub 5} type alloys, and consequently the equilibrium pressure of hydrogen in these types of alloys. The A site substitution of lanthanum by misch metal did not decrease the surface catalytic properties of AB{sub 5} type alloys. B-site substitution of nickel with other transition elements, however, substantially reduced the catalytic activity of the alloy. If the internal pressure within the electrochemical test cell was increased using inert argon gas, a considerable increase in the high rate charge/discharge performance of LaNi{sub 5} was observed. An increased internal pressure would enable the utilisation of alloys with a high hydrogen equivalent pressure in batteries. Such alloys often have favourable kinetics and high hydrogen diffusion rates and thus have a potential for improving the high current discharge rates in metal hydride batteries. The kinetic properties of metal hydride electrodes were found to improve throughout their lifetime. The activation properties were found highly dependent on the charge/discharge current. Fewer charge/discharge cycles were needed to activate the electrodes if a small current was used instead of a higher

  9. Hydrogen-storing hydride complexes

    Science.gov (United States)

    Srinivasan, Sesha S [Tampa, FL; Niemann, Michael U [Venice, FL; Goswami, D Yogi [Tampa, FL; Stefanakos, Elias K [Tampa, FL

    2012-04-10

    A ternary hydrogen storage system having a constant stoichiometric molar ratio of LiNH.sub.2:MgH.sub.2:LiBH.sub.4 of 2:1:1. It was found that the incorporation of MgH.sub.2 particles of approximately 10 nm to 20 nm exhibit a lower initial hydrogen release temperature of 150.degree. C. Furthermore, it is observed that the particle size of LiBNH quaternary hydride has a significant effect on the hydrogen sorption concentration with an optimum size of 28 nm. The as-synthesized hydrides exhibit two main hydrogen release temperatures, one around 160.degree. C. and the other around 300.degree. C., with the main hydrogen release temperature reduced from 310.degree. C. to 270.degree. C., while hydrogen is first reversibly released at temperatures as low as 150.degree. C. with a total hydrogen capacity of 6 wt. % to 8 wt. %. Detailed thermal, capacity, structural and microstructural properties have been demonstrated and correlated with the activation energies of these materials.

  10. Activated aluminum hydride hydrogen storage compositions and uses thereof

    Science.gov (United States)

    Sandrock, Gary; Reilly, James; Graetz, Jason; Wegrzyn, James E.

    2010-11-23

    In one aspect, the invention relates to activated aluminum hydride hydrogen storage compositions containing aluminum hydride in the presence of, or absence of, hydrogen desorption stimulants. The invention particularly relates to such compositions having one or more hydrogen desorption stimulants selected from metal hydrides and metal aluminum hydrides. In another aspect, the invention relates to methods for generating hydrogen from such hydrogen storage compositions.

  11. Hydrogen adsorption on palladium and palladium hydride at 1 bar

    DEFF Research Database (Denmark)

    Johansson, Martin; Skulason, Egill; Nielsen, Gunver

    2010-01-01

    strongly to Pd hydride than to Pd. The activation barrier for desorption at a H coverage of one mono layer is slightly lower on Pd hydride, whereas the activation energy for adsorption is similar on Pd and Pd hydride. It is concluded that the higher sticking probability on Pd hydride is most likely caused...

  12. Cyclopentadiene-mediated hydride transfer from rhodium complexes.

    Science.gov (United States)

    Pitman, C L; Finster, O N L; Miller, A J M

    2016-07-12

    Attempts to generate a proposed rhodium hydride catalytic intermediate instead resulted in isolation of (Cp*H)Rh(bpy)Cl (1), a pentamethylcyclopentadiene complex, formed by C-H bond-forming reductive elimination from the fleeting rhodium hydride. The hydride transfer ability of diene 1 was explored through thermochemistry and hydride transfer reactions, including the reduction of NAD(+).

  13. Environmentally-induced cracking of zirconium alloys - a review

    International Nuclear Information System (INIS)

    Cox, B.

    1990-01-01

    The general field of environmentally-induced cracking of zirconium alloys has been reviewed and the phenomena that are observed and the progress in understanding the mechanisms are summarized. The details of the industrially important pellet-clad interaction failures of nuclear reactor fuel have been left for a companion review, and only observations on the mechanism are summarized briefly here. It is concluded that in the zirconium alloy system, by virtue of the physical peculiarities of the system, it is easier to reach unambiguous conclusions about the environmental cracking mechanisms that are operating than with other systems. Thus, chemical dissolution in either liquid or vapour phase is thought to be the principal mechanism for intergranular cracking, while adsorption-induced embrittlement is thought to be the most common transgranular quasi-cleavage process. Hydrogen embrittlement in this system can be identified because it requires precipitated hydride that gives characteristic fractography when cracked. Only in a few instances does stress-corrosion cracking appear to proceed by a hydride cracking mechanism. (orig.)

  14. Crack Growth Properties of Sealing Glasses

    Science.gov (United States)

    Salem, Jonathan A.; Tandon, R.

    2008-01-01

    The crack growth properties of several sealing glasses were measured using constant stress rate testing in 2% and 95% RH (relative humidity). Crack growth parameters measured in high humidity are systematically smaller (n and B) than those measured in low humidity, and velocities for dry environments are approx. 100x lower than for wet environments. The crack velocity is very sensitivity to small changes in RH at low RH. Confidence intervals on parameters that were estimated from propagation of errors were comparable to those from Monte Carlo simulation.

  15. Draft of M2 Report on Integration of the Hybrid Hydride Model into INL's MBM Framework for Review

    Energy Technology Data Exchange (ETDEWEB)

    Tikare, Veena; Weck, Philippe F.; Schultz, Peter Andrew; Clark, Blythe; Glazoff, Michael V.; Homer, Eric R.

    2014-07-01

    This report documents the development, demonstration and validation of a mesoscale, microstructural evolution model for simulation of zirconium hydride {delta}-ZrH{sub 1.5} precipitation in the cladding of used nuclear fuels that may occur during long-term dry storage. While the Zr-based claddings are manufactured free of any hydrogen, they absorb hydrogen during service, in the reactor by a process commonly termed ‘hydrogen pick-up’. The precipitation and growth of zirconium hydrides during dry storage is one of the most likely fuel rod integrity failure mechanisms either by embrittlement or delayed hydride cracking of the cladding. While the phenomenon is well documented and identified as a potential key failure mechanism during long-term dry storage (NUREG/CR-7116), the ability to actually predict the formation of hydrides is poor. The model being documented in this work is a computational capability for the prediction of hydride formation in different claddings of used nuclear fuels. This work supports the Used Fuel Disposition Research and Development Campaign in assessing the structural engineering performance of the cladding during and after long-term dry storage. This document demonstrates a basic hydride precipitation model that is built on a recently developed hybrid Potts-phase field model that combines elements of Potts-Monte Carlo and the phase-field models. The model capabilities are demonstrated along with the incorporation of the starting microstructure, thermodynamics of the Zr-H system and the hydride formation mechanism.

  16. Identification and characterization of a new Zirconium hydride

    International Nuclear Information System (INIS)

    Zhao, Z.

    2007-01-01

    In order to control the integrity of the fuel clad, alloy of zirconium, it is necessary to predict the behavior of zirconium hydrides in the environment (temperature, stress...), at a microscopic scale. A characterization study by TEM of hydrides has been realized. It shows little hydrides about 500 nm, in hydride Zircaloy 4. Then a more detailed study identified a new hydride phase presented in this paper. (A.L.B.)

  17. Hydride heat pump with heat regenerator

    Science.gov (United States)

    Jones, Jack A. (Inventor)

    1991-01-01

    A regenerative hydride heat pump process and system is provided which can regenerate a high percentage of the sensible heat of the system. A series of at least four canisters containing a lower temperature performing hydride and a series of at least four canisters containing a higher temperature performing hydride is provided. Each canister contains a heat conductive passageway through which a heat transfer fluid is circulated so that sensible heat is regenerated. The process and system are useful for air conditioning rooms, providing room heat in the winter or for hot water heating throughout the year, and, in general, for pumping heat from a lower temperature to a higher temperature.

  18. A procedure for preparing alkali metal hydrides

    International Nuclear Information System (INIS)

    Lemieux, R.U.; Sanford, C.E.; Prescott, J.F.

    1976-01-01

    A plain low cost, procedure for the continuous, low temperature preparation of sodium or potassium hydrides using cheap reagents is presented. Said invention is especially concerned with a process of purifying of a catalytic exchange liquid used for deuterium enrichment, in which an alkali metal hydride is produced as intermediate product. The procedure for producing the sodium and potassium hydrides consists in causing high pressure hydrogen to be absorbed by a mixture of at least a lower monoalkylamine and an alkylamide of an alkali metal from at least one of said amines [fr

  19. Hydride observations using the neutrography technique

    International Nuclear Information System (INIS)

    Meyer, G.; Baruj, A.; Borzone, E.M.; Cardenas, R.; Szames, E.; Somoza, J.; Rivas, S.; Sanchez, F.A.; Marin, J.

    2012-01-01

    Neutron radiography observations were performed at the RA-6 experimental nuclear facility in Bariloche. Images from a prototype of a hydride-based hydrogen storage device have been obtained. The technique allows visualizing the inner hydride space distribution. The hydride appeared compacted at the lower part of the prototype after several cycles of hydrogen charge and discharge. The technique has also been applied to the study of Zr/ZrH 2 samples. There is a linear relation between the sample width/hydrogen concentration and the photograph grey scale. This information could be useful for the study of nuclear engineering materials and to determine their possible degradation by hydrogen pick up (author)

  20. Decomposition kinetics of plutonium hydride

    Energy Technology Data Exchange (ETDEWEB)

    Haschke, J.M.; Stakebake, J.L.

    1979-01-01

    Kinetic data for decomposition of PuH/sub 1/ /sub 95/ provides insight into a possible mechanism for the hydriding and dehydriding reactions of plutonium. The fact that the rate of the hydriding reaction, K/sub H/, is proportional to P/sup 1/2/ and the rate of the dehydriding process, K/sub D/, is inversely proportional to P/sup 1/2/ suggests that the forward and reverse reactions proceed by opposite paths of the same mechanism. The P/sup 1/2/ dependence of hydrogen solubility in metals is characteristic of the dissociative absorption of hydrogen; i.e., the reactive species is atomic hydrogen. It is reasonable to assume that the rates of the forward and reverse reactions are controlled by the surface concentration of atomic hydrogen, (H/sub s/), that K/sub H/ = c'(H/sub s/), and that K/sub D/ = c/(H/sub s/), where c' and c are proportionality constants. For this surface model, the pressure dependence of K/sub D/ is related to (H/sub s/) by the reaction (H/sub s/) reversible 1/2H/sub 2/(g) and by its equilibrium constant K/sub e/ = (H/sub 2/)/sup 1/2//(H/sub s/). In the pressure range of ideal gas behavior, (H/sub s/) = K/sub e//sup -1/(RT)/sup -1/2/ and the decomposition rate is given by K/sub D/ = cK/sub e/(RT)/sup -1/2/P/sup 1/2/. For an analogous treatment of the hydriding process with this model, it can be readily shown that K/sub H/ = c'K/sub e//sup -1/(RT)/sup -1/2/P/sup 1/2/. The inverse pressure dependence and direct temperature dependence of the decomposition rate are correctly predicted by this mechanism which is most consistent with the observed behavior of the Pu--H system.

  1. Influence of surrounding environment on subcritical crack growth in marble

    Science.gov (United States)

    Nara, Yoshitaka; Kashiwaya, Koki; Nishida, Yuki; , Toshinori, Ii

    2017-06-01

    Understanding subcritical crack growth in rock is essential for determining appropriate measures to ensure the long-term integrity of rock masses surrounding structures and for construction from rock material. In this study, subcritical crack growth in marble was investigated experimentally, focusing on the influence of the surrounding environment on the relationship between the crack velocity and stress intensity factor. The crack velocity increased with increasing temperature and/or relative humidity. In all cases, the crack velocity increased with increasing stress intensity factor. However, for Carrara marble (CM) in air, we observed a region in which the crack velocity still increased with temperature, but the increase in the crack velocity with increasing stress intensity factor was not significant. This is similar to Region II of subcritical crack growth observed in glass in air. Region II in glass is controlled by mass transport to the crack tip. In the case of rock, the transport of water to the crack tip is important. In general, Region II is not observed for subcritical crack growth in rock materials, because rocks contain water. Because the porosity of CM is very low, the amount of water contained in the marble is also very small. Therefore, our results imply that we observed Region II in CM. Because the crack velocity increased in both water and air with increasing temperature and humidity, we concluded that dry conditions at low temperature are desirable for the long-term integrity of a carbonate rock mass. Additionally, mass transport to the crack tip is an important process for subcritical crack growth in rock with low porosity.

  2. The Oxidation Products of Aluminum Hydride and Boron Aluminum Hydride Clusters

    Science.gov (United States)

    2016-01-04

    AFRL-AFOSR-VA-TR-2016-0075 The Oxidation Products of Aluminum Hydride and Boron Aluminum Hydride Clusters KIT BOWEN JOHNS HOPKINS UNIV BALTIMORE MD...2. REPORT TYPE Final Performance 3. DATES COVERED (From - To) 30-09-2014 to 29-09-2015 4. TITLE AND SUBTITLE The Oxidation Products of Aluminum ...Hydride and Boron Aluminum Hydride Clusters 5a.  CONTRACT NUMBER 5b.  GRANT NUMBER FA9550-14-1-0324 5c.  PROGRAM ELEMENT NUMBER 61102F 6. AUTHOR(S) KIT

  3. In-situ study of hydriding kinetics in Pd-based thin film systems

    Energy Technology Data Exchange (ETDEWEB)

    Delmelle, Renaud; Proost, Joris [Univ. Catholique de Louvain, Louvain-la-Neuve (Belgium). Div. of Materials and Process Engineering

    2010-07-01

    The hydriding kinetics of Pd thin films has been investigated in detail. The key experimental technique used in this work consists of a high resolution curvature measurement setup, which continuously monitors the reflections of multiple laser beams coming off a cantilevered sample. After mounting the sample inside a vacuum chamber, a H-containing gas mixture is introduced to instantaneously generate a given hydrogen partial pressure (p{sub H2}) inside the chamber. The resulting interaction of H with the Pd layer then leads to a volume expansion of the thin film system. This induces in turn changes in the sample curvature as a result of internal stresses developing in the Pd film during a hydriding cycle. Based on such curvature date obtained in-situ at different p{sub H2}, a two-step model for the kinetics of Pd-hydride formation has been proposed and expressions for the hydrogen adsorption and absorption velocities have been derived. The rate-limiting steps have been identified by studying the p{sub H2}-dependence of these velocities. Furthermore, from our in-situ experimental data, relevant kinetic parameters have been calculated. The effect of dry air exposure of the Pd films on the hydriding kinetics has been considered as well. (orig.)

  4. Tritium removal using vanadium hydride

    International Nuclear Information System (INIS)

    Hill, F.B.; Wong, Y.W.; Chan, Y.N.

    1978-01-01

    The results of an initial examination of the feasibility of separation of tritium from gaseous protium-tritium mixtures using vanadium hydride in cyclic processes is reported. Interest was drawn to the vanadium-hydrogen system because of the so-called inverse isotope effect exhibited by this system. Thus the tritide is more stable than the protide, a fact which makes the system attractive for removal of tritium from a mixture in which the light isotope predominates. The initial results of three phases of the research program are reported, dealing with studies of the equilibrium and kinetics properties of isotope exchange, development of an equilibrium theory of isotope separation via heatless adsorption, and experiments on the performance of a single heatless adsorption stage. In the equilibrium and kinetics studies, measurements were made of pressure-composition isotherms, the HT--H 2 separation factors and rates of HT--H 2 exchange. This information was used to evaluate constants in the theory and to understand the performance of the heatless adsorption experiments. A recently developed equilibrium theory of heatless adsorption was applied to the HT--H 2 separation using vanadium hydride. Using the theory it was predicted that no separation would occur by pressure cycling wholly within the β phase but that separation would occur by cycling between the β and γ phases and using high purge-to-feed ratios. Heatless adsorption experiments conducted within the β phase led to inverse separations rather than no separation. A kinetic isotope effect may be responsible. Cycling between the β and γ phases led to separation but not to the predicted complete removal of HT from the product stream, possibly because of finite rates of exchange. Further experimental and theoretical work is suggested which may ultimately make possible assessment of the feasibility and practicability of hydrogen isotope separation by this approach

  5. Password cracking

    OpenAIRE

    Χριστοφάκης, Μιχαήλ Κ.

    2014-01-01

    Information security is the next big thing in computers society because of the rapidly growing security incidents and the outcomes of those. Hacking and cracking existed even from the start of the eighties decade when there was the first step of the interconnection through the internet between humans. From then and ever after there was a big explosion of such incidents mostly because of the worldwide web which was introduced in the early nineties. Following the huge steps forward of computers...

  6. Disposal of tritium-exposed metal hydrides

    International Nuclear Information System (INIS)

    Nobile, A.; Motyka, T.

    1991-01-01

    A plan has been established for disposal of tritium-exposed metal hydrides used in Savannah River Site (SRS) tritium production or Materials Test Facility (MTF) R ampersand D operations. The recommended plan assumes that the first tritium-exposed metal hydrides will be disposed of after startup of the Solid Waste Disposal Facility (SWDF) Expansion Project in 1992, and thus the plan is consistent with the new disposal requiremkents that will be in effect for the SWDF Expansion Project. Process beds containing tritium-exposed metal hydride powder will be disposed of without removal of the powder from the bed; however, disposal of tritium-exposed metal hydride powder that has been removed from its process vessel is also addressed

  7. Method of making alkali metal hydrides

    Science.gov (United States)

    Pecharsky, Vitalij K.; Gupta, Shalabh; Pruski, Marek; Hlova, Ihor; Castle, Andra

    2017-05-30

    A method is provided for making alkali metal hydrides by mechanochemically reacting alkali metal and hydrogen gas under mild temperature (e.g room temperature) and hydrogen pressure conditions without the need for catalyst, solvent, and intentional heating or cooling.

  8. Predicting formation enthalpies of metal hydrides

    Energy Technology Data Exchange (ETDEWEB)

    Andreasen, A.

    2004-12-01

    In order for the hydrogen based society viz. a society in which hydrogen is the primary energy carrier to become realizable an efficient way of storing hydrogen is required. For this purpose metal hydrides are serious candidates. Metal hydrides are formed by chemical reaction between hydrogen and metal and for the stable hydrides this is associated with release of heat ({delta}H{sub f} ). The more thermodynamically stable the hydride, the larger {delta}H{sub f}, and the higher temperature is needed in order to desorp hydrogen (reverse reaction) and vice versa. For practical application the temperature needed for desorption should not be too high i.e. {delta}H{sub f} should not be too large. If hydrogen desorption is to be possible below 100 deg C (which is the ultimate goal if hydrogen storage in metal hydrides should be used in conjunction with a PEM fuel cell), {delta}H{sub f} should not exceed -48 kJ/mol. Until recently only intermetallic metal hydrides with a storage capacity less than 2 wt.% H{sub 2} have met this criterion. However, discovering reversible hydrogen storage in complex metal hydrides such as NaAlH{sub 4} (5.5 wt. % reversible hydrogen capacity) have revealed a new group of potential candiates. However, still many combination of elements from the periodic table are yet to be explored. Since experimental determination of thermodynamic properties of the vast combinations of elements is tedious it may be advantagous to have a predictive tool for this task. In this report different ways of predicting {delta}H{sub f} for binary and ternary metal hydrides are reviewed. Main focus will be on how well these methods perform numerically i.e. how well experimental results are resembled by the model. The theoretical background of the different methods is only briefly reviewed. (au)

  9. Influence of hydrides orientation on strain, damage and failure of hydrided zircaloy-4

    International Nuclear Information System (INIS)

    Racine, A.

    2005-09-01

    In pressurized water reactors of nuclear power plants, fuel pellets are contained in cladding tubes, made of Zirconium alloy, for instance Zircaloy-4. During their life in the primary water of the reactor (155 bars, 300 C), cladding tubes are oxidized and consequently hydrided. A part of the hydrogen given off precipitates as Zirconium hydrides in the bulk material and embrittles the material. This embrittlement depends on many parameters, among which hydrogen content and orientation of hydrides with respect to the applied stress. This investigation is devoted to the influence of the orientation of hydrides with respect to the applied stress on strain, damage and failure mechanisms. Macroscopic and SEM in-situ ring tensile tests are performed on cladding tube material (unirradiated cold worked stress-relieved Zircaloy-4) hydrided with about 200 and 500 wppm hydrogen, and with different main hydrides orientation: either parallel or perpendicular to the circumferential tensile direction. We get the mechanical response of the material as a function of hydride orientation and hydrogen content and we investigate the deformation, damage and failure mechanisms. In both cases, digital image correlation techniques are used to estimate local and global strain distributions. Neither the tensile stress-strain response nor the global and local strain modes are significantly affected by hydrogen content or hydride orientation, but the failure modes are strongly modified. Indeed, only 200 wppm radial hydrides embrittle Zy-4: sample fail in the elastic domain at about 350 MPa before strain bands could develop; whereas in other cases sample reach at least 750 MPa before necking and final failure, in ductile or brittle mode. To model this particular heterogeneous material behavior, a non-coupled damage approach which takes into account the anisotropic distribution of the hydrides is proposed. Its parameters are identified from the macroscopic strain field measurements and a

  10. Fatigue crack growth behavior in niobium-hydrogen alloys

    International Nuclear Information System (INIS)

    Lin, M.C.C.; Salama, K.

    1997-01-01

    Near-threshold fatigue crack growth behavior has been investigated in niobium-hydrogen alloys. Compact tension specimens (CTS) with three hydrogen conditions are used: hydrogen-free, hydrogen in solid solution, and hydride alloy. The specimens are fatigued at a temperature of 296 K and load ratios of 0.05, 0.4, and 0.75. The results at load ratios of 0.05 and 0.4 show that the threshold stress intensity range (ΔK th ) decreases as hydrogen is added to niobium. It reaches a minimum at the critical hydrogen concentration (C cr ), where maximum embrittlement occurs. The critical hydrogen concentration is approximately equal to the solubility limit of hydrogen in niobium. As the hydrogen concentration exceeds C cr , ΔK th increases slowly as more hydrogen is added to the specimen. At load ratio 0.75, ΔK th decreases continuously as the hydrogen concentration is increased. The results provide evidence that two mechanisms are responsible for fatigue crack growth behavior in niobium-hydrogen alloys. First, embrittlement is retarded by hydride transformation--induced and plasticity-induced crack closures. Second, embrittlement is enhanced by the presence of hydrogen and hydride

  11. Cracking susceptibility of aluminum alloys during laser welding

    Directory of Open Access Journals (Sweden)

    Lara Abbaschian

    2003-06-01

    Full Text Available The influence of laser parameters in welding aluminum alloys was studied in order to reduce hot cracking. The extension of cracks at the welding surface was used as a cracking susceptibility (CS index. It has been shown that the CS changes with changing welding velocity for binary Al-Cu alloys. In general, the CS index increased until a maximum velocity and then dropped to zero, generating a typical lambda-curve. This curve is due to two different mechanisms: 1 the refinement of porosities with increasing velocity and 2 the changes in the liquid fraction due to decreasing microsegregation with increasing velocities.

  12. Effect of direction of approach to temperature on the delayed hydrogen cracking behavior of cold-worked Zr-2.5Nb

    International Nuclear Information System (INIS)

    Ambler, J.F.R.

    1984-01-01

    The delayed hydrogen cracking behavior of cold-worked Zr-2.5Nb at temperatures above about 423 K depends upon the direction of approach to test temperature. Cooling to the test temperatures results in an increase in crack growth rate, da/dt, with increase in temperature, given by the following Arrhenius relationship da/dt = 6.86 X 10 -1 exp(--71500/RT) Heating from room temperature to the test temperature results in the same increase in da/dt with temperature, but only up to a certain temperature, T /SUB DAT/ . The temperature, T /SUB DAT/ , increases with the amount of hydride precipitated during cooling to room temperature, prior to heating, and with cooling rate. The results obtained can be explained in terms of the Simpson and Puls model of delayed hydrogen cracking, if the hydride precipitated at the crack tip is initially fully constrained and the matrix hydride loses constraint during heating

  13. gamma-Zr-Hydride Precipitate in Irradiated Massive delta- Zr-Hydride

    DEFF Research Database (Denmark)

    Warren, M. R.; Bhattacharya, D. K.

    1975-01-01

    During examination of A Zircaloy-2-clad fuel pin, which had been part of a test fuel assembly in a boiling water reactor, several regions of severe internal hydriding were noticed in the upper-plenum end of the pin. Examination of similar fuel pins has shown that hydride of this type is caused by...... to irradiation-induced swelling....

  14. Cracking hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Forwood, G F; Lane, M; Taplay, J G

    1921-10-07

    In cracking and hydrogenating hydrocarbon oils by passing their vapors together with steam over heated carbon derived from shale, wood, peat or other vegetable or animal matter, the gases from the condenser are freed from sulfuretted hydrogen, and preferably also from carbon dioxide, and passed together with oil vapors and steam through the retort. Carbon dioxide may be removed by passage through slaked lime, and sulfuretted hydrogen by means of hydrated oxide of iron. Vapors from high-boiling oils and those from low-boiling oils are passed alternately through the retort, so that carbon deposited from the high-boiling oils is used up during treatment of low-boiling oils.

  15. Behavior and failure of uniformly hydrided Zircaloy-4 fuel claddings between 25 C and 480 C under various stress states, including RIA loading conditions

    International Nuclear Information System (INIS)

    Le Saux, M.; Carassou, S.; Averty, X.; Le Saux, M.; Besson, J.; Poussard, C.

    2010-01-01

    The anisotropic plastic behavior and the fracture of as-received and hydrided Cold-Worked Stress Relieved Zircaloy-4 cladding tubes are investigated under thermal-mechanical loading conditions representative of Pellet-Clad Mechanical Interaction during Reactivity Initiated Accidents in Pressurized Water Reactors. In order to study the combined effects of temperature, hydrogen content, loading direction and stress state, Axial Tensile, Hoop Tensile, Expansion Due to Compression and hoop Plane Strain Tensile tests are performed at room temperature, 350 C and 480 C on the material containing various hydrogen contents up to 1200 wt. ppm (hydrides are circumferential and homogeneously distributed). These tests are combined with digital image correlation and metallographic and fractographic observations at different scales. The flow stress of the material decreases with increasing temperature. The material is either strengthened or softened by hydrogen depending on temperature and hydrogen content. Plastic anisotropy depends on temperature but not on hydrogen content. The ductility of the material decreases with increasing hydrogen content at room temperature due to damage nucleation by hydride cracking. The plastic strain that leads to hydride fracture at room temperature decreases with increasing hydrogen content. The influence of stress triaxiality on hydride cracking is negligible in the studied range. The influence of hydrogen on material ductility is negligible at 350 C and 480 C since hydrides do not crack at these temperatures. The ductility of the material increases with increasing temperature. The evolution of material ductility is associated with a change in both the macroscopic fracture mode of the specimens and the microscopic failure mechanisms. (authors)

  16. Synthesis of Nano-Light Magnesium Hydride for Hydrogen Storage ...

    African Journals Online (AJOL)

    Abstract. Nano-light magnesium hydride that has the capability for hydrogen storage was synthesized from treatment of magnesium ribbon with hydrogen peroxide. The optimum time for complete hydrogenation of the magnesium hydride was 5 hours.

  17. High H⁻ ionic conductivity in barium hydride.

    Science.gov (United States)

    Verbraeken, Maarten C; Cheung, Chaksum; Suard, Emmanuelle; Irvine, John T S

    2015-01-01

    With hydrogen being seen as a key renewable energy vector, the search for materials exhibiting fast hydrogen transport becomes ever more important. Not only do hydrogen storage materials require high mobility of hydrogen in the solid state, but the efficiency of electrochemical devices is also largely determined by fast ionic transport. Although the heavy alkaline-earth hydrides are of limited interest for their hydrogen storage potential, owing to low gravimetric densities, their ionic nature may prove useful in new electrochemical applications, especially as an ionically conducting electrolyte material. Here we show that barium hydride shows fast pure ionic transport of hydride ions (H(-)) in the high-temperature, high-symmetry phase. Although some conductivity studies have been reported on related materials previously, the nature of the charge carriers has not been determined. BaH2 gives rise to hydride ion conductivity of 0.2 S cm(-1) at 630 °C. This is an order of magnitude larger than that of state-of-the-art proton-conducting perovskites or oxide ion conductors at this temperature. These results suggest that the alkaline-earth hydrides form an important new family of materials, with potential use in a number of applications, such as separation membranes, electrochemical reactors and so on.

  18. Economic analysis of hydride fueled BWR

    International Nuclear Information System (INIS)

    Ganda, F.; Shuffler, C.; Greenspan, E.; Todreas, N.

    2009-01-01

    The economic implications of designing BWR cores with hydride fuels instead of conventional oxide fuels are analyzed. The economic analysis methodology adopted is based on the lifetime levelized cost of electricity (COE). Bracketing values (1970 and 3010 $/kWe) are used for the overnight construction costs and for the power scaling factors (0.4 and 0.8) that correlate between a change in the capital cost to a change in the power level. It is concluded that a newly constructed BWR reactor could substantially benefit from the use of 10 x 10 hydride fuel bundles instead of 10 x 10 oxide fuel bundles design presently in use. The cost saving would depend on the core pressure drop constraint that can be implemented in newly constructed BWRs - it is between 2% and 3% for a core pressure drop constraint as of the reference BWR, between 9% and 15% for a 50% higher core pressure drop, and between 12% and 21% higher for close to 100% core pressure. The attainable cost reduction was found insensitive to the specific construction cost but strongly dependent on the power scaling factor. The cost advantage of hydride fuelled cores as compared to that of the oxide reference core depends only weakly on the uranium and SWU prices, on the 'per volume base' fabrication cost of hydride fuels, and on the discount rate used. To be economically competitive, the uranium enrichment required for the hydride fuelled core needs to be around 10%.

  19. Experimental investigation of strain, damage and failure of hydrided zircaloy-4 with various hydride orientations

    International Nuclear Information System (INIS)

    Racine, A; Catherine, C.S.; Cappelaere, C.; Bornert, M.; Caldemaison, D.

    2005-01-01

    This experimental investigation is devoted to the influence of the orientation of hydrides on the mechanical response of Zircaloy-4. Ring tensile tests are performed on unirradiated CWSR Zircaloy-4, charged with about 200 or 500wppm hydrogen. Hydrides are oriented either parallel ('tangential'), or perpendicular ('radial') to the circumferential tensile direction. Tangential hydrides are usually observed in cladding tubes, however, hydrides can be reoriented after cooling under stress to become radial and then trigger brittle behavior. In this investigation, we perform, 'macroscopic' or SEM in-situ tensile tests on smooth rings, at room temperature. We get the mechanical response of the material as a function of hydride orientation and hydrogen content and we investigate the deformation, damage and failure mechanisms. In both cases, digital image correlation techniques are used to estimate local and global strain distributions. The results lead to the following conclusions: neither the tensile stress-strain response nor the strain modes are affected by hydrogen content or hydride orientation, but the failure modes are. Indeed, only 200wppm radial hydrides embrittle Zy-4: sample fails in the elastic domain at about 350 MPa before strain bands could develop; whereas in other cases samples reach at least 750 MPa before failure, with ductile or brittle mode. (authors)

  20. Hydrogen embrittlement and stress corrosion cracking in metals

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Young Suk; Cheong, Yong Mu; Im, Kyung Soo

    2004-10-15

    The objective of this report is to elucidate the mechanism for hydrogen embrittlement (HE) and stress corrosion cracking (SCC) in metals. To this end, we investigate the common features between delayed hydride cracking (DHC) in zirconium alloys and HE in metals with no precipitation of hydrides including Fe base alloys, Nickel base alloys, Cu alloys and Al alloys. Surprisingly, as with the crack growth pattern for the DHC in zirconium alloy, the metals mentioned above show a discontinuous crack growth, striation lines and a strong dependence of yield strength when exposed to hydrogen internally and externally. This study, for the first time, analyzes the driving force for the HE in metals in viewpoints of Kim's DHC model that a driving force for the DHC in zirconium alloys is a supersaturated hydrogen concentration coming from a hysteresis of the terminal solid solubility of hydrogen, not by the stress gradient, As with the crack growing only along the hydride habit plane during the DHC in zirconium alloys, the metals exposed to hydrogen seem to have the crack growing by invoking the dislocation slip along the preferential planes as a result of some interactions of the dislocations with hydrogen. Therefore, it seems that the hydrogen plays a role in inducing the slip only on the preferential planes so as to cause a strain localization at the crack tip. Sulfur in metals is detrimental in causing a intergranular cracking due to a segregation of the hydrogens at the grain boundaries. In contrast, boron in excess of 500 ppm added to the Ni3Al intermetallic compound is found to be beneficial in suppressing the HE even though further details of the mechanism for the roles of boron and sulfur are required. Carbon, carbides precipitating semi-continuously along the grain boundaries and the CSL (coherent site lattice) boundaries is found to suppress the intergranular stress corrosion cracking (IGSCC) in Alloy 600. The higher the volume fraction of twin boundaries, the

  1. Hydrogen embrittlement and stress corrosion cracking in metals

    International Nuclear Information System (INIS)

    Kim, Young Suk; Cheong, Yong Mu; Im, Kyung Soo

    2004-10-01

    The objective of this report is to elucidate the mechanism for hydrogen embrittlement (HE) and stress corrosion cracking (SCC) in metals. To this end, we investigate the common features between delayed hydride cracking (DHC) in zirconium alloys and HE in metals with no precipitation of hydrides including Fe base alloys, Nickel base alloys, Cu alloys and Al alloys. Surprisingly, as with the crack growth pattern for the DHC in zirconium alloy, the metals mentioned above show a discontinuous crack growth, striation lines and a strong dependence of yield strength when exposed to hydrogen internally and externally. This study, for the first time, analyzes the driving force for the HE in metals in viewpoints of Kim's DHC model that a driving force for the DHC in zirconium alloys is a supersaturated hydrogen concentration coming from a hysteresis of the terminal solid solubility of hydrogen, not by the stress gradient, As with the crack growing only along the hydride habit plane during the DHC in zirconium alloys, the metals exposed to hydrogen seem to have the crack growing by invoking the dislocation slip along the preferential planes as a result of some interactions of the dislocations with hydrogen. Therefore, it seems that the hydrogen plays a role in inducing the slip only on the preferential planes so as to cause a strain localization at the crack tip. Sulfur in metals is detrimental in causing a intergranular cracking due to a segregation of the hydrogens at the grain boundaries. In contrast, boron in excess of 500 ppm added to the Ni3Al intermetallic compound is found to be beneficial in suppressing the HE even though further details of the mechanism for the roles of boron and sulfur are required. Carbon, carbides precipitating semi-continuously along the grain boundaries and the CSL (coherent site lattice) boundaries is found to suppress the intergranular stress corrosion cracking (IGSCC) in Alloy 600. The higher the volume fraction of twin boundaries, the more

  2. Hydrogen storage in complex hydrides

    International Nuclear Information System (INIS)

    Lupu, D.; Biris, A. R.; Misan, I.

    2005-01-01

    Full text: Hydrogen storage is a key enabling technology for the advancement of hydrogen and fuel cell power technologies in mobile and stationary applications. A relevant role of the fuel cell powered vehicles on the market of the transportation systems will be achieved only if the research and development of on-board vehicular hydrogen storage are able to allow a driving range of at least 500 km. The on-board hydrogen storage systems are more challenging due to the space, weight and cost limitations. This range of autonomy between refueling requires materials able to store at least 6.5% weight hydrogen, available at moderate pressures, at the working temperature of the fuel cells and with acceptable cycling stability. The intensive research on the hydrogen storage in alloys and intermetallic of the LaNi 5 , FeTi or Laves phase type compounds, which started more than three decades ago did not resulted in materials of more than about 3% H storage capacities. The 7.5% H content of the Mg hydride is still of attracting interest but though the absorption has been achieved at lower temperatures by ball milling magnesium with various amounts of nickel, the desorption can not be attained at 1 bar H 2 below 280 deg. C and the kinetics of the process is too slow. In the last decade, the attention is focused on another class of compounds, the complex hydrides of aluminum with alkali metals (alanates), due to their high hydrogen content. It was found that doping with Ti-based catalysts improve the hydrogenation/dehydrogenation conditions of NaAlH 4 . Later on, it was shown that ball milling with solid state catalysts greatly improve the hydrogen desorption kinetics of NaAlH 4 , and this also helps to the rehydriding process. The hydrogen desorption from NaAlH 4 occurs in three steps, it shows a reversible storage capacity of 5.5% H and this led to further research work for a better knowledge of its application relating properties. In this work, ball milling experiments on Na

  3. The growth of crystals of erbium hydride

    International Nuclear Information System (INIS)

    Grimshaw, J.A.; Spooner, F.J.; Wilson, C.G.; McQuillan, A.D.

    1981-01-01

    Crystals of the rare-earth hydride ErH 2 have been produced with face areas greater than a square millimetre and corresponding volumes exceeding those of earlier crystals by orders of magnitude. The hydride, which was produced in bulk polycrystalline form by hydriding erbium metal at 950 0 C, has been examined by optical and X-ray techniques. For material of composition ErH 2 and ErHsub(1.8) the size of the grains and their degree of strain appears to depend more on oxygen contamination during formation and on the subsequent cooling procedure, than on the size of erbium metal crystals in the starting material. (author)

  4. Signal processing for underclad crack sizing

    International Nuclear Information System (INIS)

    Shankar, R.; Lane, S.S.; Paradiso, T.J.; Quinn, J.R.

    1985-01-01

    The techniques developed in this work provide a means of sizing underclad cracks and quality control methods for assessing the accuracy of the data. Data were collected with a minicomputer (LSI 11-02), a transient recorder (Biomaton 8100) and anti-aliasing filter. Three techniques were developed: the calibration curve, phase velocity and epicentral. The phase reversal characteristic in the data is a strong indication of the nature of the signal source. That is, cracks are clearly seperable from two isolated inclusions on the basis of observed phase reversal. These methods have been implemented on a computer and appear to provide an accurate rapid method to discriminate and size underclad cracks

  5. Stress induced reorientation of vanadium hydride

    International Nuclear Information System (INIS)

    Beardsley, M.B.

    1977-10-01

    The critical stress for the reorientation of vanadium hydride was determined for the temperature range 180 0 to 280 0 K using flat tensile samples containing 50 to 500 ppM hydrogen by weight. The critical stress was observed to vary from a half to a third of the macroscopic yield stress of pure vanadium over the temperature range. The vanadium hydride could not be stress induced to precipitate above its stress-free precipitation temperature by uniaxial tensile stresses or triaxial tensile stresses induced by a notch

  6. Prediction of pure water stress corrosion cracking (PWSCC) in nickel base alloys using crack growth rate models

    International Nuclear Information System (INIS)

    Thompson, C.D.; Krasodomski, H.T.; Lewis, N.; Makar, G.L.

    1995-01-01

    The Ford/Andresen slip dissolution SCC model, originally developed for stainless steel components in BWR environments, has been applied to Alloy 600 and Alloy X-750 tested in deaerated pure water chemistry. A method is described whereby the crack growth rates measured in compact tension specimens can be used to estimate crack growth in a component. Good agreement was found between model prediction and measured SCC in X-750 threaded fasteners over a wide range of temperatures, stresses, and material condition. Most data support the basic assumption of this model that cracks initiate early in life. The evidence supporting a particular SCC mechanism is mixed. Electrochemical repassivation data and estimates of oxide fracture strain indicate that the slip dissolution model can account for the observed crack growth rates, provided primary rather than secondary creep rates are used. However, approximately 100 cross-sectional TEM foils of SCC cracks including crack tips reveal no evidence of enhanced plasticity or unique dislocation patterns at the crack tip or along the crack to support a classic slip dissolution mechanism. No voids, hydrides, or microcracks are found in the vicinity of the crack tips creating doubt about classic hydrogen related mechanisms. The bulk oxide films exhibit a surface oxide which is often different than the oxides found within a crack. Although bulk chromium concentration affects the rate of SCC, analytical data indicates the mechanism does not result from chromium depletion at the grain boundaries. The overall findings support a corrosion/dissolution mechanism but not one necessarily related to slip at the crack tip

  7. Mechanism of n-butane hydrogenolysis promoted by Ta-hydrides supported on silica

    KAUST Repository

    Pasha, Farhan Ahmad

    2014-06-06

    The mechanism of hydrogenolysis of alkanes, promoted by Ta-hydrides supported on silica via 2 ≡ Si-O- bonds, has been studied with a density functional theory (DFT) approach. Our study suggests that the initial monohydride (≡ Si-O-)2Ta(III)H is rapidly trapped by molecular hydrogen to form the more stable tris-hydride (≡ Si-O-) 2Ta(V)H3. Loading of n-butane to the Ta-center occurs through C-H activation concerted with elimination of molecular hydrogen (σ-bond metathesis). Once the Ta-alkyl species is formed, the C-C activation step corresponds to a β-alkyl transfer to the metal with elimination of an olefin. According to these calculations, an α-alkyl transfer to the metal to form a Ta-carbene species is of higher energy. The olefins formed during the C-C activation step can be rapidly hydrogenated by both mono- and tris-Ta-hydride species, making the overall process of alkane cracking thermodynamically favored. © 2014 American Chemical Society.

  8. In situ hydride formation in titanium during focused ion milling.

    Science.gov (United States)

    Ding, Rengen; Jones, Ian P

    2011-01-01

    It is well known that titanium and its alloys are sensitive to electrolytes and thus hydrides are commonly observed in electropolished foils. In this study, focused ion beam (FIB) milling was used to prepare thin foils of titanium and its alloys for transmission electron microscopy. The results show the following: (i) titanium hydrides were observed in pure titanium, (ii) the preparation of a bulk sample in water or acid solution resulted in the formation of more hydrides and (iii) FIB milling aids the precipitation of hydrides, but there were never any hydrides in Ti64 and Ti5553.

  9. Metal hydrides for hydrogen storage in nickel hydrogen batteries

    International Nuclear Information System (INIS)

    Bittner, H.F.; Badcock, C.C.; Quinzio, M.V.

    1984-01-01

    Metal hydride hydrogen storage in nickel hydrogen (Ni/H 2 ) batteries has been shown to increase battery energy density and improve battery heat management capabilities. However the properties of metal hydrides in a Ni/H 2 battery environment, which contains water vapor and oxygen in addition to the hydrogen, have not been well characterized. This work evaluates the use of hydrides in Ni/H 2 batteries by fundamental characterization of metal hydride properties in a Ni/H 2 cell environment. Hydrogen sorption properties of various hydrides have been measured in a Ni/H 2 cell environment. Results of detailed thermodynamic and kinetic studies of hydrogen sorption in LaNi 5 in a Ni/H 2 cell environment are presented. Long-term cycling studies indicate that degradation of the hydride can be minimized by cycling between certain pressure limits. A model describing the mechanism of hydride degradation is presented

  10. The diffusional growth of a grain boundary crack

    International Nuclear Information System (INIS)

    Puls, M.P.; Dutton, R.

    1977-10-01

    This report considers the possibility of high temperature rupture occurring by a grain boundary diffusional mechanism. It is assumed that a pre-existing, intergranular crack grows by loss of atoms from the crack tip to the grain boundary. Rupture occurs when the crack has grown to a critical length. A theoretical treatment of the kinetics of crack growth is presented and equations are derived for the crack velocity and time to rupture. A comparison is made with a previous theoretical model developed by Charles, together with rupture data obtained experimentally for the nickel-based alloy, Nimonic 80A. We conclude that experimental verification of the theoretical models requires a comparison with crack velocity data rather than time to rupture data. (author)

  11. Subcritical crack growth in a phosphate laser glass

    Energy Technology Data Exchange (ETDEWEB)

    Crichton, S.N.; Tomozawa, M.; Hayden, J.S.; Suratwala, T.I.; Campbell, J.H.

    1999-11-01

    The rate of subcritical crack growth in a metaphosphate Nd-doped laser glass was measured using the double-cleavage-drilled compression (DCDC) method. The crack velocity is reported as a function of stress intensity at temperatures ranging from 296 to 573 K and in nitrogen with water vapor pressures ranging from 40 Pa (0.3 mmHg) to 4.7 x 10{sup 4} Pa (355 mmHg). The measured crack velocities follow region I, II, and III behavior similar to that reported for silicate glasses. A chemical and mass-transport-limited reaction rate model explains the behavior of the data except at high temperatures and high water vapor pressures where crack tip blunting is observed. Blunting is characterized to reinitiate slow crack growth at higher stresses. A dynamic crack tip blunting mechanism is proposed to explain the deviation from the reaction rate model.

  12. Method for preparation of uranium hydride

    International Nuclear Information System (INIS)

    Gorski, M.S.; Goncalves, Miriam; Mirage, A.; Lima, W. de.

    1985-01-01

    A method for preparation of Uranium Hydride starting from Hidrogen and Uranium is described. In the temperature range of 250 0 up to 350 0 C, and pressures above 10torr, Hydrogen reacts smoothly with Uranium turnings forming a fine black or dark gray powder (UH 3 ). Samples containing a significant amount of oxides show a delay before the reaction begging. (Author) [pt

  13. Hydrogen isotope exchange in metal hydride columns

    International Nuclear Information System (INIS)

    Wiswall, R.; Reilly, J.; Bloch, F.; Wirsing, E.

    1977-01-01

    Several metal hydrides were shown to act as chromatographic media for hydrogen isotopes. The procedure was to equilibrate a column of hydride with flowing hydrogen, inject a small quantity of tritium tracer, and observe its elution behavior. Characteristic retention times were found. From these and the extent of widening of the tritium band, the heights equivalent to a theoretical plate could be calculated. Values of around 1 cm were obtained. The following are the metals whose hydrides were studied, together with the temperature ranges in which chromatographic behavior was observed: vanadium, 0 to 70 0 C; zirconium, 500 to 600 0 C; LaNi 5 , -78 to +30 0 C; Mg 2 Ni, 300 to 375 0 C; palladium, 0 to 70 0 C. A dual-temperature isotope separation process based on hydride chromatography was demonstrated. In this, a column was caused to cycle between two temperatures while being supplied with a constant stream of tritium-traced hydrogen. Each half-cycle was continued until ''breakthrough,'' i.e., until the tritium concentration in the effluent was the same as that in the feed. Up to that point, the effluent was enriched or depleted in tritium, by up to 20%

  14. Magnesium hydrides and their phase transitions

    Czech Academy of Sciences Publication Activity Database

    Paidar, Václav

    2016-01-01

    Roč. 41, č. 23 (2016), s. 9769-9773 ISSN 0360-3199 R&D Projects: GA MŠk(CZ) LD13069 Institutional support: RVO:68378271 Keywords : hydrogen * magnesium and transition metal hydrides * crystal structure stability * displacive phase transformations Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.582, year: 2016

  15. Are RENiAl hydrides metallic?

    Czech Academy of Sciences Publication Activity Database

    Eichinger, K.; Havela, L.; Prokleška, J.; Stelmakhovych, O.; Daniš, S.; Šantavá, Eva; Miliyanchuk, K.

    2009-01-01

    Roč. 100, č. 9 (2009), s. 1200-1202 ISSN 1862-5282 Grant - others:GA ČR(CZ) GA202/07/0418 Institutional research plan: CEZ:AV0Z10100520 Keywords : rare earth metals * magnetism * hydrides Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.862, year: 2009

  16. Lithium hydride hydrolysis: experimental and kinetic study

    International Nuclear Information System (INIS)

    Charton, S.; Maupoix, C.; Brevet, A.; Delaunay, F.; Heintz, O.; Saviot, L.

    2006-01-01

    In this work has been studied the contribution of various analyses techniques in the framework, on the one hand of revealing the mechanisms implied in lithium hydride hydrolysis, and on the other hand of studying the kinetics of hydrogen production. Among the methods recently investigated, Raman spectroscopy, XPS and SIMS seem to be particularly attractive. (O.M.)

  17. Modeling of air flow through a narrow crack

    International Nuclear Information System (INIS)

    Trojek, T.; Cechak, T.; Moucka, L.; Fronka, A.

    2004-01-01

    Radon transport in dwellings is governed to a significant extent by pressure differences and properties of transport pathways. A model of air flow through narrow cracks was created in order to facilitate prediction of air velocity and air flow. Theoretical calculations, based on numerical solution of a system of differential equations, were compared with measurements carried out on a window crack. (P.A.)

  18. Peculiarities of formation of zirconium aluminides in hydride cycle mode

    International Nuclear Information System (INIS)

    Muradyan, G.N.

    2016-01-01

    The zirconium aluminides are promising structural materials in aerospace, mechanical engineering, chemical industry, etc. They are promising for manufacturing of heat-resistant wires, that will improve the reliability and efficiency of electrical networks. In the present work, the results of study of zirconium aluminides formation in the Hydride Cycle (HC) mode, developed in the Laboratory of high-temperature synthesis of the Institute of Chemical Physics of NAS RA, are described. The formation of zirconium aluminides in HC proceeded according to the reaction xZrH_2+(1-x)Al → alloy Zr_xAl(1-x)+H_2↑. The samples were certified using: chemical analysis to determine the content of hydrogen (pyrolysis method); differential thermal analysis (DTA, derivatograph Q-1500, T_heating = 1000°C, rate 20°C/min); X-ray analysis (XRD, diffractometer DRON-0.5). The influences of the ratio of powders ZrH_2/Al in the reaction mixture, compacting pressure, temperature and heating velocity on the characteristics of the synthesized aluminides were determined. In HC, the solid solutions of Al in Zr, single phase ZrAl_2 and ZrAl_3 aluminides and Zr_3AlH_4.49 hydride were synthesized. Formation of aluminides in HC mode took place by the solid-phase mechanism, without melting of aluminum. During processing, the heating of the initial charge up to 540°C resulted in the decomposition of zirconium hydride (ZrH_2) to HCC ZrH_1.5, that interacted with aluminum at 630°C forming FCC alumohydride of zirconium. Further increase of the temperature up to 800°C led to complete decomposition of the formed alumohydride of zirconium. The final formation of the zirconium aluminide occurred at 1000-1100°C in the end of HC process. Conclusion: in the synthesis of zirconium aluminides, the HC mode has several significant advantages over the conventional modes: lower operating temperatures (1000°C instead of 1800°C); shorter duration (1.5-2 hours instead of tens of hours); the availability of

  19. Modified Dugdale cracks and Fictitious cracks

    DEFF Research Database (Denmark)

    Nielsen, Lauge Fuglsang

    1998-01-01

    A number of theories are presented in the literature on crack mechanics by which the strength of damaged materials can be predicted. Among these are theories based on the well-known Dugdale model of a crack prevented from spreading by self-created constant cohesive flow stressed acting in local...... areas, so-called fictitious cracks, in front of the crack.The Modified Dugdale theory presented in this paper is also based on the concept of Dugdale cracks. Any cohesive stress distribution, however, can be considered in front of the crack. Formally the strength of a material weakened by a modified...... Dugdale crack is the same as if it has been weakened by the well-known Griffith crack, namely sigma_CR = (EG_CR/phi)^1/2 where E and 1 are Young's modulus and crack half-length respectively, and G_CR is the so-called critical energy release rate. The physical significance of G_CR, however, is different...

  20. Creep crack extension by grain-boundary cavitation

    International Nuclear Information System (INIS)

    Bassani, J.L.

    1981-01-01

    Recent work by Riedel and coworkers has led to various descriptions of stationary and moving crack tip fields under creep conditions. For stationary and growing cracks, several flow mechanisms (e.g., elastic, time-independent plastic, primary creep, and secondary creep) can dictate the analytical form of the crack tip field. In this paper, relationship between overall loading and crack velocities are modelled based upon grain-boundary cavity growth and coalescence within the zone of concentrated strain in the crack tip field. Coupled diffusion and creep growth of the cavities is considered. Overall crack extension is taken to be intermittent on a size scale equivalent to the size of a grain. Numerical results are presented for a center-cracked panel of 304 stainless steel. (author)

  1. Crack-tip chemistry modeling of stage I stress corrosion cracking

    International Nuclear Information System (INIS)

    Jones, R.H.; Simonen, E.P.

    1991-10-01

    Stage I stress corrosion cracking usually exhibits a very strong K dependence with Paris law exponents of up to 30. 2 Model calculations indicate that the crack velocity in this regime is controlled by transport through a salt film and that the K dependence results from crack opening controlled salt film dissolution. An ionic transport model that accounts for both electromigration through the resistive salt film and Fickian diffusion through the aqueous solution was used for these predictions. Predicted crack growth rates are in excellent agreement with measured values for Ni with P segregated to the grain boundaries and tested in IN H 2 SO 4 at +900 mV. This salt film dissolution may be applicable to stage I cracking of other materials

  2. Hydrogen-Induced Cracking of the Drip Shield

    International Nuclear Information System (INIS)

    F. Hua

    2004-01-01

    Hydrogen-induced cracking is characterized by the decreased ductility and fracture toughness of a material due to the absorption of atomic hydrogen in the metal crystal lattice. Corrosion is the source of hydrogen generation. For the current design of the engineered barrier without backfill, hydrogen-induced cracking may be a concern because the titanium drip shield can be galvanically coupled to rock bolts (or wire mesh), which may fall onto the drip shield, thereby creating conditions for hydrogen production by electrochemical reaction. The purpose of this report is to analyze whether the drip shield will fail by hydrogen-induced cracking under repository conditions within 10,000 years after emplacement. Hydrogen-induced cracking is a scenario of premature failure of the drip shield. This report develops a realistic model to assess the form of hydrogen-induced cracking degradation of the drip shield under the hydrogen-induced cracking. The scope of this work covers the evaluation of hydrogen absorbed due to general corrosion and galvanic coupling to less noble metals (e.g., Stainless Steel Type 316 and carbon steels) under the repository conditions during the 10,000-year regulatory period after emplacement and whether the absorbed hydrogen content will exceed the critical hydrogen concentration value, above which the hydrogen-induced cracking is assumed to occur. This report also provides the basis for excluding the features, events, and processes (FEPs) related to hydrogen-induced cracking of the drip shield with particular emphasis on FEP 2.1.03.04.OB, hydride cracking of drip shields (DTN: M00407SEPFEPLA.000 [DIRS 170760]). This report is prepared according to ''Technical Work Plan (TWP) for: Regulatory Integration Modeling and Analysis of the Waste Form and Waste Package'' (BSC 2004 [DIRS 169944])

  3. Hydrogen storage in metallic hydrides: the hydrides of magnesium-nickel alloys

    International Nuclear Information System (INIS)

    Silva, E.P. da.

    1981-01-01

    The massive and common use of hydrogen as an energy carrier requires an adequate solution to the problem of storing it. High pressure or low temperatures are not entirely satisfactory, having each a limited range of applications. Reversible metal hydrides cover a range of applications intermediate to high pressure gas and low temperature liquid hydrogen, retaining very favorable safety and energy density characteristics, both for mobile and stationary applications. This work demonstrates the technical viability of storing hydrogen in metal hydrides of magnesium-nickel alloys. Also, it shows that technology, a product of science, can be generated within an academic environment, of the goal is clear, the demand outstanding and the means available. We review briefly theoretical models relating to metal hydride properties, specially the thermodynamics properties relevant to this work. We report our experimental results on hydrides of magnesium-nickel alloys of various compositions including data on structure, hydrogen storage capacities, reaction kinetics, pressure-composition isotherms. We selected a promising alloy for mass production, built and tested a modular storage tank based on the hydrides of the alloy, with a capacity for storing 10 Nm sup(3) of hydrogen of 1 atm and 20 sup(0)C. The tank weighs 46,3 Kg and has a volume of 21 l. (author)

  4. SYNTHESIS AND STRUCTURE OF BIS(PHENYLTETRAMETHYLCYCLOPENTADIENYL)TITANIUM(III) HYDRIDE - THE FIRST MONOMERIC BIS(CYCLOPENTADIENYL)TITANIUM(III) HYDRIDE : The First Monomeric Bis(cyclopentadienyl)titanium(III) Hydride

    NARCIS (Netherlands)

    de Wolf, J.M.; Meetsma, A.; Teuben, J.H

    1995-01-01

    The first structurally characterized monomeric bis(cyclopentadienyl)titanium(III) hydride, (C(5)PhMe(4))(2)TiH (4), was synthesized by hydrogenolysis of (C(5)PhMe(4))(2)TiMe (5). Hydride 4 was found to be a monomeric bent sandwich by X-ray diffraction methods, and the pentamethylcyclopentadienyl

  5. Cocaine (Coke, Crack) Facts

    Science.gov (United States)

    ... That People Abuse » Cocaine (Coke, Crack) Facts Cocaine (Coke, Crack) Facts Listen Cocaine is a white ... 69 KB) "My life was built around getting cocaine and getting high." ©istock.com/ Marjot Stacey is ...

  6. Hydridation of Ti-6Al-4V

    International Nuclear Information System (INIS)

    Domizzi, G; Luppo, M.I; Ortiz, M; Vigna, G

    2004-01-01

    The production of Ti pieces or their alloys through powder metallurgy is an economical alternative that replaces the costly methods commonly used. The Ti-6AI-4V alloy is widely used in the aerospace, chemical and medical industries. The use of powder from the alloy instead of using more pure alloyed titanium powders, further simplifies the production process. The presence of V allows the phase β to stabilize at very low temperatures and both alloys alter the Ti-H equilibrium diagram. This work analyzes to what degree these effects influence the obtaining of powders from this alloy from that of hydridation and dehydridation. Although it has slower kinetics, powders can be produced in times similar to those found for grade 2 Ti since the distribution of hydrides in the sample is uniform and the material is fragile enough for concentrations of approximately 0.7 H/Ti (CW)

  7. The electrochemical impedance of metal hydride electrodes

    DEFF Research Database (Denmark)

    Valøen, Lars Ole; Lasia, Andrzej; Jensen, Jens Oluf

    2002-01-01

    The electrochemical impedance responses for different laboratory type metal hydride electrodes were successfully modeled and fitted to experimental data for AB5 type hydrogen storage alloys as well as one MgNi type electrode. The models fitted the experimental data remarkably well. Several AC......, explaining the experimental impedances in a wide frequency range for electrodes of hydride forming materials mixed with copper powder, were obtained. Both charge transfer and spherical diffusion of hydrogen in the particles are important sub processes that govern the total rate of the electrochemical...... hydrogen absorption/desorption reaction. To approximate the experimental data, equations describing the current distribution in porous electrodes were needed. Indications of one or more parallel reduction/oxidation processes competing with the electrochemical hydrogen absorption/desorption reaction were...

  8. Correlation between oxidation and stress corrosion cracking of U-4.5 wt.% Nb

    International Nuclear Information System (INIS)

    Magnani, N.J.; Holloway, P.H.

    1976-01-01

    To investigate the mechanisms causing stress corrosion cracking on uranium alloys, the kinetics of crack propagation and oxide film growth for U-4.5 percent Nb were investigated at temperatures between 0 0 C and 200 0 C in oxygen, water vapor and oxygen-water vapor mixtures. Three regions of crack velocity rate versus stress intensity were observed in laboratory air. At low stress intensities (but above an effective K/sub ISCC/ of 22 MN/m/sup 3 / 2 /) crack velocity varied approximately as K 70 . In an intermediate stress intensity region (region II) the crack velocity was dependent upon K 4 . In the high stress intensity region, mechanical overloading was observed and crack velocities varied approximately as K 12 . Both cracking (region II) and oxidation rates were characterized by an activation energy of 7 kcal/mole. For stress corrosion cracking it was shown that oxygen was the primary stress corrodent, but a synergistic effect upon crack propagation rates was observed for oxygen-water vapor mixtures. Crack velocities were dependent upon the pressure of oxygen (P/sub O 2 //sup 1 / 3 /) and water vapor, while the oxidation rate was essentially independent of the pressure of these species. Stress sorption and oxide film formation stress corrosion cracking mechanisms were considered and reconciled with the stress corrosion and oxidation data

  9. Metal hydrides based high energy density thermal battery

    International Nuclear Information System (INIS)

    Fang, Zhigang Zak; Zhou, Chengshang; Fan, Peng; Udell, Kent S.; Bowman, Robert C.; Vajo, John J.; Purewal, Justin J.; Kekelia, Bidzina

    2015-01-01

    Highlights: • The principle of the thermal battery using advanced metal hydrides was demonstrated. • The thermal battery used MgH 2 and TiMnV as a working pair. • High energy density can be achieved by the use of MgH 2 to store thermal energy. - Abstract: A concept of thermal battery based on advanced metal hydrides was studied for heating and cooling of cabins in electric vehicles. The system utilized a pair of thermodynamically matched metal hydrides as energy storage media. The pair of hydrides that was identified and developed was: (1) catalyzed MgH 2 as the high temperature hydride material, due to its high energy density and enhanced kinetics; and (2) TiV 0.62 Mn 1.5 alloy as the matching low temperature hydride. Further, a proof-of-concept prototype was built and tested, demonstrating the potential of the system as HVAC for transportation vehicles

  10. Hydrides and Borohydrides of Light Elements

    Science.gov (United States)

    1947-12-04

    Troy, Attn: Inst. of Naval Science (30) Solar Aircraft Cu,, San Diego, Attn: Dr. M. A. Williamson " (31) INSMAT. N. J. for Itandard Oil Co., Esso Lab...with the other# iLD F.Re p. 8 ilt -ms" #61ggSotod that.. ir addition to thc impurity in the t~y..thr, an impurkty, prosumably aluminum hydride, in

  11. Facile Synthesis of Permethyl Yttrocene Hydride

    NARCIS (Netherlands)

    Haan, Klaas H. den; Teuben, Jan H.

    1984-01-01

    A convenient three step synthesis of (Cp*2YH)n (Cp* = C5Me5) is described starting with YCl3.3thf, in which Cp*2YCl.thf and Cp*2YCH(SiMe3)2 are intermediates, which could be isolated and characterized. The hydride is active in the activation of sp2 and sp3 C-H bonds as was demonstrated by the H-D

  12. Spectrophotometric determination of volautile inorganic hydrides in binary gaseous mixtures

    International Nuclear Information System (INIS)

    Rezchikov, V.G.; Skachkova, I.N.; Kuznetsova, T.S.; Khrushcheva, V.V.

    1985-01-01

    A study was made on possibility of single and continuons analysis of binary mixtures (hydride-gas) for the content of volatile inorganic hydrides (VIH) from absorption spectra in the 185-280 nm band. Dependences of the percentage of VIH transmission on the wavelength are presented. It is shown that the maximum of their absorption depends on the element-hydrogen the bond length and binding energy. Detection limit for boron hydride was established to be n x 10 -3 % vol at 185-190 nm wavelength. Technique for spectrophotometric hydride determination in binary mixtures with hydrogen, argon, helium was developed. The technique provides the continuous control of gaseous mixture composition

  13. Identification of the zirconium hydrides metallography in zircaloy-2

    International Nuclear Information System (INIS)

    Garcia Gonzalez, F.

    1968-01-01

    Technique for the Identification of the zirconium hydrides in metallographic specimens have been developed. Microhardness, quantitative estimation and relative orientation of the present hydrides as well as grain size determination of the different Zircaloy-2 tube specimens have also been made. The specimens used were corrosion- tested in water during various periods of time at 300 degree castrating, prior to the metallographic examination. Reference specimens, as received, and heavily hydride specimens in a hydrogen atmosphere at 800 degree centigrees, have been used in the previous stages of the work. No difficulties have been met in this early stage of acquaintanceship with the zirconium hydrides. (Author) 5 refs

  14. Cessation of environmentally-assisted cracking in a low-alloy steel: Theoretical analysis

    International Nuclear Information System (INIS)

    Wire, G.L.

    1997-01-01

    Environmentally Assisted Cracking (EAC) can cause increases in fatigue crack growth rates of 40 to 100 times the rate in air for low alloy steels. The increased rates can lead to very large predicted crack growth. EAC is activated by a critical level of dissolved sulfides at the crack tip. Sulfide inclusions (MnS) in the steel produce corrosive sulfides in solution following exposure by a growing crack. In stagnant, low oxygen water conditions considered here, diffusion is the dominant mass transport mechanism acting to change the sulfide concentration within the crack. The average crack tip velocity is below the level required to produce the critical crack tip sulfide ion concentration required for EAC. Crack extension analyses also consider the breakthrough of large, hypothetical embedded defects with the attendant large freshly exposed sulfide inventory. Combrade et al. noted that a large inventory of undissolved metallurgical sulfides on crack flanks could trigger EAC, but did not quantify the effects. Diffusion analysis is extended herein to cover breakthrough of embedded defects with large sulfide inventories. The mass transport via diffusion is limited by the sulfide solubility. As a result, deep cracks in high sulfur steels are predicted to retain undissolved sulfides for extended but finite periods of time t diss which increase with the crack length and the metallurgical sulfide content in the steel. The analysis shows that the duration of EAC is limited to t diss providing V eac , the crack tip velocity associated with EAC is less than V In , the crack tip velocity below which EAC will not occur in an initially sulfide free crack. This condition on V eac need only be met for a short time following crack cleanup to turn off EAC. The predicted crack extension due to limited duration of EAC is a small fraction of the initial embedded defect size and would not greatly change calculated crack depths

  15. Evaluation of Detrimental Effects on Mechanical Properties of Zry-4 Due to Hydrogen Absorption by means of Scanning Electron Microscopy (SEM) In-Situ Observation of Crack Propagation

    International Nuclear Information System (INIS)

    Fernandez, L; Fernandez, G.E; Bertolino, G; Meyer, G

    2001-01-01

    The study of mechanical properties degradation of zirconium alloys due to hydrides assumes fundamental importance in the nuclear industry.During normal nuclear reactors operation, structural parts absorbed hydrogen generated from radiolysis of water, causing detrimental effects on mechanical properties.As a consequence, these materials are easily cracked in the presence of mechanical solicitation due to loss of ductility of the hydride-phase.The presence of cracks indicates fracture mechanic as the most suitable methodology in the study of mechanical properties degradation.In this work we used the crack tip opening displacement (CTOD) criteria to evaluate the detrimental effects on mechanical properties with the observation in SEM of crack propagation.The samples used were SEN (B) of Zry-4 and cathodic homogenous charged with hydrogen concentrations lower than 400 ppm

  16. Investigation of Helicopter Longeron Cracks

    Science.gov (United States)

    Newman, John A.; Baughman, James; Wallace, Terryl A.

    2009-01-01

    Four cracked longerons, containing a total of eight cracks, were provided for study. Cracked regions were cut from the longerons. Load was applied to open the cracks, enabling crack surface examination. Examination revealed that crack propagation was driven by fatigue loading in all eight cases. Fatigue crack initiation appears to have occurred on the top edge of the longerons near geometric changes that affect component bending stiffness. Additionally, metallurgical analysis has revealed a local depletion in alloying elements in the crack initiation regions that may be a contributing factor. Fatigue crack propagation appeared to be initially driven by opening-mode loading, but at a crack length of approximately 0.5 inches (12.7 mm), there is evidence of mixed-mode crack loading. For the longest cracks studied, shear-mode displacements destroyed crack-surface features of interest over significant portions of the crack surfaces.

  17. Crack detecting method

    International Nuclear Information System (INIS)

    Narita, Michiko; Aida, Shigekazu

    1998-01-01

    A penetration liquid or a slow drying penetration liquid prepared by mixing a penetration liquid and a slow drying liquid is filled to the inside of an artificial crack formed to a member to be detected such as of boiler power generation facilities and nuclear power facilities. A developing liquid is applied to the periphery of the artificial crack on the surface of a member to be detected. As the slow-drying liquid, an oil having a viscosity of 56 is preferably used. Loads are applied repeatedly to the member to be detected, and when a crack is caused to the artificial crack, the permeation liquid penetrates into the crack. The penetration liquid penetrated into the crack is developed by the developing liquid previously coated to the periphery of the artificial crack of the surface of the member to be detected. When a crack is caused, since the crack is developed clearly even if it is a small opening, the crack can be recognized visually reliably. (I.N.)

  18. Hydrogen storage in the form of metal hydrides

    Science.gov (United States)

    Zwanziger, M. G.; Santana, C. C.; Santos, S. C.

    1984-01-01

    Reversible reactions between hydrogen and such materials as iron/titanium and magnesium/ nickel alloy may provide a means for storing hydrogen fuel. A demonstration model of an iron/titanium hydride storage bed is described. Hydrogen from the hydride storage bed powers a converted gasoline electric generator.

  19. Pyrophoric behaviour of uranium hydride and uranium powders

    Science.gov (United States)

    Le Guyadec, F.; Génin, X.; Bayle, J. P.; Dugne, O.; Duhart-Barone, A.; Ablitzer, C.

    2010-01-01

    Thermal stability and spontaneous ignition conditions of uranium hydride and uranium metal fine powders have been studied and observed in an original and dedicated experimental device placed inside a glove box under flowing pure argon. Pure uranium hydride powder with low amount of oxide (Oxidation mechanisms are proposed.

  20. Electrocatalytic hydride-forming compounds for rechageable batteries

    NARCIS (Netherlands)

    Notten, P.H.L.; Einerhand, R.E.F.

    1991-01-01

    Non-toxic intermetallic hydride-forming compounds are attractive alternatives to cadmium as the negative electrode materials in the new generation of Ni/metal hydride rechargeable batteries. High exchange currents and discharge efficiencies even at low temperatures can be achieved using highly

  1. Ultra-sonic observation in niobium hydride precipitation

    International Nuclear Information System (INIS)

    Florencio, O.; Pinatti, Dyonisio G.

    1982-01-01

    The hidrogen embrittlement of exothermic ocluders, had been considered as due to applied stress induced hydride precipitates leading to brittle fracture. The results of simultaneous measurements of macroscopic deformation and elastic change due to hydride precipitation, using the ultrasonic pulse-echo technique are showed. THen it was tested the possibility of kinectis precipitation parameters evoluation. (Author) [pt

  2. Optical hydrogen sensors based on metal-hydrides

    Science.gov (United States)

    Slaman, M.; Westerwaal, R.; Schreuders, H.; Dam, B.

    2012-06-01

    For many hydrogen related applications it is preferred to use optical hydrogen sensors above electrical systems. Optical sensors reduce the risk of ignition by spark formation and are less sensitive to electrical interference. Currently palladium and palladium alloys are used for most hydrogen sensors since they are well known for their hydrogen dissociation and absorption properties at relatively low temperatures. The disadvantages of palladium in sensors are the low optical response upon hydrogen loading, the cross sensitivity for oxygen and carbon, the limited detection range and the formation of micro-cracks after some hydrogen absorption/desorption cycles. In contrast to Pd, we find that the use of magnesium or rear earth bases metal-hydrides in optical hydrogen sensors allow tuning of the detection levels over a broad pressure range, while maintaining a high optical response. We demonstrate a stable detection layer for detecting hydrogen below 10% of the lower explosion limit in an oxygen rich environment. This detection layer is deposited at the bare end of a glass fiber as a micro-mirror and is covered with a thin layer of palladium. The palladium layer promotes the hydrogen uptake at room temperature and acts as a hydrogen selective membrane. To protect the sensor for a long time in air a final layer of a hydrophobic fluorine based coating is applied. Such a sensor can be used for example as safety detector in automotive applications. We find that this type of fiber optic hydrogen sensor is also suitable for hydrogen detection in liquids. As example we demonstrate a sensor for detecting a broad range of concentrations in transformer oil. Such a sensor can signal a warning when sparks inside a high voltage power transformer decompose the transformer oil over a long period.

  3. Preferred hydride growth orientations on oxide-coated gadolinium surfaces

    International Nuclear Information System (INIS)

    Benamar, G.M.; Schweke, D.; Kimmel, G.; Mintz, M.H.

    2012-01-01

    Highlights: ► The preferred hydride growth orientations on gadolinium metal coated by a thin oxide layer are presented. ► A preferred growth of the (1 0 0) h plane of the face centered cubic (FCC) GdH 2 is observed for the hydride spots forming below the oxidation layer. ► A change to the (1 1 1) h plane of the cubic hydride dominates for the hydride's Growth Centers. ► The texture change is attributed to the surface normal compressive stress component exerted by the oxidation layer on the developing hydride. - Abstract: The initial development of hydrides on polycrystalline gadolinium (Gd), as on some other hydride forming metals, is characterized by two sequential steps. The first step involves the rapid formation of a dense pattern of small hydride spots (referred to as the “small family” of hydrides) below the native oxidation layer. The second stage takes place when some of the “small family” nucleants (referred to as “growth centers”, GCs) break the oxide layer, leading to their rapid growth and finally to the massive hydriding of the sample. In the present study, the texture of the two hydride families was studied, by combining X-ray diffraction (XRD) analysis with a microscopic analysis of the hydride, using scanning electron microscopy (SEM) and atomic force microscopy (AFM). It has been observed that for the “small family”, a preferred growth of the (1 0 0) h plane of the cubic GdH 2 takes place, whereas for the GCs, a change to the (1 1 1) h plane of the cubic hydride dominates. These preferred growth orientations were analyzed by their structure relation with the (0 0 .1) m basal plane of the Gd metal. It has been concluded that the above texture change is due to the surface normal compressive stress component exerted by the oxidation overlayer on the developing hydride, preventing the (0 0 .1) m ||(1 1 1) h growth orientation. This stress is relieved upon the rupture of that overlayer and the development of the GCs, leading to

  4. Growth and decomposition of Lithium and Lithium hydride on Nickel

    DEFF Research Database (Denmark)

    Engbæk, Jakob; Nielsen, Gunver; Nielsen, Jane Hvolbæk

    2006-01-01

    In this paper we have investigated the deposition, structure and decomposition of lithium and lithium-hydride films on a nickel substrate. Using surface sensitive techniques it was possible to quantify the deposited Li amount, and to optimize the deposition procedure for synthesizing lithium......-hydride films. By only making thin films of LiH it is possible to study the stability of these hydride layers and compare it directly with the stability of pure Li without having any transport phenomena or adsorbed oxygen to obscure the results. The desorption of metallic lithium takes place at a lower...... temperature than the decomposition of the lithium-hydride, confirming the high stability and sintering problems of lithium-hydride making the storage potential a challenge. (c) 2006 Elsevier B.V. All rights reserved....

  5. Tritium immobilization and packaging using metal hydrides

    International Nuclear Information System (INIS)

    Holtslander, W.J.; Yaraskavitch, J.M.

    1981-04-01

    Tritium recovered from CANDU heavy water reactors will have to be packaged and stored in a safe manner. Tritium will be recovered in the elemental form, T 2 . Metal tritides are effective compounds in which to immobilize the tritium as a stable non-reactive solid with a high tritium capacity. The technology necessary to prepare hydrides of suitable metals, such as titanium and zirconium, have been developed and the properties of the prepared materials evaluated. Conceptual designs of packages for containing metal tritides suitable for transportation and long-term storage have been made and initial testing started. (author)

  6. Low-frequency excitations in zirconium hydrides

    International Nuclear Information System (INIS)

    Radulescu, A.; Padureanu, I.; Rapeanu, S.N.; Beldiman, A.; Kozlov, Zh.A.; Semenov, V.A.

    1999-01-01

    The slow inelastic neutron scattering (INS) on ZrH x systems (x = 0.38, 0.52) revealed new excitations located within the energy range 2-10 MeV. Besides the acoustic vibrations specific to α-HCP Zr and γ-FCO Zr hydride the fine structure of these excitations is clearly observed. The origin of the new observed peaks is not very clear but a proton tunneling or a resonance effect in α-Zr lattice could be taken into account

  7. Low temperature spalling of silicon: A crack propagation study

    Energy Technology Data Exchange (ETDEWEB)

    Bertoni, Mariana; Uberg Naerland, Tine; Stoddard, Nathan; Guimera Coll, Pablo

    2017-06-08

    Spalling is a promising kerfless method for cutting thin silicon wafers while doubling the yield of a silicon ingot. The main obstacle in this technology is the high total thickness variation of the spalled wafers, often as high as 100% of the wafer thickness. It has been suggested before that a strong correlation exists between low crack velocities and a smooth surface, but this correlation has never been shown during a spalling process in silicon. The reason lies in the challenge associated to measuring such velocities. In this contribution, we present a new approach to assess, in real time, the crack velocity as it propagates during a low temperature spalling process. Understanding the relationship between crack velocity and surface roughness during spalling can pave the way to attain full control on the surface quality of the spalled wafer.

  8. Curvilinear crack layer propagation

    Science.gov (United States)

    Chudnovsky, Alexander; Chaoui, Kamel; Moet, Abdelsamie

    1987-01-01

    An account is given of an experiment designed to allow observation of the effect of damage orientation on the direction of crack growth in the case of crack layer propagation, using polystyrene as the model material. The direction of crack advance under a given loading condition is noted to be determined by a competition between the tendency of the crack to maintain its current direction and the tendency to follow the orientation of the crazes at its tip. The orientation of the crazes is, on the other hand, determined by the stress field due to the interaction of the crack, the crazes, and the hole. The changes in craze rotation relative to the crack define the active zone rotation.

  9. Replacement of a cracked pressure tube in Bruce GS unit 2

    International Nuclear Information System (INIS)

    Dunn, J.T.

    1982-06-01

    In 1982 February, a primary heat transport system leak was detected in the annulus gas system by on-line instrumentation. The source of the leak was found to be a small axial crack in the pressure tube of fuel channel X-14. This fuel channel was removed and replaced by station maintenance staff, and the unit was returned to service five weeks after it had been shut down. The cracked pressure tube was sent to Chalk River Nuclear Laboratories for examination, and the crack was found to be very similar to those found in Pickering GS units 3 and 4 in 1974-75. It was caused by delayed hydride cracking during the period of high residual stress between the time of rolling and the pre-service stress relief

  10. Nanoindentation measurements of the mechanical properties of zirconium matrix and hydrides in unirradiated pre-hydrided nuclear fuel cladding

    International Nuclear Information System (INIS)

    Rico, A.; Martin-Rengel, M.A.; Ruiz-Hervias, J.; Rodriguez, J.; Gomez-Sanchez, F.J.

    2014-01-01

    It is well known that the mechanical properties of the nuclear fuel cladding may be affected by the presence of hydrides. The average mechanical properties of hydrided cladding have been extensively investigated from a macroscopic point of view. In addition, the mechanical and fracture properties of bulk hydride samples fabricated from zirconium plates have also been reported. In this paper, Young’s modulus, hardness and yield stress are measured for each phase, namely zirconium hydrides and matrix, of pre-hydrided nuclear fuel cladding. To this end, nanoindentation tests were performed on ZIRLO samples in as-received state, on a hydride blister and in samples with 150 and 1200 ppm of hydrogen homogeneously distributed along the hoop direction of the cladding. The results show that the measured mechanical properties of the zirconium hydrides and ZIRLO matrix (Young’s modulus, hardness and yield stress) are rather similar. From the experimental data, the hydride volume fraction in the cladding samples with 150 and 1200 ppm was estimated and the average mechanical properties were calculated by means of the rule of mixtures. These values were compared with those obtained from ring compression tests. Good agreement between the results obtained by both methods was found

  11. Permeability and elastic properties of cracked glass under pressure

    Science.gov (United States)

    Ougier-Simonin, A.; GuéGuen, Y.; Fortin, J.; Schubnel, A.; Bouyer, F.

    2011-07-01

    Fluid flow in rocks is allowed through networks of cracks and fractures at all scales. In fact, cracks are of high importance in various applications ranging from rock elastic and transport properties to nuclear waste disposal. The present work aims at investigating thermomechanical cracking effects on elastic wave velocities, mechanical strength, and permeability of cracked glass under pressure. We performed the experiments on a triaxial cell at room temperature which allows for independent controls of the confining pressure, the axial stress, and pore pressure. We produced cracks in original borosilicate glass samples with a reproducible method (thermal treatment with a thermal shock of 300°C). The evolution of the elastic and transport properties have been monitored using elastic wave velocity sensors, strain gage, and flow measurements. The results obtained evidence for (1) a crack family with identified average aspect ratio and crack aperture, (2) a very small permeability which decreases as a power (exponential) function of pressure, and depends on (3) the crack aperture cube. We also show that permeability behavior of a cracked elastic brittle solid is reversible and independent of the fluid nature. Two independent methods (permeability and elastic wave velocity measurements) give these consistent results. This study provides data on the mechanical and transport properties of an almost ideal elastic brittle solid in which a crack population has been introduced. Comparisons with similar data on rocks allow for drawing interesting conclusions. Over the timescale of our experiments, our results do not provide any data on stress corrosion, which should be considered in further study.

  12. Preparation of freestanding GaN wafer by hydride vapor phase epitaxy on porous silicon

    Science.gov (United States)

    Wu, Xian; Li, Peng; Liang, Renrong; Xiao, Lei; Xu, Jun; Wang, Jing

    2018-05-01

    A freestanding GaN wafer was prepared on porous Si (111) substrate using hydride vapor phase epitaxy (HVPE). To avoid undesirable effects of the porous surface on the crystallinity of the GaN, a GaN seed layer was first grown on the Si (111) bare wafer. A pattern with many apertures was fabricated in the GaN seed layer using lithography and etching processes. A porous layer was formed in the Si substrate immediately adjacent to the GaN seed layer by an anodic etching process. A 500-μm-thick GaN film was then grown on the patterned GaN seed layer using HVPE. The GaN film was separated from the Si substrate through the formation of cracks in the porous layer caused by thermal mismatch stress during the cooling stage of the HVPE. Finally, the GaN film was polished to obtain a freestanding GaN wafer.

  13. NATO Advanced Study Institute on Metal Hydrides

    CERN Document Server

    1981-01-01

    In the last five years, the study of metal hydrides has ex­ panded enormously due to the potential technological importance of this class of materials in hydrogen based energy conversion schemes. The scope of this activity has been worldwide among the industrially advanced nations. There has been a consensus among researchers in both fundamental and applied areas that a more basic understanding of the properties of metal/hydrogen syster;,s is required in order to provide a rational basis for the selection of materials for specific applications. The current worldwide need for and interest in research in metal hydrides indicated the timeliness of an Advanced Study Insti­ tute to provide an in-depth view of the field for those active in its various aspects. The inclusion of speakers from non-NATO coun­ tries provided the opportunity for cross-fertilization of ideas for future research. While the emphasis of the Institute was on basic properties, there was a conscious effort to stimulate interest in the applic...

  14. Isotope exchange between gaseous hydrogen and uranium hydride powder

    International Nuclear Information System (INIS)

    Shugard, Andrew D.; Buffleben, George M.; Johnson, Terry A.; Robinson, David B.

    2014-01-01

    Highlights: • Isotope exchange between hydrogen gas and uranium hydride powder can be rapid and reversible. • Gas–solid exchange rate is controlled by transport within ∼0.7 μm hydride particles. • Gas chromatographic separation of hydrogen isotopes using uranium hydride is feasible. - Abstract: Isotope exchange between gaseous hydrogen and solid uranium hydride has been studied by flowing hydrogen (deuterium) gas through packed powder beds of uranium deuteride (hydride). We used a residual gas analyzer system to perform real-time analysis of the effluent gas composition. We also developed an exchange and transport model and, by fitting it to the experimental data, extracted kinetic parameters for the isotope exchange reaction. Our results suggest that, from approximately 70 to 700 kPa and 25 to 400 °C, the gas-to-solid exchange rate is controlled by hydrogen and deuterium transport within the ∼0.7 μm diameter uranium hydride particles. We use our kinetic parameters to show that gas chromatographic separation of hydrogen and deuterium using uranium hydride could be feasible

  15. A study of stress reorientation of hydrides in zircaloy

    Energy Technology Data Exchange (ETDEWEB)

    Yourong, Jiang; Bangxin, Zhou [Nuclear Power Inst. of China, Chengdu, SC (China)

    1994-10-01

    Under the conditions of circumferential tensile stress from 70 to 180 MPa for Zircaloy tubes or the tensile stress from 55 to 180 MPa for Zircaloy-4 plates and temperature cycling between 150 and 400 degree C, the effects of stress and the number of temperature cycling on hydride reorientation in Zircaloy-4 tubes and plates and Zircaloy-2 tubes containing about 220 {mu}g/g hydrogen have been investigated. With the increase of stress and/or the number of temperature cycling, the level of hydride reorientation increases. When hydride reorientation takes place, there is a threshold stress concerned with the number of temperature cycling. Below the threshold stress, hydride reorientation is not obvious. When applied stress is higher than the threshold stress, the level of hydride reorientation increases with the increase of stress and the number of temperature cycling. Hydride reorientation in Zircaloy-4 tubes develops gradually from the outer surface to inner surface. It might be related to the difference of texture between outer surface and inner surface. The threshold stress is affected by both the texture and the value of B. So controlling texture could still restrict hydride reorientation under tensile stress.

  16. Cessation of environmentally-assisted cracking in a low-alloy steel: Experimental results

    International Nuclear Information System (INIS)

    Li, Y.Y.

    1997-01-01

    The presence of dissolved metallurgical sulfides in pressure vessel and piping steels has been linked to Environmentally-Assisted Cracking (EAC), a phenomenon observed in laboratory tests that results in fatigue crack growth rates as high as 100 times that in air. Previous experimental and analytical work based on diffusion as the mass transport process has shown that surface cracks that are initially clean of sulfides will not initiate EAC in most applications. This is because the average crack tip velocity would not be sufficiently high to expose enough metallurgical sulfides per unit time and produce the sulfide concentration required for EAC. However, there is a potential concern for the case of a relatively large embedded crack breaking through to the wetted surface. Such a crack would not be initially clean of sulfides, and EAC could initiate. This paper presents the results of a series of experiments conducted on two heats of an EAC susceptible, high-sulfur, low-alloy steel in 243 degrees C low-oxygen water to further study the phenomenon of EAC persistence at low crack tip velocities. A load cycle profile that incorporated a significant load dwell period at minimum load was used. In one experiment, the fatigue cycling history was such that relatively high crack tip velocities at the start of the experiment produced a persistent case of EAC even when crack tip velocities were later reduced to levels below the EAC initiation velocity. The other series of experiments used initial crack tip velocities that were much lower and probably more realistic. Air precracking of the compact tension specimens produced an initial inventory of undissolved sulfides on the crack flanks that directly simulates the array of sulfides expected from the breakthrough of an embedded crack. In all cases, results showed EAC ceased after several hundred hours of cycling

  17. Roles of texture of Zr alloys in ZrO{sub 2} film formation and δ-hydride orientation near ZrO{sub 2}/Zr interface

    Energy Technology Data Exchange (ETDEWEB)

    Qin, W.; Szpunar, J.A., E-mail: weq565@mail.usask.ca, E-mail: jerzy.szpunar@usask.ca [Univ. of Saskatchewan, Dept. of Mechanical Engineering, Saskatoon, SK (Canada); Kozinski, J., E-mail: janusz.kozinski@lassonde.yorku.ca [York Univ., Faculty of Science and Engineering, Toronto, ON (Canada)

    2014-07-01

    Oxidation and hydrogen embrittlement are related to formation of cracks and failure of Zr alloys used in nuclear reactor applications. An in-depth understanding of the formation of ZrO{sub 2} film and the hydride precipitation and orientation is important for improving the corrosion resistance of zirconium alloys. In this work a theoretical model is developed to analyze the microstructure of ZrO{sub 2} film formed on Zr alloys and the effect of stress that results from ZrO{sub 2} formation on hydride reorientation in the region near oxide/metal interface. Our work shows that the macroscopic stress produced due to Pilling-Bedworth ratio for ZrO{sub 2}/Zr could lead to the hydride re-orientation in the region near ZrO{sub 2}/Zr interface. Whether or not this effect can occur is dependent on the texture of the zirconium alloys. Control of texture of zirconium alloys can affect the microstructure of ZrO{sub 2} film and can be responsible for change of hydride orientation. (author)

  18. Crack layer theory

    Science.gov (United States)

    Chudnovsky, A.

    1987-01-01

    A damage parameter is introduced in addition to conventional parameters of continuum mechanics and consider a crack surrounded by an array of microdefects within the continuum mechanics framework. A system consisting of the main crack and surrounding damage is called crack layer (CL). Crack layer propagation is an irreversible process. The general framework of the thermodynamics of irreversible processes are employed to identify the driving forces (causes) and to derive the constitutive equation of CL propagation, that is, the relationship between the rates of the crack growth and damage dissemination from one side and the conjugated thermodynamic forces from another. The proposed law of CL propagation is in good agreement with the experimental data on fatigue CL propagation in various materials. The theory also elaborates material toughness characterization.

  19. Atomistics of crack propagation

    International Nuclear Information System (INIS)

    Sieradzki, K.; Dienes, G.J.; Paskin, A.; Massoumzadeh, B.

    1988-01-01

    The molecular dynamic technique is used to investigate static and dynamic aspects of crack extension. The material chosen for this study was the 2D triangular solid with atoms interacting via the Johnson potential. The 2D Johnson solid was chosen for this study since a sharp crack in this material remains stable against dislocation emission up to the critical Griffith load. This behavior allows for a meaningful comparison between the simulation results and continuum energy theorems for crack extension by appropriately defining an effective modulus which accounts for sample size effects and the non-linear elastic behavior of the Johnson solid. Simulation results are presented for the stress fields of moving cracks and these dynamic results are discussed in terms of the dynamic crack propagation theories, of Mott, Eshelby, and Freund

  20. Hydrogen storage in metal hydrides and complex hydrides; Wasserstoffspeicherung in Metall- und komplexen Hydriden - Schlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Bielmann, M.; Zuettel, A.

    2007-07-01

    This final report for the Swiss Federal Office of Energy (SFOE), reports on work done in 2007 at the Swiss Federal Laboratories for Materials Science and Technology EMPA on the storage of hydrogen in metal hydrides and complex hydrides. In particular, the use of tetrahydroborates is noted. The potential of this class of materials is stressed. The structures at room-temperature were examined using neutron and X-ray diffraction methods. Thermodynamic methods helped determine the thermodynamic stability of the materials. Also, a complete energy diagram for the materials was developed. The use of silicon oxide to reduce activation energy and its catalytic effects are discussed. The challenges placed by desorption mechanisms are noted. The authors note that reversibility is basically proven.

  1. Fast fracture: an adiabatic restriction on thermally activated crack propagation

    Energy Technology Data Exchange (ETDEWEB)

    Burns, S.J.

    1978-01-01

    Slow, isothermal, crack propagation is widely suspected to be rate controlled by thermally activated plastic deformation in the crack tip region. Adiabatic conditions are generally established in the fracture modified material at the tip of a crack during fast fracture. The temperature of this material is not the temperature of the specimen and is generally not measured during fast fracture. Thus, a complete thermodynamic description of adiabatic crack propagation data can not be made. When the slow, isothermal, crack propagation mechanisms are assumed to be operative during adiabatic crack propagation then certain predictions can be made. For example: the changes in the driving force due to temperature and rate are always in the opposite sense; there is no minimum in the driving force versus crack velocity without a change in mechanism; the temperature rise in the crack tip fracture modified material is determined mainly by the activation enthalpy for crack propagation; the interpretation of fast fracture structural steel data from simple plastic models is suspect since these materials have dissimilar isothermal temperature dependencies.

  2. Complex metal hydrides for hydrogen, thermal and electrochemical energy storage

    DEFF Research Database (Denmark)

    Møller, Kasper T.; Sheppard, Drew; Ravnsbæk, Dorthe B.

    2017-01-01

    field. This review illustrates that complex metal hydrides may store hydrogen in the solid state, act as novel battery materials, both as electrolytes and electrode materials, or store solar heat in a more efficient manner as compared to traditional heat storage materials. Furthermore, it is highlighted...... how complex metal hydrides may act in an integrated setup with a fuel cell. This review focuses on the unique properties of light element complex metal hydrides mainly based on boron, nitrogen and aluminum, e.g., metal borohydrides and metal alanates. Our hope is that this review can provide new...

  3. Finite difference program for calculating hydride bed wall temperature profiles

    International Nuclear Information System (INIS)

    Klein, J.E.

    1992-01-01

    A QuickBASIC finite difference program was written for calculating one dimensional temperature profiles in up to two media with flat, cylindrical, or spherical geometries. The development of the program was motivated by the need to calculate maximum temperature differences across the walls of the Tritium metal hydrides beds for thermal fatigue analysis. The purpose of this report is to document the equations and the computer program used to calculate transient wall temperatures in stainless steel hydride vessels. The development of the computer code was motivated by the need to calculate maximum temperature differences across the walls of the hydrides beds in the Tritium Facility for thermal fatigue analysis

  4. Investigation process of alcoholysis of hydride aluminium-adobe

    International Nuclear Information System (INIS)

    Numanov, M.I.; Normatov, I.Sh.; Mirsaidov, U.M.

    2001-01-01

    Considering of that process of acid treatment of aluminium-adobe hydride realizes in the ethyl alcohol media it was necessary study the process of alcoholysis of AlH 3 and aluminium additives. In the end of article authors became to conclusion that deficiency of spontaneous alcoholysis of AlH 3 in adobe caused by protective action of fiber; solvate ability of LiCl and alkoxy aluminium hydride of lithium-LiCl·CO 2 H 5 OH, Li Al(OC 2 H 5 ) 4 ·nC 2 H 5 OH decreasing the expectancy of responding of alcohol with aluminium hydride

  5. Determination of hydrogen in zirconium hydride and uranium-zirconium hydride by inert gas exraction-gravimetric method

    International Nuclear Information System (INIS)

    Hoshino, Akira; Iso, Shuichi

    1976-01-01

    An inert gas extraction-gravimetric method has been applied to the determination of hydrogen in zirconium hydride and uranium-zirconium hydride which are used as neutron moderator and fuel of nuclear safety research reactor (NSRR), respectively. The sample in a graphite-enclosed quartz crucible is heated inductively to 1200 0 C for 20 min in a helium stream. Hydrogen liberated from the sample is oxidized to water by copper(I) oxide-copper(II) oxide at 400 0 C, and the water is determined gravimetrically by absorption in anhydrone. The extraction curves of hydrogen for zirconium hydride and uranium-zirconium hydride samples are shown in Figs. 2 and 3. Hydrogen in the samples is extracted quantitatively by heating at (1000 -- 1250) 0 C for (10 -- 40) min. Recoveries of hydrogen in the case of zirconium hydride were examined as follows: a weighed zirconium rod (5 phi x 6 mm, hydrogen -5 Torr. After the chamber was filled with purified hydrogen to 200 Torr, the rod was heated to 400 0 C for 15 h, and again weighed to determine the increase in weight. Hydrogen in the rod was then determined by the proposed method. The results are in excellent agreement with the increase in weight as shown in Table 1. Analytical results of hydrogen in zirconium hydride samples and an uranium-zirconium hydride sample are shown in Table 2. (auth.)

  6. Process for production of a metal hydride

    Science.gov (United States)

    Allen, Nathan Tait; Butterick, III, Robert; Chin, Arthur Achhing; Millar, Dean Michael; Molzahn, David Craig

    2014-08-12

    A process for production of a metal hydride compound MH.sub.x, wherein x is one or two and M is an alkali metal, Be or Mg. The process comprises combining a compound of formula (R.sup.1O).sub.xM with aluminum, hydrogen and at least one metal selected from among titanium, zirconium, hafnium, niobium, vanadium, tantalum and iron to produce a compound of formula MH.sub.x. R.sup.1 is phenyl or phenyl substituted by at least one alkyl or alkoxy group. A mole ratio of aluminum to (R.sup.1O).sub.xM is from 0.1:1 to 1:1. The catalyst is present at a level of at least 200 ppm based on weight of aluminum.

  7. Boron hydride analogues of the fullerenes

    International Nuclear Information System (INIS)

    Quong, A.A.; Pederson, M.R.; Broughton, J.Q.

    1994-01-01

    The BH moiety is isoelectronic with C. We have studied the stability of the (BH) 60 analogue of the C 60 fullerene as well as the dual-structure (BH) 32 icosahedron, both of them being putative structures, by performing local-density-functional electronic calculations. To aid in our analysis, we have also studied other homologues of these systems. We find that the latter, i.e., the dual structure, is the more stable although the former is as stable as one of the latter's lower homologues. Boron hydrides, it seems, naturally form the dual structures used in algorithmic optimization of complex fullerene systems. Fully relaxed geometries are reported as well as electron affinities and effective Hubbard U parameters. These systems form very stable anions and we conclude that a search for BH analogues of the C 60 alkali-metal supeconductors might prove very fruitful

  8. Hydrogen storage properties of metallic hydrides

    International Nuclear Information System (INIS)

    Latroche, M.; Percheron-Guegan, A.

    2005-01-01

    Nowadays, energy needs are mainly covered by fossil energies leading to pollutant emissions mostly responsible for global warming. Among the different possible solutions for greenhouse effect reduction, hydrogen has been proposed for energy transportation. Indeed, H 2 can be seen as a clean and efficient energy carrier. However, beside the difficulties related to hydrogen production, efficient high capacity storage means are still to be developed. Many metals and alloys are able to store large amounts of hydrogen. This latter solution is of interest in terms of safety, global yield and long term storage. However, to be suitable for applications, such compounds must present high capacity, good reversibility, fast reactivity and sustainability. In this paper, we will review the structural and thermodynamic properties of metallic hydrides. (authors)

  9. Hydrogen storage in sodium aluminum hydride.

    Energy Technology Data Exchange (ETDEWEB)

    Ozolins, Vidvuds; Herberg, J.L. (Lawrence Livermore National Laboratories, Livermore, CA); McCarty, Kevin F.; Maxwell, Robert S. (Lawrence Livermore National Laboratories, Livermore, CA); Stumpf, Roland Rudolph; Majzoub, Eric H.

    2005-11-01

    Sodium aluminum hydride, NaAlH{sub 4}, has been studied for use as a hydrogen storage material. The effect of Ti, as a few mol. % dopant in the system to increase kinetics of hydrogen sorption, is studied with respect to changes in lattice structure of the crystal. No Ti substitution is found in the crystal lattice. Electronic structure calculations indicate that the NaAlH{sub 4} and Na{sub 3}AlH{sub 6} structures are complex-ionic hydrides with Na{sup +} cations and AlH{sub 4}{sup -} and AlH{sub 6}{sup 3-} anions, respectively. Compound formation studies indicate the primary Ti-compound formed when doping the material at 33 at. % is TiAl{sub 3} , and likely Ti-Al compounds at lower doping rates. A general study of sorption kinetics of NaAlH{sub 4}, when doped with a variety of Ti-halide compounds, indicates a uniform response with the kinetics similar for all dopants. NMR multiple quantum studies of solution-doped samples indicate solvent interaction with the doped alanate. Raman spectroscopy was used to study the lattice dynamics of NaAlH{sub 4}, and illustrated the molecular ionic nature of the lattice as a separation of vibrational modes between the AlH{sub 4}{sup -} anion-modes and lattice-modes. In-situ Raman measurements indicate a stable AlH{sub 4}{sup -} anion that is stable at the melting temperature of NaAlH{sub 4}, indicating that Ti-dopants must affect the Al-H bond strength.

  10. Cracked gas generator

    Energy Technology Data Exchange (ETDEWEB)

    Abthoff, J; Schuster, H D; Gabler, R

    1976-11-17

    A small cracked-gas generator in a vehicle driven, in particular, by an air combustion engine has been proposed for the economic production of the gases necessary for low toxicity combustion from diesel fuel. This proceeds via catalytic crack-gasification and exploitation of residual heat from exhaust gases. This patent application foresees the insertion of one of the catalysts supporting the cracked-gas reaction in a container through which the reacting mixture for cracked-gas production flows in longitudinal direction. Further, air ducts are embedded in the catalyst through which exhaust gases and fresh air flow in counter direction to the cracked gas flow in the catalyst. The air vents are connected through heat conduction to the catalyst. A cracked gas constituting H/sub 2//CO/CO/sub 2//CH/sub 4/ and H/sub 2/O can be produced from the air-fuel mixture using appropriate catalysts. By the addition of 5 to 25% of cracked gas to the volume of air drawn in by the combustion engine, a more favourable combustion can be achieved compared to that obtained under normal combustion conditions.

  11. Stress corrosion cracking of copper canisters

    International Nuclear Information System (INIS)

    King, Fraser; Newman, Roger

    2010-12-01

    films appear to be insufficiently adherent. A critical review of the surface mobility model is presented. It is argued that the formulation of the crack growth law is flawed and that, in its corrected form, predicted crack growth rates would be of the order of 10.20 m/s. Therefore, even if cracking were to occur via this mechanism, the crack velocity would be too small to lead to canister failure, even over repository timescales. Two other SCC mechanisms, the adsorption-induced dislocation emission and vacancy injection and embrittlement models, are also discussed. Although these models are still in the development stage, it is considered unlikely that they could induce cracking during the long-term anaerobic phase. Therefore, we conclude that the probability of SCC during the early aerobic period is low because of the absence of the necessary conditions for cracking and that there is no well-founded SCC mechanism that would result in cracking during the long-term anaerobic phase in the repository. Nevertheless, it is felt prudent to continue to study SCC of copper, especially under anaerobic conditions, in order to provide more support for the position that the stress corrosion cracking of copper canisters in the repository will not limit their service life

  12. Stress corrosion cracking of copper canisters

    Energy Technology Data Exchange (ETDEWEB)

    King, Fraser (Integrity Corrosion Consulting Limited (Canada)); Newman, Roger (Univ. of Toronto (Canada))

    2010-12-15

    films appear to be insufficiently adherent. A critical review of the surface mobility model is presented. It is argued that the formulation of the crack growth law is flawed and that, in its corrected form, predicted crack growth rates would be of the order of 10.20 m/s. Therefore, even if cracking were to occur via this mechanism, the crack velocity would be too small to lead to canister failure, even over repository timescales. Two other SCC mechanisms, the adsorption-induced dislocation emission and vacancy injection and embrittlement models, are also discussed. Although these models are still in the development stage, it is considered unlikely that they could induce cracking during the long-term anaerobic phase. Therefore, we conclude that the probability of SCC during the early aerobic period is low because of the absence of the necessary conditions for cracking and that there is no well-founded SCC mechanism that would result in cracking during the long-term anaerobic phase in the repository. Nevertheless, it is felt prudent to continue to study SCC of copper, especially under anaerobic conditions, in order to provide more support for the position that the stress corrosion cracking of copper canisters in the repository will not limit their service life

  13. Prediction of PWSCC in nickel base alloys using crack growth rate models

    International Nuclear Information System (INIS)

    Thompson, C.D.

    1995-01-01

    The Ford/Andresen slip dissolution SCC model, originally developed for stainless steel components in BWR environments, has been applied to Alloy 600 and Alloy X-750 tested in deaerated pure water chemistry. A method is described whereby the crack growth rates measured in compact tension specimens can be used to estimate crack growth in a component. Good agreement was found between model prediction and measured SCC in X-750 threaded fasteners over a wide range of temperatures, stresses, and material condition. Most data support the basic assumption of this model that cracks initiate early in life. The evidence supporting a particular SCC mechanism is mixed. Electrochemical repassivation data and estimates of oxide fracture strain indicate that the slip dissolution model can account for the observed crack growth rates, provided primary rather than secondary creep rates are used. However, approximately 100 cross-sectional TEM foils of SCC cracks including crack tips reveal no evidence of enhanced plasticity or unique dislocation patterns at the crack tip or along the crack to support a classic slip dissolution mechanism. No voids, hydrides,, or microcracks are found in the vicinity of the crack tips creating doubt about classic hydrogen related mechanisms. The bulk oxide films exhibit a surface oxide which is often different than the oxide found within a crack. Although bulk chromium concentration affects the rate of SCC, analytical data indicates the mechanism does not result from chromium depletion at the grain boundaries. The overall findings support a corrosion/dissolution mechanism but not one necessarily related to slip at the crack tip. (author). 12 refs, 27 figs

  14. Impact initiation of explosives and propellants via statistical crack mechanics

    Science.gov (United States)

    Dienes, J. K.; Zuo, Q. H.; Kershner, J. D.

    2006-06-01

    A statistical approach has been developed for modeling the dynamic response of brittle materials by superimposing the effects of a myriad of microcracks, including opening, shear, growth and coalescence, taking as a starting point the well-established theory of penny-shaped cracks. This paper discusses the general approach, but in particular an application to the sensitivity of explosives and propellants, which often contain brittle constituents. We examine the hypothesis that the intense heating by frictional sliding between the faces of a closed crack during unstable growth can form a hot spot, causing localized melting, ignition, and fast burn of the reactive material adjacent to the crack. Opening and growth of a closed crack due to the pressure of burned gases inside the crack and interactions of adjacent cracks can lead to violent reaction, with detonation as a possible consequence. This approach was used to model a multiple-shock experiment by Mulford et al. [1993. Initiation of preshocked high explosives PBX-9404, PBX-9502, PBX-9501, monitored with in-material magnetic gauging. In: Proceedings of the 10th International Detonation Symposium, pp. 459-467] involving initiation and subsequent quenching of chemical reactions in a slab of PBX 9501 impacted by a two-material flyer plate. We examine the effects of crack orientation and temperature dependence of viscosity of the melt on the response. Numerical results confirm our theoretical finding [Zuo, Q.H., Dienes, J.K., 2005. On the stability of penny-shaped cracks with friction: the five types of brittle behavior. Int. J. Solids Struct. 42, 1309-1326] that crack orientation has a significant effect on brittle behavior, especially under compressive loading where interfacial friction plays an important role. With a reasonable choice of crack orientation and a temperature-dependent viscosity obtained from molecular dynamics calculations, the calculated particle velocities compare well with those measured using

  15. Artificial exomuscle investigations for applications-metal hydride

    International Nuclear Information System (INIS)

    Crevier, Marie-Charlotte; Richard, Martin; Rittenhouse, D Matheson; Roy, Pierre-Olivier; Bedard, Stephane

    2007-01-01

    In pursuing the development of bionic devices, Victhom identified a need for technologies that could replace current motorized systems and be better integrated into the human body motion. The actuators used to obtain large displacements are noisy, heavy, and do not adequately reproduce human muscle behavior. Subsequently, a project at Victhom was devoted to the development of active materials to obtain an artificial exomuscle actuator. An exhaustive literature review was done at Victhom to identify promising active materials for the development of artificial muscles. According to this review, metal hydrides were identified as a promising technology for artificial muscle development. Victhom's investigations focused on determining metal hydride actuator potential in the context of bionics technology. Based on metal hydride properties and artificial muscle requirements such as force, displacement and rise time, an exomuscle was built. In addition, a finite element model, including heat and mass transfer in the metal hydride, was developed and implemented in FEMLAB software. (review article)

  16. Ductile zirconium powder by hydride-dehydride process

    Energy Technology Data Exchange (ETDEWEB)

    Krishnan, T S [BHABHA ATOMIC RESEARCH CENTRE, BOMBAY (INDIA); CHAUDHARY, S [NUCLEAR FUEL COMPLEX, HYDERABAD (INDIA)

    1976-09-01

    The preparation of ductile zirconium powder by the hydride-dehydride process has been described. In this process massive zirconium obtained from Kroll reduction of ZrCl/sub 4/ is first rendered brittle by hydrogenation and the hydride crushed and ground in a ball mill to the required particle size. Hydrogen is then hot vacuum extracted to yield the metal powder. The process has been successfully employed for the production of zirconium powders with low oxygen content and having hardness values in the range of 115-130 BHN, starting from a zirconium sponge of 100-120 BHN hardness. Influence of surface characteristics of the starting metal on its hydriding behaviour has been studied and the optimum hydriding-dehydriding conditions established.

  17. Electrochemical modeling of hydrogen storage in hydride-forming electrodes

    NARCIS (Netherlands)

    Ledovskikh, A.; Danilov, D.; Vermeulen, P.; Notten, P.H.L.

    2009-01-01

    An electrochemical kinetic model (EKM) is developed, describing the electrochemical hydrogen storage in hydride-forming materials under equilibrium conditions. This model is based on first principles of electrochemical reaction kinetics and statistical thermodynamics and describes the complex,

  18. Development of zirconium hydride highly effective moderator materials

    International Nuclear Information System (INIS)

    Yin Changgeng

    2005-10-01

    The zirconium hydride with highly content of hydrogen and low density is new efficient moderator material for space nuclear power reactor. Russia has researched it to use as new highly moderator and radiation protection materials. Japanese has located it between the top of pressure vessel and the main protection as a shelter, the work temperature is rach to 220 degree C. The zirconium hydride moderator blocks are main parts of space nuclear power reactor. Development of zirconium hydride moderator materials have strength research and apply value. Nuclear Power Research and Design Instituteoh China (NPIC) has sep up the hydrogenation device and inspect systems, and accumurate a large of experience about zirconium hydride, also set up a strict system of QA and QC. (authors)

  19. Precipitation of hydrides in high purity niobium after different treatments

    Energy Technology Data Exchange (ETDEWEB)

    Barkov, F.; Romanenko, A.; Trenikhina, Y.; Grassellino, A.

    2013-01-01

    Precipitation of lossy non-superconducting niobium hydrides represents a known problem for high purity niobium in superconducting applications. Using cryogenic optical and laser confocal scanning microscopy we have directly observed surface precipitation and evolution of niobium hydrides in samples after different treatments used for superconducting RF cavities for particle acceleration. Precipitation is shown to occur throughout the sample volume, and the growth of hydrides is well described by the fast diffusion-controlled process in which almost all hydrogen is precipitated at $T=140$~K within $\\sim30$~min. 120$^{\\circ}$C baking and mechanical deformation are found to affect hydride precipitation through their influence on the number of nucleation and trapping centers.

  20. Susceptibility of cold-worked zirconium-2.5 wt% niobium alloy to delayed hydrogen cracking

    International Nuclear Information System (INIS)

    Coleman, C.E.

    1976-01-01

    Notched tensile specimens of cold-worked zirconium-2.5 wt% niobium alloy have been stressed at 350 K and 520 K. At 350 K, above a possible threshold stress of 200 MPa, specimens exhibited delayed failure which was attributed to hydride cracking. Metallography showed that hydrides accumulated at notches and tips of growing cracks. The time to failure appeared to be independent of hydrogen content over the range 7 to 100 ppm hydrogen. Crack growth rates of about 10 -10 m/s deduced from fractography were in the same range as those necessary to fracture pressure tubes. The asymptotic stress intensity for delayed failure, Ksub(1H), appeared to be about 5 MPa√m. With this low value of Ksub(1H) small surface flaws may propagate in pressure tubes which contain large residual stresses. Stress relieving and modified rolling procedures will reduce the residual stresses to such an extent that only flaws 12% of the wall thickness or greater will grow. At 520 K no failures were observed at times a factor of three greater than times to failure at 350 K. Zirconium-2.5 wt% niobium appears to be safe from delayed hydrogen cracking at the reactor operating temperature. (author)

  1. Reactions of zinc hydride and magnesium hydride with pyridine; synthesis and characterization of 1,4-dihydro-1-pyridylzinc and -magnesium complexes

    NARCIS (Netherlands)

    Koning, A.J. de; Boersma, J.; Kerk, G.J.M. van der

    1980-01-01

    The synthesis and characterization of 1,4-dihydro-1-pyridylzinc and -magnesium complexes are described. Zinc hydride and magnesium hydride dissolve in and react with pyridine, and the reaction has been studied in detail in the case of zinc hydride. Evaporation of the solvent after 1–2 hours at 0°C

  2. Electronic structure of ternary hydrides based on light elements

    Energy Technology Data Exchange (ETDEWEB)

    Orgaz, E. [Departamento de Fisica y Quimica Teorica, Facultad de Quimica, Universidad Nacional Autonoma de Mexico, CP 04510 Coyoacan, Mexico, D.F. (Mexico)]. E-mail: orgaz@eros.pquim.unam.mx; Membrillo, A. [Departamento de Fisica y Quimica Teorica, Facultad de Quimica, Universidad Nacional Autonoma de Mexico, CP 04510 Coyoacan, Mexico, D.F. (Mexico); Castaneda, R. [Departamento de Fisica y Quimica Teorica, Facultad de Quimica, Universidad Nacional Autonoma de Mexico, CP 04510 Coyoacan, Mexico, D.F. (Mexico); Aburto, A. [Departamento de Fisica, Facultad de Ciencias, Universidad Nacional Autonoma de Mexico, CP 04510 Coyoacan, Mexico, D.F. (Mexico)

    2005-12-08

    Ternary hydrides based on light elements are interesting owing to the high available energy density. In this work we focused into the electronic structure of a series of known systems having the general formula AMH{sub 4}(A=Li,Na,M=B,Al). We computed the energy bands and the total and partial density of states using the linear-augmented plane waves method. In this report, we discuss the chemical bonding in this series of complex hydrides.

  3. Spectroscopy of helium hydride and triatomic hydrogen molecules

    International Nuclear Information System (INIS)

    Ketterle, W.

    1986-07-01

    Helium hydride and triatomic hydrogen has been produced by charge exchange between fast mass selected beams of molecular ions and alkali vapor. Using this method, the first discrete spectra of helium hydride were obtained. Fine electronic transitions with resolved rotational structure were observed in the visible and near infrared. Four isotopic mixtures were studied. Furthermore the first lifetime measurement of triatomic hydrogen states were performed and compared to theoretical predictions. (orig.)

  4. Proton location in metal hydrides using electron spin resonance

    International Nuclear Information System (INIS)

    Venturini, E.L.

    1979-01-01

    Electron spin resonance (ESR) of dilute paramagnetic ions establishes the site symmetry of these ions. In the case of metal hydrides the site symmetry is determined by the number and location of neighboring protons. Typical ESR spectra for trivalent erbium in scandium and yttrium hydrides are presented and analyzed, and this technique is shown to be a versatile microscopic probe of the location, net charge and occupation probability of nearby protons

  5. The Production of Uranium Metal by Metal Hydrides Incorporated

    Energy Technology Data Exchange (ETDEWEB)

    Alexander, P. P.

    1943-01-01

    Metal Hydrides Incorporated was a pioneer in the production of uranium metal on a commercial scale and supplied it to all the laboratories interested in the original research, before other methods for its production were developed. Metal Hydrides Inc. supplied the major part of the metal for the construction of the first experimental pile which, on December 2, 1942, demonstrated the feasibility of the self-sustaining chain reaction and the release of atomic energy.

  6. Some engineering aspects of the investigation into the cracking of pressure tubes in the Pickering reactors

    International Nuclear Information System (INIS)

    Ross-Ross, P.A.; Towgood, G.R.; Hunter, T.A.

    1976-01-01

    In August 1974, Pickering Unit 3 (514 MWe) was shutdown for a period of 8 months because of cracks in 17 of the 390 pressure tubes. The cracks were a result of incorrect installation procedures during construction. Improper positioning of the rolling tool used to join the Zr-2.5 wt% Nb pressure tube to the end fitting produced very high residual tensile stresses. High stresses in combination with periods with the tubes cold caused the cracking. Crack propagation was by fracture of hydrides which are brittle when cold. Subsequent investigation confirmed that properly rolled joints are not susceptible to such cracking. The resources of Canadian industry, Ontario Hydro and Atomic Energy of Canada were coordinated to find engineering solutions to the crack program. The defective tubes were removed from reactor, thoroughly examined to identify the cause of the cracks, and thoroughly tested to prove safety. Non-destructive techniques were quickly adopted for inspection of tubes in Pickering. Tools and procedures for retubing the 17 channels were prepared and Pickering Unit 3 was returned to service at the end of March 1975. (author)

  7. Electronic structure, bonding and chemisorption in metallic hydrides

    International Nuclear Information System (INIS)

    Ward, J.W.

    1980-01-01

    Problems that can arise during the cycling steps for a hydride storage system usually involve events at surfaces. Chemisorption and reaction processes can be affected by small amounts of contaminants that may act as catalytic poisons. The nature of the poisoning process can vary greatly for the different metals and alloys that form hydrides. A unifying concept is offered, which satisfactorily correlates many of the properties of transition-metal, rare-earth and actinide hydrides. The metallic hydrides can be differentiated on the basis of electronegativity, metallic radius (valence) and electronic structure. For those systems where there are d (transition metals) or f (early actinides) electrons near the Fermi level a broad range of chemical and catalytic behaviors are found, depending on bandwidth and energy. The more electropositive metals (rare-earths, actinides, transition metals with d > 5) dissolve hydrogen and form hydrides by an electronically somewhat different process, and as a class tend to adsorb electrophobic molecules. The net charge-transfer in either situation is subtle; however, the small differences are responsible for many of the observed structural, chemical, and catalytic properties in these hydride systems

  8. Mechanochemical synthesis of nanostructured chemical hydrides in hydrogen alloying mills

    International Nuclear Information System (INIS)

    Wronski, Z.; Varin, R.A.; Chiu, C.; Czujko, T.; Calka, A.

    2007-01-01

    Mechanical alloying of magnesium metal powders with hydrogen in specialized hydrogen ball mills can be used as a direct route for mechanochemical synthesis of emerging chemical hydrides and hydride mixtures for advanced solid-state hydrogen storage. In the 2Mg-Fe system, we have successfully synthesized the ternary complex hydride Mg 2 FeH 6 in a mixture with nanometric Fe particles. The mixture of complex magnesium-iron hydride and nano-iron released 3-4 wt.%H 2 in a thermally programmed desorption experiment at the range 285-295 o C. Milling of the Mg-2Al powder mixture revealed a strong competition between formation of the Al(Mg) solid solution and the β-MgH 2 hydride. The former decomposes upon longer milling as the Mg atoms react with hydrogen to form the hydride phase, and drive the Al out of the solid solution. The mixture of magnesium dihydride and nano-aluminum released 2.1 wt.%H 2 in the temperature range 329-340 o C in the differential scanning calorimetry experiment. The formation of MgH 2 was suppressed in the Mg-B system; instead, a hydrogenated amorphous phase (Mg,B)H x , was formed in a mixture with nanometric MgB 2 . Annealing of the hydrogen-stabilized amorphous mixture produced crystalline MgB 2

  9. The use of metal hydrides in fuel cell applications

    Directory of Open Access Journals (Sweden)

    Mykhaylo V. Lototskyy

    2017-02-01

    Full Text Available This paper reviews state-of-the-art developments in hydrogen energy systems which integrate fuel cells with metal hydride-based hydrogen storage. The 187 reference papers included in this review provide an overview of all major publications in the field, as well as recent work by several of the authors of the review. The review contains four parts. The first part gives an overview of the existing types of fuel cells and outlines the potential of using metal hydride stores as a source of hydrogen fuel. The second part of the review considers the suitability and optimisation of different metal hydrides based on their energy efficient thermal integration with fuel cells. The performances of metal hydrides are considered from the viewpoint of the reversible heat driven interaction of the metal hydrides with gaseous H2. Efficiencies of hydrogen and heat exchange in hydrogen stores to control H2 charge/discharge flow rates are the focus of the third section of the review and are considered together with metal hydride – fuel cell system integration issues and the corresponding engineering solutions. Finally, the last section of the review describes specific hydrogen-fuelled systems presented in the available reference data.

  10. Metal hydrides based high energy density thermal battery

    Energy Technology Data Exchange (ETDEWEB)

    Fang, Zhigang Zak, E-mail: zak.fang@utah.edu [Department of Metallurgical Engineering, The University of Utah, 135 South 1460 East, Room 412, Salt Lake City, UT 84112-0114 (United States); Zhou, Chengshang; Fan, Peng [Department of Metallurgical Engineering, The University of Utah, 135 South 1460 East, Room 412, Salt Lake City, UT 84112-0114 (United States); Udell, Kent S. [Department of Metallurgical Engineering, The University of Utah, 50 S. Central Campus Dr., Room 2110, Salt Lake City, UT 84112-0114 (United States); Bowman, Robert C. [Department of Metallurgical Engineering, The University of Utah, 135 South 1460 East, Room 412, Salt Lake City, UT 84112-0114 (United States); Vajo, John J.; Purewal, Justin J. [HRL Laboratories, LLC, 3011 Malibu Canyon Road, Malibu, CA 90265 (United States); Kekelia, Bidzina [Department of Metallurgical Engineering, The University of Utah, 50 S. Central Campus Dr., Room 2110, Salt Lake City, UT 84112-0114 (United States)

    2015-10-05

    Highlights: • The principle of the thermal battery using advanced metal hydrides was demonstrated. • The thermal battery used MgH{sub 2} and TiMnV as a working pair. • High energy density can be achieved by the use of MgH{sub 2} to store thermal energy. - Abstract: A concept of thermal battery based on advanced metal hydrides was studied for heating and cooling of cabins in electric vehicles. The system utilized a pair of thermodynamically matched metal hydrides as energy storage media. The pair of hydrides that was identified and developed was: (1) catalyzed MgH{sub 2} as the high temperature hydride material, due to its high energy density and enhanced kinetics; and (2) TiV{sub 0.62}Mn{sub 1.5} alloy as the matching low temperature hydride. Further, a proof-of-concept prototype was built and tested, demonstrating the potential of the system as HVAC for transportation vehicles.

  11. Inspecting cracks in foam insulation

    Science.gov (United States)

    Cambell, L. W.; Jung, G. K.

    1979-01-01

    Dye solution indicates extent of cracking by penetrating crack and showing original crack depth clearly. Solution comprised of methylene blue in denatured ethyl alcohol penetrates cracks completely and evaporates quickly and is suitable technique for usage in environmental or structural tests.

  12. U-8 wt %Mo and 7 wt %Mo alloys powder obtained by an hydride-de hydride process

    International Nuclear Information System (INIS)

    Balart, Silvia N.; Bruzzoni, Pablo; Granovsky, Marta S.; Gribaudo, Luis M. J.; Hermida, Jorge D.; Ovejero, Jose; Rubiolo, Gerardo H.; Vicente, Eduardo E.

    2000-01-01

    Uranium-molybdenum alloys are been tested as a component in high-density LEU dispersion fuels with very good performances. These alloys need to be transformed to powder due to the manufacturing requirements of the fuels. One method to convert ductile alloys into powder is the hydride-de hydride process, which takes advantage of the ability of the U-α phase to transform to UH 3 : a brittle and relatively low-density compound. U-Mo alloys around 7 and 8 wt % Mo were melted and heat treated at different temperature ranges in order to partially convert γ -phase to α -phase. Subsequent hydriding transforms this α -phase to UH 3 . The volume change associated to the hydride formation embrittled the material which ends up in a powdered alloy. Results of the optical metallography, scanning electron microscopy, X-ray diffraction during different steps of the process are shown. (author)

  13. 3D ductile crack propagation within a polycrystalline microstructure using XFEM

    Science.gov (United States)

    Beese, Steffen; Loehnert, Stefan; Wriggers, Peter

    2018-02-01

    In this contribution we present a gradient enhanced damage based method to simulate discrete crack propagation in 3D polycrystalline microstructures. Discrete cracks are represented using the eXtended finite element method. The crack propagation criterion and the crack propagation direction for each point along the crack front line is based on the gradient enhanced damage variable. This approach requires the solution of a coupled problem for the balance of momentum and the additional global equation for the gradient enhanced damage field. To capture the discontinuity of the displacements as well as the gradient enhanced damage along the discrete crack, both fields are enriched using the XFEM in combination with level sets. Knowing the crack front velocity, level set methods are used to compute the updated crack geometry after each crack propagation step. The applied material model is a crystal plasticity model often used for polycrystalline microstructures of metals in combination with the gradient enhanced damage model. Due to the inelastic material behaviour after each discrete crack propagation step a projection of the internal variables from the old to the new crack configuration is required. Since for arbitrary crack geometries ill-conditioning of the equation system may occur due to (near) linear dependencies between standard and enriched degrees of freedom, an XFEM stabilisation technique based on a singular value decomposition of the element stiffness matrix is proposed. The performance of the presented methodology to capture crack propagation in polycrystalline microstructures is demonstrated with a number of numerical examples.

  14. Modelling of Corrosion Cracks

    DEFF Research Database (Denmark)

    Thoft-Christensen, Palle

    Modelling of corrosion cracking of reinforced concrete structures is complicated as a great number of uncertain factors are involved. To get a reliable modelling a physical and mechanical understanding of the process behind corrosion in needed.......Modelling of corrosion cracking of reinforced concrete structures is complicated as a great number of uncertain factors are involved. To get a reliable modelling a physical and mechanical understanding of the process behind corrosion in needed....

  15. Cracking the Gender Codes

    DEFF Research Database (Denmark)

    Rennison, Betina Wolfgang

    2016-01-01

    extensive work to raise the proportion of women. This has helped slightly, but women remain underrepresented at the corporate top. Why is this so? What can be done to solve it? This article presents five different types of answers relating to five discursive codes: nature, talent, business, exclusion...... in leadership management, we must become more aware and take advantage of this complexity. We must crack the codes in order to crack the curve....

  16. Stress corrosion cracking of U-0.1% Cr in humid helium atmosphere

    International Nuclear Information System (INIS)

    Zalkind, S.; Eshkenazy, R.; Harush, S.; Halperin, D.; Moreno, D.; Abramov, E.; Venkert, A.

    1994-01-01

    Rivets were matched into adapted drilled holes in plates, both made of U-0.1% Cr alloy and were placed in different environments containing dry air and helium and humid air and helium for a variety of exposure times. After opening, the most significant amounts of corrosion products were detected in the specimens that stayed for three years in humid helium (5% RH) environment. Radial cracks, developed in the bore edge, were detected in the specimens. X-ray diffraction patterns of the corrosion products gave the composition of UH 3 and UO 2 . The microstructure was examined using light and electron microscopy techniques. The hydride phase that was observed, formed mainly beneath the oxide layer and penetrated into the metal matrix as needle-like forms. The formation of a lower density hydride phase, yielded in a large volume change causing the development of high stresses at the rivet-bore interface. The combination of the high stress and the weakening of the bore edge due to the presence of the brittle hydride phase led to radial crack formation around the bore edge. (orig.)

  17. Stress-dependent permeability and wave dispersion in tight cracked rocks: Experimental validation of simple effective medium models

    Science.gov (United States)

    Sarout, Joel; Cazes, Emilie; Delle Piane, Claudio; Arena, Alessio; Esteban, Lionel

    2017-08-01

    We experimentally assess the impact of microstructure, pore fluid, and frequency on wave velocity, wave dispersion, and permeability in thermally cracked Carrara marble under effective pressure up to 50 MPa. The cracked rock is isotropic, and we observe that (1) P and S wave velocities at 500 kHz and the low-strain (S waves and 9% for P waves at 1 MPa, and (4) wave dispersion virtually vanishes above 30 MPa. Assuming no interactions between the cracks, effective medium theory is used to model the rock's elastic response and its permeability. P and S wave velocity data are jointly inverted to recover the crack density and effective aspect ratio. The permeability data are inverted to recover the cracks' effective radius. These parameters lead to a good agreement between predicted and measured wave velocities, dispersion and permeability up to 50 MPa, and up to a crack density of 0.5. The evolution of the crack parameters suggests that three deformation regimes exist: (1) contact between cracks' surface asperities up to 10 MPa, (2) progressive crack closure between 10 and 30 MPa, and (3) crack closure effectively complete above 30 MPa. The derived crack parameters differ significantly from those obtained by analysis of 2-D electron microscope images of thin sections or 3-D X-ray microtomographic images of millimeter-size specimens.

  18. SSRI Facilitated Crack Dancing

    Directory of Open Access Journals (Sweden)

    Ravi Doobay

    2017-01-01

    Full Text Available Choreoathetoid movement secondary to cocaine use is a well-documented phenomenon better known as “crack dancing.” It consists of uncontrolled writhing movements secondary to excess dopamine from cocaine use. We present a 32-year-old male who had been using cocaine for many years and was recently started on paroxetine, a selective serotonin reuptake inhibitor (SSRI for worsening depression four weeks before presentation. He had been doing cocaine every 2 weeks for the last three years and had never “crack danced” before this episode. The authors have conducted a thorough literature review and cited studies that suggest “crack dancing” is associated with excess dopamine. There has never been a documented case report of an SSRI being linked with “crack dancing.” The authors propose that the excess dopaminergic effect of the SSRI lowered the dopamine threshold for “crack dancing.” There is a communication with the Raphe Nucleus and the Substantia Nigra, which explains how the SSRI increases dopamine levels. This is the first documented case of an SSRI facilitating the “crack dance.”

  19. Natural zeolite bitumen cracking

    Energy Technology Data Exchange (ETDEWEB)

    Kuznicki, S.M.; McCaffrey, W.C.; Bian, J.; Wangen, E.; Koenig, A. [Alberta Univ., Edmonton, AB (Canada). Dept. of Chemical and Materials Engineering

    2006-07-01

    A study was conducted to demonstrate how low cost heavy oil upgrading in the field could reduce the need for diluents while lowering the cost for pipelining. Low cost field upgrading could also contribute to lowering contaminant levels. The performance of visbreaking processes could be improved by using disposable cracking agents. In turn, the economics of field upgrading of in-situ derived bitumen would be improved. However, in order to be viable, such agents would have to be far less expensive than current commercial cracking catalysts. A platy natural zeolite was selected for modification and testing due to its unique chemical and morphological properties. A catalyst-bearing oil sand was then heat-treated for 1 hour at 400 degrees C in a sealed microreactor. Under these mild cracking conditions, the catalyst-bearing oil sand produced extractable products of much lower viscosity. The products also contained considerably more gas oil and middle distillates than raw oil sand processed under the same conditions as thermal cracking alone. According to model cracking studies using hexadecane, these modified mineral zeolites may be more active cracking agents than undiluted premium commercial FCC catalyst. These materials hold promise for partial upgrading schemes to reduce solvent requirements in the field. tabs., figs.

  20. Ultrasonic sizing of fatigue cracks

    International Nuclear Information System (INIS)

    Burns, D.J.

    1983-12-01

    Surface and buried fatigue cracks in steel plates have been sized using immersion probes as transmitters-receivers, angled to produce shear waves in the steel. Sizes have been estimated by identifying the ultrasonic waves diffracted from the crack tip and by measuring the time taken for a signal to travel to and from the crack tip. The effects of compression normal to a fatigue crack and of crack front curvature are discussed. Another diffraction technique, developed by UKAEA, Harwell, is reviewed

  1. Effect of electronegativity on the mechanical properties of metal hydrides with a fluorite structure

    International Nuclear Information System (INIS)

    Ito, Masato; Setoyama, Daigo; Matsunaga, Junji; Muta, Hiroaki; Kurosaki, Ken; Uno, Masayoshi; Yamanaka, Shinsuke

    2006-01-01

    Bulk titanium, yttrium, and zirconium hydrides, which have the same structure as that of fluorite-type fcc C 1, were produced and their mechanical properties were investigated. With an increase in the hydrogen content, the lattice parameters of titanium and zirconium hydrides increased, whereas those of yttrium hydride decreased. The elastic moduli of titanium and zirconium hydrides decreased by hydrogen addition, whereas those of yttrium hydride increased. There are linear relations between the electronegativities and hydrogen content dependence of the properties. Therefore, the mechanical properties of the metal hydrides are considered to be determined by a common rule based on the electronegativity

  2. Fullerene hydride - A potential hydrogen storage material

    International Nuclear Information System (INIS)

    Nai Xing Wang; Jun Ping Zhang; An Guang Yu; Yun Xu Yang; Wu Wei Wang; Rui long Sheng; Jia Zhao

    2005-01-01

    Hydrogen, as a clean, convenient, versatile fuel source, is considered to be an ideal energy carrier in the foreseeable future. Hydrogen storage must be solved in using of hydrogen energy. To date, much effort has been put into storage of hydrogen including physical storage via compression or liquefaction, chemical storage in hydrogen carriers, metal hydrides and gas-on-solid adsorption. But no one satisfies all of the efficiency, size, weight, cost and safety requirements for transportation or utility use. C 60 H 36 , firstly synthesized by the method of the Birch reduction, was loaded with 4.8 wt% hydrogen indicating [60]fullerene might be as a potential hydrogen storage material. If a 100% conversion of C 60 H 36 is achieved, 18 moles of H 2 gas would be liberated from each mole of fullerene hydride. Pure C 60 H 36 is very stable below 500 C under nitrogen atmosphere and it releases hydrogen accompanying by other hydrocarbons under high temperature. But C 60 H 36 can be decomposed to generate H 2 under effective catalyst. We have reported that hydrogen can be produced catalytically from C 60 H 36 by Vasks's compound (IrCl(CO)(PPh 3 ) 2 ) under mild conditions. (RhCl(CO)(PPh 3 ) 2 ) having similar structure to (IrCl(CO)(PPh 3 ) 2 ), was also examined for thermal dehydrogenation of C 60 H 36 ; but it showed low catalytic activity. To search better catalyst, palladium carbon (Pd/C) and platinum carbon (Pt/C) catalysts, which were known for catalytic hydrogenation of aromatic compounds, were tried and good results were obtained. A very big peak of hydrogen appeared at δ=5.2 ppm in 1 H NMR spectrum based on Evans'work (fig 1) at 100 C over a Pd/C catalyst for 16 hours. It is shown that hydrogen can be produced from C 60 H 36 using a catalytic amount of Pd/C. Comparing with Pd/C, Pt/C catalyst showed lower activity. The high cost and limited availability of Vaska's compounds, Pd and Pt make it advantageous to develop less expensive catalysts for our process based on

  3. Test Method Variability in Slow Crack Growth Properties of Sealing Glasses

    Science.gov (United States)

    Salem, J. A.; Tandon, R.

    2010-01-01

    The crack growth properties of several sealing glasses were measured by using constant stress rate testing in 2 and 95 percent RH (relative humidity). Crack growth parameters measured in high humidity are systematically smaller (n and B) than those measured in low humidity, and crack velocities for dry environments are 100x lower than for wet environments. The crack velocity is very sensitive to small changes in RH at low RH. Biaxial and uniaxial stress states produced similar parameters. Confidence intervals on crack growth parameters that were estimated from propagation of errors solutions were comparable to those from Monte Carlo simulation. Use of scratch-like and indentation flaws produced similar crack growth parameters when residual stresses were considered.

  4. Manganese Silylene Hydride Complexes: Synthesis and Reactivity with Ethylene to Afford Silene Hydride Complexes.

    Science.gov (United States)

    Price, Jeffrey S; Emslie, David J H; Britten, James F

    2017-05-22

    Reaction of the ethylene hydride complex trans-[(dmpe) 2 MnH(C 2 H 4 )] (1) with Et 2 SiH 2 at 20 °C afforded the silylene hydride [(dmpe) 2 MnH(=SiEt 2 )] (2 a) as the trans-isomer. By contrast, reaction of 1 with Ph 2 SiH 2 at 60 °C afforded [(dmpe) 2 MnH(=SiPh 2 )] (2 b) as a mixture of the cis (major) and trans (minor) isomers, featuring a Mn-H-Si interaction in the former. The reaction to form 2 b also yielded [(dmpe) 2 MnH 2 (SiHPh 2 )] (3 b); [(dmpe) 2 MnH 2 (SiHR 2 )] (R=Et (3 a) and Ph (3 b)) were accessed cleanly by reaction of 2 a and 2 b with H 2 , and the analogous reactions with D 2 afforded [(dmpe) 2 MnD 2 (SiHR 2 )] exclusively. Both 2 a and 2 b engaged in unique reactivity with ethylene, generating the silene hydride complexes cis-[(dmpe) 2 MnH(R 2 Si=CHMe)] (R=Et (4 a), Ph (4 b)). Compounds trans-2 a, cis-2 b, 3 b, and 4 b were crystallographically characterized, and bonding in 2 a, 2 b, 4 a, and 4 b was probed computationally. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. A consistent partly cracked XFEM element for cohesive crack growth

    DEFF Research Database (Denmark)

    Asferg, Jesper L.; Poulsen, Peter Noe; Nielsen, Leif Otto

    2007-01-01

    Present extended finite element method (XFEM) elements for cohesive crack growth may often not be able to model equal stresses on both sides of the discontinuity when acting as a crack-tip element. The authors have developed a new partly cracked XFEM element for cohesive crack growth with extra...... enrichments to the cracked elements. The extra enrichments are element side local and were developed by superposition of the standard nodal shape functions for the element and standard nodal shape functions for a sub-triangle of the cracked element. With the extra enrichments, the crack-tip element becomes...... capable of modelling variations in the discontinuous displacement field on both sides of the crack and hence also capable of modelling the case where equal stresses are present on each side of the crack. The enrichment was implemented for the 3-node constant strain triangle (CST) and a standard algorithm...

  6. Chemical Hydride Slurry for Hydrogen Production and Storage

    Energy Technology Data Exchange (ETDEWEB)

    McClaine, Andrew W

    2008-09-30

    The purpose of this project was to investigate and evaluate the attractiveness of using a magnesium chemical hydride slurry as a hydrogen storage, delivery, and production medium for automobiles. To fully evaluate the potential for magnesium hydride slurry to act as a carrier of hydrogen, potential slurry compositions, potential hydrogen release techniques, and the processes (and their costs) that will be used to recycle the byproducts back to a high hydrogen content slurry were evaluated. A 75% MgH2 slurry was demonstrated, which was just short of the 76% goal. This slurry is pumpable and storable for months at a time at room temperature and pressure conditions and it has the consistency of paint. Two techniques were demonstrated for reacting the slurry with water to release hydrogen. The first technique was a continuous mixing process that was tested for several hours at a time and demonstrated operation without external heat addition. Further work will be required to reduce this design to a reliable, robust system. The second technique was a semi-continuous process. It was demonstrated on a 2 kWh scale. This system operated continuously and reliably for hours at a time, including starts and stops. This process could be readily reduced to practice for commercial applications. The processes and costs associated with recycling the byproducts of the water/slurry reaction were also evaluated. This included recovering and recycling the oils of the slurry, reforming the magnesium hydroxide and magnesium oxide byproduct to magnesium metal, hydriding the magnesium metal with hydrogen to form magnesium hydride, and preparing the slurry. We found that the SOM process, under development by Boston University, offers the lowest cost alternative for producing and recycling the slurry. Using the H2A framework, a total cost of production, delivery, and distribution of $4.50/kg of hydrogen delivered or $4.50/gge was determined. Experiments performed at Boston

  7. A crack growth evaluation method for interacting multiple cracks

    International Nuclear Information System (INIS)

    Kamaya, Masayuki

    2003-01-01

    When stress corrosion cracking or corrosion fatigue occurs, multiple cracks are frequently initiated in the same area. According to section XI of the ASME Boiler and Pressure Vessel Code, multiple cracks are considered as a single combined crack in crack growth analysis, if the specified conditions are satisfied. In crack growth processes, however, no prescription for the interference between multiple cracks is given in this code. The JSME Post-Construction Code, issued in May 2000, prescribes the conditions of crack coalescence in the crack growth process. This study aimed to extend this prescription to more general cases. A simulation model was applied, to simulate the crack growth process, taking into account the interference between two cracks. This model made it possible to analyze multiple crack growth behaviors for many cases (e.g. different relative position and length) that could not be studied by experiment only. Based on these analyses, a new crack growth analysis method was suggested for taking into account the interference between multiple cracks. (author)

  8. Stress corrosion cracking of an uranium-6 weight per cent niobium in gaseous oxygen, nitrogen and hydrogen

    International Nuclear Information System (INIS)

    Brunet, H.

    1989-01-01

    Stress corrosion cracking (SCC) of uranium-6 weight per cent niobium alloy is studied in gaseous oxygen at room temperature (for pressures between 4.10 -7 and 0.15MPa) and 100 0 C (pressure of 0.15 MPa) and in gaseous hydrogen (for pressures between 10 -6 and 0.15 MPa). SCC map and cracking kinetics are determined as fonctions of stress-intensity factor, pressure and temperature. For oxygen, temperature seems to have no effect on the alloy embrittlement within the range of this study but the pressure influence is more complex. At room temperature, hydrogen pressure less than 0.15 MPa has no influence on the cracking kinetics. For a pressure of 0.15 MPa, fracture occurs by hydriding reaction. Complementary analyses on fracture surfaces lead to propose different mechanics responsible for cracking kinetics in these environments [fr

  9. Influence of uranium hydride oxidation on uranium metal behaviour

    International Nuclear Information System (INIS)

    Patel, N.; Hambley, D.; Clarke, S.A.; Simpson, K.

    2013-01-01

    This work addresses concerns that the rapid, exothermic oxidation of active uranium hydride in air could stimulate an exothermic reaction (burning) involving any adjacent uranium metal, so as to increase the potential hazard arising from a hydride reaction. The effect of the thermal reaction of active uranium hydride, especially in contact with uranium metal, does not increase in proportion with hydride mass, particularly when considering large quantities of hydride. Whether uranium metal continues to burn in the long term is a function of the uranium metal and its surroundings. The source of the initial heat input to the uranium, if sufficient to cause ignition, is not important. Sustained burning of uranium requires the rate of heat generation to be sufficient to offset the total rate of heat loss so as to maintain an elevated temperature. For dense uranium, this is very difficult to achieve in naturally occurring circumstances. Areas of the uranium surface can lose heat but not generate heat. Heat can be lost by conduction, through contact with other materials, and by convection and radiation, e.g. from areas where the uranium surface is covered with a layer of oxidised material, such as burned-out hydride or from fuel cladding. These rates of heat loss are highly significant in relation to the rate of heat generation by sustained oxidation of uranium in air. Finite volume modelling has been used to examine the behaviour of a magnesium-clad uranium metal fuel element within a bottle surrounded by other un-bottled fuel elements. In the event that the bottle is breached, suddenly, in air, it can be concluded that the bulk uranium metal oxidation reaction will not reach a self-sustaining level and the mass of uranium oxidised will likely to be small in relation to mass of uranium hydride oxidised. (authors)

  10. Influence of uranium hydride oxidation on uranium metal behaviour

    Energy Technology Data Exchange (ETDEWEB)

    Patel, N.; Hambley, D. [National Nuclear Laboratory (United Kingdom); Clarke, S.A. [Sellafield Ltd (United Kingdom); Simpson, K.

    2013-07-01

    This work addresses concerns that the rapid, exothermic oxidation of active uranium hydride in air could stimulate an exothermic reaction (burning) involving any adjacent uranium metal, so as to increase the potential hazard arising from a hydride reaction. The effect of the thermal reaction of active uranium hydride, especially in contact with uranium metal, does not increase in proportion with hydride mass, particularly when considering large quantities of hydride. Whether uranium metal continues to burn in the long term is a function of the uranium metal and its surroundings. The source of the initial heat input to the uranium, if sufficient to cause ignition, is not important. Sustained burning of uranium requires the rate of heat generation to be sufficient to offset the total rate of heat loss so as to maintain an elevated temperature. For dense uranium, this is very difficult to achieve in naturally occurring circumstances. Areas of the uranium surface can lose heat but not generate heat. Heat can be lost by conduction, through contact with other materials, and by convection and radiation, e.g. from areas where the uranium surface is covered with a layer of oxidised material, such as burned-out hydride or from fuel cladding. These rates of heat loss are highly significant in relation to the rate of heat generation by sustained oxidation of uranium in air. Finite volume modelling has been used to examine the behaviour of a magnesium-clad uranium metal fuel element within a bottle surrounded by other un-bottled fuel elements. In the event that the bottle is breached, suddenly, in air, it can be concluded that the bulk uranium metal oxidation reaction will not reach a self-sustaining level and the mass of uranium oxidised will likely to be small in relation to mass of uranium hydride oxidised. (authors)

  11. Multidimensional simulations of hydrides during fuel rod lifecycle

    International Nuclear Information System (INIS)

    Stafford, D.S.

    2015-01-01

    In light water reactor fuel rods, waterside corrosion of zirconium-alloy cladding introduces hydrogen into the cladding, where it is slightly soluble. When the solubility limit is reached, the hydrogen precipitates into crystals of zirconium hydride which decrease the ductility of the cladding and may lead to cladding failure during dry storage or transportation events. The distribution of the hydride phase and the orientation of the crystals depend on the history of the spatial temperature and stress profiles in the cladding. In this work, we have expanded the existing hydride modeling capability in the BISON fuel performance code with the goal of predicting both global and local effects on the radial, azimuthal and axial distribution of the hydride phase. We compare results from 1D simulations to published experimental data. We demonstrate the new capability by simulating in 2D a fuel rod throughout a lifecycle that includes irradiation, short-term storage in the spent fuel pool, drying, and interim storage in a dry cask. Using the 2D simulations, we present qualitative predictions of the effects of the inter-pellet gap and the drying conditions on the growth of a hydride rim. - Highlights: • We extend BISON fuel performance code to simulate lifecycle of fuel rods. • We model hydrogen evolution in cladding from reactor through dry storage. • We validate 1D simulations of hydrogen evolution against experiments. • We show results of 2D axisymmetric simulations predicting hydride formation. • We show how our model predicts formation of a hydride rim in the cladding.

  12. Permeation rates for RTF metal hydride vessels

    International Nuclear Information System (INIS)

    Klein, J.E.

    1992-01-01

    Contamination rates have been estimated for the RTF nitrogen heating and cooling system (NH and CS) due to tritium permeation through the walls of metal hydride vessels. Tritium contamination of the NH and CS will be seen shortly after start-up of the RTF with the majority of it coming from the TCAP units. Contamination rates of the NH and CS are estimated to exceed 400 Ci/year after three years of operation and will elevate tritium concentrations in the NH and CS above 6 x 10 -3 μCi/cc. To reduce tritium activity in the NH and CS, a stripper or ''getter'' bed may need to be installed in the NH and CS. Increasing the purge rate of nitrogen from the NH and CS is shown to be an impractical method for reducing tritium activity due to the high purge rates required. Stripping of the NH and CS nitrogen in the glove box stripper system will give a temporary lowering of tritium activity in the NH and CS, but tritium activity will return to its previous level in approximately two weeks

  13. Hydriding and neutron irradiation in zircaloy-4

    International Nuclear Information System (INIS)

    Ramos, Ruben Fortunato; Martin, Juan Ezequiel; Orellano, Pablo; Dorao, Carlos; Analia Soldati; Ghilarducci, Ada Albertina; Corso, Hugo Luis; Peretti, Hernan Americo; Bolcich, Juan Carlos

    2003-01-01

    The composition of Zircaloy-4 for nuclear applications is specified by the ASTM B350 Standard, that fixes the amount of alloying elements (Sn, Fe, Cr) and impurities (Ni, Hf, O, N, C, among others) to optimize good corrosion and mechanical behavior.The recycling of zircaloy-4 scrap and chips resulting from cladding tube fabrication is an interesting issue.However, changes in the final composition of the recycled material may occur due to contamination with tool pieces, stainless steel chips, turnings, etc. while scrap is stored and handled. Since the main components of the possible contaminants are Fe, Cr and Ni, it arises the interest in studying up to what limit the Fe, Ni and Cr contents could be exceeded beyond the standard specification without affecting significantly the alloy properties.Zircaloy-4 alloys elaborated with Fe, Cr and Ni additions and others of standard composition in use in nuclear plants are studied by tensile tests, SEM observations and EDS microanalysis.Some samples are tested in the initial condition and others after hydriding treatments and neutron irradiation in the RA6

  14. Optical and photoemission studies of lanthanum hydrides

    International Nuclear Information System (INIS)

    Peterman, D.J.; Peterson, D.T.; Weaver, J.H.

    1980-01-01

    The results of optical absorptivity and photoemission measurements on lanthanum hydrides, LaH/sub x/ (1.98 less than or equal to x less than or equal to 2.89) are reported. The low energy (hν less than or equal to 0.5 eV) optical features in LaH/sub x/ are attributed to the filling of octahedral sites. Higher energy interband absorption involves states within the d-band complex, analogous to other dihydrides. As x increases above 2.0, the optical features change rapidly due to the increase in the number of occupied octahedral sites. Various band structure studies suggest that LaH 3 might be a semiconductor. Photoemission results show that as x increases, the d-derived states at E/sub F/ are drawn down and that for LaH 2 89 only very weak valence band emission is observed. The hydrogen-derived bonding bands are shown centered approx. 5 eV below E/sub F/. Observed chemical shifts in the La 5p/sub 1/2 3/2/ cores are discussed for 1.98 less than or equal to x less than or equal to 2.89

  15. Nonlinear crack mechanics

    International Nuclear Information System (INIS)

    Khoroshun, L.P.

    1995-01-01

    The characteristic features of the deformation and failure of actual materials in the vicinity of a crack tip are due to their physical nonlinearity in the stress-concentration zone, which is a result of plasticity, microfailure, or a nonlinear dependence of the interatomic forces on the distance. Therefore, adequate models of the failure mechanics must be nonlinear, in principle, although linear failure mechanics is applicable if the zone of nonlinear deformation is small in comparison with the crack length. Models of crack mechanics are based on analytical solutions of the problem of the stress-strain state in the vicinity of the crack. On account of the complexity of the problem, nonlinear models are bason on approximate schematic solutions. In the Leonov-Panasyuk-Dugdale nonlinear model, one of the best known, the actual two-dimensional plastic zone (the nonlinearity zone) is replaced by a narrow one-dimensional zone, which is then modeled by extending the crack with a specified normal load equal to the yield point. The condition of finite stress is applied here, and hence the length of the plastic zone is determined. As a result of this approximation, the displacement in the plastic zone at the abscissa is nonzero

  16. Calculation of hydrogen diffusion toward a crack in a stressed solid

    International Nuclear Information System (INIS)

    1976-10-01

    A set of eigensolutions is derived for use in expanding the steady-state concentration of hydrogen diffusing through a region bounded by two cylinders centred on an infinite crack in a stressed solid. Comparison is made with some experimental values of the hydrogen-induced crack-propagation velocity within the framework of the theory of Dutton and Puls. (author)

  17. Hydrogen storage as a hydride. Citations from the International Aerospace Abstracts data base

    Science.gov (United States)

    Zollars, G. F.

    1980-01-01

    These citations from the international literature concern the storage of hydrogen in various metal hydrides. Binary and intermetallic hydrides are considered. Specific alloys discussed are iron titanium, lanthanium nickel, magnesium copper and magnesium nickel among others.

  18. Precipitation of γ-zirconium hydride in zirconium

    International Nuclear Information System (INIS)

    Carpenter, G.J.C.

    1978-01-01

    A mechanism for the precipitation of γ-zirconium hydride in zirconium is presented which does not require the diffusion of zirconium. The transformation is completed by shears caused by 1/3 (10 anti 10) Shockley partial dislocations on alternate zirconium basal planes, either by homogeneous nucleation or at lattice imperfections. Homogeneous nucleation is considered least likely in view of the large nucleation barrier involved. Hydrides may form at dislocations by the generation of partials by means of either a pole or ratchet mechanism. The former requires dislocations with a component of Burgers vector along the c-axis, but contrast experiments show that these are not normally observed in annealed zirconium. It is therefore most likely that intragranular hydrides form at the regular 1/3 (11 anti 20) dislocations, possibly by means of a ratchet mechanism. Contrast experiments in the electron microscope show that the precipitates have a shear character consistent with the mechanism suggested. The possibility that the shear dislocations associated with the hydrides are emissary dislocations is considered and a model suggested in which this function is satisfied together with the partial relief of misfit stresses. The large shear strains associated with the precipitation mechanism may play an important role in the preferential orientation of hydrides under stress

  19. Sodium-based hydrides for thermal energy applications

    Science.gov (United States)

    Sheppard, D. A.; Humphries, T. D.; Buckley, C. E.

    2016-04-01

    Concentrating solar-thermal power (CSP) with thermal energy storage (TES) represents an attractive alternative to conventional fossil fuels for base-load power generation. Sodium alanate (NaAlH4) is a well-known sodium-based complex metal hydride but, more recently, high-temperature sodium-based complex metal hydrides have been considered for TES. This review considers the current state of the art for NaH, NaMgH3- x F x , Na-based transition metal hydrides, NaBH4 and Na3AlH6 for TES and heat pumping applications. These metal hydrides have a number of advantages over other classes of heat storage materials such as high thermal energy storage capacity, low volume, relatively low cost and a wide range of operating temperatures (100 °C to more than 650 °C). Potential safety issues associated with the use of high-temperature sodium-based hydrides are also addressed.

  20. Statistical crack mechanics

    International Nuclear Information System (INIS)

    Dienes, J.K.

    1993-01-01

    Although it is possible to simulate the ground blast from a single explosive shot with a simple computer algorithm and appropriate constants, the most commonly used modelling methods do not account for major changes in geology or shot energy because mechanical features such as tectonic stresses, fault structure, microcracking, brittle-ductile transition, and water content are not represented in significant detail. An alternative approach for modelling called Statistical Crack Mechanics is presented in this paper. This method, developed in the seventies as a part of the oil shale program, accounts for crack opening, shear, growth, and coalescence. Numerous photographs and micrographs show that shocked materials tend to involve arrays of planar cracks. The approach described here provides a way to account for microstructure and give a representation of the physical behavior of a material at the microscopic level that can account for phenomena such as permeability, fragmentation, shear banding, and hot-spot formation in explosives

  1. Dynamic crack propagation through nanoporous media

    Science.gov (United States)

    Nguyen, Thao; Wilkerson, Justin

    2015-06-01

    The deformation and failure of nanoporous metals may be considerably different than that of more traditional bulk porous metals. The length scales in traditional bulk porous metals are typically large enough for classic plasticity and buckling to be operative. However, the extremely small length scales associated with nanoporous metals may inhibit classic plasticity mechanisms. Here, we motivate an alternative nanovoid growth mechanism mediated by dislocation emission. Following an approach similar to Lubarda and co-workers, we make use of stability arguments applied to the analytic solutions of the elastic interactions of dislocations and voids to derive a simple stress-based criterion for emission activation. We then propose a dynamic nanovoid growth law that is motivated by the kinetics of dislocation emission. The resulting failure model is implemented into a commercial finite element software to simulate dynamic crack growth. The simulations reveal that crack propagation through a nanoporous media proceeds at somewhat faster velocities than through the more traditional bulk porous metal.

  2. Stress-Corrosion Cracking of Metallic Materials. Part III. Hydrogen Entry and Embrittlement in Steel

    Science.gov (United States)

    1975-04-01

    work of Kerns (36)] 29 22 Crack Velocity vs. Stress Intensity for AISI 4340 Steel (Martensitic and Bainitic Structures) in 314 NaCl Solution (pit = 6.0...magnitude greater for 4340 steel with a tempered martensite structure than for the lower bainite structure. Figure 22 shows crack velocity as a function of...applied stress intensity for martensitic and bainitic steels . The dif- ference was attributed to more effective trapping of hydrogen at coher- ently

  3. Cracking the Cipher Challenge

    CERN Document Server

    CERN. Geneva. Audiovisual Unit; Singh, Simon

    2002-01-01

    In the back of 'The Code Book', a history of cryptography, Simon Singh included a series of 10 encoded messages, each from a different period of history. The first person to crack all 10 messages would win a prize of £10,000. Now that the prize has been won, Simon can reveal the story behind the Cipher Challenge. Along the way he will show how mathematics can be used to crack codes, the role it played in World War Two and how it helps to guarantee security in the Information Age.

  4. Assessment of environmentally assisted cracking in PWR pressure vessel steels

    International Nuclear Information System (INIS)

    Tice, D.R.

    1987-01-01

    1) Since environmentally assisted cracking (EAC) is a time dependent process, assessment should be based on time rather than cycle dependent parameters. Thus an a/sub e/ vs a/sub i/ (or strain rate) basis for assessment should be used in preference to da/dN vs ΔK. 2) The threshold strain rate or velocity for the onset of EAC is controlled by material and environmental factors (e.g. steel sulphur content and water chemistry), and possibly by mechanical loading factors such as R ratio and load interaction effects. Above the threshold, crack growth rates are usually unacceptably rapid. 3) Sample calculations show that predicted crack growth rates using a time based model can be below or above those calculated using ASME XI depending on the value of the EAC threshold velocity but that for normal PWR operating conditions rates are likely to be below those predicted by the ASME code

  5. Capillary-induced crack healing between surfaces of nanoscale roughness.

    Science.gov (United States)

    Soylemez, Emrecan; de Boer, Maarten P

    2014-10-07

    Capillary forces are important in nature (granular materials, insect locomotion) and in technology (disk drives, adhesion). Although well studied in equilibrium state, the dynamics of capillary formation merit further investigation. Here, we show that microcantilever crack healing experiments are a viable experimental technique for investigating the influence of capillary nucleation on crack healing between rough surfaces. The average crack healing velocity, v̅, between clean hydrophilic polycrystalline silicon surfaces of nanoscale roughness is measured. A plot of v̅ versus energy release rate, G, reveals log-linear behavior, while the slope |d[log(v̅)]/dG| decreases with increasing relative humidity. A simplified interface model that accounts for the nucleation time of water bridges by an activated process is developed to gain insight into the crack healing trends. This methodology enables us to gain insight into capillary bridge dynamics, with a goal of attaining a predictive capability for this important microelectromechanical systems (MEMS) reliability failure mechanism.

  6. Acoustic and electromagnetic emission as a tool for crack localization

    International Nuclear Information System (INIS)

    Sedlak, P; Sikula, J; Lokajicek, T; Mori, Y

    2008-01-01

    The creation of cracks is accompanied by electric charge redistribution due to loosened chemical bounds. Electric charge on a crack wall creates dipole moments. Vibrations of crack walls produce time-dependent dipole moments and, consequently, electric and magnetic fields are generated. An electric signal is induced on metal electrodes. Simultaneously with the electromagnetic emission (EME) signal, an acoustic emission (AE) signal is generated, but due to the different velocities of propagation of both waves, the detection of the AE signal is delayed. This time delay presents the time of the wave propagation from the individual acoustic emission sensor to the crack. The defect can be located by means of these time intervals. This paper describes the localization using acoustic and electromagnetic emission signals for the two-dimensional case

  7. Analysis of Dynamic Fracture Parameters in Functionally Graded Material Plates with Cracks by Graded Finite Element Method and Virtual Crack Closure Technique

    Directory of Open Access Journals (Sweden)

    Li Ming Zhou

    2016-01-01

    Full Text Available Based on the finite element software ABAQUS and graded element method, we developed a dummy node fracture element, wrote the user subroutines UMAT and UEL, and solved the energy release rate component of functionally graded material (FGM plates with cracks. An interface element tailored for the virtual crack closure technique (VCCT was applied. Fixed cracks and moving cracks under dynamic loads were simulated. The results were compared to other VCCT-based analyses. With the implementation of a crack speed function within the element, it can be easily expanded to the cases of varying crack velocities, without convergence difficulty for all cases. Neither singular element nor collapsed element was required. Therefore, due to its simplicity, the VCCT interface element is a potential tool for engineers to conduct dynamic fracture analysis in conjunction with commercial finite element analysis codes.

  8. Microstructural modelling of creep crack growth from a blunted crack

    NARCIS (Netherlands)

    Onck, P.R.; Giessen, E. van der

    1998-01-01

    The effect of crack tip blunting on the initial stages of creep crack growth is investigated by means of a planar microstructural model in which grains are represented discretely. The actual linking-up process of discrete microcracks with the macroscopic crack is simulated, with full account of the

  9. Simultaneous determination of hydride and non-hydride forming elements by inductively coupled plasma optical emission spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Benzo, Z. [Instituto Venezolano de Investigaciones Cientificas, IVIC, Altos de Pipe, Caracas (Venezuela, Bolivarian Republic of); Matos-Reyes, M.N.; Cervera, M.L.; Guardia, M. de la, E-mail: m.luisa.cervera@uv.es [Department of Analytical Chemistry, University of Valencia, Valencia (Spain)

    2011-09-15

    The operating characteristics of a dual nebulization system were studied including instrumental and chemical conditions for the hydride generation and analytical figures of merit for both, hydride and non hydride forming elements. Analytical performance of the nebulization system was characterized by detection limits from 0.002 to 0.0026 {mu}g mL{sup -1} for the hydride forming elements and between 0.0034 and 0.0121 {mu}g mL{sup -1} for the non-hydride forming elements, relative standard deviation for 10 replicate measurements at 0.25 mg L{sup -1} level and recovery percentages between 97 and 103%. The feasibility of the system was demonstrated in the simultaneous determination of Ca, Cd, Co, Cr, Cu, Fe, Mg, Mn, Mo, Ni, Zn, As, Bi, Sb, Se, and Te in the NIST 1549 (non-fat milk powder), NIST 1570a (spinach leaves), DORM-2 (dogfish muscle) and TORT-2 (lobster hepatopancreas) certified samples for trace elements. Results found were in good agreement with the certified ones. (author)

  10. Infrared diode laser spectroscopy of lithium hydride

    International Nuclear Information System (INIS)

    Yamada, C.; Hirota, E.

    1988-01-01

    The fundamental and hot bands of the vibration--rotation transitions of 6 LiH, 7 LiH, 6 LiD, and 7 LiD were observed by infrared diode laser spectroscopy at Doppler-limited resolution. Lithium hydride molecules were produced by the reaction of the Li vapor with hydrogen at elevated temperatures. Some 40 transitions were observed and, after combined with submillimeter-wave spectra reported by G. M. Plummer et al. [J. Chem. Phys. 81, 4893 (1984)], were analyzed to yield Dunham-type constants with accuracies more than an order of magnitude higher than those published in the literature. It was clearly demonstrated that the Born--Oppenheimer approximation did not hold, and some parameters representing the breakdown were evaluated. The Born--Oppenheimer internuclear distance r/sup BO//sub e/ was derived to be 1.594 914 26 (59) A, where a new value of Planck's constant recommended by CODATA was employed. The relative intensity of absorption lines was measured to determine the ratio of the permanent dipole moment to its first derivative with respect to the internuclear distance: μ/sub e/ [(partialμpartialr)/sub e/ r/sub e/ ] = 1.743(86). The pressure broadening parameter Δν/sub p/ P was determined to be 6.40 (22) MHzTorr by measuring the linewidth dependence on the pressure of hydrogen, which was about four times larger than the value for the dipole--quadrupole interaction estimated by Kiefer and Bushkovitch's theory

  11. Use of triammonium salt of aurin tricarboxylic acid as risk mitigant for aluminum hydride

    Science.gov (United States)

    Cortes-Concepcion, Jose A.; Anton, Donald L.

    2017-08-08

    A process and a resulting product by process of an aluminum hydride which is modified with by physically combining in a ball milling process an aluminum hydride with a triammonium salt of aurin tricarboxylic acid. The resulting product is an aluminum hydride which is resistant to air, ambient moisture, and liquid water while maintaining useful hydrogen storage and release kinetics.

  12. A computer model for hydride blister growth in zirconium alloys

    International Nuclear Information System (INIS)

    White, A.J.; Sawatzky, A.; Woo, C.H.

    1985-06-01

    The failure of a Zircaloy-2 pressure tube in the Pickering unit 2 reactor started at a series of zirconium hydride blisters on the outside of the pressure tube. These blisters resulted from the thermal diffusion of hydrogen to the cooler regions of the pressure tube. In this report the physics of thermal diffusion of hydrogen in zirconium is reviewed and a computer model for blister growth in two-dimensional Cartesian geometry is described. The model is used to show that the blister-growth rate in a two-phase zirconium/zirconium-hydride region does not depend on the initial hydrogen concentration nor on the hydrogen pick-up rate, and that for a fixed far-field temperature there is an optimum pressure-type/calandria-tube contact temperature for growing blisters. The model described here can also be used to study large-scale effects, such as hydrogen-depletion zones around hydride blisters

  13. Hydrides and deuterides of lithium and sodium. Pt. 1

    International Nuclear Information System (INIS)

    Haque, E.

    1990-01-01

    An interionic potential model is developed for lighter and heavier alkali hydrides and deuterides. The method uses a combination of theoretical techniques, empirical fit, and a few plausible assumptions. An assessment of the derived potentials is made by calculating the lattice statics and dynamics of the crystals and by comparing both with experiment (where available) and with other calculations. The potentials are found to describe the elastic and dielectric properties reasonably well. The phonon dispersion curves of hydride and deuteride of sodium are compared with the calculations of Dyck and Jex based on force constant model approach and the results are discussed. The need for further experiments on heavier hydrides and deuterides is stressed. (author)

  14. Research in Nickel/Metal Hydride Batteries 2017

    Directory of Open Access Journals (Sweden)

    Kwo-Hsiung Young

    2018-02-01

    Full Text Available Continuing from a special issue in Batteries in 2016, nineteen new papers focusing on recent research activities in the field of nickel/metal hydride (Ni/MH batteries have been selected for the 2017 Special Issue of Ni/MH Batteries. These papers summarize the international joint-efforts in Ni/MH battery research from BASF, Wayne State University, Michigan State University, FDK Corp. (Japan, Institute for Energy Technology (Norway, Central South University (China, University of Science and Technology Beijing (China, Zhengzhou University of Light Industry (China, Inner Mongolia University of Science and Technology (China, Shenzhen Highpower (China, and University of the Witwatersrand (South Africa from 2016–2017 through reviews of AB2 metal hydride alloys, Chinese and EU Patent Applications, as well as descriptions of research results in metal hydride alloys, nickel hydroxide, electrolyte, and new cell type, comparison work, and projections of future works.

  15. New ternary hydride formation in U-Ti-H system

    International Nuclear Information System (INIS)

    Yamamoto, Takuya; Kayano, Hideo; Yamawaki, Michio.

    1991-01-01

    Hydrogen absorption properties of two titanium-rich uranium alloys, UTi 2 and UTi 4 , were studied in order to prepare and identify the recently found ternary hydride. They slowly reacted with hydrogen of the initial pressure of 10 5 Pa at 873K to form the ternary hydride. The hydrogenated specimen mainly consisted of the pursued ternary hydride but contained also U(or UO 2 ), TiH x , and some transient phases. X-ray powder diffraction and Electron Probe Micro Analysis proved that it was the UTi 2 H x with the expected MgCu 2 structure, though all the X-ray peaks were broad probably because of inhomogeneity. This compound had extremely high resistance to powdering on its formation, which showed high potential utilities for a non-powdering tritium storage system or for other purposes. (author)

  16. Linear Cracking in Bridge Decks

    Science.gov (United States)

    2018-03-01

    Concrete cracking in bridge decks remains an important issue relative to deck durability. Cracks can allow increased penetration of chlorides, which can result in premature corrosion of the reinforcing steel and subsequent spalling of the concrete de...

  17. Crack detection '86

    International Nuclear Information System (INIS)

    1986-01-01

    The participants of the conference heard 36 papers of which 13 were incorporated in INIS. The incorporated papers deal with the quality control of the equipment of nuclear power plants, with technical specifications and possibilities of diverse crack detection devices, as well as with personnel training for nondestructive materials testing. (E.S.)

  18. Complex Metal Hydrides for Hydrogen, Thermal and Electrochemical Energy Storage

    DEFF Research Database (Denmark)

    Moller, Kasper T.; Sheppard, Drew; Ravnsbaek, Dorthe B.

    2017-01-01

    Hydrogen has a very diverse chemistry and reacts with most other elements to form compounds, which have fascinating structures, compositions and properties. Complex metal hydrides are a rapidly expanding class of materials, approaching multi-functionality, in particular within the energy storage...... inspiration to solve the great challenge of our time: efficient conversion and large-scale storage of renewable energy....... field. This review illustrates that complex metal hydrides may store hydrogen in the solid state, act as novel battery materials, both as electrolytes and electrode materials, or store solar heat in a more efficient manner as compared to traditional heat storage materials. Furthermore, it is highlighted...

  19. Microcapsulated rare earth - nickel hydride-forming materials

    International Nuclear Information System (INIS)

    Ishikawa, H.; Oguro, K.; Kato, A.; Suzuki, H.; Ishii, E.

    1985-01-01

    Fine particles of hydride-forming alloys such as LaNi/sub 5/ and MmNi/sub 4.5/Mn/sub 0.5/ (MM : mischmetal) were coated with metallic copper thin layer by chemical plating method. Hydrogen storage capacities of alloys were not appreciably affected by the plating treatment. The capsulated alloy powders were easily pressed into pellets. The pellets obtained had high thermal conductivity and porosity enough to permeate hydrogen, leading to fast reaction kinetics. These were able to withstand more than 5,000 repeated hydriding-dehydriding cycles without disintegrating

  20. Hydriding and dehydriding properties of CaSi

    International Nuclear Information System (INIS)

    Aoki, Masakazu; Ohba, Nobuko; Noritake, Tatsuo; Towata, Shin-ichi

    2005-01-01

    The hydriding and dehydriding properties of CaSi were investigated both theoretically and experimentally. First-principles calculations suggested that CaSiH n is thermodynamically stable. Experimentally, the p -c isotherms clearly demonstrated plateau pressures in a temperature range of 473-573 K and the maximum hydrogen content was 1.9 weight % (wt.%) under a hydrogen pressure of 9 MPa at 473 K. The structure of CaSiH n is different from those of ZrNi hydrides, although CaSi has the CrB-type structure as well as ZrNi

  1. Thermophysical properties of solid lithium hydride and its isotopic modifications

    International Nuclear Information System (INIS)

    Mel'nikova, T.N.

    1981-01-01

    The theory of the anharmonic lattice is used to calculate the thermophysical properties (thermal expansivity, lattice constant, compressibility, and elastic moduli) of all the isotopic modifications of solid lithium hydride sup(6,7)Li(H,D,T) at temperatures up to the melting point. A general analysis of isotopic effects is carried out; in particular the reverse isotopic effect in the lattice constant is explained and the isotopic effect in melting is discussed. The results of the calculations agree with available experimental data and can be used for those isotopic modifications of lithium hydride for which there exist no experimental results. (author)

  2. Crack closure, a literature study

    Science.gov (United States)

    Holmgren, M.

    1993-08-01

    In this report crack closure is treated. The state of the art is reviewed. Different empirical formulas for determining the crack closure are compared with each other, and their benefits are discussed. Experimental techniques for determining the crack closure stress are discussed, and some results from fatigue tests are also reported. Experimental data from the literature are reported.

  3. Crack propagation behaviour in stainless steel AISI 316L at elevated temperatures under static and cyclic loading

    International Nuclear Information System (INIS)

    Lange, H.

    1991-01-01

    Experimental investigations of crack growth under creep and creep-fatigue conditions are presented. The experiments were performed with the austenitic steel AISI 316L, that will be used in fast breeder reactors. A comparison of crack propagation behaviour at temperatures of T = 550deg C and T = 700deg C in common through-thickness cracked specimens and in plates containing surface cracks is carried out by application of several fracture mechanics parameters. The quantitative description of crack initiation times and crack velocities is persued particularly. The propagation rate of one-dimensional cracks under cyclic loading conditions at T = 550deg C is also treated with fracture mechanical methods. The influence of the hold periods on crack speed is discussed. (orig.) [de

  4. Modelling of liquid sodium induced crack propagation in T91 martensitic steel: Competition with ductile fracture

    Energy Technology Data Exchange (ETDEWEB)

    Hemery, Samuel [Institut PPRIME, CNRS, Université de Poitiers, ISAE ENSMA, UPR 3346, Téléport 2, 1 Avenue Clément Ader, BP 40109, 86961 Futuroscope Chasseneuil Cedex (France); Berdin, Clotilde, E-mail: clotilde.berdin@u-psud.fr [Univ Paris-Sud, SP2M-ICMMO, CNRS UMR 8182, F-91405 Orsay Cedex (France); Auger, Thierry; Bourhi, Mariem [Ecole Centrale-Supelec, MSSMat CNRS UMR 8579, F-92295 Chatenay Malabry Cedex (France)

    2016-12-01

    Liquid metal embrittlement (LME) of T91 steel is numerically modeled by the finite element method to analyse experimental results in an axisymmetric notched geometry. The behavior of the material is identified from tensile tests then a crack with a constant crack velocity is introduced using the node release technique in order to simulate the brittle crack induced by LME. A good agreement between the simulated and the experimental macroscopic behavior is found: this suggests that the assumption of a constant crack velocity is correct. Mechanical fields during the embrittlement process are then extracted from the results of the finite element model. An analysis of the crack initiation and propagation stages: the ductile fracture probably breaks off the LME induced brittle fracture. - Highlights: • T91 martensitic steel is embrittled by liquid sodium depending on the loading rate at 573 K. • The mechanical behavior is modeled by a von Mises elastic-plastic law. • The LME induced crack propagates at a constant velocity. • The mechanical state at the crack tip does not explain a brittle crack arrest. • The occurrence of the ductile fracture breaks off the brittle fracture.

  5. The tensile effect on crack formation in single crystal silicon irradiated by intense pulsed ion beam

    Science.gov (United States)

    Liang, Guoying; Shen, Jie; Zhang, Jie; Zhong, Haowen; Cui, Xiaojun; Yan, Sha; Zhang, Xiaofu; Yu, Xiao; Le, Xiaoyun

    2017-10-01

    Improving antifatigue performance of silicon substrate is very important for the development of semiconductor industry. The cracking behavior of silicon under intense pulsed ion beam irradiation was studied by numerical simulation in order to understand the mechanism of induced surface peeling observed by experimental means. Using molecular dynamics simulation based on Stillinger Weber potential, tensile effect on crack growth and propagation in single crystal silicon was investigated. Simulation results reveal that stress-strain curves of single crystal silicon at a constant strain rate can be divided into three stages, which are not similar to metal stress-strain curves; different tensile load velocities induce difference of single silicon crack formation speed; the layered stress results in crack formation in single crystal silicon. It is concluded that the crack growth and propagation is more sensitive to strain rate, tensile load velocity, stress distribution in single crystal silicon.

  6. Characteristics of hydride precipitation and reorientation in spent-fuel cladding

    International Nuclear Information System (INIS)

    Chung, H.M.; Daum, R.S.; Hiller, J.M.; Billone, M.C.

    2002-01-01

    Transmission electron microscopy (TEM) was used to examine Zircaloy fuel cladding, either discharged from several PWRs and a BWR after irradiation to fluence levels of 3.3 to 8.6 X 10 21 n cm -2 (E > 1 MeV) or hydrogen-charged and heat-treated under stress to produce radial hydrides; the goal was to determine the microstructural and crystallographic characteristics of hydride precipitation. Morphologies, distributions, and habit planes of various types of hydrides were determined by stereo-TEM. In addition to the normal macroscopic hydrides commonly observed by optical microscopy, small 'microscopic' hydrides are present in spent-fuel cladding in number densities at least a few orders of magnitude greater than that of macroscopic hydrides. The microscopic hydrides, observed to be stable at least up to 333 deg C, precipitate in association with -type dislocations. While the habit plane of macroscopic tangential hydrides in the spent-fuel cladding is essentially the same as that of unirradiated unstressed Zircaloys, i.e., the [107] Zr plane, the habit plane of tangential hydrides that precipitate under high tangential stress is the [104] Zr plane. The habit plane of radial hydrides that precipitate under tangential stress is the [011] Zr pyramidal plane, a naturally preferred plane for a cladding that has 30 basal-pole texture. Effects of texture on the habit plane and the threshold stress for hydride reorientation are also discussed. (authors)

  7. In situ synchrotron X-ray diffraction study of hydrides in Zircaloy-4 during thermomechanical cycling

    Energy Technology Data Exchange (ETDEWEB)

    Cinbiz, Mahmut N., E-mail: cinbizmn@ornl.gov [Department of Mechanical and Nuclear Engineering, Pennsylvania State University, University Park, PA, 16802 (United States); Koss, Donald A., E-mail: koss@ems.psu.edu [Department of Materials Science and Engineering, Pennsylvania State University, University Park, PA, 16802 (United States); Motta, Arthur T., E-mail: atm2@psu.edu [Department of Mechanical and Nuclear Engineering, Pennsylvania State University, University Park, PA, 16802 (United States); Department of Materials Science and Engineering, Pennsylvania State University, University Park, PA, 16802 (United States); Park, Jun-Sang, E-mail: parkjs@aps.anl.gov [Advanced Photon Source, Argonne National Laboratory, Argonne, IL, 60439 (United States); Almer, Jonathan D., E-mail: almer@aps.anl.gov [Advanced Photon Source, Argonne National Laboratory, Argonne, IL, 60439 (United States)

    2017-04-15

    The d-spacing evolution of both in-plane and out-of-plane hydrides has been studied using in situ synchrotron radiation X-ray diffraction during thermo-mechanical cycling of cold-worked stress-relieved Zircaloy-4. The structure of the hydride precipitates is such that the δ{111} d-spacing of the planes aligned with the hydride platelet face is greater than the d-spacing of the 111 planes aligned with the platelet edges. Upon heating from room temperature, the δ{111} planes aligned with hydride plate edges exhibit bi-linear thermally-induced expansion. In contrast, the d-spacing of the (111) plane aligned with the hydride plate face initially contracts upon heating. These experimental results can be understood in terms of a reversal of stress state associated with precipitating or dissolving hydride platelets within the α-zirconium matrix. - Highlights: •The δ{111} d-spacings aligned with the hydride plate edges exhibit a bi-linear thermal expansion. •Stress state reversal is predicted with the onset of hydride dissolution. •During dissolution, the δ{111} planes oriented parallel to the hydride plate face initially contract upon heating. •Hydride d-spacings indicate that both in-plane (circumferential) and out-of-plane (radial) hydrides are in the same strain-state and likely in the same stress state as well.

  8. Dynamic circumferential ductile crack motion in finite length pipes with various end loadings

    International Nuclear Information System (INIS)

    Emery, A.F.; Kobayashi, A.S.; Love, W.J.; Perl, M.; Kistler, B.

    1981-01-01

    The computed time history, crack opening shape and tip velocity are presented for the ductile crack extension of circumferential cracks in finite length pipes. The pipes are loaded by: a) constant axial tension, b) constant axial displacement, c) constant end moment, and d) constant end rotation to study the effects of these significantly different types of loads. The crack extension is based upon a critical crack opening angle criterion. The results indicate that the extent of the crack movement and the extension velocity is primarily dependent upon the inertia of the moving pipe segments. With sufficient linear momentum, complete severance is obtained, while if the movement is more rotation than translation the cracks either do not extend or do so only slightly. Thus in tougher material, once it begins to extend, the crack may easily encircle the pipe while in more brittle materials it may not, since the moving segments of the pipe have not had time to develop sufficient momentum to force the continued extension of the crack into regions which are initially in compression. (orig.)

  9. Quantifying the stress fields due to a delta-hydride precipitate in alpha-Zr matrix

    Energy Technology Data Exchange (ETDEWEB)

    Tummala, Hareesh [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Capolungo, Laurent [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Tome, Carlos N. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-10-19

    This report is a preliminary study on δ-hydride precipitate in zirconium alloy performed using 3D discrete dislocation dynamics simulations. The ability of dislocations in modifying the largely anisotropic stress fields developed by the hydride particle in a matrix phase is addressed for a specific dimension of the hydride. The influential role of probable dislocation nucleation at the hydride-matrix interface is reported. Dislocation nucleation around a hydride was found to decrease the shear stress (S13) and also increase the normal stresses inside the hydride. We derive conclusions on the formation of stacks of hydrides in zirconium alloys. The contribution of mechanical fields due to dislocations was found to have a non-negligible effect on such process.

  10. Internal friction study of hydrides in zirconium at low hydrogen contents

    International Nuclear Information System (INIS)

    Peretti, H.A.; Corso, H.L.; Gonzalez, O.A.; Fernandez, L.; Ghilarducci, A.A.; Salva, H.R.

    1999-01-01

    Full text: Internal friction and shear modulus measurements were carried out on crystal bar zirconium in the as received and hydride conditions using an inverted forced pendulum. Hydriding was achieved in two ways: inside and out of the pendulum. The final hydrogen content determined by fusion analysis in the 'in situ' hydride sample was of 36 ppm. Another sample was hydride by the cathodic charge method with 25 ppm. The thermal solid solubility (TSS) phase boundary presents hysteresis between the precipitation (TSSP) and the dissolution (TSSD) temperatures for the zirconium hydrides. During the first thermal cycling the anelastic effects could be attributed to the δ, ε and metastable γ zirconium hydrides. After 'in situ' annealing at 490 K, these peaks completely disappear in the electrolytically charged sample, while in the 'in situ' hydride, the peaks remain with decreasing intensity. This effect can be understood in terms of the different surface conditions of the samples. (author)

  11. Dislocation/hydrogen interaction mechanisms in hydrided nanocrystalline palladium films

    International Nuclear Information System (INIS)

    Amin-Ahmadi, Behnam; Connétable, Damien; Fivel, Marc; Tanguy, Döme; Delmelle, Renaud; Turner, Stuart; Malet, Loic; Godet, Stephane; Pardoen, Thomas; Proost, Joris; Schryvers, Dominique

    2016-01-01

    The nanoscale plasticity mechanisms activated during hydriding cycles in sputtered nanocrystalline Pd films have been investigated ex-situ using advanced transmission electron microscopy techniques. The internal stress developing within the films during hydriding has been monitored in-situ. Results showed that in Pd films hydrided to β-phase, local plasticity was mainly controlled by dislocation activity in spite of the small grain size. Changes of the grain size distribution and the crystallographic texture have not been observed. In contrast, significant microstructural changes were not observed in Pd films hydrided to α-phase. Moreover, the effect of hydrogen loading on the nature and density of dislocations has been investigated using aberration-corrected TEM. Surprisingly, a high density of shear type stacking faults has been observed after dehydriding, indicating a significant effect of hydrogen on the nucleation energy barriers of Shockley partial dislocations. Ab-initio calculations of the effect of hydrogen on the intrinsic stable and unstable stacking fault energies of palladium confirm the experimental observations.

  12. A system of hydrogen powered vehicles with liquid organic hydrides

    International Nuclear Information System (INIS)

    Taube, M.

    1981-07-01

    A motor car system based on the hydrogen produced by nuclear power stations during the night in the summer, and coupled with organic liquid hydride seems to be a feasible system in the near future. Such a system is discussed and the cost is compared with gasoline. (Auth.)

  13. Process of forming a sol-gel/metal hydride composite

    Science.gov (United States)

    Congdon, James W [Aiken, SC

    2009-03-17

    An external gelation process is described which produces granules of metal hydride particles contained within a sol-gel matrix. The resulting granules are dimensionally stable and are useful for applications such as hydrogen separation and hydrogen purification. An additional coating technique for strengthening the granules is also provided.

  14. Hydrogen storage alloys for nickel/metal hydride battery

    Energy Technology Data Exchange (ETDEWEB)

    Kuriyama, Nobuhiro; Sakai, Tetsuo; Myamura, Hiroshi; Tanaka, Hideaki; Ishikawa, Hiroshi; Uehara, Itsuki [Osaka National Research Inst. (Japan)

    1996-06-01

    Efforts to improve performance of metal hydride electrodes such as substitution of alloy components, heat treatment, and surface treatment intended to change surface and bulk structure of hydrogen storage alloys, mainly LaNi{sub 5} based alloys, are reviewed. The importance of control of morphology is emphasized. (author)

  15. Cascades for hydrogen isotope separation using metal hydrides

    International Nuclear Information System (INIS)

    Hill, F.B.; Grzetic, V.

    1982-01-01

    Designs are presented for continuous countercurrent hydrogen isotope separation cascades based on the use of metal hydrides. The cascades are made up of pressure swing adsorption (PSA) or temperature swing adsorption (TSA) stages. The designs were evolved from consideration of previously conducted studies of the separation performance of four types of PSA and TSA processes

  16. Deiodination reactions using tributyltin hydride for potential labelling experiments

    International Nuclear Information System (INIS)

    Zippi, E.M.; Plourde, G.W. II; Satyamurthy, N.

    1995-01-01

    2,6-Dinitro-1-iodobenzene and 2,4-dinitro-1-iodobenzene were deiodinated with tributylin hydride at different temperatures using various addition modes. The product ratios of 1,3-dinitrobenzene and the corresponding tributylstannyldinitrobenzene compounds were determined by NMR in order to evaluate the optimum conditions for impending tritiation experiments. (Author)

  17. Modeling of electrochemical hydrogen storage in metal hydride electrodes

    NARCIS (Netherlands)

    Ledovskikh, A.; Danilov, D.; Vermeulen, P.; Notten, P.H.L.

    2010-01-01

    The recently presented Electrochemical Kinetic Model (EKM), describing the electrochemical hydrogen storage in hydride-forming materials, has been extended by the description of the solid/electrolyte interface, i.e. the charge transfer kinetics and electrical double layer charging. A complete set of

  18. Modeling of electrochemical hydrogen storage in metal hydride electrodes

    NARCIS (Netherlands)

    Ledovskikh, A.; Danilov, D.; Vermeulen, P.; Notten, P.H.L.

    2010-01-01

    The recently presented electrochemical kinetic model, describing the electrochemical hydrogen storage in hydride-forming materials, was extended by the description of the solid/electrolyte interface, i.e., the charge-transfer kinetics and electrical double-layer charging. A complete set of equations

  19. Metal Hydride assited contamination on Ru/Si surfaces

    NARCIS (Netherlands)

    Pachecka, Malgorzata; Lee, Christopher James; Sturm, Jacobus Marinus; Bijkerk, Frederik

    2013-01-01

    In extreme ultraviolet lithography (EUVL) residual tin, in the form of particles, ions, and atoms, can be deposited on nearby EUV optics. During the EUV pulse, a reactive hydrogen plasma is formed, which may be able to react with metal contaminants, creating volatile and unstable metal hydrides that

  20. Design and integration of a hydrogen storage on metallic hydrides

    International Nuclear Information System (INIS)

    Botzung, M.

    2008-01-01

    This work presents a hydrogen storage system using metal hydrides for a Combined Heat and Power (CHP) system. Hydride storage technology has been chosen due to project specifications: high volumetric capacity, low pressures (≤ 3.5 bar) and low temperatures (≤ 75 C: fuel cell temperature). During absorption, heat from hydride generation is dissipated by fluid circulation. An integrated plate-fin type heat exchanger has been designed to obtain good compactness and to reach high absorption/desorption rates. At first, the storage system has been tested in accordance with project specifications (absorption 3.5 bar, desorption 1.5 bar). Then, the hydrogen charge/discharge times have been decreased to reach system limits. System design has been used to simulate thermal and mass comportment of the storage tank. The model is based on the software Fluent. We take in consideration heat and mass transfers in the porous media during absorption/desorption. The hydride thermal and mass behaviour has been integrated in the software. The heat and mass transfers experimentally obtained have been compared to results calculated by the model. The influence of experimental and numerical parameters on the model behaviour has also been explored. (author) [fr

  1. Diastereoselectivity in the reduction of bicyclic enones with hindered hydrides

    OpenAIRE

    Camozzato, Andreza C.; Tenius, Beatriz S. M.; Oliveira, Eduardo R. de; Viegas Jr., Cláudio; Victor, Maurício M.; Silveira, Leandro G. da

    2008-01-01

    Reduction of five substituted octalones employing lithium tri-sec-butylborohydride (L-selectride®) in THF and ethyl ether led to allylic alcohols with moderate diastereoselectivity. The stereoselectivity of addition of bulky hydrides showed to be different from most examples in the literature and was strongly influenced by substitution on the octalone ring.

  2. Diastereoselectivity in the reduction of bicyclic enones with hindered hydrides

    International Nuclear Information System (INIS)

    Camozzato, Andreza C.; Tenius, Beatriz S. M.; Oliveira, Eduardo R. de; Viegas Junior, Claudio; Victor, Mauricio M.; Silveira, Leandro G. da

    2008-01-01

    Reduction of five substituted octalones employing lithium tri-sec-butylborohydride (L-selectride R ) in THF and ethyl ether led to allylic alcohols with moderate diastereoselectivity. The stereoselectivity of addition of bulky hydrides showed to be different from most examples in the literature and was strongly influenced by substitution on the octalone ring. (author)

  3. Fractal analysis of electrolytically-deposited palladium hydride dendrites

    International Nuclear Information System (INIS)

    Bursill, L.A.; Julin, Peng; Xudong, Fan.

    1990-01-01

    The fractal scaling characteristics of the surface profile of electrolytically-deposited palladium hydride dendritic structures have been obtained using conventional and high resolution transmission electron microscopy. The results are in remarkable agreement with the modified diffusion-limited aggregation model. 19 refs., 3 tabs., 13 figs

  4. Hydrogen and dihydrogen bonding of transition metal hydrides

    International Nuclear Information System (INIS)

    Jacobsen, Heiko

    2008-01-01

    Intermolecular interactions between a prototypical transition metal hydride WH(CO) 2 NO(PH 3 ) 2 and a small proton donor H 2 O have been studied using DFT methodology. The hydride, nitrosyl and carbonyl ligand have been considered as site of protonation. Further, DFT-D calculations in which empirical corrections for the dispersion energy are included, have been carried out. A variety of pure and hybrid density functionals (BP86, PW91, PBE, BLYP, OLYP, B3LYP, B1PW91, PBE0, X3LYP) have been considered, and our calculations indicate the PBE functional and its hybrid variation are well suited for the calculation of transition metal hydride hydrogen and dihydrogen bonding. Dispersive interactions make up for a sizeable portion of the intermolecular interaction, and amount to 20-30% of the bond energy and to 30-40% of the bond enthalpy. An energy decomposition analysis reveals that the H...H bond of transition metal hydrides contains both covalent and electrostatic contributions

  5. Hydrogen and dihydrogen bonding of transition metal hydrides

    Science.gov (United States)

    Jacobsen, Heiko

    2008-04-01

    Intermolecular interactions between a prototypical transition metal hydride WH(CO) 2NO(PH 3) 2 and a small proton donor H 2O have been studied using DFT methodology. The hydride, nitrosyl and carbonyl ligand have been considered as site of protonation. Further, DFT-D calculations in which empirical corrections for the dispersion energy are included, have been carried out. A variety of pure and hybrid density functionals (BP86, PW91, PBE, BLYP, OLYP, B3LYP, B1PW91, PBE0, X3LYP) have been considered, and our calculations indicate the PBE functional and its hybrid variation are well suited for the calculation of transition metal hydride hydrogen and dihydrogen bonding. Dispersive interactions make up for a sizeable portion of the intermolecular interaction, and amount to 20-30% of the bond energy and to 30-40% of the bond enthalpy. An energy decomposition analysis reveals that the H⋯H bond of transition metal hydrides contains both covalent and electrostatic contributions.

  6. Hydrogen and dihydrogen bonding of transition metal hydrides

    Energy Technology Data Exchange (ETDEWEB)

    Jacobsen, Heiko [KemKom, Libellenweg 2, 25917 Leck, Nordfriesland (Germany)], E-mail: jacobsen@kemkom.com

    2008-04-03

    Intermolecular interactions between a prototypical transition metal hydride WH(CO){sub 2}NO(PH{sub 3}){sub 2} and a small proton donor H{sub 2}O have been studied using DFT methodology. The hydride, nitrosyl and carbonyl ligand have been considered as site of protonation. Further, DFT-D calculations in which empirical corrections for the dispersion energy are included, have been carried out. A variety of pure and hybrid density functionals (BP86, PW91, PBE, BLYP, OLYP, B3LYP, B1PW91, PBE0, X3LYP) have been considered, and our calculations indicate the PBE functional and its hybrid variation are well suited for the calculation of transition metal hydride hydrogen and dihydrogen bonding. Dispersive interactions make up for a sizeable portion of the intermolecular interaction, and amount to 20-30% of the bond energy and to 30-40% of the bond enthalpy. An energy decomposition analysis reveals that the H...H bond of transition metal hydrides contains both covalent and electrostatic contributions.

  7. Cascades for hydrogen isotope separation using metal hydrides

    Energy Technology Data Exchange (ETDEWEB)

    Hill, F B; Grzetic, V [Brookhaven National Lab., Upton, NY (USA)

    1983-02-01

    Designs are presented for continuous countercurrent hydrogen isotope separation cascades based on the use of metal hydrides. The cascades are made up of pressure swing adsorption (PSA) or temperature swing adsorption (TSA) stages. The designs were evolved from consideration of previously conducted studies of the separation performance of four types of PSA and TSA processes.

  8. Hydrogen Storage in Porous Materials and Magnesium Hydrides

    NARCIS (Netherlands)

    Grzech, A.

    2013-01-01

    In this thesis representatives of two different types of materials for potential hydrogen storage application are presented. Usage of either nanoporous materials or metal hydrides has both operational advantages and disadvantages. A main objective of this thesis is to characterize the hydrogen

  9. The Properties of Some Simple Covalent Hydrides: An Ab Initio ...

    African Journals Online (AJOL)

    Some properties of the monomeric binary hydrides of the elements of the first two rows of the periodic table have been determined using ab initio molecular orbital theory. The properties in question are the energetic, structural, electronic, topological and vibrational characteristics. In general, a gradual convergence towards ...

  10. Synthesis, properties, and assimilation methods of aluminium hydride

    International Nuclear Information System (INIS)

    Mirsaidov, U.M.

    2013-01-01

    We have discovered a new source of aluminium hydride-conversion of tetrahydrofurane under influence of halogenous alkyls. We have proposed the chlorbenzene method of synthesis of AlH 3 , which excludes adhesion and ensure high quality of the product with respect to its purity, thermal stability, habits of crystals (round shape), and granulometric composition. We determined capability of benzyl chloride to fix AlH 4 -groups by the way of complexes formation. This allows increasing efficient concentration of AlH 3 solutions and their productivity. We have carried out 'direct' crystallization of aluminium hydride in one stage using interaction of binary metal hydride with aluminium chloride in the medium of ether-toluene at 60-100 d ig C a nd using solvent distillation. In the reaction of Li H with AlCl 3 , we achieved output of pure crystal AlH 3 of hexagonal modification, which was close to quantitative. We have discovered the assimilation methods of aluminium hydride in carrying out of solid-phase chemical reactions. (author)

  11. Compression cracking of plastic spheres: a high speed photography study

    International Nuclear Information System (INIS)

    Majzoub, R.; Chaudhri, M.M.

    1999-01-01

    Failure of brittle spheres under compressive loading, both quasi static and dynamic, is a technologically important problem. However, so far, neither the stress state in a loaded nor the failure process in understood clearly. In fact, because the process of the failure of a loaded sphere is very rapid, it has not been possible to follow it when making static observations. We have, therefore, carried out a high-speed photographic study using framing rates of up to 200,000 frames per second to follow the sequence of events when polished 12.7 mm diameter spheres of acrylic resin are fragmented using a low-velocity impact apparatus. The latter consist of a 5.7 kg hammer, which is allowed to drop on to the test sphere from a height of 1.3 m and the entire event of impact and ensuing fracture is photographed with a rotating mirror camera (C-4). Form numerous impact experiments it has been found that as the impact load increases gradually, plastic flow and flattering of the sphere occurs at the contact region. The size of the flattened region continuous to grow with increasing impact load and when this region becomes sufficiently large, usually one or two cracks initiate at the periphery of the contact rather than in the bulk of the sphere. The surface cracks then grow into the bulk of the sphere at velocities in the range of 600-800 m s/sup -1/. It is interesting to note these crack velocities are the maximum observed velocities in this material, but these are only approx. 0.8 of the Rayleigh wave velocity, which is the theoretically predicted maximum crack velocity in brittle materials. It is argued that in order to cause the catastrophic failure of a solid sphere, it is necessary to cause plasticity in it which then leads to the generation of tensile hoop stresses at the circle of contact between the sphere and platen. (author)

  12. Choked flow through cracks

    International Nuclear Information System (INIS)

    Feburie, V.; Giot, M.; Granger, S.; Seynhaeve, J.M.

    1992-06-01

    The leaks through steam-generator cracks are the subject of a research carried out in cooperation between EDF and UCL. A software called ECREVISSE to predict the mass flow rate has been developed and has been successfully validated. The purpose of the paper is to present the mathematical model used in ECREVISSE as well as some comparison between the results and the presently available data. The model takes into account the persistence of some metastable liquid in the crack and the special flow pattern which appears in such particular geometry. Although the model involves the use of several correlations (friction, heat transfer), no adjustment of parameters against the data has been needed, neither in the single-phase part of the flow, or in the two-phase part. (authors). 8 figs., 1 tab., 20 refs

  13. Fatigue Crack Topography.

    Science.gov (United States)

    1984-01-01

    alloys (2). [--I Fig. 6. Fatigue fracture in Nitrile- butadien rubber ( NBR ). Fig. 7. The characteristic features of fatigue fracture in press moulded...in plastics and even in rubber . It follows therefore, that fatigue fractures must also occur in the mineral layers of our earth or in the rock on...effective until the weakest point yields and forms a crack. To get a feeling for this process, you can imagine that the stressed article is made of rubber

  14. Distributed password cracking

    OpenAIRE

    Crumpacker, John R.

    2009-01-01

    Approved for public release, distribution unlimited Password cracking requires significant processing power, which in today's world is located at a workstation or home in the form of a desktop computer. Berkeley Open Infrastructure for Network Computing (BOINC) is the conduit to this significant source of processing power and John the Ripper is the key. BOINC is a distributed data processing system that incorporates client-server relationships to generically process data. The BOINC structu...

  15. Utopia Cracks and Polygons

    Science.gov (United States)

    2003-01-01

    MGS MOC Release No. MOC2-339, 23 April 2003This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows a pattern of polygonal cracks and aligned, elliptical pits in western Utopia Planitia. The picture covers an area about 3 km (about 1.9 mi) wide near 44.9oN, 274.7oW. Sunlight illuminates the scene from the left.

  16. Cracking hydrocarbons. [British patent

    Energy Technology Data Exchange (ETDEWEB)

    Heyl, G E

    1926-05-06

    The vapors from a still in which oils, coal tar, pitch, creosote, and c. or solid carbonaccous material such as coal or shale are cracked by being heated to 600/sup 0/ to 1000/sup 0/C. are passed through a fractionating column to remove high-boiling constituents which are passed into a second cracking still. The vapors from this still are treated to separate high-boiling fractions which are passed into a third still. The sills preferably contain removable troughs or liners, which are freed from carbon deposits either after removal from the still or by a scraping disc which is rotated in and moved along the trough. Oil to be cracked is forced by a pump through a preheater to a still. Vapours pass through a carbon separator and dephlegmator to a condenser. The reflux from the dephlegmator is forced by a pump to a still, the vapors from which pass through a carbon separator and a dephlegmator, the reflux from which is passed into a third still fitted with a separate carbon separator, dephlegmator and final condenser.

  17. Vibration analysis of partially cracked plate submerged in fluid

    Science.gov (United States)

    Soni, Shashank; Jain, N. K.; Joshi, P. V.

    2018-01-01

    The present work proposes an analytical model for vibration analysis of partially cracked rectangular plates coupled with fluid medium. The governing equation of motion for the isotropic plate based on the classical plate theory is modified to accommodate a part through continuous line crack according to simplified line spring model. The influence of surrounding fluid medium is incorporated in the governing equation in the form of inertia effects based on velocity potential function and Bernoulli's equations. Both partially and totally submerged plate configurations are considered. The governing equation also considers the in-plane stretching due to lateral deflection in the form of in-plane forces which introduces geometric non-linearity into the system. The fundamental frequencies are evaluated by expressing the lateral deflection in terms of modal functions. The assessment of the present results is carried out for intact submerged plate as to the best of the author's knowledge the literature lacks in analytical results for submerged cracked plates. New results for fundamental frequencies are presented as affected by crack length, fluid level, fluid density and immersed depth of plate. By employing the method of multiple scales, the frequency response and peak amplitude of the cracked structure is analyzed. The non-linear frequency response curves show the phenomenon of bending hardening or softening and the effect of fluid dynamic pressure on the response of the cracked plate.

  18. Subcritical crack growth along polymer interfaces

    Science.gov (United States)

    Gurumurthy, Charavana Kumara

    2000-10-01

    The adhesion characteristics have been investigated for a polyimide (PI)/model epoxy (ME) interface that is important for microelectronic applications. The fracture toughness (G*c) of this interface has been measured using an asymmetric double cantilever beam (ADCB) technique. The G*c is low, 10-25 J/m 2, and is sensitive to the mechanical phase angle psi. A modified ADCB setup has been used to measure the subcritical crack growth velocity v due to the stress-assisted water attack (SAWA) at various relative humidities (RH) and temperatures (T) as a function of its driving force (the strain energy release rate) G*. The threshold G* decreases remarkably. Above the threshold log v rises linearly with √ G* (a hydrolysis controlled regime) but then enters a regime where the crack velocity is almost independent of √G*, i.e., v = v* (a transport controlled regime). A model for SAWA has been developed based on thermally-activated kinetics for hydrolysis of the ester covalent bonds that bridge from one side to the other of the interface. A new technique has been developed for the determination of the fatigue crack growth under thermal (T) and hydro-thermal (HT) conditions as a function of the range in the strain energy release rate (DeltaG). Under T-fatigue, the fatigue crack growth per unit temperature cycle (da/dN) increases as a power of DeltaG, i.e., a Paris law relationship holds. The HT da/dN measured is higher than da/dN under T-fatigue conditions and has been successfully modeled as a summation of two components: (a) the da/dN due to T-fatigue and (b) the da/dN due to the SAWA along the interface for a given T-cycle. A surface modification procedure that converts a thin interpenetrated by a solvent cast ME is used to strengthen ME/PI interface. The G* c increases with the interpenetration distance w. Increasing w also improves the resistance of the PI/ME interface to SAWA with the threshold G* increasing and the water transport controlled velocity (v

  19. Electron Backscatter Diffraction Studies on the Formation of Superlattice Metal Hydride Alloys

    Directory of Open Access Journals (Sweden)

    Shuli Yan

    2017-12-01

    Full Text Available Microstructures of a series of La-Mg-Ni-based superlattice metal hydride alloys produced by a novel method of interaction of a LaNi5 alloy and Mg vapor were studied using a combination of X-ray energy dispersive spectroscopy and electron backscatter diffraction. The conversion rate of LaNi5 increased from 86.8% into 98.2%, and the A2B7 phase abundance increased from 42.5 to 45.8 wt % and reduced to 39.2 wt % with the increase in process time from four to 32 h. During the first stage of reaction, Mg formed discrete grains with the same orientation, which was closely related to the orientation of the host LaNi5 alloy. Mg then diffused through the ab-phase of LaNi5 and formed the AB2, AB3, and A2B7 phases. Diffusion of Mg stalled at the grain boundary of the host LaNi5 alloy. Good alignments in the c-axis between the newly formed superlattice phases and LaNi5 were observed. The density of high-angle grain boundary decreased with the increase in process time and was an indication of lattice cracking.

  20. Thick-film effects in the oxidation and hydriding of zirconium alloys

    International Nuclear Information System (INIS)

    Johnson, A.B. Jr.

    1989-08-01

    One of the fundamental discoveries involving radiation effects on the oxidation of Zircaloy in low-oxygen aqueous environments is the influence of thick oxide films. Zircaloy oxidation rates in low-oxygen (hydrogen-rich) coolants initially proceed at relatively low rates, often almost uninfluenced by radiation. Marked upturns in oxidation rate have signaled the onset of radiation effects. The radiation effects appear to correlate with a threshold oxide thickness. Results of the test reactor experiments lead to formulation of the Thick-Film Hypothesis: beyond a threshold oxide thickness, radiolysis of water that infiltrates oxide cracks and pores controls the oxidation rate; radiation creates microenvironments inside the oxide film, producing highly oxidizing conditions, that are no longer suppressed by the coolant-borne hydrogen. Upturns in oxidation rate on high-exposure Zircaloy pressure tubes add confirmatory evidence for the thick-film effect. This paper summarizes the early evidence for thick-film behavior, including oxidation and hydriding trends, updates confirmatory evidence from Zircaloy reactor and fuel assembly components, and highlights other observations from the test reactor series that have potential fundamental significance to explanations of radiation effects on Zircaloy. 23 refs., 10 figs

  1. Influence of pre-hydriding on embrittlement of E110 alloy under LOCA conditions

    International Nuclear Information System (INIS)

    VNIINM, Moscow (Russian Federation))" data-affiliation=" (SC VNIINM, Moscow (Russian Federation))" >Fedotov, P.; VNIINM, Moscow (Russian Federation))" data-affiliation=" (SC VNIINM, Moscow (Russian Federation))" >Kuznetsov, V.; VNIINM, Moscow (Russian Federation))" data-affiliation=" (SC VNIINM, Moscow (Russian Federation))" >Nechaeva, O.; VNIINM, Moscow (Russian Federation))" data-affiliation=" (SC VNIINM, Moscow (Russian Federation))" >Novikov, V.; VNIINM, Moscow (Russian Federation))" data-affiliation=" (SC VNIINM, Moscow (Russian Federation))" >Salatov, A.; Ignatiev, D.; Mokrushin, A.; Soldatkin, D.; Urusov, A.

    2015-01-01

    The researches presented in this paper were carried out in the framework of TVS-K project developed by JSC “TVEL”. The data on the corrosion and residual ductility of unirradiated and pre-hydrided E110 alloy under LACA conditions at temperature range from 1100 to 1200°C are presented. The hydrogen concentration was varied from 30 (as-received) to 600 wppm. The initial concentration of hydrogen has no effect on the oxidation kinetics, while the oxidation kinetics are parabolic and the breakaway oxidation is not observed. Oxide films on surfaces of claddings are black and shining. There are no cracks, visual spots and peelings. The residual ductility of oxidised samples decrease with hydrogen concentration rise. The residual ductility of claddings oxidized at 1100 °C, generally higher than the same of the claddings oxidized at 1200 °C. E110 alloy has a good residual ductility in comparison to Zry-4, ZIRLO, M5. Joint analysis of the test results allowed us to formulate embrittlement criteria of the E110 alloy under LOCA conditions. This embrittlement criterion is preliminary, because the experimental data base must to be enlarged by results of tests with claddings of another geometry and quench experiments. (author)

  2. Investigation of Cracks Found in Helicopter Longerons

    Science.gov (United States)

    Newman, John A.; Baughman, James M.; Wallace, Terryl A.

    2009-01-01

    Four cracked longerons, containing a total of eight cracks, were provided for study. Cracked regions were cut from the longerons. Load was applied to open the cracks, enabling crack surface examination. Examination revealed that crack propagation was driven by fatigue loading in all eight cases. Fatigue crack initiation appears to have occurred on the top edge of the longerons near geometric changes that affect component bending stiffness. Additionally, metallurigical analysis has revealed a local depletion in alloying elements in the crack initiation regions that may be a contributing factor. Fatigue crack propagation appeared to be initially driven by opening-mode loading, but at a crack length of approximately 0.5 inches (12.7 mm), there is evidence of mixed-mode crack loading. For the longest cracks studied, shear-mode displacements destroyed crack-surface features of interest over significant portions of the crack surfaces.

  3. Modified Dugdale crack models - some easy crack relations

    DEFF Research Database (Denmark)

    Nielsen, Lauge Fuglsang

    1997-01-01

    the same strength as a plain Dugdale model. The critical energy release rates Gamma_CR, however, become different. Expressions (with easy computer algorithms) are presented in the paper which relate critical energy release rates and crack geometry to arbitrary cohesive stress distributions.For future...... lifetime analysis of viscoelastic materials strain energy release rates, crack geometries, and cohesive stress distributions are considered as related to sub-critical loads sigma stress-deformation tests......The Dugdale crack model is widely used in materials science to predict strength of defective (cracked) materials. A stable Dugdale crack in an elasto-plastic material is prevented from spreading by uniformly distributed cohesive stresses acting in narrow areas at the crack tips. These stresses...

  4. Threshold intensity factors as lower boundaries for crack propagation in ceramics

    Directory of Open Access Journals (Sweden)

    Walter Per-Ole

    2004-11-01

    Full Text Available Abstract Background Slow crack growth can be described in a v (crack velocity versus KI (stress intensity factor diagram. Slow crack growth in ceramics is attributed to corrosion assisted stress at the crack tip or at any pre-existing defect in the ceramic. The combined effect of high stresses at the crack tip and the presence of water or body fluid molecules (reducing surface energy at the crack tip induces crack propagation, which eventually may result in fatigue. The presence of a threshold in the stress intensity factor, below which no crack propagation occurs, has been the subject of important research in the last years. The higher this threshold, the higher the reliability of the ceramic, and consequently the longer its lifetime. Methods We utilize the Irwin K-field displacement relation to deduce crack tip stress intensity factors from the near crack tip profile. Cracks are initiated by indentation impressions. The threshold stress intensity factor is determined as the time limit of the tip stress intensity when the residual stresses have (nearly disappeared. Results We determined the threshold stress intensity factors for most of the all ceramic materials presently important for dental restorations in Europe. Of special significance is the finding that alumina ceramic has a threshold limit nearly identical with that of zirconia. Conclusion The intention of the present paper is to stress the point that the threshold stress intensity factor represents a more intrinsic property for a given ceramic material than the widely used toughness (bend strength or fracture toughness, which refers only to fast crack growth. Considering two ceramics with identical threshold limits, although with different critical stress intensity limits, means that both ceramics have identical starting points for slow crack growth. Fast catastrophic crack growth leading to spontaneous fatigue, however, is different. This growth starts later in those ceramic materials

  5. Extracting real-crack properties from non-linear elastic behaviour of rocks: abundance of cracks with dominating normal compliance and rocks with negative Poisson ratios

    Directory of Open Access Journals (Sweden)

    V. Y. Zaitsev

    2017-09-01

    Full Text Available Results of examination of experimental data on non-linear elasticity of rocks using experimentally determined pressure dependences of P- and S-wave velocities from various literature sources are presented. Overall, over 90 rock samples are considered. Interpretation of the data is performed using an effective-medium description in which cracks are considered as compliant defects with explicitly introduced shear and normal compliances without specifying a particular crack model with an a priori given ratio of the compliances. Comparison with the experimental data indicated abundance (∼ 80 % of cracks with the normal-to-shear compliance ratios that significantly exceed the values typical of conventionally used crack models (such as penny-shaped cuts or thin ellipsoidal cracks. Correspondingly, rocks with such cracks demonstrate a strongly decreased Poisson ratio including a significant (∼ 45 % portion of rocks exhibiting negative Poisson ratios at lower pressures, for which the concentration of not yet closed cracks is maximal. The obtained results indicate the necessity for further development of crack models to account for the revealed numerous examples of cracks with strong domination of normal compliance. Discovering such a significant number of naturally auxetic rocks is in contrast to the conventional viewpoint that occurrence of a negative Poisson ratio is an exotic fact that is mostly discussed for artificial structures.

  6. A method for detecting crack wave arrival time and crack localization in a tunnel by using moving window technique

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Young Chul; Park, Tae Jin [KAERI, Daejeon (Korea, Republic of)

    2016-05-15

    Source localization in a dispersive medium has been carried out based on the time-of-arrival-differences (TOADs) method: a triangulation method and a circle intersection technique. Recent signal processing advances have led to calculation TOAD using a joint time-frequency analysis of the signal, where a short-time Fourier transform(STFT) and wavelet transform can be included as popular algorithms. The time-frequency analysis method is able to provide various information and more reliable results such as seismic-attenuation estimation, dispersive characteristics, a wave mode analysis, and temporal energy distribution of signals compared with previous methods. These algorithms, however, have their own limitations for signal processing. In this paper, the effective use of proposed algorithm in detecting crack wave arrival time and source localization in rock masses suggest that the evaluation and real-time monitoring on the intensity of damages related to the tunnels or other underground facilities is possible. Calculation of variances resulted from moving windows as a function of their size differentiates the signature from noise and from crack signal, which lead us to determine the crack wave arrival time. Then, the source localization is determined to be where the variance of crack wave velocities from real and virtual crack localization becomes a minimum. To validate our algorithm, we have performed experiments at the tunnel, which resulted in successful determination of the wave arrival time and crack localization.

  7. Crack retardation by load reduction during fatigue crack propagation

    International Nuclear Information System (INIS)

    Kim, Hyun Soo; Nam, Ki Woo; Ahn, Seok Hwan; Do, Jae Yoon

    2003-01-01

    Fracture life and crack retardation behavior were examined experimentally using CT specimens of aluminum alloy 5083. Crack retardation life and fracture life were a wide difference between 0.8 and 0.6 in proportion to ratio of load reduction. The wheeler model retardation parameter was used successfully to predict crack growth behavior. By using a crack propagation rule, prediction of fracture life can be evaluated quantitatively. A statistical approach based on Weibull distribution was applied to the test data to evaluate the dispersion in the retardation life and fracture life by the change of load reduction

  8. Ductile crack growth simulation from near crack tip dissipated energy

    International Nuclear Information System (INIS)

    Marie, S.; Chapuliot, S.

    2000-01-01

    A method to calculate ductile tearing in both small scale fracture mechanics specimens and cracked components is presented. This method is based on an estimation of the dissipated energy calculated near the crack tip. Firstly, the method is presented. It is shown that a characteristic parameter G fr can be obtained, relevant to the dissipated energy in the fracture process. The application of the method to the calculation of side grooved crack tip (CT) specimens of different sizes is examined. The value of G fr is identified by comparing the calculated and experimental load line displacement versus crack extension curve for the smallest CT specimen. With this identified value, it is possible to calculate the global behaviour of the largest specimen. The method is then applied to the calculation of a pipe containing a through-wall thickness crack subjected to a bending moment. This pipe is made of the same material as the CT specimens. It is shown that it is possible to simulate the global behaviour of the structure including the prediction of up to 90-mm crack extension. Local terms such as the equivalent stress or the crack tip opening angle are found to be constant during the crack extension process. This supports the view that G fr controls the fields in the vicinity near the crack tip. (orig.)

  9. Estimating the number of latent cracks in pressure tube joints at Bruce unit 2

    International Nuclear Information System (INIS)

    Schwarz, C.J.

    1983-10-01

    A model was built to estimate the number of hydride cracks which might have arisen in the rolled joints of Bruce unit 2 prior to the stress relieving operation. The model estimated that about 100 such cracks might exist. Since this estimate is based on experiments that were thermally cycled and since cycling did not occur in Bruce, prior to stress relieving the actual number is expected to be substantially lower. A sensitivity analysis of the model showed that it is sensitive to the assumptions of stress levels, probability of initiation and distribution of initiation time. A better estimate could be made if more data were available on these parameters under realistic conditions. Therefore, the recommendation is made to collect more information about these factors under realistic conditions

  10. The processing of aluminum gasarites via thermal decomposition of interstitial hydrides

    Science.gov (United States)

    Licavoli, Joseph J.

    Gasarite structures are a unique type of metallic foam containing tubular pores. The original methods for their production limited them to laboratory study despite appealing foam properties. Thermal decomposition processing of gasarites holds the potential to increase the application of gasarite foams in engineering design by removing several barriers to their industrial scale production. The following study characterized thermal decomposition gasarite processing both experimentally and theoretically. It was found that significant variation was inherent to this process therefore several modifications were necessary to produce gasarites using this method. Conventional means to increase porosity and enhance pore morphology were studied. Pore morphology was determined to be more easily replicated if pores were stabilized by alumina additions and powders were dispersed evenly. In order to better characterize processing, high temperature and high ramp rate thermal decomposition data were gathered. It was found that the high ramp rate thermal decomposition behavior of several hydrides was more rapid than hydride kinetics at low ramp rates. This data was then used to estimate the contribution of several pore formation mechanisms to the development of pore structure. It was found that gas-metal eutectic growth can only be a viable pore formation mode if non-equilibrium conditions persist. Bubble capture cannot be a dominant pore growth mode due to high bubble terminal velocities. Direct gas evolution appears to be the most likely pore formation mode due to high gas evolution rate from the decomposing particulate and microstructural pore growth trends. The overall process was evaluated for its economic viability. It was found that thermal decomposition has potential for industrialization, but further refinements are necessary in order for the process to be viable.

  11. High pressure hydriding of sponge-Zr in steam-hydrogen mixtures

    International Nuclear Information System (INIS)

    Kim, Y.S.

    1997-01-01

    Hydriding kinetics of thin sponge-Zr layers metallurgically bonded to a Zircaloy disk has been studied by thermogravimetry in the temperature range 350-400 C in 7 MPa hydrogen-steam mixtures. Some specimens were prefilmed with a thin oxide layer prior to exposure to the reactant gas; all were coated with a thin layer of gold to avoid premature reaction at edges. Two types of hydriding were observed in prefilmed specimens, viz., a slow hydrogen absorption process that precedes an accelerated (massive) hydriding. At 7 MPa total pressure, the critical ratio of H 2 /H 2 O above which massive hydriding occurs at 400 C is ∝200. The critical H 2 /H 2 O ratio is shifted to ∝2.5 x 10 3 at 350 C. The slow hydriding process occurs only when conditions for hydriding and oxidation are approximately equally favorable. Based on maximum weight gain, the specimen is completely converted to δ-ZrH 2 by massive hydriding in ∝5 h at a hydriding rate of ∝10 -6 mol H/cm 2 s. Incubation times of 10-20 h prior to the onset of massive hydriding increases with prefilm oxide thickness in the range of 0-10 μm. By changing to a steam-enriched gas, massive hydriding that initially started in a steam-starved condition was arrested by re-formation of a protective oxide scale. (orig.)

  12. Cracking of anisotropic cylindrical polytropes

    Energy Technology Data Exchange (ETDEWEB)

    Mardan, S.A. [University of the Management and Technology, Department of Mathematics, Lahore (Pakistan); Azam, M. [University of Education, Division of Science and Technology, Lahore (Pakistan)

    2017-06-15

    We study the appearance of cracking in charged anisotropic cylindrical polytropes with generalized polytropic equation. We investigate the existence of cracking in two different kinds of polytropes existing in the literature through two different assumptions: (a) local density perturbation with conformally flat condition, and (b) perturbing polytropic index, charge and anisotropy parameters. We conclude that cracking appears in both kinds of polytropes for a specific range of density and model parameters. (orig.)

  13. Cryptography cracking codes

    CERN Document Server

    2014-01-01

    While cracking a code might seem like something few of us would encounter in our daily lives, it is actually far more prevalent than we may realize. Anyone who has had personal information taken because of a hacked email account can understand the need for cryptography and the importance of encryption-essentially the need to code information to keep it safe. This detailed volume examines the logic and science behind various ciphers, their real world uses, how codes can be broken, and the use of technology in this oft-overlooked field.

  14. Stress corrosion cracking

    International Nuclear Information System (INIS)

    Dietzel, W.; Turnbull, A.

    2007-01-01

    Comprehensive Structural Integrity is a reference work which covers all activities involved in the assurance of structural integrity. It provides engineers and scientists with an unparalleled depth of knowledge in the disciplines involved. The new online Volume 11 is dedicated to the mechanical characteristics of materials. This paper contains the chapter 11.03 and is structured as follows: General aspects of SCC testing; Non-precracked specimens; Precracked specimens - the fracture mechanics approach to SCC; Crack growth measurement; Limitations of the LEFM approach to SCC; The use of SCC data; Guide to selection of mechanical scc test method

  15. The mechanism of hot crack formation in Ti-6A1-4V during cold crucible continuous casting

    Directory of Open Access Journals (Sweden)

    Hongsheng DING

    2004-08-01

    Full Text Available Hot crack is one of common defects in castings, which often results in failure of castings. This work studies the formation of hot cracks during cold crucible continous casting by means of experiments and thoretical analysis. The results show that the hot crack occurs on the surface and in the circumference of ingots, where the solidified shell and solidification front meet each other. The tendency of hot cracking decreases with the increase of withdrawal velocities in some extent. The hot crack is caused mainly by friction force between the shell and the crucible inner wall, and it takes place when the stress resulting from friction exceeds the tensile strength of the shell. The factors affecting the hot cracks are analyzed and verified. In order to decrease the tendency of hot cracks, technical parameters should be optimized.

  16. Catalytic cracking of lignites

    Energy Technology Data Exchange (ETDEWEB)

    Seitz, M.; Nowak, S.; Naegler, T.; Zimmermann, J. [Hochschule Merseburg (Germany); Welscher, J.; Schwieger, W. [Erlangen-Nuernberg Univ. (Germany); Hahn, T. [Halle-Wittenberg Univ., Halle (Germany)

    2013-11-01

    A most important factor for the chemical industry is the availability of cheap raw materials. As the oil price of crude oil is rising alternative feedstocks like coal are coming into focus. This work, the catalytic cracking of lignite is part of the alliance ibi (innovative Braunkohlenintegration) to use lignite as a raw material to produce chemicals. With this new one step process without an input of external hydrogen, mostly propylene, butenes and aromatics and char are formed. The product yield depends on manifold process parameters. The use of acid catalysts (zeolites like MFI) shows the highest amount of the desired products. Hydrogen rich lignites with a molar H/C ratio of > 1 are to be favoured. Due to primary cracking and secondary reactions the ratio between catalyst and lignite, temperature and residence time are the most important parameter to control the product distribution. Experiments at 500 C in a discontinuous rotary kiln reactor show yields up to 32 wt-% of hydrocarbons per lignite (maf - moisture and ash free) and 43 wt-% char, which can be gasified. Particularly, the yields of propylene and butenes as main products can be enhanced four times to about 8 wt-% by the use of catalysts while the tar yield decreases. In order to develop this innovative process catalyst systems fixed on beads were developed for an easy separation and regeneration of the used catalyst from the formed char. (orig.)

  17. Crack closure and growth behavior of short fatigue cracks under random loading (part I : details of crack closure behavior)

    International Nuclear Information System (INIS)

    Lee, Shin Young; Song, Ji Ho

    2000-01-01

    Crack closure and growth behavior of physically short fatigue cracks under random loading are investigated by performing narrow-and wide-band random loading tests for various stress ratios. Artificially prepared two-dimensional, short through-thickness cracks are used. The closure behavior of short cracks under random loading is discussed, comparing with that of short cracks under constant-amplitude loading and also that of long cracks under random loading. Irrespective of random loading spectrum or block length, the crack opening load of short cracks is much lower under random loading than under constant-amplitude loading corresponding to the largest load cycle in a random load history, contrary to the behavior of long cracks that the crack opening load under random loading is nearly the same as or slightly higher than constant-amplitude results. This result indicates that the largest load cycle in a random load history has an effect to enhance crack opening of short cracks

  18. Modeling of hydrogen isotopes separation in a metal hydride bed

    International Nuclear Information System (INIS)

    Charton, S.; Corriou, J.P.; Schweich, D.

    1999-01-01

    A predictive model for hydrogen isotopes separation in a non-isothermal bed of unsupported palladium hydride particles is derived. It accounts for the non-linear adsorption-dissociation equilibrium, hydrodynamic dispersion, pressure drop, mass transfer kinetics, heat of sorption and heat losses at the bed wall. Using parameters from the literature or estimated with classical correlations, the model gives simulated curves in agreement with previously published experiments without any parameter fit. The non-isothermal behavior is shown to be responsible for drastic changes of the mass transfer rate which is controlled by diffusion in the solid-phase lattice. For a feed at 300 K and atmospheric pressure, the endothermic hydride-to-deuteride exchange is kinetically controlled, whereas the reverse exothermic exchange is nearly at equilibrium. Finally, a simple and efficient thermodynamic model for the dissociative equilibrium between a metal and a diatomic gas is proposed. (Copyright (c) 1999 Elsevier Science B.V., Amsterdam. All rights reserved.)

  19. Catalytic effect of halide additives ball milled with magnesium hydride

    Energy Technology Data Exchange (ETDEWEB)

    Malka, I.E.; Bystrzycki, J. [Department of Advanced Materials and Technologies, Military University of Technology, Kaliskiego 2, 00-908 Warsaw (Poland); Czujko, T. [Department of Advanced Materials and Technologies, Military University of Technology, Kaliskiego 2, 00-908 Warsaw (Poland); CanmetENERGY, Hydrogen Fuel Cells and Transportation Energy, Natural Resources (Canada)

    2010-02-15

    The influence of various halide additives milled with magnesium hydride (MgH{sub 2}) on its decomposition temperature was studied. The optimum amount of halide additive and milling conditions were evaluated. The MgH{sub 2} decomposition temperature and energy of activation reduction were measured by temperature programmed desorption (TPD) and differential scanning calorimetry (DSC). The difference in catalytic efficiency between chlorides and fluorides of the various metals studied is presented. The effects of oxidation state, valence and position in the periodic table for selected halides on MgH{sub 2} decomposition temperature were also studied. The best catalysts, from the halides studied, for magnesium hydride decomposition were ZrF{sub 4}, TaF{sub 5}, NbF{sub 5}, VCl{sub 3} and TiCl{sub 3}. (author)

  20. Irradiation effects on thermal properties of LWR hydride fuel

    Energy Technology Data Exchange (ETDEWEB)

    Terrani, Kurt, E-mail: terrani@berkeley.edu [University of California, 4155 Etcheverry Hall, M.C. 1730, Berkeley, CA 94720-1730 (United States); Balooch, Mehdi [University of California, 4155 Etcheverry Hall, M.C. 1730, Berkeley, CA 94720-1730 (United States); Carpenter, David; Kohse, Gordon [Massachusetts Institute of Technology, 138 Albany St., Cambridge, MA 02139 (United States); Keiser, Dennis; Meyer, Mitchell [Idaho National Laboratory, Idaho Falls, ID 83415 (United States); Olander, Donald [University of California, 4155 Etcheverry Hall, M.C. 1730, Berkeley, CA 94720-1730 (United States)

    2017-04-01

    Three hydride mini-fuel rods were fabricated and irradiated at the MIT nuclear reactor with a maximum burnup of 0.31% FIMA or ∼5 MWd/kgU equivalent oxide fuel burnup. Fuel rods consisted of uranium-zirconium hydride (U (30 wt%)ZrH{sub 1.6}) pellets clad inside a LWR Zircaloy-2 tubing. The gap between the fuel and the cladding was filled with lead-bismuth eutectic alloy to eliminate the gas gap and the large temperature drop across it. Each mini-fuel rod was instrumented with two thermocouples with tips that are axially located halfway through the fuel centerline and cladding surface. In-pile temperature measurements enabled calculation of thermal conductivity in this fuel as a function of temperature and burnup. In-pile thermal conductivity at the beginning of test agreed well with out-of-pile measurements on unirradiated fuel and decreased rapidly with burnup.

  1. Positronium hydride defects in thermochemically reduced alkaline-Earth oxides

    International Nuclear Information System (INIS)

    Monge, M.A.; Pareja, R.; Gonzalez, R.; Chen, Y.

    1997-01-01

    Thermochemical reduction of both hydrogen-doped MgO and CaO single crystals results in large concentrations of hydride (H - ) ions. In MgO crystals, positron lifetime and Doppler broadening experiments show that positrons are trapped at H - centers forming positronium hydride molecules [e + - H - ]. A value of 640 ps is obtained for the lifetime of the PsH states located in an anion vacancy In MgO positrons are also trapped at H 2- sites at low temperatures. The H 2- ions were induced in the crystals by blue light illumination. The formation of PsH states in CaO could not be conclusively established. (orig.)

  2. FEASIBILITY OF RECYCLING PLUTONIUM AND MINOR ACTINIDES IN LIGHT WATER REACTORS USING HYDRIDE FUEL

    International Nuclear Information System (INIS)

    Greenspan, Ehud; Todreas, Neil; Taiwo, Temitope

    2009-01-01

    The objective of this DOE NERI program sponsored project was to assess the feasibility of improving the plutonium (Pu) and minor actinide (MA) recycling capabilities of pressurized water reactors (PWRs) by using hydride instead of oxide fuels. There are four general parts to this assessment: (1) Identifying promising hydride fuel assembly designs for recycling Pu and MAs in PWRs; (2) Performing a comprehensive systems analysis that compares the fuel cycle characteristics of Pu and MA recycling in PWRs using the promising hydride fuel assembly designs identified in Part 1 versus using oxide fuel assembly designs; (3) Conducting a safety analysis to assess the likelihood of licensing hydride fuel assembly designs; and (4) Assessing the compatibility of hydride fuel with cladding materials and water under typical PWR operating conditions Hydride fuel was found to offer promising transmutation characteristics and is recommended for further examination as a possible preferred option for recycling plutonium in PWRs

  3. Neutron scattering study of the phase transformation of LaNi3 induced by hydriding

    International Nuclear Information System (INIS)

    Ruan Jinghui; Zeng Xiangxin; Niu Shiwen

    1994-01-01

    The phase transformation of LaNi 3 induced by hydriding and de-hydriding is investigated using the neutron diffraction and the neutron inelastic scattering. The results show that the hydriding sample, LaNi 3 H x , is transformed from crystalline state of the LaNi 3 into amorphous state with a microcrystalline characteristic of LaNi 5 , and the de-hydriding sample produced by LaNi 3 H x dehydrated at 600 degree C is decomposed into new crystalline states composed by LaNi 5 -and La-hydrides. The procedure of phase transformation is that the result of the transformation of LaNi 3 induced by hydriding shows the properties of LaNi 5 -H 2 system

  4. FEASIBILITY OF RECYCLING PLUTONIUM AND MINOR ACTINIDES IN LIGHT WATER REACTORS USING HYDRIDE FUEL

    Energy Technology Data Exchange (ETDEWEB)

    Greenspan, Ehud; Todreas, Neil; Taiwo, Temitope

    2009-03-10

    The objective of this DOE NERI program sponsored project was to assess the feasibility of improving the plutonium (Pu) and minor actinide (MA) recycling capabilities of pressurized water reactors (PWRs) by using hydride instead of oxide fuels. There are four general parts to this assessment: 1) Identifying promising hydride fuel assembly designs for recycling Pu and MAs in PWRs 2) Performing a comprehensive systems analysis that compares the fuel cycle characteristics of Pu and MA recycling in PWRs using the promising hydride fuel assembly designs identified in Part 1 versus using oxide fuel assembly designs 3) Conducting a safety analysis to assess the likelihood of licensing hydride fuel assembly designs 4) Assessing the compatibility of hydride fuel with cladding materials and water under typical PWR operating conditions Hydride fuel was found to offer promising transmutation characteristics and is recommended for further examination as a possible preferred option for recycling plutonium in PWRs.

  5. Thermomechanics of hydrogen storage in metallic hydrides: modeling and analysis

    Czech Academy of Sciences Publication Activity Database

    Roubíček, Tomáš; Tomassetti, G.

    2014-01-01

    Roč. 19, č. 7 (2014), s. 2313-2333 ISSN 1531-3492 R&D Projects: GA ČR GA201/09/0917 Institutional support: RVO:61388998 Keywords : metal-hydrid phase transformation * hydrogen diffusion * swelling Subject RIV: BA - General Mathematics Impact factor: 0.768, year: 2014 http://aimsciences.org/journals/pdfs.jsp?paperID=10195&mode=full

  6. Magnetization study of UNiSi and its hydride

    Czech Academy of Sciences Publication Activity Database

    Šebek, Josef; Andreev, Alexander V.; Honda, F.; Kolomiets, A. V.; Havela, L.; Sechovský, V.

    2003-01-01

    Roč. 34, č. 2 (2003), s. 1457-1460 ISSN 0587-4254. [International Conference on Strongly Correlated Electron Systems (SCES 02). Cracow, 10.07.2002-13.07.2002] R&D Projects: GA ČR GA202/02/0739 Institutional research plan: CEZ:AV0Z1010914; CEZ:MSM 113200002 Keywords : UNiSi * magnetic measurements * hydride Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.752, year: 2003

  7. Instrinsic defect energies of lithium hydride and lithium deuteride crystals

    International Nuclear Information System (INIS)

    Pandey, R.; Stoneham, A.M.

    1985-01-01

    A theoretical study has been made of the defect structure of lithium hydride and lithium deuteride. A potential model is obtained describing the statics and dynamics of these crystals. Intrinsic defect energies are calculated using the Harwell HADES program which is based on a generalised Mott-Littleton method. The results are in good agreement with the experimental data, and suggest that the vacancy and interstitial migration mechanisms of anions and cations are all comparable in their contribution to ionic conduction. (author)

  8. Equilibrium dissociation pressures of lithium hydride and lithium deuteride

    International Nuclear Information System (INIS)

    Smith, H.M.; Webb, R.E.

    1977-12-01

    The equilibrium dissociation pressures of plateau composition lithium hydride and lithium deuteride have been measured from 450 to 750 0 C. These data were used to derive the relationship of dissociation pressure with temperature over this range and to calculate several thermodynamic properties of these materials. Thermodynamic properties determined included the enthalpy, entropy, and free energy of formation; the enthalpy and entropy of fusion; and the melting points

  9. Dendritic surface morphology of palladium hydride produced by electrolytic deposition

    International Nuclear Information System (INIS)

    Julin, Peng; Bursill, L.A.

    1990-01-01

    Conventional and high-resolution electron microscopic studies of electrolytically-deposited palladium hydride reveal a fascinating variety of surface profile morphologies. The observations provide direct information concerning the surface structure of palladium electrodes and the mechanism of electrolytic deposition of palladium black. Both classical electrochemical mechanisms and recent 'modified diffusion-limited-aggregation' computer simulations are discussed in comparison with the experimental results. 13 refs., 9 figs

  10. Secondary hydriding of defected zircaloy-clad fuel rods

    International Nuclear Information System (INIS)

    Olander, D.R.; Vaknin, S.

    1993-01-01

    The phenomenon of secondary hydriding in LWR fuel rods is critically reviewed. The current understanding of the process is summarized with emphasis on the sources of hydrogen in the rod provided by chemical reaction of water (steam) introduced via a primary defect in the cladding. As often noted in the literature, the role of hydrogen peroxide produced by steam radiolysis is to provide sources of hydrogen by cladding and fuel oxidation that are absent without fission-fragment irradiation of the gas. Quantitative description of the evolution of the chemical state inside the fuel rod is achieved by combining the chemical kinetics of the reactions between the gas and the fuel and cladding with the transport by diffusion of components of the gas in the gap. The chemistry-gas transport model provides the framework into which therate constants of the reactions between the gases in the gap and the fuel and cladding are incorporated. The output of the model calculation is the H 2 0/H 2 ratio in the gas and the degree of claddingand fuel oxidation as functions of distance from the primary defect. This output, when combined with a criterion for the onset of massive hydriding of the cladding, can provide a prediction of the time and location of a potential secondary hydriding failure. The chemistry-gas transport model is the starting point for mechanical and H-in-Zr migration analyses intended to determine the nature of the cladding failure caused by the development of the massive hydride on the inner wall

  11. Oxidation of Group 8 transition-Metal Hydrides and Ionic Hydrogenation of Ketones and Aldehydes

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Kjell-Tore

    1996-08-01

    Transition-metal hydrides have received considerable attention during the last decades because of their unusual reactivity and their potential as homogeneous catalysts for hydrogenation and other reactions of organic substrates. An important class of catalytic processes where transition-metal hydrides are involved is the homogeneous hydrogenation of alkenes, alkynes, ketones, aldehydes, arenes and nitro compounds. This thesis studies the oxidation of Group 8 transition-metal hydrides and the ionic hydrogenation of ketones and aldehydes.

  12. Powder production of U-Mo alloy, HMD process (Hydriding- Milling- Dehydriding)

    Energy Technology Data Exchange (ETDEWEB)

    Pasqualini, E. E.; Garcia, J.H.; Lopez, M.; Cabanillas, E.; Adelfang, P. [Dept. Combustibles Nucleares. Comision Nacional de Energia Atomica, Av. Gral. Paz 1499, 1650 Buenos Aires (Argentina)

    2002-07-01

    Uranium-molybdenum (U-Mo) alloys can be hydrided massively in metastable {gamma} (gamma) phase. The brittle hydride can be milled and dehydrided to acquire the desired size distributions needed for dispersion nuclear fuels. The developments of the different steps of this process called hydriding-milling- dehydriding (HMD Process) are described. Powder production scales for industrial fabrication is easily achieved with conventional equipment, small man-power and low investment. (author)

  13. Powder production of U-Mo alloy, HMD process (Hydriding- Milling- Dehydriding)

    International Nuclear Information System (INIS)

    Pasqualini, E. E.; Garcia, J.H.; Lopez, M.; Cabanillas, E.; Adelfang, P.

    2002-01-01

    Uranium-molybdenum (U-Mo) alloys can be hydrided massively in metastable γ (gamma) phase. The brittle hydride can be milled and dehydrided to acquire the desired size distributions needed for dispersion nuclear fuels. The developments of the different steps of this process called hydriding-milling- dehydriding (HMD Process) are described. Powder production scales for industrial fabrication is easily achieved with conventional equipment, small man-power and low investment. (author)

  14. First principles characterisation of brittle transgranular fracture of titanium hydrides

    International Nuclear Information System (INIS)

    Olsson, Pär A.T.; Mrovec, Matous; Kroon, Martin

    2016-01-01

    In this work we have studied transgranular cleavage and the fracture toughness of titanium hydrides by means of quantum mechanical calculations based on density functional theory. The calculations show that the surface energy decreases and the unstable stacking fault energy increases with increasing hydrogen content. This is consistent with experimental findings of brittle behaviour of titanium hydrides at low temperatures. Based on Griffith-Irwin theory we estimate the fracture toughness of the hydrides to be of the order of 1 MPa⋅m"1"/"2, which concurs well with experimental data. To investigate the cleavage energetics, we analyse the decohesion at various crystallographic planes and determine the traction-separation laws based on the Rose's extended universal binding energy relation. The calculations predict that the peak stresses do not depend on the hydrogen content of the phases, but it is rather dependent on the crystallographic cleavage direction. However, it is found that the work of fracture decreases with increasing hydrogen content, which is an indication of hydrogen induced bond weakening in the material.

  15. The effect of sample preparation on uranium hydriding

    International Nuclear Information System (INIS)

    Banos, A.; Stitt, C.A.; Scott, T.B.

    2016-01-01

    Highlights: • Distinct differences in uranium hydride growth rates and characteristics between different surface preparation methods. • The primary difference between the categories of sample preparations is the level of strain present in the surface. • Greater surface-strain, leads to higher nucleation number density, implying a preferred attack of strained vs unstrained metal. • As strain is reduced, surface features such as carbides and grain boundaries become more important in controlling the UH3 location. - Abstract: The influence of sample cleaning preparation on the early stages of uranium hydriding has been examined, by using four identical samples but concurrently prepared using four different methods. The samples were reacted together in the same corrosion cell to ensure identical exposure conditions. From the analysis, it was found that the hydride nucleation rate was proportional to the level of strain exhibiting higher number density for the more strained surfaces. Additionally, microstructure of the metal plays a secondary role regarding initial hydrogen attack on the highly strained surfaces yet starts to dominate the system while moving to more pristine samples.

  16. Metal hydride-based thermal energy storage systems

    Science.gov (United States)

    Vajo, John J.; Fang, Zhigang

    2017-10-03

    The invention provides a thermal energy storage system comprising a metal-containing first material with a thermal energy storage density of about 1300 kJ/kg to about 2200 kJ/kg based on hydrogenation; a metal-containing second material with a thermal energy storage density of about 200 kJ/kg to about 1000 kJ/kg based on hydrogenation; and a hydrogen conduit for reversibly transporting hydrogen between the first material and the second material. At a temperature of 20.degree. C. and in 1 hour, at least 90% of the metal is converted to the hydride. At a temperature of 0.degree. C. and in 1 hour, at least 90% of the metal hydride is converted to the metal and hydrogen. The disclosed metal hydride materials have a combination of thermodynamic energy storage densities and kinetic power capabilities that previously have not been demonstrated. This performance enables practical use of thermal energy storage systems for electric vehicle heating and cooling.

  17. A thermal neutron scattering law for yttrium hydride

    Science.gov (United States)

    Zerkle, Michael; Holmes, Jesse

    2017-09-01

    Yttrium hydride (YH2) is of interest as a high temperature moderator material because of its superior ability to retain hydrogen at elevated temperatures. Thermal neutron scattering laws for hydrogen bound in yttrium hydride (H-YH2) and yttrium bound in yttrium hydride (Y-YH2) prepared using the ab initio approach are presented. Density functional theory, incorporating the generalized gradient approximation (GGA) for the exchange-correlation energy, is used to simulate the face-centered cubic structure of YH2 and calculate the interatomic Hellmann-Feynman forces for a 2 × 2 × 2 supercell containing 96 atoms. Lattice dynamics calculations using PHONON are then used to determine the phonon dispersion relations and density of states. The calculated phonon density of states for H and Y in YH2 are used to prepare H-YH2 and Y-YH2 thermal scattering laws using the LEAPR module of NJOY2012. Analysis of the resulting integral and differential scattering cross sections demonstrates adequate resolution of the S(α,β) function. Comparison of experimental lattice constant, heat capacity, inelastic neutron scattering spectra and total scattering cross section measurements to calculated values are used to validate the thermal scattering laws.

  18. Evaluation of Neutron shielding efficiency of Metal hydrides

    Energy Technology Data Exchange (ETDEWEB)

    Jeon, Sang Hwan; Chae, San; Kim, Yong Soo [Hanyang University, Seoul (Korea, Republic of)

    2012-05-15

    Neutron shielding is achieved of interaction with material by moderation and absorption. Material that contains large amounts hydrogen atoms which are almost same neutron atomic weight is suited for fast neutron shielding material. Therefore, polymers containing high density hydrogen atom are being used for fast neutron shielding. On the other hand, composite materials containing high thermal neutron absorption cross section atom (Li, B, etc) are being used for thermal neutron shielding. However, these materials have low fast neutron absorption cross section. Therefore, these materials are not suited for fast neutron shielding. Hydrogen which has outstanding neutron energy reduction ability has very low thermal neutron absorption cross section, almost cannot be used for thermal neutron shielding. In this case, a large atomic number material (Pb, U, etc.) has been used. Thus, metal hydrides are considered as complement to concrete shielding material. Because metal hydrides contain high hydrogen density and elements with high atomic number. In this research neutron shielding performance and characteristic of nuclear about metal hydrides ((TiH{sub 2}, ZrH{sub 2}, HfH{sub 2}) is evaluated by experiment and MCNPX using {sup 252}Cf neutron source as purpose development shielding material to developed shielding material

  19. Hydrogen Storage using Metal Hydrides in a Stationary Cogeneration System

    International Nuclear Information System (INIS)

    Botzung, Maxime; Chaudourne, Serge; Perret, Christian; Latroche, Michel; Percheron-Guegan, Annick; Marty Philippe

    2006-01-01

    In the frame of the development of a hydrogen production and storage unit to supply a 40 kW stationary fuel cell, a metal hydride storage tank was chosen according to its reliability and high energetic efficiency. The study of AB5 compounds led to the development of a composition adapted to the project needs. The absorption/desorption pressures of the hydride at 75 C (2 / 1.85 bar) are the most adapted to the specifications. The reversible storage capacity (0.95 %wt) has been optimized to our work conditions and chemical kinetics is fast. The design of the Combined Heat and Power CHP system requires 5 kg hydrogen storage but in a first phase, only a 0.1 kg prototype has been realised and tested. Rectangular design has been chosen to obtain good compactness with an integrated plate fin type heat exchanger designed to reach high absorption/desorption rates. In this paper, heat and mass transfer characteristics of the Metal Hydride tank (MH tank) during absorption/desorption cycles are given. (authors)

  20. Oxidation kinetics of hydride-bearing uranium metal corrosion products

    Science.gov (United States)

    Totemeier, Terry C.; Pahl, Robert G.; Frank, Steven M.

    The oxidation behavior of hydride-bearing uranium metal corrosion products from Zero Power Physics Reactor (ZPPR) fuel plates was studied using thermo-gravimetric analysis (TGA) in environments of Ar-4%O 2, Ar-9%O 2, and Ar-20%O 2. Ignition of corrosion product samples from two moderately corroded plates was observed between 125°C and 150°C in all environments. The rate of oxidation above the ignition temperature was found to be dependent only on the net flow rate of oxygen in the reacting gas. Due to the higher net oxygen flow rate, burning rates increased with increasing oxygen concentration. Oxidation rates below the ignition temperature were much slower and decreased with increasing test time. The hydride contents of the TGA samples from the two moderately corroded plates, determined from the total weight gain achieved during burning, were 47-61 wt% and 29-39 wt%. Samples from a lightly corroded plate were not reactive; X-ray diffraction (XRD) confirmed that they contained little hydride.

  1. Oxidation kinetics of hydride-bearing uranium metal corrosion products

    International Nuclear Information System (INIS)

    Totemeier, T.C.; Pahl, R.G.; Frank, S.M.

    1998-01-01

    The oxidation behavior of hydride-bearing uranium metal corrosion products from zero power physics reactor (ZPPR) fuel plates was studied using thermo-gravimetric analysis (TGA) in environments of Ar-4%O 2 , Ar-9%O 2 , and Ar-20%O 2 . Ignition of corrosion product samples from two moderately corroded plates was observed between 125 C and 150 C in all environments. The rate of oxidation above the ignition temperature was found to be dependent only on the net flow rate of oxygen in the reacting gas. Due to the higher net oxygen flow rate, burning rates increased with increasing oxygen concentration. Oxidation rates below the ignition temperature were much slower and decreased with increasing test time. The hydride contents of the TGA samples from the two moderately corroded plates, determined from the total weight gain achieved during burning, were 47-61 wt% and 29-39 wt%. Samples from a lightly corroded plate were not reactive; X-ray diffraction (XRD) confirmed that they contained little hydride. (orig.)

  2. Performance study of a hydrogen powered metal hydride actuator

    International Nuclear Information System (INIS)

    Bhuiya, Md Mainul Hossain; Kim, Kwang J

    2016-01-01

    A thermally driven hydrogen powered actuator integrating metal hydride hydrogen storage reactor, which is compact, noiseless, and able to generate smooth actuation, is presented in this article. To test the plausibility of a thermally driven actuator, a conventional piston type actuator was integrated with LaNi 5 based hydrogen storage system. Copper encapsulation followed by compaction of particles into pellets, were adopted to improve overall thermal conductivity of the reactor. The operation of the actuator was thoroughly investigated for an array of operating temperature ranges. Temperature swing of the hydride reactor triggering smooth and noiseless actuation over several operating temperature ranges were monitored for quantification of actuator efficiency. Overall, the actuator generated smooth and consistent strokes during repeated cycles of operation. The efficiency of the actuator was found to be as high as 13.36% for operating a temperature range of 20 °C–50 °C. Stress–strain characteristics, actuation hysteresis etc were studied experimentally. Comparison of stress–strain characteristics of the proposed actuator with traditional actuators, artificial muscles and so on was made. The study suggests that design modification and use of high pressure hydride may enhance the performance and broaden the application horizon of the proposed actuator in future. (paper)

  3. Nerve conduction velocity

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/article/003927.htm Nerve conduction velocity To use the sharing features on this page, please enable JavaScript. Nerve conduction velocity (NCV) is a test to see ...

  4. The velocity of sound

    International Nuclear Information System (INIS)

    Beyer, R.T.

    1985-01-01

    The paper reviews the work carried out on the velocity of sound in liquid alkali metals. The experimental methods to determine the velocity measurements are described. Tables are presented of reported data on the velocity of sound in lithium, sodium, potassium, rubidium and caesium. A formula is given for alkali metals, in which the sound velocity is a function of shear viscosity, atomic mass and atomic volume. (U.K.)

  5. Some new techniques in tritium gas handling as applied to metal hydride synthesis

    International Nuclear Information System (INIS)

    Nasise, J.E.

    1988-01-01

    A state-of-the-art tritium Hydriding Synthesis System (HSS) was designed and built to replace the existing system within the Tritium Salt Facility (TSF) at the Los Alamos National Laboratory. This new hydriding system utilizes unique fast-cycling 7.9 mole uranium beds (47.5g of T at 100% loading) and novel gas circulating hydriding furnaces. Tritium system components discussed include fast-cycling uranium beds, circulating gas hydriding furnaces, valves, storage volumes, manifolds, gas transfer pumps, and graphic display and control consoles. Many of the tritium handling and processing techniques incorporated into this system are directly applicable to today's fusion fuel loops. 12 refs., 7 figs

  6. Cracking in Drying Colloidal Films

    Science.gov (United States)

    Singh, Karnail B.; Tirumkudulu, Mahesh S.

    2007-05-01

    It has long been known that thick films of colloidal dispersions such as wet clays, paints, and coatings crack under drying. Although capillary stresses generated during drying have been recently identified as the cause for cracking, the existence of a maximum crack-free film thickness that depends on particle size, rigidity, and packing has not been understood. Here, we identify two distinct regimes for crack-free films based on the magnitude of compressive strain at the maximum attainable capillary pressure and show remarkable agreement of measurements with our theory. We anticipate our results to not only form the basis for design of coating formulations for the paints, coatings, and ceramics industry but also assist in the production of crack-free photonic band gap crystals.

  7. Crack tip stress and strain

    International Nuclear Information System (INIS)

    Francois, D.

    1975-01-01

    The study of potential energy variations in a loaded elastic solid containing a crack leads to determination of the crack driving force G. Generalization of this concept to cases other than linear elasticity leads to definition of the integral J. In a linear solid, the crack tip stress field is characterized by a single parameter: the stress-intensity factor K. When the crack tip plastic zone size is confined to the elastic singularity J=G, it is possible to establish relationship between these parameters and plastic strain (and in particular the crack tip opening displacement delta). The stress increases because of the triaxiality effect. This overload rises with increasing strain hardening. When the plastic zone size expands, using certain hypotheses, delta can be calculated. The plastic strain intensity is exclusively dependent on parameter J [fr

  8. Restrained Shrinkage Cracking of Fiber-Reinforced High-Strength Concrete

    Directory of Open Access Journals (Sweden)

    Ashkan Saradar

    2018-02-01

    Full Text Available Concrete shrinkage and volume reduction happens due to the loss of moisture, which eventually results in cracks and more concrete deformation. In this study, the effect of polypropylene (PP, steel, glass, basalt, and polyolefin fibers on compressive and flexural strength, drying shrinkage, and cracking potential, using the ring test at early ages of high-strength concrete mixtures, was investigated. The restrained shrinkage test was performed on concrete ring specimens according to the ASTM C1581 standard. The crack width and age of restrained shrinkage cracking were the main parameters studied in this research. The results indicated that the addition of fiber increases the compressive strength by 16%, 20%, and 3% at the age of 3, 7, and 28 days, respectively, and increases the flexural toughness index up to 7.7 times. Steel and glass fibers had a better performance in flexural strength, but relatively poor action in the velocity reduction and cracking time of the restrained shrinkage. Additionally, cracks in all concrete ring specimens except for the polypropylene-containing mixture, was developed to a full depth crack. The mixture with polypropylene fiber indicated a reduction in crack width up to 62% and an increasing age cracking up to 84%.

  9. Prediction of Crack Growth Aqueous Environments.

    Science.gov (United States)

    1983-06-01

    ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT. PROJECT. TASK AREA & WORK UNIT NUMBERS SRI International 333 Ravenswood Avenue Menlo Park, CA 94025 II...34no crack" has at least a vestigial rupture, associated with cyclic loading of the oxide film at the crack tip. The curve labeled "crack" was obtained...be an effect of crack opening. For the data set labeled "crack", the vestigial crack, although short, is very tight and the impedance is large. Under

  10. Tensile cracks in creeping solids

    International Nuclear Information System (INIS)

    Riedel, H.; Rice, J.R.

    1979-02-01

    The loading parameter determining the stress and strain fields near a crack tip, and thereby the growth of the crack, under creep conditions is discussed. Relevant loading parameters considered are the stress intensity factor K/sub I/, the path-independent integral C*, and the net section stress sigma/sub net/. The material behavior is modelled as elastic-nonlinear viscous where the nonlinear term describes power law creep. At the time t = 0 load is applied to the cracked specimen, and in the first instant the stress distribution is elastic. Subsequently, creep deformation relaxes the initial stress concentration at the crack tip, and creep strains develop rapidly near the crack tip. These processes may be analytically described by self-similar solutions for short times t. Small scale yielding may be defined. In creep problems, this means that elastic strains dominate almost everywhere except in a small creep zone which grows around the crack tip. If crack growth ensues while the creep zone is still small compared with the crack length and the specimen size, the stress intensity factor governs crack growth behavior. If the calculated creep zone becomes larger than the specimen size, the stresses become finally time-independent and the elastic strain rates can be neglected. In this case, the stress field is the same as in the fully-plastic limit of power law hardening plasticity. The loading parameter which determines the near tip fields uniquely is then the path-independent integral C*.K/sub I/ and C* characterize opposite limiting cases. The case applied in a given situation is decided by comparing the creep zone size with the specimen size and the crack length. Besides several methods of estimating the creep zone size, a convenient expression for a characteristic time is derived, which characterizes the transition from small scale yielding to extensive creep of the whole specimen

  11. Hydrogen storage and evolution catalysed by metal hydride complexes.

    Science.gov (United States)

    Fukuzumi, Shunichi; Suenobu, Tomoyoshi

    2013-01-07

    The storage and evolution of hydrogen are catalysed by appropriate metal hydride complexes. Hydrogenation of carbon dioxide by hydrogen is catalysed by a [C,N] cyclometalated organoiridium complex, [Ir(III)(Cp*)(4-(1H-pyrazol-1-yl-κN(2))benzoic acid-κC(3))(OH(2))](2)SO(4) [Ir-OH(2)](2)SO(4), under atmospheric pressure of H(2) and CO(2) in weakly basic water (pH 7.5) at room temperature. The reverse reaction, i.e., hydrogen evolution from formate, is also catalysed by [Ir-OH(2)](+) in acidic water (pH 2.8) at room temperature. Thus, interconversion between hydrogen and formic acid in water at ambient temperature and pressure has been achieved by using [Ir-OH(2)](+) as an efficient catalyst in both directions depending on pH. The Ir complex [Ir-OH(2)](+) also catalyses regioselective hydrogenation of the oxidised form of β-nicotinamide adenine dinucleotide (NAD(+)) to produce the 1,4-reduced form (NADH) under atmospheric pressure of H(2) at room temperature in weakly basic water. In weakly acidic water, the complex [Ir-OH(2)](+) also catalyses the reverse reaction, i.e., hydrogen evolution from NADH to produce NAD(+) at room temperature. Thus, interconversion between NADH (and H(+)) and NAD(+) (and H(2)) has also been achieved by using [Ir-OH(2)](+) as an efficient catalyst and by changing pH. The iridium hydride complex formed by the reduction of [Ir-OH(2)](+) by H(2) and NADH is responsible for the hydrogen evolution. Photoirradiation (λ > 330 nm) of an aqueous solution of the Ir-hydride complex produced by the reduction of [Ir-OH(2)](+) with alcohols resulted in the quantitative conversion to a unique [C,C] cyclometalated Ir-hydride complex, which can catalyse hydrogen evolution from alcohols in a basic aqueous solution (pH 11.9). The catalytic mechanisms of the hydrogen storage and evolution are discussed by focusing on the reactivity of Ir-hydride complexes.

  12. Reactivity patterns of transition metal hydrides and alkyls

    International Nuclear Information System (INIS)

    Jones, W.D. II.

    1979-05-01

    The complex PPN + CpV(CO) 3 H - (Cp=eta 5 -C 5 H 5 and PPN = (Ph 3 P) 2 ) was prepared in 70% yield and its physical properties and chemical reactions investigated. PPN + CpV(CO) 3 H - reacts with a wide range of organic halides. The organometallic products of these reactions are the vanadium halides PPN + [CpV(C) 3 X] - and in some cases the binuclear bridging hydride PPN + [CpV(CO) 3 ] 2 H - . The borohydride salt PPN + [CpV(CO) 3 BH 4 ] - has also been prepared. The reaction between CpV(CO) 3 H - and organic halides was investigated and compared with halide reductions carried out using tri-n-butyltin hydride. Results demonstrate that in almost all cases, the reduction reaction proceeds via free radical intermediates which are generated in a chain process, and are trapped by hydrogen transfer from CpV(CO) 3 H - . Sodium amalgam reduction of CpRh(CO) 2 or a mixture of CpRh(CO) 2 and CpCo(CO) 2 affords two new anions, PPN + [Cp 2 Rh 3 (CO) 4 ] - and PPN + [Cp 2 RhCo(CO) 2 ] - . CpMo(CO) 3 H reacts with CpMo(CO) 3 R (R=CH 3 ,C 2 H 5 , CH 2 C 6 H 5 ) at 25 to 50 0 C to produce aldehyde RCHO and the dimers [CpMo(CO) 3 ] 2 and [CpMo(CO) 2 ] 2 . In general, CpV(CO) 3 H - appears to transfer a hydrogen atom to the metal radical anion formed in an electron transfer process, whereas CpMo(CO) 3 H transfers hydride in a 2-electron process to a vacant coordination site. The chemical consequences are that CpV(CO) 3 H - generally reacts with metal alkyls to give alkanes via intermediate alkyl hydride species whereas CpMo(CO) 3 H reacts with metal alkyls to produce aldehyde, via an intermediate acyl hydride species

  13. Reactivity patterns of transition metal hydrides and alkyls

    Energy Technology Data Exchange (ETDEWEB)

    Jones, W.D. II

    1979-05-01

    The complex PPN/sup +/ CpV(CO)/sub 3/H/sup -/ (Cp=eta/sup 5/-C/sub 5/H/sub 5/ and PPN = (Ph/sub 3/P)/sub 2/) was prepared in 70% yield and its physical properties and chemical reactions investigated. PPN/sup +/ CpV(CO)/sub 3/H/sup -/ reacts with a wide range of organic halides. The organometallic products of these reactions are the vanadium halides PPN/sup +/(CpV(C)/sub 3/X)/sup -/ and in some cases the binuclear bridging hydride PPN/sup +/ (CpV(CO)/sub 3/)/sub 2/H/sup -/. The borohydride salt PPN/sup +/(CpV(CO)/sub 3/BH/sub 4/)/sup -/ has also been prepared. The reaction between CpV(CO)/sub 3/H/sup -/ and organic halides was investigated and compared with halide reductions carried out using tri-n-butyltin hydride. Results demonstrate that in almost all cases, the reduction reaction proceeds via free radical intermediates which are generated in a chain process, and are trapped by hydrogen transfer from CpV(CO)/sub 3/H/sup -/. Sodium amalgam reduction of CpRh(CO)/sub 2/ or a mixture of CpRh(CO)/sub 2/ and CpCo(CO)/sub 2/ affords two new anions, PPN/sup +/ (Cp/sub 2/Rh/sub 3/(CO)/sub 4/)/sup -/ and PPN/sup +/(Cp/sub 2/RhCo(CO)/sub 2/)/sup -/. CpMo(CO)/sub 3/H reacts with CpMo(CO)/sub 3/R (R=CH/sub 3/,C/sub 2/H/sub 5/, CH/sub 2/C/sub 6/H/sub 5/) at 25 to 50/sup 0/C to produce aldehyde RCHO and the dimers (CpMo(CO)/sub 3/)/sub 2/ and (CpMo(CO)/sub 2/)/sub 2/. In general, CpV(CO)/sub 3/H/sup -/ appears to transfer a hydrogen atom to the metal radical anion formed in an electron transfer process, whereas CpMo(CO)/sub 3/H transfers hydride in a 2-electron process to a vacant coordination site. The chemical consequences are that CpV(CO)/sub 3/H/sup -/ generally reacts with metal alkyls to give alkanes via intermediate alkyl hydride species whereas CpMo(CO)/sub 3/H reacts with metal alkyls to produce aldehyde, via an intermediate acyl hydride species.

  14. Zircaloy-4 stress corrosion by iodine: crack kinetics and influence of irradiation on the crack initiation

    International Nuclear Information System (INIS)

    Serres, A.

    2008-01-01

    During the PWR power transients, iodine-induced stress corrosion cracking (I-SCC) is one of the potential failure modes of Zircaloy-4 fuel claddings under Pellet-Cladding Interaction conditions. The primary objective of this study is to distinguish the parameters that contribute to the I-SCC phenomenon in iodized methanol solutions at ambient temperature, on notched tensile specimens, using crack growth rate measurements provided by Direct Current Potential Drop. The results show that for a KI lower than 20 MPa.m 1/2 , the IG and mixed IG/TG velocity of propagation is a linear function of KI, regardless of the propagation mode. Between 20 and 25 MPa.m 1/2 , the TG crack growth rate also depends linearly on KI, but increases at a faster rate with respect to KI than during the IG and mixed IG/TG propagation steps. The crack propagation direction and plane (LT and TL) have an impact on the propagation modes, but no impact on the kinetics. The increase of iodine content induces an increase of the crack growth rate for a given KI, and a decrease of the KI, threshold, allowing the crack propagation. This work enables us to quantify the effect of iodine content and of KI on the crack propagation step, propose a propagation law taking into accounts these parameters, and improve the I-SCC description for models. During operation, a zirconium cladding is neutron-irradiated, modifying its microstructure and deformation modes. The second objective of the study is therefore to investigate the impact of these modifications on I-SCC. For that purpose, smooth specimens in recrystallized Zircaloy-4 are proton-irradiated to 2 dpa at 305 C, the microstructure and deformation modes of unirradiated and irradiated Zircaloy-4 are characterized by TEM and SEM, and the influence of these radiation-induced modifications on the I-SCC susceptibility is studied. The Laves phases precipitates are slightly modified by irradiation. The formation of P -type dislocation loops correlated with

  15. Buckling Analysis of Edge Cracked Sandwich Plate

    Directory of Open Access Journals (Sweden)

    Rasha Mohammed Hussein

    2016-07-01

    Full Text Available This work presents mainly the buckling load of sandwich plates with or without crack for different cases. The buckling loads are analyzed experimentally and numerically by using ANSYS 15. The experimental investigation was to fabricate the cracked sandwich plate from stainless steel and PVC to find mechanical properties of stainless steel and PVC such as young modulus. The buckling load for different aspect ratio, crack length, cracked location and plate without crack found. The experimental results were compared with that found from ANSYS program. Present of crack is decreased the buckling load and that depends on crack size, crack location and aspect ratio.

  16. A fracture mechanics model for iodine stress corrosion crack propagation in Zircaloy tubing

    International Nuclear Information System (INIS)

    Crescimanno, P.J.; Campbell, W.R.; Goldberg, I.

    1984-01-01

    A fracture mechanics model is presented for iodine-induced stress corrosion cracking in Zircaloy tubing. The model utilizes a power law to relate crack extension velocity to stress intensity factor, a hyperbolic tangent function for the influence of iodine concentration, and an exponential function for the influence of temperature and material strength. Comparisons of predicted to measured failure times show that predicted times are within a factor of two of the measured times for a majority of the specimens considered

  17. Crack fronts and damage in glass at the nanometre scale

    International Nuclear Information System (INIS)

    Marliere, Christian; Prades, Silke; Celarie, Fabrice; Dalmas, Davy; Bonamy, Daniel; Guillot, Claude; Bouchaud, Elisabeth

    2003-01-01

    We have studied the low-speed fracture regime for different glassy materials with variable but controlled length scales of heterogeneity in a carefully controlled surrounding atmosphere. By using optical and atomic force microscopy techniques, we tracked, in real-time, the crack tip propagation at the nanometre scale over a wide velocity range (10 -3 -10 -12 m s -1 and below). The influence of the heterogeneities on this velocity is presented and discussed. Our experiments reveal also - for the first time - that the crack progresses through nucleation, growth and coalescence of nanometric damage cavities within the amorphous phase. This may explain the large fluctuations observed in the crack tip velocities for the smallest values. This behaviour is very similar to that involved, at the micrometric scale, in ductile fracture. The only difference is very probably due to the related length scales (nanometric instead of micrometric). The consequences of such a nano-ductile fracture mode observed at a temperature far below the glass transition temperature, T g , in glass is also discussed

  18. Dynamic Stability of Pipe Conveying Fluid with Crack and Attached Masses

    International Nuclear Information System (INIS)

    Ahn, Tae Soo; Yoon, Han Ik; Son, In Soo; Ahn, Sung Jin

    2007-01-01

    In this paper, the dynamic stability of a cracked simply supported pipe conveying fluid with an attached mass is investigated. Also, the effect of attached masses on the dynamic stability of a simply supported pipe conveying fluid is presented for the different positions and depth of the crack. Based on the Euler-Bernoulli beam theory, the equation of motion can be constructed by the energy expressions using extended Hamilton's principle. The crack section is represented by a local flexibility matrix connecting two undamaged pipe segments. The crack is assumed to be in the first mode of a fracture and to be always opened during the vibrations. Finally, the critical flow velocities and stability maps of the pipe conveying fluid are obtained by changing the attached masses and crack severity

  19. Dynamic analysis of crack growth and arrest in a pressure vessel subjected to thermal and pressure loading

    International Nuclear Information System (INIS)

    Brickstad, B.

    1984-01-01

    Predictions of crack arrest behaviour are performed for a cracked reactor pressure vessel under both thermal and pressure loading. The object is to compare static and dynamic calculations. The dynamic calculations are made using an explicit finite element technique where crack growth is simulated by gradual nodal release. Three different load cases and the effect of different velocity dependence on the crack propagation toughness are studied. It is found that for the analysed cases the static analysis is slightly conservative, thus justifying its use for these problems. (orig.)

  20. Experimental Study on Wing Crack Behaviours in Dynamic-Static Superimposed Stress Field Using Caustics and High-Speed Photography

    Directory of Open Access Journals (Sweden)

    L.Y. Yang

    2014-07-01

    Full Text Available During the drill-and-blast progress in rock tunnel excavation of great deep mine, rock fracture is evaluated by both blasting load and pre-exiting earth stress (pre-compression. Many pre-existing flaws in the rock mass, like micro-crack, also seriously affect the rock fracture pattern. Under blasting load with pre-compression, micro-cracks initiate, propagate and grow to be wing cracks. With an autonomous design of static-dynamic loading system, dynamic and static loads were applied on some PMMA plate specimen with pre-existing crack, and the behaviour of the wing crack was tested by caustics corroding with a high-speed photography. Four programs with different static loading modes that generate different pre-compression fields were executed, and the length, velocity of the blasting wing crack and dynamic stress intensity factor (SIF at the wing crack tip were analyzed and discussed. It is found that the behaviour of blasting-induced wing crack is affected obviously by blasting and pre-compression. And pre-compression, which is vertical to the direction of the wing crack propagation, hinders the crack propagation. Furthermore, the boundary constraint condition plays an important role on the behaviour of blasting induced crack during the experiment.

  1. Analysis of short and long crack behavior and single overload effect by crack opening stress

    International Nuclear Information System (INIS)

    Song, Sam Hong; Lee, Kyeong Ro

    1999-01-01

    The study analyzed the behaviors of short and long crack as well as the effect of single tensile overload on the crack behaviors by using fatigue crack opening behavior. Crack opening stress is measured by an elastic compliance method which may precisely and continuously provide many data using strain gages during experiment. The unusual growth behaviors of short crack and crack after the single tensile overload applied, was explained by the variations of crack opening stress. In addition, fatigue crack growth rate was expressed as a linear form for short crack as for long crack by using effective stress intensity factor range as fracture mechanical parameter, which is based on crack closure concept. And investigation is performed with respect to the relation between plastic zone size formed at the crack tip and crack retardation, crack length and the number of cycles promoted or retarded, and the overload effect on the fatigue life

  2. Understanding hydride formation in Zr-1Nb alloy through microstructural characterization

    International Nuclear Information System (INIS)

    Neogy, S.; Srivastava, D.; Tewari, R.; Singh, R.N.; Dey, G.K.; De, P.K.; Banerjee, S.

    2003-07-01

    In this study the experimental results of hydride formation and their microstructure evolution in Zr-1Nb alloy is presented. This Zr-1Nb binary alloy and other Zr-1 Nb based ternary and quaternary alloys are being used as fuel tube materials and have the potential for meeting the requirement of high burn up fuel. Hydriding of Zr-1Nb alloy having a microstructure comprising equiaxed α grains and a uniform distribution of spherical particles of the β phase has been carried out in this study. The specimens have been hydrided by gaseous charging method to different hydrogen levels. The microstructures of hydrided samples were examined as a function of hydrogen content. The formation of δ hydride in slow cooled specimens and formation of γ hydride in rapidly cooled specimens has been studied with their morphology, habit plane and orientation relationship with the α matrix in view. The habit planes of either type of hydride phase has been determined and compared with those observed in other Zr-Nb alloys. The orientation relationship between the α matrix and the δ hydride was found to be the following: (0001) α // (111) δ and [1120] α // [110] δ . The orientation relationship between the α matrix and the γ hydride was of the following type: (0001) α // (111) γ and [1120] α // [110] γ . The internal structure of both types of hydride has been examined. The effect of the presence of the spherical β phase particles in the a matrix on the growth of the hydride plates has been investigated. (author)

  3. Low-Cost Metal Hydride Thermal Energy Storage System for Concentrating Solar Power Systems

    Energy Technology Data Exchange (ETDEWEB)

    Zidan, Ragaiy [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Hardy, B. J. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Corgnale, C. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Teprovich, J. A. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Ward, P. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Motyka, Ted [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-01-31

    The objective of this research was to evaluate and demonstrate a metal hydride-based TES system for use with a CSP system. A unique approach has been applied to this project that combines our modeling experience with the extensive material knowledge and expertise at both SRNL and Curtin University (CU). Because of their high energy capacity and reasonable kinetics many metal hydride systems can be charged rapidly. Metal hydrides for vehicle applications have demonstrated charging rates in minutes and tens of minutes as opposed to hours. This coupled with high heat of reaction allows metal hydride TES systems to produce very high thermal power rates (approx. 1kW per 6-8 kg of material). A major objective of this work is to evaluate some of the new metal hydride materials that have recently become available. A problem with metal hydride TES systems in the past has been selecting a suitable high capacity low temperature metal hydride material to pair with the high temperature material. A unique aspect of metal hydride TES systems is that many of these systems can be located on or near dish/engine collectors due to their high thermal capacity and small size. The primary objective of this work is to develop a high enthalpy metal hydride that is capable of reversibly storing hydrogen at high temperatures (> 650 °C) and that can be paired with a suitable low enthalpy metal hydride with low cost materials. Furthermore, a demonstration of hydrogen cycling between the two hydride beds is desired.

  4. The influence of Mn on the crystallography and electrochemistry of nonstoichiometric AB5-type hydride-forming compounds

    International Nuclear Information System (INIS)

    Notten, P.H.L.; Latroche, M.; Percheron-Guegan, A.

    1999-01-01

    To design Co-free, low-pressure, hydride-forming compounds for application in rechargeable nickel metal hydride batteries, nonstoichiometric AB x materials were investigated. The influence of both the Mn content and the degree of nonstoichiometry on the crystallography, electrochemical cycling stability, and electrode morphology were studied. The investigated composition was in the range of La(Ni 1-z Mn z ) x with 5.0 le x le 6.0 and 0 le xz le 2.0. The annealing temperature was essential in preparing homogeneous compounds. In agreement with geometric considerations, both the a and c axis of the hexagonal unit cell increase with increasing Mn content. In contrast, the a axis decreases with increasing degree of nonstoichiometry. As proved by neutron-diffraction experiments, the introduction of dumbbell pairs of Ni or Mn atoms on the La positions in the crystal lattice is responsible for this behavior. The electrochemical cycling stability is found to be strongly dependent on both the chemical and nonstoichiometric composition. Electrochemically stable materials are characterized by the absence of a significant particle-size reduction upon electrode cycling, reducing the overall oxidation rate. Unstable materials suffer from severe mechanical cracking through which the oxidation rate is increased. The improved mechanical stability is attributed to the reduced discrete lattice expansion. The most stable compound has a partial hydrogen pressure of only 0.1 bar, which matches well with that desirable in practical NiMH batteries. Neutron-diffraction experiments confirmed the hypothesis that La atoms are replaced by dumbbell pairs of Ni, in the case of the binary LaNi 5.4 , and by Mn atoms in the case of the mn-containing nonstoichiometric compounds. Electron-probe microanalyses and density measurements support the dumbbell hypothesis

  5. Effect of Open Crack on Vibration Behavior of a Fluid-Conveying Pipe Embedded in a Visco-Elastic Medium

    Directory of Open Access Journals (Sweden)

    Ghiyam Eslami

    Full Text Available Abstract In this paper vibration behavior of a fluid-conveying cracked pipe surrounded by a visco-elastic medium has been considered. During this work, the effect of an open crack parameters and flow velocity profile shape inside the pipe on natural frequency and critical flow velocity of the system has been analytically investigated. An explicit function for the local flexibility of the cracked pipe has been offered using principle of the fracture mechanics. Comparison between the results of the present study and the experimental data reported in the literature reveals success and high accuracy of the implemented method. It is demonstrated that the existence of the crack in the pipe, decreases the natural frequency and the critical flow velocity so that the system instability onsets at a lower flow velocity in comparison with the intact pipe. Results indicate that the flow velocity profile shape inside the pipe caused by the viscosity of real fluids, significantly affects the critical flow velocity of both intact and fluid-conveying cracked pipe. For instance, as the flow-profile-modification factor decreases from 1.33 to 1.015, the dimensionless critical flow velocity of intact clamped-clamped pipe increases from 5.45 to 6.24.

  6. Study on Nonlinear Vibration and Crack Fault of Rotor-bearing-seal Coupling System

    Directory of Open Access Journals (Sweden)

    Yuegang LUO

    2014-02-01

    Full Text Available The nonlinear dynamic model of rotor-bearing-seal system with crack in shaft is set up based on the coupling model of nonlinear oil-film force and Muszyska’s nonlinear seal fluid force. The dynamic vibration characteristics of the rotor-bearing-seal system and the effects of physical and structural parameters of labyrinth seal and crack fault on movement character of the rotor were analyzed. The increases of seal length, seal pressure differential, seal radius and axial velocity are in favor of the stability of the system, and it of seal gap and crack depth are not in favor of the stability of the system.

  7. Steady-state crack growth in single crystals under Mode I loading

    DEFF Research Database (Denmark)

    Juul, Kristian Jørgensen; Nielsen, Kim Lau; Niordson, Christian Frithiof

    2017-01-01

    The active plastic zone that surrounds the tip of a sharp crack growing under plane strain Mode I loading conditions at a constant velocity in a single crystal is studied. Both the characteristics of the plastic zone and its effect on the macroscopic toughness is investigated in terms of crack tip...... that the largest shielding effect develops in HCP crystals, while the lowest shielding exists for FCC crystals. Rate-sensitivity is found to affect the plastic zone size, but the characteristics overall remain similar for each individual crystal structure. An increasing rate-sensitivity at low crack velocities...... shielding due to plasticity (quantified by employing the Suo, Shih, and Varias set-up). Three single crystals (FCC, BCC, HCP) are modelled in a steady-state elastic visco-plastic framework, with emphasis on the influence of rate-sensitivity and crystal structures. Distinct velocity discontinuities...

  8. Poisoning Experiments Aimed at Discriminating Active and Less-Active Sites of Silica-Supported Tantalum Hydride for Alkane Metathesis

    KAUST Repository

    Saggio, Guillaume; Taoufik, Mostafa; Basset, Jean-Marie; Thivolle-Cazat, Jean

    2010-01-01

    Only 50% of the silica-supported tantalum hydride sites are active in the metathesis of propane. Indeed, more than 45% of the tantalum hydride can be eliminated by a selective oxygen poisoning of inactive sites with no significant decrease

  9. Acoustic leak detection and ultrasonic crack detection

    International Nuclear Information System (INIS)

    Kupperman, D.S.; Claytor, T.N.; Groenwald, R.

    1983-10-01

    A program is under way to assess the effectiveness of current and proposed techniques for acoustic leak detection (ALD) in reactor coolant systems. An ALD facility has been constructed and tests have begun on five laboratory-grown cracks (three fatigue and two thermal-fatigue and two field-induced IGSCC specimens. After ultrasonic testing revealed cracks in the Georgia Power Co. HATCH-1 BWR recirculation header, the utility installed an ALD system. Data from HATCH-1 have given an indication of the background noise level at a BWR recirculation header sweepolet weld. The HATCH leak detection system was tested to determine the sensitivity and dynamic range. Other background data have been acquired at the Watts Bar Nuclear Reactor in Tennessee. An ANL waveguide system, including transducer and electronics, was installed and tested on an accumulator safety injection pipe. The possibility of using ultrasonic wave scattering patterns to discriminate between IGSCCs and geometric reflectors has been explored. Thirteen reflectors (field IGSCCs, graphite wool IGSCCs, weld roots, and slits) were examined. Work with cast stainless steel (SS) included sound velocity and attenuation in isotropic and anisotropic cast SS. Reducing anisotropy does not help reduce attenuation in large-grained material. Large artificial flaws (e.g., a 1-cm-deep notch with a 4-cm path) could not be detected in isotropic centrifugally cast SS (1 to 2-mm grains) by longitudinal or shear waves at frequencies of 1 MHz or greater, but could be detected with 0.5-MHz shear waves. 13 figures

  10. Radiation efficiency during slow crack propagation: an experimental study.

    Science.gov (United States)

    Jestin, Camille; Lengliné, Olivier; Schmittbuhl, Jean

    2017-04-01

    Creeping faults are known to host a significant aseismic deformation. However, the observations of micro-earthquake activity related to creeping faults (e.g. San Andreas Faults, North Anatolian Fault) suggest the presence of strong lateral variabilities of the energy partitioning between radiated and fracture energies. The seismic over aseismic slip ratio is rather difficult to image over time and at depth because of observational limitations (spatial resolution, sufficiently broad band instruments, etc.). In this study, we aim to capture in great details the energy partitioning during the slow propagation of mode I fracture along a heterogeneous interface, where the toughness is strongly varying in space.We lead experiments at laboratory scale on a rock analog model (PMMA) enabling a precise monitoring of fracture pinning and depinning on local asperities in the brittle-creep regime. Indeed, optical imaging through the transparent material allows the high resolution description of the fracture front position and velocity during its propagation. At the same time, acoustic emissions are also measured by accelerometers positioned around the rupture. Combining acoustic records, measurements of the crack front position and the loading curve, we compute the total radiated energy and the fracture energy. We deduce from them the radiation efficiency, ηR, characterizing the proportion of the available energy that is radiated in form of seismic wave. We show an increase of ηR with the crack rupture speed computed for each of our experiments in the sub-critical crack propagation domain. Our experimental estimates of ηR are larger than the theoretical model proposed by Freund, stating that the radiation efficiency of crack propagation in homogeneous media is proportional to the crack velocity. Our results are demonstrated to be in agreement with existing studies which showed that the distribution of crack front velocity in a heterogeneous medium can be well described by a

  11. Probabilistic Analysis of Crack Width

    Directory of Open Access Journals (Sweden)

    J. Marková

    2000-01-01

    Full Text Available Probabilistic analysis of crack width of a reinforced concrete element is based on the formulas accepted in Eurocode 2 and European Model Code 90. Obtained values of reliability index b seem to be satisfactory for the reinforced concrete slab that fulfils requirements for the crack width specified in Eurocode 2. However, the reliability of the slab seems to be insufficient when the European Model Code 90 is considered; reliability index is less than recommended value 1.5 for serviceability limit states indicated in Eurocode 1. Analysis of sensitivity factors of basic variables enables to find out variables significantly affecting the total crack width.

  12. Multispecimen fatigue crack propagation testing

    International Nuclear Information System (INIS)

    Ermi, A.M.; Bauer, R.E.; Chin, B.A.; Straalsund, J.L.

    1981-01-01

    Chains of miniature center-cracked-tension specimens were tested on a conventional testing machine and on a prototypic in-reactor fatigue machine as part of the fusion reactor materials alloy development program. Annealed and 20 percent cold-worked 316 stainless steel specimens were cycled under various conditions of temperature, frequency, stress ratio and chain length. Crack growth rates determined from multispecimen visual measurements and from an electrical potential technique were consistent with those obtained by conventional test methods. Results demonstrate that multispecimen chain testing is a valid method of obtaining fatigue crack propagation information for alloy development. 8 refs

  13. Monitoring crack growth using thermography

    International Nuclear Information System (INIS)

    Djedjiga, Ait Aouita; Abdeldjalil, Ouahabi

    2008-01-01

    The purpose of this work is to present a novel strategy for real-time monitoring crack growth of materials. The process is based on the use of thermal data extracted along the horizontal axis of symmetry of single edge notch tension (SENT) specimens, during fatigue tests. These data are exploited using an implemented program to detect in situ the growth of fatigue crack, with the critical size and propagation speed of the crack. This technique has the advantage to be applicable to a wide range of materials regardless of their electrical conductivity and their surface texture. (authors)

  14. Password Cracking Using Sony Playstations

    Science.gov (United States)

    Kleinhans, Hugo; Butts, Jonathan; Shenoi, Sujeet

    Law enforcement agencies frequently encounter encrypted digital evidence for which the cryptographic keys are unknown or unavailable. Password cracking - whether it employs brute force or sophisticated cryptanalytic techniques - requires massive computational resources. This paper evaluates the benefits of using the Sony PlayStation 3 (PS3) to crack passwords. The PS3 offers massive computational power at relatively low cost. Moreover, multiple PS3 systems can be introduced easily to expand parallel processing when additional power is needed. This paper also describes a distributed framework designed to enable law enforcement agents to crack encrypted archives and applications in an efficient and cost-effective manner.

  15. Combined on-board hydride slurry storage and reactor system and process for hydrogen-powered vehicles and devices

    Science.gov (United States)

    Brooks, Kriston P; Holladay, Jamelyn D; Simmons, Kevin L; Herling, Darrell R

    2014-11-18

    An on-board hydride storage system and process are described. The system includes a slurry storage system that includes a slurry reactor and a variable concentration slurry. In one preferred configuration, the storage system stores a slurry containing a hydride storage material in a carrier fluid at a first concentration of hydride solids. The slurry reactor receives the slurry containing a second concentration of the hydride storage material and releases hydrogen as a fuel to hydrogen-power devices and vehicles.

  16. Subsurface metals fatigue cracking without and with crack tip

    Directory of Open Access Journals (Sweden)

    Andrey Shanyavskiy

    2013-07-01

    Full Text Available Very-High-Cycle-Fatigue regime for metals was considered and mechanisms of the subsurface crack origination were introduced. In many metals first step of crack origination takes place with specific area formation because of material pressing and rotation that directed to transition in any volume to material ultra-high-plasticity with nano-structure appearing. Then by the border of the nano-structure takes place volume rotation and fracture surface creates with spherical particles which usually named Fine-Granular-Area. In another case there takes place First-Smooth-Facet occurring in area of origin due to whirls appearing by the one of the slip systems under discussed the same stress-state conditions. Around Fine-Granular-Area or First-Smooth-Facet there plastic zone appeared and, then, subsurface cracking develops by the same manner as for through cracks. In was discussed quantum-mechanical nature of fatigue crack growth in accordance with Yang’s modulus quantization for low level of deformations. New simply equation was considered for describing subsurface cracking in metals out of Fine-Granular-Area or Fist-Smooth-Facet.

  17. Crack propagation in stainless steel AISI 304L in Hydrogen Chemistry conditions (HWC)

    International Nuclear Information System (INIS)

    Diaz S, A.; Fuentes C, P.; Merino C, F.; Castano M, V.

    2006-01-01

    Velocities of crack growth in samples type CT pre cracking of stainless steel AISI 304l solder and sensitized thermally its were obtained by the Rising Displacement method or of growing displacement. It was used a recirculation circuit that simulates the operation conditions of a BWR type reactor (temperature of 280 C and a pressure of 8 MPa) with the chemistry modified by the addition of hydrogen with and without the addition of impurities of a powerful oxidizer like the Cu + ion. In each essay stayed a displacement velocity was constant of 1x10 -9 m/s, making a continuous pursuit of the advance of the crack by the electric potential drop technique. Contrary to the idea of mitigation of the crack propagation velocity by effect of the addition of the hydrogen in the system, the values of the growth velocities obtained by this methodology went similar to the opposing ones under normal operation conditions. To the finish of the rehearsal one carries out the fractographic analysis of the propagation surfaces, which showed cracks growth in trans and intergranular way, evidencing the complexity of the regulator mechanisms of the IGSCC like in mitigation conditions as the alternative Hydrogen Chemistry. (Author)

  18. Simulation of Low Velocity Impact Induced Inter- and Intra-Laminar Damage of Composite Beams Based on XFEM

    Science.gov (United States)

    Sun, Wei; Guan, Zhidong; Li, Zengshan

    2017-12-01

    In this paper, the Inter-Fiber Fracture (IFF) criterion of Puck failure theory based on the eXtended Finite Element Method (XFEM) was implemented in ABAQUS code to predict the intra-laminar crack initiation of unidirectional (UD) composite laminate. The transverse crack path in the matrix can be simulated accurately by the presented method. After the crack initiation, the propagation of the crack is simulated by Cohesive Zoom Model (CZM), in which the displacement discontinuities and stress concentration caused by matrix crack is introduced into the finite element (FE) model. Combined with the usage of the enriched element interface, which can be used to simulate the inter-laminar delamination crack, the Low Velocity Impact (LVI) induced damage of UD composite laminate beam with a typical stacking of composite laminates [05/903]S is studied. A complete crack initiation and propagation process was simulated and the numerical results obtained by the XFEM are consistent with the experimental results.

  19. Stress intensity factor at the tip of cladding incipient crack in RIA-simulating experiments for high-burnup PWR fuels

    International Nuclear Information System (INIS)

    Udagawa, Yutaka; Suzuki, Motoe; Sugiyama, Tomoyuki; Fuketa, Toyoshi

    2009-01-01

    RIA-simulating experiments for high-burnup PWR fuels have been performed in the NSRR, and the stress intensity factor K 1 at the tip of cladding incipient crack has been evaluated in order to investigate its validity as a PCMI failure threshold under RIA conditions. An incipient crack depth was determined by observation of metallographs. The maximum hydride-rim thickness in the cladding of the test fuel rod was regarded as the incipient crack depth in each test case. Hoop stress in the cladding periphery during the pulse power transient was calculated by the RANNS code. K 1 was calculated based on crack depth and hoop stress. According to the RANNS calculation, PCMI failure cases can be divided into two groups: failure in the elastic phase and failure in the plastic phase. In the former case, elastic deformation was predominant around the incipient crack at failure time. K 1 is available only in this case. In the latter, plastic deformation was predominant around the incipient crack at failure time. Failure in the elastic phase never occurred when K 1 was less than 17 MPa m 1/2 . For failure in the plastic phase, the plastic hoop strain of the cladding periphery at failure time clearly showed a tendency to decrease with incipient crack depth. The combination of K 1 , for failure in the elastic phase, and plastic hoop strain at failure, for failure in the plastic phase, can be an effective index of PCMI failure under RIA conditions. (author)

  20. Hydrogen desorption kinetics from zirconium hydride and zirconium metal in vacuum

    International Nuclear Information System (INIS)

    Hu, Xunxiang; Terrani, Kurt A.; Wirth, Brian D.

    2014-01-01

    The kinetics of hydrogen desorption from zirconium hydride is important in many nuclear design and safety applications. In this paper, a coordinated experimental and modeling study has been used to explicitly demonstrate the applicability of existing kinetic theories for hydrogen desorption from zirconium hydride and α-zirconium. A static synthesis method was used to produce δ-zirconium hydride, and the crystallographic phases of the zirconium hydride were confirmed by X-ray diffraction (XRD). Three obvious stages, involving δ-zirconium hydride, a two-phase region, and α-zirconium, were observed in the hydrogen desorption spectra of two zirconium hydride specimens with H/Zr ratios of 1.62 and 1.64, respectively, which were obtained using thermal desorption spectroscopy (TDS). A continuous, one-dimensional, two-phase moving boundary model, coupled with the zero- and second-order kinetics of hydrogen desorption from δ-zirconium hydride and α-zirconium, respectively, has been developed to reproduce the TDS experimental results. A comparison of the modeling predictions with the experimental results indicates that a zero-order kinetic model is valid for description of hydrogen flux away from the δ-hydride phase, and that a second-order kinetic model works well for hydrogen desorption from α-Zr if the activation energy of desorption is optimized to be 70% of the value reported in the literature

  1. Pore-Confined Light Metal Hydrides for Energy Storage and Catalysis

    NARCIS (Netherlands)

    Bramwell, P.L.|info:eu-repo/dai/nl/371685117

    2017-01-01

    Light metal hydrides have enjoyed several decades of attention in the field of hydrogen storage, but their applications have recently begun to diversify more and more into the broader field of energy storage. For example, light metal hydrides have shown great promise as battery materials, in sensors

  2. Speculations on the existence of hydride ions in proton conducting oxides

    DEFF Research Database (Denmark)

    Poulsen, F.W.

    2001-01-01

    The chemical and physical nature of the hydride ion is briefly treated. Several reactions of the hydride ion in oxides or oxygen atmosphere are given, A number of perovskites and inverse perovskites are listed. which contain the H- ion on the oxygen or B-anion sites in the archetype ABO(3) System...

  3. In-situ X-ray diffraction : a useful tool to investigate hydride-formation reactions

    NARCIS (Netherlands)

    Notten, P.H.L.; Daams, J.L.C.; Veirman, de A.E.M.; Staals, A.A.

    1994-01-01

    A high-pressure X-ray diffraction (XRD) cell has been designed which allowed us to study simultaneously hydrogen absorption/desorption isotherms and XRD powder diffraction patterns on (de)hydrided intermetallic compounds. The hydride formation reaction was investigated in the case of LaNi5 under

  4. Hydrogen storage material and process using graphite additive with metal-doped complex hydrides

    Science.gov (United States)

    Zidan, Ragaiy [Aiken, SC; Ritter, James A [Lexington, SC; Ebner, Armin D [Lexington, SC; Wang, Jun [Columbia, SC; Holland, Charles E [Cayce, SC

    2008-06-10

    A hydrogen storage material having improved hydrogen absorbtion and desorption kinetics is provided by adding graphite to a complex hydride such as a metal-doped alanate, i.e., NaAlH.sub.4. The incorporation of graphite into the complex hydride significantly enhances the rate of hydrogen absorbtion and desorption and lowers the desorption temperature needed to release stored hydrogen.

  5. Hydride-induced degradation of hoop ductility in textured zirconium-alloy tubes: A theoretical analysis

    International Nuclear Information System (INIS)

    Qin, W.; Szpunar, J.A.; Kozinski, J.

    2012-01-01

    Hydride-induced degradation of hoop ductility in Zr-alloy tubular components has been studied for many years because of its importance in the nuclear industry. In this paper the role of intergranular and intragranular δ-hydrides in the degradation of ductility of the textured Zr-alloy tubes is investigated. The correlation among hydride distribution, orientation and morphology in the tubes is formulated based on thermodynamic modeling, and then analyzed. The results show that the applied stress, the crystallographic texture of α-Zr matrix, the grain-boundary structure, and the morphology and size of Zr grains simultaneously govern the site preference and the orientation of hydrides. A criterion is proposed to determine the threshold stress of hydride reorientation. The hoop ductility of the hydrided Zr tubes is discussed using the concept of macroscopic fracture strain. It is shown that the intergranular hydrides may be more deleterious to ductility than the intragranular ones. This work defines a general framework for understanding the relation of the microstructure of hydride-forming materials to embrittlement.

  6. Mechanisms of chemical generation of volatile hydrides for trace element determination (IUPAC Technical Report)

    Czech Academy of Sciences Publication Activity Database

    D'Ulivo, A.; Dědina, Jiří; Mester, Z.; Sturgeon, R. E.; Wang, Q.; Welz, B.

    2011-01-01

    Roč. 83, č. 6 (2011), s. 1283-1340 ISSN 0033-4545 Institutional research plan: CEZ:AV0Z40310501 Keywords : borane complexes * chemical generation of volatile hydrides (CHG) * volatile hydrides Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 2.789, year: 2011

  7. Cracks in Utopia

    Science.gov (United States)

    1999-01-01

    Many of the craters found on the northern plains of Mars have been partly filled or buried by some material (possibly sediment). The Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image presented here (MOC2-136b, above left) shows a high-resolution view of a tiny portion of the floor of one of these northern plains craters. The crater, located in Utopia Planitia at 44oN, 258oW, is shown on the right (MOC2-136a)with a small white box to indicate the location of the MOC image. The MOC image reveals that the material covering the floor of this crater is cracked and pitted. The origin and source of material that has been deposited in this crater is unknown.The MOC image was acquired in June 1999 and covers an area only 1.1 kilometers (0.7 miles) wide at a resolution of 1.8 meters (6 feet) per pixel. The context picture is a mosaic of Viking 2 orbiter images 010B53 and 010B55, taken in 1976. Both images are illuminated from the left. Malin Space Science Systems and the California Institute of Technology built the MOC using spare hardware from the Mars Observer mission. MSSS operates the camera from its facilities in San Diego, CA. The Jet Propulsion Laboratory's Mars Surveyor Operations Project operates the Mars Global Surveyor spacecraft with its industrial partner, Lockheed Martin Astronautics, from facilities in Pasadena, CA and Denver, CO.

  8. Super oil cracking update

    International Nuclear Information System (INIS)

    Mulraney, D.

    1997-01-01

    The conversion of residual fuel oil to usable middle distillates was discussed. The residue conversion processing paths are usually based on separation, carbon rejection, or hydrogen addition principles. Super Oil Cracking (SOC) uses a slurry catalyst system in a new, tubular reactor to achieve high levels of hydrothermal conversion. SOC can upgrade a variety of heavy, high metals residue feedstocks with high yields of middle distillates. The SOC products can also be further treated into feedstocks for FCC or hydrocracking. The SOC process can be incorporated easily into a refinery to obtain incremental residue conversion directly. It can also be integrated with other residue processes, acting as a demetallization and decarbonization step which results in enhanced overall conversion. The relative rate of coke formation and its handling are distinguishing characteristics between residue upgrading technologies. The SOC process operates at higher temperatures that other residue hydrocracking processes resulting in higher rates of thermal decomposition, thus preventing coke formation. SOC process can operate as a stand-alone upgrader or can be integrated with other bottoms processing steps to extend the refiner's range of options for increasing bottoms conversion.3 tabs., 14 figs

  9. Trapping interference effects of arsenic, antimony and bismuth hydrides in collection of selenium hydride within iridium-modified transversally-heated graphite tube atomizer

    Energy Technology Data Exchange (ETDEWEB)

    Furdikova, Zuzana [Department of Environmental Chemistry and Technology, Faculty of Chemistry, Brno University of Technology, Purkynova 118, CZ-61200 Brno (Czech Republic); Institute of Analytical Chemistry of the Academy of Sciences of the Czech Republic v.v.i., Veveri 97, CZ-60200, Brno (Czech Republic); Docekal, Bohumil [Institute of Analytical Chemistry of the Academy of Sciences of the Czech Republic v.v.i., Veveri 97, CZ-60200, Brno (Czech Republic)], E-mail: docekal@iach.cz

    2009-04-15

    Interference effects of co-generated hydrides of arsenic, antimony and bismuth on trapping behavior of selenium hydride (analyte) within an iridium-modified, transversely heated graphite tube atomizer (THGA) were investigated. A twin-channel hydride generation system was used for independent separate generation and introduction of analyte and interferent hydrides, i.e. in a simultaneous and/or sequential analyte-interferent and interferent-analyte mode of operation. The influence of the analyte and modifier mass, interferent amount, trapping temperature and composition of the gaseous phase was studied. A simple approach for the elimination of mutual interference effects by modification of the gaseous phase with oxygen in a substoichiometric ratio to chemically generated hydrogen is proposed and the suppression of these interference effects is demonstrated. A hypothesis on the mechanism of trapping and mutual interference effects is drawn.

  10. Metallurgy of stress corrosion cracking

    International Nuclear Information System (INIS)

    Donovan, J.A.

    1973-01-01

    The susceptibility of metals and alloys to stress corrosion is discussed in terms of the relationship between structural characteristics (crystal structure, grains, and second phases) and defects (vacancies, dislocations, and cracks) that exist in metals and alloys. (U.S.)

  11. Peridynamic model for fatigue cracking.

    Energy Technology Data Exchange (ETDEWEB)

    Silling, Stewart Andrew; Abe Askari (Boeing)

    2014-10-01

    The peridynamic theory is an extension of traditional solid mechanics in which the field equations can be applied on discontinuities, such as growing cracks. This paper proposes a bond damage model within peridynamics to treat the nucleation and growth of cracks due to cyclic loading. Bond damage occurs according to the evolution of a variable called the "remaining life" of each bond that changes over time according to the cyclic strain in the bond. It is shown that the model reproduces the main features of S-N data for typical materials and also reproduces the Paris law for fatigue crack growth. Extensions of the model account for the effects of loading spectrum, fatigue limit, and variable load ratio. A three-dimensional example illustrates the nucleation and growth of a helical fatigue crack in the torsion of an aluminum alloy rod.

  12. Shapes formed by interacting cracks

    Science.gov (United States)

    Daniels, Karen

    2012-02-01

    Brittle failure through multiple cracks occurs in a wide variety of contexts, from microscopic failures in dental enamel and cleaved silicon to geological faults and planetary ice crusts. In each of these situations, with complicated stress geometries and different microscopic mechanisms, pairwise interactions between approaching cracks nonetheless produce characteristically curved fracture paths. We investigate the origins of this widely observed ``en passant'' crack pattern by fracturing a rectangular slab which is notched on each long side and subjected to quasi-static uniaxial strain from the short side. The two cracks propagate along approximately straight paths until they pass each other, after which they curve and release a lens-shaped fragment. We find that, for materials with diverse mechanical properties, each curve has an approximately square-root shape, and that the length of each fragment is twice its width. We are able to explain the origins of this universal shape with a simple geometrical model.

  13. Mathematical modeling of the nickel/metal hydride battery system

    Energy Technology Data Exchange (ETDEWEB)

    Paxton, Blaine Kermit [Univ. of California, Berkeley, CA (United States). Dept. of Chemical Engineering

    1995-09-01

    A group of compounds referred to as metal hydrides, when used as electrode materials, is a less toxic alternative to the cadmium hydroxide electrode found in nickel/cadmium secondary battery systems. For this and other reasons, the nickel/metal hydride battery system is becoming a popular rechargeable battery for electric vehicle and consumer electronics applications. A model of this battery system is presented. Specifically the metal hydride material, LaNi{sub 5}H{sub 6}, is chosen for investigation due to the wealth of information available in the literature on this compound. The model results are compared to experiments found in the literature. Fundamental analyses as well as engineering optimizations are performed from the results of the battery model. In order to examine diffusion limitations in the nickel oxide electrode, a ``pseudo 2-D model`` is developed. This model allows for the theoretical examination of the effects of a diffusion coefficient that is a function of the state of charge of the active material. It is found using present data from the literature that diffusion in the solid phase is usually not an important limitation in the nickel oxide electrode. This finding is contrary to the conclusions reached by other authors. Although diffusion in the nickel oxide active material is treated rigorously with the pseudo 2-D model, a general methodology is presented for determining the best constant diffusion coefficient to use in a standard one-dimensional battery model. The diffusion coefficients determined by this method are shown to be able to partially capture the behavior that results from a diffusion coefficient that varies with the state of charge of the active material.

  14. The crack growth mechanism in asphaltic mixes

    NARCIS (Netherlands)

    Jacobs, M.M.J.; Hopman, P.C.; Molenaar, A.A.A.

    1995-01-01

    The crack growth mechanism in asphalt concrete (Ac) mixes is studied. In cyclic tests on several asphaltic mixes crack growth is measured, both with crack foils and with cOD-gauges. It is found that crack growth in asphaltic mixes is described by three processes which are parallel in time: cohesive

  15. Dynamic Crack Branching - A Photoelastic Evaluation,

    Science.gov (United States)

    1982-05-01

    0.41 mPai and a 0.18 MPa, and predicted a theoretical kinking angle of 84°whichagreed well with experimentally measured angle. After crack kinking...Consistent crack branching’at KIb = 2.04 MPaI -i- and r = 1.3 mm verified this crack branching criterion. The crack branching angle predicted by--.’ DD

  16. 21 CFR 137.190 - Cracked wheat.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 2 2010-04-01 2010-04-01 false Cracked wheat. 137.190 Section 137.190 Food and... Related Products § 137.190 Cracked wheat. Cracked wheat is the food prepared by so cracking or cutting into angular fragments cleaned wheat other than durum wheat and red durum wheat that, when tested by...

  17. Crack propagation in dynamic thermoelasticity

    International Nuclear Information System (INIS)

    Bui, H.D.

    1980-01-01

    We study the singular thermoelastic fields near the crack tip, in the linear strain assumption. The equations are coupled and non linear. The asymptotic expansions of the displacement and the temperature are given for the first and the second order. It is shown that the temperature is singular when the crack propagates. However, this field does not change the dominant singularity of the mechanical field which is the same as that obtained in the theory of isothermal elasticity [fr

  18. Single-Site Tetracoordinated Aluminum Hydride Supported on Mesoporous Silica. From Dream to Reality!

    KAUST Repository

    Werghi, Baraa

    2016-09-26

    The reaction of mesoporous silica (SBA15) dehydroxylated at 700 °C with diisobutylaluminum hydride, i-Bu2AlH, gives after thermal treatment a single-site tetrahedral aluminum hydride with high selectivity. The starting aluminum isobutyl and the final aluminum hydride have been fully characterized by FT-IR, advanced SS NMR spectroscopy (1H, 13C, multiple quanta (MQ) 2D 1H-1H, and 27Al), and elemental analysis, while DFT calculations provide a rationalization of the occurring reactivity. Trimeric i-Bu2AlH reacts selectively with surface silanols without affecting the siloxane bridges. Its analogous hydride catalyzes ethylene polymerization. Indeed, catalytic tests show that this single aluminum hydride site is active in the production of a high-density polyethylene (HDPE). © 2016 American Chemical Society.

  19. Getting metal-hydrides to do what you want them to

    International Nuclear Information System (INIS)

    Gruen, D.M.

    1981-01-01

    With the discovery of AB 5 compounds, intermetallic hydrides with unusual properties began to be developed (H dissociation pressures of one to several atmospheres, extremely rapid and reversible adsorption/desorption very large amounts of H adsorbed). This paper reviews the factors that must be controlled in order to modify these hydrides to make them useful. The system LaNi 5 + H 2 is used as example. Use of AB 5 hydrides to construct a chemical heat pumps is discussed. Results of a systematic study substituting Al for Ni are reported; the HYCSOS pump is described briefly. Use of hydrides as hydrogen getters (substituted ZrV 2 ) is also discussed. Finally, possible developments in intermetallic hydride research in the 1980's and the hydrogen economy are discussed. 10 figures

  20. Single-Site Tetracoordinated Aluminum Hydride Supported on Mesoporous Silica. From Dream to Reality!

    KAUST Repository

    Werghi, Baraa; Bendjeriou-Sedjerari, Anissa; Jedidi, Abdesslem; Abou-Hamad, Edy; Cavallo, Luigi; Basset, Jean-Marie

    2016-01-01

    The reaction of mesoporous silica (SBA15) dehydroxylated at 700 °C with diisobutylaluminum hydride, i-Bu2AlH, gives after thermal treatment a single-site tetrahedral aluminum hydride with high selectivity. The starting aluminum isobutyl and the final aluminum hydride have been fully characterized by FT-IR, advanced SS NMR spectroscopy (1H, 13C, multiple quanta (MQ) 2D 1H-1H, and 27Al), and elemental analysis, while DFT calculations provide a rationalization of the occurring reactivity. Trimeric i-Bu2AlH reacts selectively with surface silanols without affecting the siloxane bridges. Its analogous hydride catalyzes ethylene polymerization. Indeed, catalytic tests show that this single aluminum hydride site is active in the production of a high-density polyethylene (HDPE). © 2016 American Chemical Society.

  1. The status and immediate problems of the chemistry of transition metal hydrides

    International Nuclear Information System (INIS)

    Meikheeva, V.I.

    1978-01-01

    The state of the art and perspectives of the chemistry transition metal hydrides are reviewed, the hydrides being essentially compounds with interstitial hydrogen in the crystal lattice of the metals. The possibilities of hydrogenation of transition metals are considered along with that of compounds of rare earth elements with metals of the iron family. It is shown that the products of hydrogenation of many alloys are unstable and disintegrate forming simpler hydrides. The phase diagram of La-Ni-H system resembles the isotherm of a ternary metal system with the difference that no continuous series of solid solutions is formed. Most hydrogenation products across LaHsub(2-3)-NiH are X-ray amorphous. The nature of hydrogen in hydrides is discussed along with the possibilities of synthesis of new hydrides of transition metals

  2. Evaluation of hydride blisters in zirconium pressure tube in CANDU reactor

    International Nuclear Information System (INIS)

    Cheong, Y. M.; Kim, Y. S.; Gong, U. S.; Kwon, S. C.; Kim, S. S.; Choo, K.N.

    2000-09-01

    When the garter springs for maintaining the gap between the pressure tube and the calandria tube are displaced in the CANDU reactor, the sagging of pressure tube results in a contact to the calandria tube. This causes a temperature difference between the inner and outer surface of the pressure tube. The hydride can be formed at the cold spot of outer surface and the volume expansion by hydride dormation causes the blistering in the zirconium alloys. An incident of pressure tube rupture due to the hydride blisters had happened in the Canadian CANDU reactor. This report describes the theoretical development and models on the formation and growth of hydride blister and some experimental results. The evaluation methodology and non-destructive testing for hydride blister in operating reactors are also described

  3. Another Look at the Mechanisms of Hydride Transfer Enzymes with Quantum and Classical Transition Path Sampling.

    Science.gov (United States)

    Dzierlenga, Michael W; Antoniou, Dimitri; Schwartz, Steven D

    2015-04-02

    The mechanisms involved in enzymatic hydride transfer have been studied for years, but questions remain due, in part, to the difficulty of probing the effects of protein motion and hydrogen tunneling. In this study, we use transition path sampling (TPS) with normal mode centroid molecular dynamics (CMD) to calculate the barrier to hydride transfer in yeast alcohol dehydrogenase (YADH) and human heart lactate dehydrogenase (LDH). Calculation of the work applied to the hydride allowed for observation of the change in barrier height upon inclusion of quantum dynamics. Similar calculations were performed using deuterium as the transferring particle in order to approximate kinetic isotope effects (KIEs). The change in barrier height in YADH is indicative of a zero-point energy (ZPE) contribution and is evidence that catalysis occurs via a protein compression that mediates a near-barrierless hydride transfer. Calculation of the KIE using the difference in barrier height between the hydride and deuteride agreed well with experimental results.

  4. Roles of texture in controlling oxidation, hydrogen ingress and hydride formation in Zr alloys

    International Nuclear Information System (INIS)

    Szpunar, Jerzy A.; Qin, Wen; Li, Hualong; Kumar, Kiran

    2011-01-01

    Experimental observations shows that the oxide formed on Zr alloys are strongly textured. The texture and grain-boundary characteristics of oxide are dependent on the texture of metal substrate. Computer simulation and thermodynamic modeling clarify the effect of metal substrate on structure of oxide film, and intrinsic factors affecting the microstructure. Models of diffusion process of hydrogen atoms and oxygen diffusion through oxide are presented. Both intra-granular and inter-granular hydrides were found following (0001) α-Zr //(111) δ-ZrH1.5 relationship. The through-thickness texture inhomogeneity in cladding tubes, the effects of hoop stress on the hydride orientation and the formation of interlinked hydride structure were studied. A thermodynamic model was developed to analyze the nucleation and the stress-induced reorientation of intergranular hydrides. These works provide a framework for understanding the oxidation, the hydrogen ingress and the hydride formation in Zr alloys. (author)

  5. Analytical and numerical models of uranium ignition assisted by hydride formation

    International Nuclear Information System (INIS)

    Totemeier, T.C.; Hayes, S.L.

    1996-01-01

    Analytical and numerical models of uranium ignition assisted by the oxidation of uranium hydride are described. The models were developed to demonstrate that ignition of large uranium ingots could not occur as a result of possible hydride formation during storage. The thermodynamics-based analytical model predicted an overall 17 C temperature rise of the ingot due to hydride oxidation upon opening of the storage can in air. The numerical model predicted locally higher temperature increases at the surface; the transient temperature increase quickly dissipated. The numerical model was further used to determine conditions for which hydride oxidation does lead to ignition of uranium metal. Room temperature ignition only occurs for high hydride fractions in the nominally oxide reaction product and high specific surface areas of the uranium metal

  6. Evaluation of hydride blisters in zirconium pressure tube in CANDU reactor

    Energy Technology Data Exchange (ETDEWEB)

    Cheong, Y M; Kim, Y S; Gong, U S; Kwon, S C; Kim, S S; Choo, K N

    2000-09-01

    When the garter springs for maintaining the gap between the pressure tube and the calandria tube are displaced in the CANDU reactor, the sagging of pressure tube results in a contact to the calandria tube. This causes a temperature difference between the inner and outer surface of the pressure tube. The hydride can be formed at the cold spot of outer surface and the volume expansion by hydride dormation causes the blistering in the zirconium alloys. An incident of pressure tube rupture due to the hydride blisters had happened in the Canadian CANDU reactor. This report describes the theoretical development and models on the formation and growth of hydride blister and some experimental results. The evaluation methodology and non-destructive testing for hydride blister in operating reactors are also described.

  7. Stress analysis of hydride bed vessels used for tritium storage

    International Nuclear Information System (INIS)

    McKillip, S.T.; Bannister, C.E.; Clark, E.A.

    1991-01-01

    A prototype hydride storage bed, using LaNi 4.25 Al 0.75 as the storage material, was fitted with strain gages to measure strains occurring in the stainless steel bed vessel caused by expansion of the storage powder upon uptake of hydrogen. The strain remained low in the bed as hydrogen was added, up to a bed loading of about 0.5 hydrogen to metal atom ratio (H/M). The strain then increased with increasing hydrogen loading (∼ 0.8 H/M). Different locations exhibited greatly different levels of maximum strain. In no case was the design stress of the vessel exceeded

  8. Modification of the hydriding of uranium using ion implantation

    International Nuclear Information System (INIS)

    Musket, R.G.; Robinson-Weis, G.; Patterson, R.G.

    1983-01-01

    The hydriding of depleted uranium at 76 Torr hydrogen and 130 0 C has been significantly reduced by implantation of oxygen ions. The high-dose implanted specimens had incubation times for the initiation of the reaction after exposure to hydrogen that exceeded those of the nonimplanted specimens by more than a factor of eight. Furthermore, the nonimplanted specimens consumed enough hydrogen to cause macroscopic flaking of essentially the entire surface in times much less than the incubation time for the high-dose implanted specimens. In contrast, the ion-implanted specimens reacted only at isolated spots with the major fraction of the surface area unaffected by the hydrogen exposure

  9. Research in Nickel/Metal Hydride Batteries 2016

    Directory of Open Access Journals (Sweden)

    Kwo-Hsiung Young

    2016-10-01

    Full Text Available Nineteen papers focusing on recent research investigations in the field of nickel/metal hydride (Ni/MH batteries have been selected for this Special Issue of Batteries. These papers summarize the joint efforts in Ni/MH battery research from BASF, Wayne State University, the National Institute of Standards and Technology, Michigan State University, and FDK during 2015–2016 through reviews of basic operational concepts, previous academic publications, issued US Patent and filed Japan Patent Applications, descriptions of current research results in advanced components and cell constructions, and projections of future works.

  10. Equilibrium composition for the reaction of plutonium hydride with air

    International Nuclear Information System (INIS)

    Zou Lexi; Sun Ying; Xue Weidong; Zhu Zhenghe; Wang Rong; Luo Deli

    2002-01-01

    There are six independent constituents with 4 chemical elements, i.e. PuH 2.7 (s), PuN(s), Pu 2 O 3 (s), N 2 , O 2 and H 2 , therefore, the system described involves of 2 independent reactions, both ΔG 0 <<0. The calculated equilibrium compositions are in agreement with those of the experimental, which indicates that the chemical equilibrium is nearly completely approached. Therefore, it is believed that the reaction rate of plutonium hydride with air is extremely rapid. The author has briefly discussed the simultaneous reactions and its thermodynamic coupling effect

  11. Evaluation of crack interaction effect for in-plane surface cracks using elastic finite element analyses

    International Nuclear Information System (INIS)

    Huh, Nam Su; Choi, Suhn; Park, Keun Bae; Kim, Jong Min; Choi, Jae Boong; Kim, Young Jin

    2008-01-01

    The crack-tip stress fields and fracture mechanics assessment parameters, such as the elastic stress intensity factor and the elastic-plastic J-integral, for a surface crack can be significantly affected by adjacent cracks. Such a crack interaction effect due to multiple cracks can magnify the fracture mechanics assessment parameters. There are many factors to be considered, for instance the relative distance between adjacent cracks, crack shape and loading condition, to quantify a crack interaction effect on the fracture mechanics assessment parameters. Thus, the current guidance on a crack interaction effect (crack combination rule), including ASME Sec. XI, BS7910, British Energy R6 and API RP579, provide different rules for combining multiple surface cracks into a single surface crack. The present paper investigates a crack interaction effect by evaluating the elastic stress intensity factor of adjacent surface cracks in a plate along the crack front through detailed 3-dimensional elastic finite element analyses. The effects of the geometric parameters, the relative distance between cracks and the crack shape, on the stress intensity factor are systematically investigated. As for the loading condition, only axial tension is considered. Based on the elastic finite element results, the acceptability of the crack combination rules provided in the existing guidance was investigated, and the relevant recommendations on a crack interaction for in-plane surface cracks in a plate were discussed

  12. Basic study on development of monitoring for crack propagation

    International Nuclear Information System (INIS)

    Enoki, Manabu; Kishi, Teruo; Kawasaki, Hirotsugu; Aoto, Kazumi

    2000-03-01

    The system for detecting the generation and propagation of cracks in products and materials has been investigated in this research. Firstly, in order to apply the method to harsh environment such as plant equipment, the system with laser interferometer which cables to detect fracture in non-contact way was tried. It was confirmed that the heterodyne interferometer with He-Ne laser could detect elastic waves propagating through materials, and the non-contact system with four interferometers to detect acoustic emission (AE) wave was developed. It was applied to the thermal stress fracture in alumina coating materials. AE wave during cooling of specimens due to microfracture near the interfaces was detected and the generation time, location, size and fracture mode could be evaluated by the inverse analysis. Thus, the quantitative system for evaluating AE wave was developed and the validity of this system was confirmed. Secondly, in order to predict the crack initiation, the detection tests which were performed to detect a change in damage in the pre-stage of micro crack initiation were tried. For the components that were subject to transient cyclic thermal loading changes, the ultrasonic detection test was performed, and the obtained echo was analyzed. Furthermore, the measurement of micro hardness was performed by using the micro hardness tester for the grain boundary at near crack. The ultrasound velocity which could detect damaged state before crack initiation was estimated from the wavelet analysis of ultrasonic echoes obtained here. It was confirmed to be possible to predict the crack initiation from the change of micro hardness on the grain boundary. (author)

  13. Water velocity meter

    Science.gov (United States)

    Roberts, C. W.; Smith, D. L.

    1970-01-01

    Simple, inexpensive drag sphere velocity meter with a zero to 6 ft/sec range measures steady-state flow. When combined with appropriate data acquisition system, it is suited to applications where large numbers of simultaneous measurements are needed for current mapping or velocity profile determination.

  14. Estimation of vector velocity

    DEFF Research Database (Denmark)

    2000-01-01

    Using a pulsed ultrasound field, the two-dimensional velocity vector can be determined with the invention. The method uses a transversally modulated ultrasound field for probing the moving medium under investigation. A modified autocorrelation approach is used in the velocity estimation. The new...

  15. Compressive failure with interacting cracks

    International Nuclear Information System (INIS)

    Yang Guoping; Liu Xila

    1993-01-01

    The failure processes in concrete and other brittle materials are just the results of the propagation, coalescence and interaction of many preexisting microcracks or voids. To understand the real behaviour of the brittle materials, it is necessary to bridge the gap from the relatively matured one crack behaviour to the stochastically distributed imperfections, that is, to concern the crack propagation and interaction of microscopic mechanism with macroscopic parameters of brittle materials. Brittle failure in compression has been studied theoretically by Horii and Nemat-Nasser (1986), in which a closed solution was obtained for a preexisting flaw or some special regular flaws. Zaitsev and Wittmann (1981) published a paper on crack propagation in compression, which is so-called numerical concrete, but they did not take account of the interaction among the microcracks. As for the modelling of the influence of crack interaction on fracture parameters, many studies have also been reported. Up till now, some researcher are working on crack interaction considering the ratios of SIFs with and without consideration of the interaction influences, there exist amplifying or shielding effects of crack interaction which are depending on the relative positions of these microcracks. The present paper attempts to simulate the whole failure process of brittle specimen in compression, which includes the complicated coupling effects between the interaction and propagation of randomly distributed or other typical microcrack configurations step by step. The lengths, orientations and positions of microcracks are all taken as random variables. The crack interaction among many preexisting random microcracks is evaluated with the help of a simple interaction matrix (Yang and Liu, 1991). For the subcritically stable propagation of microcracks in mixed mode fracture, fairly known maximum hoop stress criterion is adopted to compute branching lengths and directions at each tip of the crack

  16. Unstable propagation behavior of a ductile crack in SUS-304 stainless steel under high compliance tensile loading

    International Nuclear Information System (INIS)

    Tomoda, Yoshio

    1981-01-01

    In relation to the safe maintenance of nuclear power plants, it is necessary to prevent reactor coolant pipings from burst type failure caused by the unstable propagation of defects and cracks, such as stress corrosion cracking and fatigue cracks. In ductile materials, crack propagation is stable in tensile loading under fixed grip condition, when a specimen is controlled to deform in proportion to the increase of tensile load. However, it has been known that the instability of ductile cracks occurs after tensile load reached the maximum, especially under constant loading condition arising in the loading devices with high compliance or low tensile rigidity. In order to confirm the reliability of SUS 304 stainless pipes subjected to SCC, the crack propagation behavior was examined with the specimens having center cracks, using both testing machines with high compliance and low compliance. The instability of ductile cracks and the propagation velocity of unstable cracks were analyzed, and the calculated results were compated with the experimental results. Not only the compliance of testing machines but also the conditions of specimens affected the propagation of cracks. (Kako, I.)

  17. Production of hydrogen gas from novel chemical hydrides

    Energy Technology Data Exchange (ETDEWEB)

    Aiello, R.; Matthews, M.A. [South Carolina Univ., Chemical Engineering Dept., Columbia, SC (United States); Reger, D.L.; Collins, J.E. [South Carolina Univ., Chemistry and Biochemistry Dept., Columbia, SC (United States)

    1998-12-01

    Six ligand-stabilized complexes have been synthesized and tested for use as hydrogen storage media for portable fuel cell applications. The new hydrides are: [HC(3,5-Me{sub 2}pz){sub 3}]LiBH{sub 4} (1), [[H{sub 2}C(3,5-Me{sub 2}pz){sub 2}]LiBH{sub 4})]{sub 2} (2) (pz = pyrazolyl), [(TMEDA)Li(BH{sub 4})]{sub 2} (3) (TMEDA (CH{sub 3}){sub 2}NCH{sub 2}CH{sub 2}N(CH{sub 3}){sub 2}), [HC(pz){sub 3}]LiBH{sub 4} (4), [[H{sub 2}C(pz){sub 2}]Li(BH{sub 4})]{sub 2} (5) and Mg(BH{sub 4}){sub 2}3THF (6) (THF = tetrahydrofuran). Hydrolysis reactions of the compounds liberate hydrogen in quantities which range from 56 to 104 ({+-}5%) of the theoretical yield. Gas chromatographic analysis of the product gases from these reactions indicate that hydrogen is the only gas produced. Thermally initiated reactions of the novel compounds with NH{sub 4}Cl were unsuccessful. Although the amount of hydrogen energy which can be theoretically obtained per unit weight is lower than that of the classical hydrides such as LiBH{sub 4} and NaBH{sub 4}, the reactions are less violent and hydrolysis of compounds 1, 2, 4, 5 and 6 releases less heat per mole of hydrogen generated. (Author)

  18. Electron and nuclear magnetic resonances in compounds and metallic hydrides

    International Nuclear Information System (INIS)

    Brasil Filho, N.

    1985-11-01

    Proton pulsed Nuclear Magnetic Resonance measurements were performed on the metallic hydrides ZrCr 2 H x (x = 2, 3, 4) and ZrV 2 H y (y = 2, 3, 4, 5) as a function of temperature between 180 and 400K. The ultimate aim was the investigation of the relaxation mechanisms in these systems by means of the measurement of both the proton ( 1 H) spin-lattice (T 1 ) and spin-spin (T 2 ) relaxation times and to use these data to obtain information about the diffusive motion of the hydrogen atoms. The diffusional activation energies, the jump frequencies and the Korringa constant, C k , related with the conduction electron contribution to the 1 H relaxation were determined for the above hydrides as a function of hydrogen concentration. Our results were analysed in terms of the relaxation models described by Bloembergen, Purcell and Pound (BPP model) and by Torrey. The Korringa type relaxation due to the conduction electrons in metallic systems was also used to interpret the experimental results. We also present the Electron Paramagnetic Ressonance (EPR) study of Gd 3+ , Nd 3+ and Er 3+ ions as impurities in several AB 3 intermetallic compounds where A = LA, Ce, Y, Sc, Th, Zr and B = Rh, Ir, Pt. The results were analysed in terms of the multiband model previously suggested to explain the behaviour of the resonance parameter in AB 2 Laves Phase compounds. (author) [pt

  19. Theoretical study of hydrogen storage in metal hydrides.

    Science.gov (United States)

    Oliveira, Alyson C M; Pavão, A C

    2018-05-04

    Adsorption, absorption and desorption energies and other properties of hydrogen storage in palladium and in the metal hydrides AlH 3 , MgH 2 , Mg(BH 4 ) 2 , Mg(BH 4 )(NH 2 ) and LiNH 2 were analyzed. The DFT calculations on cluster models show that, at a low concentration, the hydrogen atom remains adsorbed in a stable state near the palladium surface. By increasing the hydrogen concentration, the tetrahedral and the octahedral sites are sequentially occupied. In the α phase the tetrahedral site releases hydrogen more easily than at the octahedral sites, but the opposite occurs in the β phase. Among the hydrides, Mg(BH 4 ) 2 shows the highest values for both absorption and desorption energies. The absorption energy of LiNH 2 is higher than that of the palladium, but its desorption energy is too high, a recurrent problem of the materials that have been considered for hydrogen storage. The release of hydrogen, however, can be favored by using transition metals in the material structure, as demonstrated here by doping MgH 2 with 3d and 4d-transition metals to reduce the hydrogen atomic charge and the desorption energy.

  20. A low tritium hydride bed inventory estimation technique

    Energy Technology Data Exchange (ETDEWEB)

    Klein, J.E.; Shanahan, K.L.; Baker, R.A. [Savannah River National Laboratory, Aiken, SC (United States); Foster, P.J. [Savannah River Nuclear Solutions, Aiken, SC (United States)

    2015-03-15

    Low tritium hydride beds were developed and deployed into tritium service in Savannah River Site. Process beds to be used for low concentration tritium gas were not fitted with instrumentation to perform the steady-state, flowing gas calorimetric inventory measurement method. Low tritium beds contain less than the detection limit of the IBA (In-Bed Accountability) technique used for tritium inventory. This paper describes two techniques for estimating tritium content and uncertainty for low tritium content beds to be used in the facility's physical inventory (PI). PI are performed periodically to assess the quantity of nuclear material used in a facility. The first approach (Mid-point approximation method - MPA) assumes the bed is half-full and uses a gas composition measurement to estimate the tritium inventory and uncertainty. The second approach utilizes the bed's hydride material pressure-composition-temperature (PCT) properties and a gas composition measurement to reduce the uncertainty in the calculated bed inventory.

  1. Gas desorption properties of ammonia borane and metal hydride composites

    International Nuclear Information System (INIS)

    Matin, M.R.

    2009-01-01

    'Full text': Ammonia borane (NH 3 BH 3 ) has been of great interest owing to its ideal combination of low molecular weight and high H 2 storage capacity of 19.6 mass %, which exceeds the current capacity of gasoline. DOE's year 2015 targets involve gravimetric as well as volumetric energy densities. In this work, we have investigated thermal decomposition of ammonia borane and calcium hydride composites at different molar ratio. The samples were prepared by planetary ball milling under hydrogen gas atmosphere pressure of 1Mpa at room temperature for 2, and 10 hours. The gas desorption properties were examined by thermal desorption mass spectroscopy (TDMS). The identification of phases was carried out by X-ray diffraction. The results obtain were shown in fig (a),(b),and (c). Hydrogen desorption properties were observed at all molar ratios, but the desorption temperature is significantly lower at around 70 o C at molar ratio 1:1 as shown in fig (c), and unwanted gas (ammonia) emissions were remarkably suppressed by mixing with the calcium hydride. (author)

  2. Electronic structure of the palladium hydride studied by compton scattering

    CERN Document Server

    Mizusaki, S; Yamaguchi, M; Hiraoka, N; Itou, M; Sakurai, Y

    2003-01-01

    The hydrogen-induced changes in the electronic structure of Pd have been investigated by Compton scattering experiments associated with theoretical calculations. Compton profiles (CPs) of single crystal of Pd and beta phase hydride PdH sub x (x=0.62-0.74) have been measured along the [100], [110] and [111] directions with a momentum resolution of 0.14-0.17 atomic units using 115 keV x-rays. The theoretical Compton profiles have been calculated from the wavefunctions obtained utilizing the full potential linearized augmented plane wave method within the local density approximation for Pd and stoichiometric PdH. The experimental and the theoretical results agreed well with respect to the difference in the CPs between PdH sub x and Pd, and the anisotropy in the CPs of Pd or PdH sub x. This study provides lines of evidence that upon hydride formation the lowest valance band of Pd is largely modified due to hybridization with H 1s-orbitals and the Fermi energy is raised into the sp-band. (author)

  3. ACCEPTABILITY ENVELOPE FOR METAL HYDRIDE-BASED HYDROGEN STORAGE SYSTEMS

    Energy Technology Data Exchange (ETDEWEB)

    Hardy, B.; Corgnale, C.; Tamburello, D.; Garrison, S.; Anton, D.

    2011-07-18

    The design and evaluation of media based hydrogen storage systems requires the use of detailed numerical models and experimental studies, with significant amount of time and monetary investment. Thus a scoping tool, referred to as the Acceptability Envelope, was developed to screen preliminary candidate media and storage vessel designs, identifying the range of chemical, physical and geometrical parameters for the coupled media and storage vessel system that allow it to meet performance targets. The model which underpins the analysis allows simplifying the storage system, thus resulting in one input-one output scheme, by grouping of selected quantities. Two cases have been analyzed and results are presented here. In the first application the DOE technical targets (Year 2010, Year 2015 and Ultimate) are used to determine the range of parameters required for the metal hydride media and storage vessel. In the second case the most promising metal hydrides available are compared, highlighting the potential of storage systems, utilizing them, to achieve 40% of the 2010 DOE technical target. Results show that systems based on Li-Mg media have the best potential to attain these performance targets.

  4. The effect of hydrides on the growth of zirconia

    International Nuclear Information System (INIS)

    Ekbom, L.R.

    1982-01-01

    The purpose of the present experiment has been to verify a hypothesis that accelerated corrosion of hydride containin Zircaloy is caused by small pores formed in the oxide by the evolution of hydrogen during oxidation of hydrides. The work has been divided into two parts: specimen preparation and microscopy. ZrO 2 is difficult to work with because of the high compressive stress which exists in the oxide. The most interesting area to study if any hydrogen pores exist, is the metal-oxide interface. Both transmission and scanning electron microscopy were used in the study. Neither of these methods gave any useful information with regard to the original hypothesis. However, a few interesting observations were made on the structure of the oxide at the metal-oxide interface. When the metal had been removed by electropolishing it was seen that the inner surface of the oxide consisted of 0,2-0.3 μ long and 0.1 μ thick wormlike protuberances of oxide. These features could not be seen when the metal had been removed by chemical etching. An attempt to determine whether or not this structure is an artefact introduced by electropolishing was inconclusive but indicated that the structure probably is real. (Author)

  5. Microchip power compensated calorimetry applied to metal hydride characterization

    Energy Technology Data Exchange (ETDEWEB)

    Sepulveda, A.; Lopeandia, A.F.; Domenech-Ferrer, R.; Garcia, G.; Pi, F.; Rodriguez-Viejo, J. [Nanomaterials and Microsystems Group, Physics Department, Universitat Autonoma de Barcelona, 08193 Bellaterra (Spain); Munoz, F.J. [Instituto de Microelectronica de Barcelona, Centro Nacional de Microelectronica, Campus UAB, 08193 Bellaterra (Spain)

    2008-06-15

    In this work, we show the suitability of the thin film membrane-based calorimetric technique to measure kinetically limited phase transitions such as the dehydrogenation of metallic hydrides. Different compounds such as Mg, Mg/Al and Mg{sub 80}Ti{sub 20} have been deposited over the active area of the microchip by electron beam evaporation. After several hydrogenation treatments at different temperatures to induce the hydride formation, calorimetric measurements on the dehydrogenation process of those thin films, either in vacuum or in air, are performed at a heating rate of 10 C/min. We observe a significant reduction in the onset of dehydrogenation for Mg{sub 80}Ti{sub 20} compared with pure Mg or Mg/Al layers, which confirms the beneficial effect of Ti on dehydrogenation. We also show the suitability of the membrane-based nanocalorimeters to be used in parallel with optical methods. Quantification of the energy released during hydrogen desorption remains elusive due to the semi-insulating to metallic transition of the film which affects the calorimetric trace. (author)

  6. A quantitative phase field model for hydride precipitation in zirconium alloys: Part I. Development of quantitative free energy functional

    International Nuclear Information System (INIS)

    Shi, San-Qiang; Xiao, Zhihua

    2015-01-01

    A temperature dependent, quantitative free energy functional was developed for the modeling of hydride precipitation in zirconium alloys within a phase field scheme. The model takes into account crystallographic variants of hydrides, interfacial energy between hydride and matrix, interfacial energy between hydrides, elastoplastic hydride precipitation and interaction with externally applied stress. The model is fully quantitative in real time and real length scale, and simulation results were compared with limited experimental data available in the literature with a reasonable agreement. The work calls for experimental and/or theoretical investigations of some of the key material properties that are not yet available in the literature

  7. Multi-scale characterization of nanostructured sodium aluminum hydride

    Science.gov (United States)

    NaraseGowda, Shathabish

    Complex metal hydrides are the most promising candidate materials for onboard hydrogen storage. The practicality of this class of materials is counter-poised on three critical attributes: reversible hydrogen storage capacity, high hydrogen uptake/release kinetics, and favorable hydrogen uptake/release thermodynamics. While a majority of modern metallic hydrides that are being considered are those that meet the criteria of high theoretical storage capacity, the challenges lie in addressing poor kinetics, thermodynamics, and reversibility. One emerging strategy to resolve these issues is via nanostructuring or nano-confinement of complex hydrides. By down-sizing and scaffolding them to retain their nano-dimensions, these materials are expected to improve in performance and reversibility. This area of research has garnered immense interest lately and there is active research being pursued to address various aspects of nanostructured complex hydrides. The research effort documented here is focused on a detailed investigation of the effects of nano-confinement on aspects such as the long range atomic hydrogen diffusivities, localized hydrogen dynamics, microstructure, and dehydrogenation mechanism of sodium alanate. A wide variety of microporous and mesoporous materials (metal organic frameworks, porous silica and alumina) were investigated as scaffolds and the synthesis routes to achieve maximum pore-loading are discussed. Wet solution infiltration technique was adopted using tetrahydrofuran as the medium and the precursor concentrations were found to have a major role in achieving maximum pore loading. These concentrations were optimized for each scaffold with varying pore sizes and confinement was quantitatively characterized by measuring the loss in specific surface area. This work is also aimed at utilizing neutron and synchrotron x-ray characterization techniques to study and correlate multi-scale material properties and phenomena. Some of the most advanced

  8. Improvement of elastic-plastic fatigue crack growth evaluation method. 2. Crack opening behavior

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, Yukio [Central Research Inst. of Electric Power Industry, Tokyo (Japan)

    2001-05-01

    Evaluation of crack growth behavior under cyclic loading is often required in the structural integrity assessment of cracked components. Closing and re-opening of the crack give large influence on crack growth rate through the change of fracture mechanics parameters. Based on the finite element analysis for a center-cracked plate, dependency of crack opening ratio on applied stress range and mean stress was examined. Simple formulae for representing the results were derived for plane stress and plane strain conditions. (author)

  9. Cracking in Flexural Reinforced Concrete Members

    DEFF Research Database (Denmark)

    Rasmussen, Annette Beedholm; Fisker, Jakob; Hagsten, Lars German

    2017-01-01

    The system of cracks developing in reinforced concrete is in many aspects essential when modelling structures in both serviceability- and ultimate limit state. This paper discusses the behavior concerning crack development in flexural members observed from tests and associates it with two different...... existing models. From the investigations an approach is proposed on how to predict the crack pattern in flexural members involving two different crack systems; primary flexural cracks and local secondary cracks. The results of the approach is in overall good agreement with the observed tests and captures...... the pronounced size effect associated with flexural cracking in which the crack spacing and crack widths are approximately proportional to the depth of the member....

  10. Dynamic ductile fracture of a central crack

    Science.gov (United States)

    Tsai, Y. M.

    1976-01-01

    A central crack, symmetrically growing at a constant speed in a two dimensional ductile material subject to uniform tension at infinity, is investigated using the integral transform methods. The crack is assumed to be the Dugdale crack, and the finite stress condition at the crack tip is satisfied during the propagation of the crack. Exact expressions of solution are obtained for the finite stress condition at the crack tip, the crack shape, the crack opening displacement, and the energy release rate. All those expressions are written as the product of explicit dimensional quantities and a nondimensional dynamic correction function. The expressions reduce to the associated static results when the crack speed tends to zero, and the nondimensional dynamic correction functions were calculated for various values of the parameter involved.

  11. Fatigue cracking in road pavement

    Science.gov (United States)

    Mackiewicz, P.

    2018-05-01

    The article presents the problem of modelling fatigue phenomena occurring in the road pavement. The example of two selected pavements shows the changes occurring under the influence of the load in different places of the pavement layers. Attention is paid to various values of longitudinal and transverse strains generated at the moment of passing the wheel on the pavement. It was found that the key element in the crack propagation analysis is the method of transferring the load to the pavement by the tire and the strain distribution in the pavement. During the passage of the wheel in the lower layers of the pavement, a complex stress state arises. Then vertical, horizontal and tangent stresses with various values appear. The numerical analyses carried out with the use of finite element methods allowed to assess the strain and stress changes occurring in the process of cracking road pavement. It has been shown that low-thickness pavements are susceptible to fatigue cracks arising "bottom to top", while pavements thicker are susceptible to "top to bottom" cracks. The analysis of the type of stress allowed to determine the cracking mechanism.

  12. Steel weldability. Underbead cold cracking

    International Nuclear Information System (INIS)

    Marquet, F.; Defourny, J.; Bragard, A.

    1977-01-01

    The problem of underbead cold cracking has been studied by the implant technique. This approach allows to take into account in a quantitative manner the different factors acting on the cold cracking phenomenon: structure under the weld bead, level of restraint, hydrogen content in the molten metal. The influence of the metallurgical factors depending from the chemical composition of the steel has been examined. It appeared that carbon equivalent is an important factor to explain cold cracking sensitivity but that it is not sufficient to characterize the steel. The results have shown that vanadium may have a deleterious effect on the resistance to cold cracking when the hydrogen content is high and that small silicon additions are beneficient. The influence of the diffusible hydrogen content has been checked and the important action of pre- and postheating has been shown. These treatments allow the hydrogen to escape from the weld before the metal has been damaged. Some inclusions (sulphides) may also decrease the influence of hydrogen. A method based on the implant tests has been proposed which allows to choose and to control safe welding conditions regarding cold cracking

  13. Role of hydrogen in stress corrosion cracking

    International Nuclear Information System (INIS)

    Mehta, M.L.

    1981-01-01

    Electrochemical basis for differentiation between hydrogen embrittlement and active path corrosion or anodic dissolution crack growth mechanisms is examined. The consequences of recently demonstrated acidification in crack tip region irrespective of electrochemical conditions at the bulk surface of the sample are that the hydrogen can evolve within the crack and may be involved in the cracking process. There are basically three aspects of hydrogen involvement in stress corrosion cracking. In dissolution models crack propagation is assumed to be caused by anodic dissolution on the crack tip sustained by cathodic reduction of hydrogen from electrolyte within the crack. In hydrogen induced structural transformation models it is postulated that hydrogen is absorbed locally at the crack tip producing structural changes which facilitate crack propagation. In hydrogen embrittlement models hydrogen is absorbed by stressed metal from proton reduction from the electrolyte within the crack and there is interaction between lattice and hydrogen resulting in embrittlement of material at crack tip facilitating crack propagation. In the present paper, the role of hydrogen in stress corrosion crack growth in high strength steels, austenitic stainless steels, titanium alloys and high strength aluminium alloys is discussed. (author)

  14. Effect of Water Environment on Subcritical Crack Growth of Machinable Ceramics; Kaisakusei seramikkusu no kiretsu shinten tokusei ni oyobosu mizu kankyo no eikyo

    Energy Technology Data Exchange (ETDEWEB)

    Ikeda, K.; Kaizu, K.; Inotani, T. [Miyazaki Univ., Miyazaki (Japan); Yoshikawa, A.; Adachi, K.; Igaki, H. [Osaka Sangyo Univ., Osaka (Japan)

    1997-06-15

    The fatigue behavior of ceramics has been discussed on the basis of the relation between stress intensity facter (KI) and crack velocity (V). In this paper, the effect of environment on the relation between KI and V was studied on machinable ceramics (mica glass ceramics) and two kinds of glass ceramics with different grain sizes. The double torsion (DT) technique was used for the determination of the KI-V characteristics under different environments of air and ion-exchanged water. The characteristics of acoustic emission (AE) during stress corrosion cracking of mica glass ceramics was also examined. In water environment, the region II in the KI-V curve, in which crack velocity varies slowly with KI, disappeared. From this experimental fact, it was considered that at high KI, the crack velocity is encouraged by diffusion of the corrosive species to the crack and thus depended on the amount of water. SEM farc tography revealed that mica single crystals in the material caused crack arrest and deflection to occur. It is also found that AE event rate is quantitatively related to the crack velocity. AE measurement can be used in studying the crack propagation behavior of mica glass ceramics. 11 refs., 12 figs., 3 tabs.

  15. A crack opening stress equation for fatigue crack growth

    Science.gov (United States)

    Newman, J. C., Jr.

    1984-01-01

    A general crack opening stress equation is presented which may be used to correlate crack growth rate data for various materials and thicknesses, under constant amplitude loading, once the proper constraint factor has been determined. The constraint factor, alpha, is a constraint on tensile yielding; the material yields when the stress is equal to the product of alpha and sigma. Delta-K (LEFM) is plotted against rate for 2024-T3 aluminum alloy specimens 2.3 mm thick at various stress ratios. Delta-K sub eff was plotted against rate for the same data with alpha = 1.8; the rates correlate well within a factor of two.

  16. Seismic behaviour of un-cracked and cracked thin pipes

    International Nuclear Information System (INIS)

    Blay, N.; Brunet, G.; Gantenbein, F.; Aguilar, J.

    1995-01-01

    In order to evaluate the seismic behaviour of un-cracked and cracked thin pipes, subjected to high acceleration levels, seismic tests and calculations have been performed on straight thin pipes made of 316L stainless steel, loaded in pure bending by a permanent static and dynamic loading. The seismic tests were carried out on the AZALEE shaking table of the CEA laboratory TAMARIS. The influence of the elasto-plastic model with isotropic or kinematic hardening are studied. 5 refs., 7 figs., 2 tabs

  17. A deformation and thermodynamic model for hydride precipitation kinetics in spent fuel cladding

    International Nuclear Information System (INIS)

    Stout, R.B.

    1989-10-01

    Hydrogen is contained in the Zircaloy cladding of spent fuel rods from nuclear reactors. All the spent fuel rods placed in a nuclear waste repository will have a temperature history that decreases toward ambient; and as a result, most all of the hydrogen in the Zircaloy will eventually precipitate as zirconium hydride platelets. A model for the density of hydride platelets is a necessary sub-part for predicting Zircaloy cladding failure rate in a nuclear waste repository. A model is developed to describe statistically the hydride platelet density, and the density function includes the orientation as a physical attribute. The model applies concepts from statistical mechanics to derive probable deformation and thermodynamic functionals for cladding material response that depend explicitly on the hydride platelet density function. From this model, hydride precipitation kinetics depend on a thermodynamic potential for hydride density change and on the inner product of a stress tensor and a tensor measure for the incremental volume change due to hydride platelets. The development of a failure response model for Zircaloy cladding exposed to the expected conditions in a nuclear waste repository is supported by the US DOE Yucca Mountain Project. 19 refs., 3 figs

  18. Measurement and accompanying numerical simulation of fast crack propagation in modified DCB specimens made of Araldit B

    International Nuclear Information System (INIS)

    Stoeckl, H.

    1991-06-01

    Numerical simulations of fracture-mechanical experiments with the aim of determining the stress intensity factor and its relation to the fracture velocity from the measured data of the crack length are problematic with the conventional DCB specimen loaded through wedge and bolt namely because of the not clearly definable limiting conditions. Experiments were therefore carried out with modified DCB specimens made of ARALDIT B, with the loading wedge pressed directly into the crack mouth. In the case of suitable specimen dimensions, K I already in the initial phase of crack propagation before arrival of the first reflected waves covers a great part of the relevant range. Numerical simulations agree well with the shadow-optical measurements in this phase. A specimen variant with T-shaped extension at the counterbearing is suitable especially for crack arrest investigations, since high fracture velocities and brief crack jump lengths can be combined in tests with this specimen. The constant member in the series development of the stress distribution at the crack tip according to Williams determines the directional stability of the crack. The theories established by Cotterell, Schindler, Streit and Finnie are discussed by means of the kinking cracks observed during some experiments. (orig.) [de

  19. Velocity Feedback Experiments

    Directory of Open Access Journals (Sweden)

    Chiu Choi

    2017-02-01

    Full Text Available Transient response such as ringing in a control system can be reduced or removed by velocity feedback. It is a useful control technique that should be covered in the relevant engineering laboratory courses. We developed velocity feedback experiments using two different low cost technologies, viz., operational amplifiers and microcontrollers. These experiments can be easily integrated into laboratory courses on feedback control systems or microcontroller applications. The intent of developing these experiments was to illustrate the ringing problem and to offer effective, low cost solutions for removing such problem. In this paper the pedagogical approach for these velocity feedback experiments was described. The advantages and disadvantages of the two different implementation of velocity feedback were discussed also.

  20. The critical ionization velocity

    International Nuclear Information System (INIS)

    Raadu, M.A.

    1980-06-01

    The critical ionization velocity effect was first proposed in the context of space plasmas. This effect occurs for a neutral gas moving through a magnetized plasma and leads to rapid ionization and braking of the relative motion when a marginal velocity, 'the critical velocity', is exceeded. Laboratory experiments have clearly established the significance of the critical velocity and have provided evidence for an underlying mechanism which relies on the combined action of electron impact ionization and a collective plasma interaction heating electrons. There is experimental support for such a mechanism based on the heating of electrons by the modified two-stream instability as part of a feedback process. Several applications to space plasmas have been proposed and the possibility of space experiments has been discussed. (author)