WorldWideScience

Sample records for hydrazine-hydrogen peroxide fuel

  1. Sodium Borohydride/Hydrogen Peroxide Fuel Cells For Space Application

    Science.gov (United States)

    Valdez, T. I.; Deelo, M. E.; Narayanan, S. R.

    2006-01-01

    This viewgraph presentation examines Sodium Borohydride and Hydrogen Peroxide Fuel Cells as they are applied to space applications. The topics include: 1) Motivation; 2) The Sodium Borohydride Fuel Cell; 3) Sodium Borohydride Fuel Cell Test Stands; 4) Fuel Cell Comparisons; 5) MEA Performance; 6) Anode Polarization; and 7) Electrode Analysis. The benefits of hydrogen peroxide as an oxidant and benefits of sodium borohydride as a fuel are also addressed.

  2. Hydrogen Peroxide as a Sustainable Energy Carrier: Electrocatalytic Production of Hydrogen Peroxide and the Fuel Cell.

    Science.gov (United States)

    Fukuzumi, Shunichi; Yamada, Yusuke; Karlin, Kenneth D

    2012-11-01

    This review describes homogeneous and heterogeneous catalytic reduction of dioxygen with metal complexes focusing on the catalytic two-electron reduction of dioxygen to produce hydrogen peroxide. Whether two-electron reduction of dioxygen to produce hydrogen peroxide or four-electron O2-reduction to produce water occurs depends on the types of metals and ligands that are utilized. Those factors controlling the two processes are discussed in terms of metal-oxygen intermediates involved in the catalysis. Metal complexes acting as catalysts for selective two-electron reduction of oxygen can be utilized as metal complex-modified electrodes in the electrocatalytic reduction to produce hydrogen peroxide. Hydrogen peroxide thus produced can be used as a fuel in a hydrogen peroxide fuel cell. A hydrogen peroxide fuel cell can be operated with a one-compartment structure without a membrane, which is certainly more promising for the development of low-cost fuel cells as compared with two compartment hydrogen fuel cells that require membranes. Hydrogen peroxide is regarded as an environmentally benign energy carrier because it can be produced by the electrocatalytic two-electron reduction of O2, which is abundant in air, using solar cells; the hydrogen peroxide thus produced could then be readily stored and then used as needed to generate electricity through the use of hydrogen peroxide fuel cells.

  3. Hydrogen Peroxide as a Sustainable Energy Carrier: Electrocatalytic Production of Hydrogen Peroxide and the Fuel Cell

    Science.gov (United States)

    Fukuzumi, Shunichi; Yamada, Yusuke; Karlin, Kenneth D.

    2012-01-01

    This review describes homogeneous and heterogeneous catalytic reduction of dioxygen with metal complexes focusing on the catalytic two-electron reduction of dioxygen to produce hydrogen peroxide. Whether two-electron reduction of dioxygen to produce hydrogen peroxide or four-electron O2-reduction to produce water occurs depends on the types of metals and ligands that are utilized. Those factors controlling the two processes are discussed in terms of metal-oxygen intermediates involved in the catalysis. Metal complexes acting as catalysts for selective two-electron reduction of oxygen can be utilized as metal complex-modified electrodes in the electrocatalytic reduction to produce hydrogen peroxide. Hydrogen peroxide thus produced can be used as a fuel in a hydrogen peroxide fuel cell. A hydrogen peroxide fuel cell can be operated with a one-compartment structure without a membrane, which is certainly more promising for the development of low-cost fuel cells as compared with two compartment hydrogen fuel cells that require membranes. Hydrogen peroxide is regarded as an environmentally benign energy carrier because it can be produced by the electrocatalytic two-electron reduction of O2, which is abundant in air, using solar cells; the hydrogen peroxide thus produced could then be readily stored and then used as needed to generate electricity through the use of hydrogen peroxide fuel cells. PMID:23457415

  4. Dissolution of spent nuclear fuel in carbonate-peroxide solution

    Science.gov (United States)

    Soderquist, Chuck; Hanson, Brady

    2010-01-01

    This study shows that spent UO2 fuel can be completely dissolved in a room temperature carbonate-peroxide solution apparently without attacking the metallic Mo-Tc-Ru-Rh-Pd fission product phase. In parallel tests, identical samples of spent nuclear fuel were dissolved in nitric acid and in an ammonium carbonate, hydrogen peroxide solution. The resulting solutions were analyzed for strontium-90, technetium-99, cesium-137, europium-154, plutonium, and americium-241. The results were identical for all analytes except technetium, where the carbonate-peroxide dissolution had only about 25% of the technetium that the nitric acid dissolution had.

  5. Hydrogen peroxide oxidant fuel cell systems for ultra-portable applications

    Science.gov (United States)

    Valdez, T. I.; Narayanan, S. R.

    2001-01-01

    This paper will address the issues of using hydrogen peroxide as an oxidant fuel in a miniature DMFC system. Cell performance for DMFC based fuel cells operating on hydrogen peroxide will be presented and discussed.

  6. Hydrogen peroxide oxidant fuel cell systems for ultra-portable applications

    Science.gov (United States)

    Valdez, T. I.; Narayanan, S. R.

    2001-01-01

    This paper will address the issues of using hydrogen peroxide as an oxidant fuel in a miniature DMFC system. Cell performance for DMFC based fuel cells operating on hydrogen peroxide will be presented and discussed.

  7. Compatibility Studies of Hydrogen Peroxide and a New Hypergolic Fuel Blend

    Science.gov (United States)

    Baldridge, Jennifer; Villegas, Yvonne

    2002-01-01

    Several preliminary materials compatibility studies have been conducted to determine the practicality of a new hypergolic fuel system. Hypergolic fuel ignites spontaneously as the oxidizer decomposes and releases energy in the presence of the fuel. The bipropellant system tested consists of high-test hydrogen peroxide (HTP) and a liquid fuel blend consisting of a hydrocarbon fuel, an ignition enhancer and a transition metal catalyst. In order for further testing of the new fuel blend to take place, some basic materials compatibility and HTP decomposition studies must be accomplished. The thermal decomposition rate of HTP was tested using gas evolution and isothermal microcalorimetry (IMC). Materials were analyzed for compatibility with hydrogen peroxide including a study of the affect welding has on stainless steel elemental composition and its relation to HTP decomposition. Compatibility studies of valve materials in the fuel blend were performed to determine the corrosion resistance of the materials.

  8. Hydrogen Peroxide as a Sustainable Energy Carrier: Electrocatalytic Production of Hydrogen Peroxide and the Fuel Cell

    OpenAIRE

    Fukuzumi, Shunichi; Yamada, Yusuke; Karlin, Kenneth D.

    2012-01-01

    This review describes homogeneous and heterogeneous catalytic reduction of dioxygen with metal complexes focusing on the catalytic two-electron reduction of dioxygen to produce hydrogen peroxide. Whether two-electron reduction of dioxygen to produce hydrogen peroxide or four-electron O2-reduction to produce water occurs depends on the types of metals and ligands that are utilized. Those factors controlling the two processes are discussed in terms of metal-oxygen intermediates involved in the ...

  9. Power generation in fuel cells using liquid methanol and hydrogen peroxide

    Science.gov (United States)

    Narayanan, Sekharipuram R. (Inventor); Valdez, Thomas I. (Inventor); Chun, William (Inventor)

    2002-01-01

    The invention is directed to an encapsulated fuel cell including a methanol source that feeds liquid methanol (CH.sub.3 OH) to an anode. The anode is electrical communication with a load that provides electrical power. The fuel cell also includes a hydrogen peroxide source that feeds liquid hydrogen peroxide (H.sub.2 O.sub.2) to the cathode. The cathode is also in communication with the electrical load. The anode and cathode are in contact with and separated by a proton-conducting polymer electrolyte membrane.

  10. Artificial photosynthesis for production of hydrogen peroxide and its fuel cells.

    Science.gov (United States)

    Fukuzumi, Shunichi

    2016-05-01

    The reducing power released from photosystem I (PSI) via ferredoxin enables the reduction of NADP(+) to NADPH, which is essential in the Calvin-Benson cycle to make sugars in photosynthesis. Alternatively, PSI can reduce O2 to produce hydrogen peroxide as a fuel. This article describes the artificial version of the photocatalytic production of hydrogen peroxide from water and O2 using solar energy. Hydrogen peroxide is used as a fuel in hydrogen peroxide fuel cells to make electricity. The combination of the photocatalytic H2O2 production from water and O2 using solar energy with one-compartment H2O2 fuel cells provides on-site production and usage of H2O2 as a more useful and promising solar fuel than hydrogen. This article is part of a Special Issue entitled Biodesign for Bioenergetics--The design and engineering of electronc transfer cofactors, proteins and protein networks, edited by Ronald L. Koder and J.L. Ross Anderson.

  11. A Self-Supported Direct Borohydride-Hydrogen Peroxide Fuel Cell System

    Directory of Open Access Journals (Sweden)

    Ashok K. Shukla

    2009-04-01

    Full Text Available A self-supported direct borohydride-hydrogen peroxide fuel cell system with internal manifolds and an auxiliary control unit is reported. The system, while operating under ambient conditions, delivers a peak power of 40 W with about 2 W to run the auxiliary control unit. A critical cause and effect analysis, on the data for single cells and stack, suggests the optimum concentrations of fuel and oxidant to be 8 wt. % NaBH4 and 2 M H2O2, respectively in extending the operating time of the system. Such a fuel cell system is ideally suited for submersible and aerospace applications where anaerobic conditions prevail.

  12. Fuel ethanol production from alkaline peroxide pretreated corn stover

    Science.gov (United States)

    Corn stover (CS) has the potential to serve as an abundant low-cost feedstock for production of fuel ethanol. Due to heterogeneous complexity and recalcitrance of lignocellulosic feedstocks, pretreatment is required to break the lignin seal and/or disrupt the structure of crystalline cellulose to in...

  13. Dissolution of Irradiated Commercial UO2 Fuels in Ammonium Carbonate and Hydrogen Peroxide

    Energy Technology Data Exchange (ETDEWEB)

    Soderquist, Chuck Z.; Johnsen, Amanda M.; McNamara, Bruce K.; Hanson, Brady D.; Chenault, Jeffrey W.; Carson, Katharine J.; Peper, Shane M.

    2011-01-18

    We propose and test a disposition path for irradiated nuclear fuel using ammonium carbonate and hydrogen peroxide media. We demonstrate on a 13 g scale that >98% of the irradiated fuel dissolves. Subsequent expulsion of carbonate from the dissolver solution precipitates >95% of the plutonium, americium, curium, and substantial amounts of fission products, effectively partitioning the fuel at the dissolution step. Uranium can be easily recovered from solution by any of several means, such as ion exchange, solvent extraction, or direct precipitation. Ammonium carbonate can be evaporated from solution and recovered for re-use, leaving an extremely compact volume of fission products, transactinides, and uranium. Stack emissions are predicted to be less toxic, less radioactive, chemically simpler, and simpler to treat than those from the conventional PUREX process.

  14. Controlled Hydrogen Peroxide Decomposition for a Solid Oxide Fuel Cell (SOFC) Oxidant Source with a Microreactor Model

    Science.gov (United States)

    2007-10-01

    microchannel reactor for hydrogen peroxide decomposition is being developed for integration with fuel cell systems that can power undersea vehicles...the subunits of a microchemical reactor system. The basis of the present model is a microchannel reactor . The model description, governing equations...the 2007 COMSOL Users Conference Boston, 4-6 Oct, Newton. MA 14. ABSTRACT A microchannel reactor for hydrogen peroxide decomposition is being

  15. A new cathode using CeO2/MWNT for hydrogen peroxide synthesis through a fuel cell

    Institute of Scientific and Technical Information of China (English)

    XU Fuyuan; SONG Tianshun; XU Yuan; CHEN Yingwen; ZHU Shemin; SHEN Shubao

    2009-01-01

    Catalyst using CeO2/MWNT (multi-walled carbon nanotube) was prepared by chemical deposition method and was applied to prepare the cathode of fuel cell for hydrogen peroxide synthesis. Effect of catalyst loading, flow rate of aqueous solution, and KOH concentration on hydrogen peroxide synthesis were investigated. Experimental results indicated that hydrogen peroxide concentration approached 275 mmol/L given 25% of CeO2/MWNT, 18 ml/h of aqueous solution, and 5 mol/L of KOH concentration. Moreover, the reaction mechanism was further discussed. The results indicated that MWNT and cerium oxide were the synergism to produce hydrogen peroxide. Increase of KOH concentration not only reduced the apparent cell resistance but also increased the open-circuit voltage.

  16. Drinking water purification by electrosynthesis of hydrogen peroxide in a power-producing PEM fuel cell.

    Science.gov (United States)

    Li, Winton; Bonakdarpour, Arman; Gyenge, Előd; Wilkinson, David P

    2013-11-01

    The industrial anthraquinone auto-oxidation process produces most of the world's supply of hydrogen peroxide. For applications that require small amounts of H2 O2 or have economically difficult transportation means, an alternate, on-site H2 O2 production method is needed. Advanced drinking water purification technologies use neutral-pH H2 O2 in combination with UV treatment to reach the desired water purity targets. To produce neutral H2 O2 on-site and on-demand for drinking water purification, the electroreduction of oxygen at the cathode of a proton exchange membrane (PEM) fuel cell operated in either electrolysis (power consuming) or fuel cell (power generating) mode could be a possible solution. The work presented here focuses on the H2 /O2 fuel cell mode to produce H2 O2 . The fuel cell reactor is operated with a continuous flow of carrier water through the cathode to remove the product H2 O2 . The impact of the cobalt-carbon composite cathode catalyst loading, Teflon content in the cathode gas diffusion layer, and cathode carrier water flowrate on the production of H2 O2 are examined. H2 O2 production rates of up to 200 μmol h(-1)  cmgeometric (-2) are achieved using a continuous flow of carrier water operating at 30 % current efficiency. Operation times of more than 24 h have shown consistent H2 O2 and power production, with no degradation of the cobalt catalyst.

  17. Enhancement of direct urea-hydrogen peroxide fuel cell performance by three-dimensional porous nickel-cobalt anode

    Science.gov (United States)

    Guo, Fen; Cao, Dianxue; Du, Mengmeng; Ye, Ke; Wang, Guiling; Zhang, Wenping; Gao, Yinyi; Cheng, Kui

    2016-03-01

    A novel three-dimensional (3D) porous nickel-cobalt (Ni-Co) film on nickel foam is successfully prepared and further used as an efficient anode for direct urea-hydrogen peroxide fuel cell (DUHPFC). By varying the cobalt/nickel mole ratios into 0%, 20%, 50%, 80% and 100%, the optimized Ni-Co/Ni foam anode with a ratio of 80% is obtained in terms of the best cell performance among five anodes. Effects of the KOH and urea concentrations, the flow rate and operation temperature on the fuel cell performance are investigated. Results show DUHPFC with the 3D Ni-Co/Ni foam anode exhibits a higher performance than those reported direct urea fuel cells. The cell gives an open circuit voltage of 0.83 V and a peak power density as high as 17.4 and 31.5 mW cm-2 at 20 °C and 70 °C, respectively, when operating on 7.0 mol L-1 KOH and 0.5 mol L-1 urea as the fuel at a flow rate of 15 mL min-1. Besides, when the human urine is directly fed as the fuel, direct urine-hydrogen peroxide fuel cell reaches a maximum power density of 7.5 mW cm-2 with an open circuit voltage of 0.80 V at 20 °C, showing a good application prospect in wastewater treatment.

  18. The Performance of a Direct Borohydride/Peroxide Fuel Cell Using Graphite Felts as Electrodes

    Directory of Open Access Journals (Sweden)

    Heng-Yi Lee

    2017-08-01

    Full Text Available A direct borohydride/peroxide fuel cell (DBPFC generates electrical power by recirculating liquid anolyte and catholyte between the stack and reservoirs, which is similar to the operation of flow batteries. To enhance the accessibility of the catalyst layer to the liquid anolyte/catholyte, graphite felts are employed as the porous diffusion layer of a single-cell DBPFC instead of carbon paper/cloth. The effects of the type of anode alkaline solution and operating conditions, including flow rate and temperature of the anolyte/catholyte, on DBPFC performance are investigated and discussed. The durability of the DBPFC is also evaluated by galvanostatic discharge at 0.1 A∙cm−2 for over 50 h. The results of this preliminary study show that a DBPFC with porous graphite electrodes can provide a maximum power density of 0.24 W∙cm−2 at 0.8 V. The performance of the DBPFC drops slightly after 50 h of operation; however, the discharge capacity shows no significant decrease.

  19. Potential for Peroxide and Gum Formation in Ultra-Low-Sulfur Diesel Fuels

    Science.gov (United States)

    2007-10-31

    Study of the Thermal Decomposition of Cumene Hydroperoxide and Fuel Instability Reactions , Energy & Fuels, 1994, 8, 851. 3. Fodor, G. E.; Naegeli...the fuel. These chemical processes can lead to changes in color; the development of insoluble reaction products, including soluble and adherent gums...fuels. The LPR test uses elevated temperatures (100 oC) and air overpressures (50 psi) to increase the rate of oxidation reactions in the fuel. The

  20. Oxidative Desulfurization of Diesel Fuel with Hydrogen Peroxide Using Na2WO4 s Catalyst

    Institute of Scientific and Technical Information of China (English)

    Sun Xin; Long Jun; Xu Benjing; Xie Chaogang

    2009-01-01

    Oxidative desulfurization was performed on Na2WO4 catalyst in the presence of hydrogen peroxide and acetic acid under mild reaction conditions (atmospheric pressure and temperature range of 293-343 K). Different organic com-pounds including benzothiophene (BT), dibenzothiophene (DBT), 4, 6-dimethyl dibenzothiophene (4, 6-DMDBT) were used to investigate the reactivity of this catalyst, and the effect of various parameters, such as temperature, solvents and the amount of oxidant reagent used in oxidative desulfurization reaction, was also examined. The results showed that the Na2WO4-H2O2 system was very effective for oxidative desulfurization, and the oxidation of BT, DBT and 4, 6-DMDBT was influ-enced by different parameters.

  1. Reduced Toxicity Fuel Satellite Propulsion System Including Catalytic Decomposing Element with Hydrogen Peroxide

    Science.gov (United States)

    Schneider, Steven J. (Inventor)

    2002-01-01

    A reduced toxicity fuel satellite propulsion system including a reduced toxicity propellant supply for consumption in an axial class thruster and an ACS class thruster. The system includes suitable valves and conduits for supplying the reduced toxicity propellant to the ACS decomposing element of an ACS thruster. The ACS decomposing element is operative to decompose the reduced toxicity propellant into hot propulsive gases. In addition the system includes suitable valves and conduits for supplying the reduced toxicity propellant to an axial decomposing element of the axial thruster. The axial decomposing element is operative to decompose the reduced toxicity propellant into hot gases. The system further includes suitable valves and conduits for supplying a second propellant to a combustion chamber of the axial thruster, whereby the hot gases and the second propellant auto-ignite and begin the combustion process for producing thrust.

  2. Three-dimensional carbon- and binder-free nickel nanowire arrays as a high-performance and low-cost anode for direct hydrogen peroxide fuel cell

    Science.gov (United States)

    Ye, Ke; Guo, Fen; Gao, Yinyi; Zhang, Dongming; Cheng, Kui; Zhang, Wenping; Wang, Guiling; Cao, Dianxue

    2015-12-01

    A novel three-dimensional carbon- and binder-free nickel nanowire arrays (Ni NAs) electrode is successfully fabricated by a facile galvanostatic electrodeposition method using polycarbonate membrane as the template. The Ni NAs electrode achieves a oxidation current density (divided by the electroactive surface areas of Ni) of 25.1 mA cm-2 in 4 mol L-1 KOH and 0.9 mol L-1 H2O2 at 0.2 V (vs. Ag/AgCl) accompanied with a desirable stability, which is significantly higher than the catalytic activity of H2O2 electro-oxidation achieved previously with precious metals as catalysts. The impressive electrocatalytic performance is largely attributed to the superior 3D open structure and high electronic conductivity, which ensures the high utilization of Ni surfaces and makes the electrode have higher electrochemical activity. The apparent activation energy of H2O2 electro-oxidation on the Ni NAs catalyst is 13.59 kJ mol-1. A direct peroxide-peroxide fuel cell using the Ni NAs as anode exhibits a peak power density of 48.7 mW cm-2 at 20 °C. The electrode displays a great promise as the anode of direct peroxide-peroxide fuel cell due to its low cost, high activity and stability.

  3. On the mechanical stability of uranyl peroxide hydrates: Implications for nuclear fuel degradation

    Energy Technology Data Exchange (ETDEWEB)

    Weck, Philippe F.; Kim, Eunja; Buck, Edgar C.

    2015-09-11

    The mechanical properties and stability of studtite, (UO2)(O2)(H2O)2·2H2O, and metastudtite, (UO2)(O2)(H2O)2, two important corrosion phases observed on spent nuclear fuel exposed to water, have been investigated using density functional perturbation theory. While (UO2)(O2)(H2O)2 satisfies the necessary and sufficient Born criteria for mechanical stability, (UO2)(O2)(H2O)2·2H2O is found to be mechanically metastable, which might be the underlying cause of the irreversibility of the studtite to metastudtite transformation. According to Pugh’s and Poisson’s ratios and the Cauchy pressure, both phases are considered ductile and shear modulus is the parameter limiting their mechanical stability. Debye temperatures of 294 and 271 K are predicted for polycrystalline (UO2)(O2)(H2O)2·2H2O and (UO2)(O2)(H2O)2, suggesting a lower micro-hardness of metastudtite.

  4. The influence of hydrogen peroxide and hydrogen on the corrosion of simulated spent nuclear fuel.

    Science.gov (United States)

    Razdan, Mayuri; Shoesmith, David W

    2015-01-01

    The synergistic influence between H(2)O(2) and H(2) on the corrosion of SIMFUEL (simulated spent nuclear fuel) has been studied in solutions with and without added HCO(3)(-)/CO(3)(2-). The response of the surface to increasing concentrations of added H(2)O(2) was monitored by measuring the corrosion potential in either Ar or Ar/H(2)-purged solutions. Using X-ray photoelectron spectroscopy it was shown that the extent of surface oxidation (U(V) + U(VI) content) was directly related to the corrosion potential. Variations in corrosion potential with time, redox conditions, HCO(3)(-)/CO(3)(2-) concentration, and convective conditions showed that surface oxidation induced by H(2)O(2) could be reversed by reaction with H(2), the latter reaction occurring dominantly on the noble metal particles in the SIMFUEL. For sufficiently large H(2)O(2) concentrations, the influence of H(2) was overwhelmed and irreversible oxidation of the surface to U(VI) occurred. Subsequently, corrosion was controlled by the chemical dissolution rate of this U(VI) layer.

  5. Preparation method of Ni@Pt/C nanocatalyst affects the performance of direct borohydride-hydrogen peroxide fuel cell: Improved power density and increased catalytic oxidation of borohydride.

    Science.gov (United States)

    Hosseini, Mir Ghasem; Mahmoodi, Raana

    2017-08-15

    The Ni@Pt/C electrocatalysts were synthesized using two different methods: with sodium dodecyl sulfate (SDS) and without SDS. The metal loading in synthesized nanocatalysts was 20wt% and the molar ratio of Ni: Pt was 1:1. The structural characterizations of Ni@Pt/C electrocatalysts were investigated by field emission scanning electron microscopy (FE-SEM), energy-dispersive X-ray spectroscopy (EDX), X-ray diffraction (XRD), transmission electron microscopy (TEM) and high-resolution transmission electron microscopy (HR-TEM). The electrocatalytic activity of Ni@Pt/C electrocatalysts toward BH4(-) oxidation in alkaline medium was studied by means of cyclic voltammetry (CV), chronopotentiometry (CP), chronoamperometry (CA) and electrochemical impedance spectroscopy (EIS). The results showed that Ni@Pt/C electrocatalyst synthesized without SDS has superior catalytic activity toward borohydride oxidation (22016.92AgPt(-1)) in comparison with a catalyst prepared in the presence of SDS (17766.15AgPt(-1)) in NaBH4 0.1M at 25°C. The Membrane Electrode Assembly (MEA) used in fuel cell set-up was fabricated with catalyst-coated membrane (CCM) technique. The effect of Ni@Pt/C catalysts prepared with two methods as anode catalyst on the performance of direct borohydride-hydrogen peroxide fuel cell was studied. The maximum power density was obtained using Ni@Pt/C catalyst synthesized without SDS at 60°C, 1M NaBH4 and 2M H2O2 (133.38mWcm(-2)). Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Electrochemical Hydrogen Peroxide Generator

    Science.gov (United States)

    Tennakoon, Charles L. K.; Singh, Waheguru; Anderson, Kelvin C.

    2010-01-01

    needed are water and oxygen or air. 2. The product is pure and can therefore be used in disinfection applications directly or after proper dilution with water. 3. Oxygen generated in the anode compartment is used in the electrochemical reduction process; in addition, external oxygen is used to establish a high flow rate in the cathode compartment to remove the desired product efficiently. Exiting oxygen can be recycled after separation of liquid hydrogen peroxide product, if so desired. 4. The process can be designed for peroxide generation under microgravity conditions. 5. High concentrations of the order of 6-7 wt% can be generated by this method. This method at the time of this reporting is superior to what other researchers have reported. 6. The cell design allows for stacking of cells to increase the hydrogen peroxide production. 7. The catalyst mix containing a diquaternary ammonium compound enabled not only higher concentration of hydrogen peroxide but also higher current efficiency, improved energy efficiency, and catalyst stability. 8. The activity of the catalyst is maintained even after repeated periods of system shutdown. 9. The catalyst system can be extended for fuel-cell cathodes with suitable modifications.

  7. Dual function photocatalysis of cyano-bridged heteronuclear metal complexes for water oxidation and two-electron reduction of dioxygen to produce hydrogen peroxide as a solar fuel.

    Science.gov (United States)

    Aratani, Yusuke; Suenobu, Tomoyoshi; Ohkubo, Kei; Yamada, Yusuke; Fukuzumi, Shunichi

    2017-03-25

    The photocatalytic production of hydrogen peroxide from water and dioxygen under visible light irradiation was made possible by using polymeric cyano-bridged heteronuclear metal complexes (M(II)[Ru(II)(CN)4(bpy)]; M(II) = Ni(II), Fe(II) and Mn(II)), where the photocatalytic two-electron reduction of O2 and water oxidation were catalysed by the Ru and M(II) moieties, respectively.

  8. Hydrogen peroxide produced by glucose oxidase affects the performance of laccase cathodes in glucose/oxygen fuel cells: FAD-dependent glucose dehydrogenase as a replacement.

    Science.gov (United States)

    Milton, Ross D; Giroud, Fabien; Thumser, Alfred E; Minteer, Shelley D; Slade, Robert C T

    2013-11-28

    Hydrogen peroxide production by glucose oxidase (GOx) and its negative effect on laccase performance have been studied. Simultaneously, FAD-dependent glucose dehydrogenase (FAD-GDH), an O2-insensitive enzyme, has been evaluated as a substitute. Experiments focused on determining the effect of the side reaction of GOx between its natural electron acceptor O2 (consumed) and hydrogen peroxide (produced) in the electrolyte. Firstly, oxygen consumption was investigated by both GOx and FAD-GDH in the presence of substrate. Relatively high electrocatalytic currents were obtained with both enzymes. O2 consumption was observed with immobilized GOx only, whilst O2 concentration remained stable for the FAD-GDH. Dissolved oxygen depletion effects on laccase electrode performances were investigated with both an oxidizing and a reducing electrode immersed in a single compartment. In the presence of glucose, dramatic decreases in cathodic currents were recorded when laccase electrodes were combined with a GOx-based electrode only. Furthermore, it appeared that the major loss of performance of the cathode was due to the increase of H2O2 concentration in the bulk solution induced laccase inhibition. 24 h stability experiments suggest that the use of O2-insensitive FAD-GDH as to obviate in situ peroxide production by GOx is effective. Open-circuit potentials of 0.66 ± 0.03 V and power densities of 122.2 ± 5.8 μW cm(-2) were observed for FAD-GDH/laccase biofuel cells.

  9. Concentration of Hydrogen Peroxide

    Science.gov (United States)

    Parrish, Clyde F. (Inventor)

    2006-01-01

    Methods for concentrating hydrogen peroxide solutions have been described. The methods utilize a polymeric membrane separating a hydrogen peroxide solution from a sweep gas or permeate. The membrane is selective to the permeability of water over the permeability of hydrogen peroxide, thereby facilitating the concentration of the hydrogen peroxide solution through the transport of water through the membrane to the permeate. By utilizing methods in accordance with the invention, hydrogen peroxide solutions of up to 85% by volume or higher may be generated at a point of use without storing substantial quantities of the highly concentrated solutions and without requiring temperatures that would produce explosive mixtures of hydrogen peroxide vapors.

  10. PRECIPITATION OF PLUTONOUS PEROXIDE

    Science.gov (United States)

    Barrick, J.G.; Manion, J.P.

    1961-08-15

    A precipitation process for recovering plutonium values contained in an aqueous solution is described. In the process for precipitating plutonium as plutonous peroxide, hydroxylamine or hydrazine is added to the plutoniumcontaining solution prior to the addition of peroxide to precipitate plutonium. The addition of hydroxylamine or hydrazine increases the amount of plutonium precipitated as plutonous peroxide. (AEC)

  11. Chemistry of peroxide compounds

    Science.gov (United States)

    Volnov, I. I.

    1981-01-01

    The history of Soviet research from 1866 to 1967 on peroxide compounds is reviewed. This research dealt mainly with peroxide kinetics, reactivity and characteristics, peroxide production processes, and more recently with superoxides and ozonides and emphasis on the higher oxides of group 1 and 2 elements. Solid state fluidized bed synthesis and production of high purity products based on the relative solubilities of the initial, intermediate, and final compounds and elements in liquid ammonia are discussed.

  12. Hydrogen Peroxide Concentrator

    Science.gov (United States)

    Parrish, Clyde F.

    2007-01-01

    A relatively simple and economical process and apparatus for concentrating hydrogen peroxide from aqueous solution at the point of use have been invented. The heart of the apparatus is a vessel comprising an outer shell containing tubular membranes made of a polymer that is significantly more permeable by water than by hydrogen peroxide. The aqueous solution of hydrogen peroxide to be concentrated is fed through the interstitial spaces between the tubular membranes. An initially dry sweep gas is pumped through the interiors of the tubular membranes. Water diffuses through the membranes and is carried away as water vapor mixed into the sweep gas. Because of the removal of water, the hydrogen peroxide solution flowing from the vessel at the outlet end is more concentrated than that fed into the vessel at the inlet end. The sweep gas can be air, nitrogen, or any other gas that can be conveniently supplied in dry form and does not react chemically with hydrogen peroxide.

  13. Compositions and methods for treating nuclear fuel

    Energy Technology Data Exchange (ETDEWEB)

    Soderquist, Chuck Z; Johnsen, Amanda M; McNamara, Bruce K; Hanson, Brady D; Smith, Steven C; Peper, Shane M

    2014-01-28

    Compositions are provided that include nuclear fuel. Methods for treating nuclear fuel are provided which can include exposing the fuel to a carbonate-peroxide solution. Methods can also include exposing the fuel to an ammonium solution. Methods for acquiring molybdenum from a uranium comprising material are provided.

  14. Compositions and methods for treating nuclear fuel

    Energy Technology Data Exchange (ETDEWEB)

    Soderquist, Chuck Z; Johnsen, Amanda M; McNamara, Bruce K; Hanson, Brady D; Smith, Steven C; Peper, Shane M

    2013-08-13

    Compositions are provided that include nuclear fuel. Methods for treating nuclear fuel are provided which can include exposing the fuel to a carbonate-peroxide solution. Methods can also include exposing the fuel to an ammonium solution. Methods for acquiring molybdenum from a uranium comprising material are provided.

  15. Hydrogen peroxide catalytic decomposition

    Science.gov (United States)

    Parrish, Clyde F. (Inventor)

    2010-01-01

    Nitric oxide in a gaseous stream is converted to nitrogen dioxide using oxidizing species generated through the use of concentrated hydrogen peroxide fed as a monopropellant into a catalyzed thruster assembly. The hydrogen peroxide is preferably stored at stable concentration levels, i.e., approximately 50%-70% by volume, and may be increased in concentration in a continuous process preceding decomposition in the thruster assembly. The exhaust of the thruster assembly, rich in hydroxyl and/or hydroperoxy radicals, may be fed into a stream containing oxidizable components, such as nitric oxide, to facilitate their oxidation.

  16. Erythromycin and Benzoyl Peroxide Topical

    Science.gov (United States)

    The combination of erythromycin and benzoyl peroxide is used to treat acne. Erythromycin and benzoyl peroxide are in a class of medications called topical antibiotics. The combination of erythromycin ...

  17. Clindamycin and Benzoyl Peroxide Topical

    Science.gov (United States)

    The combination of clindamycin and benzoyl peroxide is used to treat acne. Clindamycin and benzoyl peroxide are in a class of medications called topical antibiotics. The combination of clindamycin ...

  18. LIPID PEROXIDATION IN PREECLAMPSIA

    Directory of Open Access Journals (Sweden)

    T.Sharmila Krishna

    2015-03-01

    Full Text Available Hypertension in pregnancy is a leading cause of both maternal and fetal mortality and morbidity. Preeclampsia is characterised by hypertension and proteinuria. Lipid peroxidation is an important factor in the pathophysiology of Preeclampsia. The present study was undertaken to determine Serum Malondialdehyde (MDA levels , a product of lipid peroxidation , in clinically diagnosed Preeclamptic women(n=30 and the values were compared with that of Normotensive pregnant women (n=30 aged between 18-30yrs. All of them were in their third trimester and were primigravida. Serum MDA was estimated by TBARS (thiobarbituric acid reactive substances method. We observed that Serum MDA levels were significantly increased in Preeclamptic women (p <0.000 as compared to that of Normotensive pregnant women . Increased levels of lipid peroxiation product - MDA may contribute to the pathophysiology of Preeclampsia.

  19. Hydrogen peroxide-based propulsion and power systems.

    Energy Technology Data Exchange (ETDEWEB)

    Melof, Brian Matthew; Keese, David L.; Ingram, Brian V.; Grubelich, Mark Charles; Ruffner, Judith Alison; Escapule, William Rusty

    2004-04-01

    Less toxic, storable, hypergolic propellants are desired to replace nitrogen tetroxide (NTO) and hydrazine in certain applications. Hydrogen peroxide is a very attractive replacement oxidizer, but finding acceptable replacement fuels is more challenging. The focus of this investigation is to find fuels that have short hypergolic ignition delays, high specific impulse, and desirable storage properties. The resulting hypergolic fuel/oxidizer combination would be highly desirable for virtually any high energy-density applications such as small but powerful gas generating systems, attitude control motors, or main propulsion. These systems would be implemented on platforms ranging from guided bombs to replacement of environmentally unfriendly existing systems to manned space vehicles.

  20. Fuel flexible fuel injector

    Science.gov (United States)

    Tuthill, Richard S; Davis, Dustin W; Dai, Zhongtao

    2015-02-03

    A disclosed fuel injector provides mixing of fuel with airflow by surrounding a swirled fuel flow with first and second swirled airflows that ensures mixing prior to or upon entering the combustion chamber. Fuel tubes produce a central fuel flow along with a central airflow through a plurality of openings to generate the high velocity fuel/air mixture along the axis of the fuel injector in addition to the swirled fuel/air mixture.

  1. Protein oxidation and peroxidation

    DEFF Research Database (Denmark)

    Davies, Michael Jonathan

    2016-01-01

    and chain reactions with alcohols and carbonyls as major products; the latter are commonly used markers of protein damage. Direct oxidation of cysteine (and less commonly) methionine residues is a major reaction; this is typically faster than with H2O2, and results in altered protein activity and function....... Unlike H2O2, which is rapidly removed by protective enzymes, protein peroxides are only slowly removed, and catabolism is a major fate. Although turnover of modified proteins by proteasomal and lysosomal enzymes, and other proteases (e.g. mitochondrial Lon), can be efficient, protein hydroperoxides...

  2. Alkaline Peroxide Delignification of Corn Stover

    Energy Technology Data Exchange (ETDEWEB)

    Mittal, Ashutosh [Biosciences; Katahira, Rui [National; Donohoe, Bryon S. [Biosciences; Black, Brenna A. [National; Pattathil, Sivakumar [Complex; Stringer, Jack M. [National; Beckham, Gregg T. [National

    2017-05-30

    Selective biomass fractionation into carbohydrates and lignin is a key challenge in the conversion of lignocellulosic biomass to fuels and chemicals. In the present study, alkaline hydrogen peroxide (AHP) pretreatment was investigated to fractionate lignin from polysaccharides in corn stover (CS), with a particular emphasis on the fate of the lignin for subsequent valorization. The influence of peroxide loading on delignification during AHP pretreatment was examined over the range of 30-500 mg H2O2/g dry CS at 50 degrees C for 3 h. Mass balances were conducted on the solid and liquid fractions generated after pretreatment for each of the three primary components, lignin, hemicellulose, and cellulose. AHP pretreatment at 250 mg H2O2/g dry CS resulted in the pretreated solids with more than 80% delignification consequently enriching the carbohydrate fraction to >90%. Two-dimensional nuclear magnetic resonance (2D-NMR) spectroscopy of the AHP pretreated residue shows that, under high peroxide loadings (>250 mg H2O2/g dry CS), most of the side chain structures were oxidized and the aryl-ether bonds in lignin were partially cleaved, resulting in significant delignification of the pretreated residues. Gel permeation chromatography (GPC) analysis shows that AHP pretreatment effectively depolymerizes CS lignin into low molecular weight (LMW) lignin fragments in the aqueous fraction. Imaging of AHP pretreated residues shows a more granular texture and a clear lamellar pattern in secondary walls, indicative of layers of varying lignin removal or relocalization. Enzymatic hydrolysis of this pretreated residue at 20 mg/g of glucan resulted in 90% and 80% yields of glucose and xylose, respectively, after 120 h. Overall, AHP pretreatment is able to selectively remove more than 80% of the lignin from biomass in a form that has potential for downstream valorization processes and enriches the solid pulp into a highly digestible material.

  3. Inner-shell excitation spectroscopy of peroxides

    NARCIS (Netherlands)

    Harding, K. L.; Kalirai, S.; Hayes, R.; Ju, V.; Cooper, G.; Hitchcock, A. P.; Thompson, M. R.

    2015-01-01

    O 1s inner-shell excitation spectra of a number of vapor phase molecules containing peroxide bonds - hydrogen peroxide (H2O2), di-t-butylperoxide ((BuOBu)-Bu-t-Bu-t), benzoyl peroxide, ((C6H5(CO)O)(2)), luperox-F [1,3(4)-bis(tertbutylperoxyisopropyl)benzene], and analogous, non-peroxide compounds -

  4. Regenerative Fuel Cells for Space Power and Energy Conversion (NaBH4/H2O2 Fuel Cell Development)

    Science.gov (United States)

    Valdez, Thomas I.; Miley, George H.; Luo, Nie; Burton, Rodney; Mather, Joseph; Hawkins, Glenn; Byrd, Ethan; Gu, Lifeng; Shrestha, Prajakti Joshi

    2006-01-01

    A viewgraph presentation describing hydrogen peroxide and sodium borohydride development is shown. The topics include: 1) Motivation; 2) The Sodium Borohydride Fuel Cell; 3) Fuel Cell Comparisons; 4) MEA Optimization; 5) 500-Watt Stack Testing; 6) System Modeling: Fuel Cell Power Source for Lunar Rovers; and 7) Conclusions

  5. Progress toward hydrogen peroxide micropulsion

    Energy Technology Data Exchange (ETDEWEB)

    Whitehead, J C; Dittman, M D; Ledebuhr, A G

    1999-07-08

    A new self-pressurizing propulsion system has liquid thrusters and gas jet attitude control without heavy gas storage vessels. A pump boosts the pressure of a small fraction of the hydrogen peroxide, so that reacted propellant can controllably pressurize its own source tank. The warm decomposition gas also powers the pump and is supplied to the attitude control jets. The system has been incorporated into a prototype microsatellite for terrestrial maneuvering tests. Additional progress includes preliminary testing of a bipropellant thruster, and storage of unstabilized hydrogen peroxide in small sealed tanks.

  6. Safety in the Chemical Laboratory. Organic Peroxides.

    Science.gov (United States)

    Shanley, Edward S.

    1990-01-01

    Discussed is the thermodynamic instability of organic peroxides. The process of autoxidation which results in peroxide formation is described. Precautions necessary to prevent autoxidation hazards associated with these reagents are suggested. (CW)

  7. 21 CFR 582.1366 - Hydrogen peroxide.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Hydrogen peroxide. 582.1366 Section 582.1366 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1366 Hydrogen peroxide. (a) Product. Hydrogen peroxide. (b) (c) Limitations,...

  8. Historical Survey: German Research on Hydrogen Peroxide/Alcohol Explosives

    Energy Technology Data Exchange (ETDEWEB)

    Parmeter, John E. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-01-01

    Discussion of HP/fuel explosives in the scientific literature dates back to at least 1927. A paper was published that year in a German journal entitled On Hydrogen Peroxide Explosives [Bamberger and Nussbaum 1927]. The paper dealt with HP/cotton/Vaseline formulations, specifically HP89/cotton/Vaseline (76/15/9) and (70/8.5/12.5). The authors performed experiments with charge masses of 250-750 g and charge diameters of 35-45 mm. This short paper provides brief discussion on the observed qualitative effects of detonations but does not report detonation velocities.

  9. Accidental Ingestion of 35% Hydrogen Peroxide

    Directory of Open Access Journals (Sweden)

    Sean Pritchett

    2007-01-01

    Full Text Available Hydrogen peroxide is a commonly used oxidizing agent with a variety of uses depending on its concentration. Ingestion of hydrogen peroxide is not an uncommon source of poisoning, and results in morbidity through three main mechanisms: direct caustic injury, oxygen gas formation and lipid peroxidation. A case of a 39-year-old man who inadvertently ingested 250 mL of unlabelled 35% hydrogen peroxide intended for natural health use is presented. Hydrogen peroxide has purported benefits ranging from HIV treatment to cancer treatment. Its use in the natural health industry represents an emerging source for accidental poisonings.

  10. Peroxide-induced cell death and lipid peroxidation in C6 glioma cells.

    Science.gov (United States)

    Linden, Arne; Gülden, Michael; Martin, Hans-Jörg; Maser, Edmund; Seibert, Hasso

    2008-08-01

    Peroxides are often used as models to induce oxidative damage in cells in vitro. The aim of the present study was to elucidate the role of lipid peroxidation in peroxide-induced cell death. To this end (i) the ability to induce lipid peroxidation in C6 rat astroglioma cells of hydrogen peroxide (H2O2), cumene hydroperoxide (CHP) and t-butyl hydroperoxide (t-BuOOH) (ii) the relation between peroxide-induced lipid peroxidation and cell death in terms of time and concentration dependency and (iii) the capability of the lipid peroxidation chain breaking alpha-tocopherol to prevent peroxide-induced lipid peroxidation and/or cell death were investigated. Lipid peroxidation was characterised by measuring thiobarbituric acid reactive substances (TBARS) and, by HPLC, malondialdehyde (MDA), 4-hydroxynonenal (4-HNE) and hexanal. Within 2 h CHP, t-BuOOH and H2O2 induced cell death with EC50 values of 59+/-9 microM, 290+/-30 microM and 12+/-1.1 mM, respectively. CHP and t-BuOOH, but not H2O2 induced lipid peroxidation in C6 cells with EC50 values of 15+/-14 microM and 130+/-33 microM, respectively. The TBARS measured almost exclusively consisted of MDA. 4-HNE was mostly not detectable. The concentration of hexanal slightly increased with increasing concentrations of organic peroxides. Regarding time and concentration dependency lipid peroxidation preceded cell death. Pretreatment with alpha-tocopherol (10 microM, 24 h) prevented both, peroxide-induced lipid peroxidation and cell death. The results strongly indicate a major role of lipid peroxidation in the killing of C6 cells by organic peroxides but also that lipid peroxidation is not involved in H2O2 induced cell death.

  11. Environmentally safe aviation fuels

    Science.gov (United States)

    Liberio, Patricia D.

    1995-01-01

    In response to the Air Force directive to remove Ozone Depleting Chemicals (ODC's) from military specifications and Defense Logistics Agency's Hazardous Waste Minimization Program, we are faced with how to ensure a quality aviation fuel without using such chemicals. Many of these chemicals are found throughout the fuel and fuel related military specifications and are part of test methods that help qualify the properties and quality of the fuels before they are procured. Many years ago there was a directive for military specifications to use commercially standard test methods in order to provide standard testing in private industry and government. As a result the test methods used in military specifications are governed by the American Society of Testing and Materials (ASTM). The Air Force has been very proactive in the removal or replacement of the ODC's and hazardous materials in these test methods. For example, ASTM D3703 (Standard Test Method for Peroxide Number of Aviation Turbine Fuels), requires the use of Freon 113, a known ODC. A new rapid, portable hydroperoxide test for jet fuels similar to ASTM D3703 that does not require the use of ODC's has been developed. This test has proved, in limited testing, to be a viable substitute method for ASTM D3703. The Air Force is currently conducting a round robin to allow the method to be accepted by ASTM and therefore replace the current method. This paper will describe the Air Force's initiatives to remove ODC's and hazardous materials from the fuel and fuel related military specifications that the Air Force Wright Laboratory.

  12. Peroxides and peroxide-degrading enzymes in the thyroid.

    Science.gov (United States)

    Schweizer, Ulrich; Chiu, Jazmin; Köhrle, Josef

    2008-09-01

    Iodination of thyroglobulin is the key step of thyroid hormone biosynthesis. It is catalyzed by thyroid peroxidase and occurs within the follicular space at the apical plasma membrane. Hydrogen peroxide produced by thyrocytes as an oxidant for iodide may compromise cellular and genomic integrity of the surrounding cells, unless these are sufficiently protected by peroxidases. Thus, peroxidases play two opposing roles in thyroid biology. Both aspects of peroxide biology in the thyroid are separated in space and time and respond to the different physiological states of the thyrocytes. Redox-protective peroxidases in the thyroid are peroxiredoxins, glutathione peroxidases, and catalase. Glutathione peroxidases are selenoenzymes, whereas selenium-independent peroxiredoxins are functionally linked to the selenoenzymes of the thioredoxin reductase family through their thioredoxin cofactors. Thus, selenium impacts directly and indirectly on protective enzymes in the thyroid, a link that has been supported by animal experiments and clinical observations. In view of this relationship, it is remarkable that rather little is known about selenoprotein expression and their potential functional roles in the thyroid. Moreover, selenium-dependent and -independent peroxidases have rarely been examined in the same studies. Therefore, we review the relevant literature and present expression data of both selenium-dependent and -independent peroxidases in the murine thyroid.

  13. Hydrogen peroxide enteritis: the "snow white" sign.

    Science.gov (United States)

    Bilotta, J J; Waye, J D

    1989-01-01

    Hydrogen peroxide is a useful disinfectant that has achieved widespread utility in varied clinical settings. We report an epidemic of hydrogen peroxide enteritis that developed in seven patients in our gastrointestinal endoscopy unit during a 2-week period in early 1988. During endoscopy, using recently sterilized endoscopes that were flushed with 3% hydrogen peroxide after the glutaraldehyde cycle, instantaneous blanching (the "snow white" sign) and effervescence were noted on the mucosal surfaces when the water button was depressed. No patient subsequently suffered morbidity or mortality associated with this peroxide enteritis, and the biopsy specimens revealed nonspecific inflammation. The toxicity of hydrogen peroxide when used in enema form is reviewed, as well as the pathogenesis of peroxide enteritis.

  14. Coating for components requiring hydrogen peroxide compatibility

    Science.gov (United States)

    Yousefiani, Ali (Inventor)

    2010-01-01

    The present invention provides a heretofore-unknown use for zirconium nitride as a hydrogen peroxide compatible protective coating that was discovered to be useful to protect components that catalyze the decomposition of hydrogen peroxide or corrode when exposed to hydrogen peroxide. A zirconium nitride coating of the invention may be applied to a variety of substrates (e.g., metals) using art-recognized techniques, such as plasma vapor deposition. The present invention further provides components and articles of manufacture having hydrogen peroxide compatibility, particularly components for use in aerospace and industrial manufacturing applications. The zirconium nitride barrier coating of the invention provides protection from corrosion by reaction with hydrogen peroxide, as well as prevention of hydrogen peroxide decomposition.

  15. Hydrogen peroxide on the surface of Europa

    Science.gov (United States)

    Carlson, R.W.; Anderson, M.S.; Johnson, R.E.; Smythe, W.D.; Hendrix, A.R.; Barth, C.A.; Soderblom, L.A.; Hansen, G.B.; McCord, T.B.; Dalton, J.B.; Clark, R.N.; Shirley, J.H.; Ocampo, A.C.; Matson, D.L.

    1999-01-01

    Spatially resolved infrared and ultraviolet wavelength spectra of Europa's leading, anti-jovian quadrant observed from the Galileo spacecraft show absorption features resulting from hydrogen peroxide. Comparisons with laboratory measurements indicate surface hydrogen peroxide concentrations of about 0.13 percent, by number, relative to water ice. The inferred abundance is consistent with radiolytic production of hydrogen peroxide by intense energetic particle bombardment and demonstrates that Europa's surface chemistry is dominated by radiolysis.

  16. PEROXIDE BLEACHING OF LOW-FREENESS TMP

    Institute of Scientific and Technical Information of China (English)

    ZhongLiu; Y.Ni; Z.Li,G.Court

    2004-01-01

    Peroxide bleaching is an essential unit operation toproduce value-added mechanical pulp-based papergrade. In this paper, we presented the results fromperoxide bleaching of low-freeness TMP for theproduction of SC paper. Two aspects wereaddressed; the effect of pulp strength and theformation of anionic trashes. The strength properties,such as tensile, burst and zero-span tensile, areimproved after the peroxide bleaching process. Theamount of anionic trashes formed is almostproportional to the hydrogen peroxide charge.

  17. PEROXIDE PROCESS FOR SEPARATION OF RADIOACTIVE MATERIALS

    Science.gov (United States)

    Seaborg, G.T.; Perlman, I.

    1958-09-16

    reduced state, from hexavalent uranium. It consists in treating an aqueous solution containing such uranium and plutonium ions with sulfate ions in order to form a soluble uranium sulfate complex and then treating the solution with a soluble thorium compound and a soluble peroxide compound in order to ferm a thorium peroxide carrier precipitate which carries down with it the plutonium peroxide present. During this treatment the pH of the solution must be maintained between 2 and 3.

  18. PEROXIDE BLEACHING OF LOW-FREENESS TMP

    Institute of Scientific and Technical Information of China (English)

    Zhong Liu; Y. Ni; Z. Li; G. Court

    2004-01-01

    Peroxide bleaching is an essential unit operation to produce value-added mechanical pulp-based paper grade. In this paper, we presented the results from peroxide bleaching of low-freeness TMP for the production of SC paper. Two aspects were addressed; the effect of pulp strength and the formation of anionic trashes. The strength properties,such as tensile, burst and zero-span tensile, are improved after the peroxide bleaching process. The amount of anionic trashes formed is almost proportional to the hydrogen peroxide charge.

  19. Recent Development in Hydrogen Peroxide Pumped Propulsion

    Energy Technology Data Exchange (ETDEWEB)

    Ledebuhr, A G; Antelman, D R; Dobie, D W; Gorman, T S; Jones, M S; Kordas, J F; McMahon, D H; Ng, L C; Nielsen, D P; Ormsby, A E; Pittenger, L C; Robinson, J A; Skulina, K M; Taylor, W G; Urone, D A; Wilson, B A

    2004-03-22

    This paper describes the development of a lightweight high performance pump-fed divert and attitude control system (DACS). Increased kinetic Kill Vehicles (KV) capabilities (higher .v and acceleration capability) will especially be needed for boost phase engagements where a lower mass KV DACS enables smaller overall interceptors. To increase KV performance while reducing the total DACS dry mass (<10 kg), requires a design approach that more closely emulates those found in large launch vehicles, where pump-fed propulsion enables high propellant-mass-fraction systems. Miniaturized reciprocating pumps, on a scale compatible with KV applications, offer the potential of a lightweight DACS with both high {Delta}v and acceleration capability, while still enabling the rapid pulsing of the divert thrusters needed in the end-game fly-in. Pumped propulsion uses lightweight low-pressure propellant tanks, as the main vehicle structure and eliminates the need for high-pressure gas bottles, reducing mass and increasing the relative propellant load. Prior work used hydrazine and demonstrated a propellant mass fraction >0.8 and a vehicle propulsion dry mass of {approx}3 kg. Our current approach uses the non-toxic propellants 90% hydrogen peroxide and kerosene. This approach enables faster development at lower costs due to the ease of handling. In operational systems these non-toxic propellants can simplify the logistics for manned environments including shipboard applications. This DACS design configuration is expected to achieve sufficient mass flows to support divert thrusters in the 1200 N to 1330 N (270 lbf to 300 lbf) range. The DACS design incorporates two pairs of reciprocating differential piston pumps (oxidizer and fuel), a warm-gas drive system, compatible bi-propellant thrusters, lightweight valves, and lightweight low-pressure propellant tanks. This paper summarizes the current development status and plans.

  20. [Nitric oxide and lipid peroxidation].

    Science.gov (United States)

    Cristol, J P; Maggi, M F; Guérin, M C; Torreilles, J; Descomps, B

    1995-01-01

    Nitric oxide (NO) is a free radical produced enzymatically in biological systems from the guanidino group of L-arginine. Its large spectrum of biological effects is achieved through chemical interactions with different targets including oxygen (O2), superoxide (O2o-) and other oxygen reactive species (ROS), transition metals and thiols. Superoxide anions and other ROS have been reported to react with NO to produce peroxynitrite anions that can decompose to form nitrogen dioxide (NO2) and hydroxyl radial (OHo). Thus, NO has been reported to have a dual effect on lipid peroxidation (prooxidant via the peroxynitrite or antioxydant via the chelation of ROS). In the present study we have investigated in different models the in vitro and in vivo action of NO on lipid peroxidation. Copper-induced LDL oxidation were used as an in vitro model. Human LDL (100 micrograms ApoB/ml) were incubated in oxygene-saturated PBS buffer in presence or absence of Cu2+ (2.5 microM) with increasing concentrations of NO donnors (sodium nitroprussiate or nitroso-glutathione). LDL oxidation was monitored continuously for conjugated diene formation (234 nm) and 4-hydroxynonenal (HNE) accumulation. Exogenous NO prevents in a dose dependent manner the progress of copper-induced oxidation. Ischaemia-reperfusion injury (I/R), characterized by an overproduction of ROS, is used as an in vivo model. Anaesthetized rats were submitted to 1 hour renal ischaemia following by 2 hours of reperfusion. Sham-operated rats (SOP) were used as control. Lipid peroxidation was evaluated by measuring the HNE accumulated in rats kidneys in presence or absence of L-arginine or D-arginine infusion. L-arginine, but not D-arginine, enhances HNE accumulation in I/R but not in SOP (< 0.050 pmol/g tissue in SOP versus 0.6 nmol/g tissue in I/R), showing that, in this experimental conditions, NO produced from L-arginine, enhances the toxicity of ROS. This study shows that the pro- or antioxydant effects of NO are different

  1. 7 CFR 58.431 - Hydrogen peroxide.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 3 2010-01-01 2010-01-01 false Hydrogen peroxide. 58.431 Section 58.431 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Standards... Material § 58.431 Hydrogen peroxide. The solution shall comply with the specification of the...

  2. [Advances in peroxide-based decontaminating technologies].

    Science.gov (United States)

    Xi, Hai-ling; Zhao, San-ping; Zhou, Wen

    2013-05-01

    With the boosting demand for eco-friendly decontaminants, great achievements in peroxide-based decontaminating technologies have been made in recent years. These technologies have been applied in countering chemical/biological terrorist attacks, dealing with chemical/biological disasters and destructing environmental pollutants. Recent research advances in alpha-nucleophilic/oxidative reaction mechanisms of peroxide-based decontamination against chemical warfare agents were reviewed, and some classical peroxide-based decontaminants such as aqueous decontaminating solution, decontaminating foam, decontaminating emulsions, decontaminating gels, decontaminating vapors, and some newly developed decontaminating media (e.g., peroxide-based self-decontaminating materials and heterogeneous nano-catalytic decontamination systems) were introduced. However, currently available peroxide-based decontaminants still have some deficiencies. For example, their decontamination efficiencies are not as high as those of chlorine-containing decontaminants, and some peroxide-based decontaminants show relatively poor effect against certain agents. More study on the mechanisms of peroxide-based decontaminants and the interfacial interactions in heterogeneous decontamination media is suggested. New catalysts, multifunctional surfactants, self-decontaminating materials and corrosion preventing technologies should be developed before peroxide-based decontaminants really become true "green" decontaminants.

  3. Simple, field portable colorimetric detection device for organic peroxides and hydrogen peroxide

    Science.gov (United States)

    Pagoria, Philip F.; Mitchell, Alexander R.; Whipple, Richard E.; Carman, M. Leslie; Reynolds, John G.; Nunes, Peter; Shields, Sharon J.

    2010-11-09

    A simple and effective system for the colorimetric determination of organic peroxides and hydrogen peroxide. A peroxide pen utilizing a swipe material attached to a polyethylene tube contains two crushable vials. The two crushable vials contain a colorimetric reagent separated into dry ingredients and liquid ingredients. After swiping a suspected substance or surface the vials are broken, the reagent is mixed thoroughly and the reagent is allowed to wick into the swipe material. The presence of organic peroxides or hydrogen peroxide is confirmed by a deep blue color.

  4. Solar-Driven Hydrogen Peroxide Production Using Polymer-Supported Carbon Dots as Heterogeneous Catalyst

    Science.gov (United States)

    Gogoi, Satyabrat; Karak, Niranjan

    2017-10-01

    Safe, sustainable, and green production of hydrogen peroxide is an exciting proposition due to the role of hydrogen peroxide as a green oxidant and energy carrier for fuel cells. The current work reports the development of carbon dot-impregnated waterborne hyperbranched polyurethane as a heterogeneous photo-catalyst for solar-driven production of hydrogen peroxide. The results reveal that the carbon dots possess a suitable band-gap of 2.98 eV, which facilitates effective splitting of both water and ethanol under solar irradiation. Inclusion of the carbon dots within the eco-friendly polymeric material ensures their catalytic activity and also provides a facile route for easy catalyst separation, especially from a solubilizing medium. The overall process was performed in accordance with the principles of green chemistry using bio-based precursors and aqueous medium. This work highlights the potential of carbon dots as an effective photo-catalyst.

  5. Vapor Hydrogen Peroxide Sterilization Certification

    Science.gov (United States)

    Chen, Fei; Chung, Shirley; Barengoltz, Jack

    For interplanetary missions landing on a planet of potential biological interest, United States NASA planetary protection currently requires that the flight system must be assembled, tested and ultimately launched with the intent of minimizing the bioload taken to and deposited on the planet. Currently the only NASA approved microbial reduction method is dry heat sterilization process. However, with utilization of such elements as highly sophisticated electronics and sensors in modern spacecraft, this process presents significant materials challenges and is thus an undesirable bioburden reduction method to design engineers. The objective of this work is to introduce vapor hydrogen peroxide (VHP) as an alternative to dry heat microbial reduction to meet planetary protection requirements. The VHP sterilization technology is widely used by the medical industry, but high doses of VHP may degrade the performance of flight hardware, or compromise material compatibility. The goal of our study is determine the minimum VHP process conditions for PP acceptable microbial reduction levels. A series of experiments were conducted using Geobacillus stearothermophilus to determine VHP process parameters that provided significant reductions in spore viability while allowing survival of sufficient spores for statistically significant enumeration. In addition to the obvious process parameters -hydrogen peroxide concentration, number of pulses, and exposure duration -the investigation also considered the possible effect of environmental pa-rameters. Temperature, relative humidity, and material substrate effects on lethality were also studied. Based on the results, a most conservative D value was recommended. This recom-mended D value was also validated using VHP "hardy" strains that were isolated from clean-rooms and environmental populations collected from spacecraft relevant areas. The efficiency of VHP at ambient condition as well as VHP material compatibility will also be

  6. Rearrangements of organic peroxides and related processes

    Science.gov (United States)

    Yaremenko, Ivan A; Vil’, Vera A; Demchuk, Dmitry V

    2016-01-01

    Summary This review is the first to collate and summarize main data on named and unnamed rearrangement reactions of peroxides. It should be noted, that in the chemistry of peroxides two types of processes are considered under the term rearrangements. These are conventional rearrangements occurring with the retention of the molecular weight and transformations of one of the peroxide moieties after O–O-bond cleavage. Detailed information about the Baeyer−Villiger, Criegee, Hock, Kornblum−DeLaMare, Dakin, Elbs, Schenck, Smith, Wieland, and Story reactions is given. Unnamed rearrangements of organic peroxides and related processes are also analyzed. The rearrangements and related processes of important natural and synthetic peroxides are discussed separately. PMID:27559418

  7. Inorganic precursor peroxides for antifouling coatings

    DEFF Research Database (Denmark)

    Olsen, S.M.; Pedersen, L.T.; Hermann, M.H.

    2009-01-01

    Modern antifouling coatings are generally based on cuprous oxide (Cu2O) and organic biocides as active ingredients. Cu2O is prone to bioaccumulation, and should therefore be replaced by more environmentally benign compounds when technically possible. However, cuprous oxide does not only provide...... antifouling properties, it is also a vital ingredient for the antifouling coating to obtain its polishing and leaching mechanism. In this paper, peroxides of strontium, calcium, magnesium, and zinc are tested as pigments in antifouling coatings. The peroxides react with seawater to create hydrogen peroxide...... and highly seawater-soluble ions of the metal. The goals have been to establish the antifouling potency of an antifouling coating that releases hydrogen peroxide as biocide, and to investigate the potential use of peroxides as water-soluble polishing and leaching pigments. The investigations have shown...

  8. Rearrangements of organic peroxides and related processes.

    Science.gov (United States)

    Yaremenko, Ivan A; Vil', Vera A; Demchuk, Dmitry V; Terent'ev, Alexander O

    2016-01-01

    This review is the first to collate and summarize main data on named and unnamed rearrangement reactions of peroxides. It should be noted, that in the chemistry of peroxides two types of processes are considered under the term rearrangements. These are conventional rearrangements occurring with the retention of the molecular weight and transformations of one of the peroxide moieties after O-O-bond cleavage. Detailed information about the Baeyer-Villiger, Criegee, Hock, Kornblum-DeLaMare, Dakin, Elbs, Schenck, Smith, Wieland, and Story reactions is given. Unnamed rearrangements of organic peroxides and related processes are also analyzed. The rearrangements and related processes of important natural and synthetic peroxides are discussed separately.

  9. MEASUREMENT AND MODELING OF THE DRY DEPOSITION OF PEROXIDES

    Science.gov (United States)

    Measurements of the dry deposition velocity (Vd) of hydrogen peroxide (H2O2) and total organic peroxides (ROOH) were made during four experiments at three forested sites. Details and uncertainties associated with the measurement of peroxide...

  10. Resistance to peroxide degradation of Hyflon ® Ion membranes

    Science.gov (United States)

    Merlo, L.; Ghielmi, A.; Cirillo, L.; Gebert, M.; Arcella, V.

    Perfluorosulfonic acid (PFSA) membranes have been used for 40 years as solid electrolytes in low temperature fuel cells and are considered from the scientific community superior to other polymeric products due to their good combination between chemical resistance and proton conductivity. In recent years, development of the class of PFSA membranes known as 'short side chain' membranes has been restarted from Solvay Solexis (Hyflon ® Ion). Although PFSA are highly stable, still, decay in fuel cell performance might be detected over time due to membrane degradation, especially under certain working conditions. Different degradation mechanisms, mainly based on Nafion ® structure, have been proposed by several Authors and both ex situ and in situ test protocols have been developed to perform accelerated testing. The generally accepted opinion is that the degradation problem is mostly related to peroxide radical attack. A short review of the degradation mechanisms is first presented in this work. For the first time a campaign of chemical degradation tests (open circuit voltage fuel cell operation and ex situ Fenton tests) on the short-side-chain PFSA is presented and discussed, both for standard extruded and chemical stabilized membranes.

  11. Lipid peroxides level in the Indonesian elderly

    Directory of Open Access Journals (Sweden)

    Purwantyastuti Purwantyastuti

    2005-06-01

    Full Text Available A cross-sectional study was done to see the possible association of plasma lipid peroxides in the elderly with age and other factors. Plasma lipid peroxides is a product of free radical reactions which according to the latest theory of aging is the cause of aging process. Lipid peroxides were also found high in coronary heart disease. Four hundred forty relatively healthy elderly, age 55-85 years, were randomly chosen from free living elderly under guidance of health care centers (PUSKESMAS in Jakarta. Anamnesis and physical examination were done in the morning in the health centers. Blood samples were taken in fasting conditions, plasma lipids and lipid peroxides were measured according to standard methods. There was an age difference of lipid peroxides level in the elderly, which increased with age up to 70 years old. Elderly 70 years old and over had low plasma lipid peroxides. The level was not related to high plasma lipids. Higher level was found when more chronic degenerative diseases were found. (Med J Indones 2005; 14: 71-7Keywords: lipid peroxides, aging

  12. Titanium corrosion in alkaline hydrogen peroxide environments

    Science.gov (United States)

    Been, Jantje

    1998-12-01

    The corrosion of Grade 2 titanium in alkaline hydrogen peroxide environments has been studied by weight loss corrosion tests, electrochemical impedance spectroscopy (EIS), linear polarization resistance (LPR) measurements and potentiodynamic polarography. Calcium ions and wood pulp were investigated as corrosion inhibitors. In alkaline peroxide, the titanium corrosion rate increased with increasing pH, temperature, and hydrogen peroxide concentration. The corrosion controlling mechanism is thought to be the reaction of the oxide with the perhydroxyl ion. No evidence of thermodynamically stable calcium titanate was found in the surface film of test coupons exposed to calcium-inhibited alkaline peroxide solutions. Calcium inhibition is probably the result of low local alkali and peroxide concentrations at the metal surface produced by reaction of adsorbed calcium with hydrogen peroxide. It has been shown that the inhibiting effect of calcium is temporary, possibly through an effect of calcium on the chemical and/or physical stability of the surface oxide. Pulp is an effective and stable corrosion inhibitor. Raising the pulp concentration decreased the corrosion rate. The inhibiting effect of pulp may be related to the adsorption and interaction of the pulp fibers with H 2O2, thereby decreasing the peroxide concentration and rendering the solution less corrosive. The presence of both pulp and calcium led to higher corrosion rates than obtained by either one inhibitor alone. Replacement of hydrofluoric acid with alkaline peroxide for pickling of titanium was investigated. Titanium corrosion rates in alkaline peroxide exceeded those obtained in the conventional hydrofluoric acid bath. General corrosion was observed with extensive roughening of the surface giving a dull gray appearance. Preferred dissolution of certain crystallographic planes was investigated through the corrosion of a titanium single crystal. Whereas the overall effect on the corrosion rate was small

  13. High temperature decomposition of hydrogen peroxide

    Science.gov (United States)

    Parrish, Clyde F. (Inventor)

    2011-01-01

    Nitric oxide (NO) is oxidized into nitrogen dioxide (NO.sub.2) by the high temperature decomposition of a hydrogen peroxide solution to produce the oxidative free radicals, hydroxyl and hydroperoxyl. The hydrogen peroxide solution is impinged upon a heated surface in a stream of nitric oxide where it decomposes to produce the oxidative free radicals. Because the decomposition of the hydrogen peroxide solution occurs within the stream of the nitric oxide, rapid gas-phase oxidation of nitric oxide into nitrogen dioxide occurs.

  14. Membrane transport of hydrogen peroxide.

    Science.gov (United States)

    Bienert, Gerd P; Schjoerring, Jan K; Jahn, Thomas P

    2006-08-01

    Hydrogen peroxide (H2O2) belongs to the reactive oxygen species (ROS), known as oxidants that can react with various cellular targets thereby causing cell damage or even cell death. On the other hand, recent work has demonstrated that H2O2 also functions as a signalling molecule controlling different essential processes in plants and mammals. Because of these opposing functions the cellular level of H2O2 is likely to be subjected to tight regulation via processes involved in production, distribution and removal. Substantial progress has been made exploring the formation and scavenging of H2O2, whereas little is known about how this signal molecule is transported from its site of origin to the place of action or detoxification. From work in yeast and bacteria it is clear that the diffusion of H2O2 across membranes is limited. We have now obtained direct evidence that selected aquaporin homologues from plants and mammals have the capacity to channel H2O2 across membranes. The main focus of this review is (i) to summarize the most recent evidence for a signalling role of H2O2 in various pathways in plants and mammals and (ii) to discuss the relevance of specific transport of H2O2.

  15. Detection of interstellar hydrogen peroxide

    CERN Document Server

    Bergman, P; Liseau, R; Larsson, B; Olofsson, H; Menten, K M; Güsten, R

    2011-01-01

    The molecular species hydrogen peroxide, HOOH, is likely to be a key ingredient in the oxygen and water chemistry in the interstellar medium. Our aim with this investigation is to determine how abundant HOOH is in the cloud core {\\rho} Oph A. By observing several transitions of HOOH in the (sub)millimeter regime we seek to identify the molecule and also to determine the excitation conditions through a multilevel excitation analysis. We have detected three spectral lines toward the SM1 position of {\\rho} Oph A at velocity-corrected frequencies that coincide very closely with those measured from laboratory spectroscopy of HOOH. A fourth line was detected at the 4{\\sigma} level. We also found through mapping observations that the HOOH emission extends (about 0.05 pc) over the densest part of the {\\rho} Oph A cloud core. We derive an abundance of HOOH relative to that of H_2 in the SM1 core of about 1\\times10^(-10). To our knowledge, this is the first reported detection of HOOH in the interstellar medium.

  16. 21 CFR 529.1150 - Hydrogen peroxide.

    Science.gov (United States)

    2010-04-01

    ... DRUGS, FEEDS, AND RELATED PRODUCTS CERTAIN OTHER DOSAGE FORM NEW ANIMAL DRUGS § 529.1150 Hydrogen... group. Eggs: Some strains of rainbow trout eggs are sensitive to hydrogen peroxide treatment at a time...

  17. Isothermal Decomposition of Hydrogen Peroxide Dihydrate

    Science.gov (United States)

    Loeffler, M. J.; Baragiola, R. A.

    2011-01-01

    We present a new method of growing pure solid hydrogen peroxide in an ultra high vacuum environment and apply it to determine thermal stability of the dihydrate compound that forms when water and hydrogen peroxide are mixed at low temperatures. Using infrared spectroscopy and thermogravimetric analysis, we quantified the isothermal decomposition of the metastable dihydrate at 151.6 K. This decomposition occurs by fractional distillation through the preferential sublimation of water, which leads to the formation of pure hydrogen peroxide. The results imply that in an astronomical environment where condensed mixtures of H2O2 and H2O are shielded from radiolytic decomposition and warmed to temperatures where sublimation is significant, highly concentrated or even pure hydrogen peroxide may form.

  18. Ultrafast Photoinduced Electron Transfer from Peroxide Dianion.

    Science.gov (United States)

    Anderson, Bryce L; Maher, Andrew G; Nava, Matthew; Lopez, Nazario; Cummins, Christopher C; Nocera, Daniel G

    2015-06-18

    The encapsulation of peroxide dianion by hexacarboxamide cryptand provides a platform for the study of electron transfer of isolated peroxide anion. Photoinitiated electron transfer (ET) between freely diffusing Ru(bpy)3(2+) and the peroxide dianion occurs with a rate constant of 2.0 × 10(10) M(-1) s(-1). A competing electron transfer quenching pathway is observed within an ion pair. Picosecond transient spectroscopy furnishes a rate constant of 1.1 × 10(10) s(-1) for this first-order process. A driving force dependence for the ET rate within the ion pair using a series of Ru(bpy)3(2+) derivatives allows for the electronic coupling and reorganization energies to be assessed. The ET reaction is nonadiabatic and dominated by a large inner-sphere reorganization energy, in accordance with that expected for the change in bond distance accompanying the conversion of peroxide dianion to superoxide anion.

  19. Lipid peroxidation in experimental uveitis: sequential studies.

    Science.gov (United States)

    Goto, H; Wu, G S; Chen, F; Kristeva, M; Sevanian, A; Rao, N A

    1992-06-01

    Previously we have detected the occurrence of retinal lipid peroxidation initiated by phagocyte-derived oxygen radicals in experimental autoimmune uveitis (EAU). In the current studies, the confirmation of inflammation-mediated lipid peroxidation was proceeded further to include measurement of multiple parameters, including conjugated dienes, ketodienes, thiobarbituric acid reactive substances and fluorescent chromolipids. The assay for myeloperoxidase, a measure for the number of polymorphonuclear leukocytes in the inflammatory sites was also carried out. The levels of all these parameters were followed through the course of EAU development. The sequential evaluation of histologic changes using both light and electron microscopy was also carried out and the results were correlated with lipid peroxidation indices. These data suggest that the retinal lipid peroxidation plays a causative role in the subsequent retinal degeneration.

  20. Fossil Fuels.

    Science.gov (United States)

    Crank, Ron

    This instructional unit is one of 10 developed by students on various energy-related areas that deals specifically with fossil fuels. Some topics covered are historic facts, development of fuels, history of oil production, current and future trends of the oil industry, refining fossil fuels, and environmental problems. Material in each unit may…

  1. Fossil Fuels.

    Science.gov (United States)

    Crank, Ron

    This instructional unit is one of 10 developed by students on various energy-related areas that deals specifically with fossil fuels. Some topics covered are historic facts, development of fuels, history of oil production, current and future trends of the oil industry, refining fossil fuels, and environmental problems. Material in each unit may…

  2. EFFLUENT TREATMENT FACILITY PEROXIDE DESTRUCTION CATALYST TESTING

    Energy Technology Data Exchange (ETDEWEB)

    HALGREN DL

    2008-07-30

    The 200 Area Effluent Treatment Facility (ETF) main treatment train includes the peroxide destruction module (PDM) where the hydrogen peroxide residual from the upstream ultraviolet light/hydrogen peroxide oxidation unit is destroyed. Removal of the residual peroxide is necessary to protect downstream membranes from the strong oxidizer. The main component of the PDM is two reaction vessels utilizing granular activated carbon (GAC) as the reaction media. The PDM experienced a number of operability problems, including frequent plugging, and has not been utilized since the ETF changed to groundwater as the predominant feed. The unit seemed to be underperforming in regards to peroxide removal during the early periods of operation as well. It is anticipated that a functional PDM will be required for wastewater from the vitrification plant and other future streams. An alternate media or methodology needs to be identified to replace the GAC in the PDMs. This series of bench scale tests is to develop information to support an engineering study on the options for replacement of the existing GAC method for peroxide destruction at the ETF. A number of different catalysts will be compared as well as other potential methods such as strong reducing agents. The testing should lead to general conclusions on the viability of different catalysts and identify candidates for further study and evaluation.

  3. Cyclic Organic Peroxides Characterization by Mass Spectrometry and Raman Microscopy

    Science.gov (United States)

    2011-04-01

    organic peroxides,DART, hexa -methylene triperoxide diamine (HMTD), triacetonetriperoxide (TATP), TATP-d18, triacetone triperoxide (TATP), time-of...peroxides, DART, hexa -methylene triperoxide diamine (HMTD), triacetone triperoxide (TATP), , triacetone triperoxide (TATP), time-of-flight–mass...acetone tri-peroxide (TATP) and hexa -methylene triper- oxide diamine (HMTD) are the more commonly used cyclic organic peroxides in terrorist acts

  4. Fuel distribution

    Energy Technology Data Exchange (ETDEWEB)

    Tison, R.R.; Baker, N.R.; Blazek, C.F.

    1979-07-01

    Distribution of fuel is considered from a supply point to the secondary conversion sites and ultimate end users. All distribution is intracity with the maximum distance between the supply point and end-use site generally considered to be 15 mi. The fuels discussed are: coal or coal-like solids, methanol, No. 2 fuel oil, No. 6 fuel oil, high-Btu gas, medium-Btu gas, and low-Btu gas. Although the fuel state, i.e., gas, liquid, etc., can have a major impact on the distribution system, the source of these fuels (e.g., naturally-occurring or coal-derived) does not. Single-source, single-termination point and single-source, multi-termination point systems for liquid, gaseous, and solid fuel distribution are considered. Transport modes and the fuels associated with each mode are: by truck - coal, methanol, No. 2 fuel oil, and No. 6 fuel oil; and by pipeline - coal, methane, No. 2 fuel oil, No. 6 oil, high-Btu gas, medium-Btu gas, and low-Btu gas. Data provided for each distribution system include component makeup and initial costs.

  5. Safe handling of potential peroxide forming compounds and their corresponding peroxide yielded derivatives.

    Energy Technology Data Exchange (ETDEWEB)

    Sears, Jeremiah Matthew; Boyle, Timothy J.; Dean, Christopher J.

    2013-06-01

    This report addresses recent developments concerning the identification and handling of potential peroxide forming (PPF) and peroxide yielded derivative (PYD) chemicals. PPF chemicals are described in terms of labeling, shelf lives, and safe handling requirements as required at SNL. The general peroxide chemistry concerning formation, prevention, and identification is cursorily presented to give some perspective to the generation of peroxides. The procedure for determining peroxide concentrations and the proper disposal methods established by the Hazardous Waste Handling Facility are also provided. Techniques such as neutralization and dilution are provided for the safe handling of any PYD chemicals to allow for safe handling. The appendices are a collection of all available SNL documentation pertaining to PPF/PYD chemicals to serve as a single reference.

  6. Phytic Acid Inhibits Lipid Peroxidation In Vitro

    Directory of Open Access Journals (Sweden)

    Alicja Zajdel

    2013-01-01

    Full Text Available Phytic acid (PA has been recognized as a potent antioxidant and inhibitor of iron-catalyzed hydroxyl radical formation under in vitro and in vivo conditions. Therefore, the aim of the present study was to investigate, with the use of HPLC/MS/MS, whether PA is capable of inhibiting linoleic acid autoxidation and Fe(II/ascorbate-induced peroxidation, as well as Fe(II/ascorbate-induced lipid peroxidation in human colonic epithelial cells. PA at 100 μM and 500 μM effectively inhibited the decay of linoleic acid, both in the absence and presence of Fe(II/ascorbate. The observed inhibitory effect of PA on Fe(II/ascorbate-induced lipid peroxidation was lower (10–20% compared to that of autoxidation. PA did not change linoleic acid hydroperoxides concentration levels after 24 hours of Fe(II/ascorbate-induced peroxidation. In the absence of Fe(II/ascorbate, PA at 100 μM and 500 μM significantly suppressed decomposition of linoleic acid hydroperoxides. Moreover, PA at the tested nontoxic concentrations (100 μM and 500 μM significantly decreased 4-hydroxyalkenal levels in Caco-2 cells which structurally and functionally resemble the small intestinal epithelium. It is concluded that PA inhibits linoleic acid oxidation and reduces the formation of 4-hydroxyalkenals. Acting as an antioxidant it may help to prevent intestinal diseases induced by oxygen radicals and lipid peroxidation products.

  7. Phytic acid inhibits lipid peroxidation in vitro.

    Science.gov (United States)

    Zajdel, Alicja; Wilczok, Adam; Węglarz, Ludmiła; Dzierżewicz, Zofia

    2013-01-01

    Phytic acid (PA) has been recognized as a potent antioxidant and inhibitor of iron-catalyzed hydroxyl radical formation under in vitro and in vivo conditions. Therefore, the aim of the present study was to investigate, with the use of HPLC/MS/MS, whether PA is capable of inhibiting linoleic acid autoxidation and Fe(II)/ascorbate-induced peroxidation, as well as Fe(II)/ascorbate-induced lipid peroxidation in human colonic epithelial cells. PA at 100 μM and 500 μM effectively inhibited the decay of linoleic acid, both in the absence and presence of Fe(II)/ascorbate. The observed inhibitory effect of PA on Fe(II)/ascorbate-induced lipid peroxidation was lower (10-20%) compared to that of autoxidation. PA did not change linoleic acid hydroperoxides concentration levels after 24 hours of Fe(II)/ascorbate-induced peroxidation. In the absence of Fe(II)/ascorbate, PA at 100 μM and 500 μM significantly suppressed decomposition of linoleic acid hydroperoxides. Moreover, PA at the tested nontoxic concentrations (100 μM and 500 μM) significantly decreased 4-hydroxyalkenal levels in Caco-2 cells which structurally and functionally resemble the small intestinal epithelium. It is concluded that PA inhibits linoleic acid oxidation and reduces the formation of 4-hydroxyalkenals. Acting as an antioxidant it may help to prevent intestinal diseases induced by oxygen radicals and lipid peroxidation products.

  8. Electronic structure and bonding in crystalline peroxides

    Science.gov (United States)

    Königstein, Markus; Sokol, Alexei A.; Catlow, C. Richard A.

    1999-08-01

    Hartree-Fock and density-functional PW91 theories as realized in the CRYSTAL95 code have been applied to investigate the structural and electronic properties of Ba, Sr, and Ca peroxide materials with the calcium carbide crystal structure, results for which are compared with those for the corresponding oxides. Special attention is paid to the stabilization of the peroxide molecular ion O2-2 in the ionic environment provided by the lattice, and to chemical bonding effects. In order to describe the covalent bonding within the O2-2 ion and the polarization of the O- ion in the crystal electrostatic field, it is essential to include an account of the effects of electron correlation. The PW91 density functional has allowed us to reproduce the crystallographic parameters within a 3% error. The chemical bonding within the peroxide molecular ion has a complex nature with a balance between the weak covalent bond of σz type and the strong electrostatic repulsion of the closed-shell electron groups occupying O 2s and O 2px and 2py states. Compression of the peroxide ion in the ionic crystals gives rise to an excessive overlap of the O 2s closed shells of the two O- ions of a peroxide molecular ion O2-2, which in turn determines the antibonding character of the interaction and chemical bonding in the O2-2 molecular ion.

  9. A Development of Ethanol/Percarbonate Membraneless Fuel Cell

    Directory of Open Access Journals (Sweden)

    M. Priya

    2014-01-01

    Full Text Available The electrocatalytic oxidation of ethanol on membraneless sodium percarbonate fuel cell using platinum electrodes in alkaline-acidic media is investigated. In this cell, ethanol is used as the fuel and sodium percarbonate is used as an oxidant for the first time in an alkaline-acidic media. Sodium percarbonate generates hydrogen peroxide in aqueous medium. At room temperature, the laminar-flow-based microfluidic membraneless fuel cell can reach a maximum power density of 18.96 mW cm−2 with a fuel mixture flow rate of 0.3 mL min−2. The developed fuel cell features no proton exchange membrane. The simple planar structured membraneless ethanol fuel cell presents with high design flexibility and enables easy integration of the microscale fuel cell into actual microfluidic systems and portable power applications.

  10. Fuel Cells

    DEFF Research Database (Denmark)

    Smith, Anders; Pedersen, Allan Schrøder

    2014-01-01

    Fuel cells have been the subject of intense research and development efforts for the past decades. Even so, the technology has not had its commercial breakthrough yet. This entry gives an overview of the technological challenges and status of fuel cells and discusses the most promising applications...... of the different types of fuel cells. Finally, their role in a future energy supply with a large share of fluctuating sustainable power sources, e.g., solar or wind, is surveyed....

  11. Hydrogen peroxide decomposition kinetics in aquaculture water

    DEFF Research Database (Denmark)

    Arvin, Erik; Pedersen, Lars-Flemming

    2015-01-01

    Hydrogen peroxide (HP) is used in aquaculture systems where preventive or curative water treatments occasionally are required. Use of chemical agents can be challenging in recirculating aquaculture systems (RAS) due to extended water retention time and because the agents must not damage the fish...... facilitated by microbial enzyme activity. The model describes how the hydrogen peroxide removal declines and eventually stops at relatively low chemical oxygen demand (COD) concentrations. It is hypothesized that this is due to an enzyme deficit because it is destructed due to the reactive radicals created...

  12. Lipid peroxidation in adrenal and testicular microsomes.

    OpenAIRE

    1981-01-01

    Studies were carried out to determine the actions of and interactions between ascorbate, NADPH, Fe2+, and Fe3+ on lipid peroxidation in adrenal and testicular microsomes. Ascorbate-induced malonaldehyde production was maximal in adrenal and testicular microsomes at an ascorbate concentration of 1 X 10(-4)M. Fe2+, at levels between 10(-6) and 10(-3)M, produced concentration-dependent increases in lipid peroxidation in adrenal and testicular microsomes; Fe2+ had a far greater effect than Fe3+ i...

  13. Phytic Acid Inhibits Lipid Peroxidation In Vitro

    OpenAIRE

    Alicja Zajdel; Adam Wilczok; Ludmiła Węglarz; Zofia Dzierżewicz

    2013-01-01

    Phytic acid (PA) has been recognized as a potent antioxidant and inhibitor of iron-catalyzed hydroxyl radical formation under in vitro and in vivo conditions. Therefore, the aim of the present study was to investigate, with the use of HPLC/MS/MS, whether PA is capable of inhibiting linoleic acid autoxidation and Fe(II)/ascorbate-induced peroxidation, as well as Fe(II)/ascorbate-induced lipid peroxidation in human colonic epithelial cells. PA at 100 μM and 500 μM effectively inhibited the deca...

  14. Reactive Oxygen Species, Lipid Peroxidation and Antioxidative Defense Mechanism

    Directory of Open Access Journals (Sweden)

    Hossam S. EL-BELTAGI

    2013-05-01

    Full Text Available Lipid peroxidation can be defined as the oxidative deterioration of lipids containing any number of carbon-carbon double bonds. Lipid peroxidation is a well-established mechanism of cellular injury in both plants and animals, and is used as an indicator of oxidative stress in cells and tissues. Lipid peroxides are unstable and decompose to form a complex series of compounds including reactive carbonyl compounds. The oxidation of linoleates and cholesterol is discussed in some detail. Analytical methods for studying lipid peroxidation were mentioned. Various kinds of antioxidants with different functions inhibit lipid peroxidation and the deleterious effects caused by the lipid peroxidation products.

  15. Acetylene bubble-powered autonomous capsules: towards in situ fuel.

    Science.gov (United States)

    Moo, James Guo Sheng; Wang, Hong; Pumera, Martin

    2014-12-28

    A fuel-free autonomous self-propelled motor is illustrated. The motor is powered by the chemistry of calcium carbide and utilising water as a co-reactant, through a polymer encapsulation strategy. Expulsion of acetylene bubbles powers the capsule motor. This is an important step, going beyond the toxic hydrogen peroxide fuel used normally, to find alternative propellants for self-propelled machines.

  16. Involvement of lipid peroxidation and organic peroxides in UVA-induced matrix metalloproteinase-1 expression.

    Science.gov (United States)

    Polte, Tobias; Tyrrell, Rex M

    2004-06-15

    Ultraviolet A (UVA) irradiation causes human skin aging and skin cancer at least partially through the activation of matrix metalloproteinases (MMPs). MMP-1, the interstitial collagenase, is responsible for the degradation of collagen and is involved in tumor progression in human skin. The present study uses human skin fibroblast cells (FEK4) to investigate the involvement of lipid peroxidation and the role of peroxides as possible mediators in MMP-1 activation by UVA. Preincubation with the antioxidants butylated hydroxytoluene and Trolox reduced UVA-dependent MMP-1 upregulation, suggesting that peroxidation of membrane lipids is involved. Blocking the iron-driven generation of lipid peroxides and hydroxyl radicals by different iron chelators led to a decrease in UVA-induced MMP-1 mRNA accumulation. Moreover, modulation of glutathione peroxidase activity by use of the specific inhibitor mercaptosuccinate (MS) or by the depletion of glutathione (using buthionine-S, R-sulfoximine, BSO), enhanced the UVA-dependent MMP-1 response. Finally, UVA irradiation generated a significant increase in intracellular peroxide levels which is augmented by pretreatment of the cells with BSO or MS. Our results demonstrate that lipid peroxidation and the production of peroxides are important events in the signalling pathway of MMP-1 activation by UVA.

  17. Self-assembly of uranyl-peroxide nanocapsules in basic peroxidic environments

    Energy Technology Data Exchange (ETDEWEB)

    Miro, Pere; Vlaisavljevich, Bess [Department of Chemistry, Supercomputing Institute, and Chemical Theory Center, University of Minnesota, Minneapolis, MN (United States); Gil, Adria [Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology, Tarragona (Spain); Burns, Peter C. [Department of Civil Engineering and Geological Sciences, University of Notre Dame, South Bend, IN (United States); Nyman, May [Materials Science of Actinides, Department of Chemistry, Oregon State University, Corvallis, OR (United States); Bo, Carles [Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology, Tarragona (Spain); Departament de Quimica Fisica i Inorganica, Universitat Rovira i Virgili, Campus Sescelades, Tarragona (Spain)

    2016-06-13

    A wide range of uranyl-peroxide nanocapsules have been synthesized using very simple reactants in basic media; however, little is known about the process to form these species. We have performed a density functional theory study of the speciation of the uranyl ions under different experimental conditions and explored the formation of dimeric species via a ligand exchange mechanism. We shed some light onto the importance of the excess of peroxide and alkali counterions as a thermodynamic driving force towards the formation of larger uranyl-peroxide species. (copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  18. Bioconversion of paper mill sludge to bioethanol in the presence of accelerants or hydrogen peroxide pretreatment.

    Science.gov (United States)

    Gurram, Raghu Nandan; Al-Shannag, Mohammad; Lecher, Nicholas Joshua; Duncan, Shona M; Singsaas, Eric Lawrence; Alkasrawi, Malek

    2015-09-01

    In this study we investigated the technical feasibility of convert paper mill sludge into fuel ethanol. This involved the removal of mineral fillers by using either chemical pretreatment or mechanical fractionation to determine their effects on cellulose hydrolysis and fermentation to ethanol. In addition, we studied the effect of cationic polyelectrolyte (as accelerant) addition and hydrogen peroxide pretreatment on enzymatic hydrolysis and fermentation. We present results showing that removing the fillers content (ash and calcium carbonate) from the paper mill sludge increases the enzymatic hydrolysis performance dramatically with higher cellulose conversion at faster rates. The addition of accelerant and hydrogen peroxide pretreatment further improved the hydrolysis yields by 16% and 25% (g glucose / g cellulose), respectively with the de-ashed sludge. The fermentation process of produced sugars achieved up to 95% of the maximum theoretical ethanol yield and higher ethanol productivities within 9h of fermentation.

  19. Electrocatalysis of hydrogen peroxide reactions on perovskite oxides: experiment versus kinetic modeling.

    Science.gov (United States)

    Poux, T; Bonnefont, A; Ryabova, A; Kéranguéven, G; Tsirlina, G A; Savinova, E R

    2014-07-21

    Hydrogen peroxide has been identified as a stable intermediate of the electrochemical oxygen reduction reaction on various electrodes including metal, metal oxide and carbon materials. In this article we study the hydrogen peroxide oxidation and reduction reactions in alkaline medium using a rotating disc electrode (RDE) method on oxides of the perovskite family (LaCoO3, LaMnO3 and La0.8Sr0.2MnO3) which are considered as promising electrocatalytic materials for the cathode of liquid and solid alkaline fuel cells. The experimental findings, such as the higher activity of Mn-compared to that of Co-perovskites, the shape of RDE curves, and the influence of the H2O2 concentration, are rationalized with the help of a microkinetic model.

  20. Virucidal efficacy of hydrogen peroxide vapour disinfection

    NARCIS (Netherlands)

    Tuladhar, E.; Terpstra, P.; Koopmans, M.; Duizer, E.

    2012-01-01

    Background: Viral contamination of surfaces is thought to be important in transmission. Chemical disinfection can be an effective means of intervention, but little is known about the virucidal efficacy of hydrogen peroxide vapour (HPV) against enteric and respiratory viruses. Aim: To measure the

  1. Virucidal efficacy of hydrogen peroxide vapour disinfection

    NARCIS (Netherlands)

    Tuladhar, E.; Terpstra, P.; Koopmans, M.; Duizer, E.

    2012-01-01

    Background: Viral contamination of surfaces is thought to be important in transmission. Chemical disinfection can be an effective means of intervention, but little is known about the virucidal efficacy of hydrogen peroxide vapour (HPV) against enteric and respiratory viruses. Aim: To measure the vir

  2. Fluorimetric analysis of hydrogen peroxide with automated measurement.

    NARCIS (Netherlands)

    Beurden, W.J.C van; Bosch, M.J. van den; Janssen, W.C.; Smeenk, F.W.; Dekhuijzen, P.N.R.; Harff, G.A.

    2003-01-01

    In the pathophysiology of chronic obstructive pulmonary disease (COPD) oxidative stress plays an important role, which can be determined by measuring hydrogen peroxide. Hydrogen peroxide can be measured fluorimetrically in exhaled breath condensate (EBC), however, not standardized. The objective of

  3. Drinking Peroxide as 'Natural' Cure Leads to Dangerous Blood Clots

    Science.gov (United States)

    ... https://medlineplus.gov/news/fullstory_163513.html Drinking Peroxide as 'Natural' Cure Leads to Dangerous Blood Clots ... 9, 2017 (HealthDay News) -- Ingesting high-concentration hydrogen peroxide as a "natural cure" or cleansing agent may ...

  4. Systems and methods for generation of hydrogen peroxide vapor

    Science.gov (United States)

    Love, Adam H; Eckels, Joel Del; Vu, Alexander K; Alcaraz, Armando; Reynolds, John G

    2014-12-02

    A system according to one embodiment includes a moisture trap for drying air; at least one of a first container and a second container; and a mechanism for at least one of: bubbling dried air from the moisture trap through a hydrogen peroxide solution in the first container for producing a hydrogen peroxide vapor, and passing dried air from the moisture trap into a headspace above a hydrogen peroxide solution in the second container for producing a hydrogen peroxide vapor. A method according one embodiment includes at least one of bubbling dried air through a hydrogen peroxide solution in a container for producing a first hydrogen peroxide vapor, and passing dried air from the moisture trap into a headspace above the hydrogen peroxide solution in a container for producing a second hydrogen peroxide vapor. Additional systems and methods are also presented.

  5. Microsomal lipid peroxidation as a mechanism of cellular damage. [Dissertation

    Energy Technology Data Exchange (ETDEWEB)

    Kornbrust, D.J.

    1979-01-01

    The NADPH/iron-dependent peroxidation of lipids in rat liver microsomes was found to be dependent on the presence of free ferrous ion and maintains iron in the reduced Fe/sup 2 +/ state. Chelation of iron by EDTA inhibited peroxidation. Addition of iron, after preincubation of microsomes in the absence of iron, did not enhance the rate of peroxidation suggesting that iron acts by initiating peroxidative decomposition of membrane lipids rather than by catalyzing the breakdown of pre-formed hydroperoxides. Liposomes also underwent peroxidation in the presence of ferrous iron at a rate comparable to intact microsomes and was stimulated by ascorbate. Carbon tetrachloride initiated lipid peroxidation in the absence of free metal ions. Rates of in vitro lipid peroxidation of microsomes and homogenates were found to vary widely between different tissues and species. The effects of paraquat on lipid peroxidation was also studied. (DC)

  6. Formation of studtite during the oxidative dissolution of UO2 by hydrogen peroxide: a SFM study.

    Science.gov (United States)

    Clarens, F; de Pablo, J; Díez-Pérez, I; Casas, I; Giménez, J; Rovira, M

    2004-12-15

    Understanding the formation of alteration phases on the surface of spent nuclear fuel, such as those observed during leaching experiments, is necessary in order to predict the concentration of radionuclides in the near-field of a final repository. Hydrogen peroxide has been identified as one of the oxidants formed by the radiolysis of water in the presence of spent nuclear fuel; especially due to alpha activity. The presence of this species in solution can contribute to the formation of uranium peroxide secondary phases. In this work, we have studied the oxidative dissolution of synthetic UO2 disks in hydrogen peroxide solutions of two different concentrations (5 x 10(-4) and 5 x 10(-6) mol dm(-3)), both at pH 5.8 +/- 0.1. The solid surface evolution of the disks has been followed by means of ex-situ scanning force microscope (SFM) measurements, and uranium concentration in solution has been determined by inductively coupled plasma mass spectrometry. During the first stage of the experiment, SFM images indicate that only UO2 dissolution is occurring. After 142 h, a secondary phase is observed on the surface of the solid at 5 x 10(-4) mol dm(-3) hydrogen peroxide concentration. This secondary phase has been identified by X-ray diffraction as studtite (UO4 x 4H2O). From the analysis of SFM topographic profiles at different elapsed times, a precipitation rate for the studtite has been estimated to be in the range of (8-32) x 10(-10) mol m(-2) s(-1).

  7. Expanding the crystal chemistry of uranyl peroxides: four hybrid uranyl-peroxide structures containing EDTA.

    Science.gov (United States)

    Qiu, Jie; Ling, Jie; Sieradzki, Claire; Nguyen, Kevin; Wylie, Ernest M; Szymanowski, Jennifer E S; Burns, Peter C

    2014-11-17

    The first four uranyl peroxide compounds containing ethylenediaminetetra-acetate (EDTA) were synthesized and characterized from aqueous uranyl peroxide nitrate solutions with a pH range of 5-7. Raman spectra demonstrated that reaction solutions that crystallized [NaK15[(UO2)8(O2)8(C10H12O10N2)2(C2O4)4]·(H2O)14] (1) and [Li4K6[(UO2)8(O2)6(C10H12O10N2)2(NO3)6]·(H2O)26] (2) contained excess peroxide, and their structures contained oxidized ethylenediaminetetraacetate, EDTAO2(4-). The solutions from which [K4[(UO2)4(O2)2(C10H13O8N2)2(IO3)2]·(H2O)16] (3) and LiK3[(UO2)4(O2)2(C10H12O8N2)2(H2O)2]·(H2O)18 (4) crystallized contained no free peroxide, and the structures incorporated intact EDTA(4-). In contrast to the large family of uranyl peroxide cage clusters, coordination of uranyl peroxide units in 1-4 by EDTA(4-) or EDTAO2(4-) results in isolated tetramers or dimers of uranyl ions that are bridged by bidentate peroxide groups. Two tetramers are bridged by EDTAO2(4-) to form octamers in 1 and 2, and dimers of uranyl polyhedra are linked through iodate groups in 3 and EDTA(4-) in 4, forming chains in both cases. In each structure the U-O2-U dihedral angle is strongly bent, at ∼140°, consistent with the configuration of this linkage in cage clusters and other recently reported uranyl peroxides.

  8. Investigation of Influential Parameters in Deep Oxidative Desulfurization of Dibenzothiophene with Hydrogen Peroxide and Formic Acid

    Directory of Open Access Journals (Sweden)

    Alireza Haghighat Mamaghani

    2013-01-01

    Full Text Available An effective oxidative system consisting of hydrogen peroxide, formic acid, and sulfuric acid followed by an extractive stage were implemented to remove dibenzothiophene in the simulated fuel oil. The results revealed such a great performance in the case of H2O2 in the presence of formic and sulfuric acids that led to the removal of sulfur compounds. Sulfuric acid was employed to increase the acidity of media as well as catalytic activity together with formic acid. The oxidation reaction was followed by a liquid-liquid extraction stage using acetonitrile as a polar solvent to remove produced sulfones from the model fuel. The impact of operating parameters including the molar ratio of formic acid to sulfur (, hydrogen peroxide to sulfur (, and the time of reaction was investigated using Box-Behnken experimental design for oxidation of the model fuel. A significant quadratic model was introduced for the sulfur removal as a function of effective parameters by the statistic analysis.

  9. 49 CFR 172.552 - ORGANIC PEROXIDE placard.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false ORGANIC PEROXIDE placard. 172.552 Section 172.552... SECURITY PLANS Placarding § 172.552 ORGANIC PEROXIDE placard. (a) Except for size and color, the ORGANIC... background on the ORGANIC PEROXIDE placard must be red in the top half and yellow in the lower half. The...

  10. 49 CFR 172.427 - ORGANIC PEROXIDE label.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false ORGANIC PEROXIDE label. 172.427 Section 172.427... SECURITY PLANS Labeling § 172.427 ORGANIC PEROXIDE label. (a) Except for size and color, the ORGANIC... on the ORGANIC PEROXIDE label must be red in the top half and yellow in the lower half....

  11. 21 CFR 178.1005 - Hydrogen peroxide solution.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Hydrogen peroxide solution. 178.1005 Section 178... SANITIZERS Substances Utilized To Control the Growth of Microorganisms § 178.1005 Hydrogen peroxide solution. Hydrogen peroxide solution identified in this section may be safely used to sterilize polymeric...

  12. Fuel cells:

    DEFF Research Database (Denmark)

    Sørensen, Bent

    2013-01-01

    A brief overview of the progress in fuel cell applications and basic technology development is presented, as a backdrop for discussing readiness for penetration into the marketplace as a solution to problems of depletion, safety, climate or environmental impact from currently used fossil and nucl......A brief overview of the progress in fuel cell applications and basic technology development is presented, as a backdrop for discussing readiness for penetration into the marketplace as a solution to problems of depletion, safety, climate or environmental impact from currently used fossil...... and nuclear fuel-based energy technologies....

  13. 脂肪乳剂的脂质过氧化问题%Peroxidation of lipid emulsions

    Institute of Scientific and Technical Information of China (English)

    L.K.Choo

    2001-01-01

    In both preterm neonates and adults,parenteral administration oflipid emulsions caused increased lipid peroxidation.This is manifested as increased breath pentane,and increased malonedialdehyde or thiobarbituric acid reactant substances in plasma and body tissues.Such peroxidative reactions have been implicated as the cause of cellular and tissue damage in adults and infants.Avoiding the use of lipid emulsions in critically ill TPN patients is not really a practical approach to avoid peroxidative damage as a mixed glucose-fat fuel system has been shown to be superior to a glucose-based regimen.A viable alternative is to supplement parenteral supply of lipids with antioxidants like α-tocopherol.The involvement of antioxidants in proxidation reactions has been implicated by findings of negative correlation between plasma α-tocopherol level and breath pentane output as well as a negative correlation between plasma α-tocopherol level and duration of home parenteral nutrition (Lemoyne et al.,1988).It has also been demonstrated that intravenous supplementation of Vitamin E counteracted LCT-induced peroxidation and prevented Vitamin E depletion (Wispe et al.,1986,Pitkanen et al,1991,Siderovaet al.,1995).The extent of peroxidation is influenced not only by enrichment with α-tocopherol in the emulsion,but also by the composition of the fat emulsion also.Thus,the lower PUFA content of MCT/LCT lipid emulsion compared to pure LCT emulsions caused less peroxidation (Zimmermann et al.,1993,Arorati et al.,1997).In summary,reduction of susceptibility of fat emulsion to peroxidation can be achieved by reducing the content of unsaturated fatty acid by using a mixed emulsion like a physical mixed MCT/LCT lipid emulsion and supplementing the lipid emulsion with Vitamin E.

  14. Fuel cells

    Directory of Open Access Journals (Sweden)

    D. N. Srivastava

    1962-05-01

    Full Text Available The current state of development of fuel cells as potential power sources is reviewed. Applications in special fields with particular reference to military requirements are pointed out.

  15. Operando fuel cell spectroscopy

    Science.gov (United States)

    Kendrick, Ian Michael

    unobserved peaks corresponding to adsorbed ethanol. A modification to the operando fuel cell design allowed for acquisition of Raman spectra. A confocal Raman microscope enabled characterization of the MEA through depth profiling. The potential dependent peaks of an Fe-N x/C catalyst were identified and compared to the theoretical spectra of the proposed active sites. It was determined that oxygen adsorbed onto iron/iron oxide carbon nanostructures were responsible for the experimentally obtained peaks. This finding was supported by additional Raman studies carried out on a catalyst with these active sites removed through peroxide treatments. 1 Topsoe, H., Developments in operando studies and in situ characterization of heterogeneous catalysts. Journal of Catalysis, 2003. 216(1-2): p. 155-164. 2 Stamenkovic, V., et al., Vibrational properties of CO at the Pt(111)-solution interface: the anomalous stark-tuning slope. Journal of Physical Chemistry B, 2005. 109(2): p. 678-680. 3 Kendrick, I., et al., Elucidating the Ionomer-Electrified Metal Interface. J. Am. Chem. Soc., 2010. 132(49): p. 17611-17616. 4 Lamy, C. and Leger, J.M., FUEL-CELLS - APPLICATION TO ELECTRIC VEHICLES. Journal De Physique Iv, 1994. 4(C1): p. 253-281.

  16. Future Fuels

    Science.gov (United States)

    2006-04-01

    Storage Devices, Fuel Management, Gasification, Fischer-Tropsch, Syngas , Hubberts’s Peak UNCLAS UNCLAS UNCLAS UU 80 Dr. Sujata Millick (703) 696...prices ever higher, and perhaps lead to intermittent fuel shortages as production fluctuates. Clearly, this competition for resources also provides oil...producers multiple options for selling their products, and raises the possibility that the US could face shortages resulting from shifts in

  17. Clinical validation and calibration of in vitro peroxide tooth whitening.

    Science.gov (United States)

    Putt, Mark S; Moore, Michael H; Milleman, Jeffery L; Milleman, Kimberly R; Thong, Stephen H; Vorwerk, Linda M; Charig, Andrew J; Nelson, Bruce J; Winston, Anthony E

    2009-01-01

    The purpose of this study was to validate and calibrate an in vitro test method for screening the performance of peroxide-containing toothpastes against actual clinical whitening performance. An additional objective was to estimate the whitening performance of a new peroxide-additive gel using the in vitro methodology. A one-month longitudinal clinical study was performed to provide a benchmark for the in vivo intrinsic whitening performance of a peroxide-containing fluoride toothpaste. An in vitro study was then conducted, using freshly prepared slurries of the same peroxide-containing toothpaste in artificial saliva, to repeatedly treat extracted human teeth with natural intrinsic stain. The effect of cumulative treatment time on whiteness was determined using objective chromometer whiteness measurements (L*, a*, and b*), and more subjective Vita Shade guide (Vitapan) comparisons, and the results were correlated. A non-peroxide fluoride toothpaste was used as a negative control. The peroxide gel additive, combined in a 1:1 ratio with each of two non-peroxide toothpastes and diluted in artificial saliva, was evaluated using the same instrumental and subjective measures for in vitro whitening efficacy. The previously evaluated peroxide toothpaste and one of the non-peroxide toothpastes were used as positive and negative controls, respectively. In the clinical study, the peroxide-containing toothpaste produced a linear increase in tooth whiteness with time, achieving an approximately two Vita Shade guide improvement in whiteness at the end of four weeks. The same peroxide toothpaste in vitro produced a curvilinear increase in tooth whiteness versus cumulative treatment time, with a two-shade increase being achieved in 116 minutes. The non-peroxide control toothpaste produced less than half a shade guide increase in whiteness within the first 30 minutes, and none thereafter. Both the clinical and in vitro studies indicated that further whitening can be obtained with

  18. Materials Compatibility in High Test Hydrogen Peroxide

    Science.gov (United States)

    Gostowski, Rudy

    1999-01-01

    Previous ratings of the compatibility of high test hydrogen peroxide (HTP) with materials are not adequate for current needs. The goal of this work was to develop a new scheme of evaluation of compatibility of HTP with various materials. Procedures were developed to enrich commercially available hydrogen peroxide to 90% concentration and to assay the product. Reactivity testing, accelerated aging of materials and calorimetry studies were done on HTP with representative metallic and non-metallic materials. It was found that accelerated aging followed by concentration determination using refractive index effectively discriminated between different Class 2 metallic materials. Preliminary experiments using Differential Scanning Calorimetry (DSC) suggest that a calorimetry experiment is the most sensitive means to assay the compatibility of HTP with materials.

  19. Functionalized Palladium Nanoparticles for Hydrogen Peroxide Biosensor

    Directory of Open Access Journals (Sweden)

    H. Baccar

    2011-01-01

    Full Text Available We present a comparison between two biosensors for hydrogen peroxide (H2O2 detection. The first biosensor was developed by the immobilization of Horseradish Peroxidase (HRP enzyme on thiol-modified gold electrode. The second biosensor was developed by the immobilization of cysteamine functionalizing palladium nanoparticles on modified gold surface. The amino groups can be activated with glutaraldehyde for horseradish peroxidase immobilization. The detection of hydrogen peroxide was successfully observed in PBS for both biosensors using the cyclic voltammetry and the chronoamperometry techniques. The results show that the limit detection depends on the large surface-to-volume ratio attained with palladium nanoparticles. The second biosensor presents a better detection limit of 7.5 μM in comparison with the first one which is equal to 75 μM.

  20. The lipid peroxidation in breast cancer patients.

    Science.gov (United States)

    Kedzierska, Magdalena; Olas, Beata; Wachowicz, Barbara; Jeziorski, Arkadiusz; Piekarski, Janusz

    2010-06-01

    The aim of our study was to estimate oxidative stress (by using different biomarkers of lipid peroxidation--isoprostanes and thiobarbituric acid reactive substances (TBARS)) in patients with invasive breast cancer, patients with benign breast diseases and in a control group. We observed a statistically increased level of TBARS in plasma and isoprostanes in urine of patients with invasive breast cancer in comparison with a control group. The concentration of tested biomarkers in plasma or urine from patients with invasive breast cancer was also higher than in patients with benign breast diseases. Moreover, the levels of tested markers in patients with benign breast diseases and in a control group did not differ. Considering the data presented in this study, we suggest that free radicals induce peroxidation of unsaturated fatty acid in patients with breast cancer.

  1. Hydrogen Peroxide Propulsion for Smaller Satellites

    OpenAIRE

    Whitehead, John

    1998-01-01

    As satellite designs shrink, providing maneuvering and control capability falls outside the realm of available propulsion technology. While cold gas has been used on the smallest satellites, hydrogen peroxide propellant is suggested as the next step in performance and cost before hydrazine. Minimal toxicity and a small scale enable bench top propellant preparation and development testing. Progress toward low-cost thrusters and self-pressurizing tank systems is described.

  2. Inactivation of human myeloperoxidase by hydrogen peroxide.

    Science.gov (United States)

    Paumann-Page, Martina; Furtmüller, Paul G; Hofbauer, Stefan; Paton, Louise N; Obinger, Christian; Kettle, Anthony J

    2013-11-01

    Human myeloperoxidase (MPO) uses hydrogen peroxide generated by the oxidative burst of neutrophils to produce an array of antimicrobial oxidants. During this process MPO is irreversibly inactivated. This study focused on the unknown role of hydrogen peroxide in this process. When treated with low concentrations of H2O2 in the absence of reducing substrates, there was a rapid loss of up to 35% of its peroxidase activity. Inactivation is proposed to occur via oxidation reactions of Compound I with the prosthetic group or amino acid residues. At higher concentrations hydrogen peroxide acts as a suicide substrate with a rate constant of inactivation of 3.9 × 10(-3) s(-1). Treatment of MPO with high H2O2 concentrations resulted in complete inactivation, Compound III formation, destruction of the heme groups, release of their iron, and detachment of the small polypeptide chain of MPO. Ten of the protein's methionine residues were oxidized and the thermal stability of the protein decreased. Inactivation by high concentrations of H2O2 is proposed to occur via the generation of reactive oxidants when H2O2 reacts with Compound III. These mechanisms of inactivation may occur inside neutrophil phagosomes when reducing substrates for MPO become limiting and could be exploited when designing pharmacological inhibitors.

  3. Numerical analysis of fuel regression rate distribution characteristics in hybrid rocket motors with different fuel types

    Institute of Scientific and Technical Information of China (English)

    LI; XinTian; TIAN; Hui; CAI; GuoBiao

    2013-01-01

    This paper presents three-dimensional numerical simulations of the hybrid rocket motor with hydrogen peroxide (HP) and hy-droxyl terminated polybutadiene (HTPB) propellant combination and investigates the fuel regression rate distribution charac-teristics of different fuel types. The numerical models are established to couple the Navier-Stokes equations with turbulence,chemical reactions, solid fuel pyrolysis and solid-gas interfacial boundary conditions. Simulation results including the temper-ature contours and fuel regression rate distributions are presented for the tube, star and wagon wheel grains. The results demonstrate that the changing trends of the regression rate along the axis are similar for all kinds of fuel types, which decrease sharply near the leading edges of the fuels and then gradually increase with increasing axial locations. The regression rates of the star and wagon wheel grains show apparent three-dimensional characteristics, and they are higher in the regions of fuel surfaces near the central core oxidizer flow. The average regression rates increase as the oxidizer mass fluxes rise for all of the fuel types. However, under same oxidizer mass flux, the average regression rates of the star and wagon wheel grains are much larger than that of the tube grain due to their lower hydraulic diameters.

  4. Cumene peroxide and Fe(2+)-ascorbate-induced lipid peroxidation and effect of phosphoglucose isomerase.

    Science.gov (United States)

    Agadjanyan, Z S; Dugin, S F; Dmitriev, L F

    2006-09-01

    Malondialdehyde (MDA) is one of cytotoxic aldehydes produced in cells as a result of lipid peroxidation and further MDA metabolism in cytoplasm is not known. In our experiments the liver fraction 10,000 g containing phosphoglucose isomerase and enzymes of the glyoxalase system was used and obtained experimental data shows that in this fraction there is an aggregate of reactions taking place both in membranes (lipid peroxidation) and outside membranes. MDA accumulation is relatively slow because MDA is a substrate of aldehyde isomerase (MDA methylglyoxal). The well known enzyme phosphoglucose isomerase acts as an aldehyde isomerase (Michaelis constant for this enzyme Km = 133 +/- 8 microM). MDA conversion to methylglyoxal and further to neutral product D-lactate (with GSH as a cofactor) occurs in cytoplasm and D-lactate should be regarded as the end product of two different parametabolic reactions: lipid peroxidation or protein glycation.

  5. Numerical and experimental analysis of heat transfer in injector plate of hydrogen peroxide hybrid rocket motor

    Science.gov (United States)

    Cai, Guobiao; Li, Chengen; Tian, Hui

    2016-11-01

    This paper is aimed to analyze heat transfer in injector plate of hydrogen peroxide hybrid rocket motor by two-dimensional axisymmetric numerical simulations and full-scale firing tests. Long-time working, which is an advantage of hybrid rocket motor over conventional solid rocket motor, puts forward new challenges for thermal protection. Thermal environments of full-scale hybrid rocket motors designed for long-time firing tests are studied through steady-state coupled numerical simulations of flow field and heat transfer in chamber head. The motor adopts 98% hydrogen peroxide (98HP) oxidizer and hydroxyl-terminated poly-butadiene (HTPB) based fuel as the propellants. Simulation results reveal that flowing liquid 98HP in head oxidizer chamber could cool the injector plate of the motor. The cooling of 98HP is similar to the regenerative cooling in liquid rocket engines. However, the temperature of the 98HP in periphery portion of the head oxidizer chamber is higher than its boiling point. In order to prevent the liquid 98HP from unexpected decomposition, a thermal protection method for chamber head utilizing silica-phenolics annular insulating board is proposed. The simulation results show that the annular insulating board could effectively decrease the temperature of the 98HP in head oxidizer chamber. Besides, the thermal protection method for long-time working hydrogen peroxide hybrid rocket motor is verified through full-scale firing tests. The ablation of the insulating board in oxygen-rich environment is also analyzed.

  6. Evaluation of porous carbon felt as an aerobic biocathode support in terms of hydrogen peroxide

    Science.gov (United States)

    Milner, Edward M.; Scott, Keith; Head, Ian M.; Curtis, Tom; Yu, Eileen Hao

    2017-07-01

    Aerobic biocathodes provide a low-cost and sustainable substitute for expensive precious metal catalysts at the cathode of Microbial Fuel Cells (MFCs). However, the abiotic formation of peroxide, which is catalyzed by the porous carbon support at certain cathode potentials, may be detrimental to their activity. Two different carbon felt supports, one treated with nitric acid, the other untreated, were characterized electrochemically through a series of chronoamperometry (CA) experiments using a novel 4-electrode electrochemical setup, in order to determine the potential at which peroxide is initially formed. Peroxide was detected at a potential of -0.2 V (all potentials are against Ag/AgCl) for the untreated carbon felt electrode and at a potential of -0.05 V for the nitric acid treated carbon felt. Given these results, two half-cells poised at -0.2 and -0.1 V were setup in order to study biocathode formation. The half-cell poised at -0.2 V did not develop an aerobic biocathode, whereas the half-cell poised at -0.1 V developed an aerobic biocathode. This study shows that to develop aerobic biocathodes on carbon felt, cathode electrode potentials more positive than -0.2 V must be applied.

  7. Hydrogen peroxide stabilization in one-dimensional flow columns

    Science.gov (United States)

    Schmidt, Jeremy T.; Ahmad, Mushtaque; Teel, Amy L.; Watts, Richard J.

    2011-09-01

    Rapid hydrogen peroxide decomposition is the primary limitation of catalyzed H 2O 2 propagations in situ chemical oxidation (CHP ISCO) remediation of the subsurface. Two stabilizers of hydrogen peroxide, citrate and phytate, were investigated for their effectiveness in one-dimensional columns of iron oxide-coated and manganese oxide-coated sand. Hydrogen peroxide (5%) with and without 25 mM citrate or phytate was applied to the columns and samples were collected at 8 ports spaced 13 cm apart. Citrate was not an effective stabilizer for hydrogen peroxide in iron-coated sand; however, phytate was highly effective, increasing hydrogen peroxide residuals two orders of magnitude over unstabilized hydrogen peroxide. Both citrate and phytate were effective stabilizers for manganese-coated sand, increasing hydrogen peroxide residuals by four-fold over unstabilized hydrogen peroxide. Phytate and citrate did not degrade and were not retarded in the sand columns; furthermore, the addition of the stabilizers increased column flow rates relative to unstabilized columns. These results demonstrate that citrate and phytate are effective stabilizers of hydrogen peroxide under the dynamic conditions of one-dimensional columns, and suggest that citrate and phytate can be added to hydrogen peroxide before injection to the subsurface as an effective means for increasing the radius of influence of CHP ISCO.

  8. Solar fuels

    Energy Technology Data Exchange (ETDEWEB)

    Bolton, J.R.

    1978-11-17

    The paper is concerned with (1) the thermodynamic and kinetic limits for the photochemical conversion and storage of solar energy as it is received on the earth's surface, and (2) the evaluation of a number of possible photochemical reactions with particular emphasis on the production of solar hydrogen from water. Procedures for generating hydrogen fuel are considered. Topics examined include the general requirements for a fuel-generation reaction, the photochemical reaction, limits on the conversion of light energy to chemical energy, an estimate of chemical storage efficiency, and the water decomposition reaction.

  9. Fuel Cells

    Science.gov (United States)

    Hawkins, M. D.

    1973-01-01

    Discusses the theories, construction, operation, types, and advantages of fuel cells developed by the American space programs. Indicates that the cell is an ideal small-scale power source characterized by its compactness, high efficiency, reliability, and freedom from polluting fumes. (CC)

  10. Transport fuel

    DEFF Research Database (Denmark)

    Ronsse, Frederik; Jørgensen, Henning; Schüßler, Ingmar

    2014-01-01

    Worldwide, the use of transport fuel derived from biomass increased four-fold between 2003 and 2012. Mainly based on food resources, these conventional biofuels did not achieve the expected emission savings and contributed to higher prices for food commod - ities, especially maize and oilseeds...

  11. Lipid peroxidation in women with epilepsy

    Directory of Open Access Journals (Sweden)

    Deepa D

    2008-01-01

    Full Text Available Background: Lipid peroxidation is an indicator of free radical metabolism and oxidative stress in human beings and other organisms. Malondialdehyde (MDA, an end product of lipid peroxidation, is a metabolite that can be readily estimated in serum samples. Excess oxidative stress may be a final common pathway through which anti epileptic drugs may exert their teratogenic potential in pregnant women with epilepsy. Our objective in this study was to ascertain the variations in malondialdehyde (MDA in women with epilepsy. Material and Methods: This study was carried out in the Kerala Registry of Epilepsy and pregnancy after obtaining clearance from the Institutional Ethics Committee. Informed consent was obtained from all the subjects. The quantitative examination of MDA was performed according to standard procedures. The ideal plasma level of MDA is below 2 nmol/ml. Results: Fifteen women with confirmed epilepsy (mean age 26.9 ± 3.5 were included in the study. Two women were pregnant. MDA levels ranged from 1.7 to 2.8 nmol/ml (mean level = 2.13 ± 0.37 nmol/ml. Eight women (53 % had MDA levels above the upper limit of normal. Three patients had levels above 2.5 nmol/ml, which corresponded to the 75 centile. Conclusions: This study had shown that the estimation of MDA levels in plasma is a convenient method to study lipid peroxidation and thereby oxidative stress in women with epilepsy. Over half of Women With Epilepsy (WWE have excess oxidative stress as indicated by high levels of MDA in the plasma. Correlations between MDA level and characteristics of epilepsy, AED therapy, nutritional status and other medical conditions need to be observed in a larger cohort.

  12. Ultraviolet stimulation of hydrogen peroxide production using aminoindazole, diaminopyridine, and phenylenediamine solid polymer complexes of Zn(II)

    Energy Technology Data Exchange (ETDEWEB)

    Hayes, Jennifer A.; Schubert, David M.; Amonette, James E.; Nachimuthu, Ponnusamy; Disselkamp, Robert S.

    2008-06-25

    Hydrogen peroxide is a valuable chemical commodity whose production relies on expensive methods. If an efficient, sustainable, and inexpensive solar-mediated production method could be developed from the reaction between dioxygen and water then its use as a fuel may be possible and gain acceptance. Hydrogen peroxide at greater than 10 M possesses a high specific energy, is environmentally clean, and is easily stored. However, the current method of manufacturing H2O2 via the anthraquinone process is environmentally unfriendly making the unexplored nature of its photochemical production from solar irradiation of interest. Here the concentration and quantum yield of hydrogen peroxide produced in an ultraviolet (UV-B) irradiated environment using aromatic and nitrogen-heterocyclic ring complexes of zinc(II) as solid substrates was studied. The amino-substituted isomers of the substrates indazole, pyridine, and phenylenediamine solid polymer complexes are examined. Samples exposed to the ambient atmosphere (e.g., aerated) were irradiated with a low power lamp with emission from 280-360 nm. Irradiation of various zinc complexes revealed Zn-5-aminoindazole to have the greatest first-day production of 63 mM/day with a 37% quantum yield. Para-phenylenediamine (PPAM) showed the greatest long-term stability and thus suggests H2O2 is produced photocatalytically. Isomeric forms of the catalyst’s organic components (e.g., amino groups) did have an effect on the production. Irradiation of diaminopyridine isomers indicated 2,3-diamino and 3,4-diamino structures were the most productive, each generating 32 mM/day hydrogen peroxide. However, the 2,5-diamino isomer showed no peroxide production. A significant decrease in hydrogen peroxide production in all but PPAM was noticed in the samples, suggesting the possibility of a catalyst poisoning mechanism. The samples ability to produce H2O2 is rationalized by proposing a reaction mechanism and examining the stability of the resonance

  13. The effect of hydrogen peroxide on uranium oxide films on 316L stainless steel

    Science.gov (United States)

    Wilbraham, Richard J.; Boxall, Colin; Goddard, David T.; Taylor, Robin J.; Woodbury, Simon E.

    2015-09-01

    For the first time the effect of hydrogen peroxide on the dissolution of electrodeposited uranium oxide films on 316L stainless steel planchets (acting as simulant uranium-contaminated metal surfaces) has been studied. Analysis of the H2O2-mediated film dissolution processes via open circuit potentiometry, alpha counting and SEM/EDX imaging has shown that in near-neutral solutions of pH 6.1 and at [H2O2] ⩽ 100 μmol dm-3 the electrodeposited uranium oxide layer is freely dissolving, the associated rate of film dissolution being significantly increased over leaching of similar films in pH 6.1 peroxide-free water. At H2O2 concentrations between 1 mmol dm-3 and 0.1 mol dm-3, formation of an insoluble studtite product layer occurs at the surface of the uranium oxide film. In analogy to corrosion processes on common metal substrates such as steel, the studtite layer effectively passivates the underlying uranium oxide layer against subsequent dissolution. Finally, at [H2O2] > 0.1 mol dm-3 the uranium oxide film, again in analogy to common corrosion processes, behaves as if in a transpassive state and begins to dissolve. This transition from passive to transpassive behaviour in the effect of peroxide concentration on UO2 films has not hitherto been observed or explored, either in terms of corrosion processes or otherwise. Through consideration of thermodynamic solubility product and complex formation constant data, we attribute the transition to the formation of soluble uranyl-peroxide complexes under mildly alkaline, high [H2O2] conditions - a conclusion that has implications for the design of both acid minimal, metal ion oxidant-free decontamination strategies with low secondary waste arisings, and single step processes for spent nuclear fuel dissolution such as the Carbonate-based Oxidative Leaching (COL) process.

  14. Reactive extraction for preparation of hydrogen peroxide under pressure

    Institute of Scientific and Technical Information of China (English)

    Yongxi CHENG; Hongtao LI; Shuxiang L(U); Li WANG

    2008-01-01

    The preparation of hydrogen peroxide from anthrahydroquinone by reactive extraction was investi-gated.The integration process of oxidation of anthrahydro-quinone by air and extraction of hydrogen peroxide from the organic phase with water was carried out in a sieve plate column under'pressure.The conversion of anthrahydroqui-none increased with increasing pressure resulting in an increase of hydrogen peroxide concentration in the aqueous phase.However,no change in extraction efficiency of hydrogen peroxide was observed.A mathematical model for gas-liquid-liquid reactive extraction was established.In the model,the effects of pressure and gas superficial velocity on reaction were considered.With increasing gas superficial velocity,the conversion of anthrahydroquinone increased,and the fraction of hydrogen peroxide extracted reached a plateau with a maximum of 72.94%.However,both the conversion of anthrahydroquinone and the traction of hydrogen peroxide extracted decreased with increasing organic phase superficial velocity.

  15. Effect of cadmium chloride on hepatic lipid peroxidation in mice

    DEFF Research Database (Denmark)

    Andersen, H R; Andersen, O

    1988-01-01

    Intraperitoneal administration of cadmium chloride to 8-12 weeks old CBA-mice enhanced hepatic lipid peroxidation. A positive correlation between cadmium chloride dose and level of peroxidation was observed in both male and female mice. A sex-related difference in mortality was not observed...... but at a dose of 25 mumol CdCl2/kg the level of hepatic lipid peroxidation was higher in male mice than in female mice. The hepatic lipid peroxidation was not increased above the control level in 3 weeks old mice, while 6 weeks old mice responded with increased peroxidation as did 8-12 weeks old mice....... The mortality after an acute toxic dose of cadmium chloride was the same in the three age groups. Pretreatment of mice with several low intraperitoneal doses of cadmium chloride alleviated cadmium induced mortality and lipid peroxidation. The results demonstrate both age dependency and a protective effect...

  16. Peroxide coordination of tellurium in aqueous solutions

    Energy Technology Data Exchange (ETDEWEB)

    Mikhaylov, Alexey A.; Medvedev, Alexander G. [Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Moscow (Russian Federation); The Casali Center of Applied Chemistry, The Institute of Chemistry, The Hebrew University of Jerusalem (Israel); Churakov, Andrei V.; Grishanov, Dmitry A.; Prikhodchenko, Petr V. [Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Moscow (Russian Federation); Lev, Ovadia [The Casali Center of Applied Chemistry, The Institute of Chemistry, The Hebrew University of Jerusalem (Israel)

    2016-02-15

    Tellurium-peroxo complexes in aqueous solutions have never been reported. In this work, ammonium peroxotellurates (NH{sub 4}){sub 4}Te{sub 2}(μ-OO){sub 2}(μ-O)O{sub 4}(OH){sub 2} (1) and (NH{sub 4}){sub 5}Te{sub 2}(μ-OO){sub 2}(μ-O)O{sub 5}(OH).1.28 H{sub 2}O.0.72 H{sub 2}O{sub 2} (2) were isolated from 5 % hydrogen peroxide aqueous solutions of ammonium tellurate and characterized by single-crystal and powder X-ray diffraction analysis, by Raman spectroscopy and thermal analysis. The crystal structure of 1 comprises ammonium cations and a symmetric binuclear peroxotellurate anion [Te{sub 2}(μ-OO){sub 2}(μ-O)O{sub 4}(OH){sub 2}]{sup 4-}. The structure of 2 consists of an unsymmetrical [Te{sub 2}(μ-OO){sub 2}(μ-O)O{sub 5}(OH)]{sup 5-} anion, ammonium cations, hydrogen peroxide, and water. Peroxotellurate anions in both 1 and 2 contain a binuclear Te{sub 2}(μ-OO){sub 2}(μ-O) fragment with one μ-oxo- and two μ-peroxo bridging groups. {sup 125}Te NMR spectroscopic analysis shows that the peroxo bridged bitellurate anions are the dominant species in solution, with 3-40 %wt H{sub 2}O{sub 2} and for pH values above 9. DFT calculations of the peroxotellurate anion confirm its higher thermodynamic stability compared with those of the oxotellurate analogues. This is the first direct evidence for tellurium-peroxide coordination in any aqueous system and the first report of inorganic tellurium-peroxo complexes. General features common to all reported p-block element peroxides could be discerned by the characterization of aqueous and crystalline peroxotellurates. (copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  17. Use of Hydrogen Peroxide to Disinfect Hydroponic Plant Growth Systems

    Science.gov (United States)

    Barta, Daniel J.; Henderson, Keith

    2000-01-01

    Hydrogen peroxide was studied as an alternative to conventional bleach and rinsing methods to disinfect hydroponic plant growth systems. A concentration of 0.5% hydrogen peroxide was found to be effective. Residual hydrogen peroxide can be removed from the system by repeated rinsing or by flowing the solution through a platinum on aluminum catalyst. Microbial populations were reduced to near zero immediately after treatment but returned to pre-disinfection levels 2 days after treatment. Treating nutrient solution with hydrogen peroxide and planting directly into trays being watered with the nutrient solution without replenishment, was found to be detrimental to lettuce germination and growth.

  18. Detection of volatile organic peroxides in indoor air.

    Science.gov (United States)

    Hong, J; Maguhn, J; Freitag, D; Kettrup, A

    2001-12-01

    A supercritical fluid extraction cell filled with adsorbent (Carbotrap and Carbotrap C) was used directly as a sampling tube to enrich volatile organic compounds in air. After sampling, the analytes were extracted by supercritical fluid CO2 with methanol as modifier. Collected organic peroxides were then determined by a RP-HPLC method developed and validated previously using post-column derivatization and fluorescence detection. Some volatile organic peroxides were found in indoor air in a new car and a newly decorated kitchen in the lower microg m(-3) range. tert-Butyl perbenzoate, di-tert-butyl peroxide, and tert-butylcumyl peroxide could be identified.

  19. Application of simulation modeling to lipid peroxidation processes.

    Science.gov (United States)

    Tappel, A L; Tappel, A A; Fraga, C G

    1989-01-01

    A quantitative simulation model was developed that utilized present knowledge of lipid peroxidation in biological systems. The simulation model incorporated the following features: peroxidizability of polyunsaturated lipids, activation of inducers and their initiation of lipid peroxidation, concurrent autoxidation, inhibition of lipid peroxidation by vitamin E, reduction of some of the hydroperoxides by glutathione peroxidase, and formation of thiobarbituric acid-reactive substances. Simulation calculations were done using a computer spreadsheet program. When the simulation program was applied to tissue slice and microsomal peroxidizing systems, the results of the stimulation were in agreement with the experimental data.

  20. Effect of carbamide peroxide and hydrogen peroxide on the surface morphology and zinc oxide levels of IRM fillings.

    Science.gov (United States)

    Rostein, I; Cohenca, N; Mor, C; Moshonov, J; Stabholz, A

    1995-12-01

    The effect of 10% carbamide peroxide or 10% hydrogen peroxide on the surface morphology and zinc oxide levels of IRM fillings was tested. Ninety IRM samples were treated with either 10% carbamide peroxide, 10% hydrogen peroxide or phosphate buffer which served as control. Treatment consisted of placing the samples in a dry incubator at 37 degrees C for 1, 3 or 7 days. At each time point, the samples were removed from the test solutions, dried and prepared for surface scanning electron microscopy and energy dispersive spectrometric analysis. After 3 days, 10% carbamide peroxide significantly reduced the zinc oxide levels as compared to the 10% hydrogen peroxide group (IRM fillings, but their modes of action differed.

  1. Fuel control system for dual fuel engines

    Energy Technology Data Exchange (ETDEWEB)

    Helmich, M.J.; Ryan, W.P.; Marvin, D.H.

    1987-11-24

    A fuel governing system for an engine adapted for operation on a first fuel and a second fuel is described comprising: a first fuel governing system including a spontaneous motion metering means; and a second fuel governing system, the second fuel governing system further comprising: means for providing a first signal indicative of position of the first fuel metering means, which signal approximates total load on the engine, means for providing a second signal of the selected percentage of first fuel relative to total load, means for controlling flow of the second fuel to the engine, which flow causes reflective displacement of the first fuel metering means, means for determining the difference between the first signal and the second signal, which difference is indicative of distance the first fuel metering means must be moved to attain the selected percentage of first fuel relative to total load, and means for causing operation of the means for controlling flow of the second fuel to the engine to cause displacement of the first fuel metering means equal to the distance the first fuel metering means must be moved to attain the selected percentage of first fuel relative to total load.

  2. Hydrogen peroxide deposition and decomposition in rain and dew waters

    Science.gov (United States)

    Ortiz, Vicky; Angélica Rubio, M.; Lissi, Eduardo A.

    Peroxides and hydrogen peroxide were determined by a fluorometric method in dew and rain collected in the atmosphere of Santiago of Chile city. The measured peroxides comprise hydrogen peroxide (the main component) and peroxides not decomposed by catalase. The collected natural peroxides readily decompose in the natural matrix, rendering difficult an estimation of the values present in real-time. In order to establish the kinetics of the process and the factors that condition their decomposition, the kinetics of the decay at several pHs and/or the presence of metal chelators were followed. The kinetics of hydrogen peroxide decomposition in the water matrix was evaluated employing the natural peroxides or hydrogen peroxide externally added. First-order kinetics was followed, with half decay times ranging from 80 to 2300 min. The addition of Fe(II) in the micromolar range increases the decomposition rate, while lowering the pH (<3) notably reduces the rate of the process. The contribution of metals to the decomposition of the peroxides in the natural waters was confirmed by the reduction in decomposition rate elicited by its treatment with Chelex-100. Dew and rain waters were collected in pre-acidified collectors, rendering values considerably higher than those measured in non-treated collectors. This indicates that acidification can be proposed as an easy procedure to stabilize the samples, reducing its decomposition during collection time and the time elapsed between collection and analysis. The weighted average concentration for total peroxides measured in pre-treated collectors was 5.4 μM in rains and 2.2 μM in dews.

  3. A hydrogen peroxide sensor for exhaled breath measurement

    NARCIS (Netherlands)

    Anh, Dam T.V.; Olthuis, W.; Bergveld, P.; Berg, van den A.

    2004-01-01

    An increase in produced hydrogen peroxide concentration in exhaled breath (EB) of patients, who suffer from some diseases related to lung function, has been observed and considered as a reliable indicator of lung diseases. In the EB of these patients, hydrogen peroxide is present in the vapour phase

  4. A hydrogen peroxide sensor for exhaled breath measurement

    NARCIS (Netherlands)

    Anh, Dam Thi Van; Olthuis, W.; Bergveld, P.

    2005-01-01

    An increase in hydrogen peroxide concentration in exhaled breath (EB) of patients, who suffer from some diseases related to the lung function, has been observed and considered as a reliable indicator of lung diseases. In the EB of these patients, hydrogen peroxide is present in the vapour phase toge

  5. A Three-Step Synthesis of Benzoyl Peroxide

    Science.gov (United States)

    Her, Brenda; Jones, Alexandra; Wollack, James W.

    2014-01-01

    Benzoyl peroxide is used as a bleaching agent for flour and whey processing, a polymerization initiator in the synthesis of plastics, and the active component of acne medication. Because of its simplicity and wide application, benzoyl peroxide is a target molecule of interest. It can be affordably synthesized in three steps from bromobenzene using…

  6. [Lipid peroxidation in the adrenal cortex during exhausting stress].

    Science.gov (United States)

    Doroshkevich, N A; Antsulevich, S N; Naumov, A V; Vinogradov, V V

    1990-05-01

    Under prolonged stress which is connected with exhaustion of functional resources of adrenal cortex the activation of lipid peroxidation processes in this gland was found. It is possible that the reason for such lipid peroxidation activation is the decrease in the content of adrenal cortex ascorbic acid and alpha-tocopherol.

  7. Lipid peroxidation in type 2 diabetes : Relationship with macrovascular disease?

    NARCIS (Netherlands)

    Oranje, W A; Rondas-Colbers, G J; Swennen, G N; Wolffenbuttel, B H

    BACKGROUND: Macrovascular disease is the leading cause of death in diabetes. The increased risk of atherosclerosis in diabetes may be partly explained by increased lipid peroxidation. METHODS: We assessed lipid peroxidation in subjects with type 2 diabetes with (n = 23) and without (n = 23)

  8. Hydrogen Peroxide Storage in Small Sealed Tanks

    Energy Technology Data Exchange (ETDEWEB)

    Whitehead, J.

    1999-10-20

    Unstabilized hydrogen peroxide of 85% concentration has been prepared in laboratory quantities for testing material compatibility and long term storage on a small scale. Vessels made of candidate tank and liner materials ranged in volume from 1 cc to 2540 cc. Numerous metals and plastics were tried at the smallest scales, while promising ones were used to fabricate larger vessels and liners. An aluminum alloy (6061-T6) performed poorly, including increasing homogeneous decay due to alloying elements entering solution. The decay rate in this high strength aluminum was greatly reduced by anodizing. Better results were obtained with polymers, particularly polyvinylidene fluoride. Data reported herein include ullage pressures as a function of time with changing decay rates, and contamination analysis results.

  9. Analysis of lipid peroxidation kinetics. I

    DEFF Research Database (Denmark)

    Doktorov, Alexander B.; Lukzen, Nikita N.; Pedersen, Jørgen Boiden

    2008-01-01

      The kinetics of the lipid peroxidation reaction is only partly under-  stood. Although the set of reactions constituting the overall reaction  is believed to be known, it has not been possible to predict how the  reaction will respond to a change of one or more of the parameters, e.g.  initial......· ,  but not for the peroxyl radicals LO·2 as assumed in previous works.  The method allows us to derive manageable analytical expressions.  Based on literature values of the rate constants we are able to intro-  duce specific simplifications that allow us to obtain simple analytical  expressions for the time dependence of all...

  10. Tetrafluoroethylene telomerization initiated by benzoyl peroxide

    Science.gov (United States)

    Bolshakov, A. I.; Kuzina, S. I.; Kiryukhin, D. P.

    2017-03-01

    The radical telomerization of tetrafluoroethylene initiated by benzoyl peroxide (BP) photolysis at λ ≥ 365 nm is studied in acetone, dichloromethane, carbon tetrachloride, and Freon 114B2 at 25°C. The products of synthesis are a mixture of telomers of different molar masses, segregated into soluble and insoluble fractions. To characterize the radicals initiating telomerization, crystalline BP and its solution in ethanol are subjected to low-temperature (77 K) photolysis, with the liquid system serving as a model for BP behavior in solutions of telogens. It is established that radicals are not only initiators but also participate in chain termination reactions, lowering the telomers' molar mass and thus raising the proportion of the soluble fraction. Telomerization initiated by an initiator compound versus initiation by gamma radiation are compared and discussed.

  11. Locating bomb factories by detecting hydrogen peroxide.

    Science.gov (United States)

    Romolo, Francesco Saverio; Connell, Samantha; Ferrari, Carlotta; Suarez, Guillaume; Sauvain, Jean-Jacques; Hopf, Nancy B

    2016-11-01

    The analytical capability to detect hydrogen peroxide vapour can play a key role in localizing a site where a H2O2 based Improvised Explosive (IE) is manufactured. In security activities it is very important to obtain information in a short time. For this reason, an analytical method to be used in security activity needs portable devices. The authors have developed the first analytical method based on a portable luminometer, specifically designed and validated to locate IE manufacturing sites using quantitative on-site vapour analysis for H2O2. The method was tested both indoor and outdoor. The results demonstrate that the detection of H2O2 vapours could allow police forces to locate the site, while terrorists are preparing an attack. The collected data are also very important in developing new sensors, able to give an early alarm if located at a proper distance from a site where an H2O2 based IE is prepared.

  12. Energy Efficient Catalytic Activation of Hydrogen peroxide for Green Chemical Processes: Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Collins, Terrence J.; Horwitz, Colin

    2004-11-12

    A new, highly energy efficient approach for using catalytic oxidation chemistry in multiple fields of technology has been pursued. The new catalysts, called TAML® activators, catalyze the reactions of hydrogen peroxide and other oxidants for the exceptionally rapid decontamination of noninfectious simulants (B. atrophaeus) of anthrax spores, for the energy efficient decontamination of thiophosphate pesticides, for the facile, low temperature removal of color and organochlorines from pulp and paper mill effluent, for the bleaching of dyes from textile mill effluents, and for the removal of recalcitrant dibenzothiophene compounds from diesel and gasoline fuels. Highlights include the following: 1) A 7-log kill of Bacillus atrophaeus spores has been achieved unambiguously in water under ambient conditions within 15 minutes. 2) The rapid total degradation under ambient conditions of four thiophosphate pesticides and phosphonate degradation intermediates has been achieved on treatment with TAML/peroxide, opening up potential applications of the decontamination system for phosphonate structured chemical warfare agents, for inexpensive, easy to perform degradation of stored and aged pesticide stocks (especially in Africa and Asia), for remediation of polluted sites and water bodies, and for the destruction of chemical warfare agent stockpiles. 3) A mill trial conducted in a Pennsylvanian bleached kraft pulp mill has established that TAML catalyst injected into an alkaline peroxide bleach tower can significantly lower color from the effluent stream promising a new, more cost effective, energy-saving approach for color remediation adding further evidence of the value and diverse engineering capacity of the approach to other field trials conducted on effluent streams as they exit the bleach plant. 4) Dibenzothiophenes (DBTs), including 4,6-dimethyldibenzothiophene, the most recalcitrant sulfur compounds in diesel and gasoline, can be completely removed from model gasoline

  13. Unusual hydrogen peroxide decomposition on stoichiometric insulating oxide ultrathin films

    CERN Document Server

    Song, Zhenjun

    2016-01-01

    The hydrogen peroxide dissociation on MgO(001) films deposited on Mo(001) surface is investigated by employing periodic density-functional theory methods. The pristine MgO(001) surface showing chemical inertness prefers the weak adsorbing molecular configuration and is extremely difficult to react with hydrogen peroxide. As far as we know, energetically favorable decomposition state of hydrogen peroxide has never been obtained on MgO(001) surface. In this work the hydrogen peroxide is successfully dissociated on perfect stoichiometric MgO(001) films by depositing on transition metal substrate, without any activation barrier. The spontaneous dissociation of hydrogen peroxide on metal supported oxide films is rationalized by characterizing the geometric structures and electronic structures.

  14. Durability of bleaching results achieved with 15% carbamide peroxide and 38% hydrogen peroxide in vitro.

    Science.gov (United States)

    Knösel, Michael; Reus, Monika; Rosenberger, Albert; Attin, Thomas; Ziebolz, Dirk

    2011-01-01

    The aim of this study was to assess the durability of bleaching results achieved with (1) 15% carbamide peroxide home bleaching and (2) 38% hydrogen peroxide in-office bleaching. A total of 231 extracted anterior teeth were randomly divided into three groups (n = 77 in each group) with comparable mean baseline L*-values (68.24 ± 0.8): a non-bleached control group A, a 15% carbamide peroxide group B (5 bleaching intervals of 8 hours), and a 38% hydrogen peroxide group C (3 intervals of 15 minutes). Durability of bleaching was assessed by comparing CIE-L*a*b* data after intervals of 2, 4, 12, and 26 weeks from baseline. Both bleaching regimes initially produced a highly significant increase in lightness parameter L*, with no significant difference between the respective bleaching regimes (B: 68.23 / 72.48; C: 68.32 / 73.25). Six months after starting the trial, L*-values for group B yielded no significant differences compared to baseline (69.55), whereas L*-values for group C were still significantly raised (69.91), despite a highly significant decrease when compared to initial bleaching results. In both treatment groups, there was a lasting response to bleaching in terms of CIE-a* and -b* value decreases. Results for both home- and in-practice regimes were found to be similar for about 12 weeks. However, in-office results were longer lasting, despite the shorter treatment intervals. Summarized bleaching effects, in terms of delta E values, revealed no significant differences between treatment groups and the control group after 6 months, indicating an abatement of the bleaching results achieved.

  15. PEROXIDE DESTRUCTION TESTING FOR THE 200 AREA EFFLUENT TREATMENT FACILITY

    Energy Technology Data Exchange (ETDEWEB)

    HALGREN DL

    2010-03-12

    The hydrogen peroxide decomposer columns at the 200 Area Effluent Treatment Facility (ETF) have been taken out of service due to ongoing problems with particulate fines and poor destruction performance from the granular activated carbon (GAC) used in the columns. An alternative search was initiated and led to bench scale testing and then pilot scale testing. Based on the bench scale testing three manganese dioxide based catalysts were evaluated in the peroxide destruction pilot column installed at the 300 Area Treated Effluent Disposal Facility. The ten inch diameter, nine foot tall, clear polyvinyl chloride (PVC) column allowed for the same six foot catalyst bed depth as is in the existing ETF system. The flow rate to the column was controlled to evaluate the performance at the same superficial velocity (gpm/ft{sup 2}) as the full scale design flow and normal process flow. Each catalyst was evaluated on peroxide destruction performance and particulate fines capacity and carryover. Peroxide destruction was measured by hydrogen peroxide concentration analysis of samples taken before and after the column. The presence of fines in the column headspace and the discharge from carryover was generally assessed by visual observation. All three catalysts met the peroxide destruction criteria by achieving hydrogen peroxide discharge concentrations of less than 0.5 mg/L at the design flow with inlet peroxide concentrations greater than 100 mg/L. The Sud-Chemie T-2525 catalyst was markedly better in the minimization of fines and particle carryover. It is anticipated the T-2525 can be installed as a direct replacement for the GAC in the peroxide decomposer columns. Based on the results of the peroxide method development work the recommendation is to purchase the T-2525 catalyst and initially load one of the ETF decomposer columns for full scale testing.

  16. Aviation fuels outlook

    Science.gov (United States)

    Momenthy, A. M.

    1980-01-01

    Options for satisfying the future demand for commercial jet fuels are analyzed. It is concluded that the most effective means to this end are to attract more refiners to the jet fuel market and encourage development of processes to convert oil shale and coal to transportation fuels. Furthermore, changing the U.S. refineries fuel specification would not significantly alter jet fuel availability.

  17. A protocol to generate phthaloyl peroxide in flow for the hydroxylation of arenes.

    Science.gov (United States)

    Eliasen, Anders M; Thedford, Randal P; Claussen, Karin R; Yuan, Changxia; Siegel, Dionicio

    2014-07-18

    A flow protocol for the generation of phthaloyl peroxide has been developed. This process directly yields phthaloyl peroxide in high purity (>95%) and can be used to bypass the need to isolate and recrystallize phthaloyl peroxide, improving upon earlier batch procedures. The flow protocol for the formation of phthaloyl peroxide can be combined with arene hydroxylation reactions and provides a method for the consumption of peroxide as it is generated to minimize the accumulation of large quantities of peroxide.

  18. Synthesis of five- and six-membered cyclic organic peroxides: Key transformations into peroxide ring-retaining products

    Directory of Open Access Journals (Sweden)

    Alexander O. Terent'ev

    2014-01-01

    Full Text Available The present review describes the current status of synthetic five and six-membered cyclic peroxides such as 1,2-dioxolanes, 1,2,4-trioxolanes (ozonides, 1,2-dioxanes, 1,2-dioxenes, 1,2,4-trioxanes, and 1,2,4,5-tetraoxanes. The literature from 2000 onwards is surveyed to provide an update on synthesis of cyclic peroxides. The indicated period of time is, on the whole, characterized by the development of new efficient and scale-up methods for the preparation of these cyclic compounds. It was shown that cyclic peroxides remain unchanged throughout the course of a wide range of fundamental organic reactions. Due to these properties, the molecular structures can be greatly modified to give peroxide ring-retaining products. The chemistry of cyclic peroxides has attracted considerable attention, because these compounds are used in medicine for the design of antimalarial, antihelminthic, and antitumor agents.

  19. Synthesis of five- and six-membered cyclic organic peroxides: Key transformations into peroxide ring-retaining products.

    Science.gov (United States)

    Terent'ev, Alexander O; Borisov, Dmitry A; Vil', Vera A; Dembitsky, Valery M

    2014-01-08

    The present review describes the current status of synthetic five and six-membered cyclic peroxides such as 1,2-dioxolanes, 1,2,4-trioxolanes (ozonides), 1,2-dioxanes, 1,2-dioxenes, 1,2,4-trioxanes, and 1,2,4,5-tetraoxanes. The literature from 2000 onwards is surveyed to provide an update on synthesis of cyclic peroxides. The indicated period of time is, on the whole, characterized by the development of new efficient and scale-up methods for the preparation of these cyclic compounds. It was shown that cyclic peroxides remain unchanged throughout the course of a wide range of fundamental organic reactions. Due to these properties, the molecular structures can be greatly modified to give peroxide ring-retaining products. The chemistry of cyclic peroxides has attracted considerable attention, because these compounds are used in medicine for the design of antimalarial, antihelminthic, and antitumor agents.

  20. Synthesis of five- and six-membered cyclic organic peroxides: Key transformations into peroxide ring-retaining products

    Science.gov (United States)

    Borisov, Dmitry A; Vil’, Vera A; Dembitsky, Valery M

    2014-01-01

    Summary The present review describes the current status of synthetic five and six-membered cyclic peroxides such as 1,2-dioxolanes, 1,2,4-trioxolanes (ozonides), 1,2-dioxanes, 1,2-dioxenes, 1,2,4-trioxanes, and 1,2,4,5-tetraoxanes. The literature from 2000 onwards is surveyed to provide an update on synthesis of cyclic peroxides. The indicated period of time is, on the whole, characterized by the development of new efficient and scale-up methods for the preparation of these cyclic compounds. It was shown that cyclic peroxides remain unchanged throughout the course of a wide range of fundamental organic reactions. Due to these properties, the molecular structures can be greatly modified to give peroxide ring-retaining products. The chemistry of cyclic peroxides has attracted considerable attention, because these compounds are used in medicine for the design of antimalarial, antihelminthic, and antitumor agents. PMID:24454562

  1. Quantification of peroxide ion passage in dentin, enamel, and cementum after internal bleaching with hydrogen peroxide.

    Science.gov (United States)

    Palo, R M; Bonetti-Filho, I; Valera, M C; Camargo, C H R; Camargo, Sea; Moura-Netto, C; Pameijer, C

    2012-01-01

    The aim of this study was to evaluate the amount of peroxide passage from the pulp chamber to the external enamel surface during the internal bleaching technique. Fifty bovine teeth were sectioned transversally 5 mm below the cemento-enamel junction (CEJ), and the remaining part of the root was sealed with a 2-mm layer of glass ionomer cement. The external surface of the samples was coated with nail varnish, with the exception of standardized circular areas (6-mm diameter) located on the enamel, exposed dentin, or cementum surface of the tooth. The teeth were divided into three experimental groups according to exposed areas close to the CEJ and into two control groups (n=10/group), as follows: GE, enamel exposure area; GC, cementum exposed area; GD, dentin exposed area; Negative control, no presence of internal bleaching agent and uncoated surface; and Positive control, pulp chamber filled with bleaching agent and external surface totally coated with nail varnish. The pulp chamber was filled with 35% hydrogen peroxide (Opalescence Endo, Ultradent). Each sample was placed inside of individual flasks with 1000 μL of acetate buffer solution, 2 M (pH 4.5). After seven days, the buffer solution was transferred to a glass tube, in which 100 μL of leuco-crystal violet and 50 μL of horseradish peroxidase were added, producing a blue solution. The optical density of the blue solution was determined by spectrophotometer and converted into microgram equivalents of hydrogen peroxide. Data were submitted to Kruskal-Wallis and Dunn-Bonferroni tests (α=0.05). All experimental groups presented passage of peroxide to the external surface that was statistically different from that observed in the control groups. It was verified that the passage of peroxide was higher in GD than in GE (pperoxide passage than did GD and GE (pperoxide placed into the pulp chamber passed through the dental hard tissues, reaching the external surface and the periodontal tissue. The cementum surface

  2. Fuel processors for fuel cell APU applications

    Science.gov (United States)

    Aicher, T.; Lenz, B.; Gschnell, F.; Groos, U.; Federici, F.; Caprile, L.; Parodi, L.

    The conversion of liquid hydrocarbons to a hydrogen rich product gas is a central process step in fuel processors for auxiliary power units (APUs) for vehicles of all kinds. The selection of the reforming process depends on the fuel and the type of the fuel cell. For vehicle power trains, liquid hydrocarbons like gasoline, kerosene, and diesel are utilized and, therefore, they will also be the fuel for the respective APU systems. The fuel cells commonly envisioned for mobile APU applications are molten carbonate fuel cells (MCFC), solid oxide fuel cells (SOFC), and proton exchange membrane fuel cells (PEMFC). Since high-temperature fuel cells, e.g. MCFCs or SOFCs, can be supplied with a feed gas that contains carbon monoxide (CO) their fuel processor does not require reactors for CO reduction and removal. For PEMFCs on the other hand, CO concentrations in the feed gas must not exceed 50 ppm, better 20 ppm, which requires additional reactors downstream of the reforming reactor. This paper gives an overview of the current state of the fuel processor development for APU applications and APU system developments. Furthermore, it will present the latest developments at Fraunhofer ISE regarding fuel processors for high-temperature fuel cell APU systems on board of ships and aircrafts.

  3. GSPEL - Fuel Cell Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The Fuel Cell Lab (FCL)Provides testing for technology readiness of fuel cell systems The FCL investigates, tests and verifies the performance of fuel-cell systems...

  4. GSPEL - Fuel Cell Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The Fuel Cell Lab (FCL) Provides testing for technology readiness of fuel cell systems The FCL investigates, tests and verifies the performance of fuel-cell systems...

  5. Fuel cells: A survey

    Science.gov (United States)

    Crowe, B. J.

    1973-01-01

    A survey of fuel cell technology and applications is presented. The operating principles, performance capabilities, and limitations of fuel cells are discussed. Diagrams of fuel cell construction and operating characteristics are provided. Photographs of typical installations are included.

  6. Acid phosphatase and lipid peroxidation in human cataractous lens epithelium

    Directory of Open Access Journals (Sweden)

    Vasavada Abhay

    1993-01-01

    Full Text Available The anterior lens epithelial cells undergo a variety of degenerative and proliferative changes during cataract formation. Acid phosphatase is primarily responsible for tissue regeneration and tissue repair. The lipid hydroperoxides that are obtained by lipid peroxidation of polysaturated or unsaturated fatty acids bring about deterioration of biological membranes at cellular and tissue levels. Acid phosphatase and lipid peroxidation activities were studied on the lens epithelial cells of nuclear cataract, posterior subcapsular cataract, mature cataract, and mixed cataract. Of these, mature cataractous lens epithelium showed maximum activity for acid phosphatase (516.83 moles of p-nitrophenol released/g lens epithelium and maximum levels of lipid peroxidation (86.29 O.D./min/g lens epithelium. In contrast, mixed cataractous lens epithelium showed minimum activity of acid phosphatase (222.61 moles of p-nitrophenol released/g lens epithelium and minimum levels of lipid peroxidation (54.23 O.D./min/g lens epithelium. From our study, we correlated the maximum activity of acid phosphatase in mature cataractous lens epithelium with the increased areas of superimposed cells associated with the formation of mature cataract. Likewise, the maximum levels of lipid peroxidation in mature cataractous lens epithelium was correlated with increased permeability of the plasma membrane. Conversely, the minimum levels of lipid peroxidation in mixed cataractous lens epithelium makes us presume that factors other than lipid peroxidation may also account for the formation of mixed type of cataract.

  7. Kinetics of Platinum-Catalyzed Decomposition of Hydrogen Peroxide

    Science.gov (United States)

    Vetter, Tiffany A.; Colombo, D. Philip, Jr.

    2003-07-01

    CIBA Vision Corporation markets a contact lens cleaning system that consists of an AOSEPT disinfectant solution and an AOSEPT lens cup. The disinfectant is a buffered 3.0% m/v hydrogen peroxide solution and the cup includes a platinum-coated AOSEPT disc. The hydrogen peroxide disinfects by killing bacteria, fungi, and viruses found on the contact lenses. Because the concentration of hydrogen peroxide needed to disinfect is irritating to eyes, the hydrogen peroxide needs to be neutralized, or decomposed, before the contact lenses can be used again. A general chemistry experiment is described where the kinetics of the catalyzed decomposition of the hydrogen peroxide are studied by measuring the amount of oxygen generated as a function of time. The order of the reaction with respect to the hydrogen peroxide, the rate constant, and the energy of activation are determined. The integrated rate law is used to determine the time required to decompose the hydrogen peroxide to a concentration that is safe for eyes.

  8. Peroxide cross-linked UHMWPE blended with vitamin E.

    Science.gov (United States)

    Oral, Ebru; Doshi, Brinda N; Gul, Rizwan M; Neils, Andrew L; Kayandan, Sanem; Muratoglu, Orhun K

    2016-04-15

    Radiation crosslinked ultrahigh molecular weight polyethylene (UHMWPE) is the bearing surface material most commonly used in total joint arthroplasty because of its excellent wear resistance. Crosslinking agents such as peroxides can also effectively increase wear resistance but peroxide crosslinked UHMWPE has low oxidative stability. We hypothesized that the addition of an antioxidant to peroxide crosslinked UHMWPE could improve its oxidation resistance and result in mechanical, tribological, and oxidative properties equivalent to currently utilized radiation crosslinked UHMWPEs. Various vitamin E (0.1-1.0 wt % and peroxide concentration (0.5-1.5 wt %) combinations were studied to investigate changes in crosslink density, wear rate, mechanical properties, and oxidative stability in comparison to radiation crosslinked UHMWPE. Peroxide crosslinking was more efficient as compared to radiation crosslinking in the presence of vitamin E with the former resulting in lower wear rate with vitamin E concentrations above 0.3 wt %. The tensile mechanical properties were comparable to and the impact strength was higher than those of the clinically relevant radiation crosslinked controls. We also determined that gamma sterilization of peroxide crosslinked vitamin E blends improved wear resistance further. In summary, peroxide crosslinking of vitamin E-blended UHMWPE may provide a feasible and economical alternative to radiation for achieving clinically relevant properties for total joint implants using UHMWPE. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 2016.

  9. Effect of Ascorbic Acid on Lipid Peroxidation Induced by Ceftazidime

    Directory of Open Access Journals (Sweden)

    Devbhuti P*,1

    2011-01-01

    Full Text Available Lipid peroxidation is the oxidative deterioration of polyunsaturated lipids which is a free radical related process and responsible for thedevelopment of many diseases and disorders like diabetes mellitus, hypertension, cancer etc. End products of lipid peroxidation aremalondialdehyde (MDA, 4-hydroxy-2-nonenal (4-HNE, etc. which are the ultimate mediator of toxicity. Antioxidants have the capability toinhibit lipid peroxidation. Keeping in mind this fact, the present in vitro study was carried out to evaluate lipid peroxidation induction potential of ceftazidime, a cephalosporin antibiotic and its suppression with ascorbic acid considering some laboratory markers of lipid peroxidation like MDA, 4-HNE and reduced glutathione (GSH. Goat liver was used as the lipid source. After treatment of the liver homogenate with drug and/or antioxidant the levels of 4-HNE, MDA and GSH were estimated in different samples at different hours of incubation. The results showed that the drug ceftazidime could significantly induce lipid peroxidation and the antioxidant ascorbic acid has the capability to inhibit ceftazidime-inducedlipid peroxidation.

  10. Future aviation fuels overview

    Science.gov (United States)

    Reck, G. M.

    1980-01-01

    The outlook for aviation fuels through the turn of the century is briefly discussed and the general objectives of the NASA Lewis Alternative Aviation Fuels Research Project are outlined. The NASA program involves the evaluation of potential characteristics of future jet aircraft fuels, the determination of the effects of those fuels on engine and fuel system components, and the development of a component technology to use those fuels.

  11. Catalytic Fuel Conversion Facility

    Data.gov (United States)

    Federal Laboratory Consortium — This facility enables unique catalysis research related to power and energy applications using military jet fuels and alternative fuels. It is equipped with research...

  12. Fuel cell

    Energy Technology Data Exchange (ETDEWEB)

    Enomoto, Hirofumi.

    1989-05-22

    This invention aims to maintain a long-term operation with stable cell output characteristics by uniformly supplying an electrolyte from the reserver to the matrix layer over the entire matrix layer, and further to prevent the excessive wetting of the catalyst layer by smoothly absorbing the volume change of the electrolyte, caused by the repeated stop/start-up of the fuel cell, within the reserver system. For this purpose, in this invention, an electrolyte transport layer, which connects with an electrolyte reservor formed at the electrode end, is partly formed between the electrode material and the catalyst layer; a catalyst layer, which faces the electrolyte transport layer, has through-holes, which connect to the matrix, dispersely distributed. The electrolyte-transport layer is a thin sheet of a hydrophilic fibers which are non-wovens of such fibers as carbon, silicon carbide, silicon nitride or inorganic oxides. 11 figs.

  13. Microscale Gradients of Oxygen, Hydrogen Peroxide, and pH in Freshwater Cathodic Biofilms

    Science.gov (United States)

    Babauta, Jerome T.; Nguyen, Hung Duc; Istanbullu, Ozlem

    2014-01-01

    Cathodic reactions in biofilms employed in sediment microbial fuel cells is generally studied in the bulk phase. However, the cathodic biofilms affected by these reactions exist in microscale conditions in the biofilm and near the electrode surface that differ from the bulk phase. Understanding these microscale conditions and relating them to cathodic biofilm performance is critical for better-performing cathodes. The goal of this research was to quantify the variation in oxygen, hydrogen peroxide, and the pH value near polarized surfaces in river water to simulate cathodic biofilms. We used laboratory river-water biofilms and pure culture biofilms of Leptothrix discophora SP-6 as two types of cathodic biofilms. Microelectrodes were used to quantify oxygen concentration, hydrogen peroxide concentration, and the pH value near the cathodes. We observed the correlation between cathodic current generation, oxygen consumption, and hydrogen peroxide accumulation. We found that the 2e− pathway for oxygen reduction is the dominant pathway as opposed to the previously accepted 4e− pathway quantified from bulk-phase data. Biofouling of initially non-polarized cathodes by oxygen scavengers reduced cathode performance. Continuously polarized cathodes could sustain a higher cathodic current longer despite contamination. The surface pH reached a value of 8.8 when a current of only −30 μA was passed through a polarized cathode, demonstrating that the pH value could also contribute to preventing biofouling. Over time, oxygen-producing cathodic biofilms (Leptothrix discophora SP-6) colonized on polarized cathodes, which decreased the overpotential for oxygen reduction and resulted in a large cathodic current attributed to manganese reduction. However, the cathodic current was not sustainable. PMID:23766295

  14. Distribution of Gaseous and Particulate Organic Peroxides Formed in the Ozonolysis of α-Pinene

    Science.gov (United States)

    Li, H.; Chen, Z.; Huang, L.; Huang, D.

    2015-12-01

    Organic peroxides, an important species in the atmosphere, will affect HOx cycling, promote SOA aging, and cause adverse health effect. However, the formation, distribution and evolution of organic peroxides are extremely complicated and still unclear. In this study, we investigate in laboratory the production of peroxides and gas-particle partitioning in the ozonolysis of α-pinene. The molar yields of hydrogen peroxide (H2O2), hydromethyl hydroperoxide (HMHP), performic acid (PFA), peracetic acid (PAA) and total peroxides (TPO, including unknown peroxides) and contribution of peroxides to SOA mass are carefully determined. Comparing the gaseous and particulate peroxides, we find that more than 75% peroxides formed in the ozonolysis remain in the gas phase, and water vapour will significantly influence the formation and distribution of peroxides. Such an unexpected large amount of gaseous peroxides deserves more attention, especially to their effect on HOx cycling.

  15. Stable magnesium peroxide at high pressure.

    Science.gov (United States)

    Lobanov, Sergey S; Zhu, Qiang; Holtgrewe, Nicholas; Prescher, Clemens; Prakapenka, Vitali B; Oganov, Artem R; Goncharov, Alexander F

    2015-09-01

    Rocky planets are thought to comprise compounds of Mg and O as these are among the most abundant elements, but knowledge of their stable phases may be incomplete. MgO is known to be remarkably stable to very high pressure and chemically inert under reduced condition of the Earth's lower mantle. However, in exoplanets oxygen may be a more abundant constituent. Here, using synchrotron x-ray diffraction in laser-heated diamond anvil cells, we show that MgO and oxygen react at pressures above 96 GPa and T = 2150 K with the formation of I4/mcm MgO2. Raman spectroscopy detects the presence of a peroxide ion (O2(2-)) in the synthesized material as well as in the recovered specimen. Likewise, energy-dispersive x-ray spectroscopy confirms that the recovered sample has higher oxygen content than pure MgO. Our finding suggests that MgO2 may be present together or instead of MgO in rocky mantles and rocky planetary cores under highly oxidized conditions.

  16. Stable magnesium peroxide at high pressure

    Science.gov (United States)

    Lobanov, Sergey S.; Zhu, Qiang; Holtgrewe, Nicholas; Prescher, Clemens; Prakapenka, Vitali B.; Oganov, Artem R.; Goncharov, Alexander F.

    2015-09-01

    Rocky planets are thought to comprise compounds of Mg and O as these are among the most abundant elements, but knowledge of their stable phases may be incomplete. MgO is known to be remarkably stable to very high pressure and chemically inert under reduced condition of the Earth’s lower mantle. However, in exoplanets oxygen may be a more abundant constituent. Here, using synchrotron x-ray diffraction in laser-heated diamond anvil cells, we show that MgO and oxygen react at pressures above 96 GPa and T = 2150 K with the formation of I4/mcm MgO2. Raman spectroscopy detects the presence of a peroxide ion (O22-) in the synthesized material as well as in the recovered specimen. Likewise, energy-dispersive x-ray spectroscopy confirms that the recovered sample has higher oxygen content than pure MgO. Our finding suggests that MgO2 may be present together or instead of MgO in rocky mantles and rocky planetary cores under highly oxidized conditions.

  17. Tyrosine oxidation and nitration in transmembrane peptides is connected to lipid peroxidation.

    Science.gov (United States)

    Bartesaghi, Silvina; Herrera, Daniel; Martinez, Débora M; Petruk, Ariel; Demicheli, Verónica; Trujillo, Madia; Martí, Marcelo A; Estrín, Darío A; Radi, Rafael

    2017-05-15

    Tyrosine nitration is an oxidative post-translational modification that can occur in proteins associated to hydrophobic bio-structures such as membranes and lipoproteins. In this work, we have studied tyrosine nitration in membranes using a model system consisting of phosphatidylcholine liposomes with pre-incorporated tyrosine-containing 23 amino acid transmembrane peptides. Tyrosine residues were located at positions 4, 8 or 12 of the amino terminal, resulting in different depths in the bilayer. Tyrosine nitration was accomplished by exposure to peroxynitrite and a peroxyl radical donor or hemin in the presence of nitrite. In egg yolk phosphatidylcholine liposomes, nitration was highest for the peptide with tyrosine at position 8 and dramatically increased as a function of oxygen levels. Molecular dynamics studies support that the proximity of the tyrosine phenolic ring to the linoleic acid peroxyl radicals contributes to the efficiency of tyrosine oxidation. In turn, α-tocopherol inhibited both lipid peroxidation and tyrosine nitration. The mechanism of tyrosine nitration involves a "connecting reaction" by which lipid peroxyl radicals oxidize tyrosine to tyrosyl radical and was fully recapitulated by computer-assisted kinetic simulations. Altogether, this work underscores unique characteristics of the tyrosine oxidation and nitration process in lipid-rich milieu that is fueled via the lipid peroxidation process. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Lab-scale hydrogen peroxide data from ECBC

    Data.gov (United States)

    U.S. Environmental Protection Agency — Data from small lab scale tests conducted at ECBC. It contains efficacy data as well as data on env conditions such as temperature, RH, and hydrogen peroxide vapor...

  19. Quantifying intracellular hydrogen peroxide perturbations in terms of concentration

    Science.gov (United States)

    Huang, Beijing K.; Sikes, Hadley D.

    2014-01-01

    Molecular level, mechanistic understanding of the roles of reactive oxygen species (ROS) in a variety of pathological conditions is hindered by the difficulties associated with determining the concentration of various ROS species. Here, we present an approach that converts fold-change in the signal from an intracellular sensor of hydrogen peroxide into changes in absolute concentration. The method uses extracellular additions of peroxide and an improved biochemical measurement of the gradient between extracellular and intracellular peroxide concentrations to calibrate the intracellular sensor. By measuring peroxiredoxin activity, we found that this gradient is 650-fold rather than the 7–10-fold that is widely cited. The resulting calibration is important for understanding the mass-action kinetics of complex networks of redox reactions, and it enables meaningful characterization and comparison of outputs from endogenous peroxide generating tools and therapeutics across studies. PMID:25460730

  20. [Risks of hydrogen peroxide irrigation in military surgery].

    Science.gov (United States)

    Saïssy, J M; Guignard, B; Pats, B; Lenoir, B; Rouvier, B

    1994-01-01

    Two cases of severe complications due to injection of hydrogen peroxide under pressure into areas of muscular attrition in war wounds are reported. In both cases the administration of hydrogen peroxide was associated with tachypnoea, with major arterial desaturation and a precordial "mill-wheel" murmur was heard. In one case, these symptoms were followed by hemiplegia caused by paradoxical arterial gas embolism, and in the other case by a pulmonary oedema confirmed by computerized tomography. Both patients recovered under hyperbaric oxygen therapy. The release of gaseous oxygen under the effect of tissue catalase and the membrane peroxydasic activity of hydrogen peroxide initiate such complications. The injection of hydrogen peroxide under pressure into a closed or partially closed cavity should therefore be strictly prohibited.

  1. Selective Electrochemical Generation of Hydrogen Peroxide from Water Oxidation

    DEFF Research Database (Denmark)

    Viswanathan, Venkatasubramanian; Hansen, Heine Anton; Nørskov, Jens K.

    2015-01-01

    device concept that can utilize sunlight to split water into hydrogen and hydrogen peroxide. The hydrogen peroxide can oxidize organics while the hydrogen bubbles out. In enabling this device, we require an electrocatalyst that can oxidize water while suppressing the thermodynamically favored oxygen...... evolution and form hydrogen peroxide. Using density functional theory calculations, we show that the free energy of adsorbed OH* can be used to determine selectivity trends between the 2e(-) water oxidation to H2O2 and the 4e(-) oxidation to O2. We show that materials which bind oxygen intermediates...... sufficiently weakly, such as SnO2, can activate hydrogen peroxide evolution. We present a rational design principle for the selectivity in electrochemical water oxidation and identify new material candidates that could perform H2O2 evolution selectively....

  2. Acute toxicity, lipid peroxidation and ameliorative properties of ...

    African Journals Online (AJOL)

    OKEY

    2014-01-29

    Jan 29, 2014 ... The lethal toxicity and lipid peroxidation studies of Alstonia boonei on alloxan induced diabetic rats were analysed. ... carbohydrate, fat and protein metabolism (Sky, 2000;. Rother ..... as safe (GRAS) (Lorke, 1984). However ...

  3. High Test Peroxide High Sealing Conical Seal Project

    Data.gov (United States)

    National Aeronautics and Space Administration — High Test Peroxide (HTP) Highly Compatible High Sealing Conical Seals are necessary for ground test operations and space based applications. Current conical seals...

  4. A Novel Fluorescent Reagent for Analysis of Hydrogen Peroxide

    Institute of Scientific and Technical Information of China (English)

    董素英; 苏美红; 聂丽华; 马会民

    2003-01-01

    8-(4,6-Dichloro-1,3,5-trazinoxy)quinoline(DTQ) was evaluated as a new fluorescent reagent for determining hydrogen peroxide.It was found that the fluorescence intensity of DTQ in alkaline medium could be dramatically enhanced upon addition of H2O2.Based on this effect,a simple and selective method for the spectrofluorimetric determination of hydrogen peroxide was estabhlished.The relative standard deviation of the method was found to be 1.1?for 9 replicate determinations of a 4.6×10-6mol/L hydrogen peroxide solution.The linear range was 2.3×10-7-2.3×10-5mol/L with a detection limit of 2.2×10-8mol/L(S/N=3).The ,method was attempted to determine hydrogen peroxide in synthetic human serum samples with satisfactory results.

  5. Hydrogen peroxide in breath condensate during a common cold

    Directory of Open Access Journals (Sweden)

    Rijn Q. Jöbsis

    2001-01-01

    Full Text Available Background: Hydrogen peroxide (H2O2 in exhaled air condensate is elevated in inflammatory disorders of the lower respiratory tract. It is unknown whether viral colds contribute to exhaled H2O2.

  6. Assessment of hydrogen peroxide in breath condensate as an ...

    African Journals Online (AJOL)

    Ehab

    resulting in the production of reactive oxygen species, such as hydrogen peroxide 2. ... inflammation and oxidative stress in asthmatic patients. Keywords: ... cough sedatives, oral theophylline]. - Allergic ... PC for statistical analysis. Quantitative ...

  7. Quantifying intracellular hydrogen peroxide perturbations in terms of concentration

    Directory of Open Access Journals (Sweden)

    Beijing K. Huang

    2014-01-01

    Full Text Available Molecular level, mechanistic understanding of the roles of reactive oxygen species (ROS in a variety of pathological conditions is hindered by the difficulties associated with determining the concentration of various ROS species. Here, we present an approach that converts fold-change in the signal from an intracellular sensor of hydrogen peroxide into changes in absolute concentration. The method uses extracellular additions of peroxide and an improved biochemical measurement of the gradient between extracellular and intracellular peroxide concentrations to calibrate the intracellular sensor. By measuring peroxiredoxin activity, we found that this gradient is 650-fold rather than the 7–10-fold that is widely cited. The resulting calibration is important for understanding the mass-action kinetics of complex networks of redox reactions, and it enables meaningful characterization and comparison of outputs from endogenous peroxide generating tools and therapeutics across studies.

  8. Efficient Electrochemical Hydrogen Peroxide Generation in Water Project

    Data.gov (United States)

    National Aeronautics and Space Administration — An electrochemical cell is proposed for the efficient generation of 3% hydrogen peroxide (H2O2) in pure water using only power, oxygen and water. H2O2 is an...

  9. Alkene dihydroxylation with malonoyl peroxides: catalysis using fluorinated alcohols.

    Science.gov (United States)

    Picon, Sylvain; Rawling, Michael; Campbell, Matthew; Tomkinson, Nicholas C O

    2012-12-21

    The effect of fluorinated alcohols on the dihydroxylation of alkenes using cyclopropyl malonoyl peroxide is described. Addition of perfluoro-tert-butyl alcohol to a toluene solution of alkene and peroxide increases the rate of product formation and the stereoselectivity observed, providing a simple and effective method for acceleration of this important class of reaction. Basic hydrolysis of the crude reaction mixture provides access to syn-diols in high yield and stereoselectivity.

  10. Measuring the noble metal and iodine composition of extracted noble metal phase from spent nuclear fuel using instrumental neutron activation analysis.

    Science.gov (United States)

    Palomares, R I; Dayman, K J; Landsberger, S; Biegalski, S R; Soderquist, C Z; Casella, A J; Brady Raap, M C; Schwantes, J M

    2015-04-01

    Masses of noble metal and iodine nuclides in the metallic noble metal phase extracted from spent fuel are measured using instrumental neutron activation analysis. Nuclide presence is predicted using fission yield analysis, and radionuclides are identified and the masses quantified using neutron activation analysis. The nuclide compositions of noble metal phase derived from two dissolution methods, UO2 fuel dissolved in nitric acid and UO2 fuel dissolved in ammonium-carbonate and hydrogen-peroxide solution, are compared.

  11. HTGR fuel and fuel cycle technology

    Energy Technology Data Exchange (ETDEWEB)

    Lotts, A.L.; Coobs, J.H.

    1976-08-01

    The status of fuel and fuel cycle technology for high-temperature gas-cooled reactors (HTGRs) is reviewed. The all-ceramic core of the HTGRs permits high temperatures compared with other reactors. Core outlet temperatures of 740/sup 0/C are now available for the steam cycle. For advanced HTGRs such as are required for direct-cycle power generation and for high-temperature process heat, coolant temperatures as high as 1000/sup 0/C may be expected. The paper discusses the variations of HTGR fuel designs that meet the performance requirements and the requirements of the isotopes to be used in the fuel cycle. Also discussed are the fuel cycle possibilities, which include the low-enrichment cycle, the Th-/sup 233/U cycle, and plutonium utilization in either cycle. The status of fuel and fuel cycle development is summarized.

  12. An improved method for the quantification of SOA bound peroxides

    Science.gov (United States)

    Mutzel, Anke; Rodigast, Maria; Iinuma, Yoshiteru; Böge, Olaf; Herrmann, Hartmut

    2013-03-01

    An improvement is made to a method for the quantification of SOA-bound peroxides. The procedure is based on an iodometric-spectrophotometric method that has been commonly used for the determination of peroxides in a wide range of biological and environmental samples. The improved method was applied to determine the peroxide content of laboratory-generated SOA from α-pinene ozonolysis. Besides main improvements for the detection conditions, the use of more environmentally sound solvents is considered instead of carcinogenic solvents. In addition to the improved method for peroxide determination, the present study provides evidence for artefact formation caused by ultrasonic agitation for the extraction of organic compounds in SOA filter samples. The concentration of SOA-bound peroxides in the extracts from ultrasonic agitation were up to three times higher than those from a laboratory orbital shaker under the same extraction conditions, indicating peroxide formation caused by acoustic cavitation during extraction. In contrast, pinic acid, terebic acid and terpenylic acid showed significantly lower concentrations in the sample extract prepared using ultrasonic agitation, indicating that these compounds react with OH radicals that are formed from acoustic cavitation. Great care should be taken when extracting SOA samples and the use of ultrasound should be avoided.

  13. Hydrogen Peroxide in Groundwater at Rifle, Colorado

    Science.gov (United States)

    Yuan, X.; Nico, P. S.; Williams, K. H.; Hobson, C.; Davis, J. A.

    2015-12-01

    Hydrogen peroxide (H2O2), as a reactive transient presenting ubiquitously in natural surface waters, can react with a large suite of biologically important and redox-sensitive trace elements. The dominant source of H2O2 in natural waters has long been thought to be photo-oxidation of chromophoric dissolved organic matter by molecular oxygen to produce superoxide radical, which then proceeds via dismutation to generate H2O2. However, recent studies have indicated that dark production of H2O2 in deep seawater, principally by biological production, is potentially on par with photochemical generation. Here, we present evidence for abiotic dark generation of H2O2 in groundwater in an alluvial aquifer adjacent to the Colorado River near Rifle, CO. Background H2O2 concentrations were determined in situ using a sensitive chemiluminescence-based method. Our results suggest H2O2 concentrations ranged from lower than the detection limit (1 nM) to 54 nM in different monitoring wells at the site, and the concentrations exhibited close correlations with profiles of dissolved oxygen and iron concentrations in the wells, indicating a possible metal redox cycling mechanism. In addition, dissolved natural organic matter, which could potentially coordinate the interconversion of ferric and ferrous species, might also play an important role in H2O2 formation. While biologically mediated activities have been recognized as the major sink of H2O2, the detected H2O2 pattern in groundwater suggests the existence of a balance between H2O2 source and decay, which potentially involves a cascade of biogeochemically significant processes, including the interconversion of ferrous/ferric species, the generation of more reactive oxygen species, such as hydroxyl radical, the depletion of dissolved oxygen and further transformation of natural organic matter and other chemical pollutants.

  14. Materials and system degradation in PEM fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Fowler, D. [Waterloo Univ., ON (Canada). Dept. of Chemical Engineering, Green Energy and Fuel Cell Group

    2007-07-01

    Various degradation processes in fuel cell anodes and cathodes can cause the release of fluoride ions that thin the ionomer membrane and allow more gases to permeate the cell. This presentation provided an overview of reliability modelling techniques used to identify the failure modes of material degradation in fuel cells. A reliability model of a fuel cell stack and hydrogen power system was presented in addition to solution methods for Nafion degradation of the main polymer chain. Changes in the molecular weight of Nafion were discussed. A case study of a model was used to demonstrate that reaction slowed as the ionomer on the cathode degraded. Equations were developed for hydrogen crossover, peroxide production; peroxide destruction; F-ion production; thickness change; diffusion through the gas diffusion layer (GDL); and open circuit voltage (OCV). It was concluded that the OCV durability experiments generated a mechanism for degradation of commercial membranes. The modelling study showed that degradation was related to the permeability of hydrogen to the cathode, and oxygen to the anode. It was concluded that at lower oxygen pressures anode degradation was limited, while at higher pressures anode degradation was more significant. A power point presentation of the University of Waterloo's alternative fuel team provided details of the team's recent research activities. tabs., figs.

  15. Original Experimental Approach for Assessing Transport Fuel Stability.

    Science.gov (United States)

    Bacha, Kenza; Ben Amara, Arij; Alves Fortunato, Maira; Wund, Perrine; Veyrat, Benjamin; Hayrault, Pascal; Vannier, Axel; Nardin, Michel; Starck, Laurie

    2016-10-21

    The study of fuel oxidation stability is an important issue for the development of future fuels. Diesel and kerosene fuel systems have undergone several technological changes to fulfill environmental and economic requirements. These developments have resulted in increasingly severe operating conditions whose suitability for conventional and alternative fuels needs to be addressed. For example, fatty acid methyl esters (FAMEs) introduced as biodiesel are more prone to oxidation and may lead to deposit formation. Although several methods exist to evaluate fuel stability (induction period, peroxides, acids, and insolubles), no technique allows one to monitor the real-time oxidation mechanism and to measure the formation of oxidation intermediates that may lead to deposit formation. In this article, we developed an advanced oxidation procedure (AOP) based on two existing reactors. This procedure allows the simulation of different oxidation conditions and the monitoring of the oxidation progress by the means of macroscopic parameters, such as total acid number (TAN) and advanced analytical methods like gas chromatography coupled to mass spectrometry (GC-MS) and Fourier Transform Infrared - Attenuated Total Reflection (FTIR-ATR). We successfully applied AOP to gain an in-depth understanding of the oxidation kinetics of a model molecule (methyl oleate) and commercial diesel and biodiesel fuels. These developments represent a key strategy for fuel quality monitoring during logistics and on-board utilization.

  16. Simulations of H 2O 2 concentration profiles in the water surrounding spent nuclear fuel

    Science.gov (United States)

    Nielsen, Fredrik; Lundahl, Karin; Jonsson, Mats

    2008-01-01

    A simple mathematical model describing the hydrogen peroxide concentration profile in water surrounding a spent nuclear fuel pellet as a function of time has been developed. The water volume is divided into smaller elements, and the processes that affect hydrogen peroxide concentration are applied to each volume element. The model includes production of H 2O 2 from α-radiolysis, surface reaction between H 2O 2 and UO 2 and diffusion. Simulations show that the surface concentration of H 2O 2 increases fairly rapidly and approaches the steady-state concentration. The time to reach steady-state is sufficiently short to be neglected compared to the times of interest when simulating spent fuel dissolution under deep repository conditions. Consequently, the steady-state approach can be used to estimate the rate for radiation-induced spent nuclear fuel dissolution.

  17. Processing used nuclear fuel with nanoscale control of uranium and ultrafiltration

    Science.gov (United States)

    Wylie, Ernest M.; Peruski, Kathryn M.; Prizio, Sarah E.; Bridges, Andrea N. A.; Rudisill, Tracy S.; Hobbs, David T.; Phillip, William A.; Burns, Peter C.

    2016-05-01

    Current separation and purification technologies utilized in the nuclear fuel cycle rely primarily on liquid-liquid extraction and ion-exchange processes. Here, we report a laboratory-scale aqueous process that demonstrates nanoscale control for the recovery of uranium from simulated used nuclear fuel (SIMFUEL). The selective, hydrogen peroxide induced oxidative dissolution of SIMFUEL material results in the rapid assembly of persistent uranyl peroxide nanocluster species that can be separated and recovered at moderate to high yield from other process-soluble constituents using sequestration-assisted ultrafiltration. Implementation of size-selective physical processes like filtration could results in an overall simplification of nuclear fuel cycle technology, improving the environmental consequences of nuclear energy and reducing costs of processing.

  18. The Amoebicidal Effect of Ergosterol Peroxide Isolated from Pleurotus ostreatus.

    Science.gov (United States)

    Meza-Menchaca, Thuluz; Suárez-Medellín, Jorge; Del Ángel-Piña, Christian; Trigos, Ángel

    2015-12-01

    Dysentery is an inflammation of the intestine caused by the protozoan parasite Entamoeba histolytica and is a recurrent health problem affecting millions of people worldwide. Because of the magnitude of this disease, finding novel strategies for treatment that does not affect human cells is necessary. Ergosterol peroxide is a sterol particularly known as a major cytotoxic agent with a wide spectrum of biological activities produced by edible and medicinal mushrooms. The aim of this report is to evaluate the amoebicidal activity of ergosterol peroxide (5α, 8α-epidioxy-22E-ergosta-6,22-dien-3β-ol isolated from 5α, 8α-epidioxy-22E-ergosta-6,22-dien-3β-ol) (Jacq.) P. Kumm. f. sp. Florida. Our results show that ergosterol peroxide produced a strong cytotoxic effect against amoebic growth. The inhibitory concentration IC50 of ergosterol peroxide was evaluated. The interaction between E. histolytica and ergosterol peroxide in vitro resulted in strong amoebicidal activity (IC50  = 4.23 nM) that may be due to the oxidatory effect on the parasitic membrane. We also tested selective toxicity of ergosterol peroxide using a cell line CCL-241, a human epithelial cell line isolated from normal human fetal intestinal tissue. To the best of our knowledge, this is the first report on the cytotoxicity of ergosterol peroxide against E. histolytica, which uncovers a new biological property of the lipidic compound isolated from Pleurotus ostreatus (Jacq.) P. Kumm. f. sp. Florida.

  19. [Determination of hydrogen peroxide in rainwater by fluorometry].

    Science.gov (United States)

    Fang, Yan-Fen; Huang, Ying-Ping; Luo, Guang-Fu; Li, Rui-Ping

    2008-04-01

    The present paper introduces a new method using spectrofluorimetric analysis to determine the concentration of hydrogen peroxide in rainwater. In this method, an oxidation reaction is conducted between o-phenylenediamine (OPDA) and hydrogen peroxide in the buffer medium of NaAc-HAc at pH 4. 48 to form a new product 2,3-diaminophenazine (DAPN). Then the fluorescence intensity of DAPN is measured and 426 and 554 nm are chosen as the excitation and emission wavelengths. Therefore, with the foreknown concentration of input hydrogen peroxide, a series of fluorescence intensities of DAPN are acquired according to a series of different concentration of hydrogen peroxide as input, greatly improving the selectivity and sensibility of the system. A relationship between the input concentration of hydrogen peroxide and the fluorescence intensity of DAPN is then obtained using a linear regression. Results show that fluorescence intensity of DAPN is in proportion to the increase in the concentration of hydrogen peroxide in the range of 9.0 x 10(-7) -3.56 x 10(-5) mol x L(-1) almost linearly. The linear equation is F = 1.15c (micromol x L(-1))+398.6 (r = 0.999 1) and the detection limit is 2.7 x10(-7) mol x L(-1) (n = 11). The relative standard deviation of 11 parallel measurements with the concentration of H2O2 at 7.5 x 10(-6) and 3.0 x 10(-5) mol x L(-1), is 2.2 and 1.0%, respectively. Results from DPD method was used to verify this method. The interference of foreign iron was studied. Compared to the traditional methods, this binary system has a simplified operation and high sensitivity. The proposed method has been successfully applied to determine the concentration of hydrogen peroxide in rainwater.

  20. Hydrogen peroxide potentiates organophosphate toxicosis in chicks

    Directory of Open Access Journals (Sweden)

    Banan K. Al-Baggou

    2011-11-01

    Full Text Available Objective: The purpose of the present study was to examine the effect of hydrogen peroxide(H2O2 on the acute toxicity of organophosphate insecticides dichlorvos and diazinon and their inhibitoryactions on plasma, brain and liver cholinesterase activities. Material and Methods: H2O2 was given indrinking water (0.5% v/v for 2 weeks in unsexed day old chicks, a regimen known to induce oxidativestress in this species. A control group received drinking tap water. All experiments were conducted onthe chicks at the age of 15 days after exposure to H2O2. The acute (24 h oral LD50 values of dichlorvosand diazinon in the insecticidal preparations as determined by the up-and-down method in the controlchicks were 9.4 and 15.6 mg/kg, respectively. Results: The poisoned chicks manifested signs ofcholinergic toxicosis within one hour after the dosing including salivation, lacrimation, gasping, frequentdefecation, drooping of wings, tremors, convulsions and recumbency. The acute (24 h oral LD50 valuesof dichlorvos and diazinon in chicks provided with H2O2 were reduced to 3.5 and 6.5 mg/kg, by 63 and58%, respectively when compared to respective control LD50 values. The intoxicated chicks also showedcholinergic signs of toxicosis as described above. Plasma, brain and liver cholinesterase activities of thechicks exposed to H2O2 were significantly lower than their respective control (H2O values by 25, 28 and27%, respectively. Oral dosing of chicks with dichlorvos at 3 mg/kg significantly inhibited cholinesteraseactivities in the plasma, brain and liver of both control (42-67% and H2O2-treated (15-59% chicks.Diazinon at 5 mg/kg, orally also inhibited cholinesterase activities in the plasma, brain and liver of bothcontrol (36-66% and H2O2-treated (15-30% chicks. In the H2O2 groups, dichlorvos inhibition of livercholinesterase activity and diazinon inhibition of liver and brain cholinesterase activities weresignificantly lesser than those of the respective values of

  1. The effect of hydrogen peroxide on uranium oxide films on 316L stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Wilbraham, Richard J., E-mail: r.wilbraham@lancaster.ac.uk [The Lloyd’s Register Foundation Centre for Nuclear Engineering, Engineering Department, Lancaster University, Bailrigg, Lancashire LA1 4YR (United Kingdom); Boxall, Colin, E-mail: c.boxall@lancaster.ac.uk [The Lloyd’s Register Foundation Centre for Nuclear Engineering, Engineering Department, Lancaster University, Bailrigg, Lancashire LA1 4YR (United Kingdom); Goddard, David T., E-mail: dave.t.goddard@nnl.co.uk [National Nuclear Laboratory, Preston Laboratory, Springfields, Preston, Lancashire PR4 0XJ (United Kingdom); Taylor, Robin J., E-mail: robin.j.taylor@nnl.co.uk [National Nuclear Laboratory, Central Laboratory, Seascale, Cumbria CA20 1PG (United Kingdom); Woodbury, Simon E., E-mail: simon.woodbury@nnl.co.uk [National Nuclear Laboratory, Central Laboratory, Seascale, Cumbria CA20 1PG (United Kingdom)

    2015-09-15

    of corrosion processes or otherwise. Through consideration of thermodynamic solubility product and complex formation constant data, we attribute the transition to the formation of soluble uranyl–peroxide complexes under mildly alkaline, high [H{sub 2}O{sub 2}] conditions – a conclusion that has implications for the design of both acid minimal, metal ion oxidant-free decontamination strategies with low secondary waste arisings, and single step processes for spent nuclear fuel dissolution such as the Carbonate-based Oxidative Leaching (COL) process.

  2. Experimental investigation of fuel regression rate in a HTPB based lab-scale hybrid rocket motor

    Science.gov (United States)

    Li, Xintian; Tian, Hui; Yu, Nanjia; Cai, Guobiao

    2014-12-01

    The fuel regression rate is an important parameter in the design process of the hybrid rocket motor. Additives in the solid fuel may have influences on the fuel regression rate, which will affect the internal ballistics of the motor. A series of firing experiments have been conducted on lab-scale hybrid rocket motors with 98% hydrogen peroxide (H2O2) oxidizer and hydroxyl terminated polybutadiene (HTPB) based fuels in this paper. An innovative fuel regression rate analysis method is established to diminish the errors caused by start and tailing stages in a short time firing test. The effects of the metal Mg, Al, aromatic hydrocarbon anthracene (C14H10), and carbon black (C) on the fuel regression rate are investigated. The fuel regression rate formulas of different fuel components are fitted according to the experiment data. The results indicate that the influence of C14H10 on the fuel regression rate of HTPB is not evident. However, the metal additives in the HTPB fuel can increase the fuel regression rate significantly.

  3. HTGR Fuel performance basis

    Energy Technology Data Exchange (ETDEWEB)

    Shamasundar, B.I.; Stansfield, O.M.; Jensen, D.D.

    1982-05-01

    The safety characteristics of the high-temperature gas-cooled reactor (HTGR) during normal and accident conditions are determined in part by HTGR fuel performance. During normal operation, less than 0.1% fuel failure occurs, primarily from defective particles. This low fuel failure fraction limits circulating activity to acceptable levels. During severe accidents, the radiological consequence is influenced by high-temperature fuel particle behavior. An empirical fuel failure model, supported by recent experimental data, is presented. The onset of significant fuel particle failure occurs at temperatures in excess of 1600/sup 0/C, and complete fuel failure occurs at 2660/sup 0/C. This indicates that the fuel is more retentive at higher temperatures than previously assumed. The more retentive nature of the fuel coupled with the high thermal capacitance of the core results in slow release of fission products from the core during severe accidents.

  4. Fuels Combustion Research: Supercritical Fuel Pyrolysis

    National Research Council Canada - National Science Library

    Glassman, Irvin

    2001-01-01

    Present and anticipated variation in jet propulsion fuels due to advanced engine compression ratios and airframe cooling requirements necessitate greater understanding of chemical phenomena associated...

  5. Fuels Combustion Research: Supercritical Fuel Pyrolysis

    National Research Council Canada - National Science Library

    Glassman, Irvin

    2000-01-01

    Present and anticipated variation in jet propulsion fuels due to advanced engine compression ratios and airframe cooling requirements necessitate greater understanding of chemical phenomena associated...

  6. Effect of carbamide peroxide and hydrogen peroxide on enamel surface: an in vitro study.

    Science.gov (United States)

    Abouassi, Thaer; Wolkewitz, Martin; Hahn, Petra

    2011-10-01

    The aim of the study was to investigate changes in the micromorphologyl and microhardness of the enamel surface after bleaching with two different concentrations of hydrogen peroxide (HP) and carbamide peroxide (CP). Bovine enamel samples were embedded in resin blocks, and polished. Specimens in the experimental groups (n = 10) were treated with bleaching gels containing 10% CP, 35% CP, 3.6% HP, and 10% HP, respectively, for 2 h every second day over a period of 2 weeks. The gels had the identical composition and pH and differed only in their HP or CP content. The roughness and morphology of the enamel surface were analyzed using laser profilometry and SEM. Microhardness was measured using a Knoop hardness tester. The data were evaluated statistically. Specimens in the 10% HP group showed significantly higher roughness after bleaching compared to the control group (ΔRa, p = 0.01). Bleaching with 35% CP showed only a tendency to increase roughness (ΔRa, p = 0.06). Application of 10% CP or 3.6% HP had no significant influence on Ra. Enamel microhardness was significantly higher after application of 10% HP compared to the control (ΔMic = 8 KHN, p = 0.0002) and 35% CP (ΔMic = 20KHN, p = 0.01) groups. In summary, application of CP and HP showed only small quantitative and qualitative differences. In addition, the influence of bleaching procedure on the morphology and hardness of the enamel surface depended on the concentration of the active ingredients.

  7. Sorption of strontium on uranyl peroxide: implications for a high-level nuclear waste repository.

    Science.gov (United States)

    Sureda, Rosa; Martínez-Lladó, Xavier; Rovira, Miquel; de Pablo, Joan; Casas, Ignasi; Giménez, Javier

    2010-09-15

    Strontium-90 is considered the most important radioactive isotope in the environment and one of the most frequently occurring radionuclides in groundwaters at nuclear facilities. The uranyl peroxide studtite (UO2O2 . 4H2O) has been observed to be formed in spent nuclear fuel leaching experiments and seems to have a relatively high sorption capacity for some radionuclides. In this work, the sorption of strontium onto studtite is studied as a function of time, strontium concentration in solution and pH. The main results obtained are (a) sorption is relatively fast although slower than for cesium; (b) strontium seems to be sorbed via a monolayer coverage of the studtite surface, (c) sorption has a strong dependence on ionic strength, is negligible at acidic pH, and increases at neutral to alkaline pH (almost 100% of the strontium in solution is sorbed above pH 10). These results point to uranium secondary solid phase formation on the spent nuclear fuel as an important mechanism for strontium retention in a high-level nuclear waste repository (HLNW).

  8. 77 FR 699 - Regulation of Fuels and Fuel Additives: Identification of Additional Qualifying Renewable Fuel...

    Science.gov (United States)

    2012-01-05

    ... January 5, 2012 Part V Environmental Protection Agency 40 CFR Part 80 Regulation of Fuels and Fuel Additives: Identification of Additional Qualifying Renewable Fuel Pathways Under the Renewable Fuel Standard... Fuels and Fuel Additives: Identification of Additional Qualifying Renewable Fuel Pathways Under...

  9. Lipid peroxidation and antioxidant enzymes in male infertility.

    Directory of Open Access Journals (Sweden)

    Dandekar S

    2002-07-01

    Full Text Available BACKGROUND AND AIM: Mammalian spermatozoa are rich in polyunsaturated fatty acids and are very susceptible to attack by reactive oxygen species (ROS and membrane lipid peroxide ion. Normally a balance is maintained between the amount of ROS produced and that scavenged. Cellular damage arises when this equilibrium is disturbed. A shift in the levels of ROS towards pro-oxidants in semen and vaginal secretions can induce an oxidative stress on spermatozoa. The aim was to study lipid peroxidation and antioxidant enzymes such as catalase, glutathione peroxidase and superoxide dismutase (SOD and to correlate the same, with the ′water test′, in male infertility. SETTINGS: Experimental study. SUBJECTS AND METHODS: Ejaculates from a total of 83 infertile and fertile healthy individuals were obtained. Lipid peroxidation and antioxidant enzyme levels were studied and correlated with water test. RESULTS: The results indicate that (i the antioxidant enzyme catalase showed no significant changes in the various pathological samples, (ii antioxidant enzymes SOD and glutathione peroxidase correlate positively with asthenozoospermic samples and (iii the degree of lipid peroxidation also correlates positively with the poorly swollen sperm tails. The increase in SOD and glutathione peroxidase values, in the pathological cases represents an attempt made to overcome the reactive oxygen species. CONCLUSION: Water test could be used as a preliminary marker test for sperm tail damage by reactive oxygen species, since it correlates very well with lipid peroxidation and antioxidant enzymes.

  10. Chlamydia trachomatis and sperm lipid peroxidation in infertile men

    Institute of Scientific and Technical Information of China (English)

    A.Segnini; M.I.Camejo; F.Proverbio

    2003-01-01

    Aim:To relate thepresence of anti-Chlamydial trachomatis IgA in semen with sperm lipid membrane peroxidation and changes in seminal parameters.Methods:Semen samples of the male partners of 52 couples assessed for undiagnosed infertility were examined for the presence of IgA antibody against C.trachomatis.The level of sperm membrane lipid peroxidation was estimated by determining the malondialdehyde(MDA) formation.Results:Sperm membrane of infertile males with positive IgA antibodies against C.trachomatis showed a higher level of lipid peroxidation than that of infertile males with negative IgA antibody(P<0.05).There was a positive correlation(P<0.01) between the level of C.trachomatis antibody and the magnitude of sperm membrane lipid peroxidation.All the other tested semen parameters were found to be similar in the two groups.Conclusion:The activation of immune system by C.trachomatis may promote lipid peroxidation of the sperm membrane.This could be the way by which C.trachomatis affects fertility.

  11. Micellar electrokinetic chromatography of organic and peroxide-based explosives.

    Science.gov (United States)

    Johns, Cameron; Hutchinson, Joseph P; Guijt, Rosanne M; Hilder, Emily F; Haddad, Paul R; Macka, Mirek; Nesterenko, Pavel N; Gaudry, Adam J; Dicinoski, Greg W; Breadmore, Michael C

    2015-05-30

    CE methods have been developed for the analysis of organic and peroxide-based explosives. These methods have been developed for deployment on portable, in-field instrumentation for rapid screening. Both classes of compounds are neutral and were separated using micellar electrokinetic chromatography (MEKC). The effects of sample composition, separation temperature, and background electrolyte composition were investigated. The optimised separation conditions (25 mM sodium tetraborate, 75 mM sodium dodecyl sulfate at 25°C, detection at 200 nm) were applied to the separation of 25 organic explosives in 17 min, with very high efficiency (typically greater than 300,000 plates m(-1)) and high sensitivity (LOD typically less than 0.5 mg L(-1); around 1-1.5 μM). A MEKC method was also developed for peroxide-based explosives (10 mM sodium tetraborate, 100 mM sodium dodecyl sulfate at 25°C, detection at 200 nm). UV detection provided LODs between 5.5 and 45.0 mg L(-1) (or 31.2-304 μM), which is comparable to results achieved using liquid chromatography. Importantly, no sample pre-treatment or post-column reaction was necessary and the peroxide-based explosives were not decomposed to hydrogen peroxide. Both MEKC methods have been applied to pre-blast analysis and for the detection of post-blast residues recovered from controlled, small scale detonations of organic and peroxide-based explosive devices.

  12. Multistage Extractive Reaction for Hydrogen Peroxide Production by Anthraquinone Process

    Institute of Scientific and Technical Information of China (English)

    WANG Li; L(U) Shuxiang; WANG Yaquan; MI Zhentao

    2005-01-01

    The extractive reaction process of oxygen-working solution-water three-phase system for the production of hydrogen peroxide by the anthraquinone method was investigated in a sieve plate column of 50 mm in internal diameter. The oxidation reaction of anthrahydroquinone in the working solution with oxygen and the extraction of hydrogen peroxide from the working solution into aqueous phase occurred simultaneously in the countercurrent mode. The agitating effect caused by gaseous phase made the droplets of the dispersed phase become smaller, thus, increasing the liquid-liquid interfacial contact areas and resulting in the improvement of the mass transfer velocity. Results showed that the gas-agitation had a beneficial effect on the extraction of hydrogen peroxide from the working solution into the aqueous phase; the concentration of hydrogen peroxide in the raffinate decreased with the increase of the gaseous superficial velocities; and the concentration of H2O2 in the raffinate increased with the increase of the dispersed phase superficial velocity at the same superficial velocity of the gaseous phase. In the G-L-L extractive reaction process, with the increase of the gaseous superficial velocities, both the conversion of the anthrahydroquinone oxidation and the extraction efficiency of hydrogen peroxide first increased significantly, then increased gradually.

  13. Safety issues of tooth whitening using peroxide-based materials.

    Science.gov (United States)

    Li, Y; Greenwall, L

    2013-07-01

    In-office tooth whitening using hydrogen peroxide (H₂O₂) has been practised in dentistry without significant safety concerns for more than a century. While few disputes exist regarding the efficacy of peroxide-based at-home whitening since its first introduction in 1989, its safety has been the cause of controversy and concern. This article reviews and discusses safety issues of tooth whitening using peroxide-based materials, including biological properties and toxicology of H₂O₂, use of chlorine dioxide, safety studies on tooth whitening, and clinical considerations of its use. Data accumulated during the last two decades demonstrate that, when used properly, peroxide-based tooth whitening is safe and effective. The most commonly seen side effects are tooth sensitivity and gingival irritation, which are usually mild to moderate and transient. So far there is no evidence of significant health risks associated with tooth whitening; however, potential adverse effects can occur with inappropriate application, abuse, or the use of inappropriate whitening products. With the knowledge on peroxide-based whitening materials and the recognition of potential adverse effects associated with the procedure, dental professionals are able to formulate an effective and safe tooth whitening regimen for individual patients to achieve maximal benefits while minimising potential risks.

  14. Sphingosine induces the aggregation of imine-containing peroxidized vesicles.

    Science.gov (United States)

    Jiménez-Rojo, Noemi; Viguera, Ana R; Collado, M Isabel; Sims, Kacee H; Constance, Chad; Hill, Kasey; Shaw, Walt A; Goñi, Félix M; Alonso, Alicia

    2014-08-01

    Lipid peroxidation plays a central role in the pathogenesis of many diseases like atherosclerosis and multiple sclerosis. We have analyzed the interaction of sphingosine with peroxidized bilayers in model membranes. Cu(2+) induced peroxidation was checked following UV absorbance at 245nm, and also using the novel Avanti snoopers®. Mass spectrometry confirms the oxidation of phospholipid unsaturated chains. Our results show that sphingosine causes aggregation of Cu(2+)-peroxidized vesicles. We observed that aggregation is facilitated by the presence of negatively-charged phospholipids in the membrane, and inhibited by anti-oxidants e.g. BHT. Interestingly, long-chain alkylamines (C18, C16) but not their short-chain analogues (C10, C6, C1) can substitute sphingosine as promoters of vesicle aggregation. Furthermore, sphinganine but not sphingosine-1-phosphate can mimic this effect. Formation of imines in the membrane upon peroxidation was detected by (1)H-NMR and it appeared to be necessary for the aggregation effect. (31)P-NMR spectroscopy reveals that sphingosine facilitates formation of non-lamellar phase in parallel with vesicle aggregation. The data might suggest a role for sphingosine in the pathogenesis of atherosclerosis. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Probing skin interaction with hydrogen peroxide using diffuse reflectance spectroscopy

    Science.gov (United States)

    Zonios, George; Dimou, Aikaterini; Galaris, Dimitrios

    2008-01-01

    Hydrogen peroxide is an important oxidizing agent in biological systems. In dermatology, it is frequently used as topical antiseptic, it has a haemostatic function, it can cause skin blanching, and it can facilitate skin tanning. In this work, we investigated skin interaction with hydrogen peroxide, non-invasively, using diffuse reflectance spectroscopy. We observed transient changes in the oxyhaemoglobin and deoxyhaemoglobin concentrations as a result of topical application of dilute H2O2 solutions to the skin, with changes in deoxyhaemoglobin concentration being more pronounced. Furthermore, we did not observe any appreciable changes in melanin absorption properties as well as in the skin scattering properties. We also found no evidence for production of oxidized haemoglobin forms. Our observations are consistent with an at least partial decomposition of hydrogen peroxide within the stratum corneum and epidermis, with the resulting oxygen and/or remaining hydrogen peroxide inducing vasoconstriction to dermal blood vessels and increasing haemoglobin oxygen saturation. An assessment of the effects of topical application of hydrogen peroxide to the skin may serve as the basis for the development of non-invasive techniques to measure skin antioxidant capacity and also may shed light onto skin related disorders such as vitiligo.

  16. Probing skin interaction with hydrogen peroxide using diffuse reflectance spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Zonios, George [Department of Materials Science and Engineering, University of Ioannina, 45110 Ioannina (Greece); Dimou, Aikaterini [Department of Materials Science and Engineering, University of Ioannina, 45110 Ioannina (Greece); Galaris, Dimitrios [Laboratory of Biological Chemistry, School of Medicine, University of Ioannina, 45110 Ioannina (Greece)

    2008-01-07

    Hydrogen peroxide is an important oxidizing agent in biological systems. In dermatology, it is frequently used as topical antiseptic, it has a haemostatic function, it can cause skin blanching, and it can facilitate skin tanning. In this work, we investigated skin interaction with hydrogen peroxide, non-invasively, using diffuse reflectance spectroscopy. We observed transient changes in the oxyhaemoglobin and deoxyhaemoglobin concentrations as a result of topical application of dilute H{sub 2}O{sub 2} solutions to the skin, with changes in deoxyhaemoglobin concentration being more pronounced. Furthermore, we did not observe any appreciable changes in melanin absorption properties as well as in the skin scattering properties. We also found no evidence for production of oxidized haemoglobin forms. Our observations are consistent with an at least partial decomposition of hydrogen peroxide within the stratum corneum and epidermis, with the resulting oxygen and/or remaining hydrogen peroxide inducing vasoconstriction to dermal blood vessels and increasing haemoglobin oxygen saturation. An assessment of the effects of topical application of hydrogen peroxide to the skin may serve as the basis for the development of non-invasive techniques to measure skin antioxidant capacity and also may shed light onto skin related disorders such as vitiligo.

  17. Materials for fuel cells

    Directory of Open Access Journals (Sweden)

    Sossina M Haile

    2003-03-01

    Full Text Available Because of their potential to reduce the environmental impact and geopolitical consequences of the use of fossil fuels, fuel cells have emerged as tantalizing alternatives to combustion engines. Like a combustion engine, a fuel cell uses some sort of chemical fuel as its energy source but, like a battery, the chemical energy is directly converted to electrical energy, without an often messy and relatively inefficient combustion step. In addition to high efficiency and low emissions, fuel cells are attractive for their modular and distributed nature, and zero noise pollution. They will also play an essential role in any future hydrogen fuel economy.

  18. Composite nuclear fuel assembly

    Energy Technology Data Exchange (ETDEWEB)

    Dollard, W.J.; Ferrari, H.M.

    1982-04-27

    An open lattice elongated nuclear fuel assembly including small diameter fuel rods disposed in an array spaced a selected distance above an array of larger diameter fuel rods for use in a nuclear reactor having liquid coolant flowing in an upward direction. Plenums are preferably provided in the upper portion of the upper smaller diameter fuel rods and in the lower portion of the lower larger diameter fuel rods. Lattice grid structures provide lateral support for the fuel rods and preferably the lowest grid about the upper rods is directly and rigidly affixed to the highest grid about the lower rods.

  19. DUPIC fuel compatibility assessment

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Hang Bok; Rho, G. H.; Park, J. W. [and others

    2000-03-01

    The purpose of this study is to assess the compatibility of DUPIC(Direct Use of Spent PWR Fuel in CANDU Reactors) fuel with the current CANDU 6 reactor, which is one of the technology being developed to utilize the spent PWR fuel in CANDU reactors. The phase 1 study of this project includes the feasibility analysis on applicability of the current core design method, the feasibility analysis on operation of the DUPIC fuel core, the compatibility analysis on individual reactor system, the sensitivity analysis on the fuel composition, and the economic analysis on DUPIC fuel cycle. The results of the validation calculations have confirmed that the current core analysis system is acceptable for the feasibility study of the DUPIC fuel compatibility analysis. The results of core simulations have shown that both natural uranium and DUPIC fuel cores are almost the same from the viewpoint of the operational performance. For individual reactor system including reactively devices, the functional requirements of each system are satisfied in general. However, because of the pronounced power flattening in the DUPIC core, the radiation damage on the critical components increases, which should be investigated more in the future. The DUPIC fuel composition heterogeneity dose not to impose any serious effect on the reactor operation if the fuel composition is adjusted. The economics analysis has been performed through conceptual design studies on the DUPIC fuel fabrication, fuel handling in a plant, and spent fuel disposal, which has shown that the DUPIC fuel cycle is comparable to the once-trough fuel cycle considering uncertainties associated with unit costs of the fuel cycle components. The results of Phase 1 study have shown that it is feasible to use the DUPIC fuel in CANDU reactors without major changes in hardware. However further studies are required to confirm the safety of the reactor under accident condition.

  20. Exposure to oxidized nitrogen: lipid peroxidation and neonatal health risk.

    Science.gov (United States)

    Tabacova, S; Baird, D D; Balabaeva, L

    1998-01-01

    Pregnant women exposed to extensive environmental contamination by oxidized nitrogen compounds were studied at parturition, their neonatal health status was assessed and the involvement of oxidative stress in pathology was evaluated. Methemoglobin in maternal and cord blood was measured as a biomarker of individual exposure. Blood lipid peroxides and glutathione (reduced and total) were determined as oxidative stress biomarkers. Birthweight, Apgar scores, and clinical diagnosis at birth were used as neonatal health endpoints. Elevated exposure to oxidized nitrogen compounds was associated with increased lipid peroxidation in both maternal and cord blood. Poor birth outcome was associated with high blood lipid peroxides. Controlling for maternal age, parity, and smoking did not affect the relationships materially. The results showed that maternal/fetal exposure to oxidized nitrogen compounds is associated with increased risk of adverse birth outcome and suggest a role of oxidative damage in the pathogenic pathway.

  1. Synthesis of unstable cyclic peroxides for chemiluminescence studies

    Energy Technology Data Exchange (ETDEWEB)

    Bartoloni, Fernando H.; Oliveira, Marcelo A. de; Augusto, Felipe A.; Ciscato, Luiz Francisco M.L.; Bastos, Erick L.; Baader, Wilhelm J., E-mail: wjbaader@iq.usp.br [Universidade de Sao Paulo (USP), SP (Brazil). Inst. de Quimica. Dept. de Quimica Fundamental

    2012-11-15

    Cyclic four-membered ring peroxides are important high-energy intermediates in a variety of chemi and bioluminescence transformations. Specifically, a-peroxy lactones (1,2-dioxetanones) have been considered as model systems for efficient firefly bioluminescence. However, the preparation of such highly unstable compounds is extremely difficult and, therefore, only few research groups have been able to study the properties of these substances. In this study, the synthesis, purification and characterization of three 1,2-dioxetanones are reported and a detailed procedure for the known synthesis of diphenoyl peroxide, another important model compound for the chemical generation of electronically excited states, is provided. For most of these peroxides, the complete spectroscopic characterization is reported here for the first time. (author)

  2. Study of catalase electrode for organic peroxides assays.

    Science.gov (United States)

    Horozova, Elena; Dimcheva, Nina; Jordanova, Zinaida

    2002-12-01

    The catalytic activity of immobilized catalase (EC 1.11.1.6) for two model peroxide compounds (dibenzoyl peroxide and 3-chloroperoxibenzoic acid) in a non-aqueous medium was used to prepare an organic-phase enzyme electrode (OPEE). The enzyme was immobilized within a polymeric film on spectrographic graphite. The amperometric signal of the enzyme electrode in substrate solutions was found to be due to the reduction of oxygen generated in the enzyme layer. The electrode response is proportional to peroxide concentrations up to about 40 microM within the potential range from -450 to -650 mV (vs. Ag/AgCl), and the response time is at most 90 s. The enzyme electrode retains about 35% of its initial activity after a 3-week storage at room temperature.

  3. Cathodic electrocatalyst layer for electrochemical generation of hydrogen peroxide

    Science.gov (United States)

    Rhodes, Christopher P. (Inventor); Tennakoon, Charles L. K. (Inventor); Singh, Waheguru Pal (Inventor); Anderson, Kelvin C. (Inventor)

    2011-01-01

    A cathodic gas diffusion electrode for the electrochemical production of aqueous hydrogen peroxide solutions. The cathodic gas diffusion electrode comprises an electrically conductive gas diffusion substrate and a cathodic electrocatalyst layer supported on the gas diffusion substrate. A novel cathodic electrocatalyst layer comprises a cathodic electrocatalyst, a substantially water-insoluble quaternary ammonium compound, a fluorocarbon polymer hydrophobic agent and binder, and a perfluoronated sulphonic acid polymer. An electrochemical cell using the novel cathodic electrocatalyst layer has been shown to produce an aqueous solution having between 8 and 14 weight percent hydrogen peroxide. Furthermore, such electrochemical cells have shown stable production of hydrogen peroxide solutions over 1000 hours of operation including numerous system shutdowns.

  4. Reproducing Phenomenology of Peroxidation Kinetics via Model Optimization

    Science.gov (United States)

    Ruslanov, Anatole D.; Bashylau, Anton V.

    2010-06-01

    We studied mathematical modeling of lipid peroxidation using a biochemical model system of iron (II)-ascorbate-dependent lipid peroxidation of rat hepatocyte mitochondrial fractions. We found that antioxidants extracted from plants demonstrate a high intensity of peroxidation inhibition. We simplified the system of differential equations that describes the kinetics of the mathematical model to a first order equation, which can be solved analytically. Moreover, we endeavor to algorithmically and heuristically recreate the processes and construct an environment that closely resembles the corresponding natural system. Our results demonstrate that it is possible to theoretically predict both the kinetics of oxidation and the intensity of inhibition without resorting to analytical and biochemical research, which is important for cost-effective discovery and development of medical agents with antioxidant action from the medicinal plants.

  5. Catalytic wet hydrogen peroxide oxidation of a petrochemical wastewater.

    Science.gov (United States)

    Pariente, M I; Melero, J A; Martínez, F; Botas, J A; Gallego, A I

    2010-01-01

    Continuous Catalytic Wet Hydrogen Peroxide Oxidation (CWHPO) for the treatment of a petrochemical industry wastewater has been studied on a pilot plant scale process. The installation, based on a catalytic fixed bed reactor (FBR) coupled with a stirred tank reactor (STR), shows an interesting alternative for the intensification of a continuous CWHPO treatment. Agglomerated SBA-15 silica-supported iron oxide (Fe(2)O(3)/SBA-15) was used as Fenton-like catalyst. Several variables such as the temperature and hydrogen peroxide concentration, as well as the capacity of the pilot plant for the treatment of inlet polluted streams with different dilution degrees were studied. Remarkable results in terms of TOC reduction and increased biodegradability were achieved using 160 degrees C and moderate hydrogen peroxide initial concentration. Additionally, a good stability of the catalyst was evidenced for 8 hours of treatment with low iron leaching (less than 1 mg/L) under the best operating conditions.

  6. FUEL CELL ELECTRODE MATERIALS

    Science.gov (United States)

    FUEL CELL ELECTRODE MATERIALS. RAW MATERIAL SELECTION INFLUENCES POLARIZATION BUT IS NOT A SINGLE CONTROLLING FACTOR. AVAILABLE...DATA INDICATES THAT AN INTERRELATIONSHIP OF POROSITY, AVERAGE PORE VOLUME, AND PERMEABILITY CONTRIBUTES TO ELECTRODE FUEL CELL BEHAVIOR.

  7. Salinity-gradient energy driven microbial electrosynthesis of hydrogen peroxide

    DEFF Research Database (Denmark)

    Li, Xiaohu; Angelidaki, Irini; Zhang, Yifeng

    2017-01-01

    Hydrogen peroxide (H2O2) as a strong oxidant, is widely used in various chemical industries and environmental remediation processes. In this study, we developed an innovative method for cost-effective production of H2O2 by using a microbial reverse-electrodialysis electrolysis cell (MREC). In the......Hydrogen peroxide (H2O2) as a strong oxidant, is widely used in various chemical industries and environmental remediation processes. In this study, we developed an innovative method for cost-effective production of H2O2 by using a microbial reverse-electrodialysis electrolysis cell (MREC...

  8. Hydrogen peroxide modified sodium titanates with improved sorption capabilities

    Science.gov (United States)

    Nyman, May D.; Hobbs, David T.

    2009-02-24

    The sorption capabilities (e.g., kinetics, selectivity, capacity) of the baseline monosodium titanate (MST) sorbent material currently being used to sequester Sr-90 and alpha-emitting radioisotopes at the Savannah River Site are significantly improved when treated with hydrogen peroxide; either during the original synthesis of MST, or, as a post-treatment step after the MST has been synthesized. It is expected that these peroxide-modified MST sorbent materials will have significantly improved sorption capabilities for non-radioactive cations found in industrial processes and waste streams.

  9. Direct hydrocarbon fuel cells

    Science.gov (United States)

    Barnett, Scott A.; Lai, Tammy; Liu, Jiang

    2010-05-04

    The direct electrochemical oxidation of hydrocarbons in solid oxide fuel cells, to generate greater power densities at lower temperatures without carbon deposition. The performance obtained is comparable to that of fuel cells used for hydrogen, and is achieved by using novel anode composites at low operating temperatures. Such solid oxide fuel cells, regardless of fuel source or operation, can be configured advantageously using the structural geometries of this invention.

  10. Navy Fuel Specification Standardization

    Science.gov (United States)

    1992-04-01

    surfaced periodically to convert further to a single-fuel operation, i.e., one fuel for both aircraft and ship propulsion /power systems. This study...lead to the development of a single distillate fuel for ship propulsion , resulting eventually in the MIL-F-16884 Naval Distillate Fuel (NDF) used today...for both aircraft and ship propulsion /power systems. This report summarizes a study to consider this problem in light of current systems and

  11. Modeling: driving fuel cells

    Directory of Open Access Journals (Sweden)

    Michael Francis

    2002-05-01

    Fuel cells were invented in 1839 by Sir William Grove, a Welsh judge and gentleman scientist, as a result of his experiments on the electrolysis of water. To put it simply, fuel cells are electrochemical devices that take hydrogen gas from fuel, combine it with oxygen from the air, and generate electricity and heat, with water as the only by-product.

  12. Alternate Fuels Combustion Research

    Science.gov (United States)

    1983-10-01

    properties of the other fuels are varied systematically beyond the specification limits imposed on the reference fuels, principally in the direction of...lower hydrogen content- Comparison of fuel nozzles, Figurae ,6.32. shows stronger dependence bet- ween oeiseslona and hydrogen content for airblast and

  13. Vented nuclear fuel element

    Science.gov (United States)

    Grossman, Leonard N.; Kaznoff, Alexis I.

    1979-01-01

    A nuclear fuel cell for use in a thermionic nuclear reactor in which a small conduit extends from the outside surface of the emitter to the center of the fuel mass of the emitter body to permit escape of volatile and gaseous fission products collected in the center thereof by virtue of molecular migration of the gases to the hotter region of the fuel.

  14. Alternative Fuels Data Center

    Energy Technology Data Exchange (ETDEWEB)

    None

    2013-06-01

    Fact sheet describes the Alternative Fuels Data Center, which provides information, data, and tools to help fleets and other transportation decision makers find ways to reduce petroleum consumption through the use of alternative and renewable fuels, advanced vehicles, and other fuel-saving measures.

  15. Fuel cell catalyst degradation

    DEFF Research Database (Denmark)

    Arenz, Matthias; Zana, Alessandro

    2016-01-01

    Fuel cells are an important piece in our quest for a sustainable energy supply. Although there are several different types of fuel cells, the by far most popular is the proton exchange membrane fuel cell (PEMFC). Among its many favorable properties are a short start up time and a high power density...

  16. Organometallic catalysts for primary phosphoric acid fuel cells

    Science.gov (United States)

    Walsh, Fraser

    1987-01-01

    A continuing effort by the U.S. Department of Energy to improve the competitiveness of the phosphoric acid fuel cell by improving cell performance and/or reducing cell cost is discussed. Cathode improvement, both in performance and cost, available through the use of a class of organometallic cathode catalysts, the tetraazaannulenes (TAAs), was investigated. A new mixed catalyst was identified which provides improved cathode performance without the need for the use of a noble metal. This mixed catalyst was tested under load for 1000 hr. in full cell at 160 to 200 C in phosphoric acid H3PO4, and was shown to provide stable performance. The mixed catalyst contains an organometallic to catalyze electroreduction of oxygen to hydrogen peroxide and a metal to catalyze further electroreduction of the hydrogen peroxide to water. Cathodes containing an exemplar mixed catalyst (e.g., Co bisphenyl TAA/Mn) operate at approximately 650 mV vs DHE in 160 C, 85% H3PO4 with oxygen as reactant. In developing this mixed catalyst, a broad spectrum of TAAs were prepared, tested in half-cell and in a rotating ring-disk electrode system. TAAs found to facilitate the production of hydrogen peroxide in electroreduction were shown to be preferred TAAs for use in the mixed catalyst. Manganese (Mn) was identified as a preferred metal because it is capable of catalyzing hydrogen peroxide electroreduction, is lower in cost and is of less strategic importance than platinum, the cathode catalyst normally used in the fuel cell.

  17. Applications of hydrogen peroxide in electrochemical technology

    Energy Technology Data Exchange (ETDEWEB)

    Alvarez Gallegos, Alberto Armando

    1998-12-01

    It is demonstrated that hydrogen peroxide can be produced with a current efficiency of 40-70% by the cathodic reduction of oxygen at a reticulated vitreous carbon electrode in a divided flow-cell using catholytes consisting of aqueous chloride or sulphate media, pH >>{sub 2}. The supporting electrolyte does not influence either the current efficiency for H{sub 2}O{sub 2} or its rate of production. The current efficiency for H{sub 2}O{sub 2} is not a strong function of the potential and this suggests that 2e- and 4e- reduction of oxygen occurs in parallel at different sites on the carbon surface. Voltammetry experiments showed that (a) the I-E response for oxygen reduction at pH >>{sub 2} is a function of the electrode surface and/or the supporting electrolyte; (b) both H{sub 2} evolution and oxygen reduction are retarded on carbon with increasing ionic strength; (c) the presence of ferrous ions lead to the homogeneous decomposition of H{sub 2}O{sub 2} away from the cathode surface but their effectiveness as a catalyst for this decomposition depends on their speciation in solution which changes during an electrolysis. The use of a three-dimensional electrode fabricated from reticulated vitreous carbon allows Fenton`s reagent to be electroproduced at a practical rate which makes possible the removal of organics in slightly acidic aqueous media. A wide range of highly toxic organic molecules (phenol, catechol, hydroquinone, p-benzoquinone, oxalic acid, aniline, cresol and amaranth) have been oxidised in mild conditions and a significant fraction of the organic carbon is evolved as CO{sub 2}. In all cases studied the initial chemical oxygen demand (COD) was depleted to levels higher than 85%, indicating a complete mineralisation of the organic pollutants. The life-time of the reticulated vitreous carbon cathode was demonstrated to be over 1000 hours during two and a half years of experiments. During this time the cathode performance was very good, leading to

  18. An improved alkaline direct formate paper microfluidic fuel cell.

    Science.gov (United States)

    Galvan, Vicente; Domalaon, Kryls; Tang, Catherine; Sotez, Samantha; Mendez, Alex; Jalali-Heravi, Mehdi; Purohit, Krutarth; Pham, Linda; Haan, John; Gomez, Frank A

    2016-02-01

    Paper-based microfluidic fuel cells (MFCs) are a potential replacement for traditional FCs and batteries due to their low cost, portability, and simplicity to operate. In MFCs, separate solutions of fuel and oxidant migrate through paper due to capillary action and laminar flow and, upon contact with each other and catalyst, produce electricity. In the present work, we describe an improved microfluidic paper-based direct formate FC (DFFC) employing formate and hydrogen peroxide as the anode fuel and cathode oxidant, respectively. The dimensions of the lateral column, current collectors, and cathode were optimized. A maximum power density of 2.53 mW/cm(2) was achieved with a DFFC of surface area 3.0 cm(2) , steel mesh as current collector, 5% carbon to paint mass ratio for cathode electrode and, 30% hydrogen peroxide. The longevity of the MFC's detailed herein is greater than eight hours with continuous flow of streams. In a series configuration, the MFCs generate sufficient energy to power light-emitting diodes and a handheld calculator.

  19. Alternative aviation turbine fuels

    Science.gov (United States)

    Grobman, J.

    1977-01-01

    The efficient utilization of fossil fuels by future jet aircraft may necessitate the broadening of current aviation turbine fuel specifications. The most significant changes in specifications would be an increased aromatics content and a higher final boiling point in order to minimize refinery energy consumption and costs. These changes would increase the freezing point and might lower the thermal stability of the fuel and could cause increased pollutant emissions, increased smoke and carbon formation, increased combustor liner temperatures, and poorer ignition characteristics. This paper discusses the effects that broadened specification fuels may have on present-day jet aircraft and engine components and the technology required to use fuels with broadened specifications.

  20. Fuel cells : a viable fossil fuel alternative

    Energy Technology Data Exchange (ETDEWEB)

    Paduada, M.

    2007-02-15

    This article presented a program initiated by Natural Resources Canada (NRCan) to develop proof-of-concept of underground mining vehicles powered by fuel cells in order to eliminate emissions. Recent studies on American and Canadian underground mines provided the basis for estimating the operational cost savings of switching from diesel to fuel cells. For the Canadian mines evaluated, the estimated ventilation system operating cost reductions ranged from 29 per cent to 75 per cent. In order to demonstrate the viability of a fuel cell-powered vehicle, NRCan has designed a modified Caterpillar R1300 loader with a 160 kW hybrid power plant in which 3 stacks of fuel cells deliver up to 90 kW continuously, and a nickel-metal hydride battery provides up to 70 kW. The battery subsystem transiently boosts output to meet peak power requirements and also accommodates regenerative braking. Traction for the loader is provided by a brushless permanent magnet traction motor. The hydraulic pump motor is capable of a 55 kW load continuously. The loader's hydraulic and traction systems are operated independently. Future fuel cell-powered vehicles designed by the program may include a locomotive and a utility vehicle. Future mines running their operations with hydrogen-fueled equipment may also gain advantages by employing fuel cells in the operation of handheld equipment such as radios, flashlights, and headlamps. However, the proton exchange membrane (PEM) fuel cells used in the project are prohibitively expensive. The catalytic content of a fuel cell can add hundreds of dollars per kW of electric output. Production of catalytic precious metals will be strongly connected to the scale of use and acceptance of fuel cells in vehicles. In addition, the efficiency of hydrogen production and delivery is significantly lower than the well-to-tank efficiency of many conventional fuels. It was concluded that an adequate hydrogen infrastructure will be required for the mining industry

  1. Selective Electrochemical Generation of Hydrogen Peroxide from Water Oxidation.

    Science.gov (United States)

    Viswanathan, Venkatasubramanian; Hansen, Heine A; Nørskov, Jens K

    2015-11-01

    Water is a life-giving source, fundamental to human existence, yet over a billion people lack access to clean drinking water. The present techniques for water treatment such as piped, treated water rely on time and resource intensive centralized solutions. In this work, we propose a decentralized device concept that can utilize sunlight to split water into hydrogen and hydrogen peroxide. The hydrogen peroxide can oxidize organics while the hydrogen bubbles out. In enabling this device, we require an electrocatalyst that can oxidize water while suppressing the thermodynamically favored oxygen evolution and form hydrogen peroxide. Using density functional theory calculations, we show that the free energy of adsorbed OH* can be used to determine selectivity trends between the 2e(-) water oxidation to H2O2 and the 4e(-) oxidation to O2. We show that materials which bind oxygen intermediates sufficiently weakly, such as SnO2, can activate hydrogen peroxide evolution. We present a rational design principle for the selectivity in electrochemical water oxidation and identify new material candidates that could perform H2O2 evolution selectively.

  2. The basic chemistry and photochemistry behind hydrogen peroxide tooth whitening

    NARCIS (Netherlands)

    Young, N.D.; Fairley, P.D.; Mohan, V.; Jumeaux, C.

    2013-01-01

    Tooth whitening using hydrogen peroxide gel formulation is a complexprocess which involves both chemistry and physics, and there is still some controversy about the efficiency of whitening processes, particularly with respect to the roles of temperature and irradiation with light. In this work we av

  3. Nuclear magnetic resonance J coupling constant polarizabilities of hydrogen peroxide

    DEFF Research Database (Denmark)

    Kjær, Hanna; Nielsen, Monia R.; Pagola, Gabriel I.

    2012-01-01

    approximation for the small molecule hydrogen peroxide, which allowed us to carry out calculations with the largest available basis sets optimized for the calculation of NMR coupling constants. We ¿nd a systematic but rather slow convergence with the one-electron basis set and that augmentation functions...

  4. Enzymatic generation of hydrogen peroxide shows promising antifouling effect

    DEFF Research Database (Denmark)

    Kristensen, J.B.; Olsen, Stefan Møller; Laursen, B.S.

    2010-01-01

    The antifouling (AF) potential of hydrogen peroxide (H2O2) produced enzymatically in a coating containing starch, glucoamylase, and hexose oxidase was evaluated in a series of laboratory tests and in-sea field trials. Dissolved H2O2 inhibited bacterial biofilm formation by eight of nine marine...

  5. Natural manganese deposits as catalyst for decomposing hydrogen peroxide

    NARCIS (Netherlands)

    Knol, A.H.; Lekkerkerker-Teunissen, K.; Van Dijk, J.C.

    2015-01-01

    Drinking water companies (are intending to) implement advanced oxidation processes (AOP) in their treatment schemes to increase the barrier against organic micropollutants (OMPs). It is necessary to decompose the excessive hydrogen peroxide after applying AOP to avoid negative effects in the

  6. Sol - Gel synthesis and characterization of magnesium peroxide nanoparticles

    Science.gov (United States)

    Jaison, J.; Ashok raja, C.; Balakumar, S.; Chan, Y. S.

    2015-04-01

    Magnesium peroxide is an excellent source of oxygen in agriculture applications, for instance it is used in waste management as a material for soil bioremediation to remove contaminants from polluted underground water, biological wastes treatment to break down hydrocarbon, etc. In the present study, sol-gel synthesis of magnesium peroxide (MgO2) nanoparticles is reported. Magnesium peroxide is odourless; fine peroxide which releases oxygen when reacts with water. During the sol-gel synthesis, the magnesium malonate intermediate is formed which was then calcinated to obtain MgO2 nanoparticles. The synthesized nanoparticles were characterized using Thermo gravimetric -Differential Thermal Analysis (TG- DTA), X-Ray Diffraction studies (XRD) and High Resolution Transmission Electron Microscope (HRTEM). Our study provides a clear insight that the formation of magnesium malonate during the synthesis was due to the reaction between magnesium acetate, oxalic acid and ethanol. In our study, we can conclude that the calcination temperature has a strong influence on particle size, morphology, monodispersity and the chemistry of the particles.

  7. Selective electrochemical generation of hydrogen peroxide from water oxidation

    CERN Document Server

    Viswanathan, Venkatasubramanian; Nørskov, Jens K

    2015-01-01

    Water is a life-giving source, fundamental to human existence, yet, over a billion people lack access to clean drinking water. Present techniques for water treatment such as piped, treated water rely on time and resource intensive centralized solutions. In this work, we propose a decentralized device concept that can utilize sunlight to split water into hydrogen and hydrogen peroxide. The hydrogen peroxide can oxidize organics while the hydrogen bubbles out. In enabling this device, we require an electrocatalyst that can oxidize water while suppressing the thermodynamically favored oxygen evolution and form hydrogen peroxide. Using density functional theory calculations, we show that the free energy of adsorbed OH$^*$ can be used as a descriptor to screen for selectivity trends between the 2e$^-$ water oxidation to H$_2$O$_2$ and the 4e$^-$ oxidation to O$_2$. We show that materials that bind oxygen intermediates sufficiently weakly, such as SnO$_2$, can activate hydrogen peroxide evolution. We present a rati...

  8. Hydrogen peroxide evolution during V-UV photolysis of water.

    Science.gov (United States)

    Azrague, Kamal; Bonnefille, Eric; Pradines, Vincent; Pimienta, Véronique; Oliveros, Esther; Maurette, Marie-Thérèse; Benoit-Marquié, Florence

    2005-05-01

    Hydrogen peroxide evolution during the vacuum-ultraviolet (V-UV, 172 nm) photolysis of water is considerably affected by the presence of oxalic acid (employed as a model water pollutant) and striking differences are observed in the absence and in the presence of dioxygen.

  9. The design of organic catalysis for epoxidation by hydrogen peroxide

    OpenAIRE

    Alder, Roger W.; Davis, Anthony P

    2005-01-01

    The potential of various organic species to catalyze epoxidation of ethene by hydrogen peroxide is explored with B3LYP/6-31G* DFT calculations. Electronic Supplementary Materials Supplementary material is available for this article at http://dx.doi.org/10.1007/s00894-005-0044-4.

  10. Peroxide Propulsion at the Turn of the Century

    Science.gov (United States)

    Anderson, William E.; Butler, Kathy; Crocket, Dave; Lewis, Tim; McNeal, Curtis

    2000-01-01

    A resurgence of interest in peroxide propulsion has occurred in the last years of the 21st Century. This interest is driven by the need for lower cost propulsion systems and the need for storable reusable propulsion systems to meet future space transportation system architectures. NASA and the Air Force are jointly developing two propulsion systems for flight demonstration early in the 21st Century. One system will be a development of Boeing's AR2-3 engine, which was successfully fielded in the 1960s. The other is a new pressure-fed design by Orbital Sciences Corporation for expendable mission requirements. Concurrently NASA and industry are pursuing the key peroxide technologies needed to design, fabricate, and test advanced peroxide engines to meet the mission needs beyond 2005. This paper will present a description of the AR2-3, report the status of its current test program, and describe its intended flight demonstration. This paper will then describe the Orbital 10K engine, the status of its test program, and describe its planned flight demonstration. Finally the paper will present a plan, or technology roadmap, for the development of an advanced peroxide engine for the 21st Century.

  11. Computer Data Processing of the Hydrogen Peroxide Decomposition Reaction

    Institute of Scientific and Technical Information of China (English)

    余逸男; 胡良剑

    2003-01-01

    Two methods of computer data processing, linear fitting and nonlinear fitting, are applied to compute the rate constant for hydrogen peroxide decomposition reaction. The results indicate that not only the new methods work with no necessity to measure the final oxygen volume, but also the fitting errors decrease evidently.

  12. Allergic Contact Dermatitis to Benzoyl Peroxide Resembling Impetigo.

    Science.gov (United States)

    Kim, Changhyun; Craiglow, Brittany G; Watsky, Kalman L; Antaya, Richard J

    2015-01-01

    A 17-year-old boy presented with recurring severe dermatitis of the face of 5-months duration that resembled impetigo. He had been treated with several courses of antibiotics without improvement. Biopsy showed changes consistent with allergic contact dermatitis and patch testing later revealed sensitization to benzoyl peroxide, which the patient had been using for the treatment of acne vulgaris.

  13. Hydrogen peroxide in breath condensate during a common cold

    NARCIS (Netherlands)

    R.Q. Jöbsis (Rijn); S.L. Schellekens; A. Fakkel-Kroesbergen (Anoeska); R.H. Raatgeep (Rolien); J.C. de Jongste (Johan)

    2001-01-01

    textabstractBackground: Hydrogen peroxide (H2O2) in exhaled air condensate is elevated in inflammatory disorders of the lower respiratory tract. It is unknown whether viral colds contribute to exhaled H2O2. Aim: To assess exhaled H2O2during and after a common cold. Methods: We examined H2O2in the br

  14. Polyhexanide and hydrogen peroxide inhibit proteoglycan synthesis of human chondrocytes.

    Science.gov (United States)

    Röhner, Eric; Hoff, Paula; Winkler, Tobias; von Roth, Philipp; Seeger, Jörn Bengt; Perka, Carsten; Matziolis, Georg

    2011-03-01

    The use of local antiseptics is a common method in septic joint surgery. We tested polyhexanide and hydrogen peroxide, two of the most frequently used antiseptics with high efficacy and low toxicity. The purpose of this study was to evaluate the effects of both antiseptics on the extracellular cartilaginous matrix synthesis of human chondrocytes. Chondrocytes were isolated from donated human knee joints, embedded in alginate beads, and incubated for 10 and 30 minutes with polyhexanide (0.04%), hydrogen peroxide (3%), or phosphate-buffered saline (PBS) for control. Cartilaginous matrix production was quantified through light microscopic analysis of Alcian blue staining. Cell number and morphology were detected by histological analysis. Chondrocytes showed a decreased intensity of blue colouring after antiseptic treatment versus PBS. In contrast to that, neither the cell number per view field nor the cell morphology differed between the groups. Polyhexanide has more toxic potential than hydrogen peroxide. Based on the fact that the cell number and morphology was not altered by the substances at the examined concentrations, the lower intensity of Alcian blue staining of treated chondrocytes indicates a decreased cartilage-specific matrix synthesis by polyhexanide more than by hydrogen peroxide and control.

  15. Effect of americium-241 on luminous bacteria. Role of peroxides

    Energy Technology Data Exchange (ETDEWEB)

    Alexandrova, M., E-mail: maka-alexandrova@rambler.r [Siberian Federal University, Svobodny 79, 660041 Krasnoyarsk (Russian Federation); Rozhko, T. [Siberian Federal University, Svobodny 79, 660041 Krasnoyarsk (Russian Federation); Vydryakova, G. [Institute of Biophysics SB RAS, Akademgorodok 50, 660036 Krasnoyarsk (Russian Federation); Kudryasheva, N. [Siberian Federal University, Svobodny 79, 660041 Krasnoyarsk (Russian Federation); Institute of Biophysics SB RAS, Akademgorodok 50, 660036 Krasnoyarsk (Russian Federation)

    2011-04-15

    The effect of americium-241 ({sup 241}Am), an alpha-emitting radionuclide of high specific activity, on luminous bacteria Photobacterium phosphoreum was studied. Traces of {sup 241}Am in nutrient media (0.16-6.67 kBq/L) suppressed the growth of bacteria, but enhanced luminescence intensity and quantum yield at room temperature. Lower temperature (4 {sup o}C) increased the time of bacterial luminescence and revealed a stage of bioluminescence inhibition after 150 h of bioluminescence registration start. The role of conditions of exposure the bacterial cells to the {sup 241}Am is discussed. The effect of {sup 241}Am on luminous bacteria was attributed to peroxide compounds generated in water solutions as secondary products of radioactive decay. Increase of peroxide concentration in {sup 241}Am solutions was demonstrated; and the similarity of {sup 241}Am and hydrogen peroxide effects on bacterial luminescence was revealed. The study provides a scientific basis for elaboration of bioluminescence-based assay to monitor radiotoxicity of alpha-emitting radionuclides in aquatic solutions. - Highlights: {yields} Am-241 in water solutions (A = 0.16-6.7 kBq/L) suppresses bacterial growth.{yields} Am-241 (A = 0.16-6.7 kBq/L) stimulate bacterial luminescence. {yields} Peroxides, secondary radiolysis products, cause increase of bacterial luminescence.

  16. 78 FR 73697 - New Animal Drugs; Hyaluronate Sodium; Hydrogen Peroxide; Imidacloprid and Moxidectin; Change of...

    Science.gov (United States)

    2013-12-09

    ...; Hyaluronate Sodium; Hydrogen Peroxide; Imidacloprid and Moxidectin; Change of Sponsor AGENCY: Food and Drug... interest in, NADA 141-255 for PEROX-AID (hydrogen peroxide) 35% Solution to Western Chemical, Inc.,...

  17. Influence of H{sub 2}O{sub 2} on LPG fuel performance evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Khan, Muhammad Saad, E-mail: iqbalmouj@gmail.com; Ahmed, Iqbal, E-mail: iqbalmouj@gmail.com; Mutalib, Mohammad Ibrahim bin Abdul, E-mail: iqbalmouj@gmail.com; Nadeem, Saad, E-mail: iqbalmouj@gmail.com; Ali, Shahid, E-mail: iqbalmouj@gmail.com [Department of Chemical Engineering, Faculty of Engineering, Universiti Teknologi PETRONAS, Bandar Seri Iskandar, 31750 Tronoh, Perak (Malaysia)

    2014-10-24

    The objective of this mode of combustion is to insertion of hydrogen peroxide (H{sub 2}O{sub 2}) to the Liquefied Petroleum Gas (LPG) combustion on spark plug ignition engines. The addition of hydrogen peroxide may probably decrease the formation of NO{sub x}, CO{sub x} and unburned hydrocarbons. Hypothetically, Studies have shown that addition of hydrogen peroxide to examine the performance of LPG/H{sub 2}O{sub 2} mixture in numerous volumetric compositions starting from lean LPG until obtaining a better composition can reduce the LPG fuel consumption. The theory behind this idea is that, the addition of H{sub 2}O{sub 2} can cover the lean operation limit, increase the lean burn ability, diminution the burn duration along with controlling the exhaust emission by significantly reducing the greenhouse gaseous.

  18. Microfluidic platforms and fundamental electrocatalysis studies for fuel cell applications

    Science.gov (United States)

    Cohen, Jamie Lee

    The fabrication and testing of a planar membraneless microchannel fuel cell, based on a silicon microchannel, is described in detail. Laminar flow of fuel and oxidant streams, one on top of the other, prevents fuel crossover while allowing ionic transport at the interface between the two solutions. By employing laminar flow, the useful functions of a membrane are retained, while bypassing its inherent limitations. The planar design maximizes the anode and cathode areas, and elimination of the membrane affords broad flexibility in the choice of fuel and oxidant. Fuels including formic acid, methanol, ethanol, sodium borohydride and hydrogen were tested along with oxidants such as oxygen, hydrogen peroxide and potassium permanganate. Steps taken to improve voltage, current density, and overall power output have been addressed, including the testing of a dual electrolyte system and the use of micro-patterned electrode surfaces to enhance fuel utilization. As the complexity of the fuels studied in the microchannel fuel cell increased, it was imperative to characterize these fuels using electrochemical techniques prior to utilization in the fuel cell. The oxidation pathway of the liquid fuel methanol was studied rigorously because of its importance for micro-fuel cell applications. Activation energies for methanol oxidation at a Ptpoly surface were determined using electrochemical techniques, providing a benchmark for the comparison of activation energies of other Pt-based electrocatalysts for methanol oxidation at a given potential. A protocol to obtain Ea values was established in three different electrolytes and experimental parameters that influence the magnitude of these values are discussed in detail. The oxidation pathways of sodium borohydride were also examined at Au, Pt, and Pd surfaces using cyclic voltammetry, chronoamperometry, and rotating disk electrode voltammetry. In addition to studies on bulk Ptpoly surfaces, new bulk intermetallic catalysts were

  19. Blood antioxidant status and erythrocyte lipid peroxidation following distance running.

    Science.gov (United States)

    Duthie, G G; Robertson, J D; Maughan, R J; Morrice, P C

    1990-10-01

    The relationship between prolonged exercise, oxidative stress, and the protective capacity of the antioxidant defense system has been determined. Venous blood samples were removed from seven trained athletes before and up to 120 h after completion of a half-marathon for measurements of blood antioxidants, antioxidant enzymes, and indices of lipid peroxidation. Plasma creatine kinase (CK) activity, an index of muscle damage, increased (P less than 0.05) to a maximum 24 h after the race but this was not accompanied by changes in conjugated dienes and thiobarbituric acid reactive substances (TBARS), which are indices of lipid peroxidation. An increase (P less than 0.05) in plasma cholesterol concentration (4%) immediately after the race was similar to the change in plasma volume (6%). However, transient increases (P less than 0.05) immediately postrace in the plasma concentrations of uric acid (24%), vitamin A (18%), and vitamin C (34%) were only partly accounted for by the fluid shifts. The immediate postrace increases in alpha- and gamma-tocopherol did not attain statistical significance. Erythrocyte antioxidant enzyme activities were unaffected by the exercise but the alpha- and gamma-tocopherol concentrations progressively increased (P less than 0.001 and P less than 0.05, respectively) up to 48 h postrace. Paradoxically, 24 h after the race erythrocyte susceptibility to in vitro peroxidation was markedly elevated (P less than 0.01). This enhanced susceptibility to peroxidation was maintained even at 120 h postrace and did not correspond to changes in the age of the red cell population. A decrease (P less than 0.001) in total erythrocyte glutathione immediately after the half-marathon was mainly due to a reduction in the reduced form (GSH). The results show that when trained athletes run a comparatively short distance sufficient to result in some degree of muscle damage but which is insufficient to cause elevations in plasma indices of lipid peroxidation

  20. LIPID PEROXIDATION AND JOB STRESS IN DENTAL HEALTHCARE WORKERS

    Directory of Open Access Journals (Sweden)

    S. V. Melnikova

    2014-04-01

    Full Text Available This study devoted to the lipid peroxidation indices in dentists target group as a marker of psycho-emotional state. We revealed increase in the level of TBA-active products in female and male dentists during job stress. There was strong decrease in level of TBA-active products in control group of dentist that study during the lectures. Activation of lipid peroxidation in dentists during dentist examination can be considered as non-specific component of reactions towards the stressors of professional activities. We also revealed that the initial level of TBA-active products in female and male dentists before the outpatient dental reception was higher than that of dentists that study before lectures. This is indicates the mobilization of sympathetic nervous system before beginning of the working day. The contents of the level of TBA-active products in the oral fluid of female and male dentists after dental examination significantly increased, whereas these indices decreased in the group of dentists that study after the lectures. The increasing of TBA-active products in dentists after outpatient dental reception was by 42.5 % and 77 % higher compared with a group of dentists that study in the lecture classes. The results of correlation analysis suggest the influence of lipid peroxidation processes on the cardiovascular and blood system of dentists during job stress. Activation of lipid peroxidation in dentists during dental examination can be considered as non-specific component of the body's response to stressors influence in professional activities. Key words: dentists, activation of lipid peroxidation, psychoemotional stress, job stress.

  1. How hydrogen peroxide is metabolized by oxidized cytochrome c oxidase.

    Science.gov (United States)

    Jancura, Daniel; Stanicova, Jana; Palmer, Graham; Fabian, Marian

    2014-06-10

    In the absence of external electron donors, oxidized bovine cytochrome c oxidase (CcO) exhibits the ability to decompose excess H2O2. Depending on the concentration of peroxide, two mechanisms of degradation were identified. At submillimolar peroxide concentrations, decomposition proceeds with virtually no production of superoxide and oxygen. In contrast, in the millimolar H2O2 concentration range, CcO generates superoxide from peroxide. At submillimolar concentrations, the decomposition of H2O2 occurs at least at two sites. One is the catalytic heme a3-CuB center where H2O2 is reduced to water. During the interaction of the enzyme with H2O2, this center cycles back to oxidized CcO via the intermediate presence of two oxoferryl states. We show that at pH 8.0 two molecules of H2O2 react with the catalytic center accomplishing one cycle. In addition, the reactions at the heme a3-CuB center generate the surface-exposed lipid-based radical(s) that participates in the decomposition of peroxide. It is also found that the irreversible decline of the catalytic activity of the enzyme treated with submillimolar H2O2 concentrations results specifically from the decrease in the rate of electron transfer from heme a to the heme a3-CuB center during the reductive phase of the catalytic cycle. The rates of electron transfer from ferrocytochrome c to heme a and the kinetics of the oxidation of the fully reduced CcO with O2 were not affected in the peroxide-modified CcO.

  2. Oxy-fuel combustion of solid fuels

    DEFF Research Database (Denmark)

    Toftegaard, Maja Bøg; Brix, Jacob; Jensen, Peter Arendt

    2010-01-01

    Oxy-fuel combustion is suggested as one of the possible, promising technologies for capturing CO2 from power plants. The concept of oxy-fuel combustion is removal of nitrogen from the oxidizer to carry out the combustion process in oxygen and, in most concepts, recycled flue gas to lower the flame...... temperature. The flue gas produced thus consists primarily of carbon dioxide and water. Much research on the different aspects of an oxy-fuel power plant has been performed during the last decade. Focus has mainly been on retrofits of existing pulverized-coal-fired power plant units. Green-field plants which...... provide additional options for improvement of process economics are however likewise investigated. Of particular interest is the change of the combustion process induced by the exchange of carbon dioxide and water vapor for nitrogen as diluent. This paper reviews the published knowledge on the oxy-fuel...

  3. ALKALI DARKENING AND ITS RELATIONSHIP TO PEROXIDE BLEACHING OF MECHANICAL PULP

    Institute of Scientific and Technical Information of China (English)

    Zhibin He; Yonghao Ni; Eric Zhang

    2004-01-01

    The effect of alkalinity, transition metals and oxygen on alkali darkening of mechanical pulp, and its relations to subsequent peroxide bleaching were investigated. The chromophores generated under mild conditions of an alkaline treatment can be destroyed in a subsequent peroxide stage.Peroxide-resistant chromophores are generated only under severe conditions. The results also show that a short alkaline pretreatment can improve the performance of a peroxide bleaching stage.

  4. ALKALI DARKENING AND ITS RELATIONSHIP TO PEROXIDE BLEACHING OF MECHANICAL PULP

    Institute of Scientific and Technical Information of China (English)

    ZhibinHe; Yon2haoNi; EricZhang_

    2004-01-01

    The effect of alkalinity, transition metals and oxygen on alkali darkening of mechanical pulp, and its relations to subsequent peroxide bleaching were investigated. The chromophores generated under mild conditions of an alkaline treatment can be destroyed in a subsequent peroxide stage. Peroxide-resistant chromophores are generated only under severe conditions. The results also show that a short alkaline pretreatment can improve the performance of a peroxide bleaching stage.

  5. Catalytic hydrogen peroxide decomposition on La1-xSrxCo03-d perovskite oxides

    NARCIS (Netherlands)

    Dam, Van-Ahn. T.; Olthuis, W.; Bergveld, P.; Berg, van den A.

    2005-01-01

    Lanthanide perovskite oxides are mentioned as material for hydrogen peroxide sensor because they can catalytically decompose hydrogen peroxide in an aqueous medium. The catalytic properties of these perovskite oxides to hydrogen peroxide are suggested due to their oxygen vacancies influenced by the

  6. Oxidative status imbalance in patients with metabolic syndrome: role of the myeloperoxidase/hydrogen peroxide axis.

    Science.gov (United States)

    da Fonseca, Lucas José Sá; Nunes-Souza, Valéria; Guedes, Glaucevane da Silva; Schettino-Silva, Glauber; Mota-Gomes, Marco Antônio; Rabelo, Luíza Antas

    2014-01-01

    The present study evaluated the cardiometabolic and redox balance profiles in patients with Metabolic Syndrome compared to apparently healthy individuals, and the participation of the myeloperoxidase/hydrogen peroxide axis in systemic lipid peroxidation. Twenty-four patients with Metabolic Syndrome and eighteen controls underwent a full clinical assessment. Venous blood samples were collected for general biochemical dosages, as well as for the oxidative stress analyses (superoxide dismutase, catalase, and arginase activities; and lipid peroxidation, myeloperoxidase activity, nitrite, and hydrogen peroxide concentrations in plasma). Arterial stiffness was assessed by radial artery applanation tonometry. Plasma lipid peroxidation, erythrocyte superoxide dismutase activity, myeloperoxidase activity, and hydrogen peroxide concentrations were shown to be increased in Metabolic Syndrome patients, without significant differences for the other enzymes, plasma nitrite concentrations, and arterial stiffness. Linear regression analysis revealed a positive and significant correlation between lipid peroxidation and myeloperoxidase and also between this enzyme and hydrogen peroxide. In contrast, such correlation was not observed between lipid peroxidation and hydrogen peroxide. In summary, Metabolic Syndrome patients exhibited evident systemic redox imbalance compared to controls, with the possible participation of the myeloperoxidase/hydrogen peroxide axis as a contributor in lipid peroxidation.

  7. Rheological behaviour of polyethylene with peroxide crosslinking agent. Ismaeil Ghasemi, Peter Szabo and Henrik Koblitz Rasmussen

    DEFF Research Database (Denmark)

    Rasmussen, Henrik K.; Ghasemi, Ismaeil; Szabo, Peter

    2003-01-01

    due to a peroxide cross-linking reaction of low-density polyethylene (LDPE) was tracked by a combination of creep tests and differential scanning calorimetry (DSC) tests in isothermal conditions. The peroxide was di-cumyl peroxide and its concentration was 2 wt%. The experiments were carried out...

  8. Less sensitive oxygen-rich organic peroxides containing geminal hydroperoxy groups.

    Science.gov (United States)

    Gamage, Nipuni-Dhanesha H; Stiasny, Benedikt; Stierstorfer, Jörg; Martin, Philip D; Klapötke, Thomas M; Winter, Charles H

    2015-09-04

    A series of oxygen-rich organic peroxide compounds each containing two bis(hydroperoxy)methylene groups is described. Energetic testing shows that these compounds are much less sensitive toward impact and friction than existing classes of organic peroxides. The compounds are highly energetic, which may lead to practical peroxide-based explosives.

  9. 40 CFR 415.90 - Applicability; description of the hydrogen peroxide production subcategory.

    Science.gov (United States)

    2010-07-01

    ... hydrogen peroxide production subcategory. 415.90 Section 415.90 Protection of Environment ENVIRONMENTAL... SOURCE CATEGORY Hydrogen Peroxide Production Subcategory § 415.90 Applicability; description of the hydrogen peroxide production subcategory. The provisions of this subpart are applicable to...

  10. 40 CFR 180.1197 - Hydrogen peroxide; exemption from the requirement of a tolerance.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Hydrogen peroxide; exemption from the... Exemptions From Tolerances § 180.1197 Hydrogen peroxide; exemption from the requirement of a tolerance. An exemption from the requirement of a tolerance is established for residues of hydrogen peroxide in or on...

  11. [Dynamics of lipid peroxidation and steroidogenesis in adrenal cortex during stress].

    Science.gov (United States)

    Doroshkevich, N A; Antsulevich, S N; Vinogradov, V V

    1990-01-01

    The phase character of lipid peroxidation has been found in the rabbit adrenal cortex in the process of adaptation to extreme loads. Under acute stress the activation of lipid peroxidation is directly dependent on the hormonal synthesis processes. Under conditions of the prolonged stress factor an enhancement of the lipid peroxidation intensity in the adrenal cortex coincides with a decrease in the steroidogenesis rate.

  12. Rheological behaviour of polyethylene with peroxide crosslinking agent. Ismaeil Ghasemi, Peter Szabo and Henrik Koblitz Rasmussen

    DEFF Research Database (Denmark)

    Rasmussen, Henrik K.; Ghasemi, Ismaeil; Szabo, Peter

    2003-01-01

    due to a peroxide cross-linking reaction of low-density polyethylene (LDPE) was tracked by a combination of creep tests and differential scanning calorimetry (DSC) tests in isothermal conditions. The peroxide was di-cumyl peroxide and its concentration was 2 wt%. The experiments were carried out...

  13. 21 CFR 172.167 - Silver nitrate and hydrogen peroxide solution.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Silver nitrate and hydrogen peroxide solution. 172... FOOD FOR HUMAN CONSUMPTION Food Preservatives § 172.167 Silver nitrate and hydrogen peroxide solution. An aqueous solution containing a mixture of silver nitrate and hydrogen peroxide may be safely...

  14. Fuel safety research 1999

    Energy Technology Data Exchange (ETDEWEB)

    Uetsuka, Hiroshi (ed.) [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2000-07-01

    In April 1999, the Fuel Safety Research Laboratory was newly established as a result of reorganization of the Nuclear Safety Research Center, JAERI. The laboratory was organized by combining three laboratories, the Reactivity Accident Laboratory, the Fuel Reliability Laboratory, and a part of the Sever Accident Research Laboratory. Consequently, the Fuel Safety Research Laboratory is now in charge of all the fuel safety research in JAERI. Various types of experimental and analytical researches are conducted in the laboratory by using the unique facilities such as the Nuclear Safety Research Reactor (NSRR), the Japan Material Testing Reactor (JMTR), the Japan Research Reactor 3 (JRR-3) and hot cells in JAERI. The laboratory consists of five research groups corresponding to each research fields. They are; (a) Research group of fuel behavior under the reactivity initiated accident conditions (RIA group). (b) Research group of fuel behavior under the loss-of-coolant accident conditions (LOCA group). (c) Research group of fuel behavior under the normal operation conditions (JMTR/BOCA group). (d) Research group of fuel behavior analysis (FEMAXI group). (e) Research group of FP release/transport behavior from irradiated fuel (VEGA group). This report summarizes the outline of research activities and major outcomes of the research executed in 1999 in the Fuel Safety Research Laboratory. (author)

  15. Fuel related risks; Braenslerisker

    Energy Technology Data Exchange (ETDEWEB)

    Englund, Jessica; Sernhed, Kerstin; Nystroem, Olle; Graveus, Frank (Grontmij AB, (Sweden))

    2012-02-15

    The project, within which this work report was prepared, aimed to complement the Vaermeforsk publication 'Handbook of fuels' on fuel related risks and measures to reduce the risks. The fuels examined in this project where the fuels included in the first version of the handbook from 2005 plus four additional fuels that will be included in the second and next edition of the handbook. Following fuels were included: woodfuels (sawdust, wood chips, powder, briquettes), slash, recycled wood, salix, bark, hardwood, stumps, straw, reed canary grass, hemp, cereal, cereal waste, olive waste, cocoa beans, citrus waste, shea, sludge, forest industrial sludge, manure, Paper Wood Plastic, tyre, leather waste, cardboard rejects, meat and bone meal, liquid animal and vegetable wastes, tall oil pitch, peat, residues from food industry, biomal (including slaughterhouse waste) and lignin. The report includes two main chapters; a general risk chapter and a chapter of fuel specific risks. The first one deals with the general concept of risk, it highlights laws and rules relevant for risk management and it discuss general risks that are related to the different steps of fuel handling, i.e. unloading, storing, processing the fuel, transportation within the facility, combustion and handling of ashes. The information that was used to produce this chapter was gathered through a literature review, site visits, and the project group's experience from risk management. The other main chapter deals with fuel-specific risks and the measures to reduce the risks for the steps of unloading, storing, processing the fuel, internal transportation, combustion and handling of the ashes. Risks and measures were considered for all the biofuels included in the second version in the handbook of fuels. Information about the risks and risk management was gathered through interviews with people working with different kinds of fuels in electricity and heat plants in Sweden. The information from

  16. Direct Fuel Injector Temporal Measurements

    Science.gov (United States)

    2014-10-01

    optimize engine performance and emissions. Fuel injectors contain an actuator, pintle (or needle), and nozzle. The most common actuator is a solenoid ...Introduction Fuel injectors have a long history in metering fuel in modern engines by either port fuel injection (PFI) or direct fuel injection (DFI...Compared with a carburetor, fuel injectors have more accurate fuel delivering capability, thus giving engineers and technicians more flexibility to

  17. Oxygen electrode reaction in molten carbonate fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Appleby, A.J.; White, R.E.

    1992-07-07

    Molten carbonate fuel cell system is a leading candidate for the utility power generation because of its high efficiency for fuel to AC power conversion, capability for an internal reforming, and a very low environmental impact. However, the performance of the molten carbonate fuel cell is limited by the oxygen reduction reaction and the cell life time is limited by the stability of the cathode material. An elucidation of oxygen reduction reaction in molten alkali carbonate is essential because overpotential losses in the molten carbonate fuel cell are considerably greater at the oxygen cathode than at the fuel anode. Oxygen reduction on a fully-immersed gold electrode in a lithium carbonate melt was investigated by electrochemical impedance spectroscopy and cyclic voltammetry to determine electrode kinetic and mass transfer parameters. The dependences of electrode kinetic and mass transfer parameters on gas composition and temperature were examined to determine the reaction orders and the activation energies. The results showed that oxygen reduction in a pure lithium carbonate melt occurs via the peroxide mechanism. A mass transfer parameter, D{sub O}{sup 1/2}C{sub O}, estimated by the cyclic voltammetry concurred with that calculated by the EIS technique. The temperature dependence of the exchange current density and the product D{sub O}{sup 1/2}C{sub O} were examined and the apparent activation energies were determined to be about 122 and 175 kJ/ mol, respectively.

  18. A microfluidic direct formate fuel cell on paper.

    Science.gov (United States)

    Copenhaver, Thomas S; Purohit, Krutarth H; Domalaon, Kryls; Pham, Linda; Burgess, Brianna J; Manorothkul, Natalie; Galvan, Vicente; Sotez, Samantha; Gomez, Frank A; Haan, John L

    2015-08-01

    We describe the first direct formate fuel cell on a paper microfluidic platform. In traditional membrane-less microfluidic fuel cells (MFCs), external pumping consumes power produced by the fuel cell in order to maintain co-laminar flow of the anode stream and oxidant stream to prevent mixing. However, in paper microfluidics, capillary action drives flow while minimizing stream mixing. In this work, we demonstrate a paper MFC that uses formate and hydrogen peroxide as the anode fuel and cathode oxidant, respectively. Using these materials we achieve a maximum power density of nearly 2.5 mW/mg Pd. In a series configuration, our MFC achieves an open circuit voltage just over 1 V, and in a parallel configuration, short circuit of 20 mA absolute current. We also demonstrate that the MFC does not require continuous flow of fuel and oxidant to produce power. We found that we can pre-saturate the materials on the paper, stop the electrolyte flow, and still produce approximately 0.5 V for 15 min. This type of paper MFC has potential applications in point-of-care diagnostic devices and other electrochemical sensors. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Enhanced Performance of Membraneless Sodium Percarbonate Fuel Cells

    Directory of Open Access Journals (Sweden)

    M. Gowdhamamoorthi

    2013-01-01

    Full Text Available This paper presents the continuous flow operation of membraneless sodium percarbonate fuel cell (MLSPCFC using acid/alkaline bipolar electrolyte. In the acid/alkaline bipolar electrolyte, percarbonate works both as an oxidant as well as reductant. Sodium percarbonate affords hydrogen peroxide in aqueous medium. The cell converts the energy released by H2O2 decomposition with H+ and OH− ions into electricity and produces water and oxygen. At room temperature, the laminar flow based microfluidic membraneless fuel cell can reach a maximum power density of 28 mW/cm2 with the molar ratio of [Percarbonate]/[NaOH] = 1 as fuel and [Percarbonate]/[H2SO4] = 2 as oxidant. The paper reports for the first time the use of sodium percarbonate as the oxidant and reductant. The developed fuel cell emits no CO2 and features no proton exchange membrane, inexpensive catalysts, and simple planar structure, which enables high design flexibility and easy integration of the microscale fuel cell into actual microfluidic systems and portable power applications.

  20. Study on Effect of Peroxide Properties for Biodiesel and Emissions%过氧化改质对生物柴油及排放影响的研究

    Institute of Scientific and Technical Information of China (English)

    李瑞娜; 王忠; 李铭迪; 许广举; 毛功平; 王小哲

    2012-01-01

    Biodiesel was redesigned by peroxidation. The mechanism of peroxide modification was discussed. The viscosity and peroxide value of biodiesel before and after peroxide modifications were measured and analyzed. Experiments were carried out in a 170F engine fueled with biodiesel and peroxide biodiesel, and the impacts of peroxide modification on NOχ emissions and carbon smoke were studied. The results show that the carbon double bonds of fatty acid methyl esters are broken after peroxide modification , the degree of saturation is increased, oxidation stability is improved significantly, and dynamic viscosity of biodiesel is much lower than that of biodiesel up to a maximum of 8. 2% . Both NOχ emission and carbon smoke decrease for the investigated operating conditions.%采用过氧化方法对生物柴油进行燃料改性,探讨了过氧化改质的机理,测量并分析了过氧化改质对生物柴油粘度和过氧化值的影响.在170F柴油机上,对过氧化改质前、后生物柴油进行台架试验,考察了过氧化改质对生物柴油NOx排放和碳烟的影响.研究结果表明:过氧化改质后,脂肪酸甲酯碳链中的双键被打断,饱和程度增加,氧化安定性得到明显改善,动力粘度大可降低8.2%;燃用过氧化改质生物柴油,标定转速、各个负荷下,NOx和碳烟同时下降.

  1. Fuel cell generator with fuel electrodes that control on-cell fuel reformation

    Science.gov (United States)

    Ruka, Roswell J.; Basel, Richard A.; Zhang, Gong

    2011-10-25

    A fuel cell for a fuel cell generator including a housing including a gas flow path for receiving a fuel from a fuel source and directing the fuel across the fuel cell. The fuel cell includes an elongate member including opposing first and second ends and defining an interior cathode portion and an exterior anode portion. The interior cathode portion includes an electrode in contact with an oxidant flow path. The exterior anode portion includes an electrode in contact with the fuel in the gas flow path. The anode portion includes a catalyst material for effecting fuel reformation along the fuel cell between the opposing ends. A fuel reformation control layer is applied over the catalyst material for reducing a rate of fuel reformation on the fuel cell. The control layer effects a variable reformation rate along the length of the fuel cell.

  2. HTPEM Fuel Cell Impedance

    DEFF Research Database (Denmark)

    Vang, Jakob Rabjerg

    As part of the process to create a fossil free Denmark by 2050, there is a need for the development of new energy technologies with higher efficiencies than the current technologies. Fuel cells, that can generate electricity at higher efficiencies than conventional combustion engines, can...... potentially play an important role in the energy system of the future. One of the fuel cell technologies, that receives much attention from the Danish scientific community is high temperature proton exchange membrane (HTPEM) fuel cells based on polybenzimidazole (PBI) with phosphoric acid as proton conductor....... This type of fuel cell operates at higher temperature than comparable fuel cell types and they distinguish themselves by high CO tolerance. Platinum based catalysts have their efficiency reduced by CO and the effect is more pronounced at low temperature. This Ph.D. Thesis investigates this type of fuel...

  3. Solid electrolytic fuel cell

    Energy Technology Data Exchange (ETDEWEB)

    Sakai, Masayasu; Yamauchi, Yasuhiro; Kamisaka, Mitsuo; Notomi, Kei.

    1989-04-21

    Concerning a solid electrolytic fuel cell with a gas permeable substrate pipe, a fuel electrode installed on this substrate pipe and an air electrode which is laminated on this fuel electrode with the electrolyte in between, the existing fuel cell of this kind uses crystals of CaMnO3, etc. for the material of the air electrode, but its electric resistance is big and in order to avert this, it is necessary to make the film thickness of the air electrode big. However, in such a case, the entry of the air into its inside worsens and the cell performance cannot develop satisfactorily. In view of the above, in order to obtain a high performance solid electrolytic fuel cell which can improve electric conductivity without damaging diffusion rate of the air, this invention proposes with regard to the aforementioned solid electrolytic fuel cell to install a heat resistant and conductive member inside the above air electrode. 6 figs.

  4. Spiral cooled fuel nozzle

    Energy Technology Data Exchange (ETDEWEB)

    Fox, Timothy; Schilp, Reinhard

    2012-09-25

    A fuel nozzle for delivery of fuel to a gas turbine engine. The fuel nozzle includes an outer nozzle wall and a center body located centrally within the nozzle wall. A gap is defined between an inner wall surface of the nozzle wall and an outer body surface of the center body for providing fuel flow in a longitudinal direction from an inlet end to an outlet end of the fuel nozzle. A turbulating feature is defined on at least one of the central body and the inner wall for causing at least a portion of the fuel flow in the gap to flow transverse to the longitudinal direction. The gap is effective to provide a substantially uniform temperature distribution along the nozzle wall in the circumferential direction.

  5. A comparative study on two explosive acetone peroxides

    Energy Technology Data Exchange (ETDEWEB)

    Egorshev, V. Yu.; Sinditskii, V.P., E-mail: vps@rctu.ru; Smirnov, S.P.

    2013-12-20

    Highlights: • The most accurate heats of DADP and TATP sublimation were evaluated from experimental vapor pressures in a widened temperature range. • DADP is more volatile while more thermally stable peroxide than TATP. • DADP reveals lesser sensitivity to drop-weight impact, flame temperature, burning rate, and initiating efficiency as compared with TATP. - Abstract: Two explosive cyclic acetone peroxides, diacetone diperoxide (DADP) and triacetone triperoxide (TATP) have been studied in respect of thermal decomposition, burning behavior, impact sensitivity, and initiating efficiency. Using the glass Bourdon gauge technique, the vapor pressures of TATP and DADP were determined over the temperature range 75–144 °C and 67–120 °C, respectively. The kinetic parameters of decomposition of the peroxides in the gas phase have been obtained in the temperature interval of 140–200 °C. The decomposition of both DADP and TATP followed the first-order reaction to high degrees of decay with close activation energies of 159.2 kJ/mol (38.0 kcal/mol) and 165.8 kJ/mol (39.6 kcal/mol), respectively. The decomposition rate constants of DADP were found to be approximately 2 times less than those of TATP. The linear burning rate of DADP measured in a constant-pressure window bomb appeared to be approximately 5 times less than that of TATP. Temperature profiles in the combustion wave were measured at subatmospheric pressures with the help of thin tungsten-rhenium thermocouples. The leading reaction on combustion of both volatile peroxides was assumed to occur in the gas phase. Kinetic parameters of the leading reaction derived from the combustion data showed a good agreement with kinetic parameters of low-temperature thermal decomposition extrapolated to the high-temperature flame zone. In the drop-weight impact test, DADP appeared to be notably less sensitive peroxide than TATP. No deflagration-to-detonation transition was observed when RDX was attempted to explode by

  6. The energy landscape of uranyl-peroxide species

    Energy Technology Data Exchange (ETDEWEB)

    Tiferet, Eitan [Peter A. Rock Thermochemistry Laboratory, University of California, Davis, CA (United States); Nuclear Research Center - Negev, Be' er-Sheva (Israel); Gil, Adria; Bo, Carles [Institute of Chemical Research of Catalonia (ICIQ), Tarragona (Spain); Departament de Quimica Fisica i Inorganica, Universitat Rovira i Virgil, Tarragona (Spain); Shvareva, Tatiana Y.; Navrotsky, Alexandra [Peter A. Rock Thermochemistry Laboratory, University of California, Davis, CA (United States); Nyman, May [Department of Chemistry, Oregon State University, Corvallis, OR (United States)

    2014-03-24

    Nanoscale uranyl peroxide clusters containing UO{sub 2}{sup 2+} groups bonded through peroxide bridges to form polynuclear molecular species (polyoxometalates) exist both in solution and in the solid state. There is an extensive family of clusters containing 28 uranium atoms (U{sub 28} clusters), with an encapsulated anion in the center, for example, [UO{sub 2}(O{sub 2}){sub 3-x}(OH){sub x}{sup 4-}], [Nb(O{sub 2}){sub 4}{sup 3-}], or [Ta(O{sub 2}){sub 4}{sup 3-}]. The negative charge of these clusters is balanced by alkali ions, both encapsulated, and located exterior to the cluster. The present study reports measurement of enthalpy of formation for two such U{sub 28} compounds, one of which is uranyl centered and the other is peroxotantalate centered. The [Ta(O{sub 2}){sub 4}]-centered U{sub 28} capsule is energetically more stable than the [(UO{sub 2})(O{sub 2}){sub 3}]-centered capsule. These data, along with our prior studies on other uranyl-peroxide solids, are used to explore the energy landscape and define thermochemical trends in alkali-uranyl-peroxide systems. It was suggested that the energetic role of charge-balancing alkali ions and their electrostatic interactions with the negatively charged uranyl-peroxide species is the dominant factor in defining energetic stability. These experimental data were supported by DFT calculations, which agree that the [Ta(O{sub 2}){sub 4}]-centered U{sub 28} capsule is more stable than the uranyl-centered capsule. Moreover, the relative stability is controlled by the interactions of the encapsulated alkalis with the encapsulated anion. Thus, the role of alkali-anion interactions was shown to be important at all length scales of uranyl-peroxide species: in both comparing clusters to clusters; and clusters to monomers or extended solids. (copyright 2014 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  7. Organic peroxides' gas-particle partitioning and rapid heterogeneous decomposition on secondary organic aerosol

    Science.gov (United States)

    Li, Huan; Chen, Zhongming; Huang, Liubin; Huang, Dao

    2016-02-01

    Organic peroxides, important species in the atmosphere, promote secondary organic aerosol (SOA) aging, affect HOx radicals cycling, and cause adverse health effects. However, the formation, gas-particle partitioning, and evolution of organic peroxides are complicated and still unclear. In this study, we investigated in the laboratory the production and gas-particle partitioning of peroxides from the ozonolysis of α-pinene, which is one of the major biogenic volatile organic compounds in the atmosphere and an important precursor for SOA at a global scale. We have determined the molar yields of hydrogen peroxide (H2O2), hydromethyl hydroperoxide (HMHP), peroxyformic acid (PFA), peroxyacetic acid (PAA), and total peroxides (TPOs, including unknown peroxides) and the fraction of peroxides in α-pinene/O3 SOA. Comparing the gas-phase peroxides with the particle-phase peroxides, we find that gas-particle partitioning coefficients of PFA and PAA are 104 times higher than the values from the theoretical prediction, indicating that organic peroxides play a more important role in SOA formation than previously expected. Here, the partitioning coefficients of TPO were determined to be as high as (2-3) × 10-4 m3 µg-1. Even so, more than 80 % of the peroxides formed in the reaction remain in the gas phase. Water changes the distribution of gaseous peroxides, while it does not affect the total amount of peroxides in either the gas or the particle phase. Approx. 18 % of gaseous peroxides undergo rapid heterogeneous decomposition on SOA particles in the presence of water vapor, resulting in the additional production of H2O2. This process can partially explain the unexpectedly high H2O2 yields under wet conditions. Transformation of organic peroxides to H2O2 also preserves OH in the atmosphere, helping to improve the understanding of OH cycling.

  8. Fuel safety research 2001

    Energy Technology Data Exchange (ETDEWEB)

    Uetsuka, Hiroshi (ed.) [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2002-11-01

    The Fuel Safety Research Laboratory is in charge of research activity which covers almost research items related to fuel safety of water reactor in JAERI. Various types of experimental and analytical researches are being conducted by using some unique facilities such as the Nuclear Safety Research Reactor (NSRR), the Japan Material Testing Reactor (JMTR), the Japan Research Reactor 3 (JRR-3) and the Reactor Fuel Examination Facility (RFEF) of JAERI. The research to confirm the safety of high burn-up fuel and MOX fuel under accident conditions is the most important item among them. The laboratory consists of following five research groups corresponding to each research fields; Research group of fuel behavior under the reactivity initiated accident conditions (RIA group). Research group of fuel behavior under the loss-of-coolant accident conditions (LOCA group). Research group of fuel behavior under the normal operation conditions (JMTR/BOCA group). Research group of fuel behavior analysis (FEMAXI group). Research group of radionuclides release and transport behavior from irradiated fuel under severe accident conditions (VEGA group). The research conducted in the year 2001 produced many important data and information. They are, for example, the fuel behavior data under BWR power oscillation conditions in the NSRR, the data on failure-bearing capability of hydrided cladding under LOCA conditions and the FP release data at very high temperature in steam which simulate the reactor core condition during severe accidents. This report summarizes the outline of research activities and major outcomes of the research executed in 2001 in the Fuel Safety Research Laboratory. (author)

  9. Liquid fuel cells.

    Science.gov (United States)

    Soloveichik, Grigorii L

    2014-01-01

    The advantages of liquid fuel cells (LFCs) over conventional hydrogen-oxygen fuel cells include a higher theoretical energy density and efficiency, a more convenient handling of the streams, and enhanced safety. This review focuses on the use of different types of organic fuels as an anode material for LFCs. An overview of the current state of the art and recent trends in the development of LFC and the challenges of their practical implementation are presented.

  10. Portable Fuel Quality Analyzer

    Science.gov (United States)

    2014-01-27

    other transportation industries, such as trucking. The PFQA could also be used in fuel blending operations performed at petroleum, ethanol and biodiesel plants. ...used to identify fuel type and determine performance properties. The Phase I measurements identified the best spectral resolution, spectral region and...identified the best spectral resolution, spectral region and sample path length to differentiate between diesel and jet fuels, as well as to determine

  11. Alternative Fuels (Briefing Charts)

    Science.gov (United States)

    2009-06-19

    feedstock for HRJ, plant cost for F-T) Courtesy AFRL, Dr. Tim Edwards Unclassified • Agricultural crop oils (canola, jatropha, soy, palm , etc...Fuels Focus  Various conversion processes  Upgraded to meet fuel specs Diverse energy sources Petroleum Crude Oil Petroleum based Single Fuel in the...University of North Dakota EERC – UOP – General Electric (GE) – Swedish Biofuels AB • Cellulosic and algal feedstocks that are non- competitive with

  12. Fuel Tank Technology

    Science.gov (United States)

    1989-11-01

    structures b) - Equal thermic inertia c) - Equal fluid volume d) - Equal pressure variation on both wings at the change of the room temperature - This...individual fuel sections. Each fuel section is further ccmpartmentated by metall tank shear walls and tank floors into three individual fuel cells to...plate Dy a stretch forming process, and the metallic tank floors . The air intake segments extend from one bulkhead to the other, thus reducing assembly

  13. Effects of Fe(II) and hydrogen peroxide interaction upon dissolving UO2 under geologic repository conditions.

    Science.gov (United States)

    Amme, M; Bors, W; Michel, C; Stettmaier, K; Rasmussen, G; Betti, M

    2005-01-01

    Iron redox cycling is supposed to be one of the major mechanisms that control the geochemical boundary conditions in the near field of a geologic repository for UO2 spent nuclear fuel. This work investigates the impact of reactions between hydrogen peroxide (H2O2) and iron (Fe2+/Fe3+) on UO2 dissolution. The reaction partners were contacted with UO2 in oxygen-free batch reactor tests. The interaction in absence of UO2 gives a stoichiometric redox reaction of Fe2+ and H2O2 when the reactants are present in equal concentration. Predomination of H202 results in its delayed catalytic decomposition. With UO2 present, its dissolution is controlled by either a slow mechanism (as typical for anoxic environments) or uranium peroxide precipitation, depending strongly on the reactant ratio. Uranium peroxide (UO4 x nH2O, m-studtite), detected on UO2 surfaces after exposure to H2O2, was not found on the surfaces exposed to solutions with stoichometric Fe(II)/ H2O2 ratios. This suggests that H2O2 was deactivated in redox reactions before a formation of UO4 took place. ESR measurements employing the spin trapping technique revealed only the DMPO-OH adduct within the first minutes after the reaction start (high initial concentrations of the OH radical); however, in the case of Fe(II) and H2O2 reacting at 10(-4) mol/L with UO2, dissolved oxygen and Fe2+ concentrations indicate the participation of further Fe intermediates and, therefore, Fenton redox activities.

  14. Fuel Cell Demonstration Program

    Energy Technology Data Exchange (ETDEWEB)

    Gerald Brun

    2006-09-15

    In an effort to promote clean energy projects and aid in the commercialization of new fuel cell technologies the Long Island Power Authority (LIPA) initiated a Fuel Cell Demonstration Program in 1999 with six month deployments of Proton Exchange Membrane (PEM) non-commercial Beta model systems at partnering sites throughout Long Island. These projects facilitated significant developments in the technology, providing operating experience that allowed the manufacturer to produce fuel cells that were half the size of the Beta units and suitable for outdoor installations. In 2001, LIPA embarked on a large-scale effort to identify and develop measures that could improve the reliability and performance of future fuel cell technologies for electric utility applications and the concept to establish a fuel cell farm (Farm) of 75 units was developed. By the end of October of 2001, 75 Lorax 2.0 fuel cells had been installed at the West Babylon substation on Long Island, making it the first fuel cell demonstration of its kind and size anywhere in the world at the time. Designed to help LIPA study the feasibility of using fuel cells to operate in parallel with LIPA's electric grid system, the Farm operated 120 fuel cells over its lifetime of over 3 years including 3 generations of Plug Power fuel cells (Lorax 2.0, Lorax 3.0, Lorax 4.5). Of these 120 fuel cells, 20 Lorax 3.0 units operated under this Award from June 2002 to September 2004. In parallel with the operation of the Farm, LIPA recruited government and commercial/industrial customers to demonstrate fuel cells as on-site distributed generation. From December 2002 to February 2005, 17 fuel cells were tested and monitored at various customer sites throughout Long Island. The 37 fuel cells operated under this Award produced a total of 712,635 kWh. As fuel cell technology became more mature, performance improvements included a 1% increase in system efficiency. Including equipment, design, fuel, maintenance

  15. Fuels Processing Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — NETL’s Fuels Processing Laboratory in Morgantown, WV, provides researchers with the equipment they need to thoroughly explore the catalytic issues associated with...

  16. Fuel assembly reconstitution

    Energy Technology Data Exchange (ETDEWEB)

    Morgado, Mario M.; Oliveira, Monica G.N.; Ferreira Junior, Decio B.M.; Santos, Barbara O. dos; Santos, Jorge E. dos, E-mail: mongeor@eletronuclear.gov.b [ELETROBRAS Termonuclear S.A. - ELETRONUCLEAR, Angra dos Reis, RJ (Brazil)

    2009-07-01

    Fuel failures have been happened in Nuclear Power Plants worldwide, without lost of integrity and safety, mainly for the public, environment and power plants workers. The most common causes of these events are corrosion (CRUD), fretting and pellet cladding interaction. These failures are identified by increasing the activity of fission products, verified by chemical analyses of reactor coolant. Through these analyses, during the fourth operation cycle of Angra 2 Nuclear Power Plant, was possible to observe fuel failure indication. This indication was confirmed in the end of the cycle during the unloading of reactor core through leakage tests of fuel assembly, using the equipment called 'In Mast Sipping' and 'Box Sipping'. After confirmed, the fuel assembly reconstitution was scheduled, and happened in April, 2007, where was identified the cause and the fuel rod failure, which was substitute by dummy rods (zircaloy). The cause was fretting by 'debris'. The actions to avoid and prevent fuel assemblies failures are important. The goals of this work are to describe the methodology of fuel assembly reconstitution using the FARE (Fuel Assembly Reconstitution Equipment) system, to describe the results of this task in economic and security factors of the company and show how the fuel assembly failures are identified during operation and during the outage. (author)

  17. Rethinking nuclear fuel recycling.

    Science.gov (United States)

    von Hippel, Frank N

    2008-05-01

    Spent nuclear fuel contains plutonium which can be extracted and used in new fuel. To reduce the amount of long-lived radioactive waste, the U.S. Department of Energy has proposed reprocessing spent fuel in this way and then "burning" the plutonium in special reactors. But reprocesssing is very expensive. Also, spent fuel emits lethal radiation, whereas separated plutonium can be handled easily. So reprocessing invites the possibility that terrorists might steal plutonium and construct an atom bormb. The authors argue against reprocessing and for storing the waste in casks until an underground repository is ready.

  18. Fuel Cells: Reshaping the Future

    Science.gov (United States)

    Toay, Leo

    2004-01-01

    In conjunction with the FreedomCAR (Cooperative Automotive Research) and Fuel Initiative, President George W. Bush has pledged nearly two billion dollars for fuel cell research. Chrysler, Ford, and General Motors have unveiled fuel cell demonstration vehicles, and all three of these companies have invested heavily in fuel cell research. Fuel cell…

  19. Lycopene control of benzophenone-sensitized lipid peroxidation

    Science.gov (United States)

    Cvetković, Dragan; Marković, Dejan

    2012-05-01

    Lycopene antioxidant activity in the presence of two different mixtures of phospholipids in hexane solution, under continuous regime of UV-irradiation from three different ranges (UV-A, UV-B, and UV-C) has been evaluated in this work. Lycopene expected role was to control lipid peroxidation, by scavenging free radicals generated by UV-irradiation, in the presence and in the absence of selected photosensitizer, benzophenone. This work shows that lycopene undergoes to UV-induced destruction (bleaching), highly dependent on the incident photons energy input, more expressed in the presence than in the absence of benzophenone. The further increase ("excess") of its bleaching is undoubtedly related to the further increase of its antioxidant activity in the presence of benzophenone, having the same cause: increase of (phospholipids peroxidation) chain-breaking activities.

  20. Preparation of water soluble chitosan by hydrolysis using hydrogen peroxide.

    Science.gov (United States)

    Xia, Zhenqiang; Wu, Shengjun; Chen, Jinhua

    2013-08-01

    Chitosan is not soluble in water, which limits its wide application particularly in the medicine and food industry. In the present study, water soluble chitosan (WSC) was prepared by hydrolyzing chitosan using hydrogen peroxide under the catalysis of phosphotungstic acid in homogeneous phase. Factors affecting hydrolysis were investigated and the optimal hydrolysis conditions were determined. The WSC structure was characterized by Fourier transform infrared spectroscopy. The resulting products were composed of chitooligosaccharides of DP 2-9. The WSC content of the product and the yield were 94.7% and 92.3% (w/w), respectively. The results indicate that WSC can be effectively prepared by hydrolysis of chitosan using hydrogen peroxide under the catalysis of phosphotungstic acid.

  1. Hydrogen Peroxide: A Key Chemical for Today's Sustainable Development.

    Science.gov (United States)

    Ciriminna, Rosaria; Albanese, Lorenzo; Meneguzzo, Francesco; Pagliaro, Mario

    2016-12-20

    The global utilization of hydrogen peroxide, a green oxidant that decomposes in water and oxygen, has gone from 0.5 million tonnes per year three decades ago to 4.5 million tonnes per year in 2014, and is still climbing. With the aim of expanding the utilization of this eminent green chemical across different industrial and civil sectors, the production and use of hydrogen peroxide as a green industrial oxidant is reviewed herein to provide an overview of the explosive growth of its industrial use over the last three decades and of the state of the art in its industrial manufacture, with important details of what determines the viability of the direct production from oxygen and hydrogen compared with the traditional auto-oxidation process. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. EVALUATION OF ANTIOXIDANTS AND LIPID PEROXIDATION STATUS AMONG STUDENTS

    Directory of Open Access Journals (Sweden)

    Anandh T

    2012-12-01

    Full Text Available The study aims to estimate the changes in the plasma levels of lipid peroxidation product malondialdehyde (MDA, non-enzymatic antioxidants: vitamin C and E and enzymatic antioxidant: superoxide dismutase (SOD. The population used were healthy students (100 male, 100 female; mean age 22.4 years, range 18- 25 years. The level of lipid peroxidation was found to be significantly increased among the students which were inversely related to the level of antioxidants (p<0.05. Increased antioxidant levels show a multiple link between fruit and vegetable intake among the study group. Diminished antioxidant status disturbed oxidant-antioxidant balance alleviating oxidative stress state in less fruit and vegetable intake group. Therefore, the alterations in the level of antioxidants in blood plasma could be used as biomarkers for nutritional tribulations.

  3. Peroxiredoxins: guardians against oxidative stress and modulators of peroxide signaling.

    Science.gov (United States)

    Perkins, Arden; Nelson, Kimberly J; Parsonage, Derek; Poole, Leslie B; Karplus, P Andrew

    2015-08-01

    Peroxiredoxins (Prxs) are a ubiquitous family of cysteine-dependent peroxidase enzymes that play dominant roles in regulating peroxide levels within cells. These enzymes, often present at high levels and capable of rapidly clearing peroxides, display a remarkable array of variations in their oligomeric states and susceptibility to regulation by hyperoxidative inactivation and other post-translational modifications. Key conserved residues within the active site promote catalysis by stabilizing the transition state required for transferring the terminal oxygen of hydroperoxides to the active site (peroxidatic) cysteine residue. Extensive investigations continue to expand our understanding of the scope of their importance as well as the structures and forces at play within these critical defense and regulatory enzymes.

  4. Chemiluminometric hydrogen peroxide sensor for flow injection analysis

    Energy Technology Data Exchange (ETDEWEB)

    Preuschoff, F. (Inst. fuer Biotechnologie, Halle Univ. (Germany)); Spohn, U. (Inst. fuer Biotechnologie, Halle Univ. (Germany)); Blankenstein, G. (Inst. fuer Enzymtechnologie am Forschungszentrum Juelich GmbH, Duesseldorf Univ., Juelich (Germany)); Mohr, K.H. (Inst. fuer Biotechnologie, Halle Univ. (Germany)); Kula, M.R. (Inst. fuer Enzymtechnologie am Forschungszentrum Juelich GmbH, Duesseldorf Univ., Juelich (Germany))

    1993-08-01

    A chemiluminometric hydrogen peroxide sensor was developed for fast flow injection analysis. Different peroxidases were covalently immobilized on affinity membranes and compared with respect to the catalytic luminol oxidation. A photomultiplier tube is connected with a fibre bundle to the flow cell. The small cell volume of 5-10 [mu]l allows sampling rates between 90 and 200/h, depending on the flow rate. The highest sensitivity and the best longterm stability can be achieved with microbial peroxidase. Hydrogen peroxide can be determined in the range between 10[sup -3] and 10[sup -8] mol/l with a precision of < 3% (n=6, [alpha] = 0.05). The operational stability of the sensor is longer than 10 weeks. (orig.)

  5. A comprehensive review of direct borohydride fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Jia; Choudhury, Nurul A.; Sahai, Yogeshwar [Department of Materials Science and Engineering, The Ohio State University, 2041 College Road, Columbus, OH 43210 (United States)

    2010-01-15

    A direct borohydride fuel cell (DBFC) is a device that converts chemical energy stored in borohydride ion (BH{sub 4}{sup -}) and an oxidant directly into electricity by redox processes. Usually, a DBFC employs an alkaline solution of sodium borohydride (NaBH{sub 4}) as fuel and oxygen or hydrogen peroxide as oxidant. DBFC has some attractive features such as high open circuit potential, ease of electro-oxidation of BH{sub 4}{sup -} on non-precious metals such as nickel, low operational temperature and high power density. The DBFC is a promising power system for portable applications. This article discusses prominent features of DBFC, reviews recent developments in DBFC research, and points out future directions in DBFC research. (author)

  6. Iron Supplements and Magnesium Peroxide: An Example of a Hazardous Combination in Self-Medication.

    Science.gov (United States)

    Vrolijk, Misha F; Opperhuizen, Antoon; Jansen, Eugène H J M; Bast, Aalt; Haenen, Guido R M M

    2016-10-01

    The use of self-medication, which includes dietary supplements and over-the-counter drugs, is still on the rise, while safety issues are not well addressed yet. This especially holds for combinations. For example, iron supplements and magnesium peroxide both produce adverse effects via the formation of reactive oxygen species (ROS). This prompted us to investigate the effect of the combination of three different iron supplements with magnesium peroxide on ROS formation. Hydroxyl radical formation by the three iron supplements either combined with magnesium peroxide or alone was determined by performing a deoxyribose assay. Free iron content of iron supplements was determined using ferrozine assay. To determine hydrogen peroxide formation by magnesium peroxide, a ferrous thiocyanate assay was performed. Finally, electron spin resonance spectroscopy (ESR) was performed to confirm the formation of hydroxyl radicals. Our results show that magnesium peroxide induces the formation of hydrogen peroxide. All three iron supplements induced the formation of the extremely reactive hydroxyl radical, although the amount of radicals formed by the different supplements differed. It was shown that combining iron supplements with magnesium peroxide increases radical formation. The formation of hydroxyl radicals after the combination was confirmed with ESR. All three iron supplements contained labile iron and induced the formation of hydroxyl radicals. Additionally, magnesium peroxide in water yields hydrogen peroxide, which is converted into hydroxyl radicals by iron. Hence, iron supplements and magnesium peroxide is a hazardous combination and exemplifies that more attention should be given to combinations of products used in self-medication.

  7. Effect of Semecarpus anacardium nuts on lipid peroxidation.

    Science.gov (United States)

    Tripathi, Y B; Singh, A V

    2001-08-01

    Alcoholic extract of pericarp showed significant protection against FeSO4 induced lipid peroxidation, as compared with whole native nut and seeds. Mechanism of action may be through metal chelation or activation of endogenous antioxidant enzymes, because the extract did not show hydroxyl and super oxide anion scavenging property. Further in vitro experiments against FeSO4, it did not maintain the level of reduced glutathione.

  8. Determination of peracetic acid and hydrogen peroxide in the mixture

    OpenAIRE

    Bodiroga Milanka; Ognjanović Jasminka

    2002-01-01

    Iodometric and permanganometric titrations were used for determination of peracetic acid and hydrogen peroxide (H2O2) in the mixture. Two procedures were described and compared. Titrations could be done in only one vessel, in the same reaction mixture, when iodometric titration of peracetic acid was continued after the permanganometric titration of H2O2, (procedure A). Peracetic acid and H2O2, as oxidizing agents, reacted with potassium iodide in an acid medium, evolving iodine. This reaction...

  9. Systemic complement activation, lung injury, and products of lipid peroxidation.

    OpenAIRE

    Ward, P. A.; Till, G O; Hatherill, J. R.; Annesley, T M; Kunkel, R G

    1985-01-01

    Previously we have demonstrated that systemic activation of the complement system after intravenous injection of cobra venom factor (CVF) results in acute lung injury as reflected by increases in the vascular permeability of the lung as well as by morphologic evidence of damage to lung vascular endothelial cells. In using the vascular permeability of the lung as the reference, the current studies show a quantitative correlation between lung injury and the appearance in plasma of lipid peroxid...

  10. Hydrogen peroxide propulsion for smaller satellites (SSC98-VIII-1)

    Energy Technology Data Exchange (ETDEWEB)

    Whitehead, J C

    1998-07-13

    As satellite designs shrink, providing maneuvering and control capability falls outside the realm of available propulsion technology. While cold gas has been used on the smallest satellites, hydrogen peroxide propellant is suggested as the next step in performance and cost before hydrazine. Minimal toxicity and a small scale enable benchtop propellant preparation and development testing. Progress toward low-cost thrusters and self-pressurizing tank systems is described.

  11. The kinetic study of oxidation of iodine by hydrogen peroxide

    Energy Technology Data Exchange (ETDEWEB)

    Cantrel, L. [Institut de Protection et de Surete Nucleaire, IPNS, CEN Cadarache, Saint Paul lez Durance (France); Chopin, J. [Laboratoire d`Electrochimie Inorganique, ENSSPICAM, Marseille (France)

    1996-12-01

    Iodine chemistry is one of the most important subjects of research in the field of reactor safety because this element can form volatile species which represent a biological hazard for environment. As the iodine and the peroxide are both present in the sump of the containment in the event of a severe accident on a light water nuclear reactor, it can be important to improve the knowledge on the reaction of oxidation of iodine by hydrogen peroxide. The kinetics of iodine by hydrogen peroxide has been studied in acid solution using two different analytical methods. The first is a UV/Vis spectrophotometer which records the transmitted intensity at 460 nm as a function of time to follow the decrease of iodine concentration, the second is an amperometric method which permits to record the increase of iodine+1 with time thanks to the current of reduction of iodine+1 to molecular iodine. The iodine was generated by Dushman reaction and the series of investigations were made at 40{sup o}C in a continuous stirring tank reactor. The influence of the initial concentrations of iodine, iodate, hydrogen peroxide, H{sup +} ions has been determined. The kinetics curves comprise two distinct chemical phases both for molecular iodine and for iodine+1. The relative importance of the two processes is connected to the initial concentrations of [I{sub 2}], [IO{sub 3}{sup -}], [H{sub 2}O{sub 2}] and [H{sup +}]. A rate law has been determined for the two steps for molecular iodine. (author) figs., tabs., 22 refs.

  12. Effect of intensive laser irradiation on lipid peroxidation in retina

    Energy Technology Data Exchange (ETDEWEB)

    Lyakhnovich, G.V.; Guseynov, T.M.; Zheltov, G.I.; Glazkov, V.N.; Naumovich, A.S.; Koney, S.V.; Volotovskiy, I.D.

    1986-01-01

    A study was made of the effect of intensive laser irradiation on the kinetics of lipid peroxidation in the retina in in vivo and in vitro conditions and also considered the possible influence on these processes of vitamin E and selenium, which have endogenous antioxidants and play an active part in the regulation of the oxidizing processes in membranes was considered. Tests in vitro were conducted on preparations of bovine eyes; in vivo studies were conducted on Chinchilla rabbits.

  13. Effects of Hydrogen Peroxide on Common Aviation Textiles

    Science.gov (United States)

    2009-08-01

    peroxide has been used for years as a disinfectant in the medical community and is under consideration in the dilute vapor form as a decontaminant... disinfectant /sterilant for transportation vehicles like aircraft, buses, subway trains, ambulances, etc. Although the biological efficacy of STERIS...10-min dip in 35% liquid H2O2 . 13 (a) (b) Figure 15. (a) Vertical and (b) horizontal flammability test results for nylon. 14 (a) (b) Figure 16. (a

  14. Efficiency of hydrogen peroxide in improving disinfection of ICU rooms

    OpenAIRE

    Blazejewski, Caroline; Wallet, Frédéric; Rouzé, Anahita; Le Guern, Rémi; Ponthieux, Sylvie; Salleron, Julia; Nseir, Saad

    2015-01-01

    Introduction The primary objective of this study was to determine the efficiency of hydrogen peroxide (H2O2) techniques in disinfection of ICU rooms contaminated with multidrug-resistant organisms (MDRO) after patient discharge. Secondary objectives included comparison of the efficiency of a vaporizator (HPV, Bioquell®) and an aerosolizer using H2O2, and peracetic acid (aHPP, Anios®) in MDRO environmental disinfection, and assessment of toxicity of these techniques. Methods This prospective c...

  15. ALKALINE PEROXIDE MECHANICAL PULPING OF FAST GROWTH PAULOWNIA WOOD

    Directory of Open Access Journals (Sweden)

    Ahmad Jahan Latibari,

    2011-11-01

    Full Text Available Alkaline peroxide mechanical pulping of paulownia wood harvested from exotic tree plantations in northern Iran was investigated. The fiber length, width, and cell wall thickness of this wood were measured as 0.82 mm, 40.3 μm, and 7.1 μm, respectively. The chemical composition including cellulose, lignin, and extractives soluble in ethanol-acetone, 1% NaOH, hot and cold water was determined as 49.5%, 25%, 12.1%, 26.9%, 11.4%, and 8.1% respectively. The ash content of this wood was 0.45%. Pre-washed chips were chemically treated at 70°C for 120 minutes with different combinations of three dosages (1.5, 3, and 4.5% of hydrogen peroxide and three dosages (1.5, 3, and 4.5% of sodium hydroxide prior to defibration. Other chemicals including DTPA, sodium silicate, and MgSO4 were constant at 0.5%, 3%, and 0.5%, respectively. The results showed that using a 1.5% hydrogen peroxide and 4.5% sodium hydroxide charge, the brightness of APMP pulp reached 68.7% ISO and higher chemical dosages did not improve the brightness; however, to produce APMP pulp with higher strength, a sodium hydroxide charge of 4.5% was needed. The tensile strength, tear strength, burst strength indices, and bulk density of the APMP pulp produced from 1.5% hydrogen peroxide and 4.5% sodium hydroxide were measured as 15.5Nm/g, 6.54mN.m2/g, 0.56kPa.m2/g, and 3.47cm3/g, respectively. The resulting pulp was bulky and is suitable for use in the middle layer of boxboard to provide the desired stiffness with a lower basis weight.

  16. Polyhexanide and hydrogen peroxide inhibit proteoglycan synthesis of human chondrocytes

    OpenAIRE

    Röhner, Eric; Hoff, Paula; Winkler, Tobias; von Roth, Philipp; Seeger, Jörn Bengt; Perka, Carsten; Matziolis, Georg

    2011-01-01

    The use of local antiseptics is a common method in septic joint surgery. We tested polyhexanide and hydrogen peroxide, two of the most frequently used antiseptics with high efficacy and low toxicity. The purpose of this study was to evaluate the effects of both antiseptics on the extracellular cartilaginous matrix synthesis of human chondrocytes. Chondrocytes were isolated from donated human knee joints, embedded in alginate beads, and incubated for 10 and 30 minutes with polyhexanide (0.04%)...

  17. Ultrasonic degradation of Rhodamine B in the presence of hydrogen peroxide and some metal oxide.

    Science.gov (United States)

    Mehrdad, Abbas; Hashemzadeh, Robab

    2010-01-01

    In this research, degradation of Rodamine B in the presence of (hydrogen peroxide), (hydrogen peroxide+ultrasound), (hydrogen peroxide+aluminum oxide), (hydrogen peroxide+aluminum oxide+ultrasound with different ultrasound power), (hydrogen peroxide+iron oxide) and (hydrogen peroxide+iron oxide+ultrasound with different ultrasound power) were investigated at 25 degrees C. The apparent rate constants for the examined systems were calculated by pseudo-first-order kinetics. The results indicate that the rate of degradation was accelerated by ultrasound. The rate of degradation was increased by increasing power ultrasound. The efficiency of the (hydrogen peroxide+iron oxide+ultrasound) system for degradation of Rodamine B was higher than the others examined.

  18. Measurements of nitrous acid in commercial aircraft exhaust at the Alternative Aviation Fuel Experiment.

    Science.gov (United States)

    Lee, Ben H; Santoni, Gregory W; Wood, Ezra C; Herndon, Scott C; Miake-Lye, Richard C; Zahniser, Mark S; Wofsy, Steven C; Munger, J William

    2011-09-15

    The Alternative Aviation Fuel Experiment (AAFEX), conducted in January of 2009 in Palmdale, California, quantified aerosol and gaseous emissions from a DC-8 aircraft equipped with CFM56-2C1 engines using both traditional and synthetic fuels. This study examines the emissions of nitrous acid (HONO) and nitrogen oxides (NO(x) = NO + NO(2)) measured 145 m behind the grounded aircraft. The fuel-based emission index (EI) for HONO increases approximately 6-fold from idle to takeoff conditions but plateaus between 65 and 100% of maximum rated engine thrust, while the EI for NO(x) increases continuously. At high engine power, NO(x) EI is greater when combusting traditional (JP-8) rather than Fischer-Tropsch fuels, while HONO exhibits the opposite trend. Additionally, hydrogen peroxide (H(2)O(2)) was identified in exhaust plumes emitted only during engine idle. Chemical reactions responsible for emissions and comparison to previous measurement studies are discussed.

  19. Deep desulfurization of diesel fuels by catalytic oxidation

    Institute of Scientific and Technical Information of China (English)

    YU Guoxian; CHEN Hui; LU Shanxiang; ZHU Zhongnan

    2007-01-01

    Reaction feed was prepared by dissolving dibenzothiophene (DBT),which was selected as a model organosulfur compound in diesel fuels,in n-octane.The oxidant was a 30 wt-% aqueous solution of hydrogen peroxide.Catalytic performance of the activated carbons with saturation adsorption of DBT was investigated in the presence of formic acid.In addition,the effects of activated carbon dosage,formic acid concentration,initial concentration of hydrogen peroxide,initial concentration of DBT and reaction temperature on the oxidation of DBT were investigated.Experimental results indicated that performic acid and the hydroxyl radicals produced are coupled to oxidize DBT with a conversion ratio of 100%.Catalytic performance of the combination of activated carbon and formic acid is higher than that ofouly formic acid.The concentration of formic acid,activated carbon dosage,initial concentration of hydrogen peroxide and reaction temperature affect the oxidative removal of DBT.The higher the initial concentration of DBT in the n-octane solution,the more difficult the deep desulfurization by oxidation is.

  20. DETOXIFICATION OF CYANIDE IN GOLD PROCESSING WASTEWATER BY HYDROGEN PEROXIDE

    Directory of Open Access Journals (Sweden)

    A. Khodadadi, M. Abdolahi and P. Teimoury

    2005-07-01

    Full Text Available Utilizing cyanide compounds in mining and chemical industry is one of the most important environmental issues due to the acute toxic properties of many cyanide compounds to humans and aquatic life. Cyanide tends to react readily with most other chemical elements, producing a wide variety of toxic, cyanide related compounds. This research was aimed at investigating a feasible and economical technique for the detoxification of cyanide from the tailing effluent of Muteh gold mine in Isfahan, Iran. In this research cyanide detoxification was achieved through the oxidation of cyanide by hydrogen peroxide using various hydrogen peroxide solutions at pH levels between 7-13 and temperatures between 12-65 °C using copper sulfate as a catalyst. The optimum pH and dose of hydrogen peroxide for complete cyanide removal in the presence of 30 mg/L copper sulfate as a catalyst were determined as 9.7 and 9.98 g/L, respectively. At high temperatures > 35°C, cyanide was completely removed perfectly at constant pH = 9.7 which was mainly due to cyanide evaporation in the form of HCN.

  1. Lipid peroxidation and antioxidant enzymes activity in avian semen.

    Science.gov (United States)

    Partyka, Agnieszka; Lukaszewicz, Ewa; Niżański, Wojciech

    2012-10-01

    The present study compared the antioxidant system and lipid peroxidation in semen of two avian species: chicken and goose. The experiment was conducted on Greenleg Partridge roosters and White Koluda(®) ganders, each represented by 10 mature males. Malondialdehyde (MDA) concentration, catalase (CAT), glutathione peroxidase (GPx) and superoxide dismutase (SOD) activities were determined in sperm cells and seminal plasma. In gander spermatozoa, the amount of MDA was 10 times greater (Pantioxidant enzymes had greater (Pactivity in goose than chicken sperm. Catalase activity was detected in seminal plasma and spermatozoa from both studied species for the first time. In seminal plasma, the activity of GPx was two times greater (Pactivity was less (Pactivity of antioxidant defense and LPO. The greater amount of lipid peroxidation and greater activity of antioxidant enzymes in goose semen might suggest that spermatozoa were under greater oxidative stress and the enzymes were not utilized for the protection of functionally and structurally impaired cells. In turn, in fresh chicken semen a lesser activity of antioxidant enzymes accompanied with a lesser lipid peroxidation amount and good semen quality could indicate that fowl spermatozoa were under oxidative stress, but the enzymes were employed to protect and maintain sperm quality. Copyright © 2012 Elsevier B.V. All rights reserved.

  2. Enhancing activated-peroxide formulations for porous materials :

    Energy Technology Data Exchange (ETDEWEB)

    Krauter, Paula; Tucker, Mark D.; Tezak, Matthew S.; Boucher, Raymond

    2012-12-01

    During an urban wide-area incident involving the release of a biological warfare agent, the recovery/restoration effort will require extensive resources and will tax the current capabilities of the government and private contractors. In fact, resources may be so limited that decontamination by facility owners/occupants may become necessary and a simple decontamination process and material should be available for this use. One potential process for use by facility owners/occupants would be a liquid sporicidal decontaminant, such as pHamended bleach or activated-peroxide, and simple application devices. While pH-amended bleach is currently the recommended low-tech decontamination solution, a less corrosive and toxic decontaminant is desirable. The objective of this project is to provide an operational assessment of an alternative to chlorine bleach for low-tech decontamination applications activated hydrogen peroxide. This report provides the methods and results for activatedperoxide evaluation experiments. The results suggest that the efficacy of an activated-peroxide decontaminant is similar to pH-amended bleach on many common materials.

  3. Heterogeneous Uptake of Hydrogen Peroxide on Mineral Oxides

    Institute of Scientific and Technical Information of China (English)

    Wei-gang Wang; Mao-fa Ge; Qiao Sun

    2011-01-01

    The interaction of mineral oxides (α-Al2O3,MgO,Fe2O3,and SiO2) with hydrogen peroxide was investigated using the Knudsen cell reactor.The initial reactive uptake coefficients for the commercially available powders are measured as (1.00+0.11)×l0-4 for α-Al2O3,(1.66+0.23) ×10-4 for MgO,(9.70+1.95)×10-5 for Fe2O3,and (5.22+0.9)×10-5 for SiO2.These metal oxide powders exhibit some catalytic behavior toward the decomposition of hydrogen peroxide excluding SiO2.H2O2 can be destroyed on Fe2O3 surface and O2 is formed.The experimental results suggest that the heterogeneous loss on mineral surface can represent an important sink of hydrogen peroxide.

  4. ALKALINE PEROXIDE BLEACHING OF HOT WATER TREATED WHEAT STRAW

    Directory of Open Access Journals (Sweden)

    Suvi Mustajoki

    2010-05-01

    Full Text Available The aim of this study was to evaluate the possibilities for chemical consumption reduction in P-P-Paa-P bleaching (P alkaline peroxide stage, Paa peracetic stage of hot water treated straw and the effect of the wheat straw variability on the process. Papermaking fibre production from wheat straw using such a process could be implemented on a small scale if chemical consumption was low enough to eliminate the need for chemical recovery. The pulp properties obtained with this process are equal to or even superior to the properties of wheat straw soda pulp. The possibility of enhancing the first peroxide stage with oxygen and pressure was studied. The possibility for substitution of sodium hydroxide partially with sodium carbonate was also investigated. The objective was to achieve International Standardization Organization (ISO brightness of 75%, with minimal sodium hydroxide consumption, whilst maintaining the pulp properties. The optimization of the peroxide bleaching is challenging if the final brightness target cannot be reduced. Results indicate that up to 25% of the sodium hydroxide could be substituted with sodium carbonate without losing brightness or affecting pulp properties. Another possibility is a mild alkali treatment between the hot water treatment and the bleaching sequence.

  5. Levels of oxidative damage and lipid peroxidation in thyroid neoplasia.

    LENUS (Irish Health Repository)

    Young, Orla

    2012-02-01

    BACKGROUND: This study assessed the presence of oxidative damage and lipid peroxidation in thyroid neoplasia. METHODS: Using tissue microarrays and immunohistochemistry, we assessed levels of DNA damage (8-oxo-dG) and lipid peroxidation (4-HNE) in 71 follicular thyroid adenoma (FTA), 45 papillary thyroid carcinoma (PTC), and 17 follicular thyroid carcinoma (FTC) and matched normal thyroid tissue. RESULTS: Cytoplasmic 8-oxo-dG and 4-HNE expression was significantly higher in FTA, FTC, and PTC tissue compared to matched normal tissue (all p values < .001). Similarly, elevated nuclear levels of 8-oxo-dG were seen in all in FTA, FTC, and PTC tissue compared to matched normal (p values < .07, < .001, < .001, respectively). In contrast, a higher level of 4-HNE expression was detected in normal thyroid tissue compared with matched tumor tissue (p < .001 for all groups). Comparing all 3 groups, 4-HNE levels were higher than 8-oxo-dG levels (p < .001 for all groups) except that cytoplasmic levels of 8-oxo-dG were higher than 4-HNE in all (p < .001). These results were independent of proliferation status. CONCLUSION: High levels of DNA damage and lipid peroxidation in benign and malignant thyroid neoplasia indicates this damage is an early event that may influence disease progression.

  6. Salicylic acid-induced superoxide generation catalyzed by plant peroxidase in hydrogen peroxide-independent manner.

    Science.gov (United States)

    Kimura, Makoto; Kawano, Tomonori

    2015-01-01

    It has been reported that salicylic acid (SA) induces both immediate spike and long lasting phases of oxidative burst represented by the generation of reactive oxygen species (ROS) such as superoxide anion radical (O2(•-)). In general, in the earlier phase of oxidative burst, apoplastic peroxidase are likely involved and in the late phase of the oxidative burst, NADPH oxidase is likely involved. Key signaling events connecting the 2 phases of oxidative burst are calcium channel activation and protein phosphorylation events. To date, the known earliest signaling event in response to exogenously added SA is the cell wall peroxidase-catalyzed generation of O2(•-) in a hydrogen peroxide (H2O2)-dependent manner. However, this model is incomplete since the source of the initially required H2O2 could not be explained. Based on the recently proposed role for H2O2-independent mechanism for ROS production catalyzed by plant peroxidases (Kimura et al., 2014, Frontiers in Plant Science), we hereby propose a novel model for plant peroxidase-catalyzed oxidative burst fueled by SA.

  7. Framing car fuel efficiency : linearity heuristic for fuel consumption and fuel-efficiency ratings

    NARCIS (Netherlands)

    Schouten, T.M.; Bolderdijk, J.W.; Steg, L.

    2014-01-01

    People are sensitive to the way information on fuel efficiency is conveyed. When the fuel efficiency of cars is framed in terms of fuel per distance (FPD; e.g. l/100 km), instead of distance per units of fuel (DPF; e.g. km/l), people have a more accurate perception of potential fuel savings. People

  8. 77 FR 13009 - Regulation of Fuels and Fuel Additives: Identification of Additional Qualifying Renewable Fuel...

    Science.gov (United States)

    2012-03-05

    ... AGENCY 40 CFR Part 80 RIN 2060-AR07 Regulation of Fuels and Fuel Additives: Identification of Additional Qualifying Renewable Fuel Pathways Under the Renewable Fuel Standard Program AGENCY: Environmental Protection... January 5, 2012 to amend the Renewable Fuel Standard program regulations. Because EPA received...

  9. www.FuelEconomy.gov

    Data.gov (United States)

    U.S. Environmental Protection Agency — FuelEconomy.gov provides comprehensive information about vehicles' fuel economy. The official U.S. government site for fuel economy information, it is operated by...

  10. Improved hybrid rocket fuel

    Science.gov (United States)

    Dean, David L.

    1995-01-01

    McDonnell Douglas Aerospace, as part of its Independent R&D, has initiated development of a clean burning, high performance hybrid fuel for consideration as an alternative to the solid rocket thrust augmentation currently utilized by American space launch systems including Atlas, Delta, Pegasus, Space Shuttle, and Titan. It could also be used in single stage to orbit or as the only propulsion system in a new launch vehicle. Compared to solid propellants based on aluminum and ammonium perchlorate, this fuel is more environmentally benign in that it totally eliminates hydrogen chloride and aluminum oxide by products, producing only water, hydrogen, nitrogen, carbon oxides, and trace amounts of nitrogen oxides. Compared to other hybrid fuel formulations under development, this fuel is cheaper, denser, and faster burning. The specific impulse of this fuel is comparable to other hybrid fuels and is between that of solids and liquids. The fuel also requires less oxygen than similar hybrid fuels to produce maximum specific impulse, thus reducing oxygen delivery system requirements.

  11. Durable fuel electrode

    DEFF Research Database (Denmark)

    2017-01-01

    the composite. The invention also relates to the use of the composite as a fuel electrode, solid oxide fuel cell, and/or solid oxide electrolyser. The invention discloses a composite for an electrode, comprising a three-dimensional network of dispersed metal particles, stabilised zirconia particles and pores...

  12. Toward sustainable fuel cells

    DEFF Research Database (Denmark)

    Stephens, Ifan; Rossmeisl, Jan; Chorkendorff, Ib

    2016-01-01

    to a regular gasoline car. However, current fuel cells require 0.25 g of platinum (Pt) per kilowatt of power (2) as catalysts to drive the electrode reactions. If the entire global annual production of Pt were devoted to fuel cell vehicles, fewer than 10 million vehicles could be produced each year, a mere 10...

  13. MICROBIAL FUEL CELL

    DEFF Research Database (Denmark)

    2008-01-01

    A novel microbial fuel cell construction for the generation of electrical energy. The microbial fuel cell comprises: (i) an anode electrode, (ii) a cathode chamber, said cathode chamber comprising an in let through which an influent enters the cathode chamber, an outlet through which an effluent...

  14. Solar Fuel Generator

    Science.gov (United States)

    Lewis, Nathan S. (Inventor); West, William C. (Inventor)

    2017-01-01

    The disclosure provides conductive membranes for water splitting and solar fuel generation. The membranes comprise an embedded semiconductive/photoactive material and an oxygen or hydrogen evolution catalyst. Also provided are chassis and cassettes containing the membranes for use in fuel generation.

  15. Bioethanol: fuel or feedstock?

    DEFF Research Database (Denmark)

    Rass-Hansen, Jeppe; Falsig, Hanne; Jørgensen, Betina

    2007-01-01

    Increasing amounts of bioethanol are being produced from fermentation of biomass, mainly to counteract the continuing depletion of fossil resources and the consequential escalation of oil prices. Today, bioethanol is mainly utilized as a fuel or fuel additive in motor vehicles, but it could also...

  16. Nanofluidic fuel cell

    Science.gov (United States)

    Lee, Jin Wook; Kjeang, Erik

    2013-11-01

    Fuel cells are gaining momentum as a critical component in the renewable energy mix for stationary, transportation, and portable power applications. State-of-the-art fuel cell technology benefits greatly from nanotechnology applied to nanostructured membranes, catalysts, and electrodes. However, the potential of utilizing nanofluidics for fuel cells has not yet been explored, despite the significant opportunity of harnessing rapid nanoscale reactant transport in close proximity to the reactive sites. In the present article, a nanofluidic fuel cell that utilizes fluid flow through nanoporous media is conceptualized and demonstrated for the first time. This transformative concept captures the advantages of recently developed membraneless and catalyst-free fuel cell architectures paired with the enhanced interfacial contact area enabled by nanofluidics. When compared to previously reported microfluidic fuel cells, the prototype nanofluidic fuel cell demonstrates increased surface area, reduced activation overpotential, superior kinetic characteristics, and moderately enhanced fuel cell performance in the high cell voltage regime with up to 14% higher power density. However, the expected mass transport benefits in the high current density regime were constrained by high ohmic cell resistance, which could likely be resolved through future optimization studies.

  17. Are Solar Fuels Sustainable?

    NARCIS (Netherlands)

    Meuwese, Anne

    2012-01-01

    Summary The combined problems of too little fossil fuels to supply the world’s future energy needs and the possible negative environmental effects of carbon dioxide emissions which are coupled to their usage has led to the development of fuels based on s

  18. Fuel cells: Operating flexibly

    Science.gov (United States)

    Lee, Young Moo

    2016-09-01

    Fuel cells typically function well only in rather limited temperature and humidity ranges. Now, a proton exchange membrane consisting of ion pair complexes is shown to enable improved fuel cell performance under a wide range of conditions that are unattainable with conventional approaches.

  19. Are Solar Fuels Sustainable?

    NARCIS (Netherlands)

    Meuwese, Anne

    2012-01-01

    Summary The combined problems of too little fossil fuels to supply the world’s future energy needs and the possible negative environmental effects of carbon dioxide emissions which are coupled to their usage has led to the development of fuels based on s

  20. Solar fuel generator

    Energy Technology Data Exchange (ETDEWEB)

    Lewis, Nathan S.; West, William C.

    2017-01-17

    The disclosure provides conductive membranes for water splitting and solar fuel generation. The membranes comprise an embedded semiconductive/photoactive material and an oxygen or hydrogen evolution catalyst. Also provided are chassis and cassettes containing the membranes for use in fuel generation.

  1. CO2-Neutral Fuels

    NARCIS (Netherlands)

    Goede, A.; van de Sanden, M. C. M.

    2016-01-01

    Mimicking the biogeochemical cycle of System Earth, synthetic hydrocarbon fuels are produced from recycled CO2 and H2O powered by renewable energy. Recapturing CO2 after use closes the carbon cycle, rendering the fuel cycle CO2 neutral. Non-equilibrium molecular CO2 vibrations are key to high energy

  2. CO2-Neutral Fuels

    Science.gov (United States)

    Goede, Adelbert; van de Sanden, Richard

    2016-06-01

    Mimicking the biogeochemical cycle of System Earth, synthetic hydrocarbon fuels are produced from recycled CO2 and H2O powered by renewable energy. Recapturing CO2 after use closes the carbon cycle, rendering the fuel cycle CO2 neutral. Non-equilibrium molecular CO2 vibrations are key to high energy efficiency.

  3. CO2-Neutral Fuels

    NARCIS (Netherlands)

    Goede, A.; van de Sanden, M. C. M.

    2016-01-01

    Mimicking the biogeochemical cycle of System Earth, synthetic hydrocarbon fuels are produced from recycled CO2 and H2O powered by renewable energy. Recapturing CO2 after use closes the carbon cycle, rendering the fuel cycle CO2 neutral. Non-equilibrium molecular CO2 vibrations are key to high energy

  4. PLATINUM AND FUEL CELLS

    Science.gov (United States)

    Platinum requirements for fuel cell vehicles (FCVS) have been identified as a concern and possible problem with FCV market penetration. Platinum is a necessary component of the electrodes of fuel cell engines that power the vehicles. The platinum is deposited on porous electrodes...

  5. Flow injection analysis of organic peroxide explosives using acid degradation and chemiluminescent detection of released hydrogen peroxide.

    Science.gov (United States)

    Mahbub, Parvez; Zakaria, Philip; Guijt, Rosanne; Macka, Mirek; Dicinoski, Greg; Breadmore, Michael; Nesterenko, Pavel N

    2015-10-01

    The applicability of acid degradation of organic peroxides into hydrogen peroxide in a pneumatically driven flow injection system with chemiluminescence reaction with luminol and Cu(2+) as a catalyst (FIA-CL) was investigated for the fast and sensitive detection of organic peroxide explosives (OPEs). The target OPEs included hexamethylene triperoxide diamine (HMTD), triacetone triperoxide (TATP) and methylethyl ketone peroxide (MEKP). Under optimised conditions maximum degradations of 70% and 54% for TATP and HMTD, respectively were achieved at 162 µL min(-1), and 9% degradation for MEKP at 180 µL min(-1). Flow rates were precisely controlled in this single source pneumatic pressure driven multi-channel FIA system by model experiments on mixing of easily detectable component solutions. The linear range for detection of TATP, HMTD and H2O2 was 1-200 µM (r(2)=0.98-0.99) at both flow rates, while that for MEKP was 20-200 µM (r(2)=0.97) at 180 µL min(-1). The detection limits (LODs) obtained were 0.5 µM for TATP, HMTD and H2O2 and 10 µM for MEKP. The detection times varied from 1.5 to 3 min in this FIA-CL system. Whilst the LOD for H2O2 was comparable with those reported by other investigators, the LODs and analysis times for TATP and HMTD were superior, and significantly, this is the first time the detection of MEKP has been reported by FIA-CL.

  6. Hydrogen Fuel Quality

    Energy Technology Data Exchange (ETDEWEB)

    Rockward, Tommy [Los Alamos National Laboratory

    2012-07-16

    For the past 6 years, open discussions and/or meetings have been held and are still on-going with OEM, Hydrogen Suppliers, other test facilities from the North America Team and International collaborators regarding experimental results, fuel clean-up cost, modeling, and analytical techniques to help determine levels of constituents for the development of an international standard for hydrogen fuel quality (ISO TC197 WG-12). Significant progress has been made. The process for the fuel standard is entering final stages as a result of the technical accomplishments. The objectives are to: (1) Determine the allowable levels of hydrogen fuel contaminants in support of the development of science-based international standards for hydrogen fuel quality (ISO TC197 WG-12); and (2) Validate the ASTM test method for determining low levels of non-hydrogen constituents.

  7. Assessment of automotive fuels

    Science.gov (United States)

    Isenberg, G.

    Energy demand all over the world increases steadily and, within the next decades, is almost completely met by fossil fuels. This poses increasing pressure on oil supply and reserves. Concomitant is the concern about environmental pollution, especially by carbon dioxide from fossil fuel combustion, with the risk of global warming. Environmental well-being requires a modified mix of energy sources to emit less carbon dioxide, starting with a move to natural gas and ending with the market penetration of renewable energies. Efforts should focus on advanced oil and gas production and processing technologies and on regeneratively produced fuels like hydrogen or bio-fuels as well. Within the framework of an industrial initiative in Germany, a process of defining one or two alternative fuels was started, to bring them into the market within the next years.

  8. Fuels and Combustion

    KAUST Repository

    Johansson, Bengt

    2016-08-17

    This chapter discusses the combustion processes and the link to the fuel properties that are suitable for them. It describes the basic three concepts, including spark ignition (SI) and compression ignition (CI), and homogeneous charge compression ignition (HCCI). The fuel used in a CI engine is vastly different from that in an SI engine. In an SI engine, the fuel should sustain high pressure and temperature without autoignition. Apart from the dominating SI and CI engines, it is also possible to operate with a type of combustion: autoignition. With HCCI, the fuel and air are fully premixed before combustion as in the SI engine, but combustion is started by the increased pressure and temperature during the compression stroke. Apart from the three combustion processes, there are also a few combined or intermediate concepts, such as Spark-Assisted Compression Ignition (SACI). Those concepts are discussed in terms of the requirements of fuel properties.

  9. Numerical and experimental studies of the hybrid rocket motor with multi-port fuel grain

    Science.gov (United States)

    Tian, Hui; Li, Xintian; Zeng, Peng; Yu, Nanjia; Cai, Guobiao

    2014-03-01

    This paper presents three-dimensional numerical simulations and experimental studies of the hybrid rocket motor with multi-port fuel grain. The numerical model is established based on the Navier-Stokes equations with turbulence, chemical reactions, fuel pyrolysis, and solid-gas boundary interactions. The simulation is performed based on the 98% hydrogen peroxide (HP) and hydroxyl terminated polybutadiene (HTPB) propellant combination. The results indicate that the flow field and fuel regression rate distributions present apparent three-dimensional characteristics. The fuel regression rates decrease first and then gradually increase with the axial location increasing. At a certain cross section, the fuel regression rates are lower in the points on arcs with smaller radius of curvature when the fuel port is a derivable convex figure. Two experiments are carried out on a full scale motor with the simulation one. The working process of the motor is steady and no evident oscillatory combustion is observed. The fuel port profiles before and after tests indicate that the fuel regression rate distributions at the cross section match well with the numerical simulation results.

  10. Rejuvenation of automotive fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Yu Seung; Langlois, David A.

    2016-08-23

    A process for rejuvenating fuel cells has been demonstrated to improve the performance of polymer exchange membrane fuel cells with platinum/ionomer electrodes. The process involves dehydrating a fuel cell and exposing at least the cathode of the fuel cell to dry gas (nitrogen, for example) at a temperature higher than the operating temperature of the fuel cell. The process may be used to prolong the operating lifetime of an automotive fuel cell.

  11. Alternate-Fueled Flight: Halophytes, Algae, Bio-, and Synthetic Fuels

    Science.gov (United States)

    Hendricks, R. C.

    2012-01-01

    Synthetic and biomass fueling are now considered to be near-term aviation alternate fueling. The major impediment is a secure sustainable supply of these fuels at reasonable cost. However, biomass fueling raises major concerns related to uses of common food crops and grasses (some also called "weeds") for processing into aviation fuels. These issues are addressed, and then halophytes and algae are shown to be better suited as sources of aerospace fuels and transportation fueling in general. Some of the history related to alternate fuels use is provided as a guideline for current and planned alternate fuels testing (ground and flight) with emphasis on biofuel blends. It is also noted that lessons learned from terrestrial fueling are applicable to space missions. These materials represent an update (to 2009) and additions to the Workshop on Alternate Fueling Sustainable Supply and Halophyte Summit at Twinsburg, Ohio, October 17 to 18, 2007.

  12. Low contaminant formic acid fuel for direct liquid fuel cell

    Science.gov (United States)

    Masel, Richard I.; Zhu, Yimin; Kahn, Zakia; Man, Malcolm

    2009-11-17

    A low contaminant formic acid fuel is especially suited toward use in a direct organic liquid fuel cell. A fuel of the invention provides high power output that is maintained for a substantial time and the fuel is substantially non-flammable. Specific contaminants and contaminant levels have been identified as being deleterious to the performance of a formic acid fuel in a fuel cell, and embodiments of the invention provide low contaminant fuels that have improved performance compared to known commercial bulk grade and commercial purified grade formic acid fuels. Preferred embodiment fuels (and fuel cells containing such fuels) including low levels of a combination of key contaminants, including acetic acid, methyl formate, and methanol.

  13. Direct Methanol Fuel Cell, DMFC

    Directory of Open Access Journals (Sweden)

    Amornpitoksuk, P.

    2003-09-01

    Full Text Available Direct Methanol Fuel Cell, DMFC is a kind of fuel cell using methanol as a fuel for electric producing. Methanol is low cost chemical substance and it is less harmful than that of hydrogen fuel. From these reasons it can be commercial product. The electrocatalytic reaction of methanol fuel uses Pt-Ru metals as the most efficient catalyst. In addition, the property of membrane and system designation are also effect to the fuel cell efficient. Because of low power of methanol fuel cell therefore, direct methanol fuel cell is proper to use for the energy source of small electrical devices and vehicles etc.

  14. Methods to create thermally oxidized lipids and comparison of analytical procedures to characterize peroxidation.

    Science.gov (United States)

    Liu, P; Kerr, B J; Chen, C; Weber, T E; Johnston, L J; Shurson, G C

    2014-07-01

    The objective of this experiment was to evaluate peroxidation in 4 lipids, each with 3 levels of peroxidation. Lipid sources were corn oil (CN), canola oil (CA), poultry fat, and tallow. Peroxidation levels were original lipids (OL), slow-oxidized lipids (SO), and rapid-oxidized lipids (RO). To produce peroxidized lipids, OL were either heated at 95°C for 72 h to produce SO or heated at 185°C for 7 h to produce RO. Five indicative measurements (peroxide value [PV], p-anisidine value [AnV], thiobarbituric acid reactive substances [TBARS] concentration, hexanal concentration, 4-hydroxynonenal [HNE] concentration, and 2,4-decadienal [DDE]) and 2 predictive tests (active oxygen method [AOM] stability and oxidative stability index [OSI]) were performed to quantify the level of oxidation of the subsequent 12 lipids with varying levels of peroxidation. Analysis showed that a high PV accurately indicated the high level of lipid peroxidation, but a moderate or low PV may be misleading due to the unstable characteristics of hydroperoxides as indicated by the unchanged PV of rapidly oxidized CN and CA compared to their original state (OL). However, additional tests, which measure secondary peroxidation products such as AnV, TBARS, hexanal, HNE, and DDE, may provide a better indication of lipid peroxidation than PV for lipids subjected to a high level of peroxidation. Similar to PV analysis, these tests may also not provide irrefutable information regarding the extent of peroxidation because of the volatile characteristics of secondary peroxidation products and the changing stage of lipid peroxidation. For the predictive tests, AOM accurately reflected the increased lipid peroxidation caused by SO and RO as indicated by the increased AOM value in CN and CA but not in poultry fat and tallow, which indicated a potential disadvantage of the AOM test. Oxidative stability index successfully showed the increased lipid peroxidation caused by SO and RO in all lipids, but it too may

  15. Metallic fuels for advanced reactors

    Science.gov (United States)

    Carmack, W. J.; Porter, D. L.; Chang, Y. I.; Hayes, S. L.; Meyer, M. K.; Burkes, D. E.; Lee, C. B.; Mizuno, T.; Delage, F.; Somers, J.

    2009-07-01

    In the framework of the Generation IV Sodium Fast Reactor Program, the Advanced Fuel Project has conducted an evaluation of the available fuel systems supporting future sodium cooled fast reactors. This paper presents an evaluation of metallic alloy fuels. Early US fast reactor developers originally favored metal alloy fuel due to its high fissile density and compatibility with sodium. The goal of fast reactor fuel development programs is to develop and qualify a nuclear fuel system that performs all of the functions of a conventional fast spectrum nuclear fuel while destroying recycled actinides. This will provide a mechanism for closure of the nuclear fuel cycle. Metal fuels are candidates for this application, based on documented performance of metallic fast reactor fuels and the early results of tests currently being conducted in US and international transmutation fuel development programs.

  16. 2009 Fuel Cell Market Report

    Energy Technology Data Exchange (ETDEWEB)

    Vincent, Bill [Breakthrough Technologies Inst., Washington, DC (United States); Gangi, Jennifer [Breakthrough Technologies Inst., Washington, DC (United States); Curtin, Sandra [Breakthrough Technologies Inst., Washington, DC (United States); Delmont, Elizabeth [Breakthrough Technologies Inst., Washington, DC (United States)

    2010-11-01

    Fuel cells are electrochemical devices that combine hydrogen and oxygen to produce electricity, water, and heat. Unlike batteries, fuel cells continuously generate electricity, as long as a source of fuel is supplied. Moreover, fuel cells do not burn fuel, making the process quiet, pollution-free and two to three times more efficient than combustion. Fuel cell systems can be a truly zero-emission source of electricity, if the hydrogen is produced from non-polluting sources. Global concerns about climate change, energy security, and air pollution are driving demand for fuel cell technology. More than 630 companies and laboratories in the United States are investing $1 billion a year in fuel cells or fuel cell component technologies. This report provides an overview of trends in the fuel cell industry and markets, including product shipments, market development, and corporate performance. It also provides snapshots of select fuel cell companies, including general.

  17. An Investigation into the Effect of Stabiliser Content on the Minimum Characteristic Chamber Length for Homogeneously-Catalysed Hydrogen Peroxide

    Science.gov (United States)

    2007-11-02

    rate. 15. SUBJECT TERMS Hydrogen peroxide, high test peroxide, HTP , rocket grade hydrogen peroxide, RGHP, stabilized hydrogen...homogeneous catalytic decomposition of hydrogen peroxide (often referred to as ’high test peroxide’, or HTP - here used in a general sense to...207< Tc < 516 deg C, depending on the HTP concentration. 3. THE TEST RIG DELTACAT Ltd runs a small test -site in Hampshire, England. Recently

  18. Alkaline fuel cells applications

    Science.gov (United States)

    Kordesch, Karl; Hacker, Viktor; Gsellmann, Josef; Cifrain, Martin; Faleschini, Gottfried; Enzinger, Peter; Fankhauser, Robert; Ortner, Markus; Muhr, Michael; Aronson, Robert R.

    On the world-wide automobile market technical developments are increasingly determined by the dramatic restriction on emissions as well as the regimentation of fuel consumption by legislation. Therefore there is an increasing chance of a completely new technology breakthrough if it offers new opportunities, meeting the requirements of resource preservation and emission restrictions. Fuel cell technology offers the possibility to excel in today's motive power techniques in terms of environmental compatibility, consumer's profit, costs of maintenance and efficiency. The key question is economy. This will be decided by the costs of fuel cell systems if they are to be used as power generators for future electric vehicles. The alkaline hydrogen-air fuel cell system with circulating KOH electrolyte and low-cost catalysed carbon electrodes could be a promising alternative. Based on the experiences of Kordesch [K. Kordesch, Brennstoffbatterien, Springer, Wien, 1984, ISBN 3-387-81819-7; K. Kordesch, City car with H 2-air fuel cell and lead-battery, SAE Paper No. 719015, 6th IECEC, 1971], who operated a city car hybrid vehicle on public roads for 3 years in the early 1970s, improved air electrodes plus new variations of the bipolar stack assembly developed in Graz are investigated. Primary fuel choice will be a major issue until such time as cost-effective, on-board hydrogen storage is developed. Ammonia is an interesting option. The whole system, ammonia dissociator plus alkaline fuel cell (AFC), is characterised by a simple design and high efficiency.

  19. New approaches to reprocessing of oxide nuclear fuel.

    Science.gov (United States)

    Myasoedov, B F; Kulyako, Yu M

    Dissolution of UO2, U3O8, and solid solutions of actinides in UO2 in subacid aqueous solutions (pH 0.9-1.4) of Fe(III) nitrate was studied. Complete dissolution of the oxides is attained at a molar ratio of ferric nitrate to uranium of 1.6. During this process actinides pass into the solution in the form of U(VI), Np(V), Pu(III), and Am(III). In the solutions obtained U(VI) is stable both at room temperature and at elevated temperatures (60 °C), and at high U concentrations (up to 300 mg mL(-1)). Behavior of fission products corresponding to spent nuclear fuel of a WWER-1000 reactor in the process of dissolution the simulated spent nuclear fuel in ferric nitrate solutions was studied. Cs, Sr, Ba, Y, La, and Ce together with U pass quantitatively from the fuel into the solution, whereas Mo, Tc, and Ru remain in the resulting insoluble precipitate of basic Fe salt and do not pass into the solution. Nd, Zr, and Pd pass into the solution by approximately 50 %. The recovery of U or jointly U + Pu from the dissolution solution of the oxide nuclear fuel is performed by precipitation of their peroxides, which allows efficient separation of actinides from residues of fission products and iron.

  20. Application of Microwave Technology for Desulfurization of Diesel Fuel

    Institute of Scientific and Technical Information of China (English)

    Li Ping; Zhao Shanlin; Kong Lingzhao; Li Jiandong; Zhai Yuchun

    2004-01-01

    The microwave technology was introduced for the desulfurization of diesel fuel. The atmosphericsecond side-cut diesel fraction, which was supplied by Liaohe Petrochemical Company, was desulfurized by anoxidation process under microwave irradiation. Hydrogen peroxide (H2O2), can oxidize the sulfur compounds indiesel fuel selectively and convert them into sulfones. Based on the rule of dissolution by similar substances,these sulfones are removed from diesel fuel because they could be dissolved in solvent phase. So the sulfurcontent of diesel fuel is decreased. The influence of the concentration of oxidizing reagent, solvent phase to oilphase volume ratio (S/O), irradiation pressure, irradiation time, and the irradiation power have been investigated.The optimum conditions for the refining process was determined. The sulfur removal rate was 59.7% under theoptimum conditions of 8%H2O2, S/O=0.25, 0.05MPa, 6 min, and 375W, respectively. When no microwave irradia-tion was applied, the removal rate was 11.5% only.

  1. Direct borohydride fuel cell using Ni-based composite anodes

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Jia; Sahai, Yogeshwar; Buchheit, Rudolph G. [Department of Materials Science and Engineering, The Ohio State University, 2041 College Rd., Columbus, OH 43210 (United States)

    2010-08-01

    In this study, nickel-based composite anode catalysts consisting of Ni with either Pd on carbon or Pt on carbon (the ratio of Ni:Pd or Ni:Pt being 25:1) were prepared for use in direct borohydride fuel cells (DBFCs). Cathode catalysts used were 1 mg cm{sup -2} Pt/C or Pd electrodeposited on activated carbon cloth. The oxidants were oxygen, oxygen in air, or acidified hydrogen peroxide. Alkaline solution of sodium borohydride was used as fuel in the cell. High power performance has been achieved by DBFC using non-precious metal, Ni-based composite anodes with relatively low anodic loading (e.g., 270 mW cm{sup -2} for NaBH{sub 4}/O{sub 2} fuel cell at 60 C, 665 mW cm{sup -2} for NaBH{sub 4}/H{sub 2}O{sub 2} fuel cell at 60 C). Effects of temperature, oxidant, and anode catalyst loading on the DBFC performance were investigated. The cell was operated for about 100 h and its performance stability was recorded. (author)

  2. Fabric-based alkaline direct formate microfluidic fuel cells.

    Science.gov (United States)

    Domalaon, Kryls; Tang, Catherine; Mendez, Alex; Bernal, Franky; Purohit, Krutarth; Pham, Linda; Haan, John; Gomez, Frank A

    2017-01-12

    Fabric-based microfluidic fuel cells (MFCs) serve as a novel, cost-efficient alternative to traditional FCs and batteries, since fluids naturally travel across fabric via capillary action, eliminating the need for an external pump and lowering production and operation costs. Building on previous research with Y-shaped paper-based MFCs, fabric-based MFCs mitigate fragility and durability issues caused by long periods of fuel immersion. In this study, we describe a microfluidic fabric-based direct formate fuel cell, with 5 M potassium formate and 30% hydrogen peroxide as the anode fuel and cathode oxidant, respectively. Using a two-strip, stacked design, the optimized parameters include the type of encasement, the barrier, and the fabric type. Surface contact of the fabric and laminate sheet expedited flow and respective chemical reactions. The maximum current (22.83 mA/cm(2) ) and power (4.40 mW/cm(2) ) densities achieved with a 65% cotton/35% polyester blend material are a respective 8.7% and 32% higher than previous studies with Y-shaped paper-based MFCs. In series configuration, the MFCs generate sufficient energy to power a handheld calculator, a thermometer, and a spectrum of light-emitting diodes.

  3. Hydrogen vehicle fueling station

    Energy Technology Data Exchange (ETDEWEB)

    Daney, D.E.; Edeskuty, F.J.; Daugherty, M.A. [Los Alamos National Lab., NM (United States)] [and others

    1995-09-01

    Hydrogen fueling stations are an essential element in the practical application of hydrogen as a vehicle fuel, and a number of issues such as safety, efficiency, design, and operating procedures can only be accurately addressed by a practical demonstration. Regardless of whether the vehicle is powered by an internal combustion engine or fuel cell, or whether the vehicle has a liquid or gaseous fuel tank, the fueling station is a critical technology which is the link between the local storage facility and the vehicle. Because most merchant hydrogen delivered in the US today (and in the near future) is in liquid form due to the overall economics of production and delivery, we believe a practical refueling station should be designed to receive liquid. Systems studies confirm this assumption for stations fueling up to about 300 vehicles. Our fueling station, aimed at refueling fleet vehicles, will receive hydrogen as a liquid and dispense it as either liquid, high pressure gas, or low pressure gas. Thus, it can refuel any of the three types of tanks proposed for hydrogen-powered vehicles -- liquid, gaseous, or hydride. The paper discusses the fueling station design. Results of a numerical model of liquid hydrogen vehicle tank filling, with emphasis on no vent filling, are presented to illustrate the usefulness of the model as a design tool. Results of our vehicle performance model illustrate our thesis that it is too early to judge what the preferred method of on-board vehicle fuel storage will be in practice -- thus our decision to accommodate all three methods.

  4. Design package for fuel retrieval system fuel handling tool modification

    Energy Technology Data Exchange (ETDEWEB)

    TEDESCHI, D.J.

    1999-03-17

    This is a design package that contains the details for a modification to a tool used for moving fuel elements during loading of MCO Fuel Baskets for the Fuel Retrieval System. The tool is called the fuel handling tool (or stinger). This document contains requirements, development design information, tests, and test reports.

  5. Design package for fuel retrieval system fuel handling tool modification

    Energy Technology Data Exchange (ETDEWEB)

    TEDESCHI, D.J.

    1998-11-09

    This is a design package that contains the details for a modification to a tool used for moving fuel elements during loading of MCO Fuel Baskets for the Fuel Retrieval System. The tool is called the fuel handling tool (or stinger). This document contains requirements, development design information, tests, and test reports.

  6. FUEL3-D: A Spatially Explicit Fractal Fuel Distribution Model

    Science.gov (United States)

    Russell A. Parsons

    2006-01-01

    Efforts to quantitatively evaluate the effectiveness of fuels treatments are hampered by inconsistencies between the spatial scale at which fuel treatments are implemented and the spatial scale, and detail, with which we model fire and fuel interactions. Central to this scale inconsistency is the resolution at which variability within the fuel bed is considered. Crown...

  7. Heating subsurface formations by oxidizing fuel on a fuel carrier

    Energy Technology Data Exchange (ETDEWEB)

    Costello, Michael; Vinegar, Harold J.

    2012-10-02

    A method of heating a portion of a subsurface formation includes drawing fuel on a fuel carrier through an opening formed in the formation. Oxidant is supplied to the fuel at one or more locations in the opening. The fuel is combusted with the oxidant to provide heat to the formation.

  8. Fuel nozzle tube retention

    Energy Technology Data Exchange (ETDEWEB)

    Cihlar, David William; Melton, Patrick Benedict

    2017-02-28

    A system for retaining a fuel nozzle premix tube includes a retention plate and a premix tube which extends downstream from an outlet of a premix passage defined along an aft side of a fuel plenum body. The premix tube includes an inlet end and a spring support feature which is disposed proximate to the inlet end. The premix tube extends through the retention plate. The spring retention feature is disposed between an aft side of the fuel plenum and the retention plate. The system further includes a spring which extends between the spring retention feature and the retention plate.

  9. Molten carbonate fuel cell

    Science.gov (United States)

    Kaun, T.D.; Smith, J.L.

    1986-07-08

    A molten electrolyte fuel cell is disclosed with an array of stacked cells and cell enclosures isolating each cell except for access to gas manifolds for the supply of fuel or oxidant gas or the removal of waste gas. The cell enclosures collectively provide an enclosure for the array and effectively avoid the problems of electrolyte migration and the previous need for compression of stack components. The fuel cell further includes an inner housing about and in cooperation with the array enclosure to provide a manifold system with isolated chambers for the supply and removal of gases. An external insulated housing about the inner housing provides thermal isolation to the cell components.

  10. Ammonia as a Suitable Fuel for Fuel Cells

    OpenAIRE

    Lan, Rong; Tao, Shanwen

    2014-01-01

    Ammonia, an important basic chemical, is produced at a scale of 150 million tons per year. Half of hydrogen produced in chemical industry is used for ammonia production. Ammonia containing 17.5 wt% hydrogen is an ideal carbon-free fuel for fuel cells. Compared to hydrogen, ammonia has many advantages. In this mini-review, the suitability of ammonia as fuel for fuel cells, the development of different types of fuel cells using ammonia as the fuel and the potential applications of ammonia fuel ...

  11. Ammonia as a suitable fuel for fuel cells

    Directory of Open Access Journals (Sweden)

    Rong eLan

    2014-08-01

    Full Text Available Ammonia, an important basic chemical, is produced at a scale of 150 million tons per year. Half of hydrogen produced in chemical industry is used for ammonia production. Ammonia containing 17.5wt% hydrogen is an ideal carbon-free fuel for fuel cells. Compared to hydrogen, ammonia has many advantages. In this mini-review, the suitability of ammonia as fuel for fuel cells, the development of different types of fuel cells using ammonia as the fuel and the potential applications of ammonia fuel cells are briefly reviewed.

  12. Impact of a Diesel High Pressure Common Rail Fuel System and Onboard Vehicle Storage on B20 Biodiesel Blend Stability

    Energy Technology Data Exchange (ETDEWEB)

    Christensen, Earl; McCormick, Robert L.; Sigelko, Jenny; Johnson, Stuart; Zickmann, Stefan; Lopes, Shailesh; Gault, Roger; Slade, David

    2016-04-01

    Adoption of high-pressure common-rail (HPCR) fuel systems, which subject diesel fuels to higher temperatures and pressures, has brought into question the efficacy of ASTM International specifications for biodiesel and biodiesel blend oxidation stability, as well as the lack of any stability parameter for diesel fuel. A controlled experiment was developed to investigate the impact of a light-duty diesel HPCR fuel system on the stability of 20% biodiesel (B20) blends under conditions of intermittent use and long-term storage in a relatively hot and dry climate. B20 samples with Rancimat induction periods (IPs) near the current 6.0-hour minimum specification (6.5 hr) and roughly double the ASTM specification (13.5 hr) were prepared from a conventional diesel and a highly unsaturated biodiesel. Four 2011 model year Volkswagen Passats equipped with HPCR fuel injection systems were utilized: one on B0, two on B20-6.5 hr, and one on B20-13.5 hr. Each vehicle was operated over a one-hour drive cycle in a hot running loss test cell to initially stress the fuel. The cars were then kept at Volkswagen's Arizona Proving Ground for two (35 degrees C average daily maximum) to six months (26 degrees C average daily maximum). The fuel was then stressed again by running a portion of the one-hour dynamometer drive cycle (limited by the amount of fuel in the tank). Fuel rail and fuel tank samples were analyzed for IP, acid number, peroxide content, polymer content, and ester profile. The HPCR fuel pumps were removed, dismantled, and inspected for deposits or abnormal wear. Analysis of fuels collected during initial dynamometer tests showed no impact of exposure to HPCR conditions. Long-term storage with intermittent use showed that IP remained above 3 hours, acid number below 0.3 mg KOH/g, peroxides low, no change in ester profile, and no production of polymers. Final dynamometer tests produced only small changes in fuel properties. Inspection of the HPCR fuel pumps revealed no

  13. BIOSORPTION OF CONGO RED BY HYDROGEN PEROXIDE TREATED TENDU WASTE

    Directory of Open Access Journals (Sweden)

    G. K. Nagda ، V. S. Ghole

    2009-07-01

    Full Text Available Solid wastes from agro-industrial operations can be recycled as non-conventional adsorbents if they are inert and harmless and reduce the cost of wastewater treatment. Tendu leaf Diospyros melanoxylon is the second largest forest product in India after timber and is exclusively used in making local cigarette called Bidi. Waste leaf cutting remaining after making cigarette was used in present study as a biosorbent for the removal of Congo red dye from aqueous solution. It was treated with hydrogen peroxide to obtain biosorbent with increased adsorption capacity. Batch type experiments were conducted to study the influence of different parameters such as pH, initial dye concentration and dosage of adsorbent on biosorption evaluated. The adsorption occured very fast initially and attains equilibrium within 60 min at pH= 6.2 and the equilibrium attained faster after hydrogen peroxide modification. Kinetic studies showed that the biosorption of Congo red on tendu waste followed pseudo-second-order rate equation. The data fitted well to Langmuir and Freundlich isotherm models. Comparison was done on the extent of biosorption between untreated and treated forms of the tendu waste. The maximum adsorption capacity for untreated tendu waste was found to be 46.95 mg/g, which was enhanced by 2.8 times after hydrogen peroxide treatment and was found to be 134.4 mg/g. The adsorption process was in conformity with Freundlich and Langmuir isotherms for Congo red adsorption from aqueous solution. The study demonstrated use of milder chemical treatment of tendu waste to obtain a biosorbent with enhanced dye removal capacity.

  14. Vapor hydrogen peroxide as alternative to dry heat microbial reduction

    Science.gov (United States)

    Chung, S.; Kern, R.; Koukol, R.; Barengoltz, J.; Cash, H.

    2008-09-01

    The Jet Propulsion Laboratory (JPL), in conjunction with the NASA Planetary Protection Officer, has selected vapor phase hydrogen peroxide (VHP) sterilization process for continued development as a NASA approved sterilization technique for spacecraft subsystems and systems. The goal was to include this technique, with an appropriate specification, in NASA Procedural Requirements 8020.12 as a low-temperature complementary technique to the dry heat sterilization process. The VHP process is widely used by the medical industry to sterilize surgical instruments and biomedical devices, but high doses of VHP may degrade the performance of flight hardware, or compromise material compatibility. The goal for this study was to determine the minimum VHP process conditions for planetary protection acceptable microbial reduction levels. Experiments were conducted by the STERIS Corporation, under contract to JPL, to evaluate the effectiveness of vapor hydrogen peroxide for the inactivation of the standard spore challenge, Geobacillus stearothermophilus. VHP process parameters were determined that provide significant reductions in spore viability while allowing survival of sufficient spores for statistically significant enumeration. In addition to the obvious process parameters of interest: hydrogen peroxide concentration, number of injection cycles, and exposure duration, the investigation also considered the possible effect on lethality of environmental parameters: temperature, absolute humidity, and material substrate. This study delineated a range of test sterilizer process conditions: VHP concentration, process duration, a process temperature range for which the worst case D-value may be imposed, a process humidity range for which the worst case D-value may be imposed, and the dependence on selected spacecraft material substrates. The derivation of D-values from the lethality data permitted conservative planetary protection recommendations.

  15. Efficacy of hydrogen peroxide for treating saprolegniasis in channel catfish

    Science.gov (United States)

    Howe, G.E.; Gingerich, W.H.; Dawson, V.K.; Olson, J.J.

    1999-01-01

    Hatchery-reared fish and their eggs are commonly afflicted with saprolegniasis, a fungal disease that can cause significant losses in production. Fish culturists need safe and effective fungicides to minimize losses and meet production demands. The efficacy of hydrogen peroxide was evaluated for preventing or controlling mortality associated with saprolegniasis in channel catfish Ictalurus punctatus. Saprolegniasis was systematically induced in channel catfish so various therapies could be evaluated in a controlled laboratory environment. Both prophylactic and therapeutic hydrogen peroxide bath treatments of 50, 100, and 150 ??L/L for 1 h were administered every other day for seven total treatments. All untreated positive control fish died of saprolegniasis during the prophylactic and therapeutic tests. Hydrogen peroxide treatments of 150 ??L/L were harmful (relative to lower concentrations) to test fish and resulted in 73-95% mortality. Mortality was attributed to a combination of abrasion, temperature, chemical treatment, and disease stressors. Treatments of 100 ??L/L were less harmful (relatively) but also appeared to contribute to mortality (60-79%). These treatments, however, significantly reduced the incidence of mortality and infection compared with those observed for fish of the positive control or 150-??L/L treatment groups. Overall, treatments of 50 ??L/L were found to be the most safe and effective of those tested. Mortality with this concentration ranged from 16% in therapeutic tests to 41% in prophylactic tests. The statistical model employed estimated that the optimum treatment concentration for preventing or controlling mortality, reducing the incidence of infections, and enhancing the recovery of infected fish was 75 ??L H2O2/L.

  16. DNA damage and mutations induced by arachidonic acid peroxidation.

    Science.gov (United States)

    Lim, Punnajit; Sadre-Bazzaz, Kianoush; Shurter, Jesse; Sarasin, Alain; Termini, John

    2003-12-30

    Endogenous cellular oxidation of omega6-polyunsaturated fatty acids (PUFAs) has long been recognized as a contributing factor in the development of various cancers. The accrual of DNA damage as a result of reaction with free radical and electrophilic aldehyde products of lipid peroxidation is believed to be involved; however, the genotoxic and mutation-inducing potential of specific membrane PUFAs remains poorly defined. In the present study we have examined the ability of peroxidizing arachidonic acid (AA, 20:4omega6) to induce DNA strand breaks, base modifications, and mutations. The time-dependent induction of single-strand breaks and oxidative base modifications by AA in genomic DNA was quantified using denaturing glyoxal gel electrophoresis. Mutation spectra were determined in XP-G fibroblasts and a repair-proficient line corrected for this defect by c-DNA complementation (XP-G(+)). Mutation frequencies were elevated from approximately 5- to 30-fold over the background following reaction of DNA with AA for various times. The XPG gene product was found to be involved in the suppression of mutations after extended reaction of DNA with AA. Arachidonic acid-induced base substitutions were consistent with the presence of both oxidized and aldehyde base adducts in DNA. The frequency of multiple-base substitutions induced by AA was significantly reduced upon correction for the XPG defect (14% vs 2%, P = 0.0015). Evidence is also presented which suggests that the induced frequency of multiple mutations is lesion dependent. These results are compared to published data for mutations stimulated by alpha,beta-unsaturated aldehydes identified as products of lipid peroxidation.

  17. A multiphase interfacial model for the dissolution of spent nuclear fuel

    Science.gov (United States)

    Jerden, James L.; Frey, Kurt; Ebert, William

    2015-07-01

    The Fuel Matrix Dissolution Model (FMDM) is an electrochemical reaction/diffusion model for the dissolution of spent uranium oxide fuel. The model was developed to provide radionuclide source terms for use in performance assessment calculations for various types of geologic repositories. It is based on mixed potential theory and consists of a two-phase fuel surface made up of UO2 and a noble metal bearing fission product phase in contact with groundwater. The corrosion potential at the surface of the dissolving fuel is calculated by balancing cathodic and anodic reactions occurring at the solution interfaces with UO2 and NMP surfaces. Dissolved oxygen and hydrogen peroxide generated by radiolysis of the groundwater are the major oxidizing agents that promote fuel dissolution. Several reactions occurring on noble metal alloy surfaces are electrically coupled to the UO2 and can catalyze or inhibit oxidative dissolution of the fuel. The most important of these is the oxidation of hydrogen, which counteracts the effects of oxidants (primarily H2O2 and O2). Inclusion of this reaction greatly decreases the oxidation of U(IV) and slows fuel dissolution significantly. In addition to radiolytic hydrogen, large quantities of hydrogen can be produced by the anoxic corrosion of steel structures within and near the fuel waste package. The model accurately predicts key experimental trends seen in literature data, the most important being the dramatic depression of the fuel dissolution rate by the presence of dissolved hydrogen at even relatively low concentrations (e.g., less than 1 mM). This hydrogen effect counteracts oxidation reactions and can limit fuel degradation to chemical dissolution, which results in radionuclide source term values that are four or five orders of magnitude lower than when oxidative dissolution processes are operative. This paper presents the scientific basis of the model, the approach for modeling used fuel in a disposal system, and preliminary

  18. Optical sensing of peroxide using ceria nanoparticles via fluorescence quenching technique

    Science.gov (United States)

    Shehata, Nader; Samir, Effat; Gaballah, Soha; Salah, Mohammed

    2016-07-01

    This study introduces the application of ceria nanoparticles (NPs) as an optical sensor for peroxide using fluorescence quenching technique. Our synthesized ceria NPs have the ability to adsorb peroxides via its oxygen vacancies. Ceria NPs solution with added variable concentrations of hydrogen peroxides is exposed through near-UV excitation and the detected visible fluorescent emission is found to be at ˜520 nm. The fluorescent intensity peak is found to be reduced with increasing the peroxide concentrations due to static fluorescence quenching technique. The relative intensity change of the visible fluorescent emission has been reduced to more than 50% at added peroxide concentrations up to 10 wt. %. In order to increase ceria peroxides sensing sensitivity, lanthanide elements such as samarium (Sm) are used as ceria NPs dopant. This research work could be applied further in optical sensors of radicals in biomedical engineering and environmental monitoring.

  19. Combustion Characteristics of Nanoaluminum, Liquid Water, and Hydrogen Peroxide Mixtures

    Science.gov (United States)

    2008-01-01

    test peroxide ( HTP , 85% H2O2) as the oxidizer [22– 26]. Problems with the use of H2O2 systems include its sensitivity to shock and its tendency to...reported that the mix- ture would not self-deflagrate without the addition of the thickening agent into the mixture. At their maximum test pressure, 7...A pycnometer test determined particle density to be 3.205 g/cm3, which is inclusive of the oxide passiva- tion layer (∼3.97 g/cm3), which explains

  20. Petroleum Contaminated Soil Treatment Using Surfactant and Hydrogen Peroxide

    Directory of Open Access Journals (Sweden)

    Ilza Lobo

    2010-12-01

    Full Text Available The process of washing soil with surfactants, sodium lauryl ether sulphate (LESS and sodium lauryl sulphate (SDS was combined with chemical oxidation using hydrogen peroxide, with a view to in situ remediation of clay soil contaminated with hydrocarbons oil. The evaluation of the efficiency of the procedure was the removal of polyaromatic hydrocarbons and the comparison of physical and chemical characteristics of contaminated soil and uncontaminated from the same region. The combination of these two techniques, soil washing and application of an oxidizing agent, presented as a process of effective remediation for soils contaminated with petroleum products in subtropical regions.

  1. Direct synthesis of hydrogen peroxide from plasma-water interactions

    OpenAIRE

    Jiandi Liu; Bangbang He; Qiang Chen; Junshuai Li; Qing Xiong; Guanghui Yue; Xianhui Zhang; Size Yang; Hai Liu; Qing Huo Liu

    2016-01-01

    Hydrogen peroxide (H2O2) is usually considered to be an important reagent in green chemistry since water is the only by-product in H2O2 involved oxidation reactions. Early studies show that direct synthesis of H2O2 by plasma-water interactions is possible, while the factors affecting the H2O2 production in this method remain unclear. Herein, we present a study on the H2O2 synthesis by atmospheric pressure plasma-water interactions. The results indicate that the most important factors for the ...

  2. Lipid peroxidation of plants under microgravity and its simulation

    Science.gov (United States)

    Zhadko, S. I.; Polulyakh, Yu. A.; Vorobyeva, T. V.; Baraboy, V. A.

    1994-08-01

    In series of space experiments a board the biosatellites ``Cosmos 1887'', ``Bion 9'', the orbital stations ``Salut'', ``Mir'' and under clinostating, changes of lipid peroxidation (LPO) and antioxidation activity (AOA) of Chlorella, Haplopappus tissue culture, wheat and pea roots were determined. The changes had a complex fluctuation character three steps of response were established; LPO decreasing accompanied by AOA increase; stabilization LPO⇄AOA balance; secondary LPO activation. Most early and highly amplitude decreasing of LPO were fixed in mitochondria. The rate of response have been increased on multicellular level of plants organization.

  3. HYDROGEN PEROXIDE BLEACHING OF CMP PULP USING MAGNESIUM HYDROXIDE

    Directory of Open Access Journals (Sweden)

    Farhad Zeinaly

    2009-11-01

    Full Text Available Conventional bleaching of hardwood CMP pulp with magnesium hydroxide (Mg(OH2 show significant benefits over bleaching with sodium hydroxide (NaOH under various conditions. Magnesium hydroxide bleaching generate higher optical properties, higher pulp yield and lower effluent COD at the same chemical charge, but the physical properties were found to be similar for both processes. The initial freeness of the bleached pulps and refining value to reach a target freeness (about 350 ml. CSF were more for the Mg(OH2-based process. The residual peroxide of filtrate from the Mg(OH2-based process was very high as compared to conventional bleaching.

  4. 4-Hydroxy-nonenal—A Bioactive Lipid Peroxidation Product

    Directory of Open Access Journals (Sweden)

    Rudolf J. Schaur

    2015-09-01

    Full Text Available This review on recent research advances of the lipid peroxidation product 4-hydroxy-nonenal (HNE has four major topics: I. the formation of HNE in various organs and tissues, II. the diverse biochemical reactions with Michael adduct formation as the most prominent one, III. the endogenous targets of HNE, primarily peptides and proteins (here the mechanisms of covalent adduct formation are described and the (patho- physiological consequences discussed, and IV. the metabolism of HNE leading to a great number of degradation products, some of which are excreted in urine and may serve as non-invasive biomarkers of oxidative stress.

  5. Detection of hydrogen peroxide by lactoperoxidase-mediated dityrosine formation.

    Science.gov (United States)

    Donkó, Agnes; Orient, Anna; Szabó, Pál T; Németh, Gábor; Vántus, Tibor; Kéri, György; Orfi, László; Hunyady, László; Buday, László; Geiszt, Miklós

    2009-05-01

    The aim of this work was to study the dityrosine-forming activity of lactoperoxidase (LPO) and its potential application for measuring hydrogen peroxide (H2O2). It was observed that LPO was able to form dityrosine at low H2O2 concentrations. Since dityrosine concentration could be measured in a simple fluorimetric reaction, this activity of the enzyme was utilized for the measurement of H2O2 production in different systems. These experiments successfully measured the activity of NADPH oxidase 4 (Nox4) by this method. It was concluded that LPO-mediated dityrosine formation offers a simple way for H2O2 measurement.

  6. Organic fuel cells and fuel cell conducting sheets

    Science.gov (United States)

    Masel, Richard I.; Ha, Su; Adams, Brian

    2007-10-16

    A passive direct organic fuel cell includes an organic fuel solution and is operative to produce at least 15 mW/cm.sup.2 when operating at room temperature. In additional aspects of the invention, fuel cells can include a gas remover configured to promote circulation of an organic fuel solution when gas passes through the solution, a modified carbon cloth, one or more sealants, and a replaceable fuel cartridge.

  7. Fuel Cell Power Plants Renewable and Waste Fuels

    Science.gov (United States)

    2011-01-13

    Fuel Cell Power Plants Renewable and Waste Fuels DOE-DOD Workshop Washington, DC. January 13, 2011 reliable, efficient, ultra-clean Report...2011 2. REPORT TYPE 3. DATES COVERED 00-00-2011 to 00-00-2011 4. TITLE AND SUBTITLE Fuel Cell Power Plants Renewable and Waste Fuels 5a. CONTRACT...Approved for public release; distribution unlimited 13. SUPPLEMENTARY NOTES presented at the DOE-DOD Waste-to-Energy using Fuel Cells Workshop held

  8. Advanced Fuels Campaign 2012 Accomplishments

    Energy Technology Data Exchange (ETDEWEB)

    Not Listed

    2012-11-01

    The Advanced Fuels Campaign (AFC) under the Fuel Cycle Research and Development (FCRD) program is responsible for developing fuels technologies to support the various fuel cycle options defined in the DOE Nuclear Energy Research and Development Roadmap, Report to Congress, April 2010. The fiscal year 2012 (FY 2012) accomplishments are highlighted below. Kemal Pasamehmetoglu is the National Technical Director for AFC.

  9. Seventh Edition Fuel Cell Handbook

    Energy Technology Data Exchange (ETDEWEB)

    NETL

    2004-11-01

    Provides an overview of fuel cell technology and research projects. Discusses the basic workings of fuel cells and their system components, main fuel cell types, their characteristics, and their development status, as well as a discussion of potential fuel cell applications.

  10. BIOCHEMICAL FUEL CELLS.

    Science.gov (United States)

    used to evaluate kinetics of alcoholic fermentation . Evaluation of results indicated that 1% ethanol can be generated in 1 hour. One per cent ethanol is the minimum fuel concentration required for this system. (Author)

  11. Fuels and Lubricants Facility

    Data.gov (United States)

    Federal Laboratory Consortium — Modern naval aircraft and turbine-powered craft require reliable and high-quality fuels and lubricants to satisfy the demands imposed upon them for top performance...

  12. Nuclear Fuel Reprocessing

    Energy Technology Data Exchange (ETDEWEB)

    Michael F. Simpson; Jack D. Law

    2010-02-01

    This is an a submission for the Encyclopedia of Sustainable Technology on the subject of Reprocessing Spent Nuclear Fuel. No formal abstract was required for the article. The full article will be attached.

  13. Renewable jet fuel.

    Science.gov (United States)

    Kallio, Pauli; Pásztor, András; Akhtar, M Kalim; Jones, Patrik R

    2014-04-01

    Novel strategies for sustainable replacement of finite fossil fuels are intensely pursued in fundamental research, applied science and industry. In the case of jet fuels used in gas-turbine engine aircrafts, the production and use of synthetic bio-derived kerosenes are advancing rapidly. Microbial biotechnology could potentially also be used to complement the renewable production of jet fuel, as demonstrated by the production of bioethanol and biodiesel for piston engine vehicles. Engineered microbial biosynthesis of medium chain length alkanes, which constitute the major fraction of petroleum-based jet fuels, was recently demonstrated. Although efficiencies currently are far from that needed for commercial application, this discovery has spurred research towards future production platforms using both fermentative and direct photobiological routes. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. Alternative fuel information sources

    Energy Technology Data Exchange (ETDEWEB)

    1994-06-01

    This short document contains a list of more than 200 US sources of information (Name, address, phone number, and sometimes contact) related to the use of alternative fuels in automobiles and trucks. Electric-powered cars are also included.

  15. Hydrogen as a fuel

    Energy Technology Data Exchange (ETDEWEB)

    1979-01-01

    A panel of the Committee on Advanced Energy Storage Systems of the Assembly of Engineering has examined the status and problems of hydrogen manufacturing methods, hydrogen transmission and distribution networks, and hydrogen storage systems. This examination, culminating at a time when rapidly changing conditions are having noticeable impact on fuel and energy availability and prices, was undertaken with a view to determining suitable criteria for establishing the pace, timing, and technical content of appropriate federally sponsored hydrogen R and D programs. The increasing urgency to develop new sources and forms of fuel and energy may well impact on the scale and timing of potential future hydrogen uses. The findings of the panel are presented. Chapters are devoted to hydrogen sources, hydrogen as a feedstock, hydrogen transport and storage, hydrogen as a heating fuel, automotive uses of hydrogen, aircraft use of hydrogen, the fuel cell in hydrogen energy systems, hydrogen research and development evaluation, and international hydrogen programs.

  16. [Influence of ethanol and ethanol-induced lipid peroxidation on the steroidogenic activity of testicles].

    Science.gov (United States)

    Kashko, M F; Khokha, A M; Antsulevich, S N; Doroshkevich, N A; Voronov, P P

    1993-01-01

    Chronic alcohol intoxication results in the diminished testosterone level and activation of lipid peroxidation in rat testes. A significant decrease in 3 beta-hydroxysteroid-hydrogenase and 17-dehydrogenase activity has been observed in microsomes. Analogous shifts have been evoked in vitro by the induction of lipid peroxidation in microsomes. That permitted one to suppose that alcohol-induced alterations in tests are partially mediated by induction of lipid peroxidation.

  17. Efficiency of ciprofloxacin removal by ozonation process with calcium peroxide from aqueous solutions

    OpenAIRE

    A. Rahmani; J. Mehralipour; A. Shabanlo; Majidi, S

    2015-01-01

    Background: Advanced oxidation processes such as catalytic ozonation are efficient for the removal of antibiotics. Calcium peroxide is one of the catalysts that can be used as a source of hydrogen peroxide. Objective: The aim of this study was to determine the efficiency of ciprofloxacin removal by ozonation process with calcium peroxide from aqueous solutions. Methods: This experimental study was conducted in Hamadan University of Medical Sciences, 2013. The process consisted of ciprof...

  18. Fuel nitrogen conversion in solid fuel fired systems

    Energy Technology Data Exchange (ETDEWEB)

    P. Glarborg; A.D. Jensen; J.E. Johnsson [Technical University of Denmark, Lyngby (Denmark). Department of Chemical Engineering

    2003-07-01

    Understanding of the chemical and physical processes that govern formation and destruction of nitrogen oxides (NOx) in combustion of solid fuels continues to be a challenge. There are still unresolved issues that may limit the potential of primary measures for NOx control. In most solid fuel fired systems oxidation of fuel-bound nitrogen constitutes the dominating source of nitrogen oxides. The paper reviews some fundamental aspects of fuel nitrogen conversion in these systems, emphasizing combustion of coal since most previous work deal with this fuel. Results on biomass combustion are also discussed. Homogeneous and heterogeneous pathways in fuel NO formation and destruction are discussed and the effect of fuel characteristics, devolatilization conditions and combustion mode on the oxidation selectivity towards NO and N{sub 2} is evaluated. Results indicate that even under idealized conditions, such as a laminar pulverized-fuel flame, the governing mechanisms for fuel nitrogen conversion are not completely understood. Light gases, tar, char and soot may all be important vehicles for fuel-N conversion, with their relative importance depending on fuel rank and reaction conditions. Oxygen availability and fuel-nitrogen level are major parameters determining the oxidation selectivity of fuel-N towards NO and N{sub 2}, but also the ability of char and soot to reduce NO is potentially important. The impact of fuel/oxidizer mixing pattern on NO formation appears to be less important in solid-fuel flames than in homogeneous flames. 247 refs., 14 figs., 2 tabs.

  19. Vibrating fuel grapple. [LMFBR

    Science.gov (United States)

    Chertock, A.J.; Fox, J.N.; Weissinger, R.B.

    A reactor refueling method is described which utilizes a vibrating fuel grapple for removing spent fuel assemblies from a reactor core. It incorporates a pneumatic vibrator in the grapple head which allows additional withdrawal capability without exceeding the allowable axial force limit. The only moving part in the vibrator is a steel ball, pneumatically driven by a gas, such as argon, around a track, with centrifugal force created by the ball being transmitted through the grapple to the assembly handling socket.

  20. Solar fuels generator

    Energy Technology Data Exchange (ETDEWEB)

    Lewis, Nathan S.; Spurgeon, Joshua M.

    2016-10-25

    The solar fuels generator includes an ionically conductive separator between a gaseous first phase and a second phase. A photoanode uses one or more components of the first phase to generate cations during operation of the solar fuels generator. A cation conduit is positioned provides a pathway along which the cations travel from the photoanode to the separator. The separator conducts the cations. A second solid cation conduit conducts the cations from the separator to a photocathode.

  1. TARDEC Assured Fuels Initiative

    Science.gov (United States)

    2008-05-07

    Objectives • Develop and build two microchannel reactors − FT reactor : convert CO + H2 to long-chain hydrocarbons − Hydrocracker: upgrade FT wax to...present depending on the FT reactor conditions and catalyst used and subsequent upgrade-to-finished fuel processing • Lack of aromatics impacts fuel... Microchannel Processing Technology (MPT) The Technology • Stacks of closely spaced thin plates form microchannels • Process fluids pass through

  2. Nuclear fuel element

    Science.gov (United States)

    Meadowcroft, Ronald Ross; Bain, Alastair Stewart

    1977-01-01

    A nuclear fuel element wherein a tubular cladding of zirconium or a zirconium alloy has a fission gas plenum chamber which is held against collapse by the loops of a spacer in the form of a tube which has been deformed inwardly at three equally spaced, circumferential positions to provide three loops. A heat resistant disc of, say, graphite separates nuclear fuel pellets within the cladding from the plenum chamber. The spacer is of zirconium or a zirconium alloy.

  3. Thermal breeder fuel enrichment zoning

    Science.gov (United States)

    Capossela, Harry J.; Dwyer, Joseph R.; Luce, Robert G.; McCoy, Daniel F.; Merriman, Floyd C.

    1992-01-01

    A method and apparatus for improving the performance of a thermal breeder reactor having regions of higher than average moderator concentration are disclosed. The fuel modules of the reactor core contain at least two different types of fuel elements, a high enrichment fuel element and a low enrichment fuel element. The two types of fuel elements are arranged in the fuel module with the low enrichment fuel elements located between the high moderator regions and the high enrichment fuel elements. Preferably, shim rods made of a fertile material are provided in selective regions for controlling the reactivity of the reactor by movement of the shim rods into and out of the reactor core. The moderation of neutrons adjacent the high enrichment fuel elements is preferably minimized as by reducing the spacing of the high enrichment fuel elements and/or using a moderator having a reduced moderating effect.

  4. EPRI fuel cladding integrity program

    Energy Technology Data Exchange (ETDEWEB)

    Yang, R. [Electric Power Research Institute, Palo Alto, CA (United States)

    1997-01-01

    The objectives of the EPRI fuel program is to supplement the fuel vendor research to assure that utility economic and operational interests are met. To accomplish such objectives, EPRI has conducted research and development efforts to (1) reduce fuel failure rates and mitigate the impact of fuel failures on plant operation, (2) provide technology to extend burnup and reduce fuel cycle cost. The scope of R&D includes fuel and cladding. In this paper, only R&D related to cladding integrity will be covered. Specific areas aimed at improving fuel cladding integrity include: (1) Fuel Reliability Data Base; (2) Operational Guidance for Defective Fuel; (3) Impact of Water Chemistry on Cladding Integrity; (4) Cladding Corrosion Data and Model; (5) Cladding Mechanical Properties; and (6) Transient Fuel Cladding Response.

  5. Hydrogen fuel - Universal energy

    Science.gov (United States)

    Prince, A. G.; Burg, J. A.

    The technology for the production, storage, transmission, and consumption of hydrogen as a fuel is surveyed, with the physical and chemical properties of hydrogen examined as they affect its use as a fuel. Sources of hydrogen production are described including synthesis from coal or natural gas, biomass conversion, thermochemical decomposition of water, and electrolysis of water, of these only electrolysis is considered economicially and technologically feasible in the near future. Methods of production of the large quantities of electricity required for the electrolysis of sea water are explored: fossil fuels, hydroelectric plants, nuclear fission, solar energy, wind power, geothermal energy, tidal power, wave motion, electrochemical concentration cells, and finally ocean thermal energy conversion (OTEC). The wind power and OTEC are considered in detail as the most feasible approaches. Techniques for transmission (by railcar or pipeline), storage (as liquid in underwater or underground tanks, as granular metal hydride, or as cryogenic liquid), and consumption (in fuel cells in conventional power plants, for home usage, for industrial furnaces, and for cars and aircraft) are analyzed. The safety problems of hydrogen as a universal fuel are discussed, noting that they are no greater than those for conventional fuels.

  6. Alternative Fuels: Research Progress

    Directory of Open Access Journals (Sweden)

    Maher A.R. Sadiq Al-Baghdadi

    2013-01-01

    Full Text Available Chapter 1: Pollutant Emissions and Combustion Characteristics of Biofuels and Biofuel/Diesel Blends in Laminar and Turbulent Gas Jet Flames. R. N. Parthasarathy, S. R. Gollahalli Chapter 2: Sustainable Routes for The Production of Oxygenated High-Energy Density Biofuels from Lignocellulosic Biomass. Juan A. Melero, Jose Iglesias, Gabriel Morales, Marta Paniagua Chapter 3: Optical Investigations of Alternative-Fuel Combustion in an HSDI Diesel Engine. T. Huelser, M. Jakob, G. Gruenefeld, P. Adomeit, S. Pischinger Chapter 4: An Insight into Biodiesel Physico-Chemical Properties and Exhaust Emissions Based on Statistical Elaboration of Experimental Data. Evangelos G. Giakoumis Chapter 5: Biodiesel: A Promising Alternative Energy Resource. A.E. Atabani Chapter 6: Alternative Fuels for Internal Combustion Engines: An Overview of the Current Research. Ahmed A. Taha, Tarek M. Abdel-Salam, Madhu Vellakal Chapter 7: Investigating the Hydrogen-Natural Gas Blends as a Fuel in Internal Combustion Engine. ?lker YILMAZ Chapter 8: Conversion of Bus Diesel Engine into LPG Gaseous Engine; Method and Experiments Validation. M. A. Jemni , G. Kantchev , Z. Driss , R. Saaidia , M. S. Abid Chapter 9: Predicting the Combustion Performance of Different Vegetable Oils-Derived Biodiesel Fuels. Qing Shu, ChangLin Yu Chapter 10: Production of Gasoline, Naphtha, Kerosene, Diesel, and Fuel Oil Range Fuels from Polypropylene and Polystyrene Waste Plastics Mixture by Two-Stage Catalytic Degradation using ZnO. Moinuddin Sarker, Mohammad Mamunor Rashid

  7. Nalco Fuel Tech

    Energy Technology Data Exchange (ETDEWEB)

    Michalak, S.

    1995-12-31

    The Nalco Fuel Tech with its seat at Naperville (near Chicago), Illinois, is an engineering company working in the field of technology and equipment for environmental protection. A major portion of NALCO products constitute chemical materials and additives used in environmental protection technologies (waste-water treatment plants, water treatment, fuel modifiers, etc.). Basing in part on the experience, laboratories and RD potential of the mother company, the Nalco Fuel Tech Company developed and implemented in the power industry a series of technologies aimed at the reduction of environment-polluting products of fuel combustion. The engineering solution of Nalco Fuel Tech belong to a new generation of environmental protection techniques developed in the USA. They consist in actions focused on the sources of pollutants, i.e., in upgrading the combustion chambers of power engineering plants, e.g., boilers or communal and/or industrial waste combustion units. The Nalco Fuel Tech development and research group cooperates with leading US investigation and research institutes.

  8. Fuel Class Higher Alcohols

    KAUST Repository

    Sarathy, Mani

    2016-08-17

    This chapter focuses on the production and combustion of alcohol fuels with four or more carbon atoms, which we classify as higher alcohols. It assesses the feasibility of utilizing various C4-C8 alcohols as fuels for internal combustion engines. Utilizing higher-molecular-weight alcohols as fuels requires careful analysis of their fuel properties. ASTM standards provide fuel property requirements for spark-ignition (SI) and compression-ignition (CI) engines such as the stability, lubricity, viscosity, and cold filter plugging point (CFPP) properties of blends of higher alcohols. Important combustion properties that are studied include laminar and turbulent flame speeds, flame blowout/extinction limits, ignition delay under various mixing conditions, and gas-phase and particulate emissions. The chapter focuses on the combustion of higher alcohols in reciprocating SI and CI engines and discusses higher alcohol performance in SI and CI engines. Finally, the chapter identifies the sources, production pathways, and technologies currently being pursued for production of some fuels, including n-butanol, iso-butanol, and n-octanol.

  9. Motor Fuel Excise Taxes

    Energy Technology Data Exchange (ETDEWEB)

    2015-09-01

    A new report from the National Renewable Energy Laboratory (NREL) explores the role of alternative fuels and energy efficient vehicles in motor fuel taxes. Throughout the United States, it is common practice for federal, state, and local governments to tax motor fuels on a per gallon basis to fund construction and maintenance of our transportation infrastructure. In recent years, however, expenses have outpaced revenues creating substantial funding shortfalls that have required supplemental funding sources. While rising infrastructure costs and the decreasing purchasing power of the gas tax are significant factors contributing to the shortfall, the increased use of alternative fuels and more stringent fuel economy standards are also exacerbating revenue shortfalls. The current dynamic places vehicle efficiency and petroleum use reduction polices at direct odds with policies promoting robust transportation infrastructure. Understanding the energy, transportation, and environmental tradeoffs of motor fuel tax policies can be complicated, but recent experiences at the state level are helping policymakers align their energy and environmental priorities with highway funding requirements.

  10. Mechanisms involved in the modulation of astroglial resistance to oxidative stress induced by activated microglia: antioxidative systems, peroxide elimination, radical generation, lipid peroxidation.

    Science.gov (United States)

    Röhl, Claudia; Armbrust, Elisabeth; Herbst, Eva; Jess, Anne; Gülden, Michael; Maser, Edmund; Rimbach, Gerald; Bösch-Saadatmandi, Christine

    2010-05-01

    Microglia and astrocytes are the cellular key players in many neurological disorders associated with oxidative stress and neuroinflammation. Previously, we have shown that microglia activated by lipopolysaccharides (LPS) induce the expression of antioxidative enzymes in astrocytes and render them more resistant to hydrogen peroxide (H2O2). In this study, we examined the mechanisms involved with respect to the cellular action of different peroxides, the ability to detoxify peroxides, and the status of further antioxidative systems. Astrocytes were treated for 3 days with medium conditioned by purified quiescent (microglia-conditioned medium, MCM[-]) or LPS-activated (MCM[+]) microglia. MCM[+] reduced the cytotoxicity of the organic cumene hydroperoxide in addition to that of H2O2. Increased peroxide resistance was not accompanied by an improved ability of astrocytes to remove H2O2 or an increased expression/activity of peroxide eliminating antioxidative enzymes. Neither peroxide-induced radical generation nor lipid peroxidation were selectively affected in MCM[+] treated astrocytes. The glutathione content of peroxide resistant astrocytes, however, was increased and superoxide dismutase and heme oxygenase were found to be upregulated. These changes are likely to contribute to the higher peroxide resistance of MCM[+] treated astrocytes by improving their ability to detoxify reactive oxygen radicals and oxidation products. For C6 astroglioma cells a protective effect of microglia-derived factors could not be observed, underlining the difference of primary cells and cell lines concerning their mechanisms of oxidative stress resistance. Our results indicate the importance of microglial-astroglial cell interactions during neuroinflammatory processes.

  11. Antioxidant action of Moringa oleifera Lam. (drumstick) against antitubercular drugs induced lipid peroxidation in rats.

    Science.gov (United States)

    Ashok Kumar, N; Pari, L

    2003-01-01

    The protective effect of Moringa oleifera Lam. (Moringaceae) on hepatic marker enzymes, lipid peroxidation, and antioxidants was investigated during antitubercular drug (isoniazid, rifampicin, and pyrazinamide)-induced toxicity in rats. Enhanced hepatic marker enzymes and lipid peroxidation of antitubercular drug treatment was accompanied by a significant decrease in the levels of vitamin C, reduced glutathione, superoxide dismutase, catalase, glutathione peroxidase, and glutathione S-transferase. Administration of Moringa oleifera extract and silymarin significantly decreased hepatic marker enzymes and lipid peroxidation with a simultaneous increase in the level of antioxidants. We speculate that Moringa oleifera extract exerts its protective effects by decreasing liver lipid peroxides and enhancing antioxidants.

  12. Singlet oxygen production in the reaction of superoxide with organic peroxides.

    Science.gov (United States)

    MacManus-Spencer, Laura A; Edhlund, Betsy L; McNeill, Kristopher

    2006-01-20

    [reaction: see text] A selective chemiluminescent probe for singlet oxygen has been employed to detect and quantify singlet oxygen in the reactions of superoxide with organic peroxides. The production of singlet oxygen has been quantified in the reaction of superoxide with benzoyl peroxide (BP). No singlet oxygen was detected in the reactions of superoxide with cumyl peroxide, tert-butyl peroxide, or tert-butyl hydroperoxide. On the basis of these results and on the temperature dependence of the reaction, we proposed a mechanism for singlet oxygen formation in the reaction of superoxide with BP.

  13. Catalyst-free activation of peroxides under visible LED light irradiation through photoexcitation pathway.

    Science.gov (United States)

    Gao, Yaowen; Li, Yixi; Yao, Linyu; Li, Simiao; Liu, Jin; Zhang, Hui

    2017-05-05

    Catalysts are known to activate peroxides to generate active radicals (i.e., hydroxyl radical (OH) and sulfate radical (SO4(-))) under certain conditions, but the activation of peroxides in the absence of catalysts under visible light irradiation has been rarely reported. This work demonstrates a catalyst-free activation of peroxides for the generation of OH and/or SO4(-) through photoexcited electron transfer from organic dyes to peroxides under visible LED light irradiation, where Rhodamine B (RhB) and Eosin Y (EY) were selected as model dyes. The formation of OH and/or SO4(-) in the reactions and the electron transfer from the excited dyes to peroxides were validated via electron paramagnetic resonance (EPR), photoluminescence (PL) spectra and cyclic voltammetry (CV). The performance of the peroxide/dye/Vis process was demonstrated to be altered depending on the target substrate. Meanwhile, the peroxide/dye/Vis process was effective for simultaneous decolorization of dyes and production of active radicals under neutral even or basic conditions. The findings of this study clarified a novel photoexcitation pathway for catalyst-free activation of peroxides under visible light irradiation, which could avoid the secondary metal ion (dissolved or leached) pollution from the metal-based catalysts and expand the application range of the peroxide-based catalytic process.

  14. [Activation of lipid peroxidation in the adrenal cortex by metal ions].

    Science.gov (United States)

    Doroshkevich, N A; Antsulevich, S N; Vinogradov, V V

    1988-01-01

    The processes of lipid peroxidation have been studied in bovine adrenal cortex in vitro. The lipid peroxidation rate in this tissue is shown to be dependent on the content of metal ions. EDTA, deferroxamine and penicyllamine inhibit spontaneous lipid peroxidation by 25, 50 and 42%, respectively. The ability to activate the process permits arranging metal ions in the following sequence: Fe2+ greater than Fe3+ greater than Cu2+ greater than Mg2+ greater than Mn2+. The maximum activation of lipid peroxidation is observed at Fe2+ and Fe3+ concentrations within the range of 5 x 10(-6) x 10(-4) M.

  15. Inhibition of glyceraldehyde-3-phosphate dehydrogenase by peptide and protein peroxides generated by singlet oxygen attack

    DEFF Research Database (Denmark)

    Morgan, Philip E; Dean, Roger T; Davies, Michael Jonathan

    2002-01-01

    the active-site thiol of the enzyme and the peroxide. A number of low-molecular-mass compounds including thiols and ascorbate, but not Trolox C, can prevent inhibition by removing the initial peroxide, or species derived from it. In contrast, glutathione reductase and lactate dehydrogenase are poorly......Reaction of certain peptides and proteins with singlet oxygen (generated by visible light in the presence of rose bengal dye) yields long-lived peptide and protein peroxides. Incubation of these peroxides with glyceraldehyde-3-phosphate dehydrogenase, in the absence of added metal ions, results...

  16. Automotive Fuel Processor Development and Demonstration with Fuel Cell Systems

    Energy Technology Data Exchange (ETDEWEB)

    Nuvera Fuel Cells

    2005-04-15

    The potential for fuel cell systems to improve energy efficiency and reduce emissions over conventional power systems has generated significant interest in fuel cell technologies. While fuel cells are being investigated for use in many applications such as stationary power generation and small portable devices, transportation applications present some unique challenges for fuel cell technology. Due to their lower operating temperature and non-brittle materials, most transportation work is focusing on fuel cells using proton exchange membrane (PEM) technology. Since PEM fuel cells are fueled by hydrogen, major obstacles to their widespread use are the lack of an available hydrogen fueling infrastructure and hydrogen's relatively low energy storage density, which leads to a much lower driving range than conventional vehicles. One potential solution to the hydrogen infrastructure and storage density issues is to convert a conventional fuel such as gasoline into hydrogen onboard the vehicle using a fuel processor. Figure 2 shows that gasoline stores roughly 7 times more energy per volume than pressurized hydrogen gas at 700 bar and 4 times more than liquid hydrogen. If integrated properly, the fuel processor/fuel cell system would also be more efficient than traditional engines and would give a fuel economy benefit while hydrogen storage and distribution issues are being investigated. Widespread implementation of fuel processor/fuel cell systems requires improvements in several aspects of the technology, including size, startup time, transient response time, and cost. In addition, the ability to operate on a number of hydrocarbon fuels that are available through the existing infrastructure is a key enabler for commercializing these systems. In this program, Nuvera Fuel Cells collaborated with the Department of Energy (DOE) to develop efficient, low-emission, multi-fuel processors for transportation applications. Nuvera's focus was on (1) developing fuel

  17. A membraneless microscale fuel cell using non-noble catalysts in alkaline solution

    Science.gov (United States)

    Sung, Woosuk; Choi, Jin-Woo

    This paper presents the development of a novel liquid-based microscale fuel cell using non-noble catalysts in an alkaline solution. The developed fuel cell is based on a membraneless structure. The operational complications of a proton exchange membrane lead the development of a fuel cell with the membraneless structure. Non-noble metals with relatively mild catalytic activity, nickel hydroxide and silver oxide, were employed as anode and cathode catalysts to minimize the effect of cross-reactions with the membraneless structure. Along with nickel hydroxide and silver oxide, methanol and hydrogen peroxide were used as a fuel at anode and an oxidant at cathode. With a fuel mixture flow rate of 200 μl min -1, a maximum output power density of 28.73 μW cm -2 was achieved. The developed fuel cell features no proton exchange membrane, inexpensive catalysts, and simple planar structure, which enables high design flexibility and easy integration of the microscale fuel cell into actual microfluidic systems and portable applications.

  18. Outlook for alternative transportation fuels

    Energy Technology Data Exchange (ETDEWEB)

    Gushee, D.E. [Univ. of Illinois, Chicago, IL (United States)

    1996-12-31

    This presentation provides a brief review of regulatory issues and Federal programs regarding alternative fuel use in automobiles. A number of U.S. DOE initiatives and studies aimed at increasing alternative fuels are outlined, and tax incentives in effect at the state and Federal levels are discussed. Data on alternative fuel consumption and alternative fuel vehicle use are also presented. Despite mandates, tax incentives, and programs, it is concluded alternative fuels will have minimal market penetration. 7 refs., 5 tabs.

  19. Deep desulfurization of hydrocarbon fuels

    Science.gov (United States)

    Song, Chunshan [State College, PA; Ma, Xiaoliang [State College, PA; Sprague, Michael J [Calgary, CA; Subramani, Velu [State College, PA

    2012-04-17

    The invention relates to processes for reducing the sulfur content in hydrocarbon fuels such as gasoline, diesel fuel and jet fuel. The invention provides a method and materials for producing ultra low sulfur content transportation fuels for motor vehicles as well as for applications such as fuel cells. The materials and method of the invention may be used at ambient or elevated temperatures and at ambient or elevated pressures without the need for hydrogen.

  20. Effect of Hydrogen Peroxide on the Antibacterial Substantivity of Chlorhexidine

    Directory of Open Access Journals (Sweden)

    Shahriar Shahriari

    2010-01-01

    Full Text Available The purpose of this in vitro study was to assess the effect of hydrogen peroxide on the antibacterial substantivity of chlorhexidine (CHX. Seventy-five dentine tubes prepared from human maxillary central and lateral incisor teeth were used. After contamination with Enterococcus faecalis for 14 days, the specimens were divided into five groups as follows: CHX, H2O2, CHX + H2O2, infected dentine tubes (positive control, and sterile dentine tubes (negative control. Dentine chips were collected with round burs into tryptic soy broth, and after culturing, the number of colony-forming units (CFU was counted. The number of CFU was minimum in the first cultures in all experimental groups, and the results obtained were significantly different from each other at any time period (<.05. At the first culture, the number of CFU in the CHX + H2O2 group was lower than other two groups. At the other experimental periods, the CHX group showed the most effective antibacterial action (<.05. Hydrogen peroxide group showed the worst result at all periods. In each group, the number of CFU increased significantly by time lapse (<.05. In conclusion, H2O2 had no additive effect on the residual antibacterial activity of CHX.

  1. Determination of peracetic acid and hydrogen peroxide in the mixture

    Directory of Open Access Journals (Sweden)

    Bodiroga Milanka

    2002-01-01

    Full Text Available Iodometric and permanganometric titrations were used for determination of peracetic acid and hydrogen peroxide (H2O2 in the mixture. Two procedures were described and compared. Titrations could be done in only one vessel, in the same reaction mixture, when iodometric titration of peracetic acid was continued after the permanganometric titration of H2O2, (procedure A. Peracetic acid and H2O2, as oxidizing agents, reacted with potassium iodide in an acid medium, evolving iodine. This reaction was used for the quantitative iodometric determination of total peroxide in procedure B. H2O2 reacted with potassium permanganate in acid medium, but peracetic acid did not react under the same conditions. That made possible the selective permanganometric determination of H2O2 in the presence of peracetic acid. The procedure B was performed in two titration vessels (KV=3.4% for peracetic acid, 0.6% for H2O2. The procedure A for iodometric determination of peracetic acid in one titration vessel after permanganometric titration of H2O2 was recommended (KV=2,5% for peracetic acid, 0,45% for H2O2.

  2. Formulation and characterization of benzoyl peroxide gellified emulsions.

    Science.gov (United States)

    Thakur, Naresh Kumar; Bharti, Pratibha; Mahant, Sheefali; Rao, Rekha

    2012-01-01

    The present investigation was carried out with the objective of formulating a gellified emulsion of benzoyl peroxide, an anti-acne agent. The formulations were prepared using four different vegetable oils, viz. almond oil, jojoba oil, sesame oil, and wheat germ oil, owing to their emollient properties. The idea was to overcome the skin irritation and dryness caused by benzoyl peroxide, making the formulation more tolerable. The gellified emulsions were characterized for their homogeneity, rheology, spreadability, drug content, and stability. In vitro permeation studies were performed to check the drug permeation through rat skin. The formulations were evaluated for their antimicrobial activity, as well as their acute skin irritation potential. The results were compared with those obtained for the marketed formulation. Later, the histopathological examination of the skin treated with various formulations was carried out. Formulation F3 was found to have caused a very mild dysplastic change to the epidermis. On the other hand, the marketed formulation led to the greatest dysplastic change. Hence, it was concluded that formulation F3, containing sesame oil (6%w/w), was the optimized formulation. It exhibited the maximum drug release and anti-microbial activity, in addition to the least skin irritation potential.

  3. Efficacy of Mouthwashes Containing Hydrogen Peroxide on Tooth Whitening

    Directory of Open Access Journals (Sweden)

    Muhammet Karadas

    2015-01-01

    Full Text Available The aim of this study was to analyze the efficacy of mouthwashes containing hydrogen peroxide compared with 10% carbamide peroxide (CP gel. Fifty enamel-dentin samples were obtained from bovine incisors and then stained in a tea solution. The stained samples were randomly divided into five groups according to the whitening product applied (n=10: AS: no whitening (negative control, with the samples stored in artificial saliva; CR: Crest 3D White mouthwash; LS: Listerine Whitening mouthwash; SC: Scope White mouthwash; and OP group: 10% CP Opalescence PF (positive control. Color measurements were carried out with a spectrophotometer before staining, after staining, and on the 7th, 28th, and 56th day of the whitening period. The data were analyzed using two-way analysis of variance followed by a Tukey post hoc test. The color change (ΔE was significantly greater in all the groups compared to that of the AS group. After 56 days, no significant differences were found among the mouthwash products with respect to color change (P>0.05. The whiteness of the teeth treated with the mouthwashes increased significantly over time. Nevertheless, the color change achieved with the mouthwashes was significantly lower than that achieved with the 10% CP at-home bleaching gel.

  4. Role of dyslipidaemia and lipid peroxidation in pregnancy induced hypertension

    Directory of Open Access Journals (Sweden)

    Saxena S

    2015-07-01

    Full Text Available Background: Pregnancy induced hypertension (PIH contributes greatly to maternal morbidity and mortality. Altered lipid profile and increased lipid peroxidation activate endothelial dysfunction and atherothrombosis leading to PIH. Therefore, estimation of lipid profile with serum malondialdehyde (MDA in pregnancy may be helpful in predicting the development of PIH and further progression. Material and methods: In this prospective case-control study, serum lipid profile and MDA were estimated in 70 PIH subjects with gestational hypertension, pre-eclampsia, eclampsia; and 70 normotensive pregnant women aged 18 - 40 years, with gestational age of over 20 weeks. Results: A statistically significant higher serum total cholesterol, very low density lipoprotein cholesterol (VLDL-C, low density lipoprotein cholesterol (LDL-C, triglycerides (TG, TC/HDL-C, LDL-C/HDL-C and MDA, and a significantly lower HDL-C was noted in PIH subjects as compared to control subjects. When compared with the severity of PIH, all the lipoproteins (except HDL-C along with MDA were found to be higher in women with eclampsia when compared with gestational hypertension, pre-eclampsia and normotensive pregnant women. Conclusions: An abnormal lipid metabolism along with oxidative stress may add to the promotion of vascular dysfunction leading to PIH. Lipoproteins and MDA alter significantly in eclampsia. Therefore, during pregnancy, early diagnosis and management of dyslipidaemia may prevent lipid peroxidation and progression of PIH thereby preventing obstetric complications.

  5. Thermal Hazard Evaluation of Lauroyl Peroxide Mixed with Nitric Acid

    Directory of Open Access Journals (Sweden)

    Chi-Min Shu

    2012-07-01

    Full Text Available Many thermal runaway incidents have been caused by organic peroxides due to the peroxy group, –O–O–, which is essentially unstable and active. Lauroyl peroxide (LPO is also sensitive to thermal sources and is incompatible with many materials, such as acids, bases, metals, and ions. From the thermal decomposition reaction of various concentrations of nitric acid (HNO3 (from lower to higher concentrations with LPO, experimental data were obtained as to its exothermic onset temperature (T0, heat of decomposition (ΔHd, isothermal time to maximum rate (TMRiso, and other safety parameters exclusively for loss prevention of runaway reactions and thermal explosions. As a novel finding, LPO mixed with HNO3 can produce the detonation product of 1-nitrododecane. We used differential scanning calorimetry (DSC, thermal activity monitor III (TAM III, and gas chromatography/mass spectrometer (GC/MS analyses of the reactivity for LPO and itself mixed with HNO3 to corroborate the decomposition reactions and reaction mechanisms in these investigations.

  6. Hydrogen Peroxide and Sodium Transport in the Lung and Kidney

    Directory of Open Access Journals (Sweden)

    V. Shlyonsky

    2016-01-01

    Full Text Available Renal and lung epithelial cells are exposed to some significant concentrations of H2O2. In urine it may reach 100 μM, while in the epithelial lining fluid in the lung it is estimated to be in micromolar to tens-micromolar range. Hydrogen peroxide has a stimulatory action on the epithelial sodium channel (ENaC single-channel activity. It also increases stability of the channel at the membrane and slows down the transcription of the ENaC subunits. The expression and the activity of the channel may be inhibited in some other, likely higher, oxidative states of the cell. This review discusses the role and the origin of H2O2 in the lung and kidney. Concentration-dependent effects of hydrogen peroxide on ENaC and the mechanisms of its action have been summarized. This review also describes outlooks for future investigations linking oxidative stress, epithelial sodium transport, and lung and kidney function.

  7. INTERACTION OF ALDEHYDES DERIVED FROM LIPID PEROXIDATION AND MEMBRANE PROTEINS.

    Directory of Open Access Journals (Sweden)

    Stefania ePizzimenti

    2013-09-01

    Full Text Available A great variety of compounds are formed during lipid peroxidation of polyunsaturated fatty acids of membrane phospholipids. Among them, bioactive aldehydes, such as 4-hydroxyalkenals, malondialdehyde (MDA and acrolein, have received particular attention since they have been considered as toxic messengers that can propagate and amplify oxidative injury. In the 4-hydroxyalkenal class, 4-hydroxy-2-nonenal (HNE is the most intensively studied aldehyde, in relation not only to its toxic function, but also to its physiological role. Indeed, HNE can be found at low concentrations in human tissues and plasma and participates in the control of biological processes, such as signal transduction, cell proliferation and differentiation. Moreover, at low doses, HNE exerts an anti-cancer effect, by inhibiting cell proliferation, angiogenesis, cell adhesion and by inducing differentiation and/or apoptosis in various tumor cell lines. It is very likely that a substantial fraction of the effects observed in cellular responses, induced by HNE and related aldehydes, be mediated by their interaction with proteins, resulting in the formation of covalent adducts or in the modulation of their expression and/or activity. In this review we focus on membrane proteins affected by lipid peroxidation-derived aldehydes, under physiological and pathological conditions.

  8. Photodecomposition of hydrogen peroxide in highly saline aqueous medium

    Directory of Open Access Journals (Sweden)

    A. J. Luna

    2006-09-01

    Full Text Available The photodecomposition of hydrogen peroxide was performed in highly saline aqueous medium (60 g.L-1 of NaCl. The Fe3+/H2O2/NaCl/UV system was tested at temperatures from 20 to 50 ºC, while the intervals of concentration of Fe3+ and H2O2 were 1 to 2.5 mM and 230 to 630 mM, respectively. It is known from the literature that chloride is an inhibitor of the oxidation of organic compound in aqueous medium, but this effect has not been observed to be expressive for hydrogen peroxide. Despite this result, experiments were conducted in presence of high concentration of salt (60 g.L-1, emulating the agrochemical process condition. The series of measurements has been evaluated and correlated. Thermal and photochemical dependencies were described satisfactorily by a simplified kinetic model. The apparent activation energy was estimated to be 27.6 kJ.mol-1.

  9. ALKALINE PEROXIDE MECHANICAL PULPING OF NOVEL BRAZILIAN EUCALYPTUS HYBRIDS

    Directory of Open Access Journals (Sweden)

    Marcelo Coelho dos Santos Muguet,

    2012-07-01

    Full Text Available Eucalyptus wood is among the most important biomass resource in the world. Wood mechanical defibration and fibrillation are energy-intensive processes utilized not only to produce pulp for papermaking, but also to produce reinforcement fibers for biocomposites, nanocellulose, or pretreat lignocellulosic material for biofuels production. The structural features of different Eucalyptus hybrids affecting the refining energy consumption and produced fiber furnish properties were evaluated. The defibration and fiber development were performed using an alkaline peroxide mechanical pulping (APMP process, which included chelation followed by an alkaline peroxide treatment prior to wood chip defibration. Despite the similar wood densities and chemical compositions of different Eucalyptus hybrids, there was a clear difference in the extent of defibration and fibrillation among the hybrids. The high energy consumption was related to a high amount of guaiacyl lignin. This observation is of major importance when considering the optimal wood hybrids for mechanical wood defibration and for understanding the fundamental phenomena taking place in chemi-mechanical defibration of wood.

  10. 78 FR 14190 - Regulation of Fuels and Fuel Additives: Identification of Additional Qualifying Renewable Fuel...

    Science.gov (United States)

    2013-03-05

    ... AGENCY 40 CFR Part 80 RIN 2060-AR07 Regulation of Fuels and Fuel Additives: Identification of Additional Qualifying Renewable Fuel Pathways Under the Renewable Fuel Standard Program AGENCY: Environmental Protection Agency (EPA). ACTION: Final rule. SUMMARY: EPA is issuing a final rule identifying additional...

  11. Apparatus and method for grounding compressed fuel fueling operator

    Science.gov (United States)

    Cohen, Joseph Perry; Farese, David John; Xu, Jianguo

    2002-06-11

    A safety system for grounding an operator at a fueling station prior to removing a fuel fill nozzle from a fuel tank upon completion of a fuel filling operation is provided which includes a fuel tank port in communication with the fuel tank for receiving and retaining the nozzle during the fuel filling operation and a grounding device adjacent to the fuel tank port which includes a grounding switch having a contact member that receives physical contact by the operator and where physical contact of the contact member activates the grounding switch. A releasable interlock is included that provides a lock position wherein the nozzle is locked into the port upon insertion of the nozzle into the port and a release position wherein the nozzle is releasable from the port upon completion of the fuel filling operation and after physical contact of the contact member is accomplished.

  12. Progress of the DUPIC Fuel Compatibility Analysis (IV) - Fuel Performance

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Hang Bok; Ryu, Ho Jin; Roh, Gyu Hong; Jeong, Chang Joon; Park, Chang Je; Song, Kee Chan; Lee, Jung Won

    2005-10-15

    This study describes the mechanical compatibility of the direct use of spent pressurized water reactor (PWR) fuel in Canada deuterium uranium (CANDU) reactors (DUPIC) fuel, when it is loaded into a CANDU reactor. The mechanical compatibility can be assessed for the fuel management, primary heat transport system, fuel channel, and the fuel handling system in the reactor core by both the experimental and analytic methods. Because the physical dimensions of the DUPIC fuel bundle adopt the CANDU flexible (CANFLEX) fuel bundle design which has already been demonstrated for a commercial use in CANDU reactors, the experimental compatibility analyses focused on the generation of material property data and the irradiation tests of the DUPIC fuel, which are used for the computational analysis. The intermediate results of the mechanical compatibility analysis have shown that the integrity of the DUPIC fuel is mostly maintained under the high power and high burnup conditions even though some material properties like the thermal conductivity is a little lower compared to the uranium fuel. However it is required to slightly change the current DUPIC fuel design to accommodate the high internal pressure of the fuel element. It is also strongly recommended to perform more irradiation tests of the DUPIC fuel to accumulate a database for the demonstration of the DUPIC fuel performance in the CANDU reactor.

  13. NASA Alternative Aviation Fuel Research

    Science.gov (United States)

    Anderson, B. E.; Beyersdorf, A. J.; Thornhill, K. L., II; Moore, R.; Shook, M.; Winstead, E.; Ziemba, L. D.; Crumeyrolle, S.

    2015-12-01

    We present an overview of research conducted by NASA Aeronautics Research Mission Directorate to evaluate the performance and emissions of "drop-in" alternative jet fuels, highlighting experiment design and results from the Alternative Aviation Fuel Experiments (AAFEX-I & -II) and Alternative Fuel-Effects on Contrails and Cruise Emissions flight series (ACCESS-I & II). These projects included almost 100 hours of sampling exhaust emissions from the NASA DC-8 aircraft in both ground and airborne operation and at idle to takeoff thrust settings. Tested fuels included Fischer-Tropsch (FT) synthetic kerosenes manufactured from coal and natural-gas feedstocks; Hydro-treated Esters and Fatty-Acids (HEFA) fuels made from beef-tallow and camelina-plant oil; and 50:50 blends of these alternative fuels with Jet A. Experiments were also conducted with FT and Jet A fuels doped with tetrahydrothiophene to examine the effects of fuel sulfur on volatile aerosol and contrail formation and microphysical properties. Results indicate that although the absence of aromatic compounds in the alternative fuels caused DC-8 fuel-system leaks, the fuels did not compromise engine performance or combustion efficiency. And whereas the alternative fuels produced only slightly different gas-phase emissions, dramatic reductions in non-volatile particulate matter (nvPM) emissions were observed when burning the pure alternative fuels, particularly at low thrust settings where particle number and mass emissions were an order of magnitude lower than measured from standard jet fuel combustion; 50:50 blends of Jet A and alternative fuels typically reduced nvPM emissions by ~50% across all thrust settings. Alternative fuels with the highest hydrogen content produced the greatest nvPM reductions. For Jet A and fuel blends, nvPM emissions were positively correlated with fuel aromatic and naphthalene content. Fuel sulfur content regulated nucleation mode aerosol number and mass concentrations within aging

  14. Hydrogen-enriched fuels

    Energy Technology Data Exchange (ETDEWEB)

    Roser, R. [NRG Technologies, Inc., Reno, NV (United States)

    1998-08-01

    NRG Technologies, Inc. is attempting to develop hardware and infrastructure that will allow mixtures of hydrogen and conventional fuels to become viable alternatives to conventional fuels alone. This commercialization can be successful if the authors are able to achieve exhaust emission levels of less than 0.03 g/kw-hr NOx and CO; and 0.15 g/kw-hr NMHC at full engine power without the use of exhaust catalysts. The major barriers to achieving these goals are that the lean burn regimes required to meet exhaust emissions goals reduce engine output substantially and tend to exhibit higher-than-normal total hydrocarbon emissions. Also, hydrogen addition to conventional fuels increases fuel cost, and reduces both vehicle range and engine output power. Maintaining low emissions during transient driving cycles has not been demonstrated. A three year test plan has been developed to perform the investigations into the issues described above. During this initial year of funding research has progressed in the following areas: (a) a cost effective single-cylinder research platform was constructed; (b) exhaust gas speciation was performed to characterize the nature of hydrocarbon emissions from hydrogen-enriched natural gas fuels; (c) three H{sub 2}/CH{sub 4} fuel compositions were analyzed using spark timing and equivalence ratio sweeping procedures and finally; (d) a full size pick-up truck platform was converted to run on HCNG fuels. The testing performed in year one of the three year plan represents a baseline from which to assess options for overcoming the stated barriers to success.

  15. Catalyst-free activation of peroxides under visible LED light irradiation through photoexcitation pathway

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Yaowen [Department of Environmental Engineering, Wuhan University, Wuhan, 430079 (China); Shenzhen Research Institute of Wuhan University, Shenzhen, 518057 (China); Li, Yixi; Yao, Linyu; Li, Simiao; Liu, Jin [Department of Environmental Engineering, Wuhan University, Wuhan, 430079 (China); Zhang, Hui, E-mail: eeng@whu.edu.cn [Department of Environmental Engineering, Wuhan University, Wuhan, 430079 (China); Shenzhen Research Institute of Wuhan University, Shenzhen, 518057 (China)

    2017-05-05

    Highlights: • Persulfate could decolorize Rhodamine B (RhB) directly via non-radical reactions. • LED lamps emitting white light were utilized as the visible light source. • Dyes could activate peroxides through photoexcitation pathway. • Decolorization of dyes and production of radicals were achieved simultaneously. • The catalyst-free peroxide/dye/Vis process was effective in a broad pH range. - Abstract: Catalysts are known to activate peroxides to generate active radicals (i.e., hydroxyl radical (·OH) and sulfate radical (SO{sub 4}·{sup −})) under certain conditions, but the activation of peroxides in the absence of catalysts under visible light irradiation has been rarely reported. This work demonstrates a catalyst-free activation of peroxides for the generation of ·OH and/or SO{sub 4}·{sup −} through photoexcited electron transfer from organic dyes to peroxides under visible LED light irradiation, where Rhodamine B (RhB) and Eosin Y (EY) were selected as model dyes. The formation of ·OH and/or SO{sub 4}·{sup −} in the reactions and the electron transfer from the excited dyes to peroxides were validated via electron paramagnetic resonance (EPR), photoluminescence (PL) spectra and cyclic voltammetry (CV). The performance of the peroxide/dye/Vis process was demonstrated to be altered depending on the target substrate. Meanwhile, the peroxide/dye/Vis process was effective for simultaneous decolorization of dyes and production of active radicals under neutral even or basic conditions. The findings of this study clarified a novel photoexcitation pathway for catalyst-free activation of peroxides under visible light irradiation, which could avoid the secondary metal ion (dissolved or leached) pollution from the metal-based catalysts and expand the application range of the peroxide-based catalytic process.

  16. Lipid peroxidation of rabbit small intestinal microvillus membrane vesicles by iron complexes.

    Science.gov (United States)

    Fodor, I; Marx, J J

    1988-07-01

    Fe(II)- and Fe(III)-induced lipid peroxidation of rabbit small intestinal microvillus membrane vesicles was studied. Ferrous ammonium sulphate, ferrous ascorbate at a molar ratio of 10:1, and ferric citrate, at molar ratios of 1:1 and 1:20, did not stimulate lipid peroxidation. Ferrous ascorbate, 1:1, induced low stimulation, while ferrous ascorbate, 1:20 gave higher stimulation of lipid peroxidation. These results show that in our experimental system, ascorbate is a promotor rather than an inhibitor of lipid peroxidation. Ferric nitrilotriacetate (at molar ratios of 1:2 and 1:10), at an iron concentration of 200 microM, was by far the most effective in inducing lipid peroxidation. Superoxide dismutase, mannitol and glutathione had no effect, while catalase, thiourea and vitamin E markedly decreased ferrous ascorbate 1:20-induced lipid peroxidation. Ferric nitrilotriacetate-induced lipid peroxidation was slightly reduced by catalase and mannitol, significantly reduced by superoxide dismutase, and completely inhibited by thiourea. Glutathione caused a 100% increase in the ferric nitrilotriacetate-induced lipid peroxidation. These results suggest that Fe(II) in the presence of trace amounts of Fe(III), or an oxidizing agent and Fe(III) in the presence of Fe(II) or a reducing agent, are potent stimulators of lipid peroxidation of microvillus membrane vesicles. Addition of deferoxamine completely inhibited both ferrous ascorbate, 1:20 and ferric nitrilotriacetate-induced lipid peroxidation, demonstrating the requirement for iron for its stimulation. Iron-induced peroxidation of microvillus membrane may have physiological significance because it could already be demonstrated at 2 microM iron concentration.

  17. Development of PEM fuel cell technology at international fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Wheeler, D.J.

    1996-04-01

    The PEM technology has not developed to the level of phosphoric acid fuel cells. Several factors have held the technology development back such as high membrane cost, sensitivity of PEM fuel cells to low level of carbon monoxide impurities, the requirement to maintain full humidification of the cell, and the need to pressurize the fuel cell in order to achieve the performance targets. International Fuel Cells has identified a hydrogen fueled PEM fuel cell concept that leverages recent research advances to overcome major economic and technical obstacles.

  18. Photoluminescence of MoS2 quantum dots quenched by hydrogen peroxide: A fluorescent sensor for hydrogen peroxide

    Science.gov (United States)

    Gan, Zhixing; Gui, Qingfeng; Shan, Yun; Pan, Pengfei; Zhang, Ning; Zhang, Lifa

    2016-09-01

    By cutting MoS2 microcrystals to quantum dots (QDs) of sizes below 10 nm, the photoluminescence (PL) at ca. 450 nm can be detected easily due to the quantum confinement effects across the 2D planes. The PL is stable under continuous irradiation of UV light but gradually quenches when treated with an increasing concentration of hydrogen peroxide. Time-resolved PL and Raman spectra imply that H2O2 causes the partial oxidation of MoS2 QDs. First-principles calculations reveal that the MoS2 QDs with oxygen impurity are of indirect bandgap structures showing no notable PL. And absorption spectra verify that the PL of MoS2 QDs quenched by H2O2 is attributed to the oxidation. The integrated PL intensity and H2O2 concentration show an exponential relationship in the range of 2-20 μM, suggesting that MoS2 QDs are potential fluorescent probes for hydrogen peroxide sensing in a physiological environment.

  19. Dry Process Fuel Performance Evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Myung Seung; Song, K. C.; Moon, J. S. and others

    2005-04-15

    The objective of the project is to establish the performance evaluation system of DUPIC fuel during the Phase II R and D. In order to fulfil this objectives, irradiation test of DUPIC fuel was carried out in HANARO using the non-instrumented and SPND-instrumented rig. Also, the analysis on the in-reactor behavior analysis of DUPIC fuel, out-pile test using simulated DUPIC fuel as well as performance and integrity assessment in a commercial reactor were performed during this Phase. The R and D results of the Phase II are summarized as follows : - Performance evaluation of DUPIC fuel via irradiation test in HANARO - Post irradiation examination of irradiated fuel and performance analysis - Development of DUPIC fuel performance code (modified ELESTRES) considering material properties of DUPIC fuel - Irradiation behavior and integrity assessment under the design power envelope of DUPIC fuel - Foundamental technology development of thermal/mechanical performance evaluation using ANSYS (FEM package)

  20. Pulverized fuel-oxygen burner

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, Curtis; Patterson, Brad; Perdue, Jayson

    2017-09-05

    A burner assembly combines oxygen and fuel to produce a flame. The burner assembly includes an oxygen supply tube adapted to receive a stream of oxygen and a solid fuel conduit arranged to extend through the oxygen tube to convey a stream of fluidized, pulverized, solid fuel into a flame chamber. Oxygen flowing through the oxygen supply tube passes generally tangentially through a first set of oxygen-injection holes formed in the solid fuel conduit and off-tangentially from a second set of oxygen-injection holes formed in the solid fuel conduit and then mixes with fluidized, pulverized, solid fuel passing through the solid fuel conduit to create an oxygen-fuel mixture in a downstream portion of the solid fuel conduit. This mixture is discharged into a flame chamber and ignited in the flame chamber to produce a flame.

  1. Reformer Fuel Injector

    Science.gov (United States)

    Suder, Jennifer L.

    2004-01-01

    Today's form of jet engine power comes from what is called a gas turbine engine. This engine is on average 14% efficient and emits great quantities of green house gas carbon dioxide and air pollutants, Le. nitrogen oxides and sulfur oxides. The alternate method being researched involves a reformer and a solid oxide fuel cell (SOFC). Reformers are becoming a popular area of research within the industry scale. NASA Glenn Research Center's approach is based on modifying the large aspects of industry reforming processes into a smaller jet fuel reformer. This process must not only be scaled down in size, but also decrease in weight and increase in efficiency. In comparison to today's method, the Jet A fuel reformer will be more efficient as well as reduce the amount of air pollutants discharged. The intent is to develop a 10kW process that can be used to satisfy the needs of commercial jet engines. Presently, commercial jets use Jet-A fuel, which is a kerosene based hydrocarbon fuel. Hydrocarbon fuels cannot be directly fed into a SOFC for the reason that the high temperature causes it to decompose into solid carbon and Hz. A reforming process converts fuel into hydrogen and supplies it to a fuel cell for power, as well as eliminating sulfur compounds. The SOFC produces electricity by converting H2 and CO2. The reformer contains a catalyst which is used to speed up the reaction rate and overall conversion. An outside company will perform a catalyst screening with our baseline Jet-A fuel to determine the most durable catalyst for this application. Our project team is focusing on the overall research of the reforming process. Eventually we will do a component evaluation on the different reformer designs and catalysts. The current status of the project is the completion of buildup in the test rig and check outs on all equipment and electronic signals to our data system. The objective is to test various reformer designs and catalysts in our test rig to determine the most

  2. HTGR spent fuel composition and fuel element block flow

    Energy Technology Data Exchange (ETDEWEB)

    Hamilton, C.J.; Holder, N.D.; Pierce, V.H.; Robertson, M.W.

    1976-07-01

    The High-Temperature Gas-Cooled Reactor (HTGR) utilizes the thorium-uranium fuel cycle. Fully enriched uranium fissile material and thorium fertile material are used in the initial reactor core and for makeup fuel in the recycle core loadings. Bred /sup 233/U and unburned /sup 235/U fissile materials are recovered from spent fuel elements, refabricated into recycle fuel elements, and used as part of the recycle core loading along with the makeup fuel elements. A typical HTGR employs a 4-yr fuel cycle with approximately one-fourth of the core discharged and reloaded annually. The fuel element composition, including heavy metals, impurity nuclides, fission products, and activation products, has been calculated for discharged spent fuel elements and for reload fresh fuel and recycle fuel elements for each cycle over the life of a typical HTGR. Fuel element compositions are presented for the conditions of equilibrium recycle. Data describing compositions for individual reloads throughout the reactor life are available in a detailed volume upon request. Fuel element block flow data have been compiled based on a forecast HTGR market. Annual block flows are presented for each type of fuel element discharged from the reactors for reprocessing and for refabrication.

  3. Proton exchange membrane fuel cells

    CERN Document Server

    Qi, Zhigang

    2013-01-01

    Preface Proton Exchange Membrane Fuel CellsFuel CellsTypes of Fuel CellsAdvantages of Fuel CellsProton Exchange Membrane Fuel CellsMembraneCatalystCatalyst LayerGas Diffusion MediumMicroporous LayerMembrane Electrode AssemblyPlateSingle CellStackSystemCell Voltage Monitoring Module (CVM)Fuel Supply Module (FSM)Air Supply Module (ASM)Exhaust Management Module (EMM)Heat Management Module (HMM)Water Management Module (WMM)Internal Power Supply Module (IPM)Power Conditioning Module (PCM)Communications Module (COM)Controls Module (CM)SummaryThermodynamics and KineticsTheoretical EfficiencyVoltagePo

  4. N-acetylcysteine and hemodialysis treatment of a severe case of methyl ethyl ketone peroxide intoxication

    NARCIS (Netherlands)

    van Enckevort, C C G; Touw, D J; Vleming, L-J

    2008-01-01

    The plastic hardener methyl ethyl ketone peroxide (MEKP) is an unstable peroxide that releases free oxygen radicals. Ingestion of this compound induces widespread liver necrosis that is often fatal, extensive ulceration with subsequent scarring, and stenosis of the proximal digestive tract in surviv

  5. Effectiveness of improved hydrogen peroxide in decontaminating privacy curtains contaminated with multidrug-resistant pathogens.

    Science.gov (United States)

    Rutala, William A; Gergen, Maria F; Sickbert-Bennett, Emily E; Williams, David A; Weber, David J

    2014-04-01

    We tested the ability of an improved hydrogen peroxide solution to decontaminate privacy curtains in inpatient and outpatient areas. The microbial contamination of the curtains was assessed before and after the curtains were sprayed with improved hydrogen peroxide. The disinfectant reduced the microbial load on the privacy curtains by 96.8% in 37 patient rooms.

  6. Evaluation of Extraradicular Diffusion of Hydrogen Peroxide during Intracoronal Bleaching Using Different Bleaching Agents

    Directory of Open Access Journals (Sweden)

    Mohammad E. Rokaya

    2015-01-01

    Full Text Available Objectives. Extra radicular diffusion of hydrogen peroxide associated with intracoronal teeth bleaching was evaluated. Methods. 108 intact single rooted extracted mandibular first premolars teeth were selected. The teeth were instrumented with WaveOne system and obturated with gutta percha and divided into four groups (n=27 according to the bleaching materials used. Each main group was divided into three subgroups (n=9 according to the time of extra radicular hydrogen peroxide diffusion measurements at 1, 7, and 14 days: group 1 (35% hydrogen peroxide, group 2 (35% carbamide peroxide, group 3 (sodium perborate-30% hydrogen peroxide mixture, and group 4 (sodium perborate-water mixture. Four cemental dentinal defects were prepared just below the CEJ on each root surface. The amount of hydrogen peroxide that leached out was evaluated after 1, 7, and 14 days by spectrophotometer analysis. The results were analyzed using the ANOVA and Tukey’s test. Results. Group 1 showed highest extra radicular diffusion, followed by group 3 and group 2, while group 4 showed the lowest mean extra radicular diffusion. Conclusion. Carbamide peroxide and sodium perborate-water mixture are the most suitable bleaching materials used for internal bleaching due to their low extra radicular diffusion of hydrogen peroxide.

  7. The changes of peroxide number of coconut meal during storage and fermentation processed with Aspergillus nige

    Directory of Open Access Journals (Sweden)

    Helmi Hamid

    1999-06-01

    Full Text Available The effect of fermentation process and duration of storage of fermented coconut meal with Aspergillus niger on its peroxide number has been studied. First stage of experiment was arranged in a completely randomized design with four treatments (raw coconut meal, 0 and 4 day aerobic fermentation incubation and after 2 day anaerobic enzymatic incubation. The peroxide number was determined as potentiality for rancidity. The three incubation processes decreased the peroxide number significantly. The highest reduction was obtained at 4 day aerobic fermentation (49.7%. The decrease of peroxide number of fermented coconut meal was correlated with the decrease of lipid content. The regression coefficient is highly significant (r2 = 0.76, P0.05. Statistical analysis for the peroxide number showed that there was highly significant interaction between the type of substrates and storage temperature. The peroxide number on the fermented products did not significantly increase, where as the non fermented products show significantly increased during storage course. The significant interaction between storage duration and temperature observed. At low temperatures (-13 and 4°C storage the peroxide number increased 44%, while at high temperature (29°C up to 95%. The highest peroxide number on the fermented product (43.5 ppm was obtained at the temperature storage of 29°C for 4 month period. This value is still under rancidity limit (80 ppm. It could be concluded that fermentation process reduced the rancidity of coconut meal.

  8. Novel co-agents for improved properties in peroxide cure of saturated elastomers

    NARCIS (Netherlands)

    Alvarez Grima, Maria Montserrat

    2007-01-01

    Peroxide vulcanisation is a widely used cure system for elastomers and offers many possibilities for use, mainly because of the availability of co-agents and scorch retarders. The range of applications of peroxide cure could significantly be widened, if certain mechanical properties could be improve

  9. Role of hydrogen peroxide and hydroxyl radical in pyrite oxidation by molecular oxygen

    Science.gov (United States)

    Schoonen, Martin A. A.; Harrington, Andrea D.; Laffers, Richard; Strongin, Daniel R.

    2010-09-01

    Hydrogen peroxide and hydroxyl radical are readily formed during the oxidation of pyrite with molecular oxygen over a wide range of pH conditions. However, pretreatment of the pyrite surface influences how much of the intermediates are formed and their fate. Acid-washed pyrite produces significant amounts of hydrogen peroxide and hydroxyl radical when suspended in air-saturated water. However, the hydrogen peroxide concentration shows an exponential decrease with time. Suspensions made with partially oxidized pyrite yield significantly lower amounts of hydrogen peroxide product. The presence of Fe(III)-oxide or Fe(III)-hydroxide patches facilitates the conversion of hydrogen peroxide to oxygen and water. Hence, the degree to which a pyrite surface is covered with patches of Fe(III)-oxide or Fe(III)-hydroxide patches is an important control on the concentration of hydrogen peroxide in solution. Hydrogen peroxide appears to be an important intermediate in the four-electron transfer from pyrite to molecular oxygen. Addition of catalase, an enzyme that decomposes hydrogen peroxide to water and molecular oxygen, to a pyrite suspension reduces the oxidation rate by 40%. By contrast, hydroxyl radical does not appear to play a significant role in the oxidation mechanism. It is estimated on the basis of a molecular oxygen and sulfate mass balance that 5-6% of the molecular oxygen is consumed without forming sulfate.

  10. Protective mechanisms against peptide and protein peroxides generated by singlet oxygen

    DEFF Research Database (Denmark)

    Morgan, Philip E; Dean, Roger T; Davies, Michael Jonathan

    2004-01-01

    the parent peroxides and radicals derived from them, whereas methionine and the synthetic phenolic antioxidants Probucol and BHT show little activity. These studies show that cells do not have efficient enzymatic defenses against protein peroxides, with only thiols and ascorbic acid able to remove...

  11. Platelet activation and lipid peroxidation in patients with acute ischemic stroke

    NARCIS (Netherlands)

    F. van Kooten (Fop); G. Ciabattoni; C. Patrono; D.W.J. Dippel (Diederik); P.J. Koudstaal (Peter Jan)

    1997-01-01

    textabstractBACKGROUND AND PURPOSE: Both platelet activation and lipid peroxidation are potential sources of vasoactive eicosanoids that can be produced via the cyclooxygenase pathway, ie, thromboxane (TX) A2, or by free radical-catalyzed peroxidation of arachidonic acid, ie, isoprostanes. We invest

  12. Oxidation resistant peroxide cross-linked UHMWPE produced by blending and surface diffusion

    Science.gov (United States)

    Gul, Rizwan M.; Oral, Ebru; Muratoglu, Orhun K.

    2014-06-01

    Ultra-high molecular weight polyethylene (UHMWPE) has been widely used as acetabular cup in total hip replacement (THR) and tibial component in total knee replacement (TKR). Crosslinking of UHMWPE has been successful used to improve its wear performance leading to longer life of orthopedic implants. Crosslinking can be performed by radiation or organic peroxides. Peroxide crosslinking is a convenient process as it does not require specialized equipment and the level of crosslinking can be manipulated by changing the amount of peroxide added. However, there is concern about the long-term stability of these materials due to possible presence of by-products. Vitamin E has been successfully used to promote long-term oxidative stability of UHMWPE. In this study, UHMWPE has been crosslinked using organic peroxide in the presence of Vitamin E to produce an oxidation resistant peroxide crosslinked material. Crosslinking was performed both in bulk by mixing peroxide and resin, and only on the surface using diffusion of peroxides.The results show that UHMWPE can be crosslinked using organic peroxides in the presence of vitamin E by both methods. However, the level of crosslinking decreases with the increase in vitamin E content. The wear resistance increases with the increase in crosslink density, and oxidation resistance significantly increases due to the presence of vitamin E.

  13. N-acetylcysteine and hemodialysis treatment of a severe case of methyl ethyl ketone peroxide intoxication

    NARCIS (Netherlands)

    van Enckevort, C C G; Touw, D J; Vleming, L-J

    2008-01-01

    The plastic hardener methyl ethyl ketone peroxide (MEKP) is an unstable peroxide that releases free oxygen radicals. Ingestion of this compound induces widespread liver necrosis that is often fatal, extensive ulceration with subsequent scarring, and stenosis of the proximal digestive tract in surviv

  14. [Intensity of lipid peroxidation in the kidneys in nephrotoxic acute renal failure (experimental study)].

    Science.gov (United States)

    Makarenko, V S; Zhiznevskaia, N G; Koltygina, T I; Gapanovich, V M; Makarenko, E V

    2000-01-01

    Mercury chloride was injected cubcutaneously in rats to induce nephrotoxic acute renal failure (ARF). Renal dysfunction in ARF occurs under intensification of lipid peroxidation in the kidneys. Pretreatment with antioxidant ionol diminishes lipid peroxidation intensity in the kidneys in ARF and restricts the severity of renal dysfunction.

  15. Hydrogen peroxide and caustic soda: Dancing with a dragon while bleaching

    Science.gov (United States)

    Peter W. Hart; Carl Houtman; Kolby Hirth

    2013-01-01

    When hydrogen peroxide is mixed with caustic soda, an auto-accelerating reaction can lead to generation of significant amounts of heat and oxygen. On the basis of experiments using typical pulp mill process concentration and temperatures, a relatively simple kinetic model has been developed. Evaluation of these model results reveals that hydrogen peroxide-caustic soda...

  16. Influence of cysteine and methionine availability on protein peroxide scavenging activity and phenolic stability in emulsions.

    Science.gov (United States)

    Zhou, Lisa; Elias, Ryan J

    2014-03-01

    Plant phenolics are secondary metabolites that have been shown to confer beneficial health effects in humans. However, many of these compounds undergo metal-catalysed oxidation reactions, leading to the generation of hydrogen peroxide (H2O2) and other reactive oxygen species that may negatively impact product stability. In proteins, methionine (Met) and cysteine (Cys) are capable of reacting directly with peroxides. Thus, the dairy proteins, casein (CAS) and β-lactoglobulin (BLG), were examined for their ability to scavenge H2O2 (400μM) and influence (-)-epigallocatechin-3-gallate (EGCG) oxidation (400μM) in Tween- or sodium dodecyl sulphate (SDS)-stabilised hexadecane emulsions. To examine the effect that the accessibility of these amino acids have on their peroxide scavenging activities, proteins were pre-treated with tert-butyl hydroperoxide (TBHP), a bulky peroxide, to oxidise only solvent accessible Met residues or H2O2, the smallest peroxide, to oxidise buried Met residues. In CAS treatments, higher Met content yielded greater peroxide scavenging activity and EGCG stability. CAS treatments also showed significantly higher peroxide scavenging activity compared to the corresponding BLG treatment. However, BLG peroxide scavenging activity was greatly enhanced in SDS-stabilised emulsions due to protein denaturation and subsequent exposure of previously buried Cys residues.

  17. Investigating the Stability of Benzoyl Peroxide in Over-the-Counter Acne Medications

    Science.gov (United States)

    Kittredge, Marina Canepa; Kittredge, Kevin W.; Sokol, Melissa S.; Sarquis, Arlyne M.; Sennet, Laura M.

    2008-01-01

    One of the most commonly used ingredients in over-the-counter acne treatments in cream, gel, and wash form is benzoyl peroxide. It is an anti-bacterial agent that kills the bacterium ("Propionibacterium acne") involved in the formation of acne. The formulation of these products is extremely difficult owing to the instability of benzoyl peroxide.…

  18. Contact Lens Solutions With Hydrogen Peroxide: To Avoid Injury, Follow All Instructions

    Science.gov (United States)

    ... should never put hydrogen peroxide directly into your eyes or on your contact lenses,” Lepri says. That’s because this kind of solution ... for Solutions With Hydrogen Peroxide Talk to your eye-care provider ... for your contact lenses. Never change your lens-care system before consulting ...

  19. Quantifying hydrogen peroxide in iron-containing solutions using leuco crystal violet

    Directory of Open Access Journals (Sweden)

    Schoonen Martin A

    2005-06-01

    Full Text Available Hydrogen peroxide is present in many natural waters and wastewaters. In the presence of Fe(II, this species decomposes to form hydroxyl radicals, that are extremely reactive. Hence, in the presence of Fe(II, hydrogen peroxide is difficult to detect because of its short lifetime. Here, we show an expanded use of a hydrogen peroxide quantification technique using leuco crystal violet (LCV for solutions of varying pH and iron concentration. In the presence of the biocatalyst peroxidase, LCV is oxidized by hydrogen peroxide, forming a colored crystal violet ion (CV+, which is stable for days. The LCV method uses standard equipment and allows for detection at the low microM concentration level. Results show strong pH dependence with maximum LCV oxidation at pH 4.23. By chelating dissolved Fe(II with EDTA, hydrogen peroxide can be stabilized for analysis. Results are presented for hydrogen peroxide quantification in pyrite–water slurries. Pyrite–water slurries show surface area dependent generation of hydrogen peroxide only in the presence of EDTA, which chelates dissolved Fe(II. Given the stability of CV+, this method is particularly useful for field work that involves the detection of hydrogen peroxide.

  20. Overoxidation of chloroplast 2-Cys peroxiredoxins: balancing toxic and signaling activities of hydrogen peroxide

    Directory of Open Access Journals (Sweden)

    Leonor ePuerto-Galán

    2013-08-01

    Full Text Available Photosynthesis, the primary source of biomass and oxygen into the biosphere, involves the transport of electrons in the presence of oxygen and, therefore, chloroplasts constitute an important source of reactive oxygen species (ROS, including hydrogen peroxide. If accumulated at high level, hydrogen peroxide may exert a toxic effect; however, it is as well an important second messenger. In order to balance the toxic and signaling activities of hydrogen peroxide its level has to be tightly controlled. To this end, chloroplasts are equipped with different antioxidant systems such as 2-Cys peroxiredoxins (2-Cys Prxs, thiol-based peroxidases able to reduce hydrogen- and organic peroxides. At high peroxide concentrations the peroxidase function of 2-Cys Prxs may become inactivated through a process of overoxidation. This inactivation has been proposed to explain the signaling function of hydrogen peroxide in eukaryotes, whereas in prokaryotes, the 2-Cys Prxs of which were considered to be insensitive to overoxidation, the signaling activity of hydrogen peroxide is less relevant. Here we discuss the current knowledge about the mechanisms controlling 2-Cys Prx overoxidation in chloroplasts, organelles with an important signaling function in plants. Given the prokaryotic origin of chloroplasts, we discuss the occurrence of 2-Cys Prx overoxidation in cyanobacteria with the aim of identifying similarities between chloroplasts and their ancestors regarding their response to hydrogen peroxide.

  1. Lipid Peroxides and α-Tocopherol in Rat Streptozotocin-Induced Diabetes Mellitus

    Directory of Open Access Journals (Sweden)

    Higuchi,Yoshimi

    1982-06-01

    Full Text Available Measurement of lipid peroxides and alpha-tocopherol was undertaken in rats with streptozotocin-induced diabetes. In sera and livers in diabetic rats, the lipid peroxides increased but alpha-tocopherol decreased. To study the effect of vitamin E deficiency in the diabetic state, diabetes was induced in rats maintained on a vitamin E deficient diet. Serum lipid peroxides increased greatly but alpha-tocopherol decreased. Lipid peroxides and alpha-tocopherol increased in the liver of vitamin E deficient states. In the liver, vitamin E deficient diabetic rats had lower lipid peroxides levels but higher alpha-tocopherol levels than vitamin E deficient non-diabetic rats. On the basis of the present experiments, it was considered that the decrease of alpha-tocopherol might be due to consumption as an antioxidant as lipid peroxides increased in sera and livers. The decrease of lipid peroxides in the liver was thought to play an important part of the increase in serum lipid peroxides.

  2. Simulation studies of the membrane exchange assembly of an all-liquid, proton exchange membrane fuel cell

    Energy Technology Data Exchange (ETDEWEB)

    Byrd, Ethan D. [Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Everitt Laboratory, MC-702, 1406 W. Green St., Urbana, IL 61801-2918 (United States); Miley, George H. [Department of Nuclear, Plasma, and Radiological Engineering, University of Illinois at Urbana-Champaign, 100C NEL, 103 S. Goodwin Ave., Urbana, IL 61801 (United States)

    2008-01-21

    A model has been designed and constructed for the all-liquid, sodium borohydride/hydrogen peroxide fuel cell under development at the University of Illinois at Urbana-Champaign. The electrochemical behavior, momentum balance, and mass balance effects within the fuel cell are modeled using the Butler-Volmer equations, Darcy's law, and Fick's law, respectively, within a finite element modeling platform. The simulations performed with the model indicate that an optimal physical design of the fuel cell's flow channel land area or current collector exists when considering the pressure differential between channels, and the diffusion layer permeability and conductivity. If properties of the diffusion layer are known, the model is an effective method of improving the fuel cell design in order to achieve higher power density. (author)

  3. Fuel Element Technical Manual

    Energy Technology Data Exchange (ETDEWEB)

    Burley, H.H. [ed.

    1956-08-01

    It is the purpose of the Fuel Element Technical Manual to Provide a single document describing the fabrication processes used in the manufacture of the fuel element as well as the technical bases for these processes. The manual will be instrumental in the indoctrination of personnel new to the field and will provide a single data reference for all personnel involved in the design or manufacture of the fuel element. The material contained in this manual was assembled by members of the Engineering Department and the Manufacturing Department at the Hanford Atomic Products Operation between the dates October, 1955 and June, 1956. Arrangement of the manual. The manual is divided into six parts: Part I--introduction; Part II--technical bases; Part III--process; Part IV--plant and equipment; Part V--process control and improvement; and VI--safety.

  4. Household fuel demand analysis

    Energy Technology Data Exchange (ETDEWEB)

    Cohn, S.; Hirst, E.; Jackson, J.

    1976-01-01

    This study develops econometric models of residential demands for electricity, natural gas, and petroleum products. Fuel demands per household are estimated as functions of fuel prices, per capita income, heating degree days, and mean July temperature. Cross-sectional models are developed using a large data base containing observations for each state and year from 1951 through 1974. Long-run own-price elasticities for all three fuels are greater than unity with natural gas showing the greatest sensitivity to own-price changes. Cross-price elasticities are all less than unity except for the elasticity of demand for oil with respect to the price of gas (which is even larger than the own-price elasticity of demand for oil). The models show considerable stabiity with respect to own-price elasticities but much instability with respect to the cross-price and income elasticities.

  5. Fuel cells in transportation

    Energy Technology Data Exchange (ETDEWEB)

    Erdmann, G. [Technische Univ., Berlin (Germany); Hoehlein, B. [Research Center Juelich (Germany)

    1996-12-01

    A promising new power source for electric drive systems is the fuel cell technology with hydrogen as energy input. The worldwide fuel cell development concentrates on basic research efforts aiming at improving this new technology and at developing applications that might reach market maturity in the very near future. Due to the progress achieved, the interest is now steadily turning to the development of overall systems such as demonstration plants for different purposes: electricity generation, drive systems for road vehicles, ships and railroads. This paper does not present results concerning the market potential of fuel cells in transportation but rather addresses some questions and reflections that are subject to further research of both engineers and economists. Some joint effort of this research will be conducted under the umbrella of the IEA Implementing Agreement 026 - Annex X, but there is a lot more to be done in this challenging but also promising fields. (EG) 18 refs.

  6. Enhanced development of a catalyst chamber for the decomposition of up to 1.0 kg/s hydrogen peroxide

    Science.gov (United States)

    Božić, Ognjan; Porrmann, Dennis; Lancelle, Daniel; May, Stefan

    2016-06-01

    A new innovative hybrid rocket engine concept is developed within the AHRES program of the German Aerospace Center (DLR). This rocket engine based on hydroxyl-terminated polybutadiene (HTPB) with metallic additives as solid fuel and high test peroxide (HTP) as liquid oxidizer. Instead of a conventional ignition system, a catalyst chamber with a silver mesh catalyst is designed to decompose the HTP. The newly modified catalyst chamber is able to decompose up to 1.0 kg/s of 87.5 wt% HTP. Used as a monopropellant thruster, this equals an average thrust of 1600 N. The catalyst chamber is designed using the self-developed software tool SHAKIRA. The applied kinetic law, which determines catalytic decomposition of HTP within the catalyst chamber, is given and commented. Several calculations are carried out to determine the appropriate geometry for complete decomposition with a minimum of catalyst material. A number of tests under steady state conditions are carried out, using 87.5 wt% HTP with different flow rates and a constant amount of catalyst material. To verify the decomposition, the temperature is measured and compared with the theoretical prediction. The experimental results show good agreement with the results generated by the design tool. The developed catalyst chamber provides a simple, reliable ignition system for hybrid rocket propulsion systems based on hydrogen peroxide as oxidizer. This system is capable for multiple reignition. The developed hardware and software can be used to design full scale monopropellant thrusters based on HTP and catalyst chambers for hybrid rocket engines.

  7. Emergency fuels utilization guidebook. Alternative Fuels Utilization Program

    Energy Technology Data Exchange (ETDEWEB)

    1980-08-01

    The basic concept of an emergency fuel is to safely and effectively use blends of specification fuels and hydrocarbon liquids which are free in the sense that they have been commandeered or volunteered from lower priority uses to provide critical transportation services for short-duration emergencies on the order of weeks, or perhaps months. A wide variety of liquid hydrocarbons not normally used as fuels for internal combustion engines have been categorized generically, including limited information on physical characteristics and chemical composition which might prove useful and instructive to fleet operators. Fuels covered are: gasoline and diesel fuel; alcohols; solvents; jet fuels; kerosene; heating oils; residual fuels; crude oils; vegetable oils; gaseous fuels.

  8. Temperature-dependent absorption cross sections for hydrogen peroxide vapor

    Science.gov (United States)

    Nicovich, J. M.; Wine, P. H.

    1988-03-01

    Relative absorption cross sections for hydrogen peroxide vapor were measured over the temperature ranges 285-381 K for lambda = 230 nm-295 nm and 300-381 K for lambda = 193 nm-350 nm. The well established 298 K cross sections at 202.6 and 228.8 nm were used as an absolute calibration. A significant temperature dependence was observed at the important tropospheric photolysis wavelengths lambda over 300 nm. Measured cross sections were extrapolated to lower temperatures, using a simple model which attributes the observed temperature dependence to enhanced absorption by molecules possessing one quantum of O-O stretch vibrational excitation. Upper tropospheric photodissociation rates calculated using the extrapolated cross sections are about 25 percent lower than those calculated using currently recommended 298 K cross sections.

  9. Polyester Sulphonic Acid Interstitial Nanocomposite Platform for Peroxide Biosensor

    Directory of Open Access Journals (Sweden)

    Emmanuel I. Iwuoha

    2009-12-01

    Full Text Available A novel enzyme immobilization platform was prepared on a platinum disk working electrode by polymerizing aniline inside the interstitial pores of polyester sulphonic acid sodium salt (PESA. Scanning electron microscopy study showed the formation of homogeneous sulphonated polyaniline (PANI nanotubes (~90 nm and thermogravimetric analysis (TGA confirmed that the nanotubes were stable up to 230 °C. The PANI:PESA nanocomposite showed a quasi-reversible redox behaviour in phosphate buffer saline. Horseradish peroxidase (HRP was immobilized on to this modified electrode for hydrogen peroxide detection. The biosensor gave a sensitivity of 1.33 μA (μM-1 and a detection limit of 0.185 μM for H2O2. Stability experiments showed that the biosensor retained more than 64% of its initial sensitivity over four days of storage at 4 °C.

  10. In vitro antibacterial effect of carbamide peroxide on oral biofilm

    Directory of Open Access Journals (Sweden)

    Chao Shu Yao

    2013-06-01

    Full Text Available This study compared the effects of carbamide peroxide (CP and chlorhexidine (CHX on oral biofilm in vitro. Collagen-coated hydroxyapatite discs were inoculated with subgingival plaque. After 3 weeks, the emergent biofilms were subjected to 1-, 3-, and 10-min exposures of a 1% CHX gel, a 5% CP gel and rinse, and a 10% CP gel and rinse. Subsequently, the biofilms were stained using a two-colour fluorescent dye kit for confocal laser scanning microscopy, and the volume ratio of dead bacteria to all bacteria was analysed. Compared to a non-treated gel control, the active agents killed bacteria on all the discs, with higher concentration and longer exposure times killing more bacteria. The rinse form disrupted the biofilm quicker than the gel form. Overall, 10% CP showed more disruption of biofilm and a greater proportion of killed bacteria than 1% CHX (p<0.05.

  11. Lipid peroxidation and water penetration in lipid bilayers

    DEFF Research Database (Denmark)

    Conte, Elena; Megli, Francesco Maria; Khandelia, Himanshu

    2012-01-01

    Lipid peroxidation plays a key role in the alteration of cell membrane's properties. Here we used as model systems multilamellar vesicles (MLVs) made of the first two products in the oxidative cascade of linoleoyl lecithin, namely 1-palmitoyl-2-(13-hydroperoxy-9,11-octadecanedienoyl)-lecithin (Hp......PLPC) and 1-palmitoyl-2-(13-hydroxy-9,11-octadecanedienoyl)-lecithin (OHPLPC), exhibiting a hydroperoxide or a hydroxy group at position 13, respectively. The two oxidized lipids were used either pure or in a 1:1 molar ratio mixture with untreated 1-palmitoyl-2-linoleoyl-lecithin (PLPC). The model membranes...... were doped with spin-labeled lipids to study bilayer alterations by electron paramagnetic resonance (EPR) spectroscopy. Two different spin-labeled lipids were used, bearing the doxyl ring at position (n) 5 or 16: γ-palmitoyl-β-(n-doxylstearoyl)-lecithin (n-DSPPC) and n-doxylstearic acid (n-DSA). Small...

  12. Degradation of ethyl xanthate in flotation residues by hydrogen peroxide

    Institute of Scientific and Technical Information of China (English)

    陈兴华; 胡岳华; 彭宏; 曹学锋

    2015-01-01

    The degradation behavior of ethyl xanthate (EX) salt was the most widely used collector in sulfide mineral flotation and emission of flotation tailings with residual EX was harmful to environment. In this work, hydrogen peroxide (H2O2) was investigated by UV-visible spectroscopy (UV/Vis) at different pH values from 3 to 12. For pH value from 5 to 12, EX was oxidized into ethyl per xanthate (EPX) by H2O2. Then EPX was further oxidized into thiosulfate (TS) salt rather than ethyl thiocarbonate (ETC) and this step was the reaction-limited step. Then depending on pH values, TS was degraded into sulphate and carbonate salts (pH>7) or elemental sulfur (pH3.0 during test time.

  13. Gold-catalyzed oxidation of substituted phenols by hydrogen peroxide

    KAUST Repository

    Cheneviere, Yohan

    2010-10-20

    Gold nanoparticles deposited on inorganic supports are efficient catalysts for the oxidation of various substituted phenols (2,6-di-tert-butyl phenol and 2,3,6-trimethyl phenol) with aqueous hydrogen peroxide. By contrast to more conventional catalysts such as Ti-containing mesoporous silicas, which convert phenols to the corresponding benzoquinones, gold nanoparticles are very selective to biaryl compounds (3,3′,5,5′-tetra-tert-butyl diphenoquinone and 2,2′,3,3′,5,5′-hexamethyl-4,4′- biphenol, respectively). Products yields and selectivities depend on the solvent used, the best results being obtained in methanol with yields >98%. Au offers the possibility to completely change the selectivity in the oxidation of substituted phenols and opens interesting perspectives in the clean synthesis of biaryl compounds for pharmaceutical applications. © 2010 Elsevier B.V. All rights reserved.

  14. Synthesis and reinforcement of peroxide-cured butyl rubber thermosets

    Science.gov (United States)

    Rodrigo, Antonio Cillero

    Isobutylene-rich elastomers provide the oxidative stability and impermeability required by many industrial applications. Halogenated derivatives support a wide range of chemical modification processes that can overcome most performance limitations. This research involves the modification of brominated butyl rubber (BIIR) to introduce peroxide-curable functionality in addition to aminotrialkoxysilyl groups that improve interactions with siliceous fillers, and anthraquinone functionality that serves as a polymer-bound chromophore. The thesis also describes detailed studies of the influence of counter anions on imidazolium ionomer derivatives of brominated poly(isobutylene-co-p-methylstyrene) (BIMS). Exchanging bromide with dodecyl sulfate, styrene sulfonate and montmorillonite clay platelets provided new ionomer thermosets whose rheological, tensile and adhesive properties varied considerably from their parent material.

  15. Direct synthesis of hydrogen peroxide from plasma-water interactions

    Science.gov (United States)

    Liu, Jiandi; He, Bangbang; Chen, Qiang; Li, Junshuai; Xiong, Qing; Yue, Guanghui; Zhang, Xianhui; Yang, Size; Liu, Hai; Liu, Qing Huo

    2016-12-01

    Hydrogen peroxide (H2O2) is usually considered to be an important reagent in green chemistry since water is the only by-product in H2O2 involved oxidation reactions. Early studies show that direct synthesis of H2O2 by plasma-water interactions is possible, while the factors affecting the H2O2 production in this method remain unclear. Herein, we present a study on the H2O2 synthesis by atmospheric pressure plasma-water interactions. The results indicate that the most important factors for the H2O2 production are the processes taking place at the plasma-water interface, including sputtering, electric field induced hydrated ion emission, and evaporation. The H2O2 production rate reaches ~1200 μmol/h when the liquid cathode is purified water or an aqueous solution of NaCl with an initial conductivity of 10500 μS cm‑1.

  16. Hydrogen peroxide room disinfection--ready for prime time?

    Science.gov (United States)

    Huttner, Benedikt D; Harbarth, Stephan

    2015-05-08

    Non-manual techniques for terminal disinfection of hospital rooms have gained increasing interest in recent years as means to reduce transmission of multidrug-resistant organisms (MDROs). A prospective crossover study by Blazejewski and colleagues in five ICUs of a French academic hospital with a high prevalence of MDRO carriers showed that two different hydrogen peroxide (H2O2)-based non-touch disinfection techniques reduced environmental contamination with MDROs after routine cleaning. This study provides further evidence of the 'in use' bioburden reduction offered by these techniques. Before H2O2-based non-touch disinfection can be recommended for routine clinical use outside specific outbreak situations, further studies need to show whether the environmental contamination reduction provided by these techniques is clinically relevant and results in reduced cross-infections with MDROs.

  17. A Norsesterterpene Peroxide from a Marine Sponge Hippospongia sp.

    Science.gov (United States)

    Su, Ching-chyuan; Su, Huey-jen; Liang, Kai-ju; Tsaif, Su-june; Su, Jui-hsin

    2016-04-01

    One new norsesterterpene peroxide, rhopaloic acid H (1), along with two known related metabolites 2 and 3, were isolated from a marine sponge Hippospongia sp. The structures of compounds were elucidated by means of IR, MS, and NMR techniques and comparison of the NMR data with those of known analogues. Evaluation of the cytotoxicities revealed that compound 2 exhibited significant cytotoxicity against DLD-1, Molt 4, T47D and K-562 cell lines, with IC50 values of 3.18, 0.69, 2.22 and 1.06 µg/mL, respectively. Moreover, compound 3 also showed significant K562 inhibitory activity, with IC50 value of 3.65 µg/mL.

  18. Natural manganese deposits as catalyst for decomposing hydrogen peroxide

    Directory of Open Access Journals (Sweden)

    A. H. Knol

    2015-01-01

    Full Text Available Drinking water companies more and more implement Advanced Oxidation Processes (AOP in their treatment schemes to increase the barrier against organic micropollutants (OMPs. It is necessary to decompose the excessive hydrogen peroxide after applying AOP to avoid negative effects in the following, often biological, treatment steps. A drinking water company in the western part of the Netherlands investigated decomposition of about 5.75 mg L−1 hydrogen peroxide in pre-treated Meuse river water with different catalysts on pilot scale. In down flow operation, the necessary reactor Empty Bed Contact Time (EBCT with the commonly used Granulated Activated Carbon (GAC and waste ground water filter gravel (MCFgw were the same with 149 s, corresponding with a conversion rate constant r of 0.021 s−1. The EBCT of the fine coating of ground water filter gravel (MC was significantly shorter with a little more than 10 s (r = 0.30 s−1. In up flow operation, with a flow rate of 20 m h−1, the EBCT of coating MC increased till about 100 s (r = 0.031 s−1, from which can be concluded, that the performance of this waste material is better compared with GAC, in both up and down flow operation. The necessary EBCT at average filtration rate of full scale dual layer filter material (MCFsw amounted to 209 s (r = 0.015 s−1. Regarding the average residence time in the full scale filters of 700 s, applying AOP in front of the filters could be an interesting alternative which makes a separate decomposition installation superfluous, on the condition that the primary functions of the filters are not affected.

  19. Lipid peroxidation following superior mesenteric artery occlusion in rat intestine

    Directory of Open Access Journals (Sweden)

    P. Pasbakhsh

    2006-07-01

    Full Text Available Background: The aim of this study was to determine the level of lipid peroxidation and tissue protein after superior mesenteric artery occlusion tissue damage. The effect of melatonin as anti oxidant and free radical scavenger in prevention of tissue damage, were also evaluated. Methods: Thity six young male Wisatr-Albino rats (weight: 80-120 gr, were divided equally in 6 group with different concentrations of melatonin (10,20,30 mg/kg treatment. Group 1was control, group 2 the sham that surgical process was applied until superior mesenteric artery dissection and received vehicle solution only in equally volume by intra muscular route. Group 3 was ischemia- reperfusion (I/R, group 4 was I/R plus melatonin 10 mg/kg, group 5 I/R plus melatonin 20 mg/kg and finally group 6 I/R plus melatonin 30 mg/kg. After laparatomy, a microvascular atraumatic clip was placed across the superior mesenteric artery under general anaesthesia and itbremoved after ischemia for 30 minutes. The first dose of melatonin was applied just beforereperfusion, second dose, after reperfusion and third dose on the second day .On third day rats were killed and their bowels were removed. The level of tissue melandialdehyde (MDA as index of lipid peroxidation and tissue protein was determined. Results: The level of tissue MDA were significantly lower in group 4, 5, 6 than group 3 (p0, 05. Conclusion: These results suggest that melatonin 10 mg/kg has antioxidant effect in prevention of inducing tissue damage during SMA occlusion in rat intestine.

  20. Targeting lipid peroxidation and mitochondrial imbalance in Friedreich's ataxia.

    Science.gov (United States)

    Abeti, Rosella; Uzun, Ebru; Renganathan, Indhushri; Honda, Tadashi; Pook, Mark A; Giunti, Paola

    2015-09-01

    Friedreich's ataxia (FRDA) is an autosomal recessive disorder, caused by reduced levels of the protein frataxin. This protein is located in the mitochondria, where it functions in the biogenesis of iron-sulphur clusters (ISCs), which are important for the function of the mitochondrial respiratory chain complexes. Moreover, disruption in iron biogenesis may lead to oxidative stress. Oxidative stress can be the cause and/or the consequence of mitochondrial energy imbalance, leading to cell death. Fibroblasts from two FRDA mouse models, YG8R and KIKO, were used to analyse two different categories of protective compounds: deuterised poly-unsaturated fatty acids (dPUFAs) and Nrf2-inducers. The former have been shown to protect the cell from damage induced by lipid peroxidation and the latter trigger the well-known Nrf2 antioxidant pathway. Our results show that the sensitivity to oxidative stress of YG8R and KIKO mouse fibroblasts, resulting in cell death and lipid peroxidation, can be prevented by d4-PUFA and Nrf2-inducers (SFN and TBE-31). The mitochondrial membrane potential (ΔΨm) of YG8R and KIKO fibroblasts revealed a difference in their mitochondrial pathophysiology, which may be due to the different genetic basis of the two models. This suggests that variable levels of reduced frataxin may act differently on mitochondrial pathophysiology and that these two cell models could be useful in recapitulating the observed differences in the FRDA phenotype. This may reflect a different modulatory effect towards cell death that will need to be investigated further.

  1. Development of hydrogen peroxide technique for bioburden reduction

    Science.gov (United States)

    Rohatgi, N.; Schwartz, L.; Stabekis, P.; Barengoltz, J.

    In order to meet the National Aeronautics and Space Administration (NASA) Planetary Protection microbial reduction requirements for Mars in-situ life detection and sample return missions, entire planetary spacecraft (including planetary entry probes and planetary landing capsules) may have to be exposed to a qualified sterilization process. Presently, dry heat is the only NASA approved sterilization technique available for spacecraft application. However, with the increasing use of various man-made materials, highly sophisticated electronic circuit boards, and sensors in a modern spacecraft, compatibility issues may render this process unacceptable to design engineers and thus impractical to achieve terminal sterilization of the entire spacecraft. An alternative vapor phase hydrogen peroxide sterilization process, which is currently used in various industries, has been selected for further development. Strategic Technology Enterprises, Incorporated (STE), a subsidiary of STERIS Corporation, under a contract from the Jet Propulsion Laboratory (JPL) is developing systems and methodologies to decontaminate spacecraft using vaporized hydrogen peroxide (VHP) technology. The VHP technology provides an effective, rapid and low temperature means for inactivation of spores, mycobacteria, fungi, viruses and other microorganisms. The VHP application is a dry process affording excellent material compatibility with many of the components found in spacecraft such as polymers, paints and electronic systems. Furthermore, the VHP process has innocuous residuals as it decomposes to water vapor and oxygen. This paper will discuss the approach that is being used to develop this technique and will present lethality data that have been collected to establish deep vacuum VHP sterilization cycles. In addition, the application of this technique to meet planetary protection requirements will be addressed.

  2. Fuel cell engineering

    CERN Document Server

    Sundmacher

    2012-01-01

    Fuel cells are attractive electrochemical energy converters featuring potentially very high thermodynamic efficiency factors. The focus of this volume of Advances in Chemical Engineering is on quantitative approaches, particularly based on chemical engineering principles, to analyze, control and optimize the steady state and dynamic behavior of low and high temperature fuel cells (PEMFC, DMFC, SOFC) to be applied in mobile and stationary systems. * Updates and informs the reader on the latest research findings using original reviews * Written by leading industry experts and scholars * Review

  3. FUELS IN TOBACCO PRODUCTION

    Directory of Open Access Journals (Sweden)

    M. Čavlek

    2008-09-01

    Full Text Available Energy production from biomass can reduce „greenhouse effect” and contribute to solving energy security especially in the agricultural households which rely on energy from fossil fuels. In Croatia fuel-cured tobacco is produced on about 5000 ha. Gross income for the whole production is about 180 000 000 kn/year. Flue-cured tobacco is a high energy consuming crop. There are two parts of energy consumption, for mechanization used for the field production (11% and, energy for bulk-curing (89%. In each case, presently used fuels of fossil origin need to be substituted by an alternative energy source of organic origin. Hereafter attention is paid to finding a more economic and ecologically acceptable fuel for curing tobacco. Curing flue-cured tobacco is done by heated air in curing burns. Various sources of heat have been used; wood, coal, oil and gas. In each case different burning facilities of different efficiency have been used. This has had an impact on curing costs and ecology. Recently, mostly used fuel has been natural gas. However, gas is getting expensive. Consequently, an alternative fuel for curing tobacco is sought for. According to literature, agricultural crops suitable for the latter purpose could be wheat, barley, maize, sorghum, sugar beet and some other annual and perennial plant species. Wooden pellets (by-products are suitable for combustion too. Ligno-cellulose fuels have been used for heating since long time. However, not sufficient research has been done from an applied point of view (Venturi and Venturi, 2003. Fuel combustion is getting more efficient with developing technological innovations. The curing barn manufacturers are offering technology for combusting wooden pellets (by-products for curing tobacco. The pellets are available on domestic market. The same technology can be used for combustion of maize grain. Within “Hrvatski duhani” research on suitability of using wooden pellets and maize grain and whole

  4. FUELS IN TOBACCO PRODUCTION

    OpenAIRE

    Čavlek, M.; Boić, M.; Kristina Gršić; V. Kozumplik

    2008-01-01

    Energy production from biomass can reduce „greenhouse effect” and contribute to solving energy security especially in the agricultural households which rely on energy from fossil fuels. In Croatia fuel-cured tobacco is produced on about 5000 ha. Gross income for the whole production is about 180 000 000 kn/year. Flue-cured tobacco is a high energy consuming crop. There are two parts of energy consumption, for mechanization used for the field production (11%) and, energy for bulk-curing (89%)....

  5. Nuclear Fuel Reprocessing

    Energy Technology Data Exchange (ETDEWEB)

    Harold F. McFarlane; Terry Todd

    2013-11-01

    Reprocessing is essential to closing nuclear fuel cycle. Natural uranium contains only 0.7 percent 235U, the fissile (see glossary for technical terms) isotope that produces most of the fission energy in a nuclear power plant. Prior to being used in commercial nuclear fuel, uranium is typically enriched to 3–5% in 235U. If the enrichment process discards depleted uranium at 0.2 percent 235U, it takes more than seven tonnes of uranium feed to produce one tonne of 4%-enriched uranium. Nuclear fuel discharged at the end of its economic lifetime contains less one percent 235U, but still more than the natural ore. Less than one percent of the uranium that enters the fuel cycle is actually used in a single pass through the reactor. The other naturally occurring isotope, 238U, directly contributes in a minor way to power generation. However, its main role is to transmute into plutoniumby neutron capture and subsequent radioactive decay of unstable uraniumand neptuniumisotopes. 239Pu and 241Pu are fissile isotopes that produce more than 40% of the fission energy in commercially deployed reactors. It is recovery of the plutonium (and to a lesser extent the uranium) for use in recycled nuclear fuel that has been the primary focus of commercial reprocessing. Uraniumtargets irradiated in special purpose reactors are also reprocessed to obtain the fission product 99Mo, the parent isotope of technetium, which is widely used inmedical procedures. Among the fission products, recovery of such expensive metals as platinum and rhodium is technically achievable, but not economically viable in current market and regulatory conditions. During the past 60 years, many different techniques for reprocessing used nuclear fuel have been proposed and tested in the laboratory. However, commercial reprocessing has been implemented along a single line of aqueous solvent extraction technology called plutonium uranium reduction extraction process (PUREX). Similarly, hundreds of types of reactor

  6. Organic peroxide production in the Cl2-ethane-air photoreaction system

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    HPLC along with FT-IR technique was used to study the formationof organic peroxides in the Cl2-ethane-air photoreaction system. Ethyl hydroperoxide (CH3CH2OOH, EHP) and peroxyacetic acid ( CH3C(O)OOH, PAA) were conformed to be the peroxide product in the reaction system. In addition, methyl hydroperoxide (CH3OOH, MHP), hydroxymethyl hydroperoxide (HOCH2OOH, HMHP) and two unidentified organic peroxides were detected for the first time. EHP and MHP were the dominant peroxide products. The identification of HMHP showed that Criegee biradical CH2OO may be formed as an intermediate in the oxidation of ethane. Simulation results showed that photo-oxidation of ethane may make substantial contribution to source of organic peroxides in the atmos-phere.

  7. Chemiluminescent Nanomicelles for Imaging Hydrogen Peroxide and Self-Therapy in Photodynamic Therapy

    Directory of Open Access Journals (Sweden)

    Rui Chen

    2011-01-01

    Full Text Available Hydrogen peroxide is a signal molecule of the tumor, and its overproduction makes a higher concentration in tumor tissue compared to normal tissue. Based on the fact that peroxalates can make chemiluminescence with a high efficiency in the presence of hydrogen peroxide, we developed nanomicelles composed of peroxalate ester oligomers and fluorescent dyes, called peroxalate nanomicelles (POMs, which could image hydrogen peroxide with high sensitivity and stability. The potential application of the POMs in photodynamic therapy (PDT for cancer was also investigated. It was found that the PDT-drug-loaded POMs were sensitive to hydrogen peroxide, and the PDT drug could be stimulated by the chemiluminescence from the reaction between POMs and hydrogen peroxide, which carried on a self-therapy of the tumor without the additional laser light resource.

  8. Toxic DNA Damage by Hydrogen Peroxide through the Fenton Reaction in vivo and in vitro

    Science.gov (United States)

    Imlay, James A.; Chin, Sherman M.; Linn, Stuart

    1988-04-01

    Exposure of Escherichia coli to low concentrations of hydrogen peroxide results in DNA damage that causes mutagenesis and kills the bacteria, whereas higher concentrations of peroxide reduce the amount of such damage. Earlier studies indicated that the direct DNA oxidant is a derivative of hydrogen peroxide whose formation is dependent on cell metabolism. The generation of this oxidant depends on the availability of both reducing equivalents and an iron species, which together mediate a Fenton reaction in which ferrous iron reduces hydrogen peroxide to a reactive radical. An in vitro Fenton system was established that generates DNA strand breaks and inactivates bacteriophage and that also reproduces the suppression of DNA damage by high concentrations of peroxide. The direct DNA oxidant both in vivo and in this in vitro system exhibits reactivity unlike that of a free hydroxyl radical and may instead be a ferryl radical.

  9. Hydrogen peroxide-mediated inactivation of two chloroplastic peroxidases, ascorbate peroxidase and 2-cys peroxiredoxin.

    Science.gov (United States)

    Kitajima, Sakihito

    2008-01-01

    Reactive oxygen species (ROS), such as the superoxide anion and hydrogen peroxide, are generated by the photosystems because photoexcited electrons are often generated in excess of requirements for CO2 fixation and used for reducing molecular oxygen, even under normal environmental conditions. Moreover, ROS generation is increased in chloroplasts if plants are subjected to stresses, such as drought, high salinity and chilling. Chloroplast-localized isoforms of ascorbate peroxidase and possibly peroxiredoxins assume the principal role of scavenging hydrogen peroxide. However, in vitro studies revealed that both types of peroxidases are easily damaged by hydrogen peroxide and lose their catalytic activities. This is one contributing factor for cellular damage that occurs under severe oxidative stress. In this review, I describe mechanisms of hydrogen peroxide-mediated inactivation of these two enzymes and discuss a reason why they became susceptible to damage by hydrogen peroxide.

  10. Peroxide induced ultra-weak chemiluminescence and its application in analytical chemistry.

    Science.gov (United States)

    Lin, Zhen; Chen, Hui; Lin, Jin-Ming

    2013-09-21

    Chemiluminescence (CL), as a sensitive, rapid, and facile analytical method, has been widely applied in environmental monitoring, clinical diagnosis and food safety. Recently, the main challenge and research interest in the CL study have been focused on exploring new CL systems and obtaining new insight into the interaction between CL reagents. The peroxide induced ultra-weak CL reactions are some new arising systems that have received great attention and have been successfully applied in many fields. The peroxide includes hydrogen peroxide, peroxynitrite, peroxymonocarbonate, peroxomonosulphate and so on. This review paper covers the mechanism of the peroxide induced ultra-weak CL and the analytical applications of the CL have also been summarized. The future prospects for the peroxide induced ultra-weak CL are discussed.

  11. THE EFFECT OF TRANSITION METAL IONS-MANGANESE ON HYDROGEN PEROXIDE BLEACHING

    Institute of Scientific and Technical Information of China (English)

    ShuhuiYang; YumengZhao; BaokuWen; YonghaoNi

    2004-01-01

    In this investigation, the catalytic activities of Mn(II),Mn(III) and Mn(IV) towards decomposing hydrogenperoxide were compared. Among Mn (II), Mn (III)and Mn (IV), Mn (II) is not catalytically active indecomposing hydrogen peroxide. However, both Mn(113) and Mn (IV) are, and Mn (III) has a strongereffect than Mn(IV).In addition, we also studied the practical methods todecrease the Mn-induced decomposition of hydrogenperoxide. The results showed that sodium silicate andmagnesium sulfite in combination can effectivelydecrease the decomposition of hydrogen peroxide.The optimum dosage of sodium silicate was about0.5% (on solution). Adding chelants such as DTPAor EDTA simultaneously with stabilizers candecrease hydrogen peroxide decomposition. For Mn(IV), the EDTA is more effective than DTPA.Adding sodium thiosulfate simultaneously withmagnesium sulfate, sodium silicate and DTPA toalkaline peroxide solution can result in more residualhydrogen peroxide, and a higher pulp brightness.

  12. An ICT-based approach to ratiometric fluorescence imaging of hydrogen peroxide produced in living cells.

    Science.gov (United States)

    Srikun, Duangkhae; Miller, Evan W; Domaille, Dylan W; Chang, Christopher J

    2008-04-09

    We present the synthesis, properties, and biological applications of Peroxy Lucifer 1 (PL1), a new fluorescent probe for imaging hydrogen peroxide produced in living cells by a ratiometric response. PL1 utilizes a chemoselective boronate-based switch to detect hydrogen peroxide by modulation of internal charge transfer (ICT) within a 1,8-naphthalimide dye. PL1 features high selectivity for hydrogen peroxide over similar reactive oxygen species, including superoxide, and nitric oxide, and a 65 nm shift in emission from blue-colored fluorescence to green-colored fluorescence upon reaction with peroxide. Two-photon confocal microscopy experiments in live macrophages show that PL1 can ratiometrically visualize localized hydrogen peroxide bursts generated in living cells at immune response levels.

  13. Effects of resveratrol on hydrogen peroxide-induced oxidative stress in embryonic neural stem cells

    Institute of Scientific and Technical Information of China (English)

    Sibel Konyalioglu; Guliz Armagan; Ayfer Yalcin; Cigdem Atalayin; Taner Dagci

    2013-01-01

    Resveratrol, a natural phenolic compound, has been shown to prevent cardiovascular diseases and cancer and exhibit neuroprotective effects. In this study, we examined the neuroprotective and antioxidant effects of resveratrol against hydrogen peroxide in embryonic neural stem cells. Hydrogen peroxide treatment alone increased catalase and glutathione peroxidase activities but did not change superoxide dismutase levels compared with hydrogen peroxide + resveratrol treatment. Nitric oxide synthase activity and concomitant nitric oxide levels increased in response to hydrogen peroxide treatment. Conversely, resveratrol treatment decreased nitric oxide synthase activity and nitric oxide levels. Resveratrol also attenuated hydrogen peroxide-induced nuclear or mitochondrial DNA damage. We propose that resveratrol may be a promising agent for protecting embryonic neural stem cells because of its potential to decrease oxidative stress by inducing higher activity of antioxidant enzymes, decreasing nitric oxide production and nitric oxide synthase activity, and alleviating both nuclear and mitochondrial DNA damage.

  14. Determination of phenolic antioxidants in aviation jet fuel.

    Science.gov (United States)

    Bernabei, M; Bocchinfuso, G; Carrozzo, P; De Angelis, C

    2000-02-25

    The world-wide aviation jet fuel used for civil and military aircraft is of a kerosene type. To avoid peroxide production after the refinery process a specific antioxidant additive should be added on fuel. The antioxidants generally used are based on hindered phenols in a range of concentration 10-20 microg/ml. In the present work a specific method to measure the concentration of phenolic antioxidants is shown. The method is based on a liquid chromatographic technique with electrochemical detection. The technique, because of its selectivity, does not require sample pre-treatments. The analysis of a 5-10 ml fuel sample can be performed in less than 10 min with a sensitivity of 0.1 microg/ml and a RSD=2.5%. A comparison with another highly selective gas chromatographic technique with mass spectrometric detection with selected ion monitoring (GC-MS-SIM) is reported. The sensitivity of GC-MS-SIM method was 2 microg/ml with a RSD=3.1%.

  15. Fuel and fuel blending components from biomass derived pyrolysis oil

    Science.gov (United States)

    McCall, Michael J.; Brandvold, Timothy A.; Elliott, Douglas C.

    2012-12-11

    A process for the conversion of biomass derived pyrolysis oil to liquid fuel components is presented. The process includes the production of diesel, aviation, and naphtha boiling point range fuels or fuel blending components by two-stage deoxygenation of the pyrolysis oil and separation of the products.

  16. Fuel Cell Electrodes for Hydrogen-Air Fuel Cell Assemblies.

    Science.gov (United States)

    The report describes the design and evaluation of a hydrogen-air fuel cell module for use in a portable hydrid fuel cell -battery system. The fuel ... cell module consists of a stack of 20 single assemblies. Each assembly contains 2 electrically independent cells with a common electrolyte compartment

  17. A novel H2S/H2O2 fuel cell operating at the room temperature

    Energy Technology Data Exchange (ETDEWEB)

    Sanli, Ayse Elif [Gazi University (Turkey)], email: aecsanli@gmail.com; Aytac, Aylin [Department of Chemistry, Faculty of Science, Gazi University, Teknikokullar (Turkey)], email: aytaca@gazi.edu.tr

    2011-07-01

    This study concerns the oxidation mechanism of hydrogen sulfide and a fuel cell; acidic peroxide is used as the oxidant and basic hydrogen sulfide is the fuel. A solid state H2S/H2O2 stable fuel cell was produced at room temperature. A cell potential of 0.85 V was reached; this is quite remarkable in comparison to the H2S/O2 fuel cell potential of 0.85 V obtained at 850-1000 degree celsius. The hydrogen sulfide goes through an oxidation reaction in the alkaline fuel cell (H2S/H2O2 fuel cell) which opens up the possibility of using the cheaper nickel as a catalyst. As a result, the fuel cell becomes a potentially low cost technology. A further benefit from using H2S as the alkaline liquid H2S/H2O2 fuel cell, is that sulfide ions are oxidized at the anode, releasing electrons. Sulfur produced reacts with the other sulfide ions and forms disulfide and polysulfide ions in basic electrolytes (such as Black Sea water).

  18. Mass transfer in fuel cells

    Science.gov (United States)

    Walker, R. D., Jr.

    1973-01-01

    Developments in the following areas are reported: surface area and pore size distribution in electrolyte matrices, electron microscopy of electrolyte matrices, surface tension of KOH solutions, water transport in fuel cells, and effectiveness factors for fuel cell components.

  19. Fuel cell system with interconnect

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Zhien; Goettler, Richard; Delaforce, Philip Mark

    2016-03-08

    The present invention includes a fuel cell system having an interconnect that reduces or eliminates diffusion (leakage) of fuel and oxidant by providing an increased densification, by forming the interconnect as a ceramic/metal composite.

  20. Fuel Cell Technical Team Roadmap

    Energy Technology Data Exchange (ETDEWEB)

    None

    2013-06-01

    The Fuel Cell Technical Team promotes the development of a fuel cell power system for an automotive powertrain that meets the U.S. DRIVE Partnership (United States Driving Research and Innovation for Vehicle efficiency and Energy sustainability) goals.