WorldWideScience

Sample records for hydraulically actuated device

  1. Thermally Actuated Hydraulic Pumps

    Science.gov (United States)

    Jones, Jack; Ross, Ronald; Chao, Yi

    2008-01-01

    Thermally actuated hydraulic pumps have been proposed for diverse applications in which direct electrical or mechanical actuation is undesirable and the relative slowness of thermal actuation can be tolerated. The proposed pumps would not contain any sliding (wearing) parts in their compressors and, hence, could have long operational lifetimes. The basic principle of a pump according to the proposal is to utilize the thermal expansion and contraction of a wax or other phase-change material in contact with a hydraulic fluid in a rigid chamber. Heating the chamber and its contents from below to above the melting temperature of the phase-change material would cause the material to expand significantly, thus causing a substantial increase in hydraulic pressure and/or a substantial displacement of hydraulic fluid out of the chamber. Similarly, cooling the chamber and its contents from above to below the melting temperature of the phase-change material would cause the material to contract significantly, thus causing a substantial decrease in hydraulic pressure and/or a substantial displacement of hydraulic fluid into the chamber. The displacement of the hydraulic fluid could be used to drive a piston. The figure illustrates a simple example of a hydraulic jack driven by a thermally actuated hydraulic pump. The pump chamber would be a cylinder containing encapsulated wax pellets and containing radial fins to facilitate transfer of heat to and from the wax. The plastic encapsulation would serve as an oil/wax barrier and the remaining interior space could be filled with hydraulic oil. A filter would retain the encapsulated wax particles in the pump chamber while allowing the hydraulic oil to flow into and out of the chamber. In one important class of potential applications, thermally actuated hydraulic pumps, exploiting vertical ocean temperature gradients for heating and cooling as needed, would be used to vary hydraulic pressures to control buoyancy in undersea research

  2. Integrating a piezoelectric actuator with mechanical and hydraulic devices to control camless engines

    Science.gov (United States)

    Mercorelli, Paolo; Werner, Nils

    2016-10-01

    The paper deals with some interdisciplinary aspects and problems concerning the actuation control which occur in the integration of a piezoelectric structure in an aggregate actuator consisting of a piezoelectric, a stroke ratio displacement, a mechanical and a hydraulic part. Problems like compensation of the piezo hysteresis effect, scaling force-position to obtain an adequate displacement of the actuator and finally the control of such a complex aggregate system are considered and solved. Even though this work considers a particular application, the solutions proposed in the paper are quite general. In fact, the considered technical aspects occurring in systems which utilize piezoelectric technologies can be used in a variegated gamma of actuators integrating piezoelectric technologies. A cascade controller is proposed to combine a Feedforward action with an internal and an external PI-Controller. The Feedforward Controller is based on the model of the whole actuator, so particular attention is paid to the model structure. The resulting Feedforward action is an adaptive one to compensate hydraulic pressure faults. Real measurements are shown.

  3. Hydraulic involute cam actuator

    Science.gov (United States)

    Love, Lonnie J.; Lind, Randall F.

    2011-11-01

    Mechanical joints are provided in which the angle between a first coupled member and a second coupled member may be varied by mechanical actuators. In some embodiments the angle may be varied around a pivot axis in one plane and in some embodiments the angle may be varied around two pivot axes in two orthogonal planes. The joints typically utilize a cam assembly having two lobes with an involute surface. Actuators are configured to push against the lobes to vary the rotation angle between the first and second coupled member.

  4. Transputer Control of Hydraulic Actuators and Robots

    DEFF Research Database (Denmark)

    Conrad, Finn

    1996-01-01

    Results from a Danish mechatronics research program entitled IMCIA - Intelligent Control and Intelligent Actuators. The objective is development of intelligent actuators for intelligent motion control. A mechatronics test facility with a transputer controlled hydraulic robot suiteable for real...

  5. Transputer Control of Hydraulic Actuators and Robots

    DEFF Research Database (Denmark)

    Conrad, Finn

    1996-01-01

    Results from a Danish mechatronics research program entitled IMCIA - Intelligent Control and Intelligent Actuators. The objective is development of intelligent actuators for intelligent motion control. A mechatronics test facility with a transputer controlled hydraulic robot suiteable for real...

  6. Hydraulic Actuator for Ganged Control Rods

    Science.gov (United States)

    Thompson, D. C.; Robey, R. M.

    1986-01-01

    Hydraulic actuator moves several nuclear-reactor control rods in unison. Electromagnetic pump pushes liquid lithium against ends of control rods, forcing them out of or into nuclear reactor. Color arrows show lithium flow for reactor startup and operation. Flow reversed for shutdown. Conceived for use aboard spacecraft, actuator principle applied to terrestrial hydraulic machinery involving motion of ganged rods.

  7. Hydraulic Actuators with Autonomous Hydraulic Supply for the Mainline Aircrafts

    Directory of Open Access Journals (Sweden)

    I. S. Shumilov

    2014-01-01

    Full Text Available Applied in the aircraft control systems, hydraulic servo actuators with autonomous hydraulic supply, so-called, hydraulic actuators of integrated configuration, i.e. combination of a source of hydraulic power and its load in the single unit, are aimed at increasing control system reliability both owing to elimination of the pipelines connecting the actuator to the hydraulic supply source, and owing to avoidance of influence of other loads failure on the actuator operability. Their purpose is also to raise control system survivability by eliminating the long pipeline communications and their replacing for the electro-conductive power supply system, thus reducing the vulnerability of systems. The main reason for a delayed application of the hydraulic actuators in the cutting-edge aircrafts was that such aircrafts require hydraulic actuators of considerably higher power with considerable heat releases, which caused an unacceptable overheat of the hydraulic actuators. Positive and negative sides of the hydraulic actuators, their alternative options of increased reliability and survivability, local hydraulic systems as an advanced alternative to independent hydraulic actuators are considered.Now to use hydraulic actuators in mainline aircrafts is inexpedient since there are the unfairly large number of the problems reducing, first and last, safety of flights, with no essential weight and operational advantages. Still works to create competitive hydraulic actuators ought to be continued.Application of local hydraulic systems (LHS will allow us to reduce length of pressure head and drain pipelines and mass of pipelines, as well as to raise their general fail-safety and survivability. Application of the LHS principle will allow us to use a majority of steering drive advantages. It is necessary to allocate especially the following:- ease of meeting requirements for the non-local spread of the engine weight;- essentially reducing length and weight of

  8. Pneumatically actuated micropipetting device

    Science.gov (United States)

    Szita, Nicolas; Buser, Rudolf A.

    1998-03-01

    We have realized a valveless micropipetting device with an integrated sensor which can aspirate and dispense liquid volumes without any valves, hence without any reflow or dead volume. With an external pneumatic actuation, we have demonstrated aspirating and dispensing from 190nl of 6 (mu) l of water. Measurements showed a standard deviation of down to 1 percent. An integrated capacitive sensor will allow monitoring of the pressure throughout the pipetting process and detect malfunctions, e.g. clotting of the pipetting tip. It is our intention to use this demonstrated precise aspiration mechanism in combination with a micromachined reaction chamber and a miniaturized optical analysis system.

  9. 14 CFR 33.72 - Hydraulic actuating systems.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Hydraulic actuating systems. 33.72 Section... AIRWORTHINESS STANDARDS: AIRCRAFT ENGINES Design and Construction; Turbine Aircraft Engines § 33.72 Hydraulic actuating systems. Each hydraulic actuating system must function properly under all conditions in which...

  10. NEW HYDRAULIC ACTUATOR'S POSITION SERVOCONTROL STRATEGY

    Institute of Scientific and Technical Information of China (English)

    KE Zunrong; ZHU Yuquan; LING Xuan

    2007-01-01

    A new hydraulic actuator-hydraulic muscle (HM) is described, and the actuator's features and applications are analyzed, then a position servocontrol system in which HM is main actuator is set up. The mathematical model of the system is built up and several control strategies are discussed. Based on the mathematical model, simulation research and experimental investigation with subsection PID control, neural network self-adaptive PID control and single neuron self-adaptive PID control adopted respectively are carried out, and the results indicate that compared with PID control, neural network self-adaptive PID control and single neuron self-adaptive PID control don't need controlled system's accurate model and have fast response, high control accuracy and strong robustness, they are very suitable for HM position servo control system.

  11. Analysis of Innovative Design of Energy Efficient Hydraulic Actuators

    OpenAIRE

    M Osman Abdalla

    2013-01-01

    Hydraulic cylinder actuators are used extensively in industrial, construction and agricultural works. The small sized outlet ports of the cylinders resist the flow of discharged oil; and as a result the piston motion is slowed down. This causes a lot of heat generation and energy loss within the actuators. The study investigates and analyzes the possibilities of reducing the hydraulic resistance and increasing efficiency of the hydraulic actuator. Conventional hydraulic cylinders are simulate...

  12. Simulation and control of an electro-hydraulic actuated clutch

    Science.gov (United States)

    Balau, Andreea-Elena; Caruntu, Constantin-Florin; Lazar, Corneliu

    2011-08-01

    The basic function of any type of automotive transmission is to transfer the engine torque to the vehicle with the desired ratio smoothly and efficiently and the most common control devices inside the transmission are clutches and hydraulic pistons. The automatic control of the clutch engagement plays a crucial role in Automatic Manual Transmission (AMT) vehicles, being seen as an increasingly important enabling technology for the automotive industry. It has a major role in automatic gear shifting and traction control for improved safety, drivability and comfort and, at the same time, for fuel economy. In this paper, a model for a wet clutch actuated by an electro-hydraulic valve used by Volkswagen for automatic transmissions is presented. Starting from the developed model, a simulator was implemented in Matlab/Simulink and the model was validated against data obtained from a test-bench provided by Continental Automotive Romania, which includes the Volkswagen wet clutch actuated by the electro-hydraulic valve. Then, a predictive control strategy is applied to the model of the electro-hydraulic actuated clutch with the aims of controlling the clutch piston displacement and decreasing the influence of the network-induced delays on the control performances. The simulation results obtained with the proposed method are compared with the ones obtained with different networked controllers and it is shown that the strategy proposed in this paper can indeed improve the performances of the control system.

  13. Control arrangement for the actuation of hydraulic consumers

    Energy Technology Data Exchange (ETDEWEB)

    Kussel, W.; Dettmers, M.; Weirich, W.

    1988-11-09

    An arrangement for controlling the actuation of hydraulic consumers, by selectively connecting the consumers to hydraulic pressure and return lines; the control arrangement comprising a respective hydraulically operated directional control valve associated with each of the hydraulic consumers, a respective electro-magnetically operated pre-control valve associated with each of the hydraulic directional control valves, and further electro-magnetically operated directional control valve means associated with the pre-control valves, each of the hydraulic consumers being connectible to the hydraulic pressure or return lines via the associated hydraulically operated directional control valve which is actuatable by a hydraulic control line leading from the output of the associated pre-control valve, wherein the inputs of the pre-control valves are connected directly to the hydraulic return line and indirectly, via the further control valve means, to the hydraulic return line or to a hydraulic control pressure line.

  14. Analysis of Innovative Design of Energy Efficient Hydraulic Actuators

    Directory of Open Access Journals (Sweden)

    M Osman Abdalla

    2013-01-01

    Full Text Available Hydraulic cylinder actuators are used extensively in industrial, construction and agricultural works. The small sized outlet ports of the cylinders resist the flow of discharged oil; and as a result the piston motion is slowed down. This causes a lot of heat generation and energy loss within the actuators. The study investigates and analyzes the possibilities of reducing the hydraulic resistance and increasing efficiency of the hydraulic actuator. Conventional hydraulic cylinders are simulated in FLUENT. Results show that the small outlet ports are the sources of energy loss in hydraulic cylinders. A new hydraulic system was proposed as a solution to relieve the hydraulic resistance in the actuators. The proposed system is a four ports hydraulic cylinder fitted with a novel flow control valve. The proposed four ports cylinder was simulated and parameters such as ports sizes, loads and pressures are varied during the simulation. The hydraulic resisting forces, piston speed and mass flow rates are computed. Results show that the hydraulic resistance is significantly reduced in the proposed four ports actuators; and the proposed cylinders run faster than the conventional cylinders and a considerable amount of energyis saved as well.

  15. Adaptive Non-linear Control of Hydraulic Actuator Systems

    DEFF Research Database (Denmark)

    Hansen, Poul Erik; Conrad, Finn

    1998-01-01

    Presentation of two new developed adaptive non-liner controllers for hydraulic actuator systems to give stable operation and improved performance.Results from the IMCIA project supported by the Danish Technical Research Council (STVF).......Presentation of two new developed adaptive non-liner controllers for hydraulic actuator systems to give stable operation and improved performance.Results from the IMCIA project supported by the Danish Technical Research Council (STVF)....

  16. Design of Transputer Controllers for Hydraulic Actuator Systems

    DEFF Research Database (Denmark)

    Conrad, Finn

    1996-01-01

    The paper deals with how transputers can be applied for fast controllers for hydraulic actuator systems. A general transputer-based control systems including a data acquisition transputer subsystem is presented. An application case: development of a mechatronic test facility with a fast hydraulic...

  17. Climbing robot actuated by meso-hydraulic artificial muscles

    Science.gov (United States)

    Bryant, Matthew; Fitzgerald, Jason; Miller, Samuel; Saltzman, Jonah; Kim, Sangkyu; Lin, Yong; Garcia, Ephrahim

    2014-03-01

    This paper presents the design, construction, experimental characterization, and system testing of a legged, wall-climbing robot actuated by meso-scale hydraulic artificial muscles. While small wall-climbing robots have seen increased research attention in recent years, most authors have primarily focused on designs for the gripping and adhesion of the robot to the wall, while using only standard DC servo-motors for actuation. This project seeks to explore and demonstrate a different actuation mechanism that utilizes hydraulic artificial muscles. A four-limb climbing robot platform that includes a full closed-loop hydraulic power and control system, custom hydraulic artificial muscles for actuation, an on-board microcontroller and RF receiver for control, and compliant claws with integrated sensing for gripping a variety of wall surfaces has been constructed and is currently being tested to investigate this actuation method. On-board power consumption data-logging during climbing operation, analysis of the robot kinematics and climbing behavior, and artificial muscle force-displacement characterization are presented to investigate and this actuation method.

  18. Hydraulic System Design of Hydraulic Actuators for Large Butterfly Valves

    OpenAIRE

    HUANG, Ye; Liu, Changsheng; Shiongur Bamed

    2014-01-01

    Hydraulic control systems of butterfly valves are presently valve-controlled and pump-controlled. Valve-controlled hydraulic systems have serious power loss and generate much heat during throttling. Pump-controlled hydraulic systems have no overflow or throttling losses but are limited in the speed adjustment of the variable-displacement pump, generate much noise, pollute the environment, and have motor power that does not match load requirements, resulting in low efficiency under...

  19. Hydraulic System Design of Hydraulic Actuators for Large Butterfly Valves

    Directory of Open Access Journals (Sweden)

    Ye HUANG

    2014-09-01

    Full Text Available Hydraulic control systems of butterfly valves are presently valve-controlled and pump-controlled. Valve-controlled hydraulic systems have serious power loss and generate much heat during throttling. Pump-controlled hydraulic systems have no overflow or throttling losses but are limited in the speed adjustment of the variable-displacement pump, generate much noise, pollute the environment, and have motor power that does not match load requirements, resulting in low efficiency under light loads and wearing of the variable-displacement pump. To overcome these shortcomings, this article designs a closed hydraulic control system in which an AC servo motor drives a quantitative pump that controls a spiral swinging hydraulic cylinder, and analyzes and calculates the structure and parameters of a spiral swinging hydraulic cylinder. The hydraulic system adjusts the servo motor’s speed according to the requirements of the control system, and the motor power matches the power provided to components, thus eliminating the throttling loss of hydraulic circuits. The system is compact, produces a large output force, provides stable transmission, has a quick response, and is suitable as a hydraulic control system of a large butterfly valve.

  20. Nonlinear Model-Based Fault Detection for a Hydraulic Actuator

    NARCIS (Netherlands)

    Van Eykeren, L.; Chu, Q.P.

    2011-01-01

    This paper presents a model-based fault detection algorithm for a specific fault scenario of the ADDSAFE project. The fault considered is the disconnection of a control surface from its hydraulic actuator. Detecting this type of fault as fast as possible helps to operate an aircraft more cost effect

  1. Towards Autonomous Control of Hydraulic Actuator Systems

    DEFF Research Database (Denmark)

    Hansen, Poul Erik; Conrad, Finn

    1998-01-01

    Presentation of new developed control algorithms to increase autonomy and intelligence of hydraulic control systems. A refinement of relaytuning method is used to determine the control parameters of a lag/lead controller and a poleplacement controller. Further, a fail-safe function is developed t...

  2. Power management in hydraulically actuated mobile equipment

    DEFF Research Database (Denmark)

    Pedersen, Henrik Clemmensen; Andersen, Torben Ole; Hansen, Michael Rygaard

    2008-01-01

    The focus of the current paper is on the control of hydraulic systems when utilizing the advances that electronic control may bring with regard to power management, prioritized flow sharing and anti-stall, arising from being able to control both pump, valves and engine electronically. A simple mo...

  3. Elastomeric actuator devices for magnetic resonance imaging

    Science.gov (United States)

    Dubowsky, Steven (Inventor); Hafez, Moustapha (Inventor); Jolesz, Ferenc A. (Inventor); Kacher, Daniel F. (Inventor); Lichter, Matthew (Inventor); Weiss, Peter (Inventor); Wingert, Andreas (Inventor)

    2008-01-01

    The present invention is directed to devices and systems used in magnetic imaging environments that include an actuator device having an elastomeric dielectric film with at least two electrodes, and a frame attached to the actuator device. The frame can have a plurality of configurations including, such as, for example, at least two members that can be, but not limited to, curved beams, rods, plates, or parallel beams. These rigid members can be coupled to flexible members such as, for example, links wherein the frame provides an elastic restoring force. The frame preferably provides a linear actuation force characteristic over a displacement range. The linear actuation force characteristic is defined as .+-.20% and preferably 10% over a displacement range. The actuator further includes a passive element disposed between the flexible members to tune a stiffness characteristic of the actuator. The passive element can be a bi-stable element. The preferred embodiment actuator includes one or more layers of the elastomeric film integrated into the frame. The elastomeric film can be made of many elastomeric materials such as, for example, but not limited to, acrylic, silicone and latex.

  4. Disturbance observer based position tracking of electro-hydraulic actuator

    Institute of Scientific and Technical Information of China (English)

    国凯; 魏建华; 田启岩

    2015-01-01

    A nonlinear controller based on an extended second-order disturbance observer is presented to track desired position for an electro-hydraulic single-rod actuator in the presence of both external disturbances and parameter uncertainties. The proposed extended second-order disturbance observer deals with not only the external perturbations, but also parameter uncertainties which are commonly regarded as lumped disturbances in previous researches. Besides, the outer position tracking loop is designed with cylinder load pressure as output; and the inner pressure control loop provides the hydraulic actuator the characteristic of a force generator. The stability of the closed-loop system is provided based on Lyapunov theory. The performance of the controller is verified through simulations and experiments. The results demonstrate that the proposed nonlinear position tracking controller, together with the extended second-order disturbance observer, gives an excellent tracking performance in the presence of parameter uncertainties and external disturbance.

  5. PRINCIPLE OF POST-PRODUCTION DESIGN OF HYDRAULIC ACTUATORS

    Directory of Open Access Journals (Sweden)

    A. V. Puzanov

    2015-01-01

    Full Text Available In work the problem of design-technology preparation of production of hydraulic actuators is staticized. The structure and business processes of design and production are analysed. Methods and means of reorganization of project works for the purpose of cutting-down of time of preparation of production are offered. The directions of reorganization of process of design are formulated. The principle of carrying out procedures of design-technology preparation of production of hydraulic actuators with use of ready elements of a production cycle is considered. The scheme of their practical realization at machine-building enterprise is offered. The assessment of growth of efficiency of design-technology preparation of production is given in machine-building enterprise.

  6. Evolutionary flight and enabling smart actuator devices

    Science.gov (United States)

    Manzo, Justin; Garcia, Ephrahim

    2007-04-01

    Recent interest in morphing vehicles with multiple, optimized configurations has led to renewed research on biological flight. The flying vertebrates - birds, bats, and pterosaurs - all made or make use of various morphing devices to achieve lift to suit rapidly changing flight demands, including maneuvers as complex as perching and hovering. The first part of this paper will discuss these devices, with a focus on the morphing elements and structural strong suits of each creature. Modern flight correlations to these devices will be discussed and analyzed as valid adaptations of these evolutionary traits. The second part of the paper will focus on the use of active joint structures for use in morphing aircraft devices. Initial work on smart actuator devices focused on NASA Langley's Hyper-Elliptical Cambered Span (HECS) wing platform, which led to development of a discretized spanwise curvature effector. This mechanism uses shape memory alloy (SMA) as the sole morphing actuator, allowing fast rotation with lightweight components at the expense of energy inefficiency. Phase two of morphing actuator development will add an element of active rigidity to the morphing structure, in the form of shape memory polymer (SMP). Employing a composite structure of polymer and alloy, this joint will function as part of a biomimetic morphing actuator system in a more energetically efficient manner. The joint is thermally actuated to allow compliance on demand and rigidity in the nominal configuration. Analytical and experimental joint models are presented, and potential applications on a bat-wing aircraft structure are outlined.

  7. A New Type of Hydraulic Actuator Using Electrorheological Fluids

    Science.gov (United States)

    Wendt, Eckhard; Büsing, Klaus W.

    Electrorheological Fluids (ERF) are usually used in semi active damping elements, e.g. shock absorbers or engine mounts because of their continuously controllable shear stress. A totally new field of application may be achieved, if an ERF is used as a hydraulic fluid and not only as a control medium. In this case a fundamental need is the capability to produce a volume flow by using normal hydraulic pumps, e.g. gear pumps. The ERF and the hydraulic components both must have a long lifetime without unusual wear. Bayer AG has developed an ERF based on soft crosslinked PU-particles dispersed in silicone oil. These ERF are characterised by a low basic viscosity, a high ER-effect and a moderate conductivity. Compared with previous ERF where hard inorganic particles were used, the new fluid is not abrasive. It is foremostly this characteristic which gives the possibility of using the ERF in hydraulic systems with high shear rates and high shear stresses. The usage of ERF as hydraulic fluid allows the construction of proportional valves without mechanically driven parts. The control of the pressure drop over the valves is realised directly by an electrical signal. It is possible to realise actuators with very fast response times since the reaction time of ERF is within milliseconds. For demonstration purpose Bayer AG has built an actuator which is controlled by an electrorheological valve-block. The calculation of the dimension of this actuator and the valves will be shown and the realised response time will be demonstrated.

  8. Investigation and Development of the Thermal Preparation System of the Trailbuilder Machinery Hydraulic Actuator

    Science.gov (United States)

    Konev, V.; Polovnikov, E.; Krut, O.; Merdanov, Sh; Zakirzakov, G.

    2017-07-01

    It’s determined that the main part of trailbuilders operated in the North is the technology equipped by the hydraulic actuator. Further development of the northern territories will demand using of various means and ways machinery thermal preparation, and also the machinery of the northern fulfillment. On this basis problems in equipment operation are defined. One of the main is efficiency supplying of a hydraulic actuator. On the basis of the operating conditions’ analysis of trailbuilder hydraulic actuator operation it is determined, that under low negative temperatures the means of thermal preparation are necessary. The existing systems warm up only a hydraulic tank or warming up of the hydro equipment before the machinery operation is carried out under loading with intensive wears. Thus, with the purpose to raise the efficiency of thermal hydraulic actuator, operated far from stationary bases autonomous, energy saving, not expensive in creation and operation systems are necessary. In accordance with the analysis of means and ways of the thermal preparation of the hydraulic actuator and the thermal balance calculations of the (internal) combustion engine the system of the hydraulic actuator heating is offered and is being investigated. It contains a local hydraulic actuator warming up and the system of internal combustion engine heat utilization. Within research operation conditions of the local hydraulic actuator heating are viewed and determined, taking into account constructive changes to the local hydraulic actuator heating. Mathematical modelling of the heat technical process in the modernized hydraulic actuator is considered. As a result temperature changes of the heat-transfer and the hydraulic cylinder in time are determined. To check the theoretical researches and to define dependences on hydraulic actuator warming up, the experimental installation is made. It contains the measuring equipment, a small tank with the heat exchanger of the burnt gases

  9. Design of a hydraulic actuator for active control of rotating machinery

    Science.gov (United States)

    Rashidi, Majid; Dirusso, Eliseo

    1991-01-01

    A hydraulic actuator is described which consists of a pump, a hydraulic servo-valve, and a thin elastic plate which transduces the generated pressure variations into forces acting on a mass which simulates the bearing of a rotor system. An actuator characteristic number is defined to provide a base for an optimum design of force actuators with combined weight, frequency, and force considerations. This characteristic number may also be used to compare hydraulic and electromagnetic force actuators. In tests, this actuator generated 182.3 Newton force at a frequency of 100 Hz and a displacement amplitude of 5.8 x 10 exp -5 meter.

  10. Development of hydraulic brake actuator for active brake control; Active brake seigyoyo yuatsu booster no kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    Konishi, Y.; Hattori, M. Sugisawa, M.; Nishii, M. [Aisin Seiki Co. Ltd., Aichi (Japan)

    1997-10-01

    Recently, application of active brake control systems of the vehicle are increasing. (Vehicle stability control, Panic brake assist ) We have developed a new hydraulic brake actuator for active brake control systems. New hydraulic brake actuator is composed of the three parts. (Hydraulic booster unit, Power supply unit, Control valve unit) This report describes the construction of the new hydraulic booster unit. 2 refs., 10 figs.

  11. Hydraulic engine valve actuation system including independent feedback control

    Science.gov (United States)

    Marriott, Craig D

    2013-06-04

    A hydraulic valve actuation assembly may include a housing, a piston, a supply control valve, a closing control valve, and an opening control valve. The housing may define a first fluid chamber, a second fluid chamber, and a third fluid chamber. The piston may be axially secured to an engine valve and located within the first, second and third fluid chambers. The supply control valve may control a hydraulic fluid supply to the piston. The closing control valve may be located between the supply control valve and the second fluid chamber and may control fluid flow from the second fluid chamber to the supply control valve. The opening control valve may be located between the supply control valve and the second fluid chamber and may control fluid flow from the supply control valve to the second fluid chamber.

  12. Orthopaedic Rehabilitation Device Actuated with Pneumatic Muscles

    Directory of Open Access Journals (Sweden)

    Ioana Petre

    2014-07-01

    This paper presents an innovative constructive solution for such orthopaedic rehabilitation equipment, designed to ensure a swift reintegration of patients at as low a cost as possible. The absolute novelty consists in the utilization of the linear pneumatic muscle as actuator of the orthopaedic rehabilitation equipment, thus achieving a light and highly compliant construction that satisfies safety requirements related to man-machine interaction. Pneumatic muscles are bio-inspired actuation systems characterized by a passive variable compliant behaviour. This property, deployed in rehabilitation systems, enables the development of human friendly devices, which are comfortable for the patients, and capable of safe interaction. This paper presents the constructive schematic of the orthopaedic rehabilitation equipment, the structure of the actuation and positioning system, and several of its functional characteristics.

  13. Suitability of Hydraulic Disk Brakes for Passive Actuation of Upper-Extremity Rehabilitation Exoskeleton

    Directory of Open Access Journals (Sweden)

    Arno H. A. Stienen

    2009-01-01

    Full Text Available Passive, energy-dissipating actuators are promising for force-coordination training in stroke rehabilitation, as they are inherently safe and have a high torque-to-weight ratio. The goal of this study is to determine if hydraulic disk brakes are suitable to actuate an upper-extremity exoskeleton, for application in rehabilitation settings. Passive actuation with friction brakes has direct implications for joint control. Braking is always opposite to the movement direction. During standstill, the measured torque is equal to the torque applied by the human. During rotations, it is equal to the brake torque. Actively assisting movement is not possible, nor are energy-requiring virtual environments. The evaluated disk brake has a 20 Nm bandwidth (flat-spectrum, multi-sine of 10 Hz; sufficient for torques required for conventional therapy and simple, passive virtual environments. The maximum static output torque is 120 Nm, sufficient for isometric training of the upper extremity. The minimal impedance is close zero, with only the inertia of the device felt. In conclusion, hydraulic disk brakes are suitable for rehabilitation devices.

  14. Multiplexed hydraulic valve actuation using ionic liquid filled soft channels and Braille displays

    Science.gov (United States)

    Gu, Wei; Chen, Hao; Tung, Yi-Chung; Meiners, Jens-Christian; Takayama, Shuichi

    2007-01-01

    Pneumatic actuation with multilayer soft lithography enables operation of up to thousands of valves in parallel using far fewer control lines. However, it is dependent on macroscopic switches and external pressure sources that require interconnects and limit portability. The authors present a more portable and multiplexed valve actuation strategy that uses a grid of mechanically actuated Braille pins to hydraulically, rather than pneumatically, deform elastic actuation channels that act as valves. Experimental and theoretical analyses show that the key to reliable operation of the hydraulic system is the use of nonvolatile ionic liquids as the hydraulic fluid.

  15. Parametric identification of a servo-hydraulic actuator for real-time hybrid simulation

    Science.gov (United States)

    Qian, Yili; Ou, Ge; Maghareh, Amin; Dyke, Shirley J.

    2014-10-01

    In a typical Real-time Hybrid Simulation (RTHS) setup, servo-hydraulic actuators serve as interfaces between the computational and physical substructures. Time delay introduced by actuator dynamics and complex interaction between the actuators and the specimen has detrimental effects on the stability and accuracy of RTHS. Therefore, a good understanding of servo-hydraulic actuator dynamics is a prerequisite for controller design and computational simulation of RTHS. This paper presents an easy-to-use parametric identification procedure for RTHS users to obtain re-useable actuator parameters for a range of payloads. The critical parameters in a linearized servo-hydraulic actuator model are optimally obtained from genetic algorithms (GA) based on experimental data collected from various specimen mass/stiffness combinations loaded to the target actuator. The actuator parameters demonstrate convincing convergence trend in GA. A key feature of this parametric modeling procedure is its re-usability under different testing scenarios, including different specimen mechanical properties and actuator inner-loop control gains. The models match well with experimental results. The benefit of the proposed parametric identification procedure has been demonstrated by (1) designing an H∞ controller with the identified system parameters that significantly improves RTHS performance; and (2) establishing an analysis and computational simulation of a servo-hydraulic system that help researchers interpret system instability and improve design of experiments.

  16. Dynamic Characteristics of a Hydraulic Amplification Mechanism for Large Displacement Actuators Systems

    Directory of Open Access Journals (Sweden)

    Xavier Arouette

    2010-03-01

    Full Text Available We have developed a hydraulic displacement amplification mechanism (HDAM and studied its dynamic response when combined with a piezoelectric actuator. The HDAM consists of an incompressible fluid sealed in a microcavity by two largely deformable polydimethylsiloxane (PDMS membranes. The geometry with input and output surfaces having different cross-sectional areas creates amplification. By combining the HDAM with micro-actuators, we can amplify the input displacement generated by the actuators, which is useful for applications requiring large deformation, such as tactile displays. We achieved a mechanism offering up to 18-fold displacement amplification for static actuation and 12-fold for 55 Hz dynamic actuation.

  17. Chapter 2. Mode-switching in Hydraulic Actuator Systems - An Experiment

    DEFF Research Database (Denmark)

    Andersen, Torben Ole; Conrad, Finn; Ravn, Anders P.;

    1996-01-01

    Experiments with mode-switching adaptive control of actuators to drive a hydraulic test robot.The research is a cooperation with IT, DTU within the IMCIA Research Programme supported by the Danish Technical Research Council, STVF.......Experiments with mode-switching adaptive control of actuators to drive a hydraulic test robot.The research is a cooperation with IT, DTU within the IMCIA Research Programme supported by the Danish Technical Research Council, STVF....

  18. Knowledge-based Adaptive Tracking Control of Electro-hydraulic Actuator Systems

    DEFF Research Database (Denmark)

    Hansen, Poul Erik

    1997-01-01

    The paper deal with intelligent motion control and electro-hydraulic actuator systems for multiaxis machynes and robots.The research results are from the IMCIA research Programme supported by the Danish Technical Research Council, STVF.......The paper deal with intelligent motion control and electro-hydraulic actuator systems for multiaxis machynes and robots.The research results are from the IMCIA research Programme supported by the Danish Technical Research Council, STVF....

  19. Understanding the Space Shuttle Main Engine Hydraulic Actuation System and Reviewing Its Evolution

    Science.gov (United States)

    McWade, Robert J.; Minor, Robert B.; McNutt, Leslie M.

    2010-01-01

    The complex engine start and thrust control requirements of the Space Shuttle Main Engine (SSME) require unique valve, actuator and control system hardware. The Hydraulic Actuation System (HAS) was designed, developed, and now operates to meet tight engine control requirement limits to assure safe, reliable and correct engine thrust at all times. The actuator is designed to be fail safe and fail operate in the areas where redundancy is important. The HAS has an additional pneumatic operating capability that insures a safe sequential closure of all actuators and propellant valves in the event of the loss of hydraulic system pressure or loss of electrical closed loop control of the actuator. The objective of this paper is to provide a complete description of the actuator s internal operating system, along with its interaction with all SSME system interfaces. Additionally the paper addresses the challenges, problems identified, and corrected, and lessons learned, during the course of the almost 35 years of engine operation.

  20. Understanding the Space Shuttle Main Engine Hydraulic Actuation System and Reviewing Its Evolution

    Science.gov (United States)

    McWade, Robert J.; Minor, Robert B.; McNutt, Leslie M.

    2010-01-01

    The complex engine start and thrust control requirements of the Space Shuttle Main Engine (SSME) require unique valve, actuator and control system hardware. The Hydraulic Actuation System (HAS) was designed, developed, and now operates to meet tight engine control requirement limits to assure safe, reliable and correct engine thrust at all times. The actuator is designed to be fail safe and fail operate in the areas where redundancy is important. The HAS has an additional pneumatic operating capability that insures a safe sequential closure of all actuators and propellant valves in the event of the loss of hydraulic system pressure or loss of electrical closed loop control of the actuator. The objective of this paper is to provide a complete description of the actuator s internal operating system, along with its interaction with all SSME system interfaces. Additionally the paper addresses the challenges, problems identified, and corrected, and lessons learned, during the course of the almost 35 years of engine operation.

  1. A Simple and Robust Sliding Mode Velocity Observer for Moving Coil Actuators in Digital Hydraulic Valves

    DEFF Research Database (Denmark)

    Nørgård, Christian; Schmidt, Lasse; Bech, Michael Møller

    2016-01-01

    This paper focuses on estimating the velocity and position of fast switching digital hydraulic valves actuated by electromagnetic moving coil actuators, based on measurements of the coil current and voltage. The velocity is estimated by a simple first-order sliding mode observer architecture and ...

  2. A cyclically actuated electrolytic drug delivery device

    KAUST Repository

    Yi, Ying

    2015-01-01

    This work, focusing on an implantable drug delivery system, presents the first prototype electrolytic pump that combines a catalytic reformer and a cyclically actuated mode. These features improve the release performance and extend the lifetime of the device. Using our platinum (Pt)-coated carbon fiber mesh that acts as a catalytic reforming element, the cyclical mode is improved because the faster recombination rate allows for a shorter cycling time for drug delivery. Another feature of our device is that it uses a solid-drug-in-reservoir (SDR) approach, which allows small amounts of a solid drug to be dissolved in human fluid, forming a reproducible drug solution for long-term therapies. We have conducted proof-of-principle drug delivery studies using such an electrolytic pump and solvent blue 38 as the drug substitute. These tests demonstrate power-controlled and pulsatile release profiles of the chemical substance, as well as the feasibility of this device. A drug delivery rate of 11.44 ± 0.56 μg min-1 was achieved by using an input power of 4 mW for multiple pulses, which indicates the stability of our system. © The Royal Society of Chemistry 2015.

  3. A Study on the Air Vent Valve of the Hydraulic Servo Actuator for Steam Control of Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Yong Bum; Lee, Jong Jik [Korea Institute of Machinery and Materials, Daejeon (Korea, Republic of)

    2016-06-15

    To produce adequate electricity in nuclear and thermal power plants, an optimal amount of steam should be supplied to a generator connected to high- and low-pressure steam turbines. A turbine output control device, which is a special steam valve employed to supply or interrupt the steam to the turbine, is operated using a hydraulic servo actuator. In power plants, the performance of servo actuators is degraded by the air generated from the hydraulic system, or causes frequent failures owing to an increase in the wear of the seal. This is due to the seal being burnt as generated heat using the produced compressed air. Some power plants have exhausted air using a fixed orifice, and thus they encounter power loss due to mass flow exhaust. Failures are generated in hydraulic pumps, electric motors, and valves, which are frequently operated. In this study, we perform modeling and analysis of the load-sensing air-exhaust valves, which can be passed through very fine flow under normal use conditions, and exhaust mass flow air at the beginning stage as with existing fixed orifices. Then, we propose a method to prevent failures due to the compressed air, and to ensure the control accuracy of hydraulic servo actuators.

  4. Robust Control of a Hydraulically Actuated Manipulator Using Sliding Mode Control

    DEFF Research Database (Denmark)

    Hansen, Michael Rygaard; Andersen, Torben Ole; Pedersen, Henrik Clemmensen

    2005-01-01

    This paper presents an approach to robust control called sliding mode control (SMC) applied to the a hydraulic servo system (HSS), consisting of a servo valve controlled symmetrical cylinder. The motivation for applying sliding mode control to hydraulically actuated systems is its robustness towa...

  5. Modeling and control of a hydraulically actuated flexible-prismatic link robot

    Energy Technology Data Exchange (ETDEWEB)

    Love, L.; Kress, R.; Jansen, J.

    1996-12-01

    Most of the research related to flexible link manipulators to date has focused on single link, fixed length, single plane of vibration test beds. In addition, actuation has been predominantly based upon electromagnetic motors. Ironically, these elements are rarely found in the existing industrial long reach systems. This manuscript describes a new hydraulically actuated, long reach manipulator with a flexible prismatic link at Oak Ridge National Laboratory (ORNL). Focus is directed towards both modeling and control of hydraulic actuators as well as flexible links that have variable natural frequencies.

  6. Hydraulic hydrogel actuators and robots optically and sonically camouflaged in water

    Science.gov (United States)

    Yuk, Hyunwoo; Lin, Shaoting; Ma, Chu; Takaffoli, Mahdi; Fang, Nicolas X.; Zhao, Xuanhe

    2017-01-01

    Sea animals such as leptocephali develop tissues and organs composed of active transparent hydrogels to achieve agile motions and natural camouflage in water. Hydrogel-based actuators that can imitate the capabilities of leptocephali will enable new applications in diverse fields. However, existing hydrogel actuators, mostly osmotic-driven, are intrinsically low-speed and/or low-force; and their camouflage capabilities have not been explored. Here we show that hydraulic actuations of hydrogels with designed structures and properties can give soft actuators and robots that are high-speed, high-force, and optically and sonically camouflaged in water. The hydrogel actuators and robots can maintain their robustness and functionality over multiple cycles of actuations, owing to the anti-fatigue property of the hydrogel under moderate stresses. We further demonstrate that the agile and transparent hydrogel actuators and robots perform extraordinary functions including swimming, kicking rubber-balls and even catching a live fish in water. PMID:28145412

  7. Hydraulic hydrogel actuators and robots optically and sonically camouflaged in water

    Science.gov (United States)

    Yuk, Hyunwoo; Lin, Shaoting; Ma, Chu; Takaffoli, Mahdi; Fang, Nicolas X.; Zhao, Xuanhe

    2017-02-01

    Sea animals such as leptocephali develop tissues and organs composed of active transparent hydrogels to achieve agile motions and natural camouflage in water. Hydrogel-based actuators that can imitate the capabilities of leptocephali will enable new applications in diverse fields. However, existing hydrogel actuators, mostly osmotic-driven, are intrinsically low-speed and/or low-force; and their camouflage capabilities have not been explored. Here we show that hydraulic actuations of hydrogels with designed structures and properties can give soft actuators and robots that are high-speed, high-force, and optically and sonically camouflaged in water. The hydrogel actuators and robots can maintain their robustness and functionality over multiple cycles of actuations, owing to the anti-fatigue property of the hydrogel under moderate stresses. We further demonstrate that the agile and transparent hydrogel actuators and robots perform extraordinary functions including swimming, kicking rubber-balls and even catching a live fish in water.

  8. Modelling of Moving Coil Actuators in Fast Switching Valves Suitable for Digital Hydraulic Machines

    DEFF Research Database (Denmark)

    Nørgård, Christian; Roemer, Daniel Beck; Bech, Michael Møller

    2015-01-01

    The efficiency of digital hydraulic machines is strongly dependent on the valve switching time. Recently, fast switching have been achieved by using a direct electromagnetic moving coil actuator as the force producing element in fast switching hydraulic valves suitable for digital hydraulic...... machines. Mathematical models of the valve switching, targeted for design optimisation of the moving coil actuator, are developed. A detailed analytical model is derived and presented and its accuracy is evaluated against transient electromagnetic finite element simulations. The model includes...... an estimation of the eddy currents generated in the actuator yoke upon current rise, as they may have significant influence on the coil current response. The analytical model facilitates fast simulation of the transient actuator response opposed to the transient electro-magnetic finite element model which...

  9. Variable stiffness actuator based on fluidic flexible matrix composites and piezoelectric-hydraulic pump

    Science.gov (United States)

    Kim, Gi-Woo; Li, Suyi; Wang, K. W.

    2010-04-01

    Recently, a new biological-inspired fluidic flexible matrix composite (in short, F2MC) concept has been developed for linear/torsional actuation and structural stiffness tailoring. Although the actuation and the variable stiffness features of the F2MC have been successfully demonstrated individually, their combined functions and full potentials were not yet manifested. In addition, the current hydraulic pressurization systems are bulky and heavy, limiting the potential of the F2MC actuator. To address these issues, we synthesize a new variable stiffness actuator concept that can provide both effective actuation and tunable stiffness (dual-mode), incorporating the F2MC with a compact piezoelectric-hydraulic pump (in short, PHP). This dual-mode mechanism will significantly enhance the potential of the F2MC adaptive structures.

  10. Powered orthosis and attachable power-assist device with Hydraulic Bilateral Servo System.

    Science.gov (United States)

    Ohnishi, Kengo; Saito, Yukio; Oshima, Toru; Higashihara, Takanori

    2013-01-01

    This paper discusses the developments and control strategies of exoskeleton-type robot systems for the application of an upper limb powered orthosis and an attachable power-assist device for care-givers. Hydraulic Bilateral Servo System, which consist of a computer controlled motor, parallel connected hydraulic actuators, position sensors, and pressure sensors, are installed in the system to derive the joint motion of the exoskeleton arm. The types of hydraulic component structure and the control strategy are discussed in relation to the design philosophy and target joints motions.

  11. Polymer-based actuators for virtual reality devices

    Science.gov (United States)

    Bolzmacher, Christian; Hafez, Moustapha; Benali Khoudja, Mohamed; Bernardoni, Paul; Dubowsky, Steven

    2004-07-01

    Virtual Reality (VR) is gaining more importance in our society. For many years, VR has been limited to the entertainment applications. Today, practical applications such as training and prototyping find a promising future in VR. Therefore there is an increasing demand for low-cost, lightweight haptic devices in virtual reality (VR) environment. Electroactive polymers seem to be a potential actuation technology that could satisfy these requirements. Dielectric polymers developed the past few years have shown large displacements (more than 300%). This feature makes them quite interesting for integration in haptic devices due to their muscle-like behaviour. Polymer actuators are flexible and lightweight as compared to traditional actuators. Using stacks with several layers of elatomeric film increase the force without limiting the output displacement. The paper discusses some design methods for a linear dielectric polymer actuator for VR devices. Experimental results of the actuator performance is presented.

  12. Hydraulic vs. Electric: A Review of Actuation Systems in Offshore Drilling Equipment

    Directory of Open Access Journals (Sweden)

    Witold Pawlus

    2016-01-01

    Full Text Available This article presents a survey on actuation systems encountered in offshore drilling applications. Specifically, it focuses on giving a comparison of hydraulic and electric drivetrains along with detailed explanations of their advantages and drawbacks. A significant number of industrial case studies is examined in addition to the collection of academic publications, in order to accurately describe the current market situation. Some key directions of research and development required to satisfy increasing demands on powertrains operating offshore are identified. The impact of the literature and application surveys is further strengthened by benchmarking two designs of a full-scale pipe handling machine. Apart from other benefits, the electrically actuated machine reduces the total power consumption by 70% compared to its hydraulically driven counterpart. It is concluded that electric actuation systems, among other advantages, in general offer higher efficiency and flexibility, however, in some specific applications (such as energy accumulation or translational motion control hydraulic powertrains are favorable.

  13. Servo-elastic dynamics of a hydraulic actuator pitching a blade with large deflections

    DEFF Research Database (Denmark)

    Hansen, Morten Hartvig; Kallesøe, Bjarne Skovmose

    2007-01-01

    This paper deals with the servo-elastic dynamics of a hydraulic pitch actuator acting on a largely bend wind turbine blade. The compressibility of the oil and flexibility of the hoses introduce a dynamic mode in the pitch bearing degree of freedom. This mode may obtain negative damping...... if the proportional gain on the actuator position error is defined too large relative to the viscous forces in the hydraulic system and the total rotational inertia of the pitch bearing degree of freedom. A simple expression for the stability limit of this proportional gain is derived for tuning the gain based...

  14. Robust Control of a Hydraulically Actuated Manipulator Using Sliding Mode Control

    DEFF Research Database (Denmark)

    Hansen, Michael Rygaard; Andersen, Torben Ole; Pedersen, Henrik Clemmensen

    2005-01-01

    This paper presents an approach to robust control called sliding mode control (SMC) applied to the a hydraulic servo system (HSS), consisting of a servo valve controlled symmetrical cylinder. The motivation for applying sliding mode control to hydraulically actuated systems is its robustness...... towards structured (parametric) and unstructured (unmodeled dynamics) uncertainties. A third-order model of the actuated system is used to develop a sliding mode control which is implemented and tested on a simulation model. To avoid measurement of velocity and acceleration a simple first-order model...... is furthermore used to develop a simple sliding mode control (SSMC). The performance of the two controllers are compared and discussed....

  15. Optimum Design of a Moving Coil Actuator for Fast-Switching Valves in Digital Hydraulic Pumps and Motors

    DEFF Research Database (Denmark)

    Roemer, Daniel Beck; Bech, Michael Møller; Johansen, Per

    2015-01-01

    Fast-switching seat valves suitable for digital hydraulic pumps and motors utilize direct electromagnetic actuators, which must exhibit superior transient performance to allow efficient operation of the fluid power pump/motor. A moving coil actuator resulting in a minimum valve switching time.......5 bar at 600 L/min flow rate, enabling efficient operation of digital hydraulic pumps and motors....

  16. 46 CFR 58.25-60 - Non-duplicated hydraulic rudder actuators.

    Science.gov (United States)

    2010-10-01

    ...) (incorporated by reference, see 46 CFR 58.03-1) and be acceptable to the Commanding Officer, Marine Safety Center. Also, the piping for the main gear must comply with 46 CFR 58.25-10(e)(3). ... 46 Shipping 2 2010-10-01 2010-10-01 false Non-duplicated hydraulic rudder actuators....

  17. Improving actuation efficiency through variable recruitment hydraulic McKibben muscles: modeling, orderly recruitment control, and experiments.

    Science.gov (United States)

    Meller, Michael; Chipka, Jordan; Volkov, Alexander; Bryant, Matthew; Garcia, Ephrahim

    2016-11-03

    Hydraulic control systems have become increasingly popular as the means of actuation for human-scale legged robots and assistive devices. One of the biggest limitations to these systems is their run time untethered from a power source. One way to increase endurance is by improving actuation efficiency. We investigate reducing servovalve throttling losses by using a selective recruitment artificial muscle bundle comprised of three motor units. Each motor unit is made up of a pair of hydraulic McKibben muscles connected to one servovalve. The pressure and recruitment state of the artificial muscle bundle can be adjusted to match the load in an efficient manner, much like the firing rate and total number of recruited motor units is adjusted in skeletal muscle. A volume-based effective initial braid angle is used in the model of each recruitment level. This semi-empirical model is utilized to predict the efficiency gains of the proposed variable recruitment actuation scheme versus a throttling-only approach. A real-time orderly recruitment controller with pressure-based thresholds is developed. This controller is used to experimentally validate the model-predicted efficiency gains of recruitment on a robot arm. The results show that utilizing variable recruitment allows for much higher efficiencies over a broader operating envelope.

  18. Aircraft Digital Input Controlled Hydraulic Actuation and Control System.

    Science.gov (United States)

    1981-03-01

    unexplained actuator phase shift with speed is thought to be explained by transient " wire drawing " of flow across the active metering lands of the...rotary valve. This " wire drawing " effect occurs at the time of switching of each cylinder pressure between the load and return pressure states. 169 N~o...the afforementioned upward spread of the performance curves. The major factor in this spread in believed to be the, so called, " wire drawing " at the

  19. Design of a laboratory hydraulic device for testing of hydraulic pumps

    Directory of Open Access Journals (Sweden)

    Pavel Máchal

    2013-01-01

    Full Text Available The present contribution deals with solves problem of research of testing device to monitor of hydrostatic pumps durability about dynamic loading under laboratory conditions. When carrying out the design of testing device are based on load characteristics of tractor hydraulic circuit, the individual characteristics of hydraulic components and performed calculations. Load characteristics on the tractors CASE IH Magnum 310, JOHN DEERE 8100, ZETOR FORTERRA 114 41 and Fendt 926 Vario were measured. Design of a hydraulic laboratory device is based on the need for testing new types of hydraulic pumps or various types of hydraulic fluids. When creating of hydraulic device we focused on testing hydraulic pumps used in agricultural and forestry tractors. Proportional pressure control valve is an active member of the hydraulic device, which provides change of a continuous control signal into relative pressure of operating fluid. The advantage of a designed hydraulic system is possibility of simulation of dynamic operating loading, which is obtained by measurement under real conditions, and thereby creates laboratory conditions as close to real conditions as possible. The laboratory device is constructed at the Department of Transport and Handling, Faculty of Engineering, Slovak University of Agriculture in Nitra.

  20. Design and modeling of a hydraulically amplified magnetostrictive actuator for automotive engine mounts

    Science.gov (United States)

    Chakrabarti, Suryarghya; Dapino, Marcelo J.

    2010-04-01

    A model is developed which describes the dynamic response of a Terfenol-D actuator with a hydraulic displacement amplification mechanism for use in active engine mounts. The model includes three main components: magnetic diffusion, Terfenol-D constitutive model, and mechanical actuator model. Eddy current losses are modeled as a one-dimensional magnetic field diffusion problem in cylindrical coordinates. The Jiles-Atherton model is used to describe the magnetization state of the Terfenol-D driver as a function of applied magnetic fields. A quadratic, single-valued model for the magnetostriction dependence on magnetization is utilized which provides an input to the mechanical model describing the system vibrations. Friction at the elastomeric seals is modeled using the LuGre friction model for lubricated contacts. The actuator's dynamic response is quantified in terms of the output displacement in the unloaded condition and force output in the loaded condition. The model is shown to accurately quantify the dynamic behavior of the actuator over the frequency range considered, from near dc to 500 Hz. An order analysis shows that the model also describes the higher harmonic content present in the measured responses. A study on the variation of energy delivered by the actuator with the load stiffness reveals that the actuator delivers the highest energy output near the stiffness match region.

  1. ROBUST CONTROL OF AN ELECTRO-HYDRAULIC PROPORTIONAL SPEED CONTROL SYSTEM WITH A SINGLE-ROD HYDRAULIC ACTUATOR

    Institute of Scientific and Technical Information of China (English)

    Yang Jian; Xu Bing; Yang Huayong

    2005-01-01

    A robust control algorithm is proposed to focus on the non-linearity and parameters'uncertainties of an electro-hydraulic proportional speed control system (EHPSCS) with a single-rod hydraulic actuator. The robust controller proposed does not need to design stable compensator in advance, is simple in design and has large scope of uncertainty applications. The feedback gains of the robust controller proposed are small, so it is easily implemented in engineering applications.Experimental research on the speed control under the different conditions is carried out for an EHPSCS. Experimental results show that the robust controller proposed has better robustness subject to parametric uncertainties, and adaptability of parameters' variation of control system itself and plant parameter variation.

  2. A Strategy Tackling Local Minimum of Direct Search Method in Modeling a Hydraulic Actuator

    Institute of Scientific and Technical Information of China (English)

    刘云山; 陈晓辉

    2013-01-01

    A strategy for attacking the local minimum problem of direct search method is developed for modeling a hydraulic actuator. The Nelder-Mead direct search method is combined with Ordinary Least Squares which can used to optimize the parameters which the model function is in linear with. The model fitting results show that this strategy can reach a solution more close to the global minimum than the Nelder-Mead direct search method used alone.

  3. System and method for controlling engine knock using electro-hydraulic valve actuation

    Science.gov (United States)

    Brennan, Daniel G

    2013-12-10

    A control system for an engine includes a knock control module and a valve control module. The knock control module adjusts a period that one or more of an intake valve and an exhaust valve of a cylinder are open based on engine knock corresponding to the cylinder. The valve control module, based on the adjusted period, controls the one or more of the intake valve and the exhaust valve using one or more hydraulic actuators.

  4. Space Shuttle Main Engine control system. [hydraulic actuator with digital control

    Science.gov (United States)

    Seitz, P. F.; Searle, R. F.

    1973-01-01

    The Space Shuttle Main Engine is a reusable, high-performance rocket engine being developed by the Rocketdyne Div. of Rockwell International to satisfy the operational requirements of the Space Shuttle Orbiter Vehicle. The design incorporates a hydraulically actuated, closed-loop servosystem controlled and monitored by a programmable electronic digital controller. The controller accepts vehicle commands for the various engine operational phases, positions the appropriate valves, monitors the engine for the required performance precisions and conditions, and provides redundancy management.

  5. Unidirectional variable stiffness hydraulic actuator for load-carrying knee exoskeleton

    Directory of Open Access Journals (Sweden)

    Jun Zhu

    2017-01-01

    Full Text Available This article presents the design and experimental testing of a unidirectional variable stiffness hydraulic actuator for load-carrying knee exoskeleton. The proposed actuator is designed for mimicking the high-efficiency passive behavior of biological knee and providing actively assistance in locomotion. The adjustable passive compliance of exoskeletal knee is achieved through a variable ratio lever mechanism with linear elastic element. A compact customized electrohydraulic system is also designed to accommodate application demands. Preliminary experimental results show the prototype has good performances in terms of stiffness regulation and joint torque control. The actuator is also implemented in an exoskeleton knee joint, resulting in anticipant human-like passive compliance behavior.

  6. Actuator device utilizing a conductive polymer gel

    Science.gov (United States)

    Chinn, Douglas A.; Irvin, David J.

    2004-02-03

    A valve actuator based on a conductive polymer gel is disclosed. A nonconductive housing is provided having two separate chambers separated by a porous frit. The conductive polymer is held in one chamber and an electrolyte solution, used as a source of charged ions, is held in the second chamber. The ends of the housing a sealed with a flexible elastomer. The polymer gel is further provide with electrodes with which to apply an electrical potential across the gel in order to initiate an oxidation reaction which in turn drives anions across the porous frit and into the polymer gel, swelling the volume of the gel and simultaneously contracting the volume of the electrolyte solution. Because the two end chambers are sealed the flexible elastomer expands or contracts with the chamber volume change. By manipulating the potential across the gel the motion of the elastomer can be controlled to act as a "gate" to open or close a fluid channel and thereby control flow through that channel.

  7. Modeling and analysis of a meso-hydraulic climbing robot with artificial muscle actuation.

    Science.gov (United States)

    Chapman, Edward M; Jenkins, Tyler E; Bryant, Matthew

    2017-07-10

    This paper presents a fully coupled electro-hydraulic model of a bio-inspired climbing robot actuated by fluidic artificial muscles (FAMs). This analysis expands upon previous FAM literature by considering not only the force and contraction characteristics of the actuator, but the complete hydraulic and electromechanical circuits as well as the dynamics of the climbing robot. This analysis allows modeling of the time-varying applied pressure, electrical current, and actuator contraction for accurate prediction of the robot motion, energy consumption, and mechanical work output. The developed model is first validated against mechanical and electrical data collected from a proof-of-concept prototype robot. The model is then employed to study the system-level sensitivities of the robot locomotion efficiency and average climbing speed to several design and operating parameters. The results of this analysis demonstrate that considering only the transduction efficiency of the FAM actuators is insufficient to maximize the efficiency of the complete robot, and that a holistic approach can lead to significant improvements in performance. © 2017 IOP Publishing Ltd.

  8. Grasp Assist Device with Shared Tendon Actuator Assembly

    Science.gov (United States)

    Ihrke, Chris A. (Inventor); Bergelin, Bryan J. (Inventor); Bridgwater, Lyndon (Inventor)

    2015-01-01

    A grasp assist device includes a glove with first and second tendon-driven fingers, a tendon, and a sleeve with a shared tendon actuator assembly. Tendon ends are connected to the respective first and second fingers. The actuator assembly includes a drive assembly having a drive axis and a tendon hook. The tendon hook, which defines an arcuate surface slot, is linearly translatable along the drive axis via the drive assembly, e.g., a servo motor thereof. The flexible tendon is routed through the surface slot such that the surface slot divides the flexible tendon into two portions each terminating in a respective one of the first and second ends. The drive assembly may include a ball screw and nut. An end cap of the actuator assembly may define two channels through which the respective tendon portions pass. The servo motor may be positioned off-axis with respect to the drive axis.

  9. Hydraulically actuated hexapod robots design, implementation and control

    CERN Document Server

    Nonami, Kenzo; Irawan, Addie; Daud, Mohd Razali

    2014-01-01

    Legged robots are a promising locomotion system, capable of performing tasks that conventional vehicles cannot. Even more exciting is the fact that this is a rapidly developing field of study for researchers from a variety of disciplines. However, only a few books have been published on the subject of multi-legged robots. The main objective of this book is to describe some of the major control issues concerning walking robots that the authors have faced over the past 10 years. A second objective is to focus especially on very large hydraulically driven hexapod robot locomotion weighing more than 2,000 kg, making this the first specialized book on this topic. The 10 chapters of the book touch on diverse relevant topics such as design aspects, implementation issues, modeling for control, navigation and control, force and impedance control-based walking, fully autonomous walking, walking and working tasks of hexapod robots, and the future of walking robots. The construction machines of the future will very likel...

  10. Position Control of an Over‐Actuated Direct Hydraulic Cylinder Drive

    DEFF Research Database (Denmark)

    Schmidt, Lasse; Grønkjær, Morten; Pedersen, Henrik Clemmensen

    2017-01-01

    This paper considers the analysis and control strategy for a novel direct hydraulic cylinder drive, that is overactuated in the sense that it has more inputs than sensible outputs. Efforts to overcome the inherent loss of energy due to th+rottling in valve driven hydraulic drives are many......, and various approaches have been proposed by research communities as well as the industry. Recently, a so-called Speed-variable Switched Differential Pump was proposed for direct drive of hydraulic differential cylinders. The main idea with this drive is to utilize an electric rotary drive with the shaft...... the ability to bleed off flow from the transmission lines to achieve reasonable pressure levels. This design renders the drive over-actuated as the line pressures and the cylinder piston motion cannot be controlled independently, due to the pressure difference being motion generating. In order to achieve...

  11. Refurbishing technologies of hydraulic actuators applied in mining industry

    Directory of Open Access Journals (Sweden)

    P. Gendarz

    2010-07-01

    Full Text Available Purpose: of this paper: Mainly, future design and manufacturing processes should be oriented to refurbishing and overhaul, such as mining machines, hydraulics, military industry, heavy industry products, etc.. This paper shows method which can improve indirectly profitability also in environment protection area.Design/methodology/approach: Methodology that solves refurbishing and overhaul problem of application, is based on CAD/CAM integration, and predicts possibility to even prepare design for refurbishing. With help of reverse engineering techniques, also exist approach to refurbish elements that has no overhaul documentation prepared before.Findings: Preparation of overhaul documentation for families of constructions, should be computer aided with use of prepared dedicated software. Time need to prepare refurbishing technology, can be considerably reduced.Research limitations/implications: Refurbishing and overhaul in existence cycle of product should have same rights as technology or design processes. Future development of new refurbishing technologies should be prepared in software combined with CAD/CAM modules used in advanced CAE programs.Practical implications: Mining industry after possible initiate refurbishing methods, can extend exploit time of exerted machines. Simultaneously producers of mining machines and equipment, after bringing in design for refurbishing strategy in to production, can enhance economical profits from maintenance and service time prolongation.Originality/value: For last twenty years no development in area of patents were noticed. That came with increase of consumption strategy progressed by produces. Presented method solves issues of materials raise in prices and relatively short time of maintenance and service time period. New workstations in industry can be created with application of the method.

  12. Stability, Nonlinearity and Reliability of Electrostatically Actuated MEMS Devices

    Directory of Open Access Journals (Sweden)

    Di Chen

    2007-05-01

    Full Text Available Electrostatic micro-electro-mechanical system (MEMS is a special branch with a wide range of applications in sensing and actuating devices in MEMS. This paper provides a survey and analysis of the electrostatic force of importance in MEMS, its physical model, scaling effect, stability, nonlinearity and reliability in detail. It is necessary to understand the effects of electrostatic forces in MEMS and then many phenomena of practical importance, such as pull-in instability and the effects of effective stiffness, dielectric charging, stress gradient, temperature on the pull-in voltage, nonlinear dynamic effects and reliability due to electrostatic forces occurred in MEMS can be explained scientifically, and consequently the great potential of MEMS technology could be explored effectively and utilized optimally. A simplified parallel-plate capacitor model is proposed to investigate the resonance response, inherent nonlinearity, stiffness softened effect and coupled nonlinear effect of the typical electrostatically actuated MEMS devices. Many failure modes and mechanisms and various methods and techniques, including materials selection, reasonable design and extending the controllable travel range used to analyze and reduce the failures are discussed in the electrostatically actuated MEMS devices. Numerical simulations and discussions indicate that the effects of instability, nonlinear characteristics and reliability subjected to electrostatic forces cannot be ignored and are in need of further investigation.

  13. Anti-rebound Cushion Device for Hydraulic Breaker

    Institute of Scientific and Technical Information of China (English)

    Zhao Hongqiang

    2005-01-01

    This paper analyzes the phenomenon of rebound impact and its negative influence on the present hydraulic breaker. To get over its shortcomings, a new anti-rebound cushion device has been designed to prevent the phenomenon of rebound impact. A hydraulic cushion is used to absorb the rebound impact energy, which can be released for the next stroke of the hydraulic breaker. Thus, there is little loss of energy, and the efficiency of the impact system can be increased by 5 %. The absorption effect of the hydraulic anti-rebound cushion increases the service life of breaker components by up to twice as long as in the current breaker. A dynamic model and a motion equation of the anti-rebound cushion device are presented, and the optimum frequency and damping ratio are obtained, providing optimum design parameters for the anti-rebound cushion device.

  14. Interval Type-2 fuzzy position control of electro-hydraulic actuated robotic excavator

    Institute of Scientific and Technical Information of China (English)

    Hassan Mohammed Yousif; Kothapalli Ganesh

    2012-01-01

    This paper deals with fuzzy intelligent position control of electro-hydraulic activated robotic excavator for the control of boom,arm and bucket axes.Intelligent control systems are required to overcome undesirable stick-slip motion,limit cycles and oscillations.Models of electro-hydraulic servo controlled front end loader excavators are highly nonlinear.The nonlinear model accounts for fluid flow rate of valve,pump hydraulics,and friction forces.The friction forces are modelled by Coulomb,viscous and Stribeck function.Interval Type-2 Fuzzy Logic Controller (IT2FLC) is used to study the time domain position responses of axes in the presence of external applied load.It has the ability to control the position of eachof the three axes with minimum actuator position errors.Models presented are accurate and study the dynamics of the actuator and load.To improve the transient behaviour of the robotic excavator,we eliminated jitter of the bucket movement in the presence of nonlinearities.

  15. Dynamics and design of a power unit with a hydraulic piston actuator

    Science.gov (United States)

    Misyurin, S. Yu.; Kreinin, G. V.

    2016-07-01

    The problem of the preselection of parameters of a power unit of a mechatronic complex on the basis of the condition for providing a required control energy has been discussed. The design of the unit is based on analysis of its dynamics under the effect of a special-type test conditional control signal. The specific features of the approach used are a reasonably simplified normalized dynamic model of the unit and the formation of basic similarity criteria. Methods of designing a power unit with a hydraulic piston actuator that operates in point-to-point and oscillatory modes have been considered.

  16. Position Control of an Over‐Actuated Direct Hydraulic Cylinder Drive

    DEFF Research Database (Denmark)

    Schmidt, Lasse; Grønkjær, Morten; Pedersen, Henrik Clemmensen

    2017-01-01

    This paper considers the analysis and control strategy for a novel direct hydraulic cylinder drive, that is overactuated in the sense that it has more inputs than sensible outputs. Efforts to overcome the inherent loss of energy due to th+rottling in valve driven hydraulic drives are many...... the ability to bleed off flow from the transmission lines to achieve reasonable pressure levels. This design renders the drive over-actuated as the line pressures and the cylinder piston motion cannot be controlled independently, due to the pressure difference being motion generating. In order to achieve...... satisfactory performance of this drive, a state coupling analysis is presented along with a control strategy based on state decoupling synthesized from input-output transformations. This includes control schemes for the transformed system. The proposed control strategy is experimentally verified on a drive...

  17. A hydraulic distribution device of a powered support section

    Energy Technology Data Exchange (ETDEWEB)

    Zhuravlev, R.P.; Barinov, V.S.; Demidovich, Z.A.; Fedorov, L.I.; Kozhukhov, L.F.; Mosunov, Yu.Ya.

    1981-01-30

    The goal of this invention is to reduce the working time for manual control in the process of bracing a hydraulic prop and complete use of the working pressure of the support's hydraulic system to perform initial bracing of the hydraulic prop. To achieve this goal, the device has a reflux valve with a locking element and a choke, the latter situated between the piston and rod chambers; the floating piston is made with a stop which interacts with the motion limiter, while the rod of the floating piston has a pusher which interacts with the locking element of the reflux valve. Use of the hydraulic device of this design in powered supports during their operation under various mining conditions significantly raises the operating life of hydraulic supports and hydraulic distributors, while lowering the total complex's down time. Automatic positioning of the predetermined amount of initial spacing shortens the time in which the operator handles the support sections. The operator uses the time available to perform succeeding operations (transition to the next control panel, unloading, and transfer).

  18. A portable air jet actuator device for mechanical system identification.

    Science.gov (United States)

    Belden, Jesse; Staats, Wayne L; Mazumdar, Anirban; Hunter, Ian W

    2011-03-01

    System identification of limb mechanics can help diagnose ailments and can aid in the optimization of robotic limb control parameters and designs. An interesting fluid phenomenon--the Coandă effect--is utilized in a portable actuator to provide a stochastic binary force disturbance to a limb system. The design of the actuator is approached with the goal of creating a portable device which could be deployed on human or robotic limbs for in situ mechanical system identification. The viability of the device is demonstrated by identifying the parameters of an underdamped elastic beam system with fixed inertia and stiffness and variable damping. The nonparametric compliance impulse response yielded from the system identification is modeled as a second-order system and the resultant parameters are found to be in excellent agreement with those found using more traditional system identification techniques. The current design could be further miniaturized and developed as a portable, wireless, unrestrained mechanical system identification instrument for less intrusive and more widespread use.

  19. Internal Leakage Fault Detection and Tolerant Control of Single-Rod Hydraulic Actuators

    Directory of Open Access Journals (Sweden)

    Jianyong Yao

    2014-01-01

    Full Text Available The integration of internal leakage fault detection and tolerant control for single-rod hydraulic actuators is present in this paper. Fault detection is a potential technique to provide efficient condition monitoring and/or preventive maintenance, and fault tolerant control is a critical method to improve the safety and reliability of hydraulic servo systems. Based on quadratic Lyapunov functions, a performance-oriented fault detection method is proposed, which has a simple structure and is prone to implement in practice. The main feature is that, when a prescribed performance index is satisfied (even a slight fault has occurred, there is no fault alarmed; otherwise (i.e., a severe fault has occurred, the fault is detected and then a fault tolerant controller is activated. The proposed tolerant controller, which is based on the parameter adaptive methodology, is also prone to realize, and the learning mechanism is simple since only the internal leakage is considered in parameter adaptation and thus the persistent exciting (PE condition is easily satisfied. After the activation of the fault tolerant controller, the control performance is gradually recovered. Simulation results on a hydraulic servo system with both abrupt and incipient internal leakage fault demonstrate the effectiveness of the proposed fault detection and tolerant control method.

  20. Recurrent-neural-network-based identification of a cascade hydraulic actuator for closed-loop automotive power transmission control

    Energy Technology Data Exchange (ETDEWEB)

    You, Seung Han [Hyundai Motor Company, Seoul (Korea, Republic of); Hahn, Jin Oh [University of Alberta, Edmonton (Canada)

    2012-05-15

    By virtue of its ease of operation compared with its conventional manual counterpart, automatic transmissions are commonly used as automotive power transmission control system in today's passenger cars. In accordance with this trend, research efforts on closed-loop automatic transmission controls have been extensively carried out to improve ride quality and fuel economy. State-of-the-art power transmission control algorithms may have limitations in performance because they rely on the steady-state characteristics of the hydraulic actuator rather than fully exploit its dynamic characteristics. Since the ultimate viability of closed-loop power transmission control is dominated by precise pressure control at the level of hydraulic actuator, closed-loop control can potentially attain superior efficacy in case the hydraulic actuator can be easily incorporated into model-based observer/controller design. In this paper, we propose to use a recurrent neural network (RNN) to establish a nonlinear empirical model of a cascade hydraulic actuator in a passenger car automatic transmission, which has potential to be easily incorporated in designing observers and controllers. Experimental analysis is performed to grasp key system characteristics, based on which a nonlinear system identification procedure is carried out. Extensive experimental validation of the established model suggests that it has superb one-step-ahead prediction capability over appropriate frequency range, making it an attractive approach for model-based observer/controller design applications in automotive systems.

  1. Surface texture change on-demand and microfluidic devices based on thickness mode actuation of dielectric elastomer actuators (DEAs)

    Science.gov (United States)

    Ankit, Ankit; Nguyen, Anh Chien; Mathews, Nripan

    2017-04-01

    Tactile feedback devices and microfluidic devices have huge significance in strengthening the area of robotics, human machine interaction and low cost healthcare. Dielectric Elastomer Actuators (DEAs) are an attractive alternative for both the areas; offering the advantage of low cost and simplistic fabrication in addition to the high actuation strains. The inplane deformations produced by the DEAs can be used to produce out-of-plane deformations by what is known as the thickness mode actuation of DEAs. The thickness mode actuation is achieved by adhering a soft passive layer to the DEA. This enables a wide area of applications in tactile applications without the need of complex systems and multiple actuators. But the thickness mode actuation has not been explored enough to understand how the deformations can be improved without altering the material properties; which is often accompanied with increased cost and a trade off with other closely associated material properties. We have shown the effect of dimensions of active region and non-active region in manipulating the out-of-plane deformation. Making use of this, we have been able to demonstrate large area devices and complex patterns on the passive top layer for the surface texture change on-demand applications. We have also been able to demonstrate on-demand microfluidic channels and micro-chambers without the need of actually fabricating the channels; which is a cost incurring and cumbersome process.

  2. A motionless actuation system for magnetic shape memory devices

    Science.gov (United States)

    Armstrong, Andrew; Finn, Kevin; Hobza, Anthony; Lindquist, Paul; Rafla, Nader; Müllner, Peter

    2017-10-01

    Ni–Mn–Ga is a Magnetic Shape Memory (MSM) alloy that changes shape in response to a variable magnetic field. We can intentionally manipulate the shape of the material to function as an actuator, and the material can thus replace complicated small electromechanical systems. In previous work, a very simple and precise solid-state micropump was developed, but a mechanical rotation was required to translate the position of the magnetic field. This mechanical rotation defeats the purpose of the motionless solid-state device. Here we present a solid-state electromagnetic driver to linearly progress the position of the applied magnetic field and the associated shrinkage. The generated magnetic field was focused at either of two pole pieces, providing a mechanism for moving the localized shrinkage in the MSM element. We confirmed that our driver has sufficient strength to actuate the MSM element using optical microscopy. We validated the whole design by comparing results obtained with finite element analysis with the experimentally measured flux density. This drive system serves as a possible replacement to the mechanical rotation of the magnetic field by using a multi-pole electromagnet that sweeps the magnetic field across the MSM micropump element, solid-state switching the current to each pole piece in the multi-pole electromagnet.

  3. New Actuators Using ER Fluid and Their Applications to Force Display Devices in Virtual Reality and Medical Treatments

    Science.gov (United States)

    Furusho, Junji; Sakaguchi, Masamichi

    We developed ER actuators with low inertia. ER actuator is a torque-controllable clutch which uses an electrorheological fluid. It is shown that this actuator has good properties for force display device, physical therapy treatment, etc. We developed new force display devices for virtual reality which use ER actuators.

  4. HYDRAULIC DEVICES FOR HYDROSYSTEM TAILRACE PROTECTION

    Directory of Open Access Journals (Sweden)

    Kuznetsova Y. A.

    2015-11-01

    Full Text Available Based on the Karman vortex theory, the calculated dependences for velocity induced by profile action in the flow, lifting force and drag force, acting on the profile, are determined. Calculations, performed in MathCAD, allowed, for the given up-stream velocity, to calculate height of mid-section of the bed-formation profile, width of the profile along the chord, span of the profile, angle of attack, velocity of the induced flow. For the calculated profile parameters, the velocity circulation value, drag force and lifting force are determined. As the bed-formation profiles, it is recommended to use flat plates, frame constructions with transverse ribs in the form of arch, fish-like symmetric or slightly curved profiles. Ways of the profile installation in the flow, depending on the angle of attack, are evaluated: three versions - for symmetric profiles, and six versions - for asymmetric profiles. Diagram of the device for the hydrosystem tailrace protection against erosion is developed on the basis of submerged NACA 0302 profile or profile of Zhukovsky, made of flexible materials, including profiles, system of supporting and regulating ropes, and shore or bottom supports. This design is mobile, intended for the periodic regulation of sediment yield

  5. Design of a Magnetostrictive-Hydraulic Actuator Considering Nonlinear System Dynamics and Fluid-Structure Coupling

    Science.gov (United States)

    Larson, John Philip

    Smart material electro-hydraulic actuators (EHAs) utilize fluid rectification via one-way check valves to amplify the small, high-frequency vibrations of certain smart materials into large motions of a hydraulic cylinder. Although the concept has been demonstrated in previously, the operating frequency of smart material EHA systems has been limited to a small fraction of the available bandwidth of the driver materials. The focus of this work is to characterize and model the mechanical performance of a magnetostrictive EHA considering key system components: rectification valves, smart material driver, and fluid-system components, leading to an improved actuator design relative to prior work. The one-way valves were modeled using 3-D finite element analysis, and their behavior was characterized experimentally by static and dynamic experimental measurement. Taking into account the effect of the fluid and mechanical conditions applied to the valves within the pump, the dynamic response of the valve was quantified and applied to determine rectification bandwidth of different valve configurations. A novel miniature reed valve, designed for a frequency response above 10~kHz, was fabricated and tested within a magnetostrictive EHA. The nonlinear response of the magnetostrictive driver, including saturation and hysteresis effects, was modeled using the Jiles-Atherton approach to calculate the magnetization and the resulting magnetostriction based on the applied field calculated within the rod from Maxwell's equations. The dynamic pressure response of the fluid system components (pumping chamber, hydraulic cylinder, and connecting passages) was measured over a range of input frequencies. For the magnetostrictive EHA tested, the peak performance frequency was found to be limited by the fluid resonances within the system. A lumped-parameter modeling approach was applied to model the overall behavior of a magnetostrictive EHA, incorporating models for the reed valve response

  6. Large displacement haptic stimulus actuator using piezoelectric pump for wearable devices.

    Science.gov (United States)

    Kodama, Taisuke; Izumi, Shintaro; Masaki, Kana; Kawaguchi, Hiroshi; Maenaka, Kazusuke; Yoshimoto, Masahiko

    2015-08-01

    Recently, given Japan's aging society background, wearable healthcare devices have increasingly attracted attention. Many devices have been developed, but most devices have only a sensing function. To expand the application area of wearable healthcare devices, an interactive communication function with the human body is required using an actuator. For example, a device must be useful for medication assistance, predictive alerts of a disease such as arrhythmia, and exercise. In this work, a haptic stimulus actuator using a piezoelectric pump is proposed to realize a large displacement in wearable devices. The proposed actuator drives tactile sensation of the human body. The measurement results obtained using a sensory examination demonstrate that the proposed actuator can generate sufficient stimuli even if adhered to the chest, which has fewer tactile receptors than either the fingertip or wrist.

  7. Analysing the Hydraulic Actuator-based Knee Unit Kinematics and Correlating the Numerical Results and Walking Human Knee Joint Behavior

    Directory of Open Access Journals (Sweden)

    K. A. Trukhanov

    2014-01-01

    Full Text Available State-of-the-art machinery development enables people with lost lower limb to continue their previous life despite a loss. International companies dealing with this area pursue a minimization of human behaviour problems because of amputation. Researches to create an optimal design of the artificial knee joint are under way.The work task was to define analytical relationships of changing kinematic parameters of the human walking on the flat surface such as an angle of the knee joint, knee point (moment, definition of reduced knee actuator (A load, as well as to compare obtained results with experimental data.As an A in created design, the article proposes to use a controlled shock absorber based on the hydraulic cylinder.A knee unit is a kinematic two-tier mechanism. One of the mechanism links performs rotational motion, and the other is rotation-translational to provide a rotation of the first one.When studying the hydraulic actuator device dynamics, as a generalized coordinate a coordinate of the piston x (or ρ position is chosen while in the study of link movements an angle β is preferable.Experimental data are obtained for a human with the body weight of 57.6 kg walking on the flat surface to estimate a value of the knee joint angle, speed, acceleration, torque, and capacity in the knee joint and are taken from the published works of foreign authors.A trigonometric approximation was used for fitting the experimental data. The resulting dependence of the reduced load on the stock of A is necessary to perform the synthesis of A. The criterion for linear mechanisms mentioned in the D.N. Popov’s work is advisable to use as a possible criterion for optimization of A.The results obtained are as follows:1. Kinematics linkage mechanism is described using relationships for dependencies of its geometrical parameters, namely a cylinder piston stroke x (or ρ and a links angle β.2. Obtained polynomials of kinematic relationships allow a synthesis of

  8. Stretchable Materials for Robust Soft Actuators towards Assistive Wearable Devices

    Science.gov (United States)

    Agarwal, Gunjan; Besuchet, Nicolas; Audergon, Basile; Paik, Jamie

    2016-09-01

    Soft actuators made from elastomeric active materials can find widespread potential implementation in a variety of applications ranging from assistive wearable technologies targeted at biomedical rehabilitation or assistance with activities of daily living, bioinspired and biomimetic systems, to gripping and manipulating fragile objects, and adaptable locomotion. In this manuscript, we propose a novel two-component soft actuator design and design tool that produces actuators targeted towards these applications with enhanced mechanical performance and manufacturability. Our numerical models developed using the finite element method can predict the actuator behavior at large mechanical strains to allow efficient design iterations for system optimization. Based on two distinctive actuator prototypes’ (linear and bending actuators) experimental results that include free displacement and blocked-forces, we have validated the efficacy of the numerical models. The presented extensive investigation of mechanical performance for soft actuators with varying geometric parameters demonstrates the practical application of the design tool, and the robustness of the actuator hardware design, towards diverse soft robotic systems for a wide set of assistive wearable technologies, including replicating the motion of several parts of the human body.

  9. Effects of Geometrical Clearances, Supports Friction, and Wear Rings on Hydraulic Actuators Bending Behavior

    Directory of Open Access Journals (Sweden)

    Sergio Baragetti

    2016-01-01

    Full Text Available Hydraulic actuators are commonly adopted in machines and structures to provide translating forces with significant magnitudes. Although their application dates back to the industrial revolution, their bending behavior under compression is typically addressed by simple Euler’s instability analysis on the rod, neglecting effects such as the cylinder inertia and stiffness, the presence of contact elements in the cylinder-rod junction and on the piston, geometrical misalignments and imperfections, and friction moments at the support. Such simplifications lead to unjustified reduced critical load calculations on the component. In the present paper, a complete mathematical formulation, which accounts for such effects, is presented and validated against experimental data. A numerical sensitivity analysis is conducted, to assess the contributions of initial rectilinear imperfections, wear rings stiffness and dimension, and supports friction on the actuator’s limit buckling load and bending behavior under compression. Results are presented, including the effect of the cited parameters on the buckling load, providing a reliable tool for the mechanical designer. In particular, an optimum position for the wear ring distance is found. Moreover, increased wear ring stiffness and reduced imperfections increase the buckling load and reduce the bending stresses before the critical load.

  10. Evaluation of a dynamic armrest for hydraulic-actuation controller use.

    Science.gov (United States)

    Murphy, T; Oliver, M L

    2011-07-01

    The efficacy of a newly designed dynamic armrest was evaluated during joystick operation of a typical North American hydraulic-actuation joystick. The dynamic design was evaluated against a stationary armrest condition as well as no armrest condition. Electromyography (EMG) and subjective measurements were used to make the evaluation. The dynamic armrest, which mimics the natural pendulation of a joystick operator's arm in the forward and backward directions, was shown to significantly decrease the muscular activation in the upper trapezius, posterior deltoid, and anterior deltoid (p ≤ 0.01) over a stationary armrest. A questionnaire revealed that subjects significantly (p = 0.01) preferred the dynamic armrest design over either a standard armrest or no armrest with 17 of 21 operators preferring the dynamic armrest. Ratings from the questionnaire indicated that subjects felt that the dynamic armrest required less effort, was more comfortable, and was more effective than either of the other two armrest conditions. Crown Copyright © 2010. Published by Elsevier Ltd. All rights reserved.

  11. Apu/hydraulic/actuator Subsystem Computer Simulation. Space Shuttle Engineering and Operation Support, Engineering Systems Analysis. [for the space shuttle

    Science.gov (United States)

    1975-01-01

    Major developments are examined which have taken place to date in the analysis of the power and energy demands on the APU/Hydraulic/Actuator Subsystem for space shuttle during the entry-to-touchdown (not including rollout) flight regime. These developments are given in the form of two subroutines which were written for use with the Space Shuttle Functional Simulator. The first subroutine calculates the power and energy demand on each of the three hydraulic systems due to control surface (inboard/outboard elevons, rudder, speedbrake, and body flap) activity. The second subroutine incorporates the R. I. priority rate limiting logic which limits control surface deflection rates as a function of the number of failed hydraulic. Typical results of this analysis are included, and listings of the subroutines are presented in appendicies.

  12. WEAKLY SWIRLING TURBULENT FLOW IN TURBID WATER HYDRAULIC SEPARATION DEVICE

    Institute of Scientific and Technical Information of China (English)

    LI Lin; QIU Xiu-yun; JIN Sheng; XIAO Jun; GONG Shou-yuan

    2008-01-01

    This article deals with the characteristics of weakly swirling turbulent flow field in a Turbid Water Hydraulic Separation Device (TWHSD) through experimental and numerical researches. The flow field was measured by PIV, which provided streamlines, vortex structure, vorticity and velocity distribution in different test planes in the TWHSD. On the basis of the experimental results, the tangential and radial velocity distributions of the swirling flow field were obtained. Meanwhile, the numerical simulations were conducted with the RNG and RSM turbulence models, respectively. According to the experimental and numerical results, the characteristics of the clear water flow field inside the TWHSD were determined. In view of simulation accuracy and time consumption, it is suggested to apply the RNG model instead of the RSM model, which is more time consuming, to make further study on two-phases flow fields in the device.

  13. A COMPUTATIONAL STUDY OF THE ACTUATION SPEED OF THE HYDRAULIC CYLINDER UNDER DIFFERENT PORTS’ SIZES AND CONFIGURATIONS

    Directory of Open Access Journals (Sweden)

    M. O. ABDALLA

    2015-02-01

    Full Text Available The discharged oil from hydraulic cylinder, during its operation, is highly restricted by the small sized outlets. As a result, a back pressure builds up and the piston motion, therefore, is slowed down; the system pump has to do additional work to overcome this hydraulic resistance so as to preserve the required speed. In this study the possibility of improvement of the actuation speed of the hydraulic cylinders was investigated and analysed. Both a four-port cylinder and a resized-ports cylinder were proposed as fast cylinders. FLUENT 6.3 was used for the simulation of the oil flow field of the hydraulic cylinders. Results showed that relation between discharge flow and the outlets diameters is best described by a power law having coefficients partially depending on the system pressure. It had also shown that for any given total outlet area, the actuation speed of the single outlet cylinders is always higher than that of the double outlets cylinders. In one case where the total outlet area is 3.93E-05m2, the actuation speed of the single outlet cylinder is 21% higher than that of the double outlets cylinder; whereas, when doubling the total outlet area the different is reduced to just 6% . Resizing the outlet for small ports was more efficient than using multi-outlets; while for a large ports it shows no significant difference to use either one outlet port or multi-outlets. Both the solutions of resizing or ports addition need special valve to be fit to the cylinder so that the cylinder could be effectively operated under the control of the proportional valve.

  14. A micropower miniature piezoelectric actuator for implantable middle ear hearing device.

    Science.gov (United States)

    Wang, Zhigang; Mills, Robert; Luo, Hongyan; Zheng, Xiaolin; Hou, Wensheng; Wang, Lijun; Brown, Stuart I; Cuschieri, Alfred

    2011-02-01

    This paper describes the design and development of a small actuator using a miniature piezoelectric stack and a flextensional mechanical amplification structure for an implantable middle ear hearing device (IMEHD). A finite-element method was used in the actuator design. Actuator vibration displacement was measured using a laser vibrometer. Preliminary evaluation of the actuator for an IMEHD was conducted using a temporal bone model. Initial results from one temporal bone study indicated that the actuator was small enough to be implanted within the middle ear cavity, and sufficient stapes displacement can be generated for patients with mild to moderate hearing losses, especially at higher frequency range, by the actuator suspended onto the stapes. There was an insignificant mass-loading effect on normal sound transmission (actuator was attached to the stapes and switched off. Improved vibration performance is predicted by more firm attachment. The actuator power consumption and its generated equivalent sound pressure level are also discussed. In conclusion, the actuator has advantages of small size, lightweight, and micropower consumption for potential use as IMHEDs.

  15. Effect of stiffness and movement speed on selected dynamic torque characteristics of hydraulic-actuation joystick controls for heavy vehicles.

    Science.gov (United States)

    Oliver, Michele; Rogers, Robert; Rickards, Jeremy; Tingley, Maureen; Biden, Edmund

    2006-02-22

    The purpose of this work was to quantify the effects of joystick stiffness and movement speed on the dynamic torque characteristics of hydraulic-actuation joystick controls, as found in off-road vehicles, as one of the initial steps towards the development of a joystick design protocol. Using a previously developed mathematical model in which a hydraulic-actuation joystick is assumed to rotate about two axes where the rotation origin is a universal joint, the dynamic torque characteristics incurred by an operator were predicted. Utilizing a laboratory mock-up of an excavator cab environment, three actuation torque characteristics (peak torque, angular impulse and deceleration at the hard endpoint) were quantified for nine unskilled joystick operators during the use of a commonly used North American hydraulic-actuation joystick. The six different experimental conditions included combinations of three joystick stiffnesses and two movement speeds. The highest instantaneous input torque over the course of the joystick movement (not including the hard endpoint) was evaluated using the peak torque value. Angular impulse provided an indication of the sustained exposure to force. The third indicator, deceleration at the hard endpoint, was included to provide a description of impact loading on the hand as the joystick came to a sudden stop. The most important result of this work is that the dynamic torque characteristics incurred during hydraulic-actuation joystick use are substantial. While the peak torque values were not very different between the fast and slow motion conditions, the high decelerations even for slow movements observed at maximum excursion of the joystick indicate that the dynamics do matter. On the basis of deceleration at the hard endpoint and peak torque, the joystick movements that require the highest values for a combination of torque variables are the side-to-side ones. This suggests that less stiff balance and return springs should be considered for

  16. A promising new device to assess key soil hydraulic properties

    Science.gov (United States)

    Alaoui, Abdallah; Schwilch, Gudrun

    2016-04-01

    Hydraulic functions measured at the core or plot scale are notoriously variable in natural soils, with properties such as infiltration rate ranging across several orders of magnitude within a typical field. Because the information required to create a continuous map of these properties' variability is unobtainable, plot- and field-scale models of flow processes generally use average or "effective" soil hydraulic properties to represent the processes. This makes it difficult to scale up knowledge from the local to the catchment scale, as soil heterogeneity increases with scale. Overcoming this difficulty requires an instrument that enables rapid and easy assessment of the relevant soil properties and their changes under varying land uses and climatic conditions. For this reason, we devised a new infiltrometer that makes it possible to rapidly and reliably assess soil infiltration capacity in the field. Based on laboratory and field data, we then developed a software (Soil Quality Analyzer) to determine key hydraulic properties such as saturated hydraulic conductivity, saturated water content, total porosity, and the van Genuchten parameters. Our device consists of a Plexiglas tube about 4 cm in diameter mounted on a semisoft, porous tube of the same diameter which easily adapts to surrounding soil, and ending in a conic steel point that facilitates insertion into the soil at different depths. We first calibrated our infiltrometer based on reconstructed soil columns of different textures with no coarse structures (i.e. organic material, macropores). A second series of infiltration experiments was carried out in situ in undisturbed soils under forest and grassland that had the same textures as those in the laboratory experiments. Finally, we analyzed all samples in the laboratory to determine the key hydraulic parameters. Linear relationships between the infiltrated water volume and the corresponding time intervals of infiltration were determined for each sample

  17. Pixelized Device Control Actuators for Large Adaptive Optics

    Science.gov (United States)

    Knowles, Gareth J.; Bird, Ross W.; Shea, Brian; Chen, Peter

    2009-01-01

    A fully integrated, compact, adaptive space optic mirror assembly has been developed, incorporating new advances in ultralight, high-performance composite mirrors. The composite mirrors use Q-switch matrix architecture-based pixelized control (PMN-PT) actuators, which achieve high-performance, large adaptive optic capability, while reducing the weight of present adaptive optic systems. The self-contained, fully assembled, 11x11x4-in. (approx.= 28x28x10-cm) unit integrates a very-high-performance 8-in. (approx.=20-cm) optic, and has 8-kHz true bandwidth. The assembled unit weighs less than 15 pounds (=6.8 kg), including all mechanical assemblies, power electronics, control electronics, drive electronics, face sheet, wiring, and cabling. It requires just three wires to be attached (power, ground, and signal) for full-function systems integration, and uses a steel-frame and epoxied electronics. The three main innovations are: 1. Ultralightweight composite optics: A new replication method for fabrication of very thin composite 20-cm-diameter laminate face sheets with good as-fabricated optical figure was developed. The approach is a new mandrel resin surface deposition onto previously fabricated thin composite laminates. 2. Matrix (regenerative) power topology: Waveform correction can be achieved across an entire face sheet at 6 kHz, even for large actuator counts. In practice, it was found to be better to develop a quadrant drive, that is, four quadrants of 169 actuators behind the face sheet. Each quadrant has a single, small, regenerative power supply driving all 169 actuators at 8 kHz in effective parallel. 3. Q-switch drive architecture: The Q-switch innovation is at the heart of the matrix architecture, and allows for a very fast current draw into a desired actuator element in 120 counts of a MHz clock without any actuator coupling.

  18. Modelling of Moving Coil Actuators in Fast Switching Valves Suitable for Digital Hydraulic Machines

    DEFF Research Database (Denmark)

    Nørgård, Christian; Roemer, Daniel Beck; Bech, Michael Møller

    2015-01-01

    an estimation of the eddy currents generated in the actuator yoke upon current rise, as they may have significant influence on the coil current response. The analytical model facilitates fast simulation of the transient actuator response opposed to the transient electro-magnetic finite element model which...

  19. 21 CFR 876.5280 - Implanted mechanical/hydraulic urinary continence device.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Implanted mechanical/hydraulic urinary continence....5280 Implanted mechanical/hydraulic urinary continence device. (a) Identification. An implanted... application of continuous or intermittent pressure to occlude the urethra. The totally implanted device...

  20. Intelligent Hydraulic Actuator and Exp-based Modelling of Losses in Pumps and .

    DEFF Research Database (Denmark)

    Zhang, Muzhi

    A intelligent fuzzy logic self-organising PD+I controller for a gearrotor hydraulic motor was developed and evaluated. Furthermore, a experimental-based modelling methods with a new software tool 'Dynamodata' for modelling of losses in hydraulic motors and pumps was developed.......A intelligent fuzzy logic self-organising PD+I controller for a gearrotor hydraulic motor was developed and evaluated. Furthermore, a experimental-based modelling methods with a new software tool 'Dynamodata' for modelling of losses in hydraulic motors and pumps was developed....

  1. Hydraulics.

    Science.gov (United States)

    Decker, Robert L.; Kirby, Klane

    This curriculum guide contains a course in hydraulics to train entry-level workers for automotive mechanics and other fields that utilize hydraulics. The module contains 14 instructional units that cover the following topics: (1) introduction to hydraulics; (2) fundamentals of hydraulics; (3) reservoirs; (4) lines, fittings, and couplers; (5)…

  2. Intelligent Hydraulic Actuator and Exp-based Modelling of Losses in Pumps and .

    DEFF Research Database (Denmark)

    Zhang, Muzhi

    A intelligent fuzzy logic self-organising PD+I controller for a gearrotor hydraulic motor was developed and evaluated. Furthermore, a experimental-based modelling methods with a new software tool 'Dynamodata' for modelling of losses in hydraulic motors and pumps was developed....

  3. Design and Fabrication of Acoustic Wave Actuated Microgenerator for Portable Electronic Devices

    CERN Document Server

    Lai, Tenghsien; Tsou, Chingfu

    2008-01-01

    The past few years have seen an increasing focus on energy harvesting issue, including power supply for portable electric devices. Utilize scavenging ambient energy from the environment could eliminate the need for batteries and increase portable device lifetimes indefinitely. In addition, through MEMS technology fabricated micro-generator could easy integrate with these small or portable devices. Several different ambient sources, including solar, vibration and temperature effect, have already exploited [1-3]. Each energy source should be used in suitable environment, therefore to produce maximum efficiency. In this paper, we present an acoustic wave actuated micro-generator for power system by using the energy of acoustic waves, such as the sound from human voices or speakerphone, to actuate a MEMS-type electromagnetic transducer. This provides a longer device lifetime and greater power system convenience. Moreover, it is convenient to integrate MEMS-based microgenerators with small or porta le devices

  4. Inductively heated shape memory polymer for the magnetic actuation of medical devices.

    Science.gov (United States)

    Buckley, Patrick R; McKinley, Gareth H; Wilson, Thomas S; Small, Ward; Benett, William J; Bearinger, Jane P; McElfresh, Michael W; Maitland, Duncan J

    2006-10-01

    Presently, there is interest in making medical devices such as expandable stents and intravascular microactuators from shape memory polymer (SMP). One of the key challenges in realizing SMP medical devices is the implementation of a safe and effective method of thermally actuating various device geometries in vivo. A novel scheme of actuation by Curie-thermoregulated inductive heating is presented. Prototype medical devices made from SMP loaded with nickel zinc ferrite ferromagnetic particles were actuated in air by applying an alternating magnetic field to induce heating. Dynamic mechanical thermal analysis was performed on both the particle-loaded and neat SMP materials to assess the impact of the ferrite particles on the mechanical properties of the samples. Calorimetry was used to quantify the rate of heat generation as a function of particle size and volumetric loading of ferrite particles in the SMP. These tests demonstrated the feasibility of SMP actuation by inductive heating. Rapid and uniform heating was achieved in complex device geometries and particle loading up to 10% volume content did not interfere with the shape recovery of the SMP.

  5. Inductively Heated Shape Memory Polymer for the Magnetic Actuation of Medical Devices

    Energy Technology Data Exchange (ETDEWEB)

    Buckley, P; Mckinley, G; Wilson, T; Small, W; Benett, W; Bearinger, J; McElfresh, M; Maitland, D

    2005-09-06

    Presently there is interest in making medical devices such as expandable stents and intravascular microactuators from shape memory polymer (SMP). One of the key challenges in realizing SMP medical devices is the implementation of a safe and effective method of thermally actuating various device geometries in vivo. A novel scheme of actuation by Curie-thermoregulated inductive heating is presented. Prototype medical devices made from SMP loaded with Nickel Zinc ferrite ferromagnetic particles were actuated in air by applying an alternating magnetic field to induce heating. Dynamic mechanical thermal analysis was performed on both the particle-loaded and neat SMP materials to assess the impact of the ferrite particles on the mechanical properties of the samples. Calorimetry was used to quantify the rate of heat generation as a function of particle size and volumetric loading of ferrite particles in the SMP. These tests demonstrated the feasibility of SMP actuation by inductive heating. Rapid and uniform heating was achieved in complex device geometries and particle loading up to 10% volume content did not interfere with the shape recovery of the SMP.

  6. Geometric Optimization of Hydraulic Rotation Device for Neutron Transmutation Doping

    Energy Technology Data Exchange (ETDEWEB)

    Park, Yongsoo; Kang, Hanok; Park, Kijung; Kim, Seong Hoon; Park, Cheol [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-05-15

    The Korea Atomic Energy Research Institute (KAERI) is developing a Hydraulic Rotation Device (HRD) for NTD facilities (NTDHRD) as a part of the Kijang Research Reactor (KJRR) project. This concept has many advantages when compared to the motor driven method, which is currently used in the HANARO research reactor located at KAERI. The OPAL research reactor located at ANSTO has already applied this method. To achieve a constant rotation speed, which is substantial for uniform doping, with a minimal amount of fluid flow, certain geometric requirements should be satisfied. This paper describes the approach we used while determining the number of impulse jet nozzles used to rotate the NTDHRD at a set number of blades as well as the angle of the nozzles of the NTDHRD. The approach that our group has used to geometrically optimize the design of a NTDHRD was described. The adaptation of this approach allows one to predict the required amount of inlet fluid flow and to determine the number of nozzles based on the rule that it should avoid being a divisor of the number of blades, and provides a reference while determining the tile angle of the nozzles. A CFD analysis will be performed as a future study.

  7. DEVELOPMENT OF OPTIMUM SPEED DIAGRAMS FOR SMALL MOVEMENT OF AN ACTUATING DEVICE OF AС ELECTRIC DRIVE-WITH ELASTIC SHAFTING

    Directory of Open Access Journals (Sweden)

    Dobrobaba Y. P.

    2013-10-01

    Full Text Available In this article we describe the optimum speed diagram of moving actuating device of АС electric drive with elastic shafting. Parameters, conditions of existence and dependence of the duration of the cycle from the angle of rotation of actuating device are defined as well

  8. Reactive actuators and sensors integrated in one device: mimicking brain-muscles feedback communication

    Science.gov (United States)

    Otero, Toribio F.; Martinez, Jose G.

    2013-04-01

    Artificial muscles based on carbon derivative molecular structures are chemical (electro-chemo-mechanical) actuators. The electrochemical reaction drives the film volume variation and the actuation. The applied current controls the movement rate and the charge controls the amplitude of the displacement (Faraday' motors). Any working or surrounding variable influencing the reaction rate will be sensed by the muscle potential, or by the consumed electrical energy, evolution during actuation. Experimental results and full theoretical description of the basic reactive material and of any dual electrochemical sensing-actuator will be presented. During current flow the muscle potential and the consumed electrical energy evolution are influenced by the working variables: temperature, electrolyte concentration, driving current, film volume variation (external pressure, applied strain, hanged masses, obstacles in its way). The working muscle becomes an electrochemical sensor. Only two connecting wires contain actuating (current) and sensing (potential) signals read and controlled, at any time from the computer-generator. One device integrates several sensing and actuating tools working simultaneously mimicking muscles/brain feedback communication.

  9. Demonstrating the application of dielectric polymer actuators for tactile feedback in a mobile consumer device.

    NARCIS (Netherlands)

    Moessinger, H.M.; Brokken, D.

    2010-01-01

    User interfaces of mobile consumer devices are becoming increasingly complex. To address this complexity touch-screen interfaces are used. They allow flexible design of the user interfaces but lack the tactile feedback mechanical buttons provide, limiting ease of use. Dielectric Elastomer Actuator

  10. Demonstrating the application of dielectric polymer actuators for tactile feedback in a mobile consumer device.

    NARCIS (Netherlands)

    Moessinger, H.M.; Brokken, D.

    2010-01-01

    User interfaces of mobile consumer devices are becoming increasingly complex. To address this complexity touch-screen interfaces are used. They allow flexible design of the user interfaces but lack the tactile feedback mechanical buttons provide, limiting ease of use. Dielectric Elastomer Actuator (

  11. Demonstrating the application of dielectric polymer actuators for tactile feedback in a mobile consumer device.

    NARCIS (Netherlands)

    Moessinger, H.M.; Brokken, D.

    2010-01-01

    User interfaces of mobile consumer devices are becoming increasingly complex. To address this complexity touch-screen interfaces are used. They allow flexible design of the user interfaces but lack the tactile feedback mechanical buttons provide, limiting ease of use. Dielectric Elastomer Actuator (

  12. Flexible Low-Mass Devices and Mechanisms Actuated by Electroactive Polymers

    Science.gov (United States)

    Bar-Cohen, Y; Leary, S.; Shahinpoor, M.; Harrison, J. O.; Smith, J.

    1999-01-01

    Miniature, lightweight, miser actuators that operate similar to biological muscles can be used to develop robotic devices with unmatched capabilities to impact many technology areas. Electroactive polymers (EAP) offer the potential to producing such actuators and their main attractive feature is their ability to induce relatively large bending or longitudinal strain. Generally, these materials produce a relatively low force and the applications that can be considered at the current state of the art are relatively limited. This reported study is concentrating on the development of effective EAPs and the resultant enabling mechanisms employing their unique characteristics. Several EAP driven mechanisms, which emulate human hand, were developed including a gripper, manipulator arm and surface wiper. The manipulator arm was made of a composite rod with an EAP actuator consisting of a scrolled rope that is activated longitudinally by an electrostatic field. A gripper was made to serve as an end effector and it consisted of multiple bending EAP fingers for grabbing and holding such objects as rocks. An EAP surface wiper was developed to operate like a human finger and to demonstrate the potential to remove dust from optical and IR windows as well as solar cells. These EAP driven devices are taking advantage of the large actuation displacement of these materials but there is need for a significantly greater actuation force capability.

  13. Near-infrared–actuated devices for remotely controlled drug delivery

    Science.gov (United States)

    Timko, Brian P.; Arruebo, Manuel; Shankarappa, Sahadev A.; McAlvin, J. Brian; Okonkwo, Obiajulu S.; Mizrahi, Boaz; Stefanescu, Cristina F.; Gomez, Leyre; Zhu, Jia; Zhu, Angela; Santamaria, Jesus; Langer, Robert; Kohane, Daniel S.

    2014-01-01

    A reservoir that could be remotely triggered to release a drug would enable the patient or physician to achieve on-demand, reproducible, repeated, and tunable dosing. Such a device would allow precise adjustment of dosage to desired effect, with a consequent minimization of toxicity, and could obviate repeated drug administrations or device implantations, enhancing patient compliance. It should exhibit low off-state leakage to minimize basal effects, and tunable on-state release profiles that could be adjusted from pulsatile to sustained in real time. Despite the clear clinical need for a device that meets these criteria, none has been reported to date to our knowledge. To address this deficiency, we developed an implantable reservoir capped by a nanocomposite membrane whose permeability was modulated by irradiation with a near-infrared laser. Irradiated devices could exhibit sustained on-state drug release for at least 3 h, and could reproducibly deliver short pulses over at least 10 cycles, with an on/off ratio of 30. Devices containing aspart, a fast-acting insulin analog, could achieve glycemic control after s.c. implantation in diabetic rats, with reproducible dosing controlled by the intensity and timing of irradiation over a 2-wk period. These devices can be loaded with a wide range of drug types, and therefore represent a platform technology that might be used to address a wide variety of clinical indications. PMID:24474759

  14. Demonstration of an integrated electroactive polymer actuator on a microfluidic electrophoresis device.

    Science.gov (United States)

    Price, Alexander K; Anderson, Kristen M; Culbertson, Christopher T

    2009-07-21

    The construction of microfluidic devices from siloxane-based polymers is widely reported in the current literature. While the use of these materials is primarily due to their rapid and facile fabrication, low cost and robustness, they also have the ability to function as smart materials. This feature, however, has not been commonly exploited in conjunction with their fluid-handling capabilities. Siloxanes are considered smart materials because their shapes can be modified in the presence of an electric field. The energy in the electric field can be transduced into mechanical energy and directly coupled with a microfabricated channel network in order to affect or initiate the movement of fluids. Here, we present a novel microfluidic device into which an electroactive polymer (EAP) actuation unit is integrated. The EAP actuation unit features a microfluidic channel placed above a patterned electrode. The patterned electrode is insulated from the channel by an EAP layer that is composed of PDMS. When a potential is applied across the EAP layer, it changes shape, which also changes the volume of the microfluidic channel above it. With this proof-of-concept device we demonstrated the ability to inject plugs of sample on a standard electrophoresis cross chip solely by changing the magnitude of the electric field between the channel and the electrode. Using an EAP actuation unit, the size of the injection plugs can be varied as a function of the electric field, the active area of the EAP actuation unit and the softness of the EAP.

  15. Parametric adaptive estimation and backstepping control of electro-hydraulic actuator with decayed memory filter.

    Science.gov (United States)

    Guo, Qing; Sun, Ping; Yin, Jing-Min; Yu, Tian; Jiang, Dan

    2016-05-01

    Some unknown parameter estimation of electro-hydraulic system (EHS) should be considered in hydraulic controller design due to many parameter uncertainties in practice. In this study, a parametric adaptive backstepping control method is proposed to improve the dynamic behavior of EHS under parametric uncertainties and unknown disturbance (i.e., hydraulic parameters and external load). The unknown parameters of EHS model are estimated by the parametric adaptive estimation law. Then the recursive backstepping controller is designed by Lyapunov technique to realize the displacement control of EHS. To avoid explosion of virtual control in traditional backstepping, a decayed memory filter is presented to re-estimate the virtual control and the dynamic external load. The effectiveness of the proposed controller has been demonstrated by comparison with the controller without adaptive and filter estimation. The comparative experimental results in critical working conditions indicate the proposed approach can achieve better dynamic performance on the motion control of Two-DOF robotic arm.

  16. Design and control of a dual unidirectional brake hybrid actuation system for haptic devices.

    Science.gov (United States)

    Rossa, Carlos; Lozada, José; Micaelli, Alain

    2014-01-01

    Hybrid actuators combining brakes and motors have emerged as an efficient solution to achieve high performance in haptic devices. In this paper, an actuation approach using two unidirectional brakes and a DC motor is proposed. The brakes are coupled to overrunning clutches and can apply a torque in only one rotational direction. The associated control laws, that are independent of the virtual environment model, calculate the control gains in real time in order limit the energy and the stiffness delivered by the motor to ensure stability. The reference torque is respected using the combination of the motor and the brake. Finally, an user experiment has been performed to evaluate the influence of passive and active torque differences in the perception of elasticity. The proposed actuator has a torque range of 0.03 Nm to 5.5 Nm with a 17.75 kNm (-2) torque density.

  17. 30 CFR 75.1107-1 - Fire-resistant hydraulic fluids and fire suppression devices on underground equipment.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Fire-resistant hydraulic fluids and fire...-UNDERGROUND COAL MINES Fire Protection Fire Suppression Devices and Fire-Resistant Hydraulic Fluids on Underground Equipment § 75.1107-1 Fire-resistant hydraulic fluids and fire suppression devices on...

  18. Compact MR fluid clutch device for human-friendly actuator

    Energy Technology Data Exchange (ETDEWEB)

    Kikuchi, T; Ikeda, K; Otsuki, K; Kakehashi, T; Furusho, J [Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871 (Japan)], E-mail: kikuchi@mech.eng.osaka-u.ac.jp

    2009-02-01

    In this paper, we describe a design method and experimental results of a newly developed MR Fluid clutch which has a multi-layered disks and micro-size (50 micro meters) gaps of MR Fluid. The micro-size gap works for the reduction of magnetic resistance, amount of power supply and size of the total system. Static torques of the device was predictable with conventional magnetostatic analyses. Additionally, dynamic test shows that its response time is about 20 milliseconds.

  19. A magnetorheological clutch for efficient automotive auxiliary device actuation

    Directory of Open Access Journals (Sweden)

    F. Bucchi

    2013-01-01

    Full Text Available In this paper the results of a project funded by Regione Toscana aimed at reducing the power absorption of auxiliary devices in vehicles are presented. In particular the design, testing and application of a magnetorheological clutch (MR is proposed, aimed at disengaging the vacuum pump, which draws in air from the power-brake booster chamber, in order to reduce the device power absorption. Several clutch preliminary studies done to choose the clutch geometry and the magnetic field supply are illustrated. The final choice consisted in an MR clutch with permanent magnet, which satisfied size, torque and fail-safe specifications. The clutch characteristics, in terms of torque versus slip, were obtained experimentally for three different clutch prototypes on an ad-hoc developed test bench.As result of a preliminary simulation, a comparison between the power absorption of a current production vacuum pump, an innovative vacuum pump and both vacuum pumps coupled with the MR clutch is presented. The New European Driving Cycle is considered for simulating the vacuum pump operation both in urban and highway driving. Results show that the use of the innovative vacuum pump reduces the device consumption of about 35%, whereas the use of MR clutch coupled with the innovative vacuum pump reduces it up to about 44% in urban driving and 50% in highway driving.

  20. Robust Pressure-Actuated Liquid Metal Devices Showing Reconfigurable Electromagnetic Effects at GHz Frequencies (POSTPRINT)

    Science.gov (United States)

    2014-06-01

    actuated liquid metal devices are demonstrated for reconfigurable electromagnetic fundamentals at GHz frequencies, including tunable dipole antennas ...Mazlouman, A. Mahanfar, C. Menon et al., “Mechanically Reconfigurable Antennas using Electro-active Polymers (EAPs),” 2011 Ieee International Symposium...on Antennas and Propagation (Apsursi), pp. 742-745, 2011. [3] B. Cumby, G. Hayes, M. Dickey et al., “ Reconfigurable liquid metal circuits by

  1. Design of Floating Mass Type Piezoelectric Actuator for Implantable Middle Ear Hearing Devices

    Institute of Scientific and Technical Information of China (English)

    LIU Houguang; TA Na; MING Xiaofeng; RAO Zhushi

    2009-01-01

    To overcome some of the problems inherent in conventional hearing aids such as low gain at high frequencies due to acoustic feedback, discomfort in occlusion of the external ear canal and so on, implantable middle ear hearing devices (IMEHDs) have been developed over the past two decades. For such kinds of IMEHDS, this paper presents the design of a floating mass piezoelectric actuator using a PMN-30%PT stack as a new type of vibrator. The proposed piezoelectric actuator consists of only three components of a piezoelectric stack, a metal case and a clamp. For the purpose of aiding the design of this actuator, a coupling biomechanics model of human middle ear and the piezoelectric actuator was constructed. This model was built based on a complete set of computerized tomography section images of a healthy volunteer's left ear by reverse engineering technology. The validity of this model was confirmed by comparing the motion of the tympanic membrane and stapes footplate obtained by this model with published experimental measurements on human temporal bones. It is shown that the designed actuator can be implanted on the incus long process by a simple surgical operation, and the stapes footplate displacement by its excitation at 10.5 V root-mean-square(RMS) voltage was equivalent to that from acoustic stimulation at 100 dB sound pressure level(SPL), which is adequate stimulation to the nssicular chain. The corresponding power consumption is 0.04 mW per volt of excitation at 1 kHz, which is low enough for the transducer to be used in an implantable middle ear device.

  2. Simple spark erosion device based on optical disk or hard disk drive actuators.

    Science.gov (United States)

    Kamer, O

    2011-12-01

    We present the design of a compact electric discharge device incorporating hard disk or optical disk drive actuators. It is simple enough to be assembled in the absence of a mechanical workshop. The electronic circuit allows the adjustment of current, voltage, and discharge power. The system has been tested with organic dielectric liquids and deionized water and spark conditions; dynamic properties and machining characteristics were investigated. This device can be used to shape materials or to produce powdered samples with low material loss and minimal liquid consumption.

  3. Application of Advanced Electromagnetic Arrays to High Efficiency, High Bandwidth, Redundant Linear Actuators Project

    Data.gov (United States)

    National Aeronautics and Space Administration — There is a need to develop electromechanical actuators to improve performance beyond that of hydraulic devices currently being used in numerous aerospace and...

  4. Effect of joystick stiffness, movement speed and movement direction on joystick and upper limb kinematics when using hydraulic-actuation joystick controls in heavy vehicles.

    Science.gov (United States)

    Oliver, M; Tingley, M; Rogers, R; Rickards, J; Biden, E

    2007-06-01

    Despite the widespread use of hydraulic-actuation joysticks in mobile North American construction, mining and forestry vehicles, the biomechanical effects that joysticks have on their human operators has not been studied extensively. Using nine unskilled joystick operators and a laboratory mock-up with a commonly used North American heavy off-road equipment hydraulic-actuation joystick and operator seat, the purpose of this work was to quantify and compare the effects of three hydraulic-actuation joystick stiffnesses and two movement speeds on upper limb and joystick kinematics as one of the initial steps towards the development of a hydraulic-actuation joystick design protocol. In addition to providing a detailed description of the kinematics of a constrained occupational task, coupled with the corresponding effects of the task on operator upper limb kinematics, results from principal component analysis and ANOVA procedures revealed a number of differences in joystick and upper limb angle ranges and movement curve shapes resulting from the various joystick stiffness-speed combinations tested. For the most part, these joystick motion alterations were caused by small, insignificant changes in one or more upper limb joint angles. The two exceptions occurred for forward movements of the joystick; the fast speed - light stiffness condition movement pattern shape change was caused primarily by an alteration of the elbow flexion-extension movement pattern. Similarly, the fast speed - normal stiffness condition movement curve shape perturbation - was caused principally by a combination of significant movement curve shape alterations to elbow flexion-extension, external-internal shoulder rotation and flexion-extension of the shoulder. The finding that joystick stiffness and speed alterations affect joystick and upper limb kinematics minimally indicates that the joystick design approach of modelling the joystick and operator upper limb as a closed linkage system should be

  5. Computationally Informed Design of a Multi-Axial Actuated Microfluidic Chip Device.

    Science.gov (United States)

    Gizzi, Alessio; Giannitelli, Sara Maria; Trombetta, Marcella; Cherubini, Christian; Filippi, Simonetta; De Ninno, Adele; Businaro, Luca; Gerardino, Annamaria; Rainer, Alberto

    2017-07-14

    This paper describes the computationally informed design and experimental validation of a microfluidic chip device with multi-axial stretching capabilities. The device, based on PDMS soft-lithography, consisted of a thin porous membrane, mounted between two fluidic compartments, and tensioned via a set of vacuum-driven actuators. A finite element analysis solver implementing a set of different nonlinear elastic and hyperelastic material models was used to drive the design and optimization of chip geometry and to investigate the resulting deformation patterns under multi-axial loading. Computational results were cross-validated by experimental testing of prototypal devices featuring the in silico optimized geometry. The proposed methodology represents a suite of computationally handy simulation tools that might find application in the design and in silico mechanical characterization of a wide range of stretchable microfluidic devices.

  6. 马达式多回转阀门气动执行机构在炼化装置的应用%The Motor type multi turn valve actuator in refining device application

    Institute of Scientific and Technical Information of China (English)

    王新斋

    2014-01-01

    针对炼化装置大口径闸阀的操作问题,结合常见的执行机构特点,对比电液、电动、气动执行机构的优缺点,重点了介绍马达式多回转气动执行机构的原理、结构、控制方式,其利用压缩空气为动力,安全可靠,结构紧凑,操作简单方便,减少了劳动强度的同时保证装置的安全生产。%With reifning device of large diameter valves operating problems, combined with a variety of actuator principle, elaborated electric actuators, electro-hydraulic actuator, pneumatic actuating mechanism, advantages and disadvantages, emphatically introduced the motor type multi turn valve actuator principle, structure, control method, which uses compressed air as power, security reliable, compact structure, simple and convenient operation, reducing the labor intensity of workers and ensure the safe production of the device.

  7. Enrichment of nanoparticles and bacteria using electroless and manual actuation modes of a bypass nanofluidic device.

    Science.gov (United States)

    Aïzel, Koceila; Agache, Vincent; Pudda, Catherine; Bottausci, Frederic; Fraisseix, Coline; Bruniaux, Jonathan; Navarro, Fabrice; Fouillet, Yves

    2013-11-21

    Current efforts in nanofluidics aimed at detecting scarce molecules or particles are focused mainly on the development of electrokinetic-based devices. However, these techniques require either integrated or external electrodes, and a potential drop applied across a carrier fluid. One challenge is to develop a new generation of electroless passive devices involving a simple technological process and packaging without embedded electrodes for micro- and nanoparticles enrichment with a view to applications in biology such as the detection of viral agents or cancers biomarkers. This paper presents an innovative technique for particles handling and enrichment based exclusively on a pressure-driven silicon bypass nanofluidic device. The device is fabricated by standard silicon micro-nanofabrication technology. The concentration operation was demonstrated and quantified according to two different actuation modes, which can also be combined to enhance the concentration factor further. The first, "symmetrical" mode involves a symmetric cross-flow effect that concentrates nanoparticles in a very small volume in a very local point of the device. The second mode, "asymmetrical" mode advantageously generates a streaming potential, giving rise to an Electroless Electropreconcentration (EL-EP). The concentration process can be maintained for several hours and concentration factors as high as ~200 have been obtained when both symmetrical and asymmetrical modes are coupled. Proof of concept for concentrating E. coli bacteria by the manual actuation of the EL-EP device is also demonstrated in this paper. Experiments demonstrate more than a 50-fold increase in the concentration of E. coli bacteria in only ~40 s.

  8. Method for reading sensors and controlling actuators using audio interfaces of mobile devices.

    Science.gov (United States)

    Aroca, Rafael V; Burlamaqui, Aquiles F; Gonçalves, Luiz M G

    2012-01-01

    This article presents a novel closed loop control architecture based on audio channels of several types of computing devices, such as mobile phones and tablet computers, but not restricted to them. The communication is based on an audio interface that relies on the exchange of audio tones, allowing sensors to be read and actuators to be controlled. As an application example, the presented technique is used to build a low cost mobile robot, but the system can also be used in a variety of mechatronics applications and sensor networks, where smartphones are the basic building blocks.

  9. Method for Reading Sensors and Controlling Actuators Using Audio Interfaces of Mobile Devices

    Science.gov (United States)

    Aroca, Rafael V.; Burlamaqui, Aquiles F.; Gonçalves, Luiz M. G.

    2012-01-01

    This article presents a novel closed loop control architecture based on audio channels of several types of computing devices, such as mobile phones and tablet computers, but not restricted to them. The communication is based on an audio interface that relies on the exchange of audio tones, allowing sensors to be read and actuators to be controlled. As an application example, the presented technique is used to build a low cost mobile robot, but the system can also be used in a variety of mechatronics applications and sensor networks, where smartphones are the basic building blocks. PMID:22438726

  10. Calculation of Water Supply to Hydraulic Jet Devices

    Directory of Open Access Journals (Sweden)

    M. V. Krautsou

    2006-01-01

    Full Text Available Dependence for calculation of working fluid supply to water-air ejector is proposed. The de­pendence has been derived via analysis and processing of data being obtained by experimental research of water-jet devices.

  11. Devices Based on Co-Integrated MEMS Actuators and Optical Waveguide: A Review

    Directory of Open Access Journals (Sweden)

    Franck Chollet

    2016-01-01

    Full Text Available The convergence of Micro Electro Mechanical Systems (MEMS and optics was, at the end of the last century, a fertile ground for a new breed of technological and scientific achievements. The weightlessness of light has been identified very early as a key advantage for micro-actuator application, giving rise to optical free-space MEMS devices. In parallel to these developments, the past 20 years saw the emergence of a less pursued approach relying on guided optical wave, where, pushed by the similarities in fabrication process, researchers explored the possibilities offered by merging integrated optics and MEMS technology. The interest of using guided waves is well known (absence of diffraction, tight light confinement, small size, compatibility with fiber optics but it was less clear how they could be harnessed with MEMS technology. Actually, it is possible to use MEMS actuators for modifying waveguide properties (length, direction, index of refraction or for coupling light between waveguide, enabling many new devices for optical telecommunication, astronomy or sensing. With the recent expansion to nanophotonics and optomechanics, it seems that this field still holds a lot of promises.

  12. Stimulus-active polymer actuators for next-generation microfluidic devices

    Science.gov (United States)

    Hilber, Wolfgang

    2016-08-01

    Microfluidic devices have not yet evolved into commercial off-the-shelf products. Although highly integrated microfluidic structures, also known as lab-on-a-chip (LOC) and micrototal-analysis-system (µTAS) devices, have consistently been predicted to revolutionize biomedical assays and chemical synthesis, they have not entered the market as expected. Studies have identified a lack of standardization and integration as the main obstacles to commercial breakthrough. Soft microfluidics, the utilization of a broad spectrum of soft materials (i.e., polymers) for realization of microfluidic components, will make a significant contribution to the proclaimed growth of the LOC market. Recent advances in polymer science developing novel stimulus-active soft-matter materials may further increase the popularity and spreading of soft microfluidics. Stimulus-active polymers and composite materials change shape or exert mechanical force on surrounding fluids in response to electric, magnetic, light, thermal, or water/solvent stimuli. Specifically devised actuators based on these materials may have the potential to facilitate integration significantly and hence increase the operational advantage for the end-user while retaining cost-effectiveness and ease of fabrication. This review gives an overview of available actuation concepts that are based on functional polymers and points out promising concepts and trends that may have the potential to promote the commercial success of microfluidics.

  13. Extended state observer–based fractional order proportional–integral–derivative controller for a novel electro-hydraulic servo system with iso-actuation balancing and positioning

    Directory of Open Access Journals (Sweden)

    Qiang Gao

    2015-12-01

    Full Text Available Aiming at balancing and positioning of a new electro-hydraulic servo system with iso-actuation configuration, an extended state observer–based fractional order proportional–integral–derivative controller is proposed in this study. To meet the lightweight requirements of heavy barrel weapons with large diameters, an electro-hydraulic servo system with a three-chamber hydraulic cylinder is especially designed. In the electro-hydraulic servo system, the balance chamber of the hydraulic cylinder is used to realize active balancing of the unbalanced forces, while the driving chambers consisting of the upper and lower chambers are adopted for barrel positioning and dynamic compensation of external disturbances. Compared with conventional proportional–integral–derivative controllers, the fractional order proportional–integral–derivative possesses another two adjustable parameters by expanding integer order to arbitrary order calculus, resulting in more flexibility and stronger robustness of the control system. To better compensate for strong external disturbances and system nonlinearities, the extended state observer strategy is further introduced to the fractional order proportional–integral–derivative control system. Numerical simulation and bench test indicate that the extended state observer–based fractional order proportional–integral–derivative significantly outperforms proportional–integral–derivative and fractional order proportional–integral–derivative control systems with better control accuracy and higher system robustness, well demonstrating the feasibility and effectiveness of the proposed extended state observer–based fractional order proportional–integral–derivative control strategy.

  14. Development of a flexible and bendable vibrotactile actuator based on wave-shaped poly(vinyl chloride)/acetyl tributyl citrate gels for wearable electronic devices

    Science.gov (United States)

    Park, Won-Hyeong; Bae, Jin Woo; Shin, Eun-Jae; Kim, Sang-Youn

    2016-11-01

    The paradigm of consumer electronic devices is being shifted from rigid hand-held devices to flexible/wearable devices in search of benefits such as enhanced usability and portability, excellent wear characteristics, and more functions in less space. However, the fundamental incompatibility of flexible/wearable devices and a rigid actuator brought forth a new issue obstructing commercialization of flexible/wearable devices. In this paper, we propose a new wave-shaped eco-friendly PVC gel, and a new flexible and bendable vibrotactile actuator that could easily be applied to wearable electronic devices. We explain the vibration mechanism of the proposed vibrotactile actuator and investigate its influence on the content of plasticizer for the performance of the proposed actuator. An experiment for measuring vibrational amplitude was conducted over a wide frequency range. The experiment clearly showed that the proposed vibrotactile actuator could create a variety of haptic sensations in wearable devices.

  15. A piezoelectric actuator-driven loading device for mechanical condition during bone tissue engineering

    Science.gov (United States)

    Zhang, C. Q.; Wu, H.; Dong, X.

    2008-10-01

    Bone cells live in an environment heavily influenced by mechanical forces. The researches of bone cell responses in hard scaffolds under differently mechanical conditions will be greatly beneficial to elucidating the mechanisms of bone mechanotransduction as well as applications of mechanical condition in bone tissue engineering. However, the appropriate device for the experiments is prerequisite. A loading device suitable to hard scaffold for study on mechanical responses of bone cells was made by usage of a kind of long-travel, high-load piezoelectric actuator. The device, which is so small enough to work in a standard incubator, can cause hard scaffolds with directly uniaxial compressive strains with more magnitudes, frequency components, and waveforms, including bone physiologically mechanical state, precisely controlled by a computer. The device achieves precise mechanical conditions by testing verification. The device may produce a model that will be suitable for investigating the influences of mechanical responses on bone cells in 3D hard scaffolds in vitro matching that in cancellous bone in vivo and may be applied during bone tissue engineering culture.

  16. A novel in situ device based on a bionic piezoelectric actuator to study tensile and fatigue properties of bulk materials

    Science.gov (United States)

    Wang, Shupeng; Zhang, Zhihui; Ren, Luquan; Zhao, Hongwei; Liang, Yunhong; Zhu, Bing

    2014-06-01

    In this work, a miniaturized device based on a bionic piezoelectric actuator was developed to investigate the static tensile and dynamic fatigue properties of bulk materials. The device mainly consists of a bionic stepping piezoelectric actuator based on wedge block clamping, a pair of grippers, and a set of precise signal test system. Tensile and fatigue examinations share a set of driving system and a set of signal test system. In situ tensile and fatigue examinations under scanning electron microscope or metallographic microscope could be carried out due to the miniaturized dimensions of the device. The structure and working principle of the device were discussed and the effects of output difference between two piezoelectric stacks on the device were theoretically analyzed. The tensile and fatigue examinations on ordinary copper were carried out using this device and its feasibility was verified through the comparison tests with a commercial tensile examination instrument.

  17. A novel in situ device based on a bionic piezoelectric actuator to study tensile and fatigue properties of bulk materials

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Shupeng; Zhang, Zhihui, E-mail: zhzh@jlu.edu.cn; Ren, Luquan; Liang, Yunhong [The Key Laboratory of Engineering Bionics (Ministry of Education) and the College of Biological and Agricultural Engineering, Jilin University (Nanling Campus), 5988 Renmin Street, Changchun 130025 (China); Zhao, Hongwei [College of Mechanical Science and Engineering, Jilin University (Nanling Campus), 5988 Renmin Street, Changchun 130025 (China); Zhu, Bing [College of Automotive Engineering, Jilin University (Nanling Campus), 5988 Renmin Street, Changchun 130025 (China)

    2014-06-15

    In this work, a miniaturized device based on a bionic piezoelectric actuator was developed to investigate the static tensile and dynamic fatigue properties of bulk materials. The device mainly consists of a bionic stepping piezoelectric actuator based on wedge block clamping, a pair of grippers, and a set of precise signal test system. Tensile and fatigue examinations share a set of driving system and a set of signal test system. In situ tensile and fatigue examinations under scanning electron microscope or metallographic microscope could be carried out due to the miniaturized dimensions of the device. The structure and working principle of the device were discussed and the effects of output difference between two piezoelectric stacks on the device were theoretically analyzed. The tensile and fatigue examinations on ordinary copper were carried out using this device and its feasibility was verified through the comparison tests with a commercial tensile examination instrument.

  18. A novel in situ device based on a bionic piezoelectric actuator to study tensile and fatigue properties of bulk materials.

    Science.gov (United States)

    Wang, Shupeng; Zhang, Zhihui; Ren, Luquan; Zhao, Hongwei; Liang, Yunhong; Zhu, Bing

    2014-06-01

    In this work, a miniaturized device based on a bionic piezoelectric actuator was developed to investigate the static tensile and dynamic fatigue properties of bulk materials. The device mainly consists of a bionic stepping piezoelectric actuator based on wedge block clamping, a pair of grippers, and a set of precise signal test system. Tensile and fatigue examinations share a set of driving system and a set of signal test system. In situ tensile and fatigue examinations under scanning electron microscope or metallographic microscope could be carried out due to the miniaturized dimensions of the device. The structure and working principle of the device were discussed and the effects of output difference between two piezoelectric stacks on the device were theoretically analyzed. The tensile and fatigue examinations on ordinary copper were carried out using this device and its feasibility was verified through the comparison tests with a commercial tensile examination instrument.

  19. Digital Measuring Devices Used for Injector Hydraulic Test

    Directory of Open Access Journals (Sweden)

    S. N. Leontiev

    2015-01-01

    Full Text Available To ensure a high specific impulse of the LRE (liquid-propellant engine chamber it is necessary to have optimally organized combustion of the fuel components. This can be ensured by choosing the optimum geometry of gas-dynamic contour of the LRE combustor, as well as by improving the sputtering processes and mixing the fuel components, for example, by selection of the optimum type, characteristics, and location of injectors on the mixing unit of the chamber.These particular reasons arise the interest in the injector characteristics in terms of science, and technological aspects determine the need for control of underlying design parameters in their manufacture.The objective of this work is to give an experimental justification on used digital measurement instrumentation and research the hydraulic characteristics of injectors.To determine injector parameters most widely were used the units with sectional collectors. A technique to control injector parameters using the sectional collectors involves spraying the liquid by injector at a given pressure drop on it for a certain time (the longer, the higher the accuracy and reliability of the results and then determining the amount of liquid in each section to calculate the required parameters of injector.In this work the liquid flow through the injector was determined by high-precision flowmeters FLONET FN2024.1 of electromagnetic type, which have very high metrological characteristics, in particular a flow rate error does not exceed 0.5% in a range of water flow from Qmin= 0.0028 l/s to Qmax Qmax = 0.28 l/s. To determine the coefficient of uneven spray were used differential pressure sensors DMD 331-ASLX of company "DB Sensors RUS", which have an error of 0.075% with a range of differential pressure 0 ... 5 kPa. Measuring complex MIC-200 of company "NPP Measure" and WinPos software for processing array information provided entry, recording, and processing of all the data of the experiment.In this

  20. Flexible dielectric elastomer actuators for wearable human-machine interfaces

    Science.gov (United States)

    Bolzmacher, Christian; Biggs, James; Srinivasan, Mandayam

    2006-03-01

    Wearable dielectric elastomer actuators have the potential to enable new technologies, such as tactile feedback gloves for virtual reality, and to improve existing devices, such as automatic blood pressure cuffs. They are potentially lighter, quieter, thinner, simpler, and cheaper than pneumatic and hydraulic systems now used to make compliant, actuated interfaces with the human body. Achieving good performance without using a rigid frame to prestrain the actuator is a fundamental challenge in using these actuators on body. To answer this challenge, a new type of fiber-prestrained composite actuator was developed. Equations that facilitate design of the actuator are presented, along with FE analysis, material tests, and experimental results from prototypes. Bending stiffness of the actuator material was found to be comparable to textiles used in clothing, confirming wearability. Two roll-to-roll machines are also presented that permit manufacture of this material in bulk as a modular, compact, prestressed composite that can be cut, stacked, and staggered, in order to build up actuators for a range of desired forces and displacements. The electromechanical properties of single- layered actuators manufactured by this method were measured (N=5). At non-damaging voltages, blocking force ranged from 3,7-5,0 gram per centimeter of actuator width, with linear strains of 20,0-30%. Driving the actuators to breakdown produced maximum force of 8,3-10 gram/cm, and actuation strain in excess 30%. Using this actuator, a prototype tactile display was constructed and demonstrated.

  1. An Ionic-Polymer-Metallic Composite Actuator for Reconfigurable Antennas in Mobile Devices

    Directory of Open Access Journals (Sweden)

    Yi-Chen Lin

    2014-01-01

    Full Text Available In this paper, a new application of an electro-active-polymer for a radio frequency (RF switch is presented. We used an ionic polymer metallic composite (IPMC switch to change the operating frequency of an inverted-F antenna. This switch is light in weight, small in volume, and low in cost. In addition, the IPMC is suitable for mobile devices because of its driving voltage of 3 volts and thickness of 200 μm. The IPMC acts as a normally-on switch to control the operating frequency of a reconfigurable antenna in mobile phones. We experimentally demonstrated by network analysis that the IPMC switch could shift its operating frequency from 1.1 to 2.1 GHz, with return losses of than −10 dB at both frequencies. To minimize electrolysis and maximize the operation time in air, propylene carbonate electrolyte with lithium perchlorate (LiClO4 was applied inside the IPMC. The results showed that when the IPMC was actuated over three months at 3.5 V, the tip displacement fell by less than 10%. Therefore, an IPMC actuator is a promising choice for application to a reconfigurable antenna.

  2. An ionic-polymer-metallic composite actuator for reconfigurable antennas in mobile devices.

    Science.gov (United States)

    Lin, Yi-Chen; Yu, Chung-Yi; Li, Chung-Min; Liu, Chin-Heng; Chen, Jiun-Peng; Chu, Tah-Hsiung; Su, Guo-Dung John

    2014-01-06

    In this paper, a new application of an electro-active-polymer for a radio frequency (RF) switch is presented. We used an ionic polymer metallic composite (IPMC) switch to change the operating frequency of an inverted-F antenna. This switch is light in weight, small in volume, and low in cost. In addition, the IPMC is suitable for mobile devices because of its driving voltage of 3 volts and thickness of 200 μm. The IPMC acts as a normally-on switch to control the operating frequency of a reconfigurable antenna in mobile phones. We experimentally demonstrated by network analysis that the IPMC switch could shift its operating frequency from 1.1 to 2.1 GHz, with return losses of than -10 dB at both frequencies. To minimize electrolysis and maximize the operation time in air, propylene carbonate electrolyte with lithium perchlorate (LiClO₄) was applied inside the IPMC. The results showed that when the IPMC was actuated over three months at 3.5 V, the tip displacement fell by less than 10%. Therefore, an IPMC actuator is a promising choice for application to a reconfigurable antenna.

  3. By-pass Devices as Effective Means of Protection from the Hydraulic Hammer

    Directory of Open Access Journals (Sweden)

    Khalid S. Al-Rababa

    2005-01-01

    Full Text Available Switching-off the parallel working pump units causes sudden discharge changes in parallel pipe lines, as a result of that hydraulic shocks takes place. The damping of these shocks can be achieved by the installation of the by-pass devices between the parallel lines of the piping system. The analytical calculations demonstrate that the reduction in hydraulic shocks reaches 40% and considerable part of the electric power (from 5 up to 21% is economized by using the by-pass devices, the duration of pressure decline decreases by more than 1,5 times. Comparison of the calculations based on the developed algorithm with the results of practical studies at the pumping station (Syrdarya has shown good convergence of analytical and experimental outcomes.

  4. Hydraulic Cushion” Type Overload Protection Devices Usable in Mechanical Presses. A Patent Study

    Science.gov (United States)

    Cioară, R.

    2016-11-01

    The possible consequences of machine-tool overload are well-known. In order to prevent such, machine-tools are equipped with various overload protection devices. Mechanical presses, intensively strained machine-tools, are typically equipped with three protection systems: against accidental access to the working area during machine deployment, against torque overload and force overload. Force overload protection systems include either destructible parts and are used in small to medium nominal force mechanical presses, or non-destructible ones used mostly in medium to large nominal force (H-frame) presses. A particular class of force overload protection systems without destructible parts are “hydraulic cushion” type devices. While such systems do not necessarily cause the machine to stop, the slide's stroke does not reach the initial dead centre and consequently cannot exert the designed technological force on the workpiece. By a patent study referencing 19 relevant patents the paper captures both the diversity of the constrictive solutions of “hydraulic cushion” type protection devices and their positioning modalities within the structure of a mechanical press. An important aim of the study is to highlight the reserve of creativity existing in this field, at least from the viewpoint of the hydraulic cushion positioning, as well as to emphasize the essential requirement of a relative motion between the mobile and the fixed parts of the tool, a motion of opposite sense to that of the slide-crank mechanism.

  5. Towards a digital sound reconstruction MEMS device: Characterization of a single PZT based piezoelectric actuator

    KAUST Repository

    Carreno, Armando Arpys Arevalo

    2015-04-01

    In this paper we report the fabrication and characterization of a single piezoelectric actuator for digital sound reconstruction. This work is the first step towards the implementation of a true digital micro-loudspeaker by means of an array of acoustic actuators. These actuators consist of a flexible membrane fabricated using polyimide, which is actuated using a Lead-Zirconate-Titanate (PZT) piezoelectric ceramic layer working in the d31 actuation mode. The dimensions of the membrane are of 1mm diameter and 4μm in thickness, which is capable of being symmetrically actuated in both upward and downward directions, due to the back etch step releasing the membrane. Our electrical characterization shows an improvement in the polarization of the piezoelectric material after its final etch patterning step, and our mechanical characterization shows the natural modes of resonance of the stacked membrane. © 2015 IEEE.

  6. Application of the nonlinear, double-dynamic Taguchi method to the precision positioning device using combined piezo-VCM actuator.

    Science.gov (United States)

    Liu, Yung-Tien; Fung, Rong-Fong; Wang, Chun-Chao

    2007-02-01

    In this research, the nonlinear, double-dynamic Taguchi method was used as design and analysis methods for a high-precision positioning device using the combined piezo-voice-coil motor (VCM) actuator. An experimental investigation into the effects of two input signals and three control factors were carried out to determine the optimum parametric configuration of the positioning device. The double-dynamic Taguchi method, which permits optimization of several control factors concurrently, is particularly suitable for optimizing the performance of a positioning device with multiple actuators. In this study, matrix experiments were conducted with L9(3(4)) orthogonal arrays (OAs). The two most critical processes for the optimization of positioning device are the identification of the nonlinear ideal function and the combination of the double-dynamic signal factors for the ideal function's response. The driving voltage of the VCM and the waveform amplitude of the PZT actuator are combined into a single quality characteristic to evaluate the positioning response. The application of the double-dynamic Taguchi method, with dynamic signal-to-noise ratio (SNR) and L9(3(4)) OAs, reduced the number of necessary experiments. The analysis of variance (ANOVA) was applied to set the optimum parameters based on the high-precision positioning process.

  7. A novel monolithic piezoelectric actuated flexure-mechanism based wire clamp for microelectronic device packaging

    Science.gov (United States)

    Liang, Cunman; Wang, Fujun; Tian, Yanling; Zhao, Xingyu; Zhang, Hongjie; Cui, Liangyu; Zhang, Dawei; Ferreira, Placid

    2015-04-01

    A novel monolithic piezoelectric actuated wire clamp is presented in this paper to achieve fast, accurate, and robust microelectronic device packaging. The wire clamp has compact, flexure-based mechanical structure and light weight. To obtain large and robust jaw displacements and ensure parallel jaw grasping, a two-stage amplification composed of a homothetic bridge type mechanism and a parallelogram leverage mechanism was designed. Pseudo-rigid-body model and Lagrange approaches were employed to conduct the kinematic, static, and dynamic modeling of the wire clamp and optimization design was carried out. The displacement amplification ratio, maximum allowable stress, and natural frequency were calculated. Finite element analysis (FEA) was conducted to evaluate the characteristics of the wire clamp and wire electro discharge machining technique was utilized to fabricate the monolithic structure. Experimental tests were carried out to investigate the performance and the experimental results match well with the theoretical calculation and FEA. The amplification ratio of the clamp is 20.96 and the working mode frequency is 895 Hz. Step response test shows that the wire clamp has fast response and high accuracy and the motion resolution is 0.2 μm. High speed precision grasping operations of gold and copper wires were realized using the wire clamper.

  8. Piezoelectric actuator-based cell microstretch device with real-time imaging capability

    Science.gov (United States)

    Deguchi, Shinji; Kudo, Shoko; Matsui, Tsubasa S.; Huang, Wenjing; Sato, Masaaki

    2015-06-01

    Cellular response to physical stretch has been extensively studied as a regulator of various physiological functions. For live cell microscopy combined with stretch experiments, cells are typically seeded on an extensible elastomer sheet. In this case, the position of the cells of interest tends to shift out of the field of view upon stretch, making real-time imaging of identical cells difficult. To circumvent this situation, here we describe a robust methodology in which these cell shifts are minimized. Cells are plated in a custom-designed stretch chamber with an elastomer sheet of a small cell culture area. The cell-supporting chamber is stretched on an inverted microscope by using a piezoelectric actuator that provides small, but precisely controlled displacements. Even under this small displacement within the filed of view, our device allows the cells to undergo physiologically relevant levels of stretch. Identical cells can thus be continuously observed during stretching, thereby potentially enabling imaging of stretch-triggered fast dynamics.

  9. Development of a novel shape memory alloy-actuated resettable locking device for magnetic bearing reaction wheel.

    Science.gov (United States)

    Zhang, Xiaoyong; Yan, Xiaojun; Zhang, Shaowei; Nie, Jingxu

    2014-01-01

    The current investigation proposes a shape memory alloy (SMA)-actuated resettable locking device for magnetic bearing reaction wheel. The device employed two SMA wire-based actuators to realize locking and unlocking. Dual-slope mating surfaces were used on one hand to transmit the motion between a moving part and a clamp, and on the other hand to achieve a self-locking linkage in the locking state. Moreover, geometric parameters of the two SMA wires and corresponding bias springs were also designed. Based on the proposed design scheme, four locking devices were manufactured and assembled. Performance and environmental tests were performed to verify the proposed locking device. Test results show that the locking device can protect the magnetic bearing reaction wheel from launch vibration damage, and can withstand the thermal environment in the launch and on-orbit stage. Moreover, the device can be successfully operated for 76 times, and the response time for the locking and unlocking processes under 7 V power supply is 0.9 s and 5.6 s, respectively. Considering the results obtained from these tests, we conclude that the proposed resettable locking device is an attractive alternative technology to conventional motor-driven or pyrotechnics-based technologies, and can be applied reliably in the magnetic bearing reaction wheel.

  10. Variants of Secondary Control with Power Recovery for Loading Hydraulic Driving Device

    Institute of Scientific and Technical Information of China (English)

    QI Xiaoye

    2015-01-01

    Current high power load simulators are generally incapable of obtalning both high loading performance and high energy efficiency. Simulators with high energy efficiency are used to simulate static-state load, and those with high dynamic performance typically have low energy efficiency. In this paper, the variants of secondary control (VSC) with power recovery are developed to solve this problem for loading hydraulic driving devices that operate under variable pressure, unlike classical secondary control (CSC) that operates in constant pressure network. Hydrostatic secondary control units are used as the loading components, by which the absorbed mechanical power from the tested device is converted into hydraulic power and then fed back into the tested system through 4 types of feedback passages (FPs). The loading subsystem can operate in constant pressure network, controlled variable pressure network, or the same variable pressure network as that of the tested device by using different FPs. The 4 types of systems are defined, and their key techniques are analyzed, including work principle, simulating the work state of original tested device, static operation points, loading performance, energy efficiency, and control strategy, etc. The important technical merits of the 4 schemes are compared, and 3 of the schemes are selected, designed, simulated using AMESim and evaluated. The researching results show that the investigated systems can simulate the given loads effectively, realize the work conditions of the tested device, and furthermore attaln a high power recovery efficiency that ranges from 0.54 to 0.85, even though the 3 schemes have different loading performances and energy efficiencies. This paper proposes several loading schemes that can achieve both high dynamic performance and high power recovery efficiency.

  11. An electrically actuated imperfect microbeam: Dynamical integrity for interpreting and predicting the device response

    KAUST Repository

    Ruzziconi, Laura

    2013-02-20

    In this study we deal with a microelectromechanical system (MEMS) and develop a dynamical integrity analysis to interpret and predict the experimental response. The device consists of a clamped-clamped polysilicon microbeam, which is electrostatically and electrodynamically actuated. It has non-negligible imperfections, which are a typical consequence of the microfabrication process. A single-mode reduced-order model is derived and extensive numerical simulations are performed in a neighborhood of the first symmetric natural frequency, via frequency response diagrams and behavior chart. The typical softening behavior is observed and the overall scenario is explored, when both the frequency and the electrodynamic voltage are varied. We show that simulations based on direct numerical integration of the equation of motion in time yield satisfactory agreement with the experimental data. Nevertheless, these theoretical predictions are not completely fulfilled in some aspects. In particular, the range of existence of each attractor is smaller in practice than in the simulations. This is because these theoretical curves represent the ideal limit case where disturbances are absent, which never occurs under realistic conditions. A reliable prediction of the actual (and not only theoretical) range of existence of each attractor is essential in applications. To overcome this discrepancy and extend the results to the practical case where disturbances exist, a dynamical integrity analysis is developed. After introducing dynamical integrity concepts, integrity profiles and integrity charts are drawn. They are able to describe if each attractor is robust enough to tolerate the disturbances. Moreover, they detect the parameter range where each branch can be reliably observed in practice and where, instead, becomes vulnerable, i.e. they provide valuable information to operate the device in safe conditions according to the desired outcome and depending on the expected disturbances

  12. Nonlinear dynamics of an electrically actuated mems device: Experimental and theoretical investigation

    KAUST Repository

    Ruzziconi, Laura

    2013-11-15

    This study deals with an experimental and theoretical investigation of an electrically actuated micro-electromechanical system (MEMS). The experimental nonlinear dynamics are explored via frequency sweeps in a neighborhood of the first symmetric natural frequency, at increasing values of electrodynamic excitation. Both the non-resonant branch, the resonant one, the jump between them, and the presence of a range of inevitable escape (dynamic pull-in) are observed. To simulate the experimental behavior, a single degree-offreedom spring mass model is derived, which is based on the information coming from the experimentation. Despite the apparent simplicity, the model is able to catch all the most relevant aspects of the device response. This occurs not only at low values of electrodynamic excitation, but also at higher ones. Nevertheless, the theoretical predictions are not completely fulfilled in some aspects. In particular, the range of existence of each attractor is smaller in practice than in the simulations. This is because, under realistic conditions, disturbances are inevitably encountered (e.g. discontinuous steps when performing the sweeping, approximations in the modeling, etc.) and give uncertainties to the operating initial conditions. A reliable prediction of the actual (and not only theoretical) response is essential in applications. To take disturbances into account, we develop a dynamical integrity analysis. Integrity profiles and integrity charts are performed. They are able to detect the parameter range where each branch can be reliably observed in practice and where, instead, becomes vulnerable. Moreover, depending on the magnitude of the expected disturbances, the integrity charts can serve as a design guideline, in order to effectively operate the device in safe condition, according to the desired outcome. Copyright © 2013 by ASME.

  13. Rapid bonding enhancement by auxiliary ultrasonic actuation for the fabrication of cyclic olefin copolymer (COC) microfluidic devices

    Science.gov (United States)

    Yu, H.; Tor, S. B.; Loh, N. H.

    2014-11-01

    Thermal compression bonding is a straightforward, inexpensive and widely used method for enclosing open microchannels in thermoplastic microfluidic devices. It is advantageous over adhesive, solvent and grafting bonding methods in retaining material homogeneity. However, the trade-off between high bond strength and low microchannel deformation is always a crucial consideration in thermal compression bonding. In this study, an effective method for improving bond strength while retaining the microchannel integrity with negligible distortion is proposed and analyzed. Longitudinal ultrasonic actuation was applied to the preheated cyclic olefin copolymer (COC) substrates to achieve accelerated and enhanced bonding with an ultrasonic welding system. Intimate contact between the bonding surfaces before the ultrasonic actuation was found to be an important prior condition. With improper contact, several bonding defects would occur, such as voids, localized spot melting and edge melting. Under auxiliary ultrasonic vibration, within 10 s, the bond strength developed at the bonding interface could be dramatically improved compared with those achieved without ultrasonic actuation. The enhanced bond strength obtained at a preheating temperature of 20 °C lower than its Tg could be comparable to the strength for pure thermal compression at 5 °C higher than its Tg. It is believed that the ultrasonic energy introduced could elevate the interfacial temperature and facilitate the interdiffusion of molecular chain segments at the interface, consequently resulting in rapidly enhanced bonding. Also, the microchannel distortion after ultrasonic actuation was found to be satisfactory—another important requirement. From dynamic mechanical analysis, the glass transition temperature of COC was found to increase with increasing frequency, and the temperature of the bulk polymer under ultrasonic actuation was still well under Tg; therefore the deformation is minor under ultrasonic

  14. A Stiffness Estimator for Agonistic-Antagonistic Variable-Stiffness-Actuator Devices

    OpenAIRE

    Menard, Tomas; Grioli, Giorgio; Bicchi, Antonio

    2014-01-01

    International audience; Safe Physical Human Robot Interaction, conservation of energy and adaptability are just the main robotic applications that prompted the development of a number of Variable Stiffness Actuators (VSA). Implemented in a variety of ways, they use various technologies, and feature the most diverse mechanical solutions, all of which share a fundamentally unavoidable nonlinear behavior. The control schemes proposed for these actuators typically aim at independent control of th...

  15. Improvement in sodium cromoglycate delivery from a spacer device by use of an antistatic lining, immediate inhalation, and avoiding multiple actuations of drug.

    Science.gov (United States)

    O'Callaghan, C; Lynch, J; Cant, M; Robertson, C

    1993-01-01

    BACKGROUND--Aerosols generated from metered dose inhalers may be highly charged. The aim of this study was to determine whether lining the walls of a polycarbonate spacer device with an antistatic agent would result in an increase in drug output. The effects of multiple actuations of drug into the spacer device and increasing residence time of drug within the spacer were also determined. METHODS--The amount of sodium cromoglycate contained in particles of various size available for inhalation (per 5 mg actuation) from a 750 ml polycarbonate spacer was determined by impinger measurement and spectrophotometric assay. RESULTS--Lining the spacer with an antistatic agent increased the mean (SD) amount of sodium cromoglycate in particles < 5 microns available for inhalation (per 5 mg actuation) by 244% from (0.59 (0.03) to 1.44 (0.2) mg). When there was a 20 second interval between actuation into the spacer device and inhalation, sodium cromoglycate available for inhalation in particles < 5 micrograms decreased by 67% (from 0.59 (0.03) mg to 0.2 (0.01) mg). Use of the spacer device increased sodium cromoglycate available for inhalation in respirable particles (< 5 microns) by 18% compared with direct delivery by metered dose inhaler. Multiple actuations into the spacer decreased the amount of sodium cromoglycate available for inhalation in particles < 5 microns by 31% after two actuations and 56% after three acutations. CONCLUSIONS--Multiple actuations of sodium cromoglycate into a spacer device before inhalation should be avoided, and inhalation from spacer devices should take place immediately after actuation to ensure maximum dose. Lining of a standard spacer device with an antistatic agent significantly increased output of sodium cromoglycate. This may have implications for improved therapeutic response and drug cost. Images PMID:8346488

  16. Designing of a Si-MEMS device with an integrated skeletal muscle cell-based bio-actuator.

    Science.gov (United States)

    Fujita, Hideaki; Van Dau, Thanh; Shimizu, Kazunori; Hatsuda, Ranko; Sugiyama, Susumu; Nagamori, Eiji

    2011-02-01

    With the aim of designing a mechanical drug delivery system involving a bio-actuator, we fabricated a Micro Electro Mechanical Systems (MEMS) device that can be driven through contraction of skeletal muscle cells. The device is composed of a Si-MEMS with springs and ratchets, UV-crosslinked collagen film for cell attachment, and C2C12 muscle cells. The Si-MEMS device is 600 μm x 1000 μm in size and the width of the collagen film is 250 ~ 350 μm, which may allow the device to go through small blood vessels. To position the collagen film on the MEMS device, a thermo-sensitive polymer was used as the sacrifice-layer which was selectively removed with O₂ plasma at the positions where the collagen film was glued. The C2C12 myoblasts were seeded on the collagen film, where they proliferated and formed myotubes after induction of differentiation. When C2C12 myotubes were stimulated with electric pulses, contraction of the collagen film-C2C12 myotube complex was observed. When the edge of the Si-MEMS device was observed, displacement of ~8 μm was observed, demonstrating the possibility of locomotive movement when the device is placed on a track of adequate width. Here, we propose that the C2C12-collagen film complex is a new generation actuator for MEMS devices that utilize glucose as fuel, which will be useful in environments in which glucose is abundant such as inside a blood vessel.

  17. Fabrication of a Miniature Paper-Based Electroosmotic Actuator

    Directory of Open Access Journals (Sweden)

    Deepa Sritharan

    2016-11-01

    Full Text Available A voltage-controlled hydraulic actuator is presented that employs electroosmotic fluid flow (EOF in paper microchannels within an elastomeric structure. The microfluidic device was fabricated using a new benchtop lamination process. Flexible embedded electrodes were formed from a conductive carbon-silicone composite. The pores in the layer of paper placed between the electrodes served as the microchannels for EOF, and the pumping fluid was propylene carbonate. A sealed fluid-filled chamber was formed by film-casting silicone to lay an actuating membrane over the pumping liquid. Hydraulic force generated by EOF caused the membrane to bulge by hundreds of micrometers within fractions of a second. Potential applications of these actuators include soft robots and biomedical devices.

  18. Advances in thermal-hydraulic studies of a transmutation advanced device for sustainable energy applications

    Energy Technology Data Exchange (ETDEWEB)

    Fajardo, Laura Garcia, E-mail: laura.gf@cern.ch [European Organization for Nuclear Research (CERN), Geneva (Switzerland). Technology Department; Hernandez, Carlos Garcia; Mazaira, Leorlen Rojas, E-mail: cgh@instec.cu, E-mail: irojas@instec.cu [Higher Institute of Technologies and Applied Sciences (INSTEC), Habana (Cuba); Castells, Facundo Alberto Escriva, E-mail: aescriva@iqn.upv.es [University of Valencia (UV), Valencia (Spain). Energetic Engineering Institute; Lira, Carlos Brayner de Olivera, E-mail: cabol@ufpe.br [Universidade Federal de Pernambuco (UFPE), Recife, PE (BRazil). Dept. de Engenharia Nuclear

    2013-07-01

    The Transmutation Advanced Device for Sustainable Energy Applications (TADSEA) is a pebble-bed Accelerator Driven System (ADS) with a graphite-gas configuration, designed for nuclear waste trans- mutation and for obtaining heat at very high temperatures to produce hydrogen. In previous work, the TADSEA's nuclear core was considered as a porous medium performed with a CFD code and thermal-hydraulic studies of the nuclear core were presented. In this paper, the heat transfer from the fuel to the coolant was analyzed for three core states during normal operation. The heat transfer inside the spherical fuel elements was also studied. Three critical fuel elements groups were defined regarding their position inside the core. Results were compared with a realistic CFD model of the critical fuel elements groups. During the steady state, no critical elements reached the limit temperature of this type of fuel. (author)

  19. Development of semi-active hydraulic damper as active interaction control device to withstand external excitation

    Indian Academy of Sciences (India)

    Ming-Hsiang Shih; Wen-Pei Sung

    2014-02-01

    Semi-automatic control systems have the characteristics of being adaptable and requiring low energy. The objective of this research was to study the performance of an improved DSHD (Displacement Semi-Active Hydraulic Damper) by converting it to AIC (Active Interaction Control Device) with the addition of an accumulator. The prototype was tested using full-scale elements for examining the structural displacement, and typical responses of the interacting interface element developed in this research, the pressure variation of the pressure storage device, and the energy dissipation hysteresis loop when the structure installed with these elements is subjected to external force of various magnitude. The laboratory results confirm that the device developed in this research is capable of applying the energy dissipation characteristics of DSHD so that these elements are appropriate for developing the proposed AIC. The mutual interaction between the subordinate structure and the main structure to be protected is capable of transforming the quake energy applied to the main structure to the subordinate structure so that the objective of minimizing the deformation of main structural can be achieved.

  20. Integrated nozzle - flapper valve with piezoelectric actuator and isothermal chamber: a feedback linearization multi control device

    Energy Technology Data Exchange (ETDEWEB)

    Kamali, Mohammadreza; Jazayeri, Seyed Ali [K. N.Toosi University of Technology, Tehran (Iran, Islamic Republic of); Najafi, Farid [University of Guilan, Rasht (Iran, Islamic Republic of); Kawashima, Kenji [Tokyo Medical and Dental University, Tokyo (Japan); Kagawa, Toshiharu [Tokyo Institute of Technology, Tokyo (Japan)

    2016-05-15

    This paper introduces a new nozzle-flapper valve with isothermal chamber using piezoelectric actuator. It controls the pressure and flow rate simply, effectively and separately. The proposed valve uses isothermal chamber presenting practical isothermal condition due to its large heat transfer interfaces filled by metal wool. The valve uses stacked type piezoelectric actuator with unique advantages. By using this valve, a simple method has been fulfilled to control flow rate or pressure of ideal gases in a pneumatic actuators. Experimental results demonstrated applications of the proposed valve to control either pressure or flow rate in pneumatic circuits. This valve can be also used in the pilot stage valve to actuate the main stage of a much bigger pneumatic valve. Designated structure contains only one pressure sensor installed on the isothermal control chamber, capable of controlling both pressure and flow rate. The desired output mass flow rate of the valve is controlled by the pressure changes during positioning of piezoelectric actuator at proper position. The proposed valve can control steady and unsteady oscillatory flow rate and pressure effectively, using nonlinear control method such as feedback linearization approach. Its effectiveness is demonstrated and validated through simulation and experiments.

  1. Water Hydraulic Systems

    DEFF Research Database (Denmark)

    Conrad, Finn

    2005-01-01

    The paper presents research results using IT-Tools for CAD and dynamic modelling, simulation, analysis, and design of water hydraulic actuators for motion control of machines, lifts, cranes and robots. Matlab/Simulink and CATIA are used as IT-Tools. The contributions include results from on......-going research projects on fluid power and mechatronics based on tap water hydraulic servovalves and linear servo actuators and rotary vane actuators for motion control and power transmission. Development and design a novel water hydraulic rotary vane actuator for robot manipulators. Proposed mathematical...... modelling, control and simulation of a water hydraulic rotary vane actuator applied to power and control a two-links manipulator and evaluate performance. The results include engineering design and test of the proposed simulation models compared with IHA Tampere University’s presentation of research...

  2. Hydraulic manipulator design, analysis, and control at Oak Ridge National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Kress, R.L.; Jansen, J.F. [Oak Ridge National Lab., TN (United States). Robotics and Process Systems Div.; Love, L.J. [Oak Ridge Inst. for Science and Education, TN (United States); Basher, A.M.H. [South Carolina State Univ., Orangeburg, SC (United States)

    1996-09-01

    To meet the increased payload capacities demanded by present-day tasks, manipulator designers have turned to hydraulics as a means of actuation. Hydraulics have always been the actuator of choice when designing heavy-life construction and mining equipment such as bulldozers, backhoes, and tunneling devices. In order to successfully design, build, and deploy a new hydraulic manipulator (or subsystem) sophisticated modeling, analysis, and control experiments are usually needed. To support the development and deployment of new hydraulic manipulators Oak Ridge National Laboratory (ORNL) has outfitted a significant experimental laboratory and has developed the software capability for research into hydraulic manipulators, hydraulic actuators, hydraulic systems, modeling of hydraulic systems, and hydraulic controls. The hydraulics laboratory at ORNL has three different manipulators. First is a 6-Degree-of-Freedom (6-DoF), multi-planer, teleoperated, flexible controls test bed used for the development of waste tank clean-up manipulator controls, thermal studies, system characterization, and manipulator tracking. Finally, is a human amplifier test bed used for the development of an entire new class of teleoperated systems. To compliment the hardware in the hydraulics laboratory, ORNL has developed a hydraulics simulation capability including a custom package to model the hydraulic systems and manipulators for performance studies and control development. This paper outlines the history of hydraulic manipulator developments at ORNL, describes the hydraulics laboratory, discusses the use of the equipment within the laboratory, and presents some of the initial results from experiments and modeling associated with these hydraulic manipulators. Included are some of the results from the development of the human amplifier/de-amplifier concepts, the characterization of the thermal sensitivity of hydraulic systems, and end-point tracking accuracy studies. Experimental and analytical

  3. Evolution of the sensor fish device for measuring physical conditions in sever hydraulic environments

    Energy Technology Data Exchange (ETDEWEB)

    Carlson, Thomas J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Duncan, J. P. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2003-03-01

    To assist in deriving biological specifications for design of turbine rehabilitation measures, new “fish-friendly” turbines, and spillway designs and operations, Pacific Northwest National Laboratory (PNNL) scientists have developed and tested an autonomous multi-sensor device called a Sensor Fish that can acquire pressure and tri-axial linear acceleration data during passage through severe hydraulic conditions. The purpose of the Sensor Fish is to characterize physical conditions fish experience during passage through hydro turbines, spill stilling basins, high-discharge outfalls, and other dam passage routes. This report discusses the development and field tests of the Sensor Fish at Rock Island, McNary, The Dalles, Bonneville, and Wanapum dams on the Columbia River and the Prosser Irrigation District on the Yakima River, which have shown that the device can withstand the severe environments of turbine, spill, and fish bypass passage and provide useful environmental data that can ultimately aid in the design and operation of new and existing turbines, spill, and dam fish bypass facilities.

  4. Evolution of the Sensor Fish Device for Measuring Physical Conditions in Severe Hydraulic Environments

    Energy Technology Data Exchange (ETDEWEB)

    Carlson, Thomas J.; Duncan, Joanne P.

    2003-02-28

    To assist in deriving biological specifications for design of turbine rehabilitation measures, new ''fish-friendly'' turbines, and spillway designs and operations, scientists at the Pacific Northwest National Laboratory (PNNL) have developed and tested an autonomous multi-sensor device called a Sensor Fish that can acquire pressure and tri-axial linear acceleration data during passage through severe hydraulic conditions. The purpose of the Sensor Fish is to characterize physical conditions fish experience during passage through hydro turbines, spill stilling basins, high-discharge outfalls, and other dam passage routes. The Sensor Fish was developed with the support of the U.S. Department of Energy's Advanced Hydropower Turbine System program. Field tests of the Sensor Fish at Rock Island, McNary, The Dalles, Bonneville, and Wanapum dams on the Columbia River and the Prosser Irrigation District on the Yakima River have shown that the device can withstand the severe environments of turbine, spill, and fish bypass passage and provide useful environmental data that can ultimately aid in the design and operation of new and existing turbines, spill, and dam fish bypass facilities.

  5. Remote switch actuator

    Science.gov (United States)

    Haas, Edwin Gerard; Beauman, Ronald; Palo, Jr., Stefan

    2013-01-29

    The invention provides a device and method for actuating electrical switches remotely. The device is removably attached to the switch and is actuated through the transfer of a user's force. The user is able to remain physically removed from the switch site obviating need for protective equipment. The device and method allow rapid, safe actuation of high-voltage or high-current carrying electrical switches or circuit breakers.

  6. Comparison of Walking and Traveling-Wave Piezoelectric Motors as Actuators in Kinesthetic Haptic Devices.

    Science.gov (United States)

    Olsson, Pontus; Nysjo, Fredrik; Carlbom, Ingrid B; Johansson, Stefan

    2016-01-01

    Piezoelectric motors offer an attractive alternative to electromagnetic actuators in portable haptic interfaces: they are compact, have a high force-to-volume ratio, and can operate with limited or no gearing. However, the choice of a piezoelectric motor type is not obvious due to differences in performance characteristics. We present our evaluation of two commercial, operationally different, piezoelectric motors acting as actuators in two kinesthetic haptic grippers, a walking quasi-static motor and a traveling wave ultrasonic motor. We evaluate each gripper's ability to display common virtual objects including springs, dampers, and rigid walls, and conclude that the walking quasi-static motor is superior at low velocities. However, for applications where high velocity is required, traveling wave ultrasonic motors are a better option.

  7. Assessing Hydraulic Conditions through Francis turbines using an autonomous sensor device

    Energy Technology Data Exchange (ETDEWEB)

    Fu, Tao; Deng, Zhiqun; Duncan, Joanne P.; Zhou, Daqing; Carlson, Thomas J.; Johnson, Gary E.; Hou, Hongfei

    2016-08-18

    Downstream migratory fish, including some endangered species, can be injured or killed during turbine passage. In this study an autonomous Sensor Fish device was deployed at Arrowrock Dam, Cougar Dam, and Detroit Dam to evaluate the hydraulic conditions and physical stresses that fish experienced when passing through these Francis turbines. Pressure data was used to identify the location of the Sensor Fish and to calculate the nadir pressure and the magnitude and the rate of change in pressure during turbine passage. Acceleration data was used to identify events (collisions or shear) Sensor Fish experienced and to categorize the severity level (severe, medium, and slight) of each event. The results showed that Sensor Fish experienced severe events mostly in the stay vane/wicket gate region and the runner region. In the stay vane/wicket gate region, almost all severe events were collisions. In the runner region, Sensor fish experienced both severe collisions and severe shear events. Sensor Fish data at three wicket gate opening treatments at Cougar Dam indicated that the wicket gate opening of the Francis turbine can affect the hydraulic conditions in the turbine runner region. Fewer Sensor Fish experienced severe collisions in the turbine runner region at the peak efficiency than at the minimum opening and the maximum opening treatments. Comparisons between the Francis turbines at the three dams and the AHT Kaplan turbine at Wanapum Dam showed that higher percentage of Sensor Fish experienced severe events in the runner region when passing through Francis turbines than the AHT Kaplan turbine. The nadir pressures of the Francis turbines were lower than those of the AHT Kaplan turbine at Wanapum Dam. Both the magnitude and the rate of change in pressure were higher in Francis turbines than in the AHT Kaplan turbine at Wanapum Dam in the runner region. This study can be used to guide future laboratory studies of fish passing through Francis turbine and help the design

  8. Nanorobots: the ultimate wireless self-propelled sensing and actuating devices.

    Science.gov (United States)

    Sánchez, Samuel; Pumera, Martin

    2009-09-01

    Natural motor proteins, "bionanorobots," have inspired researchers to develop artificial nanomachines (nanorobots) able to move autonomously by the conversion of chemical to mechanical energy. Such artificial nanorobots are self-propelled by the electrochemical decomposition of the fuel (up to now, hydrogen peroxide). Several approaches have been developed to provide nanorobots with some functionality, such as for controlling their movement, increasing their power output, or transporting different cargo. In this Focus Review we will discuss the recent advances in nanorobots based on metallic nanowires, which can sense, deliver, and actuate in complex environments, looking towards real applications in the not-too-distant future.

  9. Disposable Fluidic Actuators for Miniature In-Vivo Surgical Robotics.

    Science.gov (United States)

    Pourghodrat, Abolfazl; Nelson, Carl A

    2017-03-01

    Fusion of robotics and minimally invasive surgery (MIS) has created new opportunities to develop diagnostic and therapeutic tools. Surgical robotics is advancing from externally actuated systems to miniature in-vivo robotics. However, with miniaturization of electric-motor-driven surgical robots, there comes a trade-off between the size of the robot and its capability. Slow actuation, low load capacity, sterilization difficulties, leaking electricity and transferring produced heat to tissues, and high cost are among the key limitations of the use of electric motors in in-vivo applications. Fluid power in the form of hydraulics or pneumatics has a long history in driving many industrial devices and could be exploited to circumvent these limitations. High power density and good compatibility with the in-vivo environment are the key advantages of fluid power over electric motors when it comes to in-vivo applications. However, fabrication of hydraulic/pneumatic actuators within the desired size and pressure range required for in-vivo surgical robotic applications poses new challenges. Sealing these types of miniature actuators at operating pressures requires obtaining very fine surface finishes which is difficult and costly. The research described here presents design, fabrication, and testing of a hydraulic/pneumatic double-acting cylinder, a limited-motion vane motor, and a balloon-actuated laparoscopic grasper. These actuators are small, seal-less, easy to fabricate, disposable, and inexpensive, thus ideal for single-use in-vivo applications. To demonstrate the ability of these actuators to drive robotic joints, they were modified and integrated in a robotic arm. The design and testing of this surgical robotic arm are presented to validate the concept of fluid-power actuators for in-vivo applications.

  10. Electrically actuatable doped polymer flakes and electrically addressable optical devices using suspensions of doped polymer flakes in a fluid host

    Science.gov (United States)

    Trajkovska-Petkoska, Anka; Jacobs, Stephen D.; Marshall, Kenneth L.; Kosc, Tanya Z.

    2010-05-11

    Doped electrically actuatable (electrically addressable or switchable) polymer flakes have enhanced and controllable electric field induced motion by virtue of doping a polymer material that functions as the base flake matrix with either a distribution of insoluble dopant particles or a dopant material that is completely soluble in the base flake matrix. The base flake matrix may be a polymer liquid crystal material, and the dopants generally have higher dielectric permittivity and/or conductivity than the electrically actuatable polymer base flake matrix. The dopant distribution within the base flake matrix may be either homogeneous or non-homogeneous. In the latter case, the non-homogeneous distribution of dopant provides a dielectric permittivity and/or conductivity gradient within the body of the flakes. The dopant can also be a carbon-containing material (either soluble or insoluble in the base flake matrix) that absorbs light so as to reduce the unpolarized scattered light component reflected from the flakes, thereby enhancing the effective intensity of circularly polarized light reflected from the flakes when the flakes are oriented into a light reflecting state. Electro-optic devices contain these doped flakes suspended in a host fluid can be addressed with an applied electric field, thus controlling the orientation of the flakes between a bright reflecting state and a non-reflecting dark state.

  11. Piezoelectric Actuators : Expansion from IT/Robotics to Ecological/Energy Applications(Lead-Free Piezoelectric Material and Devices)

    OpenAIRE

    Kenji, Uchino; International Center for Actuators and Transducers, The Pennsylvania State University, University Park

    2007-01-01

    Piezoelectric actuators have been commercialized in various areas such as information technology, robotics, bio-, medical engineering, ecological and energy engineering. This paper reviews their recent application developments and foresees the future of piezoelectric actuators.

  12. Hydraulic ram —a device lifting water without conventional energy

    Institute of Scientific and Technical Information of China (English)

    MaChi; HuYingde

    2003-01-01

    In the southern part of China, due to the rich rainfalls and favourably topographical landscape, there is abundant hydraulic energy resources contained in the countless small streams and rivers in the mountainous and semi-mountainous areas. Besides the small hydro power generation which transfers the potential energy to the electrical power, there is other technology available to utilise the potential energy directly for the water lifting in the irrigation and decentralised do-mestic water supply in the village level. This paper introduces the basic principle of the hydraulic ram op-eration and describes the applicable opportunities for the hydraulic ram.

  13. Production and characterization of rainbow piezoelectric actuators. Advantages from other traditional devices

    Directory of Open Access Journals (Sweden)

    Durán-Martín, P.

    1999-12-01

    Full Text Available A new actuator called RAINBOW is presently intensively studied because of the extremely large displacement that it is able to generate. The aim of the present work is to fully characterize the performances of this kind of actuator in terms of voltage, frequency and temperature dependence of both maximum displacement and force generated. These results will be compared with the performances shown in the literature for some other traditional piezoelectric actuators. The present work explores two types of compositions for RAINBOWS fabrication: electrostrictive based on PLZT and ferroelectric PZT-based. Results show that this actuator can be engineered upon their thickness to optimize the performances. Maximum displacement and generated force increase in a rate of 7446 10-12 m/V and 2.9 N/kV, respectively, per mm of increase of disk diameter. The change with frequency of these properties along 0.01Hz to 500Hz range keeps within 20% for maximum displacement and 10% for blocking force. Thermal stability of the performaces shows an unexpected 50% of variation through the studied range from -40ºC up to 50ºC.

    Un nuevo actuador piezoeléctrico denominado RAINBOW está siendo intensamente estudiado a causa de los extremadamente altos desplazamientos que es capaz de realizar. La motivación del presente trabajo se centra en la caracterización exhaustiva de este tipo de actuadores, en términos de la dependencia del máximo desplazamiento y de la fuerza generados en función de la amplitud y la frecuencia del voltaje aplicado, así como de la temperatura. Dicha caracterización será objeto en algunos casos de comparación con los resultados presentes en la literatura respecto de otros actuadores piezoeléctricos tradicionales. El trabajo explora dos tipos de composiciones utilizadas en la fabricación de RAINBOWS: una electrostrictiva basada en PLZT y otra ferroeléctrica basada en PZT. Los resultados obtenidos demuestran que este tipo de

  14. Development of nonresonant elliptical vibration cutting device based on parallel piezoelectric actuator

    Science.gov (United States)

    Jieqiong, Lin; Jinguo, Han; Mingming, Lu; Yan, Gu; Wenhui, Zhu

    2017-03-01

    Because of its unique intermittent cutting and friction reversal characteristics, elliptical vibration cutting (EVC) has become the most promising method for machining of otherwise difficult-to-machine materials in recent years. However, some problems remain in the research towards development of EVC devices. In this paper, with the intention of solving the existing problems of EVC devices, a nonresonant-type EVC device that is driven by two parallel piezoelectric stacks is developed. After the principle of the device is introduced, the stiffness of the EVC device is calculated, and device simulations and experimental evaluations are performed. In addition, the performance of the EVC device is also tested. The experimental results show that the maximum strokes of the two directional mechanisms operating along the X- and Z-axes can reach 16.78 μm and 15.35 μm, respectively, and the motion resolutions in the X-axis and Z-axis directions both reach approximately 50 nm. Finally, a curved surface cutting experiment is carried out to verify the performance of the developed device.

  15. Positioning magnetorheological actuator

    Energy Technology Data Exchange (ETDEWEB)

    Mikhailov, Valery; Bazinenkov, Alexey; Akimov, Igor [Bauman Moscow State Technical University, 2-nd Baumanskaia st. 5, MT-11, 105005, Moscow (Russian Federation); Borin, Dmitry [Technische Universitaet Dresden, Chair of Magnetofluiddynamics, 01062, Dresden (Germany)], E-mail: mikhailov@bmstu.ru

    2009-02-01

    In this work we consider a construction of a positioning magnetorheological actuator based on bellow units, as well as dynamical model, which include such elements as a magnetically hysteresis, pressure loses in hydraulic system, nonlinearity of rheological behaviour of working fluid. Two operating modes of positioning actuator are taken into account and transients are presented. Dynamical modelling shows possibility for the improvement of a real control system and ensure of submicron precision of positioning with millisecond time of response.

  16. R & D on hydraulic rotary actuator based on virtual prototype technology%虚拟样机技术在摆动液压缸中的应用

    Institute of Scientific and Technical Information of China (English)

    赵先琼; 陈智洪; 刘义伦

    2014-01-01

    虚拟样机技术是一项新兴的产品开发技术,可以有效增强产品品质、缩短产品开发周期、降低产品生产成本。设计好摆动液压缸的虚拟样机,根据摆动液压缸的关键部件“双级渐开线螺旋副”,研究了螺旋角β、输入液压力 P和输出扭矩T 三者之间的关系。通过比对虚拟样机仿真和物理样机实验,得出输入液压力 P和输出扭矩T 为线性正比关系,提高系统液压力 P,相应得到增大的扭矩 T ;通过比较3个螺旋角系列螺旋齿轮组成的渐开线螺旋副输出扭矩 T与导程l之间的关系,在没有齿轮变位的情况下,螺旋齿轮的螺旋角β应尽可能的设计在45°附近,在输入液压力P一定的情况下,优先考虑增大径向尺寸,以增大输出扭矩 T。%Virtual prototype technology is a new method in R&D ,w hich can effectively improve the product quality ,decrease the new product developing time and reduce the production cost .A virtual prototype of rotary actuator is built up for simulation .According to double involute-spiral-pairs ,w hich are the key parts of the hydraulic rotary actuator ,a research is done on the relationship between input pressure and output torque .After simulation and experiment ,it’s found that system pressure and output torque is in a positive linear programming . And another experiment is carried out on the relationship between different helix angles and output torques under same pressure .Through three series simulations within helix angles of 30° ,45° and 60° ,it’s found that we’d better design a helix gear in around 45° helix angle without any gear modification ,so that we can get a optimized output torque .If a bigger output torque is wanted without higher pressure ,the initial way is to increase the gear radial dimension .

  17. A magnetorheological actuation system: test and model

    Science.gov (United States)

    John, Shaju; Chaudhuri, Anirban; Wereley, Norman M.

    2008-04-01

    Self-contained actuation systems, based on frequency rectification of the high frequency motion of an active material, can produce high force and stroke output. Magnetorheological (MR) fluids are active fluids whose rheological properties can be altered by the application of a magnetic field. By using MR fluids as the energy transmission medium in such hybrid devices, a valving system with no moving parts can be implemented and used to control the motion of an output cylinder shaft. The MR fluid based valves are configured in the form of an H-bridge to produce bi-directional motion in an output cylinder by alternately applying magnetic fields in the two opposite arms of the bridge. The rheological properties of the MR fluid are modeled using both Bingham plastic and bi-viscous models. In this study, the primary actuation is performed using a compact terfenol-D rod driven pump and frequency rectification of the rod motion is done using passive reed valves. The pump and reed valve configuration along with MR fluidic valves form a compact hydraulic actuation system. Actuator design, analysis and experimental results are presented in this paper. A time domain model of the actuator is developed and validated using experimental data.

  18. Dynamic surface tension measured with an integrated sensor-actuator device using electrolytically generated gas bubbles

    NARCIS (Netherlands)

    Olthuis, Wouter; Volanschi, Alex; Bergveld, Piet

    1997-01-01

    In this paper, a new, simple method to determine dynamic surface tension in aqueous solutions is reported, explained and experimentally verified. By function integration, a small device is obtained; apart from control and interface electronics no external components or systems are necessary. Instead

  19. A fast building and effective hydraulic pediatric mock circulatory system for the evaluation of a left ventricular assist device.

    Science.gov (United States)

    Huang, Feng; Ruan, Xiaodong; Zou, Jun; Qian, Wenwei; Fu, Xin

    2013-01-01

    A mock circulatory system (MCS) has been proven a useful tool in the development of a ventricular assist device. Nowadays a MCS aimed at the evaluation of pediatric blood pumps, which require many different considerations compared with that of adults, has become an urgent need. This article presents the details on how the dynamic process of the left ventricle, which is described in terms of the pressure-volume loop (P-V loop), and the properties of the circulation such as compliance and resistance are simulated by hydraulic elements. A simple control method is introduced to reproduce the physiological afterload and preload sensitivities of the mock ventricle for the first time. Hemodynamic performance of the system is obtained by medical sensors to validate the similarity of the device to the native cardiovascular system. The actual sensitivities of the mock ventricle are obtained intuitively from the changes of the P-V loops. The aortic input impedance of the MCS is also obtained and compared with the data from previous medical reports. At last a pediatric left ventricular assist device (LVAD) prototype is introduced for testing to further verify the effectiveness of the MCS. The experimental results indicate that this pediatric MCS is capable of reproducing basic hemodynamic characteristics of a child in both normal and pathological conditions and it is sufficient for testing a pediatric LVAD. Besides, most components constituting the main hydraulic part of this MCS are inexpensive off-the-shelf products, making the MCS easy and fast to build.

  20. Design of a power-asymmetric actuator for a transtibial prosthesis.

    Science.gov (United States)

    Bartlett, Harrison L; Lawson, Brian E; Goldfarb, Michael

    2017-07-01

    This paper presents the design and characterization of a power-asymmetric actuator for a transtibial prosthesis. The device is designed to provide the combination of: 1) joint locking, 2) high power dissipation, and 3) low power generation. This actuator functionality allows for a prosthesis to be designed with minimal mass and power consumption relative to a fully-powered robotic prosthesis while maintaining much of the functionality necessary for activities of daily living. The actuator achieves these design characteristics while maintaining a small form factor by leveraging a combination of electromechanical and hydraulic components. The design of the actuator is described herein, and results of an experimental characterization are provided that indicate that the actuator is capable of providing the functional capabilities required of an ankle prosthesis in a compact and lightweight package.

  1. Microfluidic Device for Controllable Chemical Release via Field-Actuated Membrane Incorporating Nanoparticles

    KAUST Repository

    Wang, Xiang

    2013-01-01

    We report a robust magnetic-membrane-based microfluidic platform for controllable chemical release. The magnetic membrane was prepared by mixing polydimethylsiloxane (PDMS) and carbonyl-iron nanoparticles together to obtain a flexible thin film. With combined, simultaneous regulation of magnetic stimulus and mechanical pumping, the desired chemical release rate can easily be realized. For example, the dose release experimental data was well fitted by a mathematical sigmoidal model, exhibiting a typical dose-response relationship, which shows promise in providing significant guidance for on-demand drug delivery. To test the platform’s feasibility, our microfluidic device was employed in an experiment involving Escherichia coli culture under controlled antibiotic ciprofloxacin exposure, and the expected outcomes were successfully obtained. Our experimental results indicate that such a microfluidic device, with high accuracy and easy manipulation properties, can legitimately be characterized as active chemical release system.

  2. Microfluidic Device for Controllable Chemical Release via Field-Actuated Membrane Incorporating Nanoparticles

    Directory of Open Access Journals (Sweden)

    Xiang Wang

    2013-01-01

    Full Text Available We report a robust magnetic-membrane-based microfluidic platform for controllable chemical release. The magnetic membrane was prepared by mixing polydimethylsiloxane (PDMS and carbonyl-iron nanoparticles together to obtain a flexible thin film. With combined, simultaneous regulation of magnetic stimulus and mechanical pumping, the desired chemical release rate can easily be realized. For example, the dose release experimental data was well fitted by a mathematical sigmoidal model, exhibiting a typical dose-response relationship, which shows promise in providing significant guidance for on-demand drug delivery. To test the platform’s feasibility, our microfluidic device was employed in an experiment involving Escherichia coli culture under controlled antibiotic ciprofloxacin exposure, and the expected outcomes were successfully obtained. Our experimental results indicate that such a microfluidic device, with high accuracy and easy manipulation properties, can legitimately be characterized as active chemical release system.

  3. Effective Actuation: High Bandwidth Actuators and Actuator Scaling Laws

    Science.gov (United States)

    2007-11-02

    piezo elements mounted on structural members and devices that exhibited aeroacoustic resonance. The former type of actuator ( piezo ) was considered...Raman and Kibens (Raman et al. 2000). These experiments involved high-frequency forcing applied to low-speed flows using wedge piezo actuators and... Subharmonic Interaction and Wall Influence," AIAA- 86-1047, May, 1986. Davis, S. A., 2000, "The manipulation of large and small flow structures in single and

  4. Jump and pull-in dynamics of an electrically actuated bistable MEMS device

    KAUST Repository

    Ruzziconi, Laura

    2014-09-01

    This study analyzes a theoretical bistable MEMS device, which exhibits a considerable versatility of behavior. After exploring the coexistence of attractors, we focus on each rest position, and investigate the final outcome, when the electrodynamic voltage is suddenly applied. Our aim is to describe the parameter range where each attractor may practically be observed under realistic conditions, when an electric load is suddenly applied. Since disturbances are inevitably encountered in experiments and practice, a dynamical integrity analysis is performed in order to take them into account. We build the integrity charts, which examine the practical vulnerability of each attractor. A small integrity enhances the sensitivity of the system to disturbances, leading in practice either to jump or to dynamic pull-in. Accordingly, the parameter range where the device, subjected to a suddenly applied load, can operate in safe conditions with a certain attractor is smaller, and sometimes considerably smaller, than in the theoretical predictions. While we refer to a particular case-study, the approach is very general.

  5. Hydraulic Arm Modeling via Matlab SimHydraulics

    OpenAIRE

    Věchet, Stanislav; Krejsa, Jiří

    2009-01-01

    System modeling is a vital tool for cost reduction and design process speed up in most engineering fields. The paper is focused on modeling of hydraulic arm as a part of intelligent prosthesis project, in the form of 2DOF open kinematic chain. The arm model combines mechanical, hydraulic and electric subsystems and uses Matlab as modeling tool. SimMechanics Matlab extension is used for mechanical part modeling, SimHydraulics toolbox is used for modeling of hydraulic circuit used for actuating...

  6. Simulation of a liquid droplet ejection device using multi-actuator

    Science.gov (United States)

    Ono, Yoshihiro; Yoshino, Michitaka; Yasuda, Akira; Tanuma, Chiaki

    2016-07-01

    An equivalent circuit model for a liquid droplet ejection device using a multiactuator has been developed. The equivalent circuit was simplified using a gyrator in the synthesis of the outputs of many elements. The simulation was performed for an inkjet head having three piezoelectric elements using MATLAB/Simulink. In this model, the pressure chamber is filled with a Newtonian fluid. For this reason, the model assumed only the resistance component of the pressure chamber and the nozzle as a load. Furthermore, since the resistance component of the inlet is much larger than that of the nozzle, it is not considered in this model. As a result, by providing a time difference between the driving signals of the piezoelectric elements, we found that the pressure of the ink chamber could be arbitrarily controlled. By this model, it becomes possible to control the pressure in the ink chamber of the inkjet head required for the ejection of various inks.

  7. Use of Distribution Devices for Hydraulic Profiling of Coolant Flow in Core Gas-cooled Reactors

    Directory of Open Access Journals (Sweden)

    A. A. Satin

    2014-01-01

    Full Text Available In setting up a reactor plant for the transportation-power module of the megawatt class an important task is to optimize the path of flow, i.e. providing moderate hydraulic resistance, uniform distribution of the coolant. Significant contribution to the hydraulic losses makes one selected design of the coolant supplies. It is, in particular, hemispherical or semi-elliptical shape of the supply reservoir, which is selected to reduce its mass, resulting in the formation of torusshaped vortex in the inlet manifold, that leads to uneven coolant velocity at the inlet into the core, the flow pulsations, hydraulic losses.To control the flow redistribution in the core according to the level of energy are used the switchgear - deflectors installed in a hemispherical reservoir supplying coolant to the fuel elements (FE of the core of gas-cooled reactor. This design solution has an effect on the structure of the flow, rate in the cooling duct, and the flow resistance of the collector.In this paper we present the results of experiments carried out on the gas dynamic model of coolant paths, deflectors, and core, comprising 55 fuel rod simulators. Numerical simulation of flow in two-parameter model, using the k-ε turbulence model, and the software package ANSYS CFX v14.0 is performed. The paper demonstrates that experimental results are in compliance with calculated ones.The results obtained suggest that the use of switchgear ensures a coolant flow balance directly at the core inlet, thereby providing temperature reduction of fuel rods with a uniform power release in the cross-section. Considered options to find constructive solutions for deflectors give an idea to solve the problem of reducing hydraulic losses in the coolant paths, to decrease pulsation components of flow in the core and length of initial section of flow stabilization.

  8. Serpentine Geometry Plasma Actuators for Flow Control

    Science.gov (United States)

    2013-08-23

    electrical power is supplied to them. As a method of introducing perturbations for low speed flow control, dielectric barrier discharge ( DBD ) actuators...SERPENTINE GEOMETRY DBD ACTUATORS DBD actuators are devices consisting of two asymmetri- cally placed actuators separated by a dielectric material and exposed...parameters can be found in Table I. The effects of plasma actuation are FIG. 1. (a) Schematic of DBD plasma actuator and the generated body force. (b

  9. Bi-stable optical actuator

    Science.gov (United States)

    Holdener, Fred R.; Boyd, Robert D.

    2000-01-01

    The present invention is a bi-stable optical actuator device that is depowered in both stable positions. A bearing is used to transfer motion and smoothly transition from one state to another. The optical actuator device may be maintained in a stable position either by gravity or a restraining device.

  10. MEMS fluidic actuator

    Science.gov (United States)

    Kholwadwala, Deepesh K.; Johnston, Gabriel A.; Rohrer, Brandon R.; Galambos, Paul C.; Okandan, Murat

    2007-07-24

    The present invention comprises a novel, lightweight, massively parallel device comprising microelectromechanical (MEMS) fluidic actuators, to reconfigure the profile, of a surface. Each microfluidic actuator comprises an independent bladder that can act as both a sensor and an actuator. A MEMS sensor, and a MEMS valve within each microfluidic actuator, operate cooperatively to monitor the fluid within each bladder, and regulate the flow of the fluid entering and exiting each bladder. When adjacently spaced in a array, microfluidic actuators can create arbitrary surface profiles in response to a change in the operating environment of the surface. In an embodiment of the invention, the profile of an airfoil is controlled by independent extension and contraction of a plurality of actuators, that operate to displace a compliant cover.

  11. Development of an ergonomics device for maintenance of hydraulic generators of Tucuruí hydropower plant.

    Science.gov (United States)

    Batista, I C; Gomes, G J C; Teles, C S; Oliveira, P F; Santos, R M; Sassi, A C; Sá, B; V, B; Pardauil, A A

    2012-01-01

    This paper aims to present an ergonomic device to assist in the maintenance of the units of Tucuruí Hydropower Plant. The development of this ergonomic device made possible to reduce maintenance time, reduce losses caused by billing, improve performance and reduce the physical strain for labors during the execution of services.

  12. Unsteady flow analysis of an axial flow hydraulic turbine with collection devices comprising a different number of blades

    Science.gov (United States)

    Nishi, Yasuyuki; Inagaki, Terumi; Li, Yanrong; Hirama, Sou; Kikuchi, Norio

    2015-06-01

    We previously devised a new type of portable hydraulic turbine that uses the kinetic energy of an open-channel flow to improve output power by catching and accelerating the flow. The turbine contains an axial flow runner with an appended collection device and a diffuser section that is not axisymmetric. The objective of this study is to determine how interference between the collection device and the runner influences performance characteristics of the turbine. We investigated the performance characteristics of the turbine and flow field for different numbers of blades during both unsteady and steady flow. During an unsteady flow, the maximum values of power coefficients for three and two blades increased by approximately 8.8% and 21.4%, respectively, compared to those during a steady flow. For the three-blade runner, the power coefficient showed small fluctuations, but for the two-blade runner, the power coefficient showed large fluctuations. These fluctuations in the power coefficient are attributed to fluctuations in the loading coefficient, which were generated by interference between the runner and the diffuser section of the collection device.

  13. Actuator concepts and mechatronics

    Science.gov (United States)

    Gilbert, Michael G.; Horner, Garnett C.

    1998-06-01

    Mechatronic design implies the consideration of integrated mechanical, electrical, and local control characteristics in electromechanical device design. In this paper, mechatronic development of actuation device concepts for active aircraft aerodynamic flow control are presented and discussed. The devices are intended to be embedded in aircraft aerodynamic surfaces to provide zero-net-momentum jets or additional flow-vorticity to control boundary layers and flow- separation. Two synthetic jet device prototypes and one vorticity-on-demand prototype currently in development are described in the paper. The aspects of actuation materials, design approaches to generating jets and vorticity, and the integration of miniaturized electronics are stressed.

  14. Electromagnetic actuation in MEMS switches

    DEFF Research Database (Denmark)

    Oliveira Hansen, Roana Melina de; Mátéfi-Tempfli, Mária; Chemnitz, Steffen

    . Electromagnetic actuation is a very promising approach to operate such MEMS and Power MEMS devices, due to the long range, reproducible and strong forces generated by this method, among other advantages. However, the use of electromagnetic actuation in such devices requires the use of thick magnetic films, which...

  15. Development and Application of the Downhole Drilling String Shock-Absorption and Hydraulic Supercharging Device

    Directory of Open Access Journals (Sweden)

    Yongwang Liu

    2016-01-01

    Full Text Available It is a hot topic for deep/ultradeep wells to improve rock-breaking efficiency and drilling speed by available downhole energy. Based on different downhole energies and working conditions, specialized plunger pump is proposed to convert longitudinal vibration of drilling string into rock-breaking energy. Technical design is developed to generate high-pressure water jet. And then a simulation model is built to verify feasibility of the technical design. Through simulation, the influence law of key factors is obtained. On this basis, this device is tested in several wells. The result indicates this device can increase drilling speed as much as 136%. Meanwhile the harmful vibration can be absorbed. The energy from drilling string vibration is of high frequency and increases as well depth and formation anisotropy increase. By reducing adverse vibration, this device is able to increase the drilling speed and the service life also meets the demand of field application. The longest working time lasts for more than 130 hours. The performance of this device demonstrates great application prospect in deep/ultradeep resources exploration. To provide more equipment support for deep/ultradeep wells, more effort should be put into fundamental study on downhole drill string vibration and related equipment.

  16. 无凸轮轴发动机电液驱动配气机构阻尼孔优化设计%Optimization of Orifices on Electro-hydraulic Control Camless Valve Actuator

    Institute of Scientific and Technical Information of China (English)

    谷艳华; 胡乃硕; 高峰军; 李华; 王有坤; 郭英男

    2012-01-01

    The optimized design of orifices in the electro-hydraulic control valve actuator will affect the response and the impact of valve in the camless engine, and thus affect all aspects performance of engine. The mathematical model of the orifices in the valve actuator was designed, and the effects of the orifice ' s diameter to the velocity during opening and landing were analyzed. The model of the camless electro-hydraulic valve actuator was built by using AMESim, the analysis of the influence to the diameter and related position of the valve orifices was done, the results showed that the orifice diameter decreased or the related position of damping chamber orifice increased resulted in the delay of opening time, and the orifice diameter decreased or the related position of main line orifice decreased resulted in the delay of closing time. The parameters of orifices diameter and position were optimized, and the demand of the valve was met by the optimized parameters through the experiments.%无凸轮轴发动机电液驱动配气机构中节流阀阻尼孔的优化设计直接影响气门运动及时响应性能和气门落座冲击性能,进而影响发动机性能.建立了配气机构中节流阀阻尼孔的数学模型,并利用该模型研究了阻尼孔直径对气门开启和落座的影响.使用AMESim搭建了配气机构的仿真模型,研究阻尼孔孔径和相对位置对气门运动的影响.结果表明,阻尼孔直径减小或者阻尼腔阻尼孔相对位置上升会使气门延迟开启;阻尼孔直径减小或者主油路阻尼孔相对位置下降会使气门延迟关闭.优化了阻尼孔孔径和位置参数,试验表明阻尼孔优化设计结果满足发动机对配气机构中气门运动的要求.

  17. Wrist Rehabilitation Device Driven by Pneumatic Flexible Actuator%基于气动柔性驱动器的手腕运动康复装置

    Institute of Scientific and Technical Information of China (English)

    黄磊; 孙中圣; 刘源峰

    2016-01-01

    The several shortcomings exist in the traditional wrist rehabilitation training devices, such as lack of flexibility, complexi structure,high cost and so on. In order to solve the troubles above,this paper designs a wearable wrist rehabilitation device with the flexible pneumatic actuator which can be bended. And it briefly describes the design and manufacturing of this actuator and this de ̄vice. The experiment result shows that the wrist can be driven by the rehabilitation device to do the rehabilitation training very wel,and it is flexible in its movement process.%针对传统的手腕康复训练器存在柔性不足,结构复杂,成本高昂等问题,基于一种可产生弯曲变形的气动柔性驱动器,设计出一种手腕运动康复装置。阐述了气动柔性驱动器和手腕康复装置的设计与制作方法,实验结果表明该手腕康复装置能有效地驱动手腕做运动康复训练,并具有很好的柔性。

  18. 液压驱动仿生多足机器人单腿设计与试验%Design and experiment of single leg of hydraulically actuated bionic multi-legged robot

    Institute of Scientific and Technical Information of China (English)

    陈志伟; 金波; 朱世强; 黄翰林; 陈刚

    2016-01-01

    In order to study the influence of the end-effector’s high speed contact with ground on the robot system when the hydraulically actuated multi-legged robot walks in a dynamic gait and realize its control as well, a single leg prototype of the bio-inspired hydraulically actuated multi-legged robot is developed. The robotic leg's structure is designed on the basis of research and analysis of the skeletons of the large dogs' hind limbs. The hip and knee cylinder layout are designed from the principle of rotating guide bar mechanism and swing guide bar mechanism, respectively. The torque of robotic leg's joint on stance phase is calculated on the basis of former biologists’ research results and the planned joint trajectory of dynamic trotting gait on stance phase. The former biologists have already researched the dynamic gait of large dogs and separately measured the ground reaction forces on individual limb of trotting dogs using a series of four force platforms; the dynamic trotting gait trajectory with a speed of 2.5 m/s is planned as composite cycloid foot trajectory on flight phase with the same body height on stance. And the composite cycloid’s foot trajectory is planned with the specifications: the stride length is 1 m, the stride height is 0.05 m, the period is 4 s, and the duty cycle is 50%. Based on the above bionic design, the mechanical parameters of the robotic single leg are determined: the length of thigh and shank is 0.35 m, the hip joint angle range is [-50°, 70°], the knee joint angle range is [-140°, -20°], the diameter of the cylinder piston is 0.02 m, the diameter of piston rod is 0.01 m, and the stroke length of the piston rod is 0.1 m. The virtual prototype of robotic single leg is designed via the three-dimensional modeling software Solidworks according to the design parameters. Furthermore, the feasibility of the parameters of the designed mechanical structure and hydraulic actuator is verified based on the dynamic vertical hopping

  19. 基于有/无源混合执行器的力觉交互装置%Haptic interaction device based on active/passive hybrid actuator

    Institute of Scientific and Technical Information of China (English)

    戴金桥; 王爱民; 宋爱国; 张小瑞

    2011-01-01

    In order to solve such problems as big volume,poor safety and stability as well as inability to impose force on manipulator actively in haptic interaction devices singly driven by active or passive actuators in a virtual reality system,a haptic interaction device cooperatively driven by active/passive hybrid actuator was proposed.Through analyzing the structure,realization principle and performance of a passive rheological motor,the design method for the haptic interaction device based on the passive rheological motor/active motor was studied.The device has such structural characteristic that the output force is generated through the cooperative driving of both active motor and passive rheological motor.The control method of haptic interaction device based on the hybrid actuator was proposed.In addition,a haptic interaction platform was established and some experimental research was performed.The results verify that the haptic interaction device based on active/passive hybrid actuator not only overcomes the disadvantages of the haptic interaction device based on single active or passive actuators,but also has such advantages as high fidelity and big controllable range of output force.%针对虚拟现实系统中由有源或无源执行器单独驱动的力觉交互装置存在体积大、安全稳定性差和无法主动给操作者施加力等问题,提出了一种由有/无源混合执行器共同驱动的力觉交互装置.在分析无源流变电机结构、实现原理和性能的基础上,研究了基于无源流变电机/有源电机力觉交互装置的设计方法,其结构特点是输出力在有源电机和无源流变电机的共同驱动下产生.提出了基于混合执行器的力觉交互装置控制方法,构建了力觉交互平台并进行了实验研究.实验结果表明,基于有/无源混合执行器的力觉交互装置,不仅克服了基于有源或无源执行器力觉交互装置的缺点,还具有高保真性和输出力可控制范围大等优点.

  20. Water Hydraulic Systems

    DEFF Research Database (Denmark)

    Conrad, Finn

    2005-01-01

    The paper presents research results using IT-Tools for CAD and dynamic modelling, simulation, analysis, and design of water hydraulic actuators for motion control of machines, lifts, cranes and robots. Matlab/Simulink and CATIA are used as IT-Tools. The contributions include results from on-going...

  1. Cylindrical Piezoelectric Fiber Composite Actuators

    Science.gov (United States)

    Allison, Sidney G.; Shams, Qamar A.; Fox, Robert L.

    2008-01-01

    The use of piezoelectric devices has become widespread since Pierre and Jacques Curie discovered the piezoelectric effect in 1880. Examples of current applications of piezoelectric devices include ultrasonic transducers, micro-positioning devices, buzzers, strain sensors, and clocks. The invention of such lightweight, relatively inexpensive piezoceramic-fiber-composite actuators as macro fiber composite (MFC) actuators has made it possible to obtain strains and displacements greater than those that could be generated by prior actuators based on monolithic piezoceramic sheet materials. MFC actuators are flat, flexible actuators designed for bonding to structures to apply or detect strains. Bonding multiple layers of MFC actuators together could increase force capability, but not strain or displacement capability. Cylindrical piezoelectric fiber composite (CPFC) actuators have been invented as alternatives to MFC actuators for applications in which greater forces and/or strains or displacements may be required. In essence, a CPFC actuator is an MFC or other piezoceramic fiber composite actuator fabricated in a cylindrical instead of its conventional flat shape. Cylindrical is used here in the general sense, encompassing shapes that can have circular, elliptical, rectangular or other cross-sectional shapes in the planes perpendicular to their longitudinal axes.

  2. Motion Analysis and Control of a Single Leg of Hydraulically Actuated Quadruped Robots during Vertical Hopping%液压驱动四足机器人单腿竖直跳跃运动分析与控制

    Institute of Scientific and Technical Information of China (English)

    张雪峰; 秦现生; 冯华山; 谭小群; 李军; 杨雪宝

    2013-01-01

    针对非结构化环境下四足机器人高速高机动性要求,提出一种液压驱动单腿结构模式.面向竖直跳跃运动,建立液压驱动结构模式下单腿二阶段运动学模型和三阶段动力学模型;进行竖直跳跃运动状态分析、单腿整机质心以1.5 m/s速度瞬时起跳的竖直跳跃运动逆解和仿真;并对竖直跳跃运动过程中地面冲击对机体结构的影响、髋关节和膝关节液压缸动作特性和输出力特性及液压设计等进行讨论.同时,考虑单腿竖直跳跃的周期性,应用液压偏置单腿动力学模型,采用PD迭代学习控制算法进行关节轨迹跟踪控制.仿真结果表明轨迹跟踪迅速收敛且鲁棒性好,为后续样机研究提供设计和控制依据.%To address the requirements of high speed and mobility for quadruped robots under unstructured environments, a structure model of hydraulically actuated single leg is proposed. For vertical hopping, a two-phase kinematic model and a three-phase dynamic model of a single leg are established under the structure model. After that, the state analysis on the vertical hopping is conducted, and the inverse kinematics solution and the simulation of the hopping are also implemented for a single leg mass-center's instant vertical hopping with 1.5 m/s. Then, the ground impact on the body structure, the operation characteristics and the output force of the hip joint and knee joint's hydraulic cylinder, as well as the hydraulic system design during vertical hopping are discussed. Meanwhile, taking the periodicity of vertical hopping of a single leg into consideration, a PD (proportional-derivative) iterative learning control algorithm is applied to joint trajectory tracking, based on single leg's dynamic model with hydraulic offset. The simulation results indicate that rapid and robust convergence is achieved in trajectory tracking using the presented model, which offers the design and control references for the succeeding

  3. Note: High frequency vibration rejection using a linear shaft actuator-based image stabilizing device via vestibulo-ocular reflex adaptation control method

    Science.gov (United States)

    Koh, Doo-Yeol; Kim, Young-Kook; Kim, Kyung-Soo; Kim, Soohyun

    2013-08-01

    In mobile robotics, obtaining stable image of a mounted camera is crucial for operating a mobile system to complete given tasks. This note presents the development of a high-speed image stabilizing device using linear shaft actuator, and a new image stabilization method inspired by human gaze stabilization process known as vestibulo-ocular reflex (VOR). In the proposed control, the reference is adaptively adjusted by the VOR adaptation control to reject residual vibration of a camera as the VOR gain converges to optimal state. Through experiments on a pneumatic vibrator, it will be shown that the proposed system is capable of stabilizing 10 Hz platform vibration, which shows potential applicability of the device to a high-speed mobile robot.

  4. Hydraulic manipulator research at ORNL

    Energy Technology Data Exchange (ETDEWEB)

    Kress, R.L.; Jansen, J.F. [Oak Ridge National Lab., TN (United States); Love, L.J. [Oak Ridge Inst. for Science and Education, TN (United States)

    1997-03-01

    Recently, task requirements have dictated that manipulator payload capacity increase to accommodate greater payloads, greater manipulator length, and larger environmental interaction forces. General tasks such as waste storage tank cleanup and facility dismantlement and decommissioning require manipulator life capacities in the range of hundreds of pounds rather than tens of pounds. To meet the increased payload capacities demanded by present-day tasks, manipulator designers have turned once again to hydraulics as a means of actuation. In order to successfully design, build, and deploy a new hydraulic manipulator (or subsystem), sophisticated modeling, analysis, and control experiments are usually needed. Oak Ridge National Laboratory (ORNL) has a history of projects that incorporate hydraulics technology, including mobile robots, teleoperated manipulators, and full-scale construction equipment. In addition, to support the development and deployment of new hydraulic manipulators, ORNL has outfitted a significant experimental laboratory and has developed the software capability for research into hydraulic manipulators, hydraulic actuators, hydraulic systems, modeling of hydraulic systems, and hydraulic controls. The purpose of this article is to describe the past hydraulic manipulator developments and current hydraulic manipulator research capabilities at ORNL. Included are example experimental results from ORNL`s flexible/prismatic test stand.

  5. Seismic Proofing Capability of the Accumulated Semiactive Hydraulic Damper as an Active Interaction Control Device with Predictive Control

    Directory of Open Access Journals (Sweden)

    Ming-Hsiang Shih

    2016-01-01

    Full Text Available The intensity of natural disasters has increased recently, causing buildings’ damages which need to be reinforced to prevent their destruction. To improve the seismic proofing capability of Accumulated Semiactive Hydraulic Damper, it is converted to an Active Interaction Control device and synchronous control and predictive control methods are proposed. The full-scale shaking table test is used to test and verify the seismic proofing capability of the proposed AIC with these control methods. This study examines the shock absorption of test structure under excitation by external forces, influences of prediction time, stiffness of the auxiliary structure, synchronous switching, and asynchronous switching on the control effects, and the influence of control locations of test structure on the control effects of the proposed AIC. Test results show that, for the proposed AIC with synchronous control and predictive control of 0.10~0.13 seconds, the displacement reduction ratios are greater than 71%, the average acceleration reduction ratios are, respectively, 36.2% and 36.9%, at the 1st and 2nd floors, and the average base shear reduction ratio is 29.6%. The proposed AIC with suitable stiffeners for the auxiliary structure at each floor with synchronous control and predictive control provide high reliability and practicability for seismic proofing of buildings.

  6. Electric Hydraulic Switch Machine Spindle Balancing Valve Start Cylinder Device%电动液压转辙机梭式平衡阀启动缸装置

    Institute of Scientific and Technical Information of China (English)

    许丽娟

    2015-01-01

    Applicable to the transformation of railway switch electric hydraulic switch machine's spindle type balance valve start cylinder device can improve the starting characteristics of electric hydraulic switch machine AC motor, and rebound phenomenon of cylinder can be eliminated; can be used in all kinds of turnout electro-hydraulic conversion equipment, can also be used in hydraulic system change good motor starting performance and the hydraulic system on both sides of the oil circuit pressure equilibrium.%适用于铁路道岔电动液压转辙机转换的梭式平衡阀启动缸装置既可改善电动液压转辙机交流电机启动特性,又可消除油缸反弹现象;既适用于各种道岔电液转换设备,也适用于液压系统改善电机启动性能和液压系统两侧油路压力的平衡。

  7. Shape memory alloy actuator

    Science.gov (United States)

    Varma, Venugopal K.

    2001-01-01

    An actuator for cycling between first and second positions includes a first shaped memory alloy (SMA) leg, a second SMA leg. At least one heating/cooling device is thermally connected to at least one of the legs, each heating/cooling device capable of simultaneously heating one leg while cooling the other leg. The heating/cooling devices can include thermoelectric and/or thermoionic elements.

  8. Electric Hydrostatic Actuation - modular building blocks for industrial applications

    OpenAIRE

    Helbig, Achim; Boes, Christoph

    2016-01-01

    Electro Hydrostatic Actuators (EHA) are emerging as a viable option for industrial machine builders as the design combines the best of both electro-mechanical and electro-hydraulic technologies. The EHA is a highly integrated, compact alternative to traditional hydraulic solutions. Automation engineers moving toward electro-mechanical actuation in pursuit of energy efficiency and environmental cleanliness, will find an EHA an attractive option for high force density actuators. This paper will...

  9. Neural network-based adaptive optimal control of a robot hydraulic actuator%机器人液压驱动器神经网络自适应最优控制

    Institute of Scientific and Technical Information of China (English)

    孙广彬; 王宏

    2015-01-01

    In order to effectively control the hydraulic nonlinear systems, a radial basis function (RBF) neural network‐based optimal control applied to the robot hydraulic actuator was presented. First, the hydraulic servo system was modeled based on the physics of the plant. Second, the Kalman filter was applied to estimate the internal state of the system with continuously changing magnitude and frequency of input signal. The model parameters were calculated and grouped for RBF neural net‐work training. Third, with the average of each group of parameters as nominal point, the RBF neural network was used to learn the rules how feedback gains changes with system parameters. Finally, the trained neural network was used to predict the feedback gains on line based on the parameter estimate of Kalman Filter and the trained adaptive controller. The proposed controller was validated by experi‐ment with setting time and tracking error to be 1/2 and 1/3 of the conventional linear quadratic requla‐tor controller, respectively.%为了有效地控制液压非线性系统,提出基于RB F神经网络的自适应最优控制系统,应用于机器人液压驱动器。首先,建立了液压系统的动力学模型;然后,输入幅值和频率连续变化的信号,应用卡尔曼滤波器估计液压系统状态,进而计算出模型参数,对模型参数进行分组用于训练RB F神经网络;接着,对不同组参数求平均作为参考点,用RB F神经网络学习最优控制器反馈增益随系统参数的变化规律;最后,训练完成的神经网络根据卡尔曼滤波器参数估计值在线预测并调节控制器增益。经实验验证,该控制系统调节时间和跟踪误差仅为普通线性二次型最优控制器的1/2和1/3左右。

  10. Testing of improved polyimide actuator rod seals at high temperature and under vacuum conditions for use in advanced aircraft hydraulic systems

    Science.gov (United States)

    Sellereite, B. K.; Waterman, A. W.; Nelson, W. G.

    1974-01-01

    Polyimide second-stage rod seals were evaluated to determine their suitability for applications in space station environments. The 6.35-cm (2.5-in.)K-section seal was verified for thermal cycling operation between room temperature and 478 K (400 F) and for operation in a 133 micron PA(0.000001 mm Hg) vacuum environment. The test seal completed the scheduled 96 thermal cycles and 1438 hr in vacuum with external rod seal leakage well within the maximum allowable of two drops per 25 actuation cycles. At program completion, the seals showed no signs of structural degradation. Posttest inspection showed the seals retained a snug fit against the shaft and housing walls, indicating additional wear life capability. Evaluation of a molecular flow section during vacuum testing, to inhibit fluid loss through vaporization, showed it to be beneficial with MIL-H-5606, a petroleum-base fluid, in comparison with MIL-H-83282, a synthetic hydrocarbon-base fluid.

  11. An Unconventional Inchworm Actuator Based on PZT/ERFs Control Technology

    OpenAIRE

    Guojun Liu; Yanyan Zhang; Jianfang Liu; Jianqiao Li; Chunxiu Tang; Tengfei Wang; Xuhao Yang

    2016-01-01

    An unconventional inchworm actuator for precision positioning based on piezoelectric (PZT) actuation and electrorheological fluids (ERFs) control technology is presented. The actuator consists of actuation unit (PZT stack pump), fluid control unit (ERFs valve), and execution unit (hydraulic actuator). In view of smaller deformation of PZT stack, a new structure is designed for actuation unit, which integrates the advantages of two modes (namely, diaphragm type and piston type) of the volume c...

  12. Design of A Hydraulic Power Take-off System for the Wave Energy Device with An Inverse Pendulum

    Institute of Scientific and Technical Information of China (English)

    张大海; 李伟; 赵海涛; 鲍经纬; 林勇刚

    2014-01-01

    This paper describes a dual-stroke acting hydraulic power take-off (PTO) system employed in the wave energy converter (WEC) with an inverse pendulum. The hydraulic PTO converts slow irregular reciprocating wave motions to relatively smooth, fast rotation of an electrical generator. The design of the hydraulic PTO system and its control are critical to maximize the generated power. A time domain simulation study and the laboratory experiment of the full-scale beach test are presented. The results of the simulation and laboratory experiments including their comparison at full-scale are also presented, which have validated the rationality of the design and the reliability of some key components of the prototype of the WEC with an inverse pendulum with the dual-stroke acting hydraulic PTO system.

  13. Compact electrostatic comb actuator

    Science.gov (United States)

    Rodgers, M. Steven; Burg, Michael S.; Jensen, Brian D.; Miller, Samuel L.; Barnes, Stephen M.

    2000-01-01

    A compact electrostatic comb actuator is disclosed for microelectromechanical (MEM) applications. The actuator is based upon a plurality of meshed electrostatic combs, some of which are stationary and others of which are moveable. One or more restoring springs are fabricated within an outline of the electrostatic combs (i.e. superposed with the moveable electrostatic combs) to considerably reduce the space required for the actuator. Additionally, a truss structure is provided to support the moveable electrostatic combs and prevent bending or distortion of these combs due to unbalanced electrostatic forces or external loading. The truss structure formed about the moveable electrostatic combs allows the spacing between the interdigitated fingers of the combs to be reduced to about one micron or less, thereby substantially increasing the number of active fingers which can be provided in a given area. Finally, electrostatic shields can be used in the actuator to substantially reduce unwanted electrostatic fields to further improve performance of the device. As a result, the compact electrostatic comb actuator of the present invention occupies only a fraction of the space required for conventional electrostatic comb actuators, while providing a substantial increase in the available drive force (up to one-hundred times).

  14. Shape-Memory-Alloy Actuator For Flight Controls

    Science.gov (United States)

    Barret, Chris

    1995-01-01

    Report proposes use of shape-memory-alloy actuators, instead of hydraulic actuators, for aerodynamic flight-control surfaces. Actuator made of shape-memory alloy converts thermal energy into mechanical work by changing shape as it makes transitions between martensitic and austenitic crystalline phase states of alloy. Because both hot exhaust gases and cryogenic propellant liquids available aboard launch rockets, shape-memory-alloy actuators exceptionally suited for use aboard such rockets.

  15. Grinding efficiency improvement of hydraulic cylinders parts for mining equipment

    Directory of Open Access Journals (Sweden)

    Korotkov Aleksandr

    2017-01-01

    Full Text Available The aim of the article is to find out ways to improve parts treatment and components of mining equipment on the example of hydraulic cylinders parts, used as pillars for mine roof supports, and other actuator mechanisms. In the course of the research work methods of machine retaining devices design were used, the scientific approaches for the selection of progressive grinding schemes were applied; theoretical and practical experience in the design and production of new constructions of grinding tools was used. As a result of this work it became possible to create a progressive construction of a machine retaining device for grinding of large parts of hydraulic cylinders, to apply an effective scheme of rotary abrasive treatment, to create and implement new design of grinding tools by means of grains with controllable shape and orientation. Implementation of the results obtained in practice will improve the quality and performance of repairing and manufacturing of mining equipment.

  16. Aerosol-Jet-Printing silicone layers and electrodes for stacked dielectric elastomer actuators in one processing device

    Science.gov (United States)

    Reitelshöfer, Sebastian; Göttler, Michael; Schmidt, Philip; Treffer, Philipp; Landgraf, Maximilian; Franke, Jörg

    2016-04-01

    In this contribution we present recent findings of our efforts to qualify the so called Aerosol-Jet-Printing process as an additive manufacturing approach for stacked dielectric elastomer actuators (DEA). With the presented system we are able to print the two essential structural elements dielectric layer and electrode in one machine. The system is capable of generating RTV-2 silicone layers made of Wacker Elastosil P 7670. Therefore, two aerosol streams of both precursor components A and B are generated in parallel and mixed in one printing nozzle that is attached to a 4-axis kinematic. At maximum speed the printing of one circular Elastosil layer with a calculated thickness of 10 μm and a diameter of 1 cm takes 12 seconds while the process keeps stable for 4.5 hours allowing a quite high overall material output and the generation of numerous silicone layers. By adding a second printing nozzle and the infrastructure to generate a third aerosol, the system is also capable of printing inks with conductive particles in parallel to the silicone. We have printed a reduced graphene oxide (rGO) ink prepared in our lab to generate electrodes on VHB 4905, Elastosil foils and finally on Aerosol-Jet-Printed Elastosil layers. With rGO ink printed on Elastosil foil, layers with a 4-point measured sheet resistance as low as 4 kΩ can be realized leaving room for improving the electrode printing time, which at the moment is not as good as the quite good time-frame for printing the silicone layers. Up to now we have used the system to print a fully functional two-layer stacked DEA to demonstrate the principle of continuously 3D printing actuators.

  17. Microprocessor controlled proof-mass actuator

    Science.gov (United States)

    Horner, Garnett C.

    1987-01-01

    The objective of the microprocessor controlled proof-mass actuator is to develop the capability to mount a small programmable device on laboratory models. This capability will allow research in the active control of flexible structures. The approach in developing the actuator will be to mount all components as a single unit. All sensors, electronic and control devices will be mounted with the actuator. The goal for the force output capability of the actuator will be one pound force. The programmable force actuator developed has approximately a one pound force capability over the usable frequency range, which is above 2 Hz.

  18. NATO Advanced Research Workshop on Advanced Materials and Technologies for Micro/Nano-Devices, Sensors and Actuators

    CERN Document Server

    Gusev, Evgeni; Dideikin, Arthur

    2010-01-01

    The main goal of this book is to review recent progress and current status of MEMS/NEMS technologies and devices. Several important areas are discussed: history of research in the field, device physics, examples of sucessful applications, sensors, materials and processing aspects. The authors who have contributed to the book represent a diverse group of leading scientists from academic, industrial and governmental labs worldwide who bring a broad array of backgrounds such as device physics, technologists, electrical and mechanical engineering, surface chemistry and materials science). The contributions to this book are accessible to both expert scientists and engineers who need to keep up with leading edge research, and newcomers to the field who wish to learn more about the exciting basic and applied research issues relevant to micromechanical devices and technologies.

  19. Remotely Adjustable Hydraulic Pump

    Science.gov (United States)

    Kouns, H. H.; Gardner, L. D.

    1987-01-01

    Outlet pressure adjusted to match varying loads. Electrohydraulic servo has positioned sleeve in leftmost position, adjusting outlet pressure to maximum value. Sleeve in equilibrium position, with control land covering control port. For lowest pressure setting, sleeve shifted toward right by increased pressure on sleeve shoulder from servovalve. Pump used in aircraft and robots, where hydraulic actuators repeatedly turned on and off, changing pump load frequently and over wide range.

  20. Integrated hydraulic cooler and return rail in camless cylinder head

    Energy Technology Data Exchange (ETDEWEB)

    Marriott, Craig D [Clawson, MI; Neal, Timothy L [Ortonville, MI; Swain, Jeff L [Flushing, MI; Raimao, Miguel A [Colorado Springs, CO

    2011-12-13

    An engine assembly may include a cylinder head defining an engine coolant reservoir, a pressurized fluid supply, a valve actuation assembly, and a hydraulic fluid reservoir. The valve actuation assembly may be in fluid communication with the pressurized fluid supply and may include a valve member displaceable by a force applied by the pressurized fluid supply. The hydraulic fluid reservoir may be in fluid communication with the valve actuation assembly and in a heat exchange relation to the engine coolant reservoir.

  1. Series Elastic Actuators for legged robots

    Science.gov (United States)

    Pratt, Jerry E.; Krupp, Benjamin T.

    2004-09-01

    Series Elastic Actuators provide many benefits in force control of robots in unconstrained environments. These benefits include high force fidelity, extremely low impedance, low friction, and good force control bandwidth. Series Elastic Actuators employ a novel mechanical design architecture which goes against the common machine design principal of "stiffer is better." A compliant element is placed between the gear train and driven load to intentionally reduce the stiffness of the actuator. A position sensor measures the deflection, and the force output is accurately calculated using Hooke"s Law (F=Kx). A control loop then servos the actuator to the desired output force. The resulting actuator has inherent shock tolerance, high force fidelity and extremely low impedance. These characteristics are desirable in many applications including legged robots, exoskeletons for human performance amplification, robotic arms, haptic interfaces, and adaptive suspensions. We describe several variations of Series Elastic Actuators that have been developed using both electric and hydraulic components.

  2. 液压卷带装置动态性能试验研究%Test study on dynamic performance of hydraulic belt-winding device

    Institute of Scientific and Technical Information of China (English)

    戴珊珊

    2011-01-01

    介绍了卷带装置的液压系统组成及工作原理,分析了液压泵的功率特性,搭建了液压卷带装置试验台,介绍了试验原理和硬件组成。通过大量试验,研究了启动时卷带装置的动态性能以及不同负载下系统的恒功率特性。%The constitution and the working principle of the hydraulic system of the belt-winding device are described, and the power characteristics of the hydraulic pump are analyzed. A test bench for the belt-winding device is built and its constitution and working principle are introduced. Based on a large number of tests, dynamic characteristics of the belt-winding device during starting process and constant-power characteristics of the system in different load modes are studied.

  3. 液力助捞器的研制与应用%Development and Application of Hydraulic Fishing-assisted Device

    Institute of Scientific and Technical Information of China (English)

    马艳洁; 赵丹星; 王宏万; 梁秀红; 孙金峰; 丁志聪

    2012-01-01

    When the hollow water injection string is used, the core of water flow regulator sometimes fails to be fished smoothly within the scope of the rated operating pull of steel wire rope. Considering the problem, the hydraulic fishing-assisted device was developed. The device consists of fishing part, supporting part and sealing part. The hydraulic force was adopted to increase the fishing force effectively, raising the fishing force to 2 000 N/MPa and thus reducing the fishing truck load. When the water regulator core cannot be fished, the hydraulic fishing-assisted device can use the hydraulic force to snip the safety pin and get the core out of the well safe and sound, thus effectively avoiding the appearance of the logging steel wire breaking. The device has finished fishing 189 times in Shengli Oilfield with a 97.4% success rate.%针对空心注水管柱有时在钢丝绳额定工作拉力范围内无法将配水器心子顺利捞出的问题,研制了液力助捞器。液力助捞器由打捞部分、支撑部分和密封部分组成,它采用液压力有效增加打捞动力,将打捞力提高至2 000 N/MPa,减轻了打捞车载荷。当配水器心子打捞不动时,液力助捞器可利用液压力剪断安全销,从井内安全起出,有效避免了录井钢丝绳断裂事故的发生。采用液力助捞器在胜利油田共计打捞心子189次,打捞成功率97.4%,液力助捞器起出率100%。

  4. A porous actuator for an Isfet-based coulometric sensor-actuator system

    NARCIS (Netherlands)

    Luo, J.; Olthuis, W.; Bergveld, P.; Linden, van der W.E.; Bos, M.

    1991-01-01

    The previously developed prototype ISFET (ion-sensitive field effect transistor)-based coulometric sensor-actuator system suffers from delay in response due to the nonzero distance between the sensor and actuator. The authors describe a novel configuration of a sensor-actuator device which employs a

  5. A porous actuator for an Isfet-based coulometric sensor-actuator system

    NARCIS (Netherlands)

    Luo, J.; Luo, J.; Olthuis, Wouter; Bergveld, Piet; van der Linden, W.E.; Bos, M.

    1991-01-01

    The previously developed prototype ISFET (ion-sensitive field effect transistor)-based coulometric sensor-actuator system suffers from delay in response due to the nonzero distance between the sensor and actuator. The authors describe a novel configuration of a sensor-actuator device which employs a

  6. NUMERICAL MODELING OF MULTICYLINDER ELECTRO-HYDRAULIC SYSTEM AND CONTROLLER DESIGN FOR SHOCK TEST MACHINE

    Institute of Scientific and Technical Information of China (English)

    CHU Deying; ZHANG Zhiyi; WANG Gongxian; HUA Hongxing

    2007-01-01

    A high fidelity dynamic model of a high-energy hydraulically-actuated shock test machine for heavy weight devices is presented to satisfy the newly-built shock resistance standard and simulate the actual underwater explosion environments in laboratory as well as increase the testing capability of shock test machine. In order to produce the required negative shock pulse in the given time duration, four hydraulic actuators are utilized. The model is then used to formulate an advanced feedforward controller for the system to produce the required negative waveform and to address the motion synchronization of the four cylinders. The model provides a safe and easily controllable way to perform a "virtual testing" before starting potentially destructive tests on specimen and to predict performance of the system. Simulation results have demonstrated the effectiveness of the controller.

  7. Shape memory alloy actuated accumulator for ultra-deepwater oil and gas exploration

    Science.gov (United States)

    Patil, Devendra; Song, Gangbing

    2016-04-01

    As offshore oil and gas exploration moves further offshore and into deeper waters to reach hydrocarbon reserves, it is becoming essential for the industry to develop more reliable and efficient hydraulic accumulators to supply pressured hydraulic fluid for various control and actuation operations, such as closing rams of blowout preventers and controlling subsea valves on the seafloor. By utilizing the shape memory effect property of nitinol, which is a type of shape memory alloy (SMA), an innovative SMA actuated hydraulic accumulator prototype has been developed and successfully tested at Smart Materials and Structure Laboratory at the University of Houston. Absence of gas in the developed SMA accumulator prototype makes it immune to hydrostatic head loss caused by water depth and thus reduces the number of accumulators required in deep water operations. Experiments with a feedback control have demonstrated that the proposed SMA actuated accumulator can provide precisely regulated pressurized fluids. Furthermore the potential use of ultracapacitors along with an embedded system to control the electric power supplied to SMA allows this accumulator to be an autonomous device for deployment. The developed SMA accumulator will make deepwater oil extraction systems more compact and cost effective.

  8. Low-power microfluidic electro-hydraulic pump (EHP).

    Science.gov (United States)

    Lui, Clarissa; Stelick, Scott; Cady, Nathaniel; Batt, Carl

    2010-01-07

    Low-power electrolysis-based microfluidic pumps utilizing the principle of hydraulics, integrated with microfluidic channels in polydimethylsiloxane (PDMS) substrates, are presented. The electro-hydraulic pumps (EHPs), consisting of electrolytic, hydraulic and fluidic chambers, were investigated using two types of electrodes: stainless steel for larger volumes and annealed gold electrodes for smaller-scale devices. Using a hydraulic fluid chamber and a thin flexible PDMS membrane, this novel prototype successfully separates the reagent fluid from the electrolytic fluid, which is particularly important for biological and chemical applications. The hydraulic advantage of the EHP device arises from the precise control of flow rate by changing the electrolytic pressure generated, independent of the volume of the reagent chamber, mimicking the function of a hydraulic press. Since the reservoirs are pre-filled with reagents and sealed prior to testing, external fluid coupling is minimized. The stainless steel electrode EHPs were manufactured with varying chamber volume ratios (1 : 1 to 1 : 3) as a proof-of-concept, and exhibited flow rates of 1.25 to 30 microl/min with electrolysis-based actuation at 2.5 to 10 V(DC). The miniaturized gold electrode EHPs were manufactured with 3 mm diameters and 1 : 1 chamber volume ratios, and produced flow rates of 1.24 to 7.00 microl/min at 2.5 to 10 V(AC), with a higher maximum sustained pressure of 343 KPa, suggesting greater device robustness using methods compatible with microfabrication. The proposed technology is low-cost, low-power and disposable, with a high level of reproducibility, allowing for ease of fabrication and integration into existing microfluidic lab-on-a-chip and analysis systems.

  9. The Design of Hydraulic System for the Plastic Embossing Device%塑料膜压纹装置液压系统的设计

    Institute of Scientific and Technical Information of China (English)

    梅彦利; 马可心; 李少杰

    2015-01-01

    针对目前塑料薄膜消费与日俱增且消费者对其美观要求的情况,为了提升塑料膜压纹的压制档次,该文研制一种塑料膜压纹装置的液压系统。首先对塑料膜压纹装置的总体结构进行了介绍,其次设计其液压系统并介绍其系统组成及工作原理。该系统具有体积小、重量轻、控制精确、可无级调速、系统可靠性高等优点,对近似产品的液压系统设计也具有积极的借鉴意义。%View of the present situation that plastic film consumption increasing and the aesthetic requirements of the consumers, in order to improve the grade of plastic film embossing press,one type of hydraulic system of the plastic film embossing device was developed in this paper. First, the general structure of the plastic embossing device was introduced, secondly, design the hydraulic system and introduced the system composition and working principle. The system has small volume, light weight, accurate control, can be stepless speed regulation, high reliability, etc. The hydraulic system also has positive significance to the design of similar product.

  10. Soft Pneumatic Actuators for Rehabilitation

    OpenAIRE

    Guido Belforte; Gabriella Eula; Alexandre Ivanov; Silvia Sirolli

    2014-01-01

    Pneumatic artificial muscles are pneumatic devices with practical and various applications as common actuators. They, as human muscles, work in agonistic-antagonistic way, giving a traction force only when supplied by compressed air. The state of the art of soft pneumatic actuators is here analyzed: different models of pneumatic muscles are considered and evolution lines are presented. Then, the use of Pneumatic Muscles (PAM) in rehabilitation apparatus is described and the general characteri...

  11. Aerodynamic Optimization for Distributed Electro Mechanical Actuators Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Traditional hydraulic actuation and control surface layout both limit span wise control of lift distribution, and require large volume within wing cross-section,...

  12. Optimization of Moving Coil Actuators for Digital Displacement Machines

    DEFF Research Database (Denmark)

    Nørgård, Christian; Bech, Michael Møller; Roemer, Daniel Beck;

    2016-01-01

    This paper focuses on deriving an optimal moving coil actuator design, used as force pro-ducing element in hydraulic on/off valves for Digital Displacement machines. Different moving coil actuator geometry topologies (permanent magnet placement and magnetiza-tion direction) are optimized...... for actuating annular seat valves in a digital displacement machine. The optimization objectives are to the minimize the actuator power, the valve flow losses and the height of the actuator. Evaluation of the objective function involves static finite element simulation and simulation of an entire operation...

  13. A New Type of Hydraulic Muscle

    Directory of Open Access Journals (Sweden)

    Nitai Drimer

    2016-01-01

    Full Text Available This paper presents the invention and development of a new fundamental type of hydraulic actuator, aimed at delivering better actuation efficiency. This actuator is a flexible tube, composed of two different materials, which deflects while applying inner pressure. This concept is simple to produce, and allows adaptation of the deflected shape by the design parameters (radius, wall thickness, geometry, etc.. Among other applications, it is mostly suitable for the activation of fins of nature-like marine robots. Theoretical formulation, production of prototypes and actuation experiments are presented, as well as material hysteresis research and an application example.

  14. 基于螺旋理论的冗余液压驱动四足机器人运动学分析%Kinematic analysis of redundant hydraulic actuated quadruped robot based on screw theory

    Institute of Scientific and Technical Information of China (English)

    庄未; 黄用华

    2011-01-01

    Research on quadruped robot is mostly made based on the same bend directions of four legs. For redundant quadruped robot, its two forelegs and rear legs become symmetry flections in steady poses. For studying a leg motion and the body motion of hydraulic actuated redundant quadruped robot, kinematic model of quadruped robot was established based on screw theory in this paper, which includes inverse kinematics solution of a single leg and forward solution of the parallel body. Then, the angle ranges of coax joints and knee joints of two rear legs were designed according to the walking plan of robot. Furthermore, the joint variables of two forelegs and the poses of the body were obtained by the mathematical model. Finally, the body posture in a walking plan was compared by MATLAB calculation and ADAMS simulation, and the kinematics model was validated.%四足机器人的各种研究大多基于四条腿弯曲方向一致展开的.对于液压驱动且具有冗余度的四足机器人,静止姿态下,其前面两条腿与后面两条腿成对称弯曲状.为了研究这种机器人单腿运动和躯体运动状态,文中建立了基于螺旋理论的液压驱动四足机器人运动学模型,包括给出了单腿串联运动学逆解和躯体并联运动学正解.然后根据机器人行走过程设计出后面两条腿的髋关节与膝关节摆幅角度,通过建立的运动学模型,得到前面两条腿的关节变量及躯体姿态.最后通过MATLAB数值仿真和ADAMS虚拟样机实验,对机器人在一种行走方案下的躯体运动姿态进行仿真对比,验证了所建运动学模型的可靠性.

  15. Structure-property relations of gold and graphene nanoporous actuators

    NARCIS (Netherlands)

    Saane, Siva Shankar Reddy

    2015-01-01

    Electrochemical nanoporous actuators have low weight, large specific surface areas and low voltage operating capabilities, making them attractive for application in small-scale electromechanical devices. The actuation strain of these materials at the macroscopic scale is a manifestation of

  16. Prognostic Health-Management System Development for Electromechanical Actuators

    Data.gov (United States)

    National Aeronautics and Space Administration — Electro-mechanical actuators (EMAs) have been gaining increased acceptance as safety-critical actuation devices in the next generation of aircraft and spacecraft....

  17. A system to measure minute hydraulic permeability of nanometer scale devices in a non-destructive manner

    Science.gov (United States)

    Smith, Ross A.; Fleischman, Aaron J.; Fissell, William H.; Zorman, Christian A.; Roy, Shuvo

    2011-04-01

    We report an automated system for measuring the hydraulic permeability of nanoporous membranes in a tangential-flow configuration. The system was designed and built specifically for micromachined silicon nanoporous membranes (SNM) with monodisperse slit-shaped pores. These novel membranes are under development for water filtration, artificial organ and drug delivery applications. The filtration cell permits non-destructive testing of the membrane over many remove-modify-replace testing cycles, allowing for direct experiments into the effects of surface modifications on such membranes. The experimental apparatus was validated using microfluidic tubing with circular cross sections that provided similar fluidic resistances to SNM. Further validation was performed with SNM chips for which the pore dimensions were known from scanning electron microscopy measurements. The system was then used to measure the hydraulic permeability of nanoporous membranes before and after surface modification. The system yields measurements with low variance and excellent agreement with predicted values, providing a platform for determining pore sizes in micro/nanofluidic systems with tight pore size distributions to a higher degree of precision than can be achieved with traditional techniques.

  18. A system look at electromechanical actuation for primary flight control

    NARCIS (Netherlands)

    Lomonova, E.A.

    1997-01-01

    An overview is presented of the emergence of the ALL Electric flight control system (FCS) or power-by-wire (PBW) concept. The concept of fly-by-power refers to the actuator using electrical rather than hydraulic power. The development of the primary flight control Electromechanical Actuators (EMAs)

  19. A system look at electromechanical actuation for primary flight control

    NARCIS (Netherlands)

    Lomonova, E.A.

    1997-01-01

    An overview is presented of the emergence of the ALL Electric flight control system (FCS) or power-by-wire (PBW) concept. The concept of fly-by-power refers to the actuator using electrical rather than hydraulic power. The development of the primary flight control Electromechanical Actuators (EMAs)

  20. Unsteady fluid flow in smart material actuated fluid pumps

    Science.gov (United States)

    John, Shaju; Cadou, Christopher

    2005-05-01

    Smart materials' ability to deliver large block forces in a small package while operating at high frequencies makes them extremely attractive for converting electrical to mechanical power. This has led to the development of hybrid actuators consisting of co-located smart material actuated pumps and hydraulic cylinders that are connected by a set of fast-acting valves. The overall success of the hybrid concept hinges on the effectiveness of the coupling between the smart material and the fluid. This, in turn, is strongly dependent on the resistance to fluid flow in the device. This paper presents results from three-dimensional unsteady simulations of fluid flow in the pumping chamber of a prototype hybrid actuator powered by a piezo-electric stack. The results show that the forces associated with moving the fluid into and out of the pumping chamber already exceed 10% of the piezo stack blocked force at relatively low frequencies ~120 Hz and approach 40% of the blocked force at 800 Hz. This reduces the amplitude of the piston motion in such a way that the volume flow rate remains approximately constant above operating frequencies of 500 Hz while the efficiency of the pump decreases rapidly.

  1. Simulation Analysis of Working Device of Hydraulic Excavator%液压挖掘机工作装置的仿真分析

    Institute of Scientific and Technical Information of China (English)

    蔡琦; 杨建鸣

    2014-01-01

    为了实现液压挖掘机工作装置的优化,找出工作时的特殊尺寸,采用 Pro/E 建立三维模型并与ADAMS虚拟样机结合仿真分析。根据动臂、斗杆、铲斗三个液压缸的运动状态,得到铲斗齿尖X方向和 Y方向的位移曲线图。通过与原设计值的比较为进一步的分析提供设计的基础。%In order to optimize the implementation of the working device of hydraulic excavator, find the special size, through Pro/E, this paper built 3D model and made simulation analysis combined with the ADAMS virtual prototype . According to the motion state of boom , bucket rod , and three hydraulic cylinders , displacement curves is obtained bucket tip X direction and Y direction . Design basis for further analysis is provided by comparing with the original design value .

  2. Study on Characteristics of Hydraulic Servo System for Force Control of Hydraulic Robots

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hyo-gon; Han, Changsoo [Hanyang University, Seoul (Korea, Republic of); Lee, Jong-won [Korea University of Science and Technology, Seoul (Korea, Republic of); Park, Sangdeok [Korea Institute of Industrial Technology, Seoul (Korea, Republic of)

    2015-02-15

    Because a hydraulic actuator has high power and force densities, this allows the weight of the robot's limbs to be reduced. This allows for good dynamic characteristics and high energy efficiency. Thus, hydraulic actuators are used in some exoskeleton robots and quadrupedal robots that require high torque. Force control is useful for robot compliance with a user or environment. However, force control of a hydraulic robot is difficult because a hydraulic servo system is highly nonlinear from a control perspective. In this study, a nonlinear model was used to develop a simulation program for a hydraulic servo system consisting of a servo valve, transmission lines, and a cylinder. The problems and considerations with regard to the force control performance for a hydraulic servo system were investigated. A force control method using the nonlinear model was proposed, and its effect was evaluated with the simulation program.

  3. Compact, planar, translational piezoelectric bimorph actuator with Archimedes’ spiral actuating tethers

    Science.gov (United States)

    Yang, Chenye; Liu, Sanwei; Xie, Xin; Livermore, Carol

    2016-12-01

    The design, analytical modelling, finite element analysis (FEA), and experimental characterization of a microelectromechanical system (MEMS) out-of-plane (vertical) translational piezoelectric lead-zirconate-titanate (PZT) bimorph actuator supported on Archimedes’ spiral tethers are presented. Three types of bimorph actuators with different electrode patterns (with spiral tethers half actuated, fully actuated with uniform polarity, or fully actuated with reversed polarity) are designed and modelled. The two actuators with the highest predicted performance (half actuated and fully actuated with uniform polarity) are implemented and characterized. Both designs are fabricated by commercial processes and are compatible with integration into more complex MEMS systems. Analytical modelling and FEA are used to analyze and predict the actuators’ displacements and blocking forces. Experimental measurements of the deflections and blocking forces of actuators with full uniform actuation and half actuation validate the design. At an applied voltage of 110 V, the out-of-plane deflections of the actuators with half actuation and full uniform actuation are measured at about 17 µm and 29 µm respectively, in good agreement with analytical predictions of 17.3 µm and 34.2 µm and FEA predictions of 17.1 µm and 25.8 µm. The blocking force for devices with half-actuated tethers is predicted to be 12 mN (analytical) and 10 mN (FEA), close to the experimental value of 9 mN. The blocking force for devices with full uniform actuation is predicted to be 23 mN (analytical) and 17 mN (FEA), as compared with 15 mN in experiments.

  4. Fiscal 1998 achievement report on regional consortium research and development project. Venture business raising type regional consortium - small business creating base type (Research and development of Peltier actuating device-aided advanced medical and welfare systems - 2nd year); 1998 nendo Peltier undo soshi wo mochiita kodo iryo fukushi system no kenkyu kaihatsu seika hokokusho. 2

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    Efforts are made to develop a new Peltier actuating device by amalgamating a Peltier device and shape memory alloy and to apply the product to medical and welfare activities. In the development of active movement control for a Peltier actuating device, a multiaxial control system is developed, and a success is attained in high-speed and high-precision control of temperature and in current- and voltage-aided control of the behavior. In the development of an active actuator for catheters, an active catheter is developed for the first time, capable of performing twisting and bending simultaneously. In the development of an artificial heart catheter, an approximately 10cm-long Peltier actuating device is manufactured to serve as an artificial heart module, and a controller is developed to drive the module at the frequency of approximately 0.5Hz. In the development of shape memory alloys and Peltier devices for normal temperature actuation, the impact is examined of the addition of a third element on the transformation temperature and shape memory characteristics. Research and development is also carried out for element technologies for using a Peltier actuating device as an artificial muscle. (NEDO)

  5. NEW PRECISION PIEZOELECTRIC STEP ACTUATOR

    Institute of Scientific and Technical Information of China (English)

    LIU Jianfang; YANG Zhigang; FAN Zunqiang; CHENG Guangming

    2006-01-01

    A new precision piezoelectric actuator is proposed to improve its drive capabilities. The actuator is based on the piezoelectric technology. It adopts the principle of bionics and works with a new method of stator initiative anchoring/loosen and a distortion structure of double-side thin flexible hinge. It solves the problem of anchoring/loosen, frequency, journey, resolution and velocity. The experiment shows that the new linear piezoelectric actuator works with high frequency (100 Hz), high speed (502 μm/s), large travel (>10 mm), high resolution (0.05 μm) and high load (100 N). This kind of new piezoelectric actuator will be applied for large travel and high resolution driving device, optics engineering, precision positioning and some micromanipulation field.

  6. Soft Pneumatic Actuators for Rehabilitation

    Directory of Open Access Journals (Sweden)

    Guido Belforte

    2014-05-01

    Full Text Available Pneumatic artificial muscles are pneumatic devices with practical and various applications as common actuators. They, as human muscles, work in agonistic-antagonistic way, giving a traction force only when supplied by compressed air. The state of the art of soft pneumatic actuators is here analyzed: different models of pneumatic muscles are considered and evolution lines are presented. Then, the use of Pneumatic Muscles (PAM in rehabilitation apparatus is described and the general characteristics required in different applications are considered, analyzing the use of proper soft actuators with various technical properties. Therefore, research activity carried out in the Department of Mechanical and Aerospace Engineering in the field of soft and textile actuators is presented here. In particular, pneumatic textile muscles useful for active suits design are described. These components are made of a tubular structure, with an inner layer of latex coated with a deformable outer fabric sewn along the edge. In order to increase pneumatic muscles forces and contractions Braided Pneumatic Muscles are studied. In this paper, new prototypes are presented, based on a fabric construction and various kinds of geometry. Pressure-force-deformation tests results are carried out and analyzed. These actuators are useful for rehabilitation applications. In order to reproduce the whole upper limb movements, new kind of soft actuators are studied, based on the same principle of planar membranes deformation. As an example, the bellows muscle model and worm muscle model are developed and described. In both cases, wide deformations are expected. Another issue for soft actuators is the pressure therapy. Some textile sleeve prototypes developed for massage therapy on patients suffering of lymph edema are analyzed. Different types of fabric and assembly techniques have been tested. In general, these Pressure Soft Actuators are useful for upper/lower limbs treatments

  7. Artificial Cilia : Mimicking Nature Through Magnetic Actuation

    NARCIS (Netherlands)

    Khaderi, S. N.; Baltussen, M. G. H. M.; Anderson, P. D.; Ioan, D.; den Toonder, J.M.J.; Onck, P. R.; Murthy, SK; Khan, SA; Ugaz, VM; Zeringue, HC

    2009-01-01

    Manipulation of bio-fluids in microchannels faces many challenges in the development of lab-on-a-chip devices. We propose magnetically actuated artificial cilia which can propel fluids in microchannels. These cilia are magnetic films which can be actuated by an external magnetic field, leading to an

  8. Application of Hydraulic Device in Machine Tools’ Assembly%液压装置在机床装配中的应用

    Institute of Scientific and Technical Information of China (English)

    刘文平; 李玉兰; 张娜; 张丽

    2016-01-01

    The qualiy of mechanical equipment determines the machi-ning accuracy and lifespan of machine tools. Therefore, a hydraulic device is designed and developed to ensure the assembly quality of machine tools and the rotation accuracy and perpendicularity of their spindles by avoiding doing any damage to the roughness and preci-sion of their components installed. This kind of device is practical in manufacturing.%机械装配质量的好坏,直接决定将来机床的加工精度和使用寿命。设计和研发一种装配设备,能保证零部件安装时不破坏零件的表面粗糙度和精度,也能保证装配质量,还能保证主轴的旋转精度和垂直度。该装配设备在生产中具有实际意义。

  9. Grinding efficiency improvement of hydraulic cylinders parts for mining equipment

    National Research Council Canada - National Science Library

    Aleksandr Korotkov; Vitaliy Korotkov; Leonid Mametyev; Lidia Korotkova; Tatiana Terjaeva

    2017-01-01

    The aim of the article is to find out ways to improve parts treatment and components of mining equipment on the example of hydraulic cylinders parts, used as pillars for mine roof supports, and other actuator mechanisms...

  10. Thermal vertical bimorph actuators and their applications

    CERN Document Server

    Sehr, H J

    2002-01-01

    In this thesis, a novel concept for lateral actuators based on vertical bimorphs is presented. Vertical bimorphs consist of silicon beams side-coated with aluminium, which bend when heated due to the different thermal expansion coefficients of the two materials causing a displacement in the wafer plane. The heating of the actuator is provided by an electrical current through the silicon beam. The simplest implementation of a vertical bimorph actuator is a clamped-clamped beam. To obtain higher deflections, a meander shaped actuator has been designed. By combining four meander actuators, a two-dimensional positioning stage has been realised. The meander actuator has also been applied for normally closed and normally open micro-relays. Analytical calculations and ANSYS simulations have been carried out to predict the physical behaviour of the bimorph devices, including temperature distribution, static deflection, vertical stiffness, thermal time constant and lateral resonances. For both the clamped-clamped beam...

  11. Characterization and Testing of an Electrorheological Fluid Valve for Control of ERF Actuators

    OpenAIRE

    Quang-Anh Nguyen; Steven Jens Jorgensen; Joseph Ho; Luis Sentis

    2015-01-01

    Previous studies of electrorheological fluids (ERFs) were motivated by brake, clutch, damping, haptic and resistive applications, but never motivated towards developing an ERF based-hydraulic rotary actuator. One design to make such an actuator is to use ERF-based valves. To fully understand the performance of such an actuator, it is imperative to study ERF valves. For this reason, this paper presents a summary of design considerations for creating ERF-based actuators, an ERF-based valve desi...

  12. Compliant actuation of rehabilitation robots

    NARCIS (Netherlands)

    Vallery, Heike; Veneman, Jan; Asseldonk, van Edwin; Ekkelenkamp, Ralf; Buss, Martin; Kooij, van der Herman

    2008-01-01

    This article discusses the pros and cons of compliant actuation for rehabilitation robots on the example of LOPES, focusing on the cons. After illustrating the bandwidth limitations, a new result has been derived: if stability in terms of passivity of the haptic device is desired, the renderable sti

  13. Toward standardization of EAP actuators test procedures

    Science.gov (United States)

    Fernandez, Diego; Moreno, Luis; Baselga, Juan

    2005-05-01

    Since the field of Electroactive Polymers (EAP) actuators is fairly new there are no standard testing processes for such intelligent materials. This drawback can seriously limit the scope of application of EAP actuators, since the targeted industrial sectors (aerospace, biomedical...) demand high reliability and product assurance. As a first iteration two elements are required to define a test standard for an EAP actuator: a Unit Tester, and a Component Specification. In this paper a EAP Unit Tester architecture is presented along with the required classification of measurements to be included in the EAP actuator Component Specification. The proposed EAP Unit Tester allows on-line monitoring and recording of the following properties of the specimen under test: large deformation, small tip displacement, temperature at the electrodes, weight of the specimen, voltage and current driven into the EAP, load being applied to the actuator, output voltage of the EAP in sensing operation and mode of operation (structure/sensor/actuator/smart). The measurements are taken simultaneously, in real-time. The EAP Unit Tester includes a friendly Graphical User Interface. It uses embedded Excel tools to visualize data. In addition, real-time connectivity with MATLAB allows an easy testing of control algorithms. A novel methodology to measure the properties of EAP specimens versus a variable load is also presented. To this purpose a force signals generator in the range of mN was developed. The device is based on a DC mini-motor. It generates an opposing force to the movement of the EAP actuator. Since the device constantly opposes the EAP actuator movement it has been named Digital Force Generator (DFG). The DFG design allows simultaneous length and velocity measuring versus different load signals. By including such a device in the EAP Unit Tester the most suitable application for the specimen under test can be easily identified (vibration damper, large deformation actuator, large

  14. Testing of marrow coal bed systems by hydraulic driving device for thin films of coal; Ensayo de un Sistema de Arranque con Cepillo mediante Accionamiento Hidraulico para Capas Estrechas de CArbon

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-07-01

    This researching project had the aim of: Testing a new mining system performance at narrow coal bed, which uses plough equipment with hydraulic driving devices. Minimising driving power group size to avoid problems regarding with the wall mining-heading transition, decreasing the needed room to house it and thus simplifying wall mining edge support The expected goals were: Take advantage of hydraulic driving devices to obtain a good efficiency with a variable and discontinuous load, bu t without loosing the electric driving devices advantages, consisting on increase driving torque, being the engine blocked Lengthen the mechanical equipment life (chains, driving sprockets, etc.) Reach and economic production rate Researching project was developed in El Bierzo basin (Leon, Spain), in Grupo Ampliacion, a mining group belonged to Viloria Hnos S. A.. (Author)

  15. Buckling of Elastomeric Beams Enables Actuation of Soft Machines

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Dian [Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street Cambridge MA 02138 USA; School of Engineering and Applied Sciences Harvard University, 29 Oxford Street Cambridge MA 02138 USA; Mosadegh, Bobak [Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street Cambridge MA 02138 USA; Wyss Institute for Biologically Inspired Engineering Harvard University, 60 Oxford Street Cambridge MA 02138 USA; Ainla, Alar [Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street Cambridge MA 02138 USA; Lee, Benjamin [Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street Cambridge MA 02138 USA; Khashai, Fatemeh [Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street Cambridge MA 02138 USA; Suo, Zhigang [School of Engineering and Applied Sciences Harvard University, 29 Oxford Street Cambridge MA 02138 USA; Kavli Institute for Bionano Science & Technology Harvard University, 29 Oxford Street Cambridge MA 02138 USA; Bertoldi, Katia [School of Engineering and Applied Sciences Harvard University, 29 Oxford Street Cambridge MA 02138 USA; Kavli Institute for Bionano Science & Technology Harvard University, 29 Oxford Street Cambridge MA 02138 USA; Whitesides, George M. [Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street Cambridge MA 02138 USA; Wyss Institute for Biologically Inspired Engineering Harvard University, 60 Oxford Street Cambridge MA 02138 USA; Kavli Institute for Bionano Science & Technology Harvard University, 29 Oxford Street Cambridge MA 02138 USA

    2015-09-21

    Soft, pneumatic actuators that buckle when interior pressure is less than exterior provide a new mechanism of actuation. Upon application of negative pneumatic pressure, elastic beam elements in these actuators undergo reversible, cooperative collapse, and generate a rotational motion. These actuators are inexpensive to fabricate, lightweight, easy to control, and safe to operate. They can be used in devices that manipulate objects, locomote, or interact cooperatively with humans.

  16. Hydraulic structures

    CERN Document Server

    Chen, Sheng-Hong

    2015-01-01

    This book discusses in detail the planning, design, construction and management of hydraulic structures, covering dams, spillways, tunnels, cut slopes, sluices, water intake and measuring works, ship locks and lifts, as well as fish ways. Particular attention is paid to considerations concerning the environment, hydrology, geology and materials etc. in the planning and design of hydraulic projects. It also considers the type selection, profile configuration, stress/stability calibration and engineering countermeasures, flood releasing arrangements and scouring protection, operation and maintenance etc. for a variety of specific hydraulic structures. The book is primarily intended for engineers, undergraduate and graduate students in the field of civil and hydraulic engineering who are faced with the challenges of extending our understanding of hydraulic structures ranging from traditional to groundbreaking, as well as designing, constructing and managing safe, durable hydraulic structures that are economical ...

  17. The 3DBiopsy Prostate Biopsy System: Preclinical Investigation of a Needle, Actuator, and Specimen Collection Device Allowing Sampling of Individualized Prostate Lengths Between 20 and 60 mm.

    Science.gov (United States)

    Stone, Nelson N; Mouraviev, Vladimir; Schechter, David; Lucia, M Scott; Smith, Elizabeth E; Arangua, Paul; Hoenemeyer, John; Rosa, Jim; Bawa, Rajan; Crawford, E David

    2017-09-01

    To increase the likelihood of detecting anterior cancers within the prostate and provide a specimen that spans the length of the gland. Newly designed 17- and 15-gauge (G) biopsy needles, a variable actuator, and an integrated pathology system intended for the longer cores were developed and tested for this purpose. Testing was performed comparing 2 common cannula tip grinds, a Vet-point (sharp tip) and a Menghini-point (atraumatic tip), and were tested against 18-G Bard Monopty in porcine kidney. A variable actuator was developed to fire the needle 20-60 mm and tested in cadaver prostates. The aggregate firings for 3 different shot lengths comparing the Vet- with the Menghini-tip cannulas demonstrated 91% vs 85.2% fill (length of specimen/length of core bed, P = .007). A 15-G trocar needle with the Vet-tip cannula also had the best performance, with an aggregate standard deviation of 6.4% across 3 firing ranges and a minimum to maximum specimen length of 81%-105% of potential fill. Cadaver testing with the Vet-tip needles in the actuator for the transrectal (17-G) and transperineal (15-G) biopsies demonstrated mean fills of 93.3% and 76.5%, respectively. The new transrectal ultrasound needle obtained a 2-fold increase in specimen length over the standard Bard device (P actuator, the physician can obtain specimens that include peripheral and anterior zone tissue in 1 core. Determination of cancer location on the longer specimens could enhance focal therapy planning. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Torque characteristics of a 122-centimeter butterfly valve with a hydro/pneumatic actuator

    Science.gov (United States)

    Lin, F. N.; Moore, W. I.; Lundy, F. E.

    1981-01-01

    Actuating torque data from field testing of a 122-centimeter (48 in.) butterfly valve with a hydro/pneumatic actuator is presented. The hydraulic cylinder functions as either a forward or a reverse brake. Its resistance torque increases when the valve speeds up and decreases when the valve slows down. A reduction of flow resistance in the hydraulic flow path from one end of the hydraulic cylinder to the other will effectively reduce the hydraulic resistance torque and hence increase the actuating torque. The sum of hydrodynamic and friction torques (combined resistance torque) of a butterfly valve is a function of valve opening time. An increase in the pneumatic actuating pressure will result in a decrease in both the combined resistance torque and the actuator opening torque; however, it does shorten the valve opening time. As the pneumatic pressure increases, the valve opening time for a given configuration approaches an asymptotical value.

  19. HYDRAULIC SERVO

    Science.gov (United States)

    Wiegand, D.E.

    1962-05-01

    A hydraulic servo is designed in which a small pressure difference produced at two orifices by an electrically operated flapper arm in a constantly flowing hydraulic loop is hydraulically amplified by two constant flow pumps, two additional orifices, and three unconnected ball pistons. Two of the pistons are of one size and operate against the additional orifices, and the third piston is of a different size and operates between and against the first two pistons. (AEC)

  20. Flexure-based nanomagnetic actuators

    Science.gov (United States)

    Vasquez, Daniel James

    Nanometer-scale actuators powered through applied-magnetic fields have been designed, fabricated, and tested. These actuators consist of one or more ferromagnetic elements attached to a mechanical flexure. Two types of flexures were studied including a cantilever beam that is fixed on one end, and free on the other. The free end of the cantilever is attached to a, ferromagnetic element allowing a bending torque to be applied by a magnetic field. The second type of actuator design uses a set of torsion beams that are each anchored on one end, and attached to the magnetic element on the other end. The torsion beams are designed such that the application of a magnetic field will result in a twist along the long axis of the beam with little to no bending. The smallest fabricated and tested device is a cantilever-based ferromagnetic actuator that consists of a single 1.5-mum-long, 338-nm-wide, and 50-nm-thick nickel element, and a 2.2-mum-long, 110-nm-wide, and 30-nm-thick gold cantilever beam. A deflection of over 17° was measured for this actuator, while a similar one with a 10.1-mum long cantilever beam experienced measured deflections up to 57°. Torsion-based ferromagnetic actuators have been fabricated and tested with 110-nm-wide, and 50-rim-thick magnetic elements. Such magnetic elements contain only a single saturated magnetic domain. The ultimate scalability of ferromagnetic actuation is limited by the ability of thermal noise to affect the temporal stability of a nanometer-scale magnet. Theory to describe thermal noise and ultimate scalability of the ferromagnetic actuators has been developed. The size of the ferromagnetic actuators studied in this manuscript are smaller than most plant and animal cells. This enables the possibility of such actuators to manipulate a, living cell on an intracellular level. Other potential applications of such small actuators include MHz, to GHz frequency resonators, and tunable optical filters.

  1. Hydraulic hoist-press

    Energy Technology Data Exchange (ETDEWEB)

    Babayev, Z.B.; Abashev, Z.V.

    1982-01-01

    The efficiency expert of the Angrenskiy production-technological administration of the production association Sredazugol A. V. Bubnov has suggested a hydraulic hoist-press for repairing road equipment which is a device consisting of lifting mechanism, press and test stand for verifying the high pressure hoses and pumps.

  2. FEEDBACK LINEARISATION APPLIED ON A HYDRAULIC

    DEFF Research Database (Denmark)

    Andersen, Torben Ole; Hansen, Michael Rygaard; Pedersen, Henrik C.;

    2005-01-01

    Generally most hydraulic systems are intrensically non-linear, why applying linear control techniques typically results in conservatively dimensioned controllers to obtain stable performance. Non-linear control techniques have the potential of overcoming these problems, and in this paper the focus...... is on developing and applying several different feedback linearisation (FL) controllers to the individual servo actuators in a hydraulically driven servo robot to evaluate and compare their possiblities and limitations. This is done based on both simulation and experimental results....

  3. Deformable mirror with thermal actuators.

    Science.gov (United States)

    Vdovin, Gleb; Loktev, Mikhail

    2002-05-01

    Low-cost adaptive optics is applied in lasers, scientific instrumentation, ultrafast sciences, and ophthalmology. These applications demand that the deformable mirrors used be simple, inexpensive, reliable, and efficient. We report a novel type of ultralow-cost deformable mirror with thermal actuators. The device has a response time of ~5 s , an actuator stroke of ~6mum , and temporal stability of ~lambda/10 rms in the visible range and can be used for correction of rather large aberrations with slow-changing amplitude.

  4. 21 CFR 880.5110 - Hydraulic adjustable hospital bed.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Hydraulic adjustable hospital bed. 880.5110... (CONTINUED) MEDICAL DEVICES GENERAL HOSPITAL AND PERSONAL USE DEVICES General Hospital and Personal Use Therapeutic Devices § 880.5110 Hydraulic adjustable hospital bed. (a) Identification. A hydraulic adjustable...

  5. Thermal-hydraulics of helium cooled First Wall channels and scoping investigations on performance improvement by application of ribs and mixing devices

    Energy Technology Data Exchange (ETDEWEB)

    Arbeiter, Frederik, E-mail: frederik.arbeiter@kit.edu [Karlsruhe Institute of Technology, Institute of Neutron Physics and Reactor Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); Bachmann, Christian [EUROfusion – Programme Management Unit, Garching (Germany); Chen, Yuming; Ilić, Milica; Schwab, Florian [Karlsruhe Institute of Technology, Institute of Neutron Physics and Reactor Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); Sieglin, Bernhard [Max-Planck-Institut für Plasmaphysik, Garching (Germany); Wenninger, Ronald [EUROfusion – Programme Management Unit, Garching (Germany)

    2016-11-01

    Highlights: • Existing first wall designs and expected plasma heat loads are reviewed. • Heat transfer enhancement methods are investigated by CFD. • The results for heat transfer and friction are given, compared and explained. • Relations for needed pumping power and gained thermal heat are shown. • A range for the maximum permissible heat loads from the plasma is estimated. - Abstract: The first wall (FW) of DEMO is a component with high thermal loads. The cooling of the FW has to comply with the material's upper and lower temperature limits and requirements from stress assessment, like low temperature gradients. Also, the cooling has to be integrated into the balance-of-plant, in a sense to deliver exergy to the power cycle and require a limited pumping power for coolant circulation. This paper deals with the basics of FW cooling and proposes optimization approaches. The effectiveness of several heat transfer enhancement techniques is investigated for the use in helium cooled FW designs for DEMO. Among these are wall-mounted ribs, large scale mixing devices and modified hydraulic diameter. Their performance is assessed by computational fluid dynamics (CFD), and heat transfer coefficients and pressure drop are compared. Based on the results, an extrapolation to high heat fluxes is tried to estimate the higher limits of cooling capabilities.

  6. Device for automatic driving of an mining combine in relation to the open interface of 2 solid media

    Energy Technology Data Exchange (ETDEWEB)

    Zombek, O.I.; Nosulya, Ye.P.; Pavlov, Yu.S.; Shcherbina, V.I.

    1982-01-01

    A device is proposed for automatic driving of a mining combine in relation to the open interface of 2 solid media which include electric hydraulic distributors of lifting and lowering the actuating mechanism, electrodes with mechanism for their compression and hydraulic engine of the caterpillar course. In order to improve accuracy by guaranteeing the possibility of pressing the electrodes to the wall in the shaft with constant force, the mechanism of compression of the electrode is made in the form of 2 hydraulic winches whose piston cavities are interconnected and are connected through the valve of sequence input of the hydraulic motor of the caterpillar course. The interconnected rod cavities of the hydraulic winches are connected to the outlet of the hydraulic motor of the caterpillar course, while the electrodes are installed on the ends of the hydraulic winch rods. The electrical outlets of the electrodes are connected through the contacts of the corresponding relay to the electric hydraulic distributors of lifting and lowering the actuating mechanism. In order to guarantee the necessary accuracy of installing the electrodes on the interface of the 2 solid media, the hydraulic winches are movable over the height in relation to each other. Use of the proposed device in the national economy makes it possible to reduce the loss of minerals which appears because of deviation of the combine into the side rock; to replace the not very effective manual labor of the personnel servicing the mining combine for making shafts in a vertical plane; to increase the content of mineral, sylvinite by reducing the working out of the mineral. In addition to the obtained additional quantity of mineral by increasing the rates of drilling, the proposed device makes it possible to reduce outlays for enrichment.

  7. Thermal expansion as a precision actuator

    Science.gov (United States)

    Miller, Chris; Montgomery, David; Black, Martin; Schnetler, Hermine

    2016-07-01

    The UK ATC has developed a novel thermal actuator design as part of an OPTICON project focusing on the development of a Freeform Active Mirror Element (FAME). The actuator uses the well understood concept of thermal expansion to generate the required force and displacement. As heat is applied to the actuator material it expands linearly. A resistance temperature device (RTD) is embedded in the centre of the actuator and is used both as a heater and a sensor. The RTD temperature is controlled electronically by injecting a varying amount of current into the device whilst measuring the voltage across it. Temperature control of the RTD has been achieved to within 0.01°C. A 3D printed version of the actuator is currently being used at the ATC to deform a mirror but it has several advantages that may make it suitable to other applications. The actuator is cheap to produce whilst obtaining a high accuracy and repeatability. The actuator design would be suitable for applications requiring large numbers of actuators with high precision.

  8. A solenoid-based active hydraulic engine mount: modelling, analysis, and verification

    OpenAIRE

    Hosseini, Ali

    2010-01-01

    The focus of this thesis is on the design, modelling, identification, simulation, and experimental verification of a low-cost solenoid-based active hydraulic engine mount. To build an active engine mount, a commercial On-Off solenoid is modified to be used as an actuator and it is embedded inside a hydraulic engine mount. The hydraulic engine mount is modelled and tested, solenoid actuator is modelled and identified, and finally the models were integrated to obtain the analytical model of the...

  9. Optimal design of a floating mass type piezoelectric actuator for implantable middle ear hearing devices%人工中耳悬浮式压电振子的优化设计

    Institute of Scientific and Technical Information of China (English)

    田佳彬; 饶柱石; 塔娜; 许立富

    2015-01-01

    To optimize the implant performance of a floating mass type piezoelectric actuator for implantable hearing devices,a displacement amplifier was designed to improve the output characteristics of the actuator.A finite element model of human ear consisting of the external ear canal,middle ear and simplified cochlea was constructed via micro-computer tomography imaging and the technique of reverse engineering.The validity of the model was verified by comparing the model-derived results with experimental data from reference.Then an ear-actuator coupled mechanical model was developed,and the multi-field coupling was considered to study the implant performance of the actuator before and after the displacement amplifier was added.The results showed that the adoption of displacement amplifier can increase the equivalent sound pressure level of the actuator in the middle and high frequency ranges,and the power consumption can effectively be reduced at the same time.%为了优化人工中耳悬浮式压电振子的植入效果,设计了一种位移放大结构用于改善振子的输出特性。首先采用微 CT 扫描和逆向成型技术建立了包括外耳道、中耳和简化耳蜗的人耳有限元模型,通过与文献的实验数据比对验证模型的有效性。然后建立人耳与悬浮振子的耦合力学模型,通过有限元的耦合场分析研究加入位移放大结构前后的人工中耳植入效果。研究结果表明,采用位移放大结构后,振子于中高频段的等效声压级得到明显提升,可以有效降低压电振子的功耗。

  10. Hydraulics and pneumatics

    CERN Document Server

    Parr, Andrew

    2006-01-01

    Nearly all industrial processes require objects to be moved, manipulated or subjected to some sort of force. This is frequently accomplished by means of electrical equipment (such as motors or solenoids), or via devices driven by air (pneumatics) or liquids (hydraulics).This book has been written by a process control engineer as a guide to the operation of hydraulic and pneumatic systems for all engineers and technicians who wish to have an insight into the components and operation of such a system.This second edition has been fully updated to include all recent developments su

  11. A road to practical dielectric elastomer actuators based robotics and mechatronics: discrete actuation

    Science.gov (United States)

    Plante, Jean-Sébastien; Devita, Lauren M.; Dubowsky, Steven

    2007-04-01

    Fundamental studies of Dielectric Elastomer Actuators (DEAs) using viscoelastic materials such as VHB 4905/4910 from 3M showed significant advantages at high stretch rates. The film's viscous forces increase actuator life and the short power-on times minimize energy losses through current leakage. This paper presents a design paradigm that exploits these fundamental properties of DEAs called discrete actuation. Discrete actuation uses DEAs at high stretch rates to change the states of robotic or mechatronic systems in discrete steps. Each state of the system is stable and can be maintained without actuator power. Discrete actuation can be used in robotic and mechatronic applications such as manipulation and locomotion. The resolution of such systems increases with the number of discrete states, 10 to 100 being sufficient for many applications. An MRI-guided needle positioning device for cancer treatments and a space exploration robot using hopping for locomotion are presented as examples of this concept.

  12. Advance of Study on Design Methods of Hydraulic System of Radio Remote Control of Construction Machinery

    Institute of Scientific and Technical Information of China (English)

    FENG Kai-lin; YANG Wei-min; CHEN kang-ning

    2003-01-01

    The working principle of radio remote controlling of construction machinery should be that signals of the radio wave from the transmitter obtained in the receiver were controlled and then changed into electronic analog or digital signals which can be used to drive different actuators and mechanisms of the vehicle.The vehicle could be acted by following the controlling instructions sent by the operator.The best operation mode of construction machinery is suitable not only to manual operating but also to remote controlling in the same vehicle.The design methods of the hydraulic system used for the radio remote controlling of construction machinery are discussed.The design methods of hydraulic circuits for the actuators controlled by solenoid on-off type valves,hydro-electronic multi-way proportional valves,closed loop proportional servo driver or three-way proportional reducing valves are discussed in detail (with real example).The design methods of the power shift transmission of electro-hydraulic controlling,the devices of braking and the directional streering are discussed in this paper.

  13. Light Actuation of Liquid in Optofluidics

    Institute of Scientific and Technical Information of China (English)

    WAN Jing; LIANG Zhong-cheng

    2008-01-01

    Optofluidics is the integration of optics and microfluidics(so-called lab on the chip). Wherein the actuation of liquid is a key technic. In a variety of methods for controlling microscale liquid, the light actuation is particularly interesting. The light actuation offers a novel way to control the flow of fluids for biomedical and biotechnological applications, etc.. The complexity and cost of devices sometimes may be greatly reduced by using complete optical control and may be more flexible in operation than other methods. However the light actuation of liquid is a burgeoning field as well as optofluidics. There is lots of work to do. Here we systematically describe four mechanisms for the light actuation of liquid based on the following points: optoelectrowetting, photothermal effect, radiation pressure, photosensitive substance.

  14. Pneumatic Rotary Actuator Angle Control System

    Institute of Scientific and Technical Information of China (English)

    王鹏; 彭光正; 伍清河

    2003-01-01

    Based on the adaptive control method, a kind of parameter adjustor was used to control pneumatic rotary actuator to track the expected output. The system uses electropneumatic proportional valve as control device, which adjusts the gas flow of actuator 's two cavities, then changes the pressure of cavity and pushes the piston of actuator to move, so the rotary actuator 's axis can be made to revolve to the required angle at last. According to the characteristic of pneumatic system, the control system was described with a fourth-order mathematic model. The control rule is deduced by model reference adaptive control method. By the result of experiment, it was proved that by using the adaptive control method, the output of rotary actuator could track the expected value timely and accurately.

  15. Basic hydraulics

    CERN Document Server

    Smith, P D

    1982-01-01

    BASIC Hydraulics aims to help students both to become proficient in the BASIC programming language by actually using the language in an important field of engineering and to use computing as a means of mastering the subject of hydraulics. The book begins with a summary of the technique of computing in BASIC together with comments and listing of the main commands and statements. Subsequent chapters introduce the fundamental concepts and appropriate governing equations. Topics covered include principles of fluid mechanics; flow in pipes, pipe networks and open channels; hydraulic machinery;

  16. Cavitation in Hydraulic Machinery

    Energy Technology Data Exchange (ETDEWEB)

    Kjeldsen, M.

    1996-11-01

    The main purpose of this doctoral thesis on cavitation in hydraulic machinery is to change focus towards the coupling of non-stationary flow phenomena and cavitation. It is argued that, in addition to turbulence, superimposed sound pressure fluctuations can have a major impact on cavitation and lead to particularly severe erosion. For the design of hydraulic devices this finding may indicate how to further limit the cavitation problems. Chapter 1 reviews cavitation in general in the context of hydraulic machinery, emphasizing the initial cavitation event and the role of the water quality. Chapter 2 discusses the existence of pressure fluctuations for situations common in such machinery. Chapter 3 on cavitation dynamics presents an algorithm for calculating the nucleation of a cavity cluster. Chapter 4 describes the equipment used in this work. 53 refs., 55 figs.,10 tabs.

  17. Prototype SMA actuated locking device for small space magnetic bearing flywheels%采用SMA驱动的小型空间磁悬浮飞轮锁紧机构

    Institute of Scientific and Technical Information of China (English)

    闫晓军; 张小勇; 聂景旭; 张绍卫

    2011-01-01

    磁悬浮飞轮锁紧机构在卫星发射时锁紧飞轮,减小其振动和冲击载荷;在发射后解锁,保证飞轮正常工作.目前已有的以火工品或步进电机驱动的锁紧机构具有冲击大、体积较大、不可重复使用等缺点.提出了一种采用形状记忆合金(SMA,Shape Memory Alloy)驱动的空间磁悬浮飞轮锁紧机构的设计方案,并在Liang本构模型的基础上发展了机构驱动单元的设计方法.之后,完成了锁紧机构的样机研制和调试,并开展了地面的性能测试、振动试验和高温环境试验.研究结果表明:SMA锁紧机构安装体积小,在星载28 V电压下能在6 s内完全锁紧,在1 s内完全解锁,并能够通过振动和环境实验.SMA驱动的磁悬浮飞轮锁紧机构具有锁紧力大、同步性好、可重复使用、低冲击、无污染等优势,有很大的工程应用潜力.%Based on magnetic levitation principle, the magnetic bearing flywheel is a new type of inertial actuator used in satellite attitude control. A locking device was used to eliminate the gap between the rotor and stator of magnetic bearing flywheel so as to protect it from shock and vibration damage during launch phase. The present pyrotechnical or motor actuated locking devices have the disadvantages of high shock, large size and un-resetable. A prototype shape memory alloys (SMA)actuated locking device for small space magnetic bearing flywheel was developed in this investigation. A method and procedures to design the actuator element based on Liang's constitutive model was presented. Then the SMA locking device was assembled and the function, environment and vibration tests were carried out. Test results show that the device can complete lock function within 6 s and release function within 1 s under satellite power supply of 28 V. It can also undergo the environment and vibration tests which simulate the launch phase. It is concluded that the new SMA locking device owning advantages of great

  18. Pressure control valve using proportional electro-magnetic solenoid actuator

    Energy Technology Data Exchange (ETDEWEB)

    Yun, So Nam; Ham, Young Bog; Park, Pyoung Won [Korea Institute of Machinery and Materials, Daejeon (Korea, Republic of)

    2006-10-15

    This paper presents an experimental characteristics of electro-hydraulic proportional pressure control valve. In this study, poppet and valve body which are assembled into the proportional solenoid were designed and manufactured. The constant force characteristics of proportional solenoid actuator in the control region should be independent of the plunger position in order to be used to control the valve position in the fluid flow control system. The stroke-force characteristics of the proportional solenoid actuator is determined by the shape (or parameters) of the control cone. In this paper, steady state and transient characteristics of the solenoid actuator for electro-hydraulic proportional valve are analyzed using finite element method and it is confirmed that the proportional solenoid actuator has a constant attraction force in the control region independently on the stroke position. The effects of the parameters such as control cone length, thickness and taper length are also discussed.

  19. Hydraulic Structures

    Data.gov (United States)

    Department of Homeland Security — This table is required whenever hydraulic structures are shown in the flood profile. It is also required if levees are shown on the FIRM, channels containing the...

  20. Closed Loop Controlled ER-Actuator

    Science.gov (United States)

    Wolff, C.

    The results of the investigation regarding the suitability of ERF when applied in hydraulics have shown so far that constructing electrorheological flow resistors for the control of pressure and volume flow is possible in principle. One of the main advantages when using the ER-technology in hydraulic systems can be seen in the high reaction rate of the ER-effect. The investigations presented in this article document the dynamic qualities of ER-fluids by means of a practical exploitation for the control of a cylinder actuator. Due to the particular possibilities for design of ER-control resistors a compact cylinder has resulted which differs considerably from traditional cylinder actuators in its construction and dynamic behaviour.

  1. Mechatronic Hydraulic Drive with Regulator, Based on Artificial Neural Network

    Science.gov (United States)

    Burennikov, Y.; Kozlov, L.; Pyliavets, V.; Piontkevych, O.

    2017-06-01

    Mechatronic hydraulic drives, based on variable pump, proportional hydraulics and controllers find wide application in technological machines and testing equipment. Mechatronic hydraulic drives provide necessary parameters of actuating elements motion with the possibility of their correction in case of external loads change. This enables to improve the quality of working operations, increase the capacity of machines. The scheme of mechatronic hydraulic drive, based on the pump, hydraulic cylinder, proportional valve with electrohydraulic control and programmable controller is suggested. Algorithm for the control of mechatronic hydraulic drive to provide necessary pressure change law in hydraulic cylinder is developed. For the realization of control algorithm in the controller artificial neural networks are used. Mathematical model of mechatronic hydraulic drive, enabling to create the training base for adjustment of artificial neural networks of the regulator is developed.

  2. Education for hydraulics and pneumatics in Yokohama University, Faculty of Engineering, Department of Mechanical Engineering and Materials Sciences; Yokohama Kokuritsu Daigaku ni okeru yukuatsu kyoiku

    Energy Technology Data Exchange (ETDEWEB)

    Sato, Y. [Yokohama National University, Yokohama (Japan). Faculty of Engineering

    2000-03-15

    Described herein is education for hydraulics and pneumatics in Yokohama University. Department of Mechanical Engineering and Materials Science pursues to most efficiently produce high-quality products useful for human living and compatible with the environments, based on scientific and technological knowledge man has learned. This department has four professional education courses, materials designs, mechanical processes, hot fluid dynamics, and mechanical systems. An independent subject of hydraulic and pneumatic systems is provided for hydraulics and pneumatics. The lectures on mechatronics include those for digitally-, electronically/hydraulically- and electronically/pneumatically-controlled devices, and their characteristics. The related subjects include fluid dynamics, basic fluid analysis, applied fluid analysis, turbo machines, and automatic control. The postgraduate courses provide hydraulic and pneumatic engineering for, e.g., cavitation and unsteady flow through conduits, hydraulic/pneumatic driving and controlling, modeling and robust control of mechanical systems, and designs of fluid-controlling devices and actuators. The experimental courses include tests of centrifugal pump performance, measurement of pressure distributions on journal bearings, and tests of fluid flow through conduits. (NEDO)

  3. Smart Tendon Actuated Flexible Actuator

    Directory of Open Access Journals (Sweden)

    Md. Masum Billah

    2015-01-01

    Full Text Available We investigate the kinematic feasibility of a tendon-based flexible parallel platform actuator. Much of the research on tendon-driven Stewart platforms is devoted either to the completely restrained positioning mechanism (CRPM or to one particular type of the incompletely restrained positioning mechanism (IRPM where the external force is provided by the gravitational pull on the platform such as in cable-suspended Stewart platforms. An IRPM-based platform is proposed which uses the external force provided by a compliant member. The compliant central column allows the configuration to achieve n DOFs with n tendons. In particular, this investigation focuses on the angular deflection of the upper platform with respect to the lower platform. The application here is aimed at developing a linkable module that can be connected to one another so as to form a “snake robot” of sorts. Since locomotion takes precedence over positioning in this application, a 3-DOF Stewart platform is adopted. For an arbitrary angular displace of the end-effector, the corresponding length of each tendon can be determined through inverse kinematics. Mathematical singularities are investigated using the traditional analytical method of defining the Jacobian.

  4. Electro Hydraulic Hitch Control

    DEFF Research Database (Denmark)

    Hansen, M. R.; Andersen, T. O.; Nielsen, B.

    2003-01-01

    system for agricultural applications and driving for transportation. During tranport phases, the lack of suspension causes the vehicle to bounce and pitch, and makes it difficalt to control. Many systems have been proposed to cope with the oscillatory behavior, and different solutions exist. Common......This paper present and discusses R&D results on electro hydraulic hitch control for off-road vehicle, in particular active damping of oscillation occuring on tractors. The research deals with analysis and control of the oscillations occuring on tractors which are design without any susspection...... for most of the systems are that they operate on the hydrailc actuators generally providing the motive forces for moving the implement and/or attachment, typically a plough. The basic idea and physical working principle are to use the implement, moveable relative to the vehicle, as a damper mass. The paper...

  5. Control of an electro-hydrostatic actuation system for the nose landing gear of an "all electric aircraft"

    OpenAIRE

    Greissner, Carsten; Carl, Udo

    2004-01-01

    The EU research Project Power Optimised Aircraft (POA) investigates the approach to replace primary hydraulic supply by extended electric power systems towards a More or All Electric Aircraft. This contribution presents an electrically powered actuation system for nose landing gears using an EHA (electrohydrostatic actuator) approach. One motor pump unit supplies door and gear actuation as well as the steering system. Different control strategies for the individual actuators are introduced. T...

  6. Torque Control of Electrorheological Fluidic Actuators

    OpenAIRE

    Vitrani, Marie-Aude; Nikitczuk, Jason; Morel, Guillaume; Mavroidis, Constantinos

    2004-01-01

    International audience; In this paper, the experimental closed loop torque control of electro-rheological fluids (ERF) based actuators for haptic applications is performed. ERFs are liquids that respond mechanically to electric fields by changing their properties, such as viscosity and shear stress, electroactively. Using the electrically controlled rheological properties of ERFs, we developed actuators for haptic devices that can resist human operator forces in a controlled and tunable fashi...

  7. Worthy test programmes and developments of smart electromechanical actuators

    Science.gov (United States)

    Annaz, Fawaz Yahya

    2007-02-01

    Early aircraft flight control systems were totally manually operated, that is, the force required to move flight control surfaces was generated by the pilot and transmitted by cables and rods. As aerodynamics and airframe technology developed and speeds increased, the forces required to move control surfaces increased, as did the number of surfaces. In order to provide the extra power required, hydraulic technology was introduced. To date, the common element in the development of flight control systems has been, mainly, restricted to this type of technology. This is because of its proven reliability and the lack of alternative technologies. However, the technology to build electromechanically actuated primary flight control systems is now available. Motors developing the required power at the required frequencies are now possible (with the use of high energy permanent magnetic materials and compact high speed electronic circuits). It is this particular development which may make the concept of an 'all electric aircraft' realizable in the near future. The purpose of the all electric aircraft concept is the consolidation of all secondary power systems into electric power. The elimination of hydraulic and pneumatic secondary power systems will improve maintainability, flight readiness and use of energy. This paper will present the development of multi-lane smart electric actuators and offer an insight into other subsequent fields of study. The key areas of study may be categorized as follows. State of the art hydraulic actuators. Electromechanical actuator system test programmes. Development of electromechanical actuators. Modelling of electromechanical actuators.

  8. An Innovative Shape Memory Actuator

    Directory of Open Access Journals (Sweden)

    Cappellini Valter

    2016-01-01

    Full Text Available The work describes a NiTi linear actuator. This material is able to realize a contraction with heating produced through Joule effect. Then a cooling of the active device is realized with forced air. Finally the lengthening is realized with another active element. The particular structure of the geometry allows for an increment of reliability, because the electrical connections are mechanically stabilized and the active elements are compelled to avoid undesired electrical contacts through an insulated cylindrical core.

  9. Optimization simulation for performance of working device of large face-shovel hydraulic excavator%大型正铲液压挖掘机工作装置性能的优化仿真

    Institute of Scientific and Technical Information of China (English)

    张羽林; 宁晓斌; 王秋成

    2013-01-01

    Aiming at the problem of performance optimization for the working range and the digging force of large face-shovel hydraulic excavator work device, kinematics simulation model of hydraulic excavator work device was developed by ADAMS/view firstly, to obtain the digging envelope diagram and the working range performance, through changing hinge point positions to optimize the working range performance. Then dynamics simulation on the work device dynamics simulation model was carried on,which integrated hydraulic model, that developed by ADAMS/Hydraulics, to research the digging force performance and optimize the biggest digging force by changing hinge point positions. The result indicates that this optimization method is an ideal approach to improve the performance of the working range and the digging force for the work device. The final optimization plan will become the design basis of research and development of large-scale hydraulic excavator.%针对大型正铲液压挖掘机工作装置工作范围和挖掘力的性能优化问题,首先采用ADAMSMew开发了液压挖掘机工作装置的运动学仿真模型,通过对其进行运动学仿真得出了挖掘包络图与工作范围性能指标,并通过调整铰接点位置的优化方法对工作范围的性能进行了优化;然后利用ADAMS/Hydraulics开发了正铲液压挖掘机工作装置液压模型,集成于工作装置运动学模型,从而建立了工作装置动力学模型,对其进行了挖掘力性能仿真研究,通过调整铰接点位置的优化方法对最大挖掘力进行了优化.研究结果表明,通过采用该仿真优化方法,提升了工作装置的工作范围与挖掘力的性能,筛选出的最终优化方案,将作为研发大型液压挖掘机的设计依据.

  10. Research on a Wireless Remote-control Hydraulic Auxiliary Device for Parking Sideward%一种无线遥控侧方停车液压辅助装置的研发

    Institute of Scientific and Technical Information of China (English)

    汪功明; 姚道如

    2015-01-01

    研发一种无线遥控侧方停车液压辅助装置,以满足在狭小空间快捷、安全地完成停车动作的要求。该装置由可调式机座、液压驱动、无线电遥控三大主体部分组成。阐述了该装置的技术方案,确定了核心结构的主要参数或技术类型。%s: A wireless remote⁃control hydraulic auxiliary device was developed for parking sideward, to satisfy the request to park a car safely and quickly in a small space. The device mainly consisted of adjusting engine base, hydraulic drive system, and wireless remote⁃control device. The technical scheme of the device was stated and the main parameter or technical type of the core structure were confirmed.

  11. Actuators, transducers and motors based on giant magnetostrictive materials

    Energy Technology Data Exchange (ETDEWEB)

    Claeyssen, F.; Lhermet, N.; Le Letty, R. [Cedrat Recherche, Meylan (France); Bouchilloux, P. [Magsoft Corporation, 1223 People`s Avenue, New York 12180 (United States)

    1997-08-01

    Rare earth-iron magnetostrictive alloys, especially Terfenol-D, feature ``giant`` magnetostrains: static strains of 1000-2000 ppm and dynamic strains of 3500 ppm are reported. These strains permit building various actuating devices (actuators, transducers, motors) both at macro and micro scale. The object of the paper is to recall adapted design methods, especially finite element methods such as ATILA, and to review these different kinds of devices studied at Cedrat Recherche, providing both up-dated experimental and numerical results. The presented devices will include several large displacement longitudinal and shear actuators biased using permanent magnets and used either as characterisation devices or as electromechanical actuators (for active damping, for sonar transducers..), a 1 kHz 4 kW Tonpilz-type sonar transducer called the tripode, a 2 N m torque rotating multi-mode motor, a torsion based drift free micro actuator and a wireless linear micromotor. (orig.)

  12. Improvement of energy storage motor control circuit of hydraulic actuator in high-voltage circuit breakers%高压断路器液压操动机构储能电机控制回路改进

    Institute of Scientific and Technical Information of China (English)

    张全民; 赵玉柱

    2011-01-01

    高压断路器液压操动机构的常见故障是储能电机频繁启动。通过合理地设计储能电机的控制回路,减少了液压机构频繁启动的现象。%The fault of the mechanism of High voltage circuit-breaker is motor of storaging power high frequency starup.That rationally design control circuit of hydraulic mechanism reduce the fault that motor of storaging power high frequency starup.

  13. Electromagnetic rotational actuation.

    Energy Technology Data Exchange (ETDEWEB)

    Hogan, Alexander Lee

    2010-08-01

    There are many applications that need a meso-scale rotational actuator. These applications have been left by the wayside because of the lack of actuation at this scale. Sandia National Laboratories has many unique fabrication technologies that could be used to create an electromagnetic actuator at this scale. There are also many designs to be explored. In this internship exploration of the designs and fabrications technologies to find an inexpensive design that can be used for prototyping the electromagnetic rotational actuator.

  14. Model of magnetostrictive actuator

    Institute of Scientific and Technical Information of China (English)

    LI Lin; ZHANG Yuan-yuan

    2005-01-01

    The hysteresis of the magnetostrictive actuator was studied. A mathematical model of the hysteresis loop was obtained on the basis of experiment. This model depends on the frequency and the amplitude of the alternating current inputted to the magnetostrictive actuator. Based on the model, the effect of hysteresis on dynamic output of the magnetostrictive actuator was investigated. Then how to consider hysteresis and establish a dynamic model of a magnetostrictive actuator system is discussed when a practical system was designed and applied.

  15. Design of an innovative magnetostrictive patch actuator

    Science.gov (United States)

    Cinquemani, S.; Giberti, H.

    2015-04-01

    Magnetostrictive actuators can be profitably used to reduce vibration in structures. However, this technology has been exploited only to develop inertial actuators, while patches actuators have not been ever used in practice. Patches actuators consist on a layer of magnetostrictive material, which has to be stuck to the surface of the vibrating structure, and on a coil surrounding the layer itself. However, the presence of the winding severely limits the use of such devices. As a matter of fact, the scientific literature reports only theoretical uses of such actuators, but, in practice it does not seem they were ever used. This paper presents an innovative solution to improve the structure of the actuator patches, allowing their use in several practical applications. The principle of operation of these devices is rather simple. The actuator patch is able to generate a local deformation of the surface of the vibrating structure so as to introduce an equivalent damping that dissipates the kinetic energy associated to the vibration. This deformation is related to the behavior of the magnetostrictive material immersed in a variable magnetic field generated by the a variable current flowing in the winding. Contrary to what suggested in the theoretical literature, the designed device has the advantage of generating the variable magnetic field no longer in close proximity of the material, but in a different area, thus allowing a better coupling. The magnetic field is then conveyed through a suitable ferromagnetic structure to the magnetostrictive material. The device has been designed and simulated through FEA. Results confirm that the new configuration can easily overcome all the limits of traditional devices.

  16. Extended DNA Tile Actuators

    DEFF Research Database (Denmark)

    Kristiansen, Martin; Kryger, Mille; Zhang, Zhao

    2012-01-01

    A dynamic linear DNA tile actuator is expanded to three new structures of higher complexity. The original DNA actuator was constructed from a central roller strand which hybridizes with two piston strands by forming two half-crossover junctions. A linear expansion of the actuator is obtained...

  17. 精轧液压活套压力传感器故障快速判断与更换%Fast diagnosis of hydraulic loop transducer fault and exchange of the troubled device

    Institute of Scientific and Technical Information of China (English)

    邹荣; 李胤; 杨晓东; 张新平

    2012-01-01

    In the CSP line of WISCO the production rhythm is very fast and the environmental condition for installation of the hydraulic loop transducer is very tough and atmospheric temperature in the area is also quite high and therefore damage of the device frequently occurs in the process of installation. Furthermore longer duration time for device exchange and trouble shooting may cause termination of hot metal casting. By way of diagnosis and analysis on the fault of the hydraulic loop transducer a method of fast exchange of the transducer is developed according the the knowlege of mechanics, namely a method of installation of the hydraulic loop transducer by a pressure measuring cell and a pressure measuring wire and out hanging of the transducer. Ever since implementation of this method the accident of casting termination arising from the hydraulic loop transducer trouble has been completely eliminated.%武钢薄板坯连铸连轧生产线生产节奏快,而精轧液压活套压力传感器工作环境差,温度高,容易损坏,故障处理和更换时间过长甚至造成断浇。通过对液压活套压力传感器故障的判断、分析,研制出一种快速更换压力传感器的方法,即测压头、测压线以及传感器外挂的方法。实施此方法以后,彻底消除了因液压活套压力传感器引起的连铸断浇。

  18. Nonlinear, Adaptive and Fault-tolerant Control for Electro-hydraulic Servo Systems

    DEFF Research Database (Denmark)

    Choux, Martin

    Fluid power systems have been in use since 1795 with the rst hydraulic press patented by Joseph Bramah and today form the basis of many industries. Electro hydraulic servo systems are uid power systems controlled in closed-loop. They transform reference input signals into a set of movements...... in hydraulic actuators (cylinders or motors) by the means of hydraulic uid under pressure. With the development of computing power and control techniques during the last few decades, they are used increasingly in many industrial elds which require high actuation forces within limited space. However, despite...... numerous attractive properties, hydraulic systems are always subject to potential leakages in their components, friction variation in their hydraulic actuators and deciency in their sensors. These violations of normal behaviour reduce the system performances and can lead to system failure...

  19. Simulation and Performance of Brushless DC Motor Actuators.

    Science.gov (United States)

    1985-12-01

    AD-RI63 725 SIMULATION AND PERFORMANCE OF IRUSHLESS DC MOTOR ACTUATORS(U) NAVAL POSTGRADUATE SCHOOL MONTEREY CA A GERDA DEC 85 NPS69-85-628 M...California Progress Report SIMULATION AND PERFORMANCE OF BRUSHLESS DC MOTOR ACTUATORS IN SUPPORT OF THE PROGRAM "ADVANCED MISSILE CONTROL DEVICES"I of...34.’ SIMULATION AND PERFORMANCE OF BRUSHLESS DC MOTOR ACTUATORS SUMMARY The simulation model for a Brushless D.C. Motor and the associated * commutation power

  20. High-Performance Multiresponsive Paper Actuators.

    Science.gov (United States)

    Amjadi, Morteza; Sitti, Metin

    2016-11-22

    There is an increasing demand for soft actuators because of their importance in soft robotics, artificial muscles, biomimetic devices, and beyond. However, the development of soft actuators capable of low-voltage operation, powerful actuation, and programmable shape-changing is still challenging. In this work, we propose programmable bilayer actuators that operate based on the large hygroscopic contraction of the copy paper and simultaneously large thermal expansion of the polypropylene film upon increasing the temperature. The electrothermally activated bending actuators can function with low voltages (≤ 8 V), low input electric power per area (P ≤ 0.14 W cm(-2)), and low temperature changes (≤ 35 °C). They exhibit reversible shape-changing behavior with curvature radii up to 1.07 cm(-1) and bending angle of 360°, accompanied by powerful actuation. Besides the electrical activation, they can be powered by humidity or light irradiation. We finally demonstrate the use of our paper actuators as a soft gripper robot and a lightweight paper wing for aerial robotics.

  1. V2O5 nanofibre sheet actuators

    Science.gov (United States)

    Gu, Gang; Schmid, Michael; Chiu, Po-Wen; Minett, Andrew; Fraysse, Jerôme; Kim, Gyu-Tae; Roth, Siegmar; Kozlov, Mikhail; Muñoz, Edgar; Baughman, Ray H.

    2003-05-01

    Vanadium oxides, such as V2O5, are promising for lithium-ion batteries, catalysis, electrochromic devices and sensors. Vanadium oxides were proposed more than a decade ago for another redox-dependent application: the direct conversion of electrical energy to mechanical energy in actuators (artificial muscles). Although related conducting polymer and carbon nanotube actuators have been demonstrated, electromechanical actuators based on vanadium oxides have not be realized. V2O5 nanofibres and nanotubes provide the potential advantages of low-cost synthesis by sol-gel routes and high charging capacity and long cycle life. Here, we demonstrate electromechanical actuation for obtained high modulus V2O5 sheets comprising entangled V2O5 nanofibres. The high surface area of these V2O5 sheets facilitates electrochemical charge injection and intercalation that causes the electromechanical actuation. We show that the V2O5 sheets provide high Young's modulus, high actuator-generated stress, and high actuator stroke at low applied voltage.

  2. Singular perturbation approach for control of hydraulically driven flexible manipulator

    Institute of Scientific and Technical Information of China (English)

    LI Guang; WU Min

    2005-01-01

    The hydraulic flexible manipulator system is divided into two parts: flexible arm dynamics and hydraulic servomechanism, a driving Jacobian is derived to connect these two parts. Taking hydraulic actuator force as virtual input, a singular perturbed composite model is formulated and used to design composite controllers for the flexible link, in which the slow subsystem controller dominates the trajectory tracking, and then a fast controller is designed to damp out the vibration of the flexible structure. Moreover, the backstepping technique is applied to regulate the spool position of a hydraulic valve to provide the required force. Simulation results are provided to show the effectiveness of the presented approach.

  3. Feasibility of transparent flexible ultrasonic haptic actuator

    Science.gov (United States)

    Akther, Asma; Kafy, Abdullahil; Kim, Hyun Chan; Kim, Jaehwan

    2016-04-01

    Ultrasonic haptics actuator is a device that can create a haptic feedback to user's hand. The modulation of ultrasonic frequency can give different textures to the users. In this study, a feasibility of the ultrasonic haptic actuator made on a flexible piezoelectric substrate is investigated. As the piezoelectric substrate helps to propagate flexural waves, a pair of interdigital transducer (IDT) with reflectors can produce standing waves, which can increase the vibrational displacement of the actuator. A pair of IDT pattern was fabricated on a piezoelectric polymer substrate. A finite element analysis is at first performed to design the actuator. A sinusoidal excitation voltage is applied on IDT electrodes at ultrasonic frequencies and the displacement waveforms are found. The displacement waveforms clearly represent how ultrasonic waves propagate through the piezoelectric substrate.

  4. Failure of cargo aileron’s actuator

    Directory of Open Access Journals (Sweden)

    G. Zucca

    2014-10-01

    Full Text Available During a ferry flight, in a standard operation condition and at cruising level, a military cargo experienced a double hydraulic system failure due to a structural damage of the dual booster actuator. The booster actuator is the main component in mechanism of aileron’s deflection. The crew was able to arrange an emergency landing thanks to the spare oil onboard: load specialists refilled the hydraulic reservoirs. Due to safety concerns and in order to prevent the possibility of other similar incidents, a technical investigation took place. The study aimed to carry out the analysis of root causes of the actuator failure. The Booster actuator is composed mainly by the piston rod and its aluminum external case (AA7049. The assembly has two bronze caps on both ends. These are fixed in position by means of two retainers. At one end of the actuator case is placed a trunnion: a cylindrical protrusion used as a pivoting point on the aircraft. The fracture was located at one end of the case, on the trunnion side, in correspondence to the cap and over the retainer. One of the two fracture surfaces was found separated to the case and with the cap entangled inside. The fracture surfaces of the external case indicated fatigue crack growth followed by ductile separation. The failure analysis was performed by means of optical, metallographic, digital and electronic microscopy. The collected evidences showed a multiple initiation fracture mechanism. Moreover, 3D scanner reconstruction and numerical simulation demonstrated that dimensional non conformances and thermal loads caused an abnormal stress concentration. Stress concentration was located along the case assy outer surface where the fatigue crack originated. The progressive rupture mechanism grew under cyclical axial load due to the normal operations. Recommendations were issued in order to improve dimensional controls and assembly procedures during production and overhaul activities.

  5. 基于水力古机械的交互装置的设计与制作1%Design of Interactive Device Based on Ancient Hydraulic Machinery

    Institute of Scientific and Technical Information of China (English)

    周丰; 周妍黎; 刘小萱

    2016-01-01

    In recent years, more and more interactive devices appeared in people's ifeld of vision. This research starts with the lack of the traditional culture in recent interactive devices development both at home and abroad. Through the analysis of the application of traditional culture in design, the history research of ancient hydraulic machinery and the case analysis of interactive devices, I designed an interactive devices named‘Lifting water’ based on the research, and this device can be regarded as a realia about hydraulic machineries. The working principles of these four ancient hydraulic machineries and traditional labor wisdom are relfected naturaly when participants interact with this device. The author believes that the effective combination of traditional culture and modern technique can bring us designs with artistry, interest and education.%交互装置近年来较多出现在人们的视野中,本研究从当前国内外交互装置中传统文化的缺失为切入点,探讨水力古机械与交互装置结合的可能与具体的组合方式。通过对传统文化在设计中应用的分析,水力古机械的历史研究以及交互装置的案例分析,对各种水力古机械和交互装置进行不同依据下的分类,在研究的基础上设计并制作一个可作为水力古机械文化教具的交互装置作品,名为《车水》。四种水力古机械的工作原理和传统的劳动智慧在与该装置的趣味互动中得以自然体现。笔者认为,传统文化与现代技术的有效结合可以产生集艺术性、趣味性与教育性于一体的设计作品。

  6. Manufacturing of Dielectric Barrier Discharge Plasma Actuator for Degradation Resistance

    Science.gov (United States)

    Houser, Nicole M.

    The performance and broader application of dielectric barrier discharge (DBD) plasma actuators are restricted by the manufacturing methods currently employed. In the current work, two methodologies are proposed to build robust plasma actuators for active flow control; a protective silicone oil (PDMS) treatment for hand-cut and laid tape-based actuators and a microfabrication technique for glass-based devices. The microfabrication process, through which thin film electrodes are precisely deposited onto plasma-resistant glass substrates, is presented in detail. The resulting glass-based devices are characterized with respect to electrical properties and output for various operating conditions. The longevity of microfabricated devices is compared against silicone-treated and untreated hand-made devices of comparable geometries over 60 hours of continuous operation. Both tungsten and copper electrodes are considered for microfabricated devices. Human health effects are also considered in an electromagnetic field study of the area surrounding a live plasma actuator for various operating conditions.

  7. Dielectric barrier Discharge Plasma Actuator Characterization and Application

    NARCIS (Netherlands)

    Correale, G.

    2016-01-01

    An experimental investigation about nanosecond Dielectric Barrier Discharge (ns-DBD) plasma actuator is presented in this thesis. This work aimed to answer fundamental questions on the actuation mechanism of this device. In order to do so, parametric studies in a quiescent air as well as laminar

  8. Dielectric barrier Discharge Plasma Actuator Characterization and Application

    NARCIS (Netherlands)

    Correale, G.

    2016-01-01

    An experimental investigation about nanosecond Dielectric Barrier Discharge (ns-DBD) plasma actuator is presented in this thesis. This work aimed to answer fundamental questions on the actuation mechanism of this device. In order to do so, parametric studies in a quiescent air as well as laminar bou

  9. Design of a smart bidirectional actuator for space operation

    Science.gov (United States)

    Saggin, Bortolino; Scaccabarozzi, Diego; Tarbini, Marco; Magni, Marianna; Biffi, Carlo Alberto; Tuissi, Ausonio

    2017-03-01

    A common need for space borne instruments, satellites and planetary exploration payloads is the usage of compact, light and low power actuators. In the recent years, this need has been partially solved by the development of customized solutions with an increasing usage of smart materials. A linear bidirectional actuator based on shape memory alloy technology is presented in this work. The device has been conceived to lock the double-pendulum scanning mechanism of a miniaturized Fourier transform spectrometer for planetary observation. The mechanism class is that of pin pullers, with the pin locking the movable components of the spectrometer during launch and landing phases. The proposed mechanism, differently from available off-the-shelf devices, allows multiple actuations without the need of manual resetting. Moreover, the device requires to be powered only to change its status. An appealing feature of the adopted concept is that the actuation is intrinsically shock-less, a key requirement for deployment of devices sensitive to mechanical vibration and shocks. All these characteristics, in addition to the design flexibility of the proposed concept in terms of achievable forces and strokes, make the designed actuator promising for many different applications, from space to ground. The designed bidirectional actuator provides 0.6 mm stroke and a 50 N preload but it represents just an example of implementation for the proposed concept. Structural design of the functional elastic components and SMA alloy characterization have guided the actuator development. A mockup of the actuator has been manufactured and the predicted performances preliminary validated.

  10. Wireless actuation of bulk acoustic modes in micromechanical resonators

    Science.gov (United States)

    Mateen, Farrukh; Brown, Benjamin; Erramilli, Shyamsunder; Mohanty, Pritiraj

    2016-08-01

    We report wireless actuation of a Lamb wave micromechanical resonator from a distance of over 1 m with an efficiency of over 15%. Wireless actuation of conventional micromechanical resonators can have broad impact in a number of applications from wireless communication and implantable biomedical devices to distributed sensor networks.

  11. Structure-property relations of gold and graphene nanoporous actuators

    NARCIS (Netherlands)

    Saane, Siva Shankar Reddy

    2015-01-01

    Electrochemical nanoporous actuators have low weight, large specific surface areas and low voltage operating capabilities, making them attractive for application in small-scale electromechanical devices. The actuation strain of these materials at the macroscopic scale is a manifestation of microscop

  12. Architecture Optimization of More Electric Aircraft Actuation System

    Institute of Scientific and Technical Information of China (English)

    QI Haitao; FU Yongling; QI Xiaoye; LANG Yan

    2011-01-01

    The optional types of power source and actuator in the aircraft are more and more diverse due to fast development in more electric technology,which makes the combinations of different power sources and actuators become extremely complex in the architecture optimization process of airborne actuation system.The traditional “trial and error” method cannot satisfy the design demands.In this paper,firstly,the composition of more electric aircraft(MEA) flight control actuation system(FCAS) is introduced,and the possible architecture quantity is calculated.Secondly,the evaluation criteria of FCAS architecture with respect to safe reliability,weight and efficiency are proposed,and the evaluation criteria values are calculated in the case that each control surface adopts the same actuator configuration.Finally,the optimization results of MEA FCAS architecture are obtained by applying genetic algorithm(GA).Compared to the traditional actuation system architecture,which only adopts servo valve controlled hydraulic actuators,the weight of the optimized more electric actuation system architecture can be reduced by 6%,and the efficiency can be improved by 30% based on the safe reliability requirements.

  13. Series elastic actuators

    Science.gov (United States)

    Williamson, Matthew M.

    1995-01-01

    This thesis presents the design, construction, control and evaluation of a novel for controlled actuator. Traditional force controlled actuators are designed from the premise that 'Stiffer is better'. This approach gives a high bandwidth system, prone to problems of contact instability, noise, and low power density. The actuator presented in this thesis is designed from the premise that 'Stiffness isn't everything'. The actuator, which incorporates a series elastic element, trades off achievable bandwidth for gains in stable, low noise force control, and protection against shock loads. This thesis reviews related work in robot force control, presents theoretical descriptions of the control and expected performance from a series elastic actuator, and describes the design of a test actuator constructed to gather performance data. Finally the performance of the system is evaluated by comparing the performance data to theoretical predictions.

  14. Active optics: deformable mirrors with a minimum number of actuators

    CERN Document Server

    Laslandes, Marie; Ferrari, Marc; 10.2971/jeos.2012.12036

    2012-01-01

    We present two concepts of deformable mirror to compensate for first order optical aberrations. Deformation systems are designed using both elasticity theory and Finite Element Analysis in order to minimize the number of actuators. Starting from instrument specifications, we explain the methodology to design dedicated deformable mirrors. The work presented here leads to correcting devices optimized for specific functions. The Variable Off-Axis paraboLA concept is a 3-actuators, 3-modes system able to generate independently Focus, Astigmatism and Coma. The Correcting Optimized Mirror with a Single Actuator is a 1-actuator system able to generate a given combination of optical aberrations.

  15. Application of Hydraulic Tension and Belt-winding Device in Tanggongta Coal Mine%液压张紧卷带装置在唐公塔煤矿的应用

    Institute of Scientific and Technical Information of China (English)

    赵亚军; 谢晓铭; 孙德宁; 王森

    2011-01-01

    介绍了JY1400/30型液压张紧卷带装置的技术创新、功能原理及其安装调试.液压张紧卷带装置集张紧、卷带功能于一体,采用一个电气控制系统和一台集成泵站控制,使安装、使用、维护更加方便.%The paper introduced technique innovation, function theory, installation and adjustment of JY1400/30 hydraulic tension and belt-winding device. The device integrates functions of tension and belt-winding, uses an electrical control system and an integrated pump for control, so as to make the installation, use and maintenance more convenient.

  16. Magnetic actuators and sensors

    CERN Document Server

    Brauer, John R

    2014-01-01

    An accessible, comprehensive guide on magnetic actuators and sensors, this fully updated second edition of Magnetic Actuators and Sensors includes the latest advances, numerous worked calculations, illustrations, and real-life applications. Covering magnetics, actuators, sensors, and systems, with updates of new technologies and techniques, this exemplary learning tool emphasizes computer-aided design techniques, especially magnetic finite element analysis, commonly used by today's engineers. Detailed calculations, numerous illustrations, and discussions of discrepancies make this text an inva

  17. Plug & Play Control of Hydraulic Networks

    DEFF Research Database (Denmark)

    Jensen, Tom Nørgaard

    2012-01-01

    Process Control research program, which the work presented here is a part of. An industrial case study involving a large-scale hydraulic network with non-linear dynamics is studied. The hydraulic network underlies a district heating system, which provides heating water to a number of end-users in a city...... structure has the additional benefit that structural changes such as the addition or removal of end-users are easily implementable. In this work, the problem of controlling the pressure drop at the end-users to a constant reference value is considered. This is done by the use of pumps located both...... are considered. Some of the work considers control actions which are constrained to non-negative values only. This is due to the fact that the actuators in this type of system typically consist of centrifugal pumps which are only able to deliver non-negative actuation. Other parts of the work consider control...

  18. Effect of cavity pressure on the performance of the explosive micro-bubble actuator

    NARCIS (Netherlands)

    van den Broek, D.M.; Elwenspoek, Michael Curt

    The explosive micro-bubble actuator is a new type of actuator based on bubble generation by explosive evaporation. It can operate at frequencies up to 5 kHz which is extremely high for a thermo-pneumatic actuator. At these frequencies, the device can still produce a pressure of several bars

  19. 30 CFR 75.1103-6 - Automatic fire sensors; actuation of fire suppression systems.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Automatic fire sensors; actuation of fire... Protection § 75.1103-6 Automatic fire sensors; actuation of fire suppression systems. Point-type heat sensors or automatic fire sensor and warning device systems may be used to actuate deluge-type water systems...

  20. Actuator environmental stability

    Science.gov (United States)

    Yoshikawa, Shoko; Farrell, Michael

    2000-06-01

    Various configurations of piezoelectric high strain actuators are available in the market. The influence of humidity at high temperature is not well documented, even though it is an important consideration for actuator performance. This paper describes the testing and results of two different families of actuators; QuickPack products and multilayer actuators, tested under two environments; room temperature low humidity and elevated temperature and humidity (80°C/80%RH). A constant DC load was applied to the QP10N andand QP10Ni products in free condition, while positive only AC field was applied to multilayer actuators, under pre-stressed condition. High field IR was used as the main tool to determine the health of QuickPack products, whereas, in-situ displacement was measured to monitor the health of multilayer actuators. As expected, in both families of actuators, it was shown that the actuator life is significantly reduced when specimens are exposed to humidity at elevated temperature. Improvement of the humidity barrier, thus less moisture penetration, even when electrodes do not contain silver, is expected to prolong life of actuators.

  1. Electrostatically Driven Nanoballoon Actuator.

    Science.gov (United States)

    Barzegar, Hamid Reza; Yan, Aiming; Coh, Sinisa; Gracia-Espino, Eduardo; Dunn, Gabriel; Wågberg, Thomas; Louie, Steven G; Cohen, Marvin L; Zettl, Alex

    2016-11-09

    We demonstrate an inflatable nanoballoon actuator based on geometrical transitions between the inflated (cylindrical) and collapsed (flattened) forms of a carbon nanotube. In situ transmission electron microscopy experiments employing a nanoelectromechanical manipulator show that a collapsed carbon nanotube can be reinflated by electrically charging the nanotube, thus realizing an electrostatically driven nanoballoon actuator. We find that the tube actuator can be reliably cycled with only modest control voltages (few volts) with no apparent wear or fatigue. A complementary theoretical analysis identifies critical parameters for nanotube nanoballoon actuation.

  2. Development of Heavy-Duty and High-Precision Hydraulic Manipulator for Inspection, Maintenance and Decommission of Nuclear Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Sung Uk; Seo, Yong-chil; Jung, Kyung Min; Kim, Chang-hoi; Choi, Byung-seon; Moon, Jei-kwon [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-10-15

    Robotic manipulators have been used for inspection, maintenance and decommission of nuclear power plants because nuclear power plants have high radiation and human workers cannot easily access the plants. And also, to inspecting, maintaining and decommissioning nuclear power plants require various manipulators. Only one manipulator cannot response to many required tasks. The existing manipulators that was used at nuclear power plants can only operate only focused specific task and cannot be used at several tasks. The actuators used at manipulators are varied and many companies sell actuators depending on power, torque and speed. However, the commercial product is not standardized. Therefore, the development of manipulator is time consuming and expensive. The essential item of a manipulator is an actuator module. If actuator module is standardized, it’s easier to develop a manipulator and also maintain a manipulator. Recently, manipulator having high-radiation, high-duty and high-precision is necessary to inspection, maintain and decommissioning of nuclear power plants. Hydraulic actuator has been used to development high-duty manipulator. But control performance of a hydraulic actuator is not better than that of an electric actuator so that hydraulic manipulator cannot easily satisfy the required precision. In this paper, we developed high-duty and high-precision actuator modules and hydraulic manipulator using the developed actuator modules. The developed hydraulic manipulator have a payload of 250kg and a precision of ±1mm. Four modularized hydraulic actuator modules were developed for inspection, maintenance and decommission. Using the developed actuator modules, the manipulator for decommissioning is easily developed. And also, various manipulators having different kinematic structure for specific tasks will be easily developed by using hydraulic modules.

  3. Improving energy efficiency in robot limbs through hydraulic dangle

    Science.gov (United States)

    Whitman, Julian S.; Meller, Mike; Garcia, Ephrahim

    2015-03-01

    Animals often allow their limbs to swing passively under their own inertia. For example, about 40% of a human walking gait consists of the primarily passive swing phase. Current hydraulic robots employ traditional actuation methods in which fluid power is expended for all limb movements, even when passive dynamics could be utilized. "Dangle" is the ability to allow a hydraulic actuator to freely sway in response to external loads, in which both sides of the actuator are disconnected from pressure and connected to the tank. Dangle offers the opportunity for efficiency gains by enabling the use of momentum, gravity, and external loads to move a limb without expending fluid power. To demonstrate these efficiency gains, this paper presents an experiment that compares the fluid power consumed to actuate a two degree of freedom hydraulic leg following a human walking gait cycle trajectory in both a traditional manner and utilizing dangle. It was shown that the use of dangle can decrease fluid power consumption by 20% by utilizing pendular dynamics during the swing phase. At speeds higher than the free dangling rate, more power must be used to maintain the desired trajectory due to damping inherent in the configuration. The use of dangle as a power saving method when driving hydraulic limbs could increase operation time for untethered hydraulic walking robots.

  4. Self-Sensing Ionic Polymer Actuators: A Review

    Directory of Open Access Journals (Sweden)

    Karl Kruusamäe

    2015-03-01

    Full Text Available Ionic electromechanically active polymers (IEAP are laminar composites that can be considered attractive candidates for soft actuators. Their outstanding properties such as low operating voltage, easy miniaturization, and noiseless operation are, however, marred by issues related to the repeatability in the production and operation of these materials. Implementing closed-loop control for IEAP actuators is a viable option for overcoming these issues. Since IEAP laminates also behave as mechanoelectrical sensors, it is advantageous to combine the actuating and sensing functionalities of a single device to create a so-called self-sensing actuator. This review article systematizes the state of the art in producing self-sensing ionic polymer actuators. The IEAPs discussed in this paper are conducting (or conjugated polymers actuators (CPA, ionic polymer-metal composite (IPMC, and carbonaceous polymer laminates.

  5. Potential High-Temperature Shape-Memory-Alloy Actuator Material Identified

    Science.gov (United States)

    Noebe, Ronald D.; Gaydosh, Darrell J.; Biles, Tiffany A.; Garg, Anita

    2005-01-01

    Shape-memory alloys are unique "smart materials" that can be used in a wide variety of adaptive or "intelligent" components. Because of a martensitic solid-state phase transformation in these materials, they can display rather unusual mechanical properties including shape-memory behavior. This phenomenon occurs when the material is deformed at low temperatures (below the martensite finish temperature, Mf) and then heated through the martensite-to-austenite phase transformation. As the material is heated to the austenite finish temperature Af, it is able to recover its predeformed shape. If a bias is applied to the material as it tries to recover its original shape, work can be extracted from the shape-memory alloy as it transforms. Therefore, shape-memory alloys are being considered for compact solid-state actuation devices to replace hydraulic, pneumatic, or motor-driven systems.

  6. Hydraulically Driven Grips For Hot Tensile Specimens

    Science.gov (United States)

    Bird, R. Keith; Johnson, George W.

    1994-01-01

    Pair of grips for tensile and compressive test specimens operate at temperatures up to 1,500 degrees F. Grips include wedges holding specimen inside furnace, where heated to uniform temperature. Hydraulic pistons drive wedges, causing them to exert clamping force. Hydraulic pistons and hydraulic fluid remain outside furnace, at room temperature. Cooling water flows through parts of grips to reduce heat transferred to external components. Advantages over older devices for gripping specimens in high-temperature tests; no need to drill holes in specimens, maintains constant gripping force on specimens, and heated to same temperature as that of specimen without risk of heating hydraulic fluid and acuator components.

  7. Tribo-functionalizing Si and SU8 materials by surface modification for application in MEMS/NEMS actuator-based devices

    Energy Technology Data Exchange (ETDEWEB)

    Singh, R A; Satyanarayana, N; Sinha, S K [Department of Mechanical Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore 117576 (Singapore); Kustandi, T S, E-mail: mpesks@nus.edu.sg [Institute of Materials Research and Engineering, A-STAR, 3 Research Link, Singapore 117602 (Singapore)

    2011-01-12

    Micro/nano-electro-mechanical-systems (MEMS/NEMS) are miniaturized devices built at micro/nanoscales. At these scales, the surface/interfacial forces are extremely strong and they adversely affect the smooth operation and the useful operating lifetimes of such devices. When these forces manifest in severe forms, they lead to material removal and thereby reduce the wear durability of the devices. In this paper, we present a simple, yet robust, two-step surface modification method to significantly enhance the tribological performance of MEMS/NEMS materials. The two-step method involves oxygen plasma treatment of polymeric films and the application of a nanolubricant, namely perfluoropolyether. We apply the two-step method to the two most important MEMS/NEMS structural materials, namely silicon and SU8 polymer. On applying surface modification to these materials, their initial coefficient of friction reduces by {approx}4-7 times and the steady-state coefficient of friction reduces by {approx}2.5-3.5 times. Simultaneously, the wear durability of both the materials increases by >1000 times. The two-step method is time effective as each of the steps takes the time duration of approximately 1 min. It is also cost effective as the oxygen plasma treatment is a part of the MEMS/NEMS fabrication process. The two-step method can be readily and easily integrated into MEMS/NEMS fabrication processes. It is anticipated that this method will work for any kind of structural material from which MEMS/NEMS are or can be made.

  8. Non-Linear Piezoelectric Actuator with a Preloaded Cantilever Beam

    OpenAIRE

    Yue Wu; Jingshi Dong; Xinbo Li; Zhigang Yang; Qingping Liu

    2015-01-01

    Piezoelectric actuation is widely used for the active vibration control of smart structural systems, and corresponding research has largely focused on linear electromechanical devices. This paper investigates the design and analysis of a novel piezoelectric actuator that uses a piezoelectric cantilever beam with a loading spring to produce displacement outputs. This device has a special nonlinear property relating to converting between kinetic energy and potential energy, and it can be used t...

  9. Hybrid-Actuated Finger Prosthesis with Tactile Sensing

    OpenAIRE

    2013-01-01

    Finger prostheses are devices developed to emulate the functionality of natural human fingers. On top of their aesthetic appearance in terms of shape, size and colour, such biomimetic devices require a high level of dexterity. They must be capable of gripping an object, and even manipulating it in the hand. This paper presents a biomimetic robotic finger actuated by a hybrid mechanism and integrated with a tactile sensor. The hybrid actuation mechanism comprises a DC micromotor and a Shape Me...

  10. Pneumatically actuated hand tool

    NARCIS (Netherlands)

    Cool, J.C.; Rijnsaardt, K.A.

    1996-01-01

    Abstract of NL 9401195 (A) Pneumatically actuated hand tool for carrying out a mechanical operation, provided with an exchangeable gas cartridge in which the gas which is required for pneumatic actuation is stored. More particularly, the hand tool is provided with at least one pneumatic motor, at

  11. Sensors and actuators, Twente

    NARCIS (Netherlands)

    Bergveld, P.

    1989-01-01

    This paper describes the organization and the research programme of the Sensor and Actuator (S&A) Research Unit of the University of Twente, Enschede, the Netherlands. It includes short descriptions of all present projects concerning: micromachined mechanical sensors and actuators, optical sensors,

  12. Conjugated Polymers as Actuators: Modes of Actuation

    DEFF Research Database (Denmark)

    Skaarup, Steen

    The physical and chemical properties of conjugated polymers often depend very strongly on the degree of doping with anions or cations. The movement of ions in and out of the polymer matrix as it is redox cycled is also accompanied by mechanical changes. Both the volume and the stiffness can exhibit...... significant differences between the oxidized and reduced states. These effects form the basis of the use of conjugated polymers as actuators (or “artificial muscles”) controllable by a small (1-10 V) voltage. Three basic modes of actuation (bending, linear extension and stiffness change) have been proposed...

  13. Conjugated polymers as actuators: modes of actuation

    DEFF Research Database (Denmark)

    Skaarup, Steen

    2007-01-01

    The physical and chemical properties of conjugated polymers often depend very strongly on the degree of doping with anions or cations. The movement of ions in and out of the polymer matrix as it is redox cycled is also accompanied by mechanical changes. Both the volume and the stiffness can exhibit...... significant differences between the oxidized and reduced states. These effects form the basis of the use of conjugated polymers as actuators (or “artificial muscles”) controllable by a small (1-10 V) voltage. Three basic modes of actuation (bending, linear extension and stiffness change) have been proposed...

  14. 增压器全液压自动换向装置及其计算方法%The full-hydraulic automatic reversing device for booster and its calculation methods

    Institute of Scientific and Technical Information of China (English)

    王兴洲; 徐超; 何永森

    2001-01-01

    In order to research into more novel and reliable full-hydraulic automatic reversing device for booster and the methods of parameters calculation related to the reversal frequency of booster, on the basis of discussing super high pressure water jet generators, including the working principle of booster, and making an all-round analysis of the automatic reversing devices for all types of boosters at home and abroad, a classification method of existent automatic reversing device for boosters is put forward. This classification method is definite in concept and helpful to specify the design of thistype devices. A full-hydraulic automatic revesing device, which has many advantages such as specific structure, simplified system, lower noise level, less faults, and so on, is proposed. The experiment has shown that the calculation and the new device used in the design of water jet cutting machines have simplified the structure of water jet generators and improved their reliability. It plays a positive and impellent role in improving the quality of super high pressure water jet cutting machines and in the development of water jet cutting technology.%为了研究更为新颖可靠的增压器全液压自动换向装置和与增压器换向频率有关的参数计算方法,对超高压水射流发生器及增压器的工作原理进行了分析,研制了1种对现行增压器自动换向装置的分类方法及具有结构独特、系统简单、机械噪音小、故障率低等优点的全液压自动换向装置.实验结果表明:该分类方法概念明确,有利于规范此类装置的设计;将计算方法和新装置应用于水射流切割机产品的设计中,简化了水射流发生器结构,提高了其工作的可靠性,对提高超高压水射流切割机产品质量和促进水射流切割技术的发展起到了积极的推动作用.

  15. Fastening apparatus having shape memory alloy actuator

    Science.gov (United States)

    Mckinnis, Darin N. (Inventor)

    1992-01-01

    A releasable fastening apparatus is presented. The device includes a connecting member and a housing. The housing supports a gripping mechanism that is adapted to engage the connecting member. A triggering member is movable within the housing between a first position in which it constrains the gripping mechanism in locked engagement with the connecting member, and a second position in which the gripping mechanism is disengaged from the connecting member. A shaped memory alloy actuator is employed for translating the triggering member from its first to its second position. The actuator is designed to expand longitudinally when transitioned from a martensitic to an austenitic state.

  16. An Unconventional Inchworm Actuator Based on PZT/ERFs Control Technology

    Science.gov (United States)

    Liu, Guojun; Zhang, Yanyan; Liu, Jianfang; Li, Jianqiao; Tang, Chunxiu; Wang, Tengfei; Yang, Xuhao

    2016-01-01

    An unconventional inchworm actuator for precision positioning based on piezoelectric (PZT) actuation and electrorheological fluids (ERFs) control technology is presented. The actuator consists of actuation unit (PZT stack pump), fluid control unit (ERFs valve), and execution unit (hydraulic actuator). In view of smaller deformation of PZT stack, a new structure is designed for actuation unit, which integrates the advantages of two modes (namely, diaphragm type and piston type) of the volume changing of pump chamber. In order to improve the static shear yield strength of ERFs, a composite ERFs valve is designed, which adopts the series-parallel plate compound structure. The prototype of the inchworm actuator has been designed and manufactured in the lab. Systematic test results indicate that the displacement resolution of the unconventional inchworm actuator reaches 0.038 μm, and the maximum driving force and velocity are 42 N, 14.8 mm/s, respectively. The optimal working frequency for the maximum driving velocity is 120 Hz. The complete research and development processes further confirm the feasibility of developing a new type of inchworm actuator with high performance based on PZT actuation and ERFs control technology, which provides a reference for the future development of a new type of actuator. PMID:27022234

  17. An Unconventional Inchworm Actuator Based on PZT/ERFs Control Technology.

    Science.gov (United States)

    Liu, Guojun; Zhang, Yanyan; Liu, Jianfang; Li, Jianqiao; Tang, Chunxiu; Wang, Tengfei; Yang, Xuhao

    2016-01-01

    An unconventional inchworm actuator for precision positioning based on piezoelectric (PZT) actuation and electrorheological fluids (ERFs) control technology is presented. The actuator consists of actuation unit (PZT stack pump), fluid control unit (ERFs valve), and execution unit (hydraulic actuator). In view of smaller deformation of PZT stack, a new structure is designed for actuation unit, which integrates the advantages of two modes (namely, diaphragm type and piston type) of the volume changing of pump chamber. In order to improve the static shear yield strength of ERFs, a composite ERFs valve is designed, which adopts the series-parallel plate compound structure. The prototype of the inchworm actuator has been designed and manufactured in the lab. Systematic test results indicate that the displacement resolution of the unconventional inchworm actuator reaches 0.038 μm, and the maximum driving force and velocity are 42 N, 14.8 mm/s, respectively. The optimal working frequency for the maximum driving velocity is 120 Hz. The complete research and development processes further confirm the feasibility of developing a new type of inchworm actuator with high performance based on PZT actuation and ERFs control technology, which provides a reference for the future development of a new type of actuator.

  18. An Unconventional Inchworm Actuator Based on PZT/ERFs Control Technology

    Directory of Open Access Journals (Sweden)

    Guojun Liu

    2016-01-01

    Full Text Available An unconventional inchworm actuator for precision positioning based on piezoelectric (PZT actuation and electrorheological fluids (ERFs control technology is presented. The actuator consists of actuation unit (PZT stack pump, fluid control unit (ERFs valve, and execution unit (hydraulic actuator. In view of smaller deformation of PZT stack, a new structure is designed for actuation unit, which integrates the advantages of two modes (namely, diaphragm type and piston type of the volume changing of pump chamber. In order to improve the static shear yield strength of ERFs, a composite ERFs valve is designed, which adopts the series-parallel plate compound structure. The prototype of the inchworm actuator has been designed and manufactured in the lab. Systematic test results indicate that the displacement resolution of the unconventional inchworm actuator reaches 0.038 μm, and the maximum driving force and velocity are 42 N, 14.8 mm/s, respectively. The optimal working frequency for the maximum driving velocity is 120 Hz. The complete research and development processes further confirm the feasibility of developing a new type of inchworm actuator with high performance based on PZT actuation and ERFs control technology, which provides a reference for the future development of a new type of actuator.

  19. Integrated high pressure microhydraulic actuation and control for surgical instruments.

    Science.gov (United States)

    Moers, A J M; De Volder, M F L; Reynaerts, D

    2012-08-01

    To reduce the surgical trauma to the patient, minimally invasive surgery is gaining considerable importance since the eighties. More recently, robot assisted minimally invasive surgery was introduced to enhance the surgeon's performance in these procedures. This resulted in an intensive research on the design, fabrication and control of surgical robots over the last decades. A new development in the field of surgical tool manipulators is presented in this article: a flexible manipulator with distributed degrees of freedom powered by microhydraulic actuators. The tool consists of successive flexible segments, each with two bending degrees of freedom. To actuate these compliant segments, dedicated fluidic actuators are incorporated, together with compact hydraulic valves which control the actuator motion. Especially the development of microvalves for this application was challenging, and are the main focus of this paper. The valves distribute the hydraulic power from one common high pressure supply to a series of artificial muscle actuators. Tests show that the angular stroke of the each segment of this medical instrument is 90°.

  20. Cryogenic Piezoelectric Actuator

    Science.gov (United States)

    Jiang, Xiaoning; Cook, William B.; Hackenberger, Wesley S.

    2009-01-01

    In this paper, PMN-PT single crystal piezoelectric stack actuators and flextensional actuators were designed, prototyped and characterized for space optics applications. Single crystal stack actuators with footprint of 10 mm x10 mm and the height of 50 mm were assembled using 10 mm x10mm x0.15mm PMN-PT plates. These actuators showed stroke > 65 - 85 microns at 150 V at room temperature, and > 30 microns stroke at 77 K. Flextensional actuators with dimension of 10mm x 5 mm x 7.6 mm showed stroke of >50 microns at room temperature at driving voltage of 150 V. A flextensional stack actuator with dimension of 10 mm x 5 mm x 47 mm showed stroke of approx. 285 microns at 150 V at room temperature and > 100 microns at 77K under driving of 150 V should be expected. The large cryogenic stroke and high precision of these actuators are promising for cryogenic optics applications.

  1. System Topology Optimization - An Approach to System Design of Electro-Hydraulic-Mechanical Systems

    DEFF Research Database (Denmark)

    Andersen, T. O.; Hansen, M. R.; Conrad, Finn

    2003-01-01

    design the procedure attempts to find the optimal topology and the related parameters. The topology considerations comprise the type of hydraulic pump, the employment of knee linkages or not as well as the type of hydraulic actuators. The design variables also include the signals to the proportional......The current paper presents an approach to system design of combined electro-hydraulic-mechanical systems. The approach is based on the concurrent handling of the topology as well as the design parameters of the mechanical, hydraulic and controller sub- systems, respectively. Based on an initial...... valve in a number of predefined load cases as well as the hydraulic and mechanical parameters....

  2. Neutronic, thermal-hydraulics and accident analysis calculations for an irradiation device to be used in the qualification process of dispersion fuels in the IEA-R1 research reactor

    Energy Technology Data Exchange (ETDEWEB)

    Domingos, Douglas Borges; Silva, Antonio Teixeira e; Umbehaun, Pedro Ernesto; Silva, Jose Eduardo Rosa da; Conti, Thadeu das Neves; Yamaguchi, Mitsuo [Instituto de Pesquisas Energeticas e Nucleares (IPEN-CNEN/SP), Sao Paulo, SP (Brazil)], e-mail: douglasborgesdomingos@yahoo.com.br

    2009-07-01

    Neutronic, thermal-hydraulics and accident analysis calculations were developed to estimate the safety of an irradiation device placed in the IEA-R1 reactor core. The irradiation device will be used to receive miniplates of U{sub 3}O{sub 8}-Al e U{sub 3}Si{sub 2}-Al dispersion fuels, LEU type (19.9% of {sup 235}U), with uranium densities of, respectively, 3.0 gU/cm{sup 3} and 4.8gU/cm{sup 3}. The fuel miniplates will be irradiated to nominal {sup 235}U burnup levels of 50% and 80%, in order to qualify the above high-density dispersion fuels to be used in the Brazilian Multipurpose Reactor, now in the conception phase. For the neutronic calculation, the computer code CITATION was utilized. The computer code FLOW was used to calculate the coolant flow rate in the irradiation device, allowing the determination of the fuel miniplate temperatures with the computer model MTRCR-IEA-R1. A postulated Loss of Coolant Accident (LOCA) was analyzed with the computer codes LOSS and TEMPLOCA, allowing the calculation of the fuel miniplate temperatures after the reactor pool draining. The calculations showed that the irradiation of the fuel miniplates will happen without any adverse consequence in the IEA-R1 reactor. (author)

  3. Copper Planar Microcoils Applied to Magnetic Actuation

    CERN Document Server

    Moulin, J; Martincic, E; Dufour-Gergam, E

    2008-01-01

    Recent advances in microtechnology allow realization of planar microcoils. These components are integrated in MEMS as magnetic sensor or actuator. In the latter case, it is necessary to maximize the effective magnetic field which is proportional to the current passing through the copper track and depends on the distance to the generation microcoil. The aim of this work was to determine the optimal microcoil design configuration for magnetic field generation. The results were applied to magnetic actuation, taking into account technological constraints. In particular, we have considered different realistic configurations that involve a magnetically actuated device coupled to a microcoil. Calculations by a semi-analytical method using Matlab software were validated by experimental measurements. The copper planar microcoils are fabricated by U.V. micromoulding on different substrates: flexible polymer (Kapton) and silicate on silicon. They are constituted by a spiral-like continuous track. Their total surface is ...

  4. Square Wave Driver for Piezoceramic Actuators

    Directory of Open Access Journals (Sweden)

    Slawomir Jakiela

    2012-07-01

    Full Text Available We present the circuit and performance of a square wave driver and power supply for piezoceramic actuators characterized by large capacitance, up to 3 μF. Capacitance of piezoceramic element is the key factor that limits the use of powerful actuators operating at high frequencies (kHz. It is thus important to build a driver that allows use of a possible wide set of actuators in the widest range of frequencies appropriate for the piezoelement. The driver that we report uses the properties of non-inductive resistors that allow for operation at high frequencies. Our report details the design, construction, tests and limitations of the device and its application to the control of a microfluidic valve.

  5. Pressure regulation in nonlinear hydraulic networks by positive controls

    NARCIS (Netherlands)

    De Persis, Claudio; Skovmose Kallesøe, Carsten

    2009-01-01

    We report on our investigation of an industrial case study of a system distributed over a network, namely a large-scale hydraulic network which underlies a district heating system. The network comprises an arbitrarily large number of end-users and actuators distributed along the network. After intro

  6. Control Software for Piezo Stepping Actuators

    Science.gov (United States)

    Shields, Joel F.

    2013-01-01

    A control system has been developed for the Space Interferometer Mission (SIM) piezo stepping actuator. Piezo stepping actuators are novel because they offer extreme dynamic range (centimeter stroke with nanometer resolution) with power, thermal, mass, and volume advantages over existing motorized actuation technology. These advantages come with the added benefit of greatly reduced complexity in the support electronics. The piezo stepping actuator consists of three fully redundant sets of piezoelectric transducers (PZTs), two sets of brake PZTs, and one set of extension PZTs. These PZTs are used to grasp and move a runner attached to the optic to be moved. By proper cycling of the two brake and extension PZTs, both forward and backward moves of the runner can be achieved. Each brake can be configured for either a power-on or power-off state. For SIM, the brakes and gate of the mechanism are configured in such a manner that, at the end of the step, the actuator is in a parked or power-off state. The control software uses asynchronous sampling of an optical encoder to monitor the position of the runner. These samples are timed to coincide with the end of the previous move, which may consist of a variable number of steps. This sampling technique linearizes the device by avoiding input saturation of the actuator and makes latencies of the plant vanish. The software also estimates, in real time, the scale factor of the device and a disturbance caused by cycling of the brakes. These estimates are used to actively cancel the brake disturbance. The control system also includes feedback and feedforward elements that regulate the position of the runner to a given reference position. Convergence time for smalland medium-sized reference positions (less than 200 microns) to within 10 nanometers can be achieved in under 10 seconds. Convergence times for large moves (greater than 1 millimeter) are limited by the step rate.

  7. Modelling and Simulation of Mobile Hydraulic Crane with Telescopic Arm

    DEFF Research Database (Denmark)

    Nielsen, Brian; Pedersen, Henrik Clemmensen; Andersen, Torben Ole

    2005-01-01

    paper a model of a loader crane with a flexible telescopic arm is presented, which may be used for evaluating control strategies. The telescopic arm is operated by four actuators connected hydraulically by a parallel circuit. The operating sequences of the individual actuators is therefore...... not controllable, but depends on the flow from the common control valve, flow resistances between the actuators and friction. The presented model incorporates structural flexibility of the telescopic arm and is capable of describing the dynamic behaviour of both the hydraulic and the mechanical system, including...... the relative movement of the individual mechanical bodies in the telescopic arm. The model is verified through comparisons between simulated and measured results for various operating conditions....

  8. Low duty-cycle pulsed power actuation applications

    Science.gov (United States)

    Merryman, Stephen A.; Owens, W. Todd

    1995-01-01

    Electrical actuator systems are being pursued as alternatives to hydraulic systems to reduce maintenance time, weight, and costs while increasing reliability. Additionally, safety and environmental hazards associated with the hydraulic fluids can be eliminated. For most actuation systems, the actuation process is typically pulsed with high peak power requirements but with relatively modest average power levels. For example, the peak power requirements for the shuttle solid rocket booster actuators are approximately 40 kW for one or two seconds, but the average power over the 130 second burn time is on the order of 7 kW. The power-time requirements for electrical actuators are characteristic of pulsed power technologies where the source can be sized for the average power levels while providing the capability to achieve the peak requirements. Among the options for the power source are battery systems, capacitor systems or battery-capacitor hybrid systems. Battery technologies are energy dense but deficient in power density; capacitor technologies are power dense but limited by energy density. The battery-capacitor hybrid system uses the battery to supply the average power and the capacitor to meet the peak demands. In this research effort, Chemical Double Layer (CDL) capacitor technology is being applied in the design and development of power sources for electrical actuators. CDL capacitors have many properties that make them well-suited for actuator applications. They have the highest demonstrated energy density for capacitive storage (about a factor of 5-10 less than NiCd batteries), have power densities 50 times greater than NiCd batteries, are capable of 500,000 charge-discharge cycles, can be charged at extremely high rates, and have non-explosive failure modes. Thus, CDL capacitors exhibit a combination of desirable battery and capacitor characteristics. Specifically, electrode technology patented by Auburn University is being used in the development of CDL

  9. Elastomeric contractile actuators for hand rehabilitation splints

    Science.gov (United States)

    Carpi, Federico; Mannini, Andrea; De Rossi, Danilo

    2008-03-01

    The significant electromechanical performances typically shown by dielectric elastomer actuators make this polymer technology particularly attractive for possible active orthoses for rehabilitation. Folded contractile actuators made of dielectric elastomers were recently described as a simple configuration, suitable to easily implement linear contractile devices. This paper describes an application of folded actuators for so-called hand splints: they consist of orthotic systems for hand rehabilitation. The dynamic versions of the state-of-the-art splints typically include elastic bands, which exert a passive elastic resistance to voluntary elongations of one or more fingers. In order to provide such splints with the possibility of electrically modulating the compliance of the resistive elements, the substitution of the passive elastic bands with the contractile actuators is here described. The electrical activation of the actuators is used to vary the compliance of the system; this enables modulations of the force that acts as an antagonist to voluntary finger movements, according to programmable rehabilitation exercises. The paper reports results obtained from the first prototype implementations of such a type of system.

  10. Magnetically Actuated Seal

    Science.gov (United States)

    Pinera, Alex

    2013-01-01

    This invention is a magnetically actuated seal in which either a single electromagnet, or multiple electromagnets, are used to control the seal's position. This system can either be an open/ close type of system or an actively controlled system.

  11. Magnetically Actuated Seal Project

    Data.gov (United States)

    National Aeronautics and Space Administration — FTT proposes development of a magnetically actuated dynamic seal. Dynamic seals are used throughout the turbopump in high-performance, pump-fed, liquid rocket...

  12. Muscle Motion Solenoid Actuator

    Science.gov (United States)

    Obata, Shuji

    It is one of our dreams to mechanically recover the lost body for damaged humans. Realistic humanoid robots composed of such machines require muscle motion actuators controlled by all pulling actions. Particularly, antagonistic pairs of bi-articular muscles are very important in animal's motions. A system of actuators is proposed using the electromagnetic force of the solenoids with the abilities of the stroke length over 10 cm and the strength about 20 N, which are needed to move the real human arm. The devised actuators are based on developments of recent modern electro-magnetic materials, where old time materials can not give such possibility. Composite actuators are controlled by a high ability computer and software making genuine motions.

  13. Integrated design and analysis of smart actuators for hybrid assistive knee bracese-fla

    Science.gov (United States)

    Guo, H. T.; Liao, W. H.

    2009-03-01

    The objective of this paper is to develop smart actuators for knee braces as assistive devices for helping disabled people to recover their mobility. The actuator functions as motor, clutch, and brake. In the design, magnetorheological (MR) fluids are utilized to generate controllable torque. To decrease the size of the actuator, motor and MR fluids are integrated. MR fluids are filled inside the DC motor based actuator. Additional design factors of smart actuators including influence of permanent magnet on MR fluids and dynamic sealing are also considered. Finite element model of the smart actuator is built and analyzed. A prototype of the smart actuator with two different inner armatures is fabricated and their characteristics are investigated. Torques are compared between simulation and experiments. The results show that the developed smart actuator with multiple functions is promising for assistive knee braces.

  14. Tendon Driven Finger Actuation System

    Science.gov (United States)

    Ihrke, Chris A. (Inventor); Reich, David M. (Inventor); Bridgwater, Lyndon (Inventor); Linn, Douglas Martin (Inventor); Askew, Scott R. (Inventor); Diftler, Myron A. (Inventor); Platt, Robert (Inventor); Hargrave, Brian (Inventor); Valvo, Michael C. (Inventor); Abdallah, Muhammad E. (Inventor); hide

    2013-01-01

    A humanoid robot includes a robotic hand having at least one finger. An actuation system for the robotic finger includes an actuator assembly which is supported by the robot and is spaced apart from the finger. A tendon extends from the actuator assembly to the at least one finger and ends in a tendon terminator. The actuator assembly is operable to actuate the tendon to move the tendon terminator and, thus, the finger.

  15. Integrated sensing and actuation of muscle-like actuators

    Science.gov (United States)

    Gisby, T. A.; Xie, S.; Calius, E. P.; Anderson, I. A.

    2009-03-01

    The excellent overall performance and compliant nature of Dielectric Elastomer Actuators (DEAs) make them ideal candidates for artificial muscles. Natural muscle however is much more than just an actuator, it provides position feedback to the brain that is essential for the body to maintain balance and correct posture. If DEAs are to truly earn the moniker of "artificial muscles" they need to be able to reproduce, if not improve on, this functionality. Self-sensing DEAs are the ideal solution to this problem. This paper presents a system by which the capacitance of a DEA can be sensed while it is being actuated and used for feedback control. This system has been strongly influenced by the desire for portability i.e. designed for use in a battery operated microcontroller based system. It is capable of controlling multiple independent DEAs using a single high voltage power supply. These features are important developments for artificial muscle devices where accuracy and low mass are important e.g. a prosthetic hand or force-feedback surgical tools. A numerical model of the electrical behaviour of the DEA that incorporates arbitrary leakage currents and the impact of arbitrary variable capacitance has been created to model a DEA system. A robust capacitive self-sensing method that uses a slew-rate controlled Pulse Width Modulation (PWM) signal and compensates for the effects of leakage current and variable capacitance is presented. The numerical model is then used to compare the performance of this new method with an earlier method previously published by the authors.

  16. Actuation of polypyrrole nanowires

    Science.gov (United States)

    Lee, Alexander S.; Peteu, Serban F.; Ly, James V.; Requicha, Aristides A. G.; Thompson, Mark E.; Zhou, Chongwu

    2008-04-01

    Nanoscale actuators are essential components of the NEMS (nanoelectromechanical systems) and nanorobots of the future, and are expected to become a major area of development within nanotechnology. This paper demonstrates for the first time that individual polypyrrole (PPy) nanowires with diameters under 100 nm exhibit actuation behavior, and therefore can potentially be used for constructing nanoscale actuators. PPy is an electroactive polymer which can change volume on the basis of its oxidation state. PPy-based macroscale and microscale actuators have been demonstrated, but their nanoscale counterparts have not been realized until now. The research reported here answers positively the fundamental question of whether PPy wires still exhibit useful volume changes at the nanoscale. Nanowires with a 50 nm diameter and a length of approximately 6 µm, are fabricated by chemical polymerization using track-etched polycarbonate membranes as templates. Their actuation response as a function of oxidation state is investigated by electrochemical AFM (atomic force microscopy). An estimate of the minimum actuation force is made, based on the displacement of the AFM cantilever.

  17. Actuation of polypyrrole nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Alexander S; Peteu, Serban F; Ly, James V; Requicha, Aristides A G; Thompson, Mark E; Zhou Chongwu [Laboratory for Molecular Robotics, University of Southern California, Los Angeles, CA 90089 (United States)], E-mail: requicha@usc.edu

    2008-04-23

    Nanoscale actuators are essential components of the NEMS (nanoelectromechanical systems) and nanorobots of the future, and are expected to become a major area of development within nanotechnology. This paper demonstrates for the first time that individual polypyrrole (PPy) nanowires with diameters under 100 nm exhibit actuation behavior, and therefore can potentially be used for constructing nanoscale actuators. PPy is an electroactive polymer which can change volume on the basis of its oxidation state. PPy-based macroscale and microscale actuators have been demonstrated, but their nanoscale counterparts have not been realized until now. The research reported here answers positively the fundamental question of whether PPy wires still exhibit useful volume changes at the nanoscale. Nanowires with a 50 nm diameter and a length of approximately 6 {mu}m, are fabricated by chemical polymerization using track-etched polycarbonate membranes as templates. Their actuation response as a function of oxidation state is investigated by electrochemical AFM (atomic force microscopy). An estimate of the minimum actuation force is made, based on the displacement of the AFM cantilever.

  18. Actuation of polypyrrole nanowires.

    Science.gov (United States)

    Lee, Alexander S; Peteu, Serban F; Ly, James V; Requicha, Aristides A G; Thompson, Mark E; Zhou, Chongwu

    2008-04-23

    Nanoscale actuators are essential components of the NEMS (nanoelectromechanical systems) and nanorobots of the future, and are expected to become a major area of development within nanotechnology. This paper demonstrates for the first time that individual polypyrrole (PPy) nanowires with diameters under 100 nm exhibit actuation behavior, and therefore can potentially be used for constructing nanoscale actuators. PPy is an electroactive polymer which can change volume on the basis of its oxidation state. PPy-based macroscale and microscale actuators have been demonstrated, but their nanoscale counterparts have not been realized until now. The research reported here answers positively the fundamental question of whether PPy wires still exhibit useful volume changes at the nanoscale. Nanowires with a 50 nm diameter and a length of approximately 6 µm, are fabricated by chemical polymerization using track-etched polycarbonate membranes as templates. Their actuation response as a function of oxidation state is investigated by electrochemical AFM (atomic force microscopy). An estimate of the minimum actuation force is made, based on the displacement of the AFM cantilever.

  19. Shape memory system with integrated actuation using embedded particles

    Science.gov (United States)

    Buckley, Patrick R [New York, NY; Maitland, Duncan J [Pleasant Hill, CA

    2012-05-29

    A shape memory material with integrated actuation using embedded particles. One embodiment provides a shape memory material apparatus comprising a shape memory material body and magnetic pieces in the shape memory material body. Another embodiment provides a method of actuating a device to perform an activity on a subject comprising the steps of positioning a shape memory material body in a desired position with regard to the subject, the shape memory material body capable of being formed in a specific primary shape, reformed into a secondary stable shape, and controllably actuated to recover the specific primary shape; including pieces in the shape memory material body; and actuating the shape memory material body using the pieces causing the shape memory material body to be controllably actuated to recover the specific primary shape and perform the activity on the subject.

  20. Asymmetric Bellow Flexible Pneumatic Actuator for Miniature Robotic Soft Gripper

    Directory of Open Access Journals (Sweden)

    Ganesha Udupa

    2014-01-01

    Full Text Available The necessity of the soft gripping devices is increasing day-by-day in medical robotics especially when safe, gentle motions and soft touch are necessary. In this paper, a novel asymmetric bellow flexible pneumatic actuator (AFPA has been designed and fabricated to construct a miniaturised soft gripper that could be used to grip small objects. The model of AFPA is designed using solid works and its bending motion is simulated in Abaqus software for optimisation and compared with experimental results. The actuator is fabricated using compression molding process that includes micromachining of the molds. Experiments conducted show the bending characteristics of the actuator at different pressures. The actuator shows excellent bending performance and the eccentricity in its design supports increased bending or curling motion up to a certain extent compared to normal bellows without eccentricity. The effects of profile shape and eccentricity on the actuator performance are analysed and the results are presented.

  1. Shape memory system with integrated actuation using embedded particles

    Science.gov (United States)

    Buckley, Patrick R; Maitland, Duncan J

    2014-04-01

    A shape memory material with integrated actuation using embedded particles. One embodiment provides a shape memory material apparatus comprising a shape memory material body and magnetic pieces in the shape memory material body. Another embodiment provides a method of actuating a device to perform an activity on a subject comprising the steps of positioning a shape memory material body in a desired position with regard to the subject, the shape memory material body capable of being formed in a specific primary shape, reformed into a secondary stable shape, and controllably actuated to recover the specific primary shape; including pieces in the shape memory material body; and actuating the shape memory material body using the pieces causing the shape memory material body to be controllably actuated to recover the specific primary shape and perform the activity on the subject.

  2. Method for use of hydraulically or electrically controlled solenoids under failed on conditions

    Science.gov (United States)

    Bolenbaugh, Jonathan M.; Naqi, Syed

    2014-07-08

    A method to operate a clutch device in an electro-mechanical transmission mechanically-operatively coupled to an internal combustion engine and at least one electric machine includes, in response to a failure condition detected within a flow control device configured to facilitate flow of hydraulic fluid for operating the clutch device, selectively preventing the flow of hydraulic fluid from entering the flow control device and feeding the clutch device. Synchronization of the clutch device is initiated when the clutch device is intended for activation, and only if the clutch device is synchronized, the flow of hydraulic fluid is selectively permitted to enter the flow control device to activate the clutch device.

  3. Fabrication and reliable implementation of an ionic polymer-metal composite (IPMC) biaxial bending actuator

    Science.gov (United States)

    Lee, Gil-Yong; Choi, Jung-Oh; Kim, Myeungseon; Ahn, Sung-Hoon

    2011-10-01

    Ionic polymer-metal composites (IPMCs) are one of the most popular types of electro-active polymer actuator, due to their low electric driving potential, large deformation range, and light weight. IPMCs have been used as actuators or sensors in many areas of biomedical and robotic engineering. In this research, IPMCs were studied as a biaxial bending actuator capable of smart and flexible motion. We designed and fabricated this bending actuator and implemented it to have a reliable actuating motion using a systematic approach. The resulting device was bar shaped with a square cross section and had four insulated electrodes on its surface. By applying different voltages to these four electrodes, a biaxial bending motion can be induced. To construct this actuator, several fabrication processes were considered. We modified the Nafion stacking method, and established a complete sequence of actuator fabrication processes. Using these processes, we were able to fabricate an IPMC biaxial bending actuator with both high actuating force and high flexibility. Several experiments were conducted to investigate and verify the performance of the actuator. The IPMC actuator system was modeled from experimentally measured data, and using this actuator model, a closed-loop proportional integral (PI) controller was designed. Reference position tracking performances of open-loop and closed-loop systems were compared. Finally, circular motion tracking performances of the actuator tip were tested under different rotation frequencies and radii of a reference trajectory circle.

  4. WATER ENERGY IN HYDROAMELIORATIVE SYSTEMS USING THE HYDRAULIC TRANSFORMER TYPE A. BARGLAZAN AND THE HYDRAULIC HAMMER (HYDRAULIC PUMP

    Directory of Open Access Journals (Sweden)

    Teodor Eugen Man

    2010-01-01

    Full Text Available This paper presents two examples of exploitation of water energy that can be used in the irrigation field. First of theseexamples is the hydraulic transformer type A. Barglazan used for irrigation, pumped water is taken directly from theriver’s well, using a hydraulic pump which simultaneously carried out a double transformation in this way: hydraulicenergy into mechanic energy and mechanical energy into hydraulic energy. Technology preparation and devices designwas done in record time, seeing that this constructive solution is more robust, reliable and with improved energyperformance versus the laboratory prototype. The experimental research which was made at 1:1 scale proved theirgood function over time. Another example is the hydraulic hammer (hydraulic pump that uses low-head energy topump water, with a global efficiency of about 10 - 50%. Currently, the new situation of private ownership of landprovides conditions for new pumping microstations to be made where irrigation is necessary and optimal hydrauliclocations exist.

  5. Biomimetic photo-actuation: sensing, control and actuation in sun-tracking plants.

    Science.gov (United States)

    Dicker, M P M; Rossiter, J M; Bond, I P; Weaver, P M

    2014-09-01

    Although the actuation mechanisms that drive plant movement have been investigated from a biomimetic perspective, few studies have looked at the wider sensing and control systems that regulate this motion. This paper examines photo-actuation-actuation induced by, and controlled with light-through a review of the sun-tracking functions of the Cornish Mallow. The sun-tracking movement of the Cornish Mallow leaf results from an extraordinarily complex-yet extremely elegant-process of signal perception, generation, filtering and control. Inspired by this process, a concept for a simplified biomimetic analogue of this leaf is proposed: a multifunctional structure employing chemical sensing, signal transmission, and control of composite hydrogel actuators. We present this multifunctional structure, and show that the success of the concept will require improved selection of materials and structural design. This device has application in the solar-tracking of photovoltaic panels for increased energy yield. More broadly it is envisaged that the concept of chemical sensing and control can be expanded beyond photo-actuation to many other stimuli, resulting in new classes of robust solid-state devices.

  6. Shaking table test and verification of development of an accumulated semi-active hydraulic damper as an active interaction control device

    Indian Academy of Sciences (India)

    MING-HSIANG SHIH; WEN-PEI SUNG

    2016-12-01

    Semi-active control is based on the use of the emerging concept of active control and passive control. The developed accumulator semi-active hydraulic damper (ASHD) is converted to interaction element (IE) of active interaction control (AIC). Systemic equations of motion, control law and control rulers of this proposed new AIC are studied in this research. A full-scale multiple degrees of freedom shaking table is tested toverify the energy dissipation of this proposed AIC, including test building without control, with passive control added involving various stiffness ratios and also with synchronic control added involving various stiffness ratios. Shock absorption of displacement can be up to 74–81% of that of the test structure with stiffness ratio = 2.3387 and 1.790 at 1st and 2nd floor under control of synchronous switch of this proposed AIC, respectively. No matter what the test structure added with various stiffeners at 1st and 2nd floor under synchronous control, test results of shock absorption ratio of acceleration show good seismic proof capability. In addition, base shear control effects of this proposed AIC method are higher than those of the test structure with various stiffeners added underpassive control. These results show that AIC with stiffeners for structural control provides the characteristics of a stabilized structure under excitation of near-fault earthquake with velocity impulse action

  7. Nanoporous Carbide-Derived Carbon Material-Based Linear Actuators

    Directory of Open Access Journals (Sweden)

    Janno Torop

    2009-12-01

    Full Text Available Devices using electroactive polymer-supported carbon material can be exploited as alternatives to conventional electromechanical actuators in applications where electromechanical actuators have some serious deficiencies. One of the numerous examples is precise microactuators. In this paper, we show for first time the dilatometric effect in nanocomposite material actuators containing carbide-derived carbon (CDC and polytetrafluoroetylene polymer (PTFE. Transducers based on high surface area carbide-derived carbon electrode materials are suitable for short range displacement applications, because of the proportional actuation response to the charge inserted, and high Coulombic efficiency due to the EDL capacitance. The material is capable of developing stresses in the range of tens of N cm-2. The area of an actuator can be dozens of cm2, which means that forces above 100 N are achievable. The actuation mechanism is based on the interactions between the high-surface carbon and the ions of the electrolyte. Electrochemical evaluations of the four different actuators with linear (longitudinal action response are described. The actuator electrodes were made from two types of nanoporous TiC-derived carbons with surface area (SA of 1150 m2 g-1 and 1470 m2 g-1, respectively. Two kinds of electrolytes were used in actuators: 1.0 M tetraethylammonium tetrafluoroborate (TEABF4 solution in propylene carbonate and pure ionic liquid 1-ethyl-3-methylimidazolium trifluoromethanesulfonate (EMITf. It was found that CDC based actuators exhibit a linear movement of about 1% in the voltage range of 0.8 V to 3.0 V at DC. The actuators with EMITf electrolyte had about 70% larger movement compared to the specimen with TEABF4 electrolyte.

  8. Propulsive performance of an under-actuated robotic ribbon fin.

    Science.gov (United States)

    Liu, Hanlin; Curet, Oscar M

    2017-06-02

    Many aquatic animals propelled by elongated undulatory fins can perform complex maneuvers and swim with high efficiency at low speeds. In this propulsion, one or multiple waves travel along an elastic fin composed of flexible rays. In this study, we explore the potential benefits or disadvantages of passive fin motion based on the coupling of fluid-structure interactions and elasto-mechanical responses of the undulatory fin. The motivation is to understand how an under-actuated undulating fin can modify its active and passive fin motion to effectively control the hydrodynamic force and propulsive efficiency. We study the kinematics and propulsive performance of an under-actuated ribbon fin using a robotic device. During two experimental sets for fully-actuated fin and under-actuated fin respectively, we measured fin kinematics, surge forces and power consumption. Our results show that under-actuated fin can generate smaller thrust but consume less power comparing to a fully-actuated counterpart. The thrust generated by an under-actuated fin scales similarly to a fully-actuated fin-linear with the enclosed area and quadratic with the relative velocity. Power consumption scales with cube of lateral tangential velocity. Furthermore, we find that the under-actuated fin can keep the same propulsive efficiency as the fully-actuated fin at low relative velocities. This finding has profound implications to both natural swimmers and underwater vehicles using undulating fin-based propulsion, as it suggests that they can potentially exploit passive fin motion without decrementing propulsive efficiency. For underwater vehicles with undulatory fins, an under-actuated design can greatly simplify the mechanical design and control complexity of a versatile propulsion system.

  9. High-pressure microhydraulic actuator

    Science.gov (United States)

    Mosier, Bruce P [San Francisco, CA; Crocker, Robert W [Fremont, CA; Patel, Kamlesh D [Dublin, CA

    2008-06-10

    Electrokinetic ("EK") pumps convert electric to mechanical work when an electric field exerts a body force on ions in the Debye layer of a fluid in a packed bed, which then viscously drags the fluid. Porous silica and polymer monoliths (2.5-mm O.D., and 6-mm to 10-mm length) having a narrow pore size distribution have been developed that are capable of large pressure gradients (250-500 psi/mm) when large electric fields (1000-1500 V/cm) are applied. Flowrates up to 200 .mu.L/min and delivery pressures up to 1200 psi have been demonstrated. Forces up to 5 lb-force at 0.5 mm/s (12 mW) have been demonstrated with a battery-powered DC-DC converter. Hydraulic power of 17 mW (900 psi@ 180 uL/min) has been demonstrated with wall-powered high voltage supplies. The force and stroke delivered by an actuator utilizing an EK pump are shown to exceed the output of solenoids, stepper motors, and DC motors of similar size, despite the low thermodynamic efficiency.

  10. Electrochemical device

    Science.gov (United States)

    Grimes, Patrick G.; Einstein, Harry; Bellows, Richard J.

    1988-01-12

    A tunnel protected electrochemical device features channels fluidically communicating between manifold, tunnels and cells. The channels are designed to provide the most efficient use of auxiliary power. The channels have a greater hydraulic pressure drop and electrical resistance than the manifold. This will provide a design with the optimum auxiliary energy requirements.

  11. The design and analysis of a MEMS electrothermal actuator

    Science.gov (United States)

    Suocheng, Wang; Yongping, Hao; Shuangjie, Liu

    2015-04-01

    This paper introduces a type of out-of-plane microelectrothermal actuator, which is based on the principle of bimetal film thermal expansion in the fuse. A polymer SU-8 material and nickel are used as the functional and structural materials of the actuator. Through heating the resistance wire using electricity, the actuator produces out-of-plane motion in the perpendicular axial direction of the device and the bias layer contact with the substrate, completing signal output. Using Coventorware software to establish the three-dimensional model, the geometric structure is optimized and the electrothermal capabilities are determined theoretically. From electrothermal analysis, the actuator's displacement is 18 μm and the temperature rises from 300 to 440 K under a voltage of 5 V and the response time is 5 ms. The actuator's displacement is 20 μm under a 100000 m/s2 acceleration in the accelerating field. In the coupled field, applying a 3 V voltage, the initial temperature is 300 K, while the acceleration is 50000 m/s2, the driving displacement of the actuator is 23 μm, and temperature rises to 400 K. Finally, through checking the stress in different field sources, the maximum stress of the actuator is smaller than the allowable stress of nickel. The results show that the electrothermal actuator has high reliability.

  12. Optimization of Actuating Origami Networks

    Science.gov (United States)

    Buskohl, Philip; Fuchi, Kazuko; Bazzan, Giorgio; Joo, James; Gregory, Reich; Vaia, Richard

    2015-03-01

    Origami structures morph between 2D and 3D conformations along predetermined fold lines that efficiently program the form, function and mobility of the structure. By leveraging design concepts from action origami, a subset of origami art focused on kinematic mechanisms, reversible folding patterns for applications such as solar array packaging, tunable antennae, and deployable sensing platforms may be designed. However, the enormity of the design space and the need to identify the requisite actuation forces within the structure places a severe limitation on design strategies based on intuition and geometry alone. The present work proposes a topology optimization method, using truss and frame element analysis, to distribute foldline mechanical properties within a reference crease pattern. Known actuating patterns are placed within a reference grid and the optimizer adjusts the fold stiffness of the network to optimally connect them. Design objectives may include a target motion, stress level, or mechanical energy distribution. Results include the validation of known action origami structures and their optimal connectivity within a larger network. This design suite offers an important step toward systematic incorporation of origami design concepts into new, novel and reconfigurable engineering devices. This research is supported under the Air Force Office of Scientific Research (AFOSR) funding, LRIR 13RQ02COR.

  13. Energy efficient fluid powered linear actuator with variable area

    Energy Technology Data Exchange (ETDEWEB)

    Lind, Randall F.; Love, Lonnie J.

    2016-09-13

    Hydraulic actuation systems having variable displacements and energy recovery capabilities include cylinders with pistons disposed inside of barrels. When operating in energy consuming modes, high speed valves pressurize extension chambers or retraction chambers to provide enough force to meet or counteract an opposite load force. When operating in energy recovery modes, high speed valves return a working fluid from extension chambers or retraction chambers, which are pressurized by a load, to an accumulator for later use.

  14. Optimal placement of dampers and actuators based on stochastic approach

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    A general method is developed for optimal application of dampers and actuators by installing them at optimal location on seismic-resistant structures. The study includes development of a statistical criterion, formulation of a general optimization problem and establishment of a solution procedure. Numerical analysis of the seismic response in time-history of controlled structures is used to verify the proposed method for optimal device application and to demonstrate the effectiveness of seismic response control with optimal device location. This study shows that the proposed method for the optimal device application is simple and general, and that the optimally applied dampers and actuators are very efficient for seismic response reduction.

  15. Digital Actuator Technology

    Energy Technology Data Exchange (ETDEWEB)

    Ken Thomas; Ted Quinn; Jerry Mauck; Richard Bockhorst

    2014-09-01

    There are significant developments underway in new types of actuators for power plant active components. Many of these make use of digital technology to provide a wide array of benefits in performance of the actuators and in reduced burden to maintain them. These new product offerings have gained considerable acceptance in use in process plants. In addition, they have been used in conventional power generation very successfully. This technology has been proven to deliver the benefits promised and substantiate the claims of improved performance. The nuclear industry has been reluctant to incorporate digital actuator technology into nuclear plant designs due to concerns due to a number of concerns. These could be summarized as cost, regulatory uncertainty, and a certain comfort factor with legacy analog technology. The replacement opportunity for these types of components represents a decision point for whether to invest in more modern technology that would provide superior operational and maintenance benefits. Yet, the application of digital technology has been problematic for the nuclear industry, due to qualification and regulatory issues. With some notable exceptions, the result has been a continuing reluctance to undertake the risks and uncertainties of implementing digital actuator technology when replacement opportunities present themselves. Rather, utilities would typically prefer to accept the performance limitations of the legacy analog actuator technologies to avoid impacts to project costs and schedules. The purpose of this report is to demonstrate that the benefits of digital actuator technology can be significant in terms of plant performance and that it is worthwhile to address the barriers currently holding back the widespread development and use of this technology. It addresses two important objectives in pursuit of the beneficial use of digital actuator technology for nuclear power plants: 1. To demonstrate the benefits of digital actuator

  16. Flux-Feedback Magnetic-Suspension Actuator

    Science.gov (United States)

    Groom, Nelson J.

    1990-01-01

    Flux-feedback magnetic-suspension actuator provides magnetic suspension and control forces having linear transfer characteristics between force command and force output over large range of gaps. Hall-effect devices used as sensors for electronic feedback circuit controlling currents flowing in electromagnetic windings to maintain flux linking suspended element at substantially constant value independent of changes in length of gap. Technique provides effective method for maintenance of constant flux density in gap and simpler than previous methods. Applications include magnetic actuators for control of shapes and figures of antennas and of precise segmented reflectors, magnetic suspensions in devices for storage of angular momentum and/or kinetic energy, and systems for control, pointing, and isolation of instruments.

  17. Engineering Design Handbook. Propellant Actuated Devices.

    Science.gov (United States)

    1975-09-30

    tional ejetion injury rate is depicted in Fig. given by the relation 5- 12 (Ref. 3). The DRI is defined according to the d26 28 dS + w a 4() (5-31...SW .0 .... 0..e1~ 1?3 FOwm& AlI .4tiiI4 RATIO )F SPECIFIC q!~ATS (flImENS10NLESS1 oe-l-.V 1I?% FObIA &T (Axe6bpqI% Ao01Ad4ric I~’ýpC’iu’IC FLAME

  18. Force Control Strategies in Hydraulically Actuated Legged Robots

    Directory of Open Access Journals (Sweden)

    Hector Montes

    2016-03-01

    Full Text Available In this contribution, several strategies of force control have been proposed to be implemented and evaluated in ROBOCLIMBER, a quadruped robot of large dimensions. A first group of strategies proposed in this paper is based on impedance control, which is intended to adapt the foot-ground contact forces according to the experimentally specified damping ratio and the undamped natural frequency. A second control strategy of interest for many practical cases is called the parallel force/position control, which has one inner loop position control and two external control loops, one of force and another of position. A third group of control strategies is the posture stabilization for ROBOCLIMBER using the feedback of the ZMP calculation and the position of its legs. Finally, a control strategy for the control of a quasi-static gait using ZMP feedback is proposed and tested by simulation.

  19. Discrete Learning Control with Application to Hydraulic Actuators

    DEFF Research Database (Denmark)

    Andersen, Torben Ole; Pedersen, Henrik Clemmensen; Hansen, Michael R.

    2015-01-01

    In this paper the robustness of a class of learning control algorithms to state disturbances, output noise, and errors in initial conditions is studied. We present a simple learning algorithm and exhibit, via a concise proof, bounds on the asymptotic trajectory errors for the learned input and th...

  20. DESIGN AND CONSTRUCTION OF A HYDRAULIC PISTON

    OpenAIRE

    Santos De La Cruz, Eulogio; Universidad Nacional Mayor de San Marcos; Rojas Lazo, Oswaldo; Universidad Nacional Mayor de San Marcos; Yenque Dedios, Julio; Universidad Nacional Mayor de San Marcos; Lavado Soto, Aurelio; Universidad Nacional Mayor de San Marcos

    2014-01-01

    A hydraulic system project includes the design, materials selection and construction of the hydraulic piston, hydraulic circuit and the joint with the pump and its accesories. This equiment will be driven by the force of moving fluid, whose application is in the devices of machines, tools, printing, perforation, packing and others. El proyecto de un sistema hidráulico, comprende el diseño, selección de materiales y construcción del pistón hidráulico, circuito hidráulico y el ensamble con l...

  1. Electrorheological fluid-actuated microfluidic pump

    Science.gov (United States)

    Liu, Liyu; Chen, Xiaoqing; Niu, Xize; Wen, Weijia; Sheng, Ping

    2006-08-01

    The authors report the design and implementation of an electrorheological (ER) fluid-actuated microfluidic pump, with programmable digital control. Our microfluidic pump has a multilayered structure fabricated on polydimethylsiloxane by soft-lithographic technique. The ER microfluidic pump exhibits good performance at high pumping frequencies and uniform liquid flow characteristics. It can be easily integrated with other microfluidic components. The programmable control also gives the device flexibility in its operations.

  2. Electrically Actuated Antiglare Rear-View Mirror Based on a Shape Memory Alloy Actuator

    Science.gov (United States)

    Luchetti, T.; Zanella, A.; Biasiotto, M.; Saccagno, A.

    2009-08-01

    This article focuses on the experience of Centro Ricerche FIAT (CRF) regarding the development of shape memory alloy (SMA) actuators, and addressed some new design approaches which have been defined. Specific characteristics of shape memory materials, such as the efficiency of the transformation, have oriented the design of actuators toward occasionally used devices. The antiglare manual mechanism, incorporated in the internal rear-view mirror of a car, fits this new approach well. An antiglare rear-view mirror is a system capable of detecting a glare situation during night-time driving in order to automatically switch the mirror plane so as not to distract the driver. The low forces required, together with the silent, bi-stable movement are suitable for the use of a SMA actuator in this application. In the first part of the paper, the conceptual design is illustrated and a preliminary overview of the working principle is provided together with a series of considerations regarding the kinematics and the layout of electronic sensors in order to realize a fully controlled mechatronic prototype. Before concluding, the description of the realization of a working prototype is presented. The prototype of the EAGLE (Electrically Actuated antiGLare rEar-view mirror) system has provided experimental confirmation that such a device can satisfy fatigue and functional test requirements, thus offering the opportunity to spread the use of SMA devices in the automotive field.

  3. Magnetic Actuators and Sensors

    Science.gov (United States)

    Brauer, John R.

    2005-12-01

    Magnetic actuators and sensors are needed to enable computer and manual control of motion. Magnetic actuators allow a small electrical signal to move small or large objects. To sense the amount of motion, magnetic sensors are frequently used. This book provides the most up-to-date coverage of topics important to modern engineers, both electrical and mechanical. The author includes the latest findings and design techniques from computer models. The latest software tools are used.

  4. Fault tolerant linear actuator

    Science.gov (United States)

    Tesar, Delbert

    2004-09-14

    In varying embodiments, the fault tolerant linear actuator of the present invention is a new and improved linear actuator with fault tolerance and positional control that may incorporate velocity summing, force summing, or a combination of the two. In one embodiment, the invention offers a velocity summing arrangement with a differential gear between two prime movers driving a cage, which then drives a linear spindle screw transmission. Other embodiments feature two prime movers driving separate linear spindle screw transmissions, one internal and one external, in a totally concentric and compact integrated module.

  5. Low-Actuation Voltage MEMS Digital-to-Analog Converter with Parylene Spring Structures

    Directory of Open Access Journals (Sweden)

    Cheng-Wen Ma

    2015-08-01

    Full Text Available We propose an electrostatically-actuated microelectromechanical digital-to-analog converter (M-DAC device with low actuation voltage. The spring structures of the silicon-based M-DAC device were monolithically fabricated using parylene-C. Because the Young’s modulus of parylene-C is considerably lower than that of silicon, the electrostatic microactuators in the proposed device require much lower actuation voltages. The actuation voltage of the proposed M-DAC device is approximately 6 V, which is less than one half of the actuation voltages of a previously reported M-DAC equipped with electrostatic microactuators. The measured total displacement of the proposed three-bit M-DAC is nearly 504 nm, and the motion step is approximately 72 nm. Furthermore, we demonstrated that the M-DAC can be employed as a mirror platform with discrete displacement output for a noncontact surface profiling system.

  6. Demonstration of Vibrational Braille Code Display Using Large Displacement Micro-Electro-Mechanical Systems Actuators

    Science.gov (United States)

    Watanabe, Junpei; Ishikawa, Hiroaki; Arouette, Xavier; Matsumoto, Yasuaki; Miki, Norihisa

    2012-06-01

    In this paper, we present a vibrational Braille code display with large-displacement micro-electro-mechanical systems (MEMS) actuator arrays. Tactile receptors are more sensitive to vibrational stimuli than to static ones. Therefore, when each cell of the Braille code vibrates at optimal frequencies, subjects can recognize the codes more efficiently. We fabricated a vibrational Braille code display that used actuators consisting of piezoelectric actuators and a hydraulic displacement amplification mechanism (HDAM) as cells. The HDAM that encapsulated incompressible liquids in microchambers with two flexible polymer membranes could amplify the displacement of the MEMS actuator. We investigated the voltage required for subjects to recognize Braille codes when each cell, i.e., the large-displacement MEMS actuator, vibrated at various frequencies. Lower voltages were required at vibration frequencies higher than 50 Hz than at vibration frequencies lower than 50 Hz, which verified that the proposed vibrational Braille code display is efficient by successfully exploiting the characteristics of human tactile receptors.

  7. HYDRAULICS, LOUISA COUNTY, USA

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Hydraulic data include spatial datasets and data tables necessary for documenting the hydraulic analysis for estimating flood stages for a flood insurance study. It...

  8. Hydraulic Hybrid Vehicles

    Science.gov (United States)

    EPA and the United Parcel Service (UPS) have developed a hydraulic hybrid delivery vehicle to explore and demonstrate the environmental benefits of the hydraulic hybrid for urban pick-up and delivery fleets.

  9. Carbon nanotube and graphene-based bioinspired electrochemical actuators.

    Science.gov (United States)

    Kong, Lirong; Chen, Wei

    2014-02-01

    Bio-inspired actuation materials, also called artificial muscles, have attracted great attention in recent decades for their potential application in intelligent robots, biomedical devices, and micro-electro-mechanical systems. Among them, ionic polymer metal composite (IPMC) actuator has been intensively studied for their impressive high-strain under low voltage stimulation and air-working capability. A typical IPMC actuator is composed of one ion-conductive electrolyte membrane laminated by two electron-conductive metal electrode membranes, which can bend back and forth due to the electrode expansion and contraction induced by ion motion under alternating applied voltage. As its actuation performance is mainly dominated by electrochemical and electromechanical process of the electrode layer, the electrode material and structure become to be more crucial to higher performance. The recent discovery of one dimensional carbon nanotube and two dimensional graphene has created a revolution in functional nanomaterials. Their unique structures render them intriguing electrical and mechanical properties, which makes them ideal flexible electrode materials for IPMC actuators in stead of conventional metal electrodes. Currently although the detailed effect caused by those carbon nanomaterial electrodes is not very clear, the presented outstanding actuation performance gives us tremendous motivation to meet the challenge in understanding the mechanism and thus developing more advanced actuator materials. Therefore, in this review IPMC actuators prepared with different kinds of carbon nanomaterials based electrodes or electrolytes are addressed. Key parameters which may generate important influence on actuation process are discussed in order to shed light on possible future research and application of the novel carbon nanomateials based bio-inspired electrochemical actuators.

  10. Nonmagnetic driver for piezoelectric actuators

    DEFF Research Database (Denmark)

    Ekhtiari, Marzieh

    2014-01-01

    Piezoelectric actuator drive aims to enable reliable motor performance in strong magnetic fields for magnetic res- onance imaging and computed tomography treatment tables. There are technical limitations in operation of these motors and drive systems related to magnetic interference. Piezoelectric...... actuators. Therefore, piezoelectric transformer-based power converters are used for driving piezoelectric actuator drive motor in the presence of high electromagnetic field....

  11. Overview on permanent magnetic actuator

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Permanent magnetic actuator (PMA), as a new electronic actuator of vacuum circuit breakers, certainly will be used to replace the traditional mechanical actuator. It has such advantages as simple structure, high reliability, free maintenance, and so on. This paper summarizes the development, structure, magnetic analysis, character analysis, and control strategy of PMA, and also predicts the future trend of PMA development

  12. Rotary actuators for plastic valves

    Energy Technology Data Exchange (ETDEWEB)

    Rudin, M. [Georg Fischer Piping Systems Ltd, Schaffhausen (Switzerland)

    2004-07-01

    Flexibility and modularity plus a high level of quality are the defining characteristics of this new generation of actuators from Georg Fischer. In conjunction with the new 546 ball valve, the PA 11/PA 21 pneumatic actuators and the EA 11/EA 21 electric actuators form an optimally co-ordinated system. (orig.)

  13. Experimental Investigation of Flow Separation Control Using Dielectric Barrier Discharge Plasma Actuators

    Institute of Scientific and Technical Information of China (English)

    LI Gang; NIE Chaoqun; LI Yiming; ZHU Junqiang; XU Yanji

    2008-01-01

    Influence of plasma actuators as a flow separation control device was investigated experimentally.Hump model was used to demonstrate the effect of plasma actuators on external flow separation,while for internal flow separation a set of compressor cascade was adopted.In order to investigate the modification of the flow structure by the plasma actuator,the flow field was examined non-intrusively by particle image velocimetry measurements in the hump model experiment and by a hot film probe in the compressor cascade experiment.The results showed that the plasma actuator could be effective in controlling the flow separation both over the hump and in the compressor cascade when the incoming velocity was low.As the incoming velocity increased,the plasma actuator was less effective. It is urgent to enhance the intensity of the plasma actuator for its better application.Methods to increase the intensity of plasma actuator were also studied.

  14. A small-gap electrostatic micro-actuator for large deflections.

    Science.gov (United States)

    Conrad, Holger; Schenk, Harald; Kaiser, Bert; Langa, Sergiu; Gaudet, Matthieu; Schimmanz, Klaus; Stolz, Michael; Lenz, Miriam

    2015-12-11

    Common quasi-static electrostatic micro actuators have significant limitations in deflection due to electrode separation and unstable drive regions. State-of-the-art electrostatic actuators achieve maximum deflections of approximately one third of the electrode separation. Large electrode separation and high driving voltages are normally required to achieve large actuator movements. Here we report on an electrostatic actuator class, fabricated in a CMOS-compatible process, which allows high deflections with small electrode separation. The concept presented makes the huge electrostatic forces within nanometre small electrode separation accessible for large deflections. Electrostatic actuations that are larger than the electrode separation were measured. An analytical theory is compared with measurement and simulation results and enables closer understanding of these actuators. The scaling behaviour discussed indicates significant future improvement on actuator deflection. The presented driving concept enables the investigation and development of novel micro systems with a high potential for improved device and system performance.

  15. Development of Traveling Wave Actuators Using Waveguides of Different Geometrical Forms

    Directory of Open Access Journals (Sweden)

    Ramutis Bansevicius

    2016-01-01

    Full Text Available The paper covers the research and development of piezoelectric traveling wave actuators using different types of the waveguides. The introduced piezoelectric actuators can be characterized by specific areas of application, different resolution, and torque. All presented actuators are ultrasonic resonant devices and they were developed to increase amplitudes of the traveling wave oscillations of the contact surface. Three different waveguides are introduced, that is, symmetrical, asymmetrical, and cone type waveguide. A piezoelectric ring with the sectioned electrodes is used to excite traveling wave oscillations for all actuators. Operating principle, electrode pattern, and excitation regimes of piezoelectric actuators are described. A numerical modelling of the actuators was performed to validate the operating principle and to calculate trajectories of the contact points motion. Prototype actuators were made and experimental study was performed. The results of numerical and experimental analysis are discussed.

  16. Electromechanical flight control actuator

    Science.gov (United States)

    1979-01-01

    The feasibility of using an electromechanical actuator (EMA) as the primary flight control equipment in aerospace flight is examined. The EMA motor design is presented utilizing improved permanent magnet materials. The necessary equipment to complete a single channel EMA using the single channel power electronics breadboard is reported. The design and development of an improved rotor position sensor/tachometer is investigated.

  17. Airplane Actuation Trade Study

    Science.gov (United States)

    1983-01-01

    the electrical subsystem it is anticipated that 270 HVDC will not always be the most efficient power source. Lighting, instrumentation, avionics...sizing considerations all motor loads such as surface control actuators, fuel pumps, ECS fans and pumps, etc., are regarded as powered by 270 HVDC . All

  18. Shape Memory Alloy Actuator

    Science.gov (United States)

    Baumbick, Robert J. (Inventor)

    2002-01-01

    The present invention discloses and teaches a unique, remote optically controlled micro actuator particularly suitable for aerospace vehicle applications wherein hot gas, or in the alternative optical energy, is employed as the medium by which shape memory alloy elements are activated. In gas turbine powered aircraft the source of the hot gas may be the turbine engine compressor or turbine sections.

  19. A Magnetic Bead Actuator

    NARCIS (Netherlands)

    Derks, R.; Prins, M.W.J.; Wimberger-Friedl, R.

    2006-01-01

    Actuation principles of superparamagnetic beads applicable on biosensing (at single beads and chain orderning) are studied in this report. This research can be used to develop new techniques that are able to accelerate bio-assays. An experimental setup containing a sub-microliter fluid volume

  20. Piezoelectric actuator renaissance

    Science.gov (United States)

    Uchino, Kenji

    2015-03-01

    This paper resumes the content of the invited talk of the author, read at the occasion of the International Workshop on Relaxor Ferroelectrics, IWRF 14, held on October 12-16, 2014 in Stirin, Czech Republic. It reviews the recent advances in materials, designing concepts, and new applications of piezoelectric actuators, as well as the future perspectives of this area.

  1. Valve and Manifold considerations for Efficient Digital Hydraulic Machines

    DEFF Research Database (Denmark)

    Roemer, Daniel Beck; Nørgård, Christian; Bech, Michael Møller;

    2016-01-01

    This paper seeks to shed light on the topic of design and sizing of switching valves and connecting manifolds found in large digital hydraulic motors, also known commercially as Digital Displacement Motors. These motors promise very high operation efficiencies with broad operation ranges, which set...... valves when considering also the manifold flow losses. A global optimization is conducted by use of the generalized differential evolution 3 algorithm, where the valve diameters, valve stroke lengths, actuator force capabilities and actuator timing signals are used as design variables. The results...

  2. Dynamic modeling of brushless dc motors for aerospace actuation

    Science.gov (United States)

    Demerdash, N. A.; Nehl, T. W.

    1980-11-01

    A discrete time model for simulation of the dynamics of samarium cobalt-type permanent magnet brushless dc machines is presented. The simulation model includes modeling of the interaction between these machines and their attached power conditioners. These are transistorized conditioner units. This model is part of an overall discrete-time analysis of the dynamic performance of electromechanical actuators, which was conducted as part of prototype development of such actuators studied and built for NASA-Johnson Space Center as a prospective alternative to hydraulic actuators presently used in shuttle orbiter applications. The resulting numerical simulations of the various machine and power conditioner current and voltage waveforms gave excellent correlation to the actual waveforms collected from actual hardware experimental testing. These results, numerical and experimental, are presented here for machine motoring, regeneration and dynamic braking modes. Application of the resulting model to the determination of machine current and torque profiles during closed-loop actuator operation were also analyzed and the results are given here. These results are given in light of an overall view of the actuator system components. The applicability of this method of analysis to design optimization and trouble-shooting in such prototype development is also discussed in light of the results at hand.

  3. Dynamic modeling of brushless dc motors for aerospace actuation

    Science.gov (United States)

    Demerdash, N. A.; Nehl, T. W.

    1980-01-01

    A discrete time model for simulation of the dynamics of samarium cobalt-type permanent magnet brushless dc machines is presented. The simulation model includes modeling of the interaction between these machines and their attached power conditioners. These are transistorized conditioner units. This model is part of an overall discrete-time analysis of the dynamic performance of electromechanical actuators, which was conducted as part of prototype development of such actuators studied and built for NASA-Johnson Space Center as a prospective alternative to hydraulic actuators presently used in shuttle orbiter applications. The resulting numerical simulations of the various machine and power conditioner current and voltage waveforms gave excellent correlation to the actual waveforms collected from actual hardware experimental testing. These results, numerical and experimental, are presented here for machine motoring, regeneration and dynamic braking modes. Application of the resulting model to the determination of machine current and torque profiles during closed-loop actuator operation were also analyzed and the results are given here. These results are given in light of an overall view of the actuator system components. The applicability of this method of analysis to design optimization and trouble-shooting in such prototype development is also discussed in light of the results at hand.

  4. A low order adaptive control scheme for hydraulic servo systems

    DEFF Research Database (Denmark)

    Andersen, Torben Ole; Pedersen, Henrik Clemmensen; Bech, Michael Møller;

    2015-01-01

    This paper deals with high-performance position control of hydraulics servo systems in general. The hydraulic servo system used is a two link robotic manipulator actuated by two hydraulic servo cylinders. A non-linear model of the hydraulic system and a Newton-Euler based model of the mechanical...... system were constructed and linearized. Controllers are implemented and tested on the manipulator. Pressure feedback was found to greatly improve system stability margins. Passive gain feedforward shows improved tracking performance for small changes in load pressure. For large changes in load pressure......, active gain feedforward shows a slightly improved performance. Computed-Torque Control shows better performance, but requires a well described system for best performance. A novel Adaptive Inverse Dynamics Controller was tested and the performance was found to be similar to that of Computed...

  5. Application of AMESim and MATLAB on Modeling and Study of Megawatt Wind Turbine Brake System Hydraulic Locking Device%AMESim与MATLAB在兆瓦级风力发电机制动系统液压锁紧装置建模及研究中的应用

    Institute of Scientific and Technical Information of China (English)

    闫利文; 艾存金; 王福山; 谢辉

    2015-01-01

    作为一个兆瓦级风力发电机制动系统,除制动装置外,在适当的位置还应设有风轮的锁定装置,以确保在正常制动系统失效情况下风机在不会突发的再次启动。针对该问题文章设计了一套液压锁紧装置,并分别采用AMEsim和MATLAB软件对其进行了研究与分析,并比较了两种分析软件在液压系统研究中的不同。%As a megawatt wind turbine braking system,in addition to the braking device,there should also have a locking device in the ap-propriate position,In order to ensure not burst start again during normal braking system failure. Aiming at this problem, we designed a set of hydraulic locking device,used AMESim and MATLAB software to research and analysis the hydraulic locking device,compared the differ-ence between two of them in the research of hydraulic system.

  6. Conceptual design of a device for charging PIG's batteries, using the hydraulic energy from the flow in pipe

    Energy Technology Data Exchange (ETDEWEB)

    Ramirez, Ricardo E.; Dutra, Max S. [Alberto Luiz Coimbra Institute for Graduate and Research Studies (COPPE-UFRJ), Rio de Janeiro, RJ (Brazil). Mechanical Engineering Program], e-mail: rramirez@ufrj.br, e-mail: max@mecanica.coppe.ufrj.br

    2009-07-01

    Some actual projects deal with development of PIGs with speed control for liquid pipelines, with the possibility of controlled displacement including counter flow locomotion, in order to inspect and service in 'unpiggable lines' and flexible lines. In this case, it is normal to carry energy consumption greater than the energy disposable in the batteries. This work proposes a device composed by a turbine and an electric generator; presents a preliminary mechanical design of the turbine for the specific requirements of the application like internal pressure inside the line, a range of relative velocities between the PIG and the pipeline and adequate material for the environmental conditions. One of the priority requirements is that the geometric form of the turbine and generator mate with a proposed form of the PIG minimizing the pressure drop in the line for the different work conditions. The electric design defines the magnets characteristics, geometric forms, dimensions and number of turns to obtain the required voltage and power for charging a nominal pack of batteries. (author)

  7. Development of characterization tools for reliability testing of micro-electro-mechanical system actuators

    Science.gov (United States)

    Smith, Norman F.; Eaton, William P.; Tanner, Danelle M.; Allen, James J.

    1999-08-01

    Characterization tools have been developed to study the performance characteristics and reliability of surface micromachined actuators. These tools include: (1) the ability to electrically stimulate or stress the actuator, (2) the capability to visually inspect the devices in operation, (3) a method for capturing operational information, and (4) a method to extract performance characteristics from the operational information. Additionally, a novel test structure has been developed to measure electrostatic forces developed by a comb drive actuator.

  8. Dielectric elastomer actuators for octopus inspired suction cups.

    Science.gov (United States)

    Follador, M; Tramacere, F; Mazzolai, B

    2014-09-25

    Suction cups are often found in nature as attachment strategy in water. Nevertheless, the application of the artificial counterpart is limited by the dimension of the actuators and their usability in wet conditions. A novel design for the development of a suction cup inspired by octopus suckers is presented. The main focus of this research was on the modelling and characterization of the actuation unit, and a first prototype of the suction cup was realized as a proof of concept. The actuation of the suction cup is based on dielectric elastomer actuators. The presented device works in a wet environment, has an integrated actuation system, and is soft. The dimensions of the artificial suction cups are comparable to proximal octopus suckers, and the attachment mechanism is similar to the biological counterpart. The design approach proposed for the actuator allows the definition of the parameters for its development and for obtaining a desired pressure in water. The fabricated actuator is able to produce up to 6 kPa of pressure in water, reaching the maximum pressure in less than 300 ms.

  9. Elastic Cube Actuator with Six Degrees of Freedom Output

    Directory of Open Access Journals (Sweden)

    Pengchuan Wang

    2015-09-01

    Full Text Available Unlike conventional rigid actuators, soft robotic technologies possess inherent compliance, so they can stretch and twist along every axis without the need for articulated joints. This compliance is exploited here using dielectric elastomer membranes to develop a novel six degrees of freedom (6-DOF polymer actuator that unifies ordinarily separate components into a simple cubic structure. This cube actuator design incorporates elastic dielectric elastomer membranes on four faces which are coupled by a cross-shaped end effector. The inherent elasticity of each membrane greatly reduces kinematic constraint and enables a 6-DOF actuation output to be produced via the end effector. An electro-mechanical model of the cube actuator is presented that captures the non-linear hyperelastic behaviour of the active membranes. It is demonstrated that the model accurately predicts actuator displacement and blocking moment for a range of input voltages. Experimental testing of a prototype 60 mm device demonstrates 6-DOF operation. The prototype produces maximum linear and rotational displacements of ±2.6 mm (±4.3% and ±4.8° respectively and a maximum blocking moment of ±76 mNm. The capacity for full 6-DOF actuation from a compact, readily scalable and easily fabricated polymeric package enables implementation in a range of mechatronics and robotics applications.

  10. Recent Advances in the Control of Piezoelectric Actuators

    Directory of Open Access Journals (Sweden)

    Ziqiang Chi

    2014-11-01

    Full Text Available The micro/nano positioning field has made great progress towards enabling the advance of micro/nano technology. Micro/nano positioning stages actuated by piezoelectric actuators are the key devices in micro/nano manipulation. The control of piezoelectric actuators has emerged as a hot topic in recent years. Piezoelectric materials have inherent hysteresis and creep nonlinearity, which can reduce the accuracy of the manipulation, even causing the instability of the whole system. Remarkable efforts have been made to compensate for the nonlinearity of piezoelectric actuation through the mathematical modelling and control approaches. This paper provides a review of recent advances on the control of piezoelectric actuators. After a brief introduction of basic components of typical piezoelectric micro/nano positioning platforms, the working principle and modelling of piezoelectric actuators are outlined in this paper. This is followed with the major control method and recent progress is presented in detail. Finally, some open issues and future work on the control of piezoelectric actuators are extensively discussed.

  11. Electro-mechanical behavior of a shape memory alloy actuator

    Science.gov (United States)

    Pausley, Matthew E.; Furst, Stephen J.; Talla, Vamsi; Seelecke, Stefan

    2009-03-01

    This paper presents experimental study and numerical simulation of the electro-thermo-mechanical behavior of a commercially available Flexinol shape memory alloy (SMA) wire [1]. Recently, a novel driver device has been presented [2], which simultaneously controls electric power and measures resistance of an SMA wire actuator. This application of a single wire as both actuator and sensor will fully exploit the multifunctional nature of SMA materials and minimize system complexity by avoiding extra sensors. Though the subject is not new [3-6], comprehensive resistance data under controlled conditions for time-resolved and hysteresis-based experiments is not readily available from the literature. A simple experimental setup consisting of a Flexinol wire mounted in series with the tip of a compliant cantilever beam is used to systematically study the SMA behavior. A Labview-based data acquisition system measures actuator displacement and SMA wire stress and resistance and controls the power passed through the SMA actuator wire. The experimental setup is carefully insulated from ambient conditions, as the thermal response of a 50-micron diameter Flexinol wire is extremely sensitive to temperature fluctuation due to convective heat transfer. Actuator performance is reported for a range of actuation frequencies and input power levels. The effect of varying actuator pre-stress is reported as well. All of the experimental data is compared with simulated behavior that is derived from a numerical model for SMA material [7-10].

  12. Recent Advances in the Control of Piezoelectric Actuators

    Directory of Open Access Journals (Sweden)

    Ziqiang Chi

    2014-11-01

    Full Text Available The micro/nano positioning field has made great progress towards enabling the advance of micro/nano technology. Micro/nano positioning stages actuated by piezoelectric actuators are the key devices in micro/nano manipulation. The control of piezoelectric actuators has emerged as a hot topic in recent years. Piezoelectric materials have inherent hysteresis and creep nonlinearity, which can reduce the accuracy of the manipulation, even causing the instability of the whole system. Remarkable efforts have been made to compensate for the nonlinearity of piezoelectric actuation through the mathematical modelling and control approaches. This paper provides a review of recent advances on the control of piezoelectric actuators. After a brief introduction of basic components of typical piezoelectric micro/nano positioning platforms, the working principle and modelling of piezoelectric actuators are outlined in this paper. This is followed with the major control method and recent progress is presented in detail. Finally, some open issues and future work on the control of piezoelectric actuators are extensively discussed.

  13. Advancements in Actuated Musical Instruments

    DEFF Research Database (Denmark)

    Overholt, Daniel; Berdahl, Edgar; Hamilton, Robert

    2011-01-01

    This article presents recent developments in actuated musical instruments created by the authors, who also describe an ecosystemic model of actuated performance activities that blur traditional boundaries between the physical and virtual elements of musical interfaces. Actuated musical instrument...... that these instruments enable. We look at some of the conceptual and perceptual issues introduced by actuated musical instruments, and finally we propose some directions in which such research may be headed in the future.......This article presents recent developments in actuated musical instruments created by the authors, who also describe an ecosystemic model of actuated performance activities that blur traditional boundaries between the physical and virtual elements of musical interfaces. Actuated musical instruments...... are physical instruments that have been endowed with virtual qualities controlled by a computer in real-time but which are nevertheless tangible. These instruments provide intuitive and engaging new forms of interaction. They are different from traditional (acoustic) and fully automated (robotic) instruments...

  14. Electro-Mechanical Actuators (EMA's) for Space Applications

    Science.gov (United States)

    Verhoeven, Didier; De Coster, Francois

    2013-09-01

    The scope of this paper is to present two concepts for electromechanical actuators (EMA's) for space applications:• The first concept implements external anti-rotation devices, as well as a blocking device in order to meet the specific Intermediate eXperimental Vehicle (IXV) constraints.• The second concept is a new anti-rotation device based on DIN 32712-B P4C profile.

  15. 采煤工作面轻型架间挡矸装置研究%Research on lightweight device for blocking gangue between hydraulic supports in steeply inclined coal face

    Institute of Scientific and Technical Information of China (English)

    曹树刚; 李毅; 雷才国; 刘富安

    2013-01-01

    The device for blocking gangue between hydralic supports is the important guarantee to avoid the situation that coal and gangue slide down to hurt people and destroy equipment, when assigning fully-mechanized longwall face on the strike with true-inclined or false-inclined layout in the steeply inclined coal seam. In this paper, based on assive investigation and plan comparison, a light-weight device for blocking gangue with metal net and four-door combination has been developed. The device increases the adaptability to the changes of dip angle and mining height of coal seam, and can change the advance directions of working face, by using the sliding system of ball bearing type, symmetric design and changeable size of doorframe. The numerical simulation results show that the device can meet the needs to prevent coal and gangue, the sliding system composed of guide rails, rollers and limit rails presents high flexibility, and can avoid the problem that the device for blocking gangue may fail to work under hydraulic control, after adoring manual control to close sliding door. In addition, when using metal-net frame structure in the hanging door and sliding door, can reduce the local ventilation resistance of working face, and is helpful to the ventilation stability of working face. Field tests indicate that the weight of light-weight device for blocking gangue between supports is reduced two thirds of that of the previous planer device for blocking gangue, and it is convenient to transport, install and maintain.%在大倾角、急斜煤层真倾斜或伪倾斜布置走向长壁综合机械化开采工作面,架间挡矸装置是防止顺工作面煤、矸飞窜伤人和毁坏设备的重要保证.通过大量的调查研究和方案比较,研制了带金属网的四门组合的轻型架间挡矸装置.该装置采用滚珠式滑动系统、对称式设计和变化门框尺寸,增大了对煤层倾角变化和采高变化的适应性,能满足工作面推进方向换

  16. Design Optimization for an Electro-Thermally Actuated Polymeric Microgripper

    CERN Document Server

    Voicu, R; Eftime, L

    2008-01-01

    Thermal micro-actuators are a promising solution to the need for large-displacement, gentle handling force, low-power MEMS actuators. Potential applications of these devices are micro-relays, assembling and miniature medical instrumentation. In this paper the development of thermal microactuators based on SU-8 polymer is described. The paper presents the development of a new microgripper which can realize a movement of the gripping arms with possibility for positioning and manipulating of the gripped object. Two models of polymeric microgripper electrothermo- mechanical actuated, using low actuation voltages, designed for SU-8 polymer fabrication were presented. The electro-thermal microgrippers were designed and optimized using finite element simulations. Electro-thermo-mechanical simulations based on finite element method were performed for each of the model in order to compare the results. Preliminary experimental tests were carried out.

  17. Development of an acoustic actuator for launch vehicle noise reduction.

    Science.gov (United States)

    Henderson, Benjamin K; Lane, Steven A; Gussy, Joel; Griffin, Steve; Farinholt, Kevin M

    2002-01-01

    In many active noise control applications, it is necessary that acoustic actuators be mounted in small enclosures due to volume constraints and in order to remain unobtrusive. However, the air spring of the enclosure is detrimental to the low-frequency performance of the actuator. For launch vehicle noise control applications, mass and volume constraints are very limiting, but the low-frequency performance of the actuator is critical. This work presents a novel approach that uses a nonlinear buckling suspension system and partial evacuation of the air within the enclosure to yield a compact, sealed acoustic driver that exhibits a very low natural frequency. Linear models of the device are presented and numerical simulations are given to illustrate the advantages of this design concept. An experimental prototype was built and measurements indicate that this design can significantly improve the low-frequency response of compact acoustic actuators.

  18. Microelectromechanical Systems (MEMS) Actuator for Reconfigurable Patch Antenna Demonstrated

    Science.gov (United States)

    Simons, Rainee N.

    2001-01-01

    A microstrip patch antenna with two contact actuators along the radiating edges for frequency reconfiguration was demonstrated at K-band frequencies. The layout of the antenna is shown in the following figure. This antenna has the following advantages over conventional semiconductor varactor-diode-tuned patch antennas: 1. By eliminating the semiconductor diode and its nonlinear I-V characteristics, the antenna minimizes intermodulation signal distortion. This is particularly important in digital wireless systems, which are sensitive to intersymbol interference caused by intermodulation products. 2. Because the MEMS actuator is an electrostatic device, it does not draw any current during operation and, hence, requires a negligible amount of power for actuation. This is an important advantage for hand-held, battery-operated, portable wireless systems since the battery does not need to be charged frequently. 3. The MEMS actuator does not require any special epitaxial layers as in the case of diodes and, hence, is cost effective.

  19. A compliant soft-actuator laterotactile display

    Science.gov (United States)

    Knoop, Espen; Rossiter, Jonathan

    2015-04-01

    Humans are extremely adept at eliciting useful information through touch, and the tactile domain has huge potential for handheld and wearable electronic devices. Smart materials may be central to exploiting this potential. The skin is highly sensitive to laterotactile stimulation, where tactile elements move laterally against the skin, and this modality is well suited for wearable devices. Wearable devices should be soft and compliant, in order to move with the user and be comfortable. We present and characterize a laterotactile display using soft and compliant dielectric elastomer actuators. We carry out an initial psychophysical study to determine the absolute sensitivity threshold of laterotactile stimulation, and find that at low frequencies sensitivity is higher than for normal tactile stimulation. Our results suggest that the mechanoreceptors close to the skin surface (SA1, FA1) have improved sensitivity to laterotactile stimulation. We believe our results lay the foundation for a range of new soft robotic human interface devices using smart materials.

  20. Drawing a pictogram operator - hydraulic stowing assembly

    Energy Technology Data Exchange (ETDEWEB)

    Bukhgol' ts, V.P.; Dinershtein, V.A.

    1984-11-01

    Hydraulic stowing is widely used during the extraction of coal from seams prone to spontaneous ignition or from seams situated under preserved structures. Experience has shown that the presence of a considerable number of controlling and measuring devices on hydraulic stowing assemblies results in erratic operations. The authors, after examining the controls of the hydraulic stowing complexes, recommend that all functions which the operator might perform badly or not at all should be controlled automatically. The operator must, however, have access to manual controls which should be included in the system in order to achieve an effective and trouble free operation. The authors propose a pictogram to explain the relationship between the human operator and the hydraulic complex, based on structural diagrams. The system developed, which was tried out at the Koksovaya mine, increased the efficiency of the complex and reduced the work load of the operator. 3 references.

  1. ToF-SIMS characterization of silk fibroin and polypyrrole composite actuators

    Energy Technology Data Exchange (ETDEWEB)

    Bradshaw, Nathan P.; Severt, Sean Y.; Wang, Zhaoying; Fengel, Carly V.; Larson, Jesse D.; Zhu, Zihua; Murphy, Amanda R.; Leger., Janelle M.

    2015-11-01

    Biocompatible materials capable of controlled actuation under biologically relevant conditions are in high demand for use in a number of biomedical applications. Recently, we demonstrated that a composite material composed of silk biopolymer and the conducting polymer poly(pyrrole) can bend under an applied voltage using a simple bilayer device. Here we present further characterization of these bilayer actuators using time of flight secondary ion mass spectrometry, and provide clarification on the mechanism of actuation and factors affecting device performance and stability. We will discuss the results of this study in the context of strategies for optimization of device performance.

  2. Aircraft Hydraulic System Leakage Detection and Servicing Recommendations Method

    Science.gov (United States)

    2014-10-02

    accumulators, filters, and consumers, that include all the actuators connected to the hydraulic power such as flight controls , brake and landing...Conference, October 4-8 Calgary, Alberta, Canada. Merrit, H. E., (1967), Hydraulic Control Systems. New York: John Willey & Sons. Vianna, W. O. L...2008), Modelagem e Análise do Sistema Hidráulico de uma Aeronave Comercial Regional. M.Sc. Thesis. Instituto Tecnológico de Aeronáutica, São José

  3. Experimental evaluation of control strategies for hydraulic servo robot

    DEFF Research Database (Denmark)

    Bech, Michael Møller; Andersen, Torben Ole; Pedersen, Henrik C.

    2013-01-01

    In this paper different linear and non-linear controllers applied to a hydraulically driven servo robot are evaluated and validated. The task is to make the actuators of the manipulator track a position reference with minimum error. Hydraulic systems are intrinsically non-linear and using linear...... control techniques typically results in conservatively dimensioned controllers to obtain stable performance. Non-linear control techniques have the potential of overcoming these problems and in this paper the focus is on applying simple nonlinear robust and adaptive controllers feasible for implementation...... in industrial servo drives. The different controllers are compared and evaluated from simulation and experimental results....

  4. Design optimization of harvester head and actuation system of forest harvester

    DEFF Research Database (Denmark)

    Andersen, Torben Ole; Hansen, Michael R.; Mouritsen, Ole Ø.

    2005-01-01

    This paper is on the analysis and subsequent efficiency optimization of a forrest harvester. As basis for the optimization the existing machine has undergone substantial experimental testing with a view to determine the loading that the harvester head is subjected to and also the corresponding ef...... efficiency of the hydraulic actuation system during a typical working cycle....

  5. Scissor thrust valve actuator

    Science.gov (United States)

    DeWall, Kevin G.; Watkins, John C; Nitzel, Michael E.

    2006-08-29

    Apparatus for actuating a valve includes a support frame and at least one valve driving linkage arm, one end of which is rotatably connected to a valve stem of the valve and the other end of which is rotatably connected to a screw block. A motor connected to the frame is operatively connected to a motor driven shaft which is in threaded screw driving relationship with the screw block. The motor rotates the motor driven shaft which drives translational movement of the screw block which drives rotatable movement of the valve driving linkage arm which drives translational movement of the valve stem. The valve actuator may further include a sensory control element disposed in operative relationship with the valve stem, the sensory control element being adapted to provide control over the position of the valve stem by at least sensing the travel and/or position of the valve stem.

  6. Active Polymer Gel Actuators

    Directory of Open Access Journals (Sweden)

    Shuji Hashimoto

    2010-01-01

    Full Text Available Many kinds of stimuli-responsive polymer and gels have been developed and applied to biomimetic actuators or artificial muscles. Electroactive polymers that change shape when stimulated electrically seem to be particularly promising. In all cases, however, the mechanical motion is driven by external stimuli, for example, reversing the direction of electric field. On the other hand, many living organisms can generate an autonomous motion without external driving stimuli like self-beating of heart muscles. Here we show a novel biomimetic gel actuator that can walk spontaneously with a wormlike motion without switching of external stimuli. The self-oscillating motion is produced by dissipating chemical energy of oscillating reaction. Although the gel is completely composed of synthetic polymer, it shows autonomous motion as if it were alive.

  7. Dissolution actuated sample container

    Science.gov (United States)

    Nance, Thomas A.; McCoy, Frank T.

    2013-03-26

    A sample collection vial and process of using a vial is provided. The sample collection vial has an opening secured by a dissolvable plug. When dissolved, liquids may enter into the interior of the collection vial passing along one or more edges of a dissolvable blocking member. As the blocking member is dissolved, a spring actuated closure is directed towards the opening of the vial which, when engaged, secures the vial contents against loss or contamination.

  8. Active Polymer Gel Actuators

    OpenAIRE

    Shuji Hashimoto; Ryo Yoshida; Yusuke Hara; Shingo Maeda

    2010-01-01

    Many kinds of stimuli-responsive polymer and gels have been developed and applied to biomimetic actuators or artificial muscles. Electroactive polymers that change shape when stimulated electrically seem to be particularly promising. In all cases, however, the mechanical motion is driven by external stimuli, for example, reversing the direction of electric field. On the other hand, many living organisms can generate an autonomous motion without external driving stimuli like self-beating of he...

  9. Experimental Validation of Mathematical Framework for Fast Switching Valves used in Digital Hydraulic Machines

    DEFF Research Database (Denmark)

    Nørgård, Christian; Roemer, Daniel Beck; Bech, Michael Møller;

    2015-01-01

    A prototype of a fast switching valve designed for a digital hydraulic transmission has been manufactured and experimentally tested. The valve is an annular seat valve composed of a plunger connected with a direct electromagnetic moving coil actuator as the force producing element. Based...... on an elaborate optimization method the valve is designed to maximize the efficiency of a digital hydraulic motor targeted to a wind turbine transmission system. The optimisation method comprises a mathematical framework which predicts a valve switching time of approximately 1 ms with a peak actuator input power...

  10. FRF based position controller design through system identification for A hydraulic cylinder

    Energy Technology Data Exchange (ETDEWEB)

    Seo, Hyoung Kyu; Kim, Dong Hwan [Dept. of Mechanical Design and Robot Engineering, Seoul National University of Science and Technology, Seoul (Korea, Republic of); Park, Jong Won [Reliability Assessment Center, Korea Institute of Machinery and Materials, Daejeon (Korea, Republic of)

    2015-11-15

    In this study, we have focused on the design of a controller and an operating program for the operation of the hydraulic actuators used in a shaker. To control the motion of the shaker accurately, the position of each hydraulic cylinder should be controlled precisely even under an uncertain environment. For this purpose, we have suggested a control algorithm using an FRF (frequency response function) based control which senses the behavior of the actuator in advance, calculates a transfer function through the system identification method, and provides the final control input. The experimental results on the performance of this system were compared with that of a simple PID control algorithm.

  11. Control method and system for hydraulic machines employing a dynamic joint motion model

    Science.gov (United States)

    Danko, George

    2011-11-22

    A control method and system for controlling a hydraulically actuated mechanical arm to perform a task, the mechanical arm optionally being a hydraulically actuated excavator arm. The method can include determining a dynamic model of the motion of the hydraulic arm for each hydraulic arm link by relating the input signal vector for each respective link to the output signal vector for the same link. Also the method can include determining an error signal for each link as the weighted sum of the differences between a measured position and a reference position and between the time derivatives of the measured position and the time derivatives of the reference position for each respective link. The weights used in the determination of the error signal can be determined from the constant coefficients of the dynamic model. The error signal can be applied in a closed negative feedback control loop to diminish or eliminate the error signal for each respective link.

  12. Telescoping cylindrical piezoelectric fiber composite actuator assemblies

    Science.gov (United States)

    Allison, Sidney G. (Inventor); Shams, Qamar A. (Inventor); Fox, Robert L. (Inventor); Fox, legal representative, Christopher L. (Inventor); Fox Chattin, legal representative, Melanie L. (Inventor)

    2010-01-01

    A telescoping actuator assembly includes a plurality of cylindrical actuators in a concentric arrangement. Each cylindrical actuator is at least one piezoelectric fiber composite actuator having a plurality of piezoelectric fibers extending parallel to one another and to the concentric arrangement's longitudinal axis. Each cylindrical actuator is coupled to concentrically-adjacent ones of the cylindrical actuators such that the plurality of cylindrical actuators can experience telescopic movement. An electrical energy source coupled to the cylindrical actuators applies actuation energy thereto to generate the telescopic movement.

  13. System and method for controlling hydraulic pressure in electro-hydraulic valve actuation systems

    Energy Technology Data Exchange (ETDEWEB)

    Brennan, Daniel G; Marriott, Craig D; Cowgill, Joel; Wiles, Matthew A; Patton, Kenneth James

    2014-09-23

    A control system for an engine includes a first lift control module and a second lift control module. The first lift control module increases lift of M valves of the engine to a predetermined valve lift during a period before disabling or re-enabling N valves of the engine. The second lift control module decreases the lift of the M valves to a desired valve lift during a period after enabling or re-enabling the N valves of the engine, wherein N and M are integers greater than or equal to one.

  14. Self-Latching Piezocomposite Actuator

    Science.gov (United States)

    Wilkie, William K. (Inventor); Bryant, Robert G. (Inventor); Lynch, Christopher S. (Inventor)

    2017-01-01

    A self-latching piezocomposite actuator includes a plurality of shape memory ceramic fibers. The actuator can be latched by applying an electrical field to the shape memory ceramic fibers. The actuator remains in a latched state/shape after the electrical field is no longer present. A reverse polarity electric field may be applied to reset the actuator to its unlatched state/shape. Applied electric fields may be utilized to provide a plurality of latch states between the latched and unlatched states of the actuator. The self-latching piezocomposite actuator can be used for active/adaptive airfoils having variable camber, trim tabs, active/deformable engine inlets, adaptive or adjustable vortex generators, active optical components such as mirrors that change shapes, and other morphing structures.

  15. Fault-tolerant rotary actuator

    Science.gov (United States)

    Tesar, Delbert

    2006-10-17

    A fault-tolerant actuator module, in a single containment shell, containing two actuator subsystems that are either asymmetrically or symmetrically laid out is provided. Fault tolerance in the actuators of the present invention is achieved by the employment of dual sets of equal resources. Dual resources are integrated into single modules, with each having the external appearance and functionality of a single set of resources.

  16. Tidal current turbine based on hydraulic transmission system

    Institute of Scientific and Technical Information of China (English)

    Hong-wei LIU; Wei LI; Yong-gang LIN; Shun MA

    2011-01-01

    Tidal current turbines (TCTs) are newly developed electricity generating devices.Aiming at the stabilization of the power output of TCTs,this paper introduces the hydraulic transmission technologies into TCTs.The hydrodynamics of the turbine was analyzed at first and its power output characteristics were predicted.A hydraulic power transmission system and a hydraulic pitch-controlled system were designed.Then related simulations were conducted.Finally,a TCT prototype was manufactured and tested in the workshop.The test results have confirmed the correctness of the current design and availability of installation of the hydraulic system in TCTs.

  17. Actuator development for a flapping microrobotic microaerial vehicle

    Science.gov (United States)

    Cox, Adam G.; Garcia, Ephrahim; Goldfarb, Michael

    1998-10-01

    Low speed aerodynamics and its application to microflight and microaerial vehicles is an interesting problem. Small stout wings with small areas result in low Reynolds numbers. The Re's below 103 conventional fixed wing flight is no longer possible because drag becomes the dominant force. However it is possible to induce lift using those drag forces in the same manner as some birds and insects. Flapping is a good choice for microaerial vehicles since it is a highly efficient way to produce flight and power consumption is a major concern. Both insects and birds use a complex elastodynamic system that only requires excitation at its natural frequency or some lower harmonic. The actuation device presented is based on the same flight principle of insects and small birds. It is a solid-state, resonating, elastodynamic system excited by a piezoelectric actuator. It is composed of two major components. The first component is a solid-state flexure mechanism that is used to amplify the piezoceramic output and produce the flapping motion. The second components is the piezoelectric actuator. Since piezoceramics are capacitive and possess a high energy density and efficiency they can be used to excite the device and induce a flapping motion with low power losses. This allows for long distance flights that require little energy. The complex dynamics of the device involves not only the mechanics of the actuator and flexure mechanism but the interaction of the wing and the air and the actuators driving electronics. The resulting device is an electromechanically tuned resonating microrobot actuator.

  18. Modelling and control of double-cone dielectric elastomer actuator

    Science.gov (United States)

    Branz, F.; Francesconi, A.

    2016-09-01

    Among various dielectric elastomer devices, cone actuators are of large interest for their multi-degree-of-freedom design. These objects combine the common advantages of dielectric elastomers (i.e. solid-state actuation, self-sensing capability, high conversion efficiency, light weight and low cost) with the possibility to actuate more than one degree of freedom in a single device. The potential applications of this feature in robotics are huge, making cone actuators very attractive. This work focuses on rotational degrees of freedom to complete existing literature and improve the understanding of such aspect. Simple tools are presented for the performance prediction of the device: finite element method simulations and interpolating relations have been used to assess the actuator steady-state behaviour in terms of torque and rotation as a function of geometric parameters. Results are interpolated by fit relations accounting for all the relevant parameters. The obtained data are validated through comparison with experimental results: steady-state torque and rotation are determined at a given high voltage actuation. In addition, the transient response to step input has been measured and, as a result, the voltage-to-torque and the voltage-to-rotation transfer functions are obtained. Experimental data are collected and used to validate the prediction capability of the transfer function in terms of time response to step input and frequency response. The developed static and dynamic models have been employed to implement a feedback compensator that controls the device motion; the simulated behaviour is compared to experimental data, resulting in a maximum prediction error of 7.5%.

  19. Double-section curvature tunable functional actuator with micromachined buckle and grid wire for electricity delivery

    Science.gov (United States)

    Feng, Guo-Hua; Hou, Sheng-You

    2015-09-01

    This paper presents an ionic polymer metal composite (IPMC)-driven tentacle-like biocompatible flexible actuator with double-section curvature tunability. This actuator, possessing an embedded electrical transmission ability that mimics skeletal muscle nerves in the human body, affords versatile device functions. Novel micromachined copper buckles and grid wires are fabricated and their superiority in electricity delivery and driving the IPMC component with less flexural rigidity is demonstrated. In addition, soft conductive wires realized on a polydimethylsiloxane structure function as electrical signal transmitters. A light-emitting diode integrated with the developed actuator offers directional guiding light ability while the actuator performs a snake-like motion. The electrical conductivity and Young’s modulus of the key actuator components are investigated, and flexural rigidity and dynamic behavior analyses of the actuator under electrical manipulation are elaborated.

  20. Design and dynamic evaluation for a linear ultrasonic stage using the thin-disc structure actuator.

    Science.gov (United States)

    Wen, Fuhliang; Yen, C-Y

    2007-12-01

    The design of a novel, single-axis ultrasonic actuating stage has been proposed. It consists of a movable plate, an edge-driving ultrasonic actuator as an actuating device, and a magnetic Magi encoder as a position sensor. The stage is impelled using a friction-contact mechanism by the ultrasonic actuator with long distance movement. Very high actuating and braking abilities are obtained. The stable and precise positioning control of the stage was achieved by using a neural-fuzzy controller. This simple and inexpensive structure of the single-axis stage demonstrates that the mechanical design of ultrasonic actuating concept could be done flexibly according to the requirements for various applications.

  1. A Hydraulic Blowdown Servo System For Launch Vehicle

    Science.gov (United States)

    Chen, Anping; Deng, Tao

    2016-07-01

    This paper introduced a hydraulic blowdown servo system developed for a solid launch vehicle of the family of Chinese Long March Vehicles. It's the thrust vector control (TVC) system for the first stage. This system is a cold gas blowdown hydraulic servo system and consist of gas vessel, hydraulic reservoir, servo actuator, digital control unit (DCU), electric explosion valve, and pressure regulator etc. A brief description of the main assemblies and characteristics follows. a) Gas vessel is a resin/carbon fiber composite over wrapped pressure vessel with a titanium liner, The volume of the vessel is about 30 liters. b) Hydraulic reservoir is a titanium alloy piston type reservoir with a magnetostrictive sensor as the fluid level indicator. The volume of the reservoir is about 30 liters. c) Servo actuator is a equal area linear piston actuator with a 2-stage low null leakage servo valve and a linear variable differential transducer (LVDT) feedback the piston position, Its stall force is about 120kN. d) Digital control unit (DCU) is a compact digital controller based on digital signal processor (DSP), and deployed dual redundant 1553B digital busses to communicate with the on board computer. e) Electric explosion valve is a normally closed valve to confine the high pressure helium gas. f) Pressure regulator is a spring-loaded poppet pressure valve, and regulates the gas pressure from about 60MPa to about 24MPa. g) The whole system is mounted in the aft skirt of the vehicle. h) This system delivers approximately 40kW hydraulic power, by contrast, the total mass is less than 190kg. the power mass ratio is about 0.21. Have finished the development and the system test. Bench and motor static firing tests verified that all of the performances have met the design requirements. This servo system is complaint to use of the solid launch vehicle.

  2. Environmental Effects on the Polypyrrole Tri-layer Actuator

    Directory of Open Access Journals (Sweden)

    Nirul Masurkar

    2017-04-01

    Full Text Available Electroactive polymer actuators such as polypyrrole (PPy are exciting candidates to drive autonomous devices that require low weight and low power. A simple PPy tri-layer bending type cantilever which operates in the air has been demonstrated previously, but the environmental effect on this actuator is still unknown. The major obstacle in the development of the PPy tri-layer actuator is to create proper packaging that reduces oxidation of the electrolyte and maintains constant displacement. Here, we report the variation in the displacement as well as the charge transfer at the different environmental condition. PPy trilayer actuators were fabricated by depositing polypyrrole on gold-coated porous poly(vinylidene fluoride (PVDF using the electro-synthesis method. It has been demonstrated that the charge transfer of tri-layer actuators is more in an inert environment than in open air. In addition, tri-layer actuators show constant deflection and enhancement of life due to the negligible oxidation rate of the electrolyte in an inert environment.

  3. Robotic Arm Actuated by Electroactie Polymers

    Science.gov (United States)

    Bar-Cohen, Y.; Xue, T.; Shaninpoor, M.; Simpson, J. O.; Smith, J.

    1998-01-01

    Actuators are used for many planetary and space applications. To meet the NASA goal to reduce the actuators size, mass, cost and power consumption, electroactie polymers (EAP) are being developed to induce large bending and longitudinal actuation strains.

  4. Piezoelectric actuated gimbal

    Science.gov (United States)

    Tschaggeny, Charles W.; Jones, Warren F.; Bamberg, Eberhard

    2011-09-13

    A gimbal is described and which includes a fixed base member defining an axis of rotation; a second member concentrically oriented relative to the axis of rotation; a linear actuator oriented in immediate, adjoining force transmitting relation relative to the base member or to the second member, and which applies force along a linear axis which is tangential to the axis of rotation so as to cause the second member to rotate coaxially relative to the fixed base member; and an object of interest mounted to the second member such that the object of interest is selectively moved relative to the base member about the axis of rotation.

  5. Variable stiffness actuators: review on design and components

    NARCIS (Netherlands)

    Wolf, Sebastian; Grioli, Giorgio; Eiberger, Oliver; Friedl, Werner; Grebenstein, Markus; Höppner, Hannes; Burdet, Etienne; Caldwell, Darwin G.; Carloni, Raffaella; Catalano, Manuel G.; Lefeber, Dirk; Stramigioli, Stefano; Tsagarakis, Nikos; Damme, van Michaël; Ham, van Ronald; Vanderborght, Bram; Visser, Ludo C.; Bicchi, Antonio; Albu-Schäffer, Alin

    2016-01-01

    Variable stiffness actuators (VSAs) are complex mechatronic devices that are developed to build pas- sively compliant, robust, and dexterous robots. Numerous different hardware designs have been developed in the past two decades to address various demands on their functionality. This review paper gi

  6. Microfluidic parallel circuit for measurement of hydraulic resistance.

    Science.gov (United States)

    Choi, Sungyoung; Lee, Myung Gwon; Park, Je-Kyun

    2010-08-31

    We present a microfluidic parallel circuit that directly compares the test channel of an unknown hydraulic resistance with the reference channel with a known resistance, thereby measuring the unknown resistance without any measurement setup, such as standard pressure gauges. Many of microfluidic applications require the precise transport of fluid along a channel network with complex patterns. Therefore, it is important to accurately characterize and measure the hydraulic resistance of each channel segment, and determines whether the device principle works well. However, there is no fluidic device that includes features, such as the ability to diagnose microfluidic problems by measuring the hydraulic resistance of a microfluidic component in microscales. To address the above need, we demonstrate a simple strategy to measure an unknown hydraulic resistance, by characterizing the hydraulic resistance of microchannels with different widths and defining an equivalent linear channel of a microchannel with repeated patterns of a sudden contraction and expansion.

  7. Issues Related To Troubleshooting Of Avionic Hydraulic Units

    Directory of Open Access Journals (Sweden)

    Jastrzębski Grzegorz

    2014-12-01

    Full Text Available The paper outlines workflows associated with troubleshooting of avionic hydraulic systems with detailed description of the troubleshooting algorithm and classification of diagnostic signals provided by avionic hydraulic systems and their subassemblies. Attention is paid to measurement sequences for diagnostic signals from hydraulic systems, circuits and units. Detailed description is dedicated to an innovative design of a troubleshooting device intended for direct measurements of internal leaks from avionic hydraulic units. Advantages of the proposed measurement method are summarized with benefits from use of the presented device and compared against the methods that are currently in use. Subsequent phases of the troubleshooting process are described with examples of measurement results that have been acquired from subassemblies of hydraulic systems of SU-22 aircrafts currently in service at Polish Air Forces with consideration given to cases when the permissible threshold of diagnostic signals were exceeded. Finally, all results from investigations are subjected to thorough analysis.

  8. Dynamic Behaviour of Nanoscale Electrostatic Actuators

    Institute of Scientific and Technical Information of China (English)

    林文惠; 赵亚溥

    2003-01-01

    The dynamic behaviour for nanoscale electrostatic actuators is studied.A two parameter mass-spring model is shown to exhibit a bifurcation from the case excluding an equilibrium point to the case including two equilibrium points as the geometrical dimensions of the device are altered.Stability analysis shows that one is a stable Hopf bifurcation point and the other is an unstable saddle point.In addition,we plot the diagram phases,which have periodic orbits around the Hopf point and a homoclinic orbit passing though the unstable saddle point.

  9. Development of highly integrated magetically and electrostatically actuated micropumps : LDRD 64709 final report.

    Energy Technology Data Exchange (ETDEWEB)

    Sosnowchik, Brian D. (Pennsylvania State University, University Park, PA); Galambos, Paul C.; Hendrix, Jason R. (Florida State University, Tallahassee, FL); Zwolinski, Andrew (Florida State University, Tallahassee, FL)

    2003-12-01

    The pump and actuator systems designed and built in the SUMMiT{trademark} process, Sandia's surface micromachining polysilicon MEMS (Micro-Electro-Mechanical Systems) fabrication technology, on the previous campus executive program LDRD (SAND2002-0704P) with FSU/FAMU (Florida State University/Florida Agricultural and Mechanical University) were characterized in this LDRD. These results demonstrated that the device would pump liquid against the flow resistance of a microfabricated channel, but the devices were determined to be underpowered for reliable pumping. As a result a new set of SUMMiT{trademark} pumps with actuators that generate greater torque will be designed and submitted for fabrication. In this document we will report details of dry actuator/pump assembly testing, wet actuator/pump testing, channel resistance characterization, and new pump/actuator design recommendations.

  10. Dielectric barrier discharge plasma actuator for flow control

    Science.gov (United States)

    Opaits, Dmitry Florievich

    Electrohydrodynamic (EHD) and magnetohydrodynamic phenomena are being widely studied for aerodynamic applications. The major effects of these phenomena are heating of the gas, body force generation, and enthalpy addition or extraction, [1, 2, 3]. In particular, asymmetric dielectric barrier discharge (DBD) plasma actuators are known to be effective EHD device in aerodynamic control, [4, 5]. Experiments have demonstrated their effectiveness in separation control, acoustic noise reduction, and other aeronautic applications. In contrast to conventional DBD actuators driven by sinusoidal voltages, we proposed and used a voltage profile consisting of nanosecond pulses superimposed on dc bias voltage. This produces what is essentially a non-self-sustained discharge: the plasma is generated by repetitive short pulses, and the pushing of the gas occurs primarily due to the bias voltage. The advantage of this non-self-sustained discharge is that the parameters of ionizing pulses and the driving bias voltage can be varied independently, which adds flexibility to control and optimization of the actuators performance. Experimental studies were conducted of a flow induced in a quiescent room air by a single DBD actuator. A new approach for non-intrusive diagnostics of plasma actuator induced flows in quiescent gas was proposed, consisting of three elements coupled together: the Schlieren technique, burst mode of plasma actuator operation, and 2-D numerical fluid modeling. During the experiments, it was found that DBD performance is severely limited by surface charge accumulation on the dielectric. Several ways to mitigate the surface charge were found: using a reversing DC bias potential, three-electrode configuration, slightly conductive dielectrics, and semi conductive coatings. Force balance measurements proved the effectiveness of the suggested configurations and advantages of the new voltage profile (pulses+bias) over the traditional sinusoidal one at relatively low

  11. Soft Pneumatic Bending Actuator with Integrated Carbon Nanotube Displacement Sensor

    Directory of Open Access Journals (Sweden)

    Tim Giffney

    2016-02-01

    Full Text Available The excellent compliance and large range of motion of soft actuators controlled by fluid pressure has lead to strong interest in applying devices of this type for biomimetic and human-robot interaction applications. However, in contrast to soft actuators fabricated from stretchable silicone materials, conventional technologies for position sensing are typically rigid or bulky and are not ideal for integration into soft robotic devices. Therefore, in order to facilitate the use of soft pneumatic actuators in applications where position sensing or closed loop control is required, a soft pneumatic bending actuator with an integrated carbon nanotube position sensor has been developed. The integrated carbon nanotube position sensor presented in this work is flexible and well suited to measuring the large displacements frequently encountered in soft robotics. The sensor is produced by a simple soft lithography process during the fabrication of the soft pneumatic actuator, with a greater than 30% resistance change between the relaxed state and the maximum displacement position. It is anticipated that integrated resistive position sensors using a similar design will be useful in a wide range of soft robotic systems.

  12. Analytical design model for a piezo-composite unimorph actuator and its verification using lightweight piezo-composite curved actuators

    Science.gov (United States)

    Yoon, K. J.; Park, K. H.; Lee, S. K.; Goo, N. S.; Park, H. C.

    2004-06-01

    This paper describes an analytical design model for a layered piezo-composite unimorph actuator and its numerical and experimental verification using a LIPCA (lightweight piezo-composite curved actuator) that is lighter than other conventional piezo-composite type actuators. The LIPCA is composed of top fiber composite layers with high modulus and low CTE (coefficient of thermal expansion), a middle PZT ceramic wafer, and base layers with low modulus and high CTE. The advantages of the LIPCA design are to replace the heavy metal layer of THUNDER by lightweight fiber-reinforced plastic layers without compromising the generation of high force and large displacement and to have design flexibility by selecting the fiber direction and the number of prepreg layers. In addition to the lightweight advantage and design flexibility, the proposed device can be manufactured without adhesive layers when we use a resin prepreg system. A piezo-actuation model for a laminate with piezo-electric material layers and fiber composite layers is proposed to predict the curvature and residual stress of the LIPCA. To predict the actuation displacement of the LIPCA with curvature, a finite element analysis method using the proposed piezo-actuation model is introduced. The predicted deformations are in good agreement with the experimental ones.

  13. Shape-memory alloy micro-actuator

    Science.gov (United States)

    Busch, John D. (Inventor); Johnson, Alfred D. (Inventor)

    1991-01-01

    A method of producing an integral piece of thermo-sensitive material, which is responsive to a shift in temperature from below to above a phase transformation temperature range to alter the material's condition to a shape-memory condition and move from one position to another. The method is characterized by depositing a thin film of shape-memory material, such as Nickel titanium (Ni-Ti) onto a substrate by vacuum deposition process such that the alloy exhibits an amorphous non-crystalline structure. The coated substrate is then annealed in a vacuum or in the presence of an inert atmosphere at a selected temperature, time and cool down rate to produce an ordered, partially disordered or fully disordered BCC structure such that the alloy undergoes thermoelastic, martinsetic phase transformation in response to alteration in temperature to pass from a martinsetic phase when at a temperature below a phase transformation range and capable of a high level of recoverable strain to a parent austenitic phase in a memory shape when at a temperature above the phase transformation range. Also disclosed are actuator devices employing shape-memory material actuators that deform from a set shape toward an original shape when subjected to a critical temperature level after having been initially deformed from the original shape into the set shape while at a lower temperature. The actuators are mechanically coupled to one or more movable elements such that the temperature-induce deformation of the actuators exerts a force or generates a motion of the mechanical element(s).

  14. Vibration of hydraulic machinery

    CERN Document Server

    Wu, Yulin; Liu, Shuhong; Dou, Hua-Shu; Qian, Zhongdong

    2013-01-01

    Vibration of Hydraulic Machinery deals with the vibration problem which has significant influence on the safety and reliable operation of hydraulic machinery. It provides new achievements and the latest developments in these areas, even in the basic areas of this subject. The present book covers the fundamentals of mechanical vibration and rotordynamics as well as their main numerical models and analysis methods for the vibration prediction. The mechanical and hydraulic excitations to the vibration are analyzed, and the pressure fluctuations induced by the unsteady turbulent flow is predicted in order to obtain the unsteady loads. This book also discusses the loads, constraint conditions and the elastic and damping characters of the mechanical system, the structure dynamic analysis, the rotor dynamic analysis and the system instability of hydraulic machines, including the illustration of monitoring system for the instability and the vibration in hydraulic units. All the problems are necessary for vibration pr...

  15. IT-Tools Concept for Simulation and Design of Water Hydraulic Mechatronic Test Facilities for Motion Control and Operation in Environmentally Sensitive Application Areas

    DEFF Research Database (Denmark)

    Conrad, Finn; Pobedza, J.; Sobczyk, A.

    2004-01-01

    This paper presents a proposed IT-Tools concept for modeling, simulation, analysis and design of water hydraulic actuators for motion control of machines, lifts, cranes and robots. The designed test rigs have tap water hydraulic components of the Danfoss Nessie® product family and equipped...

  16. Handbook of hydraulic fluid technology

    CERN Document Server

    Totten, George E

    2011-01-01

    ""The Handbook of Hydraulic Fluid Technology"" serves as the foremost resource for designing hydraulic systems and for selecting hydraulic fluids used in engineering applications. Featuring new illustrations, data tables, as well as practical examples, this second edition is updated with essential information on the latest hydraulic fluids and testing methods. The detailed text facilitates unparalleled understanding of the total hydraulic system, including important hardware, fluid properties, and hydraulic lubricants. Written by worldwide experts, the book also offers a rigorous overview of h

  17. Polypyrrole Actuators for Tremor Suppression

    DEFF Research Database (Denmark)

    Skaarup, Steen; Mogensen, Naja; Bay, Lasse

    2003-01-01

    exemplify 'soft actuator' technology that may be especially suitable for use in conjunction with human limbs. The electrochemical and mechanical properties of polypyrrole dodecyl benzene sulphonate actuator films have been studied with this application in mind. The results show that the time constants...

  18. Rotary actuator for space applications

    Science.gov (United States)

    Andión, J. A.; Burgui, C.; Migliorero, G.

    2005-07-01

    SENER is developing a rotary actuator for space applications. The activity, partially funded under ESA GSTP contract, aims at the design, development and performance testing of an innovative rotary actuator concept for space applications. An engineering model has been manufactured and has been tested to demonstrate the compliance with the requirements specification.

  19. Bistable electroactive polymer for refreshable Braille display with improved actuation stability

    Science.gov (United States)

    Niu, Xiaofan; Brochu, Paul; Stoyanov, Hristiyan; Yun, Sung Ryul; Pei, Qibing

    2012-04-01

    Poly(t-butyl acrylate) is a bistable electroactive polymer (BSEP) capable of rigid-to-rigid actuation. The BSEP combines the large-strain actuation of dielectric elastomers with shape memory property. We have introduced a material approach to overcome pull-in instability in poly(t-butyl acrylate) that significantly improves the actuation lifetime at strains greater than 100%. Refreshable Braille display devices with size of a smartphone screen have been fabricated to manifest a potential application of the BSEP. We will report the testing results of the devices by a Braille user.

  20. Locally-Actuated Graphene-Based Nano-Electro-Mechanical Switch

    Directory of Open Access Journals (Sweden)

    Jian Sun

    2016-07-01

    Full Text Available The graphene nano-electro-mechanical switches are promising components due to their outstanding switching performance. However, most of the reported devices suffered from a large actuation voltages, hindering them from the integration in the conventional complementary metal-oxide-semiconductor (CMOS circuit. In this work, we demonstrated the graphene nano-electro-mechanical switches with the local actuation electrode via conventional nanofabrication techniques. Both cantilever-type and double-clamped beam switches were fabricated. These devices exhibited the sharp switching, reversible operation cycles, high on/off ratio, and a low actuation voltage of below 5 V, which were compatible with the CMOS circuit requirements.

  1. Intelligent Control of a Novel Hydraulic Forging Manipulator

    Directory of Open Access Journals (Sweden)

    J. Wang

    2011-01-01

    Full Text Available The increased demand for large-size forgings has led to developments and innovations of heavy-duty forging manipulators. Besides the huge carrying capacity, some robot features such as force perception, delicacy and flexibility, forging manipulators should also possess. The aim of the work is to develop a heavy-duty forging manipulator with robot features by means of combination of methods in mechanical, hydraulic, and control field. In this paper, through kinematic analysis of a novel forging manipulator, control strategy of the manipulator is proposed considering the function and motion of forging manipulators. Hybrid pressure/position control of hydraulic actuators in forging manipulator is realized. The feasibility of the control method has been verified by the experiments on a real prototype of the novel hydraulic forging manipulator in our institute. The intelligent control of the forging manipulator is performed with programmable logic controller which is suitable for industrial applications.

  2. A study on the effect of surface topography on the actuation performance of stacked-rolled dielectric electro active polymer actuator

    Science.gov (United States)

    Sait, Usha; Muthuswamy, Sreekumar

    2016-05-01

    Dielectric electro active polymer (DEAP) is a suitable actuator material that finds wide applications in the field of robotics and medical areas. This material is highly controllable, flexible, and capable of developing large strain. The influence of geometrical behavior becomes critical when the material is used as miniaturized actuation devices in robotic applications. The present work focuses on the effect of surface topography on the performance of flat (single sheet) and stacked-rolled DEAP actuators. The non-active areas in the form of elliptical spots that affect the performance of the actuator are identified using scanning electron microscope (SEM) and energy dissipated X-ray (EDX) experiments. Performance of DEAP actuation is critically evaluated, compared, and presented with analytical and experimental results.

  3. Design of an innovative dielectric elastomer actuator for space applications

    Science.gov (United States)

    Branz, Francesco; Sansone, Francesco; Francesconi, Alessandro

    2014-03-01

    The capability of Dielectric Elastomers to show large deformations under high voltage loads has been deeply investigated to develop a number of actuators concepts. From a space systems point of view, the advantages introduced by this class of smart materials are considerable and include high conversion efficiency, distributed actuation, self-sensing capability, light weight and low cost. This paper focuses on the design of a solid-state actuator capable of high positioning resolution. The use of Electroactive Polymers makes this device interesting for space mechanisms applications, such as antenna and sensor pointing, solar array orientation, attitude control, adaptive structures and robotic manipulators. In particular, such actuation suffers neither wear, nor fatigue issues and shows highly damped vibrations, thus requiring no maintenance and transferring low disturbance to the surrounding structures. The main weakness of this actuator is the relatively low force/torque values available. The proposed geometry allows two rotational degrees of freedom, and simulations are performed to measure the expected instant angular deflection at zero load and the stall torque of the actuator under a given high voltage load. Several geometric parameters are varied and their influence on the device behaviour is studied. Simplified relations are extrapolated from the numerical results and represent useful predicting tools for design purposes. Beside the expected static performances, the dynamic behaviour of the device is also assessed and the input/output transfer function is estimated. Finally, a prototype design for laboratory tests is presented; the experimental activity aims to validate the preliminary results obtained by numerical analysis.

  4. Dynamics of piezoceramics-based mass and force actuators for rotating machines

    NARCIS (Netherlands)

    Sloetjes, Peter; Boer, de André; Hoogt, van der Peter

    2007-01-01

    In the past decade, it has become more and more common to install active vibration control devices on rotating systems like grinding machines, tooling centers, industrial fans and drive shafts. In the present research, two innovative actuation concepts for such devices are evaluated. The first devic

  5. Solid state devices

    Science.gov (United States)

    1991-01-01

    The Solid State Device research program is directed toward developing innovative devices for space remote and in-situ sensing, and for data processing. Innovative devices can result from the standard structures in innovative materials such as low and high temperature superconductors, strained layer superlattices, or diamond films. Innovative devices can also result from innovative structures achieved using electron tunneling or nanolithography in standard materials. A final step is to use both innovative structures and innovative materials. A new area of emphasis is the miniaturization of sensors and instruments molded by using the techniques of electronic device fabrication to micromachine silicon into micromechanical and electromechanical sensors and actuators.

  6. Evaluation of Linear and Non-Linear Control Schemes Applied to a Hydraulic Servo System

    DEFF Research Database (Denmark)

    Andersen, Torben Ole; Hansen, Michael Rygaard; Pedersen, Henrik Clemmensen

    2005-01-01

    Due to the innovation of low-cost electronics such as sensors, microcontrollers etc., the focus on highperformance motion control is increasing. This work focuses on position control of single-input single-output hydraulic servo-systems in general. A hydraulically actuated robotic manipulator...... is used as test facility acting as load for the hydraulic servo system. An experimentally verified non-linear model of the complete system has been developed and used to design a series of both linear and non-linear control schemes. The controllers from each category are compared with respect to design...

  7. DESIGN AND ANALYSIS OF NOVEL ACTIVE ACTUATOR TO CONTROL LOW FREQUENCY VIBRATIONS OF SHAFT SYSTEM

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Aiming at providing with high-load capability in active vibration control of large-scale rotor system, a new type of active actuator to simultaneously reduce the dangers of low frequency flexural and torsional vibrations is designed. The actuator employs electro-hydraulic system and can provide a high and circumferential load. To initialize new research, the characteristics of various kinds of active actuators to control rotor shaft vibration are briefly introduced. The purpose of this paper is to introduce the preliminary results via presenting the structure, functions and operating principles, in particular, the working process of the electro-hydraulic system of the new actuator which includes a set of high speed electromagnetic valves and a series of sloping cone-shaped openings, and presenting the transmission relationships among the control parameters from control signals into the valves to active load onto shaft. The course of the work is dynamic, and a series of spatial forces and moments are put on the shaft to get an external resultant force to reduce excitations that induce vibration of shafts. By checking states of vibration, the actuator can control the impulse width and the interval of injection time for applying different control force to a vibration shaft in two circumference directions through the regulating action of a set of combination directional control valves. The results from simulating analysis and experiment show evidence of that this design can satisfy the case of active process of decreasing of flexural and torsional vibrations.

  8. FLUTTER SUPPRESSION USING DISTRIBUTEDPIEZOELECTRIC ACTUATORS

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    A piezoelectric actuator has the benefits of flexibility of its position, without time lag and wide bandpass characteristics. The early results of the wind tunnel flutter suppression test using the piezoeletric actuator were presented in Ref.[1]. A rigid rectangular wing model is constrained by a plunge spring and a pitch spring, and a pair of piezoelectric actuators is bonded on both sides of the plunge spring so as to carry out the active control. Refs.[2,3] reported two flutter suppression wind tunnel tests where the distributed piezoelectric actuators were used. In Ref.[2] low speed wind tunnel tests were conducted with aluminum and composite plate-like rectangular models fully covered by piezoelectric actuators. Flutter speed is increased by 11%. In Ref.[3] a composite plate-like swept back model with piezoceramic actuators bonded on the inboard surface was tested in a transonic wind tunnel and a 12% increment of flutter dynamic pressure was achieved.  In the present investigation, an aluminum plate-like rectangular model with inboard bonded piezoceramic actuators is adopted. Active flutter suppression control law has been designed. A series of analyses and ground tests and, finally, low-speed wind tunnel tests with the active control system opened and closed are conducted. Reasonable results have been obtained.

  9. Microelectromechanical systems integrating molecular spin crossover actuators

    Science.gov (United States)

    Manrique-Juarez, Maria D.; Rat, Sylvain; Mathieu, Fabrice; Saya, Daisuke; Séguy, Isabelle; Leïchlé, Thierry; Nicu, Liviu; Salmon, Lionel; Molnár, Gábor; Bousseksou, Azzedine

    2016-08-01

    Silicon MEMS cantilevers coated with a 200 nm thin layer of the molecular spin crossover complex [Fe(H2B(pz)2)2(phen)] (H2B(pz)2 = dihydrobis(pyrazolyl)borate and phen = 1,10-phenantroline) were actuated using an external magnetic field and their resonance frequency was tracked by means of integrated piezoresistive detection. The light-induced spin-state switching of the molecules from the ground low spin to the metastable high spin state at 10 K led to a well-reproducible shift of the cantilever's resonance frequency (Δfr = -0.52 Hz). Control experiments at different temperatures using coated as well as uncoated devices along with simple calculations support the assignment of this effect to the spin transition. This latter translates into changes in mechanical behavior of the cantilever due to the strong spin-state/lattice coupling. A guideline for the optimization of device parameters is proposed so as to efficiently harness molecular scale movements for large-scale mechanical work, thus paving the road for nanoelectromechanical systems (NEMS) actuators based on molecular materials.

  10. Experimental Validation of Mathematical Framework for Fast Switching Valves used in Digital Hydraulic Machines

    DEFF Research Database (Denmark)

    Nørgård, Christian; Roemer, Daniel Beck; Bech, Michael Møller

    2015-01-01

    A prototype of a fast switching valve designed for a digital hydraulic transmission has been manufactured and experimentally tested. The valve is an annular seat valve composed of a plunger connected with a direct electromagnetic moving coil actuator as the force producing element. Based on an el......A prototype of a fast switching valve designed for a digital hydraulic transmission has been manufactured and experimentally tested. The valve is an annular seat valve composed of a plunger connected with a direct electromagnetic moving coil actuator as the force producing element. Based...... of 10 kW during switching (mean of approximately 250 W) and a pressure loss below 0.5 bar at 600 l/min. The main goal of this article is validate parts of the mathematical framework based on a series of experiments. Furthermore, this article aims to document the experience gained from the experimental...... work and to study and assess a moving coil actuators suitability for the application....

  11. Vibration control in plates by uniformly distributed PZT actuators interconnected via electric networks

    CERN Document Server

    Vidoli, Stefano

    2010-01-01

    In this paper a novel device aimed at controlling the mechanical vibrations of plates by means of a set of electrically-interconnected piezoelectric actuators is described. The actuators are embedded uniformly in the plate wherein they connect every node of an electric network to ground, thus playing the two-fold role of capacitive element in the electric network and of couple suppliers. A mathematical model is introduced to describe the propagation of electro-mechanical waves in the device; its validity is restricted to the case of wave-forms with wave-length greater than the dimension of the piezoelectric actuators used. A self-resonance criterion is established which assures the possibility of electro-mechanical energy exchange. Finally the problem of vibration control in simply supported and clamped plates is addressed; the optimal net-impedance is determined. The results indicate that the proposed device can improve the performances of piezoelectric actuation

  12. A novel linear elastic actuator for minimally invasive surgery: development of a surgical gripper

    Science.gov (United States)

    Gerboni, G.; Brancadoro, M.; Tortora, G.; Diodato, A.; Cianchetti, M.; Menciassi, A.

    2016-10-01

    Minimally invasive surgery (MIS) applications require lightweight actuators that can generate a high force in a limited volume. Among pressure driven actuators, fluid elastic actuators demonstrate high potential for use in the medical field. They are characterized by nearly no friction and wear and they can be made of low-cost biocompatible elastomers. However, when compared to traditional piston-cylinder fluid actuators, fluid elastic actuators often result in smaller output forces as well as weaker return forces. This work is about the design of a linear elastic actuator (LEA) which is able to develop relevant pulling-pushing force in one direction. The LEA is composed of entirely disposable materials and it requires a simple manufacturing process. Thanks to its design, the LEA can be compared to traditional piston-cylinders actuators in terms of output forces (up to 7 N) with the advantage of using relative low working pressures (0, 2 MPa). The actuator has been used for the actuation of a gripper for MIS, as a case study. The whole range of gripping forces developed by the tool actated by the LEA has been evaluated, thus verifying that the gripping device, is able to meet the force requirements for accomplishing typical surgical tasks.

  13. Development of a resonant trailing-edge flap actuation system for helicopter rotor vibration control

    Science.gov (United States)

    Kim, J.-S.; Wang, K. W.; Smith, E. C.

    2007-12-01

    A resonant trailing-edge flap actuation system for helicopter rotors is developed and evaluated experimentally. The concept involves deflecting each individual trailing-edge flap using a compact resonant piezoelectric actuation system. Each resonant actuation system yields high authority, while operating at a single frequency. By tailoring the natural frequencies of the actuation system (including the piezoelectric actuator and the related mechanical and electrical elements) to the required operating frequencies, one can increase the output authority. The robustness of the device can be enhanced by increasing the high authority bandwidth through electric circuitry design. Such a resonant actuation system (RAS) is analyzed for a full-scale piezoelectric induced-shear tube actuator, and bench-top testing is conducted to validate the concept. An adaptive feed-forward controller is developed to realize the electric network dynamics and adapt to phase variation. The control strategy is then implemented via a digital signal processor (DSP) system. Analysis is also performed to examine the rotor system dynamics in forward flight with piezoelectric resonant actuators, using a perturbation method to evaluate the system's time-varying characteristics. Numerical simulations reveal that the resonant actuator concept can be applied to forward flights as well as to hover conditions.

  14. 梭锥管混浊流体分离装置流场PIV测试及分析%Test and analysis on flow field in the shuttle-conical tube turbid flow hydraulic separation Device by PIV techniques

    Institute of Scientific and Technical Information of China (English)

    李琳; 杨海华; 王苗; 邱秀云

    2013-01-01

    Particle image uelocimotrg (PIV) was used to test the water and sediment flow velocity field in the Shuttle-conical Tube Turbid Flow hydraulic separation Device (SCT) with two cases. The distributions of sediment flow velocity vector and the velocity diagram at various planes in different locations of the SCT have been offered. The results indicate that the test results are consistent with the physical experimental phenomenon and theoretical analysis. The SCT is divided into many sedimentation spaces by multilayer cone rings so that the sedimentation distance of SCT is shorter than the common device without any cone ring and all the sedimentation spaces are independent from each other. The turbid flow with suspension flow into the SCT, and sediment free settlement distance has been shortened, and in the water-sediment separation space composed by adjacent two cone rings,the sediment flow is downward along the upper sur-face of one cone ring, and the clear water flow is upward along the lower surface of the other cone ring. Then the water and sediment flow respectively along different path, the former flows into the clear water passage arranged at the sides of the wall, and the latter flows into the sand drainage channel at the center of the SCT. In the process of the separation and drainage, the clear water doesn’t mix and interfere with sediment flow so that the separation efficiency of water & sediment by the SCT has been improved.%利用粒子图像测速技术,测试了两种工况下梭锥管混浊流体分离装置(简称梭锥管)内的水沙两相流的速度场,给出了梭锥管内泥沙运动的流速矢量分布及流速大小云图。对测试结果的分析表明,实测结果与理论分析结果一致。含沙水流进入梭锥管后,其内设置的多层锥圈把泥沙沉降区域分割成若干个沉降距离较短且相互独立的沉降空间,缩短了泥沙的自由沉降距离。相邻锥圈组成的水沙分离空间内,形

  15. Experimental-based Modelling and Simulation of Water Hydraulic Mechatronics Test Facilities for Motion Control and Operation in Environmental Sensitive Applications` Areas

    DEFF Research Database (Denmark)

    Conrad, Finn; Pobedza, J.; Sobczyk, A.

    2003-01-01

    proportional valves and servo actuators for motion control and power transmission undertaken in co-operation by Technical University, DTU and Cracow University of Technology, CUT. The results of this research co-operation include engineering design and test of simulation models compared with two mechatronic......The paper presents experimental-based modelling, simulation, analysis and design of water hydraulic actuators for motion control of machines, lifts, cranes and robots. The contributions includes results from on-going research projects on fluid power and mechatronics based on tap water hydraulic...... test rig facilities powered by environmental friendly water hydraulic servo actuator system. Test rigs with measurement and data acquisition system were designed and build up with tap water hydraulic components of the Danfoss Nessie® product family. This paper presents selected experimental...

  16. Gear-Driven Turnbuckle Actuator

    Science.gov (United States)

    Rivera, Ricky N.

    2010-01-01

    This actuator design allows the extension and contraction of turnbuckle assemblies. It can be operated manually or remotely, and is extremely compact. It is ideal for turnbuckles that are hard to reach by conventional tools. The tool assembly design solves the problem of making accurate adjustments to the variable geometry guide vanes without having to remove and reinstall the actuator system back on the engine. The actuator does this easily by adjusting the length of the turnbuckles while they are still attached to the engine.

  17. FEMA DFIRM Hydraulic Structures

    Data.gov (United States)

    Minnesota Department of Natural Resources — This layer and accompanying attribute table is required whenever hydraulic structures are shown in the flood profile. It is also required if levees are shown on the...

  18. Tractor controls actuating force limits for Indian operators.

    Science.gov (United States)

    Mehta, C R; Pandey, M M; Tiwari, P S; Gite, L P; Khadatkar, Abhijit

    2011-01-01

    In four-wheel tractors, proper design of controls is important for comfortable and safe operation of the tractor. The design involves location and dimensions of controls as well as strength limits for operating these controls. The present study was aimed to quantify human strength for operation of tractor controls and to recommend the maximum control actuating forces for normal operation of tractors based on strength capability of 3,423 Indian male agricultural workers. The 5th percentile values of strength parameters i.e. leg strength sitting (left and right), foot strength sitting (right), torque strength (both hands) sitting, push strength (left hand and right hand) sitting and pull strength (left hand and right hand) sitting of agricultural workers collected using a strength measurement set-up were taken into consideration for the study. It was recommended that the maximum actuating forces for normal operation of frequently operated brake and clutch pedals of tractors should not exceed 260 N and 125 N based on 5th percentile values of right and left leg strength of male agricultural workers, respectively. The maximum actuating force required in steering wheel operation should not exceed 51 N based on 5th percentile value of torque strength (both hands) sitting of workers. The maximum actuating forces required for operating frequently operated levers viz. gear selection, speed selection, hydraulic control and hand throttle of Indian tractors should not exceed 46 N, 46 N, 25 N and 25 N, respectively. It may be concluded that the maximum actuating force limits as given in Bureau of Indian Standards IS 10703 are very high as compared to the findings of the study based on strength data of Indian male operators, which highlight the need to revise the standard.

  19. Muscular MEMS—the engineering of liquid crystal elastomer actuators

    Science.gov (United States)

    Petsch, S.; Khatri, B.; Schuhladen, S.; Köbele, L.; Rix, R.; Zentel, R.; Zappe, H.

    2016-08-01

    A new class of soft-matter actuator, the liquid crystal elastomer (LCE), shows promise for application in a wide variety of mechanical microsystems. Frequently referred to as an ‘artificial muscle’, this family of materials exhibits large actuation stroke and generates considerable force, in a compact form which may easily be combined with the structures and devices commonly used in microsystems and MEMS. We show here how standard microfabrication techniques may be used to integrate LCEs into mechanical microsystems and present an in-depth analysis of their mechanical and actuation properties. Using an example from micro-optics and optical MEMS, we demonstrate that their performance and flexibility allows realization of entirely new types of tunable optical functionality.

  20. A planar nano-positioner driven by shear piezoelectric actuators

    Directory of Open Access Journals (Sweden)

    W. Dong

    2016-08-01

    Full Text Available A planar nano-positioner driven by the shear piezoelectric actuators is proposed in this paper based on inertial sliding theory. The performance of the nano-positioner actuated by different driving signals is analyzed and discussed, e.g. the resolution and the average velocity which depend on the frequency, the amplitude and the wave form of the driving curves. Based on the proposed design, a prototype system of the nano-positioner is developed by using a capacitive sensor as the measurement device. The experiment results show that the proposed nano-positioner is capable of outputting two-dimensional motions within an area of 10 mm × 10 mm at a maximum speed of 0.25 mm/s. The corresponding resolution can be as small as 21 nm. The methodology outlined in this paper can be employed and extended to shear piezoelectric actuators involved in high precision positioning systems.

  1. Energy-Efficient Variable Stiffness Actuators

    NARCIS (Netherlands)

    Visser, Ludo C.; Carloni, Raffaella; Stramigioli, Stefano

    2011-01-01

    Variable stiffness actuators are a particular class of actuators that is characterized by the property that the apparent output stiffness can be changed independent of the output position. To achieve this, variable stiffness actuators consist of a number of elastic elements and a number of actuated

  2. Constant-Pressure Hydraulic Pump

    Science.gov (United States)

    Galloway, C. W.

    1982-01-01

    Constant output pressure in gas-driven hydraulic pump would be assured in new design for gas-to-hydraulic power converter. With a force-multiplying ring attached to gas piston, expanding gas would apply constant force on hydraulic piston even though gas pressure drops. As a result, pressure of hydraulic fluid remains steady, and power output of the pump does not vary.

  3. MEMS Actuators for Improved Performance and Durability

    Science.gov (United States)

    Yearsley, James M.

    Micro-ElectroMechanical Systems (MEMS) devices take advantage of force-scaling at length scales smaller than a millimeter to sense and interact with directly with phenomena and targets at the microscale. MEMS sensors found in everyday devices like cell-phones and cars include accelerometers, gyros, pressure sensors, and magnetic sensors. MEMS actuators generally serve more application specific roles including micro- and nano-tweezers used for single cell manipulation, optical switching and alignment components, and micro combustion engines for high energy density power generation. MEMS rotary motors are actuators that translate an electric drive signal into rotational motion and can serve as rate calibration inputs for gyros, stages for optical components, mixing devices for micro-fluidics, etc. Existing rotary micromotors suffer from friction and wear issues that affect lifetime and performance. Attempts to alleviate friction effects include surface treatment, magnetic and electrostatic levitation, pressurized gas bearings, and micro-ball bearings. The present work demonstrates a droplet based liquid bearing supporting a rotary micromotor that improves the operating characteristics of MEMS rotary motors. The liquid bearing provides wear-free, low-friction, passive alignment between the rotor and stator. Droplets are positioned relative to the rotor and stator through patterned superhydrophobic and hydrophilic surface coatings. The liquid bearing consists of a central droplet that acts as the motor shaft, providing axial alignment between rotor and stator, and satellite droplets, analogous to ball-bearings, that provide tip and tilt stable operation. The liquid bearing friction performance is characterized through measurement of the rotational drag coefficient and minimum starting torque due to stiction and geometric effects. Bearing operational performance is further characterized by modeling and measuring stiffness, environmental survivability, and high

  4. Design and Simulation of an Electrothermal Actuator Based Rotational Drive

    Science.gov (United States)

    Beeson, Sterling; Dallas, Tim

    2008-10-01

    As a participant in the Micro and Nano Device Engineering (MANDE) Research Experience for Undergraduates program at Texas Tech University, I learned how MEMS devices operate and the limits of their operation. Using specialized AutoCAD-based design software and the ANSYS simulation program, I learned the MEMS fabrication process used at Sandia National Labs, the design limitations of this process, the abilities and drawbacks of micro devices, and finally, I redesigned a MEMS device called the Chevron Torsional Ratcheting Actuator (CTRA). Motion is achieved through electrothermal actuation. The chevron (bent-beam) actuators cause a ratcheting motion on top of a hub-less gear so that as voltage is applied the CTRA spins. The voltage applied needs to be pulsed and the frequency of the pulses determine the angular frequency of the device. The main objective was to design electromechanical structures capable of transforming the electrical signals into mechanical motion without overheating. The design was optimized using finite element analysis in ANSYS allowing multi-physics simulations of our model system.

  5. Soft Pneumatic Actuator Fascicles for High Force and Reliability

    Science.gov (United States)

    Robertson, Matthew A.; Sadeghi, Hamed; Florez, Juan Manuel

    2017-01-01

    Abstract Soft pneumatic actuators (SPAs) are found in mobile robots, assistive wearable devices, and rehabilitative technologies. While soft actuators have been one of the most crucial elements of technology leading the development of the soft robotics field, they fall short of force output and bandwidth requirements for many tasks. In addition, other general problems remain open, including robustness, controllability, and repeatability. The SPA-pack architecture presented here aims to satisfy these standards of reliability crucial to the field of soft robotics, while also improving the basic performance capabilities of SPAs by borrowing advantages leveraged ubiquitously in biology; namely, the structured parallel arrangement of lower power actuators to form the basis of a larger and more powerful actuator module. An SPA-pack module consisting of a number of smaller SPAs will be studied using an analytical model and physical prototype. Experimental measurements show an SPA pack to generate over 112 N linear force, while the model indicates the benefit of parallel actuator grouping over a geometrically equivalent single SPA scale as an increasing function of the number of individual actuators in the group. For a module of four actuators, a 23% increase in force production over a volumetrically equivalent single SPA is predicted and validated, while further gains appear possible up to 50%. These findings affirm the advantage of utilizing a fascicle structure for high-performance soft robotic applications over existing monolithic SPA designs. An example of high-performance soft robotic platform will be presented to demonstrate the capability of SPA-pack modules in a complete and functional system. PMID:28289573

  6. Anisotropic Laminar Piezocomposite Actuator Incorporating Machined PMN-PT Single Crystal Fibers

    Science.gov (United States)

    Wilkie, W. Keats; Inman, Daniel J.; Lloyd, Justin M.; High, James W.

    2006-01-01

    The design, fabrication, and testing of a flexible, laminar, anisotropic piezoelectric composite actuator utilizing machined PMN-32%PT single crystal fibers is presented. The device consists of a layer of rectangular single crystal piezoelectric fibers in an epoxy matrix, packaged between interdigitated electrode polyimide films. Quasistatic free-strain measurements of the single crystal device are compared with measurements from geometrically identical specimens incorporating polycrystalline PZT-5A and PZT-5H piezoceramic fibers. Free-strain actuation of the single crystal actuator at low bipolar electric fields (+/- 250 V/mm) is approximately 400% greater than that of the baseline PZT-5A piezoceramic device, and 200% greater than that of the PZT-5H device. Free-strain actuation under high unipolar electric fields (0-4kV/mm) is approximately 200% of the PZT-5A baseline device, and 150% of the PZT-5H alternate piezoceramic device. Performance increases at low field are qualitatively consistent with predicted increases based on scaling the low-field d33 piezoelectric constants of the respective piezoelectric materials. High-field increases are much less than scaled d33 estimates, but appear consistent with high-field freestrain measurements reported for similar bulk single-crystal and piezoceramic compositions. Measurements of single crystal actuator capacitance and coupling coefficient are also provided. These properties were poorly predicted using scaled bulk material dielectric and coupling coefficient data. Rules-of-mixtures calculations of the effective elastic properties of the single crystal device and estimated actuation work energy densities are also presented. Results indicate longitudinal stiffnesses significantly lower (50% less) than either piezoceramic device. This suggests that single-crystal piezocomposite actuators will be best suited to low induced-stress, high strain and deflection applications.

  7. Anisotropic Piezocomposite Actuator Incorporating Machined PMN-PT Single Crystal Fibers

    Science.gov (United States)

    Wilkie, W. Keats; Inman, Daniel J.; Lloyd, Justin M.; High, James W.

    2004-01-01

    The design, fabrication, and testing of a flexible, planar, anisotropic piezoelectric composite actuator utilizing machined PMN-32%PT single crystal fibers is presented. The device consists of a layer of rectangular single crystal piezoelectric fibers in an epoxy matrix, packaged between interdigitated electrode polyimide films. Quasistatic free-strain measurements of the single crystal device are compared with measurements from geometrically identical specimens incorporating polycrystalline PZT-5A and PZT-5H piezoceramic fibers. Free-strain actuation of the single crystal actuator at low bipolar electric fields (+/- 250 V/mm) is approximately 400% greater than that of the baseline PZT-5A piezoceramic device, and 200% greater than that of the PZT-5H device. Free-strain actuation under high unipolar electric fields (0-4kV/mm) is approximately 200% of the PZT-5A baseline device, and 150% of the PZT-5H alternate piezoceramic device. Performance increases at low field are qualitatively consistent with predicted increases based on scaling the low-field d(sub 33) piezoelectric constants of the respective piezoelectric materials. High-field increases are much less than scaled d(sub 33) estimates, but appear consistent with high-field freestrain measurements reported for similar bulk single-crystal and piezoceramic compositions. Measurements of single crystal actuator capacitance and coupling coefficient are also provided. These properties were poorly predicted using scaled bulk material dielectric and coupling coefficient data. Rules-of-mixtures calculations of the effective elastic properties of the single crystal device and estimated actuation work energy densities are also presented. Results indicate longitudinal stiffnesses significantly lower (50% less) than either piezoceramic device. This suggests that single-crystal piezocomposite actuators will be best suited to low induced-stress, high strain and deflection applications.

  8. Adaptive Liquid Lens Actuated by Droplet Movement

    Directory of Open Access Journals (Sweden)

    Chao Liu

    2014-08-01

    Full Text Available In this paper we report an adaptive liquid lens actuated by droplet movement. Four rectangular PMMA (Polymethyl Methacrylate substrates are stacked to form the device structure. Two ITO (Indium Tin Oxide sheets stick on the bottom substrate. One PMMA sheet with a light hole is inserted in the middle of the device. A conductive droplet is placed on the substrate and touches the PMMA sheet to form a small closed reservoir. The reservoir is filled with another immiscible non-conductive liquid. The non-conductive liquid can form a smooth concave interface with the light hole. When the device is applied with voltage, the droplet stretches towards the reservoir. The volume of the reservoir reduces, changing the curvature of the interface. The device can thus achieve the function of an adaptive lens. Our experiments show that the focal length can be varied from −10 to −159 mm as the applied voltage changes from 0 to 65 V. The response time of the liquid lens is ~75 ms. The proposed device has potential applications in many fields such as information displays, imaging systems, and laser scanning systems.

  9. Simulation of a spatial, servo-hydraulic test facility for space structures

    Science.gov (United States)

    Leimbach, K.-D.; Hahn, H.

    1994-01-01

    In this paper different control concepts for servo-hydraulic test facilities are derived using exact linearization techniques. Based on different linear and nonlinear models of the test table and the actuator dynamics several nonlinear controllers of different complexity are derived. The closed loop system performance of the controlled servo-hydraulic test facility is tested in various computer simulations using both, standard test signals and large test signals as system inputs. The simulation results turn out, that in case of standard input signals the test facility controller must include a linear test table mechanics model and a nonlinear servo-hydraulic actuator model. Additional simulations demonstrate the robustness of the control concept selected for standard test signals with respect to variations of plant parameters.

  10. Placement optimization of actuators and sensors for gyroelastic body

    Directory of Open Access Journals (Sweden)

    Quan Hu

    2015-03-01

    Full Text Available Gyroelastic body refers to a flexible structure with a distribution of stored angular momentum provided by fly wheels or control moment gyroscopes. The angular momentum devices can exert active torques to the structure for vibration suppression or shape control. This article mainly focuses on the placement optimization issue of the actuators and sensors on the gyroelastic body. The control moment gyroscopes and angular rate sensors are adopted as actuators and sensors, respectively. The equations of motion of the gyroelastic body incorporating the detailed actuator dynamics are linearized to a loosely coupled state-space model. Two optimization approaches are developed for both constrained and unconstrained gyroelastic bodies. The first is based on the controllability and observability matrices of the system. It is only applicable to the collocated actuator and sensor pairs. The second criterion is formulated from the concept of controllable and observable subspaces. It is capable of handling the cases of both collocated and noncollocated actuator and sensor pairs. The illustrative examples of a cantilevered beam and an unconstrained plate demonstrate the clear physical meaning and rationality of the two proposed methods.

  11. Actuator Placement Via Genetic Algorithm for Aircraft Morphing

    Science.gov (United States)

    Crossley, William A.; Cook, Andrea M.

    2001-01-01

    This research continued work that began under the support of NASA Grant NAG1-2119. The focus of this effort was to continue investigations of Genetic Algorithm (GA) approaches that could be used to solve an actuator placement problem by treating this as a discrete optimization problem. In these efforts, the actuators are assumed to be "smart" devices that change the aerodynamic shape of an aircraft wing to alter the flow past the wing, and, as a result, provide aerodynamic moments that could provide flight control. The earlier work investigated issued for the problem statement, developed the appropriate actuator modeling, recognized the importance of symmetry for this problem, modified the aerodynamic analysis routine for more efficient use with the genetic algorithm, and began a problem size study to measure the impact of increasing problem complexity. The research discussed in this final summary further investigated the problem statement to provide a "combined moment" problem statement to simultaneously address roll, pitch and yaw. Investigations of problem size using this new problem statement provided insight into performance of the GA as the number of possible actuator locations increased. Where previous investigations utilized a simple wing model to develop the GA approach for actuator placement, this research culminated with application of the GA approach to a high-altitude unmanned aerial vehicle concept to demonstrate that the approach is valid for an aircraft configuration.

  12. Control Reconfigurability of Bilinear Hydraulic Drive Systems

    DEFF Research Database (Denmark)

    Shaker, Hamid Reza; Tahavori, Maryamsadat

    2011-01-01

    be effective if sufficient redundancy does not exist in the process. A measure for control reconfigurability which reveals the level of redundancy in connection with feedback control is proposed in this paper for bilinear systems. The proposed control reconfigurability measure is the extension of its gramian......The objective of the methods within the framework of the plug and play process control and particularly fault tolerant control is to establish control techniques which guarantee a certain performance through control reconfiguration at the occurrence of the faults or changes. These methods cannot......-based analogous counterpart, which has been previously proposed for the linear processes. The control reconfigurability is calculated for the bilinear models of an electro-hydraulic drive to show its relevance to redundant actuating capabilities in the models....

  13. Novel Cryogenic Actuator Development Project

    Data.gov (United States)

    National Aeronautics and Space Administration —  New thin film low friction coating technologies have recently been developed and matured to the point for use in this IRAD actuator work.The new novel...

  14. Piezoelectric actuator for pulsating jets

    Science.gov (United States)

    Brissaud, Michel; Gonnard, Paul; Bera, Jean-Christophe; Sunyach, Michel

    2000-08-01

    Recent researches in aeronautics showed that fluidic actuator systems could offer possibilities for drag reduction and lift improvement. To this end many actuator types were designed. This paper deals with the design, fabrication and test of piezoelectric actuator in order to generate pulsated jets normal to a surface and control air flow separation. It is based on the flexural displacement of a rectangular metal plate clamped on one of its large edge. Piezoelectric patches cemented on the plate were used for driving into vibration the actuator. Experimental measurements show that pulsed flow velocities are adjustable from 1.5m/s to 35m/s through a 100x1mm2 slit andwithin a 100 to 400 Hz frequency range. Prototype provides the jet performances classically required for active control flow.

  15. Modeling and control of precision actuators

    CERN Document Server

    Kiong, Tan Kok

    2013-01-01

    IntroductionGrowing Interest in Precise ActuatorsTypes of Precise ActuatorsApplications of Precise ActuatorsNonlinear Dynamics and ModelingHysteresisCreepFrictionForce RipplesIdentification and Compensation of Preisach Hysteresis in Piezoelectric ActuatorsSVD-Based Identification and Compensation of Preisach HysteresisHigh-Bandwidth Identification and Compensation of Hysteretic Dynamics in Piezoelectric ActuatorsConcluding RemarksIdentification and Compensation of Frict

  16. High torque miniature rotary actuator

    Science.gov (United States)

    Nalbandian, Ruben

    2005-07-01

    This paper summarizes the design and the development of a miniature rotary actuator (36 mm diameter by 100 mm length) used in spacecraft mechanisms requiring high torques and/or ultra-fine step resolution. This actuator lends itself to applications requiring high torque but with strict volume limitations which challenge the use of conventional rotary actuators. The design challenge was to develop a lightweight (less than 500 grams), very compact, high bandwidth, low power, thermally stable rotary actuator capable of producing torques in excess of 50 N.m and step resolutions as fine as 0.003 degrees. To achieve a relatively high torsional stiffness in excess of 1000 Nm/radian, the design utilizes a combination of harmonic drive and multistage planetary gearing. The unique design feature of this actuator that contributes to its light weight and extremely precise motion capability is a redundant stepper motor driving the output through a multistage reducing gearbox. The rotary actuator is powered by a high reliability space-rated stepper motor designed and constructed by Moog, Inc. The motor is a three-phase stepper motor of 15 degree step angle, producing twenty-four full steps per revolution. Since micro-stepping is not used in the design, and un-powered holding torque is exhibited at every commanded step, the rotary actuator is capable of reacting to torques as high as 35 Nm by holding position with the power off. The output is driven through a gear transmission having a total train ratio of 5120:1, resulting in a resolution of 0.003 degrees output rotation per motor step. The modular design of the multi-stage output transmission makes possible the addition of designs having different output parameters, such as lower torque and higher output speed capability. Some examples of an actuator family based on this growth capability will be presented in the paper.

  17. Large Scale Magnetostrictive Valve Actuator

    Science.gov (United States)

    Richard, James A.; Holleman, Elizabeth; Eddleman, David

    2008-01-01

    Marshall Space Flight Center's Valves, Actuators and Ducts Design and Development Branch developed a large scale magnetostrictive valve actuator. The potential advantages of this technology are faster, more efficient valve actuators that consume less power and provide precise position control and deliver higher flow rates than conventional solenoid valves. Magnetostrictive materials change dimensions when a magnetic field is applied; this property is referred to as magnetostriction. Magnetostriction is caused by the alignment of the magnetic domains in the material s crystalline structure and the applied magnetic field lines. Typically, the material changes shape by elongating in the axial direction and constricting in the radial direction, resulting in no net change in volume. All hardware and testing is complete. This paper will discuss: the potential applications of the technology; overview of the as built actuator design; discuss problems that were uncovered during the development testing; review test data and evaluate weaknesses of the design; and discuss areas for improvement for future work. This actuator holds promises of a low power, high load, proportionally controlled actuator for valves requiring 440 to 1500 newtons load.

  18. Control of Adjustable Compliant Actuators

    Directory of Open Access Journals (Sweden)

    Berno J.E. Misgeld

    2014-05-01

    Full Text Available Adjustable compliance or variable stiffness actuators comprise an additional element to elastically decouple the actuator from the load and are increasingly applied to human-centered robotic systems. The advantages of such actuators are of paramount importance in rehabilitation robotics, where requirements demand safe interaction between the therapy system and the patient. Compliant actuator systems enable the minimization of large contact forces arising, for example, from muscular spasticity and have the ability to periodically store and release energy in cyclic movements. In order to overcome the loss of bandwidth introduced by the elastic element and to guarantee a higher range in force/torque generation, new actuator designs consider variable or nonlinear stiffness elements, respectively. These components cannot only be adapted to the walking speed or the patient condition, but also entail additional challenges for feedback control. This paper introduces a novel design method for an impedance-based controller that fulfills the control objectives and compares the performance and robustness to a classical cascaded control approach. The new procedure is developed using a non-standard positive-real Η2 controller design and is applied to a loop-shaping approach. Robust norm optimal controllers are designed with regard to the passivity of the actuator load-impedance transfer function and the servo control problem. Classical cascaded and positive-real Η2 controller designs are validated and compared in simulations and in a test bench using a passive elastic element of varying stiffness.

  19. Actuation Using Piezoelectric Materials: Application in Augmenters, Energy Harvesters, and Motors

    Science.gov (United States)

    Hasenoehrl, Jennifer

    2012-01-01

    Piezoelectric actuators are used in many manipulation, movement, and mobility applications as well as transducers and sensors. When used at the resonance frequencies of the piezoelectric stack, the actuator performs at its maximum actuation capability. In this Space Grant internship, three applications of piezoelectric actuators were investigated including hammering augmenters of rotary drills, energy harvesters, and piezo-motors. The augmenter shows improved drill performance over rotation only. The energy harvesters rely on moving fluid to convert mechanical energy into electrical power. Specific designs allow the harvesters more freedom to move, which creates more power. The motor uses the linear movement of the actuator with a horn applied to the side of a rotor to create rotational motion. Friction inhibits this motion and is to be minimized for best performance. Tests and measurements were made during this internship to determine the requirements for optimal performance of the studied mechanisms and devices.

  20. Experiments on co-located feedback vibration suppression in a space frame using new magnetic actuators

    Science.gov (United States)

    Chen, P.-Y.; Moon, Francis C.

    A 6.5-m experimental space truss was built to implement the concept of colocated velocity-feedback control with multiple channels using magnetic actuators to damp out large motions. Nonlocal self-equilibrated internal control forces are applied to suppress the bending vibration of this experimental truss. The control forces are generated through voice-coil type magnetic actuators with a high force-to-mass ratio. A moving magnet inside a solenoid is employed to pick up the corresponding velocity signal. This magnetic velocity sensor was designed as an integral part of the actuator to achieve colocation of sensor and actuator force. In order to transmit the nonlocal torque-free control forces, an actuator mechanism is invented which is not prestressed so that the truss members are not weakened. It is shown that there exist optimal damping ratios for the feedback gains. Vibration amplitudes of several centimeters can be suppressed with this device.