WorldWideScience

Sample records for hydride compounds progress

  1. Electrocatalytic hydride-forming compounds for rechageable batteries

    NARCIS (Netherlands)

    Notten, P.H.L.; Einerhand, R.E.F.

    1991-01-01

    Non-toxic intermetallic hydride-forming compounds are attractive alternatives to cadmium as the negative electrode materials in the new generation of Ni/metal hydride rechargeable batteries. High exchange currents and discharge efficiencies even at low temperatures can be achieved using highly

  2. Electron and nuclear magnetic resonances in compounds and metallic hydrides

    International Nuclear Information System (INIS)

    Brasil Filho, N.

    1985-11-01

    Proton pulsed Nuclear Magnetic Resonance measurements were performed on the metallic hydrides ZrCr 2 H x (x = 2, 3, 4) and ZrV 2 H y (y = 2, 3, 4, 5) as a function of temperature between 180 and 400K. The ultimate aim was the investigation of the relaxation mechanisms in these systems by means of the measurement of both the proton ( 1 H) spin-lattice (T 1 ) and spin-spin (T 2 ) relaxation times and to use these data to obtain information about the diffusive motion of the hydrogen atoms. The diffusional activation energies, the jump frequencies and the Korringa constant, C k , related with the conduction electron contribution to the 1 H relaxation were determined for the above hydrides as a function of hydrogen concentration. Our results were analysed in terms of the relaxation models described by Bloembergen, Purcell and Pound (BPP model) and by Torrey. The Korringa type relaxation due to the conduction electrons in metallic systems was also used to interpret the experimental results. We also present the Electron Paramagnetic Ressonance (EPR) study of Gd 3+ , Nd 3+ and Er 3+ ions as impurities in several AB 3 intermetallic compounds where A = LA, Ce, Y, Sc, Th, Zr and B = Rh, Ir, Pt. The results were analysed in terms of the multiband model previously suggested to explain the behaviour of the resonance parameter in AB 2 Laves Phase compounds. (author) [pt

  3. Complex Hydride Compounds with Enhanced Hydrogen Storage Capacity

    Energy Technology Data Exchange (ETDEWEB)

    Mosher, Daniel A.; Opalka, Susanne M.; Tang, Xia; Laube, Bruce L.; Brown, Ronald J.; Vanderspurt, Thomas H.; Arsenault, Sarah; Wu, Robert; Strickler, Jamie; Anton, Donald L.; Zidan, Ragaiy; Berseth, Polly

    2008-02-18

    The United Technologies Research Center (UTRC), in collaboration with major partners Albemarle Corporation (Albemarle) and the Savannah River National Laboratory (SRNL), conducted research to discover new hydride materials for the storage of hydrogen having on-board reversibility and a target gravimetric capacity of ≥ 7.5 weight percent (wt %). When integrated into a system with a reasonable efficiency of 60% (mass of hydride / total mass), this target material would produce a system gravimetric capacity of ≥ 4.5 wt %, consistent with the DOE 2007 target. The approach established for the project combined first principles modeling (FPM - UTRC) with multiple synthesis methods: Solid State Processing (SSP - UTRC), Solution Based Processing (SBP - Albemarle) and Molten State Processing (MSP - SRNL). In the search for novel compounds, each of these methods has advantages and disadvantages; by combining them, the potential for success was increased. During the project, UTRC refined its FPM framework which includes ground state (0 Kelvin) structural determinations, elevated temperature thermodynamic predictions and thermodynamic / phase diagram calculations. This modeling was used both to precede synthesis in a virtual search for new compounds and after initial synthesis to examine reaction details and options for modifications including co-reactant additions. The SSP synthesis method involved high energy ball milling which was simple, efficient for small batches and has proven effective for other storage material compositions. The SBP method produced very homogeneous chemical reactions, some of which cannot be performed via solid state routes, and would be the preferred approach for large scale production. The MSP technique is similar to the SSP method, but involves higher temperature and hydrogen pressure conditions to achieve greater species mobility. During the initial phases of the project, the focus was on higher order alanate complexes in the phase space

  4. High Density Hydrogen Storage System Demonstration Using NaAlH4 Based Complex Compound Hydrides

    Energy Technology Data Exchange (ETDEWEB)

    Daniel A. Mosher; Xia Tang; Ronald J. Brown; Sarah Arsenault; Salvatore Saitta; Bruce L. Laube; Robert H. Dold; Donald L. Anton

    2007-07-27

    This final report describes the motivations, activities and results of the hydrogen storage independent project "High Density Hydrogen Storage System Demonstration Using NaAlH4 Based Complex Compound Hydrides" performed by the United Technologies Research Center under the Department of Energy Hydrogen Program, contract # DE-FC36-02AL67610. The objectives of the project were to identify and address the key systems technologies associated with applying complex hydride materials, particularly ones which differ from those for conventional metal hydride based storage. This involved the design, fabrication and testing of two prototype systems based on the hydrogen storage material NaAlH4. Safety testing, catalysis studies, heat exchanger optimization, reaction kinetics modeling, thermochemical finite element analysis, powder densification development and material neutralization were elements included in the effort.

  5. Investigations of intermetallic alloy hydriding mechanisms. Annual progress report, May 1 1979-April 30, 1980

    International Nuclear Information System (INIS)

    Livesay, B.R.; Larsen, J.W.

    1980-05-01

    Investigations are being conducted on mechanisms involved with the hydrogen-metal interactions which control the absorption and desorption processes in intermetallic compounds. The status of the following investigations is reported: modeling of hydride formation; microbalance investigations; microstructure investigations; flexure experiments; resistivity experiments; and nuclear backscattering measurements. These investigations concern fundamental hydrogen interaction mechanisms involved in storage alloys

  6. Syntheses and properties of several metastable and stable hydrides derived from intermetallic compounds under high hydrogen pressure

    Energy Technology Data Exchange (ETDEWEB)

    Filipek, S.M., E-mail: sfilipek@unipress.waw.pl [Institute of High Pressure Physics PAS, ul. Sokolowska 29, 01-142 Warsaw (Poland); Paul-Boncour, V. [ICMPE-CMTR, CNRS-UPEC, 2-8 rue Henri Dunant, 94320 Thiais (France); Liu, R.S. [Department of Chemistry, National Taiwan University, Taipei 106, Taiwan (China); Jacob, I. [Unit Nuclear Eng., Ben Gurion University of the Negev, Beer-Sheva (Israel); Tsutaoka, T. [Dept. of Sci. Educ., Grad. School of Educ., Hiroshima University, Hiroshima (Japan); Budziak, A. [Institute of Nuclear Physics PAS, 31-342 Kraków (Poland); Morawski, A. [Institute of High Pressure Physics PAS, ul. Sokolowska 29, 01-142 Warsaw (Poland); Sugiura, H. [Yokohama City University, 22-2 Seto, Kanazawa-ku, Yokohama 236-0027 (Japan); Zachariasz, P. [Institute of Electron Technology Cracow Division, ul. Zablocie 39, 30-701 Krakow (Poland); Dybko, K. [Institute of Physics, PAS, 02-668 Warsaw (Poland); Diduszko, R. [Tele and Radio Research Institute, ul. Ratuszowa 11, Warsaw (Poland)

    2016-12-01

    Brief summary of our former work on high hydrogen pressure syntheses of novel hydrides and studies of their properties is supplemented with new results. Syntheses and properties of a number of hydrides (unstable, metastable or stable in ambient conditions) derived under high hydrogen pressure from intermetallic compounds, like MeT{sub 2}, MeNi{sub 5}, Me{sub 7}T{sub 3}, Y{sub 6}Mn{sub 23} and YMn{sub 12} (where Me = zirconium, yttrium or rare earth; T = transition metal) are presented. Stabilization of ZrFe{sub 2}H{sub 4} due to surface phenomena was revealed. Unusual role of manganese in hydride forming processes is pointed out. Hydrogen induced phase transitions, suppression of magnetism, antiferromagnetic-ferromagnetic and metal-insulator or semimetal-metal transitions are described. Equations of state (EOS) of hydrides submitted to hydrostatic pressures up to 30 GPa are presented and discussed.

  7. Group 13 β-ketoiminate compounds: gallium hydride derivatives as molecular precursors to thin films of Ga2O3.

    Science.gov (United States)

    Pugh, David; Marchand, Peter; Parkin, Ivan P; Carmalt, Claire J

    2012-06-04

    Bis(β-ketoimine) ligands, [R{N(H)C(Me)-CHC(Me)═O}(2)] (L(1)H(2), R = (CH(2))(2); L(2)H(2), R = (CH(2))(3)), linked by ethylene (L(1)) and propylene (L(2)) bridges have been used to form aluminum, gallium, and indium chloride complexes [Al(L(1))Cl] (3), [Ga(L(n))Cl] (4, n = 1; 6, n = 2) and [In(L(n))Cl] (5, n = 1; 7, n = 2). Ligand L(1) has also been used to form a gallium hydride derivative [Ga(L(1))H] (8), but indium analogues could not be made. β-ketoimine ligands, [Me(2)N(CH(2))(3)N(H)C(R')-CHC(R')═O] (L(3)H, R' = Me; L(4)H, R' = Ph), with a donor-functionalized Lewis base have also been synthesized and used to form gallium and indium alkyl complexes, [Ga(L(3))Me(2)] (9) and [In(L(3))Me(2)] (10), which were isolated as oils. The related gallium hydride complexes, [Ga(L(n))H(2)] (11, n = 3; 12, n = 4), were also prepared, but again no indium hydride species could be made. The complexes were characterized mainly by NMR spectroscopy, mass spectrometry, and single crystal X-ray diffraction. The β-ketoiminate gallium hydride compounds (8 and 11) have been used as single-source precursors for the deposition of Ga(2)O(3) by aerosol-assisted (AA)CVD with toluene as the solvent. The quality of the films varied according to the precursor used, with the complex [Ga(L(1))H] (8) giving by far the best quality films. Although the films were amorphous as deposited, they could be annealed at 1000 °C to form crystalline Ga(2)O(3). The films were analyzed by powder XRD, SEM, and EDX.

  8. Regio- and stereo-selective hydride uptake in model systems related to 3-carbamoyl pyridinium compounds

    NARCIS (Netherlands)

    Kok, de P.M.T.; Buck, H.M.

    1985-01-01

    The hydride reduction of 13-methyl-3-aza-13-azonia-bicyclo[10.2.2]hexadeca-1(14),12,15-trien-2-one iodide with sodium dithionite in an aqueous solution of sodium hydrogen carbonate resulted in its boat-shaped 13,15-dihydro analogue in which the incorporated hydrogen occupies almost exclusively

  9. The influence of Mn on the crystallography and electrochemistry of nonstoichiometric AB5-type hydride-forming compounds

    International Nuclear Information System (INIS)

    Notten, P.H.L.; Latroche, M.; Percheron-Guegan, A.

    1999-01-01

    To design Co-free, low-pressure, hydride-forming compounds for application in rechargeable nickel metal hydride batteries, nonstoichiometric AB x materials were investigated. The influence of both the Mn content and the degree of nonstoichiometry on the crystallography, electrochemical cycling stability, and electrode morphology were studied. The investigated composition was in the range of La(Ni 1-z Mn z ) x with 5.0 le x le 6.0 and 0 le xz le 2.0. The annealing temperature was essential in preparing homogeneous compounds. In agreement with geometric considerations, both the a and c axis of the hexagonal unit cell increase with increasing Mn content. In contrast, the a axis decreases with increasing degree of nonstoichiometry. As proved by neutron-diffraction experiments, the introduction of dumbbell pairs of Ni or Mn atoms on the La positions in the crystal lattice is responsible for this behavior. The electrochemical cycling stability is found to be strongly dependent on both the chemical and nonstoichiometric composition. Electrochemically stable materials are characterized by the absence of a significant particle-size reduction upon electrode cycling, reducing the overall oxidation rate. Unstable materials suffer from severe mechanical cracking through which the oxidation rate is increased. The improved mechanical stability is attributed to the reduced discrete lattice expansion. The most stable compound has a partial hydrogen pressure of only 0.1 bar, which matches well with that desirable in practical NiMH batteries. Neutron-diffraction experiments confirmed the hypothesis that La atoms are replaced by dumbbell pairs of Ni, in the case of the binary LaNi 5.4 , and by Mn atoms in the case of the mn-containing nonstoichiometric compounds. Electron-probe microanalyses and density measurements support the dumbbell hypothesis

  10. PREDICTION OF THE SPECTROSCOPIC PARAMETERS OF NEW IRON COMPOUNDS: HYDRIDE OF IRON CYANIDE/ISOCYANIDE, HFeCN/HFeNC

    Energy Technology Data Exchange (ETDEWEB)

    Redondo, Pilar; Barrientos, Carmen; Largo, Antonio, E-mail: predondo@qf.uva.es [Departamento de Química Física y Química Inorgánica Facultad de Ciencias, Universidad de Valladolid Campus Miguel Delibes Paseo de Belén 7, E-47011, Valladolid (Spain)

    2016-09-01

    Iron is the most abundant transition metal in space. Its abundance is similar to that of magnesium, and until today only, FeO and FeCN have been detected. However, magnesium-bearing compounds such as MgCN, MgNC, and HMgNC are found in IRC+10216. It seems that the hydrides of iron cyanide/isocyanide could be good candidates to be present in space. In the present work we carried out a characterization of the different minima on the quintet and triplet [C, Fe, H, N] potential energy surfaces, employing several theoretical approaches. The most stable isomers are predicted to be hydride of iron cyanide HFeCN, and isocyanide HFeNC, in their {sup 5}Δ states. Both isomers are found to be quasi-isoenergetics. The HFeNC isomer is predicted to lie about 0.5 kcal/mol below HFeCN. The barrier for the interconversion process is estimated to be around 6.0 kcal/mol, making this process unfeasible under low temperature conditions, such as those in the interstellar medium. Therefore, both HFeCN and HFeNC could be candidates for their detection. We report geometrical parameters, vibrational frequencies, and rotational constants that could help with their experimental characterization.

  11. PREDICTION OF THE SPECTROSCOPIC PARAMETERS OF NEW IRON COMPOUNDS: HYDRIDE OF IRON CYANIDE/ISOCYANIDE, HFeCN/HFeNC

    International Nuclear Information System (INIS)

    Redondo, Pilar; Barrientos, Carmen; Largo, Antonio

    2016-01-01

    Iron is the most abundant transition metal in space. Its abundance is similar to that of magnesium, and until today only, FeO and FeCN have been detected. However, magnesium-bearing compounds such as MgCN, MgNC, and HMgNC are found in IRC+10216. It seems that the hydrides of iron cyanide/isocyanide could be good candidates to be present in space. In the present work we carried out a characterization of the different minima on the quintet and triplet [C, Fe, H, N] potential energy surfaces, employing several theoretical approaches. The most stable isomers are predicted to be hydride of iron cyanide HFeCN, and isocyanide HFeNC, in their 5 Δ states. Both isomers are found to be quasi-isoenergetics. The HFeNC isomer is predicted to lie about 0.5 kcal/mol below HFeCN. The barrier for the interconversion process is estimated to be around 6.0 kcal/mol, making this process unfeasible under low temperature conditions, such as those in the interstellar medium. Therefore, both HFeCN and HFeNC could be candidates for their detection. We report geometrical parameters, vibrational frequencies, and rotational constants that could help with their experimental characterization.

  12. Various magnetic behaviors of the hydrides deriving from the tetragonal CeFeSi-type compounds

    International Nuclear Information System (INIS)

    Chevalier, B.; Tence, S.; Gaudin, E.; Matar, S.F.; Bobet, J.-L.

    2009-01-01

    The hydrides RETXH (RE = rare earth, T = transition metal and X = Si, Ge) crystallizing in the tetragonal ZrSiCuAs-type are obtained by hydrogen absorption of the intermetallics adopting the tetragonal CeFeSi-type. The H-insertion induces interesting magnetic transitions governed by two effects: the increase of the unit cell volume linked to the H-absorption and the occurrence of the RE-H chemical bonding. Some typical examples are reported in this present brief review.

  13. Insight into the structural, electronic, elastic and optical properties of the alkali hydride compounds, XH (X = Rb and Cs)

    Science.gov (United States)

    Jaradat, Raed; Abu-Jafar, Mohammed; Abdelraziq, Issam; Mousa, Ahmad; Ouahrani, Tarik; Khenata, Rabah

    2018-04-01

    The equilibrium structural parameters, electronic and optical properties of the alkali hydrides RbH and CsH compounds in rock-salt (RS) and cesium chloride (CsCl) structures have been studied using the full-potential linearized augmented plane-wave (FP-LAPW) method. Wu and Cohen generalized gradient approximation (WC-GGA) was used for the exchange-correlation potential to compute the equilibrium structural parameters, such as the lattice constant (a0), the bulk modulus (B) and bulk modulus first order pressure derivative (B'). In addition to the WC-GGA, the modified Becke Johnson (mBJ) scheme has been also used to overcome the underestimation of the band gap energies. RbH and CsH compounds are found to be semiconductors (wide energy-band gap) using the WC-GGA method, while they are insulators using the mBJ-GGA method. Elastic constants, mechanical and thermodynamic properties were obtained by using the IRelast package. RbH and CsH compounds at ambient pressure are mechanically stable in RS and CsCl structures; they satisfy the Born mechanical stability criteria. Elastic constants (Cij), bulk modulus (B), shear modulus (S) and Debye temperatures (θD) of RbH and CsH compounds decrease as the alkali radius increases. The RS structure of these compounds at ambient conditions is mechanically stronger than CsCl structure. RbH and CsH in RS and CsCl structures are suitable as dielectric compounds. The wide direct energy band gap for these compounds make them promising compounds for optoelectronic UV device applications. Both RbH and CsH have a wide absorption region, on the other hand RbH absorption is very huge compared to the CsH absorption, RbH is an excellent absorbent material, maximum absorption regions are located in the middle ultraviolet (MUV) region and far ultraviolet (FUV) region. The absorption coefficient α (w), imaginary part of the dielectric constant ɛ2(w) and the extinction coefficient k(w) vary in the same way. The present calculated results are in

  14. Microstructure and electrode performance of AB5-type hydride-forming compounds

    NARCIS (Netherlands)

    Notten, P.H.L.

    1998-01-01

    A interesting experimental technique is proposed to investigate the hydrideformation/ decomposition reaction of intermetallic compounds. This X-ray diffraction (XRD) technique combines hydrogen absorptionldesorption measure ments with in situ XRD measurements. A high pressure XRD cell allows gas

  15. Anodematerials for Metal Hydride Batteries

    DEFF Research Database (Denmark)

    Jensen, Jens Oluf

    1997-01-01

    This report describes the work on development of hydride forming alloys for use as electrode materials in metal hydride batteries. The work has primarily been concentrated on calcium based alloys derived from the compound CaNi5. This compound has a higher capacity compared with alloys used in today......’s hydride batteries, but a much poorer stability towards repeated charge/discharge cycling. The aim was to see if the cycleability of CaNi5 could be enhanced enough by modifications to make the compound a suitable electrode material. An alloying method based on mechanical alloying in a planetary ball mill...

  16. Metal hydride compositions and lithium ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Young, Kwo; Nei, Jean

    2018-04-24

    Heterogeneous metal hydride (MH) compositions comprising a main region comprising a first metal hydride and a secondary region comprising one or more additional components selected from the group consisting of second metal hydrides, metals, metal alloys and further metal compounds are suitable as anode materials for lithium ion cells. The first metal hydride is for example MgH.sub.2. Methods for preparing the composition include coating, mechanical grinding, sintering, heat treatment and quenching techniques.

  17. Organochlorine compounds: Progress and results to date

    International Nuclear Information System (INIS)

    Villeneuve, J.P.; Marchand, M.; Elder, D.; Fowler, S.W.; LaRosa, J.; Duursma, E.K.; Vas, D.; Parsi, P.

    1976-01-01

    Following preparation of reference materials 1 through 4 (1. Oyster homogenate (MA-M-1), 2. Sea Plant homogenate (SP-M-1), 3. Sediment (SD-M-1), 4. XAD-2 resin (AB-M-1)), homogeneity tests were conducted at the Monaco Laboratory by analyzing sample sizes that would yield sufficient amounts of organochlorine compounds for quantitation. In the case of the oyster sample, 10 samples weighing 10 grams each showed acceptable homogeneity for all compounds determined, i.e. a standard deviation of ≈ ± 20% from the mean value obtained. The highest standard deviation was observed for pp'DDE (23%) while the lowest standard deviation was recorded for pp'DDT (2.8%)

  18. Complex Hydrides for Hydrogen Storage

    Energy Technology Data Exchange (ETDEWEB)

    Slattery, Darlene; Hampton, Michael

    2003-03-10

    This report describes research into the use of complex hydrides for hydrogen storage. The synthesis of a number of alanates, (AIH4) compounds, was investigated. Both wet chemical and mechano-chemical methods were studied.

  19. The effect of compositional changes on the structural and hydrogen storage properties of (La–Ce)Ni5 type intermetallics towards compounds suitable for metal hydride hydrogen compression

    International Nuclear Information System (INIS)

    Odysseos, M.; De Rango, P.; Christodoulou, C.N.; Hlil, E.K.; Steriotis, T.; Karagiorgis, G.; Charalambopoulou, G.; Papapanagiotou, T.; Ampoumogli, A.; Psycharis, V.; Koultoukis, E.; Fruchart, D.; Stubos, A.

    2013-01-01

    Graphical abstract: The effect of the partial substitution of La with Ce on the crystal structure and the final hydrogen storage properties of the alloys. Highlights: ► Absorption-based systems exploit the properties of reversible metal hydrides. ► AB5 intermetallics are mostly popular for thermal desorption compressors. ► Investigation of H2 absorption/desorption properties of LaNi5 and its derivatives. ► LaNi5 thermodynamic properties adjustment by partially replacing La with rare earths. -- Abstract: The present work has been aiming at the synthesis and study of a series of La 1−x Ce x Ni 5 (x = 0, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8) alloys in an attempt to investigate possible alterations of the hydrogen absorption/desorption properties The alloys were prepared by induction melting of the constituent elements. The systematic characterization of all new compounds by means of XRD and hydrogen sorption measurements revealed the effect of the partial substitution of La with Ce on the crystal structure and the final hydrogen storage properties of the alloys. Extensive absorption/desorption experiments (Van’t Hoff diagrams) have shown that such alloys can be used to build a metal hydride compressor (MHC), compressing H 2 gas from 0.2 MPa to 4.2 MPa using cold (20 °C) and hot (80 °C) water

  20. Study of the behavior of the compound Mg2Ni0.5Co0.5 front to hydriding process

    International Nuclear Information System (INIS)

    Martinez, C; Ordonez, S; Serafini, D; Guzman, D; Bustos, O

    2012-01-01

    This paper study the behavior of the compound Mg 2 Ni 0,5 Co 0,5 during the hydriding process. Elemental powders of Mg, Ni and Co, with an atomic ratio of 2:0,5:0,5 were mechanically alloyed using a high energy mill SPEX 8000D for 36h. The amorphous and crystalline structure of the samples was characterized through X-ray diffraction The hydriding process was performed by the volumetric technique Sievert at 90 o C and a pressure of 20 bar H 2 . The desorption process was evaluated by differential scanning calorimetry. Based on the results we can conclude that the amorphous structure absorbs more hydrogen, reaching a maximum of 3.6 wt% H2, besides the incorporation of cobalt act as catalyst for the absorption of H2 obtaining values higher than those reported in the Mg-Ni system amorphous state. The desorption process is influenced by the type of structure that presents the alloy

  1. Preparation, characterization, and use of metal hydrides for fuel systems. Progress report, September 1, 1976--May 31, 1977

    International Nuclear Information System (INIS)

    Herley, P.J.

    1977-05-01

    The isothermal decomposition kinetics of unirradiated and irradiated powdered lithium aluminum hydride have been determined in the temperature range 125 to 155 0 C. The resulting activation energies for unirradiated material for the induction, acceleratory, decay and slow final rate were, respectively, 116.8, 94.3, 87.1 and 12.9 +- 4.6 KJ/mole. For preirradiated powders (1.25 x 10 5 rad) activation energies for the same periods were 119.0, 99.5, 80.5 and 10.0 +- 4.6 KJ/mole, respectively. Admixture with powdered aluminum, nickel and final reaction product did not affect the subsequent thermal decomposition. Exposure to dry air and carbon dioxide do not affect the decomposition, but 2 minute exposure to saturated water vapor reduces the percentage decomposition by almost 50%. An extensive differential scanning calorimeter study has been made of LiAlH 4 (irradiation and water vapor effects), AlH 3 and NaAlH 3 (irradiation effects). The results indicate that irradiation tends to move the existing peaks to lower temperatures and at higher doses may even introduce additional peaks. The data above were analyzed using a cubic acceleratory period equation and a monomolecular decay law. In addition the analysis shows that irradiation increased the concentration of decomposition nuclei and the rate that potential decomposition sites are converted to active sites. These observations suggest that the same process is occurring in both irradiated and unirradiated lithium aluminum hydride, but that the rate constants are increased by prior irradiation. The photolytic decomposition of powdered LiAlH 4 and AlH 3 is markedly reproducible with no dark rate occurring in both instances. Magnesium hydride is also readily photolyzed with the BH 6 lamp and the actinic wavelength and intensity-rate relationships are being determined

  2. First-principles theory of anharmonicity and the inverse isotope effect in superconducting palladium-hydride compounds.

    Science.gov (United States)

    Errea, Ion; Calandra, Matteo; Mauri, Francesco

    2013-10-25

    Palladium hydrides display the largest isotope effect anomaly known in the literature. Replacement of hydrogen with the heavier isotopes leads to higher superconducting temperatures, a behavior inconsistent with harmonic theory. Solving the self-consistent harmonic approximation by a stochastic approach, we obtain the anharmonic free energy, the thermal expansion, and the superconducting properties fully ab initio. We find that the phonon spectra are strongly renormalized by anharmonicity far beyond the perturbative regime. Superconductivity is phonon mediated, but the harmonic approximation largely overestimates the superconducting critical temperatures. We explain the inverse isotope effect, obtaining a -0.38 value for the isotope coefficient in good agreement with experiments, hydrogen anharmonicity being mainly responsible for the isotope anomaly.

  3. Synthesis and properties of bis(pentamethylcyclopentadienyl) actinide hydrocarbyls and hydrides. A new class of highly reactive f-element organometallic compounds

    International Nuclear Information System (INIS)

    Fagan, P.J.; Manriquez, J.M.; Maatta, E.A.; Seyam, A.M.; Marks, T.J.

    1981-01-01

    The synthesis and chemical and physcochemical properties of Th and U bis(pentamethylcyclopentadienyl) chlorides, hydrocarbyls, chlorohydrocarbyls, and hydrides are reported. The reaction of the precursor compounds M[eta 5 -(CH 3 ) 5 C 5 ] 2 Cl 2 with 2 equiv of lithium reagent RLi produces M[eta 5 -(CH 3 ) 5 ] 2 R 2 compounds where R = CH 3 , CH 2 Si(CH 3 ) 3 , CH 2 C(CH 3 ) 3 , CH 2 C 6 H 5 , and C 6 H 5 (M = Th) and R = CH 3 , CH 2 Si(CH 3 ) 3 , CH 2 C 6 H 5 , and C 6 H 5 (M = U) in good yield. With 1 equiv of lithium reagent, M[eta 5 -(CH 3 ) 5 C 5 ] 2 (R)Cl compounds where R = CH 2 C(CH 3 ) 3 , CH 2 Si(CH 3 ) 3 , CH 2 C 6 H 5 , and C 6 H 5 (M = Th) and R = CH 2 C(CH 3 ) 3 CH 2 Si(C 3 ) 3 , CH 2 C 6 H 5 , and C 6 H 5 , and C 6 H 5 (M = U) are formed in high yield. The M[eta 5 -(CH 3 ) 5 C 52 (C 3 )Cl compounds can be synthesized by redistribution between the corresponding dimethyl and dichloro complexes. The new organoactinides were thoroughly characterized by elemental analysis, 1 H NMR and vibrational spectroscopy, and in many cases cryoscopic molecular weight measurements. The hydrocarbyls and chlorohydrocarbyls generally exhibit high thermal stability. However, the diphenyl compounds react readily with C 6 D 6 to yield, via a benzyne complex, the corresponding M(C 6 D 5 ) 2 compounds. The Th bis(neopentyl) complex reacts with benzene to produce the corresponding diphenyl complex. Competition experiments at -78 0 C indicate that the Th complexes are more reactive than those of U. The M[eta 5 -(CH 3 ) 5

  4. Analyzing compound and project progress through multi-objective-based compound quality assessment.

    Science.gov (United States)

    Nissink, J Willem M; Degorce, Sébastien

    2013-05-01

    Compound-quality scoring methods designed to evaluate multiple drug properties concurrently are useful to analyze and prioritize output from drug-design efforts. However, formalized multiparameter optimization approaches are not widely used in drug design. We rank molecules synthesized in drug-discovery projects using simple and aggregated desirability functions reflecting medicinal chemistry 'rules'. Our quality score deals transparently with missing data, a key requirement in drug-hunting projects where data availability is often limited. We further estimate confidence in the interpretation of such a compound-quality measure. Scores and associated confidences provide systematic insight in the quality of emerging chemical equity. Tracking quality of synthetic output over time yields valuable insight into the progress of drug-design teams, with potential applications in risk and resource management of a drug portfolio.

  5. The Effect of Hydrogen and Hydrides on the Integrity of Zirconium Alloy Components Delayed Hydride Cracking

    CERN Document Server

    Puls, Manfred P

    2012-01-01

    By drawing together the current theoretical and experimental understanding of the phenomena of delayed hydride cracking (DHC) in zirconium alloys, The Effect of Hydrogen and Hydrides on the Integrity of Zirconium Alloy Components: Delayed Hydride Cracking provides a detailed explanation focusing on the properties of hydrogen and hydrides in these alloys. Whilst the focus lies on zirconium alloys, the combination of both the empirical and mechanistic approaches creates a solid understanding that can also be applied to other hydride forming metals.   This up-to-date reference focuses on documented research surrounding DHC, including current methodologies for design and assessment of the results of periodic in-service inspections of pressure tubes in nuclear reactors. Emphasis is placed on showing that our understanding of DHC is supported by progress across a broad range of fields. These include hysteresis associated with first-order phase transformations; phase relationships in coherent crystalline metallic...

  6. NMR study of hydride systems

    International Nuclear Information System (INIS)

    Peretz, M.

    1980-02-01

    The hydrides of thorium (ThH 2 , Th 4 H 15 and Th 4 D 15 ) and the intermetallic compound system (Zr(Vsub(1-x)Cosub(x)) 2 and its hydrides were investigated using the nuclear magnetic resonance (NMR) technique. From the results for the thorium hydride samples it was concluded that the density of states at the Fermi level n(Esub(f)) is higher in Th 4 H 15 than in ThH 2 ; there is an indirect reaction between the protons and the d electrons belonging to the Th atoms in Th 4 H 15 ; n(E) has a sharp structure near Esub(f). It was also found that the hydrogen diffusion mechanism changes with temperature. From the results for the intermetallic compound system conclusions were drawn concerning variations in the electronic structure, which explain the behavior of the system. In hydrogen diffusion studies in several samples it was found that Co atoms slow the diffusion rate. Quadrupole spectra obtained at low temperatures show that the H atoms preferably occupy tetrahedral sites formed by three V atoms and one Z atom. (H.K.)

  7. Zirconium hydride containing explosive composition

    Science.gov (United States)

    Walker, Franklin E.; Wasley, Richard J.

    1981-01-01

    An improved explosive composition is disclosed and comprises a major portion of an explosive having a detonation velocity between about 1500 and 10,000 meters per second and a minor amount of a donor additive comprising a non-explosive compound or mixture of non-explosive compounds which when subjected to an energy fluence of 1000 calories/cm.sup.2 or less is capable of releasing free radicals each having a molecular weight between 1 and 120. Exemplary donor additives are dibasic acids, polyamines and metal hydrides.

  8. Metal Hydride Compression

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Terry A. [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Bowman, Robert [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Smith, Barton [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Anovitz, Lawrence [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Jensen, Craig [Hawaii Hydrogen Carriers LLC, Honolulu, HI (United States)

    2017-07-01

    feed pressure of >50 bar and a delivery pressure ≥ 875 bar of high purity H2 gas using the scheme shown in Figure 1. Progress to date includes the selection of two candidate metal hydrides for each compressor stage, supplier engagement and synthesis of small samples, and the beginning of in-depth characterization of their thermodynamics, kinetics, and hydrogen capacities for optimal performance with respect to energy requirements and efficiency. Additionally, bed design trade studies are underway and will be finalized in FY18. Subsequently, the prototype two-stage compressor will be fabricated, assembled and experimentally evaluated in FY19.

  9. Structural and Mössbauer spectroscopy characterization of bulk and nanostructured TiFe{sub 0.5} Ni{sub 0.5}/graphite compounds and their hydrides

    Energy Technology Data Exchange (ETDEWEB)

    Martínez, M. A. R., E-mail: fisicorodriguez@gmail.com; André-Filho, J.; Félix, L. L.; Coaquira, J. A. H.; Garg, V. K.; Oliveira, A. C. [Universidade de Brasília, Instituto de Física, Núcleo de Física Aplicada (Brazil); Mestnik-Filho, J. [Instituto de Pesquisas energéticas e Nucleares, IPEN-CNEN/SP (Brazil)

    2015-06-15

    The structural and hyperfine properties of bulk TiFe{sub 0.5}Ni{sub 0.5} intermetallic and ball-milled TiFe{sub 0.5}Ni{sub 0.5}/graphite compounds and their hydrides have been studied. The bulk and nanostructured TiFe{sub 0.5}Ni{sub 0.5} compounds crystallize in the cubic crystal structure of CsCl (B2). After hydrogenation, the formation of hydrogen-poor phase (∝-phase) and hydride phase (β-phase) have been determined for the bulk compound. However, the formation of the ∝-phase and the hydrogen-richest phase (γ-phase) and other secondary phases have been determined for the ball-milled TiFe{sub 0.5}Ni{sub 0.5}/graphite sample. It has been determined that the ball-milled TiFe{sub 0.5}Ni{sub 0.5}/graphite sample presents a large amount of the γ-phase which indicates that the presence of graphite nearby nanostructured intermetallic grains enhances the absorption of hydrogen. Mossbauer results are consistent with the structural results. Meanwhile, no significant changes in the isomer shift (IS) value has been determined for the α-phase with respect to the intermetallic compound, a strong increase in the IS value has been determined for the β- and γ-phases with respect to the ∝-phase. That increase indicates a decrease of the s-electron density at the Fe nuclei due to the charge transfer from the metal to the nearby hydrogen atoms.

  10. Research Progress of Natural Product Gentiopicroside - a Secoiridoid Compound.

    Science.gov (United States)

    Wu, Shaoping; Ning, Yaoyao; Zhao, Yingyong; Sun, Wenji; Thorimbert, Serge; Dechoux, Luc; Sollogoub, Matthieu; Zhang, Yongmin

    2017-01-01

    Gentiopicroside is a secoiridoid compound isolated from Gentiana lutea which is called Qin Jiao in Chinese. It is one of the most common herbal medicines used in China. In this article, we review the pharmacological and biological activity (antiviral, anti-inflammatory, analgesia, antihepatotoxic and choleretic), as well as biotransformation of the gentiopicroside. In addition, attempt towards the total synthesis of gentiopicroside is also presented.

  11. Preparation of beryllium hydride

    International Nuclear Information System (INIS)

    Roberts, C.B.

    1975-01-01

    A process is described for preparing beryllium hydride by the direct reaction of beryllium borohydride and aluminum hydride trimethylamine adduct. Volatile by-products and unreacted reactants are readily removed from the product mass by sublimation and/or evaporation. (U.S.)

  12. Regenerative Hydride Heat Pump

    Science.gov (United States)

    Jones, Jack A.

    1992-01-01

    Hydride heat pump features regenerative heating and single circulation loop. Counterflow heat exchangers accommodate different temperatures of FeTi and LaNi4.7Al0.3 subloops. Heating scheme increases efficiency.

  13. Alkali metal hydride formation

    International Nuclear Information System (INIS)

    1976-01-01

    The present invention relates to a method of producing alkali metal hydrides by absorbing hydrogen gas under pressure into a mixture of lower alkyl mono amines and alkali metal alkyl amides selected from sodium and potassium amides formed from said amines. The present invention also includes purification of a mixture of the amines and amides which contain impurities, such as is used as a catalytic exchange liquid in the enrichment of deuterium, involving the formation of the alkali metal hydride

  14. Blistering and hydride embrittlement

    International Nuclear Information System (INIS)

    Louthan, M.R. Jr.

    1975-01-01

    The effects of hydrogen on the mechanical properties of metals have been categorized into several groups. Two of the groups, hydrogen blistering and hydride embrittlement, are reasonably well understood, and problems relating to their occurrence may be avoided if that understanding is used as a basis for selecting alloys for hydrogen service. Blistering and hydride embrittlement are described along with several techniques of materials selection and used to minimize their adverse effects. (U.S.)

  15. Conference 'Chemistry of hydrides' Proceedings

    International Nuclear Information System (INIS)

    1991-07-01

    This collection of thesis of conference of Chemistry hydrides presents the results of investigations concerning of base questions of chemistry of nonorganic hydrides, including synthesis questions, studying of physical and chemical properties, thermodynamics, analytical chemistry, investigation of structure, equilibriums in the systems of metal-hydrogen, behaviour of nonorganic hydrides in non-water mediums and applying investigations in the chemistry area and technology of nonorganic hydrides

  16. Preparation of beryllium hydride

    International Nuclear Information System (INIS)

    Lowrance, B.R.

    1975-01-01

    A process is described for the preparation of beryllium hydride which comprises pyrolyzing, while in solution in a solvent inert under the reaction conditions, with respect to reactants and products and at a temperature in the range of about 100 0 to about 200 0 C, sufficient to result in the formation of beryllium hydride, a di-t-alkyl beryllium etherate wherein each tertiary alkyl radical contains from 4 to 20 carbon atoms. The pyrolysis is carried out under an atmosphere inert under the reaction conditions, with respect to reactants and products. (U.S.)

  17. Oxidation of Group 8 transition-Metal Hydrides and Ionic Hydrogenation of Ketones and Aldehydes

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Kjell-Tore

    1996-08-01

    Transition-metal hydrides have received considerable attention during the last decades because of their unusual reactivity and their potential as homogeneous catalysts for hydrogenation and other reactions of organic substrates. An important class of catalytic processes where transition-metal hydrides are involved is the homogeneous hydrogenation of alkenes, alkynes, ketones, aldehydes, arenes and nitro compounds. This thesis studies the oxidation of Group 8 transition-metal hydrides and the ionic hydrogenation of ketones and aldehydes.

  18. New hydride compounds of 1,4-diazabicyclo[2.2.2]octane and its dication with borine and tetrahydridoborate anion and products of their transformations

    International Nuclear Information System (INIS)

    Shevchenko, Yu.N.; Yashina, N.I.; Markova, O.Z.; Trachevskij, V.V.

    1996-01-01

    New compounds [dabcoH 2 ](BH 4 ) 2 , dabco(BH 3 ) 2 2H 2 , [dabco(BH 3 ) 2 H 2 ] n have been synthesized by means of interaction between dihydrochloride of 1,4-diazobicyclo[2.2.2] octane (dabco) and NaBH 4 in the medium of nonaqueous solvents (glyme, diglyme, tetrahydrofuran, dimethylsulfoxide) and identified by the methods of element analysis, conductometry, 1 H, 11 B, 14 N NMR, IR spectroscopy and thermal analysis. A mechanism is suggested and the conditions are defined for mutual transformations of the compounds studied. Their ability to bind reversibly molecular hydrogen has been revealed for the first time. 19 refs.; 3 figs.; 1 tab

  19. Recent progress of soft X-ray photoelectron spectroscopy studies of uranium compounds

    Energy Technology Data Exchange (ETDEWEB)

    Fujimori, Shin-ichi; Takeda, Yukiharu; Okane, Tetsuo; Saitoh, Yuji [Condensed Matter Science Divisions, Japan Atomic Energy Agency, Sayo, Hyogo (Japan); Fujimori, Atsushi [Condensed Matter Science Divisions, Japan Atomic Energy Agency, Sayo, Hyogo (Japan); Department of Physics, University of Tokyo, Hongo, Tokyo 113-0033 (Japan); Yamagami, Hiroshi [Condensed Matter Science Divisions, Japan Atomic Energy Agency, Sayo, Hyogo (Japan); Department of Physics, Faculty of Science, Kyoto Sangyo University, Kyoto 603-8555 (Japan); Yamamoto, Etsuji; Haga, Yoshinori [Advanced Science Research Center, Japan Atomic Energy Agency, Tokai, Ibaraki 319-1195 (Japan); Ōnuki, Yoshichika [Advanced Science Research Center, Japan Atomic Energy Agency, Tokai, Ibaraki 319-1195 (Japan); Faculty of Science, University of the Ryukyus, Nishihara, Okinawa 903-0213 (Japan)

    2016-04-15

    Recent progresses in the soft X-ray photoelectron spectroscopy (PES) studies (hν ≳ 100 eV) for uranium compounds are briefly reviewed. The soft X-ray PES has enhanced sensitivities for the bulk U 5f electronic structure, which is essential to understand the unique physical properties of uranium compounds. In particular, the recent remarkable improvement in energy resolutions from an order of 1 eV to 100 meV made it possible to observe fine structures in U 5f density of states. Furthermore, soft X-ray ARPES becomes available due to the increase of photon flux at beamlines in third generation synchrotron radiation facilities.The technique made it possible to observe bulk band structures and Fermi surfaces of uranium compounds and therefore, the results can be directly compared with theoretical models such as band-structure calculations. The core-level spectra of uranium compounds show a systematic behavior depending on their electronic structures, suggesting that they can be utilized to determine basic physical parameters such as the U 5f-ligand hybridizations or Comlomb interaction between U 5f electrons. It is shown that soft X-ray PES provides unique opportunities to understand the electronic structures of uranium compounds.

  20. Electrolytic hydriding and hydride distribution in zircaloy-4

    International Nuclear Information System (INIS)

    Gomes, M.H.L.

    1974-01-01

    A study has been made of the electrolytic hydriding of zircaloy-4 in the range 20-80 0 C, for reaction times from 5 to 30 hours, and the effect of potential, pH and dissolved oxygen has been investigated. The hydriding reaction was more sensitive to time and temperature conditions than to the electrochemical variables. It has been shown that a controlled introduction of hydrides in zircaloy is feasible. Hydrides were found to be plate like shaped and distributed mainly along grain-boundaries. It has been shown that hydriding kinetics do not follow a simple law but may be described by a Johnson-Mehl empirical equation. On the basis of this equation an activation energy of 9.400 cal/mol has been determined, which is close to the activation energy for diffusion of hydrogen in the hydride. (author)

  1. U-8 wt %Mo and 7 wt %Mo alloys powder obtained by an hydride-de hydride process

    International Nuclear Information System (INIS)

    Balart, Silvia N.; Bruzzoni, Pablo; Granovsky, Marta S.; Gribaudo, Luis M. J.; Hermida, Jorge D.; Ovejero, Jose; Rubiolo, Gerardo H.; Vicente, Eduardo E.

    2000-01-01

    Uranium-molybdenum alloys are been tested as a component in high-density LEU dispersion fuels with very good performances. These alloys need to be transformed to powder due to the manufacturing requirements of the fuels. One method to convert ductile alloys into powder is the hydride-de hydride process, which takes advantage of the ability of the U-α phase to transform to UH 3 : a brittle and relatively low-density compound. U-Mo alloys around 7 and 8 wt % Mo were melted and heat treated at different temperature ranges in order to partially convert γ -phase to α -phase. Subsequent hydriding transforms this α -phase to UH 3 . The volume change associated to the hydride formation embrittled the material which ends up in a powdered alloy. Results of the optical metallography, scanning electron microscopy, X-ray diffraction during different steps of the process are shown. (author)

  2. In-situ X-ray diffraction : a useful tool to investigate hydride-formation reactions

    NARCIS (Netherlands)

    Notten, P.H.L.; Daams, J.L.C.; Veirman, de A.E.M.; Staals, A.A.

    1994-01-01

    A high-pressure X-ray diffraction (XRD) cell has been designed which allowed us to study simultaneously hydrogen absorption/desorption isotherms and XRD powder diffraction patterns on (de)hydrided intermetallic compounds. The hydride formation reaction was investigated in the case of LaNi5 under

  3. Preparation of beryllium hydride

    International Nuclear Information System (INIS)

    Bergeron, C.R.; Baker, R.W.

    1975-01-01

    Beryllium hydride of high bulk density, suitable for use as a component of high-energy fuels, is prepared by the pyrolysis, in solution in an inert solvent, of a ditertiary-alkyl beryllium. An agitator introduces mechanical energy into the reaction system, during the pyrolysis, at the rate of 0.002 to 0.30 horsepower per gallon of reaction mixture. (U.S.)

  4. Air and metal hydride battery

    Energy Technology Data Exchange (ETDEWEB)

    Lampinen, M.; Noponen, T. [Helsinki Univ. of Technology, Otaniemi (Finland). Lab. of Applied Thermodynamics

    1998-12-31

    The main goal of the air and metal hydride battery project was to enhance the performance and manufacturing technology of both electrodes to such a degree that an air-metal hydride battery could become a commercially and technically competitive power source for electric vehicles. By the end of the project it was possible to demonstrate the very first prototype of the air-metal hydride battery at EV scale, achieving all the required design parameters. (orig.)

  5. Hydriding of metallic thorium

    International Nuclear Information System (INIS)

    Miyake, Masanobu; Katsura, Masahiro; Matsuki, Yuichi; Uno, Masayoshi

    1983-01-01

    Powdered thorium is usually prepared through a combination of hydriding and dehydriding processes of metallic thorium in massive form, in which the hydriding process consists of two steps: the formation of ThH 2 , and the formation of Th 4 H 15 . However, little has yet been known as to on what stage of hydriding process the pulverization takes place. It is found in the present study that the formation of Th 4 H 15 by the reaction of ThH 2 with H 2 is responsible for pulverization. Temperature of 70 deg C adopted in this work for the reaction of formation Th 4 H 15 seems to be much more effective for production of powdered thorium than 200 - 300 deg C in the literature. The pressure-composition-temperature relationships for Th-H system are determined at 200, 300, 350, and 800 deg C. From these results, a tentative equilibrium phase diagram for the Th-H system is proposed, attention being focused on the two-phase region of ThH 2 and Th 4 H 15 . Pulverization process is discussed in terms of the tentative phase diagram. (author)

  6. Hydrogen Outgassing from Lithium Hydride

    Energy Technology Data Exchange (ETDEWEB)

    Dinh, L N; Schildbach, M A; Smith, R A; Balazs1, B; McLean II, W

    2006-04-20

    Lithium hydride is a nuclear material with a great affinity for moisture. As a result of exposure to water vapor during machining, transportation, storage and assembly, a corrosion layer (oxide and/or hydroxide) always forms on the surface of lithium hydride resulting in the release of hydrogen gas. Thermodynamically, lithium hydride, lithium oxide and lithium hydroxide are all stable. However, lithium hydroxides formed near the lithium hydride substrate (interface hydroxide) and near the sample/vacuum interface (surface hydroxide) are much less thermally stable than their bulk counterpart. In a dry environment, the interface/surface hydroxides slowly degenerate over many years/decades at room temperature into lithium oxide, releasing water vapor and ultimately hydrogen gas through reaction of the water vapor with the lithium hydride substrate. This outgassing can potentially cause metal hydriding and/or compatibility issues elsewhere in the device. In this chapter, the morphology and the chemistry of the corrosion layer grown on lithium hydride (and in some cases, its isotopic cousin, lithium deuteride) as a result of exposure to moisture are investigated. The hydrogen outgassing processes associated with the formation and subsequent degeneration of this corrosion layer are described. Experimental techniques to measure the hydrogen outgassing kinetics from lithium hydride and methods employing the measured kinetics to predict hydrogen outgassing as a function of time and temperature are presented. Finally, practical procedures to mitigate the problem of hydrogen outgassing from lithium hydride are discussed.

  7. The status and immediate problems of the chemistry of transition metal hydrides

    International Nuclear Information System (INIS)

    Meikheeva, V.I.

    1978-01-01

    The state of the art and perspectives of the chemistry transition metal hydrides are reviewed, the hydrides being essentially compounds with interstitial hydrogen in the crystal lattice of the metals. The possibilities of hydrogenation of transition metals are considered along with that of compounds of rare earth elements with metals of the iron family. It is shown that the products of hydrogenation of many alloys are unstable and disintegrate forming simpler hydrides. The phase diagram of La-Ni-H system resembles the isotherm of a ternary metal system with the difference that no continuous series of solid solutions is formed. Most hydrogenation products across LaHsub(2-3)-NiH are X-ray amorphous. The nature of hydrogen in hydrides is discussed along with the possibilities of synthesis of new hydrides of transition metals

  8. Zircaloy-4 hydridation

    International Nuclear Information System (INIS)

    Vizcaino, Pablo

    1997-01-01

    The objectives of this work can be summarized as: 1) To reproduce, by heat treatments, matrix microstructures and hydride morphologies similar to those observed in structural components of the CNA-1 and CNE nuclear power plants; 2) To study the evolution of the mechanical properties of the original material with different hydrogen concentrations, such as microhardness, and its capacity to distinguish these materials; 3) To find parameters that allow to estimate the hydrogen content of a material by quantitative metallographic techniques, to be used as complementary in the study of the radioactive materials from reactors

  9. Progress in the pharmacological treatment of human cystic and alveolar echinococcosis: Compounds and therapeutic targets

    Science.gov (United States)

    Siles-Lucas, Mar; Casulli, Adriano; Cirilli, Roberto

    2018-01-01

    Human cystic and alveolar echinococcosis are helmintic zoonotic diseases caused by infections with the larval stages of the cestode parasites Echinococcus granulosus and E. multilocularis, respectively. Both diseases are progressive and chronic, and often fatal if left unattended for E. multilocularis. As a treatment approach, chemotherapy against these orphan and neglected diseases has been available for more than 40 years. However, drug options were limited to the benzimidazoles albendazole and mebendazole, the only chemical compounds currently licensed for treatment in humans. To compensate this therapeutic shortfall, new treatment alternatives are urgently needed, including the identification, development, and assessment of novel compound classes and drug targets. Here is presented a thorough overview of the range of compounds that have been tested against E. granulosus and E. multilocularis in recent years, including in vitro and in vivo data on their mode of action, dosage, administration regimen, therapeutic outcomes, and associated clinical symptoms. Drugs covered included albendazole, mebendazole, and other members of the benzimidazole family and their derivatives, including improved formulations and combined therapies with other biocidal agents. Chemically synthetized molecules previously known to be effective against other infectious and non-infectious conditions such as anti-virals, antibiotics, anti-parasites, anti-mycotics, and anti-neoplastics are addressed. In view of their increasing relevance, natural occurring compounds derived from plant and fungal extracts are also discussed. Special attention has been paid to the recent application of genomic science on drug discovery and clinical medicine, particularly through the identification of small inhibitor molecules tackling key metabolic enzymes or signalling pathways. PMID:29677189

  10. Progress in the pharmacological treatment of human cystic and alveolar echinococcosis: Compounds and therapeutic targets.

    Directory of Open Access Journals (Sweden)

    Mar Siles-Lucas

    2018-04-01

    Full Text Available Human cystic and alveolar echinococcosis are helmintic zoonotic diseases caused by infections with the larval stages of the cestode parasites Echinococcus granulosus and E. multilocularis, respectively. Both diseases are progressive and chronic, and often fatal if left unattended for E. multilocularis. As a treatment approach, chemotherapy against these orphan and neglected diseases has been available for more than 40 years. However, drug options were limited to the benzimidazoles albendazole and mebendazole, the only chemical compounds currently licensed for treatment in humans. To compensate this therapeutic shortfall, new treatment alternatives are urgently needed, including the identification, development, and assessment of novel compound classes and drug targets. Here is presented a thorough overview of the range of compounds that have been tested against E. granulosus and E. multilocularis in recent years, including in vitro and in vivo data on their mode of action, dosage, administration regimen, therapeutic outcomes, and associated clinical symptoms. Drugs covered included albendazole, mebendazole, and other members of the benzimidazole family and their derivatives, including improved formulations and combined therapies with other biocidal agents. Chemically synthetized molecules previously known to be effective against other infectious and non-infectious conditions such as anti-virals, antibiotics, anti-parasites, anti-mycotics, and anti-neoplastics are addressed. In view of their increasing relevance, natural occurring compounds derived from plant and fungal extracts are also discussed. Special attention has been paid to the recent application of genomic science on drug discovery and clinical medicine, particularly through the identification of small inhibitor molecules tackling key metabolic enzymes or signalling pathways.

  11. Hydride embrittlement in zircaloy components

    Energy Technology Data Exchange (ETDEWEB)

    Lobo, Raquel M.; Andrade, Arnaldo H.P.; Castagnet, Mariano, E-mail: rmlobo@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2011-07-01

    Zirconium alloys are used in nuclear reactor cores under high-temperature water environment. During service, hydrogen is generated by corrosion processes, and it is readily absorbed by these materials. When hydrogen concentration exceeds the terminal solid solubility, the excess hydrogen precipitates as zirconium hydride (ZrH{sub 2}) platelets or needles. Zirconium alloys components can fail by hydride cracking if they contain large flaws and are highly stressed. Zirconium alloys are susceptible to a mechanism for crack initiation and propagation termed delayed hydride cracking (DHC). The presence of brittle hydrides, with a K{sub Ic} fracture toughness of only a few MPa{radical}m, results in a severe loss in ductility and toughness when platelet normal is oriented parallel to the applied stress. In plate or tubing, hydrides tend to form perpendicular to the thickness direction due to the texture developed during fabrication. Hydrides in this orientation do not generally cause structural problems because applied stresses in the through-thickness direction are very low. However, the high mobility of hydrogen in a zirconium lattice enables redistribution of hydrides normal to the applied stress direction, which can result in localized embrittlement. When a platelet reaches a critical length it ruptures. If the tensile stress is sufficiently great, crack initiation starts at some of these hydrides. Crack propagation occurs by repeating the same process at the crack tip. Delayed hydride cracking can degrade the structural integrity of zirconium alloys during reactor service. The paper focuses on the fracture mechanics and fractographic aspects of hydride material. (author)

  12. Progress of research in treatment of hyperlipidemia by monomer or compound recipe of Chinese herbal medicine.

    Science.gov (United States)

    Dou, Xiao-bing; Wo, Xing-de; Fan, Chun-lei

    2008-03-01

    Hyperlipidemia (HLP) is the No.1 risk factor for patients with atherosclerosis (AS) and is directly related to the occurrence of coronary artery disease (CAD) and cerebrovascular disease. Therefore, prevention and treatment of AS is of great importance and of practical significance in controlling the incidence and mortality of CAD. With its peculiar syndrome-dependent therapy, traditional Chinese medicine (TCM) has accumulated abundant practical experiences in this field and good clinical effects have been achieved. Chinese herbal medicine, with its particularly unique advantages and high potentials yet to be tapped, displays its huge strength in HLP prevention and treatment. The progress of studies concerning prevention and treatment of HLP by Chinese herbal medicines, in the form of monomers or compound recipes, is reviewed in this paper.

  13. Deiodination reactions using tributyltin hydride for potential labelling experiments

    International Nuclear Information System (INIS)

    Zippi, E.M.; Plourde, G.W. II; Satyamurthy, N.

    1995-01-01

    2,6-Dinitro-1-iodobenzene and 2,4-dinitro-1-iodobenzene were deiodinated with tributylin hydride at different temperatures using various addition modes. The product ratios of 1,3-dinitrobenzene and the corresponding tributylstannyldinitrobenzene compounds were determined by NMR in order to evaluate the optimum conditions for impending tritiation experiments. (Author)

  14. SPECIATION OF SELENIUM AND ARSENIC COMPOUNDS BY CAPILLARY ELECTROPHORESIS WITH HYDRODYNAMICALLY MODIFIED ELECTROOSMOTIC FLOW AND ON-LINE REDUCTION OF SELENIUM(VI) TO SELENIUM(IV) WITH HYDRIDE GENERATION INDUCTIVELY COUPLED PLASMA MASS SPECTROMETRIC DETECTION

    Science.gov (United States)

    Capillary electrophoresis (CE) with hydride generation inductively coupled plasma mass spectrometry was used to determine four arsenicals and two selenium species. Selenate (SeVI) was reduced on-line to selenite (SeIV') by mixing the CE effluent with concentrated HCl. A microporo...

  15. Tritium immobilization and packaging using metal hydrides

    International Nuclear Information System (INIS)

    Holtslander, W.J.; Yaraskavitch, J.M.

    1981-04-01

    Tritium recovered from CANDU heavy water reactors will have to be packaged and stored in a safe manner. Tritium will be recovered in the elemental form, T 2 . Metal tritides are effective compounds in which to immobilize the tritium as a stable non-reactive solid with a high tritium capacity. The technology necessary to prepare hydrides of suitable metals, such as titanium and zirconium, have been developed and the properties of the prepared materials evaluated. Conceptual designs of packages for containing metal tritides suitable for transportation and long-term storage have been made and initial testing started. (author)

  16. Recent Progress in Graphite Intercalation Compounds for Rechargeable Metal (Li, Na, K, Al)-Ion Batteries.

    Science.gov (United States)

    Xu, Jiantie; Dou, Yuhai; Wei, Zengxi; Ma, Jianmin; Deng, Yonghong; Li, Yutao; Liu, Huakun; Dou, Shixue

    2017-10-01

    Lithium-ion batteries (LIBs) with higher energy density are very necessary to meet the increasing demand for devices with better performance. With the commercial success of lithiated graphite, other graphite intercalation compounds (GICs) have also been intensively reported, not only for LIBs, but also for other metal (Na, K, Al) ion batteries. In this Progress Report, we briefly review the application of GICs as anodes and cathodes in metal (Li, Na, K, Al) ion batteries. After a brief introduction on the development history of GICs, the electrochemistry of cationic GICs and anionic GICs is summarized. We further briefly summarize the use of cationic GICs and anionic GICs in alkali ion batteries and the use of anionic GICs in aluminium-ion batteries. Finally, we reach some conclusions on the drawbacks, major progress, emerging challenges, and some perspectives on the development of GICs for metal (Li, Na, K, Al) ion batteries. Further development of GICs for metal (Li, Na, K, Al) ion batteries is not only a strong supplement to the commercialized success of lithiated-graphite for LIBs, but also an effective strategy to develop diverse high-energy batteries for stationary energy storage in the future.

  17. Complex Metal Hydrides for Hydrogen, Thermal and Electrochemical Energy Storage

    DEFF Research Database (Denmark)

    Moller, Kasper T.; Sheppard, Drew; Ravnsbaek, Dorthe B.

    2017-01-01

    Hydrogen has a very diverse chemistry and reacts with most other elements to form compounds, which have fascinating structures, compositions and properties. Complex metal hydrides are a rapidly expanding class of materials, approaching multi-functionality, in particular within the energy storage...... inspiration to solve the great challenge of our time: efficient conversion and large-scale storage of renewable energy....... field. This review illustrates that complex metal hydrides may store hydrogen in the solid state, act as novel battery materials, both as electrolytes and electrode materials, or store solar heat in a more efficient manner as compared to traditional heat storage materials. Furthermore, it is highlighted...

  18. Process for production of a metal hydride

    Science.gov (United States)

    Allen, Nathan Tait; Butterick, III, Robert; Chin, Arthur Achhing; Millar, Dean Michael; Molzahn, David Craig

    2014-08-12

    A process for production of a metal hydride compound MH.sub.x, wherein x is one or two and M is an alkali metal, Be or Mg. The process comprises combining a compound of formula (R.sup.1O).sub.xM with aluminum, hydrogen and at least one metal selected from among titanium, zirconium, hafnium, niobium, vanadium, tantalum and iron to produce a compound of formula MH.sub.x. R.sup.1 is phenyl or phenyl substituted by at least one alkyl or alkoxy group. A mole ratio of aluminum to (R.sup.1O).sub.xM is from 0.1:1 to 1:1. The catalyst is present at a level of at least 200 ppm based on weight of aluminum.

  19. Erbium hydride decomposition kinetics.

    Energy Technology Data Exchange (ETDEWEB)

    Ferrizz, Robert Matthew

    2006-11-01

    Thermal desorption spectroscopy (TDS) is used to study the decomposition kinetics of erbium hydride thin films. The TDS results presented in this report are analyzed quantitatively using Redhead's method to yield kinetic parameters (E{sub A} {approx} 54.2 kcal/mol), which are then utilized to predict hydrogen outgassing in vacuum for a variety of thermal treatments. Interestingly, it was found that the activation energy for desorption can vary by more than 7 kcal/mol (0.30 eV) for seemingly similar samples. In addition, small amounts of less-stable hydrogen were observed for all erbium dihydride films. A detailed explanation of several approaches for analyzing thermal desorption spectra to obtain kinetic information is included as an appendix.

  20. New ternary hydride formation in U-Ti-H system

    International Nuclear Information System (INIS)

    Yamamoto, Takuya; Kayano, Hideo; Yamawaki, Michio.

    1991-01-01

    Hydrogen absorption properties of two titanium-rich uranium alloys, UTi 2 and UTi 4 , were studied in order to prepare and identify the recently found ternary hydride. They slowly reacted with hydrogen of the initial pressure of 10 5 Pa at 873K to form the ternary hydride. The hydrogenated specimen mainly consisted of the pursued ternary hydride but contained also U(or UO 2 ), TiH x , and some transient phases. X-ray powder diffraction and Electron Probe Micro Analysis proved that it was the UTi 2 H x with the expected MgCu 2 structure, though all the X-ray peaks were broad probably because of inhomogeneity. This compound had extremely high resistance to powdering on its formation, which showed high potential utilities for a non-powdering tritium storage system or for other purposes. (author)

  1. Getting metal-hydrides to do what you want them to

    International Nuclear Information System (INIS)

    Gruen, D.M.

    1981-01-01

    With the discovery of AB 5 compounds, intermetallic hydrides with unusual properties began to be developed (H dissociation pressures of one to several atmospheres, extremely rapid and reversible adsorption/desorption very large amounts of H adsorbed). This paper reviews the factors that must be controlled in order to modify these hydrides to make them useful. The system LaNi 5 + H 2 is used as example. Use of AB 5 hydrides to construct a chemical heat pumps is discussed. Results of a systematic study substituting Al for Ni are reported; the HYCSOS pump is described briefly. Use of hydrides as hydrogen getters (substituted ZrV 2 ) is also discussed. Finally, possible developments in intermetallic hydride research in the 1980's and the hydrogen economy are discussed. 10 figures

  2. Hydriding failure in water reactor fuel elements

    International Nuclear Information System (INIS)

    Sah, D.N.; Ramadasan, E.; Unnikrishnan, K.

    1980-01-01

    Hydriding of the zircaloy cladding has been one of the important causes of failure in water reactor fuel elements. This report reviews the causes, the mechanisms and the methods for prevention of hydriding failure in zircaloy clad water reactor fuel elements. The different types of hydriding of zircaloy cladding have been classified. Various factors influencing zircaloy hydriding from internal and external sources in an operating fuel element have been brought out. The findings of post-irradiation examination of fuel elements from Indian reactors, with respect to clad hydriding and features of hydriding failure are included. (author)

  3. Hydrogen storage in complex hydrides

    International Nuclear Information System (INIS)

    Lupu, D.; Biris, A. R.; Misan, I.

    2005-01-01

    Full text: Hydrogen storage is a key enabling technology for the advancement of hydrogen and fuel cell power technologies in mobile and stationary applications. A relevant role of the fuel cell powered vehicles on the market of the transportation systems will be achieved only if the research and development of on-board vehicular hydrogen storage are able to allow a driving range of at least 500 km. The on-board hydrogen storage systems are more challenging due to the space, weight and cost limitations. This range of autonomy between refueling requires materials able to store at least 6.5% weight hydrogen, available at moderate pressures, at the working temperature of the fuel cells and with acceptable cycling stability. The intensive research on the hydrogen storage in alloys and intermetallic of the LaNi 5 , FeTi or Laves phase type compounds, which started more than three decades ago did not resulted in materials of more than about 3% H storage capacities. The 7.5% H content of the Mg hydride is still of attracting interest but though the absorption has been achieved at lower temperatures by ball milling magnesium with various amounts of nickel, the desorption can not be attained at 1 bar H 2 below 280 deg. C and the kinetics of the process is too slow. In the last decade, the attention is focused on another class of compounds, the complex hydrides of aluminum with alkali metals (alanates), due to their high hydrogen content. It was found that doping with Ti-based catalysts improve the hydrogenation/dehydrogenation conditions of NaAlH 4 . Later on, it was shown that ball milling with solid state catalysts greatly improve the hydrogen desorption kinetics of NaAlH 4 , and this also helps to the rehydriding process. The hydrogen desorption from NaAlH 4 occurs in three steps, it shows a reversible storage capacity of 5.5% H and this led to further research work for a better knowledge of its application relating properties. In this work, ball milling experiments on Na

  4. Mechanical properties and fracture of titanium hydrides

    International Nuclear Information System (INIS)

    Koketsu, Hideyuki; Taniyama, Yoshihiro; Yonezu, Akio; Cho, Hideo; Ogawa, Takeshi; Takemoto, Mikio; Nakayama, Gen

    2006-01-01

    Titanium hydrides tend to suffer fracture when their thicknesses reach a critical thickness. Morphology and mechanical property of the hydrides are, however, not well known. The study aims to reveal the hydride morphology and fracture types of the hydrides. Chevron shaped plate hydrides were found to be produced on the surface of pure titanium (Grade 1) and Grade 7 titanium absorbing hydrogen. There were tree types of fracture of the hydrides, i.e., crack in hydride layer, exfoliation of the layer and shear-type fracture of the hydride plates, during the growth of the hydrides and deformation. We next estimated the true stress-strain curves of the hydrides on Grade 1 and 7 titanium using the dual Vickers indentation method, and the critical strain causing the Mode-I fine crack by indentation. Fracture strength and strain of the hydrides in Grade 1 titanium were estimated as 566 MPa and 4.5%, respectively. Those of the hydride in Grade 7 titanium were 498 MPa and 16%. Though the fracture strains estimated from the plastic instability of true stress-strain curves were approximately the half of those estimated by finite element method, the titanium hydrides were estimated to possess some extent of toughness or plastic deformation capability. (author)

  5. Hydrogen storage in sodium aluminum hydride.

    Energy Technology Data Exchange (ETDEWEB)

    Ozolins, Vidvuds; Herberg, J.L. (Lawrence Livermore National Laboratories, Livermore, CA); McCarty, Kevin F.; Maxwell, Robert S. (Lawrence Livermore National Laboratories, Livermore, CA); Stumpf, Roland Rudolph; Majzoub, Eric H.

    2005-11-01

    Sodium aluminum hydride, NaAlH{sub 4}, has been studied for use as a hydrogen storage material. The effect of Ti, as a few mol. % dopant in the system to increase kinetics of hydrogen sorption, is studied with respect to changes in lattice structure of the crystal. No Ti substitution is found in the crystal lattice. Electronic structure calculations indicate that the NaAlH{sub 4} and Na{sub 3}AlH{sub 6} structures are complex-ionic hydrides with Na{sup +} cations and AlH{sub 4}{sup -} and AlH{sub 6}{sup 3-} anions, respectively. Compound formation studies indicate the primary Ti-compound formed when doping the material at 33 at. % is TiAl{sub 3} , and likely Ti-Al compounds at lower doping rates. A general study of sorption kinetics of NaAlH{sub 4}, when doped with a variety of Ti-halide compounds, indicates a uniform response with the kinetics similar for all dopants. NMR multiple quantum studies of solution-doped samples indicate solvent interaction with the doped alanate. Raman spectroscopy was used to study the lattice dynamics of NaAlH{sub 4}, and illustrated the molecular ionic nature of the lattice as a separation of vibrational modes between the AlH{sub 4}{sup -} anion-modes and lattice-modes. In-situ Raman measurements indicate a stable AlH{sub 4}{sup -} anion that is stable at the melting temperature of NaAlH{sub 4}, indicating that Ti-dopants must affect the Al-H bond strength.

  6. High-pressure hydriding of Zircaloy

    International Nuclear Information System (INIS)

    Kim, Y.S.

    1996-01-01

    The hydriding characteristics of Zircaloy-2(Zry), sponge zirconium (as a liner on Zry plate), and crystal-bar zirconium exposed to pure H 2 at 0.1 MPa or 7 MPa and 400 C were determined in a thermogravimetric apparatus. The morphology of the hydrided specimens was also examined by optical microscopy. For all specimen types, the rate of hydriding in 7 MPa H 2 was two orders of magnitude greater than in 0.1 MPa H 2 . For Zry, uniform bulk hydriding was revealed by hydride precipitates at room temperature and on one occasion, a sunburst hydride. In addition, all specimen types exhibited a hydride surface layer. In a duplex Zry/sponge-Zr specimen, Zry is more heavily hydrided than the sponge Zr layer. (orig.)

  7. Hydride Olefin complexes of tantalum and niobium

    NARCIS (Netherlands)

    Klazinga, Aan Hendrik

    1979-01-01

    This thesis describes investigations on low-valent tantalum and niobium hydride and alkyl complexes, particularly the dicyclopentadienyl tantalum hydride olefin complexes Cp2Ta(H)L (L=olefin). ... Zie: Summary

  8. Heterocyclic organobismuth (III) compounds containing an eight-membered ring: Inhibitory effects on cell cycle progression.

    Science.gov (United States)

    Iuchi, Katsuya; Yagura, Tatsuo

    2018-03-21

    We previously showed that heterocyclic organobismuth compounds have excellent antimicrobial and antitumor potential. These compounds structurally consist of either six- or eight-membered rings. Previous research has shown that bi-chlorodibenzo[c,f][1,5]thiabismocine (Compound 3), an eight-membered ring, induced G 2 /M arrest via inhibition of tubulin polymerization in HeLa cells. Additionally, N-tert-butyl-bi-chlorodi-benzo[c,f][1,5]azabismocine (Compound 1), another eight-membered ring, exhibited higher cytotoxicity than Compound 3 against several cancer cell lines, including HeLa and K562. Finally, bi-chlorophenothiabismin-S,S-dioxide (Compound 5), a six-membered ring, exhibited lower antitumor activity than eight-membered ring compounds. In this study, we investigated the antimitotic activity of Compounds 1 and 5 in HeLa cells. At low concentrations, (0.1 and 0.25 μM), Compound 1 inhibited cell growth and arrested the cell cycle in mitosis. However, 0.5 μM Compound 1 exhibited no antimitotic activity. Conversely, Compound 5 weakly inhibited cell growth and did not markedly arrest the cell cycle. Flow cytometry showed that Compound 1 arrested the cell cycle at G 2 /M, resulting in apoptosis. Compound 1 inhibited tubulin polymerization as revealed by a cell-free assay, and both Compounds 1 and 3 inhibited microtubule spindle formation and chromosome alignment during prometaphase. These results suggest that eight-membered ring-containing organobismuth compounds can induce mitotic arrest by perturbing spindle dynamics. Copyright © 2018. Published by Elsevier Ltd.

  9. Application of acoustic emission to hydride cracking

    International Nuclear Information System (INIS)

    Sagat, S.; Ambler, J.F.R.; Coleman, C.E.

    1986-07-01

    Acoustic emission has been used for over a decade to study delayed hydride cracking (DHC) in zirconium alloys. At first acoustic emission was used primarily to detect the onset of DHC. This was possible because DHC was accompanied by very little plastic deformation of the material and furthermore the amplitudes of the acoustic pulses produced during cracking of the brittle hydride phase were much larger than those from dislocation motion and twinning. Acoustic emission was also used for measuring crack growth when it was found that for a suitable amplitude threshold, the total number of acoustic emission counts was linearly related to the cracked area. Once the proportionality constant was established, the acoustic counts could be converted to the crack length. Now the proportionality between the count rate and the crack growth rate is used to provide feedback between the crack length and the applied load, using computer technology. In such a system, the stress at the crack tip can be maintained constant during the test by adjusting the applied load as the crack progresses, or it can be changed in a predetermined manner, for example, to measure the threshold stress for cracking

  10. Photocatalytic and chemical oxidation of organic compounds in supercritical carbon dioxide. 1998 annual progress report

    International Nuclear Information System (INIS)

    Blake, D.M.

    1998-01-01

    organic compounds in supercritical carbon dioxide can be achieved. Until recently it was not possible for us to obtain high quality, quantitative kinetic data. The original flow cell used to obtain UV-Visible spectra on the recirculating fluid did not provide quantitative concentration data because the sapphire windows did not have adequate transmission characteristics below about 240 nm. A pair of windows with better transmission properties arrived as this report was being prepared. While waiting for the replacement windows for the flow cell, the concentration of reactants was monitored by withdrawing samples of the fluid stream for gas chromatographic analysis. This allowed progress to be made in determining some of the factors that affected the rates of reaction in a qualitative sense but the results had large error bars due to the difficulty in obtaining reproducible samples from the pressurized system using gas tight syringes. This problem was recently solved by incorporating a gas chromatograph with automatic sampling valves into the flow system. The two on line analytical methods will now result in reliable analytical data that can be used to follow the reaction kinetics and detect and identify reaction intermediates and by-products, if any are formed.'

  11. Chemistry and technology of boron and its compounds

    International Nuclear Information System (INIS)

    Zhigach, A.F.; Parfenov, B.P.; Svitsyn, R.A.

    1995-01-01

    The results of research dealing with development of technologies of boron trichloride, boron hydride, aminoderivative boron hydrides, metal borohydrides, carboranes, carborane-containing polymers, carried out at the institute of organoelemental compounds, are presented. Physicochemical properties of the compounds have been studied and analytical methods have been developed. Data on toxicity and fire hazard of boron compounds are provided

  12. Hydrogen storage properties of metallic hydrides

    International Nuclear Information System (INIS)

    Latroche, M.; Percheron-Guegan, A.

    2005-01-01

    Nowadays, energy needs are mainly covered by fossil energies leading to pollutant emissions mostly responsible for global warming. Among the different possible solutions for greenhouse effect reduction, hydrogen has been proposed for energy transportation. Indeed, H 2 can be seen as a clean and efficient energy carrier. However, beside the difficulties related to hydrogen production, efficient high capacity storage means are still to be developed. Many metals and alloys are able to store large amounts of hydrogen. This latter solution is of interest in terms of safety, global yield and long term storage. However, to be suitable for applications, such compounds must present high capacity, good reversibility, fast reactivity and sustainability. In this paper, we will review the structural and thermodynamic properties of metallic hydrides. (authors)

  13. Predicting Hydride Donor Strength via Quantum Chemical Calculations of Hydride Transfer Activation Free Energy.

    Science.gov (United States)

    Alherz, Abdulaziz; Lim, Chern-Hooi; Hynes, James T; Musgrave, Charles B

    2018-01-25

    We propose a method to approximate the kinetic properties of hydride donor species by relating the nucleophilicity (N) of a hydride to the activation free energy ΔG ⧧ of its corresponding hydride transfer reaction. N is a kinetic parameter related to the hydride transfer rate constant that quantifies a nucleophilic hydridic species' tendency to donate. Our method estimates N using quantum chemical calculations to compute ΔG ⧧ for hydride transfers from hydride donors to CO 2 in solution. A linear correlation for each class of hydrides is then established between experimentally determined N values and the computationally predicted ΔG ⧧ ; this relationship can then be used to predict nucleophilicity for different hydride donors within each class. This approach is employed to determine N for four different classes of hydride donors: two organic (carbon-based and benzimidazole-based) and two inorganic (boron and silicon) hydride classes. We argue that silicon and boron hydrides are driven by the formation of the more stable Si-O or B-O bond. In contrast, the carbon-based hydrides considered herein are driven by the stability acquired upon rearomatization, a feature making these species of particular interest, because they both exhibit catalytic behavior and can be recycled.

  14. Morphology study on the depleted uranium as hydriding/dehydriding cycles

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Dong-you, E-mail: dongyou@nfri.re.kr [National Fusion Research Institute, Daejeon (Korea, Republic of); Yun, Sei-Hun; Kang, Hyun-Goo; Chang, Min Ho; Oh, Yun Hee [National Fusion Research Institute, Daejeon (Korea, Republic of); Kang, Kweon Ho; Woo, Yoon Myung [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-11-01

    Depleted Uranium (DU) is one of the strongest candidates as a getter material of hydrogen isotopes in the nuclear fusion reactor. In this work, small DU lump specimen with 99.8% purity was prepared for observation of morphology variation as hydriding/dehydriding cycles. Hydriding/dehydriding of DU was carried out more than 10 cycles for powder preparation. The pulverized DU specimen was safely handled in the glove box under Argon gas condition to minimize contact with oxygen and humidity. The morphology change according to hydriding/dehydriding cycles was observed by visual cell reactor, optical microscope and scanning electron microscope. The first hydriding of the small DU sample has progressed slowly with surface enlargement and volume expansion as time passes. After third hydriding/dehydriding cycles, most of DU was pulverized. The powder fineness of DU developed as hydriding/dehydriding cycle progresses. But the agglomerates of fine DU particles were observed. It was confirmed that the DU particles exist as porous agglomerates. And the particle agglomerate shows poor fluidity and even has the cohesive force.

  15. Manganese Silylene Hydride Complexes: Synthesis and Reactivity with Ethylene to Afford Silene Hydride Complexes.

    Science.gov (United States)

    Price, Jeffrey S; Emslie, David J H; Britten, James F

    2017-05-22

    Reaction of the ethylene hydride complex trans-[(dmpe) 2 MnH(C 2 H 4 )] (1) with Et 2 SiH 2 at 20 °C afforded the silylene hydride [(dmpe) 2 MnH(=SiEt 2 )] (2 a) as the trans-isomer. By contrast, reaction of 1 with Ph 2 SiH 2 at 60 °C afforded [(dmpe) 2 MnH(=SiPh 2 )] (2 b) as a mixture of the cis (major) and trans (minor) isomers, featuring a Mn-H-Si interaction in the former. The reaction to form 2 b also yielded [(dmpe) 2 MnH 2 (SiHPh 2 )] (3 b); [(dmpe) 2 MnH 2 (SiHR 2 )] (R=Et (3 a) and Ph (3 b)) were accessed cleanly by reaction of 2 a and 2 b with H 2 , and the analogous reactions with D 2 afforded [(dmpe) 2 MnD 2 (SiHR 2 )] exclusively. Both 2 a and 2 b engaged in unique reactivity with ethylene, generating the silene hydride complexes cis-[(dmpe) 2 MnH(R 2 Si=CHMe)] (R=Et (4 a), Ph (4 b)). Compounds trans-2 a, cis-2 b, 3 b, and 4 b were crystallographically characterized, and bonding in 2 a, 2 b, 4 a, and 4 b was probed computationally. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Tritium processing using metal hydrides

    International Nuclear Information System (INIS)

    Mallett, M.W.

    1986-01-01

    E.I. duPont de Nemours and Company is commissioned by the US Department of Energy to operate the Savannah River Plant and Laboratory. The primary purpose of the plant is to produce radioactive materials for national defense. In keeping with current technology, new processes for the production of tritium are being developed. Three main objectives of this new technology are to ease the processing of, ease the storage of, and to reduce the operating costs of the tritium production facility. Research has indicated that the use of metal hydrides offers a viable solution towards satisfying these objectives. The Hydrogen and Fuels Technology Division has the responsibility to conduct research in support of the tritium production process. Metal hydride technology and its use in the storage and transportation of hydrogen will be reviewed

  17. Hydride Molecules towards Nearby Galaxies

    Science.gov (United States)

    Monje, Raquel R.; La, Ngoc; Goldsmith, Paul

    2018-06-01

    Observations carried out by the Herschel Space Observatory revealed strong spectroscopic signatures from light hydride molecules within the Milky Way and nearby active galaxies. To better understand the chemical and physical conditions of the interstellar medium, we conducted the first comprehensive survey of hydrogen fluoride (HF) and water molecular lines observed through the SPIRE Fourier Transform Spectrometer. By collecting and analyzing the sub-millimeter spectra of over two hundred sources, we found that the HF J = 1 - 0 rotational transition which occurs at approximately 1232 GHz was detected in a total of 39 nearby galaxies both in absorption and emission. The analysis will determine the main excitation mechanism of HF in nearby galaxies and provide steady templates of the chemistry and physical conditions of the ISM to be used in the early universe, where observations of hydrides are more scarce.

  18. Rechargeable metal hydrides for spacecraft application

    Science.gov (United States)

    Perry, J. L.

    1988-01-01

    Storing hydrogen on board the Space Station presents both safety and logistics problems. Conventional storage using pressurized bottles requires large masses, pressures, and volumes to handle the hydrogen to be used in experiments in the U.S. Laboratory Module and residual hydrogen generated by the ECLSS. Rechargeable metal hydrides may be competitive with conventional storage techniques. The basic theory of hydride behavior is presented and the engineering properties of LaNi5 are discussed to gain a clear understanding of the potential of metal hydrides for handling spacecraft hydrogen resources. Applications to Space Station and the safety of metal hydrides are presented and compared to conventional hydride storage. This comparison indicates that metal hydrides may be safer and require lower pressures, less volume, and less mass to store an equivalent mass of hydrogen.

  19. Complex hydrides for hydrogen storage

    Science.gov (United States)

    Zidan, Ragaiy

    2006-08-22

    A hydrogen storage material and process of forming the material is provided in which complex hydrides are combined under conditions of elevated temperatures and/or elevated temperature and pressure with a titanium metal such as titanium butoxide. The resulting fused product exhibits hydrogen desorption kinetics having a first hydrogen release point which occurs at normal atmospheres and at a temperature between 50.degree. C. and 90.degree. C.

  20. Plant-Derived Anti-Inflammatory Compounds: Hopes and Disappointments regarding the Translation of Preclinical Knowledge into Clinical Progress

    Directory of Open Access Journals (Sweden)

    Robert Fürst

    2014-01-01

    Full Text Available Many diseases have been described to be associated with inflammatory processes. The currently available anti-inflammatory drug therapy is often not successful or causes intolerable side effects. Thus, new anti-inflammatory substances are still urgently needed. Plants were the first source of remedies in the history of mankind. Since their chemical characterization in the 19th century, herbal bioactive compounds have fueled drug development. Also, nowadays, new plant-derived agents continuously enrich our drug arsenal (e.g., vincristine, galantamine, and artemisinin. The number of new, pharmacologically active herbal ingredients, in particular that of anti-inflammatory compounds, rises continuously. The major obstacle in this field is the translation of preclinical knowledge into evidence-based clinical progress. Human trials of good quality are often missing or, when available, are frequently not suitable to really prove a therapeutical value. This minireview will summarize the current situation of 6 very prominent plant-derived anti-inflammatory compounds: curcumin, colchicine, resveratrol, capsaicin, epigallocatechin-3-gallate (EGCG, and quercetin. We will highlight their clinical potential and/or pinpoint an overestimation. Moreover, we will sum up the planned trials in order to provide insights into the inflammatory disorders that are hypothesized to be beneficially influenced by the compound.

  1. Ultraviolet irradiation of nucleic acids and related compounds. Final progress report

    International Nuclear Information System (INIS)

    Wang, S.Y.

    1976-01-01

    Progress is reported on the following research projects: photohydration of pyrimidine derivatives; thymine dimerization; uv-induced formation of pyrimidinyl radicals; formation of a coupled product by irradiation of 5-bromouracil derivatives; studies on pyrimidine adducts; molecular aggregates-puddle formation hypothesis of pyrimidine photodimerization; and topochemical studies of structures of dimers and of crystalline arrangements

  2. Nanostructured, complex hydride systems for hydrogen generation

    Directory of Open Access Journals (Sweden)

    Robert A. Varin

    2015-02-01

    Full Text Available Complex hydride systems for hydrogen (H2 generation for supplying fuel cells are being reviewed. In the first group, the hydride systems that are capable of generating H2 through a mechanical dehydrogenation phenomenon at the ambient temperature are discussed. There are few quite diverse systems in this group such as lithium alanate (LiAlH4 with the following additives: nanoiron (n-Fe, lithium amide (LiNH2 (a hydride/hydride system and manganese chloride MnCl2 (a hydride/halide system. Another hydride/hydride system consists of lithium amide (LiNH2 and magnesium hydride (MgH2, and finally, there is a LiBH4-FeCl2 (hydride/halide system. These hydride systems are capable of releasing from ~4 to 7 wt.% H2 at the ambient temperature during a reasonably short duration of ball milling. The second group encompasses systems that generate H2 at slightly elevated temperature (up to 100 °C. In this group lithium alanate (LiAlH4 ball milled with the nano-Fe and nano-TiN/TiC/ZrC additives is a prominent system that can relatively quickly generate up to 7 wt.% H2 at 100 °C. The other hydride is manganese borohydride (Mn(BH42 obtained by mechano-chemical activation synthesis (MCAS. In a ball milled (2LiBH4 + MnCl2 nanocomposite, Mn(BH42 co-existing with LiCl can desorb ~4.5 wt.% H2 at 100 °C within a reasonable duration of dehydrogenation. Practical application aspects of hydride systems for H2 generation/storage are also briefly discussed.

  3. Use of reversible hydrides for hydrogen storage

    Science.gov (United States)

    Darriet, B.; Pezat, M.; Hagenmuller, P.

    1980-01-01

    The addition of metals or alloys whose hydrides have a high dissociation pressure allows a considerable increase in the hydrogenation rate of magnesium. The influence of temperature and hydrogen pressure on the reaction rate were studied. Results concerning the hydriding of magnesium rich alloys such as Mg2Ca, La2Mg17 and CeMg12 are presented. The hydriding mechanism of La2Mg17 and CeMg12 alloys is given.

  4. The solubilities of significant organic compounds in HLW tank supernate solutions -- FY 1995 progress report

    International Nuclear Information System (INIS)

    Barney, G.S.

    1996-01-01

    At the Hanford Site organic compounds were measured in tank supernate simulant solutions during FY 1995. This solubility information will be used to determine if these organic salts could exist in solid phases (saltcake or sludges) in the waste where they might react violently with the nitrate or nitrite salts present in the tanks. Solubilities of sodium glycolate, succinate, and caproate salts; iron and aluminum and butylphosphate salts; and aluminum oxalate were measured in simulated waste supernate solutions at 25 degree C, 30 degree C, 40 degree C, and 50 degree C. The organic compounds were selected because they are expected to exist in relatively high concentrations in the tanks. The solubilities of sodium glycolate, succinate, caproate, and butylphosphate in HLW tank supernate solutions were high over the temperature and sodium hydroxide concentration ranges expected in the tanks. High solubilities will prevent solid sodium salts of these organic acids from precipitating from tank supernate solutions. The total organic carbon concentrations (YOC) of actual tank supernates are generally much lower than the TOC ranges for simulated supernate solutions saturated (at the solubility limit) with the organic salts. This is so even if all the dissolved carbon in a given tank and supernate is due to only one of these eight soluble compounds (an unlikely situation). Metal ion complexes of and butylphosphate and oxalate in supernate solutions were not stable in the presence of the hydroxide concentrations expected in most tanks. Iron and aluminum dibutylphosphate compounds reacted with hydroxide to form soluble sodium dibutylphosphate and precipitated iron and aluminum hydroxides. Aluminum oxalate complexes were also not stable in the basic simulated supernate solutions. Solubilities of all the organic salts decrease with increasing sodium hydroxide concentration because of the common ion effect of Na+. Increasing temperatures raised the solubilities of the organic

  5. Fundamental experiments on hydride reorientation in zircaloy

    Science.gov (United States)

    Colas, Kimberly B.

    In the current study, an in-situ X-ray diffraction technique using synchrotron radiation was used to follow directly the kinetics of hydride dissolution and precipitation during thermomechanical cycles. This technique was combined with conventional microscopy (optical, SEM and TEM) to gain an overall understanding of the process of hydride reorientation. Thus this part of the study emphasized the time-dependent nature of the process, studying large volume of hydrides in the material. In addition, a micro-diffraction technique was also used to study the spatial distribution of hydrides near stress concentrations. This part of the study emphasized the spatial variation of hydride characteristics such as strain and morphology. Hydrided samples in the shape of tensile dog-bones were used in the time-dependent part of the study. Compact tension specimens were used during the spatial dependence part of the study. The hydride elastic strains from peak shift and size and strain broadening were studied as a function of time for precipitating hydrides. The hydrides precipitate in a very compressed state of stress, as measured by the shift in lattice spacing. As precipitation proceeds the average shift decreases, indicating average stress is reduced, likely due to plastic deformation and morphology changes. When nucleation ends the hydrides follow the zirconium matrix thermal contraction. When stress is applied below the threshold stress for reorientation, hydrides first nucleate in a very compressed state similar to that of unstressed hydrides. After reducing the average strain similarly to unstressed hydrides, the average hydride strain reaches a constant value during cool-down to room temperature. This could be due to a greater ease of deforming the matrix due to the applied far-field strain which would compensate for the strains due to thermal contraction. Finally when hydrides reorient, the average hydride strains become tensile during the first precipitation regime and

  6. Fullerene hydride - A potential hydrogen storage material

    International Nuclear Information System (INIS)

    Nai Xing Wang; Jun Ping Zhang; An Guang Yu; Yun Xu Yang; Wu Wei Wang; Rui long Sheng; Jia Zhao

    2005-01-01

    Hydrogen, as a clean, convenient, versatile fuel source, is considered to be an ideal energy carrier in the foreseeable future. Hydrogen storage must be solved in using of hydrogen energy. To date, much effort has been put into storage of hydrogen including physical storage via compression or liquefaction, chemical storage in hydrogen carriers, metal hydrides and gas-on-solid adsorption. But no one satisfies all of the efficiency, size, weight, cost and safety requirements for transportation or utility use. C 60 H 36 , firstly synthesized by the method of the Birch reduction, was loaded with 4.8 wt% hydrogen indicating [60]fullerene might be as a potential hydrogen storage material. If a 100% conversion of C 60 H 36 is achieved, 18 moles of H 2 gas would be liberated from each mole of fullerene hydride. Pure C 60 H 36 is very stable below 500 C under nitrogen atmosphere and it releases hydrogen accompanying by other hydrocarbons under high temperature. But C 60 H 36 can be decomposed to generate H 2 under effective catalyst. We have reported that hydrogen can be produced catalytically from C 60 H 36 by Vasks's compound (IrCl(CO)(PPh 3 ) 2 ) under mild conditions. (RhCl(CO)(PPh 3 ) 2 ) having similar structure to (IrCl(CO)(PPh 3 ) 2 ), was also examined for thermal dehydrogenation of C 60 H 36 ; but it showed low catalytic activity. To search better catalyst, palladium carbon (Pd/C) and platinum carbon (Pt/C) catalysts, which were known for catalytic hydrogenation of aromatic compounds, were tried and good results were obtained. A very big peak of hydrogen appeared at δ=5.2 ppm in 1 H NMR spectrum based on Evans'work (fig 1) at 100 C over a Pd/C catalyst for 16 hours. It is shown that hydrogen can be produced from C 60 H 36 using a catalytic amount of Pd/C. Comparing with Pd/C, Pt/C catalyst showed lower activity. The high cost and limited availability of Vaska's compounds, Pd and Pt make it advantageous to develop less expensive catalysts for our process based on

  7. Manufacture of titanium and zirconium hydrides

    International Nuclear Information System (INIS)

    Mares, F.; Hanslik, T.

    1973-01-01

    A method is described of manufacturing titanium and zirconium hydrides by hydrogenation of said metals characterized by the reaction temperature ranging between 250 to 500 degC, hydrogen pressure of 20 to 300 atm and possibly by the presence of a hydride of the respective metal. (V.V.)

  8. Hydride effect on crack instability of Zircaloy cladding

    Energy Technology Data Exchange (ETDEWEB)

    Tseng, Che-Chung, E-mail: cctseng@iner.gov.tw [Institute of Nuclear Energy Research, No. 1000, Wunhua Road, Jiaan Village, Lungtan, Township, Taoyuan County 32546, Taiwan (China); Sun, Ming-Hung [Institute of Nuclear Energy Research, No. 1000, Wunhua Road, Jiaan Village, Lungtan, Township, Taoyuan County 32546, Taiwan (China); Chao, Ching-Kong [Department of Mechanical Engineering, National Taiwan University of Science and Technology, 43 Keelung Road, Section 4, Taipei 106, Taiwan (China)

    2014-04-01

    Highlights: • Radial hydrides near the crack tip had a significant effect on crack propagation. • For radial hydrides off the crack line vertically, the effect on crack propagation was notably reduced. • The longer hydride platelet resulted in a remarkable effect on crack propagation. • A long split in the radial hydride precipitate would enhance crack propagation. • The presence of circumferential hydride among radial hydrides may play an important role in crack propagation. - Abstract: A methodology was proposed to investigate the effect of hydride on the crack propagation in fuel cladding. The analysis was modeled based on an outside-in crack with radial hydrides located near its crack tip. The finite element method was used in the calculation; both stress intensity factor K{sub I} and J integral were applied to evaluate the crack stability. The parameters employed in the analysis included the location of radial hydride, hydride dimensions, number of hydrides, and the presence of circumferential hydride, etc. According to our study, the effective distance between a radial hydride and the assumed cladding surface crack for the enhancement of crack propagation proved to be no greater than 0.06 mm. For a hydride not on the crack line, it would induce a relatively minor effect on crack propagation if the vertical distance was beyond 0.05 mm. However, a longer hydride precipitate as well as double radial hydrides could have a remarkable effect on crack propagation. A combined effect of radial and circumferential hydrides was also discussed.

  9. Compound polycrystalline solar cells. Recent progress and Y2K perspective

    Energy Technology Data Exchange (ETDEWEB)

    Birkmire, R.W. [Institute of Energy Conversion, University of Delaware, DE 19716 Newark (United States)

    2001-01-01

    A historical perspective on the development of polycrystalline thin-film solar cells based on CdTe and CuInSe{sub 2} is presented, and recent progress of these thin-film technologies is discussed. Impressive improvements in the efficiency of laboratory scale devices has not been easy to translate to the manufacturing environment, principally due to our lack of understanding of the basic science and engineering of these materials and devices. 'Next-generation' high-performance thin-film solar cells utilizing multijunction device configurations should achieve efficiencies of more than 25% within ten years. However, our cost-effective manufacturing of these more complex devices will be problematic unless the science and engineering issues associated with processing of thin-film PV devices are addressed.

  10. Obtaining zircaloy powder through hydriding

    International Nuclear Information System (INIS)

    Dupim, Ivaldete da Silva; Moreira, Joao M.L.

    2009-01-01

    Zirconium alloys are good options for the metal matrix in dispersion fuels for power reactors due to their low thermal neutron absorption cross-section, good corrosion resistance, good mechanical strength and high thermal conductivity. A necessary step for obtaining such fuels is producing Zr alloy powder for the metal matrix composite material. This article presents results from the Zircaloy-4 hydrogenation tests with the purpose to embrittle the alloy as a first step for comminuting. Several hydrogenation tests were performed and studied through thermogravimetric analysis. They included H 2 pressures of 25 and 50 kPa and temperatures ranging between from 20 to 670 deg C. X-ray diffraction analysis showed in the hydrogenated samples the predominant presence of ZrH 2 and some ZrO 2 . Some kinetics parameters for the Zircaloy-4 hydrogenation reaction were obtained: the time required to reach the equilibrium state at the dwell temperature was about 100 minutes; the hydrogenation rate during the heating process from 20 to 670 deg C was about 21 mg/h, and at constant temperature of 670 deg C, the hydride rate was about 1.15 mg/h. The hydrogenation rate is largest during the heating process and most of it occurs during this period. After hydrogenated, the samples could easily be comminuted indicating that this is a possible technology to obtain Zircaloy powder. The results show that only few minutes of hydrogenation are necessary to reach the hydride levels required for comminuting the Zircaloy. The final hydride stoichiometry was between 2.7 and 2.8 H for each Zr atom in the sample (author)

  11. Hydrogen Storage using Metal Hydrides in a Stationary Cogeneration System

    International Nuclear Information System (INIS)

    Botzung, Maxime; Chaudourne, Serge; Perret, Christian; Latroche, Michel; Percheron-Guegan, Annick; Marty Philippe

    2006-01-01

    In the frame of the development of a hydrogen production and storage unit to supply a 40 kW stationary fuel cell, a metal hydride storage tank was chosen according to its reliability and high energetic efficiency. The study of AB5 compounds led to the development of a composition adapted to the project needs. The absorption/desorption pressures of the hydride at 75 C (2 / 1.85 bar) are the most adapted to the specifications. The reversible storage capacity (0.95 %wt) has been optimized to our work conditions and chemical kinetics is fast. The design of the Combined Heat and Power CHP system requires 5 kg hydrogen storage but in a first phase, only a 0.1 kg prototype has been realised and tested. Rectangular design has been chosen to obtain good compactness with an integrated plate fin type heat exchanger designed to reach high absorption/desorption rates. In this paper, heat and mass transfer characteristics of the Metal Hydride tank (MH tank) during absorption/desorption cycles are given. (authors)

  12. Metal Hydrides for Rechargeable Batteries

    Energy Technology Data Exchange (ETDEWEB)

    Valoeen, Lars Ole

    2000-03-01

    Rechargeable battery systems are paramount in the power supply of modern electronic and electromechanical equipment. For the time being, the most promising secondary battery systems for the future are the lithium-ion and the nickel metal hydride (NiMH) batteries. In this thesis, metal hydrides and their properties are described with the aim of characterizing and improving those. The thesis has a special focus on the AB{sub 5} type hydrogen storage alloys, where A is a rare earth metal like lanthanum, or more commonly misch metal, which is a mixture of rare earth metals, mainly lanthanum, cerium, neodymium and praseodymium. B is a transition metal, mainly nickel, commonly with additions of aluminium, cobalt, and manganese. The misch metal composition was found to be very important for the geometry of the unit cell in AB{sub 5} type alloys, and consequently the equilibrium pressure of hydrogen in these types of alloys. The A site substitution of lanthanum by misch metal did not decrease the surface catalytic properties of AB{sub 5} type alloys. B-site substitution of nickel with other transition elements, however, substantially reduced the catalytic activity of the alloy. If the internal pressure within the electrochemical test cell was increased using inert argon gas, a considerable increase in the high rate charge/discharge performance of LaNi{sub 5} was observed. An increased internal pressure would enable the utilisation of alloys with a high hydrogen equivalent pressure in batteries. Such alloys often have favourable kinetics and high hydrogen diffusion rates and thus have a potential for improving the high current discharge rates in metal hydride batteries. The kinetic properties of metal hydride electrodes were found to improve throughout their lifetime. The activation properties were found highly dependent on the charge/discharge current. Fewer charge/discharge cycles were needed to activate the electrodes if a small current was used instead of a higher

  13. Hydrogen-storing hydride complexes

    Science.gov (United States)

    Srinivasan, Sesha S [Tampa, FL; Niemann, Michael U [Venice, FL; Goswami, D Yogi [Tampa, FL; Stefanakos, Elias K [Tampa, FL

    2012-04-10

    A ternary hydrogen storage system having a constant stoichiometric molar ratio of LiNH.sub.2:MgH.sub.2:LiBH.sub.4 of 2:1:1. It was found that the incorporation of MgH.sub.2 particles of approximately 10 nm to 20 nm exhibit a lower initial hydrogen release temperature of 150.degree. C. Furthermore, it is observed that the particle size of LiBNH quaternary hydride has a significant effect on the hydrogen sorption concentration with an optimum size of 28 nm. The as-synthesized hydrides exhibit two main hydrogen release temperatures, one around 160.degree. C. and the other around 300.degree. C., with the main hydrogen release temperature reduced from 310.degree. C. to 270.degree. C., while hydrogen is first reversibly released at temperatures as low as 150.degree. C. with a total hydrogen capacity of 6 wt. % to 8 wt. %. Detailed thermal, capacity, structural and microstructural properties have been demonstrated and correlated with the activation energies of these materials.

  14. Activated aluminum hydride hydrogen storage compositions and uses thereof

    Science.gov (United States)

    Sandrock, Gary; Reilly, James; Graetz, Jason; Wegrzyn, James E.

    2010-11-23

    In one aspect, the invention relates to activated aluminum hydride hydrogen storage compositions containing aluminum hydride in the presence of, or absence of, hydrogen desorption stimulants. The invention particularly relates to such compositions having one or more hydrogen desorption stimulants selected from metal hydrides and metal aluminum hydrides. In another aspect, the invention relates to methods for generating hydrogen from such hydrogen storage compositions.

  15. Hydrogen adsorption on palladium and palladium hydride at 1 bar

    DEFF Research Database (Denmark)

    Johansson, Martin; Skulason, Egill; Nielsen, Gunver

    2010-01-01

    strongly to Pd hydride than to Pd. The activation barrier for desorption at a H coverage of one mono layer is slightly lower on Pd hydride, whereas the activation energy for adsorption is similar on Pd and Pd hydride. It is concluded that the higher sticking probability on Pd hydride is most likely caused...

  16. Cyclopentadiene-mediated hydride transfer from rhodium complexes.

    Science.gov (United States)

    Pitman, C L; Finster, O N L; Miller, A J M

    2016-07-12

    Attempts to generate a proposed rhodium hydride catalytic intermediate instead resulted in isolation of (Cp*H)Rh(bpy)Cl (1), a pentamethylcyclopentadiene complex, formed by C-H bond-forming reductive elimination from the fleeting rhodium hydride. The hydride transfer ability of diene 1 was explored through thermochemistry and hydride transfer reactions, including the reduction of NAD(+).

  17. Variations of structure and magnetic properties in UTGe hydrides (T=late transition metal)

    Czech Academy of Sciences Publication Activity Database

    Adamska, A.M.; Havela, L.; Skourski, Y.; Andreev, Alexander V.

    2012-01-01

    Roč. 515, FEB (2012), s. 171-179 ISSN 0925-8388 Institutional research plan: CEZ:AV0Z10100520 Keywords : actinide allos and compounds * metal hydrides * crystal structure * magnetic meaurements * high magnetic fields Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.390, year: 2012

  18. Recent Progress in Graphite Intercalation Compounds for Rechargeable Metal (Li, Na, K, Al)‐Ion Batteries

    Science.gov (United States)

    Xu, Jiantie; Dou, Yuhai; Wei, Zengxi; Li, Yutao; Liu, Huakun; Dou, Shixue

    2017-01-01

    Abstract Lithium‐ion batteries (LIBs) with higher energy density are very necessary to meet the increasing demand for devices with better performance. With the commercial success of lithiated graphite, other graphite intercalation compounds (GICs) have also been intensively reported, not only for LIBs, but also for other metal (Na, K, Al) ion batteries. In this Progress Report, we briefly review the application of GICs as anodes and cathodes in metal (Li, Na, K, Al) ion batteries. After a brief introduction on the development history of GICs, the electrochemistry of cationic GICs and anionic GICs is summarized. We further briefly summarize the use of cationic GICs and anionic GICs in alkali ion batteries and the use of anionic GICs in aluminium‐ion batteries. Finally, we reach some conclusions on the drawbacks, major progress, emerging challenges, and some perspectives on the development of GICs for metal (Li, Na, K, Al) ion batteries. Further development of GICs for metal (Li, Na, K, Al) ion batteries is not only a strong supplement to the commercialized success of lithiated‐graphite for LIBs, but also an effective strategy to develop diverse high‐energy batteries for stationary energy storage in the future. PMID:29051856

  19. Production of hydrogen gas from novel chemical hydrides

    Energy Technology Data Exchange (ETDEWEB)

    Aiello, R.; Matthews, M.A. [South Carolina Univ., Chemical Engineering Dept., Columbia, SC (United States); Reger, D.L.; Collins, J.E. [South Carolina Univ., Chemistry and Biochemistry Dept., Columbia, SC (United States)

    1998-12-01

    Six ligand-stabilized complexes have been synthesized and tested for use as hydrogen storage media for portable fuel cell applications. The new hydrides are: [HC(3,5-Me{sub 2}pz){sub 3}]LiBH{sub 4} (1), [[H{sub 2}C(3,5-Me{sub 2}pz){sub 2}]LiBH{sub 4})]{sub 2} (2) (pz = pyrazolyl), [(TMEDA)Li(BH{sub 4})]{sub 2} (3) (TMEDA (CH{sub 3}){sub 2}NCH{sub 2}CH{sub 2}N(CH{sub 3}){sub 2}), [HC(pz){sub 3}]LiBH{sub 4} (4), [[H{sub 2}C(pz){sub 2}]Li(BH{sub 4})]{sub 2} (5) and Mg(BH{sub 4}){sub 2}3THF (6) (THF = tetrahydrofuran). Hydrolysis reactions of the compounds liberate hydrogen in quantities which range from 56 to 104 ({+-}5%) of the theoretical yield. Gas chromatographic analysis of the product gases from these reactions indicate that hydrogen is the only gas produced. Thermally initiated reactions of the novel compounds with NH{sub 4}Cl were unsuccessful. Although the amount of hydrogen energy which can be theoretically obtained per unit weight is lower than that of the classical hydrides such as LiBH{sub 4} and NaBH{sub 4}, the reactions are less violent and hydrolysis of compounds 1, 2, 4, 5 and 6 releases less heat per mole of hydrogen generated. (Author)

  20. Identification and characterization of a new Zirconium hydride

    International Nuclear Information System (INIS)

    Zhao, Z.

    2007-01-01

    In order to control the integrity of the fuel clad, alloy of zirconium, it is necessary to predict the behavior of zirconium hydrides in the environment (temperature, stress...), at a microscopic scale. A characterization study by TEM of hydrides has been realized. It shows little hydrides about 500 nm, in hydride Zircaloy 4. Then a more detailed study identified a new hydride phase presented in this paper. (A.L.B.)

  1. U-8 wt %Mo and 7 wt %Mo alloys powder obtained by an hydride-de hydride process; Obtencion de polvo de aleaciones U-8% Mo y U-7% Mo (en peso) mediante hidruracion

    Energy Technology Data Exchange (ETDEWEB)

    Balart, Silvia N; Bruzzoni, Pablo; Granovsky, Marta S; Gribaudo, Luis M.J.; Hermida, Jorge D; Ovejero, Jose; Rubiolo, Gerardo H; Vicente, Eduardo E [Comision Nacional de Energia Atomica, General San Martin (Argentina). Dept. de Materiales

    2000-07-01

    Uranium-molybdenum alloys are been tested as a component in high-density LEU dispersion fuels with very good performances. These alloys need to be transformed to powder due to the manufacturing requirements of the fuels. One method to convert ductile alloys into powder is the hydride-de hydride process, which takes advantage of the ability of the U-{alpha} phase to transform to UH{sub 3}: a brittle and relatively low-density compound. U-Mo alloys around 7 and 8 wt % Mo were melted and heat treated at different temperature ranges in order to partially convert {gamma} -phase to {alpha} -phase. Subsequent hydriding transforms this {alpha} -phase to UH{sub 3}. The volume change associated to the hydride formation embrittled the material which ends up in a powdered alloy. Results of the optical metallography, scanning electron microscopy, X-ray diffraction during different steps of the process are shown. (author)

  2. Hydride heat pump with heat regenerator

    Science.gov (United States)

    Jones, Jack A. (Inventor)

    1991-01-01

    A regenerative hydride heat pump process and system is provided which can regenerate a high percentage of the sensible heat of the system. A series of at least four canisters containing a lower temperature performing hydride and a series of at least four canisters containing a higher temperature performing hydride is provided. Each canister contains a heat conductive passageway through which a heat transfer fluid is circulated so that sensible heat is regenerated. The process and system are useful for air conditioning rooms, providing room heat in the winter or for hot water heating throughout the year, and, in general, for pumping heat from a lower temperature to a higher temperature.

  3. A procedure for preparing alkali metal hydrides

    International Nuclear Information System (INIS)

    Lemieux, R.U.; Sanford, C.E.; Prescott, J.F.

    1976-01-01

    A plain low cost, procedure for the continuous, low temperature preparation of sodium or potassium hydrides using cheap reagents is presented. Said invention is especially concerned with a process of purifying of a catalytic exchange liquid used for deuterium enrichment, in which an alkali metal hydride is produced as intermediate product. The procedure for producing the sodium and potassium hydrides consists in causing high pressure hydrogen to be absorbed by a mixture of at least a lower monoalkylamine and an alkylamide of an alkali metal from at least one of said amines [fr

  4. Hydride observations using the neutrography technique

    International Nuclear Information System (INIS)

    Meyer, G.; Baruj, A.; Borzone, E.M.; Cardenas, R.; Szames, E.; Somoza, J.; Rivas, S.; Sanchez, F.A.; Marin, J.

    2012-01-01

    Neutron radiography observations were performed at the RA-6 experimental nuclear facility in Bariloche. Images from a prototype of a hydride-based hydrogen storage device have been obtained. The technique allows visualizing the inner hydride space distribution. The hydride appeared compacted at the lower part of the prototype after several cycles of hydrogen charge and discharge. The technique has also been applied to the study of Zr/ZrH 2 samples. There is a linear relation between the sample width/hydrogen concentration and the photograph grey scale. This information could be useful for the study of nuclear engineering materials and to determine their possible degradation by hydrogen pick up (author)

  5. Decomposition kinetics of plutonium hydride

    Energy Technology Data Exchange (ETDEWEB)

    Haschke, J.M.; Stakebake, J.L.

    1979-01-01

    Kinetic data for decomposition of PuH/sub 1/ /sub 95/ provides insight into a possible mechanism for the hydriding and dehydriding reactions of plutonium. The fact that the rate of the hydriding reaction, K/sub H/, is proportional to P/sup 1/2/ and the rate of the dehydriding process, K/sub D/, is inversely proportional to P/sup 1/2/ suggests that the forward and reverse reactions proceed by opposite paths of the same mechanism. The P/sup 1/2/ dependence of hydrogen solubility in metals is characteristic of the dissociative absorption of hydrogen; i.e., the reactive species is atomic hydrogen. It is reasonable to assume that the rates of the forward and reverse reactions are controlled by the surface concentration of atomic hydrogen, (H/sub s/), that K/sub H/ = c'(H/sub s/), and that K/sub D/ = c/(H/sub s/), where c' and c are proportionality constants. For this surface model, the pressure dependence of K/sub D/ is related to (H/sub s/) by the reaction (H/sub s/) reversible 1/2H/sub 2/(g) and by its equilibrium constant K/sub e/ = (H/sub 2/)/sup 1/2//(H/sub s/). In the pressure range of ideal gas behavior, (H/sub s/) = K/sub e//sup -1/(RT)/sup -1/2/ and the decomposition rate is given by K/sub D/ = cK/sub e/(RT)/sup -1/2/P/sup 1/2/. For an analogous treatment of the hydriding process with this model, it can be readily shown that K/sub H/ = c'K/sub e//sup -1/(RT)/sup -1/2/P/sup 1/2/. The inverse pressure dependence and direct temperature dependence of the decomposition rate are correctly predicted by this mechanism which is most consistent with the observed behavior of the Pu--H system.

  6. Synthesis and fundamental properties of stable Ph(3)SnSiH(3) and Ph(3)SnGeH(3) hydrides: model compounds for the design of Si-Ge-Sn photonic alloys.

    Science.gov (United States)

    Tice, Jesse B; Chizmeshya, Andrew V G; Groy, Thomas L; Kouvetakis, John

    2009-07-06

    The compounds Ph(3)SnSiH(3) and Ph(3)SnGeH(3) (Ph = C(6)H(5)) have been synthesized as colorless solids containing Sn-MH(3) (M = Si, Ge) moieties that are stable in air despite the presence of multiple and highly reactive Si-H and Ge-H bonds. These molecules are of interest since they represent potential model compounds for the design of new classes of IR semiconductors in the Si-Ge-Sn system. Their unexpected stability and high solubility also makes them a safe, convenient, and potentially useful delivery source of -SiH(3) and -GeH(3) ligands in molecular synthesis. The structure and composition of both compounds has been determined by chemical analysis and a range of spectroscopic methods including multinuclear NMR. Single crystal X-ray structures were determined and indicated that both compounds condense in a Z = 2 triclinic (P1) space group with lattice parameters (a = 9.7754(4) A, b = 9.8008(4) A, c = 10.4093(5) A, alpha = 73.35(10)(o), beta = 65.39(10)(o), gamma = 73.18(10)(o)) for Ph(3)SnSiH(3) and (a = 9.7927(2) A, b = 9.8005(2) A, c = 10.4224(2) A, alpha = 74.01(3)(o), beta = 65.48(3)(o), gamma = 73.43(3)(o)) for Ph(3)SnGeH(3). First principles density functional theory simulations are used to corroborate the molecular structures of Ph(3)SnSiH(3) and Ph(3)SnGeH(3), gain valuable insight into the relative stability of the two compounds, and provide correlations between the Si-Sn and Ge-Sn bonds in the molecules and those in tetrahedral Si-Ge-Sn solids.

  7. The Oxidation Products of Aluminum Hydride and Boron Aluminum Hydride Clusters

    Science.gov (United States)

    2016-01-04

    AFRL-AFOSR-VA-TR-2016-0075 The Oxidation Products of Aluminum Hydride and Boron Aluminum Hydride Clusters KIT BOWEN JOHNS HOPKINS UNIV BALTIMORE MD...2. REPORT TYPE Final Performance 3. DATES COVERED (From - To) 30-09-2014 to 29-09-2015 4. TITLE AND SUBTITLE The Oxidation Products of Aluminum ...Hydride and Boron Aluminum Hydride Clusters 5a.  CONTRACT NUMBER 5b.  GRANT NUMBER FA9550-14-1-0324 5c.  PROGRAM ELEMENT NUMBER 61102F 6. AUTHOR(S) KIT

  8. Complex Metal Hydrides for hydrogen storage and solid-state ion conductors

    DEFF Research Database (Denmark)

    Payandeh GharibDoust, SeyedHosein

    and electricity in batteries. However, both hydrogen and electricity must be stored in a very dense way to be useful, e.g. for mobile applications. Complex metal hydrides have high hydrogen density and have been studied during the past twenty years in hydrogen storage systems. Moreover, they have shown high ionic...... conductivities which promote their application as solid electrolytes in batteries. This dissertation presents the synthesis and characterization of a variety of complex metal hydrides and explores their hydrogen storage properties and ionic conductivity. Five halide free rare earth borohydrides RE(BH4)3, (RE...... = La, Ce, Pr, Nd, Er) have been synthesized, which pave the way for studying the polymorphic transition in these compounds, obtaining new bimetallic borohydrides and designing new reactive hydride composites with improved hydrogen storage capacities. Two novel polymorphs of Pr(BH4)3 are identified...

  9. Tritium removal using vanadium hydride

    International Nuclear Information System (INIS)

    Hill, F.B.; Wong, Y.W.; Chan, Y.N.

    1978-01-01

    The results of an initial examination of the feasibility of separation of tritium from gaseous protium-tritium mixtures using vanadium hydride in cyclic processes is reported. Interest was drawn to the vanadium-hydrogen system because of the so-called inverse isotope effect exhibited by this system. Thus the tritide is more stable than the protide, a fact which makes the system attractive for removal of tritium from a mixture in which the light isotope predominates. The initial results of three phases of the research program are reported, dealing with studies of the equilibrium and kinetics properties of isotope exchange, development of an equilibrium theory of isotope separation via heatless adsorption, and experiments on the performance of a single heatless adsorption stage. In the equilibrium and kinetics studies, measurements were made of pressure-composition isotherms, the HT--H 2 separation factors and rates of HT--H 2 exchange. This information was used to evaluate constants in the theory and to understand the performance of the heatless adsorption experiments. A recently developed equilibrium theory of heatless adsorption was applied to the HT--H 2 separation using vanadium hydride. Using the theory it was predicted that no separation would occur by pressure cycling wholly within the β phase but that separation would occur by cycling between the β and γ phases and using high purge-to-feed ratios. Heatless adsorption experiments conducted within the β phase led to inverse separations rather than no separation. A kinetic isotope effect may be responsible. Cycling between the β and γ phases led to separation but not to the predicted complete removal of HT from the product stream, possibly because of finite rates of exchange. Further experimental and theoretical work is suggested which may ultimately make possible assessment of the feasibility and practicability of hydrogen isotope separation by this approach

  10. Mathematical modeling of the nickel/metal hydride battery system

    Energy Technology Data Exchange (ETDEWEB)

    Paxton, Blaine Kermit [Univ. of California, Berkeley, CA (United States). Dept. of Chemical Engineering

    1995-09-01

    A group of compounds referred to as metal hydrides, when used as electrode materials, is a less toxic alternative to the cadmium hydroxide electrode found in nickel/cadmium secondary battery systems. For this and other reasons, the nickel/metal hydride battery system is becoming a popular rechargeable battery for electric vehicle and consumer electronics applications. A model of this battery system is presented. Specifically the metal hydride material, LaNi{sub 5}H{sub 6}, is chosen for investigation due to the wealth of information available in the literature on this compound. The model results are compared to experiments found in the literature. Fundamental analyses as well as engineering optimizations are performed from the results of the battery model. In order to examine diffusion limitations in the nickel oxide electrode, a ``pseudo 2-D model`` is developed. This model allows for the theoretical examination of the effects of a diffusion coefficient that is a function of the state of charge of the active material. It is found using present data from the literature that diffusion in the solid phase is usually not an important limitation in the nickel oxide electrode. This finding is contrary to the conclusions reached by other authors. Although diffusion in the nickel oxide active material is treated rigorously with the pseudo 2-D model, a general methodology is presented for determining the best constant diffusion coefficient to use in a standard one-dimensional battery model. The diffusion coefficients determined by this method are shown to be able to partially capture the behavior that results from a diffusion coefficient that varies with the state of charge of the active material.

  11. Characterization of a U-Mo alloy subjected to direct hydriding of the gamma phase

    International Nuclear Information System (INIS)

    Balart, Silvia N.; Bruzzoni, Pablo; Granovsky, Marta S.

    2003-01-01

    The Reduced Enrichment for Research and Test Reactors (RERTR) program has imposed the need to develop plate-type fuel elements based on high density uranium compounds, such as U-Mo alloys. One of the steps in the fabrication of the fuel elements is the pulverization of the fissile material. In the case of the U-Mo alloys, the pulverization can be accomplished through hydriding - dehydriding. Two alternative methods of the hydriding-dehydriding process, namely the selective hydriding in alpha phase (HS-alpha) and the massive hydriding in gamma phase (HM-gamma) are currently being studied at the Comision Nacional de Energia Atomica. The HM-gamma method was reproduced at laboratory scale starting from a U-7 wt % Mo alloy. The hydrided and dehydrided materials were characterized using metallographic techniques, scanning electron microscopy, energy dispersive X-ray analysis and X-ray diffraction. These results are compared with previous results of the HS-alpha method. (author)

  12. Disposal of tritium-exposed metal hydrides

    International Nuclear Information System (INIS)

    Nobile, A.; Motyka, T.

    1991-01-01

    A plan has been established for disposal of tritium-exposed metal hydrides used in Savannah River Site (SRS) tritium production or Materials Test Facility (MTF) R ampersand D operations. The recommended plan assumes that the first tritium-exposed metal hydrides will be disposed of after startup of the Solid Waste Disposal Facility (SWDF) Expansion Project in 1992, and thus the plan is consistent with the new disposal requiremkents that will be in effect for the SWDF Expansion Project. Process beds containing tritium-exposed metal hydride powder will be disposed of without removal of the powder from the bed; however, disposal of tritium-exposed metal hydride powder that has been removed from its process vessel is also addressed

  13. Method of making alkali metal hydrides

    Science.gov (United States)

    Pecharsky, Vitalij K.; Gupta, Shalabh; Pruski, Marek; Hlova, Ihor; Castle, Andra

    2017-05-30

    A method is provided for making alkali metal hydrides by mechanochemically reacting alkali metal and hydrogen gas under mild temperature (e.g room temperature) and hydrogen pressure conditions without the need for catalyst, solvent, and intentional heating or cooling.

  14. Predicting formation enthalpies of metal hydrides

    Energy Technology Data Exchange (ETDEWEB)

    Andreasen, A.

    2004-12-01

    In order for the hydrogen based society viz. a society in which hydrogen is the primary energy carrier to become realizable an efficient way of storing hydrogen is required. For this purpose metal hydrides are serious candidates. Metal hydrides are formed by chemical reaction between hydrogen and metal and for the stable hydrides this is associated with release of heat ({delta}H{sub f} ). The more thermodynamically stable the hydride, the larger {delta}H{sub f}, and the higher temperature is needed in order to desorp hydrogen (reverse reaction) and vice versa. For practical application the temperature needed for desorption should not be too high i.e. {delta}H{sub f} should not be too large. If hydrogen desorption is to be possible below 100 deg C (which is the ultimate goal if hydrogen storage in metal hydrides should be used in conjunction with a PEM fuel cell), {delta}H{sub f} should not exceed -48 kJ/mol. Until recently only intermetallic metal hydrides with a storage capacity less than 2 wt.% H{sub 2} have met this criterion. However, discovering reversible hydrogen storage in complex metal hydrides such as NaAlH{sub 4} (5.5 wt. % reversible hydrogen capacity) have revealed a new group of potential candiates. However, still many combination of elements from the periodic table are yet to be explored. Since experimental determination of thermodynamic properties of the vast combinations of elements is tedious it may be advantagous to have a predictive tool for this task. In this report different ways of predicting {delta}H{sub f} for binary and ternary metal hydrides are reviewed. Main focus will be on how well these methods perform numerically i.e. how well experimental results are resembled by the model. The theoretical background of the different methods is only briefly reviewed. (au)

  15. Influence of hydrides orientation on strain, damage and failure of hydrided zircaloy-4

    International Nuclear Information System (INIS)

    Racine, A.

    2005-09-01

    In pressurized water reactors of nuclear power plants, fuel pellets are contained in cladding tubes, made of Zirconium alloy, for instance Zircaloy-4. During their life in the primary water of the reactor (155 bars, 300 C), cladding tubes are oxidized and consequently hydrided. A part of the hydrogen given off precipitates as Zirconium hydrides in the bulk material and embrittles the material. This embrittlement depends on many parameters, among which hydrogen content and orientation of hydrides with respect to the applied stress. This investigation is devoted to the influence of the orientation of hydrides with respect to the applied stress on strain, damage and failure mechanisms. Macroscopic and SEM in-situ ring tensile tests are performed on cladding tube material (unirradiated cold worked stress-relieved Zircaloy-4) hydrided with about 200 and 500 wppm hydrogen, and with different main hydrides orientation: either parallel or perpendicular to the circumferential tensile direction. We get the mechanical response of the material as a function of hydride orientation and hydrogen content and we investigate the deformation, damage and failure mechanisms. In both cases, digital image correlation techniques are used to estimate local and global strain distributions. Neither the tensile stress-strain response nor the global and local strain modes are significantly affected by hydrogen content or hydride orientation, but the failure modes are strongly modified. Indeed, only 200 wppm radial hydrides embrittle Zy-4: sample fail in the elastic domain at about 350 MPa before strain bands could develop; whereas in other cases sample reach at least 750 MPa before necking and final failure, in ductile or brittle mode. To model this particular heterogeneous material behavior, a non-coupled damage approach which takes into account the anisotropic distribution of the hydrides is proposed. Its parameters are identified from the macroscopic strain field measurements and a

  16. Triosmium cluster compounds containing isocyanide and hydride ligands. Crystal and molecular structure of (μ-H)(μ-eta1-C==N(H)(t-C4H9))Os3(CO)10

    International Nuclear Information System (INIS)

    Adams, R.D.; Golembeski, N.M.

    1979-01-01

    The crystal and molecular structure of the compound (μ-H)(μ-eta 1 -C==N(H)(t-C 4 H 9 ))Os 3 (CO) 10 has been determined by X-ray crystallographic methods. The compound crystallizes in the centrosymmetric monoclinic space group P2 1 /n[C/sub 2h/ 5 ]:a = 13.651 (4) A, b = 9.156 (4) A, c = 18.275 (5) A, β = 111.42 (2) 0 , V = 2126.3 (25) A 3 , Z = 4, rho/sub calcd/ = 2.92 g cm -3 . A uniform triangular cluster of three osmium atoms contains ten linear carbonyl groups and a μ-eta 1 -C==N(H)(t-C 4 H 9 ) iminyl ligand. The carbon atom of the iminyl ligand symmetrically bridges one osmium-osmium bond, as is shown by the internuclear separations Os(2)-C(11) = 2.066 (8) A and Os(3)-C(11) = 2.043 (8) A. The iminyl bond, C(11)-N, is double with the C-N distance being 1.298 (10) A

  17. gamma-Zr-Hydride Precipitate in Irradiated Massive delta- Zr-Hydride

    DEFF Research Database (Denmark)

    Warren, M. R.; Bhattacharya, D. K.

    1975-01-01

    During examination of A Zircaloy-2-clad fuel pin, which had been part of a test fuel assembly in a boiling water reactor, several regions of severe internal hydriding were noticed in the upper-plenum end of the pin. Examination of similar fuel pins has shown that hydride of this type is caused by...... to irradiation-induced swelling....

  18. Pittsburgh Compound B and AV-1451 positron emission tomography assessment of molecular pathologies of Alzheimer's disease in progressive supranuclear palsy.

    Science.gov (United States)

    Whitwell, Jennifer L; Ahlskog, J Eric; Tosakulwong, Nirubol; Senjem, Matthew L; Spychalla, Anthony J; Petersen, Ronald C; Jack, Clifford R; Lowe, Val J; Josephs, Keith A

    2018-03-01

    Little is known about Alzheimer's disease molecular proteins, beta-amyloid and paired helical filament (PHF) tau, in progressive supranuclear palsy (PSP). Recent techniques have been developed to allow for investigations of these proteins in PSP. We determined the frequency of beta-amyloid deposition in PSP, and whether beta-amyloid deposition in PSP is associated with PHF-tau deposition pattern, or clinical features. Thirty probable PSP participants underwent MRI, [ 18 F]AV-1451 PET and Pittsburgh compound B (PiB) PET. Apolipoprotein (APOE) genotyping was also performed. A global PiB standard-uptake value ratio (SUVR) was calculated. AV-1451 SUVRs were calculated for a set of Alzheimer's disease (AD)-related regions and a set of PSP-related regions. Voxel-level analyses were conducted to assess for differences in AV-1451 uptake patterns and MRI atrophy between PiB(+) and PiB(-) cases compared to 60 normal PiB(-) controls. Statistical testing for correlations and associations between variables of interest were also performed. Twelve subjects (40%) showed beta-amyloid deposition. Higher PiB SUVR correlated with older age but not with AV-1451 SUVR in the AD- or PSP-related regions. Higher AV-1451 SUVR in AD-related regions was associated with higher AV-1451 SUVR in PSP-related regions. We found little evidence for beta-amyloid related differences in clinical metrics, proportion of APOE e4 carriers, pattern of AV-1451 uptake, or pattern of atrophy. Beta-amyloid deposition occurs in a relatively high proportion of PSP subjects. Unlike in Alzheimer's disease, however, there is little evidence that beta-amyloid, and PHF-tau, play a significant role in neurodegeneration in PSP. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Synthesis of Nano-Light Magnesium Hydride for Hydrogen Storage ...

    African Journals Online (AJOL)

    Abstract. Nano-light magnesium hydride that has the capability for hydrogen storage was synthesized from treatment of magnesium ribbon with hydrogen peroxide. The optimum time for complete hydrogenation of the magnesium hydride was 5 hours.

  20. High H⁻ ionic conductivity in barium hydride.

    Science.gov (United States)

    Verbraeken, Maarten C; Cheung, Chaksum; Suard, Emmanuelle; Irvine, John T S

    2015-01-01

    With hydrogen being seen as a key renewable energy vector, the search for materials exhibiting fast hydrogen transport becomes ever more important. Not only do hydrogen storage materials require high mobility of hydrogen in the solid state, but the efficiency of electrochemical devices is also largely determined by fast ionic transport. Although the heavy alkaline-earth hydrides are of limited interest for their hydrogen storage potential, owing to low gravimetric densities, their ionic nature may prove useful in new electrochemical applications, especially as an ionically conducting electrolyte material. Here we show that barium hydride shows fast pure ionic transport of hydride ions (H(-)) in the high-temperature, high-symmetry phase. Although some conductivity studies have been reported on related materials previously, the nature of the charge carriers has not been determined. BaH2 gives rise to hydride ion conductivity of 0.2 S cm(-1) at 630 °C. This is an order of magnitude larger than that of state-of-the-art proton-conducting perovskites or oxide ion conductors at this temperature. These results suggest that the alkaline-earth hydrides form an important new family of materials, with potential use in a number of applications, such as separation membranes, electrochemical reactors and so on.

  1. Economic analysis of hydride fueled BWR

    International Nuclear Information System (INIS)

    Ganda, F.; Shuffler, C.; Greenspan, E.; Todreas, N.

    2009-01-01

    The economic implications of designing BWR cores with hydride fuels instead of conventional oxide fuels are analyzed. The economic analysis methodology adopted is based on the lifetime levelized cost of electricity (COE). Bracketing values (1970 and 3010 $/kWe) are used for the overnight construction costs and for the power scaling factors (0.4 and 0.8) that correlate between a change in the capital cost to a change in the power level. It is concluded that a newly constructed BWR reactor could substantially benefit from the use of 10 x 10 hydride fuel bundles instead of 10 x 10 oxide fuel bundles design presently in use. The cost saving would depend on the core pressure drop constraint that can be implemented in newly constructed BWRs - it is between 2% and 3% for a core pressure drop constraint as of the reference BWR, between 9% and 15% for a 50% higher core pressure drop, and between 12% and 21% higher for close to 100% core pressure. The attainable cost reduction was found insensitive to the specific construction cost but strongly dependent on the power scaling factor. The cost advantage of hydride fuelled cores as compared to that of the oxide reference core depends only weakly on the uranium and SWU prices, on the 'per volume base' fabrication cost of hydride fuels, and on the discount rate used. To be economically competitive, the uranium enrichment required for the hydride fuelled core needs to be around 10%.

  2. Experimental investigation of strain, damage and failure of hydrided zircaloy-4 with various hydride orientations

    International Nuclear Information System (INIS)

    Racine, A; Catherine, C.S.; Cappelaere, C.; Bornert, M.; Caldemaison, D.

    2005-01-01

    This experimental investigation is devoted to the influence of the orientation of hydrides on the mechanical response of Zircaloy-4. Ring tensile tests are performed on unirradiated CWSR Zircaloy-4, charged with about 200 or 500wppm hydrogen. Hydrides are oriented either parallel ('tangential'), or perpendicular ('radial') to the circumferential tensile direction. Tangential hydrides are usually observed in cladding tubes, however, hydrides can be reoriented after cooling under stress to become radial and then trigger brittle behavior. In this investigation, we perform, 'macroscopic' or SEM in-situ tensile tests on smooth rings, at room temperature. We get the mechanical response of the material as a function of hydride orientation and hydrogen content and we investigate the deformation, damage and failure mechanisms. In both cases, digital image correlation techniques are used to estimate local and global strain distributions. The results lead to the following conclusions: neither the tensile stress-strain response nor the strain modes are affected by hydrogen content or hydride orientation, but the failure modes are. Indeed, only 200wppm radial hydrides embrittle Zy-4: sample fails in the elastic domain at about 350 MPa before strain bands could develop; whereas in other cases samples reach at least 750 MPa before failure, with ductile or brittle mode. (authors)

  3. Microchip power compensated calorimetry applied to metal hydride characterization

    Energy Technology Data Exchange (ETDEWEB)

    Sepulveda, A.; Lopeandia, A.F.; Domenech-Ferrer, R.; Garcia, G.; Pi, F.; Rodriguez-Viejo, J. [Nanomaterials and Microsystems Group, Physics Department, Universitat Autonoma de Barcelona, 08193 Bellaterra (Spain); Munoz, F.J. [Instituto de Microelectronica de Barcelona, Centro Nacional de Microelectronica, Campus UAB, 08193 Bellaterra (Spain)

    2008-06-15

    In this work, we show the suitability of the thin film membrane-based calorimetric technique to measure kinetically limited phase transitions such as the dehydrogenation of metallic hydrides. Different compounds such as Mg, Mg/Al and Mg{sub 80}Ti{sub 20} have been deposited over the active area of the microchip by electron beam evaporation. After several hydrogenation treatments at different temperatures to induce the hydride formation, calorimetric measurements on the dehydrogenation process of those thin films, either in vacuum or in air, are performed at a heating rate of 10 C/min. We observe a significant reduction in the onset of dehydrogenation for Mg{sub 80}Ti{sub 20} compared with pure Mg or Mg/Al layers, which confirms the beneficial effect of Ti on dehydrogenation. We also show the suitability of the membrane-based nanocalorimeters to be used in parallel with optical methods. Quantification of the energy released during hydrogen desorption remains elusive due to the semi-insulating to metallic transition of the film which affects the calorimetric trace. (author)

  4. The growth of crystals of erbium hydride

    International Nuclear Information System (INIS)

    Grimshaw, J.A.; Spooner, F.J.; Wilson, C.G.; McQuillan, A.D.

    1981-01-01

    Crystals of the rare-earth hydride ErH 2 have been produced with face areas greater than a square millimetre and corresponding volumes exceeding those of earlier crystals by orders of magnitude. The hydride, which was produced in bulk polycrystalline form by hydriding erbium metal at 950 0 C, has been examined by optical and X-ray techniques. For material of composition ErH 2 and ErHsub(1.8) the size of the grains and their degree of strain appears to depend more on oxygen contamination during formation and on the subsequent cooling procedure, than on the size of erbium metal crystals in the starting material. (author)

  5. Stress induced reorientation of vanadium hydride

    International Nuclear Information System (INIS)

    Beardsley, M.B.

    1977-10-01

    The critical stress for the reorientation of vanadium hydride was determined for the temperature range 180 0 to 280 0 K using flat tensile samples containing 50 to 500 ppM hydrogen by weight. The critical stress was observed to vary from a half to a third of the macroscopic yield stress of pure vanadium over the temperature range. The vanadium hydride could not be stress induced to precipitate above its stress-free precipitation temperature by uniaxial tensile stresses or triaxial tensile stresses induced by a notch

  6. In situ hydride formation in titanium during focused ion milling.

    Science.gov (United States)

    Ding, Rengen; Jones, Ian P

    2011-01-01

    It is well known that titanium and its alloys are sensitive to electrolytes and thus hydrides are commonly observed in electropolished foils. In this study, focused ion beam (FIB) milling was used to prepare thin foils of titanium and its alloys for transmission electron microscopy. The results show the following: (i) titanium hydrides were observed in pure titanium, (ii) the preparation of a bulk sample in water or acid solution resulted in the formation of more hydrides and (iii) FIB milling aids the precipitation of hydrides, but there were never any hydrides in Ti64 and Ti5553.

  7. A novel magnesium-vanadium hydride synthesized by a gigapascal-high-pressure technique

    Energy Technology Data Exchange (ETDEWEB)

    Kyoi, Daisuke; Sato, Toyoto; Roennebro, Ewa; Tsuji, Yasufumi; Kitamura, Naoyuki; Ueda, Atsushi; Ito, Mikio; Katsuyama, Shigeru; Hara, Shigeta; Noreus, Dag; Sakai, Tetsuo

    2004-07-28

    A magnesium-based vanadium-doped hydride was prepared in a high-pressure anvil cell by reacting a MgH{sub 2}-25%V molar mixture at 8 GPa and 873 K. The new magnesium-vanadium hydride has a cubic F-centred substructure (a=4.721(1) Angst), with an additional superstructure, which could be described by a doubling of the cubic cell axis and a magnesium atom framework, including an ordered arrangement of both vanadium atoms and vacancies (a=9.437(3) Angst, space group Fm3-bar m (no. 225), Z=4, V=840.55 Angst{sup 3}). The metal atom structure is related to the Ca{sub 7}Ge type structure but the refined metal atom composition with vacancies on one of the magnesium sites corresponding to Mg{sub 6}V nearly in line with EDX analysis. The thermal properties of the new compound were also studied by TPD analysis and TG-DTA. The onset of the hydrogen desorption for the new Mg{sub 6}V hydride occurred at a 160 K lower temperature when compared to magnesium hydride at a heating rate of 10 K/min.

  8. Boron-nitrogen based hydrides and reactive composites for hydrogen storage

    DEFF Research Database (Denmark)

    Jepsen, Lars H.; Ley, Morten B.; Lee, Young-Su

    2014-01-01

    Hydrogen forms chemical compounds with most other elements and forms a variety of different chemical bonds. This fascinating chemistry of hydrogen has continuously provided new materials and composites with new prospects for rational design and the tailoring of properties. This review highlights...... a range of new boron and nitrogen based hydrides and illustrates how hydrogen release and uptake properties can be improved. © 2014 Elsevier Ltd....

  9. Effects of δ-hydride precipitation at a crack tip on crack propagation in delayed hydride cracking of Zircaloy-2

    Energy Technology Data Exchange (ETDEWEB)

    Kubo, T., E-mail: kubo@nfd.co.jp [Nippon Nuclear Fuel Development Co., Ltd., 2163 Narita-cho, Oarai-machi, Ibaraki 311-1313 (Japan); Kobayashi, Y. [M.O.X. Co., Ltd., 1828-520 Hirasu-cho, Mito, Ibaraki 311-0853 (Japan)

    2013-08-15

    Highlights: • Steady state crack velocity of delayed hydride cracking in Zircaloy-2 was analyzed. • A large stress peak is induced at an end of hydride by volume expansion of hydride. • Hydrogen diffuses to the stress peak, thereby accelerating steady hydride growth. • Crack velocity was estimated from the calculated hydrogen flux into the stress peak. • There was good agreement between calculation results and experimental data. -- Abstract: Delayed hydride cracking (DHC) of Zircaloy-2 is one possible mechanism for the failure of boiling water reactor fuel rods in ramp tests at high burnup. Analyses were made for hydrogen diffusion around a crack tip to estimate the crack velocity of DHC in zirconium alloys, placing importance on effects of precipitation of δ-hydride. The stress distribution around the crack tip is significantly altered by precipitation of hydride, which was strictly analyzed using a finite element computer code. Then, stress-driven hydrogen diffusion under the altered stress distribution was analyzed by a differential method. Overlapping of external stress and hydride precipitation at a crack tip induces two stress peaks; one at a crack tip and the other at the front end of the hydride precipitate. Since the latter is larger than the former, more hydrogen diffuses to the front end of the hydride precipitate, thereby accelerating hydride growth compared with that in the absence of the hydride. These results indicated that, after hydride was formed in front of the crack tip, it grew almost steadily accompanying the interaction of hydrogen diffusion, hydride growth and the stress alteration by hydride precipitation. Finally, crack velocity was estimated from the calculated hydrogen flux into the crack tip as a function of temperature, stress intensity factor and material strength. There was qualitatively good agreement between calculation results and experimental data.

  10. Metal hydrides for hydrogen storage in nickel hydrogen batteries

    International Nuclear Information System (INIS)

    Bittner, H.F.; Badcock, C.C.; Quinzio, M.V.

    1984-01-01

    Metal hydride hydrogen storage in nickel hydrogen (Ni/H 2 ) batteries has been shown to increase battery energy density and improve battery heat management capabilities. However the properties of metal hydrides in a Ni/H 2 battery environment, which contains water vapor and oxygen in addition to the hydrogen, have not been well characterized. This work evaluates the use of hydrides in Ni/H 2 batteries by fundamental characterization of metal hydride properties in a Ni/H 2 cell environment. Hydrogen sorption properties of various hydrides have been measured in a Ni/H 2 cell environment. Results of detailed thermodynamic and kinetic studies of hydrogen sorption in LaNi 5 in a Ni/H 2 cell environment are presented. Long-term cycling studies indicate that degradation of the hydride can be minimized by cycling between certain pressure limits. A model describing the mechanism of hydride degradation is presented

  11. Characterisation of hydrides in a zirconium alloy, by EBSD

    International Nuclear Information System (INIS)

    Ubhi, H.S.; Larsen, K.

    2012-01-01

    Zirconium alloys are used in nuclear reactors owing to their low capture cross-section for thermal neutrons and good mechanical and corrosion properties. However, they do suffer from delayed hydrogen cracking (DHC) due to formation of hydride particles. This study shows how the electron back-scatter diffraction (EBSD) technique can be used to characterise hydrides and their orientation relationship with the matrix. Hydrided EB weld specimens were prepared by electro-polishing, characterised using Oxford instruments AZtecHKL EBSD apparatus and software attached to a FEG SEM. Hydrides were found to exist as fine intra granular plates and having the Blackburn orientation relationship, i.e. (0002)Zr//(111)hydride and (1120)Zr//(1-10)hydride. The hydrides were also found to contain sigma 3 boundaries as well as local misorientations. (author)

  12. Hydride formation on deformation twin in zirconium alloy

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Ju-Seong [Korea Atomic Energy Research Institute, 989-111 Daedeokdaero, Yuseong-gu, Daejeon, 305-353 (Korea, Republic of); Kim, Sung-Dae [Korea Institute of Material Science (KIMS), 797 Changwondaero, Changwon, Gyeongnam, 642-831 (Korea, Republic of); Yoon, Jonghun, E-mail: yooncsmd@gmail.com [Department of Mechanical Engineering, Hanyang University, 1271 Sa3-dong, Sangrok-gu, Ansan-si, Gyeonggi-do, 426-791 (Korea, Republic of)

    2016-12-15

    Hydrides deteriorate the mechanical properties of zirconium (Zr) alloys used in nuclear reactors. Intergranular hydrides that form along grain boundaries have been extensively studied due to their detrimental effects on cracking. However, it has been little concerns on formation of Zr hydrides correlated with deformation twins which is distinctive heterogeneous nucleation site in hexagonal close-packed metals. In this paper, the heterogeneous precipitation of Zr hydrides at the twin boundaries was visualized using transmission electron microscopy. It demonstrates that intragranular hydrides in the twinned region precipitates on the rotated habit plane by the twinning and intergranular hydrides precipitate along the coherent low energy twin boundaries independent of the conventional habit planes. Interestingly, dislocations around the twin boundaries play a substantial role in the nucleation of Zr hydrides by reducing the misfit strain energy.

  13. A Study on the Radial Hydride Assisted Delayed Hydride Cracking of Zircaloy

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Jin-Ho; Lee, Ji-Min; Kim, Yong-Soo [Hanyang University, Seoul (Korea, Republic of)

    2015-05-15

    Extensive studies have been done on understanding of DHC(Delayed hydride cracking) phenomenon since several zirconium alloy pressure tubes failed in nuclear reactor in the 1970s. Recently, long-term dry storage strategy has been considered seriously in order to manage spent nuclear fuel in Korea and other countries around the world. Consequentially, many researches have been investigated the degradation mechanisms which will threaten the spent fuel integrity during dry storage and showed that hydrogen related phenomenon such as hydride reorientation and DHC are the critical factors. Especially, DHC is the direct cracking mechanism which can cause not only a through-wall defect but also a radiation leak to the environment. In addition, DHC can be enhanced by radial hydride as reported by Kim who demonstrate that radial hydrides clearly act as crack linkage path. This phenomenon is known as the radial hydride assisted DHC (RHA-DHC). Therefore, study on DHC is essential to ensure the safety of spent fuel. Finite element analysis will be carried out for the stress gradient evaluation around notch tip. A variation in thermal cycle which leads to change in hydrogen solid solution trajectory may be required. If the radial hydride precipitates at notch tip, we will investigate what conditions should be met. Ultimately, we will suggest the regulation criteria for long-term dry storage of spent nuclear fuel.

  14. First principle calculations of alkali hydride electronic structures

    International Nuclear Information System (INIS)

    Novakovic, N; Radisavljevic, I; Colognesi, D; Ostojic, S; Ivanovic, N

    2007-01-01

    Electronic structure, volume optimization, bulk moduli, elastic constants, and frequencies of the transversal optical vibrations in LiH, NaH, KH, RbH, and CsH are calculated using the full potential augmented plane wave method, extended with local orbitals, and the full potential linearized augmented plane wave method. The obtained results show some common features in the electronic structure of these compounds, but also clear differences, which cannot be explained using simple empirical trends. The differences are particularly prominent in the electronic distributions and interactions in various crystallographic planes. In the light of these findings we have elaborated some selected experimental results and discussed several theoretical approaches frequently used for the description of various alkali hydride properties

  15. Method for preparation of uranium hydride

    International Nuclear Information System (INIS)

    Gorski, M.S.; Goncalves, Miriam; Mirage, A.; Lima, W. de.

    1985-01-01

    A method for preparation of Uranium Hydride starting from Hidrogen and Uranium is described. In the temperature range of 250 0 up to 350 0 C, and pressures above 10torr, Hydrogen reacts smoothly with Uranium turnings forming a fine black or dark gray powder (UH 3 ). Samples containing a significant amount of oxides show a delay before the reaction begging. (Author) [pt

  16. Hydrogen isotope exchange in metal hydride columns

    International Nuclear Information System (INIS)

    Wiswall, R.; Reilly, J.; Bloch, F.; Wirsing, E.

    1977-01-01

    Several metal hydrides were shown to act as chromatographic media for hydrogen isotopes. The procedure was to equilibrate a column of hydride with flowing hydrogen, inject a small quantity of tritium tracer, and observe its elution behavior. Characteristic retention times were found. From these and the extent of widening of the tritium band, the heights equivalent to a theoretical plate could be calculated. Values of around 1 cm were obtained. The following are the metals whose hydrides were studied, together with the temperature ranges in which chromatographic behavior was observed: vanadium, 0 to 70 0 C; zirconium, 500 to 600 0 C; LaNi 5 , -78 to +30 0 C; Mg 2 Ni, 300 to 375 0 C; palladium, 0 to 70 0 C. A dual-temperature isotope separation process based on hydride chromatography was demonstrated. In this, a column was caused to cycle between two temperatures while being supplied with a constant stream of tritium-traced hydrogen. Each half-cycle was continued until ''breakthrough,'' i.e., until the tritium concentration in the effluent was the same as that in the feed. Up to that point, the effluent was enriched or depleted in tritium, by up to 20%

  17. Magnesium hydrides and their phase transitions

    Czech Academy of Sciences Publication Activity Database

    Paidar, Václav

    2016-01-01

    Roč. 41, č. 23 (2016), s. 9769-9773 ISSN 0360-3199 R&D Projects: GA MŠk(CZ) LD13069 Institutional support: RVO:68378271 Keywords : hydrogen * magnesium and transition metal hydrides * crystal structure stability * displacive phase transformations Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.582, year: 2016

  18. Are RENiAl hydrides metallic?

    Czech Academy of Sciences Publication Activity Database

    Eichinger, K.; Havela, L.; Prokleška, J.; Stelmakhovych, O.; Daniš, S.; Šantavá, Eva; Miliyanchuk, K.

    2009-01-01

    Roč. 100, č. 9 (2009), s. 1200-1202 ISSN 1862-5282 Grant - others:GA ČR(CZ) GA202/07/0418 Institutional research plan: CEZ:AV0Z10100520 Keywords : rare earth metals * magnetism * hydrides Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.862, year: 2009

  19. Lithium hydride hydrolysis: experimental and kinetic study

    International Nuclear Information System (INIS)

    Charton, S.; Maupoix, C.; Brevet, A.; Delaunay, F.; Heintz, O.; Saviot, L.

    2006-01-01

    In this work has been studied the contribution of various analyses techniques in the framework, on the one hand of revealing the mechanisms implied in lithium hydride hydrolysis, and on the other hand of studying the kinetics of hydrogen production. Among the methods recently investigated, Raman spectroscopy, XPS and SIMS seem to be particularly attractive. (O.M.)

  20. Síntese e caracterização de um novo composto obtido pela reação entre hidreto de trifenilestanho e ácido (±-mandélico e avaliação de seu potencial biocida sobre o fungo Fusarium oxysporum f. sp. cubense Synthesis, characterization and evaluation of the biocide effect on the fungus Fusarium oxysporum f. sp. cubense of a new compound obtained by reaction of triphenyltin hydride and (±-mandelic acid

    Directory of Open Access Journals (Sweden)

    Roberto Santos Barbiéri

    2006-06-01

    Full Text Available O presente artigo refere-se à síntese e caracterização de um novo composto organoestânico, pela reação de ácido (±-mandélico e hidreto de trifenilestanho, em meio de acetonitrila e sob refluxo, [(C6H52SnMand 2] {Mand = C6H5CH(OHCOO], identificado por análise elementar de carbono e hidrogênio, espectroscopia no infravermelho e espectrometria de massa de alta resolução, para o qual foi proposta estrutura octaédrica com o grupo fenila em posição trans. Verificou-se que o composto apresenta ação biocida sobre o fungo Fusarium oxysporum f. sp. cubense, sendo mais efetivo que o ácido (±-mandélico livre. No entanto, a atividade biocida do composto foi menos intensa que a observada para cloreto de estanho hidratado, acetato de trifenilestanho e hidreto de trifenilestanho, empregados para fins de comparação. Nos testes de germinação de conídios e microconídios do mesmo fungo, na presença de [(C6H52SnMand 2], os índices de germinação ficaram abaixo de 11%.The present paper refers to the synthesis and characterization of a new organotin compound that was obtained by reaction of (±-mandelic acid with triphenyltin hydride in acetonitrile medium under reflux. According to hydrogen and carbon elemental analysis, infrared spectroscopy and high resolution mass spectrometry the formula of such compounds is (C6H52SnMand 2 {Mand = C6H5CH(OHCOO}. An octahedral complex, with the phenyl groups in trans position was proposed for its structure. It was observed that this compound was active against the fungus Fusarium oxysporum f. sp. cubense. The biocide effect was more intense than the one observed for(±-mandelic acid. However, it was less efficient than tin chloride hydrate, triphenyltin acetate and triphenyltin hydride. In germination assays with conides and microconides of the same fungus in the presence of [(C6H52SnMand 2], the germination rates were below 11%.

  1. Development of laboratory apparatus dedicated to the study of hydride--dehydride reactions

    International Nuclear Information System (INIS)

    Wemple, R.P.; Kass, W.J.

    1979-07-01

    Hydrogen-compatible laboratory apparatus has been designed and developed to study hydride--dehydride reactions at elevated pressures and temperatures. The system has operated at pressures and temperatures up to 34 MPa and 550 0 C during experiments conducted on LiAlH 4 and NiZr. Instrumentation incorporated into the system also allows differential thermal analysis and acoustic emission data to be collected as the chemical reactions progress. 13 figures

  2. Lattice anisotropy in uranium ternary compounds

    DEFF Research Database (Denmark)

    Maskova, S.; Adamska, A.M.; Havela, L.

    2012-01-01

    Several U-based intermetallic compounds (UCoGe, UNiGe with the TiNiSi structure type and UNiAl with the ZrNiAl structure type) and their hydrides were studied from the point of view of compressibility and thermal expansion. Confronted with existing data for the compounds with the ZrNiAl structure...

  3. A new ternary magnesium-titanium hydride Mg{sub 7}TiH{sub x} with hydrogen desorption properties better than both binary magnesium and titanium hydrides

    Energy Technology Data Exchange (ETDEWEB)

    Kyoi, Daisuke; Sato, Toyoto; Roennebro, Ewa; Kitamura, Naoyuki; Ueda, Atsushi; Ito, Mikio; Katsuyama, Shigeru; Hara, Shigeta; Noreus, Dag; Sakai, Tetsuo

    2004-06-09

    A magnesium based titanium doped hydride was prepared in a high-pressure anvil cell by reacting a mixture of MgH{sub 2} and TiH{sub 1.9} at 8 GPa and 873 K. The metal structure has a Ca{sub 7}Ge type structure (a=9.532(2) A, space group Fm3-barm (no. 225), Z=4, V=866.06 A{sup 3}). The refined metal atom composition Mg{sub 7}Ti was almost in line with EDS analysis. This means that the new magnesium-titanium hydride has a structure that is more related to TiH{sub 1.9} than to MgH{sub 2}. The thermal properties of the new compound were also studied by TPD analysis. The new hydride, Mg{sub 7}TiH{sub x} exhibits 5.5 mass% (x{approx}12.7) and decomposes into Mg and TiH{sub 1.9} upon releasing 4.7 mass% of hydrogen around 605 K, that is at a 130 and 220 K lower desorption temperature compared to MgH{sub 2} and TiH{sub 1.9}, respectively.

  4. Hydrogen storage in lithium hydride: A theoretical approach

    Science.gov (United States)

    Banger, Suman; Nayak, Vikas; Verma, U. P.

    2018-04-01

    First principles calculations have been carried out to analyze structural stability of lithium hydride (LiH) in NaCl phase using the full potential linearized augmented plane wave (FP-LAPW) method within the framework of density functional theory (DFT). Calculations have been extended to physiosorbed H-atom compounds LiH·H2, LiH·3H2 and LiH·4H2. The obtained results are discussed in the paper. The results for LiH are in excellent agreement with earlier reported data. The obtained direct energy band gap of LiH is 3.0 eV which is in excellent agreement with earlier reported theoretical band gap. The electronic band structure plots of the hydrogen adsorbed compounds show metallic behavior. The elastic constants, anisotropy factor, shear modulus, Young's modulus, Poisson's ratio and cohesive energies of all the compounds are calculated. Calculation of the optical spectra such as the real and imaginary parts of dielectric function, optical reflectivity, absorption coefficient, optical conductivity, refractive index, extinction coefficient and electron energy loss are performed for the energy range 0-15 eV. The obtained results for LiH·H2, LiH·3H2 and LiH·4H2, are reported for the first time. This study has been made in search of materials for hydrogen storage. It is concluded that LiH is a promising material for hydrogen storage.

  5. Hydrogen storage in metallic hydrides: the hydrides of magnesium-nickel alloys

    International Nuclear Information System (INIS)

    Silva, E.P. da.

    1981-01-01

    The massive and common use of hydrogen as an energy carrier requires an adequate solution to the problem of storing it. High pressure or low temperatures are not entirely satisfactory, having each a limited range of applications. Reversible metal hydrides cover a range of applications intermediate to high pressure gas and low temperature liquid hydrogen, retaining very favorable safety and energy density characteristics, both for mobile and stationary applications. This work demonstrates the technical viability of storing hydrogen in metal hydrides of magnesium-nickel alloys. Also, it shows that technology, a product of science, can be generated within an academic environment, of the goal is clear, the demand outstanding and the means available. We review briefly theoretical models relating to metal hydride properties, specially the thermodynamics properties relevant to this work. We report our experimental results on hydrides of magnesium-nickel alloys of various compositions including data on structure, hydrogen storage capacities, reaction kinetics, pressure-composition isotherms. We selected a promising alloy for mass production, built and tested a modular storage tank based on the hydrides of the alloy, with a capacity for storing 10 Nm sup(3) of hydrogen of 1 atm and 20 sup(0)C. The tank weighs 46,3 Kg and has a volume of 21 l. (author)

  6. SYNTHESIS AND STRUCTURE OF BIS(PHENYLTETRAMETHYLCYCLOPENTADIENYL)TITANIUM(III) HYDRIDE - THE FIRST MONOMERIC BIS(CYCLOPENTADIENYL)TITANIUM(III) HYDRIDE : The First Monomeric Bis(cyclopentadienyl)titanium(III) Hydride

    NARCIS (Netherlands)

    de Wolf, J.M.; Meetsma, A.; Teuben, J.H

    1995-01-01

    The first structurally characterized monomeric bis(cyclopentadienyl)titanium(III) hydride, (C(5)PhMe(4))(2)TiH (4), was synthesized by hydrogenolysis of (C(5)PhMe(4))(2)TiMe (5). Hydride 4 was found to be a monomeric bent sandwich by X-ray diffraction methods, and the pentamethylcyclopentadienyl

  7. Investigation of the thermodynamics governing metal hydride synthesis in the molten state process

    International Nuclear Information System (INIS)

    Stowe, Ashley C.; Berseth, Polly A.; Farrell, Thomas P.; Laughlin, Laura; Anton, Donald; Zidan, Ragaiy

    2008-01-01

    This work is aimed at utilizing a new synthetic technique to form novel complex hydrides for hydrogen storage. This technique is based on fusing different complex hydrides at elevated temperatures and pressures to form new species with improved hydrogen storage properties. Under conditions of elevated hydrogen overpressures and temperatures the starting materials can reach melting or near-melting point without decomposing (molten state processing), allowing for enhanced diffusion and exchange of elements among the starting materials. The formation and stabilization of these compounds, using the molten state process, is driven by the thermodynamic and kinetic properties of the starting and resulting compounds. Complex hydrides (e.g. NaK 2 AlH 6 , Mg(AlH 4 ) 2 ) were formed, structurally characterized and their hydrogen desorption properties were tested. In this paper we report on investigations of the thermodynamic aspects governing the process and products. We also report on the role of molar ratio in determining the final products. The effectiveness of the molten state process is compared with chemomechanical synthetic methods (ball milling)

  8. Analytical chemical system for the determination of heavy metals and organic compounds. Annual progress report, December 1, 1978-November 30, 1979

    Energy Technology Data Exchange (ETDEWEB)

    Siggia, S.; Barnes, R.M.

    1979-10-24

    Progress has been made in the synthesis and characterization of new resins for sequestering inorganic and organic compounds. The capabilities of the poly(dithiocarbamate) resin have been extended, a new poly(acrylamidoxime) resin prepared and characterized, and a series of resins for organic compounds prepared and tested. Limited actual sample analyses have been performed with these resins. A new inductively coupled plasma source, spectrometer, and computer system have been received and they are undergoing tests and installation. With this system in place, the multielement analysis of metals during the forthcoming period will insure the application of sequestering resins to practical analysis of energy-related materials. An automated sample handling and data system has been designed, some components purchased, and construction is scheduled for 1980.

  9. Analytical chemical system for the determination of heavy metals and organic compounds. Annual progress report, December 1, 1978-November 30, 1979

    International Nuclear Information System (INIS)

    Siggia, S.; Barnes, R.M.

    1979-01-01

    Progress has been made in the synthesis and characterization of new resins for sequestering inorganic and organic compounds. The capabilities of the poly(dithiocarbamate) resin have been extended, a new poly(acrylamidoxime) resin prepared and characterized, and a series of resins for organic compounds prepared and tested. Limited actual sample analyses have been performed with these resins. A new inductively coupled plasma source, spectrometer, and computer system have been received and they are undergoing tests and installation. With this system in place, the multielement analysis of metals during the forthcoming period will insure the application of sequestering resins to practical analysis of energy-related materials. An automated sample handling and data system has been designed, some components purchased, and construction is scheduled for 1980

  10. Hydridation of Ti-6Al-4V

    International Nuclear Information System (INIS)

    Domizzi, G; Luppo, M.I; Ortiz, M; Vigna, G

    2004-01-01

    The production of Ti pieces or their alloys through powder metallurgy is an economical alternative that replaces the costly methods commonly used. The Ti-6AI-4V alloy is widely used in the aerospace, chemical and medical industries. The use of powder from the alloy instead of using more pure alloyed titanium powders, further simplifies the production process. The presence of V allows the phase β to stabilize at very low temperatures and both alloys alter the Ti-H equilibrium diagram. This work analyzes to what degree these effects influence the obtaining of powders from this alloy from that of hydridation and dehydridation. Although it has slower kinetics, powders can be produced in times similar to those found for grade 2 Ti since the distribution of hydrides in the sample is uniform and the material is fragile enough for concentrations of approximately 0.7 H/Ti (CW)

  11. The electrochemical impedance of metal hydride electrodes

    DEFF Research Database (Denmark)

    Valøen, Lars Ole; Lasia, Andrzej; Jensen, Jens Oluf

    2002-01-01

    The electrochemical impedance responses for different laboratory type metal hydride electrodes were successfully modeled and fitted to experimental data for AB5 type hydrogen storage alloys as well as one MgNi type electrode. The models fitted the experimental data remarkably well. Several AC......, explaining the experimental impedances in a wide frequency range for electrodes of hydride forming materials mixed with copper powder, were obtained. Both charge transfer and spherical diffusion of hydrogen in the particles are important sub processes that govern the total rate of the electrochemical...... hydrogen absorption/desorption reaction. To approximate the experimental data, equations describing the current distribution in porous electrodes were needed. Indications of one or more parallel reduction/oxidation processes competing with the electrochemical hydrogen absorption/desorption reaction were...

  12. Metal hydrides based high energy density thermal battery

    International Nuclear Information System (INIS)

    Fang, Zhigang Zak; Zhou, Chengshang; Fan, Peng; Udell, Kent S.; Bowman, Robert C.; Vajo, John J.; Purewal, Justin J.; Kekelia, Bidzina

    2015-01-01

    Highlights: • The principle of the thermal battery using advanced metal hydrides was demonstrated. • The thermal battery used MgH 2 and TiMnV as a working pair. • High energy density can be achieved by the use of MgH 2 to store thermal energy. - Abstract: A concept of thermal battery based on advanced metal hydrides was studied for heating and cooling of cabins in electric vehicles. The system utilized a pair of thermodynamically matched metal hydrides as energy storage media. The pair of hydrides that was identified and developed was: (1) catalyzed MgH 2 as the high temperature hydride material, due to its high energy density and enhanced kinetics; and (2) TiV 0.62 Mn 1.5 alloy as the matching low temperature hydride. Further, a proof-of-concept prototype was built and tested, demonstrating the potential of the system as HVAC for transportation vehicles

  13. Hydrides and Borohydrides of Light Elements

    Science.gov (United States)

    1947-12-04

    Troy, Attn: Inst. of Naval Science (30) Solar Aircraft Cu,, San Diego, Attn: Dr. M. A. Williamson " (31) INSMAT. N. J. for Itandard Oil Co., Esso Lab...with the other# iLD F.Re p. 8 ilt -ms" #61ggSotod that.. ir addition to thc impurity in the t~y..thr, an impurkty, prosumably aluminum hydride, in

  14. Facile Synthesis of Permethyl Yttrocene Hydride

    NARCIS (Netherlands)

    Haan, Klaas H. den; Teuben, Jan H.

    1984-01-01

    A convenient three step synthesis of (Cp*2YH)n (Cp* = C5Me5) is described starting with YCl3.3thf, in which Cp*2YCl.thf and Cp*2YCH(SiMe3)2 are intermediates, which could be isolated and characterized. The hydride is active in the activation of sp2 and sp3 C-H bonds as was demonstrated by the H-D

  15. Aluminum hydride as a hydrogen and energy storage material: Past, present and future

    Energy Technology Data Exchange (ETDEWEB)

    Graetz, J., E-mail: graetz@bnl.gov [Sustainable Energy Technologies Department, Brookhaven National Laboratory, Upton, NY (United States); Reilly, J.J. [Sustainable Energy Technologies Department, Brookhaven National Laboratory, Upton, NY (United States); Yartys, V.A.; Maehlen, J.P. [Institute for Energy Technology, Kjeller (Norway); Bulychev, B.M. [Department of Chemistry, Lomonosov Moscow State University, Moscow (Russian Federation); Antonov, V.E. [Institute of Solid State Physics, Russian Academy of Sciences, Chernogolovka (Russian Federation); Tarasov, B.P. [Institute of Problems of Chemical Physics, Russian Academy of Sciences, Chernogolovka (Russian Federation); Gabis, I.E. [Department of Physics, Saint-Petersburg State University, St. Petersburg (Russian Federation)

    2011-09-15

    Aluminum hydride (AlH{sub 3}) and its associated compounds make up a fascinating class of materials that have motivated considerable scientific and technological research over the past 50 years. Due primarily to its high energy density, AlH{sub 3} has become a promising hydrogen and energy storage material that has been used (or proposed for use) as a rocket fuel, explosive, reducing agent and as a hydrogen source for portable fuel cells. This review covers the past, present and future research on aluminum hydride and includes the latest research developments on the synthesis of {alpha}-AlH{sub 3} and the other polymorphs (e.g., microcrystallization reaction, batch and continuous methods), crystallographic structures, thermodynamics and kinetics (e.g., as a function of crystallite size, catalysts and surface coatings), high-pressure hydrogenation experiments and possible regeneration routes.

  16. Neutron diffraction studies of transition metal hydride complexes

    International Nuclear Information System (INIS)

    Koetzle, T.F.; Bau, R.

    1976-01-01

    Investigations of H 3 Ta(C 5 H 5 ) 2 (III), HW 2 (CO) 9 (NO) (IV), and HW 2 (CO) 8 (NO) (P(OCH 3 ) 3 ) (V) have been completed. Preliminary results are available for HFeCo 3 (CO) 9 [P(OCH 3 ) 3 ] 3 (VII). This work, together with studies of HMo 2 (C 5 H 5 ) 2 (CO) 4 (P(CH 3 ) 2 ) (VI) and [(C 2 H 5 ) 4 N] + [HCr 2 (CO) 10 ] - carried out at Argonne has led to some general observations on the geometry and the nature of bonding in these compounds. For example, in the structures of IV and V, both of which have bent W--H--W linkages (less than W--H--W in the range 125-130 0 ), there is conclusive evidence for the existence of a closed three-center W--H--W bond with significant metal-metal interaction. Such is the case, because extensions of the axial W--C and W--N bonds trans to the hydride intersect at a point near the center of the W--H--W triangle. The geometry of VI, which also contains a bent M--H--M bond, is consistent with that of IV and V. Bridging M--H bonds in these second- and third-row hydrides range in length from 1.85 to 1.89 A, compared to 1.75 A in the first-row polynuclear complex VII. For metals of corresponding rows, bridging M--H bonds are about 0.1 A longer than terminal bonds, which are classified as single covalent bonds

  17. HYDRIDE-RELATED DEGRADATION OF SNF CLADDING UNDER REPOSITORY CONDITIONS

    International Nuclear Information System (INIS)

    McCoy, K.

    2000-01-01

    The purpose and scope of this analysis/model report is to analyze the degradation of commercial spent nuclear fuel (CSNF) cladding under repository conditions by the hydride-related metallurgical processes, such as delayed hydride cracking (DHC), hydride reorientation and hydrogen embrittlement, thereby providing a better understanding of the degradation process and clarifying which aspects of the process are known and which need further evaluation and investigation. The intended use is as an input to a more general analysis of cladding degradation

  18. Toxicology and metabolism of nickel compounds. Progress report, December 1, 1978-November 30, 1979. [Hamsters and rats

    Energy Technology Data Exchange (ETDEWEB)

    Sunderman, F.W. Jr.

    1979-08-15

    The toxicology and metabolism of nickel compounds were investigated in rats and hamsters. The new knowledge includes; demonstration that nickel carbonyl is teratogenic for hamsters; elucidation of physiological factors which influence ..cap alpha..Ni/sub 3/S/sub 2/-induced erythrocytosis in rats; development of a sensitive assay for heme oxygenase activity in renal microsomes for use in studies of renal effects of nickel compounds; demonstration that administration of Ni(CO)/sub 4/ to rats inhibits incorporation of /sup 3/H-thymidine into DNA during hepatic regeneration; demonstration that clones of Syrian hamster fetal cells which have been transformed by in vitro exposure to ..cap alpha..Ni/sub 3/S/sub 2/ consistently cause sarcomas following sc injection into nude mice; demonstration that nickel carbonyl-cyclopentadiene dimer induces rhabdomyosarcomas following im injection in rats; observation of differences in carcinogenic activities of several insoluble nickel compounds; discovery that intraocular injection of ..cap alpha..Ni/sub 3/S/sub 2/ induces amelanotic melanomas in rats; and refinement of analytical methods for nickel in biological materials.

  19. Spectrophotometric determination of volautile inorganic hydrides in binary gaseous mixtures

    International Nuclear Information System (INIS)

    Rezchikov, V.G.; Skachkova, I.N.; Kuznetsova, T.S.; Khrushcheva, V.V.

    1985-01-01

    A study was made on possibility of single and continuons analysis of binary mixtures (hydride-gas) for the content of volatile inorganic hydrides (VIH) from absorption spectra in the 185-280 nm band. Dependences of the percentage of VIH transmission on the wavelength are presented. It is shown that the maximum of their absorption depends on the element-hydrogen the bond length and binding energy. Detection limit for boron hydride was established to be n x 10 -3 % vol at 185-190 nm wavelength. Technique for spectrophotometric hydride determination in binary mixtures with hydrogen, argon, helium was developed. The technique provides the continuous control of gaseous mixture composition

  20. Identification of the zirconium hydrides metallography in zircaloy-2

    International Nuclear Information System (INIS)

    Garcia Gonzalez, F.

    1968-01-01

    Technique for the Identification of the zirconium hydrides in metallographic specimens have been developed. Microhardness, quantitative estimation and relative orientation of the present hydrides as well as grain size determination of the different Zircaloy-2 tube specimens have also been made. The specimens used were corrosion- tested in water during various periods of time at 300 degree castrating, prior to the metallographic examination. Reference specimens, as received, and heavily hydride specimens in a hydrogen atmosphere at 800 degree centigrees, have been used in the previous stages of the work. No difficulties have been met in this early stage of acquaintanceship with the zirconium hydrides. (Author) 5 refs

  1. Develop improved metal hydride technology for the storage of hydrogen. Final technical report

    Energy Technology Data Exchange (ETDEWEB)

    Sapru, K.

    1998-12-04

    The overall objective was to develop commercially viable metal hydrides capable of reversibly storing at least 3 wt.% hydrogen for use with PEM fuel cells and hydrogen fueled internal combustion engine (HICE) applications. Such alloys are expected to result in system capacities of greater than 2 wt.%, making metal hydride storage systems (MHSS`s) a practical means of supplying hydrogen for many consumer applications. ECD`s (Energy Conversion Devices, Inc.) past work on sputtered thin films of transition metal-based alloys led to the commercialization of it`s nickel/metal hydride batteries, and similar work on thin film Mg-based alloys demonstrated potential to achieve very high gravimetric and volumetric energy densities approaching 2,500 Wh/Kg and 2,500 Wh/M{sup 3} respectively. Under this 2-year cost shared project with the DOE, the authors have successfully demonstrated the feasibility of scaling up the Mg-based hydrides from thin film to bulk production without substantial loss of storage capacity. ECD made progress in alloy development by means of compositional and process modification. Processes used include Mechanical Alloying, Melt spinning and novel Gas Phase Condensation. It was showed that the same composition when prepared by melt-spinning resulted in a more homogeneous material having a higher PCT plateau pressure as compared to mechanical alloying. It was also shown that mechanically alloyed Mg-Al-Zn results in much higher plateau pressures, which is an important step towards reducing the desorption temperature. While significant progress has been made during the past two years in alloy development and understanding the relationship between composition, structure, morphology, and processing parameters, additional R and D needs to be performed to achieve the goals of this work.

  2. Initiation of delayed hydride cracking in zirconium-2.5 wt% niobium

    International Nuclear Information System (INIS)

    Shalabi, A.F.; Meneley, D.A.

    1990-01-01

    Delayed hydride cracking in zirconium alloys is caused by the repeated precipitation and cracking of brittle hydrides. The growth kinetic of the hydrides have been measured to evaluate the critical hydride length for crack initiation. Hydride growth leading to crack initiation follows an approximate (time) 1/3 law on the average; crack propagation proceeds in a stepwise fashion. The critical length of hydride for crack initiation increases with stress and temperature. The fracture criterion for crack initiation predicts the critical hydride length at a give stress level and temperature. The fracture initiation mechanism of the hydride confirms the temperature effects for heating and cooling cycles under services loads. (orig.)

  3. Study of the radiation effects on nucleic acids and related compounds. Annual progress report, November 15, 1977--November 14, 1978

    International Nuclear Information System (INIS)

    Wang, S.Y.

    1978-07-01

    Acquisition of information on molecular biology involves four stages: establishment of procedures for the separation, isolation, and characterization of radiation products of nucleic acid bases, nucleosides, etc.; development of methods for the synthesis of these products once they are identified so that a constant supply in milligram to gram quantities is available for the studies in stages 3 and 4; examination of the apparent biological effects of each product in vitro and in vivo; and study of the molecular mechanism related to an observed biological phenomenon. In view of the difficulties experienced in this area of research and this deliberate and careful investigative approach, it was generally believed that progress toward our final goal would be rather prolonged. Yet the elucidation of a molecular mechanism by which ionizing radiation induces mutation in vivo is very near at hand. Further progress has been made in the separation and isolation of three hydroperoxy derivatives of thymidine. One communication has appeared and another has been submitted for publication. The former reports the efficient stereospecific synthesis of cis-pyrimidine glycols and the latter describes the study of mutagenicity and toxicity of seven radiation products of thymine and thymidine using Ames Salmonella test. Also, a quantitative study of the reversion of cytosine N(3)-oxide, a hydroperoxidation product induced by 6-TOOH, to cytosine has been carried out

  4. The adsorption and reaction of halogenated volatile organic compounds (VOC's) on metal oxides. 1998 annual progress report

    International Nuclear Information System (INIS)

    Goodman, D.W.; Haw, J.F.; Lunsford, J.

    1998-01-01

    'The goal of the research is to elucidate the properties of the materials responsible for the activation of halocarbons and the nature of the intermediates formed in the dissociative adsorption of this class of compounds. This information is essential for interpreting and predicting stoichiometric and catalytic pathways for the safe destruction of halocarbon pollutants. The specific objectives are: (1) to study the adsorption and reactivity of chloromethanes and chloroethanes on metal oxides; (2) to identify the reaction intermediates using spectroscopic methods; and (3) to develop kinetic models for the reaction of these halocarbons with oxide surfaces. This report summarizes work after 20 months of a 36-month project. Emphasis has been placed understanding the surfaces phases, as well as the bulk phases that are present during the reactions of chlorinated hydrocarbons with strongly basic metal oxides. Most of the research has been carried out with carbon tetrachloride.'

  5. Gas phase radiolysis and vacuum ultraviolet photolysis of heterocyclic organic compounds. Progress report, February 1, 1974--February 1, 1975

    International Nuclear Information System (INIS)

    Scala, A.A.; Salomon, D.; Colon, I.; D'Angona, J.

    1975-01-01

    In the γ radiolysis of tetrahydrofuran there are pronounced density effects in the pressure range from 0 to 50 Torr with the most important ion-pair yields decreasing as the pressure increases. The relative product yields of the radiolysis is compared with that of xenon photolysis. Possible mechanisms to explain the results obtained are discussed. The ion-pair yields from the γ radiolysis of the heterocyclic amines, ethylenimine, azetidine, pyrrolidine, and piperidine, are determined, and the pressure effects are evaluated. Reactions mechanisms are discussed. The vacuum ultraviolet photolysis products of thietane and tetrahydrothiophene are studied and compared with the γ radiolysis products. Reaction mechanisms are discussed. The status of the construction of a photoionization mass spectrometer and the measurement of the ionization efficiencies and extinction coefficients of organic compounds is reported. (U.S.)

  6. Method of recovery of U, Pu and their compounds

    International Nuclear Information System (INIS)

    Cech, B.; Kaderabek, E.; Hanslik, T.

    1977-01-01

    A method is proposed of removing metal sheaths consisting of either Zr or Nb or Ti or an alloy of at least two of the metals from ceramic nuclear fuel based on U or Pu compounds. The system is exposed to hydrogen, preferably at temperatures of 250 to 460 degC and pressures of 20 to 50 at. The resulting zirconium hydride or hydrides of other metals is separated, eg., mechanically. (M.K.)

  7. Hydrogen storage in the form of metal hydrides

    Science.gov (United States)

    Zwanziger, M. G.; Santana, C. C.; Santos, S. C.

    1984-01-01

    Reversible reactions between hydrogen and such materials as iron/titanium and magnesium/ nickel alloy may provide a means for storing hydrogen fuel. A demonstration model of an iron/titanium hydride storage bed is described. Hydrogen from the hydride storage bed powers a converted gasoline electric generator.

  8. Pyrophoric behaviour of uranium hydride and uranium powders

    Science.gov (United States)

    Le Guyadec, F.; Génin, X.; Bayle, J. P.; Dugne, O.; Duhart-Barone, A.; Ablitzer, C.

    2010-01-01

    Thermal stability and spontaneous ignition conditions of uranium hydride and uranium metal fine powders have been studied and observed in an original and dedicated experimental device placed inside a glove box under flowing pure argon. Pure uranium hydride powder with low amount of oxide (Oxidation mechanisms are proposed.

  9. Ultra-sonic observation in niobium hydride precipitation

    International Nuclear Information System (INIS)

    Florencio, O.; Pinatti, Dyonisio G.

    1982-01-01

    The hidrogen embrittlement of exothermic ocluders, had been considered as due to applied stress induced hydride precipitates leading to brittle fracture. The results of simultaneous measurements of macroscopic deformation and elastic change due to hydride precipitation, using the ultrasonic pulse-echo technique are showed. THen it was tested the possibility of kinectis precipitation parameters evoluation. (Author) [pt

  10. Creating nanoshell on the surface of titanium hydride bead

    Directory of Open Access Journals (Sweden)

    PAVLENKO Vyacheslav Ivanovich

    2016-12-01

    Full Text Available The article presents data on the modification of titanium hydride bead by creating titanium nanoshell on its surface by ion-plasma vacuum magnetron sputtering. To apply titanium nanoshell on the titanium hydride bead vacuum coating plant of multifunctional nanocomposite coatings QVADRA 500 located in the center of high technology was used. Analysis of the micrographs of the original surface of titanium hydride bead showed that the microstructure of the surface is flat, smooth, in addition the analysis of the microstructure of material surface showed the presence of small porosity, roughness, mainly cavities, as well as shallow longitudinal cracks. The presence of oxide film in titanium hydride prevents the free release of hydrogen and fills some micro-cracks on the surface. Differential thermal analysis of both samples was conducted to determine the thermal stability of the initial titanium hydride bead and bead with applied titanium nanoshell. Hydrogen thermal desorption spectra of the samples of the initial titanium hydride bead and bead with applied titanium nanoshell show different thermal stability of compared materials in the temperature range from 550 to 860о C. Titanium nanoshells applied in this way allows increasing the heat resistance of titanium hydride bead – the temperature of starting decomposition is 695о C and temperature when decomposition finishes is more than 1000о C. Modified in this way titanium hydride bead can be used as a filler in the radiation protective materials used in the construction or upgrading biological protection of nuclear power plants.

  11. Crystal structure solution of hydrides containing natEu from neutron powder diffraction data

    International Nuclear Information System (INIS)

    Kohlmann, H.

    1999-01-01

    Complete text of publication follows. The location of hydrogen in crystal structures of metal hydrides usually requires neutron diffraction data. Some elements, however, show excessively high absorption cross sections, σ a , for neutrons, thus making this technique seemingly impractical. Therefore no complete, refined crystal structure data of europium hydrides (σ a ( nat Eu) = .4530 barns at λ = 179.8 pm [1]) have been reported so far. It is shown that the absorption can be reduced to a value reasonable for neutron diffraction experiments by taking advantage of the wavelength dependence of σ a combined with the use of annular samples at advanced diffractometers. Neutron powder diffraction data on several nat Eu containing deuterides suitable for the ab initio crystal structure solution and refinement have been taken at D20 and D4 (ILL, Grenoble). The crystal chemistry of these europium hydrides, among them the two new compounds EuMg 2 H 6 and EuMgH 4 [2], is discussed. (author) [1] V.F. Sears, Neutron News 1992, 3, 26-37.; [2] H. Kohlmann, F. Gingl, T. Hansen, K. Yvon, Angew. Chem. Int. Ed. Eng. 1999, 38, accepted

  12. Preferred hydride growth orientations on oxide-coated gadolinium surfaces

    International Nuclear Information System (INIS)

    Benamar, G.M.; Schweke, D.; Kimmel, G.; Mintz, M.H.

    2012-01-01

    Highlights: ► The preferred hydride growth orientations on gadolinium metal coated by a thin oxide layer are presented. ► A preferred growth of the (1 0 0) h plane of the face centered cubic (FCC) GdH 2 is observed for the hydride spots forming below the oxidation layer. ► A change to the (1 1 1) h plane of the cubic hydride dominates for the hydride's Growth Centers. ► The texture change is attributed to the surface normal compressive stress component exerted by the oxidation layer on the developing hydride. - Abstract: The initial development of hydrides on polycrystalline gadolinium (Gd), as on some other hydride forming metals, is characterized by two sequential steps. The first step involves the rapid formation of a dense pattern of small hydride spots (referred to as the “small family” of hydrides) below the native oxidation layer. The second stage takes place when some of the “small family” nucleants (referred to as “growth centers”, GCs) break the oxide layer, leading to their rapid growth and finally to the massive hydriding of the sample. In the present study, the texture of the two hydride families was studied, by combining X-ray diffraction (XRD) analysis with a microscopic analysis of the hydride, using scanning electron microscopy (SEM) and atomic force microscopy (AFM). It has been observed that for the “small family”, a preferred growth of the (1 0 0) h plane of the cubic GdH 2 takes place, whereas for the GCs, a change to the (1 1 1) h plane of the cubic hydride dominates. These preferred growth orientations were analyzed by their structure relation with the (0 0 .1) m basal plane of the Gd metal. It has been concluded that the above texture change is due to the surface normal compressive stress component exerted by the oxidation overlayer on the developing hydride, preventing the (0 0 .1) m ||(1 1 1) h growth orientation. This stress is relieved upon the rupture of that overlayer and the development of the GCs, leading to

  13. Growth and decomposition of Lithium and Lithium hydride on Nickel

    DEFF Research Database (Denmark)

    Engbæk, Jakob; Nielsen, Gunver; Nielsen, Jane Hvolbæk

    2006-01-01

    In this paper we have investigated the deposition, structure and decomposition of lithium and lithium-hydride films on a nickel substrate. Using surface sensitive techniques it was possible to quantify the deposited Li amount, and to optimize the deposition procedure for synthesizing lithium......-hydride films. By only making thin films of LiH it is possible to study the stability of these hydride layers and compare it directly with the stability of pure Li without having any transport phenomena or adsorbed oxygen to obscure the results. The desorption of metallic lithium takes place at a lower...... temperature than the decomposition of the lithium-hydride, confirming the high stability and sintering problems of lithium-hydride making the storage potential a challenge. (c) 2006 Elsevier B.V. All rights reserved....

  14. Minimizing hydride cracking in zirconium alloys

    International Nuclear Information System (INIS)

    Coleman, C.E.; Cheadle, B.A.; Ambler, J.F.R.; Eadie, R.L.

    1985-01-01

    Zirconium alloy components can fail by hydride cracking if they contain large flaws and are highly stressed. If cracking in such components is suspected, crack growth can be minimized by following two simple operating rules: components should be heated up from at least 30K below any operating temperature above 450K, and when the component requires cooling to room temperature from a high temperature, any tensile stress should be reduced as much and as quickly as is practical during cooling. This paper describes the physical basis for these rules

  15. Low-frequency excitations in zirconium hydrides

    International Nuclear Information System (INIS)

    Radulescu, A.; Padureanu, I.; Rapeanu, S.N.; Beldiman, A.; Kozlov, Zh.A.; Semenov, V.A.

    1999-01-01

    The slow inelastic neutron scattering (INS) on ZrH x systems (x = 0.38, 0.52) revealed new excitations located within the energy range 2-10 MeV. Besides the acoustic vibrations specific to α-HCP Zr and γ-FCO Zr hydride the fine structure of these excitations is clearly observed. The origin of the new observed peaks is not very clear but a proton tunneling or a resonance effect in α-Zr lattice could be taken into account

  16. Toxicology and metabolism of nickel compounds. Progress report, December 1, 1975--November 30, 1976. [Tests made with rats and hamsters

    Energy Technology Data Exchange (ETDEWEB)

    Sunderman, F.W. Jr.

    1976-08-15

    The toxicology and metabolism of nickel compounds (NiCl/sub 2/, Ni/sub 3/S/sub 2/, NiS, Ni powder, and Ni(CO)/sub 4/) were investigated in rats and hamsters. Triethylenetetramine (TETA) and d-penicillamine are more effective than other chelating agents (Na-diethyldithiocarbamate, CaNa/sub 2/-versenate, diglycylhistidine-N-methylamide and ..cap alpha..-lipoic acid) as antidotes for acute Ni(II)-toxicity in rats. The antidotal efficacy of triethylenetetramine (TETA) in acute Ni(II)-toxicity is mediated by rapid reduction of the plasma concentration of Ni(II), consistent with renal clearance of the TETA-Ni complex at a rate more than twenty times greater than the renal clearance of non-chelated Ni(II). Fischer rats are more susceptible than other rat strains (Wistar-Lewis, Long-Evans and NIH-Black) to induction of erythrocytosis after an intrarenal injection of Ni/sub 3/S/sub 2/, and elucidation of the serial pathologic changes that occur in rats after an intrarenal injection of Ni/sub 3/S/sub 2/. When amorphous nickel monosulfide (NiS) and nickel subsulfide (Ni/sub 3/S/sub 2/) were administered by im injection to randomly selected Fischer rats in equivalent amounts under identical conditions, NiS did not induce any tumors whereas Ni/sub 3/S/sub 2/ induced sarcomas in almost all of the rats.

  17. Study of the effects of radiation of nucleic acids and related compounds. Progress report, August 15, 1975--August 14, 1976

    International Nuclear Information System (INIS)

    Wang, S.Y.

    1976-04-01

    Ionizing radiation produces genetic effects in biological systems. Since genetic effects are usually the result of modifications of DNA or sometimes of RNA, interest is being centered on the chemical and physical nature of radiation-induced lesions to nucleic acids and their components. These investigations have revealed the enormous complexity of chemical events and the possible degradation of nucleic acids by strand breakage. Therefore, work in the ionization radiation of nucleic acids has proceeded along a dual course. On the one hand, molecular changes have been characterized for a number of primary radiation products. On the other hand, strand breakage has been investigated intensively as a direct primary event. Both of these aspects were emphasized in our research last year. We succeeded in improving the synthesis of 5-hydroxy-methyl thymine (α-TOOH). α-TOOH was found to be much more effective than cis-5,6-dihydro-6-hydroperoxy-5-hydroxy thymine (6-TOOH) in the inactivation of transforming DNA of H. influenzae cells although α-TOOH is much less reactive chemically than 6-TOOH. 6-TOOH causes inactivation and acts as an inhibitor of DNA synthesis in mammalian cells. In addition, evidence may indicate that 6-TOOH does not induce strand breaks directly in DNA although we showed that 6-TOOH is a clastogenic compound

  18. Nanoindentation measurements of the mechanical properties of zirconium matrix and hydrides in unirradiated pre-hydrided nuclear fuel cladding

    International Nuclear Information System (INIS)

    Rico, A.; Martin-Rengel, M.A.; Ruiz-Hervias, J.; Rodriguez, J.; Gomez-Sanchez, F.J.

    2014-01-01

    It is well known that the mechanical properties of the nuclear fuel cladding may be affected by the presence of hydrides. The average mechanical properties of hydrided cladding have been extensively investigated from a macroscopic point of view. In addition, the mechanical and fracture properties of bulk hydride samples fabricated from zirconium plates have also been reported. In this paper, Young’s modulus, hardness and yield stress are measured for each phase, namely zirconium hydrides and matrix, of pre-hydrided nuclear fuel cladding. To this end, nanoindentation tests were performed on ZIRLO samples in as-received state, on a hydride blister and in samples with 150 and 1200 ppm of hydrogen homogeneously distributed along the hoop direction of the cladding. The results show that the measured mechanical properties of the zirconium hydrides and ZIRLO matrix (Young’s modulus, hardness and yield stress) are rather similar. From the experimental data, the hydride volume fraction in the cladding samples with 150 and 1200 ppm was estimated and the average mechanical properties were calculated by means of the rule of mixtures. These values were compared with those obtained from ring compression tests. Good agreement between the results obtained by both methods was found

  19. Study of the radiation effects on nucleic acids and related compounds. Progress report, August 15, 1976--November 14, 1977

    International Nuclear Information System (INIS)

    Wang, S.Y.

    1977-08-01

    The effects of ionizing radiation on nucleic acids and components were studied in vitro. Our approach involves four levels of operation and progress is being made at each stage. First, procedures were established to separate and purify three reactive radiation products from thymidine. Second, improved methods of synthesizing trans-glycols of pyrimidines were developed, and a new method for the stereospecific synthesis of cis-glycol of pyrimidines was realized. Thirdly, the Ames Salmonella test was used to determine the mutagenicity of the radiation products and the reactive ones from thymine and thymidine were found to be highly mutagenic. Therefore, all radiation products should be considered potential human health hazards and should be screened when they can be purified and synthesized. In the fourth stage, the reaction of each nucleic-acid base with Cu ++ and cis-5,6-dihydro-6-hydroperoxy-5-hydroxythymine (6-TOOH) was studied in order to further our understanding of the molecular mechanisms of radiation mutagenesis. The presence of Cu ++ was shown to be necessary for the effective mutagenic activity of 6-TOOH in the H. influenzae transformation assay. These findings provide fundamental information about the possible health hazards of ionizing radiation and will be useful in designing methods to protect against and repair radiation damage, which may be mutagenic and carcinogenic

  20. Transmission Electron Microscopy Studies on Titanium-doped Sodium Aluminum Hydride

    Science.gov (United States)

    Culnane, Lance F.

    Hydrogen fuel cells play an important role in today's diverse and blossoming alternative energy industry. One of the greatest technological barriers for vehicular applications is the storage of hydrogen (which is required to power hydrogen fuel cells). Storing hydrogen as a gas is not volume efficient, and storing it as a liquid is not cost effective, therefore solid-state storage of hydrogen, such as in metal hydrides offers the most potential for success since many metal hydrides have attractive qualities for hydrogen storage such as: high volumetric capacity, cost efficiency, weight efficiency, low refueling times, and most importantly, high safety. Unfortunately, a compound has not been discovered which contains all of the attractive hydrogen storage qualities for vehicular applications. Sodium aluminum hydride (NaAlH 4) is one of the few compounds which is close to meeting requirements for car manufacturers, and has perhaps been researched the most extensively out of all metal hydrides in the last 15 years. This arises from the remarkable discovery by Bogdanovic who found that doping NaAlH4 with Ti dopants enabled the reversible dehydrogenation and hydrogenation of NaAlH 4 at mild conditions. Various evidence and theories have been proposed to suggest explanations for the enhanced kinetic effect that Ti-doping and ball-milling provide. However, the research community has not reached a consensus as to the exact role of Ti-dopants. If the role of titanium in the NaAlH4 dehydrogenation/hydrogenation mechanism could be understood, then more attractive metal hydrides could be designed. To this end, we conducted Transmission Electron Microscopy (TEM) studies to explain the role of the Ti dopants. The first known thorough particle size analysis of the NaAlH4 system was conducted, as well as TEM-EELS (Electron Energy Loss Spectroscopy), TEM-EDS (Energy Dispersive X-ray Spectroscopy), and in-situ imaging studies. Preparation methods were found to be important for the

  1. Cesium platinide hydride 4Cs{sub 2}Pt.CsH: an intermetallic double salt featuring metal anions

    Energy Technology Data Exchange (ETDEWEB)

    Smetana, Volodymyr [Ames Laboratory, US Department of Energy, and Critical Materials Institute, Ames, Iowa, 50011-3020 (United States); Mudring, Anja-Verena [Ames Laboratory, US Department of Energy, and Critical Materials Institute, Ames, Iowa, 50011-3020 (United States); Department of Materials Sciences and Engineering, Iowa State University, Ames, Iowa, 50011-3111 (United States)

    2016-11-14

    With Cs{sub 9}Pt{sub 4}H a new representative of ionic compounds featuring metal anions can be added to this rare-membered family. Cs{sub 9}Pt{sub 4}H exhibits a complex crystal structure containing Cs{sup +} cations, Pt{sup 2-} and H{sup -} anions. Being a red, transparent compound its band gap is in the visible range of the electromagnetic spectrum and the ionic type of bonding is confirmed by quantum chemical calculations. This cesium platinide hydride can formally be considered as a double salt of the ''alloy'' cesium-platinum, or better cesium platinide, Cs{sub 2}Pt, and the salt cesium hydride CsH according to Cs{sub 9}Pt{sub 4}H≡4 Cs{sub 2}Pt.CsH. (copyright 2016 Wiley-VCH Verlag GmbH and Co. KGaA, Weinheim)

  2. NATO Advanced Study Institute on Metal Hydrides

    CERN Document Server

    1981-01-01

    In the last five years, the study of metal hydrides has ex­ panded enormously due to the potential technological importance of this class of materials in hydrogen based energy conversion schemes. The scope of this activity has been worldwide among the industrially advanced nations. There has been a consensus among researchers in both fundamental and applied areas that a more basic understanding of the properties of metal/hydrogen syster;,s is required in order to provide a rational basis for the selection of materials for specific applications. The current worldwide need for and interest in research in metal hydrides indicated the timeliness of an Advanced Study Insti­ tute to provide an in-depth view of the field for those active in its various aspects. The inclusion of speakers from non-NATO coun­ tries provided the opportunity for cross-fertilization of ideas for future research. While the emphasis of the Institute was on basic properties, there was a conscious effort to stimulate interest in the applic...

  3. Isotope exchange between gaseous hydrogen and uranium hydride powder

    International Nuclear Information System (INIS)

    Shugard, Andrew D.; Buffleben, George M.; Johnson, Terry A.; Robinson, David B.

    2014-01-01

    Highlights: • Isotope exchange between hydrogen gas and uranium hydride powder can be rapid and reversible. • Gas–solid exchange rate is controlled by transport within ∼0.7 μm hydride particles. • Gas chromatographic separation of hydrogen isotopes using uranium hydride is feasible. - Abstract: Isotope exchange between gaseous hydrogen and solid uranium hydride has been studied by flowing hydrogen (deuterium) gas through packed powder beds of uranium deuteride (hydride). We used a residual gas analyzer system to perform real-time analysis of the effluent gas composition. We also developed an exchange and transport model and, by fitting it to the experimental data, extracted kinetic parameters for the isotope exchange reaction. Our results suggest that, from approximately 70 to 700 kPa and 25 to 400 °C, the gas-to-solid exchange rate is controlled by hydrogen and deuterium transport within the ∼0.7 μm diameter uranium hydride particles. We use our kinetic parameters to show that gas chromatographic separation of hydrogen and deuterium using uranium hydride could be feasible

  4. A study of stress reorientation of hydrides in zircaloy

    Energy Technology Data Exchange (ETDEWEB)

    Yourong, Jiang; Bangxin, Zhou [Nuclear Power Inst. of China, Chengdu, SC (China)

    1994-10-01

    Under the conditions of circumferential tensile stress from 70 to 180 MPa for Zircaloy tubes or the tensile stress from 55 to 180 MPa for Zircaloy-4 plates and temperature cycling between 150 and 400 degree C, the effects of stress and the number of temperature cycling on hydride reorientation in Zircaloy-4 tubes and plates and Zircaloy-2 tubes containing about 220 {mu}g/g hydrogen have been investigated. With the increase of stress and/or the number of temperature cycling, the level of hydride reorientation increases. When hydride reorientation takes place, there is a threshold stress concerned with the number of temperature cycling. Below the threshold stress, hydride reorientation is not obvious. When applied stress is higher than the threshold stress, the level of hydride reorientation increases with the increase of stress and the number of temperature cycling. Hydride reorientation in Zircaloy-4 tubes develops gradually from the outer surface to inner surface. It might be related to the difference of texture between outer surface and inner surface. The threshold stress is affected by both the texture and the value of B. So controlling texture could still restrict hydride reorientation under tensile stress.

  5. Hydrogen storage in metal hydrides and complex hydrides; Wasserstoffspeicherung in Metall- und komplexen Hydriden - Schlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Bielmann, M.; Zuettel, A.

    2007-07-01

    This final report for the Swiss Federal Office of Energy (SFOE), reports on work done in 2007 at the Swiss Federal Laboratories for Materials Science and Technology EMPA on the storage of hydrogen in metal hydrides and complex hydrides. In particular, the use of tetrahydroborates is noted. The potential of this class of materials is stressed. The structures at room-temperature were examined using neutron and X-ray diffraction methods. Thermodynamic methods helped determine the thermodynamic stability of the materials. Also, a complete energy diagram for the materials was developed. The use of silicon oxide to reduce activation energy and its catalytic effects are discussed. The challenges placed by desorption mechanisms are noted. The authors note that reversibility is basically proven.

  6. Expanding Thorium Hydride Chemistry Through Th²⁺, Including the Synthesis of a Mixed-Valent Th⁴⁺/Th³⁺ Hydride Complex.

    Science.gov (United States)

    Langeslay, Ryan R; Fieser, Megan E; Ziller, Joseph W; Furche, Filipp; Evans, William J

    2016-03-30

    The reactivity of the recently discovered Th(2+) complex [K(18-crown-6)(THF)2][Cp″3Th], 1 [Cp'' = C5H3(SiMe3)2-1,3], with hydrogen reagents has been investigated and found to provide syntheses of new classes of thorium hydride compounds. Complex 1 reacts with [Et3NH][BPh4] to form the terminal Th(4+) hydride complex Cp″3ThH, 2, a reaction that formally involves a net two-electron reduction. Complex 1 also reacts in the solid state and in solution with H2 to form a mixed-valent bimetallic product, [K(18-crown-6)(Et2O)][Cp″2ThH2]2, 3, which was analyzed by X-ray crystallography, electron paramagnetic resonance and optical spectroscopy, and density functional theory. The existence of 3, which formally contains Th(3+) and Th(4+), suggested that KC8 could reduce [(C5Me5)2ThH2]2. In the presence of 18-crown-6, this reaction forms an analogous mixed-valent product formulated as [K(18-crown-6)(THF)][(C5Me5)2ThH2]2, 4. A similar complex with (C5Me4H)(1-) ligands was not obtained, but reaction of (C5Me4H)3Th with H2 in the presence of KC8 and 2.2.2-cryptand at -45 °C produced two monometallic hydride products, namely, (C5Me4H)3ThH, 5, and [K(2.2.2-cryptand)]{(C5Me4H)2[η(1):η(5)-C5Me3H(CH2)]ThH]}, 6. Complex 6 contains a metalated tetramethylcyclopentadienyl dianion, [C5Me3H(CH2)](2-), that binds in a tuck-in mode.

  7. Complex metal hydrides for hydrogen, thermal and electrochemical energy storage

    DEFF Research Database (Denmark)

    Møller, Kasper T.; Sheppard, Drew; Ravnsbæk, Dorthe B.

    2017-01-01

    field. This review illustrates that complex metal hydrides may store hydrogen in the solid state, act as novel battery materials, both as electrolytes and electrode materials, or store solar heat in a more efficient manner as compared to traditional heat storage materials. Furthermore, it is highlighted...... how complex metal hydrides may act in an integrated setup with a fuel cell. This review focuses on the unique properties of light element complex metal hydrides mainly based on boron, nitrogen and aluminum, e.g., metal borohydrides and metal alanates. Our hope is that this review can provide new...

  8. Finite difference program for calculating hydride bed wall temperature profiles

    International Nuclear Information System (INIS)

    Klein, J.E.

    1992-01-01

    A QuickBASIC finite difference program was written for calculating one dimensional temperature profiles in up to two media with flat, cylindrical, or spherical geometries. The development of the program was motivated by the need to calculate maximum temperature differences across the walls of the Tritium metal hydrides beds for thermal fatigue analysis. The purpose of this report is to document the equations and the computer program used to calculate transient wall temperatures in stainless steel hydride vessels. The development of the computer code was motivated by the need to calculate maximum temperature differences across the walls of the hydrides beds in the Tritium Facility for thermal fatigue analysis

  9. Investigation process of alcoholysis of hydride aluminium-adobe

    International Nuclear Information System (INIS)

    Numanov, M.I.; Normatov, I.Sh.; Mirsaidov, U.M.

    2001-01-01

    Considering of that process of acid treatment of aluminium-adobe hydride realizes in the ethyl alcohol media it was necessary study the process of alcoholysis of AlH 3 and aluminium additives. In the end of article authors became to conclusion that deficiency of spontaneous alcoholysis of AlH 3 in adobe caused by protective action of fiber; solvate ability of LiCl and alkoxy aluminium hydride of lithium-LiCl·CO 2 H 5 OH, Li Al(OC 2 H 5 ) 4 ·nC 2 H 5 OH decreasing the expectancy of responding of alcohol with aluminium hydride

  10. Determination of hydrogen in zirconium hydride and uranium-zirconium hydride by inert gas exraction-gravimetric method

    International Nuclear Information System (INIS)

    Hoshino, Akira; Iso, Shuichi

    1976-01-01

    An inert gas extraction-gravimetric method has been applied to the determination of hydrogen in zirconium hydride and uranium-zirconium hydride which are used as neutron moderator and fuel of nuclear safety research reactor (NSRR), respectively. The sample in a graphite-enclosed quartz crucible is heated inductively to 1200 0 C for 20 min in a helium stream. Hydrogen liberated from the sample is oxidized to water by copper(I) oxide-copper(II) oxide at 400 0 C, and the water is determined gravimetrically by absorption in anhydrone. The extraction curves of hydrogen for zirconium hydride and uranium-zirconium hydride samples are shown in Figs. 2 and 3. Hydrogen in the samples is extracted quantitatively by heating at (1000 -- 1250) 0 C for (10 -- 40) min. Recoveries of hydrogen in the case of zirconium hydride were examined as follows: a weighed zirconium rod (5 phi x 6 mm, hydrogen -5 Torr. After the chamber was filled with purified hydrogen to 200 Torr, the rod was heated to 400 0 C for 15 h, and again weighed to determine the increase in weight. Hydrogen in the rod was then determined by the proposed method. The results are in excellent agreement with the increase in weight as shown in Table 1. Analytical results of hydrogen in zirconium hydride samples and an uranium-zirconium hydride sample are shown in Table 2. (auth.)

  11. Boron hydride analogues of the fullerenes

    International Nuclear Information System (INIS)

    Quong, A.A.; Pederson, M.R.; Broughton, J.Q.

    1994-01-01

    The BH moiety is isoelectronic with C. We have studied the stability of the (BH) 60 analogue of the C 60 fullerene as well as the dual-structure (BH) 32 icosahedron, both of them being putative structures, by performing local-density-functional electronic calculations. To aid in our analysis, we have also studied other homologues of these systems. We find that the latter, i.e., the dual structure, is the more stable although the former is as stable as one of the latter's lower homologues. Boron hydrides, it seems, naturally form the dual structures used in algorithmic optimization of complex fullerene systems. Fully relaxed geometries are reported as well as electron affinities and effective Hubbard U parameters. These systems form very stable anions and we conclude that a search for BH analogues of the C 60 alkali-metal supeconductors might prove very fruitful

  12. Delayed hydride cracking of zirconium alloy fuel cladding

    International Nuclear Information System (INIS)

    2010-10-01

    This report describes the work performed in a coordinated research project on Hydrogen and Hydride Degradation of the Mechanical and Physical Properties of Zirconium Alloys. It is the second in the series. In 2005-2009 that work was extended within a new CRP called Delayed Hydride Cracking in Zirconium Alloy Fuel Cladding. The project consisted of adding hydrogen to samples of Zircaloy-4 claddings representing light water reactors (LWRs), CANDU and Atucha, and measuring the rates of delayed hydride cracking (DHC) under specified conditions. The project was overseen by a supervisory group of experts in the field who provided advice and assistance to participants as required. All of the research work undertaken as part of the CRP is described in this report, which includes details of the experimental procedures that led to a consistent set of data for LWR cladding. The participants and many of their co-workers in the laboratories involved in the CRP contributed results and material used in this report, which compiles the results, their analysis, discussions of their interpretation and conclusions and recommendations for future work. The research was coordinated by an advisor and by representatives in three laboratories in industrialized Member States. Besides the basic goal to transfer the technology of the testing technique from an experienced laboratory to those unfamiliar with the methods, the CRP was set up to harmonize the experimental procedures to produce consistent sets of data, both within a single laboratory and between different laboratories. From the first part of this project it was demonstrated that by following a standard set of experimental protocols, consistent results could be obtained. Thus, experimental vagaries were minimized by careful attention to detail of microstructure, temperature history and stress state in the samples. The underlying idea for the test programme was set out at the end of the first part of the project on pressure tubes. The

  13. Dehydriding and re-hydriding properties of high-energy ball milled LiBH{sub 4}+MgH{sub 2} mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Crosby, Kyle; Shaw, Leon L. [Department of Chemical, Materials and Biomolecular Engineering, University of Connecticut, 97 North Eagleville Road, U-3136, Storrs, CT 06269 (United States)

    2010-07-15

    Here we report the first investigation of the dehydriding and re-hydriding properties of 2LiBH{sub 4} + MgH{sub 2} mixtures in the solid state. Such a study is made possible by high-energy ball milling of 2LiBH{sub 4}+MgH{sub 2} mixtures at liquid nitrogen temperature with the addition of graphite. The 2LiBH{sub 4}+MgH{sub 2} mixture ball milled under this condition exhibits a 5-fold increase in the released hydrogen at 265 C when compared with ineffectively ball milled counterparts. Furthermore, both LiBH{sub 4} and MgH{sub 2} contribute to hydrogen release in the solid state. The isothermal dehydriding/re-hydriding cycles at 265 C reveal that re-hydriding is dominated by re-hydriding of Mg. These unusual phenomena are explained based on the formation of nanocrystalline and amorphous phases, the increased defect concentration in crystalline compounds, and possible catalytic effects of Mg,MgH{sub 2} and LiBH{sub 4} on their dehydriding and re-hydriding properties. (author)

  14. Artificial exomuscle investigations for applications-metal hydride

    International Nuclear Information System (INIS)

    Crevier, Marie-Charlotte; Richard, Martin; Rittenhouse, D Matheson; Roy, Pierre-Olivier; Bedard, Stephane

    2007-01-01

    In pursuing the development of bionic devices, Victhom identified a need for technologies that could replace current motorized systems and be better integrated into the human body motion. The actuators used to obtain large displacements are noisy, heavy, and do not adequately reproduce human muscle behavior. Subsequently, a project at Victhom was devoted to the development of active materials to obtain an artificial exomuscle actuator. An exhaustive literature review was done at Victhom to identify promising active materials for the development of artificial muscles. According to this review, metal hydrides were identified as a promising technology for artificial muscle development. Victhom's investigations focused on determining metal hydride actuator potential in the context of bionics technology. Based on metal hydride properties and artificial muscle requirements such as force, displacement and rise time, an exomuscle was built. In addition, a finite element model, including heat and mass transfer in the metal hydride, was developed and implemented in FEMLAB software. (review article)

  15. Ductile zirconium powder by hydride-dehydride process

    Energy Technology Data Exchange (ETDEWEB)

    Krishnan, T S [BHABHA ATOMIC RESEARCH CENTRE, BOMBAY (INDIA); CHAUDHARY, S [NUCLEAR FUEL COMPLEX, HYDERABAD (INDIA)

    1976-09-01

    The preparation of ductile zirconium powder by the hydride-dehydride process has been described. In this process massive zirconium obtained from Kroll reduction of ZrCl/sub 4/ is first rendered brittle by hydrogenation and the hydride crushed and ground in a ball mill to the required particle size. Hydrogen is then hot vacuum extracted to yield the metal powder. The process has been successfully employed for the production of zirconium powders with low oxygen content and having hardness values in the range of 115-130 BHN, starting from a zirconium sponge of 100-120 BHN hardness. Influence of surface characteristics of the starting metal on its hydriding behaviour has been studied and the optimum hydriding-dehydriding conditions established.

  16. Electrochemical modeling of hydrogen storage in hydride-forming electrodes

    NARCIS (Netherlands)

    Ledovskikh, A.; Danilov, D.; Vermeulen, P.; Notten, P.H.L.

    2009-01-01

    An electrochemical kinetic model (EKM) is developed, describing the electrochemical hydrogen storage in hydride-forming materials under equilibrium conditions. This model is based on first principles of electrochemical reaction kinetics and statistical thermodynamics and describes the complex,

  17. Development of zirconium hydride highly effective moderator materials

    International Nuclear Information System (INIS)

    Yin Changgeng

    2005-10-01

    The zirconium hydride with highly content of hydrogen and low density is new efficient moderator material for space nuclear power reactor. Russia has researched it to use as new highly moderator and radiation protection materials. Japanese has located it between the top of pressure vessel and the main protection as a shelter, the work temperature is rach to 220 degree C. The zirconium hydride moderator blocks are main parts of space nuclear power reactor. Development of zirconium hydride moderator materials have strength research and apply value. Nuclear Power Research and Design Instituteoh China (NPIC) has sep up the hydrogenation device and inspect systems, and accumurate a large of experience about zirconium hydride, also set up a strict system of QA and QC. (authors)

  18. Precipitation of hydrides in high purity niobium after different treatments

    Energy Technology Data Exchange (ETDEWEB)

    Barkov, F.; Romanenko, A.; Trenikhina, Y.; Grassellino, A.

    2013-01-01

    Precipitation of lossy non-superconducting niobium hydrides represents a known problem for high purity niobium in superconducting applications. Using cryogenic optical and laser confocal scanning microscopy we have directly observed surface precipitation and evolution of niobium hydrides in samples after different treatments used for superconducting RF cavities for particle acceleration. Precipitation is shown to occur throughout the sample volume, and the growth of hydrides is well described by the fast diffusion-controlled process in which almost all hydrogen is precipitated at $T=140$~K within $\\sim30$~min. 120$^{\\circ}$C baking and mechanical deformation are found to affect hydride precipitation through their influence on the number of nucleation and trapping centers.

  19. Compound heterozygosity of the functionally null Cdh23(v-ngt) and hypomorphic Cdh23(ahl) alleles leads to early-onset progressive hearing loss in mice.

    Science.gov (United States)

    Miyasaka, Yuki; Suzuki, Sari; Ohshiba, Yasuhiro; Watanabe, Kei; Sagara, Yoshihiko; Yasuda, Shumpei P; Matsuoka, Kunie; Shitara, Hiroshi; Yonekawa, Hiromichi; Kominami, Ryo; Kikkawa, Yoshiaki

    2013-01-01

    The waltzer (v) mouse mutant harbors a mutation in Cadherin 23 (Cdh23) and is a model for Usher syndrome type 1D, which is characterized by congenital deafness, vestibular dysfunction, and prepubertal onset of progressive retinitis pigmentosa. In mice, functionally null Cdh23 mutations affect stereociliary morphogenesis and the polarity of both cochlear and vestibular hair cells. In contrast, the murine Cdh23(ahl) allele, which harbors a hypomorphic mutation, causes an increase in susceptibility to age-related hearing loss in many inbred strains. We produced congenic mice by crossing mice carrying the v niigata (Cdh23(v-ngt)) null allele with mice carrying the hypomorphic Cdh23(ahl) allele on the C57BL/6J background, and we then analyzed the animals' balance and hearing phenotypes. Although the Cdh23(v-ngt/ahl) compound heterozygous mice exhibited normal vestibular function, their hearing ability was abnormal: the mice exhibited higher thresholds of auditory brainstem response (ABR) and rapid age-dependent elevation of ABR thresholds compared with Cdh23(ahl/ahl) homozygous mice. We found that the stereocilia developed normally but were progressively disrupted in Cdh23(v-ngt/ahl) mice. In hair cells, CDH23 localizes to the tip links of stereocilia, which are thought to gate the mechanoelectrical transduction channels in hair cells. We hypothesize that the reduction of Cdh23 gene dosage in Cdh23(v-ngt/ahl) mice leads to the degeneration of stereocilia, which consequently reduces tip link tension. These findings indicate that CDH23 plays an important role in the maintenance of tip links during the aging process.

  20. Reactions of zinc hydride and magnesium hydride with pyridine; synthesis and characterization of 1,4-dihydro-1-pyridylzinc and -magnesium complexes

    NARCIS (Netherlands)

    Koning, A.J. de; Boersma, J.; Kerk, G.J.M. van der

    1980-01-01

    The synthesis and characterization of 1,4-dihydro-1-pyridylzinc and -magnesium complexes are described. Zinc hydride and magnesium hydride dissolve in and react with pyridine, and the reaction has been studied in detail in the case of zinc hydride. Evaporation of the solvent after 1–2 hours at 0°C

  1. Electronic structure of ternary hydrides based on light elements

    Energy Technology Data Exchange (ETDEWEB)

    Orgaz, E. [Departamento de Fisica y Quimica Teorica, Facultad de Quimica, Universidad Nacional Autonoma de Mexico, CP 04510 Coyoacan, Mexico, D.F. (Mexico)]. E-mail: orgaz@eros.pquim.unam.mx; Membrillo, A. [Departamento de Fisica y Quimica Teorica, Facultad de Quimica, Universidad Nacional Autonoma de Mexico, CP 04510 Coyoacan, Mexico, D.F. (Mexico); Castaneda, R. [Departamento de Fisica y Quimica Teorica, Facultad de Quimica, Universidad Nacional Autonoma de Mexico, CP 04510 Coyoacan, Mexico, D.F. (Mexico); Aburto, A. [Departamento de Fisica, Facultad de Ciencias, Universidad Nacional Autonoma de Mexico, CP 04510 Coyoacan, Mexico, D.F. (Mexico)

    2005-12-08

    Ternary hydrides based on light elements are interesting owing to the high available energy density. In this work we focused into the electronic structure of a series of known systems having the general formula AMH{sub 4}(A=Li,Na,M=B,Al). We computed the energy bands and the total and partial density of states using the linear-augmented plane waves method. In this report, we discuss the chemical bonding in this series of complex hydrides.

  2. Spectroscopy of helium hydride and triatomic hydrogen molecules

    International Nuclear Information System (INIS)

    Ketterle, W.

    1986-07-01

    Helium hydride and triatomic hydrogen has been produced by charge exchange between fast mass selected beams of molecular ions and alkali vapor. Using this method, the first discrete spectra of helium hydride were obtained. Fine electronic transitions with resolved rotational structure were observed in the visible and near infrared. Four isotopic mixtures were studied. Furthermore the first lifetime measurement of triatomic hydrogen states were performed and compared to theoretical predictions. (orig.)

  3. Proton location in metal hydrides using electron spin resonance

    International Nuclear Information System (INIS)

    Venturini, E.L.

    1979-01-01

    Electron spin resonance (ESR) of dilute paramagnetic ions establishes the site symmetry of these ions. In the case of metal hydrides the site symmetry is determined by the number and location of neighboring protons. Typical ESR spectra for trivalent erbium in scandium and yttrium hydrides are presented and analyzed, and this technique is shown to be a versatile microscopic probe of the location, net charge and occupation probability of nearby protons

  4. The Production of Uranium Metal by Metal Hydrides Incorporated

    Energy Technology Data Exchange (ETDEWEB)

    Alexander, P. P.

    1943-01-01

    Metal Hydrides Incorporated was a pioneer in the production of uranium metal on a commercial scale and supplied it to all the laboratories interested in the original research, before other methods for its production were developed. Metal Hydrides Inc. supplied the major part of the metal for the construction of the first experimental pile which, on December 2, 1942, demonstrated the feasibility of the self-sustaining chain reaction and the release of atomic energy.

  5. Electronic structure, bonding and chemisorption in metallic hydrides

    International Nuclear Information System (INIS)

    Ward, J.W.

    1980-01-01

    Problems that can arise during the cycling steps for a hydride storage system usually involve events at surfaces. Chemisorption and reaction processes can be affected by small amounts of contaminants that may act as catalytic poisons. The nature of the poisoning process can vary greatly for the different metals and alloys that form hydrides. A unifying concept is offered, which satisfactorily correlates many of the properties of transition-metal, rare-earth and actinide hydrides. The metallic hydrides can be differentiated on the basis of electronegativity, metallic radius (valence) and electronic structure. For those systems where there are d (transition metals) or f (early actinides) electrons near the Fermi level a broad range of chemical and catalytic behaviors are found, depending on bandwidth and energy. The more electropositive metals (rare-earths, actinides, transition metals with d > 5) dissolve hydrogen and form hydrides by an electronically somewhat different process, and as a class tend to adsorb electrophobic molecules. The net charge-transfer in either situation is subtle; however, the small differences are responsible for many of the observed structural, chemical, and catalytic properties in these hydride systems

  6. Mechanochemical synthesis of nanostructured chemical hydrides in hydrogen alloying mills

    International Nuclear Information System (INIS)

    Wronski, Z.; Varin, R.A.; Chiu, C.; Czujko, T.; Calka, A.

    2007-01-01

    Mechanical alloying of magnesium metal powders with hydrogen in specialized hydrogen ball mills can be used as a direct route for mechanochemical synthesis of emerging chemical hydrides and hydride mixtures for advanced solid-state hydrogen storage. In the 2Mg-Fe system, we have successfully synthesized the ternary complex hydride Mg 2 FeH 6 in a mixture with nanometric Fe particles. The mixture of complex magnesium-iron hydride and nano-iron released 3-4 wt.%H 2 in a thermally programmed desorption experiment at the range 285-295 o C. Milling of the Mg-2Al powder mixture revealed a strong competition between formation of the Al(Mg) solid solution and the β-MgH 2 hydride. The former decomposes upon longer milling as the Mg atoms react with hydrogen to form the hydride phase, and drive the Al out of the solid solution. The mixture of magnesium dihydride and nano-aluminum released 2.1 wt.%H 2 in the temperature range 329-340 o C in the differential scanning calorimetry experiment. The formation of MgH 2 was suppressed in the Mg-B system; instead, a hydrogenated amorphous phase (Mg,B)H x , was formed in a mixture with nanometric MgB 2 . Annealing of the hydrogen-stabilized amorphous mixture produced crystalline MgB 2

  7. The use of metal hydrides in fuel cell applications

    Directory of Open Access Journals (Sweden)

    Mykhaylo V. Lototskyy

    2017-02-01

    Full Text Available This paper reviews state-of-the-art developments in hydrogen energy systems which integrate fuel cells with metal hydride-based hydrogen storage. The 187 reference papers included in this review provide an overview of all major publications in the field, as well as recent work by several of the authors of the review. The review contains four parts. The first part gives an overview of the existing types of fuel cells and outlines the potential of using metal hydride stores as a source of hydrogen fuel. The second part of the review considers the suitability and optimisation of different metal hydrides based on their energy efficient thermal integration with fuel cells. The performances of metal hydrides are considered from the viewpoint of the reversible heat driven interaction of the metal hydrides with gaseous H2. Efficiencies of hydrogen and heat exchange in hydrogen stores to control H2 charge/discharge flow rates are the focus of the third section of the review and are considered together with metal hydride – fuel cell system integration issues and the corresponding engineering solutions. Finally, the last section of the review describes specific hydrogen-fuelled systems presented in the available reference data.

  8. Metal hydrides based high energy density thermal battery

    Energy Technology Data Exchange (ETDEWEB)

    Fang, Zhigang Zak, E-mail: zak.fang@utah.edu [Department of Metallurgical Engineering, The University of Utah, 135 South 1460 East, Room 412, Salt Lake City, UT 84112-0114 (United States); Zhou, Chengshang; Fan, Peng [Department of Metallurgical Engineering, The University of Utah, 135 South 1460 East, Room 412, Salt Lake City, UT 84112-0114 (United States); Udell, Kent S. [Department of Metallurgical Engineering, The University of Utah, 50 S. Central Campus Dr., Room 2110, Salt Lake City, UT 84112-0114 (United States); Bowman, Robert C. [Department of Metallurgical Engineering, The University of Utah, 135 South 1460 East, Room 412, Salt Lake City, UT 84112-0114 (United States); Vajo, John J.; Purewal, Justin J. [HRL Laboratories, LLC, 3011 Malibu Canyon Road, Malibu, CA 90265 (United States); Kekelia, Bidzina [Department of Metallurgical Engineering, The University of Utah, 50 S. Central Campus Dr., Room 2110, Salt Lake City, UT 84112-0114 (United States)

    2015-10-05

    Highlights: • The principle of the thermal battery using advanced metal hydrides was demonstrated. • The thermal battery used MgH{sub 2} and TiMnV as a working pair. • High energy density can be achieved by the use of MgH{sub 2} to store thermal energy. - Abstract: A concept of thermal battery based on advanced metal hydrides was studied for heating and cooling of cabins in electric vehicles. The system utilized a pair of thermodynamically matched metal hydrides as energy storage media. The pair of hydrides that was identified and developed was: (1) catalyzed MgH{sub 2} as the high temperature hydride material, due to its high energy density and enhanced kinetics; and (2) TiV{sub 0.62}Mn{sub 1.5} alloy as the matching low temperature hydride. Further, a proof-of-concept prototype was built and tested, demonstrating the potential of the system as HVAC for transportation vehicles.

  9. Studies in group IV organometallic chemistry XXX. Synthesis of compounds containing tin---titanium and tin---zirconium bonds

    NARCIS (Netherlands)

    Creemers, H.M.J.C.; Verbeek, F.; Noltes, J.G.

    1968-01-01

    Starting from the tetrakis(diethylamino) derivatives of titanium and zirconium and pheyltin hydrides six intermetalic compounds contianing up to nine tin and titanium(or zirconium) atoms have been obtained by hydrostannolysis type reactions.

  10. A study on preparation and hydriding of β-Mg2Al3 and γ-Mg17Al12

    International Nuclear Information System (INIS)

    Hadi Suwarno

    2009-01-01

    The mechanism of the synthetic formation of β-Mg 2 Al 3 and γ-Mg 17 Al 12 has been studied. Mechanical alloying of Mg and Al powders with the atomic ratio of Mg:Al = 2:3 in toluene solution yields β-Mg 2 Al 3 compound after milling for 30 h. The γ-Mg 17 Al 12 can be formed by heating the β-Mg 2 Al 3 at 430°C under high vacuum. The measured hydrogen capacities of β-Mg 2 Al 3 and γ-Mg 17 Al 12 as hydride at 300°C are 3.2 and 4.9 wt%, respectively. Microstructure of the Mg-Al specimen shows that on hydriding at 300°C the polygonal shape of the γ-Mg 17 Al 12 changes into irregular shapes which are composed of γ-MgH 2 and Al. (author)

  11. Novel Hydrogen Compounds from a Potassium Carbonate Electrolytic Cell

    International Nuclear Information System (INIS)

    Mills, Randell L.

    2000-01-01

    Novel compounds containing hydrogen in new hydride and polymeric states that demonstrate novel hydrogen chemistry have been isolated following the electrolysis of a K 2 CO 3 electrolyte with the production of excess energy. Inorganic hydride clusters K[KH KHCO 3 ] n + and hydrogen polymer ions such as OH 23 + and H 16 - were identified by time-of-flight secondary ion mass spectroscopy. The presence of compounds containing new states of hydrogen was confirmed by X-ray photoelectron spectroscopy, X-ray diffraction, Fourier transform infrared spectroscopy, Raman spectroscopy, and proton nuclear magnetic resonance spectroscopy

  12. Effect of electronegativity on the mechanical properties of metal hydrides with a fluorite structure

    International Nuclear Information System (INIS)

    Ito, Masato; Setoyama, Daigo; Matsunaga, Junji; Muta, Hiroaki; Kurosaki, Ken; Uno, Masayoshi; Yamanaka, Shinsuke

    2006-01-01

    Bulk titanium, yttrium, and zirconium hydrides, which have the same structure as that of fluorite-type fcc C 1, were produced and their mechanical properties were investigated. With an increase in the hydrogen content, the lattice parameters of titanium and zirconium hydrides increased, whereas those of yttrium hydride decreased. The elastic moduli of titanium and zirconium hydrides decreased by hydrogen addition, whereas those of yttrium hydride increased. There are linear relations between the electronegativities and hydrogen content dependence of the properties. Therefore, the mechanical properties of the metal hydrides are considered to be determined by a common rule based on the electronegativity

  13. Chemical Hydride Slurry for Hydrogen Production and Storage

    Energy Technology Data Exchange (ETDEWEB)

    McClaine, Andrew W

    2008-09-30

    The purpose of this project was to investigate and evaluate the attractiveness of using a magnesium chemical hydride slurry as a hydrogen storage, delivery, and production medium for automobiles. To fully evaluate the potential for magnesium hydride slurry to act as a carrier of hydrogen, potential slurry compositions, potential hydrogen release techniques, and the processes (and their costs) that will be used to recycle the byproducts back to a high hydrogen content slurry were evaluated. A 75% MgH2 slurry was demonstrated, which was just short of the 76% goal. This slurry is pumpable and storable for months at a time at room temperature and pressure conditions and it has the consistency of paint. Two techniques were demonstrated for reacting the slurry with water to release hydrogen. The first technique was a continuous mixing process that was tested for several hours at a time and demonstrated operation without external heat addition. Further work will be required to reduce this design to a reliable, robust system. The second technique was a semi-continuous process. It was demonstrated on a 2 kWh scale. This system operated continuously and reliably for hours at a time, including starts and stops. This process could be readily reduced to practice for commercial applications. The processes and costs associated with recycling the byproducts of the water/slurry reaction were also evaluated. This included recovering and recycling the oils of the slurry, reforming the magnesium hydroxide and magnesium oxide byproduct to magnesium metal, hydriding the magnesium metal with hydrogen to form magnesium hydride, and preparing the slurry. We found that the SOM process, under development by Boston University, offers the lowest cost alternative for producing and recycling the slurry. Using the H2A framework, a total cost of production, delivery, and distribution of $4.50/kg of hydrogen delivered or $4.50/gge was determined. Experiments performed at Boston

  14. Solubility of hydrogen isotopes in stressed hydride-forming metals

    International Nuclear Information System (INIS)

    Coleman, C.E.; Ambler, J.F.R.

    1983-01-01

    Components made from hydride-forming metals can be brittle when particles of hydride are present. The solid solubility limit of hydrogen in these metals needs to be known so that fracture resistance can be properly assessed. Stress affects the solubility of hydrogen in metals. As hydrogen dissolves the metal volume increases, an applied hydrostatic tensile stress supplies work to increase the solubility. Precipitation of hydrides increases the volume further. A hydrostatic tensile stress promotes the formation of hydrides and tends to reduce the terminal solubility. For materials containing hydrogen in solution in equilibrium with hydrides, the effect of stress on the terminal solubility is given. Hydrogen migrates up tensile stress gradients because of the effect of stress on the solubility and solubility limit. Consequently, hydrogen concentrates at flaws. When hydrides are present in the metal matrix, those remote from the flaw tip will preferentially dissolve in favor of those precipitated at the flaw. If the stress is large enough, at some critical condition the hydrides at the flaw will crack. This is delayed hydrogen cracking. Notched and fatigue-cracked cantilever beam specimens (6) (38 x 4 x 3 mm) were machined from the circumferential direction of several cold-worked Zr-2.5 at. % Nb pressure tubes. The chemical compositions had the ranges (in atomic %) Nb - 2.5 to 2.7; O - 0.58 to 0.71; H - 0.018 to 0.18. The effect of test temperature is for a specimen containing 0.13 at. % protium and 0.29 at .% deuterium. Between 505 K and 530 K was less than 1 hr, between 530 K and 537 K it increased to 25.8 h, while at 538 K no cracking was observed up to the 54 h

  15. Influence of uranium hydride oxidation on uranium metal behaviour

    International Nuclear Information System (INIS)

    Patel, N.; Hambley, D.; Clarke, S.A.; Simpson, K.

    2013-01-01

    This work addresses concerns that the rapid, exothermic oxidation of active uranium hydride in air could stimulate an exothermic reaction (burning) involving any adjacent uranium metal, so as to increase the potential hazard arising from a hydride reaction. The effect of the thermal reaction of active uranium hydride, especially in contact with uranium metal, does not increase in proportion with hydride mass, particularly when considering large quantities of hydride. Whether uranium metal continues to burn in the long term is a function of the uranium metal and its surroundings. The source of the initial heat input to the uranium, if sufficient to cause ignition, is not important. Sustained burning of uranium requires the rate of heat generation to be sufficient to offset the total rate of heat loss so as to maintain an elevated temperature. For dense uranium, this is very difficult to achieve in naturally occurring circumstances. Areas of the uranium surface can lose heat but not generate heat. Heat can be lost by conduction, through contact with other materials, and by convection and radiation, e.g. from areas where the uranium surface is covered with a layer of oxidised material, such as burned-out hydride or from fuel cladding. These rates of heat loss are highly significant in relation to the rate of heat generation by sustained oxidation of uranium in air. Finite volume modelling has been used to examine the behaviour of a magnesium-clad uranium metal fuel element within a bottle surrounded by other un-bottled fuel elements. In the event that the bottle is breached, suddenly, in air, it can be concluded that the bulk uranium metal oxidation reaction will not reach a self-sustaining level and the mass of uranium oxidised will likely to be small in relation to mass of uranium hydride oxidised. (authors)

  16. Influence of uranium hydride oxidation on uranium metal behaviour

    Energy Technology Data Exchange (ETDEWEB)

    Patel, N.; Hambley, D. [National Nuclear Laboratory (United Kingdom); Clarke, S.A. [Sellafield Ltd (United Kingdom); Simpson, K.

    2013-07-01

    This work addresses concerns that the rapid, exothermic oxidation of active uranium hydride in air could stimulate an exothermic reaction (burning) involving any adjacent uranium metal, so as to increase the potential hazard arising from a hydride reaction. The effect of the thermal reaction of active uranium hydride, especially in contact with uranium metal, does not increase in proportion with hydride mass, particularly when considering large quantities of hydride. Whether uranium metal continues to burn in the long term is a function of the uranium metal and its surroundings. The source of the initial heat input to the uranium, if sufficient to cause ignition, is not important. Sustained burning of uranium requires the rate of heat generation to be sufficient to offset the total rate of heat loss so as to maintain an elevated temperature. For dense uranium, this is very difficult to achieve in naturally occurring circumstances. Areas of the uranium surface can lose heat but not generate heat. Heat can be lost by conduction, through contact with other materials, and by convection and radiation, e.g. from areas where the uranium surface is covered with a layer of oxidised material, such as burned-out hydride or from fuel cladding. These rates of heat loss are highly significant in relation to the rate of heat generation by sustained oxidation of uranium in air. Finite volume modelling has been used to examine the behaviour of a magnesium-clad uranium metal fuel element within a bottle surrounded by other un-bottled fuel elements. In the event that the bottle is breached, suddenly, in air, it can be concluded that the bulk uranium metal oxidation reaction will not reach a self-sustaining level and the mass of uranium oxidised will likely to be small in relation to mass of uranium hydride oxidised. (authors)

  17. Developments in delayed hydride cracking in zirconium alloys

    International Nuclear Information System (INIS)

    Puls, Manfred P.

    2008-01-01

    Delayed hydride cracking (DHC) is a process of diffusion assisted localized hydride embrittlement at flaws or regions of high stress. Models of DHC propagation and initiation have been developed that capture the essential elements of this phenomenon in terms of parameters describing processes occurring at the micro-scale. The models and their predictions of experimental results applied to Zr alloys are assessed. The propagation model allows rationalization of the effect of direction of approach to temperature and of the effect of the state and morphology of the beta phase in Zr-2.5Nb on DHC velocity. The K I dependence of the DHC velocity can only be approximately rationalized by the propagation models. This is thought to be because these models approximate the DHC velocity by a constant and shape-invariant rate of growth of the hydride at the flaw and have not incorporated a coupling between the applied stress field due to the flaw alone and the precipitated hydrides that would result in a variation of the shape and density of the hydrided region with K I . Separately, models have been developed for DHC initiation at cracks and blunt flaws. Expressions are obtained for the threshold stress intensity factor, K IH , for DHC initiation at a crack. A model for K IH has been used to rationalize the experimental result that DHC initiation is not possible above a certain temperature, even when hydrides can form at the crack tip. For blunt flaws with root radii in the μm range, and engineering process zone procedure has been derived to determine the initiation conditions requiring that both a critical stress and a critical flaw tip displacement must be achieved for hydride fracture. The engineering process zone procedure takes account of the dependence of DHC initiation on the flaw's root radius. Although all of the foregoing models are capable of describing the essential features of DHC, they are highly idealized and in need of further refinement. (author)

  18. Multidimensional simulations of hydrides during fuel rod lifecycle

    International Nuclear Information System (INIS)

    Stafford, D.S.

    2015-01-01

    In light water reactor fuel rods, waterside corrosion of zirconium-alloy cladding introduces hydrogen into the cladding, where it is slightly soluble. When the solubility limit is reached, the hydrogen precipitates into crystals of zirconium hydride which decrease the ductility of the cladding and may lead to cladding failure during dry storage or transportation events. The distribution of the hydride phase and the orientation of the crystals depend on the history of the spatial temperature and stress profiles in the cladding. In this work, we have expanded the existing hydride modeling capability in the BISON fuel performance code with the goal of predicting both global and local effects on the radial, azimuthal and axial distribution of the hydride phase. We compare results from 1D simulations to published experimental data. We demonstrate the new capability by simulating in 2D a fuel rod throughout a lifecycle that includes irradiation, short-term storage in the spent fuel pool, drying, and interim storage in a dry cask. Using the 2D simulations, we present qualitative predictions of the effects of the inter-pellet gap and the drying conditions on the growth of a hydride rim. - Highlights: • We extend BISON fuel performance code to simulate lifecycle of fuel rods. • We model hydrogen evolution in cladding from reactor through dry storage. • We validate 1D simulations of hydrogen evolution against experiments. • We show results of 2D axisymmetric simulations predicting hydride formation. • We show how our model predicts formation of a hydride rim in the cladding.

  19. Permeation rates for RTF metal hydride vessels

    International Nuclear Information System (INIS)

    Klein, J.E.

    1992-01-01

    Contamination rates have been estimated for the RTF nitrogen heating and cooling system (NH and CS) due to tritium permeation through the walls of metal hydride vessels. Tritium contamination of the NH and CS will be seen shortly after start-up of the RTF with the majority of it coming from the TCAP units. Contamination rates of the NH and CS are estimated to exceed 400 Ci/year after three years of operation and will elevate tritium concentrations in the NH and CS above 6 x 10 -3 μCi/cc. To reduce tritium activity in the NH and CS, a stripper or ''getter'' bed may need to be installed in the NH and CS. Increasing the purge rate of nitrogen from the NH and CS is shown to be an impractical method for reducing tritium activity due to the high purge rates required. Stripping of the NH and CS nitrogen in the glove box stripper system will give a temporary lowering of tritium activity in the NH and CS, but tritium activity will return to its previous level in approximately two weeks

  20. Hydriding and neutron irradiation in zircaloy-4

    International Nuclear Information System (INIS)

    Ramos, Ruben Fortunato; Martin, Juan Ezequiel; Orellano, Pablo; Dorao, Carlos; Analia Soldati; Ghilarducci, Ada Albertina; Corso, Hugo Luis; Peretti, Hernan Americo; Bolcich, Juan Carlos

    2003-01-01

    The composition of Zircaloy-4 for nuclear applications is specified by the ASTM B350 Standard, that fixes the amount of alloying elements (Sn, Fe, Cr) and impurities (Ni, Hf, O, N, C, among others) to optimize good corrosion and mechanical behavior.The recycling of zircaloy-4 scrap and chips resulting from cladding tube fabrication is an interesting issue.However, changes in the final composition of the recycled material may occur due to contamination with tool pieces, stainless steel chips, turnings, etc. while scrap is stored and handled. Since the main components of the possible contaminants are Fe, Cr and Ni, it arises the interest in studying up to what limit the Fe, Ni and Cr contents could be exceeded beyond the standard specification without affecting significantly the alloy properties.Zircaloy-4 alloys elaborated with Fe, Cr and Ni additions and others of standard composition in use in nuclear plants are studied by tensile tests, SEM observations and EDS microanalysis.Some samples are tested in the initial condition and others after hydriding treatments and neutron irradiation in the RA6

  1. Optical and photoemission studies of lanthanum hydrides

    International Nuclear Information System (INIS)

    Peterman, D.J.; Peterson, D.T.; Weaver, J.H.

    1980-01-01

    The results of optical absorptivity and photoemission measurements on lanthanum hydrides, LaH/sub x/ (1.98 less than or equal to x less than or equal to 2.89) are reported. The low energy (hν less than or equal to 0.5 eV) optical features in LaH/sub x/ are attributed to the filling of octahedral sites. Higher energy interband absorption involves states within the d-band complex, analogous to other dihydrides. As x increases above 2.0, the optical features change rapidly due to the increase in the number of occupied octahedral sites. Various band structure studies suggest that LaH 3 might be a semiconductor. Photoemission results show that as x increases, the d-derived states at E/sub F/ are drawn down and that for LaH 2 89 only very weak valence band emission is observed. The hydrogen-derived bonding bands are shown centered approx. 5 eV below E/sub F/. Observed chemical shifts in the La 5p/sub 1/2 3/2/ cores are discussed for 1.98 less than or equal to x less than or equal to 2.89

  2. Hydrogen storage as a hydride. Citations from the International Aerospace Abstracts data base

    Science.gov (United States)

    Zollars, G. F.

    1980-01-01

    These citations from the international literature concern the storage of hydrogen in various metal hydrides. Binary and intermetallic hydrides are considered. Specific alloys discussed are iron titanium, lanthanium nickel, magnesium copper and magnesium nickel among others.

  3. The effect of stress state on zirconium hydride reorientation

    Science.gov (United States)

    Cinbiz, Mahmut Nedim

    Prior to storage in a dry-cask facility, spent nuclear fuel must undergo a vacuum drying cycle during which the spent fuel rods are heated up to elevated temperatures of ≤ 400°C to remove moisture the canisters within the cask. As temperature increases during heating, some of the hydride particles within the cladding dissolve while the internal gas pressure in fuel rods increases generating multi-axial hoop and axial stresses in the closed-end thin-walled cladding tubes. As cool-down starts, the hydrogen in solid solution precipitates as hydride platelets, and if the multiaxial stresses are sufficiently large, the precipitating hydrides reorient from their initial circumferential orientation to radial orientation. Radial hydrides can severely embrittle the spent nuclear fuel cladding at low temperature in response to hoop stress loading. Because the cladding can experience a range of stress states during the thermo-mechanical treatment induced during vacuum drying, this study has investigated the effect of stress state on the process of hydride reorientation during controlled thermo-mechanical treatments utilizing the combination of in situ X-ray diffraction and novel mechanical testing analyzed by the combination of metallography and finite element analysis. The study used cold worked and stress relieved Zircaloy-4 sheet containing approx. 180 wt. ppm hydrogen as its material basis. The failure behavior of this material containing radial hydrides was also studied over a range of temperatures. Finally, samples from reactor-irradiated cladding tubes were examined by X-ray diffraction using synchrotron radiation. To reveal the stress state effect on hydride reorientation, the critical threshold stress to reorient hydrides was determined by designing novel mechanical test samples which produce a range of stress states from uniaxial to "near-equibiaxial" tension when a load is applied. The threshold stress was determined after thermo-mechanical treatments by

  4. Precipitation of γ-zirconium hydride in zirconium

    International Nuclear Information System (INIS)

    Carpenter, G.J.C.

    1978-01-01

    A mechanism for the precipitation of γ-zirconium hydride in zirconium is presented which does not require the diffusion of zirconium. The transformation is completed by shears caused by 1/3 (10 anti 10) Shockley partial dislocations on alternate zirconium basal planes, either by homogeneous nucleation or at lattice imperfections. Homogeneous nucleation is considered least likely in view of the large nucleation barrier involved. Hydrides may form at dislocations by the generation of partials by means of either a pole or ratchet mechanism. The former requires dislocations with a component of Burgers vector along the c-axis, but contrast experiments show that these are not normally observed in annealed zirconium. It is therefore most likely that intragranular hydrides form at the regular 1/3 (11 anti 20) dislocations, possibly by means of a ratchet mechanism. Contrast experiments in the electron microscope show that the precipitates have a shear character consistent with the mechanism suggested. The possibility that the shear dislocations associated with the hydrides are emissary dislocations is considered and a model suggested in which this function is satisfied together with the partial relief of misfit stresses. The large shear strains associated with the precipitation mechanism may play an important role in the preferential orientation of hydrides under stress

  5. Sodium-based hydrides for thermal energy applications

    Science.gov (United States)

    Sheppard, D. A.; Humphries, T. D.; Buckley, C. E.

    2016-04-01

    Concentrating solar-thermal power (CSP) with thermal energy storage (TES) represents an attractive alternative to conventional fossil fuels for base-load power generation. Sodium alanate (NaAlH4) is a well-known sodium-based complex metal hydride but, more recently, high-temperature sodium-based complex metal hydrides have been considered for TES. This review considers the current state of the art for NaH, NaMgH3- x F x , Na-based transition metal hydrides, NaBH4 and Na3AlH6 for TES and heat pumping applications. These metal hydrides have a number of advantages over other classes of heat storage materials such as high thermal energy storage capacity, low volume, relatively low cost and a wide range of operating temperatures (100 °C to more than 650 °C). Potential safety issues associated with the use of high-temperature sodium-based hydrides are also addressed.

  6. Mechanisms of hydrogen induced delayed cracking in hydride forming materials

    International Nuclear Information System (INIS)

    Dutton, R.; Nuttall, K.; Puls, M.P.; Simpson, L.A.

    1977-01-01

    Mechanisms which have been formulated to describe delayed hydrogen cracking in hydride-forming metals are reviewed and discussed. Particular emphasis is placed on the commercial alloy Zr--2.5% Nb (Cb) which is extensively used in nuclear reactor core components. A quantitative model for hydrogen cracking in this material is presented and compared with available experimental data. The kinetics of crack propagation are controlled by the growth of hydrides at the stressed crack tip by the diffusive ingress of hydrogen into this region. The driving force for the diffusion flux is provided by the local stress gradient which interacts with both hydrogen atoms in solution and hydrogen atoms being dissolved and reprecipitated at the crack tip. The model is developed using concepts of elastoplastic fracture mechanics. Stage I crack growth is controlled by hydrides growing in the elastic stress gradient, while Stage II is controlled by hydride growth in the plastic zone at the crack tip. Recent experimental observations are presented which indicate that the process occurs in an intermittent fashion; hydride clusters accumulate at the crack tip followed by unstable crack advance and subsequent crack arrest in repeated cycles

  7. Mechanisms of hydrogen induced delayed cracking in hydride forming materials

    International Nuclear Information System (INIS)

    Dutton, R.; Nuttall, K.; Puls, M.P.; Simpson, L.A.

    1977-01-01

    Mechanisms which have been formulated to describe delayed hydrogen cracking in hydride-forming metals are reviewed and discussed. Particular emphasis is placed on the commercial alloy Zr-2.5 pct Nb which is extensively used in nuclear reactor core components. A quantitative model for hydrogen cracking in this material is presented and compared with available experimental data. The kinetics of crack propagation are controlled by the growth of hydrides at the stressed crack tip by the diffusive ingress of hydrogen into this region. The driving force for the diffusion flux is provided by the local stress gradient which interacts with both hydrogen atoms in solution and hydrogen atoms being dissolved and reprecipitated at the crack tip. The model is developed using concepts of elastoplastic fracture mechanics. Stage I crack growth is controlled by hydrides growing in the elastic stress gradient, while Stage II is controlled by hydride growth in the plastic zone at the crack tip. Recent experimental observations are presented which indicate that the process occurs in an intermittent fashion; hydride clusters accumulate at the crack tip followed by unstable crack advance and subsequent crack arrest in repeated cycles. 55 refs., 6 figs

  8. Complex transition metal hydrides incorporating ionic hydrogen: Synthesis and characterization of Na{sub 2}Mg{sub 2}FeH{sub 8} and Na{sub 2}Mg{sub 2}RuH{sub 8}

    Energy Technology Data Exchange (ETDEWEB)

    Humphries, Terry D., E-mail: terry_humphries81@hotmail.com [WPI-Advanced Institute for Materials Research, Tohoku University, Sendai 980-8577 (Japan); Takagi, Shigeyuki; Li, Guanqiao; Matsuo, Motoaki; Sato, Toyoto [Institute for Materials Research, Tohoku University, Sendai 980-8577 (Japan); Sørby, Magnus H.; Deledda, Stefano; Hauback, Bjørn C. [Physics Department, Institute for Energy Technology, Kjeller NO-2027 (Norway); Orimo, Shin-ichi [WPI-Advanced Institute for Materials Research, Tohoku University, Sendai 980-8577 (Japan); Institute for Materials Research, Tohoku University, Sendai 980-8577 (Japan)

    2015-10-05

    Highlights: • Structures of Na{sub 2}Mg{sub 2}FeH{sub 8} and Na{sub 2}Mg{sub 2}RuH{sub 8} have been determined by XRD and PND. • Compounds incorporate independently coordinated ionic and covalent hydrogen. • [TH{sub 6}]{sup 4−} anion is surrounded by a cubic array of four Mg{sup 2+} and four Na{sup +} cations. • H{sup −} anions are octahedrally coordinated by four Na{sup +} and two Mg{sup 2+} cations. • Vibrational modes of the H{sup −} anions and complex hydride anion are observed. - Abstract: A new class of quaternary complex transition metal hydrides (Na{sub 2}Mg{sub 2}TH{sub 8} (T = Fe, Ru)) have been synthesized and their structures determined by combined synchrotron radiation X-ray and powder neutron diffraction. The compounds can be considered as a link between ionic and complex hydrides in terms of incorporating independently coordinated ionic and covalent hydrogen. These novel isostructural complex transition metal hydrides crystallize in the orthorhombic space group Pbam, where the octahedral complex hydride anion is surrounded by a cubic array of four Mg{sup 2+} and four Na{sup +} cations, forming distinct two-dimensional layers. An intriguing feature of these materials is the distorted octahedral coordination of the isolated H{sup −} anions by four Na{sup +} and two Mg{sup 2+} cations, which form layers between the transition metal containing layers. The vibrational modes of the H{sup −} anions and complex hydride anion are independently observed for the first time in a quaternary complex transition metal hydride system by Raman and IR spectroscopy.

  9. DFT modeling of the electronic and magnetic structures and chemical bonding properties of intermetallic hydrides

    International Nuclear Information System (INIS)

    Al Alam, A.F.

    2009-06-01

    This thesis presents an ab initio study of several classes of intermetallics and their hydrides. These compounds are interesting from both a fundamental and an applied points of view. To achieve this aim two complementary methods, constructed within the DFT, were chosen: (i) pseudo potential based VASP for geometry optimization, structural investigations and electron localization mapping (ELF), and (ii) all-electrons ASW method for a detailed description of the electronic structure, chemical bonding properties following different schemes as well as quantities depending on core electrons such as the hyperfine field. A special interest is given with respect to the interplay between magneto-volume and chemical interactions (metal-H) effects within the following hydrided systems: binary Laves (e.g. ScFe 2 ) and Haucke (e.g. LaNi 5 ) phases on one hand, and ternary cerium based (e.g. CeRhSn) and uranium based (e.g. U 2 Ni 2 Sn) alloys on the other hand. (author)

  10. Hydrogen bonding between hydrides of the upper-right part of the periodic table

    Science.gov (United States)

    Simončič, Matjaž; Urbic, Tomaz

    2018-05-01

    One of the most important electrostatic interactions between molecules is most definitely the hydrogen bond. Understanding the basis of this interaction may offer us the insight needed to understand its effect on the macroscopic scale. Hydrogen bonding is for example the reason for anomalous properties in compounds like water and naturally life as we know it. The strength of the bond depends on numerous factors, among them the electronegativity of participating atoms. In this work we calculated the strength of hydrogen bonds between hydrides of the upper-right part of the periodic table (C, N, O, F, P, S, Cl, As, Se, Br) using quantum-chemical methods. The aim was to determine what influences the strength of strong and weak hydrogen bonds in simple hydrides. Various relationships were checked. A relation between the strength of the bond and the electronegativity of the participating atoms was found. We also observed a correlation between the strength of hydrogen bonds and the inter-atomic distances, along with the dependence on the charge transfer on the atom of the donor. We also report characteristic geometries of different dimers.

  11. Simultaneous determination of hydride and non-hydride forming elements by inductively coupled plasma optical emission spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Benzo, Z. [Instituto Venezolano de Investigaciones Cientificas, IVIC, Altos de Pipe, Caracas (Venezuela, Bolivarian Republic of); Matos-Reyes, M.N.; Cervera, M.L.; Guardia, M. de la, E-mail: m.luisa.cervera@uv.es [Department of Analytical Chemistry, University of Valencia, Valencia (Spain)

    2011-09-15

    The operating characteristics of a dual nebulization system were studied including instrumental and chemical conditions for the hydride generation and analytical figures of merit for both, hydride and non hydride forming elements. Analytical performance of the nebulization system was characterized by detection limits from 0.002 to 0.0026 {mu}g mL{sup -1} for the hydride forming elements and between 0.0034 and 0.0121 {mu}g mL{sup -1} for the non-hydride forming elements, relative standard deviation for 10 replicate measurements at 0.25 mg L{sup -1} level and recovery percentages between 97 and 103%. The feasibility of the system was demonstrated in the simultaneous determination of Ca, Cd, Co, Cr, Cu, Fe, Mg, Mn, Mo, Ni, Zn, As, Bi, Sb, Se, and Te in the NIST 1549 (non-fat milk powder), NIST 1570a (spinach leaves), DORM-2 (dogfish muscle) and TORT-2 (lobster hepatopancreas) certified samples for trace elements. Results found were in good agreement with the certified ones. (author)

  12. Infrared diode laser spectroscopy of lithium hydride

    International Nuclear Information System (INIS)

    Yamada, C.; Hirota, E.

    1988-01-01

    The fundamental and hot bands of the vibration--rotation transitions of 6 LiH, 7 LiH, 6 LiD, and 7 LiD were observed by infrared diode laser spectroscopy at Doppler-limited resolution. Lithium hydride molecules were produced by the reaction of the Li vapor with hydrogen at elevated temperatures. Some 40 transitions were observed and, after combined with submillimeter-wave spectra reported by G. M. Plummer et al. [J. Chem. Phys. 81, 4893 (1984)], were analyzed to yield Dunham-type constants with accuracies more than an order of magnitude higher than those published in the literature. It was clearly demonstrated that the Born--Oppenheimer approximation did not hold, and some parameters representing the breakdown were evaluated. The Born--Oppenheimer internuclear distance r/sup BO//sub e/ was derived to be 1.594 914 26 (59) A, where a new value of Planck's constant recommended by CODATA was employed. The relative intensity of absorption lines was measured to determine the ratio of the permanent dipole moment to its first derivative with respect to the internuclear distance: μ/sub e/ [(partialμpartialr)/sub e/ r/sub e/ ] = 1.743(86). The pressure broadening parameter Δν/sub p/ P was determined to be 6.40 (22) MHzTorr by measuring the linewidth dependence on the pressure of hydrogen, which was about four times larger than the value for the dipole--quadrupole interaction estimated by Kiefer and Bushkovitch's theory

  13. A fractographic distinction between hydride cracking and stress corrosion cracking in zircaloys

    International Nuclear Information System (INIS)

    Cox, B.

    1978-06-01

    The fractographic details of SCC and delayed hydride failures are compared by scanning and replica electron microscopy. It is shown that there are distinct features ascribable to the fracture of hydride platelets which are absent from SCC fractures and which distinguish them from fractures produced by delayed hydride cracking. (author)

  14. Use of triammonium salt of aurin tricarboxylic acid as risk mitigant for aluminum hydride

    Science.gov (United States)

    Cortes-Concepcion, Jose A.; Anton, Donald L.

    2017-08-08

    A process and a resulting product by process of an aluminum hydride which is modified with by physically combining in a ball milling process an aluminum hydride with a triammonium salt of aurin tricarboxylic acid. The resulting product is an aluminum hydride which is resistant to air, ambient moisture, and liquid water while maintaining useful hydrogen storage and release kinetics.

  15. A computer model for hydride blister growth in zirconium alloys

    International Nuclear Information System (INIS)

    White, A.J.; Sawatzky, A.; Woo, C.H.

    1985-06-01

    The failure of a Zircaloy-2 pressure tube in the Pickering unit 2 reactor started at a series of zirconium hydride blisters on the outside of the pressure tube. These blisters resulted from the thermal diffusion of hydrogen to the cooler regions of the pressure tube. In this report the physics of thermal diffusion of hydrogen in zirconium is reviewed and a computer model for blister growth in two-dimensional Cartesian geometry is described. The model is used to show that the blister-growth rate in a two-phase zirconium/zirconium-hydride region does not depend on the initial hydrogen concentration nor on the hydrogen pick-up rate, and that for a fixed far-field temperature there is an optimum pressure-type/calandria-tube contact temperature for growing blisters. The model described here can also be used to study large-scale effects, such as hydrogen-depletion zones around hydride blisters

  16. Hydrides and deuterides of lithium and sodium. Pt. 1

    International Nuclear Information System (INIS)

    Haque, E.

    1990-01-01

    An interionic potential model is developed for lighter and heavier alkali hydrides and deuterides. The method uses a combination of theoretical techniques, empirical fit, and a few plausible assumptions. An assessment of the derived potentials is made by calculating the lattice statics and dynamics of the crystals and by comparing both with experiment (where available) and with other calculations. The potentials are found to describe the elastic and dielectric properties reasonably well. The phonon dispersion curves of hydride and deuteride of sodium are compared with the calculations of Dyck and Jex based on force constant model approach and the results are discussed. The need for further experiments on heavier hydrides and deuterides is stressed. (author)

  17. Research in Nickel/Metal Hydride Batteries 2017

    Directory of Open Access Journals (Sweden)

    Kwo-Hsiung Young

    2018-02-01

    Full Text Available Continuing from a special issue in Batteries in 2016, nineteen new papers focusing on recent research activities in the field of nickel/metal hydride (Ni/MH batteries have been selected for the 2017 Special Issue of Ni/MH Batteries. These papers summarize the international joint-efforts in Ni/MH battery research from BASF, Wayne State University, Michigan State University, FDK Corp. (Japan, Institute for Energy Technology (Norway, Central South University (China, University of Science and Technology Beijing (China, Zhengzhou University of Light Industry (China, Inner Mongolia University of Science and Technology (China, Shenzhen Highpower (China, and University of the Witwatersrand (South Africa from 2016–2017 through reviews of AB2 metal hydride alloys, Chinese and EU Patent Applications, as well as descriptions of research results in metal hydride alloys, nickel hydroxide, electrolyte, and new cell type, comparison work, and projections of future works.

  18. Microcapsulated rare earth - nickel hydride-forming materials

    International Nuclear Information System (INIS)

    Ishikawa, H.; Oguro, K.; Kato, A.; Suzuki, H.; Ishii, E.

    1985-01-01

    Fine particles of hydride-forming alloys such as LaNi/sub 5/ and MmNi/sub 4.5/Mn/sub 0.5/ (MM : mischmetal) were coated with metallic copper thin layer by chemical plating method. Hydrogen storage capacities of alloys were not appreciably affected by the plating treatment. The capsulated alloy powders were easily pressed into pellets. The pellets obtained had high thermal conductivity and porosity enough to permeate hydrogen, leading to fast reaction kinetics. These were able to withstand more than 5,000 repeated hydriding-dehydriding cycles without disintegrating

  19. Hydriding and dehydriding properties of CaSi

    International Nuclear Information System (INIS)

    Aoki, Masakazu; Ohba, Nobuko; Noritake, Tatsuo; Towata, Shin-ichi

    2005-01-01

    The hydriding and dehydriding properties of CaSi were investigated both theoretically and experimentally. First-principles calculations suggested that CaSiH n is thermodynamically stable. Experimentally, the p -c isotherms clearly demonstrated plateau pressures in a temperature range of 473-573 K and the maximum hydrogen content was 1.9 weight % (wt.%) under a hydrogen pressure of 9 MPa at 473 K. The structure of CaSiH n is different from those of ZrNi hydrides, although CaSi has the CrB-type structure as well as ZrNi

  20. Thermophysical properties of solid lithium hydride and its isotopic modifications

    International Nuclear Information System (INIS)

    Mel'nikova, T.N.

    1981-01-01

    The theory of the anharmonic lattice is used to calculate the thermophysical properties (thermal expansivity, lattice constant, compressibility, and elastic moduli) of all the isotopic modifications of solid lithium hydride sup(6,7)Li(H,D,T) at temperatures up to the melting point. A general analysis of isotopic effects is carried out; in particular the reverse isotopic effect in the lattice constant is explained and the isotopic effect in melting is discussed. The results of the calculations agree with available experimental data and can be used for those isotopic modifications of lithium hydride for which there exist no experimental results. (author)

  1. Observations on Hydride Structures at the Tip of Arrested Cracks Grown under Conditions of Delayed Hydride Cracking

    International Nuclear Information System (INIS)

    Pettersson, Kjell; Oskarsson, Magnus; Bergqvist, Hans

    2003-04-01

    One sample of Zr2.5%Nb and one sample of cold worked and stress relieved Zircaloy-4 which have been tested for hydrogen induced crack growth have been examined in the crack tip region with the aim of determining the mechanism behind the growth of cracks. The proposed mechanisms are brittle failure of a crack tip hydride and hydrogen enhanced localized shear. The examinations were done by TEM and SEM. However attempts to produce a TEM specimen with a thinned region at the tip of the crack were unsuccessful in both samples. One feature observed in the Zr2.5%Nb material may however be an indication of intense shear deformation at the tip of the crack. On the other hand all observations on the Zircaloy-4 sample indicate precipitation of hydrides ahead of the crack tip and the presence of hydrides on the crack flanks

  2. A comparison of the smeared-dislocation and super-dislocation description of a hydrided region in the context of modelling delayed hydride cracking initiation

    International Nuclear Information System (INIS)

    Smith, E.

    1994-01-01

    In quantifying the stress distribution within a hydrided region in the context of modelling delayed hydride cracking (DHC) initiation in zirconium alloys, this paper highlights the desirability of accounting for image effects, i.e. the interaction between the hydrided region and any free surface, for example a sharp crack, blunt notch or planar surface. The super-dislocation representation of a finite thickness hydrided region is ideal for accounting for image effects. It also adequately accounts for the finite thickness, t, of a hydrided region provided, as is the case in practice, we are concerned with the stress value within the hydride at distances ≥ 0.25 t from an end of the region. (Author)

  3. Studies about interaction of hydrogen isotopes with metals and intermetallic compounds

    International Nuclear Information System (INIS)

    Vasut, F.; Anisoara, P.; Zamfirache, M.

    2003-01-01

    Hydrogen is a non-toxic but highly inflammable gas. Compared to other inflammable gases, its range of inflammability in air is much broader (4-74.5%) but it also vaporizes much more easily. Handling of hydrogen in form of hydrides enhances safety. The interaction of hydrogen with metals and intermetallic compounds is a major field within physical chemistry. Using hydride-forming metals and intermetallic compounds, for example, recovery, purification and storage of heavy isotopes in tritium containing system can solve many problems arising in the nuclear-fuel cycle. The paper presents the thermodynamics and the kinetics between hydrogen and metal or intermetallic compounds. (author)

  4. Characteristics of hydride precipitation and reorientation in spent-fuel cladding

    International Nuclear Information System (INIS)

    Chung, H.M.; Daum, R.S.; Hiller, J.M.; Billone, M.C.

    2002-01-01

    Transmission electron microscopy (TEM) was used to examine Zircaloy fuel cladding, either discharged from several PWRs and a BWR after irradiation to fluence levels of 3.3 to 8.6 X 10 21 n cm -2 (E > 1 MeV) or hydrogen-charged and heat-treated under stress to produce radial hydrides; the goal was to determine the microstructural and crystallographic characteristics of hydride precipitation. Morphologies, distributions, and habit planes of various types of hydrides were determined by stereo-TEM. In addition to the normal macroscopic hydrides commonly observed by optical microscopy, small 'microscopic' hydrides are present in spent-fuel cladding in number densities at least a few orders of magnitude greater than that of macroscopic hydrides. The microscopic hydrides, observed to be stable at least up to 333 deg C, precipitate in association with -type dislocations. While the habit plane of macroscopic tangential hydrides in the spent-fuel cladding is essentially the same as that of unirradiated unstressed Zircaloys, i.e., the [107] Zr plane, the habit plane of tangential hydrides that precipitate under high tangential stress is the [104] Zr plane. The habit plane of radial hydrides that precipitate under tangential stress is the [011] Zr pyramidal plane, a naturally preferred plane for a cladding that has 30 basal-pole texture. Effects of texture on the habit plane and the threshold stress for hydride reorientation are also discussed. (authors)

  5. In situ synchrotron X-ray diffraction study of hydrides in Zircaloy-4 during thermomechanical cycling

    Energy Technology Data Exchange (ETDEWEB)

    Cinbiz, Mahmut N., E-mail: cinbizmn@ornl.gov [Department of Mechanical and Nuclear Engineering, Pennsylvania State University, University Park, PA, 16802 (United States); Koss, Donald A., E-mail: koss@ems.psu.edu [Department of Materials Science and Engineering, Pennsylvania State University, University Park, PA, 16802 (United States); Motta, Arthur T., E-mail: atm2@psu.edu [Department of Mechanical and Nuclear Engineering, Pennsylvania State University, University Park, PA, 16802 (United States); Department of Materials Science and Engineering, Pennsylvania State University, University Park, PA, 16802 (United States); Park, Jun-Sang, E-mail: parkjs@aps.anl.gov [Advanced Photon Source, Argonne National Laboratory, Argonne, IL, 60439 (United States); Almer, Jonathan D., E-mail: almer@aps.anl.gov [Advanced Photon Source, Argonne National Laboratory, Argonne, IL, 60439 (United States)

    2017-04-15

    The d-spacing evolution of both in-plane and out-of-plane hydrides has been studied using in situ synchrotron radiation X-ray diffraction during thermo-mechanical cycling of cold-worked stress-relieved Zircaloy-4. The structure of the hydride precipitates is such that the δ{111} d-spacing of the planes aligned with the hydride platelet face is greater than the d-spacing of the 111 planes aligned with the platelet edges. Upon heating from room temperature, the δ{111} planes aligned with hydride plate edges exhibit bi-linear thermally-induced expansion. In contrast, the d-spacing of the (111) plane aligned with the hydride plate face initially contracts upon heating. These experimental results can be understood in terms of a reversal of stress state associated with precipitating or dissolving hydride platelets within the α-zirconium matrix. - Highlights: •The δ{111} d-spacings aligned with the hydride plate edges exhibit a bi-linear thermal expansion. •Stress state reversal is predicted with the onset of hydride dissolution. •During dissolution, the δ{111} planes oriented parallel to the hydride plate face initially contract upon heating. •Hydride d-spacings indicate that both in-plane (circumferential) and out-of-plane (radial) hydrides are in the same strain-state and likely in the same stress state as well.

  6. Theoretical study of temperature dependent acoustic attenuation and non-linearity parameters in alkali metal hydride and deuteride

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Rishi Pal [Department of Physics, Banaras Hindu University, Varanasi 221005 (India); Singh, Rajendra Kumar, E-mail: rksingh_17@rediffmail.com [Department of Physics, Banaras Hindu University, Varanasi 221005 (India)

    2010-11-01

    Temperature dependence of acoustic attenuation and non-linearity parameters in lithium hydride and lithium deuteride have been studied for longitudinal and shear modes along various crystallographic directions of propagation in a wide temperature range. Lattice parameter and repulsive parameters have been used as input data and interactions up to next nearest neighbours have been considered to calculate second and third order elastic constants which in turn have been used for evaluating acoustic attenuation and related parameters. The results have been discussed and compared with available data. It is hoped that the present results will serve to stimulate the determination of the acoustic attenuation of these compounds at different temperatures.

  7. Quantifying the stress fields due to a delta-hydride precipitate in alpha-Zr matrix

    Energy Technology Data Exchange (ETDEWEB)

    Tummala, Hareesh [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Capolungo, Laurent [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Tome, Carlos N. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-10-19

    This report is a preliminary study on δ-hydride precipitate in zirconium alloy performed using 3D discrete dislocation dynamics simulations. The ability of dislocations in modifying the largely anisotropic stress fields developed by the hydride particle in a matrix phase is addressed for a specific dimension of the hydride. The influential role of probable dislocation nucleation at the hydride-matrix interface is reported. Dislocation nucleation around a hydride was found to decrease the shear stress (S13) and also increase the normal stresses inside the hydride. We derive conclusions on the formation of stacks of hydrides in zirconium alloys. The contribution of mechanical fields due to dislocations was found to have a non-negligible effect on such process.

  8. The influence of hydride on fracture toughness of recrystallized Zircaloy-4 cladding

    Energy Technology Data Exchange (ETDEWEB)

    Hsu, Hsiao-Hung, E-mail: 175877@mail.csc.com.tw [Institute of Nuclear Energy Research (INER), Lungtan Township, Taoyuan County 32546, Taiwan, ROC (China); China Steel Corporation, Hsiao Kang District, Kaohsiung 81233, Taiwan, ROC (China); Chiang, Ming-Feng [China Steel Corporation, Hsiao Kang District, Kaohsiung 81233, Taiwan, ROC (China); Chen, Yen-Chen [Institute of Nuclear Energy Research (INER), Lungtan Township, Taoyuan County 32546, Taiwan, ROC (China)

    2014-04-01

    In this work, RXA cladding tubes were hydrogen-charged to target hydrogen content levels between 150 and 800 wppm (part per million by weight). The strings of zirconium hydrides observed in the cross sections are mostly oriented in the circumferential direction. The fracture toughness of hydrided RXA Zircaloy-4 cladding was measured to evaluate its hydride embrittlement susceptibility. With increasing hydrogen content, the fracture toughness of hydrided RXA cladding decreases at both 25 °C and 300 °C. Moreover, highly localized hydrides (forming a hydride rim) aggravate the degradation of the fracture properties of RXA Zircaloy-4 cladding at both 25 °C and 300 °C. Brittle features in the form of quasi-cleavages and secondary cracks were observed on the fracture surface of the hydride rim, even for RXA cladding tested at 300 °C.

  9. Internal friction study of hydrides in zirconium at low hydrogen contents

    International Nuclear Information System (INIS)

    Peretti, H.A.; Corso, H.L.; Gonzalez, O.A.; Fernandez, L.; Ghilarducci, A.A.; Salva, H.R.

    1999-01-01

    Full text: Internal friction and shear modulus measurements were carried out on crystal bar zirconium in the as received and hydride conditions using an inverted forced pendulum. Hydriding was achieved in two ways: inside and out of the pendulum. The final hydrogen content determined by fusion analysis in the 'in situ' hydride sample was of 36 ppm. Another sample was hydride by the cathodic charge method with 25 ppm. The thermal solid solubility (TSS) phase boundary presents hysteresis between the precipitation (TSSP) and the dissolution (TSSD) temperatures for the zirconium hydrides. During the first thermal cycling the anelastic effects could be attributed to the δ, ε and metastable γ zirconium hydrides. After 'in situ' annealing at 490 K, these peaks completely disappear in the electrolytically charged sample, while in the 'in situ' hydride, the peaks remain with decreasing intensity. This effect can be understood in terms of the different surface conditions of the samples. (author)

  10. Magnetic properties of (La1-xNdx)Co5 hydrides

    International Nuclear Information System (INIS)

    Fujiwara, K.; Nagai, H.; Tsujimura, A.

    1992-01-01

    Magnetization measurements have been performed on the pseudobinary compounds (La 1-x Nd x )Co 5 and their hydrides (La 1-x Nd x )Co 5 H y . The substitution of La for Nd leads to a lowering of the temperature (T R ) at which the easy magnetization direction changes (c-axis→a-axis). The value of T R decreases with La-concentration (1-x). The influence of the hydrogen absorption on T R is the same as that o of the substitution of La for Nd. The lowering of T R can be interpreted by the weakening of the Nd-Co coupling which is induced by the substitution of La for Nd and the hydrogen absorption. (orig.)

  11. Studies of hydrogen absorption and desorption processes in advanced intermetallic hydrides

    Energy Technology Data Exchange (ETDEWEB)

    Sato, Masashi

    2005-07-01

    This work is a part of the research program performed in the Department of Energy Systems, Institute for Energy Technology (Kjeller, Norway), which is focused on the development of the advanced hydrogen storage materials. The activities are aimed on studies of the mechanisms of hydrogen interactions with intermetallic alloys with focus on establishing an interrelation between the crystal structure, thermodynamics and kinetics of the processes in the metal-hydrogen systems, on the one hand, and hydrogen storage properties (capacity, rates of desorption, hysteresis). Many of the materials under investigation have potential to be applied in applications, whereas some already have been commercialised in the world market. A number of metals take up considerable amounts of hydrogen and form chemical compounds with H, metal hydrides. Unfortunately, binary hydrides are either very stable (e.g. for the rare earth metals [RE], Zr, Ti, Mg: metal R) or are formed at very high applied pressures of hydrogen gas (e.g. for the transition metals, Ni, Co, Fe, etc.: Metal T). However, hydrogenation process becomes easily reversible at very convenient from practical point of view conditions, around room temperature and at H2 pressures below 1 MPa for the two-component intermetallic alloys R{sub x}T{sub y}. This raised and maintains further interest to the intermetallic hydrides as solid H storage materials. Materials science research of this thesis is focused on studies of the reasons staying behind the beneficial effect of two non-transition elements M(i.e., In and Sn) contributing to the formation of the ternary intermetallic alloys R{sub x}T{sub y}M{sub 2}., on the hydrogen storage behaviours. Particular focus is on two aspects where the remarkable improvement of ordinary metal hydrides is achieved via introduction of In and Sn: a) Increase of the volume density of stored hydrogen in solid materials to the record high level. b) Improvement of the kinetics of hydrogen charge and

  12. Dislocation/hydrogen interaction mechanisms in hydrided nanocrystalline palladium films

    International Nuclear Information System (INIS)

    Amin-Ahmadi, Behnam; Connétable, Damien; Fivel, Marc; Tanguy, Döme; Delmelle, Renaud; Turner, Stuart; Malet, Loic; Godet, Stephane; Pardoen, Thomas; Proost, Joris; Schryvers, Dominique

    2016-01-01

    The nanoscale plasticity mechanisms activated during hydriding cycles in sputtered nanocrystalline Pd films have been investigated ex-situ using advanced transmission electron microscopy techniques. The internal stress developing within the films during hydriding has been monitored in-situ. Results showed that in Pd films hydrided to β-phase, local plasticity was mainly controlled by dislocation activity in spite of the small grain size. Changes of the grain size distribution and the crystallographic texture have not been observed. In contrast, significant microstructural changes were not observed in Pd films hydrided to α-phase. Moreover, the effect of hydrogen loading on the nature and density of dislocations has been investigated using aberration-corrected TEM. Surprisingly, a high density of shear type stacking faults has been observed after dehydriding, indicating a significant effect of hydrogen on the nucleation energy barriers of Shockley partial dislocations. Ab-initio calculations of the effect of hydrogen on the intrinsic stable and unstable stacking fault energies of palladium confirm the experimental observations.

  13. A system of hydrogen powered vehicles with liquid organic hydrides

    International Nuclear Information System (INIS)

    Taube, M.

    1981-07-01

    A motor car system based on the hydrogen produced by nuclear power stations during the night in the summer, and coupled with organic liquid hydride seems to be a feasible system in the near future. Such a system is discussed and the cost is compared with gasoline. (Auth.)

  14. Process of forming a sol-gel/metal hydride composite

    Science.gov (United States)

    Congdon, James W [Aiken, SC

    2009-03-17

    An external gelation process is described which produces granules of metal hydride particles contained within a sol-gel matrix. The resulting granules are dimensionally stable and are useful for applications such as hydrogen separation and hydrogen purification. An additional coating technique for strengthening the granules is also provided.

  15. Hydrogen storage alloys for nickel/metal hydride battery

    Energy Technology Data Exchange (ETDEWEB)

    Kuriyama, Nobuhiro; Sakai, Tetsuo; Myamura, Hiroshi; Tanaka, Hideaki; Ishikawa, Hiroshi; Uehara, Itsuki [Osaka National Research Inst. (Japan)

    1996-06-01

    Efforts to improve performance of metal hydride electrodes such as substitution of alloy components, heat treatment, and surface treatment intended to change surface and bulk structure of hydrogen storage alloys, mainly LaNi{sub 5} based alloys, are reviewed. The importance of control of morphology is emphasized. (author)

  16. Cascades for hydrogen isotope separation using metal hydrides

    International Nuclear Information System (INIS)

    Hill, F.B.; Grzetic, V.

    1982-01-01

    Designs are presented for continuous countercurrent hydrogen isotope separation cascades based on the use of metal hydrides. The cascades are made up of pressure swing adsorption (PSA) or temperature swing adsorption (TSA) stages. The designs were evolved from consideration of previously conducted studies of the separation performance of four types of PSA and TSA processes

  17. Modeling of electrochemical hydrogen storage in metal hydride electrodes

    NARCIS (Netherlands)

    Ledovskikh, A.; Danilov, D.; Vermeulen, P.; Notten, P.H.L.

    2010-01-01

    The recently presented Electrochemical Kinetic Model (EKM), describing the electrochemical hydrogen storage in hydride-forming materials, has been extended by the description of the solid/electrolyte interface, i.e. the charge transfer kinetics and electrical double layer charging. A complete set of

  18. Modeling of electrochemical hydrogen storage in metal hydride electrodes

    NARCIS (Netherlands)

    Ledovskikh, A.; Danilov, D.; Vermeulen, P.; Notten, P.H.L.

    2010-01-01

    The recently presented electrochemical kinetic model, describing the electrochemical hydrogen storage in hydride-forming materials, was extended by the description of the solid/electrolyte interface, i.e., the charge-transfer kinetics and electrical double-layer charging. A complete set of equations

  19. Metal Hydride assited contamination on Ru/Si surfaces

    NARCIS (Netherlands)

    Pachecka, Malgorzata; Lee, Christopher James; Sturm, Jacobus Marinus; Bijkerk, Frederik

    2013-01-01

    In extreme ultraviolet lithography (EUVL) residual tin, in the form of particles, ions, and atoms, can be deposited on nearby EUV optics. During the EUV pulse, a reactive hydrogen plasma is formed, which may be able to react with metal contaminants, creating volatile and unstable metal hydrides that

  20. Design and integration of a hydrogen storage on metallic hydrides

    International Nuclear Information System (INIS)

    Botzung, M.

    2008-01-01

    This work presents a hydrogen storage system using metal hydrides for a Combined Heat and Power (CHP) system. Hydride storage technology has been chosen due to project specifications: high volumetric capacity, low pressures (≤ 3.5 bar) and low temperatures (≤ 75 C: fuel cell temperature). During absorption, heat from hydride generation is dissipated by fluid circulation. An integrated plate-fin type heat exchanger has been designed to obtain good compactness and to reach high absorption/desorption rates. At first, the storage system has been tested in accordance with project specifications (absorption 3.5 bar, desorption 1.5 bar). Then, the hydrogen charge/discharge times have been decreased to reach system limits. System design has been used to simulate thermal and mass comportment of the storage tank. The model is based on the software Fluent. We take in consideration heat and mass transfers in the porous media during absorption/desorption. The hydride thermal and mass behaviour has been integrated in the software. The heat and mass transfers experimentally obtained have been compared to results calculated by the model. The influence of experimental and numerical parameters on the model behaviour has also been explored. (author) [fr

  1. Diastereoselectivity in the reduction of bicyclic enones with hindered hydrides

    OpenAIRE

    Camozzato, Andreza C.; Tenius, Beatriz S. M.; Oliveira, Eduardo R. de; Viegas Jr., Cláudio; Victor, Maurício M.; Silveira, Leandro G. da

    2008-01-01

    Reduction of five substituted octalones employing lithium tri-sec-butylborohydride (L-selectride®) in THF and ethyl ether led to allylic alcohols with moderate diastereoselectivity. The stereoselectivity of addition of bulky hydrides showed to be different from most examples in the literature and was strongly influenced by substitution on the octalone ring.

  2. Diastereoselectivity in the reduction of bicyclic enones with hindered hydrides

    International Nuclear Information System (INIS)

    Camozzato, Andreza C.; Tenius, Beatriz S. M.; Oliveira, Eduardo R. de; Viegas Junior, Claudio; Victor, Mauricio M.; Silveira, Leandro G. da

    2008-01-01

    Reduction of five substituted octalones employing lithium tri-sec-butylborohydride (L-selectride R ) in THF and ethyl ether led to allylic alcohols with moderate diastereoselectivity. The stereoselectivity of addition of bulky hydrides showed to be different from most examples in the literature and was strongly influenced by substitution on the octalone ring. (author)

  3. Fractal analysis of electrolytically-deposited palladium hydride dendrites

    International Nuclear Information System (INIS)

    Bursill, L.A.; Julin, Peng; Xudong, Fan.

    1990-01-01

    The fractal scaling characteristics of the surface profile of electrolytically-deposited palladium hydride dendritic structures have been obtained using conventional and high resolution transmission electron microscopy. The results are in remarkable agreement with the modified diffusion-limited aggregation model. 19 refs., 3 tabs., 13 figs

  4. Development of transmutation technologies of radioactive waste by actinoid hydride

    International Nuclear Information System (INIS)

    Konashi, Kenji; Matsui, Hideki; Yamawaki, Michio

    2001-01-01

    Two waste treatment methods, geological disposal and transmutation, have been studied. The transmutation method changes long-lived radioactive nuclides to short-lived one or stabilizes them by nuclear transformation. The transmutation by actinoid hydride is exactly alike that transformation method from actinoid disposal waste to Pu fuel. For this object, OMEGA project is processing now. The transmutation is difficult by two causes such as large amount of long-lived radioactive nuclides and not enough development of control technologies of nuclear reaction except atomic reactor. The transmutation using actinoid hydride has merits that the amount of actinoid charged in the target increases and the effect of thermal neutrons on fuel decreases depending on homogeneous transmutation velocity in the target. Development of stable actinoid hydride under the conditions of reactor temperature and irradiation environment is important. The experimental results of U-ZrH 1.6 are shown in this paper. The irradiation experiment using Th hydride has been proceeding. (S.Y.)

  5. Hydrogen and dihydrogen bonding of transition metal hydrides

    International Nuclear Information System (INIS)

    Jacobsen, Heiko

    2008-01-01

    Intermolecular interactions between a prototypical transition metal hydride WH(CO) 2 NO(PH 3 ) 2 and a small proton donor H 2 O have been studied using DFT methodology. The hydride, nitrosyl and carbonyl ligand have been considered as site of protonation. Further, DFT-D calculations in which empirical corrections for the dispersion energy are included, have been carried out. A variety of pure and hybrid density functionals (BP86, PW91, PBE, BLYP, OLYP, B3LYP, B1PW91, PBE0, X3LYP) have been considered, and our calculations indicate the PBE functional and its hybrid variation are well suited for the calculation of transition metal hydride hydrogen and dihydrogen bonding. Dispersive interactions make up for a sizeable portion of the intermolecular interaction, and amount to 20-30% of the bond energy and to 30-40% of the bond enthalpy. An energy decomposition analysis reveals that the H...H bond of transition metal hydrides contains both covalent and electrostatic contributions

  6. Hydrogen and dihydrogen bonding of transition metal hydrides

    Science.gov (United States)

    Jacobsen, Heiko

    2008-04-01

    Intermolecular interactions between a prototypical transition metal hydride WH(CO) 2NO(PH 3) 2 and a small proton donor H 2O have been studied using DFT methodology. The hydride, nitrosyl and carbonyl ligand have been considered as site of protonation. Further, DFT-D calculations in which empirical corrections for the dispersion energy are included, have been carried out. A variety of pure and hybrid density functionals (BP86, PW91, PBE, BLYP, OLYP, B3LYP, B1PW91, PBE0, X3LYP) have been considered, and our calculations indicate the PBE functional and its hybrid variation are well suited for the calculation of transition metal hydride hydrogen and dihydrogen bonding. Dispersive interactions make up for a sizeable portion of the intermolecular interaction, and amount to 20-30% of the bond energy and to 30-40% of the bond enthalpy. An energy decomposition analysis reveals that the H⋯H bond of transition metal hydrides contains both covalent and electrostatic contributions.

  7. Hydrogen and dihydrogen bonding of transition metal hydrides

    Energy Technology Data Exchange (ETDEWEB)

    Jacobsen, Heiko [KemKom, Libellenweg 2, 25917 Leck, Nordfriesland (Germany)], E-mail: jacobsen@kemkom.com

    2008-04-03

    Intermolecular interactions between a prototypical transition metal hydride WH(CO){sub 2}NO(PH{sub 3}){sub 2} and a small proton donor H{sub 2}O have been studied using DFT methodology. The hydride, nitrosyl and carbonyl ligand have been considered as site of protonation. Further, DFT-D calculations in which empirical corrections for the dispersion energy are included, have been carried out. A variety of pure and hybrid density functionals (BP86, PW91, PBE, BLYP, OLYP, B3LYP, B1PW91, PBE0, X3LYP) have been considered, and our calculations indicate the PBE functional and its hybrid variation are well suited for the calculation of transition metal hydride hydrogen and dihydrogen bonding. Dispersive interactions make up for a sizeable portion of the intermolecular interaction, and amount to 20-30% of the bond energy and to 30-40% of the bond enthalpy. An energy decomposition analysis reveals that the H...H bond of transition metal hydrides contains both covalent and electrostatic contributions.

  8. Cascades for hydrogen isotope separation using metal hydrides

    Energy Technology Data Exchange (ETDEWEB)

    Hill, F B; Grzetic, V [Brookhaven National Lab., Upton, NY (USA)

    1983-02-01

    Designs are presented for continuous countercurrent hydrogen isotope separation cascades based on the use of metal hydrides. The cascades are made up of pressure swing adsorption (PSA) or temperature swing adsorption (TSA) stages. The designs were evolved from consideration of previously conducted studies of the separation performance of four types of PSA and TSA processes.

  9. Diffusion model of delayed hydride cracking in zirconium alloys

    NARCIS (Netherlands)

    Shmakov, AA; Kalin, BA; Matvienko, YG; Singh, RN; De, PK

    2004-01-01

    We develop a method for the evaluation of the rate of delayed hydride cracking in zirconium alloys. The model is based on the stationary solution of the phenomenological diffusion equation and the detailed analysis of the distribution of hydrostatic stresses in the plane of a sharp tensile crack.

  10. Hydrogen Storage in Porous Materials and Magnesium Hydrides

    NARCIS (Netherlands)

    Grzech, A.

    2013-01-01

    In this thesis representatives of two different types of materials for potential hydrogen storage application are presented. Usage of either nanoporous materials or metal hydrides has both operational advantages and disadvantages. A main objective of this thesis is to characterize the hydrogen

  11. The Properties of Some Simple Covalent Hydrides: An Ab Initio ...

    African Journals Online (AJOL)

    Some properties of the monomeric binary hydrides of the elements of the first two rows of the periodic table have been determined using ab initio molecular orbital theory. The properties in question are the energetic, structural, electronic, topological and vibrational characteristics. In general, a gradual convergence towards ...

  12. Synthesis, properties, and assimilation methods of aluminium hydride

    International Nuclear Information System (INIS)

    Mirsaidov, U.M.

    2013-01-01

    We have discovered a new source of aluminium hydride-conversion of tetrahydrofurane under influence of halogenous alkyls. We have proposed the chlorbenzene method of synthesis of AlH 3 , which excludes adhesion and ensure high quality of the product with respect to its purity, thermal stability, habits of crystals (round shape), and granulometric composition. We determined capability of benzyl chloride to fix AlH 4 -groups by the way of complexes formation. This allows increasing efficient concentration of AlH 3 solutions and their productivity. We have carried out 'direct' crystallization of aluminium hydride in one stage using interaction of binary metal hydride with aluminium chloride in the medium of ether-toluene at 60-100 d ig C a nd using solvent distillation. In the reaction of Li H with AlCl 3 , we achieved output of pure crystal AlH 3 of hexagonal modification, which was close to quantitative. We have discovered the assimilation methods of aluminium hydride in carrying out of solid-phase chemical reactions. (author)

  13. Activation and discharge kinetics of metal hydride electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Johnsen, Stein Egil

    2003-07-01

    Potential step chronoamperometry and Electrochemical Impedance Spectroscopy (eis) measurements were performed on single metal hydride particles. For the {alpha}-phase, the bulk diffusion coefficient and the absorption/adsorption rate parameters were determined. Materials produced by atomisation, melt spinning and conventional casting were investigated. The melt spun and conventional cast materials were identical and the atomised material similar in composition. The particles from the cast and the melt spun material were shaped like parallelepipeds. A corresponding equation, for this geometry, for diffusion coupled to an absorption/adsorption reaction was developed. It was found that materials produced by melt spinning exhibited lower bulk diffusion (1.7E-14 m2/s) and absorption/adsorption reaction rate (1.0E-8 m/s), compared to materials produced by conventionally casting (1.1E-13 m2/s and 5.5E-8 m/s respectively). In addition, the influence of particle active surface and relative diffusion length were discussed. It was concluded that there are uncertainties connected to these properties, which may explain the large distribution in the kinetic parameters measured on metal hydride particles. Activation of metal hydride forming materials has been studied and an activation procedure, for porous electrodes, was investigated. Cathodic polarisation of the electrode during a hot alkaline surface treatment gave the maximum discharge capacity on the first discharge of the electrode. The studied materials were produced by gas atomisation and the spherical shape was retained during the activation. Both an AB{sub 5} and an AB{sub 2} alloy was successfully activated and discharge rate properties determined. The AB{sub 2} material showed a higher maximum discharge capacity, but poor rate properties, compared to the AB{sub 5} material. Reduction of surface oxides, and at the same time protection against corrosion of active metallic nickel, can explain the satisfying results of

  14. New hydride compounds of 1,4-diazabicyclo[2.2.2]octane and its dication with borine and tetrahydridoborate anion and products of their transformations; Novye gidridnye soedineniya 1,4-diazabitsiklo[2.2.2]oktana i ego dikationa s borinom i tetergidridoborat-anionom i produkty ikh prevrashcheniya

    Energy Technology Data Exchange (ETDEWEB)

    Shevchenko, Yu N; Yashina, N I; Markova, O Z; Trachevskij, V V

    1997-12-31

    New compounds [dabcoH{sub 2}](BH{sub 4}){sub 2}, dabco(BH{sub 3}){sub 2}2H{sub 2}, [dabco(BH{sub 3}){sub 2}H{sub 2}]{sub n} have been synthesized by means of interaction between dihydrochloride of 1,4-diazobicyclo[2.2.2] octane (dabco) and NaBH{sub 4} in the medium of nonaqueous solvents (glyme, diglyme, tetrahydrofuran, dimethylsulfoxide) and identified by the methods of element analysis, conductometry, {sup 1}H, {sup 11}B, {sup 14}N NMR, IR spectroscopy and thermal analysis. A mechanism is suggested and the conditions are defined for mutual transformations of the compounds studied. Their ability to bind reversibly molecular hydrogen has been revealed for the first time. 19 refs.; 3 figs.; 1 tab.

  15. Progress in Studing Solar-earth Source Compound Heat Pump%太阳能-土壤源复合热泵的研究进展

    Institute of Scientific and Technical Information of China (English)

    张来栋; 郭风全

    2013-01-01

    介绍了太阳能-土壤源复合热泵的工作原理和技术特点,比较了不同太阳能-土壤源复合热泵的系统组成及其性能指标,提出了当前复合热泵所存在的问题与相关建议,并对其发展前景做了展望。%Working principle and performance characteristics of solar-earth source compound heat pump are described, and the system component and indicators are compared between different solar-earth source compound heat pumps. The problems existing in the compound heat pump and related suggestion are put forward, and the development prospect is expected.

  16. Rare earth intermetallic compounds produced by a reduction-diffusion process

    International Nuclear Information System (INIS)

    Cech, R.E.

    1975-01-01

    A reduction-diffusion process is given for producing novel rare earth intermetallic compounds, such as cobalt--rare earth intermetallic compounds, especially compounds useful in preparing permanent magnets. A particulate mixture of rare earth metal halide, cobalt and calcium hydride is heated to effect reduction of the rare earth metal halide and to diffuse the resulting rare earth metal into the cobalt to form the intermetallic compound

  17. Hydride redistribution and crack growth in Zr-2.5 wt.% Nb stressed in torsion

    International Nuclear Information System (INIS)

    Puls, M.P.; Rogowski, A.J.

    1980-11-01

    The effect of applied shear stresses on zirconium hydride solubility in a zirconium alloy was investigated. Recent studies have shown that zirconium hydride precipiates probably nucleate and grow by means of a shear transformation mechanism. It is postulated that these transformation shear strains can interact with applied shear stress gradients in the same way that the dilatational strains can interact with a dilatational stress gradient, providing a driving force for hydride accumulation, hydride embrittlement and crack propagation. To test this proposition, crack growth experiments were carried out under torsional loading conditions on hydrided, round notched bar specimens of cold-worked Zr-2.5 wt.% Nb cut from Pickering-type pressure tube material. Postmortem metallographic examination of the hydride distribution in these samples showed that, in many cases, the hydrides appeared to have reoriented in response to the applied shear stress and that hydride accumulation at the notch tip had occurred. However, except in a few cases, the rate of accumulation of reoriented hydrides at the notch tip due to applied shear stresses was much less than the rate due to corresponding applied uniaxial stresss. Moreover, the process in shear appears to be more sensitive to the inital hydride size. Attempts to elucidate the fracture mechanism by fractographic examination using scanning and replica transmission electron microscopy proved to be inconclusive because of smearing of the fracture face. (auth)

  18. High pressure hydriding of sponge-Zr in steam-hydrogen mixtures

    International Nuclear Information System (INIS)

    Kim, Y.S.

    1997-01-01

    Hydriding kinetics of thin sponge-Zr layers metallurgically bonded to a Zircaloy disk has been studied by thermogravimetry in the temperature range 350-400 C in 7 MPa hydrogen-steam mixtures. Some specimens were prefilmed with a thin oxide layer prior to exposure to the reactant gas; all were coated with a thin layer of gold to avoid premature reaction at edges. Two types of hydriding were observed in prefilmed specimens, viz., a slow hydrogen absorption process that precedes an accelerated (massive) hydriding. At 7 MPa total pressure, the critical ratio of H 2 /H 2 O above which massive hydriding occurs at 400 C is ∝200. The critical H 2 /H 2 O ratio is shifted to ∝2.5 x 10 3 at 350 C. The slow hydriding process occurs only when conditions for hydriding and oxidation are approximately equally favorable. Based on maximum weight gain, the specimen is completely converted to δ-ZrH 2 by massive hydriding in ∝5 h at a hydriding rate of ∝10 -6 mol H/cm 2 s. Incubation times of 10-20 h prior to the onset of massive hydriding increases with prefilm oxide thickness in the range of 0-10 μm. By changing to a steam-enriched gas, massive hydriding that initially started in a steam-starved condition was arrested by re-formation of a protective oxide scale. (orig.)

  19. Improvement of hydrogen sorption properties of compounds based on Vanadium “bcc” alloys by mean of intergranular phase development

    International Nuclear Information System (INIS)

    Planté, D.; Raufast, C.; Miraglia, S.; Rango, P. de; Fruchart, D.

    2013-01-01

    Highlights: •Decrease of “bcc” pseudo cell with the increase of amount of additive. •Additive phase improve activation kinetics. •Chromium in the “bcc” matrix decreases the lattice parameter and destabilizes hydride formation/dissociation. •Lower working temperatures could be obtain. -- Abstract: Body centered cubic structure (“bcc”) type alloys based on Vanadium [1] reveal promising characteristics for mobile applications. These disordered solid solutions have particular metal/hydride equilibrium and some regulation aspects have leaded us to pay special attention to this type of material [2]. Compounds based on Vanadium-rich solid solution have been elaborated in order to destabilize γ hydride phase (corresponding to the face centered cubic (“fcc”) structure of VH 2 ). Addition of Ni and Zr-rich Laves phase as a secondary phase results in the development of a particular microstructure composed of a principal “bcc” matrix rounded by intergranular activating phase. This results in a facilitated and faster activation of these compounds. The present study shows that some constituting species of the secondary phase have diffused in the main matrix and therefore have modified the thermodynamic of hydride. In fact, chromium diffusion into the “bcc” matrix destabilizes hydride. It is correlated to the lower stability of chromium hydride compared to Vanadium hydride. The enthalpic terms of each sample have been measured (assuming standard entropy of 130 J mol −1 K −1 ). The equilibrium metal/hydride can be easily switched in order to adapt it to a mobile hydride tank and obtain low working temperature in regard to the potential use

  20. Elaboration and characterization of unreported (Pr,Nd)5Ni19 hydrides

    International Nuclear Information System (INIS)

    Lemort, Lucille; Latroche, Michel; Knosp, Bernard; Bernard, Patrick

    2011-01-01

    Research highlights: → Two new compounds Pr 5 Ni 19 and Nd 5 Ni 19 have been synthesized and their crystallographic structures have been determined. → Two polymorphic types are reported to coexist for the same composition, one rhombohedral and one hexagonal. → The hydrogen sorption properties of these two novel compounds have been measured and they exhibit capacities of 1.33%(wt) for Pr 5 Ni 19 and 1.17%(wt) for Nd 5 Ni 19 under 10 MPa. - Abstract: In this study two new compounds have been synthesized: Pr 5 Ni 19 and Nd 5 Ni 19 . The crystallographic structures as well as the thermodynamic properties of the hydrogen absorbing compounds Pr 5 Ni 19 and Nd 5 Ni 19 have been determined. Both compounds exist under two polymorphic types that can be described as the stacking along the c axis of two different subunits [(Pr,Nd) 2 Ni 4 ] and [(Pr,Nd)Ni 5 ]: the hexagonal (2H) Pr 5 Co 19 -type structure (space group P6 3 /mmc) and the rhombohedral (3R) Ce 5 Co 19 -type structure (space group R-3m). The two compounds are able to form hydrides at room temperature, in the pressure range of 0-10 MPa. They show desorption pressure plateaux around 0.8 MPa for Pr 5 Ni 19 and 1 MPa for Nd 5 Ni 19 and exhibit capacities under 10 MPa of 1.33 wt% for Pr 5 Ni 19 and 1.17 wt% for Nd 5 Ni 19 at the first cycle.

  1. Elaboration and characterization of unreported (Pr,Nd){sub 5}Ni{sub 19} hydrides

    Energy Technology Data Exchange (ETDEWEB)

    Lemort, Lucille [ICMPE CMTR CNRS UMR 7182, 2-8 rue Henri Dunant, 94320 Thiais Cedex (France); Latroche, Michel, E-mail: michel.latroche@icmpe.cnrs.fr [ICMPE CMTR CNRS UMR 7182, 2-8 rue Henri Dunant, 94320 Thiais Cedex (France); Knosp, Bernard; Bernard, Patrick [SAFT, Direction de la Recherche, 111-113 Boulevard Alfred Daney, 33074 Bordeaux (France)

    2011-09-15

    Research highlights: > Two new compounds Pr{sub 5}Ni{sub 19} and Nd{sub 5}Ni{sub 19} have been synthesized and their crystallographic structures have been determined. > Two polymorphic types are reported to coexist for the same composition, one rhombohedral and one hexagonal. > The hydrogen sorption properties of these two novel compounds have been measured and they exhibit capacities of 1.33%(wt) for Pr{sub 5}Ni{sub 19} and 1.17%(wt) for Nd{sub 5}Ni{sub 19} under 10 MPa. - Abstract: In this study two new compounds have been synthesized: Pr{sub 5}Ni{sub 19} and Nd{sub 5}Ni{sub 19}. The crystallographic structures as well as the thermodynamic properties of the hydrogen absorbing compounds Pr{sub 5}Ni{sub 19} and Nd{sub 5}Ni{sub 19} have been determined. Both compounds exist under two polymorphic types that can be described as the stacking along the c axis of two different subunits [(Pr,Nd){sub 2}Ni{sub 4}] and [(Pr,Nd)Ni{sub 5}]: the hexagonal (2H) Pr{sub 5}Co{sub 19}-type structure (space group P6{sub 3}/mmc) and the rhombohedral (3R) Ce{sub 5}Co{sub 19}-type structure (space group R-3m). The two compounds are able to form hydrides at room temperature, in the pressure range of 0-10 MPa. They show desorption pressure plateaux around 0.8 MPa for Pr{sub 5}Ni{sub 19} and 1 MPa for Nd{sub 5}Ni{sub 19} and exhibit capacities under 10 MPa of 1.33 wt% for Pr{sub 5}Ni{sub 19} and 1.17 wt% for Nd{sub 5}Ni{sub 19} at the first cycle.

  2. Rare earth metals, rare earth hydrides, and rare earth oxides as thin films

    International Nuclear Information System (INIS)

    Gasgnier, M.

    1980-01-01

    The review deals with pure rare earth materials such as rare earth metals, rare earth hydrides, and rare earth oxides as thin films. Several preparation techniques, control methods, and nature of possible contaminations of thin films are described. These films can now be produced in an extremely well-known state concerning chemical composition, structure and texture. Structural, electric, magnetic, and optical properties of thin films are studied and discussed in comparison with the bulk state. The greatest contamination of metallic rare earth thin films is caused by reaction with hydrogen or with water vapour. The compound with an f.c.c. structure is the dihydride LnH 2 (Ln = lanthanides). The oxygen contamination takes place after annealing at higher temperatures. Then there appears a compound with a b.c.c. structure which is the C-type sesquioxide C-Ln 2 O 3 . At room atmosphere dihydride light rare earth thin films are converted to hydroxide Ln(OH) 3 . For heavy rare earth thin films the oxinitride LnNsub(x)Osub(y) is observed. The LnO-type compound was never seen. The present review tries to set the stage anew for the investigations to be undertaken in the future especially through the new generations of electron microscopes

  3. Triosmium cluster compounds containing isocyanide and hydride ligands. Crystal and molecular structures of (μ-H)(H)Os3(CO)10(CN-t-C4H9) and (μ-H)2Os3(CO)9(CN-t-C4H9)

    International Nuclear Information System (INIS)

    Adams, R.D.; Golembski, N.M.

    1979-01-01

    The structures of the compounds (μ-H)(H)Os 3 (CO) 10 (CN-t-C 4 H 9 ) and (μ-H) 2 Os 3 (CO) 9 (CN-t-C 4 H 9 ) have been revealed by x-ray crystallographic techniques. For (μ-H)(H)Os 3 (CO) 10 (CN-t-C 4 H 9 ): a = 9.064 (3), b = 12.225 (3), c = 20.364 (4) A; β = 98.73 (3) 0 ; space group P2 1 /c[C/sub 2h/ 5 ], No. 14; Z = 4; d/sub calcd/ = 2.79 g cm -3 . This compound contains a triangular cluster of three osmium atoms; Os(1)--Os(2) = 2.930 (1) A, Os(1)--Os(3) = 2.876 (1) A, and Os(2)--Os(3) = 3.000 (1) A. There are ten linear terminal carbonyl groups and one linear terminal isocyanide ligand which occupies an axial coordination site. The hydrogen atoms were not observed crystallographically, but their positions are strongly inferred from considerations of molecular geometry. For (μ-H) 2 Os 3 (CO) 9 (CN-t-C 4 H 9 ): a = 15.220 (8), b = 12.093 (6), c = 23.454 (5) A; space group Pbcn [D/sub 2h/ 14 ], No. 60; Z = 8; d/sub calcd/ = 2.79 g cm -3 . The compound is analogous to the parent carbonyl (μ-H) 2 Os 3 (CO) 10 and has two normal and one short osmium--osmium bonds: Os(1)--Os(2) = 2.827 (1) A, Os(1)--Os(3) = 2.828 (1) A, Os(2)--Os(3) = 2.691 (1) A. The isocyanide ligand resides in an equatorial coordination site on osmium Os(2). The hydrogen atoms were not observed but are believed to occupy bridging positions as in the parent carbonyl complex. 2 figures, 7 tables

  4. Modeling of hydrogen isotopes separation in a metal hydride bed

    International Nuclear Information System (INIS)

    Charton, S.; Corriou, J.P.; Schweich, D.

    1999-01-01

    A predictive model for hydrogen isotopes separation in a non-isothermal bed of unsupported palladium hydride particles is derived. It accounts for the non-linear adsorption-dissociation equilibrium, hydrodynamic dispersion, pressure drop, mass transfer kinetics, heat of sorption and heat losses at the bed wall. Using parameters from the literature or estimated with classical correlations, the model gives simulated curves in agreement with previously published experiments without any parameter fit. The non-isothermal behavior is shown to be responsible for drastic changes of the mass transfer rate which is controlled by diffusion in the solid-phase lattice. For a feed at 300 K and atmospheric pressure, the endothermic hydride-to-deuteride exchange is kinetically controlled, whereas the reverse exothermic exchange is nearly at equilibrium. Finally, a simple and efficient thermodynamic model for the dissociative equilibrium between a metal and a diatomic gas is proposed. (Copyright (c) 1999 Elsevier Science B.V., Amsterdam. All rights reserved.)

  5. Catalytic effect of halide additives ball milled with magnesium hydride

    Energy Technology Data Exchange (ETDEWEB)

    Malka, I.E.; Bystrzycki, J. [Department of Advanced Materials and Technologies, Military University of Technology, Kaliskiego 2, 00-908 Warsaw (Poland); Czujko, T. [Department of Advanced Materials and Technologies, Military University of Technology, Kaliskiego 2, 00-908 Warsaw (Poland); CanmetENERGY, Hydrogen Fuel Cells and Transportation Energy, Natural Resources (Canada)

    2010-02-15

    The influence of various halide additives milled with magnesium hydride (MgH{sub 2}) on its decomposition temperature was studied. The optimum amount of halide additive and milling conditions were evaluated. The MgH{sub 2} decomposition temperature and energy of activation reduction were measured by temperature programmed desorption (TPD) and differential scanning calorimetry (DSC). The difference in catalytic efficiency between chlorides and fluorides of the various metals studied is presented. The effects of oxidation state, valence and position in the periodic table for selected halides on MgH{sub 2} decomposition temperature were also studied. The best catalysts, from the halides studied, for magnesium hydride decomposition were ZrF{sub 4}, TaF{sub 5}, NbF{sub 5}, VCl{sub 3} and TiCl{sub 3}. (author)

  6. Irradiation effects on thermal properties of LWR hydride fuel

    Energy Technology Data Exchange (ETDEWEB)

    Terrani, Kurt, E-mail: terrani@berkeley.edu [University of California, 4155 Etcheverry Hall, M.C. 1730, Berkeley, CA 94720-1730 (United States); Balooch, Mehdi [University of California, 4155 Etcheverry Hall, M.C. 1730, Berkeley, CA 94720-1730 (United States); Carpenter, David; Kohse, Gordon [Massachusetts Institute of Technology, 138 Albany St., Cambridge, MA 02139 (United States); Keiser, Dennis; Meyer, Mitchell [Idaho National Laboratory, Idaho Falls, ID 83415 (United States); Olander, Donald [University of California, 4155 Etcheverry Hall, M.C. 1730, Berkeley, CA 94720-1730 (United States)

    2017-04-01

    Three hydride mini-fuel rods were fabricated and irradiated at the MIT nuclear reactor with a maximum burnup of 0.31% FIMA or ∼5 MWd/kgU equivalent oxide fuel burnup. Fuel rods consisted of uranium-zirconium hydride (U (30 wt%)ZrH{sub 1.6}) pellets clad inside a LWR Zircaloy-2 tubing. The gap between the fuel and the cladding was filled with lead-bismuth eutectic alloy to eliminate the gas gap and the large temperature drop across it. Each mini-fuel rod was instrumented with two thermocouples with tips that are axially located halfway through the fuel centerline and cladding surface. In-pile temperature measurements enabled calculation of thermal conductivity in this fuel as a function of temperature and burnup. In-pile thermal conductivity at the beginning of test agreed well with out-of-pile measurements on unirradiated fuel and decreased rapidly with burnup.

  7. Positronium hydride defects in thermochemically reduced alkaline-Earth oxides

    International Nuclear Information System (INIS)

    Monge, M.A.; Pareja, R.; Gonzalez, R.; Chen, Y.

    1997-01-01

    Thermochemical reduction of both hydrogen-doped MgO and CaO single crystals results in large concentrations of hydride (H - ) ions. In MgO crystals, positron lifetime and Doppler broadening experiments show that positrons are trapped at H - centers forming positronium hydride molecules [e + - H - ]. A value of 640 ps is obtained for the lifetime of the PsH states located in an anion vacancy In MgO positrons are also trapped at H 2- sites at low temperatures. The H 2- ions were induced in the crystals by blue light illumination. The formation of PsH states in CaO could not be conclusively established. (orig.)

  8. Synthesis of 2-iodobenzamides and 3-(iodoacetamide)benzamides linked to D-galactose and their tri-n-butyltin hydride-mediated radical carbocyclization reactions

    International Nuclear Information System (INIS)

    Leal, Daniel Henriques Soares; Queiroga, Carla Graziella; Pires, Magno Carvalho; Prado, Maria Auxiliadra Fontes; Alves, Ricardo Jose; Cesar, Amary

    2009-01-01

    Starting from methyl 6-O-allyl-4-azido-2,3-di-O-benzyl-4-deoxy-a-D-galactopyranoside, four new derivatives containing 2-iodobenzamide and 3-(iodoacetamide)benzamido groups were synthesized. These four compounds were submitted to tri-n-butyltin hydride mediated radical cyclization reactions, resulting in two macrolactams from 11- and 15-endo aryl radical cyclization. The corresponding four hydrogenolysis products were also obtained. The structures of the new compounds were elucidated by 1 H and 13 C NMR spectroscopy, DEPT, COSY, HMQC and HMBC experiments. (author)

  9. tri-n-butyltin hydride-mediated radical reaction of a 2-iodobenzamide: formation of an unexpected carbon-tin bond

    International Nuclear Information System (INIS)

    Oliveira, Marcelo T.; Alves, Rosemeire B.; Cesar, Amary; Prado, Maria Auxiliadora F.; Alves, Ricardo J.; Queiroga, Carla G.; Santos, Leonardo S.; Eberlin, Marcos N.

    2007-01-01

    The tri-n-butyltin hydride-mediated reaction of methyl 2,3-di-O-benzyl-4-O-trans-cinnamyl- 6-deoxy-6-(2-iodobenzoylamino)-α-D-galactopyranoside afforded an unexpected aryltributyltin compound. The structure of this new tetraorganotin(IV) product has been elucidated by 1 H, 13 C NMR spectroscopy, COSY and HMQC experiments and electrospray ionization mass spectrometry (ESI-MS). The formation of this new compound via a radical coupling reaction and a radical addition-elimination process is discussed. (author)

  10. FEASIBILITY OF RECYCLING PLUTONIUM AND MINOR ACTINIDES IN LIGHT WATER REACTORS USING HYDRIDE FUEL

    International Nuclear Information System (INIS)

    Greenspan, Ehud; Todreas, Neil; Taiwo, Temitope

    2009-01-01

    The objective of this DOE NERI program sponsored project was to assess the feasibility of improving the plutonium (Pu) and minor actinide (MA) recycling capabilities of pressurized water reactors (PWRs) by using hydride instead of oxide fuels. There are four general parts to this assessment: (1) Identifying promising hydride fuel assembly designs for recycling Pu and MAs in PWRs; (2) Performing a comprehensive systems analysis that compares the fuel cycle characteristics of Pu and MA recycling in PWRs using the promising hydride fuel assembly designs identified in Part 1 versus using oxide fuel assembly designs; (3) Conducting a safety analysis to assess the likelihood of licensing hydride fuel assembly designs; and (4) Assessing the compatibility of hydride fuel with cladding materials and water under typical PWR operating conditions Hydride fuel was found to offer promising transmutation characteristics and is recommended for further examination as a possible preferred option for recycling plutonium in PWRs

  11. Neutron scattering study of the phase transformation of LaNi3 induced by hydriding

    International Nuclear Information System (INIS)

    Ruan Jinghui; Zeng Xiangxin; Niu Shiwen

    1994-01-01

    The phase transformation of LaNi 3 induced by hydriding and de-hydriding is investigated using the neutron diffraction and the neutron inelastic scattering. The results show that the hydriding sample, LaNi 3 H x , is transformed from crystalline state of the LaNi 3 into amorphous state with a microcrystalline characteristic of LaNi 5 , and the de-hydriding sample produced by LaNi 3 H x dehydrated at 600 degree C is decomposed into new crystalline states composed by LaNi 5 -and La-hydrides. The procedure of phase transformation is that the result of the transformation of LaNi 3 induced by hydriding shows the properties of LaNi 5 -H 2 system

  12. FEASIBILITY OF RECYCLING PLUTONIUM AND MINOR ACTINIDES IN LIGHT WATER REACTORS USING HYDRIDE FUEL

    Energy Technology Data Exchange (ETDEWEB)

    Greenspan, Ehud; Todreas, Neil; Taiwo, Temitope

    2009-03-10

    The objective of this DOE NERI program sponsored project was to assess the feasibility of improving the plutonium (Pu) and minor actinide (MA) recycling capabilities of pressurized water reactors (PWRs) by using hydride instead of oxide fuels. There are four general parts to this assessment: 1) Identifying promising hydride fuel assembly designs for recycling Pu and MAs in PWRs 2) Performing a comprehensive systems analysis that compares the fuel cycle characteristics of Pu and MA recycling in PWRs using the promising hydride fuel assembly designs identified in Part 1 versus using oxide fuel assembly designs 3) Conducting a safety analysis to assess the likelihood of licensing hydride fuel assembly designs 4) Assessing the compatibility of hydride fuel with cladding materials and water under typical PWR operating conditions Hydride fuel was found to offer promising transmutation characteristics and is recommended for further examination as a possible preferred option for recycling plutonium in PWRs.

  13. Thermomechanics of hydrogen storage in metallic hydrides: modeling and analysis

    Czech Academy of Sciences Publication Activity Database

    Roubíček, Tomáš; Tomassetti, G.

    2014-01-01

    Roč. 19, č. 7 (2014), s. 2313-2333 ISSN 1531-3492 R&D Projects: GA ČR GA201/09/0917 Institutional support: RVO:61388998 Keywords : metal-hydrid phase transformation * hydrogen diffusion * swelling Subject RIV: BA - General Mathematics Impact factor: 0.768, year: 2014 http://aimsciences.org/journals/pdfs.jsp?paperID=10195&mode=full

  14. Magnetization study of UNiSi and its hydride

    Czech Academy of Sciences Publication Activity Database

    Šebek, Josef; Andreev, Alexander V.; Honda, F.; Kolomiets, A. V.; Havela, L.; Sechovský, V.

    2003-01-01

    Roč. 34, č. 2 (2003), s. 1457-1460 ISSN 0587-4254. [International Conference on Strongly Correlated Electron Systems (SCES 02). Cracow, 10.07.2002-13.07.2002] R&D Projects: GA ČR GA202/02/0739 Institutional research plan: CEZ:AV0Z1010914; CEZ:MSM 113200002 Keywords : UNiSi * magnetic measurements * hydride Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.752, year: 2003

  15. Instrinsic defect energies of lithium hydride and lithium deuteride crystals

    International Nuclear Information System (INIS)

    Pandey, R.; Stoneham, A.M.

    1985-01-01

    A theoretical study has been made of the defect structure of lithium hydride and lithium deuteride. A potential model is obtained describing the statics and dynamics of these crystals. Intrinsic defect energies are calculated using the Harwell HADES program which is based on a generalised Mott-Littleton method. The results are in good agreement with the experimental data, and suggest that the vacancy and interstitial migration mechanisms of anions and cations are all comparable in their contribution to ionic conduction. (author)

  16. Equilibrium dissociation pressures of lithium hydride and lithium deuteride

    International Nuclear Information System (INIS)

    Smith, H.M.; Webb, R.E.

    1977-12-01

    The equilibrium dissociation pressures of plateau composition lithium hydride and lithium deuteride have been measured from 450 to 750 0 C. These data were used to derive the relationship of dissociation pressure with temperature over this range and to calculate several thermodynamic properties of these materials. Thermodynamic properties determined included the enthalpy, entropy, and free energy of formation; the enthalpy and entropy of fusion; and the melting points

  17. Dendritic surface morphology of palladium hydride produced by electrolytic deposition

    International Nuclear Information System (INIS)

    Julin, Peng; Bursill, L.A.

    1990-01-01

    Conventional and high-resolution electron microscopic studies of electrolytically-deposited palladium hydride reveal a fascinating variety of surface profile morphologies. The observations provide direct information concerning the surface structure of palladium electrodes and the mechanism of electrolytic deposition of palladium black. Both classical electrochemical mechanisms and recent 'modified diffusion-limited-aggregation' computer simulations are discussed in comparison with the experimental results. 13 refs., 9 figs

  18. Secondary hydriding of defected zircaloy-clad fuel rods

    International Nuclear Information System (INIS)

    Olander, D.R.; Vaknin, S.

    1993-01-01

    The phenomenon of secondary hydriding in LWR fuel rods is critically reviewed. The current understanding of the process is summarized with emphasis on the sources of hydrogen in the rod provided by chemical reaction of water (steam) introduced via a primary defect in the cladding. As often noted in the literature, the role of hydrogen peroxide produced by steam radiolysis is to provide sources of hydrogen by cladding and fuel oxidation that are absent without fission-fragment irradiation of the gas. Quantitative description of the evolution of the chemical state inside the fuel rod is achieved by combining the chemical kinetics of the reactions between the gas and the fuel and cladding with the transport by diffusion of components of the gas in the gap. The chemistry-gas transport model provides the framework into which therate constants of the reactions between the gases in the gap and the fuel and cladding are incorporated. The output of the model calculation is the H 2 0/H 2 ratio in the gas and the degree of claddingand fuel oxidation as functions of distance from the primary defect. This output, when combined with a criterion for the onset of massive hydriding of the cladding, can provide a prediction of the time and location of a potential secondary hydriding failure. The chemistry-gas transport model is the starting point for mechanical and H-in-Zr migration analyses intended to determine the nature of the cladding failure caused by the development of the massive hydride on the inner wall

  19. C-H Bond Functionalization via Hydride Transfer: Direct Coupling of Unactivated Alkynes and sp3 C-H Bonds Catalyzed by Platinum Tetraiodide

    Science.gov (United States)

    Vadola, Paul A.; Sames, Dalibor

    2010-01-01

    We report a catalytic intramolecular coupling between terminal unactivated alkynes and sp3 C-H bonds via the through-space hydride transfer (HT-cyclization of alkynes). This method enables one-step preparation of complex heterocyclic compounds by α-alkenylation of readily available cyclic ethers and amines. We show that PtI4 is an effective Lewis acid catalyst for the activation of terminal alkynes for the hydride attack and subsequent C-C bond formation. In addition, we have shown that the activity of neutral platinum salts (PtXn) can be modulated by the halide ligands. This modulation in turn allows for fine-tuning of the platinum center reactivity to match the reactivity and stability of selected substrates and products. PMID:19852462

  20. Powder production of U-Mo alloy, HMD process (Hydriding- Milling- Dehydriding)

    Energy Technology Data Exchange (ETDEWEB)

    Pasqualini, E. E.; Garcia, J.H.; Lopez, M.; Cabanillas, E.; Adelfang, P. [Dept. Combustibles Nucleares. Comision Nacional de Energia Atomica, Av. Gral. Paz 1499, 1650 Buenos Aires (Argentina)

    2002-07-01

    Uranium-molybdenum (U-Mo) alloys can be hydrided massively in metastable {gamma} (gamma) phase. The brittle hydride can be milled and dehydrided to acquire the desired size distributions needed for dispersion nuclear fuels. The developments of the different steps of this process called hydriding-milling- dehydriding (HMD Process) are described. Powder production scales for industrial fabrication is easily achieved with conventional equipment, small man-power and low investment. (author)

  1. Powder production of U-Mo alloy, HMD process (Hydriding- Milling- Dehydriding)

    International Nuclear Information System (INIS)

    Pasqualini, E. E.; Garcia, J.H.; Lopez, M.; Cabanillas, E.; Adelfang, P.

    2002-01-01

    Uranium-molybdenum (U-Mo) alloys can be hydrided massively in metastable γ (gamma) phase. The brittle hydride can be milled and dehydrided to acquire the desired size distributions needed for dispersion nuclear fuels. The developments of the different steps of this process called hydriding-milling- dehydriding (HMD Process) are described. Powder production scales for industrial fabrication is easily achieved with conventional equipment, small man-power and low investment. (author)

  2. First principles characterisation of brittle transgranular fracture of titanium hydrides

    International Nuclear Information System (INIS)

    Olsson, Pär A.T.; Mrovec, Matous; Kroon, Martin

    2016-01-01

    In this work we have studied transgranular cleavage and the fracture toughness of titanium hydrides by means of quantum mechanical calculations based on density functional theory. The calculations show that the surface energy decreases and the unstable stacking fault energy increases with increasing hydrogen content. This is consistent with experimental findings of brittle behaviour of titanium hydrides at low temperatures. Based on Griffith-Irwin theory we estimate the fracture toughness of the hydrides to be of the order of 1 MPa⋅m"1"/"2, which concurs well with experimental data. To investigate the cleavage energetics, we analyse the decohesion at various crystallographic planes and determine the traction-separation laws based on the Rose's extended universal binding energy relation. The calculations predict that the peak stresses do not depend on the hydrogen content of the phases, but it is rather dependent on the crystallographic cleavage direction. However, it is found that the work of fracture decreases with increasing hydrogen content, which is an indication of hydrogen induced bond weakening in the material.

  3. The effect of sample preparation on uranium hydriding

    International Nuclear Information System (INIS)

    Banos, A.; Stitt, C.A.; Scott, T.B.

    2016-01-01

    Highlights: • Distinct differences in uranium hydride growth rates and characteristics between different surface preparation methods. • The primary difference between the categories of sample preparations is the level of strain present in the surface. • Greater surface-strain, leads to higher nucleation number density, implying a preferred attack of strained vs unstrained metal. • As strain is reduced, surface features such as carbides and grain boundaries become more important in controlling the UH3 location. - Abstract: The influence of sample cleaning preparation on the early stages of uranium hydriding has been examined, by using four identical samples but concurrently prepared using four different methods. The samples were reacted together in the same corrosion cell to ensure identical exposure conditions. From the analysis, it was found that the hydride nucleation rate was proportional to the level of strain exhibiting higher number density for the more strained surfaces. Additionally, microstructure of the metal plays a secondary role regarding initial hydrogen attack on the highly strained surfaces yet starts to dominate the system while moving to more pristine samples.

  4. Metal hydride-based thermal energy storage systems

    Science.gov (United States)

    Vajo, John J.; Fang, Zhigang

    2017-10-03

    The invention provides a thermal energy storage system comprising a metal-containing first material with a thermal energy storage density of about 1300 kJ/kg to about 2200 kJ/kg based on hydrogenation; a metal-containing second material with a thermal energy storage density of about 200 kJ/kg to about 1000 kJ/kg based on hydrogenation; and a hydrogen conduit for reversibly transporting hydrogen between the first material and the second material. At a temperature of 20.degree. C. and in 1 hour, at least 90% of the metal is converted to the hydride. At a temperature of 0.degree. C. and in 1 hour, at least 90% of the metal hydride is converted to the metal and hydrogen. The disclosed metal hydride materials have a combination of thermodynamic energy storage densities and kinetic power capabilities that previously have not been demonstrated. This performance enables practical use of thermal energy storage systems for electric vehicle heating and cooling.

  5. A thermal neutron scattering law for yttrium hydride

    Science.gov (United States)

    Zerkle, Michael; Holmes, Jesse

    2017-09-01

    Yttrium hydride (YH2) is of interest as a high temperature moderator material because of its superior ability to retain hydrogen at elevated temperatures. Thermal neutron scattering laws for hydrogen bound in yttrium hydride (H-YH2) and yttrium bound in yttrium hydride (Y-YH2) prepared using the ab initio approach are presented. Density functional theory, incorporating the generalized gradient approximation (GGA) for the exchange-correlation energy, is used to simulate the face-centered cubic structure of YH2 and calculate the interatomic Hellmann-Feynman forces for a 2 × 2 × 2 supercell containing 96 atoms. Lattice dynamics calculations using PHONON are then used to determine the phonon dispersion relations and density of states. The calculated phonon density of states for H and Y in YH2 are used to prepare H-YH2 and Y-YH2 thermal scattering laws using the LEAPR module of NJOY2012. Analysis of the resulting integral and differential scattering cross sections demonstrates adequate resolution of the S(α,β) function. Comparison of experimental lattice constant, heat capacity, inelastic neutron scattering spectra and total scattering cross section measurements to calculated values are used to validate the thermal scattering laws.

  6. Evaluation of Neutron shielding efficiency of Metal hydrides

    Energy Technology Data Exchange (ETDEWEB)

    Jeon, Sang Hwan; Chae, San; Kim, Yong Soo [Hanyang University, Seoul (Korea, Republic of)

    2012-05-15

    Neutron shielding is achieved of interaction with material by moderation and absorption. Material that contains large amounts hydrogen atoms which are almost same neutron atomic weight is suited for fast neutron shielding material. Therefore, polymers containing high density hydrogen atom are being used for fast neutron shielding. On the other hand, composite materials containing high thermal neutron absorption cross section atom (Li, B, etc) are being used for thermal neutron shielding. However, these materials have low fast neutron absorption cross section. Therefore, these materials are not suited for fast neutron shielding. Hydrogen which has outstanding neutron energy reduction ability has very low thermal neutron absorption cross section, almost cannot be used for thermal neutron shielding. In this case, a large atomic number material (Pb, U, etc.) has been used. Thus, metal hydrides are considered as complement to concrete shielding material. Because metal hydrides contain high hydrogen density and elements with high atomic number. In this research neutron shielding performance and characteristic of nuclear about metal hydrides ((TiH{sub 2}, ZrH{sub 2}, HfH{sub 2}) is evaluated by experiment and MCNPX using {sup 252}Cf neutron source as purpose development shielding material to developed shielding material

  7. Oxidation kinetics of hydride-bearing uranium metal corrosion products

    Science.gov (United States)

    Totemeier, Terry C.; Pahl, Robert G.; Frank, Steven M.

    The oxidation behavior of hydride-bearing uranium metal corrosion products from Zero Power Physics Reactor (ZPPR) fuel plates was studied using thermo-gravimetric analysis (TGA) in environments of Ar-4%O 2, Ar-9%O 2, and Ar-20%O 2. Ignition of corrosion product samples from two moderately corroded plates was observed between 125°C and 150°C in all environments. The rate of oxidation above the ignition temperature was found to be dependent only on the net flow rate of oxygen in the reacting gas. Due to the higher net oxygen flow rate, burning rates increased with increasing oxygen concentration. Oxidation rates below the ignition temperature were much slower and decreased with increasing test time. The hydride contents of the TGA samples from the two moderately corroded plates, determined from the total weight gain achieved during burning, were 47-61 wt% and 29-39 wt%. Samples from a lightly corroded plate were not reactive; X-ray diffraction (XRD) confirmed that they contained little hydride.

  8. Oxidation kinetics of hydride-bearing uranium metal corrosion products

    International Nuclear Information System (INIS)

    Totemeier, T.C.; Pahl, R.G.; Frank, S.M.

    1998-01-01

    The oxidation behavior of hydride-bearing uranium metal corrosion products from zero power physics reactor (ZPPR) fuel plates was studied using thermo-gravimetric analysis (TGA) in environments of Ar-4%O 2 , Ar-9%O 2 , and Ar-20%O 2 . Ignition of corrosion product samples from two moderately corroded plates was observed between 125 C and 150 C in all environments. The rate of oxidation above the ignition temperature was found to be dependent only on the net flow rate of oxygen in the reacting gas. Due to the higher net oxygen flow rate, burning rates increased with increasing oxygen concentration. Oxidation rates below the ignition temperature were much slower and decreased with increasing test time. The hydride contents of the TGA samples from the two moderately corroded plates, determined from the total weight gain achieved during burning, were 47-61 wt% and 29-39 wt%. Samples from a lightly corroded plate were not reactive; X-ray diffraction (XRD) confirmed that they contained little hydride. (orig.)

  9. Performance study of a hydrogen powered metal hydride actuator

    International Nuclear Information System (INIS)

    Bhuiya, Md Mainul Hossain; Kim, Kwang J

    2016-01-01

    A thermally driven hydrogen powered actuator integrating metal hydride hydrogen storage reactor, which is compact, noiseless, and able to generate smooth actuation, is presented in this article. To test the plausibility of a thermally driven actuator, a conventional piston type actuator was integrated with LaNi 5 based hydrogen storage system. Copper encapsulation followed by compaction of particles into pellets, were adopted to improve overall thermal conductivity of the reactor. The operation of the actuator was thoroughly investigated for an array of operating temperature ranges. Temperature swing of the hydride reactor triggering smooth and noiseless actuation over several operating temperature ranges were monitored for quantification of actuator efficiency. Overall, the actuator generated smooth and consistent strokes during repeated cycles of operation. The efficiency of the actuator was found to be as high as 13.36% for operating a temperature range of 20 °C–50 °C. Stress–strain characteristics, actuation hysteresis etc were studied experimentally. Comparison of stress–strain characteristics of the proposed actuator with traditional actuators, artificial muscles and so on was made. The study suggests that design modification and use of high pressure hydride may enhance the performance and broaden the application horizon of the proposed actuator in future. (paper)

  10. Synthesis and characterization of the structural and magnetic properties of new uranium and copper-based silicides and germanides: study of the physical and hydridation properties of some compounds belonging to the Gd-Ni-X systems, where X = Ga, Al, Sn

    International Nuclear Information System (INIS)

    Pechev, St.

    1998-01-01

    Three novel phases, U 3 Cu 4 Si 4 , U 3 Cu 4 Ge 4 and UCuGe 1,77 , were prepared in the U - Cu - X (X = Si or Ge) ternary system. Their structural and magnetic properties were investigated. The magnetic structures of the first two compounds were determined by neutron diffraction. Structural and magnetic behaviour transitions occur as copper substitutes silicon atoms in the UCu x Si 2-x (0,28 ≤ x ≤ 0,96) solid solution. Thus, the structure of the compositions changes in the α-ThSi 2 (tetragonal) → AlB 2 (hexagonal) → Ni 2 In(hexagonal) sequence while a transition from a nonmagnetic to ferromagnetic then antiferromagnetic behaviour is observed. The magnetic properties of the different compositions are governed by a Kondo - RKKY -type interactions competition. Crystallographic disorder and magnetic frustrations are at the origin of a spin glass state between the ferro- and antiferromagnetic areas. The investigations of the GdNi 3 X 2 (X =Ga, Al, Sn) compounds revealed that their structural and magnetic properties are strongly dependent on the nature of the X element as well as the on thermal treatment. A CaCu 5 → HoNi 2,6 Ga 2,4 - type structure transition and a ferro - to antiferromagnetic behaviour evolution are favoured by the increase of the X - atom size. A commensurate modulated crystal structure (described also as a a HoNi 2,6 Ga 2,4 x a HoNi 2,6 Ga 2,4 x 2c HoNi 2,6 Ga 2,4 -type superstructure) has been observed for GdNi 3 Al 2 . Hydrogen absorption in Gd 3 Ni 6 Al 2 and GdNi 3 Al 2 weakens the strength of the magnetic interactions. (author)

  11. Some new techniques in tritium gas handling as applied to metal hydride synthesis

    International Nuclear Information System (INIS)

    Nasise, J.E.

    1988-01-01

    A state-of-the-art tritium Hydriding Synthesis System (HSS) was designed and built to replace the existing system within the Tritium Salt Facility (TSF) at the Los Alamos National Laboratory. This new hydriding system utilizes unique fast-cycling 7.9 mole uranium beds (47.5g of T at 100% loading) and novel gas circulating hydriding furnaces. Tritium system components discussed include fast-cycling uranium beds, circulating gas hydriding furnaces, valves, storage volumes, manifolds, gas transfer pumps, and graphic display and control consoles. Many of the tritium handling and processing techniques incorporated into this system are directly applicable to today's fusion fuel loops. 12 refs., 7 figs

  12. Effect of the hydrogen content and cooling velocity in the hydrides precipitation in α-zirconium

    International Nuclear Information System (INIS)

    Ramanathan, L.V.

    1983-01-01

    Zirconium specimens containing 50-300 ppm hydrogen have been cooled from the hydrogen solution treatment temperature at different rates by furnace cooling, air cooling and oil quenching. Optical and electron microscopical investigations have revealed grain boundary Δ - hydrides in slowly cooled specimens. At higher cooling rates γ and Δ hydrides have been found precipitated both intergranularly and intragranularly. Grain boundary Δ hydrides have been also observed in oil quenched specimens with 300 ppm hydrogen. Quenched specimens have revealed Widmanstatten and parallel plate type hydride morphologies. (Author) [pt

  13. Zirconium hydrides and Fe redistribution in Zr-2.5%Nb alloy under ion irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Idrees, Y.; Yao, Z. [Department of Mechanical and Materials Engineering, Queen' s University, Kingston, ON, Canada, K7L 3N6 (Canada); Cui, J.; Shek, G.K. [Kinetrics, Mississauga, ON (Canada); Daymond, M.R., E-mail: daymond@queensu.ca [Department of Mechanical and Materials Engineering, Queen' s University, Kingston, ON, Canada, K7L 3N6 (Canada)

    2016-11-15

    Zr-2.5%Nb alloy is used to fabricate the pressure tubes of the CANDU reactor. The pressure tube is the primary pressure boundary for coolant in the CANDU design and is susceptible to delayed hydride cracking, reduction in fracture toughness upon hydride precipitation and potentially hydride blister formation. The morphology and nature of hydrides in Zr-2.5%Nb with 100 wppm hydrogen has been investigated using transmission electron microscopy. The effect of hydrides on heavy ion irradiation induced decomposition of the β phase has been reported. STEM-EDX mapping was employed to investigate the distribution of alloying elements. The results show that hydrides are present in the form of stacks of different sizes, with length scales from nano- to micro-meters. Heavy ion irradiation experiments at 250 °C on as-received and hydrided Zr-2.5%Nb alloy, show interesting effects of hydrogen on the irradiation induced redistribution of Fe. It was found that Fe is widely redistributed from the β phase into the α phase in the as-received material, however, the loss of Fe from the β phase and subsequent precipitation is retarded in the hydrided material. This preliminary work will further the current understanding of microstructural evolution of Zr based alloys in the presence of hydrogen. - Graphical abstract: STEM HAADF micrographs at low magnification showing the hydride structure in Zr-2.5Nb alloy.

  14. High-pressure boron hydride phases

    International Nuclear Information System (INIS)

    Barbee, T.W. III; McMahan, A.K.; Klepeis, J.E.; van Schilfgaarde, M.

    1997-01-01

    The stability of boron-hydrogen compounds (boranes) under pressure is studied from a theoretical point of view using total-energy methods. We find that the molecular forms of boranes known to be stable at ambient pressure become unstable at high pressure, while structures with extended networks of bonds or metallic bonding are energetically favored at high pressures. If such structures are metastable on return to ambient pressure, they would be energetic as well as dense hydrogen storage media. An AlH 3 -like structure of BH 3 is particularly interesting in that it may be accessible by high-pressure diamond anvil experiments, and should exhibit both second-order structural and metal-insulator transitions at lower pressures. copyright 1997 The American Physical Society

  15. Hydrogen storage and evolution catalysed by metal hydride complexes.

    Science.gov (United States)

    Fukuzumi, Shunichi; Suenobu, Tomoyoshi

    2013-01-07

    The storage and evolution of hydrogen are catalysed by appropriate metal hydride complexes. Hydrogenation of carbon dioxide by hydrogen is catalysed by a [C,N] cyclometalated organoiridium complex, [Ir(III)(Cp*)(4-(1H-pyrazol-1-yl-κN(2))benzoic acid-κC(3))(OH(2))](2)SO(4) [Ir-OH(2)](2)SO(4), under atmospheric pressure of H(2) and CO(2) in weakly basic water (pH 7.5) at room temperature. The reverse reaction, i.e., hydrogen evolution from formate, is also catalysed by [Ir-OH(2)](+) in acidic water (pH 2.8) at room temperature. Thus, interconversion between hydrogen and formic acid in water at ambient temperature and pressure has been achieved by using [Ir-OH(2)](+) as an efficient catalyst in both directions depending on pH. The Ir complex [Ir-OH(2)](+) also catalyses regioselective hydrogenation of the oxidised form of β-nicotinamide adenine dinucleotide (NAD(+)) to produce the 1,4-reduced form (NADH) under atmospheric pressure of H(2) at room temperature in weakly basic water. In weakly acidic water, the complex [Ir-OH(2)](+) also catalyses the reverse reaction, i.e., hydrogen evolution from NADH to produce NAD(+) at room temperature. Thus, interconversion between NADH (and H(+)) and NAD(+) (and H(2)) has also been achieved by using [Ir-OH(2)](+) as an efficient catalyst and by changing pH. The iridium hydride complex formed by the reduction of [Ir-OH(2)](+) by H(2) and NADH is responsible for the hydrogen evolution. Photoirradiation (λ > 330 nm) of an aqueous solution of the Ir-hydride complex produced by the reduction of [Ir-OH(2)](+) with alcohols resulted in the quantitative conversion to a unique [C,C] cyclometalated Ir-hydride complex, which can catalyse hydrogen evolution from alcohols in a basic aqueous solution (pH 11.9). The catalytic mechanisms of the hydrogen storage and evolution are discussed by focusing on the reactivity of Ir-hydride complexes.

  16. Reactivity patterns of transition metal hydrides and alkyls

    International Nuclear Information System (INIS)

    Jones, W.D. II.

    1979-05-01

    The complex PPN + CpV(CO) 3 H - (Cp=eta 5 -C 5 H 5 and PPN = (Ph 3 P) 2 ) was prepared in 70% yield and its physical properties and chemical reactions investigated. PPN + CpV(CO) 3 H - reacts with a wide range of organic halides. The organometallic products of these reactions are the vanadium halides PPN + [CpV(C) 3 X] - and in some cases the binuclear bridging hydride PPN + [CpV(CO) 3 ] 2 H - . The borohydride salt PPN + [CpV(CO) 3 BH 4 ] - has also been prepared. The reaction between CpV(CO) 3 H - and organic halides was investigated and compared with halide reductions carried out using tri-n-butyltin hydride. Results demonstrate that in almost all cases, the reduction reaction proceeds via free radical intermediates which are generated in a chain process, and are trapped by hydrogen transfer from CpV(CO) 3 H - . Sodium amalgam reduction of CpRh(CO) 2 or a mixture of CpRh(CO) 2 and CpCo(CO) 2 affords two new anions, PPN + [Cp 2 Rh 3 (CO) 4 ] - and PPN + [Cp 2 RhCo(CO) 2 ] - . CpMo(CO) 3 H reacts with CpMo(CO) 3 R (R=CH 3 ,C 2 H 5 , CH 2 C 6 H 5 ) at 25 to 50 0 C to produce aldehyde RCHO and the dimers [CpMo(CO) 3 ] 2 and [CpMo(CO) 2 ] 2 . In general, CpV(CO) 3 H - appears to transfer a hydrogen atom to the metal radical anion formed in an electron transfer process, whereas CpMo(CO) 3 H transfers hydride in a 2-electron process to a vacant coordination site. The chemical consequences are that CpV(CO) 3 H - generally reacts with metal alkyls to give alkanes via intermediate alkyl hydride species whereas CpMo(CO) 3 H reacts with metal alkyls to produce aldehyde, via an intermediate acyl hydride species

  17. Reactivity patterns of transition metal hydrides and alkyls

    Energy Technology Data Exchange (ETDEWEB)

    Jones, W.D. II

    1979-05-01

    The complex PPN/sup +/ CpV(CO)/sub 3/H/sup -/ (Cp=eta/sup 5/-C/sub 5/H/sub 5/ and PPN = (Ph/sub 3/P)/sub 2/) was prepared in 70% yield and its physical properties and chemical reactions investigated. PPN/sup +/ CpV(CO)/sub 3/H/sup -/ reacts with a wide range of organic halides. The organometallic products of these reactions are the vanadium halides PPN/sup +/(CpV(C)/sub 3/X)/sup -/ and in some cases the binuclear bridging hydride PPN/sup +/ (CpV(CO)/sub 3/)/sub 2/H/sup -/. The borohydride salt PPN/sup +/(CpV(CO)/sub 3/BH/sub 4/)/sup -/ has also been prepared. The reaction between CpV(CO)/sub 3/H/sup -/ and organic halides was investigated and compared with halide reductions carried out using tri-n-butyltin hydride. Results demonstrate that in almost all cases, the reduction reaction proceeds via free radical intermediates which are generated in a chain process, and are trapped by hydrogen transfer from CpV(CO)/sub 3/H/sup -/. Sodium amalgam reduction of CpRh(CO)/sub 2/ or a mixture of CpRh(CO)/sub 2/ and CpCo(CO)/sub 2/ affords two new anions, PPN/sup +/ (Cp/sub 2/Rh/sub 3/(CO)/sub 4/)/sup -/ and PPN/sup +/(Cp/sub 2/RhCo(CO)/sub 2/)/sup -/. CpMo(CO)/sub 3/H reacts with CpMo(CO)/sub 3/R (R=CH/sub 3/,C/sub 2/H/sub 5/, CH/sub 2/C/sub 6/H/sub 5/) at 25 to 50/sup 0/C to produce aldehyde RCHO and the dimers (CpMo(CO)/sub 3/)/sub 2/ and (CpMo(CO)/sub 2/)/sub 2/. In general, CpV(CO)/sub 3/H/sup -/ appears to transfer a hydrogen atom to the metal radical anion formed in an electron transfer process, whereas CpMo(CO)/sub 3/H transfers hydride in a 2-electron process to a vacant coordination site. The chemical consequences are that CpV(CO)/sub 3/H/sup -/ generally reacts with metal alkyls to give alkanes via intermediate alkyl hydride species whereas CpMo(CO)/sub 3/H reacts with metal alkyls to produce aldehyde, via an intermediate acyl hydride species.

  18. Studies on MgNi-Based Metal Hydride Electrode with Aqueous Electrolytes Composed of Various Hydroxides

    Directory of Open Access Journals (Sweden)

    Jean Nei

    2016-08-01

    Full Text Available Compositions of MgNi-based amorphous-monocrystalline thin films produced by radio frequency (RF sputtering with a varying composition target have been optimized. The composition Mg52Ni39Co3Mn6 is identified to possess the highest initial discharge capacity of 640 mAh·g−1 with a 50 mA·g−1 discharge current density. Reproduction in bulk form of Mg52Ni39Co3Mn6 alloy composition was prepared through a combination of melt spinning (MS and mechanical alloying (MA, shows a sponge-like microstructure with >95% amorphous content, and is chosen as the metal hydride (MH alloy for a sequence of electrolyte experiments with various hydroxides including LiOH, NaOH, KOH, RbOH, CsOH, and (C2H54N(OH. The electrolyte conductivity is found to be closely related to cation size in the hydroxide compound used as 1 M additive to the 4 M KOH aqueous solution. The degradation performance of Mg52Ni39Co3Mn6 alloy through cycling demonstrates a strong correlation with the redox potential of the cation in the alkali hydroxide compound used as 1 M additive to the 5 M KOH aqueous solution. NaOH, CsOH, and (C2H54N(OH additions are found to achieve a good balance between corrosion and conductivity performances.

  19. Understanding hydride formation in Zr-1Nb alloy through microstructural characterization

    International Nuclear Information System (INIS)

    Neogy, S.; Srivastava, D.; Tewari, R.; Singh, R.N.; Dey, G.K.; De, P.K.; Banerjee, S.

    2003-07-01

    In this study the experimental results of hydride formation and their microstructure evolution in Zr-1Nb alloy is presented. This Zr-1Nb binary alloy and other Zr-1 Nb based ternary and quaternary alloys are being used as fuel tube materials and have the potential for meeting the requirement of high burn up fuel. Hydriding of Zr-1Nb alloy having a microstructure comprising equiaxed α grains and a uniform distribution of spherical particles of the β phase has been carried out in this study. The specimens have been hydrided by gaseous charging method to different hydrogen levels. The microstructures of hydrided samples were examined as a function of hydrogen content. The formation of δ hydride in slow cooled specimens and formation of γ hydride in rapidly cooled specimens has been studied with their morphology, habit plane and orientation relationship with the α matrix in view. The habit planes of either type of hydride phase has been determined and compared with those observed in other Zr-Nb alloys. The orientation relationship between the α matrix and the δ hydride was found to be the following: (0001) α // (111) δ and [1120] α // [110] δ . The orientation relationship between the α matrix and the γ hydride was of the following type: (0001) α // (111) γ and [1120] α // [110] γ . The internal structure of both types of hydride has been examined. The effect of the presence of the spherical β phase particles in the a matrix on the growth of the hydride plates has been investigated. (author)

  20. Low-Cost Metal Hydride Thermal Energy Storage System for Concentrating Solar Power Systems

    Energy Technology Data Exchange (ETDEWEB)

    Zidan, Ragaiy [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Hardy, B. J. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Corgnale, C. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Teprovich, J. A. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Ward, P. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Motyka, Ted [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-01-31

    The objective of this research was to evaluate and demonstrate a metal hydride-based TES system for use with a CSP system. A unique approach has been applied to this project that combines our modeling experience with the extensive material knowledge and expertise at both SRNL and Curtin University (CU). Because of their high energy capacity and reasonable kinetics many metal hydride systems can be charged rapidly. Metal hydrides for vehicle applications have demonstrated charging rates in minutes and tens of minutes as opposed to hours. This coupled with high heat of reaction allows metal hydride TES systems to produce very high thermal power rates (approx. 1kW per 6-8 kg of material). A major objective of this work is to evaluate some of the new metal hydride materials that have recently become available. A problem with metal hydride TES systems in the past has been selecting a suitable high capacity low temperature metal hydride material to pair with the high temperature material. A unique aspect of metal hydride TES systems is that many of these systems can be located on or near dish/engine collectors due to their high thermal capacity and small size. The primary objective of this work is to develop a high enthalpy metal hydride that is capable of reversibly storing hydrogen at high temperatures (> 650 °C) and that can be paired with a suitable low enthalpy metal hydride with low cost materials. Furthermore, a demonstration of hydrogen cycling between the two hydride beds is desired.

  1. Study of the radiation effects on nucleic acids and related compounds. Three year progress report, 15 August 1972--14 August 1975

    International Nuclear Information System (INIS)

    Wang, S.Y.

    1975-01-01

    Research in this project has proceeded with the chemical objective of isolating and characterizing radiation products and with the biological objective of determining the action of reactive radiation products on and in biological systems. Study has also been made on the simulation of γ radiation by various photochemical reaction conditions. Progress is reported in the chemical studies on the isolation and characterization of thymine glycols, isolation and characterization of glycols of 1-carbamylimidazolidone as products of cytosine, identification of the major hydroperoxy thymine (T 6 OOH), attempted synthesis of the nucleoside and nucleotide of T 6 OOH, and synthesis and characterization of 5-hydroperoxy-methyluracil. Progress is reported in the biological studies on the effects of T 6 OOH on nucleic acid components, on C--N glycosidic bonds, as a chemical mutagen, on the chromosomes of cells, and as a potential synergist of ionizing radiation. The photoproducts of uracil, cytosine, thymine, and thymidine that have been isolated and characterized are tabulated. (U.S.)

  2. Poisoning Experiments Aimed at Discriminating Active and Less-Active Sites of Silica-Supported Tantalum Hydride for Alkane Metathesis

    KAUST Repository

    Saggio, Guillaume; Taoufik, Mostafa; Basset, Jean-Marie; Thivolle-Cazat, Jean

    2010-01-01

    Only 50% of the silica-supported tantalum hydride sites are active in the metathesis of propane. Indeed, more than 45% of the tantalum hydride can be eliminated by a selective oxygen poisoning of inactive sites with no significant decrease

  3. Recent progress in multichamber deposition of high-quality amorphous silicon solar cells on planar and compound curved substrates at GSI

    Energy Technology Data Exchange (ETDEWEB)

    Schropp, R.E.I.; Roedern, B. von; Klose, P.; Hollingsworth, R.E.; Xi, J.; Cueto, J. del; Chatham, H.; Bhat, P.K. (Glasstech Solar, Inc. (GSI), Wheat Ridge, CO (USA))

    1989-10-15

    We present recent advances obtained at GSI in scaling-up multichamber fabrication of solar cells. We have successfully adopted the multichamber approach in the development of large-area compound curved semitransparent modules. For this application, a new semitransparent electrode was developed, together with an innovative three-dimensional laser patterning technique. A fully automated 1.5 MW annual production line with a ''glass-in-panel-out'' approach has been completed for the Government of India, and another 3 MW plant is presently under construction. GSI's research effort using its multichamber R and D system has achieved single-junction conversion efficiencies of 11.3% at low intrinsic layer deposition rates and of 9.7% at a rate of 18 A s{sup -1}. (orig.).

  4. Room temperature oxidative intercalation with chalcogen hydrides: Two-step method for the formation of alkali-metal chalcogenide arrays within layered perovskites

    International Nuclear Information System (INIS)

    Ranmohotti, K.G. Sanjaya; Montasserasadi, M. Dariush; Choi, Jonglak; Yao, Yuan; Mohanty, Debasish; Josepha, Elisha A.; Adireddy, Shiva; Caruntu, Gabriel; Wiley, John B.

    2012-01-01

    Highlights: ► Topochemical reactions involving intercalation allow construction of metal chalcogenide arrays within perovskite hosts. ► Gaseous chalcogen hydrides serve as effect reactants for intercalation of sulfur and selenium. ► New compounds prepared by a two-step intercalation strategy are presented. -- Abstract: A two-step topochemical reaction strategy utilizing oxidative intercalation with gaseous chalcogen hydrides is presented. Initially, the Dion-Jacobson-type layered perovskite, RbLaNb 2 O 7 , is intercalated reductively with rubidium metal to make the Ruddlesden-Popper-type layered perovskite, Rb 2 LaNb 2 O 7 . This compound is then reacted at room-temperature with in situ generated H 2 S gas to create Rb-S layers within the perovskite host. Rietveld refinement of X-ray powder diffraction data (tetragonal, a = 3.8998(2) Å, c = 15.256(1) Å; space group P4/mmm) shows the compound to be isostructural with (Rb 2 Cl)LaNb 2 O 7 where the sulfide resides on a cubic interlayer site surrounded by rubidium ions. The mass increase seen on sulfur intercalation and the refined S site occupation factor (∼0.8) of the product indicate a higher sulfur content than expected for S 2− alone. This combined with the Raman studies, which show evidence for an H-S stretch, indicate that a significant fraction of the intercalated sulfide exists as hydrogen sulfide ion. Intercalation reactions with H 2 Se (g) were also carried out and appear to produce an isostructural selenide compound. The utilization of such gaseous hydride reagents could significantly expand multistep topochemistry to a larger number of intercalants.

  5. Room temperature oxidative intercalation with chalcogen hydrides: Two-step method for the formation of alkali-metal chalcogenide arrays within layered perovskites

    Energy Technology Data Exchange (ETDEWEB)

    Ranmohotti, K.G. Sanjaya; Montasserasadi, M. Dariush; Choi, Jonglak; Yao, Yuan; Mohanty, Debasish; Josepha, Elisha A.; Adireddy, Shiva; Caruntu, Gabriel [Department of Chemistry and the Advanced Materials Research Institute, University of New Orleans, New Orleans, LA 70148-2820 (United States); Wiley, John B., E-mail: jwiley@uno.edu [Department of Chemistry and the Advanced Materials Research Institute, University of New Orleans, New Orleans, LA 70148-2820 (United States)

    2012-06-15

    Highlights: ► Topochemical reactions involving intercalation allow construction of metal chalcogenide arrays within perovskite hosts. ► Gaseous chalcogen hydrides serve as effect reactants for intercalation of sulfur and selenium. ► New compounds prepared by a two-step intercalation strategy are presented. -- Abstract: A two-step topochemical reaction strategy utilizing oxidative intercalation with gaseous chalcogen hydrides is presented. Initially, the Dion-Jacobson-type layered perovskite, RbLaNb{sub 2}O{sub 7}, is intercalated reductively with rubidium metal to make the Ruddlesden-Popper-type layered perovskite, Rb{sub 2}LaNb{sub 2}O{sub 7}. This compound is then reacted at room-temperature with in situ generated H{sub 2}S gas to create Rb-S layers within the perovskite host. Rietveld refinement of X-ray powder diffraction data (tetragonal, a = 3.8998(2) Å, c = 15.256(1) Å; space group P4/mmm) shows the compound to be isostructural with (Rb{sub 2}Cl)LaNb{sub 2}O{sub 7} where the sulfide resides on a cubic interlayer site surrounded by rubidium ions. The mass increase seen on sulfur intercalation and the refined S site occupation factor (∼0.8) of the product indicate a higher sulfur content than expected for S{sup 2−} alone. This combined with the Raman studies, which show evidence for an H-S stretch, indicate that a significant fraction of the intercalated sulfide exists as hydrogen sulfide ion. Intercalation reactions with H{sub 2}Se{sub (g)} were also carried out and appear to produce an isostructural selenide compound. The utilization of such gaseous hydride reagents could significantly expand multistep topochemistry to a larger number of intercalants.

  6. Combined on-board hydride slurry storage and reactor system and process for hydrogen-powered vehicles and devices

    Science.gov (United States)

    Brooks, Kriston P; Holladay, Jamelyn D; Simmons, Kevin L; Herling, Darrell R

    2014-11-18

    An on-board hydride storage system and process are described. The system includes a slurry storage system that includes a slurry reactor and a variable concentration slurry. In one preferred configuration, the storage system stores a slurry containing a hydride storage material in a carrier fluid at a first concentration of hydride solids. The slurry reactor receives the slurry containing a second concentration of the hydride storage material and releases hydrogen as a fuel to hydrogen-power devices and vehicles.

  7. Progress on the development of human in vitro dendritic cell based assays for assessment of the sensitizing potential of a compound

    International Nuclear Information System (INIS)

    Galvao dos Santos, G.; Reinders, J.; Ouwehand, K.; Rustemeyer, T.; Scheper, R.J.; Gibbs, S.

    2009-01-01

    Allergic contact dermatitis is the result of an adaptive immune response of the skin to direct exposure to an allergen. Since many chemicals are also allergens, European regulations require strict screening of all ingredients in consumer products. Until recently, identifying a potential allergen has completely relied on animal testing (e.g.: Local Lymph Node Assay). In addition to the ethical problems, both the 7th Amendment to the Cosmetics Directive and REACH have stimulated the development of alternative tests for the assessment of potential sensitizers. This review is aimed at summarising the progress on cell based assays, in particular dendritic cell based assays, being developed as animal alternatives. Primary cells (CD34 + derived dendritic cells, monocyte derived dendritic cells) as well as dendritic cell-like cell lines (THP-1, U-937, MUTZ-3, KG-1, HL-60, and K562) are extensively described along with biomarkers such as cell surface markers, cytokines, chemokines and kinases. From this review, it can be concluded that no single cell based assay nor single marker is yet able to distinguish all sensitizers from non-sensitizers in a test panel of chemicals, nor is it possible to rank the sensitizing potential of the test chemicals. This suggests that sensitivity and specificity may be increased by a tiered assay approach. Only a limited number of genomic and proteomic studies have been completed until now. Such studies have the potential to identify novel biomarkers for inclusion in future assay development. Although progress is promising, this review suggests that it may be difficult to meet the up and coming European regulatory deadlines.

  8. Hydrogen desorption kinetics from zirconium hydride and zirconium metal in vacuum

    International Nuclear Information System (INIS)

    Hu, Xunxiang; Terrani, Kurt A.; Wirth, Brian D.

    2014-01-01

    The kinetics of hydrogen desorption from zirconium hydride is important in many nuclear design and safety applications. In this paper, a coordinated experimental and modeling study has been used to explicitly demonstrate the applicability of existing kinetic theories for hydrogen desorption from zirconium hydride and α-zirconium. A static synthesis method was used to produce δ-zirconium hydride, and the crystallographic phases of the zirconium hydride were confirmed by X-ray diffraction (XRD). Three obvious stages, involving δ-zirconium hydride, a two-phase region, and α-zirconium, were observed in the hydrogen desorption spectra of two zirconium hydride specimens with H/Zr ratios of 1.62 and 1.64, respectively, which were obtained using thermal desorption spectroscopy (TDS). A continuous, one-dimensional, two-phase moving boundary model, coupled with the zero- and second-order kinetics of hydrogen desorption from δ-zirconium hydride and α-zirconium, respectively, has been developed to reproduce the TDS experimental results. A comparison of the modeling predictions with the experimental results indicates that a zero-order kinetic model is valid for description of hydrogen flux away from the δ-hydride phase, and that a second-order kinetic model works well for hydrogen desorption from α-Zr if the activation energy of desorption is optimized to be 70% of the value reported in the literature

  9. Pore-Confined Light Metal Hydrides for Energy Storage and Catalysis

    NARCIS (Netherlands)

    Bramwell, P.L.|info:eu-repo/dai/nl/371685117

    2017-01-01

    Light metal hydrides have enjoyed several decades of attention in the field of hydrogen storage, but their applications have recently begun to diversify more and more into the broader field of energy storage. For example, light metal hydrides have shown great promise as battery materials, in sensors

  10. Hydride precipitation crack propagation in zircaloy cladding during a decreasing temperature history

    International Nuclear Information System (INIS)

    Stout, R.B.

    2001-01-01

    An assessment of safety, design, and cost tradeoff issues for short (ten to fifty years) and longer (fifty to hundreds of years) interim dry storage of spent nuclear fuel in Zircaloy rods shall address potential failures of the Zircaloy cladding caused by the precipitation response of zirconium hydride platelets. To perform such assessment analyses rigorously and conservatively will be necessarily complex and difficult. For Zircaloy cladding, a model for zirconium hydride induced crack propagation velocity was developed for a decreasing temperature field and for hydrogen, temperature, and stress dependent diffusive transport of hydrogen to a generic hydride platelet at a crack tip. The development of the quasi-steady model is based on extensions of existing models for hydride precipitation kinetics for an isolated hydride platelet at a crack tip. An instability analysis model of hydride-crack growth was developed using existing concepts in a kinematic equation for crack propagation at a constant thermodynamic crack potential subject to brittle fracture conditions. At the time an instability is initiated, the crack propagation is no longer limited by hydride growth rate kinetics, but is then limited by stress rates. The model for slow hydride-crack growth will be further evaluated using existing available data. (authors)

  11. Speculations on the existence of hydride ions in proton conducting oxides

    DEFF Research Database (Denmark)

    Poulsen, F.W.

    2001-01-01

    The chemical and physical nature of the hydride ion is briefly treated. Several reactions of the hydride ion in oxides or oxygen atmosphere are given, A number of perovskites and inverse perovskites are listed. which contain the H- ion on the oxygen or B-anion sites in the archetype ABO(3) System...

  12. Hydride precipitation crack propagation in zircaloy cladding during a decreasing temperature history

    Energy Technology Data Exchange (ETDEWEB)

    Stout, R.B. [California Univ., Livermore, CA (United States). Lawrence Livermore National Lab

    2001-07-01

    An assessment of safety, design, and cost tradeoff issues for short (ten to fifty years) and longer (fifty to hundreds of years) interim dry storage of spent nuclear fuel in Zircaloy rods shall address potential failures of the Zircaloy cladding caused by the precipitation response of zirconium hydride platelets. To perform such assessment analyses rigorously and conservatively will be necessarily complex and difficult. For Zircaloy cladding, a model for zirconium hydride induced crack propagation velocity was developed for a decreasing temperature field and for hydrogen, temperature, and stress dependent diffusive transport of hydrogen to a generic hydride platelet at a crack tip. The development of the quasi-steady model is based on extensions of existing models for hydride precipitation kinetics for an isolated hydride platelet at a crack tip. An instability analysis model of hydride-crack growth was developed using existing concepts in a kinematic equation for crack propagation at a constant thermodynamic crack potential subject to brittle fracture conditions. At the time an instability is initiated, the crack propagation is no longer limited by hydride growth rate kinetics, but is then limited by stress rates. The model for slow hydride-crack growth will be further evaluated using existing available data. (authors)

  13. Hydrogen storage material and process using graphite additive with metal-doped complex hydrides

    Science.gov (United States)

    Zidan, Ragaiy [Aiken, SC; Ritter, James A [Lexington, SC; Ebner, Armin D [Lexington, SC; Wang, Jun [Columbia, SC; Holland, Charles E [Cayce, SC

    2008-06-10

    A hydrogen storage material having improved hydrogen absorbtion and desorption kinetics is provided by adding graphite to a complex hydride such as a metal-doped alanate, i.e., NaAlH.sub.4. The incorporation of graphite into the complex hydride significantly enhances the rate of hydrogen absorbtion and desorption and lowers the desorption temperature needed to release stored hydrogen.

  14. Hydride-induced degradation of hoop ductility in textured zirconium-alloy tubes: A theoretical analysis

    International Nuclear Information System (INIS)

    Qin, W.; Szpunar, J.A.; Kozinski, J.

    2012-01-01

    Hydride-induced degradation of hoop ductility in Zr-alloy tubular components has been studied for many years because of its importance in the nuclear industry. In this paper the role of intergranular and intragranular δ-hydrides in the degradation of ductility of the textured Zr-alloy tubes is investigated. The correlation among hydride distribution, orientation and morphology in the tubes is formulated based on thermodynamic modeling, and then analyzed. The results show that the applied stress, the crystallographic texture of α-Zr matrix, the grain-boundary structure, and the morphology and size of Zr grains simultaneously govern the site preference and the orientation of hydrides. A criterion is proposed to determine the threshold stress of hydride reorientation. The hoop ductility of the hydrided Zr tubes is discussed using the concept of macroscopic fracture strain. It is shown that the intergranular hydrides may be more deleterious to ductility than the intragranular ones. This work defines a general framework for understanding the relation of the microstructure of hydride-forming materials to embrittlement.

  15. Mechanisms of chemical generation of volatile hydrides for trace element determination (IUPAC Technical Report)

    Czech Academy of Sciences Publication Activity Database

    D'Ulivo, A.; Dědina, Jiří; Mester, Z.; Sturgeon, R. E.; Wang, Q.; Welz, B.

    2011-01-01

    Roč. 83, č. 6 (2011), s. 1283-1340 ISSN 0033-4545 Institutional research plan: CEZ:AV0Z40310501 Keywords : borane complexes * chemical generation of volatile hydrides (CHG) * volatile hydrides Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 2.789, year: 2011

  16. Antimony speciation analysis in sediment reference materials using high-performance liquid chromatography coupled to hydride generation atomic fluorescence spectrometry

    International Nuclear Information System (INIS)

    Potin-Gautier, M.; Pannier, F.; Quiroz, W.; Pinochet, H.; Gregori, I. de

    2005-01-01

    This work presents the development of suitable methodologies for determination of the speciation of antimony in sediment reference samples. Liquid chromatography with a post-column photo-oxidation step and hydride generation atomic fluorescence spectrometry as detection system is applied to the separation and determination of Sb(III), Sb(V) and trimethylantimony species. Post-column decomposition and hydride generation steps were studied for sensitive detection with the AFS detector. This method was applied to investigate the conditions under which speciation analysis of antimony in sediment samples can be carried out. Stability studies of Sb species during the extraction processes of solid matrices, using different reagents solutions, were performed. Results demonstrate that for the extraction yield and the stability of Sb species in different marine sediment extracts, citric acid in ascorbic acid medium was the best extracting solution for antimony speciation analysis in this matrix (between 55% and 65% of total Sb was recovered from CRMs, Sb(III) being the predominant species). The developed method allows the separation of the three compounds within 6 min with detection limits of 30 ng g -1 for Sb(III) and TMSbCl2 and 40 ng g -1 for Sb(V) in sediment samples

  17. Trapping interference effects of arsenic, antimony and bismuth hydrides in collection of selenium hydride within iridium-modified transversally-heated graphite tube atomizer

    Energy Technology Data Exchange (ETDEWEB)

    Furdikova, Zuzana [Department of Environmental Chemistry and Technology, Faculty of Chemistry, Brno University of Technology, Purkynova 118, CZ-61200 Brno (Czech Republic); Institute of Analytical Chemistry of the Academy of Sciences of the Czech Republic v.v.i., Veveri 97, CZ-60200, Brno (Czech Republic); Docekal, Bohumil [Institute of Analytical Chemistry of the Academy of Sciences of the Czech Republic v.v.i., Veveri 97, CZ-60200, Brno (Czech Republic)], E-mail: docekal@iach.cz

    2009-04-15

    Interference effects of co-generated hydrides of arsenic, antimony and bismuth on trapping behavior of selenium hydride (analyte) within an iridium-modified, transversely heated graphite tube atomizer (THGA) were investigated. A twin-channel hydride generation system was used for independent separate generation and introduction of analyte and interferent hydrides, i.e. in a simultaneous and/or sequential analyte-interferent and interferent-analyte mode of operation. The influence of the analyte and modifier mass, interferent amount, trapping temperature and composition of the gaseous phase was studied. A simple approach for the elimination of mutual interference effects by modification of the gaseous phase with oxygen in a substoichiometric ratio to chemically generated hydrogen is proposed and the suppression of these interference effects is demonstrated. A hypothesis on the mechanism of trapping and mutual interference effects is drawn.

  18. Crystal structure and luminescence properties of the first hydride oxide chloride with divalent europium. LiEu{sub 2}HOCl{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Rudolph, Daniel; Schleid, Thomas [Institute for Inorganic Chemistry, University of Stuttgart (Germany); Enseling, David; Juestel, Thomas [Department of Chemical Engineering, Muenster University of Applied Sciences, Steinfurt (Germany)

    2017-11-17

    The mixed-anionic hydride oxide chloride LiEu{sub 2}HOCl{sub 2} with divalent europium was synthesized by the reduction of Eu{sub 2}O{sub 3} with LiH in a LiCl flux at 750 C for 4 d in silica-jacketed niobium capsules. According to structure determination by single-crystal X-ray diffraction the yellow compound crystallizes in the orthorhombic space group Cmcm (a = 1492.30(11) pm, b = 570.12(4) pm, c = 1143.71(8) pm, Z = 8) with a crystal structure closely related to that one of the quaternary hydride oxide LiLa{sub 2}HO{sub 3} and the hydride nitride LiSr{sub 2}H{sub 2}N. On the other hand it can also be derived from the PbFCl-type structure of EuHCl showing astonishingly short Eu{sup 2+}..Eu{sup 2+} contacts of 326 and 329 pm. Both crystallographically different Eu{sup 2+} cations have nine anionic neighbors, while all other ions (Li{sup +}, H{sup -}, O{sup 2-} and Cl{sup -}) reside in six-membered coordination spheres. LiEu{sub 2}OCl{sub 2}H exhibits a bright yellow luminescence with an emission maximum at 581 nm upon excitation at 440 nm. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  19. Thermodynamic properties of copper compounds with oxygen and hydrogen from first principles

    International Nuclear Information System (INIS)

    Korzhavyi, P.A.; Johansson, B.

    2010-02-01

    We employ quantum-mechanical calculations (based on density functional theory and linear response theory) in order to test the mechanical and chemical stability of several solid-state configurations of Cu 1+ , Cu 2+ , O 2- , H 1- , and H 1+ ions. We begin our analysis with cuprous oxide (Cu 2 O, cuprite structure), cupric oxide (CuO, tenorite structure), and cuprous hydride (CuH, wurtzite and sphalerite structures) whose thermodynamic properties have been studied experimentally. In our calculations, all these compounds are found to be mechanically stable configurations. Their formation energies calculated at T = 0 K (including the energy of zero-point and thermal motion of the ions) and at room temperature are in good agreement with existing thermodynamic data. A search for other possible solid-state conformations of copper, hydrogen, and oxygen ions is then performed. Several candidate structures for solid phases of cuprous oxy-hydride (Cu 4 H 2 O) and cupric hydride (CuH 2 ) have been considered but found to be dynamically unstable. Cuprous oxy-hydride is found to be energetically unstable with respect to decomposition onto cuprous oxide and cuprous hydride. Metastability of cuprous hydroxide (CuOH) is established in our calculations. The free energy of CuOH is calculated to be some 50 kJ/mol higher than the average of the free energies of Cu 2 O and water. Thus, cuprite Cu 2 O is the most stable of the examined Cu(I) compounds

  20. Single-Site Tetracoordinated Aluminum Hydride Supported on Mesoporous Silica. From Dream to Reality!

    KAUST Repository

    Werghi, Baraa

    2016-09-26

    The reaction of mesoporous silica (SBA15) dehydroxylated at 700 °C with diisobutylaluminum hydride, i-Bu2AlH, gives after thermal treatment a single-site tetrahedral aluminum hydride with high selectivity. The starting aluminum isobutyl and the final aluminum hydride have been fully characterized by FT-IR, advanced SS NMR spectroscopy (1H, 13C, multiple quanta (MQ) 2D 1H-1H, and 27Al), and elemental analysis, while DFT calculations provide a rationalization of the occurring reactivity. Trimeric i-Bu2AlH reacts selectively with surface silanols without affecting the siloxane bridges. Its analogous hydride catalyzes ethylene polymerization. Indeed, catalytic tests show that this single aluminum hydride site is active in the production of a high-density polyethylene (HDPE). © 2016 American Chemical Society.

  1. Single-Site Tetracoordinated Aluminum Hydride Supported on Mesoporous Silica. From Dream to Reality!

    KAUST Repository

    Werghi, Baraa; Bendjeriou-Sedjerari, Anissa; Jedidi, Abdesslem; Abou-Hamad, Edy; Cavallo, Luigi; Basset, Jean-Marie

    2016-01-01

    The reaction of mesoporous silica (SBA15) dehydroxylated at 700 °C with diisobutylaluminum hydride, i-Bu2AlH, gives after thermal treatment a single-site tetrahedral aluminum hydride with high selectivity. The starting aluminum isobutyl and the final aluminum hydride have been fully characterized by FT-IR, advanced SS NMR spectroscopy (1H, 13C, multiple quanta (MQ) 2D 1H-1H, and 27Al), and elemental analysis, while DFT calculations provide a rationalization of the occurring reactivity. Trimeric i-Bu2AlH reacts selectively with surface silanols without affecting the siloxane bridges. Its analogous hydride catalyzes ethylene polymerization. Indeed, catalytic tests show that this single aluminum hydride site is active in the production of a high-density polyethylene (HDPE). © 2016 American Chemical Society.

  2. Evaluation of hydride blisters in zirconium pressure tube in CANDU reactor

    International Nuclear Information System (INIS)

    Cheong, Y. M.; Kim, Y. S.; Gong, U. S.; Kwon, S. C.; Kim, S. S.; Choo, K.N.

    2000-09-01

    When the garter springs for maintaining the gap between the pressure tube and the calandria tube are displaced in the CANDU reactor, the sagging of pressure tube results in a contact to the calandria tube. This causes a temperature difference between the inner and outer surface of the pressure tube. The hydride can be formed at the cold spot of outer surface and the volume expansion by hydride dormation causes the blistering in the zirconium alloys. An incident of pressure tube rupture due to the hydride blisters had happened in the Canadian CANDU reactor. This report describes the theoretical development and models on the formation and growth of hydride blister and some experimental results. The evaluation methodology and non-destructive testing for hydride blister in operating reactors are also described

  3. Another Look at the Mechanisms of Hydride Transfer Enzymes with Quantum and Classical Transition Path Sampling.

    Science.gov (United States)

    Dzierlenga, Michael W; Antoniou, Dimitri; Schwartz, Steven D

    2015-04-02

    The mechanisms involved in enzymatic hydride transfer have been studied for years, but questions remain due, in part, to the difficulty of probing the effects of protein motion and hydrogen tunneling. In this study, we use transition path sampling (TPS) with normal mode centroid molecular dynamics (CMD) to calculate the barrier to hydride transfer in yeast alcohol dehydrogenase (YADH) and human heart lactate dehydrogenase (LDH). Calculation of the work applied to the hydride allowed for observation of the change in barrier height upon inclusion of quantum dynamics. Similar calculations were performed using deuterium as the transferring particle in order to approximate kinetic isotope effects (KIEs). The change in barrier height in YADH is indicative of a zero-point energy (ZPE) contribution and is evidence that catalysis occurs via a protein compression that mediates a near-barrierless hydride transfer. Calculation of the KIE using the difference in barrier height between the hydride and deuteride agreed well with experimental results.

  4. Roles of texture in controlling oxidation, hydrogen ingress and hydride formation in Zr alloys

    International Nuclear Information System (INIS)

    Szpunar, Jerzy A.; Qin, Wen; Li, Hualong; Kumar, Kiran

    2011-01-01

    Experimental observations shows that the oxide formed on Zr alloys are strongly textured. The texture and grain-boundary characteristics of oxide are dependent on the texture of metal substrate. Computer simulation and thermodynamic modeling clarify the effect of metal substrate on structure of oxide film, and intrinsic factors affecting the microstructure. Models of diffusion process of hydrogen atoms and oxygen diffusion through oxide are presented. Both intra-granular and inter-granular hydrides were found following (0001) α-Zr //(111) δ-ZrH1.5 relationship. The through-thickness texture inhomogeneity in cladding tubes, the effects of hoop stress on the hydride orientation and the formation of interlinked hydride structure were studied. A thermodynamic model was developed to analyze the nucleation and the stress-induced reorientation of intergranular hydrides. These works provide a framework for understanding the oxidation, the hydrogen ingress and the hydride formation in Zr alloys. (author)

  5. Analytical and numerical models of uranium ignition assisted by hydride formation

    International Nuclear Information System (INIS)

    Totemeier, T.C.; Hayes, S.L.

    1996-01-01

    Analytical and numerical models of uranium ignition assisted by the oxidation of uranium hydride are described. The models were developed to demonstrate that ignition of large uranium ingots could not occur as a result of possible hydride formation during storage. The thermodynamics-based analytical model predicted an overall 17 C temperature rise of the ingot due to hydride oxidation upon opening of the storage can in air. The numerical model predicted locally higher temperature increases at the surface; the transient temperature increase quickly dissipated. The numerical model was further used to determine conditions for which hydride oxidation does lead to ignition of uranium metal. Room temperature ignition only occurs for high hydride fractions in the nominally oxide reaction product and high specific surface areas of the uranium metal

  6. Evaluation of hydride blisters in zirconium pressure tube in CANDU reactor

    Energy Technology Data Exchange (ETDEWEB)

    Cheong, Y M; Kim, Y S; Gong, U S; Kwon, S C; Kim, S S; Choo, K N

    2000-09-01

    When the garter springs for maintaining the gap between the pressure tube and the calandria tube are displaced in the CANDU reactor, the sagging of pressure tube results in a contact to the calandria tube. This causes a temperature difference between the inner and outer surface of the pressure tube. The hydride can be formed at the cold spot of outer surface and the volume expansion by hydride dormation causes the blistering in the zirconium alloys. An incident of pressure tube rupture due to the hydride blisters had happened in the Canadian CANDU reactor. This report describes the theoretical development and models on the formation and growth of hydride blister and some experimental results. The evaluation methodology and non-destructive testing for hydride blister in operating reactors are also described.

  7. Stress analysis of hydride bed vessels used for tritium storage

    International Nuclear Information System (INIS)

    McKillip, S.T.; Bannister, C.E.; Clark, E.A.

    1991-01-01

    A prototype hydride storage bed, using LaNi 4.25 Al 0.75 as the storage material, was fitted with strain gages to measure strains occurring in the stainless steel bed vessel caused by expansion of the storage powder upon uptake of hydrogen. The strain remained low in the bed as hydrogen was added, up to a bed loading of about 0.5 hydrogen to metal atom ratio (H/M). The strain then increased with increasing hydrogen loading (∼ 0.8 H/M). Different locations exhibited greatly different levels of maximum strain. In no case was the design stress of the vessel exceeded

  8. Prevention of delayed hydride cracking in zirconium alloys

    International Nuclear Information System (INIS)

    Cheadle, B.A.; Coleman, C.E.; Ambler, J.F.R.

    1987-01-01

    Zirconium alloys are susceptible to a mechanism for crack initiation and propagation called delayed hydride cracking. From a review of component failures and experimental results, we have developed the requirements for preventing this cracking. The important parameters for cracking are hydrogen concentration, flaws, and stress; each should be minimized. At the design and construction stages hydrogen pickup has to be controlled, quality assurance needs to be at a high enough level to ensure the absence of flaws, and residual stresses must be eliminated by careful fabrication and heat treatment

  9. Hydrogen isotope exchange in a metal hydride tube

    Energy Technology Data Exchange (ETDEWEB)

    Robinson, David B. [Sandia National Lab. (SNL-CA), Livermore, CA (United States)

    2014-09-01

    This report describes a model of the displacement of one hydrogen isotope within a metal hydride tube by a different isotope in the gas phase that is blown through the tube. The model incorporates only the most basic parameters to make a clear connection to the theory of open-tube gas chromatography, and to provide a simple description of how the behavior of the system scales with controllable parameters such as gas velocity and tube radius. A single tube can be seen as a building block for more complex architectures that provide higher molar flow rates or other advanced design goals.

  10. Modification of the hydriding of uranium using ion implantation

    International Nuclear Information System (INIS)

    Musket, R.G.; Robinson-Weis, G.; Patterson, R.G.

    1983-01-01

    The hydriding of depleted uranium at 76 Torr hydrogen and 130 0 C has been significantly reduced by implantation of oxygen ions. The high-dose implanted specimens had incubation times for the initiation of the reaction after exposure to hydrogen that exceeded those of the nonimplanted specimens by more than a factor of eight. Furthermore, the nonimplanted specimens consumed enough hydrogen to cause macroscopic flaking of essentially the entire surface in times much less than the incubation time for the high-dose implanted specimens. In contrast, the ion-implanted specimens reacted only at isolated spots with the major fraction of the surface area unaffected by the hydrogen exposure

  11. Research in Nickel/Metal Hydride Batteries 2016

    Directory of Open Access Journals (Sweden)

    Kwo-Hsiung Young

    2016-10-01

    Full Text Available Nineteen papers focusing on recent research investigations in the field of nickel/metal hydride (Ni/MH batteries have been selected for this Special Issue of Batteries. These papers summarize the joint efforts in Ni/MH battery research from BASF, Wayne State University, the National Institute of Standards and Technology, Michigan State University, and FDK during 2015–2016 through reviews of basic operational concepts, previous academic publications, issued US Patent and filed Japan Patent Applications, descriptions of current research results in advanced components and cell constructions, and projections of future works.

  12. Equilibrium composition for the reaction of plutonium hydride with air

    International Nuclear Information System (INIS)

    Zou Lexi; Sun Ying; Xue Weidong; Zhu Zhenghe; Wang Rong; Luo Deli

    2002-01-01

    There are six independent constituents with 4 chemical elements, i.e. PuH 2.7 (s), PuN(s), Pu 2 O 3 (s), N 2 , O 2 and H 2 , therefore, the system described involves of 2 independent reactions, both ΔG 0 <<0. The calculated equilibrium compositions are in agreement with those of the experimental, which indicates that the chemical equilibrium is nearly completely approached. Therefore, it is believed that the reaction rate of plutonium hydride with air is extremely rapid. The author has briefly discussed the simultaneous reactions and its thermodynamic coupling effect

  13. The effect of soil mineral phases on the abiotic degradation of selected organic compounds. Progress report, June 31, 1990--May 31, 1993

    Energy Technology Data Exchange (ETDEWEB)

    Sandhu, S.S.

    1993-05-31

    Tetraphenylborate (TPB) is used to precipitate radioactive 137Cs from high-level nuclear waste water at the Defense Waste Processing Facility (DWPF) operated by the US DOE at the Savannah River Plant (SRP). The process is part of the procedure for the glassification of high-level nuclear waste in preparation for its long-term geological disposal. The decontaminated waste water contains millimolar quantities of TPB that will be processed into salt concretions. The transporation and use of large amounts of TPB can potentially result in the release of TPB into soil or aquatic environments. Previous study has shown that TPB degrades in soils to initially form diphenylborinic acid (DPBA) and biphenyl. DPBA appears to degrade further into other unidentified compounds which subsequently degrade into inorganic boron. The factors which promote the abiotic degradation of TPB need to be investigated since this chemical is used in the processing of radioactive wastes. TPB and its intermediate product, DPBA, have been reported to be toxic to microorganisms and plants, dependent on soil or water environments for their survival and growth.

  14. Progress of sintered NdFeB permanent magnets by the diffusion of non-rare earth elements and their alloy compounds

    Directory of Open Access Journals (Sweden)

    Lyu Meng

    2017-12-01

    Full Text Available It has been found that the coercivity (HC and corrosivity of sintered NdFeB magnets are closely related to the components and microstructure of their intergranular phase.The traditional smelting NdFeB magnets with adding heavy rare earth elements can modify intergranular phase to improve the HC and corrosion resistance of magnets.However,it makes the additives be homogenously distributed on the main phase,and causes magnetic decrease and cost increase.With the addition of non-rare earth materials into grain boundary,the microstructure of intergranular phase as well as its electrochemical potential and wettability can be optimized.As a result,the amount of heavy rare earth elements and cost of magnets could be reduced whilst the HC and corrosion resistance of magnets can be improved.This paper summarized the research on regulating the components and the microstructure of intergranular phase in sintered NdFeB magnets by non-rare earth metals and compounds,and its influence on coercivity and corrosion resistance.

  15. Delayed hydride cracking behavior for zircaloy-2 plate

    International Nuclear Information System (INIS)

    Mills, J.W.; Huang, F.H.

    1991-01-01

    The delayed hydride cracking (DHC) behaviour for Zircaloy-2 plate was characterized at temperatures ranging from 300 to 550 o F. Specimens with a longitudinal (T-L) orientation exhibited a classic two-stage DHC response. At K values slightly above the threshold level (K th ), crack-growth rates increased dramatically with increasing K values (stage I). The K th value was found to be 11 and 14 ksi√ in at 400 and 500 o F. At high K values (stage II), cracking rates were relatively insensitive to applied K levels. Stage II crack growth was a thermally activated process described by an Arrhenius-type relationship with an activation energy of 65 kJ/mol. This energy level agreed with the theoretical activation energy for hydrogen diffusion into the triaxial stress field ahead of a crack. Above a critical temperature (300 o F), an overtemperature cycle was required to initiate DHC. The magnitude of the thermal excursion required to initiate cracking was found to increase at higher test temperatures. Specimens with a transverse(L-T) orientation showed a very low sensitivity to DHC because of an unfavorable crystallographic orientation for hydride reorientation. Metallographic and fractographic examinations were performed to understand the DHC mechanism. (author)

  16. Theoretical study of hydrogen storage in metal hydrides.

    Science.gov (United States)

    Oliveira, Alyson C M; Pavão, A C

    2018-05-04

    Adsorption, absorption and desorption energies and other properties of hydrogen storage in palladium and in the metal hydrides AlH 3 , MgH 2 , Mg(BH 4 ) 2 , Mg(BH 4 )(NH 2 ) and LiNH 2 were analyzed. The DFT calculations on cluster models show that, at a low concentration, the hydrogen atom remains adsorbed in a stable state near the palladium surface. By increasing the hydrogen concentration, the tetrahedral and the octahedral sites are sequentially occupied. In the α phase the tetrahedral site releases hydrogen more easily than at the octahedral sites, but the opposite occurs in the β phase. Among the hydrides, Mg(BH 4 ) 2 shows the highest values for both absorption and desorption energies. The absorption energy of LiNH 2 is higher than that of the palladium, but its desorption energy is too high, a recurrent problem of the materials that have been considered for hydrogen storage. The release of hydrogen, however, can be favored by using transition metals in the material structure, as demonstrated here by doping MgH 2 with 3d and 4d-transition metals to reduce the hydrogen atomic charge and the desorption energy.

  17. A low tritium hydride bed inventory estimation technique

    Energy Technology Data Exchange (ETDEWEB)

    Klein, J.E.; Shanahan, K.L.; Baker, R.A. [Savannah River National Laboratory, Aiken, SC (United States); Foster, P.J. [Savannah River Nuclear Solutions, Aiken, SC (United States)

    2015-03-15

    Low tritium hydride beds were developed and deployed into tritium service in Savannah River Site. Process beds to be used for low concentration tritium gas were not fitted with instrumentation to perform the steady-state, flowing gas calorimetric inventory measurement method. Low tritium beds contain less than the detection limit of the IBA (In-Bed Accountability) technique used for tritium inventory. This paper describes two techniques for estimating tritium content and uncertainty for low tritium content beds to be used in the facility's physical inventory (PI). PI are performed periodically to assess the quantity of nuclear material used in a facility. The first approach (Mid-point approximation method - MPA) assumes the bed is half-full and uses a gas composition measurement to estimate the tritium inventory and uncertainty. The second approach utilizes the bed's hydride material pressure-composition-temperature (PCT) properties and a gas composition measurement to reduce the uncertainty in the calculated bed inventory.

  18. Gas desorption properties of ammonia borane and metal hydride composites

    International Nuclear Information System (INIS)

    Matin, M.R.

    2009-01-01

    'Full text': Ammonia borane (NH 3 BH 3 ) has been of great interest owing to its ideal combination of low molecular weight and high H 2 storage capacity of 19.6 mass %, which exceeds the current capacity of gasoline. DOE's year 2015 targets involve gravimetric as well as volumetric energy densities. In this work, we have investigated thermal decomposition of ammonia borane and calcium hydride composites at different molar ratio. The samples were prepared by planetary ball milling under hydrogen gas atmosphere pressure of 1Mpa at room temperature for 2, and 10 hours. The gas desorption properties were examined by thermal desorption mass spectroscopy (TDMS). The identification of phases was carried out by X-ray diffraction. The results obtain were shown in fig (a),(b),and (c). Hydrogen desorption properties were observed at all molar ratios, but the desorption temperature is significantly lower at around 70 o C at molar ratio 1:1 as shown in fig (c), and unwanted gas (ammonia) emissions were remarkably suppressed by mixing with the calcium hydride. (author)

  19. Electronic structure of the palladium hydride studied by compton scattering

    CERN Document Server

    Mizusaki, S; Yamaguchi, M; Hiraoka, N; Itou, M; Sakurai, Y

    2003-01-01

    The hydrogen-induced changes in the electronic structure of Pd have been investigated by Compton scattering experiments associated with theoretical calculations. Compton profiles (CPs) of single crystal of Pd and beta phase hydride PdH sub x (x=0.62-0.74) have been measured along the [100], [110] and [111] directions with a momentum resolution of 0.14-0.17 atomic units using 115 keV x-rays. The theoretical Compton profiles have been calculated from the wavefunctions obtained utilizing the full potential linearized augmented plane wave method within the local density approximation for Pd and stoichiometric PdH. The experimental and the theoretical results agreed well with respect to the difference in the CPs between PdH sub x and Pd, and the anisotropy in the CPs of Pd or PdH sub x. This study provides lines of evidence that upon hydride formation the lowest valance band of Pd is largely modified due to hybridization with H 1s-orbitals and the Fermi energy is raised into the sp-band. (author)

  20. ACCEPTABILITY ENVELOPE FOR METAL HYDRIDE-BASED HYDROGEN STORAGE SYSTEMS

    Energy Technology Data Exchange (ETDEWEB)

    Hardy, B.; Corgnale, C.; Tamburello, D.; Garrison, S.; Anton, D.

    2011-07-18

    The design and evaluation of media based hydrogen storage systems requires the use of detailed numerical models and experimental studies, with significant amount of time and monetary investment. Thus a scoping tool, referred to as the Acceptability Envelope, was developed to screen preliminary candidate media and storage vessel designs, identifying the range of chemical, physical and geometrical parameters for the coupled media and storage vessel system that allow it to meet performance targets. The model which underpins the analysis allows simplifying the storage system, thus resulting in one input-one output scheme, by grouping of selected quantities. Two cases have been analyzed and results are presented here. In the first application the DOE technical targets (Year 2010, Year 2015 and Ultimate) are used to determine the range of parameters required for the metal hydride media and storage vessel. In the second case the most promising metal hydrides available are compared, highlighting the potential of storage systems, utilizing them, to achieve 40% of the 2010 DOE technical target. Results show that systems based on Li-Mg media have the best potential to attain these performance targets.

  1. The effect of hydrides on the growth of zirconia

    International Nuclear Information System (INIS)

    Ekbom, L.R.

    1982-01-01

    The purpose of the present experiment has been to verify a hypothesis that accelerated corrosion of hydride containin Zircaloy is caused by small pores formed in the oxide by the evolution of hydrogen during oxidation of hydrides. The work has been divided into two parts: specimen preparation and microscopy. ZrO 2 is difficult to work with because of the high compressive stress which exists in the oxide. The most interesting area to study if any hydrogen pores exist, is the metal-oxide interface. Both transmission and scanning electron microscopy were used in the study. Neither of these methods gave any useful information with regard to the original hypothesis. However, a few interesting observations were made on the structure of the oxide at the metal-oxide interface. When the metal had been removed by electropolishing it was seen that the inner surface of the oxide consisted of 0,2-0.3 μ long and 0.1 μ thick wormlike protuberances of oxide. These features could not be seen when the metal had been removed by chemical etching. An attempt to determine whether or not this structure is an artefact introduced by electropolishing was inconclusive but indicated that the structure probably is real. (Author)

  2. A quantitative phase field model for hydride precipitation in zirconium alloys: Part I. Development of quantitative free energy functional

    International Nuclear Information System (INIS)

    Shi, San-Qiang; Xiao, Zhihua

    2015-01-01

    A temperature dependent, quantitative free energy functional was developed for the modeling of hydride precipitation in zirconium alloys within a phase field scheme. The model takes into account crystallographic variants of hydrides, interfacial energy between hydride and matrix, interfacial energy between hydrides, elastoplastic hydride precipitation and interaction with externally applied stress. The model is fully quantitative in real time and real length scale, and simulation results were compared with limited experimental data available in the literature with a reasonable agreement. The work calls for experimental and/or theoretical investigations of some of the key material properties that are not yet available in the literature

  3. Hydrogen energy technology development conference. From production of hydrogen to application of utilization technologies and metal hydrides, and examples; Suiso energy gijutsu kaihatsu kaigi. Suiso no seizo kara riyo gijutsu kinzoku suisokabutsu no oyo to jirei

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1984-02-14

    The hydrogen energy technology development conference was held on February 14 to 17, 1984 in Tokyo. For hydrogen energy systems and production of hydrogen from water, 6 papers were presented for, e.g., the future of hydrogen energy, current state and future of hydrogen production processes, and current state of thermochemical hydrogen technology development. For hydrogen production, 6 papers were presented for, e.g., production of hydrogen from steel mill gas, coal and methanol. For metal hydrides and their applications, 6 papers were presented for, e.g., current state of development of hydrogen-occluding alloy materials, analysis of heat transfer in metal hydride layers modified with an organic compound and its simulation, and development of a large-size hydrogen storage system for industrial purposes. For hydrogen utilization technologies, 8 papers were presented for, e.g., combustion technologies, engines incorporating metal hydrides, safety of metal hydrides, hydrogen embrittlement of system materials, development trends of phosphate type fuel cells, and alkali and other low-temperature type fuel cells. (NEDO)

  4. Multi-scale characterization of nanostructured sodium aluminum hydride

    Science.gov (United States)

    NaraseGowda, Shathabish

    Complex metal hydrides are the most promising candidate materials for onboard hydrogen storage. The practicality of this class of materials is counter-poised on three critical attributes: reversible hydrogen storage capacity, high hydrogen uptake/release kinetics, and favorable hydrogen uptake/release thermodynamics. While a majority of modern metallic hydrides that are being considered are those that meet the criteria of high theoretical storage capacity, the challenges lie in addressing poor kinetics, thermodynamics, and reversibility. One emerging strategy to resolve these issues is via nanostructuring or nano-confinement of complex hydrides. By down-sizing and scaffolding them to retain their nano-dimensions, these materials are expected to improve in performance and reversibility. This area of research has garnered immense interest lately and there is active research being pursued to address various aspects of nanostructured complex hydrides. The research effort documented here is focused on a detailed investigation of the effects of nano-confinement on aspects such as the long range atomic hydrogen diffusivities, localized hydrogen dynamics, microstructure, and dehydrogenation mechanism of sodium alanate. A wide variety of microporous and mesoporous materials (metal organic frameworks, porous silica and alumina) were investigated as scaffolds and the synthesis routes to achieve maximum pore-loading are discussed. Wet solution infiltration technique was adopted using tetrahydrofuran as the medium and the precursor concentrations were found to have a major role in achieving maximum pore loading. These concentrations were optimized for each scaffold with varying pore sizes and confinement was quantitatively characterized by measuring the loss in specific surface area. This work is also aimed at utilizing neutron and synchrotron x-ray characterization techniques to study and correlate multi-scale material properties and phenomena. Some of the most advanced

  5. Investigations of titamium and zirconium hydrides to determine suitability of recoverable tritium immobilization for the Pickering tritium removal system

    International Nuclear Information System (INIS)

    Noga, J.O.

    1981-11-01

    A tritium removal system will be constructed at Pickering Nuclear Generating station to reduce the adverse effects of this radioactive hydrogen isotope. This report summarizes various properties of titanium and zirconium sponge hydrides which have been selected as suitable candidates for tritium product immobilization. Equilibrium pressure-composition-temperature data indicates that both materials behave suitably to provide a safe, solid form of tritium storage. Titanium tritide is recommended as the best choice due to higher dissociation pressures which can be achieved at equivalent temperatures when compared to zirconium tritide. Higher dissociation pressures would result in faster and more efficient recovery of tritium gas from the immobilized state. It is evident from the stability of these compounds that their utilization as tritides will greatly enhance the integrity of tritium storage

  6. A study of binuclear zirconium hydride catalysts of the hydrogenolysis of alkanes by the density functional theory method

    Science.gov (United States)

    Ustynyuk, L. Yu.; Fast, A. S.; Ustynyuk, Yu. A.; Lunin, V. V.

    2012-06-01

    Binuclear hydride centers containing two Zr(IV) atoms are suggested as promising catalysts for the hydrogenolysis of alkanes under mild conditions ( T model compounds L2(H)Zr(X)2Zr(H)L2 (X = H, L = OSi≡ ( 4a), X = L = OMe ( 4d)), L(H)Zr(O)2Zr(H)L (L = OSi≡ ( 4b), Cp( 4c)) and (≡SiO)2(H)Zr-O-Zr(H)(OSi≡)2 ( 4e and 4f) with the propane molecule were studied using the density functional theory method. The results show that centers of the 4a, 4e, and 4f types and especially 4b are promising catalysts of the hydrogenolysis of alkanes due to a high degree of unsaturation of two Zr atoms and their sequential participation in the splitting of the C-C bond and hydrogenation of ethylene formed as a result of splitting.

  7. A deformation and thermodynamic model for hydride precipitation kinetics in spent fuel cladding

    International Nuclear Information System (INIS)

    Stout, R.B.

    1989-10-01

    Hydrogen is contained in the Zircaloy cladding of spent fuel rods from nuclear reactors. All the spent fuel rods placed in a nuclear waste repository will have a temperature history that decreases toward ambient; and as a result, most all of the hydrogen in the Zircaloy will eventually precipitate as zirconium hydride platelets. A model for the density of hydride platelets is a necessary sub-part for predicting Zircaloy cladding failure rate in a nuclear waste repository. A model is developed to describe statistically the hydride platelet density, and the density function includes the orientation as a physical attribute. The model applies concepts from statistical mechanics to derive probable deformation and thermodynamic functionals for cladding material response that depend explicitly on the hydride platelet density function. From this model, hydride precipitation kinetics depend on a thermodynamic potential for hydride density change and on the inner product of a stress tensor and a tensor measure for the incremental volume change due to hydride platelets. The development of a failure response model for Zircaloy cladding exposed to the expected conditions in a nuclear waste repository is supported by the US DOE Yucca Mountain Project. 19 refs., 3 figs

  8. Influence of hydride microstructure on through-thickness crack growth in zircaloy-4 sheet

    International Nuclear Information System (INIS)

    Raynaud, P.A.; Meholic, M.J.; Koss, D.A.; Motta, A.T.; Chan, K.S.

    2007-01-01

    The fracture toughness of cold-worked and stress-relieved Zircaloy-4 sheet subject to through-thickness crack growth within a 'sunburst' hydride microstructure was determined at 25 o C. The results were obtained utilizing a novel testing procedure in which a narrow linear strip of hydride blister was fractured at small loads under bending to create a well-defined sharp pre-crack that arrested at the blister-substrate interface. The hydriding procedure also forms 'sunburst' hydrides emanating from the blister that were aligned both in the plane of the crack and in the crack growth direction. Subsequent tensile loading caused crack growth initiation into the field of 'sunburst' hydrides. Specimen failure occurred under near-linear elastic behavior, and the fracture toughness for crack growth initiation into sunburst hydrides was in the range K Q ∼10-15 MPa√m. These results, when combined with those of a previous study, indicate that the through-thickness crack growth initiation toughness at 25 o C is very sensitive to the hydride microstructure. (author)

  9. Determination of arsenic species in seafood samples from the Aegean Sea by liquid chromatography-(photo-oxidation)-hydride generation-atomic fluorescence spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Schaeffer, Richard [Department of Applied Chemistry, Corvinus University, Villanyi ut 29-35, 1118 Budapest (Hungary); Soeroes, Csilla [Department of Applied Chemistry, Corvinus University, Villanyi ut 29-35, 1118 Budapest (Hungary); Ipolyi, Ildiko [Department of Applied Chemistry, Corvinus University, Villanyi ut 29-35, 1118 Budapest (Hungary); Fodor, Peter [Department of Applied Chemistry, Corvinus University, Villanyi ut 29-35, 1118 Budapest (Hungary); Thomaidis, Nikolaos S. [Laboratory of Analytical Chemistry, Department of Chemistry, University of Athens, Panepistiomopolis Zografou, 15776 Athens (Greece)]. E-mail: ntho@chem.uoa.gr

    2005-08-15

    In this study arsenic compounds were determined in mussels (Mytulis galloprovincialis), anchovies (Engraulis encrasicholus), sea-breams (Sparus aurata), sea bass (Dicentrarchus labrax) and sardines (Sardina pilchardus) collected from Aegean Sea using liquid chromatography-photo-oxidation-hydride generation-atomic fluorescence spectrometry [LC-(PO)-HG-AFS] system. Twelve arsenicals were separated and determined on the basis of their difference in two properties: (i) the pK {sub a} values and (ii) hydride generation capacity. The separation was carried out both with an anion- and a cation-exchange column, with and without photo-oxidation. In all the samples arsenobetaine, AB was detected as the major compound (concentrations ranging between 2.7 and 23.1 {mu}g g{sup -1} dry weight), with trace amounts of arsenite, As(III), dimethylarsinic acid, DMA and arsenocholine, AC, also present. Arsenosugars were detected only in the mussel samples (in concentrations of 0.9-3.6 {mu}g g{sup -1} dry weight), along with the presence of an unknown compound, which, based on its retention time on the anion-exchange column Hamilton PRP-X100 and a recent communication [E. Schmeisser, R. Raml, K.A. Francesconi, D. Kuehnelt, A. Lindberg, Cs. Soeroes, W. Goessler, Chem. Commun. 16 (2004) 1824], is supposed to be a thio-arsenic analogue.

  10. New sulfur hydride H{sub 3}S and excellent superconductivity at high

    Energy Technology Data Exchange (ETDEWEB)

    Cui, Tian [State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun (China)

    2016-07-01

    It is predicted theoretically that molecular hydrogen would dissociate into an atomic phase with metallic properties at high pressures. Metallic hydrogen is believed to be a room-temperature superconductor. However, metallization of hydrogen is still debates in laboratory. As an alternative, hydrogen-rich compounds are extensively explored since their metallization can happen at relatively lower pressures by means of chemical pre-compressions. Here, a new sulfur hydride H{sub 3}S that hardly occur at atmospheric pressure was predicted to be formed at high pressure by two main ways. We also found two intriguing metallic structures with R3m and Im-3m symmetries above 111 GPa and 180 GPa, respectively. Remarkably, the estimated T{sub c} of Im-3m phase at 200 GPa achieves a very high value of 191-204 K, reaching an order of 200 K. Further calculation shown that the H atoms play a significant role in superconductivity. The experimental discovery of superconductivity with a high T{sub c} = 203 K in H-S system at high pressure has verified our theoretically predicted results. Furthermore, the predicted R3m and Im-3m structures have been recently confirmed experimentally by synchrotron XRD.

  11. Characterization of the superconducting state in hafnium hydride under high pressure

    Science.gov (United States)

    Duda, A. M.; Szewczyk, K. A.; Jarosik, M. W.; Szcześniak, K. M.; Sowińska, M. A.; Szcześniak, D.

    2018-05-01

    The hydrogen-rich compounds at high pressure may exhibit notably high superconducting transition temperatures. In the paper, we have calculated the basic thermodynamic parameters of the superconducting state in two selected phases of HfH2 hydride under high-pressure respectively at 180 GPa for Cmma and 260 GPa for P21 / m . Calculations has been conducted in the framework of the Eliashberg formalism. In particular, we have determined the values of the critical temperature (TC) to be equal to 8 K and 13 K for the Cmma and P21 / m phases, respectively. Moreover, we have estimated other thermodynamic properties such as the order parameter (Δ (T)) , the thermodynamic critical field (HC (T)) , and the specific heat for the normal (CN) and superconducting (CS) state. Finally, we have shown that the characteristic ratios: RΔ = 2 Δ (0) /kBTC and RC = ΔC (TC) /CN (TC) , which are related to the above thermodynamic functions, slightly differ from the predictions of the Bardeen-Cooper-Schrieffer theory due to the strong-coupling and retardation effects.

  12. Diverse roles of hydrogen in rhenium carbonyl chemistry: hydrides, dihydrogen complexes, and a formyl derivative.

    Science.gov (United States)

    Li, Nan; Xie, Yaoming; King, R Bruce; Schaefer, Henry F

    2010-11-04

    Rhenium carbonyl hydride chemistry dates back to the 1959 synthesis of HRe(CO)₅ by Hieber and Braun. The binuclear H₂Re₂(CO)₈ was subsequently synthesized as a stable compound with a central Re₂(μ-H)₂ unit analogous to the B₂(μ-H)₂ unit in diborane. The complete series of HRe(CO)(n) (n = 5, 4, 3) and H₂Re₂(CO)(n) (n = 9, 8, 7, 6) derivatives have now been investigated by density functional theory. In contrast to the corresponding manganese derivatives, all of the triplet rhenium structures are found to lie at relatively high energies compared with the corresponding singlet structures consistent with the higher ligand field splitting of rhenium relative to manganese. The lowest energy HRe(CO)₅ structure is the expected octahedral structure. Low-energy structures for HRe(CO)(n) (n = 4, 3) are singlet structures derived from the octahedral HRe(CO)₅ structure by removal of one or two carbonyl groups. For H₂Re₂(CO)₉ a structure HRe₂(CO)₉(μ-H), with one terminal and one bridging hydrogen atom, lies within 3 kcal/mol of the structure Re₂(CO)₉(η²-H₂), similar to that of Re₂(CO)₁₀. For H₂Re₂(CO)(n) (n = 8, 7, 6) the only low-energy structures are doubly bridged singlet Re₂(μ-H)₂(CO)(n) structures. Higher energy dihydrogen complex structures are also found.

  13. Evaluation of delayed hydride cracking and fracture toughness in zirconium alloys

    International Nuclear Information System (INIS)

    Oh, Je Yong

    2000-02-01

    The tensile, fracture toughness, and delayed hydride cracking (DHC) test were carried at various temperatures to understand the effect of hydrides on zirconium alloys. And the effects of yield stress and texture on the DHC velocity were discussed. The tensile properties of alloy A were the highest, and the difference between directions in alloy C was small due to texture. The fracture toughness at room temperature decreased sharply when hydrided. Although the alignment of hydride plates was parallel to loading direction, the hydrides were fractured due to the triaxiality at the crack tip region. The fracture toughness over 200 .deg. C was similar regardless of the hydride existence, because the triaxiality region was lost due to the decrease of yield stress with temperature. As the yield stress decreased, the threshold stress intensity factor and the striation spacing increased in alloy A, and the fracture surfaces and striations were affected by microstructures in all alloys. To evaluate the effect of the yield stress on DHC velocity, a normalization method was proposed. When the DHC velocity was normalized with dividing by the terminal solid solubility and the diffusion coefficient of hydrogen, the relationship between the yield stress and the DHC velocity was representable on one master curve. The equation from the master curve was able to explain the difference between the theoretical activation energy and the experimental activation energy in DHC. The difference was found to be ascribed to the decrease of yield stress with temperature. texture affected the delayed hydride cracking velocity by yield stress and by hydride reprecipitation. The relationship between the yield stress and the DHC velocity was expressed as an exponential function, and the relationship between the reprecipitation of hydride and the DHC velocity was expressed as a linear function

  14. High Hydrogen Content Graphene Hydride Compounds & High Cross-Section Cladding Coatings for Fast Neutron Detection

    International Nuclear Information System (INIS)

    Chandrashekhar, MVS

    2017-01-01

    The objective is to develop and implement a superior low-cost, large area (potentially >32in), easily deployable, close proximity, harsh environment innovative neutron sensor needed for next generation fuel cycle monitoring. We will exploit recent breakthroughs at the PI's lab on the electrochemistry of epitaxial graphene (EG) formed on commercial SiC wafers, a transformative nanomaterial system with superior radiation detection and durability properties to develop a new paradigm in detection for fast neutrons, a by-product of fission reactors. There are currently few effective detection/monitoring schemes, especially solid-state ones at present. This is essential for monitoring and control of future fuel cycles to make them more efficient and reliable. By exploiting these novel materials, as well as innovative hybrid SiC/EG/Cladding device architectures conceived by the team, will develop low-cost, high performance solutions to fast-neutron detection. Finally, we will also explore 3-terminal device implementations for neutron detectors with built-in electronic gain to further shrink these devices and improve their sensitivity.

  15. Hydrogen storage properties of carbon nanomaterials and carbon containing metal hydrides

    Energy Technology Data Exchange (ETDEWEB)

    Maehlen, Jan Petter

    2003-07-01

    The topic of this thesis is structural investigations of carbon containing materials in respect to their hydrogen storage properties. This work was initially triggered by reports of extremely high hydrogen storage capacities of specific carbon nanostructures. It was decided to try to verify and understand the mechanisms in play in case of the existence of such high hydrogen densities in carbon. Two different routes towards the goal were employed; by studying selected hydrides with carbon as one of its constituents (mainly employing powder diffraction techniques in combination with hydrogen absorption and desorption measurements) and by carefully conducting hydrogen sorption experiments on what was believed to be the most ''promising'' carbon nanomaterial sample. In the latter case, a lot of effort was attributed to characterisations of different carbon nanomaterial containing samples with the aid of electron microscopy. Three different carbon-containing metal hydride systems, Y2C-H, YCoC-H and Y5SiC0.2-H, were examined. A relation between hydrogen occupation and the local arrangement of metal and carbon atoms surrounding the hydrogen sites was established. Several characteristic features of the compounds were noted in addition to solving the structure of the former unknown deuterideY5Si3C0.2D2.0 by the use of direct methods. Several carbon-nanomaterial containing samples were studied by means of transmission electron microscopy and powder diffraction, thus gaining knowledge concerning the structural aspects of nanomaterials. Based on these investigations, a specific sample containing a large amount of open-ended single-wall carbon nanotubes was chosen for subsequent hydrogen storage experiments. The latter experiments revealed moderate hydrogen storage capacities of the nanotubes not exceeding the values obtained for more conventional forms of carbon. These two different routes in investigating the hydrogen storage properties of carbon and carbon containing alloys

  16. Hydrogen storage properties of carbon nanomaterials and carbon containing metal hydrides

    Energy Technology Data Exchange (ETDEWEB)

    Maehlen, Jan Petter

    2003-07-01

    The topic of this thesis is structural investigations of carbon containing materials in respect to their hydrogen storage properties. This work was initially triggered by reports of extremely high hydrogen storage capacities of specific carbon nanostructures. It was decided to try to verify and understand the mechanisms in play in case of the existence of such high hydrogen densities in carbon. Two different routes towards the goal were employed; by studying selected hydrides with carbon as one of its constituents (mainly employing powder diffraction techniques in combination with hydrogen absorption and desorption measurements) and by carefully conducting hydrogen sorption experiments on what was believed to be the most ''promising'' carbon nanomaterial sample. In the latter case, a lot of effort was attributed to characterisations of different carbon nanomaterial containing samples with the aid of electron microscopy. Three different carbon-containing metal hydride systems, Y2C-H, YCoC-H and Y5SiC0.2-H, were examined. A relation between hydrogen occupation and the local arrangement of metal and carbon atoms surrounding the hydrogen sites was established. Several characteristic features of the compounds were noted in addition to solving the structure of the former unknown deuterideY5Si3C0.2D2.0 by the use of direct methods. Several carbon-nanomaterial containing samples were studied by means of transmission electron microscopy and powder diffraction, thus gaining knowledge concerning the structural aspects of nanomaterials. Based on these investigations, a specific sample containing a large amount of open-ended single-wall carbon nanotubes was chosen for subsequent hydrogen storage experiments. The latter experiments revealed moderate hydrogen storage capacities of the nanotubes not exceeding the values obtained for more conventional forms of carbon. These two different routes in investigating the hydrogen storage properties of carbon and

  17. Influence of temperature on δ-hydride habit plane in α-Zirconium

    International Nuclear Information System (INIS)

    Singh, R. N.; Stahle, P.; Banerjee, S.; Ristmanaa, Matti; Sauramd, K.

    2008-01-01

    Dilute Zr-alloy with hcp α-Zr as major phase is used as pressure boundary for hot coolant in CANDU, PHWR and RBMK reactors. Hydrogen / deuterium ingress during service makes the pressure boundary components like pressure tubes of the aforementioned reactors susceptible to hydride embrittlement. Hydride acquires plate shaped morphology and the broad face of the hydride plate coincides with certain crystallographic plane of α-Zr crystal, which is called habit plane. Hydride plate oriented normal to tensile stress significantly increases the degree of embrittlement. Thus key to mitigating the damage due to hydride embrittlement is to avoid the formation of hydride plates normal to tensile stress. Two different theoretical approaches are used to determine the habit plane of precipitates viz., geometrical and solid mechanics. For the geometrical approach invariant plane and invariant-line criteria have been applied successfully and for the solid mechanics approach strain energy minimization criteria have been used successfully. Solid mechanics approach using strain energy computed by FEM technique has been applied to hydride precipitation in Zr-alloys, but the emphasis has been to understand the solvus hysteresis. The objective of the present investigation is to predict the habit plane of δ-hydride precipitating in α-Zr at 25, 300, 400 and 450 .deg. C. using strain energy minimization technique. The δ-hydride phase is modeled to undergo isotropic elastic and plastic deformation. The α-Zr phase was modeled to undergo transverse isotropic elastic deformation. Both isotropic plastic and transverse isotropic plastic deformations of α-Zr were considered. Further, both perfect and linear work-hardening plastic behaviors were considered. Accommodation strain energy of δ-hydrides forming in α-Zr crystal was computed using initial strain method as a function of hydride nuclei orientation. Hydride was modeled as disk with circular edge. The simulation was carried out

  18. Study on the scattering law and scattering kernel of hydrogen in zirconium hydride

    International Nuclear Information System (INIS)

    Jiang Xinbiao; Chen Wei; Chen Da; Yin Banghua; Xie Zhongsheng

    1999-01-01

    The nuclear analytical model of calculating scattering law and scattering kernel for the uranium zirconium hybrid reactor is described. In the light of the acoustic and optic model of zirconium hydride, its frequency distribution function f(ω) is given and the scattering law of hydrogen in zirconium hydride is obtained by GASKET. The scattering kernel σ l (E 0 →E) of hydrogen bound in zirconium hydride is provided by the SMP code in the standard WIMS cross section library. Along with this library, WIMS is used to calculate the thermal neutron energy spectrum of fuel cell. The results are satisfied

  19. Simultaneous analysis of arsenic, antimony, selenium and tellurium in environmental samples using hydride generation ICPMS

    International Nuclear Information System (INIS)

    Jankowski, L.M.; Breidenbach, R.; Bakker, I.J.I.; Epema, O.J.

    2009-01-01

    Full text: A quantitative method for simultaneous analysis of arsenic, antimony, selenium and tellurium in environmental samples is being developed using hydride generation ICPMS. These elements must be first transformed into hydride-forming oxidation states. This is particularly challenging for selenium and antimony because selenium is susceptible to reduction to the non-hydride-forming elemental state and antimony requires strong reducing conditions. The effectiveness of three reducing agents (KI, thiourea, cysteine) is studied. A comparison is made between addition of reducing agent to the sample and addition of KI to the NaBH 4 solution. Best results were obtained with the latter approach. (author)

  20. Quantification and characterization of zirconium hydrides in Zircaloy-4 by the image analysis method

    International Nuclear Information System (INIS)

    Zhang, J.H.; Groos, M.; Bredel, T.; Trotabas, M.; Combette, P.

    1992-01-01

    The image analysis method is used to determine the hydrogen content in specimens of Zircaloy-4. Two parameters, surface density of hydride, S v , and degree of orientation, Ω, are defined to represent separately the hydrogen content and the orientation of hydrides. By analysing the stress-relieved Zircaloy-4 specimens with known hydrogen content from 100 to 1000 ppm, a relationship is established between the parameter S v and the hydrogen content when the magnifications of the optical microscope are 1000 and 250. The degree of orientation for the hydride in the stress-relieved Zircaloy-4 cladding is about 0.3. (orig.)

  1. Study of factors affecting a combustion method for determining carbon in lithium hydride

    International Nuclear Information System (INIS)

    Barringer, R.E.; Thornton, R.E.

    1975-09-01

    An investigation has been made of the factors affecting a combustion method for the determination of low levels (300 to 15,000 micrograms/gram) of carbon in highly reactive lithium hydride. Optimization of the procedure with available equipment yielded recoveries of 90 percent, with a limit of error (0.95) of +-39 percent relative for aliquants containing 35 to 55 micrograms of carbon (500 to 800 micrograms of carbon per gram of lithium hydride sample). Sample preparation, thermal decomposition of the hydride, final ignition of the carbon, and carbon-measurement steps were studied, and a detailed procedure was developed. (auth)

  2. Thermodynamics and statistical mechanics of some hydrides of the lanthanides and actinides

    International Nuclear Information System (INIS)

    Mintz, M.H.

    1976-06-01

    This work deals mainly with the thermodynamic and physical properties of the hydrides of the lanthanides and actinides. In addition, statistical models have been developed and applied to metal-hydrogen systems. A kinetic study of the uranium-hydrogen system was performed. The thermodynamic properties of the hydrides of neptunium, thorium, praseodymium, neodymium, samarium and europium were determined. In addition the samarium-europium-hydrogen ternary system was investigated. Moessbauer effect measurements of cubic neptunium hydrides were interpreted according to a model presented. A comparison. (author)

  3. Study on an innovative fast reactor utilizing hydride neutron absorber - Final report of phase I study

    International Nuclear Information System (INIS)

    Konashi, K.; Iwasaki, T.; Itoh, K.; Hirai, M.; Sato, J.; Kurosaki, K.; Suzuki, A.; Matsumura, Y.; Abe, S.

    2010-01-01

    These days, the demand to use nuclear resources efficiently is growing for long-term energy supply and also for solving the green house problem. It is indispensable to develop technologies to reduce environmental load with the nuclear energy supply for sustainable development of human beings. In this regard, the development of the fast breeder reactor (FBR) is preferable to utilize nuclear resources effectively and also to burn minor actinides which possess very long toxicity for more than thousands years if they are not extinguished. As one of the FBR developing works in Japan this phase I study started in 2006 to introduce hafnium (Hf) hydride and Gadolinium-Zirconium (Gd-Zr) hydride as new control materials in FBR. By adopting them, the FBR core control technology is improved by two ways. One is extension of control rod life time by using long life Hf hydride which leads to reduce the fabrication and disposal cost and the other is reduction of the excess reactivity by adopting Gd-Zr hydride which leads to reduce the number of control rods and simplifies the core upper structure. This three year study was successfully completed and the following results were obtained. The core design was performed to examine the applicability of the Hf hydride absorber to Japanese Sodium Fast Reactor (JSFR) and it is clarified that the control rod life time can be prolonged to 6 years by adopting Hf hydride and the excess reactivity of the beginning of the core cycle can be reduced to half and the number of the control rods is also reduced to half by using the Gd-Zr hydride burnable poison. The safety analyses also certified that the core safety can be maintained with the same reliability of JSFR Hf hydride and Gd-Zr hydride pellets were fabricated in good manner and their basic features for design use were measured by using the latest devices such as SEM-EDX. In order to reduce the hydrogen transfer through the stainless steel cladding a new technique which shares calorizing

  4. Peculiarities of formation of zirconium aluminides in hydride cycle mode

    International Nuclear Information System (INIS)

    Muradyan, G.N.

    2016-01-01

    The zirconium aluminides are promising structural materials in aerospace, mechanical engineering, chemical industry, etc. They are promising for manufacturing of heat-resistant wires, that will improve the reliability and efficiency of electrical networks. In the present work, the results of study of zirconium aluminides formation in the Hydride Cycle (HC) mode, developed in the Laboratory of high-temperature synthesis of the Institute of Chemical Physics of NAS RA, are described. The formation of zirconium aluminides in HC proceeded according to the reaction xZrH_2+(1-x)Al → alloy Zr_xAl(1-x)+H_2↑. The samples were certified using: chemical analysis to determine the content of hydrogen (pyrolysis method); differential thermal analysis (DTA, derivatograph Q-1500, T_heating = 1000°C, rate 20°C/min); X-ray analysis (XRD, diffractometer DRON-0.5). The influences of the ratio of powders ZrH_2/Al in the reaction mixture, compacting pressure, temperature and heating velocity on the characteristics of the synthesized aluminides were determined. In HC, the solid solutions of Al in Zr, single phase ZrAl_2 and ZrAl_3 aluminides and Zr_3AlH_4.49 hydride were synthesized. Formation of aluminides in HC mode took place by the solid-phase mechanism, without melting of aluminum. During processing, the heating of the initial charge up to 540°C resulted in the decomposition of zirconium hydride (ZrH_2) to HCC ZrH_1.5, that interacted with aluminum at 630°C forming FCC alumohydride of zirconium. Further increase of the temperature up to 800°C led to complete decomposition of the formed alumohydride of zirconium. The final formation of the zirconium aluminide occurred at 1000-1100°C in the end of HC process. Conclusion: in the synthesis of zirconium aluminides, the HC mode has several significant advantages over the conventional modes: lower operating temperatures (1000°C instead of 1800°C); shorter duration (1.5-2 hours instead of tens of hours); the availability of

  5. Hydrogen Storage Engineering Center of Excellence Metal Hydride Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Motyka, T. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2014-05-31

    The Hydrogen Storage Engineering Center of Excellence (HSECoE) was established in 2009 by the U.S. Department of Energy (DOE) to advance the development of materials-based hydrogen storage systems for hydrogen-fueled light-duty vehicles. The overall objective of the HSECoE is to develop complete, integrated system concepts that utilize reversible metal hydrides, adsorbents, and chemical hydrogen storage materials through the use of advanced engineering concepts and designs that can simultaneously meet or exceed all the DOE targets. This report describes the activities and accomplishments during Phase 1 of the reversible metal hydride portion of the HSECoE, which lasted 30 months from February 2009 to August 2011. A complete list of all the HSECoE partners can be found later in this report but for the reversible metal hydride portion of the HSECoE work the major contributing organizations to this effort were the United Technology Research Center (UTRC), General Motors (GM), Pacific Northwest National Laboratory (PNNL), the National Renewable Energy Laboratory (NREL) and the Savannah River National Laboratory (SRNL). Specific individuals from these and other institutions that supported this effort and the writing of this report are included in the list of contributors and in the acknowledgement sections of this report. The efforts of the HSECoE are organized into three phases each approximately 2 years in duration. In Phase I, comprehensive system engineering analyses and assessments were made of the three classes of storage media that included development of system level transport and thermal models of alternative conceptual storage configurations to permit detailed comparisons against the DOE performance targets for light-duty vehicles. Phase 1 tasks also included identification and technical justifications for candidate storage media and configurations that should be capable of reaching or exceeding the DOE targets. Phase 2 involved bench-level testing and

  6. Comparison of delayed hydride cracking behavior of two zirconium alloys

    Energy Technology Data Exchange (ETDEWEB)

    Ponzoni, L.M.E. [CNEA – Centro Atómico Constituyentes, Hidrógeno en Materiales, Av. Gral. Paz 1499, San Martín (B1650KNA), Bs. As. (Argentina); Mieza, J.I. [CNEA – Centro Atómico Constituyentes, Hidrógeno en Materiales, Av. Gral. Paz 1499, San Martín (B1650KNA), Bs. As. (Argentina); Instituto Sabato, UNSAM–CNEA, Av. Gral. Paz 1499, San Martín (B1650KNA), Bs. As. (Argentina); De Las Heras, E. [CNEA – Centro Atómico Constituyentes, Hidrógeno en Materiales, Av. Gral. Paz 1499, San Martín (B1650KNA), Bs. As. (Argentina); Domizzi, G., E-mail: domizzi@cnea.gov.ar [CNEA – Centro Atómico Constituyentes, Hidrógeno en Materiales, Av. Gral. Paz 1499, San Martín (B1650KNA), Bs. As. (Argentina); Instituto Sabato, UNSAM–CNEA, Av. Gral. Paz 1499, San Martín (B1650KNA), Bs. As. (Argentina)

    2013-08-15

    Delayed hydride cracking (DHC) is an important failure mechanism that may occur in Zr alloys during service in water-cooled reactors. Two conditions must be attained to initiate DHC from a crack: the stress intensity factor must be higher than a threshold value called K{sub IH} and, hydrogen concentration must exceed a critical value. Currently the pressure tubes for CANDU reactor are fabricated from Zr–2.5Nb. In this paper the critical hydrogen concentration for DHC and the crack velocity of a developmental pressure tube, Excel, was evaluated and compared with that of Zr–2.5Nb. The DHC velocity values measured in Excel were higher than usually reported in Zr–2.5Nb. Due to the higher hydrogen solubility limits in Excel, its critical hydrogen concentration for DHC initiation is 10–50 wppm over that of Zr–2.5Nb in the range of 150–300 °C.

  7. Hydride transport vessel vibration and shock test report

    Energy Technology Data Exchange (ETDEWEB)

    Tipton, D.G.

    1998-06-01

    Sandia National Laboratories performed vibration and shock testing on a Savannah River Hydride Transport Vessel (HTV) which is used for bulk shipments of tritium. This testing is required to qualify the HTV for transport in the H1616 shipping container. The main requirement for shipment in the H1616 is that the contents (in this case the HTV) have a tritium leak rate of less than 1x10{sup {minus}7} cc/sec after being subjected to shock and vibration normally incident to transport. Helium leak tests performed before and after the vibration and shock testing showed that the HTV remained leaktight under the specified conditions. This report documents the tests performed and the test results.

  8. Delayed hydride cracking: theoretical model testing to predict cracking velocity

    International Nuclear Information System (INIS)

    Mieza, Juan I.; Vigna, Gustavo L.; Domizzi, Gladys

    2009-01-01

    Pressure tubes from Candu nuclear reactors as any other component manufactured with Zr alloys are prone to delayed hydride cracking. That is why it is important to be able to predict the cracking velocity during the component lifetime from parameters easy to be measured, such as: hydrogen concentration, mechanical and microstructural properties. Two of the theoretical models reported in literature to calculate the DHC velocity were chosen and combined, and using the appropriate variables allowed a comparison with experimental results of samples from Zr-2.5 Nb tubes with different mechanical and structural properties. In addition, velocities measured by other authors in irradiated materials could be reproduced using the model described above. (author)

  9. Modeling of hydride precipitation and re-orientation

    Energy Technology Data Exchange (ETDEWEB)

    Tikare, Veena [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Weck, Philippe F. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Mitchell, John Anthony [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-09-18

    In this report, we present a thermodynamic-­based model of hydride precipitation in Zr-based claddings. The model considers the state of the cladding immediately following drying, after removal from cooling-pools, and presents the evolution of precipitate formation upon cooling as follows: The pilgering process used to form Zr-based cladding imparts strong crystallographic and grain shape texture, with the basal plane of the hexagonal α-Zr grains being strongly aligned in the rolling-­direction and the grains are elongated with grain size being approximately twice as long parallel to the rolling direction, which is also the long axis of the tubular cladding, as it is in the orthogonal directions.

  10. Density of trapped gas in heavily-irradiated lithium hydride

    International Nuclear Information System (INIS)

    Bowman, R.C. Jr.; Attalla, A.; Souers, P.C.; Folkers, C.L.; McCreary, T.; Snider, G.D.; Vanderhoofven, F.; Tsugawa, R.T.

    1988-01-01

    We review old gamma-irradiated lithium hydride data and also display much new bulk and gas-displacement density and nuclear magnetic resonance data on Li(D, T) and LiT at 296 to 373 K. We find that: (1) Li(D, T) swells because of the formation of internal D-T and 3 He gas bubbles, but probably not because of the precipitation of lithium metal; (2) the gas bubbles are at densities of at least 3 to 4x10 4 mol/m 3 , i.e. thousands of atmospheres; (3) outgassing may be largely the result of bubbles rupturing, although diffusion of 3 He as atoms may occur at long times. (orig.)

  11. Pressure-induced transformations of molecular boron hydride

    International Nuclear Information System (INIS)

    Nakano, Satoshi; Hemley, Russell J; Gregoryanz, Eugene A; Goncharov, Alexander F; Mao, Ho-kwang

    2002-01-01

    Decaborane, a molecular boron hydride, was compressed to 131 GPa at room temperature to explore possible non-molecular phases in this system and their physical properties. Decaborane changed its colour from transparent yellow to orange/red above 50 GPa and then to black above 100 GPa, suggesting some transformations. Raman scattering and infrared (IR) absorption spectroscopy reveal significant structural changes. Above 100 GPa, B-B skeletal, B-H and B-H-B Raman/IR peaks gradually disappeared, which implies a transformation into a non-molecular phase in which conventional borane-type bonding is lost. The optical band gap of the material at 100 GPa was estimated to be about 1.0 eV

  12. Final report for the DOE Metal Hydride Center of Excellence.

    Energy Technology Data Exchange (ETDEWEB)

    Keller, Jay O.; Klebanoff, Leonard E.

    2012-01-01

    This report summarizes the R&D activities within the U.S. Department of Energy Metal Hydride Center of Excellence (MHCoE) from March 2005 to June 2010. The purpose of the MHCoE has been to conduct highly collaborative and multi-disciplinary applied R&D to develop new reversible hydrogen storage materials that meet or exceed DOE 2010 and 2015 system goals for hydrogen storage materials. The MHCoE combines three broad areas: mechanisms and modeling (which provide a theoretically driven basis for pursuing new materials), materials development (in which new materials are synthesized and characterized) and system design and engineering (which allow these new materials to be realized as practical automotive hydrogen storage systems). This Final Report summarizes the organization and execution of the 5-year research program to develop practical hydrogen storage materials for light duty vehicles. Major results from the MHCoE are summarized, along with suggestions for future research areas.

  13. Pressure-induced transformations of molecular boron hydride

    CERN Document Server

    Nakano, S; Gregoryanz, E A; Goncharov, A F; Mao Ho Kwang

    2002-01-01

    Decaborane, a molecular boron hydride, was compressed to 131 GPa at room temperature to explore possible non-molecular phases in this system and their physical properties. Decaborane changed its colour from transparent yellow to orange/red above 50 GPa and then to black above 100 GPa, suggesting some transformations. Raman scattering and infrared (IR) absorption spectroscopy reveal significant structural changes. Above 100 GPa, B-B skeletal, B-H and B-H-B Raman/IR peaks gradually disappeared, which implies a transformation into a non-molecular phase in which conventional borane-type bonding is lost. The optical band gap of the material at 100 GPa was estimated to be about 1.0 eV.

  14. Hydride transport vessel vibration and shock test report

    International Nuclear Information System (INIS)

    Tipton, D.G.

    1998-06-01

    Sandia National Laboratories performed vibration and shock testing on a Savannah River Hydride Transport Vessel (HTV) which is used for bulk shipments of tritium. This testing is required to qualify the HTV for transport in the H1616 shipping container. The main requirement for shipment in the H1616 is that the contents (in this case the HTV) have a tritium leak rate of less than 1x10 -7 cc/sec after being subjected to shock and vibration normally incident to transport. Helium leak tests performed before and after the vibration and shock testing showed that the HTV remained leaktight under the specified conditions. This report documents the tests performed and the test results

  15. Metal hydride hydrogen compression: recent advances and future prospects

    Science.gov (United States)

    Yartys, Volodymyr A.; Lototskyy, Mykhaylo; Linkov, Vladimir; Grant, David; Stuart, Alastair; Eriksen, Jon; Denys, Roman; Bowman, Robert C.

    2016-04-01

    Metal hydride (MH) thermal sorption compression is one of the more important applications of the MHs. The present paper reviews recent advances in the field based on the analysis of the fundamental principles of this technology. The performances when boosting hydrogen pressure, along with two- and three-step compression units, are analyzed. The paper includes also a theoretical modelling of a two-stage compressor aimed at describing the performance of the experimentally studied systems, their optimization and design of more advanced MH compressors. Business developments in the field are reviewed for the Norwegian company HYSTORSYS AS and the South African Institute for Advanced Materials Chemistry. Finally, future prospects are outlined presenting the role of the MH compression in the overall development of the hydrogen-driven energy systems. The work is based on the analysis of the development of the technology in Europe, USA and South Africa.

  16. Interface Enthalpy-Entropy Competition in Nanoscale Metal Hydrides

    Directory of Open Access Journals (Sweden)

    Nicola Patelli

    2018-01-01

    Full Text Available We analyzed the effect of the interfacial free energy on the thermodynamics of hydrogen sorption in nano-scaled materials. When the enthalpy and entropy terms are the same for all interfaces, as in an isotropic bi-phasic system, one obtains a compensation temperature, which does not depend on the system size nor on the relative phase abundance. The situation is different and more complex in a system with three or more phases, where the interfaces have different enthalpy and entropy. We also consider the possible effect of elastic strains on the stability of the hydride phase and on hysteresis. We compare a simple model with experimental data obtained on two different systems: (1 bi-phasic nanocomposites where ultrafine TiH2 crystallite are dispersed within a Mg nanoparticle and (2 Mg nanodots encapsulated by different phases.

  17. Work function in niobium, tantalum and vanadium hydrides

    International Nuclear Information System (INIS)

    Kucherov, Ya.R.; Markin, V.Ya.; Savin, V.I.; Topil'skij, N.D.

    1978-01-01

    The concentration dependences of the work function of electrons in hydrides of Nb, Ta and V are presented. The work function of electrons was studied at room temperature by the contact Kelvin potential difference method to an accuracy of +-0.02 eV. The effect of hydrogen on the work function variations in the systems investigated has been analyzed. It is shown that a higher hydrogen concentration in solid solutions based on the Nb-H and Ta-H systems increases the effective total positive dipole moment, whereby the work function decreases. The abnormal changes in the work function in the region of solid solutions of hydrogen in vanadium seem to be due to the specific electronic structure of vanadium and its interaction with hydrogen

  18. Modelling zirconium hydrides using the special quasirandom structure approach

    KAUST Repository

    Wang, Hao; Chroneos, Alexander I.; Jiang, Chao; Schwingenschlö gl, Udo

    2013-01-01

    The study of the structure and properties of zirconium hydrides is important for understanding the embrittlement of zirconium alloys used as cladding in light water nuclear reactors. Simulation of the defect processes is complicated due to the random distribution of the hydrogen atoms. We propose the use of the special quasirandom structure approach as a computationally efficient way to describe this random distribution. We have generated six special quasirandom structure cells based on face centered cubic and face centered tetragonal unit cells to describe ZrH2-x (x = 0.25-0.5). Using density functional theory calculations we investigate the mechanical properties, stability, and electronic structure of the alloys. © the Owner Societies 2013.

  19. Hydride phase dissolution enthalpy in neutron irradiated Zircaloy-4

    International Nuclear Information System (INIS)

    Vizcaino, Pablo; Banchik, Abraham D.

    2003-01-01

    The differential calorimetric technique has been applied to measure the dissolution enthalpy, ΔH irrad δ→α , of zirconium hydrides precipitated in structural components removed from the Argentine Atucha 1 PHWR nuclear power plant after 10.3 EFPY. An average value of ΔH irrad δ→α = 5 kJ/mol H was obtained after the first calorimetric run. That value is seven times lower than the value of ΔH δ→α = 37.7 kJ/mol H recently determined in Zircaloy-4 specimens taken from similar unirradiated structural components using the same calorimetric technique, [1]. Post-irradiation thermal treatments gradually increase that low value towards the unirradiated value with increasing annealing temperature similar to that observed for TSSd irrad . Therefore the same H atom trapping mechanism during reactor operation already proposed to explain the evolution of TSSd irrad is also valid for Q irrad δ→α . As the ratio Q/ΔH is proportional to the number N H of H atoms precipitated as hydrides, the increment of Q irrad δ→α with the thermal treatment indicates that the value of N H also grows with the annealing reaching the value corresponding to the bulk H concentration when ΔH irrad δ→α ≅ 37 kJ/mol H. That is a direct indication that the post-irradiation thermal treatment releases the H atoms from their traps increasing the number of H atoms available to precipitate at the end of each calorimetric run and/or isothermal treatment. (author)

  20. Solutions to commercializing metal hydride hydrogen storage products

    International Nuclear Information System (INIS)

    Tomlinson, J.J.; Belanger, R.

    2004-01-01

    'Full text:' Whilst the concept of a Hydrogen economy in the broad sense may for some analysts and Fuel Cell technology developers be an ever moving target the use of hydrogen exists and is growing in other markets today. The use of hydrogen is increasing. Who are the users? What are their unique needs? How can they better be served? As the use of hydrogen increases there are things we can do to improve the perception and handling of hydrogen as an industrial gas that will impact the future issues of hydrogen as a fuel thereby assisting the mainstream availability of hydrogen fuel a reality. Factors that will induce change in the way hydrogen is used, handled, transported and stored are the factors to concentrate development efforts on. Other factors include: cost; availability; safety; codes and standards; and regulatory authorities acceptance of new codes and standards. New methods of storage and new devices in which the hydrogen is stored will influence and bring about change and increased use. New innovative products based on Metal Hydride hydrogen storage will address some of the barriers to widely distributed hydrogen as a fuel or energy carrier to which successful fuel cell product commercialization is subject. Palcan has developed innovative products based on it's Rare Earth Metal Hydride alloy. Some of these innovations will aid the distribution of hydrogen as a fuel and offer alternatives to the existing hydrogen user and to the Fuel Cell product developer. An overview of the products and how these products will affect the distribution and use of hydrogen as an industrial gas and fuel is presented. (author)

  1. Thermal enhancement cartridge heater modified tritium hydride bed development, Part 2 - Experimental validation of key conceptual design features

    Energy Technology Data Exchange (ETDEWEB)

    Heroux, K.J.; Morgan, G.A. [Savannah River Laboratory, Aiken, SC (United States)

    2015-03-15

    The Thermal Enhancement Cartridge Heater Modified (TECH Mod) tritium hydride bed is an interim replacement for the first generation (Gen1) process hydride beds currently in service in the Savannah River Site (SRS) Tritium Facilities. 3 new features are implemented in the TECH Mod hydride bed prototype: internal electric cartridge heaters, porous divider plates, and copper foam discs. These modifications will enhance bed performance and reduce costs by improving bed activation and installation processes, in-bed accountability measurements, end-of-life bed removal, and He-3 recovery. A full-scale hydride bed test station was constructed at the Savannah River National Laboratory (SRNL) in order to evaluate the performance of the prototype TECH Mod hydride bed. Controlled hydrogen (H{sub 2}) absorption/ desorption experiments were conducted to validate that the conceptual design changes have no adverse effects on the gas transfer kinetics or H{sub 2} storage/release properties compared to those of the Gen1 bed. Inert gas expansions before, during, and after H{sub 2} flow tests were used to monitor changes in gas transfer rates with repeated hydriding/de-hydriding of the hydride material. The gas flow rates significantly decreased after initial hydriding of the material; however, minimal changes were observed after repeated cycling. The data presented herein confirm that the TECH Mod hydride bed would be a suitable replacement for the Gen1 bed with the added enhancements expected from the advanced design features. (authors)

  2. The Selective Angiotensin II Type 2 Receptor Agonist, Compound 21, Attenuates the Progression of Lung Fibrosis and Pulmonary Hypertension in an Experimental Model of Bleomycin-Induced Lung Injury.

    Science.gov (United States)

    Rathinasabapathy, Anandharajan; Horowitz, Alana; Horton, Kelsey; Kumar, Ashok; Gladson, Santhi; Unger, Thomas; Martinez, Diana; Bedse, Gaurav; West, James; Raizada, Mohan K; Steckelings, Ulrike M; Sumners, Colin; Katovich, Michael J; Shenoy, Vinayak

    2018-01-01

    Idiopathic Pulmonary Fibrosis (IPF) is a chronic lung disease characterized by scar formation and respiratory insufficiency, which progressively leads to death. Pulmonary hypertension (PH) is a common complication of IPF that negatively impacts clinical outcomes, and has been classified as Group III PH. Despite scientific advances, the dismal prognosis of IPF and associated PH remains unchanged, necessitating the search for novel therapeutic strategies. Accumulating evidence suggests that stimulation of the angiotensin II type 2 (AT 2 ) receptor confers protection against a host of diseases. In this study, we investigated the therapeutic potential of Compound 21 (C21), a selective AT 2 receptor agonist in the bleomycin model of lung injury. A single intra-tracheal administration of bleomycin (2.5 mg/kg) to 8-week old male Sprague Dawley rats resulted in lung fibrosis and PH. Two experimental protocols were followed: C21 was administered (0.03 mg/kg/day, ip) either immediately (prevention protocol, BCP) or after 3 days (treatment protocol, BCT) of bleomycin-instillation. Echocardiography, hemodynamic, and Fulton's index assessments were performed after 2 weeks of bleomycin-instillation. Lung tissue was processed for gene expression, hydroxyproline content (a marker of collagen deposition), and histological analysis. C21 treatment prevented as well as attenuated the progression of lung fibrosis, and accompanying PH. The beneficial effects of C21 were associated with decreased infiltration of macrophages in the lungs, reduced lung inflammation and diminished pulmonary collagen accumulation. Further, C21 treatment also improved pulmonary pressure, reduced muscularization of the pulmonary vessels and normalized cardiac function in both the experimental protocols. However, there were no major differences in any of the outcomes measured from the two experimental protocols. Collectively, our findings indicate that stimulation of the AT 2 receptor by C21 attenuates

  3. The Selective Angiotensin II Type 2 Receptor Agonist, Compound 21, Attenuates the Progression of Lung Fibrosis and Pulmonary Hypertension in an Experimental Model of Bleomycin-Induced Lung Injury

    Directory of Open Access Journals (Sweden)

    Anandharajan Rathinasabapathy

    2018-03-01

    Full Text Available Idiopathic Pulmonary Fibrosis (IPF is a chronic lung disease characterized by scar formation and respiratory insufficiency, which progressively leads to death. Pulmonary hypertension (PH is a common complication of IPF that negatively impacts clinical outcomes, and has been classified as Group III PH. Despite scientific advances, the dismal prognosis of IPF and associated PH remains unchanged, necessitating the search for novel therapeutic strategies. Accumulating evidence suggests that stimulation of the angiotensin II type 2 (AT2 receptor confers protection against a host of diseases. In this study, we investigated the therapeutic potential of Compound 21 (C21, a selective AT2 receptor agonist in the bleomycin model of lung injury. A single intra-tracheal administration of bleomycin (2.5 mg/kg to 8-week old male Sprague Dawley rats resulted in lung fibrosis and PH. Two experimental protocols were followed: C21 was administered (0.03 mg/kg/day, ip either immediately (prevention protocol, BCP or after 3 days (treatment protocol, BCT of bleomycin-instillation. Echocardiography, hemodynamic, and Fulton's index assessments were performed after 2 weeks of bleomycin-instillation. Lung tissue was processed for gene expression, hydroxyproline content (a marker of collagen deposition, and histological analysis. C21 treatment prevented as well as attenuated the progression of lung fibrosis, and accompanying PH. The beneficial effects of C21 were associated with decreased infiltration of macrophages in the lungs, reduced lung inflammation and diminished pulmonary collagen accumulation. Further, C21 treatment also improved pulmonary pressure, reduced muscularization of the pulmonary vessels and normalized cardiac function in both the experimental protocols. However, there were no major differences in any of the outcomes measured from the two experimental protocols. Collectively, our findings indicate that stimulation of the AT2 receptor by C21 attenuates

  4. Hydride reorientation in Zircaloy-4 examined by in situ synchrotron X-ray diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Weekes, H.E. [Department of Materials, Royal School of Mines, Imperial College London, Prince Consort Road, London SW7 2BP (United Kingdom); Jones, N.G. [Department of Materials Science and Metallurgy, University of Cambridge, 27 Charles Babbage Road, Cambridge CB3 0FS (United Kingdom); Lindley, T.C. [Department of Materials, Royal School of Mines, Imperial College London, Prince Consort Road, London SW7 2BP (United Kingdom); Dye, D., E-mail: david.dye@imperial.ac.uk [Department of Materials, Royal School of Mines, Imperial College London, Prince Consort Road, London SW7 2BP (United Kingdom)

    2016-09-15

    The phenomenon of stress-reorientation has been investigated using in situ X-ray diffraction during the thermomechanical cycling of hydrided Zircaloy-4 tensile specimens. Results have shown that loading along a sample’s transverse direction (TD) leads to a greater degree of hydride reorientation when compared to rolling direction (RD)-aligned samples. The elastic lattice micro-strains associated with radially oriented hydrides have been revealed to be greater than those oriented circumferentially, a consequence of strain accommodation. Evidence of hydride redistribution after cycling, to α-Zr grains oriented in a more favourable orientation when under an applied stress, has also been observed and its behaviour has been found to be highly dependent on the loading axis. Finally, thermomechanical loading across multiple cycles has been shown to reduce the difference in terminal solid solubility of hydrogen during dissolution (TSS{sub D,H}) and precipitation (TSS{sub P,H}).

  5. Corrosion behavior of Zircaloy 4 cladding material. Evaluation of the hydriding effect

    International Nuclear Information System (INIS)

    Blat, M.

    1997-04-01

    In this work, particular attention has been paid to the hydriding effect in PIE and laboratory test to validate a detrimental hydrogen contribution on Zircaloy 4 corrosion behavior at high burnup. Laboratory corrosion tests results confirm that hydrides have a detrimental role on corrosion kinetics. This effect is particularly significant for cathodic charged samples with a massive hydride outer layer before corrosion test. PIE show that at high burnup a hydride layer is formed underneath the metal/oxide interface. The results of the metallurgical examinations are discussed with respect to the possible mechanisms involved in this detrimental effect of hydrogen. Therefore, according to the laboratory tests results and PIE, hydrogen could be a strong contributor to explain the increase in corrosion rate at high burnup. (author)

  6. Quantum-chemical study of hydride transfer in catalytic transformation of paraffins on zeolites

    NARCIS (Netherlands)

    Kazansky, V.B.; Frash, M.V.; Santen, van R.A.; Chon, H.; Ihm, S.-K.; Uh, Y.S.

    1997-01-01

    Ab initio quantum-chemical cluster calculations demonstrate that the activated complexes of hydride transfer reaction in catalytic transformation of paraffins on zeolites very much resembles adsorbed nonclassical carbonium ions. The calculated activation energies for reactions involving propane and

  7. Hydrogen metal hydride storage with integrated catalytic recombiner for mobile application

    Energy Technology Data Exchange (ETDEWEB)

    Marinescu-Pasoi, L.; Behrens, U.; Langer, G.; Gramatte, W.; Rastogi, A.K.; Schmitt, R.E. (Battelle-Institut e.V., Frankfurt am Main (DE). Dept. of Energy Technology)

    1991-01-01

    A novel, thermodynamically efficient device is under development at Battelle in Frankfurt, by which the range of hydrogen-driven cars with a metal hydride tank might be roughly doubled. The device makes use of the properties of metal hydrides, combined with catalytic combustion. Its development is funded by the Hessian Ministry of Economic Affairs and Technology; it is to be completed by the end of 1990. High-temperature hydrides (HTH) have about three times the storage capacity of low temperature hydrides (LTH), but require relatively large amounts of heat at high temperatures to release the hydrogen. The exhaust heat from combustion-engine-driven vehicles is insufficient for this, and vehicles with electric (fuel cell) drive produce practically no exhaust heat at all. The Battelle-developed device is a combination of an HTH storage cell, an LTH storage cell and a catalyst. (author).

  8. Unexpected formation of hydrides in heavy rare earth containing magnesium alloys

    Directory of Open Access Journals (Sweden)

    Yuanding Huang

    2016-09-01

    Full Text Available Mg–RE (Dy, Gd, Y alloys show promising for being developed as biodegradable medical applications. It is found that the hydride REH2 could be formed on the surface of samples during their preparations with water cleaning. The amount of formed hydrides in Mg–RE alloys is affected by the content of RE and heat treatments. It increases with the increment of RE content. On the surface of the alloy with T4 treatment the amount of formed hydride REH2 is higher. In contrast, the amount of REH2 is lower on the surfaces of as-cast and T6-treated alloys. Their formation mechanism is attributed to the surface reaction of Mg–RE alloys with water. The part of RE in solid solution in Mg matrix plays an important role in influencing the formation of hydrides.

  9. The uranium zirconium hydride research reactor and its applications in research and education

    Energy Technology Data Exchange (ETDEWEB)

    Chen Wei; Wang Daohua; Jiang Xinbiao; A Jinyan; Yang Jun; Chen Da [Northwest Institute of Nuclear Technology, Xi' an (China)

    2003-03-01

    This paper describes briefly the performance, the configuration and the prospects of extensive applications in science, technology and education of the Uranium Zirconium Hydride research reactor in China. (author)

  10. The uranium zirconium hydride research reactor and its applications in research and education

    International Nuclear Information System (INIS)

    Chen Wei; Wang Daohua; Jiang Xinbiao; A Jinyan; Yang Jun; Chen Da

    2003-01-01

    This paper describes briefly the performance, the configuration and the prospects of extensive applications in science, technology and education of the Uranium Zirconium Hydride research reactor in China. (author)

  11. Non-Precious Bimetallic Catalysts for Selective Dehydrogenation of an Organic Chemical Hydride System

    KAUST Repository

    Shaikh Ali, Anaam; Jedidi, Abdesslem; Cavallo, Luigi; Takanabe, Kazuhiro

    2015-01-01

    Methylcyclohexane (MCH)-Toluene (TOL) chemical hydride cycles as a hydrogen carrier system is successful with the selective dehydrogenation reaction of MCH to TOL, which has been achieved only using precious Pt-based catalysts. Herein, we report

  12. Theoretical study of the chemical properties of cesium hydride; Teoreticke studium chemickych vlastnosti hydridu cezia

    Energy Technology Data Exchange (ETDEWEB)

    Skoviera, J [Univerzita Komenskeho v Bratislave, Prirodovedecka fakulta, Katedra fyzikalnej a teoretickej chemie, 84215 Bratislava (Slovakia)

    2012-04-25

    A theoretical study of radiofrequency source of hydrogen ions in the International Thermonuclear Experimental Reactor (ITER) used a cesium grid as a source of electrons for ionization of hydrogen. In the process of ionization of hydrogen, however, there is a weathering of cesium grid, resulting into a group of undesired products - cesium hydrides and materials derived from cesium hydride. We calculated the potential curves of cesium hydride and of its anion and cation, their spectroscopic properties and partly their electrical properties. To make electrical properties comparable with the experiment, we calculated for all also the vibration corrections. Lack of convergence in RASSCF step caused, that the electrical properties of excited states are still an open question of chemical properties of cesium hydride. (authors)

  13. The formation and characteristics of hydride blisters in c.w. Zircaloy-2 pressure tubes

    Energy Technology Data Exchange (ETDEWEB)

    Price, E G [ed.

    1994-09-01

    Under the auspices of the IAEA, a consultants` meeting was arranged in Vienna, 1994 July 25-29, at which a Canadian delegation, consisting of AECL and Ontario Hydro Technologies personnel, presented information on their knowledge of the behaviour of hydride blisters in Zircaloy-2 pressure tubes. This document contains the 10 papers presented by the Canadian delegation to the meeting. It is believed that they represent a good reference document on hydride blister phenomena.

  14. Trapping of antimony and bismuth hydrides on a molybdenum-foil strip

    Czech Academy of Sciences Publication Activity Database

    Krejčí, Pavel; Dočekal, Bohumil

    2005-01-01

    Roč. 99, S (2005), s148-s149 ISSN 0009-2770. [Meeting on Chemistry and Life /3./. Brno, 20.09.2005-22.09.2005] R&D Projects: GA AV ČR IAA400310507 Institutional research plan: CEZ:AV0Z40310501 Keywords : hydride generation * hydride trapping * molybdenum-foil strip device Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 0.445, year: 2005

  15. A review of uranium corrosion by hydrogen and the formation of uranium hydride

    OpenAIRE

    Banos, A.; Harker, N. J.; Scott, T. B.

    2018-01-01

    Uranium hydride (UH3) is the direct product of the reaction between uranium metal and gaseous hydrogen. In the context of uranium storage, this corrosion reaction is considered deleterious, not just because the structure of the metal may become significantly degraded but also because the resulting hydride is pyrophoric and therefore potentially flammable in air if present in significant quantity. The current review draws from the literature surrounding the uranium-hydrogen system accrued over...

  16. An Investigation on the Persistence of Uranium Hydride during Storage of Simulant Nuclear Waste Packages

    OpenAIRE

    Stitt , C. A.; Harker , N. J.; Hallam , K. R.; Paraskevoulakos , C.; Banos , A.; Rennie , S.; Jowsey , J.; Scott , T. B.

    2015-01-01

    International audience; Synchrotron X-rays have been used to study the oxidation of uranium and uranium hydride when encapsulated in grout and stored in de-ionised water for 10 months. Periodic synchrotron X-ray tomography and X-ray powder diffraction have allowed measurement and identification of the arising corrosion products and the rates of corrosion. The oxidation rates of the uranium metal and uranium hydride were slower than empirically derived rates previously reported for each reacta...

  17. PAC and μSr investigations of light interstitial diffusion in intermetallic hydrides

    International Nuclear Information System (INIS)

    Boyer, P.; Baudry, A.

    1988-01-01

    Specific aspects of the Perturbed Angular Correlation (PAC) of gamma rays concerning its application to the study of atomic diffusion in solids are presented. PAC results recently obtained on the 181 Ta probe in several crystalline and amorphous phases of Zr 2 Ni hydrides are briefly summarized. Preliminary μSR results relative to these intermetallic hydrides are presented and compared to the PAC data

  18. Synthesis of intermetallic hydrides of Zr-Ni system in the burning regime

    Energy Technology Data Exchange (ETDEWEB)

    Akopyan, A.G.; Dolukhanyan, S.K.; Karapetyan, A.K.; Merzhanov, A.G.

    1983-06-01

    Conditions for production of intermetallides in the Zr-Ni system and their hydrides in the burning regime are studied. Burning regularities of Zr/sub 2/Ni and ZrNi intermetallides in hydrogen are studied, the burning mechanism is found. It is shown that burning proceeds at abnormally low temperatures. Optimum synthesis conditions for Zr/sub 2/NiH/sub 5/ and ZrNiH/sub 3/ hydrides are determined.

  19. Delayed hydride cracking in Zr-2.5Nb pressure tubes

    International Nuclear Information System (INIS)

    Mieza, Juan I.; Domizzi, Gladys; Vigna, Gustavo L.

    2007-01-01

    Zr-2.5 Nb alloy from CANDU pressure tubes are prone to failure by hydrogen intake. One of the degradation mechanisms is delayed hydride cracking, which is characterized by the velocity of cracking. In this work, we study the effect of beta zirconium phase transformation over delayed hydride cracking velocity in Zr-2.5 Nb alloy from pressure tubes. Acoustic emission technique was used for cracking detection. (author) [es

  20. Recent progress in surface science 3

    CERN Document Server

    Danielli, J F; Rosenberg, M D

    2013-01-01

    Recent Progress in Surface Science, Volume 3 covers topics on the structure and mechanisms of the cell membranes. The book discusses the incorporation of chemisorbed species; the recent developments in the study of epitaxy; and the ""diffusion"" or ""hydride"" component of overpotential at cathodes of the ""platinum metals"". The text also describes the mechanism of hydrogen exchange in proteins; the nuclear magnetic resonance studies of lipids, lipoproteins, and cell membranes; and the monolayers of synthetic phospholipids. The formation, electrical properties, transport, and excitability cha

  1. Experimental study of a metal hydride driven braided artificial pneumatic muscle

    Science.gov (United States)

    Vanderhoff, Alexandra; Kim, Kwang J.

    2009-12-01

    This paper reports the experimental study of a new actuation system that couples a braided artificial pneumatic muscle (BAPM) with a metal hydride driven hydrogen compressor to create a compact, lightweight, noiseless system capable of high forces and smooth actuation. The results indicate that the metal hydride-BAPM system has relatively good second law efficiency average of 30% over the desorption cycle. The thermal efficiency is low, due mainly to the highly endothermic chemical reaction that releases the stored hydrogen gas from the metal hydride. The force to metal hydride weight is very high (~14 000 NForce/kgMH) considering that this system has not been optimized to use the minimum amount of metal hydride required for a full actuation stroke of the fluidic muscle. Also, a thermodynamic model for the complete system is developed. The analysis is restricted in some aspects concerning the complexity of the hydriding/dehydriding chemical process of the system and the three-dimensional geometry of the reactor, but it provides a useful comparison to other actuation devices and clearly reveals the parameters necessary for optimization of the actuation system in future work. The system shows comparable work output and has the benefits of biological muscle-like properties for potential use in robotic systems.

  2. A NOVEL METHOD OF THE HYDRIDE SEPARATION FOR THE DETERMINATION OF ARSENIC AND ANTIMONY BY AAS

    Directory of Open Access Journals (Sweden)

    Ganden Supriyanto

    2010-06-01

    Full Text Available A novel method is proposed for the hydride separation when determinining of arsenic and antimony by AAS. A chromatomembrane cell was used as preconcentration-, extraction- and separation-manifold instead of the U-tube phase separator, which is normally fitted in continuous flow vapour systems generating conventionaly the hydrides. The absorbances of the hydrides produced were measured by an atomic absorption spectrophotometer at 193.7 nm and 217.6 nm. Under optimized analytical conditions, the calibration plot for arsenic was linear from 50 to 500 ng.mL-1 (r2 = 0.9982. The precision for three subsequent measurements of 500 ng.mL-1 arsenic gave rise to a relative standard deviation of 0.4%. The detection limit was 15 ng.mL-1, which is much lower compared with that of the conventional hydride system (2000 ng.mL-1. A similar result was observed in case of antimony: the detection limit was 8 ng.mL-1 when the proposed method was applied. Consequently, the sensitivity of the novel method surpasses systems with conventional hydride generation, i.e. the precision and the acuracy increase whereas the standard deviation and the detection limit decrease. The proposed method was applied in pharmacheutial analysis and the certified As-content of a commercial product was very sufficiently confirmed.   Keywords: Chromatomembrane Cell, Hydride separation, Arsenic detection, Antimony detection, AAS

  3. Hydrogen charging, hydrogen content analysis and metallographic examination of hydride in zirconium alloys

    International Nuclear Information System (INIS)

    Singh, R.N.; Kishore, R.; Mukherjee, S.; Roychowdhury, S.; Srivastava, D.; Sinha, T.K.; De, P.K.; Banerjee, S.; Gopalan, B.; Kameswaran, R.; Sheelvantra, Smita S.

    2003-12-01

    Gaseous and electrolytic hydrogen charging techniques for introducing controlled amount of hydrogen in zirconium alloy is described. Zr-1wt%Nb fuel tube, zircaloy-2 pressure tube and Zr-2.5Nb pressure tube samples were charged with up to 1000 ppm of hydrogen by weight using one of the aforementioned methods. These hydrogen charged Zr-alloy samples were analyzed for estimating the total hydrogen content using inert gas fusion technique. Influence of sample surface preparation on the estimated hydrogen content is also discussed. In zirconium alloys, hydrogen in excess of the terminal solid solubility precipitates out as brittle hydride phase, which acquire platelet shaped morphology due to its accommodation in the matrix and can make the host matrix brittle. The F N number, which represents susceptibility of Zr-alloy tubes to hydride embrittlement was measured from the metallographs. The volume fraction of the hydride phase, platelet size, distribution, interplatelet spacing and orientation were examined metallographically using samples sliced along the radial-axial and radial-circumferential plane of the tubes. It was observed that hydride platelet length increases with increase in hydrogen content. Considering the metallographs generated by Materials Science Division as standard, metallographs prepared by the IAEA round robin participants for different hydrogen concentration was compared. It is felt that hydride micrographs can be used to estimate not only that approximate hydrogen concentration of the sample but also its size, distribution and orientation which significantly affect the susceptibility to hydride embrittlement of these alloys. (author)

  4. Modelling the gas transport and chemical processes related to clad oxidation and hydriding

    Energy Technology Data Exchange (ETDEWEB)

    Montgomery, R O; Rashid, Y R [ANATECH Research Corp., San Diego, CA (United States)

    1997-08-01

    Models are developed for the gas transport and chemical processes associated with the ingress of steam into a LWR fuel rod through a small defect. These models are used to determine the cladding regions in a defective fuel rod which are susceptible to massive hydriding and the creation of sunburst hydrides. The brittle nature of zirconium hydrides (ZrH{sub 2}) in these susceptible regions produces weak spots in the cladding which can act as initiation sites for cladding cracks under certain cladding stress conditions caused by fuel cladding mechanical interaction. The modeling of the axial gas transport is based on gaseous bimolar diffusion coupled with convective mass transport using the mass continuity equation. Hydrogen production is considered from steam reaction with cladding inner surface, fission products and internal components. Eventually, the production of hydrogen and its diffusion along the length results in high hydrogen concentration in locations remote from the primary defect. Under these conditions, the hydrogen can attack the cladding inner surface and breakdown the protective ZrO{sub 2} layer locally, initiating massive localized hydriding leading to sunburst hydride. The developed hydrogen evolution model is combined with a general purpose fuel behavior program to integrate the effects of power and burnup into the hydriding kinetics. Only in this manner can the behavior of a defected fuel rod be modeled to determine the conditions the result in fuel rod degradation. (author). 14 refs, 6 figs.

  5. The effect of texture on delayed hydride cracking in Zr-2.5Nb alloy

    Energy Technology Data Exchange (ETDEWEB)

    Resta Levi, R.; Sagat, S

    1999-09-01

    Pressure tubes for CANDU reactors are made of Zr-2.5Nb alloy. They are produced by hot extrusion followed by cold work, which results in a material with a pronounced crystallographic texture with basal plane normals of its hexagonal structure around the circumferential direction. Under certain conditions, this material is susceptible to a cracking mechanism called delayed hydride cracking (DHC). Our work investigated the susceptibility of Zr-2.5Nb alloy pressure tube to DHC in this pressure tube material, in terms of crystallographic texture and grain shape. The results are presented in terms of crack velocity obtained on different planes and directions of the pressure tube. The results show that it is more difficult for a crack to propagate at right angles to crystallographic basal planes (which are close to the precipitation habit plane of hydrides) than for it to propagate parallel to the basal plane. However, if the cracking plane is oriented parallel to preexisting hydrides (hydrides formed as a result of the manufacturing process), the crack propagates along these hydrides easily, even if the hydride habit planes are not oriented favourably. (author)

  6. Investigation of the effect of hydride and iodine on the mechanical behaviour of the zircaloy-4

    International Nuclear Information System (INIS)

    Soares, M.I.

    1981-12-01

    To investigate the effect of hydride and iodine on the mechanical behaviour of the zircaloy-4 tubes, deformation tests under pressure of samples hydrided in autoclave and of samples containing iodine were carried out, in order to simulate the fission product. The same tests were carried out in samples without hydride and iodine contents that were used as reference samples in the temperature range of 650 0 C-950 0 C. The hydrided samples and the samples containing iodine tested at 650 0 C and 750 0 C showed a higher ductility than the samples of reference. The hydrided samples tested at 850 0 C and 950 0 C showed a higher embritlement than the samples of reference and than the samples containing iodine tested at the same temperatures. A mechanical test has been developed to investigate the effect of hydride and iodine on the mechanical behaviour of the zircaloy-4 tubes. The mechanical test were carried out at room temperature. At room temperature the hydrition decreased the ductility of zircaloy-4. At room temperature the sample containing iodine showed a higher ductility than the sample without iodine. The combined action of hydrogen and iodine at room temperature enhanced the embrittlment of the samples zircaloy-4. (Author) [pt

  7. First-principles calculations of niobium hydride formation in superconducting radio-frequency cavities

    Science.gov (United States)

    Ford, Denise C.; Cooley, Lance D.; Seidman, David N.

    2013-09-01

    Niobium hydride is suspected to be a major contributor to degradation of the quality factor of niobium superconducting radio-frequency (SRF) cavities. In this study, we connect the fundamental properties of hydrogen in niobium to SRF cavity performance and processing. We modeled several of the niobium hydride phases relevant to SRF cavities and present their thermodynamic, electronic, and geometric properties determined from calculations based on density functional theory. We find that the absorption of hydrogen from the gas phase into niobium is exothermic and hydrogen becomes somewhat anionic. The absorption of hydrogen by niobium lattice vacancies is strongly preferred over absorption into interstitial sites. A single vacancy can accommodate six hydrogen atoms in the symmetrically equivalent lowest energy sites and additional hydrogen in the nearby interstitial sites affected by the strain field: this indicates that a vacancy can serve as a nucleation center for hydride phase formation. Small hydride precipitates may then occur near lattice vacancies upon cooling. Vacancy clusters and extended defects should also be enriched in hydrogen, potentially resulting in extended hydride phase regions upon cooling. We also assess the phase changes in the niobium-hydrogen system based on charge transfer between niobium and hydrogen, the strain field associated with interstitial hydrogen, and the geometry of the hydride phases. The results of this study stress the importance of not only the hydrogen content in niobium, but also the recovery state of niobium for the performance of SRF cavities.

  8. First-principles calculations of niobium hydride formation in superconducting radio-frequency cavities

    International Nuclear Information System (INIS)

    Ford, Denise C; Cooley, Lance D; Seidman, David N

    2013-01-01

    Niobium hydride is suspected to be a major contributor to degradation of the quality factor of niobium superconducting radio-frequency (SRF) cavities. In this study, we connect the fundamental properties of hydrogen in niobium to SRF cavity performance and processing. We modeled several of the niobium hydride phases relevant to SRF cavities and present their thermodynamic, electronic, and geometric properties determined from calculations based on density functional theory. We find that the absorption of hydrogen from the gas phase into niobium is exothermic and hydrogen becomes somewhat anionic. The absorption of hydrogen by niobium lattice vacancies is strongly preferred over absorption into interstitial sites. A single vacancy can accommodate six hydrogen atoms in the symmetrically equivalent lowest energy sites and additional hydrogen in the nearby interstitial sites affected by the strain field: this indicates that a vacancy can serve as a nucleation center for hydride phase formation. Small hydride precipitates may then occur near lattice vacancies upon cooling. Vacancy clusters and extended defects should also be enriched in hydrogen, potentially resulting in extended hydride phase regions upon cooling. We also assess the phase changes in the niobium–hydrogen system based on charge transfer between niobium and hydrogen, the strain field associated with interstitial hydrogen, and the geometry of the hydride phases. The results of this study stress the importance of not only the hydrogen content in niobium, but also the recovery state of niobium for the performance of SRF cavities. (paper)

  9. Investigation of Lithium Metal Hydride Materials for Mitigation of Deep Space Radiation

    Science.gov (United States)

    Rojdev, Kristina; Atwell, William

    2016-01-01

    Radiation exposure to crew, electronics, and non-metallic materials is one of many concerns with long-term, deep space travel. Mitigating this exposure is approached via a multi-faceted methodology focusing on multi-functional materials, vehicle configuration, and operational or mission constraints. In this set of research, we are focusing on new multi-functional materials that may have advantages over traditional shielding materials, such as polyethylene. Metal hydride materials are of particular interest for deep space radiation shielding due to their ability to store hydrogen, a low-Z material known to be an excellent radiation mitigator and a potential fuel source. We have previously investigated 41 different metal hydrides for their radiation mitigation potential. Of these metal hydrides, we found a set of lithium hydrides to be of particular interest due to their excellent shielding of galactic cosmic radiation. Given these results, we will continue our investigation of lithium hydrides by expanding our data set to include dose equivalent and to further understand why these materials outperformed polyethylene in a heavy ion environment. For this study, we used HZETRN 2010, a one-dimensional transport code developed by NASA Langley Research Center, to simulate radiation transport through the lithium hydrides. We focused on the 1977 solar minimum Galactic Cosmic Radiation environment and thicknesses of 1, 5, 10, 20, 30, 50, and 100 g/cm2 to stay consistent with our previous studies. The details of this work and the subsequent results will be discussed in this paper.

  10. Criteria for fracture initiation at hydrides in zirconium alloys. Pt. 1

    International Nuclear Information System (INIS)

    Shi, S.Q.; Puls, M.P.

    1994-01-01

    A theoretical framework for the initiation of delayed hydride cracking (DHC) in zirconium is proposed for two different types of initiating sites, i.e., a sharp crack tip (considered in this part) and a shallow notch (considered in part II). In the present part I, an expression for K IH is derived which shows that K IH depends on the size and shape of the hydride precipitated at the crack tip, the yield stress and elastic moduli of the material and the fracture stress of the hydride. If the hydride at the crack tip extends in length at constant thickness, then K IH increases as the square root of the hydride thickness. Thus a microstructure favouring the formation of thicker hydrides at the crack tip would result in an increased K IH . K IH increases slightly with temperature up to a temperature at which there is a more rapid increase. The temperature at which there is a more rapid increase in K IH will increase as the yield stress increases. The model also predicts that an increase in yield stress due to irradiation will cause an overall slight decrease in K IH compared to unirradiated material. There is good agreement between the overall predictions of the theory and experimental results. It is suggested that more careful evaluations of some key parameters are required to improve on the theoretical estimates. (orig.)

  11. Synthesis, spectroscopy, and hydrogen/deuterium exchange in high-spin iron(II) hydride complexes.

    Science.gov (United States)

    Dugan, Thomas R; Bill, Eckhard; MacLeod, K Cory; Brennessel, William W; Holland, Patrick L

    2014-03-03

    Very few hydride complexes are known in which the metals have a high-spin electronic configuration. We describe the characterization of several high-spin iron(II) hydride/deuteride isotopologues and their exchange reactions with one another and with H2/D2. Though the hydride/deuteride signal is not observable in NMR spectra, the choice of isotope has an influence on the chemical shifts of distant protons in the dimers through the paramagnetic isotope effect on chemical shift. This provides the first way to monitor the exchange of H and D in the bridging positions of these hydride complexes. The rate of exchange depends on the size of the supporting ligand, and this is consistent with the idea that H2/D2 exchange into the hydrides occurs through the dimeric complexes rather than through a transient monomer. The understanding of H/D exchange mechanisms in these high-spin iron hydride complexes may be relevant to postulated nitrogenase mechanisms.

  12. ON THE CHEMISTRY OF HYDRIDES OF N ATOMS AND O{sup +} IONS

    Energy Technology Data Exchange (ETDEWEB)

    Awad, Zainab [Astronomy, Space Science, and Meteorology Department, Faculty of Science, Cairo University, Giza (Egypt); Viti, Serena; Williams, David A., E-mail: zma@sci.cu.edu.eg [Physics and Astronomy Department, University College London, Gower Street, London WC1E 6BT (United Kingdom)

    2016-08-01

    Previous work by various authors has suggested that the detection by Herschel /HIFI of nitrogen hydrides along the low-density lines of sight toward G10.6-0.4 (W31C) cannot be accounted for by gas-phase chemical models. In this paper we investigate the role of surface reactions on dust grains in diffuse regions, and we find that formation of the hydrides by surface reactions on dust grains with efficiency comparable to that for H{sub 2} formation reconciles models with observations of nitrogen hydrides. However, similar surface reactions do not contribute significantly to the hydrides of O{sup +} ions detected by Herschel /HIFI that are present along many sight lines in the Galaxy. The O{sup +} hydrides can be accounted for by conventional gas-phase chemistry either in diffuse clouds of very low density with normal cosmic-ray fluxes or in somewhat denser diffuse clouds with high cosmic-ray fluxes. Hydride chemistry in dense dark clouds appears to be dominated by gas-phase ion–molecule reactions.

  13. On the Chemistry of Hydrides of N Atoms and O+ Ions

    Science.gov (United States)

    Awad, Zainab; Viti, Serena; Williams, David A.

    2016-08-01

    Previous work by various authors has suggested that the detection by Herschel/HIFI of nitrogen hydrides along the low-density lines of sight toward G10.6-0.4 (W31C) cannot be accounted for by gas-phase chemical models. In this paper we investigate the role of surface reactions on dust grains in diffuse regions, and we find that formation of the hydrides by surface reactions on dust grains with efficiency comparable to that for H2 formation reconciles models with observations of nitrogen hydrides. However, similar surface reactions do not contribute significantly to the hydrides of O+ ions detected by Herschel/HIFI that are present along many sight lines in the Galaxy. The O+ hydrides can be accounted for by conventional gas-phase chemistry either in diffuse clouds of very low density with normal cosmic-ray fluxes or in somewhat denser diffuse clouds with high cosmic-ray fluxes. Hydride chemistry in dense dark clouds appears to be dominated by gas-phase ion-molecule reactions.

  14. Influence of Zircaloy cladding composition on hydride formation during aqueous hydrogen charging

    Energy Technology Data Exchange (ETDEWEB)

    Rajasekhara, S. [Intel Corporation, 2501 NW 229th Av., Hillsboro, OR 97124 (United States); Kotula, P.G.; Enos, D.G.; Doyle, B.L. [Sandia National Laboratories, Albuquerque, NM, 87185 (United States); Clark, B.G., E-mail: blyclar@sandia.gov [Sandia National Laboratories, Albuquerque, NM, 87185 (United States)

    2017-06-15

    Although hydrogen uptake in Zirconium (Zr) based claddings has been a topic of many studies, hydrogen uptake as a function of alloy composition has received little attention. In this work, commercial Zr-based cladding alloys (Zircaloy-2, Zircaloy-4 and ZIRLO™), differing in composition but with similar initial textures, grain sizes, and surface roughness, were aqueously charged with hydrogen for 100, 300, and 1000 s at nominally 90 °C to produce hydride layers of varying thicknesses. Transmission electron microscope characterization following aqueous charging showed hydride phase and orientation relationship were identical in all three alloys. However, elastic recoil detection measurements confirmed that surface hydride layers in Zircaloy-2 and Zircaloy-4 were an order of magnitude thicker relative to ZIRLO™. - Highlights: •Aqueous charging was performed to produce a layer of zirconium hydride for three different Zr-alloy claddings. •Hydride thicknesses were analyzed by elastic recoil detection and transmission electron microscopy. •Zircaloy-2 and Zircaloy-4 formed thicker hydride layers than ZIRLO™ for the same charging durations.

  15. Thorium-d-metals compounds and solid solutions

    International Nuclear Information System (INIS)

    Chachkhiani, Z.B.; Chechernikov, V.I.; Chachkhiani, L.G.

    1986-01-01

    Thorium compounds with Fe, Co, Ni dependence of their magnetic properties on temperature, pressure and concentration of the second element are considered. Anomalous magnetic behaviour of alloys in the Th-Fe system is noted. Special attention is paid to compounds with CaCu 5 type hexagonal structure and their solid solutions. Th-Co-Ni specimens containing up to 25% Ni are ferromagnetics and the rest are paramagnetics. Specimens with 60% cobalt content do not display ferromagnetic properties up to 4.2 K. Hydrides of Th 7 M 3 H 30 type (M - Fe, Co, Ni) are also considered. Highly hydrogenized specimens (under high pressure) appear to be stronger ferromagnetics

  16. Hydrogen generation using silicon nanoparticles and their mixtures with alkali metal hydrides

    Science.gov (United States)

    Patki, Gauri Dilip

    mole of Si. We compare our silicon nanoparticles (˜10nm diameter) with commercial silicon nanopowder (rate upon decreasing the particle size to 10 nm was even greater than would be expected based upon the increase in surface area. While specific surface area increased by a factor of 6 in going from rate increased by a factor of 150. However, in all cases, silicon requires a base (e.g. NaOH, KOH, hydrazine) to catalyze its reaction with water. Metal hydrides are also promising hydrogen storage materials. The optimum metal hydride would possess high hydrogen storage density at moderate temperature and pressure, release hydrogen safely and controllably, and be stable in air. Alkali metal hydrides have high hydrogen storage density, but exhibit high uncontrollable reactivity with water. In an attempt to control this explosive nature while maintaining high storage capacity, we mixed our silicon nanoparticles with the hydrides. This has dual benefits: (1) the hydride- water reaction produces the alkali hydroxide needed for base-catalyzed silicon oxidation, and (2) dilution with 10nm coating by, the silicon may temper the reactivity of the hydride, making the process more controllable. Initially, we analyzed hydrolysis of pure alkali metal hydrides and alkaline earth metal hydrides. Lithium hydride has particularly high hydrogen gravimetric density, along with faster reaction kinetics than sodium hydride or magnesium hydride. On analysis of hydrogen production we found higher hydrogen yield from the silicon nanoparticle—metal hydride mixture than from pure hydride hydrolysis. The silicon-hydride mixtures using our 10nm silicon nanoparticles produced high hydrogen yield, exceeding the theoretical yield. Some evidence of slowing of the hydride reaction rate upon addition of silicon nanoparticles was observed.

  17. Final Report: DE- FC36-05GO15063, Fundamental Studies of Advanced High-Capacity, Reversible Metal Hydrides

    Energy Technology Data Exchange (ETDEWEB)

    Jensen, Craig [Univ. of Hawaii, Honolulu, HI (United States); McGrady, Sean [Univ. of New Brunswick, Fredericton NB (Canada); Severa, Godwin [Univ. of Hawaii, Honolulu, HI (United States); Eliseo, Jennifer [Univ. of Hawaii, Honolulu, HI (United States); Chong, Marina [Univ. of Hawaii, Honolulu, HI (United States)

    2013-05-31

    The project was component of the US DOE, Metal Hydride Center of Excellence (MHCoE). The Sandia National Laboratory led center was established to conduct highly collaborative and multi-disciplinary applied R&D to develop new reversible hydrogen storage materials that meet or exceed DOE/FreedomCAR 2010 and 2015 system targets for hydrogen storage materials. Our approach entailed a wide variety of activities ranging from synthesis, characterization, and evaluation of new candidate hydrogen storage materials; screening of catalysts for high capacity materials requiring kinetics enhancement; development of low temperature methods for nano-confinement of hydrides and determining its effects on the kinetics and thermodynamics of hydrides; and development of novel processes for the direct re-hydrogenation of materials. These efforts have resulted in several advancements the development of hydrogen storage materials. We have greatly extended the fundamental knowledge about the highly promising hydrogen storage carrier, alane (AlH3), by carrying out the first crystal structure determinations and the first determination of the heats of dehydrogenation of β–AlH3 and γ-AlD3. A low-temperature homogenous organometallic approach to incorporation of Al and Mg based hydrides into carbon aerogels has been developed that that allows high loadings without degradation of the nano-porous scaffold. Nano-confinement was found to significantly improve the dehydrogenation kinetics but not effect the enthalpy of dehydrogenation. We conceived, characterized, and synthesized a novel class of potential hydrogen storage materials, bimetallic borohydrides. These novel compounds were found to have many favorable properties including release of significant amounts of hydrogen at moderate temperatures (75-190 º C). However, in situ IR studies in tandem with thermal gravimetric analysis have shown that about 0.5 equivalents of diborane are released during the

  18. Development of delayed hydride cracking resistant-pressure tube

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Young Suk; Kwon, Sang Chul; Kim, S. S.; Yim, K. S

    2000-10-01

    For the first time, we demonstrate that the pattern of nucleation and growth of a DHC crack is governed by the precipitation of hydrides so that the DHC velocity and K{sub IH} are determined by an angle of the cracking plane and the hydride habit plane 10.7. Since texture controls the distribution of the 10.7 habit plane in Zr-2.5Nb pressure tube, we draw a conclusion that a textural change in Zr-2.5Nb tube from a strong tangential texture to the radial texture shall increase the threshold stress intensity factor, K{sub IH}, and decrease the delayed hydride cracking velocity. This conclusion is also verified by a complimentary experiment showing a linear dependence of DHCV and K{sub IH} with an increase in the basal component in the cracking plane. On the basis of the study on the DHC mechanism and the effect of manufacturing processes on the properties of Zr-2.5Nb tube, we have established a manufacturing procedure to make pressure tubes with improved DHC resistance. The main features of the established manufacturing process consist in the two step-cold pilgering process and the intermediate heat treatment in the {alpha} + {beta} phase for Zr-2.5Nb alloy and in the {alpha} phase for Zr-1Nb-1.2Sn-0.4Fe alloy. The manufacturing of DHC resistant-pressure tubes of Zr-2.5Nb and Zr-1N-1.2Sn-0.4Fe was made in the ChMP zirconium plant in Russia under a joint research with Drs. Nikulina and Markelov in VNIINM (Russia). Zr-2.5Nb pressure tube made with the established manufacturing process has met all the specification requirements put by KAERI. Chracterization tests have been jointly conducted by VNIINM and KAERI. As expected, the Zr-2.5Nb tube made with the established procedure has improved DHC resistance compared to that of CANDU Zr-2.5Nb pressure tube used currently. The measured DHC velocity of the Zr-2.5Nb tube meets the target value (DHCV <5x10{sup -8} m/s) and its other properties also were equivalent to those of the CANDU Zr-2.5Nb tube used currently. The Zr-1Nb-1

  19. Metal hydrides: an innovative and challenging conversion reaction anode for lithium-ion batteries

    Directory of Open Access Journals (Sweden)

    Luc Aymard

    2015-08-01

    Full Text Available The state of the art of conversion reactions of metal hydrides (MH with lithium is presented and discussed in this review with regard to the use of these hydrides as anode materials for lithium-ion batteries. A focus on the gravimetric and volumetric storage capacities for different examples from binary, ternary and complex hydrides is presented, with a comparison between thermodynamic prediction and experimental results. MgH2 constitutes one of the most attractive metal hydrides with a reversible capacity of 1480 mA·h·g−1 at a suitable potential (0.5 V vs Li+/Li0 and the lowest electrode polarization (2, TiH2, complex hydrides Mg2MHx and other Mg-based hydrides. The reversible conversion reaction mechanism of MgH2, which is lithium-controlled, can be extended to others hydrides as: MHx + xLi+ + xe− in equilibrium with M + xLiH. Other reaction paths—involving solid solutions, metastable distorted phases, and phases with low hydrogen content—were recently reported for TiH2 and Mg2FeH6, Mg2CoH5 and Mg2NiH4. The importance of fundamental aspects to overcome technological difficulties is discussed with a focus on conversion reaction limitations in the case of MgH2. The influence of MgH2 particle size, mechanical grinding, hydrogen sorption cycles, grinding with carbon, reactive milling under hydrogen, and metal and catalyst addition to the MgH2/carbon composite on kinetics improvement and reversibility is presented. Drastic technological improvement in order to the enhance conversion process efficiencies is needed for practical applications. The main goals are minimizing the impact of electrode volume variation during lithium extraction and overcoming the poor electronic conductivity of LiH. To use polymer binders to improve the cycle life of the hydride-based electrode and to synthesize nanoscale composite hydride can be helpful to address these drawbacks. The development of high-capacity hydride anodes should be inspired by the emergent

  20. Metal hydrides: an innovative and challenging conversion reaction anode for lithium-ion batteries.

    Science.gov (United States)

    Aymard, Luc; Oumellal, Yassine; Bonnet, Jean-Pierre

    2015-01-01

    The state of the art of conversion reactions of metal hydrides (MH) with lithium is presented and discussed in this review with regard to the use of these hydrides as anode materials for lithium-ion batteries. A focus on the gravimetric and volumetric storage capacities for different examples from binary, ternary and complex hydrides is presented, with a comparison between thermodynamic prediction and experimental results. MgH2 constitutes one of the most attractive metal hydrides with a reversible capacity of 1480 mA·h·g(-1) at a suitable potential (0.5 V vs Li(+)/Li(0)) and the lowest electrode polarization (lithium are subsequently detailed for MgH2, TiH2, complex hydrides Mg2MH x and other Mg-based hydrides. The reversible conversion reaction mechanism of MgH2, which is lithium-controlled, can be extended to others hydrides as: MH x + xLi(+) + xe(-) in equilibrium with M + xLiH. Other reaction paths-involving solid solutions, metastable distorted phases, and phases with low hydrogen content-were recently reported for TiH2 and Mg2FeH6, Mg2CoH5 and Mg2NiH4. The importance of fundamental aspects to overcome technological difficulties is discussed with a focus on conversion reaction limitations in the case of MgH2. The influence of MgH2 particle size, mechanical grinding, hydrogen sorption cycles, grinding with carbon, reactive milling under hydrogen, and metal and catalyst addition to the MgH2/carbon composite on kinetics improvement and reversibility is presented. Drastic technological improvement in order to the enhance conversion process efficiencies is needed for practical applications. The main goals are minimizing the impact of electrode volume variation during lithium extraction and overcoming the poor electronic conductivity of LiH. To use polymer binders to improve the cycle life of the hydride-based electrode and to synthesize nanoscale composite hydride can be helpful to address these drawbacks. The development of high-capacity hydride anodes should

  1. Novel hydrogen storage materials: A review of lightweight complex hydrides

    International Nuclear Information System (INIS)

    Jain, I.P.; Jain, Pragya; Jain, Ankur

    2010-01-01

    The world is facing energy shortage and has become increasingly depending on new methods to store and convert energy for new, environmentally friendly methods of transportation and electrical energy generation as well as for portable electronics. Mobility - the transport of people and goods - is a socioeconomic reality that will surely increase in the coming years. Non-renewable fossil fuels are projected to decline sharply after 20-30 years. CO 2 emission from burning such fuels is the main cause for global warming. Currently whole world is seeking international commitment to cut emissions of greenhouse gases by 60% by 2050. Hydrogen which can be produced with little or no harmful emissions has been projected as a long term solution for a secure energy future. Increasing application of hydrogen energy is the only way forward to meet the objectives of Department of Energy (DOE), USA, i.e. reducing green house gases, increasing energy security and strengthening the developing countries economy. Any transition from a carbon-based/fossil fuel energy system to a hydrogen based economy involves overcoming significant scientific, technological and socio-economic barriers before ultimate implementation of hydrogen as the clean energy source of the future. Lot of research is going on in the world to find commercially viable solutions for hydrogen production, storage, and utilization, but hydrogen storage is very challenging, as application part of hydrogen energy totally depend on this. During early nineties and now also hydrogen storage as gas, liquid and metal hydride has been undertaken to solve the problem of hydrogen storage and transportation for the utilization as hydrogen energy, but none of these roots could became commercially viable along with the safety aspects for gas and liquid. With the result many new novel materials appeared involving different principles resulting in a fairly complex situation with no correlation between any two materials. In the present

  2. Hydrides formation In Zircaloy-4 irradiated with neutrons

    International Nuclear Information System (INIS)

    Vizcaino, P; Flores, A V; Vicente Alvarez, M A; Banchik, A.D; Tolley, A; Condo, A; Santisteban, J R

    2012-01-01

    Under reactor operating conditions zirconium components go through transformations which affect their original properties. Two phenomena of significant consequences for the integrity of the components are hydrogen uptake and radiation damage, since both contribute to the material fragilization. In the case of the Atucha I nuclear power reactor, the cooling channels, Zircaloy-4 tubular structural components about 6 meters long, were designed to withstand the entire lifetime of the reactor. Inside them, fuel elements 5.3 meters long are located. The fuel elements are cooled by a heavy water flow which circulates from the bottom (250 o ) to the top of the reactor (305 o C). The channels are affected by a fast neutron flux (En>1 Mev), increasing from a nominal value of 1.35 x 10 13 neutrons/cm 2 sec at the bottom to 1.69 x 10 13 neutrons/cm 2 sec at the top, reaching a maximum value of 3.76 x 10 13 neutrons/cm 2 sec at the center of the channels. However, due to the reactor operating conditions, they are replaced after about 10 effective full power years, time at which they reach 10 22 neutrons/cm 2 at the most neutronically active regions of the reactor. Studies on cooling channels are meaningful from many points of view. The channels are structural components which do not work under internal pressure or any other type of structural stress. The typical temperature of the cladding tubes in the reactor is about 350 o C, at which many types of irradiation defects are annealed [1]. The temperature range of the cooling channels lies between 200 o C-235 o C (outer foil of the channels) and 260 o C-300 o C (internal tube), a difference which makes the defect recovery kinetics slower. In the present context, following the program developed in the research contract 15810, we continue with the work started on the effects of the radiation on the hydride formation focusing on the dislocation loops in the zirconium matrix and its possible role as preferential sites for hydride

  3. Effect of hydrides on the ductile-brittle transition in stress-relieved, recrystallized and beta-treated zircaloy-4

    International Nuclear Information System (INIS)

    Pelchat, J.; Barcelo, F.

    1991-01-01

    This paper is concerned with the influence of δ-hydrides on the mechanical properties of three heat treated cold-rolled Zircaloy-4 sheets (stress-relieved, recrystallized and β treated), tested at room temperature and 350 0 C. Smooth tensile specimens of two thicknesses: 0.5 and 3.1 mm, containing different hydride volume fractions, up to 18% (about 1400 ppm H), have been tested. Metallographic and fractographic analysis were carried out in order to examine the fracture morphology near and on the fracture surface, and to determine the evolution of the fracture mechanism of hydrides as a function of temperature, hydride orientation and volume fraction

  4. Hydrides of Alkaline Earth–Tetrel (AeTt) Zintl Phases: Covalent Tt–H Bonds from Silicon to Tin

    Energy Technology Data Exchange (ETDEWEB)

    Auer, Henry; Guehne, Robin; Bertmer, Marko; Weber, Sebastian; Wenderoth, Patrick; Hansen, Thomas Christian; Haase, Jürgen; Kohlmann, Holger (Leipzig); (Saarland-MED); (ILL)

    2017-01-18

    Zintl phases form hydrides either by incorporating hydride anions (interstitial hydrides) or by covalent bonding of H to the polyanion (polyanionic hydrides), which yields a variety of different compositions and bonding situations. Hydrides (deuterides) of SrGe, BaSi, and BaSn were prepared by hydrogenation (deuteration) of the CrB-type Zintl phases AeTt and characterized by laboratory X-ray, synchrotron, and neutron diffraction, NMR spectroscopy, and quantum-chemical calculations. SrGeD4/3–x and BaSnD4/3–x show condensed boatlike six-membered rings of Tt atoms, formed by joining three of the zigzag chains contained in the Zintl phase. These new polyanionic motifs are terminated by covalently bound H atoms with d(Ge–D) = 1.521(9) Å and d(Sn–D) = 1.858(8) Å. Additional hydride anions are located in Ae4 tetrahedra; thus, the features of both interstitial hydrides and polyanionic hydrides are represented. BaSiD2–x retains the zigzag Si chain as in the parent Zintl phase, but in the hydride (deuteride), it is terminated by H (D) atoms, thus forming a linear (SiD) chain with d(Si–D) = 1.641(5) Å.

  5. Effect of hydriding temperature and strain rate on the ductile-brittle transition in β treated Zircaloy-4

    International Nuclear Information System (INIS)

    Bai, J.B.

    1996-01-01

    In this paper, the effect of hydriding temperature and strain rate on the ductile-brittle transition in β treated Zircaloy-4 has been investigated. The hydriding temperature used is 700degC, strain rates being 4x10 -4 s -1 and 4x10 -3 s -1 . The results show that at same conditions the ductility of hydrides decreases as the hydriding temperature decreases. There exists a critical temperature (transition temperature) of 250degC for hydriding at 700degC, below which the hydrided specimens (and so for the hydrides) are brittle, while above it they are ductile. This transition temperature is lower than the one mentioned by various authors obtained for hydriding at 400degC. For the same hydriding temperature of 700degC, the specimens tested at 4x10 -3 s -1 are less ductile than those tested at 4x10 -4 s -1 . Furthermore, unlike at a strain rate of 4x10 -4 s -1 , there is no more a clear ductile-brittle transition behaviour. (author)

  6. Characteristics of hydride precipitation and reorientation in spent-fuel cladding

    International Nuclear Information System (INIS)

    Chung, H. M.; Strain, R. V.; Billone, M. C.

    2000-01-01

    The morphology, number density, orientation, distribution, and crystallographic aspects of Zr hydrides in Zircaloy fuel cladding play important roles in fuel performance during all phases before and after discharge from the reactor, i.e., during normal operation, transient and accident situations in the reactor, temporary storage in a dry cask, and permanent storage in a waste repository. In the past, partly because of experimental difficulties, hydriding behavior in irradiated fuel cladding has been investigated mostly by optical microscopy (OM). In the present study, fundamental metallurgical and crystallographic characteristics of hydride precipitation and reorientation were investigated on the microscopic level by combined techniques of OM and transmission electron and scanning electron microscopy (TEM and SEM) of spent-fuel claddings discharged from several boiling and pressurized water reactors (BWRs and PWRs). Defueled sections of standard and Zr-lined Zircaloy-2 fuel claddings, irradiated to fluences of ∼3.3 x 10 21 n cm -2 and ∼9.2 x 10 21 n cm -2 (E > 1 MeV), respectively, were obtained from spent fuel rods discharged from two BWRs. Sections of standard and low-tin Zircaloy-4 claddings, irradiated to fluences of ∼4.4 x 10 21 n cm -2 , ∼5.9 x 10 21 n cm -2 , and ∼9.6 x 10 21 n cm -2 (E > 1 MeV) in three PWRs, were also obtained. Microstructural characteristics of hydrides were analyzed in as-irradiated condition and after gas-pressurization-burst or expanding-mandrel tests at 292-325 C in Ar for some of the spent-fuel claddings. Analyses were also conducted of hydride habit plane, morphology, and reorientation characteristics on unirradiated Zircaloy-4 cladding that contained dense radial hydrides. Reoriented hydrides in the slowly cooled unirradiated cladding were produced by expanding-mandrel loading

  7. Accommodation stresses in hydride precipitates by synchrotron x-ray diffraction

    International Nuclear Information System (INIS)

    Santisteban, J R; Vicente, M A; Vizcaino, P; Banchik, A D; Almer, J

    2012-01-01

    Hydride-forming materials (Zr, Ti, Nb, etc) are affected by a sub-critical crack growth mechanism that involves the diffusion of H to the stressed region ahead of a crack, followed by nucleation and fracture of hydrides at the crack tip [1]. The phenomenon is intermittent, with the crack propagating through the hydride and stopping when it reaches the matrix. By repeating these processes, the crack propagates through a component at a rate that is highly dependent on the temperature history of the component. Most research effort to understand this phenomenon has occurred within the nuclear industry, as it affects the safe operation of pressure tubes (Zr2.5%Nb) and the long-term storage of nuclear fuel (Zircaloy cladding). Stress-induced hydride formation is a consequence of the volume dilatation that accompanies hydride formation (of the order of 15%), which is elastoplastically accommodated by the matrix and precipitate. Compressive stresses are expected within hydride precipitates due to the constraint imposed by the matrix. Such 'accommodation' stresses are essential ingredients in all theoretical models developed to assess the crack growth rate dependence on operational variables such as temperature, applied stress intensity factor, or overall H concentration [2]. Yet little experimental information is available about the magnitude and directionality of such accommodation stresses. Synchrotron X-ray diffraction is the only technique capable of quantifying such stresses. Here we briefly describe the fundaments of the technique, when used through an area detector placed in transmission geometry. The results of the experiments have allowed us to produce a comprehensive picture about the magnitude and origin of accommodation stresses in δ zirconium hydride platelets (author)

  8. Trapping interference effects of arsenic, antimony and bismuth hydrides in collection of selenium hydride within iridium-modified transversally-heated graphite tube atomizer

    Czech Academy of Sciences Publication Activity Database

    Furdíková, Zuzana; Dočekal, Bohumil

    2009-01-01

    Roč. 64, č. 4 (2009), s. 323-328 ISSN 0584-8547 R&D Projects: GA ČR GA203/06/1441 Institutional research plan: CEZ:AV0Z40310501 Keywords : selenium hydride trapping * arsine * stibine Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 2.719, year: 2009

  9. High-Frequency H-1 NMR Chemical Shifts of Sn-II and Pb-II Hydrides Induced by Relativistic Effects: Quest for Pb-II Hydrides

    Czech Academy of Sciences Publication Activity Database

    Vícha, J.; Marek, R.; Straka, Michal

    2016-01-01

    Roč. 55, č. 20 (2016), s. 10302-10309 ISSN 0020-1669 Institutional support: RVO:61388963 Keywords : hydrides of TlI and PbII * high-frequency 1H chemical shifts * relativistic effects Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 4.857, year: 2016

  10. Proton and hydride affinities in excited states: magnitude reversals in proton and hydride affinities between the lowest singlet and triplet states of annulenyl and benzannulenyl anions and cations

    DEFF Research Database (Denmark)

    Rosenberg, Martin; Ottosson, Henrik; Kilså, Kristine

    2010-01-01

    electron counting rules for aromaticity in the two states. Using quantum chemical calculations at the G3(MP2)//(U)B3LYP/6-311+G(d,p) level we have examined the validity of this hypothesis for eight proton and eight hydride addition reactions of anions and cations, respectively, of annulenyl...

  11. First-principles studies of complex hydrides for lithium-ion battery and hydrogen storage applications

    Science.gov (United States)

    Mason, Timothy Hudson

    We employ density functional theory in a computational study of two energy storage systems. In the first, we explore the thermodynamic viability of light metal hydrides as a high capacity Li-ion battery negative electrode. Given a set of solid-state and gas-phase reactants, we have determined the phase diagram in the Li-Mg-B-N-H system in the grand canonical ensemble as a function of lithium electrochemical potential. We present computational results for several new conversion reactions with predicted capacities between 2400 and 4000 mAhg-1 that are thermodynamically favorable and that do not involve gas evolution. We provide experimental evidence for the reaction pathway on delithiation for the compound Li4BN3H10 and compare with our theoretical prediction. The maximum volume increase for these materials on lithium insertion is significantly smaller than that for Si, whose 400% expansion hinders its cyclability. In the second study, we attempt to gain understanding of recent experimental results of lithium borohydride nanoconfined in highly ordered nanoporous carbon. The carbon environment is modeled as a single sheet of graphene, and adsorption energies are calculated for nanoparticles of the constituent phases of LiBH 4 desorption processes (LiBH4, LiH, lithium and boron). We find good agreement with previous studies of a single lithium atom adsorbed onto graphene. We predict that infiltrated LiBH4 will decompose such that boron is trapped in carbon vacancies, and that the resulting boron doping is required to achieve negative wetting energies for the remaining LiBH4. Desorption enthalpies are found to increase with shrinking cluster sizes, suggesting that the observed lowering of desorption temperatures is a kinetic effect although interactions with the carbon surface itself are predicted to have an overall effect of decreasing the desorption enthalpy .

  12. Metal-doped sodium aluminium hydrides as potential new hydrogen storage materials

    Energy Technology Data Exchange (ETDEWEB)

    Bogdanovic, B. [Max-Planck-Institut fuer Kohlenforschung, Muelheim an der Ruhr (Germany); Brand, R.A. [Department of Physics, Gerhard-Mercator-Universitaet GH Duisburg, D-47048, Duisburg (Germany); Marjanovic, A.; Schwickardi, M.; Toelle, J. [Max-Planck-Institut fuer Kohlenforschung, Kaiser-Wilhelm-Platz 1, D-45470, Muelheim an der Ruhr (Germany)

    2000-04-28

    Thermodynamics and kinetics of the reversible dissociation of metal-doped NaAlH{sub 4} as a hydrogen (or heat) storage system have been investigated in some detail. The experimentally determined enthalpies for the first (3.7 wt% of H) and the second dissociation step of Ti-doped NaAlH{sub 4} (3.0 wt% H) of 37 and 47 kJ/mol are in accordance with low and medium temperature reversible metal hydride systems, respectively. Through variation of NaAlH{sub 4} particle sizes, catalysts (dopants) and doping procedures, kinetics as well as the cyclization stability within cycle tests have been substantially improved with respect to the previous status [B. Bogdanovic, M. Schwickardi (1997)]. In particular, using combinations of Ti and Fe compounds as dopants, a cooperative (synergistic) catalytic effect of the metals Ti and Fe in enhancing rates of both de- and rehydrogenation of Ti/Fe-doped NaAlH{sub 4} within cycle tests, reaching a constant storage capacity of {proportional_to}4 wt% H{sub 2}, has been demonstrated. By means of {sup 57}Fe Moessbauer spectroscopy of the Ti/Fe-doped NaAlH{sub 4} before and throughout a cycle test, it has been ascertained that (1) during the doping procedure, nanosize metallic Fe particles are formed from the doping agent Fe(OEt){sub 2} and (2) already after the first dehydrogenation, the nanosize Fe particles with NaAlH{sub 4} present are probably transformed into an Fe-Al-alloy which throughout the cycle test remains practically unchanged. (orig.)

  13. Influence of hydrides orientation on strain, damage and failure of hydrided zircaloy-4; Influence de l'orientation des hydrures sur les modes de deformation, d'endommagement et de rupture du zircaloy-4 hydrure

    Energy Technology Data Exchange (ETDEWEB)

    Racine, A

    2005-09-15

    In pressurized water reactors of nuclear power plants, fuel pellets are contained in cladding tubes, made of Zirconium alloy, for instance Zircaloy-4. During their life in the primary water of the reactor (155 bars, 300 C), cladding tubes are oxidized and consequently hydrided. A part of the hydrogen given off precipitates as Zirconium hydrides in the bulk material and embrittles the material. This embrittlement depends on many parameters, among which hydrogen content and orientation of hydrides with respect to the applied stress. This investigation is devoted to the influence of the orientation of hydrides with respect to the applied stress on strain, damage and failure mechanisms. Macroscopic and SEM in-situ ring tensile tests are performed on cladding tube material (unirradiated cold worked stress-relieved Zircaloy-4) hydrided with about 200 and 500 wppm hydrogen, and with different main hydrides orientation: either parallel or perpendicular to the circumferential tensile direction. We get the mechanical response of the material as a function of hydride orientation and hydrogen content and we investigate the deformation, damage and failure mechanisms. In both cases, digital image correlation techniques are used to estimate local and global strain distributions. Neither the tensile stress-strain response nor the global and local strain modes are significantly affected by hydrogen content or hydride orientation, but the failure modes are strongly modified. Indeed, only 200 wppm radial hydrides embrittle Zy-4: sample fail in the elastic domain at about 350 MPa before strain bands could develop; whereas in other cases sample reach at least 750 MPa before necking and final failure, in ductile or brittle mode. To model this particular heterogeneous material behavior, a non-coupled damage approach which takes into account the anisotropic distribution of the hydrides is proposed. Its parameters are identified from the macroscopic strain field measurements and a

  14. An extremely bulky tris(pyrazolyl)methanide: a tridentate ligand for the synthesis of heteroleptic magnesium(II) and ytterbium(II) alkyl, hydride, and iodide complexes.

    Science.gov (United States)

    Lalrempuia, Ralte; Stasch, Andreas; Jones, Cameron

    2015-02-01

    The tris(pyrazolyl)methane compound HC(3-Ad-5-Mepz)3 [1, 3-Ad-5-Mepz=3-(1-adamantyl)-5-methylpyrazolyl] and its regioisomer, HC(3-Ad-5-Mepz)2 (3-Me-5-Adpz), were synthesized and crystallographically characterized. Deprotonation of 1 with MeLi afforded the lithium complex [{κ(3) -N-C(3-Ad-5-Mepz)3 }Li(thf)], which incorporates a tris(pyrazolyl)methanide ligand of unprecedented bulk. Reaction of 1 with MeMgI gave the ionic coordination complex [{κ(3) -N-HC(3-Ad-5-Mepz)3 }MgMe]I, which was readily deprotonated to afford the neutral compound [{κ(3) -N-C(3-Ad-5-Mepz)3 }MgMe]. The related magnesium butyl compound [{κ(3) -N-C(3-Ad-5-Mepz)3 }MgBu] was prepared from the reaction of 1 and MgBu2 . Treating this with LiAlH4 or LiAlD4 led to rare examples of terminal magnesium hydride/deuteride complexes, [{κ(3) -N-C(3-Ad-5-Mepz)3 }MgH/D]. All neutral magnesium alkyl and hydride compounds were crystallographically authenticated. Reaction of [{κ(3) κN-C(3-Ad-5-Mepz)3 }Li(thf)] with [YbI2 (thf)2 ] yielded the first structurally characterized f-block tris(pyrazolyl)methanide complex, [{κ(3) -N-C(3-Ad-5-Mepz)3 }YbI(thf)]. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Atomistic simulation of hydrogen dynamics near dislocations in vanadium hydrides

    International Nuclear Information System (INIS)

    Ogawa, Hiroshi

    2015-01-01

    Highlights: • Hydrogen–dislocation interaction was simulated by molecular dynamics method. • Different distribution of H atoms were observed at edge and screw dislocation. • Planner distribution of hydrogen may be caused by partialized edge dislocation. • Hydrogen diffusivity was reduced in both edge and screw dislocation models. • Pipe diffusion was observed for edge dislocation but not for screw dislocation. - Abstract: Kinetics of interstitial hydrogen atoms near dislocation cores were analyzed by atomistic simulation. Classical molecular dynamics method was applied to model structures of edge and screw dislocations in α-phase vanadium hydride. Simulation showed that hydrogen atoms aggregate near dislocation cores. The spatial distribution of hydrogen has a planner shape at edge dislocation due to dislocation partialization, and a cylindrical shape at screw dislocation. Simulated self-diffusion coefficients of hydrogen atoms in dislocation models were a half- to one-order lower than that of dislocation-free model. Arrhenius plot of self-diffusivity showed slightly different activation energies for edge and screw dislocations. Directional dependency of hydrogen diffusion near dislocation showed high and low diffusivity along edge and screw dislocation lines, respectively, hence so called ‘pipe diffusion’ possibly occur at edge dislocation but does not at screw dislocation

  16. Alternatives for metal hydride storage bed heating and cooling

    International Nuclear Information System (INIS)

    Fisher, I.A.; Ramirez, F.B.; Koonce, J.E.; Ward, D.E.; Heung, L.K.; Weimer, M.; Berkebile, W.; French, S.T.

    1991-01-01

    The reaction of hydrogen isotopes with the storage bed hydride material is exothermic during absorption and endothermic during desorption. Therefore, storage bed operation requires a cooling system to remove heat during absorption, and a heating system to add the heat needed for desorption. Three storage bed designs and their associated methods of heating and cooling and accountability are presented within. The first design is the current RTF (Replacement Tritium Facility) nitrogen heating and cooling system. The second design uses natural convection cooling with ambient glove box nitrogen and electrical resistance for heating. This design is referred to as the Naturally Cooled/Electrically Heated (NCEH) design. The third design uses forced convection cooling with ambient glove box nitrogen and electrical resistance for heating. The design is referred to as the Forced Convection Cooled/Electrically Heated (FCCEH) design. In this report the operation, storage bed design, and equipment required for heating, cooling, and accountability of each design are described. The advantages and disadvantages of each design are listed and discussed. Based on the information presented within, it is recommended that the NCEH design be selected for further development

  17. Pressure and high-Tc superconductivity in sulfur hydrides.

    Science.gov (United States)

    Gor'kov, Lev P; Kresin, Vladimir Z

    2016-05-11

    The paper discusses fundamentals of record-TC superconductivity discovered under high pressure in sulfur hydride. The rapid increase of TC with pressure in the vicinity of Pcr ≈ 123GPa is interpreted as the fingerprint of a first-order structural transition. Based on the cubic symmetry of the high-TC phase, it is argued that the lower-TC phase has a different periodicity, possibly related to an instability with a commensurate structural vector. In addition to the acoustic branches, the phonon spectrum of H3S contains hydrogen modes with much higher frequencies. Because of the complex spectrum, usual methods of calculating TC are here inapplicable. A modified approach is formulated and shown to provide realistic values for TC and to determine the relative contributions of optical and acoustic branches. The isotope effect (change of TC upon Deuterium for Hydrogen substitution) originates from high frequency phonons and differs in the two phases. The decrease of TC following its maximum in the high-TC phase is a sign of intermixing with pairing at hole-like pockets which arise in the energy spectrum of the cubic phase at the structural transition. On-pockets pairing leads to the appearance of a second gap and is remarkable for its non-adiabatic regime: hydrogen mode frequencies are comparable to the Fermi energy.

  18. Delayed hydride cracking: alternative pre-cracking method

    International Nuclear Information System (INIS)

    Mieza, Juan I.; Ponzoni, Lucio M.E.; Vigna, Gustavo L.; Domizzi, Gladys

    2009-01-01

    The internal components of nuclear reactors built-in Zr alloys are prone to a failure mechanism known as Delayed Hydride Cracking (DHC). This situation has triggered numerous scientific studies in order to measure the crack propagation velocity and the threshold stress intensity factor associated to DHC. Tests are carried out on fatigued pre-crack samples to ensure similar test conditions and comparable results. Due to difficulties in implementing the fatigue pre-crack method it would be desirable to replace it with a pre-crack produced by the same process of DHC, for which is necessary to demonstrate equivalence of this two methods. In this work tests on samples extracted from two Zr-2.5 Nb tubes were conducted. Some of the samples were heat treated to obtain a range in their metallurgical properties as well as different DHC velocities. A comparison between velocities measured in test samples pre-cracked by fatigue and RDIH is done, demonstrating that the pre-cracking method does not affect the measured velocity value. In addition, the incubation (t inc ), which is the time between the application of the load and the first signal of crack propagation, in samples pre-cracked by RDIH, was measured. It was found that these times are sufficiently short, even in the worst cases (lower speed) and similar to the ones of fatigued pre-cracked samples. (author)

  19. On the thermodynamics of phase transitions in metal hydrides

    Science.gov (United States)

    di Vita, Andrea

    2012-02-01

    Metal hydrides are solutions of hydrogen in a metal, where phase transitions may occur depending on temperature, pressure etc. We apply Le Chatelier's principle of thermodynamics to a particular phase transition in TiH x , which can approximately be described as a second-order phase transition. We show that the fluctuations of the order parameter correspond to fluctuations both of the density of H+ ions and of the distance between adjacent H+ ions. Moreover, as the system approaches the transition and the correlation radius increases, we show -with the help of statistical mechanics-that the statistical weight of modes involving a large number of H+ ions (`collective modes') increases sharply, in spite of the fact that the Boltzmann factor of each collective mode is exponentially small. As a result, the interaction of the H+ ions with collective modes makes a tiny suprathermal fraction of the H+ population appear. Our results hold for similar transitions in metal deuterides, too. A violation of an -insofar undisputed-upper bound on hydrogen loading follows.

  20. Hydride blister formation simulation in Candu type reactors

    International Nuclear Information System (INIS)

    Otero, D.; Bollini, C.; Sangregorio, D.

    1992-01-01

    We have developed a computer code for the probability study of hydride blister formation in pressure tubes named BLIFO. The basic hypothesis of the model are: the pressure tube is divided into five areas according to the existence of four garter springs. For each area the probability of blister formation is the probability of the hydrogen content exceeding a critical threshold when contact tube is present; the probability of a blister in a tube is the OR combination of the probabilities of a blister in each area; the tube contact is a function of the garter springs location, and the time; the critical hydrogen threshold is sorted over the areas within the pressure tube; hydrogen pick-up rate was sorted with a Gaussian distribution; the initial hydrogen content values for each tube were measured before the ensamble and they are used in the code. For Embalse evaluation, we build up a subroutine that simulate Gaussian distribution using the parameters of a typical nuclear power Candu reactor garter spring distribution. (author)

  1. Unloading Effect on Delayed Hydride Cracking in Zirconium Alloys

    International Nuclear Information System (INIS)

    Kim, Young Suk; Kim, Sung Soo

    2010-01-01

    It is well-known that a tensile overload retards not only the crack growth rate (CGR) in zirconium alloys during the delayed hydride cracking (DHC) tests but also the fatigue crack growth rate in metals, the cause of which is unclear to date. A considerable decrease in the fatigue crack growth rate due to overload is suggested to occur due either to the crack closure or to compressive stresses or strains arising from unloading of the overload. However, the role of the crack closure or the compressive stress in the crack growth rate remains yet to be understood because of incomplete understanding of crack growth kinetics. The aim of this study is to resolve the effect of unloading on the CGR of zirconium alloys, which comes in last among the unresolved issues as listed above. To this end, the CGRs of the Zr-2.5Nb tubes were determined at a constant temperature under the cyclic load with the load ratio, R changing from 0.13 to 0.66 where the extent of unloading became higher at the lower R. More direct evidence for the effect of unloading after an overload is provided using Simpson's experiment investigating the effect on the CGR of a Zr-2.5Nb tube of the stress states of the prefatigue crack tip by unloading or annealing after the formation of a pre-fatigue crack

  2. Delayed hydride cracking of Zircaloy-4 fuel cladding

    International Nuclear Information System (INIS)

    Pizarro, Luis M.; Fernandez, Silvia; Lafont, Claudio; Mizrahi, Rafael; Haddad, Roberto

    2007-01-01

    Crack propagation rates, grown by the delayed hydride cracking mechanism, were measured in Zircaloy-4 fuel cladding, according to a Coordinated Research Project (CRP) sponsored by the International Atomic Energy Agency (IAEA). During the first stage of the program a Round Robin Testing was performed on fuel cladding samples provided by Studsvik (Sweden), of the type used in PWR reactors. Crack growth in the axial direction is obtained through the specially developed 'pin load testing' (PLT) device. In these tests, crack propagation rates were determined at 250 C degrees on several samples of the material described above, obtaining a mean value of about 2.5 x 10 -8 m s -1 . The results were analyzed and compared satisfactorily with those obtained by the other laboratories participating in the CRP. At the present moment, similar tests on CANDU and Atucha I type fuel cladding are being performed. It is thought that the obtained results will give valuable information concerning the analysis of possible failures affecting fuel cladding under reactor operation. (author) [es

  3. Technique for production of calibrated metal hydride films

    International Nuclear Information System (INIS)

    Langley, R.A.; Browning, J.F.; Balsley, S.D.; Banks, J.C.; Doyle, B.L.; Wampler, W.R.; Beavis, L.C.

    1999-01-01

    A technique has been developed for producing calibrated metal hydride films for use in the measurement of high-energy (5--15 MeV) particle reaction cross sections for hydrogen and helium isotopes on hydrogen isotopes. Absolute concentrations of various hydrogen isotopes in the film is expected to be determined to better than ±2% leading to the capacity of accurately measuring various reaction cross sections. Hydrogen isotope concentrations from near 100% to 5% can be made accurately and reproducibly. This is accomplished with the use of high accuracy pressure measurements coupled with high accuracy mass spectrometric measurements of each constituent partial pressure of the gas mixture during loading of the metal occluder films. Various techniques are used to verify the amount of metal present as well as the amount of hydrogen isotopes; high energy ion scattering analysis, PV measurements before, during and after loading, and thermal desorption/mass spectrometry measurements. The most appropriate metal to use for the occluder film appears to be titanium but other occluder metals are also being considered. Calibrated gas ratio samples, previously prepared, are used for the loading gas. Deviations from this calibrated gas ratio are measured using mass spectrometry during and after the loading process thereby determining the loading of the various hydrogen isotopes. These techniques are discussed and pertinent issues presented

  4. Effect of introduction atoms on effective exchange field in ferrimagnetic rare earth compounds and 3d-transition metal compounds such as R2Fe17 and RFe11Ti

    International Nuclear Information System (INIS)

    Nikitin, S.A.; Tereshina, I.S

    2003-01-01

    The magnetic properties of the ferrimagnetic compounds R 2 Fe 17 and RFe 11 Ti, as well as their hydrides and nitrides are studied. The change in the exchange fields, effecting the rare earth (RE) ions both from the side of the Fe sublattice and from the side of other RE ions in the process of hydrogenation and nitration is determined and Curie temperature dependence of the source compounds, their hydrides and nitrides on the de Genes factor is identified. It is established that in the course of the light atoms (H and N) introduction into the crystalline lattice of the R 2 Fe 17 and RFe 11 Ti compounds there takes place significant increase in the Curie temperature, in the Fe-Fe exchange interactions and decrease in the R-R interactions. This may be interpreted as the result of the oc curing changes in the electron structures of such compounds and indirect exchange interactions [ru

  5. Equilibrium and kinetic studies of systems of hydrogen isotopes, lithium hydrides, aluminum, and LiAlO2

    International Nuclear Information System (INIS)

    Owen, J.H.; Randall, D.

    1976-01-01

    Tritium might be bred by the 6 Li(n,α)T reaction in a solid lithium alloy or compound in the blanket of a controlled thermonuclear reactor to avoid problems associated with molten lithium or lithium compounds. Li--Al and LiAlO 2 systems containing hydrogen, deuterium, or tritium were studied 10 to 15 years ago at the Savannah River Laboratory. This paper descibes measurements of (1) the distribution of tritium and helium throughout both α and β phases of irradiated Li--Al alloy, (2) the migration rate of tritium to the β phase during moderate heating, (3) equilibrium pressures as functions of temperature of H 2 , D 2 , or T 2 in contact with lithium hydrides + aluminum, Li--Al alloy, or irradiated Li--Al alloy, (4) the equilibrium constant for the reaction LiH + Al → LiAl + 1 / 2 H 2 as a function of temperature, and (5) extraction rates of tritium from irradiated LiAlO 2 targets at elevated temperatures

  6. Experimental study of a metal hydride driven braided artificial pneumatic muscle

    International Nuclear Information System (INIS)

    Vanderhoff, Alexandra; Kim, Kwang J

    2009-01-01

    This paper reports the experimental study of a new actuation system that couples a braided artificial pneumatic muscle (BAPM) with a metal hydride driven hydrogen compressor to create a compact, lightweight, noiseless system capable of high forces and smooth actuation. The results indicate that the metal hydride–BAPM system has relatively good second law efficiency average of 30% over the desorption cycle. The thermal efficiency is low, due mainly to the highly endothermic chemical reaction that releases the stored hydrogen gas from the metal hydride. The force to metal hydride weight is very high (∼14 000 N Force /kg MH ) considering that this system has not been optimized to use the minimum amount of metal hydride required for a full actuation stroke of the fluidic muscle. Also, a thermodynamic model for the complete system is developed. The analysis is restricted in some aspects concerning the complexity of the hydriding/dehydriding chemical process of the system and the three-dimensional geometry of the reactor, but it provides a useful comparison to other actuation devices and clearly reveals the parameters necessary for optimization of the actuation system in future work. The system shows comparable work output and has the benefits of biological muscle-like properties for potential use in robotic systems

  7. Hydrogen transmission/storage with a metal hydride/organic slurry

    Energy Technology Data Exchange (ETDEWEB)

    Breault, R.W.; Rolfe, J.; McClaine, A. [Thermo Power Corp., Waltham, MA (United States)

    1998-08-01

    Thermo Power Corporation has developed a new approach for the production, transmission, and storage of hydrogen. In this approach, a chemical hydride slurry is used as the hydrogen carrier and storage media. The slurry protects the hydride from unanticipated contact with moisture in the air and makes the hydride pumpable. At the point of storage and use, a chemical hydride/water reaction is used to produce high-purity hydrogen. An essential feature of this approach is the recovery and recycle of the spent hydride at centralized processing plants, resulting in an overall low cost for hydrogen. This approach has two clear benefits: it greatly improves energy transmission and storage characteristics of hydrogen as a fuel, and it produces the hydrogen carrier efficiently and economically from a low cost carbon source. The preliminary economic analysis of the process indicates that hydrogen can be produced for $3.85 per million Btu based on a carbon cost of $1.42 per million Btu and a plant sized to serve a million cars per day. This compares to current costs of approximately $9.00 per million Btu to produce hydrogen from $3.00 per million Btu natural gas, and $25 per million Btu to produce hydrogen by electrolysis from $0.05 per Kwh electricity. The present standard for production of hydrogen from renewable energy is photovoltaic-electrolysis at $100 to $150 per million Btu.

  8. Multislice simulations for in-situ HRTEM studies of nanostructured magnesium hydride at ambient hydrogen pressure

    Energy Technology Data Exchange (ETDEWEB)

    Surrey, Alexander, E-mail: a.surrey@ifw-dresden.de [IFW Dresden, Institute for Metallic Materials, P.O. Box 270116, D-01171 Dresden (Germany); Institut für Festkörperphysik, Technische Universität Dresden, D-01062 Dresden (Germany); Schultz, Ludwig [IFW Dresden, Institute for Metallic Materials, P.O. Box 270116, D-01171 Dresden (Germany); Institut für Festkörperphysik, Technische Universität Dresden, D-01062 Dresden (Germany); Rellinghaus, Bernd, E-mail: b.rellinghaus@ifw-dresden.de [IFW Dresden, Institute for Metallic Materials, P.O. Box 270116, D-01171 Dresden (Germany)

    2017-04-15

    Highlights: • Multislice HRTEM contrast simulations of a windowed environmental cell. • Study of Mg and MgH2 nanocrystals as model system in hydrogen at ambient pressure. • Investigation of spatial resolution and contrast depending on specimen thickness, defocus, and hydrogen pressure. • Atomic resolution is expected for specimens as thin as 5  nm. - Abstract: The use of transmission electron microscopy (TEM) for the structural characterization of many nanostructured hydrides, which are relevant for solid state hydrogen storage, is hindered due to a rapid decomposition of the specimen upon irradiation with the electron beam. Environmental TEM allows to stabilize the hydrides by applying a hydrogen back pressure of up to 4.5 bar in a windowed environmental cell. The feasibility of high-resolution TEM (HRTEM) investigations of light weight metals and metal hydrides in such a “nanoreactor” is studied theoretically by means of multislice HRTEM contrast simulations using Mg and its hydride phase, MgH{sub 2}, as model system. Such a setup provides the general opportunity to study dehydrogenation and hydrogenation reactions at the nanoscale under technological application conditions. We analyze the dependence of both the spatial resolution and the HRTEM image contrast on parameters such as the defocus, the metal/hydride thickness, and the hydrogen pressure in order to explore the possibilities and limitations of in-situ experiments with windowed environmental cells. Such simulations may be highly valuable to pre-evaluate future experimental studies.

  9. Multislice simulations for in-situ HRTEM studies of nanostructured magnesium hydride at ambient hydrogen pressure

    International Nuclear Information System (INIS)

    Surrey, Alexander; Schultz, Ludwig; Rellinghaus, Bernd

    2017-01-01

    Highlights: • Multislice HRTEM contrast simulations of a windowed environmental cell. • Study of Mg and MgH2 nanocrystals as model system in hydrogen at ambient pressure. • Investigation of spatial resolution and contrast depending on specimen thickness, defocus, and hydrogen pressure. • Atomic resolution is expected for specimens as thin as 5  nm. - Abstract: The use of transmission electron microscopy (TEM) for the structural characterization of many nanostructured hydrides, which are relevant for solid state hydrogen storage, is hindered due to a rapid decomposition of the specimen upon irradiation with the electron beam. Environmental TEM allows to stabilize the hydrides by applying a hydrogen back pressure of up to 4.5 bar in a windowed environmental cell. The feasibility of high-resolution TEM (HRTEM) investigations of light weight metals and metal hydrides in such a “nanoreactor” is studied theoretically by means of multislice HRTEM contrast simulations using Mg and its hydride phase, MgH_2, as model system. Such a setup provides the general opportunity to study dehydrogenation and hydrogenation reactions at the nanoscale under technological application conditions. We analyze the dependence of both the spatial resolution and the HRTEM image contrast on parameters such as the defocus, the metal/hydride thickness, and the hydrogen pressure in order to explore the possibilities and limitations of in-situ experiments with windowed environmental cells. Such simulations may be highly valuable to pre-evaluate future experimental studies.

  10. Hydrides blister formation and induced embrittlement on zircaloy-4 cladding tubes in reactivity initiated conditions

    International Nuclear Information System (INIS)

    Hellouin-De-Menibus, A.

    2012-01-01

    Our aim is to study the cladding fracture with mechanical tests more representative of RIA conditions, taking into account the hydrides blisters, representative strain rates and stress states. To obtain hydride blisters, we developed a thermodiffusion setup that reproduces blister growth in reactor conditions. By metallography, nano-hardness, XRD and ERDA, we showed that they are constituted by 80% to 100% of δ hydrides in a Zircaloy-4 matrix, and that the zirconium beneath has some radially oriented hydrides. We modeled the blister growth kinetics taking into account the hysteresis of the hydrogen solubility limit and defined the thermal gradient threshold for blister growth. The modeling of the dilatometric behavior of hydrided zirconium indicates the important role of the material crystallographic texture, which could explain differences in the blister shape. Mechanical tests monitored with an infrared camera showed that significant local heating occurred at strain rates higher than 0.1/s. In parallel, the Expansion Due to Compression test was optimized to increase the bi-axiality level from uniaxial stress to plane strain (HB-EDC and VHB-EDC tests). This increase in loading bi-axiality lowers greatly the fracture strain at 25 C and 350 C only in homogeneous material without blister. Eventually, the ductility decrease of unirradiated Zircaloy-4 cladding tube in function of the blister depth was quantified. (author) [fr

  11. Obtention of the constitutive equation of hydride blisters in fuel cladding from nanoindentation tests

    Energy Technology Data Exchange (ETDEWEB)

    Martin Rengel, M.A., E-mail: mamartin.rengel@upm.es [E.T.S.I. Caminos, Canales y Puertos, Universidad Politécnica de Madrid, c/ Profesor Aranguren, 3, E-28040 Madrid (Spain); Gomez, F.J., E-mail: javier.gomez@amsimulation.com [Advanced Material Simulation, AMS, Bilbao (Spain); Rico, A., E-mail: alvaro.rico@urjc.es [DIMME, Universidad Rey Juan Carlos, Mostoles (Spain); Ruiz-Hervias, J. [E.T.S.I. Caminos, Canales y Puertos, Universidad Politécnica de Madrid, c/ Profesor Aranguren, 3, E-28040 Madrid (Spain); Rodriguez, J. [DIMME, Universidad Rey Juan Carlos, Mostoles (Spain)

    2017-04-15

    It is well known that the presence of hydrides in nuclear fuel cladding may reduce its mechanical and fracture properties. This situation may be worsened as a consequence of the formation of hydride blisters. These blisters are zones with an extremely high hydrogen concentration and they are usually associated to the oxide spalling which may occur at the outer surface of the cladding. In this work, a method which allows us to reproduce, in a reliable way, hydride blisters in the laboratory has been devised. Depth-sensing indentation tests with a spherical indenter were conducted on a hydride blister produced in the laboratory with the aim of measuring its mechanical behaviour. The plastic stress-strain curve of the hydride blister was calculated for first time by combining depth-sensing indentation tests results with an iterative algorithm using finite element simulations. The algorithm employed reduces, in each iteration, the differences between the numerical and the experimental results by modifying the stress-strain curve. In this way, an almost perfect adjustment of the experimental data was achieved after several iterations. The calculation of the constitutive equation of the blister from nanoindentation tests, may involve a lack of uniqueness. To evaluate it, a method based on the optimization of parameters of analytical equations has been proposed in this paper. An estimation of the error which involves this method is also provided.

  12. Structural and magnetic transformations in NdMn2Hx hydrides

    International Nuclear Information System (INIS)

    Budziak, A.; Zachariasz, P.; Pełka, R.; Figiel, H.; Żukrowski, J.; Woch, M.W.

    2012-01-01

    Highlights: ► Full structural phase diagram is presented for the NdMn 2 H x (2.0 ≤ x ≤ 4.0) hydrides in the temperature range of 70–385 K. ► For samples x = 2.0, 2.5, and 4.0 a splitting into two phases with different hydrogen concentrations are observed. ► Only for samples with x = 3.0 and 3.5 no spinodal decompositions are detected. ► The effects of hydrogen absorption on structural properties are shown to be reflected in magnetic behavior. ► A huge jump of magnetic ordering temperatures from ∼104 K for host NdMn 2 to above 200 K for its hydrides is observed or anticipated. - Abstract: X-ray powder diffraction and bulk magnetization measurements were used to study structural and magnetic properties of hydrides NdMn 2 H x (2.0 ≤ x ≤ 4.0). The X-ray investigations performed in the temperature range 70–385 K have revealed many structural transformations at low temperatures. In particular, a transformation from the hexagonal to the monoclinic phase and spinodal decompositions were observed. The magnetic behavior of the hydrides is correlated with the structural transitions. A tentative structural diagram is presented. The obtained results are compared with the properties of other cubic and hexagonal RMn 2 H x hydrides.

  13. Kinetic behaviour of low-Co AB5-type metal hydride electrodes

    International Nuclear Information System (INIS)

    Tliha, M.; Boussami, S.; Mathlouthi, H.; Lamloumi, J.; Percheron-Guegan, A.

    2010-01-01

    The kinetic behaviour of the LaNi 3.55 Mn 0.4 Al 0.3 Co 0.4 Fe 0.35 metal hydride, used as a negative electrode in the nickel/metal hydride (Ni/MH) batteries, was investigated using electrochemical impedance spectroscopy (EIS) at different state of charge (SOC). Impedance measurements were performed in the frequency range from 50 kHz to 1 mHz. Electrochemical impedance spectrum of the metal hydride electrode was interpreted by an equivalent circuit including the different electrochemical processes taking place on the interface between the MH electrode and the electrolyte. Electrochemical kinetic parameters such as the charge-transfer resistance R tc , the exchange current density I 0 and the hydrogen diffusion coefficient D H were determined at different state of charge. The results of EIS measurements indicate that the electrochemical reaction activity of the LaNi 3.55 Mn 0.4 Al 0.3 Co 0.4 Fe 0.35 metal hydride electrode was markedly improved with increasing state of charge (SOC). The transformation α-β is probably a limiting step in the mechanisms of hydrogenation of metal hydride electrode.

  14. Behavior and failure of fresh, hydrided and irradiated Zircaloy-4 fuel claddings under RIA conditions

    International Nuclear Information System (INIS)

    Le Saux, M.

    2008-01-01

    The purpose of this study is to characterize and simulate the mechanical behaviour and failure of fresh, hydrided and irradiated (in pressurized water reactors) cold-worked stress relieved Zircaloy-4 fuel claddings under reactivity initiated accident conditions. A model is proposed to describe the anisotropic viscoplastic mechanical behavior of the material as a function of temperature (from 20 C up to 1100 C), strain rate (from 3.10 -4 s -1 up to 5 s -1 ), fluence (from 0 up to 1026 n.m -2 ) and irradiation conditions. Axial tensile, hoop tensile, expansion due to compression and hoop plane strain tensile tests are performed at 25 C, 350 C and 480 C in order to analyse the anisotropic plastic and failure properties of the non-irradiated material hydrided up to 1200 ppm. Material strength and strain hardening depend on temperature and hydrogen in solid solution and precipitated hydride contents. Plastic anisotropy is not significantly modified by hydrogen. The material is embrittled by hydrides at room temperature. The plastic strain that leads to hydride cracking decreases with increasing hydrogen content. The material ductility, which increases with increasing temperature, is not deteriorated by hydrogen at 350 C and 480 C. Macroscopic fracture modes and damage mechanisms depend on specimen geometry, temperature and hydrogen content. A Gurson type model is finally proposed to describe both the anisotropic viscoplastic behavior and the ductile fracture of the material as a function of temperature and hydrogen content. (author) [fr

  15. Determination of antimony by using a quartz atom trap and electrochemical hydride generation atomic absorption spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Menemenlioglu, Ipek; Korkmaz, Deniz [Department of Chemistry, Middle East Technical University, 06531 Ankara (Turkey); Ataman, O. Yavuz [Department of Chemistry, Middle East Technical University, 06531 Ankara (Turkey)], E-mail: ataman@metu.edu.tr

    2007-01-15

    The analytical performance of a miniature quartz trap coupled with electrochemical hydride generator for antimony determination is described. A portion of the inlet arm of the conventional quartz tube atomizer was used as an integrated trap medium for on-line preconcentration of electrochemically generated hydrides. This configuration minimizes transfer lines and connections. A thin-layer of electrochemical flow through cell was constructed. Lead and platinum foils were employed as cathode and anode materials, respectively. Experimental operation conditions for hydride generation as well as the collection and revolatilization conditions for the generated hydrides in the inlet arm of the quartz tube atomizer were optimized. Interferences of copper, nickel, iron, cobalt, arsenic, selenium, lead and tin were examined both with and without the trap. 3{sigma} limit of detection was estimated as 0.053 {mu}g l{sup -1} for a sample size of 6.0 ml collected in 120 s. The trap has provided 18 fold sensitivity improvement as compared to electrochemical hydride generation alone. The accuracy of the proposed technique was evaluated with two standard reference materials; Trace Metals in Drinking Water, Cat CRM-TMDW and Metals on Soil/Sediment 4, IRM-008.

  16. Classical and Statistical Thermodynamics of Unstable Intermetallic Hydrides at Hydrogen Pressures Up to 1,000 Atmospheres

    International Nuclear Information System (INIS)

    Beeri, O.

    2000-11-01

    Thermodynamic and structural studies of numerous intermetallic hydride systems have been performed during the last three decades. Those systems have the potential use for a versatile range of applications such as pure hydrogen storage, heat pumps devices, energy storage, hydrogenation catalysts, thermal compressors, hydrogen purification systems, rechargeable batteries and more. Also, those hydrides have some very interesting fundamental properties related to diffusion studies, gas-solid reactions, isotopic effects, etc. Those applications and fundamentals strongly motivated an extensive research in this field. Most of those studies were limited to the low ( ∼2-x Mn x (0 0, usually the C14 allotrope exists. This property allows for the separation of the compounds properties with respect to their chemical compositions or with respect to their crystallographic structures. The present work includes preparation of the compounds, and their metallurgic, chemical and crystallographic characterization. The reaction of the compounds with hydrogen was studied in a very high-pressure system, which allows pressure-composition (p-c) isotherms measurements of pressures up to 1,000 atm and over a wide range of temperatures. In addition, the reaction of palladium with hydrogen was characterized as well. The palladium-hydrogen system, which is probably the most studied metal-hydrogen system, was chosen to confirm the validity of the experiments and the model calculations. For all samples the isotherms were measured using protium (H 2 ), while in some cases some deuterium (D 2 ) isotherms were measured as well. In this high-pressure range (and actual temperatures) the non-ideality of the gas phase was considered in the isotherm calculations as well as in the thermodynamic calculations. Having the p-c isotherms, the reaction enthalpy change, ΔH, and entropy change, ΔS, were calculated for all systems. Those values of ΔH and ΔS, were found to be in very good agreement with the

  17. Optical hydrogen sensors based on metal-hydrides

    Science.gov (United States)

    Slaman, M.; Westerwaal, R.; Schreuders, H.; Dam, B.

    2012-06-01

    For many hydrogen related applications it is preferred to use optical hydrogen sensors above electrical systems. Optical sensors reduce the risk of ignition by spark formation and are less sensitive to electrical interference. Currently palladium and palladium alloys are used for most hydrogen sensors since they are well known for their hydrogen dissociation and absorption properties at relatively low temperatures. The disadvantages of palladium in sensors are the low optical response upon hydrogen loading, the cross sensitivity for oxygen and carbon, the limited detection range and the formation of micro-cracks after some hydrogen absorption/desorption cycles. In contrast to Pd, we find that the use of magnesium or rear earth bases metal-hydrides in optical hydrogen sensors allow tuning of the detection levels over a broad pressure range, while maintaining a high optical response. We demonstrate a stable detection layer for detecting hydrogen below 10% of the lower explosion limit in an oxygen rich environment. This detection layer is deposited at the bare end of a glass fiber as a micro-mirror and is covered with a thin layer of palladium. The palladium layer promotes the hydrogen uptake at room temperature and acts as a hydrogen selective membrane. To protect the sensor for a long time in air a final layer of a hydrophobic fluorine based coating is applied. Such a sensor can be used for example as safety detector in automotive applications. We find that this type of fiber optic hydrogen sensor is also suitable for hydrogen detection in liquids. As example we demonstrate a sensor for detecting a broad range of concentrations in transformer oil. Such a sensor can signal a warning when sparks inside a high voltage power transformer decompose the transformer oil over a long period.

  18. Metal hydride heat pump engineering demonstration and evaluation model

    Science.gov (United States)

    Lynch, Franklin E.

    1993-01-01

    Future generations of portable life support systems (PLSS's) for space suites (extravehicular mobility units or EMU's) may require regenerable nonventing thermal sinks (RNTS's). For purposes of mobility, a PLSS must be as light and compact as possible. Previous venting PLSS's have employed water sublimators to reject metabolic and equipment heat from EMU's. It is desirable for long-duration future space missions to minimize the use of water and other consumables that need to be periodically resupplied. The emission of water vapor also interferes with some types of instrumentation that might be used in future space exploration. The test article is a type of RNTS based on a metal hydride heat pump (MHHP). The task of reservicing EMU's after use must be made less demanding in terms of time, procedures, and equipment. The capability for quick turnaround post-EVA servicing (30 minutes) is a challenging requirement for many of the RNTS options. The MHHP is a very simple option that can be regenerated in the airlock within the 30 minute limit by the application of a heating source and a cooling sink. In addition, advanced PLSS's must provide a greater degree of automatic control, relieving astronauts of the need to manually adjust temperatures in their liquid cooled ventilation garments (LCVG's). The MHHP includes automatic coolant controls with the ability to follow thermal load swings from minimum to maximum in seconds. The MHHP includes a coolant loop subsystem with pump and controls, regeneration equipment for post-EVA servicing, and a PC-based data acquisition and control system (DACS).

  19. Search for ideal metal hydrides for PEMFC applications

    International Nuclear Information System (INIS)

    Perng, T.-P.; Shen, C.-C.

    2004-01-01

    'Full text:' Previously, an LmNi5-based alloy was prepared and its hydrogenation properties were studied. In order to make use of such a type of metal hydride for application in PEMFC, the room-temperature desorption pressure has to be adjusted to 1-2atm and the cyclic stability has to be maintained. In this study, the same alloy was partially substituted with Al and cyclic hydrogenation was conducted with different hydrogen loadings up to 3000 cycles at room temperature. The saturated hydrogen loadings in equilibrium were controlled at H/M = 0.75 and 1.0. The P-C-T curves after 1000, 2000, and 3000 cycles of test were collected at T=30, 50, and 70 o C. After 3000 cycles, it is observed that the maximum hydrogenation capacities of the samples for the loadings of 0.75 and 1.0 are reduced to 0.93 and 0.91, respectively. The plateaus do not change much for T=30 and 50 o C, but become little sloped without observable split at 70 o C. X-ray diffraction analysis shows that the strains associated with repeated hydrogenation are isotropic for all samples. Both unsubstituted and Al-substituted alloys were then used to store hydrogen in a small cylinder with a diameter 10mm and length of 40 mm. The cylinder was connected to a small PEMFC for discharge test at room temperature. More than 540ml H2 was released at below 2atm and discharged to a capacity of 1200mAh. The hydrogenation properties of the alloys and design of the hydrogen storage cylinder for application in small portable PEMFCs for electronic devices are evaluated. The effect of Al substitution and hydrogen loading on cyclic hydrogenation property of the LmNi5-based alloy is also discussed. (author)

  20. Mechanism of negative hydrogen ion emission from heated saline hydrides

    Energy Technology Data Exchange (ETDEWEB)

    Kawano, Hiroyuki; Serizawa, Naoshi; Takeda, Makiko; Hasegawa, Seiji [Ehime Univ., Matsuyama (Japan). Faculty of Science

    1997-02-01

    To find a clue to the mechanism of negative hydrogen ion emission from a heated sample ({approx}10 mg) of powdery saline hydride (LiH or CaH{sub 2}) deposited on a molybdenum ribbon ({approx}0.1 cm{sup 2}), both the ionic and electronic emission currents were measured as a function of sample temperature ({approx}700 - 800 K), thereby yielding {approx}10{sup -15} - 10{sup -12} A of H{sup -} after mass analysis and {approx}10{sup -7} - 10{sup -5} A of thermal electron. Thermophysical analysis of these data indicates that the desorption energy (E{sup -}) of H{sup -} and work function ({phi}) of the emitting sample surface are 5.1 {+-} 0.3 and 3.1 {+-} 0.2 eV for LiH, respectively, while E{sup -} is 7.7 {+-} 0.3 eV and {phi} is 5.0 {+-} 0.2 eV for CaH{sub 2}. Thermochemical analysis based on our simple model on the emissions indicates that the values of E{sup -} - {phi} are 2.35 and 2.31 eV for LiH and CaH{sub 2}, respectively, which are in fair agreement with the respective values (2.1 {+-} 0.3 and 2.6 {+-} 0.3 eV) determined experimentally. This agreement indicates that the emission of H{sup -} is reasonably explained by our model from the viewpoint of reaction energy. (author)

  1. Conceptual study on HTGR-IS hydrogen supply system using organic hydrides

    International Nuclear Information System (INIS)

    Terada, Atsuhiko; Noguchi, Hiroki; Takegami, Hiroaki; Kamiji, Yu; Inagaki, Yoshiyuki

    2012-02-01

    We have proposed a hydrogen supply-chain system, which is a storage/supply system of large amount of hydrogen produced by HTGR-IS hydrogen production system. The organic chemical hydride method is one of the candidate techniques in the system for hydrogen storage and transportation. In this study, properties of organic hydrides and conventional hydrogen storage/supply system were surveyed to make use of the conceptual design of the hydrogen supply system using an organic hydrides method with VHTR-IS hydrogen production process (hydrogen production: 85,400 Nm 3 /h). Conceptual specifications of the main equipments were designed for the hydrogen supply system consisting of hydrogenation and dehydrogenation process. It was also clarified the problems of hydrogen supply system, such as energy efficiency and system optimization. (author)

  2. Thermal coupling of a high temperature PEM fuel cell with a complex hydride tank

    DEFF Research Database (Denmark)

    Pfeifer, P.; Wall, C.; Jensen, Jens Oluf

    2009-01-01

    the possibilities of a thermal coupling of a high temperature PEM fuel cell operating at 160-200 degrees C. The starting temperatures and temperature hold-times before starting fuel cell operation, the heat transfer characteristics of the hydride storage tanks, system temperature, fuel cell electrical power......Sodium alanate doped with cerium catalyst has been proven to have fast kinetics for hydrogen ab- and de-sorption as well as a high gravimetric storage density around 5 wt%. The kinetics of hydrogen sorption can be improved by preparing the alanate as nanocrystalline material. However, the second...... decomposition step, i.e. the decomposition of the hexahydride to sodium hydride and aluminium which refers to 1.8 wt% hydrogen is supposed to happen above 110 degrees C. The discharge of the material is thus limited by the level of heat supplied to the hydride storage tank. Therefore, we evaluated...

  3. Pulsed laser deposition of air-sensitive hydride epitaxial thin films: LiH

    Energy Technology Data Exchange (ETDEWEB)

    Oguchi, Hiroyuki, E-mail: oguchi@nanosys.mech.tohoku.ac.jp [Department of Nanomechanics, Tohoku University, Sendai 980-8579 (Japan); Micro System Integration Center (muSIC), Tohoku University, Sendai 980-0845 (Japan); Isobe, Shigehito [Creative Research Institution, Hokkaido University, Sapporo 001-0021 (Japan); Graduate School of Engineering, Hokkaido University, Sapporo 060-8628 (Japan); Kuwano, Hiroki [Department of Nanomechanics, Tohoku University, Sendai 980-8579 (Japan); Shiraki, Susumu; Hitosugi, Taro [Advanced Institute for Materials Research (AIMR), Tohoku University, Sendai 980-8577 (Japan); Orimo, Shin-ichi [Advanced Institute for Materials Research (AIMR), Tohoku University, Sendai 980-8577 (Japan); Institute for Materials Research, Tohoku University, Sendai 980-8577 (Japan)

    2015-09-01

    We report on the epitaxial thin film growth of an air-sensitive hydride, lithium hydride (LiH), using pulsed laser deposition (PLD). We first synthesized a dense LiH target, which is key for PLD growth of high-quality hydride films. Then, we obtained epitaxial thin films of [100]-oriented LiH on a MgO(100) substrate at 250 °C under a hydrogen pressure of 1.3 × 10{sup −2} Pa. Atomic force microscopy revealed that the film demonstrates a Stranski-Krastanov growth mode and that the film with a thickness of ∼10 nm has a good surface flatness, with root-mean-square roughness R{sub RMS} of ∼0.4 nm.

  4. Room temperature and thermal decomposition of magnesium hydride/deuteride thin films

    Energy Technology Data Exchange (ETDEWEB)

    Ares, J.R.; Leardini, F.; Bodega, J.; Macia, M.D.; Diaz-Chao, P.; Ferrer, I.J.; Fernandez, J.F.; Sanchez, C. [Universidad Autonoma de Madrid (Spain). Lab. de Materiales de Interes en Energias Renovables

    2010-07-01

    Magnesium hydride (MgH{sub 2}) can be considered an interesting material to store hydrogen as long as two main drawbacks were solved: (i) its high stability and (ii) slow (de)hydriding kinetics. In that context, magnesium hydride films are an excellent model system to investigate the influence of structure, morphology and dimensionality on kinetic and thermodynamic properties. In the present work, we show that desorption mechanism of Pd-capped MgH{sub 2} at room temperature is controlled by a bidimensional interphase mechanism and a similar rate step limiting mechanism is observed during thermal decomposition of MgH{sub 2}. This mechanism is different to that occurring in bulk MgH{sub 2} (nucleation and growth) and obtained activation energies are lower than those reported in bulk MgH{sub 2}. We also investigated the Pd-capping properties upon H-absorption/desorption by means of RBS and isotope experiments. (orig.)

  5. Determination of the population of octahedral and tetrahedral interstitials in zirconium hydrides

    International Nuclear Information System (INIS)

    Fedorov, V.M.; Gogava, V.V.; Shilo, S.I.; Biryukova, E.A.

    1983-01-01

    Results of neutron investigations of ZrHsub(1.66), ZrHsub(1.75) and ZrHsub(1.98) zirconium hydrides are presented. Investigations were conducted using plane polycrystal samples by multidetector system of scattered neutron detection. Neutron diffraction method was used to determine the number of interstitial hydrogen atoms in interstitials of the lattice cell in the case of statistic atom distribution. The numbers of interstitial atoms in octahedral interstitials for zirconium hydrides were determined experimentally; the difference of potential energies of hydrogen atoms in octa- and tetrahedral interstitials was determined as well. It is shown that experimentally determined difference of potential energies of hydrogen atoms, occupying octa- and tetrahedral positions in investigated zirconium hydrides results at room temperature in the pretailing occupation of tetrahedral interstitials by hydrogen atoms (85-90%); the occupation number grows with temperature decrease and the ordering of interstitial vacancies with formation of hydrogen superstructure takes place at low temperatures

  6. Development of Hydrogen Storage Tank Systems Based on Complex Metal Hydrides

    Directory of Open Access Journals (Sweden)

    Morten B. Ley

    2015-09-01

    Full Text Available This review describes recent research in the development of tank systems based on complex metal hydrides for thermolysis and hydrolysis. Commercial applications using complex metal hydrides are limited, especially for thermolysis-based systems where so far only demonstration projects have been performed. Hydrolysis-based systems find their way in space, naval, military and defense applications due to their compatibility with proton exchange membrane (PEM fuel cells. Tank design, modeling, and development for thermolysis and hydrolysis systems as well as commercial applications of hydrolysis systems are described in more detail in this review. For thermolysis, mostly sodium aluminum hydride containing tanks were developed, and only a few examples with nitrides, ammonia borane and alane. For hydrolysis, sodium borohydride was the preferred material whereas ammonia borane found less popularity. Recycling of the sodium borohydride spent fuel remains an important part for their commercial viability.

  7. An Investigation on the Persistence of Uranium Hydride during Storage of Simulant Nuclear Waste Packages.

    Science.gov (United States)

    Stitt, C A; Harker, N J; Hallam, K R; Paraskevoulakos, C; Banos, A; Rennie, S; Jowsey, J; Scott, T B

    2015-01-01

    Synchrotron X-rays have been used to study the oxidation of uranium and uranium hydride when encapsulated in grout and stored in de-ionised water for 10 months. Periodic synchrotron X-ray tomography and X-ray powder diffraction have allowed measurement and identification of the arising corrosion products and the rates of corrosion. The oxidation rates of the uranium metal and uranium hydride were slower than empirically derived rates previously reported for each reactant in an anoxic water system, but without encapsulation in grout. This was attributed to the grout acting as a physical barrier limiting the access of oxidising species to the uranium surface. Uranium hydride was observed to persist throughout the 10 month storage period and industrial consequences of this observed persistence are discussed.

  8. An Investigation on the Persistence of Uranium Hydride during Storage of Simulant Nuclear Waste Packages.

    Directory of Open Access Journals (Sweden)

    C A Stitt

    Full Text Available Synchrotron X-rays have been used to study the oxidation of uranium and uranium hydride when encapsulated in grout and stored in de-ionised water for 10 months. Periodic synchrotron X-ray tomography and X-ray powder diffraction have allowed measurement and identification of the arising corrosion products and the rates of corrosion. The oxidation rates of the uranium metal and uranium hydride were slower than empirically derived rates previously reported for each reactant in an anoxic water system, but without encapsulation in grout. This was attributed to the grout acting as a physical barrier limiting the access of oxidising species to the uranium surface. Uranium hydride was observed to persist throughout the 10 month storage period and industrial consequences of this observed persistence are discussed.

  9. Development of Hydrogen Storage Tank Systems Based on Complex Metal Hydrides

    Science.gov (United States)

    Ley, Morten B.; Meggouh, Mariem; Moury, Romain; Peinecke, Kateryna; Felderhoff, Michael

    2015-01-01

    This review describes recent research in the development of tank systems based on complex metal hydrides for thermolysis and hydrolysis. Commercial applications using complex metal hydrides are limited, especially for thermolysis-based systems where so far only demonstration projects have been performed. Hydrolysis-based systems find their way in space, naval, military and defense applications due to their compatibility with proton exchange membrane (PEM) fuel cells. Tank design, modeling, and development for thermolysis and hydrolysis systems as well as commercial applications of hydrolysis systems are described in more detail in this review. For thermolysis, mostly sodium aluminum hydride containing tanks were developed, and only a few examples with nitrides, ammonia borane and alane. For hydrolysis, sodium borohydride was the preferred material whereas ammonia borane found less popularity. Recycling of the sodium borohydride spent fuel remains an important part for their commercial viability. PMID:28793541

  10. Titanium tritide radioisotope heat source development: palladium-coated titanium hydriding kinetics and tritium loading tests

    International Nuclear Information System (INIS)

    Van Blarigan, Peter; Shugard, Andrew D.; Walters, R. Tom

    2012-01-01

    We have found that a 180 nm palladium coating enables titanium to be loaded with hydrogen isotopes without the typical 400-500 C vacuum activation step. The hydriding kinetics of Pd coated Ti can be described by the Mintz-Bloch adherent film model, where the rate of hydrogen absorption is controlled by diffusion through an adherent metal-hydride layer. Hydriding rate constants of Pd coated and vacuum activated Ti were found to be very similar. In addition, deuterium/tritium loading experiments were done on stacks of Pd coated Ti foil in a representative-size radioisotope heat source vessel. The experiments demonstrated that such a vessel could be loaded completely, at temperatures below 300 C, in less than 10 hours, using existing department-of-energy tritium handling infrastructure.

  11. Interaction of electrons with light metal hydrides in the transmission electron microscope.

    Science.gov (United States)

    Wang, Yongming; Wakasugi, Takenobu; Isobe, Shigehito; Hashimoto, Naoyuki; Ohnuki, Somei

    2014-12-01

    Transmission electron microscope (TEM) observation of light metal hydrides is complicated by the instability of these materials under electron irradiation. In this study, the electron kinetic energy dependences of the interactions of incident electrons with lithium, sodium and magnesium hydrides, as well as the constituting element effect on the interactions, were theoretically discussed, and electron irradiation damage to these hydrides was examined using in situ TEM. The results indicate that high incident electron kinetic energy helps alleviate the irradiation damage resulting from inelastic or elastic scattering of the incident electrons in the TEM. Therefore, observations and characterizations of these materials would benefit from increased, instead decreased, TEM operating voltage. © The Author 2014. Published by Oxford University Press on behalf of The Japanese Society of Microscopy. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  12. Manufacturing and investigation of U-Mo LEU fuel granules by hydride-dehydride processing

    International Nuclear Information System (INIS)

    Stetskiy, Y.A.; Trifonov, Y.I.; Mitrofanov, A.V.; Samarin, V.I.

    2002-01-01

    Investigations of hydride-dehydride processing for comminution of U-Mo alloys with Mo content in the range 1.9/9.2% have been performed. Some regularities of the process as a function of Mo content have been determined as well as some parameters elaborated. Hydride-dehydride processing has been shown to provide necessary phase and chemical compositions of U-Mo fuel granules to be used in disperse fuel elements for research reactors. Pin type disperse mini-fuel elements for irradiation tests in the loop of 'MIR' reactor (Dmitrovgrad) have been fabricated using U-Mo LEU fuel granules obtained by hydride-dehydride processing. Irradiation tests of these mini-fuel elements loaded to 4 g U tot /cm 3 are planned to start by the end of this year. (author)

  13. Atom Probe Analysis of Ex Situ Gas-Charged Stable Hydrides.

    Science.gov (United States)

    Haley, Daniel; Bagot, Paul A J; Moody, Michael P

    2017-04-01

    In this work, we report on the atom probe tomography analysis of two metallic hydrides formed by pressurized charging using an ex situ hydrogen charging cell, in the pressure range of 200-500 kPa (2-5 bar). Specifically we report on the deuterium charging of Pd/Rh and V systems. Using this ex situ system, we demonstrate the successful loading and subsequent atom probe analysis of deuterium within a Pd/Rh alloy, and demonstrate that deuterium is likely present within the oxide-metal interface of a native oxide formed on vanadium. Through these experiments, we demonstrate the feasibility of ex situ hydrogen analysis for hydrides via atom probe tomography, and thus a practical route to three-dimensional imaging of hydrogen in hydrides at the atomic scale.

  14. Hydride heat pump. Volume I. Users manual for HYCSOS system design program. [HYCSOS code

    Energy Technology Data Exchange (ETDEWEB)

    Gorman, R.; Moritz, P.

    1978-05-01

    A method for the design and costing of a metal hydride heat pump for residential use and a computer program, HYCSOS, which automates that method are described. The system analyzed is one in which a metal hydride heat pump can provide space heating and space cooling powered by energy from solar collectors and electric power generated from solar energy. The principles and basic design of the system are presented, and the computer program is described giving detailed design and performance equations used in the program. The operation of the program is explained, and a sample run is presented. This computer program is part of an effort to design, cost, and evaluate a hydride heat pump for residential use. The computer program is written in standard Fortran IV and was run on a CDC Cyber 74 and Cyber 174 computer. A listing of the program is included as an appendix. This report is Volume 1 of a two-volume document.

  15. Pulsed laser deposition of air-sensitive hydride epitaxial thin films: LiH

    International Nuclear Information System (INIS)

    Oguchi, Hiroyuki; Isobe, Shigehito; Kuwano, Hiroki; Shiraki, Susumu; Hitosugi, Taro; Orimo, Shin-ichi

    2015-01-01

    We report on the epitaxial thin film growth of an air-sensitive hydride, lithium hydride (LiH), using pulsed laser deposition (PLD). We first synthesized a dense LiH target, which is key for PLD growth of high-quality hydride films. Then, we obtained epitaxial thin films of [100]-oriented LiH on a MgO(100) substrate at 250 °C under a hydrogen pressure of 1.3 × 10 −2 Pa. Atomic force microscopy revealed that the film demonstrates a Stranski-Krastanov growth mode and that the film with a thickness of ∼10 nm has a good surface flatness, with root-mean-square roughness R RMS of ∼0.4 nm

  16. Preliminary data from lithium hydride ablation tests conducted by NASA, Ames Research Center

    International Nuclear Information System (INIS)

    Elliott, R.D.

    1970-01-01

    A series of ablation tests of lithium hydride has been made by NASA-Ames in one of their high-enthalpy arc-heated wind tunnels. Two-inch diameter cylindrical samples of the hydride, supplied by A. I., were subjected to heating on their ends for time periods up to 10 seconds. After each test, the amount of material removed from each sample was measured. The rates of loss of material were correlated with the heat input rates in terms of a heat of ablation, which ranged from 2100 to 3500 Btu/lb. The higher values were obtained when the hydride contained a matrix such as steel honeycomb of steel wool. (U.S.)

  17. Effects of gas phase impurities on the topochemical-kinetic behaviour of uranium hydride development

    International Nuclear Information System (INIS)

    Bloch, J.; Brami, D.; Kremner, A.; Mintz, M.H.; Ben-Gurion Univ. of the Negev, Beersheba

    1988-01-01

    The hydriding kinetics of bulk uranium and U-0.1 wt.% Cr, in the presence of oxidizing gaseous impurities (oxygen and CO), were studied by combined rate measurements and metallographic examinations of partially reacted samples. The effect of the gaseous impurity (type and concentration) was examined metallographically, and the kinetic data were discussed in relation to these examinations. Below about 100 0 C the reaction of uranium with pure hydrogen consists of the following sequence of steps: (i) Surface nucleation; (ii) homogeneous growth (pitting); (iii) relatively fast lateral growth leading to the formation of a reaction front which penetrates into the sample at a constant rate. The effects of oxygen and CO on the hydriding kinetics were related to their abilities to block hydrogen penetration into the uranium. Thus, it was found that oxygen affects only the penetration through the oxide layer, whereas CO affects the penetration through both the oxide and hydride layers. (orig.)

  18. Effects of H-H interactions on the heat of H absorption by β and delta Zr hydrides

    International Nuclear Information System (INIS)

    Ohta, Yutaka; Mabuchi, Mahito; Naito, Shizuo; Hashino, Tomoyasu

    1987-01-01

    The heat of H absorption by β and delta Zr hydrides has been measured by isoperibol calorimetry over the range of H concentration 0.1 - 1.6 H/Zr at temperatures 873-1273 K. In the β hydride the heat per H atom (differential heat) increases and then decreases as the H concentration increases. In the delta hydride only a decrease at large H concentrations is clearly observed. The increase in the β hydride is related by self-consistent calculations to a pair indirect interaction between H atoms; the decreases in the β and delta hydrides are due to a pair direct interaction which is of the form of a screened Coulomb potential. The differential heat is estimated from the pair indirect and direct interactions by the use of Monte Carlo simulations and compared with the measured differential heat. (author)

  19. High-efficiency heat pump technology using metal hydrides (eco-energy city project)

    Energy Technology Data Exchange (ETDEWEB)

    Morita, Y.; Harada, T.; Niikura, J.; Yamamoto, Y.; Suzuki, J. [Human Environmental Systems Development Center, Matsushita Electric Industrial Co., Ltd., Moriguchi, Osaka (Japan); Gamo, T. [Corporate Environmental Affairs Div., Matsushita Electric Industrial Co., Ltd., Kadoma, Osaka (Japan)

    1999-07-01

    Metal hybrides are effective materials for utilizing hydrogen as a clean energy medium. That is, when the metal hydrides absorb or desorb the hydrogen, a large heat output of reaction occurs. So, the metal hydrides can be applied to a heat pump. We have researched on a high efficiency heat pump technology using their metal hydrides. In this report, a double effect type metal hydride heat pump configuration is described in which the waste heat of 160 C is recovered in a factory cite and transported to areas far distant from the industrial district. In the heat recovery unit, a low pressure hydrogen is converted into highly effective high pressure hydrogen by applying the metal hydrides. Other metal hydrides perform the parts of heating by absorbing the hydrogen and cooling by desorbing the hydrogen in the heat supply unit. One unit scale of the system is 3 kW class as the sum of heating and cooling. This system using the hydrogen absorbing alloy also has good energy storage characteristics and ambient hydrogen pressure self-safety control ability. Furthermore, this heating and cooling heat supply system is not harmful to the natural environment because it is a chlorofluorocarbon-free, and low noise type system. We have developed in the following element technologies to attain the above purposes, that is development of hydrogen absorbing alloys with high heat outputs and technologies to construct the heat pump system. This study is proceeded at present as one of the programs in New Sunshine Project, which aims for development of ingenious energy utilization technology to achieve reduction of primary energy consumption with keeping cultural and wealthy life and preventing deterioration of global environment. (orig.)

  20. Combined effects of radiation damage and hydrides on the ductility of Zircaloy-2

    International Nuclear Information System (INIS)

    Wisner, S.B.; Adamson, R.B.

    1998-01-01

    Interest remains high regarding the effects of zirconium hydride precipitates on the ductility of reactor Zircaloy components, particularly in irradiated material. Previous studies have reported that ductility reductions are much greater at room temperature compared to reactor component temperatures. It is often concluded that the effects of irradiation dominate the ductility reduction observed in test specimens, although there is no consensus as to whether hydriding effects are additive. Many of the tests reported in the literature are difficult to interpret due to variations in test specimen geometry and material history. In this paper, we present the results of an experimental program aimed at clearly describing the combined effects of irradiation and hydriding on ductility parameters under conditions of a realistic test specimen design and well characterized hydride content, distribution and orientation. Experiments were conducted at 295 and 605 K, respectively on Zircaloy-2 tubing segments containing 10-800 ppm hydrogen and neutron fluences between 0.9 x 10 25 nm -2 (E>1 MeV). Tests utilized the well proven localized ductility specimen which applies plane strain tension in the hoop direction of the tubing segment. In all cases, hydrides were also oriented in the hoop or circumferential direction and were uniformly distributed across the tubing wall. Results indicate that at 605 K, the ductility of irradiated material was almost independent of hydride content, retaining above 4% uniform elongation and 25% reduction in an area for the highest fluences and hydrogen contents. Even at 295 K, measurable ductility was retained for irradiated material with up to 600 ppm hydrogen. In the paper, results of fractographic analyses and strain rate are also discussed