WorldWideScience

Sample records for hydraulic turbine-generator systems

  1. Trends in Wind Turbine Generator Systems

    DEFF Research Database (Denmark)

    Polinder, Henk; Ferreira, Jan Abraham; Jensen, Bogi Bech;

    2013-01-01

    This paper reviews the trends in wind turbine generator systems. After discussing some important requirements and basic relations, it describes the currently used systems: the constant speed system with squirrel-cage induction generator, and the three variable speed systems with doubly fed...

  2. 水轮发电机转子系统磁悬浮承重装置散热研究%Study on heat dissipation of magnetic-levitation bearing device for rotor system of hydraulic turbine-generator unit

    Institute of Scientific and Technical Information of China (English)

    马宏忠; 郭晓宁; 陈远俊

    2011-01-01

    由于水轮发电机轴向重力负荷电磁悬浮承重系统的励磁线圈密封在装置内部,无法与外界空气对流,从而会出现温升过高.为解决此问题,提出了分别在该系统电磁铁的上铁心和衔铁(推力盘)上设置一定数量的通风孔,以便使线圈表面形成对流散热.针对通风孔设计,选用适合此模型结构的对流散热数值模型,推导出对流散热系数的数值,并利用有限元分析软件Ansys进行了温度和磁场仿真分析.结果显示,在满足水轮机组承重要求的前提下,合理设计通风孔可以使电磁悬浮装置线圈温度大大降低,满足系统应用要求.%Since the excitation coils of electromagnetic-levitation bearing system for the axial load of hydraulic turbine-generator are sealed inside of the system, the heat inside is difficult to be dissipated, and then over-high temperature rise would occur therein.For solving this problem, it is put forward that a few vents are respectively arranged on both the electromagnet core and the armature ( thrust disc) of the system, so as to create a convection heat dissipation on the surface of coils.So far as the design of the vent is concerned, suitable numerical models are selected for this model along with the deduction of the coefficient of convection heat dissipation, and then the simulation analysis on the temperature and the magnetic field is made with the softwareAnsys.The results show that under the premise to satisfy the bearing requirement of hydraulic turbine-generator unit, the temperature of the coils can be greatly lowered with the reasonably designed vents, therefore, the application requirement of the system can be met as well.

  3. Straight-flow hydraulic turbine-generator for ultralow-head

    Energy Technology Data Exchange (ETDEWEB)

    Kushimoto, Masakazu; Ujiie, Ryuichi (Fuji Electric Co., Ltd., Tokyo (Japan))

    1989-01-10

    This report introduces features and structures of the straight-flow hydraulic turbine-generator considered for ultralow-head hydropower generation. Largest feature of straight flow(S/F) is that the generator rotor is fitted so as to surround the periphery of runner. This fundamental structure is classified to overhang type, downstream stay-column type and others dependent on the arrangement of main bearing which supports the rotor weight. The essential part of the hydraulic turbine is the sealing equipment for the center part of the rotor. Special attention must be paid to the selection of material and structure of this equipment. The maximum point to determine the structure is the countermeasure for the radial and axial rigidity reduction in the S/F hydro-generator. It is also necessary to conduct moisture prevention for the generator and to insulate to prevent axial current. 13 refs., 6 figs.

  4. Power fluctuations smoothing and regulations in wind turbine generator systems

    Science.gov (United States)

    Babazadehrokni, Hamed

    Wind is one of the most popular renewable energy sources and it has the potential to become the biggest energy source in future. Since the wind does not always blow constantly, the output wind power is not constant which may make some problem for the power grid. According to the grid code which is set by independent system operator, ISO, wind turbine generator systems need to follow some standards such as the predetermined acceptable power fluctuations. In order to smooth the output powers, the energy storage system and some power electronics modules are employed. The utilized power electronics modules in the wind turbine system can pursue many different goals, such as maintaining the voltage stability, frequency stability, providing the available and predetermined output active and reactive power. On the other side, the energy storage system can help achieving some of these goals but its main job is to store the extra energy when not needed and release the stored energy when needed. The energy storage system can be designed in different sizes, material and also combination of different energy storage systems (hybrid designs). Combination of power electronics devises and also energy storage system helps the wind turbine systems to smooth the output power according to the provided standards. In addition prediction of wind speed may improve the performance of wind turbine generator systems. In this research study all these three topics are studied and the obtained results are written in 10 papers which 7 of them are published and three of them are under process.

  5. Turbines, generators and associated plant incorporating modern power system practice

    CERN Document Server

    Littler, DJ

    1992-01-01

    The introduction of new 500 MW and 660 MW turbine generator plant in nuclear, coal- and oil-fired power stations has been partly responsible for the increase in generating capacity of the CEGB over the last 30 years. This volume provides a detailed account of experience gained in the development, design, manufacture, operation and testing of large turbine-generators in the last 20 years. With the advance in analytical and computational techniques, the application of this experience to future design and operation of large turbine-generator plant will be of great value to engineers in the indust

  6. Development of the water-lubricated thrust bearing of the hydraulic turbine generator

    Science.gov (United States)

    Inoue, K.; Deguchi, K.; Okude, K.; Fujimoto, R.

    2012-11-01

    In hydropower plant, a large quantities of turbine oil is used as machine control pressure oil and lubricating oil. If the oil leak out from hydropower plant, it flows into a river. And such oil spill has an adverse effect on natural environment because the oil does not degrade easily. Therefore the KANSAI and Hitachi Mitsubishi Hydro developed the water-lubricated thrust bearing for vertical type hydraulic turbine generator. The water-lubricated bearing has advantages in risk avoidance of river pollution because it does not need oil. For proceeding the development of the water-lubricated thrust bearing, we studied following items. The first is the examination of the trial products of water lubricating liquid. The second is the study of bearing structure which can satisfy bearing performance such as temperature characteristic and so on. The third is the mock-up testing for actual application in the future. As a result, it was found that the water-lubricated thrust bearing was technically applicable to actual equipments.

  7. Micro-Turbine Generation Control System Optimization Using Evolutionary algorithm

    Directory of Open Access Journals (Sweden)

    Mohanraj B S

    2014-10-01

    Full Text Available Distribution systems management is becoming an increasingly complicated issue due to the introduction of new technologies, new energy trading strategies, and new deregulated environment. In the new deregulated energy market and considering the incentives coming from the technical and economical fields, it is reasonable to consider Distributed Generation (DG as a viable option to solve the lacking electric power supply problem. This paper presents a mathematical distribution system planning model considering three planning options to system expansion and to meet the load growth requirements with a reasonable price as well as the system power quality problems. DG is introduced as an attractive planning option in competition with voltage regulator devices and Interruptible load. This paper presents a dynamic modelling and simulation of a high speed single shaft micro-turbine generation (MTG system for grid connected operation and shows genetic algorithm (GA role in improvement of control system operation. The model is developed with the consideration of the main parts including: compressor-turbine, permanent magnet (PM generator, three phase bridge rectifier and inverter. The simulation results show the capability of Genetic Algorithm for controlling MTG system. The model is developed in Mat lab / Simulink.

  8. Research on Wind Turbine Generator Dynamic Reliability Test System Based on Feature Recognition

    Directory of Open Access Journals (Sweden)

    Bin Wang

    2013-09-01

    Full Text Available Wind power resource development is increasingly becoming the focus of the current research and development in various countries' relevant scientific institutions. To make sure the secure and reliable operation of wind turbine generator, the study develops the wind turbine generator dynamic reliability test system. When the fault of gearbox and spindle occurs, their features of vibration signals are special. According to the feature recognition technology, the application of time and frequency domain model identification method has practical significance to the test system. Based on Bayesian network fault diagnosis method, the vibration feature recognition system of wind turbine generator is constructed. Finally, the paper uses GPRS technology to realize the wireless transmission of operation information. The wind turbine generator dynamic reliability test system is built based on GPRS technology to realize automatic control and remote intelligent monitoring and to ensure the safe and stable operation of wind farms.

  9. Nonlinear Dynamic Characteristic Analysis of the Shaft System in Water Turbine Generator Set

    Institute of Scientific and Technical Information of China (English)

    MA Zhenyue; SONG Zhiqiang

    2009-01-01

    A 3D finite element vibration model of water turbine generator set is constructed considering the coupling with hydropower house foundation. The method of determining guide bearing dynamic characteristic coefficients according to the swing of the shaft is proposed, which can be used for studying the self-vibration characteristic and stability of the water turbine generator set. The method fully considers the complex supporting boundary and loading conditions; especially the nonlinear variation of guide bearing dynamic characteristic coefficients and the coupling effect of the whole power-house foundation. The swing and critical rotating speed of an actual generator set shaft system are calculated. The simulated results of the generator set indicate that the coupling vibration model and calculation method presented in this paper are suitable for stability analysis of the water turbine generator set.

  10. Wind Turbine Generator System Safety and Function Test Report for the Entegrity EW50 Wind Turbine

    Energy Technology Data Exchange (ETDEWEB)

    Smith, J.; Huskey, A.; Jager, D.; Hur, J.

    2012-11-01

    This report summarizes the results of a safety and function test that NREL conducted on the Entegrity EW50 wind turbine. This test was conducted in accordance with the International Electrotechnical Commissions' (IEC) standard, Wind Turbine Generator System Part 2: Design requirements for small wind turbines, IEC 61400-2 Ed.2.0, 2006-03.

  11. Wind Turbine Generator System Safety and Function Test Report for the Ventera VT10 Wind Turbine

    Energy Technology Data Exchange (ETDEWEB)

    Smith, J.; Huskey, A.; Jager, D.; Hur, J.

    2012-11-01

    This report summarizes the results of a safety and function test that NREL conducted on the Ventera VT10 wind turbine. This test was conducted in accordance with the International Electrotechnical Commissions' (IEC) standard, Wind Turbine Generator System Part 2: Design requirements for small wind turbines, IEC 61400-2 Ed.2.0, 2006-03.

  12. Development of a cooling system for superconducting wind turbine generator

    Science.gov (United States)

    Furuse, Mitsuho; Fuchino, Shuichiro; Okano, Makoto; Natori, Naotake; Yamasaki, Hirofumi

    2016-12-01

    This paper deals with the cooling system for high-Tc superconducting (HTS) generators for large capacity wind turbines. We have proposed a cooling system with a heat exchanger and circulation pumps to cool HTS field windings designed for 10 MW-class superconducting generators. In the cooling system, the refrigerants in the stationary and rotational systems are completely separated; heat between the two systems exchanges using a rotational-stationary heat exchanger. The refrigerant in rotational system is circulated by highly reliable pumps. We designed the rotational-stationary heat exchanger based on a conventional shell-and tube type heat exchanger. We also demonstrated that heat exchange in cryogenic temperature is possible with a commercially available heat exchanger. We devised a novel and highly reliable cryogenic helium circulation pump with magnetic reciprocating rotation system and verified its underlying principle with a small-scale model.

  13. Control of wind turbine generators connected to power systems

    Science.gov (United States)

    Hwang, H. H.; Mozeico, H. V.; Gilbert, L. J.

    1978-01-01

    A unique simulation model based on a Mode-O wind turbine is developed for simulating both speed and power control. An analytical representation for a wind turbine that employs blade pitch angle feedback control is presented, and a mathematical model is formulated. For Mode-O serving as a practical case study, results of a computer simulation of the model as applied to the problems of synchronization and dynamic stability are provided. It is shown that the speed and output of a wind turbine can be satisfactorily controlled within reasonable limits by employing the existing blade pitch control system under specified conditions. For power control, an additional excitation control is required so that the terminal voltage, output power factor, and armature current can be held within narrow limits. As a result, the variation of torque angle is limited even if speed control is not implemented simultaneously with power control. Design features of the ERDA/NASA 100-kW Mode-O wind turbine are included.

  14. Modeling and application of wind turbine generating system (WTGS) to distribution systems

    Energy Technology Data Exchange (ETDEWEB)

    Eminoglu, Ulas [Nigde University, Department of Electrical and Electronics Engineering, 51245 Nigde (Turkey)

    2009-11-15

    This paper describes two new models for wind turbine generating systems (WTGSs), widely used as distributed generation sources in distribution systems. These models are developed by using the modifications of bi-quadratic equation which is generally used for the calculation of node voltages in distribution systems' load flow analysis. The developed models are validated with an experimental setup composed by an induction generator coupled with an induction motor as a prime mover, and with the calculated values obtained by using the other models reported in the literature. They are also incorporated into distribution systems' load flow analysis, and the results are compared with the results of their Simulink models. Simulink models are developed in Matlab using SimPowerSystems Blockset. (author)

  15. Hierarchical parameter estimation of DFIG and drive train system in a wind turbine generator

    Science.gov (United States)

    Pan, Xueping; Ju, Ping; Wu, Feng; Jin, Yuqing

    2017-09-01

    A new hierarchical parameter estimation method for doubly fed induction generator (DFIG) and drive train system in a wind turbine generator (WTG) is proposed in this paper. Firstly, the parameters of the DFIG and the drive train are estimated locally under different types of disturbances. Secondly, a coordination estimation method is further applied to identify the parameters of the DFIG and the drive train simultaneously with the purpose of attaining the global optimal estimation results. The main benefit of the proposed scheme is the improved estimation accuracy. Estimation results confirm the applicability of the proposed estimation technique.

  16. Dynamics of a Flywheel Energy Storage System Supporting a Wind Turbine Generator in a Microgrid

    Science.gov (United States)

    Nair S, Gayathri; Senroy, Nilanjan

    2016-02-01

    Integration of an induction machine based flywheel energy storage system with a wind energy conversion system is implemented in this paper. The nonlinear and linearized models of the flywheel are studied, compared and a reduced order model of the same simulated to analyze the influence of the flywheel inertia and control in system response during a wind power change. A quantification of the relation between the inertia of the flywheel and the controller gain is obtained which allows the system to be considered as a reduced order model that is more controllable in nature. A microgrid setup comprising of the flywheel energy storage system, a two mass model of a DFIG based wind turbine generator and a reduced order model of a diesel generator is utilized to analyse the microgrid dynamics accurately in the event of frequency variations arising due to wind power change. The response of the microgrid with and without the flywheel is studied.

  17. An improved fuzzy synthetic condition assessment of a wind turbine generator system

    DEFF Research Database (Denmark)

    Li, H.; Hu, Y. G.; Yang, Chao;

    2013-01-01

    This paper presents an improved fuzzy synthetic model that is based on a real-time condition assessment method of a grid-connected wind turbine generator system (WTGS) to improve the operational reliability and optimize the maintenance strategy. First, a condition assessment framework is proposed...... by analyzing the monitored physical quantities of an actual WTGS with an electrically excited synchronous generator (EESG) and a full-scale converter. To examine the variable speed operational performances, the dynamic limits and the deterioration degree functions of the characteristic variables are determined...... 850 kW WTGS, real-time condition assessments are performed that utilize the proposed fuzzy synthetic method; the model’s effectiveness is also compared to a traditional fuzzy assessment method in which constant limited values and constant weights are adopted. The results show that the condition...

  18. Design of a wind turbine-generator system considering the conformability to wind velocity fluctuations

    Energy Technology Data Exchange (ETDEWEB)

    Wakui, Tetsuya; Hashizume, Takumi; Outa, Eisuke

    1999-07-01

    The conformability of the rated power output of the wind turbine-generator system and of the wind turbine type to wind velocity fluctuations are investigated with a simulation model. The authors examine three types of wind turbines: the Darrieus-Savonius hybrid, the Darrieus proper and the Propeller. These systems are mainly operated at a constant tip speed ratio, which refers to a maximum power coefficient points. As a computed result of the net extracting power, the Darrieus turbine proper has little conformability to wind velocity fluctuations because of its output characteristics. As for the other turbines, large-scale systems do not always have an advantage over small-scale systems as the effect of its dynamic characteristics. Furthermore, it is confirmed that the net extracting power of the Propeller turbine, under wind direction fluctuation, is much reduced when compared with the hybrid wind turbine. Thus, the authors conclude that the appropriate rated power output of the system exists with relation to the wind turbine type for each wind condition.

  19. Simultaneous-Fault Diagnosis of Gas Turbine Generator Systems Using a Pairwise-Coupled Probabilistic Classifier

    Directory of Open Access Journals (Sweden)

    Zhixin Yang

    2013-01-01

    Full Text Available A reliable fault diagnostic system for gas turbine generator system (GTGS, which is complicated and inherent with many types of component faults, is essential to avoid the interruption of electricity supply. However, the GTGS diagnosis faces challenges in terms of the existence of simultaneous-fault diagnosis and high cost in acquiring the exponentially increased simultaneous-fault vibration signals for constructing the diagnostic system. This research proposes a new diagnostic framework combining feature extraction, pairwise-coupled probabilistic classifier, and decision threshold optimization. The feature extraction module adopts wavelet packet transform and time-domain statistical features to extract vibration signal features. Kernel principal component analysis is then applied to further reduce the redundant features. The features of single faults in a simultaneous-fault pattern are extracted and then detected using a probabilistic classifier, namely, pairwise-coupled relevance vector machine, which is trained with single-fault patterns only. Therefore, the training dataset of simultaneous-fault patterns is unnecessary. To optimize the decision threshold, this research proposes to use grid search method which can ensure a global solution as compared with traditional computational intelligence techniques. Experimental results show that the proposed framework performs well for both single-fault and simultaneous-fault diagnosis and is superior to the frameworks without feature extraction and pairwise coupling.

  20. Operating experience feedback report -- turbine-generator overspeed protection systems: Commercial power reactors. Volume 11

    Energy Technology Data Exchange (ETDEWEB)

    Ornstein, H.L.

    1995-04-01

    This report presents the results of the US Nuclear Regulatory Commission`s Office for Analysis and Evaluation of Operational Data (AEOD) review of operating experience of main turbine-generator overspeed and overspeed protection systems. It includes an indepth examination of the turbine overspeed event which occurred on November 9, 1991, at the Salem Unit 2 Nuclear Power Plant. It also provides information concerning actions taken by other utilities and the turbine manufacturers as a result of the Salem overspeed event. AEOD`s study reviewed operating procedures and plant practices. It noted differences between turbine manufacturer designs and recommendations for operations, maintenance, and testing, and also identified significant variations in the manner that individual plants maintain and test their turbine overspeed protection systems. AEOD`s study provides insight into the shortcomings in the design, operation, maintenance, testing, and human factors associated with turbine overspeed protection systems. Operating experience indicates that the frequency of turbine overspeed events is higher than previously thought and that the bases for demonstrating compliance with NRC`s General Design Criterion (GDC) 4, Environmental and dynamic effects design bases, may be nonconservative with respect to the assumed frequency.

  1. Effect of operating methods of wind turbine generator system on net power extraction under wind velocity fluctuations in fields

    Energy Technology Data Exchange (ETDEWEB)

    Wakui, Tetsuya; Yamaguchi, Kazuya; Hashizume, Takumi [Waseda Univ., Advanced Research Inst. for Science and Engineering, Tokyo (Japan); Outa, Eisuke [Waseda Univ., Mechanical Engineering Dept., Tokyo (Japan); Tanzawa, Yoshiaki [Nippon Inst. of Technology, Mechanical Engineering Dept., Saitama (Japan)

    1999-01-01

    The effect of how a wind turbine generator system is operated is discussed from the viewpoint of net power extraction with wind velocity fluctuation in relation to the scale and the dynamic behaviour of the system. On a wind turbine generator system consisting of a Darrieus-Savonius hybrid wind turbine, a load generator and a battery, we took up two operating methods: constant tip speed ratio operation for a stand-alone system (Scheme 1) and synchronous operation by connecting a grid (Scheme 2). With our simulation model, using the result of the net extracting power, we clarified that Scheme 1 is more effective than Scheme 2 for small-scale systems. Furthermore, in Scheme 1, the appropriate rated power output of the system under each wind condition can be confirmed. (Author)

  2. Wind turbine generator interaction with diesel generators on an isolated power system

    Science.gov (United States)

    Scott, G. W.; Wilreker, V. F.; Shaltens, R. K.

    1983-01-01

    The results of a dynamic interaction investigation to characterize any disturbances caused by interfacing the Mod 0A wind turbine (150 kW configuration) with the Block Island utility diesel generator grid are reported. The tests were run when only two diesel generators were on line, and attention was given to power, frequency, and voltage time profiles. The interconnected system was examined in the start-up and synchronization phase, normal shutdown and cut-out of the wind turbine, during fixed pitch generation, and during variable pitch operation. Governors were installed on the diesel generators to accommodate the presence of wind-derived electricity. The blade pitch control was set to maintain power at 150 kW or below. Power and voltage transients were insignificant during start-up and shutdown, and frequency aberrations were within the range caused by load fluctuations. It is concluded that wind turbine generation can be successfully implemented by an isolated utility, even with a significant penetration to the total grid output.

  3. An Effective Fault Feature Extraction Method for Gas Turbine Generator System Diagnosis

    Directory of Open Access Journals (Sweden)

    Jian-Hua Zhong

    2016-01-01

    Full Text Available Fault diagnosis is very important to maintain the operation of a gas turbine generator system (GTGS in power plants, where any abnormal situations will interrupt the electricity supply. The fault diagnosis of the GTGS faces the main challenge that the acquired data, vibration or sound signals, contain a great deal of redundant information which extends the fault identification time and degrades the diagnostic accuracy. To improve the diagnostic performance in the GTGS, an effective fault feature extraction framework is proposed to solve the problem of the signal disorder and redundant information in the acquired signal. The proposed framework combines feature extraction with a general machine learning method, support vector machine (SVM, to implement an intelligent fault diagnosis. The feature extraction method adopts wavelet packet transform and time-domain statistical features to extract the features of faults from the vibration signal. To further reduce the redundant information in extracted features, kernel principal component analysis is applied in this study. Experimental results indicate that the proposed feature extracted technique is an effective method to extract the useful features of faults, resulting in improvement of the performance of fault diagnosis for the GTGS.

  4. Literature Review on Reasons and Countermeasures on Large-scale Off-grid of Wind Turbine Generator System

    Directory of Open Access Journals (Sweden)

    Zhu Jun

    2015-01-01

    Full Text Available This paper reviews the present situation of the application of wind turbines generator system(WTGS at home and abroad, describes the strategic significance and the value of sustainable development of the wind power in the country, illustrates the problems, a variety of reasons and responses on large-scale off-grid of WTGS, compares the advantages and disadvantages of various methods, gives full consideration to the actual demand for WTGS works and characteristics and points out the further research.

  5. Design of a control scheme for a maximum power extraction in low power wind turbine-generator system

    Science.gov (United States)

    Henao Bravo, Elkin Edilberto

    This document presents the modeling of a wind turbine-generator system and developing a control scheme for maximum power extraction. The system comprises a low-power variable speed wind rotor coupled to a squirrel cage induction generator through gearbox. The generator delivers electrical energy to a DC load through a PWM three phase rectifier which control variables are duty cycle and the fundamental frequency of the modulated signal. The control scheme maintains constant relationship voltage/frequency in the stator of the generator to operate the machine with constant air gap flow at its nominal value, thereby decreasing electrical losses in the circuit of the stator and rotor. The controller is based on MPPT algorithms for determining the operating point the system and achieve the proper mechanical speed shaft. The performance is evaluated through simulations in MatlabRTM/simulink. and presents this type of control as a good alternative for handling low-power wind turbine-generator systems effectively and efficiently

  6. FDTD Analysis of the Current Distribution within the Grounding System for a Wind Turbine Generation Tower Struck by Lightning

    Science.gov (United States)

    Nagao, Mitsuhiro; Nagaoka, Naoto; Baba, Yoshihiro; Ametani, Akihiro

    Transient current distribution within the grounding system for a wind-turbine-generation tower of height 61m struck by lightning has been calculated using the finite-difference time-domain (FDTD) method. The grounding grid for the lightning-struck tower considered in this paper is connected electrically via an insulated wire to one neighboring-tower grounding grid located 50m away from it. High-frequency components of a lightning current tend to flow in ground through the grounding grid of the lightning-struck tower, and they become larger with increasing the ground conductivity. Relatively-lower-frequency components of the lightning current flow in ground through each of the two grounding grids roughly in inverse proportion to the grounding resistance of each grid. For example, when two identical grounding grids for the lightning-struck tower and the neighboring tower are buried in the same ground, about 50% of the lightning current flows in the grounding grid for the neighboring tower via the insulated wire connecting these two grounding grids. When the grounding resistance of the neighboring tower is about 1/4 of that for the lightning-struck tower, about 4/5 of the lightning current flows in the neighboring-tower grounding grid. This agrees well with the trend shown by Nagaoka et al. from their measurement in the grounding system for an actual wind-turbine-generation tower struck by natural lightning.

  7. Mod-5A wind turbine generator program design report. Volume 3: Final design and system description, book 1

    Science.gov (United States)

    1984-01-01

    The design, development and analysis of the 7.3 MW MOD-5A wind turbine generator is documented. Volume 3, book 1 describes the performance and characteristics of the MOD-5A wind turbine generator in its final configuration. Each subsystem - the rotor, drivetrain, nacelle, tower and foundation is described in detail.

  8. A probability evaluation method of early deterioration condition for the critical components of wind turbine generator systems

    Science.gov (United States)

    Hu, Yaogang; Li, Hui; Liao, Xinglin; Song, Erbing; Liu, Haitao; Chen, Z.

    2016-08-01

    This study determines the early deterioration condition of critical components for a wind turbine generator system (WTGS). Due to the uncertainty nature of the fluctuation and intermittence of wind, early deterioration condition evaluation poses a challenge to the traditional vibration-based condition monitoring methods. Considering the its thermal inertia and strong anti-interference capacity, temperature characteristic parameters as a deterioration indication cannot be adequately disturbed by the uncontrollable noise and uncertainty nature of wind. This paper provides a probability evaluation method of early deterioration condition for critical components based only on temperature characteristic parameters. First, the dynamic threshold of deterioration degree function was proposed by analyzing the operational data between temperature and rotor speed. Second, a probability evaluation method of early deterioration condition was presented. Finally, two cases showed the validity of the proposed probability evaluation method in detecting early deterioration condition and in tracking their further deterioration for the critical components.

  9. A probability evaluation method of early deterioration condition for the critical components of wind turbine generator systems

    DEFF Research Database (Denmark)

    Hu, Y.; Li, H.; Liao, X;

    2016-01-01

    This study determines the early deterioration condition of critical components for a wind turbine generator system (WTGS). Due to the uncertainty nature of the fluctuation and intermittence of wind, early deterioration condition evaluation poses a challenge to the traditional vibration......-based condition monitoring methods. Considering the its thermal inertia and strong anti-interference capacity, temperature characteristic parameters as a deterioration indication cannot be adequately disturbed by the uncontrollable noise and uncertainty nature of wind. This paper provides a probability evaluation...... method of early deterioration condition for critical components based only on temperature characteristic parameters. First, the dynamic threshold of deterioration degree function was proposed by analyzing the operational data between temperature and rotor speed. Second, a probability evaluation method...

  10. Evaluation of a Wind Turbine Generation System Connected to Distribution Network from Viewpoint of Acceptable Maximum Output

    Science.gov (United States)

    Hanai, Yuji; Hayashi, Yasuhiro; Matsuki, Junya; Kobayashi, Naoki

    Recently, the total number of Wind Turbine Generation System (WTGS) connected to distribution network has been increased drastically. Installation of WTGS can reduce the distribution loss and emission of CO2. However, the distribution network with WTGS must be operated keeping reliability of power supply and power quality. The WTGS's effects to distribution network depend on its structure. In order to accomplish both the stable operation of distribution network and the progress of WTGS's prevalence, it is necessary to evaluate the acceptable output of WTGS quantitatively. In this paper, the authors evaluate several WTGSs connected to distribution network from viewpoint of Acceptable Maximum Output (AMO). The operational constrains to calculate the AMO of a WTGS are the following, (1) voltage limit, (2) line current capacity, (3) no reverse flow to distribution transformer, (4) short circuit capacity, and (5) voltage dip by inrush current. In order to evaluate the WTGS from viewpoint of AMO, numerical simulations are accomplished for a distribution system model. Furthermore, characteristics of AMO of a WTGS connected to distribution feeder are analyzed by several numerical examples.

  11. Variable speed wind turbine generator system with current controlled voltage source inverter

    Energy Technology Data Exchange (ETDEWEB)

    Muyeen, S.M., E-mail: muyeen0809@yahoo.co [Dept. of Electrical Engineering, Petroleum Institute, P.O. Box 2533, Abu Dhabi (United Arab Emirates); Al-Durra, Ahmed [Dept. of Electrical Engineering, The Petroleum Institute, P.O. Box 2533, Abu Dhabi (United Arab Emirates); Tamura, J. [Dept. of EEE, Kitami Institute of Technology, 165 Koen-cho, Kitami 090-8507 (Japan)

    2011-07-15

    highlights: {yields} Current controlled voltage source inverter scheme for wind power application. {yields} Low voltage ride through of wind farm. {yields} Variable speed wind turbine driven permanent magnet synchronous generator-operation and control. -- Abstract: The present popular trend of wind power generation is to use variable speed wind turbine (VSWT) driving a doubly fed induction generator (DFIG), wound field synchronous generator (WFSG) or permanent magnet synchronous generator (PMSG). Among them, stability analyses of DFIG type of VSWT have already been reported in many literatures. However, transient stability and low voltage ride through (LVRT) characteristics analyses for synchronous generator type of VSWT is not sufficient enough. This paper focuses on detailed LVRT characteristic analysis of variable speed wind turbine driving a PMSG (VSWT-PMSG) with current controlled voltage source inverter (CC-VSI). Modeling and suitable control strategies for overall system are developed to augment the low voltage ride through capability of variable speed wind generator, considering recent wind farm grid code. Both symmetrical and unsymmetrical faults are analyzed as network disturbances in this paper. The permanent fault due to unsuccessful reclosing of circuit breakers is taken into consideration, which is a salient feature of this study. Moreover, the dynamic characteristic is analyzed using real wind speed data measured in Hokkaido Island, Japan. The proposed control scheme is simulated by using the standard power system simulation package PSCAD/EMTDC and results are verified by comparing that of voltage controlled voltage source inverter scheme available in power system literature.

  12. Wind turbine generators having wind assisted cooling systems and cooling methods

    Science.gov (United States)

    Bagepalli, Bharat [Niskayuna, NY; Barnes, Gary R [Delanson, NY; Gadre, Aniruddha D [Rexford, NY; Jansen, Patrick L [Scotia, NY; Bouchard, Jr., Charles G.; Jarczynski, Emil D [Scotia, NY; Garg, Jivtesh [Cambridge, MA

    2008-09-23

    A wind generator includes: a nacelle; a hub carried by the nacelle and including at least a pair of wind turbine blades; and an electricity producing generator including a stator and a rotor carried by the nacelle. The rotor is connected to the hub and rotatable in response to wind acting on the blades to rotate the rotor relative to the stator to generate electricity. A cooling system is carried by the nacelle and includes at least one ambient air inlet port opening through a surface of the nacelle downstream of the hub and blades, and a duct for flowing air from the inlet port in a generally upstream direction toward the hub and in cooling relation to the stator.

  13. Mod-5A wind turbine generator program design report. Volume 3: Final design and system description, book 2

    Science.gov (United States)

    1984-01-01

    The design, development and analysis of the 7.3MW MOD-5A wind turbine generator is documented. The report is divided into four volumes: Volume 1 summarizes the entire MOD-5A program, Volume 2 discusses the conceptual and preliminary design phases, Volume 3 describes the final design of the MOD-5A, and Volume 4 contains the drawings and specifications developed for the final design. Volume 3, book 2 describes the performance and characteristics of the MOD-5A wind turbine generator in its final configuration. The subsystem for power generation, control, and instrumentation subsystems is described in detail. The manufacturing and construction plans, and the preparation of a potential site on Oahu, Hawaii, are documented. The quality assurance and safety plan, and analyses of failure modes and effects, and reliability, availability and maintainability are presented.

  14. Controls of Hydraulic Wind Turbine

    Directory of Open Access Journals (Sweden)

    Zhang Yin

    2016-01-01

    Full Text Available In this paper a hydraulic wind turbine generator system was proposed based on analysis the current wind turbines technologies. The construction and principles were introduced. The mathematical model was verified using MATLAB and AMsim. A displacement closed loop of swash plate of motor and a speed closed loop of generator were setup, a PID control is introduced to maintain a constant speed and fixed frequency at wind turbine generator. Simulation and experiment demonstrated that the system can connect grid to generate electric and enhance reliability. The control system demonstrates a high performance speed regulation and effectiveness. The results are great significant to design a new type hydraulic wind turbine system.

  15. Model 0A wind turbine generator FMEA

    Science.gov (United States)

    Klein, William E.; Lalli, Vincent R.

    1989-01-01

    The results of Failure Modes and Effects Analysis (FMEA) conducted for the Wind Turbine Generators are presented. The FMEA was performed for the functional modes of each system, subsystem, or component. The single-point failures were eliminated for most of the systems. The blade system was the only exception. The qualitative probability of a blade separating was estimated at level D-remote. Many changes were made to the hardware as a result of this analysis. The most significant change was the addition of the safety system. Operational experience and need to improve machine availability have resulted in subsequent changes to the various systems which are also reflected in this FMEA.

  16. Hydraulic Yaw System

    DEFF Research Database (Denmark)

    Stubkier, Søren; Pedersen, Henrik C.; Mørkholt, M.

    As wind turbines increase in size, combined with increased lifetime demands, new methods for load reduction needs to be examined. One method is to make the yaw system of the turbine soft/flexible and hereby dampen the loads to the system, which is the focus of the current paper. By utilizing...... the HAWC2 aeroelastic code and an extended model of the NREL 5MW turbine combined with a simplified linear model of the turbine, the parameters of the soft yaw system are optimized to reduce loading in critical components. Results shows that a significant reduction in fatigue and extreme loads to the yaw...... system and rotor shaft when utilizing the soft yaw drive concept compared to the original stiff yaw system. The physical demands of the hydraulic yaw system are furthermore examined for a life time of 20 years. Based on the extrapolated loads, the duty cycles show that it is possible to construct...

  17. Maximizing output power of wind turbine generator by output current control. Shutsuryoku denryu seigyo ni yoru furyoku hatsuden system no denryoku saidaika

    Energy Technology Data Exchange (ETDEWEB)

    Kawahito, T. (Takamatsu National College of Technology, Kagawa (Japan)); Suzuki, T. (Tokushima University, Tokushima (Japan))

    1994-03-20

    This paper reports a method in a wind power generation system to control output current from a generator so that it fits automatically the wind turbine characteristics where the turbine characteristics are unknown and the generator characteristics are known. The paper details the following methods: a method that rotation speed of a wind turbine is observed to make the output current from the generator proportional to a square of the turbine rotation speed, and optimize the proportion coefficient so that the generator output at an equilibrium operation point of this system (wind turbine generated torque is in equilibrium with the generator driven torque) is maximized; and a method to derive an optimal proportion coefficient in discrete time control using a digital computer. The paper then describes the following matters: a simulation that assumes a pseudo natural wind velocity has verified the effectiveness of this control method; discovering an optimal proportion coefficient has required about ten minutes; and the way this control method handles fluctuation in wind velocity has a room of further improvement. 16 refs., 10 figs., 1 tab.

  18. Large superconducting wind turbine generators

    DEFF Research Database (Denmark)

    Abrahamsen, Asger Bech; Magnusson, Niklas; Jensen, Bogi Bech

    2012-01-01

    and the rotation speed is lowered in order to limit the tip speed of the blades. The ability of superconducting materials to carry high current densities with very small losses might facilitate a new class of generators operating with an air gap flux density considerably higher than conventional generators...... and thereby having a smaller size and weight [1, 2]. A 5 MW superconducting wind turbine generator forms the basics for the feasibility considerations, particularly for the YBCO and MgB2 superconductors entering the commercial market. Initial results indicate that a 5 MW generator with an active weight of 34...

  19. DSP and FPGA based system to control a wind turbine generator implementing a variable speed vectorial control method

    OpenAIRE

    Perales Esteve, Manuel Ángel; Barrero, Federico; Mora Jiménez, José Luis; Galván Díez, Eduardo; Carrasco Solís, Juan Manuel; García Franquelo, Leopoldo

    1997-01-01

    The purpose of this paper is to describe a DSP and FPGA control system to implement a variable speed vectorial control. Two semi-systems, both of them consisting on a DSP, a FPGA and A/D, D/A & digital I/O’s are used. Each one will control an inverter: The first inverter implements a variable speed vector control of the induction generator and the second one handle the power injected into the utility grid. Experimental results will be shown to confirm the validity of the proposed controller.

  20. Intelligent approach to maximum power point tracking control strategy for variable-speed wind turbine generation system

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Whei-Min; Hong, Chih-Ming [Department of Electrical Engineering, National Sun Yat-Sen University, Kaohsiung 80424 (China)

    2010-06-15

    To achieve maximum power point tracking (MPPT) for wind power generation systems, the rotational speed of wind turbines should be adjusted in real time according to wind speed. In this paper, a Wilcoxon radial basis function network (WRBFN) with hill-climb searching (HCS) MPPT strategy is proposed for a permanent magnet synchronous generator (PMSG) with a variable-speed wind turbine. A high-performance online training WRBFN using a back-propagation learning algorithm with modified particle swarm optimization (MPSO) regulating controller is designed for a PMSG. The MPSO is adopted in this study to adapt to the learning rates in the back-propagation process of the WRBFN to improve the learning capability. The MPPT strategy locates the system operation points along the maximum power curves based on the dc-link voltage of the inverter, thus avoiding the generator speed detection. (author)

  1. Water Hydraulic Systems

    DEFF Research Database (Denmark)

    Conrad, Finn

    2005-01-01

    The paper presents research results using IT-Tools for CAD and dynamic modelling, simulation, analysis, and design of water hydraulic actuators for motion control of machines, lifts, cranes and robots. Matlab/Simulink and CATIA are used as IT-Tools. The contributions include results from on......-going research projects on fluid power and mechatronics based on tap water hydraulic servovalves and linear servo actuators and rotary vane actuators for motion control and power transmission. Development and design a novel water hydraulic rotary vane actuator for robot manipulators. Proposed mathematical...... modelling, control and simulation of a water hydraulic rotary vane actuator applied to power and control a two-links manipulator and evaluate performance. The results include engineering design and test of the proposed simulation models compared with IHA Tampere University’s presentation of research...

  2. Wind turbine/generator set having a stator cooling system located between stator frame and active coils

    Science.gov (United States)

    Bevington, Christopher M.; Bywaters, Garrett L.; Coleman, Clint C.; Costin, Daniel P.; Danforth, William L.; Lynch, Jonathan A.; Rolland, Robert H.

    2012-11-13

    A wind turbine comprising an electrical generator that includes a rotor assembly. A wind rotor that includes a wind rotor hub is directly coupled to the rotor assembly via a simplified connection. The wind rotor and generator rotor assembly are rotatably mounted on a central spindle via a bearing assembly. The wind rotor hub includes an opening having a diameter larger than the outside diameter of the central spindle adjacent the bearing assembly so as to allow access to the bearing assembly from a cavity inside the wind rotor hub. The spindle is attached to a turret supported by a tower. Each of the spindle, turret and tower has an interior cavity that permits personnel to traverse therethrough to the cavity of the wind rotor hub. The wind turbine further includes a frictional braking system for slowing, stopping or keeping stopped the rotation of the wind rotor and rotor assembly.

  3. Optimal Excitation Controller Design for Wind Turbine Generator

    Directory of Open Access Journals (Sweden)

    A. K. Boglou

    2011-01-01

    Full Text Available An optimal excitation controller design based on multirate-output controllers (MROCs having a multirate sampling mechanismwith different sampling period in each measured output of the system is presented. The proposed H∞ -control techniqueis applied to the discrete linear open-loop system model which represents a wind turbine generator supplying an infinite busthrough a transmission line.

  4. The technology of the bearings used in the nuclear power generation system turbine generator units; Technologie des paliers equipant les groupes turbo-alternateurs du parc nucleaire

    Energy Technology Data Exchange (ETDEWEB)

    Vialettes, J.M.; Rossato, M. [Service Ensembles de Production, Departement Machines, Direction des Etudes et Recherches, Electricite de France (EDF), 92 - Clamart (France)

    1997-01-01

    A bearing consists of all the stationary part which allow the relative motion in rotation or in translation, of a shaft line. Inside the bearing there is a journal bearing with a metallic anti-friction coating (the babbitt metal). The high power turbine generator unit rotors are supported by smooth transversal journal bearings fed with oil which fills the empty space and runs along the shaft. The technologies used for the bearings and the thrust bearings of the turbine generator units and the various shaft lines of the French CP0/CP1- and CP2/1300 MW-type nuclear power plants are described. The experience feedback is then discussed in terms of the dynamics of the shaft line, i.e. vibrational problems, the influence of the alignment and the babbitt metal incidents. (author) 4 refs., 11 figs.

  5. System Impact Study of the Eastern Grid of Sumba Island, Indonesia: Steady-State and Dynamic System Modeling for the Integration of One and Two 850-kW Wind Turbine Generators

    Energy Technology Data Exchange (ETDEWEB)

    Oswal, R. [Innovation Wind Energy, Inc., Jacksonville, FL (United States); Jain, P. [Innovation Wind Energy, Inc., Jacksonville, FL (United States); Muljadi, Eduard [National Renewable Energy Lab. (NREL), Golden, CO (United States); Hirsch, Brian [National Renewable Energy Lab. (NREL), Golden, CO (United States); Castermans, B. [Winrock International Inc., Little Rock, AR (United States); Chandra, J. [Winrock International Inc., Little Rock, AR (United States); Raharjo, S. [Winrock International Inc., Little Rock, AR (United States); Hardison, R. [Winrock International Inc., Little Rock, AR (United States)

    2016-01-01

    The goal of this project was to study the impact of integrating one and two 850-kW wind turbine generators into the eastern power system network of Sumba Island, Indonesia. A model was created for the 20-kV distribution network as it existed in the first quarter of 2015 with a peak load of 5.682 MW. Detailed data were collected for each element of the network. Load flow, short-circuit, and transient analyses were performed using DIgSILENT PowerFactory 15.2.1.

  6. Water Hydraulic Systems

    DEFF Research Database (Denmark)

    Conrad, Finn

    2005-01-01

    The paper presents research results using IT-Tools for CAD and dynamic modelling, simulation, analysis, and design of water hydraulic actuators for motion control of machines, lifts, cranes and robots. Matlab/Simulink and CATIA are used as IT-Tools. The contributions include results from on-going...

  7. Hydraulic System Design of Hydraulic Actuators for Large Butterfly Valves

    OpenAIRE

    HUANG, Ye; Liu, Changsheng; Shiongur Bamed

    2014-01-01

    Hydraulic control systems of butterfly valves are presently valve-controlled and pump-controlled. Valve-controlled hydraulic systems have serious power loss and generate much heat during throttling. Pump-controlled hydraulic systems have no overflow or throttling losses but are limited in the speed adjustment of the variable-displacement pump, generate much noise, pollute the environment, and have motor power that does not match load requirements, resulting in low efficiency under...

  8. Hydraulic wind energy conversion system

    Energy Technology Data Exchange (ETDEWEB)

    1981-07-01

    The purpose of this research was to design, build and test a hydraulic wind energy system. This design used a three bladed turbine, which drove a hydraulic pump. The energy is transmitted from the pump through a long hose and into a hydraulic motor, where the energy is used. This wind system was built and tested during the winter of 1980-1981. The power train included a five meter, three bladed wind turbine, a 9.8:1 ratio gearbox, a 1.44 cubic inch displacement pump with a small supercharge gear pump attached. The hydraulic fluid was pumped through a 70', 3/4'' I-D-high pressure flexhose, then through a volume control valve and into a 1.44 cubic inch displacement motor. The fluid was returned through a 70', 1'' I-D-flexhose.

  9. 14 CFR 29.1435 - Hydraulic systems.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Hydraulic systems. 29.1435 Section 29.1435... STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Equipment Miscellaneous Equipment § 29.1435 Hydraulic systems. (a) Design. Each hydraulic system must be designed as follows: (1) Each element of the hydraulic system...

  10. 14 CFR 23.1435 - Hydraulic systems.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Hydraulic systems. 23.1435 Section 23.1435... § 23.1435 Hydraulic systems. (a) Design. Each hydraulic system must be designed as follows: (1) Each hydraulic system and its elements must withstand, without yielding, the structural loads expected...

  11. Hydraulic System Design of Hydraulic Actuators for Large Butterfly Valves

    Directory of Open Access Journals (Sweden)

    Ye HUANG

    2014-09-01

    Full Text Available Hydraulic control systems of butterfly valves are presently valve-controlled and pump-controlled. Valve-controlled hydraulic systems have serious power loss and generate much heat during throttling. Pump-controlled hydraulic systems have no overflow or throttling losses but are limited in the speed adjustment of the variable-displacement pump, generate much noise, pollute the environment, and have motor power that does not match load requirements, resulting in low efficiency under light loads and wearing of the variable-displacement pump. To overcome these shortcomings, this article designs a closed hydraulic control system in which an AC servo motor drives a quantitative pump that controls a spiral swinging hydraulic cylinder, and analyzes and calculates the structure and parameters of a spiral swinging hydraulic cylinder. The hydraulic system adjusts the servo motor’s speed according to the requirements of the control system, and the motor power matches the power provided to components, thus eliminating the throttling loss of hydraulic circuits. The system is compact, produces a large output force, provides stable transmission, has a quick response, and is suitable as a hydraulic control system of a large butterfly valve.

  12. High Pressure Hydraulic Distribution System

    Science.gov (United States)

    1991-05-20

    to 500 0 F. 5 cycles. 5000 F room temperature to 50001F; 45 ______________ Icycles The tesis planned for the distribution system demonstrator were...American Society for Testing and Materials ASTM D412 - Tension Testing of Vulcanized Rubber ASTM D571 - Testing Automotive Hydraulic Brake Hose Society of

  13. Hydraulic fracturing system and method

    Energy Technology Data Exchange (ETDEWEB)

    Ciezobka, Jordan; Salehi, Iraj

    2017-02-28

    A hydraulic fracturing system and method for enhancing effective permeability of earth formations to increase hydrocarbon production, enhance operation efficiency by reducing fluid entry friction due to tortuosity and perforation, and to open perforations that are either unopened or not effective using traditional techniques, by varying a pump rate and/or a flow rate to a wellbore.

  14. 14 CFR 25.1435 - Hydraulic systems.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Hydraulic systems. 25.1435 Section 25.1435... STANDARDS: TRANSPORT CATEGORY AIRPLANES Equipment Miscellaneous Equipment § 25.1435 Hydraulic systems. (a) Element design. Each element of the hydraulic system must be designed to: (1) Withstand the proof...

  15. 14 CFR 27.1435 - Hydraulic systems.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Hydraulic systems. 27.1435 Section 27.1435... STANDARDS: NORMAL CATEGORY ROTORCRAFT Equipment Safety Equipment § 27.1435 Hydraulic systems. (a) Design. Each hydraulic system and its elements must withstand, without yielding, any structural loads...

  16. Development of superconducting wind turbine generators

    DEFF Research Database (Denmark)

    Jensen, Bogi Bech; Mijatovic, Nenad; Abrahamsen, Asger Bech

    2013-01-01

    speeds, because high magnetic fields can be produced by coils with very little loss. Three different superconducting wind turbine generator topologies have been proposed by three different companies. One is based on low temperature superconductors; one is based on high temperature superconductors...

  17. Effect of operating methods of wind turbine-generator system on net power extraction under wind speed fluctuations in fields; Hendo fukyoka deno doryoku chushutsu kara mita furyoku hatsuden system no unten seigyoho ni kansuru kosatsu

    Energy Technology Data Exchange (ETDEWEB)

    Wakui, T. [Japan Society for the Promotion of Science, Tokyo (Japan); Hashizume, T.; Ota, E. [Waseda University, Tokyo (Japan). School of Science and Engineering

    2000-01-25

    The effect of operating methods of wind turbine-generator system on net power extraction under wind speed fluctuations is discussed in relation to the dynamic behavior of the system. The system is composed of a Darrieus-Savonius hybrid wind turbine and a load generator. In this paper, two types of operating method are examined; constant tip speed ratio operation for stand-alone power systems (Scheme 1) and synchronous operation for utility power systems (Scheme 2). The computed results of the net extracting power using our dynamic simulation model show that the dominant factor of power extraction in Scheme 1 is the dynamic characteristics of rotational components and that it is important to select the appropriate rated wind speed in Scheme 2. Thus, it is concluded that a conformable operating method and rated power output of the system exist for each wind condition. In particular, small-scale systems, which are smaller than approximately 10 kW-system range, are desirable to be operated under a constant tip speed ratio as stand-alone power systems. (author)

  18. Calculation of reserve capacity of wind power system with spinning reserve of wind turbine generators%考虑风电机组旋转备用的风电系统备用容量计算

    Institute of Scientific and Technical Information of China (English)

    张静; 李生虎

    2013-01-01

    The concept and implementation algorithm of spinning reserve strategy of variable-speed wind turbine generators are proposed in this paper .Based on the controllability of the wind turbine generators ,power limits are set to decrease the reserve capacity requirement to the conventional u-nits .The K-means clustering algorithm is applied to aggregating the historical output data of wind farms to yield the probability distribution of spinning reserve caused by forecast error of wind power . Based on the prescribed degree of confidence of safe operation of power network ,the spinning reserve needed by the power system is quantified without or with the spinning reserve strategy of wind turbine generators .The numerical results show that the spinning reserve strategy of the wind turbine genera-tors and better complementary nature of wind resource of wind farm can reduce the spinning reserve capacity needed by the power system from the conventional units .Multiple wind farms are aggregated into an equivalent wind farm ,reducing the given value of dispatching power output of wind farms .%文章提出变速风电机组旋转备用概念和实现算法,设置风电场出力上限,利用风电机组出力可控性,实现风电场间互补备用,减少常规机组提供的备用容量。采用 K-均值聚类算法对风电场历史数据进行聚类分析,分析风电场功率预测偏差引起的风电系统备用需求的概率分布。设定电网安全运行置信度,计算常规机组所需提供的备用容量值。结果证明,风电机组旋转备用和良好的风场风资源互补性可以减少常规机组所需提供的旋转备用容量,多风场聚合为一个等值风场,可以减少调度出力给定值。

  19. Experimental Research of Marine Environmental Resistance of Insulation System for Offshore Wind Turbine Generator%海上风力发电机绝缘系统的耐海洋气候性试验研究

    Institute of Scientific and Technical Information of China (English)

    王放文; 刘学忠; 丁晓霞; 陈堂则; 白永岗; 张天龙; 赵丹

    2014-01-01

    为研究风力发电机绝缘系统的耐海上环境气候性,制备了风力发电机绝缘系统模拟试样,并对其进行冷热循环、恒定湿热和持续盐雾的环境耐受试验,分周期测量介质损耗因数和绝缘电阻等非破坏性介电特性参量以及剩余击穿电压,并对绝缘材料的宏观和微观结构进行剖析。结果表明:经加速环境耐受试验后,线圈绝缘与铁心的界面产生了微裂缝或剥离,绝缘的介电性能虽有下降但仍然处于正常的指标范围内,表现出良好的耐候性。%In order to study the marine environmental resistance of insulation system of offshore wind tur-bine generator, simulation samples of insulation system of the offshore wind turbine generator were pre-pared, and some non-destructive dielectric parameters of dielectric dissipation factor and insulation resis-tance and residual breakdown voltage were measured at different periods after thermo-cold cycling, steady damp heat and salt spray test. The micro-structure of the insulating material was analyzed by microscope. The results show that after the accelerated environmental resistance test, the micro-crack or peeling gener-ate between the coil main insulation and the core, and the dielectric properties of the insulation system decreases but the performance index is still in the normal range, showing excellent environmental resis-tance.

  20. Influencia del movimiento tridimensional sobre los engranajes planetarios tipo 2KH-A en aerogeneradores. // Influence of tridimensional movement in planetary gears type 2KH-A used in gearboxes for wind turbine generator systems.

    Directory of Open Access Journals (Sweden)

    J. Wellesley-Bourke Funcasta

    2007-09-01

    Full Text Available En el trabajo se desarrolla el basamento matemático para establecer el análisis del efecto nocivo que se produce sobre losrodamientos de los mecanismos planetarios empleados en los aerogeneradores, dado esto por las condiciones variables delviento en cuanto a su velocidad y dirección.Palabras claves: Efecto giroscópico, engranajes planetarios, cargas dinámicas, energía eólica.______________________________________________________________________________AbstractIn this paper is presented the mathematical base useful to establish the analysis that deals with the noxious effect producedon the planetary mechanisms in the gearboxes for wind turbine generator systems, given by the variable conditions of thevelocity and direction of the wind.Key words: Gyroscopic effect, planetary gears, dynamic loads, wind turbine, wind energy.

  1. Nonlinear Dynamical Analysis of Hydraulic Turbine Governing Systems with Nonelastic Water Hammer Effect

    Directory of Open Access Journals (Sweden)

    Junyi Li

    2014-01-01

    Full Text Available A nonlinear mathematical model for hydroturbine governing system (HTGS has been proposed. All essential components of HTGS, that is, conduit system, turbine, generator, and hydraulic servo system, are considered in the model. Using the proposed model, the existence and stability of Hopf bifurcation of an example HTGS are investigated. In addition, chaotic characteristics of the system with different system parameters are studied extensively and presented in the form of bifurcation diagrams, time waveforms, phase space trajectories, Lyapunov exponent, chaotic attractors, and Poincare maps. Good correlation can be found between the model predictions and theoretical analysis. The simulation results provide a reasonable explanation for the sustained oscillation phenomenon commonly seen in operation of hydroelectric generating set.

  2. Mod-5A Wind Turbine Generator Program Design Report. Volume 4: Drawings and Specifications, Book 1

    Science.gov (United States)

    1984-01-01

    The design, development and analysis of the 7.3 MW MOD-5A wind turbine generator is documented. Volume 4 contains the drawings and specifications that were developed in preparation for building the MOD-5A wind turbine generator. This is the first of five books of volume four. It contains structural design criteria, generator step-up transformer specs, specs for design, fabrication and testing of the system, specs for the ground control enclosure, systems specs, slip ring specs, and control system specs.

  3. Operational safety of turbine-generators at Loviisa nuclear power plant; Turbiini-generaattoreiden kaeyttoeturvallisuus Loviisan ydinvoimalaitoksella

    Energy Technology Data Exchange (ETDEWEB)

    Virolainen, T.

    1997-06-01

    The goal of the study is to assess the operational safety of the turbine-generators at the Loviisa NPP. The lay-out, operation, control, monitoring and testing of turbine-generators have been studied. Taking these findings into consideration and by using operational data of Loviisa and other power plants, the most significant safety issues of the turbine-generator system have been identified. The frequencies for initiating events and possible consequences have been determined based on plant operational experience and related literature. (58 refs.).

  4. Development of Superconducting Wind Turbine Generators

    DEFF Research Database (Denmark)

    Jensen, Bogi Bech; Mijatovic, Nenad; Abrahamsen, Asger Bech

    2012-01-01

    (HTS); and one is a fully superconducting generator based on MgB2. It is concluded that there is large commercial interest in superconducting machines, with an increasing patenting activity. Such generators are however not without their challenges. The superconductors have to be cooled down......In this paper the commercial activities in the field of superconducting machines, particularly superconducting wind turbine generators, are reviewed and presented. Superconducting generators have the potential to provide a compact and light weight drive train at high torques and slow rotational...... to somewhere between 4K and 50K, depending on what type of superconductor is employed, which poses a significant challenge both from a construction and operation point of view. The high temperature superconductors can facilitate a higher operation temperature and simplified cooling, but the current price...

  5. Concept Evaluation for Hydraulic Yaw System

    DEFF Research Database (Denmark)

    Stubkier, Søren; Pedersen, Henrik C.; Andersen, Torben Ole

    2013-01-01

    a suspension system on a car, leading the loads away from the turbine structure. However, to realize a soft hydraulic yaw system a new design concept must be found. As a part of the development of the new concept a preliminary concept evaluation has been conducted, evaluating seven different hydraulic yaw...... concepts, ranging from a one-to-one copy of the electrical drive (electrical drives replaced by hydraulic dittos), to floating suspension systems mounted on hydraulic cylinders. Rough calculations of size and consequences of the different systems are presented ending up with the final concept for further...... investigation. Loads and yaw demands are based on the IEC 61400-1 standard for wind turbine design, and the loads for this examination are extrapolated from the HAWC2 aeroelastic design code. The concepts are based on a 5 MW off-shore turbine....

  6. Mod-5A wind turbine generator program design report. Volume 4: Drawings and specifications, book 2

    Science.gov (United States)

    1984-01-01

    The design, development and analysis of the 7.3 MW MOD-5A wind turbine generator is documented. There are four volumes. This volume contains the drawings and specifications that were developed in preparation for building the MOD-5A wind turbine generator. This is the second book of volume four. Some of the items it contains are specs for the emergency shutdown panel, specs for the simulator software, simulator hardware specs, site operator terminal requirements, control data system requirements, software project management plan, elastomeric teeter bearing requirement specs, specs for the controls electronic cabinet, and specs for bolt pretensioning.

  7. Measurements and observations of noise from a 4.2 megawatt (WTS-4) wind turbine generator

    Science.gov (United States)

    Shepherd, K. P.; Hubbard, H. H.

    1983-01-01

    Noise measurements and calculations are being made for large wind turbine generators to develop a data base for use in designing and siting such systems for community acceptance. As part of this program, measurements were made on the WTS-4 wind turbine generator during its acceptance runs. This paper presents the results of these exploratory measurements for power output conditions in the range 1.0 to 4.2 MW. Data include noise levels, spectra, radiation patterns, effects of distance, and the associated perception thresholds for use in the further development of acceptance criteria for this type of machine.

  8. Fire Resistant Aircraft Hydraulic System.

    Science.gov (United States)

    1982-07-01

    and compounds based on new experimental elastomers as well as most commercially available elastomers were screened in seeking seals that were both...for hydraulic component testing. All of the available E6.5 stock was purchased for the screening tests. However, DuPont stated that other homologs of...with the lubricity and anti-wear additive olyvan A (molybdenum oxysulphide dithiocarbamate ) added in the quantity of less than one percent by weight

  9. Simulation Model of Micro Gas Turbine Generation System%微型燃气轮机发电系统仿真模型研究

    Institute of Scientific and Technical Information of China (English)

    黄伟; 凡广宽; 牛铭

    2011-01-01

    利用PSCAD/EMTDC软件建立了微燃机发电系统的原动机部分模型,以单机带负荷系统为例进行了微燃机动态特性仿真研究.仿真结果表明,该模型可以使微燃机在孤岛运行状态下有良好的负荷跟随特性,并能保证透平转速的恒定.模型很好地反映了微网中微燃机发电系统所具有的特性.%The prime mover system of the micro gas turbine Seneration (MIC) system was modeled with the use of PSCAD/EMTDC. The dynamical characteristics of the prime mover were analyzed through a single system with its local load. The results of simulation indicate that the micro gas turbine operating in the island state perform well in terms of load following, as well as a constent speed. The characteristics of MTG perform well through the model.

  10. Improvement of output characteristics of a wind turbine generator by output current control. Shutsuryoku denryu seigyoho ni yoru furyoku hatsuden system no shutsuryoku tokusei kaizen

    Energy Technology Data Exchange (ETDEWEB)

    Kawahito, T. (Takamatsu National College of Technology, Kagawa (Japan)); Suzuki, T. (Tokushima University, Tokushima (Japan). Faculty of Engineering)

    1993-06-01

    Conformity was studied between the wind turbine and generator's output characteristics to effectively collect the wind energy which fluctuates with time. According to the theoretical analysis, it is necessary for the generator-driving torque to be proportional to the revolving speed (n) squared of wind turbine in order that the wind turbine may generate the highest output always regardless of wind velocity. In the output current control method by current controller, the generator's output current (i[sub a]) is controlled so as to satisfy i[sub a]=cn[sup 2], where c is the output current control coefficient, the optimized value of which is 2[alpha][sup 2]Kw/Kt if the generator loss is nil. Therefore, that value is fixed independently of the wind velocity. [alpha] and Kw are the characteristic constants of wind turbine while Kt is the torque coefficient of generator. In order to confirm the effect of the present control method, the output characteristics were studied through simulation with already known systems. In both cases of constant and variable wind velocity, the change in output is similar against the change in c. Different from the resistance load control method, the present control method improves the output characteristics in a wide range of wind velocity even if the c remains fixed. 7 refs., 13 figs., 1 tab.

  11. Representation of Type 4 wind turbine generator for steady state short-circuit calculations

    Science.gov (United States)

    Kamara, Wouleye

    commercial distribution system analysis program, to perform short-circuit calculations in multiphase complex unbalanced systems. Detailed study of the behavior of Type 4 wind turbine generator using electromagnetic type programs like EMTP-RV has assessed that the proposed model closely reproduces the real behavior of the wind turbine generator under steady-state fault conditions. The proposed model is then implemented in CYME 7.0 and validated for different fault scenarios using the Fortis Alberta 25 kV distribution system as benchmark. The fault contribution obtained from the proposed model is compared against the one obtained from the previous model implemented in CYME 7.0. The validation test cases show that the proposed model estimates the fault contribution of the wind turbine generator with better precision than the former models. Besides, the performance and robustness of the short-circuit algorithm developed allow handling unbalanced networks with inverter interfaced wind turbine generators as it is based on the MANA formulation.

  12. Trends in Wind Turbine Generators, and the Role of Electrical Steels

    DEFF Research Database (Denmark)

    Henriksen, Matthew Lee; Jensen, Bogi Bech

    2014-01-01

    Designs of permanent magnet synchronous machines suitable for operation as wind turbine generators are presented and discussed. Design differences in machines intended for operation in geared and direct drive systems are illustrated . Special emphasis is given to the effect of varying...... the electrical steel used for stator laminations....

  13. Site-optimization of wind turbine generators

    Energy Technology Data Exchange (ETDEWEB)

    Wolff, T.J. de; Thillerup, J. [Nordtank Energy Group, Richmond, VA (United States)

    1997-12-31

    The Danish Company Nordtank is one of the pioneers within the wind turbine industry. Since 1981 Nordtank has installed worldwide more than 2500 wind turbine generators with a total name plate capacity that is exceeding 450 MW. The opening up of new and widely divergent markets has demanded an extremely flexible approach towards wind turbine construction. The Nordtank product range has expanded considerable in recent years, with the main objective to develop wind energy conversion machines that can run profitable in any given case. This paper will describe site optimization of Nordtank wind turbines. Nordtank has developed a flexible design concept for its WTGs in the 500/750 kW range, in order to offer the optimal WTG solution for any given site and wind regime. Through this flexible design, the 500/750 turbine line can adjust the rotor diameter, tower height and many other components to optimally fit the turbine to each specific project. This design philosophy will be illustrated with some case histories of recently completed projects.

  14. Aircraft Hydraulic Systems Dynamic Analysis

    Science.gov (United States)

    1978-10-01

    4400 PSIG OUTLET PRESSURE ~’f UM5 S1 l .( FIF ~0RV lR 1 .I. AP (c R (V) IFWM) APPROX C ASE !VPý :iI S ReUN N•;MRF.. r p kN i t, isI A! f IN, I:E • ’l...and 1F.GI pump modelo were assumed from data supplied by CECO. 165 _ -- --- - SECTION V HYDRAULIC MOTOR MODEL DEVELOPMENT AND VERIFICATION A fixed...3 70 P.,0 601 ~4 M24.0 3 1p ’, 4 r I 1 1 ISIS 2411 APPENDIX E (CONT.) HSFR TECHNICAL MANUAL (AFAPL-TR-76-43, VOL. IV) 4.15 VANE PU`MP SUBROUTINE 4.15A

  15. Modeling of Wind Turbine Generator System Based on Event-driven Control Theory%基于事件驱动控制理论的风力发电系统建模

    Institute of Scientific and Technical Information of China (English)

    邱强杰; 陈众; 俞晓鹏; 尹子中; 文亮; 李奇

    2016-01-01

    The wind power generation system is complex and variable, and many nonlinear factors exist under working condition. Due to the reason mentioned above, it is difficult for the conventional model to demonstrate the change of its operation process. To study the state transition process of wind turbine generator system and improve the reliability of wind turbine state monitoring system, with the method of finite state machine model, which is based on the event-driven control theory, the working conditions and operation rules of the unit are analyzed. Meanwhile, by combining the elements of working state of the potential system, parameters of the fan operation and state transition conditions as a whole and treating them as an event triggered by the external conditions, an event driven state transition of the finite state machine model is built. By using the state flow module in MATLAB simula⁃tion, the results are obtained and show that this model can accurately depict the operating conditions of the wind power system and the state transition is intuitively clear. The model can be applied well in wind turbine state moni⁃toring system.%风力发电系统工作状态复杂多变,存在很多非线性的因素,常规模型难以展现其运行过程的变化。为了研究风力发电系统的状态转移,提高风电机组状态监控可靠性,运用事件驱动控制理论中的有限状态机建模方法,对机组工作状况与运行规则进行分析,把系统潜在的工作状态、风机运行参数以及状态转移条件等元素搭建成一个由外部条件触发事件,事件驱动状态转移的有限状态机模型。运用Matlab中的Stateflow模块进行仿真,仿真结果表明,此模型可以准确反映风力发电系统的运行状况,状态转移情况直观清晰,在风电机组的状态监控可以良好应用。

  16. Hydraulic Motor Driving Variable-Pitch System for Wind Turbine

    Directory of Open Access Journals (Sweden)

    Ye HUANG

    2013-11-01

    Full Text Available The present hydraulic variable-pitch mechanism of wind turbine uses three hydraulic cylinders to drive three crank and connecting rod mechanisms respectively; the blades are moved with the cranks. The hydraulic variable-pitch mechanism has complex structure, occupies a lot of space and its maintenance is trouble. In order to make up for the shortcomings of hydraulic cylinder variable-pitch system, the present hydraulic variable-pitch mechanism should be changed as follows: hydraulic motors are used to drive gears; gears drive blades; the electro-hydraulic proportional valves are used to control hydraulic motors. The hydraulic control part and electrical control part of variable-pitch system is redesigned. The new variable-pitch system is called hydraulic motor driving variable-pitch system. The new variable-pitch system meets the control requirements of blade pitch, makes the structure simple and its application effect is perfect.    

  17. Simulation study on the transient operational performances of a wind farm including different wind turbine generator systems%含不同风电机组的风电场暂态运行特性仿真研究

    Institute of Scientific and Technical Information of China (English)

    李辉; 赵斌; 史旭阳; 王荷生; 杨超

    2011-01-01

    With the development trends of the large scale wind farms being integrated into power systems concentratedly, it is necessary to study the transient performances and the effects on the power system for a wind farm including different parameters and types of wind turbine generator systems(WTGS). Based on analyzing the transient models of the wind turbine units with squirrel cage induction generator (SCIG) and doubly fed induction generator(DFIG), the weighted equivalent models of the presented wind farm are established. Then, from the viewpoints of different capacity ratio of wind turbines, different short-circuit capacity ratio of wind farm and different transmission line impedance ratio, the transient operational characteristics of the wind farm with different WTGS are simulated. The comparison results show that under the condition of a constant penetration of wind generation in power system, with the increase of the capacity ratio of the wind turbine units with DFIG in the wind farm, with the decrease of the short-circuit capacity ratio of the wind farm and the transmission line impedance ratio, the transient stability of wind farm output voltage and the WTGS can be improved.This work is supported by National Natural Science Foundation of China (No. 50607022).%随着大容量风电场集中接入电网,有必要研究含不同风电机组参数和类型的风电场暂态特性及对电网的影响.在分析笼型异步和双馈异步风电机组暂态模型的基础上,分别建立了含不同风电机组的风电场容量加权等值模型.从风电机组不同容量比、风电场不同短路容量比以及电网联络线不同阻抗比角度,对含不同风电机组的风电场暂态运行特性进行仿真.仿真结果表明:在电网接受风能容量一定的条件下,双馈异步风电机组装机容量比例提高以及风电场短路容量比和联络线阻抗比的降低,都可以提高和改善风电场出口处电压和机组的暂态稳定性.

  18. Hydraulics.

    Science.gov (United States)

    Decker, Robert L.; Kirby, Klane

    This curriculum guide contains a course in hydraulics to train entry-level workers for automotive mechanics and other fields that utilize hydraulics. The module contains 14 instructional units that cover the following topics: (1) introduction to hydraulics; (2) fundamentals of hydraulics; (3) reservoirs; (4) lines, fittings, and couplers; (5)…

  19. Digital hydraulic valving system. [design and development

    Science.gov (United States)

    1973-01-01

    The design and development are reported of a digital hydraulic valving system that would accept direct digital inputs. Topics include: summary of contractual accomplishments, design and function description, valve parameters and calculations, conclusions, and recommendations. The electrical control circuit operating procedure is outlined in an appendix.

  20. Towards Autonomous Control of Hydraulic Actuator Systems

    DEFF Research Database (Denmark)

    Hansen, Poul Erik; Conrad, Finn

    1998-01-01

    Presentation of new developed control algorithms to increase autonomy and intelligence of hydraulic control systems. A refinement of relaytuning method is used to determine the control parameters of a lag/lead controller and a poleplacement controller. Further, a fail-safe function is developed t...

  1. Concept Evaluation for Hydraulic Yaw System

    DEFF Research Database (Denmark)

    Stubkier, Søren; Pedersen, Henrik C.; Andersen, Torben Ole

    2013-01-01

    a suspension system on a car, leading the loads away from the turbine structure. However, to realize a soft hydraulic yaw system a new design concept must be found. As a part of the development of the new concept a preliminary concept evaluation has been conducted, evaluating seven different hydraulic yaw......The yaw system is the subsystem on a wind turbine which ensures that the rotor plane of the turbine always is facing the wind direction. Studies from [1] show that a soft yaw system may be utilized to dampen the loads in the wind turbine structure. The soft yaw system operates much like...... investigation. Loads and yaw demands are based on the IEC 61400-1 standard for wind turbine design, and the loads for this examination are extrapolated from the HAWC2 aeroelastic design code. The concepts are based on a 5 MW off-shore turbine....

  2. Chapter 12. Pure Tap Water Hydraulic Systems and Applications

    DEFF Research Database (Denmark)

    Conrad, Finn; Adelstorp, Anders

    1997-01-01

    Presentation of developed a modern pure tap water hydraulic components (Nessie), systems and industrial applications.......Presentation of developed a modern pure tap water hydraulic components (Nessie), systems and industrial applications....

  3. 14 CFR 33.72 - Hydraulic actuating systems.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Hydraulic actuating systems. 33.72 Section... AIRWORTHINESS STANDARDS: AIRCRAFT ENGINES Design and Construction; Turbine Aircraft Engines § 33.72 Hydraulic actuating systems. Each hydraulic actuating system must function properly under all conditions in which...

  4. 考虑变桨驱动电机特性的风电机组运行性能仿真%Simulation on the operational performances of wind turbine generator system considering the variable pitch drive motor characteristics

    Institute of Scientific and Technical Information of China (English)

    李辉; 杨超; 赵斌; 唐显虎; 郑维棋

    2011-01-01

    为了更好地反映并网风电机组的动暂态运行特性,提出了考虑变桨系统的风力发电机组运行性能研究.在阐述变桨距控制原理的基础上,建立了以变频三相感应电动机作为驱动电机的变桨控制系统数学模型,并对其变桨距控制性能进行仿真.结合考虑变桨电机驱动特性的变桨系统控制模型,建立了并网笼型异步发电机组的动态数学模型.对额定风速以下和额定风速以上的并网异步风力发电机组动态运行性能进行仿真,并与不考虑变桨电机驱动特性时的机组运行性能进行比较.结果表明,建立的变桨控制系统能实现桨距角的准确控制;考虑变桨驱动电机特性的风电机组模型更能体现机组的动态特性,尤其是在额定风速以上情况.%In order to better reflect the dynamic and transient characteristics of a gird-connected wind turbine generator system ( WTGS ), studies on the operational performances of a WTGS considering the pitch control system are proposed. Firstly, based on the principle of variable pitch control. The mathematical model of the pitch control system is established by taking a variable-frequency three-phase induction motor as the drive motor, and its control performance of the pitch angle is simulated. Secondly, combining with the variable pitch control system models considering the features of pitch drive motor, the dynamic mathematical models of a grid-connected wind turbine with a squirrel cage induction generator ( SCIG ) are presented. Finally, the dynamic performance of the grid-connected wind turbine with SCIG is simulated when the wind speed is below and over the rated wind speed, respectively. The results are also compared with that of without considering the characteristics of the pitch drive motor. The compared results have shown that the presented pitch control system can achieve accurate control of pitch angle. Compared with a model without consideration of the pitch

  5. RESEARCH OF THE DYNAMIC CHARACTERISTICS ON A NEW HYDRAULIC SYSTEM OF ELECTRO-HYDRAULIC HAMMER

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    A new typed hydraulic system of electro-hydraulic hammer is researched and developed.By means of power bond graphs the modeling and simulation to the dynamic characteristics of the new hydraulic system are performed. The experimental research which is emphasized on the blowing stroke is also performed. It is proved from the result of simulation and experiment that this new hydraulic system possesses such advantages as simplification of structure,flexibleness of operation and reliability of working. Especially it possesses better dynamic characteristics.

  6. Study on Characteristics of Hydraulic Servo System for Force Control of Hydraulic Robots

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hyo-gon; Han, Changsoo [Hanyang University, Seoul (Korea, Republic of); Lee, Jong-won [Korea University of Science and Technology, Seoul (Korea, Republic of); Park, Sangdeok [Korea Institute of Industrial Technology, Seoul (Korea, Republic of)

    2015-02-15

    Because a hydraulic actuator has high power and force densities, this allows the weight of the robot's limbs to be reduced. This allows for good dynamic characteristics and high energy efficiency. Thus, hydraulic actuators are used in some exoskeleton robots and quadrupedal robots that require high torque. Force control is useful for robot compliance with a user or environment. However, force control of a hydraulic robot is difficult because a hydraulic servo system is highly nonlinear from a control perspective. In this study, a nonlinear model was used to develop a simulation program for a hydraulic servo system consisting of a servo valve, transmission lines, and a cylinder. The problems and considerations with regard to the force control performance for a hydraulic servo system were investigated. A force control method using the nonlinear model was proposed, and its effect was evaluated with the simulation program.

  7. A novel energy recovery system for parallel hybrid hydraulic excavator.

    Science.gov (United States)

    Li, Wei; Cao, Baoyu; Zhu, Zhencai; Chen, Guoan

    2014-01-01

    Hydraulic excavator energy saving is important to relieve source shortage and protect environment. This paper mainly discusses the energy saving for the hybrid hydraulic excavator. By analyzing the excess energy of three hydraulic cylinders in the conventional hydraulic excavator, a new boom potential energy recovery system is proposed. The mathematical models of the main components including boom cylinder, hydraulic motor, and hydraulic accumulator are built. The natural frequency of the proposed energy recovery system is calculated based on the mathematical models. Meanwhile, the simulation models of the proposed system and a conventional energy recovery system are built by AMESim software. The results show that the proposed system is more effective than the conventional energy saving system. At last, the main components of the proposed energy recovery system including accumulator and hydraulic motor are analyzed for improving the energy recovery efficiency. The measures to improve the energy recovery efficiency of the proposed system are presented.

  8. Direct Measurement of Lightning Current Through a Wind-Turbine-Generator-Structure

    Science.gov (United States)

    Shiraishi, Yasuhiro; Otsuka, Takahiro

    In recent years, a wind turbine generator system is expected as one of clean energies to solve energy resources and global environmental problems. Those systems are installed in places with a strong wind. However, those places have also many winter lightning, which cause heavy damage to electric power facilities. Especially, these system in dozen of meter height are facing to severe problems such as an outage of the electric power and a maintenance check against lightning damage. In order to supply the stable energy, it is necessary to set up a lightning protection of the system. So, we developed the large diameter Rogowski coil, which can surround the steel pipe of the leg, and proved the performance by experiment. And using this Rogowski coil, we observed lightning current in some wind turbine generator systems in Japan. As the results of these observations, we got some observation data of lightning current, which struck the wind turbine generator system. This paper reports these observation techniques and results.

  9. Preliminary design of axial flow hydrocarbon turbine/generator set for geothermal applications

    Energy Technology Data Exchange (ETDEWEB)

    Barnes, B.; Samurin, N.A.; Shields, J.R.

    1979-05-01

    This report outlines the design of a 65 MW (e) gross turbine generator set in which a hydrocarbon gas mixture is used as the motive fluid. The turbine generator set is part of a geothermal binary cycle electric power plant proposed for the Heber site in the Imperial Valley, California. Aerodynamic design considerations and estimated unit performance for three hydrocarbon gas mixtures are presented. Real gas properties and equations of state are reviewed as they affect the turbine design and the thermodynamic cycle. The mechanical designs for the casing, rotor dynamics, shaft sealing and unit construction are detailed. Support systems such as the lube and seal supply system, turbine controls, etc., are reviewed. An extensive hydrocarbon turbine general specification is also included.

  10. Understanding the unbalanced-voltage problem in wind turbine generation

    Energy Technology Data Exchange (ETDEWEB)

    Muljadi, E.; Butterfield, C.P.; Batan, T.; Yildirim, D.

    2000-02-28

    Most wind turbines are equipped with line-connected induction generators. Induction generators are very attractive as wind turbine generators due to their low cost, ruggedness and the need for little or no maintenance. At constant frequency, the induction generator operates in a small range of speeds and, therefore, it operated with a small range of slips with respect to synchronous speed. Compared to a synchronous generator, an induction generator provides lower stiffness, thus alleviating the mechanical stress. In a weak power system network, an unbalanced load at the distribution lines can cause unbalanced voltage conditions. If an induction generator is connected to an unbalanced voltage, the resulting stator current will be unbalanced. The unbalanced current creates unequal heating (hot spots) on the stator winding. The heat may increase the winding temperature, which degrades the insulation of the winding, i.e., the life expectancy of the winding. Unbalanced currents also create torque pulsation on the shaft resulting in audible noise and extra mechanical stress. This paper explores the unbalanced voltage problem in induction generators. The levels of unbalance and the loads are varied. Experimental and predicted results are presented in this paper.

  11. 2500 KW Ship Service Turbine Generator Casing Welded Inconel Plug Failure and Repair Analysis

    Science.gov (United States)

    2012-06-01

    was requested to be proven and validated. 15. SUBJECT TERMS Inconel x750 600 Chrome -moly Casting Inconel weld repair system Steam Turbine Generator...by reference (3): 1. Change the allowable minimum thickness of the remaining Inconel clad on the turbine casing from 3/32 inch to 3/16 inch. 2...Change the minimum radial distance between the new weld and the interface between the existing Inconel inlay and the chrome -moly turbine casing

  12. Hydraulic power take-off for wave energy systems

    DEFF Research Database (Denmark)

    Christensen, Georg Kronborg

    2001-01-01

    Investigation and laboratory experiments with a hydraulic power conversion system for converting forces from a 2.5m diamter float to extract energy from seawaves. The test rig consists of a hydraulic wave simulator and a hydraulic point absorber. The absorber converts the incomming forces...

  13. Thermal-hydraulic modeling and analysis of hydraulic system by pseudo-bond graph

    Institute of Scientific and Technical Information of China (English)

    胡均平; 李科军

    2015-01-01

    To increase the efficiency and reliability of the thermodynamics analysis of the hydraulic system, the method based on pseudo-bond graph is introduced. According to the working mechanism of hydraulic components, they can be separated into two categories: capacitive components and resistive components. Then, the thermal-hydraulic pseudo-bond graphs of capacitive C element and resistance R element were developed, based on the conservation of mass and energy. Subsequently, the connection rule for the pseudo-bond graph elements and the method to construct the complete thermal-hydraulic system model were proposed. On the basis of heat transfer analysis of a typical hydraulic circuit containing a piston pump, the lumped parameter mathematical model of the system was given. The good agreement between the simulation results and experimental data demonstrates the validity of the modeling method.

  14. 5MW Direct Drive Wind Turbine Generator Design

    DEFF Research Database (Denmark)

    Zaidi, Arsalan; Senn, Lucile; Ortega, Iratxe

    2012-01-01

    A 5MW direct drive offshore wind turbine generator was studied and simulated using Vector Fields OPERA. This software allows calculation of the flux density, force, torque, and eddy currents in the machine at different rotor positions. Based on the data obtained from the model, initial assumptions...

  15. Banshan Gas-Fired Turbine Generator Set Put into Operation

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    @@ No.1 generator set of Banshan gas-fired power generation project, which is the first 9 FA heavy-duty gas turbine generator set in China that has drawn much attention, was successfully put into operation and merged into power grid at 21:30 in June 2, three months ahead of schedule.

  16. Transient response to three-phase faults on a wind turbine generator. Ph.D. Thesis - Toledo Univ.

    Science.gov (United States)

    Gilbert, L. J.

    1978-01-01

    In order to obtain a measure of its responses to short circuits a large horizontal axis wind turbine generator was modeled and its performance was simulated on a digital computer. Simulation of short circuit faults on the synchronous alternator of a wind turbine generator, without resort to the classical assumptions generally made for that analysis, indicates that maximum clearing times for the system tied to an infinite bus are longer than the typical clearing times for equivalent capacity conventional machines. Also, maximum clearing times are independent of tower shadow and wind shear. Variation of circuit conditions produce the modifications in the transient response predicted by analysis.

  17. Mod-5A Wind Turbine Generator Program Design Report. Volume 2: Conceptual and Preliminary Design, Book 1

    Science.gov (United States)

    1984-01-01

    The design, development and analysis of the 7.3 MW MOD-5A wind turbine generator is documented. There are four volumes. In Volume 2, book 1 the requirements and criteria for the design are presented. The conceptual design studies, which defined a baseline configuration and determined the weights, costs and sizes of each subsystem, are described. The development and optimization of the wind turbine generator are presented through the description of the ten intermediate configurations between the conceptual and final designs. Analyses of the system's load and dynamics are presented.

  18. HYDRAULIC CONCRETE COMPOSITION AND PROPERTIES CONTROL SYSTEM

    Directory of Open Access Journals (Sweden)

    O. M. Pshinko

    2015-08-01

    Full Text Available Purpose. Scientific work aims at the development and testing of information system to meet the challenges of concrete composition design and control (for railway structures and buildings based on the physico-analytical method algorithm for hydraulic concrete composition calculation. Methodology. The proposed algorithm of hydraulic concrete composition calculation is based on the physicochemical mechanics and in particular on the rheology of elastic–viscous–plastic bodies. The system of canonical equations consists of the equations for concrete strength, absolute volume, concrete mix consistency as well as the equation for optimal concrete saturation with aggregates while minimizing cement content. The joint solution of these four equations related to composition allows determining for the materials the concrete composition of required strength, concrete workability with minimum cement content. The procedure for calculation of hydraulic concrete composition according to the physico-analytical method consists of two parts: 1 physical, which is laboratory testing of concrete mix components in different concrete compositions; 2 analytical, which represents the calculation algorithm for concrete compositions equivalent in concrete strength and workability that comply with the specific conditions of concrete placing. Findings. To solve the problem of designing the concrete composition with the desired properties for railway structures and buildings it was proposed to use the information technology in the form of a developed computer program whose algorithm includes the physico-analytical method for hydraulic concrete composition determination. Originality. The developed concrete composition design method takes into account the basic properties of raw materials, concrete mix and concrete, which are pre-determined. The distinctive feature of physico-analytical method is obtaining of a set of equivalent compositions with a certain concrete mix

  19. Underwater hydraulic shock shovel control system

    Institute of Scientific and Technical Information of China (English)

    LIU He-ping; LUO A-ni; XIAO Hai-yan

    2008-01-01

    The control system determines the effectiveness of an underwater hydraulic shock shovel.This paper begins by analyzing the working principles of these shovels and explains the importance of their control systems.A new type of control system's mathematical model was built and analyzed according to those principles.Since the initial control system's response time could not fulfill the design requirements,a PID controller was added to the control system.System response time was still slower than required,so a neural network was added to nonlinearly regulate the proportional element,integral element and derivative element coefficients of the PID controller.After these improvements to the control system,system parameters fulfilled the design requirements.The working performance of electrically-controlled parts such as the rapidly moving high speed switch valve is largely determined by the control system. Normal control methods generally can't satisfy a shovel's requirements,so advanced and normal control methods were combined to improve the control system,bringing good results.

  20. Model-OA wind turbine generator - Failure modes and effects analysis

    Science.gov (United States)

    Klein, William E.; Lali, Vincent R.

    1990-01-01

    The results failure modes and effects analysis (FMEA) conducted for wind-turbine generators are presented. The FMEA was performed for the functional modes of each system, subsystem, or component. The single-point failures were eliminated for most of the systems. The blade system was the only exception. The qualitative probability of a blade separating was estimated at level D-remote. Many changes were made to the hardware as a result of this analysis. The most significant change was the addition of the safety system. Operational experience and need to improve machine availability have resulted in subsequent changes to the various systems, which are also reflected in this FMEA.

  1. Tidal current turbine based on hydraulic transmission system

    Institute of Scientific and Technical Information of China (English)

    Hong-wei LIU; Wei LI; Yong-gang LIN; Shun MA

    2011-01-01

    Tidal current turbines (TCTs) are newly developed electricity generating devices.Aiming at the stabilization of the power output of TCTs,this paper introduces the hydraulic transmission technologies into TCTs.The hydrodynamics of the turbine was analyzed at first and its power output characteristics were predicted.A hydraulic power transmission system and a hydraulic pitch-controlled system were designed.Then related simulations were conducted.Finally,a TCT prototype was manufactured and tested in the workshop.The test results have confirmed the correctness of the current design and availability of installation of the hydraulic system in TCTs.

  2. 49 CFR 570.55 - Hydraulic brake system.

    Science.gov (United States)

    2010-10-01

    ... parking brake and turn the ignition to start to verify that the brake system failure indicator lamp is... 49 Transportation 6 2010-10-01 2010-10-01 false Hydraulic brake system. 570.55 Section 570.55... 10,000 Pounds § 570.55 Hydraulic brake system. The following requirements apply to vehicles...

  3. 汽轮发电机转子阻尼系统对第一摆稳定性影响的仿真计算研究%Simulation Study of the First Swing Stability Affected by Rotor Damping Systems of Turbine Generators

    Institute of Scientific and Technical Information of China (English)

    许国瑞; 刘晓芳; 罗应立; 康锦萍; 李伟力

    2015-01-01

    The first swing stability (FSS) is an important factor to estimate the maximum transmission power of turbine generators. As for turbine generators, the factors affecting FSS mainly include the excitation system and the rotor damping system which contains damping bars, the rotor iron core and rotor conductive slot wedges. In order to reveal the relationship between these factors and FSS, we take a 300MW turbine generator as an example to build time step finite element model and to study the influence of two factors on FSS. The results show that the rotor damping system has a large effect on FSS; since we have several rotor slot wedge materials to choose from and the conductivities of these materials is different, we study the relationship between the FSS limit and conductivity of rotor slot wedges. It is concluded that the FSS limit gradually increases as the conductivity of rotor slot wedge changes fromσal (conductivity of aluminum alloy) to 0.05σal.%发电机的第一摆稳定性是准确评估系统最大传输功率的重要指标。对汽轮发电机本体而言,影响第一摆稳定性的因素主要有励磁系统,以及转子大齿导条、转子铁心和转子导电槽楔构成的阻尼系统。为了揭示上述因素与第一摆稳定极限的关系,该文以300 MW汽轮发电机为例,采用时步有限元模型研究了上述两种因素对发电机第一摆稳定极限的影响。结果表明:转子阻尼系统对发电机第一摆稳定极限的影响较大;由于转子导电槽楔通常由铝合金、不锈钢等材料构成,这些材料的电导率相差较大,因而进一步研究了转子槽楔电导率与第一摆稳定极限的关系,得出当电导率从σal(铝合金电导率)到0.05σal变化时,发电机的第一摆稳定极限逐渐增大。

  4. Pressure Characteristic Analysis of a Hydraulic System

    Science.gov (United States)

    Cho, H. Y.; Yang, H. J.

    2017-02-01

    EPPR(ElectroProportional Pressure Reducing) valve control the MCV(Main Control Valve) built on the mobile heavy machine. The EPPR valve was tested in the experimental setup and the performance of the valve was compared with that of the existing EPPR valve. On thisstudy, electromagnetic properties analysis using AMESim program was performed to optimize the designing of EPPR Valve (Electric Proportional Pressure Reducing Valve) and by applying its results to the hydraulic system analytical model, performance of the valve could be predicted. Also by comparing the results of the actual experiment and the simulation, The results of thisstudy is that the 3 factor(cone angle, tip width, clearance between sleeve and plunger) have much effectiveness than other components in the EPPR valve.

  5. Control Reconfigurability of Bilinear Hydraulic Drive Systems

    DEFF Research Database (Denmark)

    Shaker, Hamid Reza; Tahavori, Maryamsadat

    2011-01-01

    be effective if sufficient redundancy does not exist in the process. A measure for control reconfigurability which reveals the level of redundancy in connection with feedback control is proposed in this paper for bilinear systems. The proposed control reconfigurability measure is the extension of its gramian......The objective of the methods within the framework of the plug and play process control and particularly fault tolerant control is to establish control techniques which guarantee a certain performance through control reconfiguration at the occurrence of the faults or changes. These methods cannot......-based analogous counterpart, which has been previously proposed for the linear processes. The control reconfigurability is calculated for the bilinear models of an electro-hydraulic drive to show its relevance to redundant actuating capabilities in the models....

  6. Parameter Designing for Heave Compensation Hydraulic System Installed in Deepwater

    Directory of Open Access Journals (Sweden)

    Zhao Teng

    2013-01-01

    Full Text Available The function diagram of active heave compensation hydraulic system has been given, besides, the mathematics model for the principal hydraulic components of the compensation system has been built, and the input-output relation between components has been made clear. Aimed at compensating work capacity for the system, design and research on parameters as the bearing pressure, the initial state and the maximum flow of hydraulic cylinder, accumulator and other principal components have been made separately, and standardized design has been accomplished in accordance with relevant standards. Furthermore, calculus and verification for the capacity of the hydraulic system in different working stages have been made in order to calculate the pressure lose of the system and provide objective data for the hardware system design of the hydraulic components of the heave compensation system.

  7. Power Management in Mobile Hydraulic Applications - An Approach for Designing Hydraulic Power Supply Systems

    DEFF Research Database (Denmark)

    Pedersen, Henrik Clemmensen

    2004-01-01

    in a project to develop rules and methods for designing and controlling mobile hydraulic systems in the most energy efficient way, when also considering the operational aspects of the system. The paper first describes the thoughts and ideas behind the project and then focus on an automated approach to design......Throughout the last three decades energy consumption has become one of the primary design aspects in hydraulic systems, especially for mobile hydraulic systems, as power and cooling capacity here is at limited disposal. Considering the energy usage, this is dependent on component efficiency......, but even more important is the system topology. However, there are no rules or guidelines for what system topology to choose for a given application, in order to obtain the most energy efficient system, nor for how the energy should be distributed in the system. This paper describes the approach taken...

  8. Design of Pumps for Water Hydraulic Systems

    DEFF Research Database (Denmark)

    Klit, Peder; Olsen, Stefan; Bech, Thomas Nørgaard

    1999-01-01

    This paper considers the development of two pumps for water hydraulic applications. The pumps are based on two different working principles: The Vane-type pump and the Gear-type pump. Emphasis is put on the considerations that should be made to account for water as the hydraulic fluid.......KEYWORDS: water, pump, design, vane, gear....

  9. Design of Transputer Controllers for Hydraulic Actuator Systems

    DEFF Research Database (Denmark)

    Conrad, Finn

    1996-01-01

    The paper deals with how transputers can be applied for fast controllers for hydraulic actuator systems. A general transputer-based control systems including a data acquisition transputer subsystem is presented. An application case: development of a mechatronic test facility with a fast hydraulic...

  10. Application of Ferrography to Fault Diagnosis of Hydraulic Systems

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    This paper deals with research on the successful use of ferrography as a wear measurement method for condition monitoring and fault diagnosis of hydraulic systems.The analysis program and progression is discussed, and a case study for condition monitoring and fault diagnosis of hydraulic systems by means of ferrography is also reviewed.

  11. Automated Hydraulic System Design and Power Management in Mobile Applications

    DEFF Research Database (Denmark)

    Pedersen, Henrik Clemmensen

    a presentation of the used graph theory representation that is developed to represent a hydraulic open-circuit system and which is based on a numerical formulation that uniquely describe the system in terms of five set of design variables that describe respectively the topology, the components and the operating...... are found on most medium and high-end mobile hydraulic machinery. Despite the energy saving potentials that these systems posses, compared to the other open-circuit hydraulic system topologies, LS-system may still be subject to very low system efficiencies if not designed correctly. This is typically...... machines if operated in the intended and optimal work area, but due to an inappropriate system layout. Most of the power lost in open circuit hydraulic system systems is in this regard in the transmission part, i.e. hoses and fittings, and the valves used to control the system. A large part of the design...

  12. Modeling and parameter estimation for hydraulic system of excavator's arm

    Institute of Scientific and Technical Information of China (English)

    HE Qing-hua; HAO Peng; ZHANG Da-qing

    2008-01-01

    A retrofitted electro-bydraulic proportional system for hydraulic excavator was introduced firstly. According to the principle and characteristic of load independent flow distribution(LUDV)system, taking boom hydraulic system as an example and ignoring the leakage of hydraulic cylinder and the mass of oil in it,a force equilibrium equation and a continuous equation of hydraulic cylinder were set up.Based On the flow equation of electro-hydraulic proportional valve, the pressure passing through the valve and the difference of pressure were tested and analyzed.The results show that the difference of pressure does not change with load, and it approximates to 2.0 MPa. And then, assume the flow across the valve is directly proportional to spool displacement andis not influenced by load, a simplified model of electro-hydraulic system was put forward. At the same time, by analyzing the structure and load-bearing of boom instrument, and combining moment equivalent equation of manipulator with rotating law, the estimation methods and equations for such parameters as equivalent mass and bearing force of hydraulic cylinder were set up. Finally, the step response of flow of boom cylinder was tested when the electro-hydraulic proportional valve was controlled by the stepcurrent. Based on the experiment curve, the flow gain coefficient of valve is identified as 2.825×10-4m3/(s·A)and the model is verified.

  13. Hydraulic drive and control system of the cone collecting robot

    Institute of Scientific and Technical Information of China (English)

    Kong Qinghua; Liu Jinhao; Lu Huaimin

    1999-01-01

    This paper describes the basic structure and design and operation principle of the hydraulic drive and control system with two pumps and two circuits. The manipulator of the cone collecting robot designed is full driven by hydraulic, which has five freedoms. The computer and electrohydraulic proportion velocity regulating valve were installed to realize open loop serve control for reducing cost and easy application.

  14. Candidate wind turbine generator site: annual data summary, January 1981-December 1981

    Energy Technology Data Exchange (ETDEWEB)

    Sandusky, W.F.; Buck, J.W.; Renne, D.S.; Hadley, D.L.; Abbey, O.B.

    1982-07-01

    Summarized hourly meteorological data for 34 candidate and wind turbine generator sites for calendar year 1981 are presented. These data are collected for the purpose of evaluating the wind energy potential at these sites and are used to assist in selection of potential sites for installation and testing of large wind turbines in electric utility systems. For each site, wind speed, direction, and distribution data are given in eight tables. Use of information from these tables, with information about specific wind turbines, should allow the user to estimate the potential for wind energy production at each site.

  15. Candidate wind turbine generator site annual data summary for January 1979 through December 1979

    Energy Technology Data Exchange (ETDEWEB)

    Sandusky, W.F.; Renne, D.S.

    1981-03-01

    Summarized hourly meteorological data for fifteen candidate and wind turbine generator sites are presented in this report. These data are collected for the Department of Energy for the purpose of evaluating the wind energy potential at these sites and are used to assist in selection of potential sites for installation and testing of large wind turbines in electric utility systems. For each site, data are given in eight tables and one figure. Use of information from these tables, with information about specific wind turbines, should allow the user to estimate the potential for wind energy production at each site.

  16. Candidate wind turbine generator site annual data summary for January 1980 through December 1980

    Energy Technology Data Exchange (ETDEWEB)

    Sandusky, W.F.; Renne, D.S.

    1981-04-01

    Summarized hourly meteorological data for fourteen candidate and wind turbine generator sites are presented in this report. These data are collected for the Department of Energy for the purpose of evaluating the wind energy potential at these sites and are used to assist in selection of potential sites for installation and testing of large wind turbines in electric utility systems. For each site, data are given in eight tables and one figure. Use of information from these tables, with information about specific wind turbines, should allow the user to estimate the potential for wind energy production at each site.

  17. Hydraulic elements in reduction of vibrations in mechanical systems

    Science.gov (United States)

    Białas, K.; Buchacz, A.

    2017-08-01

    This work presents non-classical method of design of mechanic systems with subsystem reducing vibrations. The purpose of this paper is also introduces synthesis of mechanic system with reducing vibrations understand as design of this type of systems. The synthesis may be applied to modify the already existing systems in order to achieve a desired result. Elements which reduce vibrations can be constructed with passive, semi-active or active components. These considerations systems have selected active items. A hallmark of active elements it is possible to change the parameters on time of these elements and their power from an external source. The implementation of active elements is very broad. These elements can be implemented through the use of components of electrical, pneumatic, hydraulic, etc. The system was consisted from mechanical and hydraulic elements. Hydraulic elements were used as subsystem reducing unwanted vibration of mechanical system. Hydraulic elements can be realized in the form of hydraulic cylinder. In the case of an active vibration reduction in the form of hydraulic cylinder it is very important to find the corresponding values of hydraulic components. The values of these elements affect the frequency of vibrations of this sub-system which is related to the effective vibration reduction [7,11].

  18. System Topology Optimization - An Approach to System Design of Electro-Hydraulic-Mechanical Systems

    DEFF Research Database (Denmark)

    Andersen, T. O.; Hansen, M. R.; Conrad, Finn

    2003-01-01

    design the procedure attempts to find the optimal topology and the related parameters. The topology considerations comprise the type of hydraulic pump, the employment of knee linkages or not as well as the type of hydraulic actuators. The design variables also include the signals to the proportional......The current paper presents an approach to system design of combined electro-hydraulic-mechanical systems. The approach is based on the concurrent handling of the topology as well as the design parameters of the mechanical, hydraulic and controller sub- systems, respectively. Based on an initial...... valve in a number of predefined load cases as well as the hydraulic and mechanical parameters....

  19. INFORMATION-MEASURING TEST SYSTEM OF DIESEL LOCOMOTIVE HYDRAULIC TRANSMISSIONS

    Directory of Open Access Journals (Sweden)

    I. V. Zhukovytskyy

    2015-08-01

    Full Text Available Purpose. The article describes the process of developing the information-measuring test system of diesel locomotives hydraulic transmission, which gives the possibility to obtain baseline data to conduct further studies for the determination of the technical condition of diesel locomotives hydraulic transmission. The improvement of factory technology of post-repair tests of hydraulic transmissions by automating the existing hydraulic transmission test stands according to the specifications of the diesel locomotive repair enterprises was analyzed. It is achieved based on a detailed review of existing foreign information-measuring test systems for hydraulic transmission of diesel locomotives, BelAZ earthmover, aircraft tug, slag car, truck, BelAZ wheel dozer, some brands of tractors, etc. The problem for creation the information-measuring test systems for diesel locomotive hydraulic transmission is being solved, starting in the first place from the possibility of automation of the existing test stand of diesel locomotives hydraulic transmission at Dnipropetrovsk Diesel Locomotive Repair Plant "Promteplovoz". Methodology. In the work the researchers proposed the method to create a microprocessor automated system of diesel locomotives hydraulic transmission stand testing in the locomotive plant conditions. It acts by justifying the selection of the necessary sensors, as well as the application of the necessary hardware and software for information-measuring systems. Findings. Based on the conducted analysis there was grounded the necessity of improvement the plant hydraulic transmission stand testing by creating a microprocessor testing system, supported by the experience of developing such systems abroad. Further research should be aimed to improve the accuracy and frequency of data collection by adopting the more modern and reliable sensors in tandem with the use of filtering software for electromagnetic and other interference. Originality. The

  20. Development of A Hydraulic Drive for a novel Diesel-Hydraulic system for Large commercial Vehicles

    DEFF Research Database (Denmark)

    Stecki, J. S.; Conrad, Finn; Matheson, P.;

    2002-01-01

    The objectives and results of the research project Hybrid Diesel-Hydraulic System for Large commercial vehicles, e.g. urban freight delivery, buses or garbage trucks. The paper presents and discusses the research and development of the system, modelling approach and results from preliminary...

  1. Development of A Hydraulic Drive for a novel Diesel-Hydraulic system for Large commercial Vehicles

    DEFF Research Database (Denmark)

    Stecki, J. S.; Conrad, Finn; Matheson, P.

    2002-01-01

    The objectives and results of the research project Hybrid Diesel-Hydraulic System for Large commercial vehicles, e.g. urban freight delivery, buses or garbage trucks. The paper presents and discusses the research and development of the system, modelling approach and results from preliminary...... performance tests on a 10 ton vehicle....

  2. 5MW Direct Drive Wind Turbine Generator Design

    DEFF Research Database (Denmark)

    Zaidi, Arsalan; Senn, Lucile; Ortega, Iratxe

    2012-01-01

    A 5MW direct drive offshore wind turbine generator was studied and simulated using Vector Fields OPERA. This software allows calculation of the flux density, force, torque, and eddy currents in the machine at different rotor positions. Based on the data obtained from the model, initial assumptions...... for the suitable machine are listed and the modelling process presented. The model of the generator was improved by changing design parameters, e.g the position of the magnets or fitting additional I-Cores, and analyse the effect of it....

  3. A low order adaptive control scheme for hydraulic servo systems

    DEFF Research Database (Denmark)

    Andersen, Torben Ole; Pedersen, Henrik Clemmensen; Bech, Michael Møller;

    2015-01-01

    This paper deals with high-performance position control of hydraulics servo systems in general. The hydraulic servo system used is a two link robotic manipulator actuated by two hydraulic servo cylinders. A non-linear model of the hydraulic system and a Newton-Euler based model of the mechanical...... system were constructed and linearized. Controllers are implemented and tested on the manipulator. Pressure feedback was found to greatly improve system stability margins. Passive gain feedforward shows improved tracking performance for small changes in load pressure. For large changes in load pressure......, active gain feedforward shows a slightly improved performance. Computed-Torque Control shows better performance, but requires a well described system for best performance. A novel Adaptive Inverse Dynamics Controller was tested and the performance was found to be similar to that of Computed...

  4. Reliability modeling of hydraulic system of drum shearer machine

    Institute of Scientific and Technical Information of China (English)

    SEYED HADI Hoseinie; MOHAMMAD Ataie; REZA Khalookakaei; UDAY Kumar

    2011-01-01

    The hydraulic system plays an important role in supplying power and its transition to other working parts of a coal shearer machine.In this paper,the reliability of the hydraulic system of a drum shearer was analyzed.A case study was done in the Tabas Coal Mine in Iran for failure data collection.The results of the statistical analysis show that the time between failures (TBF)data of this system followed the 3-parameters Weibull distribution.There is about a 54% chance that the hydraulic system of the drum shearer will not fail for the first 50 h of operation.The developed model shows that the reliability of the hydraulic system reduces to a zero value after approximately 1 650 hours of operation.The failure rate of this system decreases when time increases.Therefore,corrective maintenance(run-to-failure)was selected as the best maintenance strategy for it.

  5. Determining the Conditions for the Hydraulic Impacts Emergence at Hydraulic Systems

    Directory of Open Access Journals (Sweden)

    Mazurenko A.S.

    2017-08-01

    Full Text Available This research aim is to develop a method for modeling the conditions for the critical hydrau-lic impacts emergence on thermal and nuclear power plants’ pipeline systems pressure pumps depart-ing from the general provisions of the heat and hydrodynamic instability theory. On the developed method basis, the conditions giving rise to the reliability-critical hydraulic impacts emergence on pumps for the thermal and nuclear power plants’ typical pipeline system have been determined. With the flow characteristic minimum allowable (critical sensitivity, the flow velocity fluctuations ampli-tude reaches critical values at which the pumps working elements’ failure occurs. The critical hydrau-lic impacts emergence corresponds to the transition of the vibrational heat-hydrodynamic instability into an aperiodic one. As research revealed, a highly promising approach as to the preventing the criti-cal hydraulic impacts related to the foreground use of pumps having the most sensitive consumption (at supply network performance (while other technical characteristics corresponding to that parame-ter. The research novelty refers to the suggested method elaborated by the authors’ team, which, in contrast to traditional approaches, is efficient in determining the pump hydraulic impact occurrence conditions when the vibrational heat-hydrodynamic instability transition to the aperiodic instability.

  6. Stability of Hydraulic Systems with Focus on Cavitating Pumps

    OpenAIRE

    Brennen, C. E.; Braisted, D. M.

    1980-01-01

    Increasing use is being made of transmission matrices to characterize unsteady flows in hydraulic system components and to analyze the stability of such systems. This paper presents some general characteristics which should be examined in any experimentally measured transmission matrices and a methodology for the analysis of the stability of transmission matrices in hydraulic systems of order 2. These characteristics are then examined for cavitating pumps and the predicted instabilities (kn...

  7. Technology of load-sensitivity used in the hydraulic system of an all-hydraulic core rig

    Institute of Scientific and Technical Information of China (English)

    XIN De-zhong; CHEN Song-ling; WANG Qing-feng

    2009-01-01

    The existing hydraulic system always have problems of temperature rise, run-ning stability and anti-interference of the implementation components, reliability of hydrau-lic components, maintenance difficulties, and other issues. With high efficiency, energy saving, reliability, easy operating, stable running, anti-interference ability, and other ad-vantages, the load-sensitive hydraulic system is more suitable for coal mine all-hydraulic core rig. Therefore, for the technical development of the coal mine all-hydraulic core rig, the load-sensitive technology employed by the rig should be of great significance.

  8. Representing plant hydraulics in a global Earth system model.

    Science.gov (United States)

    Kennedy, D.; Gentine, P.

    2015-12-01

    Earth system models need improvement to reproduce observed seasonal and diurnal cycles of photosynthesis and respiration. Model water stress parameterizations lag behind the plant physiology literature. A plant hydraulics model is developed and deployed in a global Earth system model (NCAR CESM 1.2.2 with CLM 4.5). Assimilation and transpiration are attenuated according to literature cavitation curves. Water stress is evaluated based on plant functional type hydraulic parameters forced by soil moisture and atmospheric conditions. Resolving the plant water status allows for modelling divergent strategies for water stress. The case of isohydric versus anisohydric species is presented, showing that including plant hydraulic traits alter modelled photosynthesis and transpiration.

  9. Adaptive Non-linear Control of Hydraulic Actuator Systems

    DEFF Research Database (Denmark)

    Hansen, Poul Erik; Conrad, Finn

    1998-01-01

    Presentation of two new developed adaptive non-liner controllers for hydraulic actuator systems to give stable operation and improved performance.Results from the IMCIA project supported by the Danish Technical Research Council (STVF).......Presentation of two new developed adaptive non-liner controllers for hydraulic actuator systems to give stable operation and improved performance.Results from the IMCIA project supported by the Danish Technical Research Council (STVF)....

  10. Dynamic Model for Hydro-Turbine Generator Units Based on a Database Method for Guide Bearings

    Directory of Open Access Journals (Sweden)

    Yong Xu

    2013-01-01

    Full Text Available A suitable dynamic model of rotor system is of great significance not only for supplying knowledge of the fault mechanism, but also for assisting in machine health monitoring research. Many techniques have been developed for properly modeling the radial vibration of large hydro-turbine generator units. However, an applicable dynamic model has not yet been reported in literature due to the complexity of the boundary conditions and exciting forces. In this paper, a finite element (FE rotor dynamic model of radial vibration taking account of operating conditions is proposed. A brief and practical database method is employed to model the guide bearing. Taking advantage of the method, rotating speed and bearing clearance can be considered in the model. A novel algorithm, which can take account of both transient and steady-state analysis, is proposed to solve the model. Dynamic response for rotor model of 125 MW hydro-turbine generator units in Gezhouba Power Station is simulated. Field data from Optimal Maintenance Information System for Hydro power plants (HOMIS are analyzed compared with the simulation. Results illustrate the application value of the model in providing knowledge of the fault mechanism and in failure diagnosis.

  11. ELECTRO-HYDRAULIC SERVO SYSTEM IN THE CENTRIFUGE FIELD

    Institute of Scientific and Technical Information of China (English)

    Dong Longlei; Yan Guirong; Li Ronglin

    2004-01-01

    The mechanical characteristics of the electro-hydraulic servo system in the centrifuge field are analyzed.The hydraulic pressure law in the centrifuge field indicates the existence of the centrifuge hydraulic pressure.The mechanical characteristics of the slide-valve and the dual nozzle flapper valve are studied,and it is found that the centrifuge field can not only increase the driving force or moment of the function units,but also decrease the stability of the components.Finally by applying Gauss minimum constraint principle,the dynamic model of the electro-hydraulic vibrator in the centrifuge field is established,and the mechanical restriction of the system is also presented.The study will be helpful for the realization of the combined vibration and centrifuge test system.

  12. Reliable hydraulic turbine governor based on identification and adaptive filtering

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, J.; Doraiswami, R.

    1986-01-01

    A scheme for improving reliable operation of a PID governor of a hydraulic turbine generating unit is proposed. The parameters of governor and actuators are identified on-line to, a) detect their anomalous behaviours, b) facilitate the calibration of the proportional integral and derivative gain settings. An adaptive filter is used to detect the lightly damped oscillations of the system. The proposed scheme was verified via simulation on the real data obtained from one of Mactaquac hydro-generating units of New Brunswick Electrical Power Commission. The simulation results show that the proposed scheme can indeed provide an accurate and rapid detection of the abnormal system operations.

  13. Operational-Condition-Independent Criteria Dedicated to Monitoring Wind Turbine Generators: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Yang, W.; Sheng, S.; Court, R.

    2012-08-01

    To date the existing wind turbine condition monitoring technologies and commercially available systems have not been fully accepted for improving wind turbine availability and reducing their operation and maintenance costs. One of the main reasons is that wind turbines are subject to constantly varying loads and operate at variable rotational speeds. As a consequence, the influences of turbine faults and the effects of varying load and speed are coupled together in wind turbine condition monitoring signals. So, there is an urgent need to either introduce some operational condition de-coupling procedures into the current wind turbine condition monitoring techniques or develop a new operational condition independent wind turbine condition monitoring technique to maintain high turbine availability and achieve the expected economic benefits from wind. The purpose of this paper is to develop such a technique. In the paper, three operational condition independent criteria are developed dedicated for monitoring the operation and health condition of wind turbine generators. All proposed criteria have been tested through both simulated and practical experiments. The experiments have shown that these criteria provide a solution for detecting both mechanical and electrical faults occurring in wind turbine generators.

  14. Active Power and Flux Control of a Self-Excited Induction Generator for a Variable-Speed Wind Turbine Generation

    Energy Technology Data Exchange (ETDEWEB)

    Na, Woonki; Muljadi, Eduard; Leighty, Bill; Kim, Jonghoon

    2017-05-11

    A Self-Excited Induction Generation (SEIG) for a variable speed wind turbine generation(VS-WG) is normally considered to be a good candidate for implementation in stand-alone applications such as battery charging, hydrogenation, water pumping, water purification, water desalination, and etc. In this study, we have examined a study on active power and flux control strategies for a SEIG for a variable speed wind turbine generation. The control analysis for the proposed system is carried out by using PSCAD software. In the process, we can optimize the control design of the system, thereby enhancing and expediting the control design procedure for this application. With this study, this control design for a SEIG for VS-WG can become the industry standard for analysis and development in terms of SEIG.

  15. A 6-DOF vibration isolation system for hydraulic hybrid vehicles

    Science.gov (United States)

    Nguyen, The; Elahinia, Mohammad; Olson, Walter W.; Fontaine, Paul

    2006-03-01

    This paper presents the results of vibration isolation analysis for the pump/motor component of hydraulic hybrid vehicles (HHVs). The HHVs are designed to combine gasoline/diesel engine and hydraulic power in order to improve the fuel efficiency and reduce the pollution. Electric hybrid technology is being applied to passenger cars with small and medium engines to improve the fuel economy. However, for heavy duty vehicles such as large SUVs, trucks, and buses, which require more power, the hydraulic hybridization is a more efficient choice. In function, the hydraulic hybrid subsystem improves the fuel efficiency of the vehicle by recovering some of the energy that is otherwise wasted in friction brakes. Since the operation of the main component of HHVs involves with rotating parts and moving fluid, noise and vibration are an issue that affects both passengers (ride comfort) as well as surrounding people (drive-by noise). This study looks into the possibility of reducing the transmitted noise and vibration from the hydraulic subsystem to the vehicle's chassis by using magnetorheological (MR) fluid mounts. To this end, the hydraulic subsystem is modeled as a six degree of freedom (6-DOF) rigid body. A 6-DOF isolation system, consisting of five mounts connected to the pump/motor at five different locations, is modeled and simulated. The mounts are designed by combining regular elastomer components with MR fluids. In the simulation, the real loading and working conditions of the hydraulic subsystem are considered and the effects of both shock and vibration are analyzed. The transmissibility of the isolation system is monitored in a wide range of frequencies. The geometry of the isolation system is considered in order to sustain the weight of the hydraulic system without affecting the design of the chassis and the effectiveness of the vibration isolating ability. The simulation results shows reduction in the transmitted vibration force for different working cycles of

  16. On the dynamic behavior of a wind turbine-generator system with a Darrieus-Savonius hybrid wind turbine; Hybrid furyoku turbine wo mochiita furyoku hatsuden system no kyodo ni tsuite

    Energy Technology Data Exchange (ETDEWEB)

    Wakui, T.; Tanzawa, Y.; Hashizume, T.; Ota, E. [Waseda University, Tokyo (Japan). School of Science and Engineering; Terashima, Y.; Machiyama, T. [Nippon Institute of Technology, Saitama (Japan)

    1997-03-25

    In order to clarify the dynamic characteristics of a self-controlled Darrieus-Savonius hybrid wind turbine system, a system consisting of a hybrid wind turbine and an AC generator was tested under various wind conditions in the wind tunnel. We took up four types of wind blowing change for the test; ramp, sinusoidal and square wind velocity changes and a similar wind velocity change to the field wind. A series of tests substantiated the effectiveness of our operating scheme wherein the tip speed ratio is maintained at a constant value. On the other hand, theoretical studies have been carried out on the characteristics of the system. A simulation model is presented in order to describe the system characteristics not only for the steady-state behavior but also for the dynamic behavior. In spite of its simplicity, the model can predict both characteristics of the system well. The appropriateness of the simulation model is confirmed by comparing with the experimental results. -In addition, the field test data are discussed. As a result, it is confirmed that the system is operated and controlled satisfactorily in the field. 14 refs., 19 figs., 3 tabs.

  17. Hydraulic conductivity of a firn aquifer system in southeast Greenland

    Science.gov (United States)

    Miller, Olivia L.; Solomon, D. Kip; Miège, Clément; Koenig, Lora S.; Forster, Richard R.; Montgomery, Lynn N.; Schmerr, Nicholas; Ligtenberg, Stefan R. M.; Legchenko, Anatoly; Brucker, Ludovic

    2017-05-01

    Some regions of the Greenland ice sheet, where snow accumulation and melt rates are high, currently retain substantial volumes of liquid water within the firn pore space throughout the year. These firn aquifers, found between 10-30 m below the snow surface, may significantly affect sea level rise by storing or draining surface meltwater. The hydraulic gradient and the hydraulic conductivity control flow of meltwater through the firn. Here we describe the hydraulic conductivity of the firn aquifer estimated from slug tests and aquifer tests at six sites located upstream of Helheim Glacier in southeastern Greenland. We conducted slug tests using a novel instrument, a piezometer with a heated tip that melts itself into the ice sheet. Hydraulic conductivity ranges between 2.5x10-5 and 1.1x10-3 m/s. The geometric mean of hydraulic conductivity of the aquifer is 2.7x10-4 m/s with a geometric standard deviation of 1.4 from both depth specific slug tests (analyzed using the Hvorslev method) and aquifer tests during the recovery period. Hydraulic conductivity is relatively consistent between boreholes and only decreases slightly with depth. The hydraulic conductivity of the firn aquifer is crucial for determining flow rates and patterns within the aquifer, which inform hydrologic models of the aquifer, its relation to the broader glacial hydrologic system, and its effect on sea level rise.

  18. FOREWORD: 26th IAHR Symposium on Hydraulic Machinery and Systems

    Science.gov (United States)

    Wu, Yulin; Wang, Zhengwei; Liu, Shuhong; Yuan, Shouqi; Luo, Xingqi; Wang, Fujun

    2012-11-01

    The 26th IAHR Symposium on Hydraulic Machinery and Systems, will be held in Beijing, China, 19-23 August 2012. It is jointly organized by Tsinghua University, State Key Laboratory of Hydro Science and Hydraulic Engineering, China, Jiangsu University, Xi'an University of Technology, China Agricultural University, National Engineering Research Center of Hydropower Equipment and Dongfang Electric Machinery Co., Ltd. It is the second time that China hosts such a symposium. By the end of 2011, the China electrical power system had a total of 1 050 GW installed power, out of which 220 GW was in hydropower plants. The energy produced in hydropower facilities was 662.6 TWh from a total of 4,720 TWh electrical energy production in 2011. Moreover, in 2020, new hydropower capacities are going to be developed, with a total of 180 GW installed power and an estimated 708 TWh/year energy production. And in 2011, the installed power of pumped storage stations was about 25GW. In 2020, the data will be 70GW. At the same time, the number of pumps used in China is increasing rapidly. China produces about 29,000,000 pumps with more than 220 series per year. By the end of 2011, the Chinese pumping system has a total of 950 GW installed power. The energy consumed in pumping facilities was 530 TWh in 2011. The pump energy consumption accounted for about 12% of the national electrical energy production. Therefore, there is a large market in the field of hydraulic machinery including water turbines, pump turbines and a variety of pumps in China. There are also many research projects in this field. For example, we have conducted National Key Research Projects on 1000 MW hydraulic turbine, and on the pump turbines with high head, as well as on the large capacity pumps for water supply. Tsinghua University of Beijing is proud to host the 26th IAHR Symposium on Hydraulic Machinery and Systems. Tsinghua University was established in 1911, after the founding of the People's Republic of China. It

  19. Automated Hydraulic System Design and Power Management in Mobile Applications

    DEFF Research Database (Denmark)

    Pedersen, Henrik Clemmensen

    machines if operated in the intended and optimal work area, but due to an inappropriate system layout. Most of the power lost in open circuit hydraulic system systems is in this regard in the transmission part, i.e. hoses and fittings, and the valves used to control the system. A large part of the design...... are working under the most optimal operating conditions. The above in this way constitute the background for the work that is the basis of this report, which deals with how to design and control open-circuit hydraulic systems with multiple consumers to obtain the largest energy utilization, when also...... a presentation of the used graph theory representation that is developed to represent a hydraulic open-circuit system and which is based on a numerical formulation that uniquely describe the system in terms of five set of design variables that describe respectively the topology, the components and the operating...

  20. Nonlinear control for a class of hydraulic servo system

    Institute of Scientific and Technical Information of China (English)

    余宏; 冯正进; 王旭永

    2004-01-01

    The dynamics of hydraulic systems are highly nonlinear and the system may be subjected to non-smooth and discontinuous nonlinearities due to directional change of valve opening, friction, etc. Aside from the nonlinear nature of hydraulic dynamics, hydraulic servo systems also have large extent of model uncertainties. To address these challenging issues, a robust state-feedback controller is designed by employing backstepping design technique such that the system output tracks a given signal arbitrarily well, and all signals in the closed-loop system remain bounded. Moreover, a relevant disturbance attenuation inequality is satisfied by the closed-loop signals. Compared with previously proposed robust controllers, this paper's robust controller based on backstepping recursive design method is easier to design, and is more suitable for implementation.

  1. Nonlinear control for a class of hydraulic servo system

    Institute of Scientific and Technical Information of China (English)

    余宏; 冯正进; 王旭永

    2004-01-01

    The dynamics of hydraulic systems are highly nonlinear and the system may be subjected to non-smooth and discontinuous nonlinearities due to directional change of valve opening,friction,etc. Aside from the nonlinear nature of hydraulic dynamics,hydraulic servo systems also have large extent of model uncertainties. To address these challenging issues,a robust state-feedback controller is designed by employing backstepping design technique such that the system output tracks a given signal arbitrarily well,and all signals in the closed-loop system remain bounded. Moreover,a relevant disturbance attenuation inequality is satisfied by the closed-loop signals. Compared with previously proposed robust controllers,this paper's robust controller based on backstepping recursive design method is easier to design,and is more suitable for implementation.

  2. Hydraulic Soft Yaw System Load Reduction and Prototype Results

    DEFF Research Database (Denmark)

    Stubkier, Søren; Pedersen, Henrik C.; Markussen, Kristian

    2013-01-01

    Introducing a hydraulic soft yaw concept for wind turbines leads to significant load reductions in the wind turbine structure. The soft yaw system operates as a shock absorption system on a car, hence absorbing the loading from turbulent wind conditions instead of leading them into the stiff wind...... operates. Further it is analyzed how the soft yaw system influence the power production of the turbine. It is shown that the influence is minimal, but at larger yaw errors the effect is possitive. Due to the implemeted functions in the hydraulic soft yaw system such as even load distribution on the pinions...

  3. Mod-5A wind turbine generator program design report. Volume 4: Drawings and specifications, book 5

    Science.gov (United States)

    1984-01-01

    The design, development and analysis of the 7.3 MW MOD-5A wind turbine generator is documented. There are four volumes. This volume contains the drawings and specifications that were developed in preparation for building the MOD-5A wind turbine generator. Detail drawings of several assemblies and subassemblies are given. This is the fifth book of volume 4.

  4. Control strategies for gas turbine generators for grid connected and islanding operations

    DEFF Research Database (Denmark)

    Mahat, Pukar; Chen, Zhe; Bak-Jensen, Birgitte

    2010-01-01

    Islanding operation of distribution systems with distributed generations (DG) is becoming a viable option for economical and technical reasons. However, there are various issues to be resolved before it can be a reality. One of the main issues is control of the DG. Control strategies, that may work...... fine while a DG is connected to a grid, might not work as desired while it is islanded and vise versa. This paper presents a strategy to operate distribution systems with a small gas turbine generator (GTG), which is capable of supplying local loads, in both islanding and grid connected conditions....... Separate strategies are used to control the GTG while it is connected to the grid and while it is islanded. Switching between the control strategies is achieved through a state detection algorithm that includes islanding and grid re-connection detections. An existing islanding detection technique has been...

  5. Conceptual design of the 7 megawatt MOD-5B wind turbine generator

    Science.gov (United States)

    Douglas, R. R.

    Similar to MOD-2, the MOD-5B wind turbine generator system is designed for the sole purpose of providing electrical power for distribution by a major utility network. The cost of electricity (COE) target is reduced from 4c/Kwhr on MOD-2 to 3c/Kwhr on MOD-5B. The MOD-5B concept studies and eventual concept studies and eventual concept selection confirmed that the program COE targets could not only be achieved but substantially bettered. Starting from the established MOD-2 technology as a base, this achievement resulted from a combination of concept changes, size changes, and design refinements. The result of this effort is a wind turbine system that can compete with conventional power generation over significant geographical areas, increasing commercial market potential by an order of magnitude.

  6. Conceptual design of the 7 megawatt Mod-5B wind turbine generator

    Science.gov (United States)

    Douglas, R. R.

    1982-01-01

    Similar to MOD-2, the MOD-5B wind turbine generator system is designed for the sole purpose of providing electrical power for distribution by a major utility network. The objectives of the MOD-2 and MOD-5B programs are essentially identical with one important exception; the cost-of-electricity (COE) target is reduced from 4 cent/Kwhr on MOD-2 to 3 cent/Kwhr on MOD-5B, based on mid 1977 dollars and large quantity production. The MOD-5B concept studies and eventual concept selection confirmed that the program COE targets could not only be achieved but substantially bettered. Starting from the established MOD-2 technology as a base, this achievement resulted from a combination of concept changes, size changes, and design refinements. The result of this effort is a wind turbine system that can compete with conventional power generation over significant geographical areas, increasing commercial market potential by an order of magnitude.

  7. International Space Station power module thermal control system hydraulic performance

    Energy Technology Data Exchange (ETDEWEB)

    Goldberg, V. [Boeing North American, Inc., Canoga Park, CA (United States). Rocketdyne Div.

    1997-12-31

    The International Space Station (ISS) uses four photovoltaic power modules (PVMs) to provide electric power for the US On-Orbit Segment. The PVMs consist of photovoltaic arrays (PVAs), orbit replaceable units (ORUs), photovoltaic radiators (PVRs), and a thermal control system (TCS). The PVM TCS function is to maintain selected PVM components within their specified operating ranges. The TCS consists of the pump flow control subassembly (PFCS), piping system, including serpentine tubing for individual component heat exchangers, headers/manifolds, fluid disconnect couplings (FQDCs), and radiator (PVR). This paper describes the major design requirements for the TCS and the results of the system hydraulic performance predictions in regard to these requirements and system component sizing. The system performance assessments were conducted using the PVM TCS fluid network hydraulic model developed for predicting system/component pressure losses and flow distribution. Hardy-Cross method of iteration was used to model the fluid network configuration. Assessments of the system hydraulic performance were conducted based on an evaluation of uncertainties associated with the manufacturing and design tolerances. Based on results of the analysis, it was concluded that all design requirements regarding system performance could be met. The hydraulic performance range, enveloping possible system operating parameter variations was determined.

  8. Hydraulic Soft Yaw System Load Reduction and Prototype Results

    DEFF Research Database (Denmark)

    Stubkier, Søren; Pedersen, Henrik C.; Markussen, Kristian

    2013-01-01

    Introducing a hydraulic soft yaw concept for wind turbines leads to significant load reductions in the wind turbine structure. The soft yaw system operates as a shock absorption system on a car, hence absorbing the loading from turbulent wind conditions instead of leading them into the stiff wind...

  9. Prognosticating fault development rate in wind turbine generator bearings using local trend models

    DEFF Research Database (Denmark)

    Skrimpas, Georgios Alexandros; Palou, Jonel; Sweeney, Christian Walsted;

    2016-01-01

    Generator bearing defects, e.g. ball, inner and outer race defects, are ranked among the most frequent mechanical failures encountered in wind turbines. Diagnosis and prognosis of bearing faults can be successfully implemented using vibration based condition monitoring systems, where tracking...... the signal energy between 10Hz to 1000Hz is utilized as feature to characterize the severity of developing bearing faults. Furthermore, local trend models are employed to predict the progression of bearing defects from a vibration standpoint in accordance with the limits suggested in ISO 10816. Predictions...... of vibration trends from multi-megawatt wind turbine generators are presented, showing the effectiveness of the suggested approach on the calculation of the RUL and fault progression rate....

  10. Tap Water Hydraulic Control Systems - Design and Industrial Applications. Chapter 7 in Advances in Hydraulic Control Systems

    DEFF Research Database (Denmark)

    Conrad, Finn

    Deals with development and design of modern tap water hydraulic components and systems, in particalar the Danfoss Nessie-family of components and systems working with pure tap water without any kind of additives. Typical industrial applications are presented and the perspectives of new industrial...

  11. A Hydraulic Blowdown Servo System For Launch Vehicle

    Science.gov (United States)

    Chen, Anping; Deng, Tao

    2016-07-01

    This paper introduced a hydraulic blowdown servo system developed for a solid launch vehicle of the family of Chinese Long March Vehicles. It's the thrust vector control (TVC) system for the first stage. This system is a cold gas blowdown hydraulic servo system and consist of gas vessel, hydraulic reservoir, servo actuator, digital control unit (DCU), electric explosion valve, and pressure regulator etc. A brief description of the main assemblies and characteristics follows. a) Gas vessel is a resin/carbon fiber composite over wrapped pressure vessel with a titanium liner, The volume of the vessel is about 30 liters. b) Hydraulic reservoir is a titanium alloy piston type reservoir with a magnetostrictive sensor as the fluid level indicator. The volume of the reservoir is about 30 liters. c) Servo actuator is a equal area linear piston actuator with a 2-stage low null leakage servo valve and a linear variable differential transducer (LVDT) feedback the piston position, Its stall force is about 120kN. d) Digital control unit (DCU) is a compact digital controller based on digital signal processor (DSP), and deployed dual redundant 1553B digital busses to communicate with the on board computer. e) Electric explosion valve is a normally closed valve to confine the high pressure helium gas. f) Pressure regulator is a spring-loaded poppet pressure valve, and regulates the gas pressure from about 60MPa to about 24MPa. g) The whole system is mounted in the aft skirt of the vehicle. h) This system delivers approximately 40kW hydraulic power, by contrast, the total mass is less than 190kg. the power mass ratio is about 0.21. Have finished the development and the system test. Bench and motor static firing tests verified that all of the performances have met the design requirements. This servo system is complaint to use of the solid launch vehicle.

  12. Charging valve of the full hydraulic braking system

    Directory of Open Access Journals (Sweden)

    Jinshi Chen

    2016-03-01

    Full Text Available It is known that the full hydraulic braking system has excellent braking performance. As the key component of the full hydraulic braking system, the parameters of the accumulator charging valve have a significant effect on the braking performance. In this article, the key parameters of the charging valve are analyzed through the static theoretical and an Advanced Modeling Environment for performing Simulation of engineering systems (AMESim simulation model of the dual-circuit accumulator charging valve is established based on the real structure parameters first. Second, according to the results of the dynamic simulation, the dynamic characteristics of the charging pressure, the flow rate, and the frequency of the charging valve are studied. The key parameters affecting the serial production are proposed and some technical advices for improving the performance of the full hydraulic system are provided. Finally, the theoretical analysis is validated by the simulation results. The comparison between the simulation results and the experimental results indicates that the simulated AMESim model of the charging valve is accurate and credible with the error rate inside 0.5% compared with the experimental result. Hence, the performance of the charging valve meets the request of the full hydraulic braking system exactly.

  13. Aircraft Hydraulic System Leakage Detection and Servicing Recommendations Method

    Science.gov (United States)

    2014-10-02

    accumulators, filters, and consumers, that include all the actuators connected to the hydraulic power such as flight controls , brake and landing...Conference, October 4-8 Calgary, Alberta, Canada. Merrit, H. E., (1967), Hydraulic Control Systems. New York: John Willey & Sons. Vianna, W. O. L...2008), Modelagem e Análise do Sistema Hidráulico de uma Aeronave Comercial Regional. M.Sc. Thesis. Instituto Tecnológico de Aeronáutica, São José

  14. Analysis of parameter and operation state on small-signal stability of doubly-fed wind turbine generation system%双馈风电机组参数及运行状态的小干扰稳定性分析

    Institute of Scientific and Technical Information of China (English)

    李辉; 张志科; 杨超; 赵斌; 唐显虎

    2013-01-01

    为了提高大规模风电并网的稳定性以及风电机组对电网的适应能力,有必要研究风电机组参数及运行状态对其自身小干扰稳定性的影响.考虑风电机组运行特点,建立含风力机传动链、变桨系统和发电机的双馈风电机组小信号分析模型.基于模态分析方法,通过计算特征值和参与因子获得相应的模态;分析风力机传动链机械参数、发电机电气参数和机组运行状态对特征值的影响程度.引入参数灵敏度的概念,研究不同运行状态下特征值对不同参数的灵敏度.结果表明,机械参数对轴系模态的振荡频率影响较大,电气参数对系统模态的阻尼影响较大;系统的主导模态会随机组运行状态的改变而变化,且相同特征值对同一参数的灵敏度存在较大不同.%In order to improve the stability of large-scale wind power integrated to the power grid and the adaptivity of wind turbine generation system, it is necessary to analyze the impact of wind turbine genera tion system parameters and operating states on the small-signal stability. The small-signal analysis model of doubly-fed wind turbine generation system considering the operating characteristics was established, in cluding wind turbine drive train, pitch control system and the generator. Based on modal analysis meth od , the corresponding modals were obtained by calculating the eigenvalues and participation factors, and the influences of drive train mechanical parameters, generator electrical parameters and the operating states on egienvalues were studied. Parameter eigenvalues sensitivity in different operating conditions was also analyzed by introducing the concept of eigenvalue sensitivity. The results show that the oscillation frequency of shaft modal is obviously influenced by mechanical parameters, while the damping of all mo dals are influenced mainly by electrical parameters. With operating states changing, the system dominant modal

  15. WATER ENERGY IN HYDROAMELIORATIVE SYSTEMS USING THE HYDRAULIC TRANSFORMER TYPE A. BARGLAZAN AND THE HYDRAULIC HAMMER (HYDRAULIC PUMP

    Directory of Open Access Journals (Sweden)

    Teodor Eugen Man

    2010-01-01

    Full Text Available This paper presents two examples of exploitation of water energy that can be used in the irrigation field. First of theseexamples is the hydraulic transformer type A. Barglazan used for irrigation, pumped water is taken directly from theriver’s well, using a hydraulic pump which simultaneously carried out a double transformation in this way: hydraulicenergy into mechanic energy and mechanical energy into hydraulic energy. Technology preparation and devices designwas done in record time, seeing that this constructive solution is more robust, reliable and with improved energyperformance versus the laboratory prototype. The experimental research which was made at 1:1 scale proved theirgood function over time. Another example is the hydraulic hammer (hydraulic pump that uses low-head energy topump water, with a global efficiency of about 10 - 50%. Currently, the new situation of private ownership of landprovides conditions for new pumping microstations to be made where irrigation is necessary and optimal hydrauliclocations exist.

  16. TRANSIENT RESPONSE OF A VALVE CONTROL HYDRAULIC SYSTEM WITHLONG PIPES

    Institute of Scientific and Technical Information of China (English)

    Wei Jianhua; Kong Xiaowu; Qiu Minxiu; Wu Genmao

    2004-01-01

    The simulation model of a valve control hydraulic system with long pipe is established in Simulink4.0, and then the step responses of the systems with difference pipe parameters are investigated by simulation.Simulation results show that the long pipes will slow down the step response of system and make it fluctuate periodically.The results of simulation conform to the results of experiment on the whole, which proves the mathematic model is correct.

  17. Analysis of nonlinearities and effects in direct drive electro-hydraulic position servo system

    Institute of Scientific and Technical Information of China (English)

    WANG Hong-jie; JI Tian-jing; MAO Xin-tao; LIU Quan-zhong

    2005-01-01

    The direct drive electro-hydraulic servo system is a new approach hydraulic system. It is much smaller and easier controlled than traditional systems and is a perfect energy saver. This paper will briefly introduce the popular nonlinearities in the electro-hydraulic system and analyse the effect of nonlinearities in direct drive electro-hydraulic position servo system by means of simulation research. Some valuable conclusions are given.

  18. Solving Confliction Problem Between the Gas Turbine Generator Seal-oil System and Building Steel Structure%燃机发电机密封油系统与钢结构碰撞问题之解决

    Institute of Scientific and Technical Information of China (English)

    陈闻菲; 杨承佐

    2014-01-01

    国内某燃机联合循环电厂在建设阶段发生了的发电机密封油系统布置与厂房钢结构碰撞的问题。在听取设计人员及专家意见后,分析了问题产生的原因,提出了解决办法。%The confliction between gas turbine gen-erator seal-oil system and GT (Gas turbine) building steel structure happened during the constructive stage of a do-mestic CCPP (Combined cycle power plant). After listening to the opinions of the experts, cause to result in the problem was analyzed and solving way was suggested.

  19. 永磁直驱风电机组的三电平升压变流技术%The technology of three-level boost converter based on direct-drive PMSG wind turbine generator system

    Institute of Scientific and Technical Information of China (English)

    姚兴佳; 赵超群

    2013-01-01

    对于额定功率为2 MW或更高容量的变流器,背靠背(BTB)中点钳位型(NPC)变流器可以降低系统的成本、体积以及复杂性.文章提出一种新型拓扑结构,该结构采用二极管整流,三电平升压(TLB)和中点钳位型变流器,能够进一步降低系统的成本和体积.该结构在直流侧完成最大功率点跟踪(MPPT)控制计划,使TLB解决MPPT和直流侧电容平衡问题,为中点钳位控制提供更大的灵活性.最后以3 MW永磁风力发电系统为仿真对象,仿真结果验证了该拓扑结构和控制策略的正确性.%For power rating of 2 MW or higher, the back-to-back (BTB) neutral-point clamped (NPC) converters are most preferable choice for wind turbine manufacturers as its reduced cost, size and complexity of the system compared with the BTB two-level converters. In this paper, a new topology using diode rectifier, three-level boost (TLB) and NPC converter has been proposed to further reduce the cost and size. The DC-link maximum power point tracking (MPPT) control scheme has been proposed in which the TLB performs MPPT and balancing of DC-link capacitors, which provides a greater flexibility for NPC control. The simulation results for 3 MW PMSG wind energy system validate the proposed topology and control scheme.

  20. EMD and morphology based voltage disturbance detection method for power system connected with wind turbine generation%基于经验模态分解和形态学的风电并网电压故障检测

    Institute of Scientific and Technical Information of China (English)

    包广清; 宋泽; 吴国栋; 徐海龙

    2016-01-01

    针对风电场并网点电压故障引起的风机大规模脱网问题,提出了基于柔性形态算子和经验模态分解(empirical mode decomposition,EMD)去噪技术的电网电压故障检测方法。首先,利用EMD对采样信号进行时频自适应预处理,从而确定噪声主导模态;然后,通过柔性形态学变换加阈值输出,有效放大信号奇异点,避免了因电网电压信号周期性变化和噪声引起的背景梯度对检测结果的影响,实现故障定位检测。通过对不同噪声强度的电压暂降故障信号进行检测对比分析发现,随着信号信噪比下降,标准形态学方法的检测误差进一步增大,当信噪比达到25db时,甚至出现了误检现象,而柔性形态EMD检测方法仍然可以有效检测故障扰动的起止时间,表明该方法与标准形态学和小波阈值方法相比,在简化运算过程的同时可以获得更高的检测精度。最后,对某风电场并网点故障电压的分析结果与实测数据的一致性,验证了该方法可以有效检测电网电压的瞬态故障信息,从而为风电场无功补偿装置的投切控制提供了依据。%As the penetration of wind power has become significant, one of the important challenges of power distribution network with wind power integration is the risk of large-scale wind turbine tripping accidents caused by over/under voltage faults in farms and systems, which also leads to unexpected variations in frequency parameters and thereby power quality issues. Aiming at the difficulty to extract early weak fault feature for the voltage influenced by white noise and transient disturbance noise, a method combining empirical mode decomposition (EMD) with soft mathematical morphology (MM) was put forward in this paper. It was crucial for the requirements of fault ride-through devices, fault component extraction and reclose scheme on voltage detection accuracy and real-time performance

  1. OPTIMUM DESIGN AND NON-LINEAR MODEL OF POWERPLANT HYDRAULIC MOUNT SYSTEM

    Institute of Scientific and Technical Information of China (English)

    Shi Wenku; Min Haitao; Dang Zhaolong

    2003-01-01

    6-DOF non-linear mechanics model of powerplant hydraulic mount system is established. Optimum design of the powerplant hydraulic mount system is made with the hydraulic mount parameters as variables and with uncoupling of energy, rational disposition of nature frequency and minimum of reactive force at mount's location as objective functions. And based on the optimum design, software named ODPHMS (optimum design of powerplant hydraulic mount system) used in powerplant mount system optimum design is developed.

  2. State Criterion of Wind Turbine Generator in Operation with Using Tower Shadow Effect

    OpenAIRE

    2002-01-01

    Because of low cost and maintenance free, inductron machines are widely used as the wind turbine generators. In order to get wind energy effectively, pole-change-type induction generators are adopted. Otherwise, the pole-change-type induction generator causes the voltage dips at starting and at pole changing time. To keep the power quality, it is important to know the state change of the generator operation. In this paper a new state criterion of wind turbine generator in operation using the ...

  3. Hydraulics of sprinkler and microirrigation systems

    Science.gov (United States)

    The fluid dynamics of sprinkler and microirrigation systems are complex. Water moves dynamically from the water source through the pump into the pipe network. Water often goes through a series of screens and filters depending on the source and type of irrigation system. From the pipe network, water ...

  4. An Approach to automatically optimize the Hydraulic performance of Blade System for Hydraulic Machines using Multi-objective Genetic Algorithm

    Science.gov (United States)

    Lai, Xide; Chen, Xiaoming; Zhang, Xiang; Lei, Mingchuan

    2016-11-01

    This paper presents an approach to automatic hydraulic optimization of hydraulic machine's blade system combining a blade geometric modeller and parametric generator with automatic CFD solution procedure and multi-objective genetic algorithm. In order to evaluate a plurality of design options and quickly estimate the blade system's hydraulic performance, the approximate model which is able to substitute for the original inside optimization loop has been employed in the hydraulic optimization of blade by using function approximation. As the approximate model is constructed through the database samples containing a set of blade geometries and their resulted hydraulic performances, it can ensure to correctly imitate the real blade's performances predicted by the original model. As hydraulic machine designers are accustomed to do design with 2D blade profiles on stream surface that are then stacked to 3D blade geometric model in the form of NURBS surfaces, geometric variables to be optimized were defined by a series profiles on stream surfaces. The approach depends on the cooperation between a genetic algorithm, a database and user defined objective functions and constraints which comprises hydraulic performances, structural and geometric constraint functions. Example covering optimization design of a mixed-flow pump impeller is presented.

  5. A Hydraulic Stress Measurement System for Deep Borehole Investigations

    Science.gov (United States)

    Ask, Maria; Ask, Daniel; Cornet, Francois; Nilsson, Tommy

    2017-04-01

    Luleå University of Technology (LTU) is developing and building a wire-line system for hydraulic rock stress measurements, with funding from the Swedish Research Council and Luleå University of Technology. In this project, LTU is collaborating with University of Strasbourg and Geosigma AB. The stress state influences drilling and drillability, as well as rock mass stability and permeability. Therefore, knowledge about the state of in-situ stress (stress magnitudes, and orientations) and its spatial variation with depth is essential for many underground rock engineering projects, for example for underground storage of hazardous material (e.g. nuclear waste, carbon dioxide), deep geothermal exploration, and underground infrastructure (e.g. tunneling, hydropower dams). The system is designed to conduct hydraulic stress testing in slim boreholes. There are three types of test methods: (1) hydraulic fracturing, (2) sleeve fracturing and (3) hydraulic testing of pre-existing fractures. These are robust methods for determining in situ stresses from boreholes. Integration of the three methods allows determination of the three-dimensional stress tensor and its spatial variation with depth in a scientific unambiguously way. The stress system is composed of a downhole and a surface unit. The downhole unit consists of hydraulic fracturing equipment (straddle packers and downhole imaging tool) and their associated data acquisition systems. The testing system is state of the art in several aspects including: (1) Large depth range (3 km), (2) Ability to test three borehole dimensions (N=76 mm, H=96 mm, and P=122 mm), (3) Resistivity imager maps the orientation of tested fracture; (4) Highly stiff and resistive to corrosion downhole testing equipment; and (5) Very detailed control on the injection flow rate and cumulative volume is obtained by a hydraulic injection pump with variable piston rate, and a highly sensitive flow-meter. At EGU General Assembly 2017, we would like to

  6. Control Reconfigurability of Bilinear Hydraulic Drive Systems

    DEFF Research Database (Denmark)

    Shaker, Hamid Reza; Tahavori, Maryamsadat

    2011-01-01

    be effective if sufficient redundancy does not exist in the process. A measure for control reconfigurability which reveals the level of redundancy in connection with feedback control is proposed in this paper for bilinear systems. The proposed control reconfigurability measure is the extension of its gramian...

  7. Thermo-hydraulic modeling of flow in flare systems

    OpenAIRE

    Meindinyo, Remi-Erempagamo T.

    2012-01-01

    Flare systems play a major role in the safety of Oil and Gas installations by serving as outlets for emergency pressure relief in case of process upsets. Accurate and reliable estimation of system thermo-hydraulic parameters, especially system back-pressure is critical to the integrity of a flare design. FlareNet (Aspen Flare System Analyzer Version 7) is a steady state simulation tool tailored for flare system design and has found common use today. But design based on steady state modelin...

  8. Research on intelligent algorithm of electro - hydraulic servo control system

    Science.gov (United States)

    Wang, Yannian; Zhao, Yuhui; Liu, Chengtao

    2017-09-01

    In order to adapt the nonlinear characteristics of the electro-hydraulic servo control system and the influence of complex interference in the industrial field, using a fuzzy PID switching learning algorithm is proposed and a fuzzy PID switching learning controller is designed and applied in the electro-hydraulic servo controller. The designed controller not only combines the advantages of the fuzzy control and PID control, but also introduces the learning algorithm into the switching function, which makes the learning of the three parameters in the switching function can avoid the instability of the system during the switching between the fuzzy control and PID control algorithms. It also makes the switch between these two control algorithm more smoother than that of the conventional fuzzy PID.

  9. Damping Torsional Torques in Turbine-Generator Shaft by Novel PSS Based on Genetic Algorithm and Fuzzy Logic

    Directory of Open Access Journals (Sweden)

    Abbas Shoulaie

    2010-07-01

    Full Text Available Torsional torques on turbine-generator shaft which are yields of disturbances in power systems, can reduce the useful lifetime of shaft. In this paper, these oscillations will be damped and controlled by novel Power System Stabilizers (PSSs. Complex PSS which is used in this paper will act on the excitation system in generator set and also on the controller of in High Voltage Direct Current (HVDC system. This PSS uses three terms (generator angle deviation, frequency oscillation and capacitor voltage deviation in HVDC system of the study system which includes two ties AC and DC. This is the reason that this PSS is named novel one against the conventional PSSs. In order to adjust the PSS parameters to damp the oscillations, genetic algorithm is used. To improve the application of this PSS, fuzzy logic control methods are also used which has notable effect on controlling the oscillations in study system. The simulation results show the effectiveness of designed PSS in controlling the torsional torques in turbine-generator shaft.

  10. Process fluids of aero-hydraulic systems and their properties

    Directory of Open Access Journals (Sweden)

    I. S. Shumilov

    2014-01-01

    Full Text Available The article considers process fluids, which are presently applied to aviation hydraulic systems in domestic and world practice. Aviation practice deals with rather wide list of fluids. Based on the technical specification a designer makes the choice of specific fluid for the specific aircraft. Process fluids have to possess the specified properties presented in the article, namely: lubricating properties; stability of physical and chemical characteristics at operation and storage; lowtemperature properties; acceptable congelation temperature; compatibility with materials of units and components of hydraulic systems; heat conductivity; high rigidity; minimum low coefficient of volume expansion; fire-explosion safety; low density. They should also have good dielectric properties, be good to resist to destruction of molecules, have good anticorrosion and antierosion properties, as well as not create conditions for emerging electro-kinetic erosion of spooltype and other precision devices, and a number of other properties.The article presents materials on the oil-based process fluids with + (200-320 °C boiling temperature, gelled by a polymer of vinyl butyl ether, with aging inhibitor and dye for hydraulic systems of the subsonic and transonic aircraft which are combustible, with a temperature interval of use from — 60oС до +125oС. It also describes materials on process fluids, which are based on the mix of polydialkylsiloxane oligomers with organic diester aging inhibitors, and wear-resistant additive to be applied to the hydraulic systems of supersonic aircrafts using a fluid within the temperature interval from - 6О oС to +175oС for a long duration. The fire-explosion safety process fluids representing a mix of phosphoric esters with additives to improve viscous, anti-oxidizing, anticorrosive and anti-erosive properties are considered as well. They are used within the temperature range from - 60оС to +125оС with overheats up to +150

  11. Study of Dynamic Characteristics for Hydraulic System on 300MN Die-forging Press

    Science.gov (United States)

    Chen, Guoqiang; Tan, Jianping

    2017-06-01

    The faults such as seal breakdown and pressure sensor damage occur in 300MN Die-forging press frequently. First, the fault phenomenon and harm of the hydraulic system was compiled statistics, the theoretical analysis of the hydraulic impact of hydraulic system are carried out based on the momentum theorem; Then, the co-simulation model of hydraulic system was established by AMESim and Simulink software and the correctness was verified. Finally, the dynamic characteristics of hydraulic system for the key working condition “forging stroke changing to mold collision” was analyzed, the influences rules of system parameters such as the leak gap of valve, diameter of water way pipeline, emulsion temperature and air contain act on hydraulic system are obtained. This conclusions have a theoretical guiding significance to the improvement and maintains of high pressure and large flow hydraulic system.

  12. Hydraulic Soft Yaw System for Multi MW Wind Turbines

    DEFF Research Database (Denmark)

    Stubkier, Søren

    Horizontal axis wind turbines utilize a yaw system to keep the rotor plane of the wind turbine perpendicular to the main wind direction. If the wind direction changes, the wind turbine follows the direction change by yawing. If the wind turbine does not yaw, there will be a reduction in produced...... of nine concepts for hydraulic yaw systems and shown that the loading of the turbine structure may be damped if the yaw system is allowed to deflect under loading. An extensions of the open source wind turbine code FAST of a state of the art wind turbine including the yaw degree of freedom and friction...

  13. Design Rules for High Damping in Mobile Hydraulic Systems

    OpenAIRE

    Axin, Mikael; Krus, Petter

    2013-01-01

    This paper analyses the damping in pressure compensated closed centre mobile working hydraulic systems. Both rotational and linear loads are covered and the analysis applies to any type of pump controller. Only the outlet orifice in the directional valve will provide damping to a pressure compensated system. Design rules are proposed for how the system should be dimensioned in order to obtain a high damping. The volumes on each side of the load have a high impact on the damping. In case of a ...

  14. Application research on hydraulic coke cutting monitoring system based on optical fiber sensing technology

    Science.gov (United States)

    Zhong, Dong; Tong, Xinglin

    2014-06-01

    With the development of the optical fiber sensing technology, the acoustic emission sensor has become one of the focal research topics. On the basis of studying the traditional hydraulic coke cutting monitoring system, the optical fiber acoustic emission sensor has been applied in the hydraulic coke cutting monitoring system for the first time, researching the monitoring signal of the optical fiber acoustic emission sensor in the system. The actual test results show that using the acoustic emission sensor in the hydraulic coke cutting monitoring system can get the real-time and accurate hydraulic coke cutting state and the effective realization of hydraulic coke cutting automatic monitoring in the Wuhan Branch of Sinopec.

  15. Development of a hydraulic model of the human systemic circulation

    Science.gov (United States)

    Sharp, M. K.; Dharmalingham, R. K.

    1999-01-01

    Physical and numeric models of the human circulation are constructed for a number of objectives, including studies and training in physiologic control, interpretation of clinical observations, and testing of prosthetic cardiovascular devices. For many of these purposes it is important to quantitatively validate the dynamic response of the models in terms of the input impedance (Z = oscillatory pressure/oscillatory flow). To address this need, the authors developed an improved physical model. Using a computer study, the authors first identified the configuration of lumped parameter elements in a model of the systemic circulation; the result was a good match with human aortic input impedance with a minimum number of elements. Design, construction, and testing of a hydraulic model analogous to the computer model followed. Numeric results showed that a three element model with two resistors and one compliance produced reasonable matching without undue complication. The subsequent analogous hydraulic model included adjustable resistors incorporating a sliding plate to vary the flow area through a porous material and an adjustable compliance consisting of a variable-volume air chamber. The response of the hydraulic model compared favorably with other circulation models.

  16. Nanocoatings for High-Efficiency Industrial Hydraulic and Tooling Systems

    Energy Technology Data Exchange (ETDEWEB)

    Clifton B. Higdon III

    2011-01-07

    Industrial manufacturing in the U.S. accounts for roughly one third of the 98 quadrillion Btu total energy consumption. Motor system losses amount to 1.3 quadrillion Btu, which represents the largest proportional loss of any end-use category, while pumps alone represent over 574 trillion BTU (TBTU) of energy loss each year. The efficiency of machines with moving components is a function of the amount of energy lost to heat because of friction between contacting surfaces. The friction between these interfaces also contributes to downtime and the loss of productivity through component wear and subsequent repair. The production of new replacement parts requires additional energy. Among efforts to reduce energy losses, wear-resistant, low-friction coatings on rotating and sliding components offer a promising approach that is fully compatible with existing equipment and processes. In addition to lubrication, one of the most desirable solutions is to apply a protective coating or surface treatment to rotating or sliding components to reduce their friction coefficients, thereby leading to reduced wear. Historically, a number of materials such as diamond-like carbon (DLC), titanium nitride (TiN), titanium aluminum nitride (TiAlN), and tungsten carbide (WC) have been examined as tribological coatings. The primary objective of this project was the development of a variety of thin film nanocoatings, derived from the AlMgB14 system, with a focus on reducing wear and friction in both industrial hydraulics and cutting tool applications. Proof-of-concept studies leading up to this project had shown that the constituent phases, AlMgB14 and TiB2, were capable of producing low-friction coatings by pulsed laser deposition. These coatings combine high hardness with a low friction coefficient, and were shown to substantially reduce wear in laboratory tribology tests. Selection of the two applications was based largely on the concept of improved mechanical interface efficiencies for

  17. A THERMAL-HYDRAULIC SYSTEM FOR THE CONVERSION AND THE STORAGE OF ENERGY

    Directory of Open Access Journals (Sweden)

    MITRAN Tudor

    2016-05-01

    Full Text Available The paper proposes the concept design of a thermal-hydraulic system that converts the thermal energy (from the geothermal water, from the cooling water of power equipment, from exhaust gasses, and so. in hydrostatic energy, that is stored in a hydraulic accumulator. The hydraulic energy can be converted into electrical energy when needed.

  18. Improved inertial control for permanent magnet synchronous generator wind turbine generators

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Ziping; Gao, Wenzhong; Wang, Xiao; Kang, Moses; Hwang, Min; Kang, Yong Cheol; Gevogian, Vahan; Muljadi, Eduard

    2016-05-31

    With increasing integrations of large-scale systems based on permanent magnet synchronous generator wind turbine generators (PMSG-WTGs), the overall inertial response of a power system will tend to deteriorate as a result of the decoupling of rotor speed and grid frequency through the power converter as well as the scheduled retirement of conventional synchronous generators. Thus, PMSG-WTGs can provide value to an electric grid by contributing to the system's inertial response through the inherent kinetic energy stored in their rotating masses and fast power converter control. In this study, an improved inertial control method based on the maximum power point tracking operation curve is introduced to enhance the overall frequency support capability of PMSG-WTGs in the case of large supply-demand imbalances. Moreover, this method is implemented in the CART2-PMSG integrated model in MATLAB/Simulink to investigate its impact on the wind turbine's structural loads during the inertial response process. Simulation results indicate that the proposed method can effectively reduce the frequency nadir, arrest the rate of change of frequency, and alleviate the secondary frequency dip while imposing no negative impact on the major mechanical components of the wind turbine.

  19. Optimising root system hydraulic architectures for water uptake

    Science.gov (United States)

    Meunier, Félicien; Couvreur, Valentin; Draye, Xavier; Javaux, Mathieu

    2015-04-01

    In this study we started from local hydraulic analysis of idealized root systems to develop a mathematical framework necessary for the understanding of global root systems behaviors. The underlying assumption of this study was that the plant is naturally optimised for the water uptake. The root system is thus a pipe network dedicated to the capture and transport of water. The main objective of the present research is to explain the fitness of major types of root architectures to their environment. In a first step, we developed links between local hydraulic properties and macroscopic parameters of (un)branched roots. The outcome of such an approach were functions of apparent conductance of entire root system and uptake distribution along the roots. We compared our development with some allometric scaling laws for the root water uptake: under the same simplifying assumptions we were able to obtain the same results and even to expand them to more physiological cases. Using empirical data of measured root conductance, we were also able to fit extremely well the data-set with this model. In a second stage we used generic architecture parameters and an existent root growth model to generate various types of root systems (from fibrous to tap). We combined both sides (hydraulic and architecture) then to maximize under a volume constraint either apparent conductance of root systems or the soil volume explored by active roots during the plant growth period. This approach has led to the sensitive parameters of the macroscopic parameters (conductance and location of the water uptake) of each single plant selected for this study. Scientific questions such as: "What is the optimal sowing density of a given hydraulic architecture ?" or "Which plant traits can we change to better explore the soil domain ?" can be also addressed with this approach: some potential applications are illustrated. The next (and ultimate phase) will be to validate our conclusions with real architectures

  20. Improvement of Voltage Quality of Micro Turbine Generator With Matrix Converter & Venturini Technique’s

    Directory of Open Access Journals (Sweden)

    C.Himabindu

    2014-07-01

    Full Text Available In recent years, application of Distributed Generation (DG sources has increased significantly. Micro turbine-Generator (MTG is well suitable for different distributed generation applications, because it can be connected in parallel to serve larger loads, can provide reliable power and has low-emission. The main characteristics of MTG can be summarized in low maintenance, capacity of operation with liquid and gas fuels (including natural gas and small area required for installation [1]. MTGs have the rated power from 30 to 250 kW, generating electricity in ac, and they can be installed in isolated conditions or synchronized with the electrical utility.MTGs are available as single-shaft or split-shaft units. Single-shaft unit is a high-speed synchronous machine with the compressor and turbine mounted on the same shaft. While, the split-shaft design uses a power turbine rotating at 3000 rpm and a conventional generator connected via a synchronous generator-PMSG, frequency converters (interface converters, and protection and control systems (Fig. 1[1] . The interface converter is used to convert PMSG output voltage frequency (high frequency to power system (50/60 Hz frequency.

  1. Stepwise inertial control of a wind turbine generator to minimize a second frequency dip

    Directory of Open Access Journals (Sweden)

    Dejian Yang

    2016-01-01

    Full Text Available Wind turbine generators (WTGs in power systems with high wind penetration levels are encouraged or forced to participate in frequency control. A stepwise inertial control (SIC scheme instantly increases WTG output to arrest the frequency drop for a preset period upon detecting a disturbance. After arresting the frequency drop, the output is rapidly reduced to recover the rotor speed. The reduction could cause a power deficit to the power system, which in turn results in a second frequency dip (SFD. This paper proposes an SIC scheme that can improve the frequency nadir (FN and maximum rate of change of frequency (ROCOF while minimizing an SFD. To achieve this, a reference function is separately defined prior to and after the FN. To improve the FN and maximum ROCOF, the output is instantly increased by adding a constant, which is proportional to the rotor speed, and maintaining it until the FN is reached. To minimize an SFD, the output is slowly reduced with the rotor speed. This reduction ensures a slow output reduction rate. The performance of the proposed scheme is investigated using an EMTP-RV simulator under different wind speeds and wind power penetration levels. Results clearly demonstrate that the proposed scheme can improve the FN and maximum ROCOF while ensuring a quick frequency recovery.

  2. A Comparative Computational Fluid Dynamics Study on an Innovative Exhaust Air Energy Recovery Wind Turbine Generator

    Directory of Open Access Journals (Sweden)

    Seyedsaeed Tabatabaeikia

    2016-05-01

    Full Text Available Recovering energy from exhaust air systems of building cooling towers is an innovative idea. A specific wind turbine generator was designed in order to achieve this goal. This device consists of two Giromill vertical axis wind turbines (VAWT combined with four guide vanes and two diffuser plates. It was clear from previous literatures that no comprehensive flow behavior study had been carried out on this innovative device. Therefore, the working principle of this design was simulated using the Analysis System (ANSYS Fluent computational fluid dynamics (CFD package and the results were compared to experimental ones. It was perceived from the results that by introducing the diffusers and then the guide vanes, the overall power output of the wind turbine was improved by approximately 5% and 34%, respectively, compared to using VAWT alone. In the case of the diffusers, the optimum angle was found to be 7°, while for guide vanes A and B, it was 70° and 60° respectively. These results were in good agreement with experimental results obtained in the previous experimental study. Overall, it can be concluded that exhaust air recovery turbines are a promising form of green technology.

  3. STUDY OF A FAULT DIAGNOSIS EXPERT SYSTEM FOR SYNTHETIC MINING SYSTEM HYDRAULIC SUPPORT

    Institute of Scientific and Technical Information of China (English)

    Han Yilun

    2000-01-01

    Fault diagnosis expert system for hydraulic support is studied.The system is achieved by Turbo-prolong Language, it summaries the experience of the domain expert and sets up a fault tree, knowledge base is developed by a productive rule.According to the feature of diagnosis, the system selects forward non-determination inferring and limited depth-first search strategy.It can accomplish expert diagnosis of more than 50 kinds faults in hydraulic support.

  4. Fatigue damage of steam turbine shaft at asynchronous connections of turbine generator to electrical network

    Science.gov (United States)

    Bovsunovsky, A. P.

    2015-07-01

    The investigations of cracks growth in the fractured turbine rotors point out at theirs fatigue nature. The main reason of turbine shafts fatigue damage is theirs periodical startups which are typical for steam turbines. Each startup of a turbine is accompanied by the connection of turbine generator to electrical network. During the connection because of the phase shift between the vector of electromotive force of turbine generator and the vector of supply-line voltage the short-term but powerful reactive shaft torque arises. This torque causes torsional vibrations and fatigue damage of turbine shafts of different intensity. Based on the 3D finite element model of turbine shaft of the steam turbine K-200-130 and the mechanical properties of rotor steel there was estimated the fatigue damage of the shaft at its torsional vibrations arising as a result of connection of turbine generator to electric network.

  5. Thermal and hydraulic analyses of the System 81 cold traps

    Energy Technology Data Exchange (ETDEWEB)

    Kim, K.

    1977-06-15

    Thermal and hydraulic analyses of the System 81 Type I and II cold traps were completed except for thermal transients analysis. Results are evaluated, discussed, and reported. Analytical models were developed to determine the physical dimensions of the cold traps and to predict the performance. The FFTF cold trap crystallizer performances were simulated using the thermal model. This simulation shows that the analytical model developed predicts reasonably conservative temperatures. Pressure drop and sodium residence time calculations indicate that the present design will meet the requirements specified in the E-Specification. Steady state temperature data for the critical regions were generated to assess the magnitude of the thermal stress.

  6. Hydraulic external pre-isolator system for LIGO

    OpenAIRE

    Wen, S.; Mittleman, R.; Mason, K.; Giaime, J.; Abbott, R.; Kern, J; O'Reilly, B.; Bork, R.; Hammond, M.; Hardham, C.; Lantz, B.; W. Hua; Coyne, D.; Traylor, G.; Overmier, H.

    2014-01-01

    The hydraulic external pre-isolator (HEPI) is the first six degrees of freedom active seismic isolation system implemented at the Laser Interferometer Gravitational Wave Observatory (LIGO). Implementation was first completed at the LIGO Livingston Observatory (LLO) prior to LIGOʼs fifth science run, successfully cutting down the disturbance seen by LLOʼs suspended optics in the two most prominent seismic disturbance bands, the microseism (0.1–0.3 Hz) and the anthropogenic (1–3 Hz) bands, by a...

  7. Study on Knowledge -based Intelligent Fault Diagnosis of Hydraulic System

    Directory of Open Access Journals (Sweden)

    Xuexia Liu

    2012-12-01

    Full Text Available A general framework of hydraulic fault diagnosis system was studied. It consisted of equipment knowledge bases, real-time databases, fusion reasoning module, knowledge acquisition module and so on. A tree-structure model of fault knowledge was established. Fault nodes knowledge was encapsulated by object-oriented technique. Complete knowledge bases were made including fault bases and diagnosis bases. It could describe the fault positions, the structure of fault, cause-symptom relationships, diagnosis principles and other knowledge. Taking the fault of left and right lifting oil cylinder out of sync for example, the diagnostic results show that the methods were effective.

  8. Linear hydraulic drive system for a Stirling engine

    Science.gov (United States)

    Walsh, Michael M.

    1984-02-21

    A hydraulic drive system operating from the periodic pressure wave produced by a Stirling engine along a first axis thereof and effecting transfer of power from the Stirling engine to a load apparatus therefor and wherein the movable, or working member of the load apparatus is reciprocatingly driven along an axis substantially at right angles to the first axis to achieve an arrangement of a Stirling engine and load apparatus assembly which is much shorter and the components of the load apparatus more readily accessible.

  9. Simulation of Lightning Overvoltage Distribution on Stator Windings of Wind Turbine Generators

    Institute of Scientific and Technical Information of China (English)

    LIU Rong; LIU Xue-zhong; WANG Ying; LI Dan-dan

    2011-01-01

    This paper analyzes lightning surge on the stator windings of wind turbine generators. The path of lightning in the wind turbines was analyzed. An equivalent circuit model for megawatt direct-driven wind turbine system was developed, in which high-frequency distributed parameters of the blade conducts, tower, power cables and stator windings of generator were calculated based on finite element method, and the models of converter, grounding, loads, surge protection devices and power grid were established. The voltage distribution along stator windings, when struck by lightning with 10/350 ~ts wave form and different amplitude current between 50 kA and 200 kA, was simulated u- sing electro-magnetic transient analysis method. The simulated results show that the highest coil-to-core voltage peak appears on the last coil or near the neutral of stator windings, and the voltage distribution along the windings is non- uniform initially. The voltage drops of each coil fall from first to last coil, and the highest voltage drop appears on the first coil. The insulation damage may occur on the windings under lightning overvoltage. The surge arresters can re- strain the lightning surge in effect and protect the insulation. The coil-to-core voltage in the end of windings is nearly 19.5 kV under the 200 kA lightning current without surge arresters on the terminal of generator, but is only 2.7 kV with arresters.

  10. Measured effects of wind turbine generation at the Block Island Power Company

    Science.gov (United States)

    Wilreker, V. F.; Smith, R. F.; Stiller, P. H.; Scot, G. W.; Shaltens, R. K.

    1984-01-01

    Data measurements made on the NASA MOD-OA 200-kw wind-turbine generator (WTG) installed on a utility grid form the basis for an overall performance analysis. Fuel displacement/-savings, dynamic interactions, and WTG excitation (reactive-power) control effects are studied. Continuous recording of a large number of electrical and mechanical variables on FM magnetic tape permit evaluation and correlation of phenomena over a bandwidth of at least 20 Hz. Because the wind-power penetration reached peaks of 60 percent, the impact of wind fluctuation and wind-turbine/diesel-utility interaction is evaluated in a worst-case scenario. The speed-governor dynamics of the diesel units exhibited an underdamped response, and the utility operation procedures were not altered to optimize overall WTG/utility performance. Primary findings over the data collection period are: a calculated 6.7-percent reduction in fuel consumption while generating 11 percent of the total electrical energy; acceptable system voltage and frequency fluctuations with WTG connected; and applicability of WTG excitation schemes using voltage, power, or VARS as the controlled variable.

  11. Design of the AM600 Turbine-Generator for NPPs in Emerging Markets

    Energy Technology Data Exchange (ETDEWEB)

    Alexandru, Bogdan; Abdoelatef, M. Gomaa; Field, Robert [KEPCO International Nuclear Graduate School, Ulsan (Korea, Republic of)

    2015-10-15

    In this paper, preliminary analysis related to: (i) the T/G steam flow path, and (ii) the turbine cycle heat balance is examined. Analysis of global electric markets indicates that the current and near term capacity of electrical grids for many developing countries (e.g., Bangladesh, Kenya, Vietnam, Malaysia) is insufficient to reliably incorporate Nuclear Power Plants (NPPs) with large unit sizes (e.g., >1000 MWe). Thus a modern NPP design with a smaller output (-600 MWe) is of interest. To address conditions for such markets, the 'AM600' Turbine-Generator (T/G) design proposed here represents a 600 MWe design which is robust and supports a simplified steam cycle. The proposed shaftline starts with a determination of the number of flows, followed by a determination of the number of high and low pressure stages, followed by heat balance analysis. The conceptual design for the AM600 T/G offers the following: • a stiff shaftline which can offer robust performance in smaller grids lacking optimal stability relative to grid disturbances and frequency variation, • a simplified approach to T/G fabrication, installation, operation, testing, inspections, and maintenance due to design with a single LPT cylinder while maintaining high thermal efficiency, and • a reduced component count for MSRs, FWHs, and power train pumps and drivers (and associated support system components) resulting in lower capital outlays, simplified operations, and further reducing the maintenance, testing, and inspection burden.

  12. Coupling of electromagnetic and structural dynamics for a wind turbine generator

    Science.gov (United States)

    Matzke, D.; Rick, S.; Hollas, S.; Schelenz, R.; Jacobs, G.; Hameyer, K.

    2016-09-01

    This contribution presents a model interface of a wind turbine generator to represent the reciprocal effects between the mechanical and the electromagnetic system. Therefore, a multi-body-simulation (MBS) model in Simpack is set up and coupled with a quasi-static electromagnetic (EM) model of the generator in Matlab/Simulink via co-simulation. Due to lack of data regarding the structural properties of the generator the modal properties of the MBS model are fitted with respect to results of an experimental modal analysis (EMA) on the reference generator. The used method and the results of this approach are presented in this paper. The MB S model and the interface are set up in such a way that the EM forces can be applied to the structure and the response of the structure can be fed back to the EM model. The results of this cosimulation clearly show an influence of the feedback of the mechanical response which is mainly damping in the torsional degree of freedom and effects due to eccentricity in radial direction. The accuracy of these results will be validated via test bench measurements and presented in future work. Furthermore it is suggested that the EM model should be adjusted in future works so that transient effects are represented.

  13. FDTD Electromagnetic Analysis of a Wind Turbine Generator Tower Struck by Lightning

    Science.gov (United States)

    Nagao, Mitsuhiro; Nagaoka, Naoto; Baba, Yoshihiro; Ametani, Akihiro

    Transient current distributions within the grounding systems of a wind-turbine-generator (WTG) tower struck by lightning and its neighboring WTG tower, and transient electric field inside these towers have been calculated using the finite-difference time-domain (FDTD) method. The grounding terminal for the generator inside the lightning-struck WTG tower is connected to that inside the neighboring WTG tower through a long insulated wire. About 40% of the lightning current flows in the grounding grid of the neighboring tower at 30μ s. Inside the towers, the radial component of electric field is most significant. Its peak value is about 1kV/m near the base of each tower when a lightning current having a magnitude of 30kA and a 10-to-90% risetime of 2.5μ s is injected. The electric field decreases with increasing the height of the observation point in the towers. When the grounding terminals are buried below the substructure (the grounding grids are connected via an underground insulated wire), the electric field inside the tower is significantly reduced.

  14. National Renewable Energy Laboratory program on lightning risk and wind turbine generator protection

    Energy Technology Data Exchange (ETDEWEB)

    Muljadi, E. [National Renewable Energy Lab., Golden, CO (United States); McNiff, B. [McNiff Light Industry, Blue Hill, ME (United States)

    1997-12-31

    In the early development of wind turbine generators (WTG) in the United States, wind farms were primarily located in California where lightning activity is the lowest in the United States. As such, lightning protection for wind turbines was not considered to be a major issue for designers or wind farm operators. However, wind turbine installations are expanding into the Midwest, Southwest and other regions of the United States where lightning activity is significantly more intense and lightning damage to wind turbines is more common. There is a growing need, therefore, to better understand lightning activity on wind farms and to improve wind turbine lightning protection systems. In support of the U.S. Department of Energy/Electric Power Research Institute (DOE/EPRI) Utility Wind Turbine Verification Program (TVP), the National Renewable Energy Laboratory (NREL) has recently begun to take steps to determine the extent of damage due to lightning and the effectiveness of various lightning protection techniques for wind power plants. Working through the TVP program, NREL will also perform outreach and education to (1) help manufacturers to provide equipment that is adequately designed to survive lightning, (2) make sure that operators are aware of effective safety procedures, and (3) help site designers and wind farm developers take the risk of lightning into account as effectively as possible.

  15. Energy Storage Opportunities and Capabilities in a Type 3 Wind Turbine Generator: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Muljadi, Eduard; Gevorgian, Vahan; Hoke, Andy

    2016-09-01

    Wind power plants and other renewable power plants with power electronic interfaces are capable of delivering frequency response (both governor and/or inertial response) to the grid by a control action; thus, the reduction of available online inertia as conventional power plants are retired can be compensated by designing renewable power plant controls to include frequency response. The source of energy to be delivered as inertial response is determined by the type of generation and control strategy chosen. The cost of energy storage is expected to drop over time, and global research activities on energy storage are very active, funded both by the private industry and governments. Different industry sectors (e.g., transportation, energy) are the major drivers of the recent storage research and development. This work investigates the opportunities and capabilities of deploying energy storage in renewable power plants. In particular, we focus on wind power plants with doubly-fed induction generators, or Type 3 wind turbine generator (WTGs). We find that the total output power of a system with Type 3 WTGs with energy storage can deliver a power boost during inertial response that is up to 45% higher than one without energy storage without affecting the torque limit, thus enabling an effective delivery of ancillary services to the grid.

  16. Dynamic characteristics of hydraulic power steering system with accumulator in load-haul-dump vehicle

    Institute of Scientific and Technical Information of China (English)

    杨忠炯; 何清华; 柳波

    2004-01-01

    Using hydraulic power steering system of model EIMCO 922 load-haul-dump vehicle as a simulation example, the dynamic characteristics of hydraulic power steering system in load-haul-dump vehicle were simulated and discussed with SIMULINK software and hydraulic control theory. The results show that the dynamic characteristics of hydraulic power steering system are improved obviously by using bladder accumulator, the hydraulic power steering system of model EIMCO 922 load-haul-dump vehicle generates vibration at the initial stage under the normal steering condition of pulse input, and its static response time is 0.25 s shorter than that without bladder accumulator. Under the normal steering working condition, the capacity of steering accumulator for absorbing pulse is directly proportional to the cross section area of connecting pipeline, and inversely proportional to the length of connecting pipeline. At the same time, the precharge pressure of nitrogen in steering accumulator should be 60%- 80% of the rated minimum working pressure of hydraulic power steering system. Under the abnormal steering working condition, the steering cylinder piston may obtain higher motion velocity, and the dynamic response velocity of hydraulic power steering system can be increased by reducing the pressure drop of hydraulic pipelines between the accumulator and steering cylinder and by increasing the rated pressure of hydraulic power steering system, but the dynamic characteristics of hydraulic power steering system in load-haul-dump vehicle have nothing to do with the precharge pressure of nitrogen in steering accumulator.

  17. Design of a pictogram of the operator-hydraulic filler system

    Energy Technology Data Exchange (ETDEWEB)

    Bukhgol' ts, V.P.; Dinershtein, V.A.

    1985-09-01

    A modern hydraulic filling system is discussed which consists of two lines: the crusher and sorter preparing the filling material, and the hydraulic filling unit, which includes a mixer and a system of pulp conduits. The process chart of the hydraulic filling system without the crusher-sorter is illustrated. When the system is started, water is first flushed through the pulp conduit, gate valves with drives are opened, and the quantity of water discharged is measured by water output sensors. For effective and failure-free operation of the system, remote control and monitoring elements are introduced into the hydraulic filling system.

  18. The dynamic running law study on driving system of hydraulic winder

    Institute of Scientific and Technical Information of China (English)

    彭佑多; 刘德顺; 郭迎福; 张永忠; 文西芹

    2002-01-01

    Dynamic running law of the hydraulic driving system decides the hoisting cage velocity curve in a hoisting cycle and is decided by the characteristic of the hydraulic driving system and by the operating speed of hoist driver. The paper studies the dynamic running law of hydraulic driving system, analyses the influence of driver operating speed on the dynamic running characteristic, and points out the reasonable driver operating speed to control the dynamic stress in rope and to reduce the oscillation of rope system.

  19. Mod-5A wind turbine generator program design report. Volume 4: Drawings and specifications, book 4

    Science.gov (United States)

    1984-01-01

    The design, development and analysis of the 7.3 MW MOD-5A wind turbine generator are documented. There are four volumes. This volume contains the drawings and specifications that were developed in preparation for building the MOD-5A wind turbine generator. This volume contains 5 books of which this is the fourth, providing drawings 47A380128 through 47A387125. In addition to the parts listing and where-used list, the logic design of the controller software and the code listing of the controller software are provided. Also given are the aerodynamic profile coordinates.

  20. Evaluation of Bulk Modulus of Oil System with Hydraulic Line

    Directory of Open Access Journals (Sweden)

    Bureček A.

    2013-04-01

    Full Text Available The aim of the paper is to experimentally measure and ealuate bulk modulus of oil/steel pipe system and oil/hose system. The measurement was performed using experimental device on the basis of a measured pressure difference depending on time. Bulk modulus is evaluated from pressure change with known flow and volume of line. Pressure rise is caused by valve closure at the line end. Furthermore, a mathematical model of the experimental device is created using Matlab SimHydraulics software. Time dependencies of pressure for the oil/steel pipe system and the oil/hose system are simulated on this mathematical model. The simulations are verified by experiment.

  1. submitter Thermal, Hydraulic, and Electromagnetic Modeling of Superconducting Magnet Systems

    CERN Document Server

    Bottura, L

    2016-01-01

    Modeling techniques and tailored computational tools are becoming increasingly relevant to the design and analysis of large-scale superconducting magnet systems. Efficient and reliable tools are useful to provide an optimal forecast of the envelope of operating conditions and margins, which are difficult to test even when a prototype is available. This knowledge can be used to considerably reduce the design margins of the system, and thus the overall cost, or increase reliability during operation. An integrated analysis of a superconducting magnet system is, however, a complex matter, governed by very diverse physics. This paper reviews the wide spectrum of phenomena and provides an estimate of the time scales of thermal, hydraulic, and electromagnetic mechanisms affecting the performance of superconducting magnet systems. The analysis is useful to provide guidelines on how to divide the complex problem into building blocks that can be integrated in a design and analysis framework for a consistent multiphysic...

  2. Hydraulic calculation of gravity transportation pipeline system for backfill slurry

    Institute of Scientific and Technical Information of China (English)

    ZHANG Qin-li; HU Guan-yu; WANG Xin-min

    2008-01-01

    Taking cemented coal gangue pipeline transportation system in Suncun Coal Mine, Xinwen Mining Group, Shandong Province, China, as an example, the hydraulic calculation approaches and process about gravity pipeline transportation of backfill slurry were investigated. The results show that the backfill capability of the backfill system should be higher than 74.4m3/h according to the mining production and backfill times in the mine; the minimum velocity (critical velocity) and practical working velocity of the backfill slurry are 1.44 and 3.82m/s, respectively. Various formulae give the maximum ratio of total length to vertical height of pipeline (L/H ratio) of the backfill system of 5.4, and then the reliability and capability of the system can be evaluated.

  3. Nonlinear, Adaptive and Fault-tolerant Control for Electro-hydraulic Servo Systems

    DEFF Research Database (Denmark)

    Choux, Martin

    Fluid power systems have been in use since 1795 with the rst hydraulic press patented by Joseph Bramah and today form the basis of many industries. Electro hydraulic servo systems are uid power systems controlled in closed-loop. They transform reference input signals into a set of movements...... in hydraulic actuators (cylinders or motors) by the means of hydraulic uid under pressure. With the development of computing power and control techniques during the last few decades, they are used increasingly in many industrial elds which require high actuation forces within limited space. However, despite...... numerous attractive properties, hydraulic systems are always subject to potential leakages in their components, friction variation in their hydraulic actuators and deciency in their sensors. These violations of normal behaviour reduce the system performances and can lead to system failure...

  4. PRESSURE COMPENSATION METHOD OF UNDERWATER HYDRAULIC SYSTEM WITH HYDRAULIC POWER UNIT BEING UNDER ATMOSPHERIC CIRCUMSTANCE AND PRESSURE COMPENSATED VALVE

    Institute of Scientific and Technical Information of China (English)

    Wang Qingfeng; Li Yanmin; Zhong Tianyu; Xu Guohua

    2005-01-01

    Based on the analysis of the-state-of-the-art of pressure compensation of underwater hydraulic systems (UHSs), a new method of pressure compensation of UHSs, whose hydraulic power unit is in the atmospheric circumstance, is proposed. And a pilot-operated relief valve with pressure compensation is realized. The pressure compensation precision is guaranteed by direct detection. Its dynamic performance and stability are improved by a dynamic feedback. Theoretical study, simulation and experiment show that the pilot-operated relief valve with pressure compensation has a fine property of tracking underwater ambient pressure and meet the requirement of underwater ambient pressure compensation.

  5. Imaging hydraulic fractures by microseismic migration for downhole monitoring system

    Science.gov (United States)

    Lin, Ye; Zhang, Haijiang

    2016-12-01

    It has been a challenge to accurately characterize fracture zones created by hydraulic fracturing from microseismic event locations. This is because generally detected events are not complete due to the associated low signal to noise ratio and some fracturing stages may not produce microseismic events even if fractures are well developed. As a result, spatial distribution of microseismic events may not well represent fractured zones by hydraulic fracturing. Here, we propose a new way to characterize the fractured zones by reverse time migration (RTM) of microseismic waveforms from some events. This is based on the fact that fractures filled with proppants and other fluids can act as strong scatterers for seismic waves. Therefore, for multi-stage hydraulic fracturing, recorded waveforms from microseismic events induced in a more recent stage may be scattered by fractured zones from previous stages. Through RTM of microseismic waveforms in the current stage, we can determine fractured zones created in previous stages by imaging area of strong scattering. We test the feasibility of this method using synthetic models with different configurations of microseismic event locations and borehole sensor positions for a 2D downhole microseismic monitoring system. Synthetic tests show that with a few events fractured zones can be directly imaged and thus the stimulated reservoir volume (SRV) can be estimated. Compared to the conventional location-based SRV estimation method, the proposed new method does not depend on the completeness of detected events and only a limited number of detected and located events are necessary for characterizing fracture distribution. For simplicity, the 2D model is used for illustrating the concept of microseismic RTM for imaging the fracture zone but the method can be adapted to real cases in the future.

  6. Effects of shifting time on pressure impact in hydraulic systems

    Institute of Scientific and Technical Information of China (English)

    ZHU Zhen-cai; CHEN Guo-an

    2005-01-01

    The limitations in existing measures for absorbing pressure impact in hydraulic systems were summarized in this paper. Based on the forming principle of the oil in a hydrostatic closed pressure chamber, the underlying reasons of the pressure impact were analyzed theoretically, the intrinsic laws that the extent of the pressure impact in hydraulic oil lines are affected by some factors, such as oil elastic modulus, oil line's geometrical volume, and changing rate of oil volume versus time etc, were discussed. Experimental investigations into pressure impact in all pressure chambers because of shifting were conducted under different working conditions by employing a special experimental system. The effects of shifting time on pressure impact were studied. A new concept with universal meaning, i.e. optimal shifting time, and its characterizing parameter and the methods of shifting at optimal shifting time were also proposed. The results show that shifting time lag △t is of rationality and maneuverablility. The higher the working pressure, the shorter the shifting time.

  7. Investigation and Development of the Thermal Preparation System of the Trailbuilder Machinery Hydraulic Actuator

    Science.gov (United States)

    Konev, V.; Polovnikov, E.; Krut, O.; Merdanov, Sh; Zakirzakov, G.

    2017-07-01

    It’s determined that the main part of trailbuilders operated in the North is the technology equipped by the hydraulic actuator. Further development of the northern territories will demand using of various means and ways machinery thermal preparation, and also the machinery of the northern fulfillment. On this basis problems in equipment operation are defined. One of the main is efficiency supplying of a hydraulic actuator. On the basis of the operating conditions’ analysis of trailbuilder hydraulic actuator operation it is determined, that under low negative temperatures the means of thermal preparation are necessary. The existing systems warm up only a hydraulic tank or warming up of the hydro equipment before the machinery operation is carried out under loading with intensive wears. Thus, with the purpose to raise the efficiency of thermal hydraulic actuator, operated far from stationary bases autonomous, energy saving, not expensive in creation and operation systems are necessary. In accordance with the analysis of means and ways of the thermal preparation of the hydraulic actuator and the thermal balance calculations of the (internal) combustion engine the system of the hydraulic actuator heating is offered and is being investigated. It contains a local hydraulic actuator warming up and the system of internal combustion engine heat utilization. Within research operation conditions of the local hydraulic actuator heating are viewed and determined, taking into account constructive changes to the local hydraulic actuator heating. Mathematical modelling of the heat technical process in the modernized hydraulic actuator is considered. As a result temperature changes of the heat-transfer and the hydraulic cylinder in time are determined. To check the theoretical researches and to define dependences on hydraulic actuator warming up, the experimental installation is made. It contains the measuring equipment, a small tank with the heat exchanger of the burnt gases

  8. "GRAY-BOX" MODELING METHOD AND PARAMETERS IDENTIFICATION FOR LARGE-SCALE HYDRAULIC SYSTEM

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    Modeling and digital simulation is an effective method to analyze the dynamic characteristics of hydraulic system. It is difficult to determine some performance parameters in the hydraulic system by means of currently used modeling methods. The "gray-box" modeling method for large-scale hydraulic system is introduced. The principle of the method, the submodels of some components and the parameters identification of components or subsystem are researched.

  9. From the Kinetic Energy Recovery System to the Thermo-Hydraulic Hybrid Motor Vehicle

    Science.gov (United States)

    Cristescu, Corneliu; Drumea, Petrin; Guta, Dragos; Dumitrescu, Catalin

    2011-12-01

    The paper presents some theoretical and experimental results obtained by the Hydraulics and Pneumatics Research Institute INOE 2000-IHP with its partners, regarding the creating of one hydraulic system able to recovering the kinetic energy of the motor vehicles, in the braking phases, and use this recovered energy in the starting and accelerating phases. Also, in the article is presented a testing stand, which was especially designed for testing the hydraulic system for recovery the kinetic energy. Through mounting of the kinetic energy recovering hydraulic system, on one motor vehicle, this vehicle became a thermo-hydraulic hybrid vehicle. Therefore, the dynamic behavior was analyzed for the whole hybrid motor vehicle, which includes the energy recovery system. The theoretical and experimental results demonstrate the possible performances of the hybrid vehicle and that the kinetic energy recovery hydraulic systems are good means to increase energy efficiency of the road motor vehicles and to decrease of the fuel consumption.

  10. Thermal Hydraulic Analysis on Containment Filtered Venting System

    Energy Technology Data Exchange (ETDEWEB)

    Bang, Young Suk; Park, Tong Kyu; Lee, Doo Yong; Lee, Byung Chul [FNC Technology Co. Ltd., Yongin (Korea, Republic of); Lee, Sang Won; Kim, Hyeong Taek [KHNP-Central Research Institute, Daejeon (Korea, Republic of)

    2014-05-15

    In this study, the thermal hydraulic conditions (e. g. pressure and flow rate) at each component have been examined and the sensitivity analysis on CFVS design parameters (e. g. water inventory, volumetric flow rate). The purpose is to know the possible range of flow conditions at each component to determine the optimum size of filtration system. GOTHIC code has been used to simulate the thermal-hydraulic behavior inside of CFVS. The behavior of flows in the CFVS has been investigated. The vessel water level and the flow rates during the CFVS operation are examined. It was observed that the vessel water level would be changed significantly due to steam condensation/thermal expansion and steam evaporation. Therefore, the vessel size and the initial water inventory should be carefully determined to keep the minimum water level required for filtration components and not to flood the components in the upper side of the vessel. It has been also observed that the volumetric flow rate is maintained during the CFVS operation, which is beneficial for pool scrubbing units. However, regarding the significant variations at the orifice downstream, careful design would be necessary.

  11. Active control of multi-input hydraulic journal bearing system

    Science.gov (United States)

    Chuang, Jen-Chen; Chen, Chi-Yin; Tu, Jia-Ying

    2016-09-01

    Because of the advantages of high accuracy, high capacity, and low friction, the development of hydrostatic bearing for machine tool receives significant attention in the last decades. The mechanics and mechanical design of hydrostatic journal bearing with capillary restrictors has been discussed in literature. However, pragmatically, the undesired loading effects of cutting force tend to result in resonance and instability of the rotor and damage the shaft during operation. Therefore, multi-input, active flow control using state feedback design is proposed in this paper. To this purpose, the proportional pressure valves are added to the hydraulic system as active control devices, and the linearised models of the bearing and valve are discussed and identified. Simulation and experimental work is conducted to verify the proposed active control and parameter identification techniques. The results show that the unbalance responses of the rotor are reduced by the proposed state feedback controller, which is able to regulate the flow pressure effectively, thus enhancing the stability and accuracy of the hydraulic journal bearing.

  12. Contaminant monitoring of hydraulic systems. The need for reliable data

    Energy Technology Data Exchange (ETDEWEB)

    Day, M.J. [Pall Europe Ltd., Portsmouth (United Kingdom)] Rinkinen, J. [Tampere University of Technology, Tampere (Finland)

    1997-12-31

    The need for both reliable operation of hydraulic and lubrication systems and long component lives has focused users to the benefits of controlling the contamination in the hydraulic fluid. Maximum operating (target) levels are being implemented as part of a condition based maintenance regime. If these are exceeded, maintenance effort is directed to correcting the rise in consummation level, and so make optimum use of resources as maintenance effort is only affected when it is necessary to do so. Fundamental to ibis aspect of condition based monitoring is the provision of accurate and reliable data in the shortest possible time. This way, corrective actions can be implemented immediately so minimising the damage to components. On-line monitoring devices are a way of achieving this and are seeing increased use, but some are affected by the condition of the fluid. Hence, there is a potential for giving incorrect data which will waste time and effort by initiating unnecessary corrective actions. A more disturbing aspect is the effect on the user of continual errors. The most likely effect would be a loss of confidence in the technique or even complete rejection of it and hence the potential benefits will be lost. This presentation explains how contaminant monitoring techniques are applied to ensure that the potential benefits of operating with clean fluids is realised. It examines the sources of error and shows how the user can interrogate the data and satisfy himself of its authenticity. (orig.) 14 refs.

  13. Power Efficiency of Steam Turbine Generator Switching into Thermal Circuit of Small and Medium Boiler Houses

    Directory of Open Access Journals (Sweden)

    R. I. Yesman

    2007-01-01

    Full Text Available The paper is devoted to the solution of the problem concerning power saving on the basis of small power-and-heat-supply plants.Power efficiency of power turbine generator switching into thermal circuit of small and medium boiler houses is justified in the paper.

  14. Fast Coordinated Control of DFIG Wind Turbine Generators for Low and High Voltage Ride-Through

    DEFF Research Database (Denmark)

    Wang, Yun; Wu, Qiuwei; Xu, Honghua

    2014-01-01

    This paper presents a fast coordinated control scheme of the rotor side converter (RSC), the DC chopper and the grid side converter (GSC) of doubly fed induction generator (DFIG) wind turbine generators (WTGs) which is to improve the low voltage ride through (LVRT) and high voltage ride through (...... verified by time domain simulations using MATLAB-Simulink....

  15. A Full-Size High-Temperature Superconducting Coil Employed in a Wind Turbine Generator Setup

    DEFF Research Database (Denmark)

    Song, Xiaowei (Andy); Mijatovic, Nenad; Kellers, Jürgen

    2017-01-01

    A full-size stationary experimental setup, which is a pole pair segment of a 2 MW high-temperature superconducting (HTS) wind turbine generator, has been built and tested under the HTS-GEN project in Denmark. The performance of the HTS coil is crucial to the setup, and further to the development ...

  16. Short Circuits of a 10-MW High-Temperature Superconducting Wind Turbine Generator

    DEFF Research Database (Denmark)

    Song, Xiaowei (Andy); Liu, Dong; Polinder, Henk

    2017-01-01

    Direct Drive high-temperature superconducting (HTS) wind turbine generators have been proposed to tackle challenges for ever increasing wind turbine ratings. Due to smaller reactances in HTS generators, higher fault currents and larger transient torques could occur if sudden short circuits take...

  17. Incorporation of Finite Element Analysis into Annual Energy Loss Estimation for Permanent Magnet Wind Turbine Generators

    DEFF Research Database (Denmark)

    Henriksen, Matthew Lee; Jensen, Bogi Bech

    2013-01-01

    Several methods of estimating the annual energy losses for wind turbine generators are investigated in this paper. Utilizing a high amount of transient simulations with motion is first demonstrated. Usage of a space-time transformation for prediction of iron losses is also explored. The methods, ...

  18. A Target Tracking System for Applications in Hydraulic Engineering

    Institute of Scientific and Technical Information of China (English)

    SHEN Qiaonan; AN Xuehui

    2008-01-01

    A new type of digital video monitoring system (DVMS) named user defined target tracking system (UDTTS), was developed based on the digital image processing (DIP) technology and the practice demands of construction site management in hydraulic engineering. The position, speed, and track of moving targets such as humans and vehicles, which could be calculated by their locations at anytime in images basically, were required for management. The proposed algorithm, dependent on the context-sensitive moving infor- mation of image sequences which was much more than one or two images provided, compared the blobs' properties in current frame to the trajectories of targets in the previous frames and then corresponded them. The processing frame rate is about 10fps with the image 240-by-120 pixels. Experimental results show that position, direction, and speed measurements have an accuracy level compatible with the manual work. The user-define process makes the UDTTS available to the public whenever appropriate.

  19. Application of optical fiber sensing technology in the hydraulic decoking monitoring system

    Science.gov (United States)

    Fan, Yun-feng; Tong, Xing-lin; Ji, Tao; Gao, Xue-qing; Zhong, Dong

    2013-09-01

    On the basis of the analysis of the current hydraulic decoking monitoring system, it is proposed that use optical fiber Bragg grating (FBG) vibration sensor and fiber Fabry-Perot (FP) acoustic sensors to online monitor vibration signal and audio signal hydraulic of the coke drum in the running state progress, analysis the vibration sensor and acoustic sensor used in the system. Based on the actual monitoring results in Sinopec Wuhan Branch , the fiber optic acoustic emission sensors is more suitable for the hydraulic decoking online monitoring system than the FBG vibration sensor ,which can more accurate monitor of hydraulic decoking.

  20. State monitoring and fault diagnosis of water-turbine generator set%水轮发电机组的状态监测和故障诊断

    Institute of Scientific and Technical Information of China (English)

    余军

    2015-01-01

    Water-turbine generator set is one of core equipment in hydropower station.The stability and safety of its running state are directly related to the safety of hydropower station.In the paper,the vibration mechanism,monitoring content and typical faults of water-turbine generator set are analyzed.On the basis,the state monitoring and fault diagnosis systems of water-turbine generator set are described.%水轮发电机组是水电厂的核心设备之一,其运行状态的稳定性与安全性直接关系到水电厂的安全。本文在分析水轮发电组振动机理、监测内容及典型故障的基础上,对水轮发电组的状态监测和故障诊断系统进行了阐述。

  1. Hydraulic External Pre-Isolator System for LIGO

    CERN Document Server

    Wen, S; Mason, K; Giaime, J; Abbott, R; Kern, J; O'Reilly, B; Bork, R; Hammond, M; Hardham, C; Lantz, B; Hua, W; Coyne, D; Traylor, G; Overmier, H; Evans, T; Hanson, J; Spjeld, O; Macinnis, M; Mailand, K; Sellers, D; Carter, K; Sarin, P

    2013-01-01

    The Hydraulic External Pre-Isolator (HEPI) is the first 6 degrees of freedom active seismic isolation system implemented at the Laser Interferometer Gravitational Wave Observatory (LIGO). Implementation was first completed at the LIGO Livingston Observatory (LLO) prior to LIGO's 5th science run, successfully cutting down the disturbance seen by LLO's suspended optics in the two most prominent seismic disturbance bands, the microseism (0.1-0.3Hz) and the anthropogenic (1-3Hz) bands, by a factor of a few to tens. The improvement in seismic isolation contributed directly to LLO's much improved duty cycle of 66.7% and LIGO's triple coincident duty cycle of 53%. We report the design, control scheme, and isolation performance of HEPI at LLO in this paper. Aided with this success, funding for incorporating HEPI into the LIGO Hanford Observatory was approved and installation is currently underway.

  2. Hydraulic external pre-isolator system for LIGO

    Science.gov (United States)

    Wen, S.; Mittleman, R.; Mason, K.; Giaime, J.; Abbott, R.; Kern, J.; O'Reilly, B.; Bork, R.; Hammond, M.; Hardham, C.; Lantz, B.; Hua, W.; Coyne, D.; Traylor, G.; Overmier, H.; Evans, T.; Hanson, J.; Spjeld, O.; Macinnis, M.; Mailand, K.; Ottaway, D.; Sellers, D.; Carter, K.; Sarin, P.

    2014-12-01

    The hydraulic external pre-isolator (HEPI) is the first six degrees of freedom active seismic isolation system implemented at the Laser Interferometer Gravitational Wave Observatory (LIGO). Implementation was first completed at the LIGO Livingston Observatory (LLO) prior to LIGO's fifth science run7, successfully cutting down the disturbance seen by LLO's suspended optics in the two most prominent seismic disturbance bands, the microseism (0.1-0.3 Hz) and the anthropogenic (1-3 Hz) bands, by a factor of a few to tens. The improvement in seismic isolation contributed directly to LLO's much improved duty cycle of 66.7% and LIGO's triple coincident duty cycle of 53%. We report the design, control scheme, and isolation performance of HEPI at LLO in this paper. Aided by this success, funding for incorporating HEPI into the LIGO Hanford Observatory was approved and installation is currently underway.

  3. Design of PI Controllers for Hydraulic Control Systems

    Directory of Open Access Journals (Sweden)

    LJubiša Dubonjić

    2013-01-01

    Full Text Available The paper proposes a procedure for design of PI controllers for hydraulic systems with long transmission lines which are described by models of high order. Design is based on the combination of the IE criterion and engineering specifications (settling time and relative stability as well as on the application of D-decomposition. In comparison with some known results, the method is of graphical character, and it is very simple (solving nonlinear algebraic equations is eliminated. The paper presents the algorithm of software procedure for design of the controller. The method is compared with other methods at the level of simulation, and its superiority is shown. By applying the Nyquist criterion, it is shown that the method possesses robustness in relation to non modelled dynamics.

  4. Hydraulic Press with LS System for Modelling of Plastic Working Operations

    Directory of Open Access Journals (Sweden)

    Janusz Pluta

    2008-03-01

    Full Text Available At first, the paper describes destination of the presented hydraulic press. Next, the substance of load sensing (LS systems’ operation was introduced, and electro-hydraulic system of this type, installed in laboratory hydraulic press, was described. The control and measurement circuit of the device was also described, and exemplary test results obtained during plastic working operations on soft non-ferrous alloys were presented.

  5. Hydraulic Systems with Tap Water versus Bio-oils

    DEFF Research Database (Denmark)

    Conrad, Finn

    1997-01-01

    Deals with the advantages of using pure tap water hydraulics versus bio-oils for suiteable applications. Focus is in particular on food processing industry.......Deals with the advantages of using pure tap water hydraulics versus bio-oils for suiteable applications. Focus is in particular on food processing industry....

  6. Tap Water Hydraulic Systems for Medium Power Applications

    DEFF Research Database (Denmark)

    Conrad, Finn; Adelstorp, Anders

    1998-01-01

    Presentation of new range of developed tap water hydraulic componets and applications for medium power up to 4 kW and 50 bar.......Presentation of new range of developed tap water hydraulic componets and applications for medium power up to 4 kW and 50 bar....

  7. Contamination Control and Monitoring of Tap Water as Fluid in Industrial Tap Water Hydraulic Systems

    DEFF Research Database (Denmark)

    Conrad, Finn; Adelstorp, Anders

    1998-01-01

    Presentation of results and methods addressed to contamination control and monitoring of tap water as fluid in tap water hydraulic systems.......Presentation of results and methods addressed to contamination control and monitoring of tap water as fluid in tap water hydraulic systems....

  8. Fault Diagnosis for Nonlinear Hydraulic-Mechanical Drilling Pipe Handling System

    DEFF Research Database (Denmark)

    Choux, Martin; Blanke, Mogens

    2011-01-01

    Leakage and increased friction are common faults in hydraulic cylinders that can have serious consequences if they are not detected at early stage. In this paper, the design of a fault detector for a nonlinear hydraulic mechanical system is presented. By considering the system in steady state, tw...

  9. Contamination Control and Monitoring of Tap Water as Fluid in Industrial Tap Water Hydraulic Systems

    DEFF Research Database (Denmark)

    Conrad, Finn; Adelstorp, Anders

    1998-01-01

    Presentation of results and methods addressed to contamination control and monitoring of tap water as fluid in tap water hydraulic systems.......Presentation of results and methods addressed to contamination control and monitoring of tap water as fluid in tap water hydraulic systems....

  10. 49 CFR 570.57 - Air brake system and air-over-hydraulic brake subsystem.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 6 2010-10-01 2010-10-01 false Air brake system and air-over-hydraulic brake... STANDARDS Vehicles With GVWR of More Than 10,000 Pounds § 570.57 Air brake system and air-over-hydraulic brake subsystem. The following requirements apply to vehicles with air brake and...

  11. Understanding Dynamic Model Validation of a Wind Turbine Generator and a Wind Power Plant: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Muljadi, Eduard; Zhang, Ying Chen; Gevorgian, Vahan; Kosterev, Dmitry

    2016-09-01

    Regional reliability organizations require power plants to validate the dynamic models that represent them to ensure that power systems studies are performed to the best representation of the components installed. In the process of validating a wind power plant (WPP), one must be cognizant of the parameter settings of the wind turbine generators (WTGs) and the operational settings of the WPP. Validating the dynamic model of a WPP is required to be performed periodically. This is because the control parameters of the WTGs and the other supporting components within a WPP may be modified to comply with new grid codes or upgrades to the WTG controller with new capabilities developed by the turbine manufacturers or requested by the plant owners or operators. The diversity within a WPP affects the way we represent it in a model. Diversity within a WPP may be found in the way the WTGs are controlled, the wind resource, the layout of the WPP (electrical diversity), and the type of WTGs used. Each group of WTGs constitutes a significant portion of the output power of the WPP, and their unique and salient behaviors should be represented individually. The objective of this paper is to illustrate the process of dynamic model validations of WTGs and WPPs, the available data recorded that must be screened before it is used for the dynamic validations, and the assumptions made in the dynamic models of the WTG and WPP that must be understood. Without understanding the correct process, the validations may lead to the wrong representations of the WTG and WPP modeled.

  12. System and method for controlling hydraulic pressure in electro-hydraulic valve actuation systems

    Energy Technology Data Exchange (ETDEWEB)

    Brennan, Daniel G; Marriott, Craig D; Cowgill, Joel; Wiles, Matthew A; Patton, Kenneth James

    2014-09-23

    A control system for an engine includes a first lift control module and a second lift control module. The first lift control module increases lift of M valves of the engine to a predetermined valve lift during a period before disabling or re-enabling N valves of the engine. The second lift control module decreases the lift of the M valves to a desired valve lift during a period after enabling or re-enabling the N valves of the engine, wherein N and M are integers greater than or equal to one.

  13. Variable speed generator application on the MOD-5A 7.3 mW wind turbine generator

    Science.gov (United States)

    Barton, Robert S.

    1995-01-01

    This paper describes the application of a Scherbiustat type variable speed subsystem in the MOD-5A Wind Turbine Generator. As designed by General Electric Company, Advanced Energy Programs Department, under contract DEN3-153 with NASA Lewis Research Center and DOE, the MOD-5A utilizes the subsystem for both starting assistance in a motoring mode and generation in a controlled airgap torque mode. Reactive power control is also provided. The Scherbiustat type arrangement of a wound rotor machine with a cycloconverter in the rotor circuit was selected after an evaluation of variable speed technologies that followed a system evaluation of drivetrain cost and risk. The paper describes the evaluation factors considered, the results of the evaluations and summarizes operating strategy and performance simulations.

  14. ROBUST CONTROL OF AN ELECTRO-HYDRAULIC PROPORTIONAL SPEED CONTROL SYSTEM WITH A SINGLE-ROD HYDRAULIC ACTUATOR

    Institute of Scientific and Technical Information of China (English)

    Yang Jian; Xu Bing; Yang Huayong

    2005-01-01

    A robust control algorithm is proposed to focus on the non-linearity and parameters'uncertainties of an electro-hydraulic proportional speed control system (EHPSCS) with a single-rod hydraulic actuator. The robust controller proposed does not need to design stable compensator in advance, is simple in design and has large scope of uncertainty applications. The feedback gains of the robust controller proposed are small, so it is easily implemented in engineering applications.Experimental research on the speed control under the different conditions is carried out for an EHPSCS. Experimental results show that the robust controller proposed has better robustness subject to parametric uncertainties, and adaptability of parameters' variation of control system itself and plant parameter variation.

  15. Quantifying Pilot Contribution to Flight Safety during Hydraulic Systems Failure

    Science.gov (United States)

    Kramer, Lynda J.; Etherington, Timothy J.; Bailey, Randall E.; Kennedy, Kellie D.

    2017-01-01

    Accident statistics cite the flight crew as a causal factor in over 60% of large transport aircraft fatal accidents. Yet, a well-trained and well-qualified pilot is acknowledged as the critical center point of aircraft systems safety and an integral safety component of the entire commercial aviation system. The latter statement, while generally accepted, cannot be verified because little or no quantitative data exists on how and how many accidents/incidents are averted by crew actions. A joint NASA/FAA high-fidelity motion-base human-in-the-loop test was conducted using a Level D certified Boeing 737-800 simulator to evaluate the pilot's contribution to safety-of-flight during routine air carrier flight operations and in response to aircraft system failures. To quantify the human's contribution, crew complement (two-crew, reduced crew, single pilot) was used as the independent variable in a between-subjects design. This paper details the crew's actions, including decision-making, and responses while dealing with a hydraulic systems leak - one of 6 total non-normal events that were simulated in this experiment.

  16. The design and practice of giant hydro-turbine generating units of Three Gorges Project%The design and practice of giant hydro-turbine generating units of Three Gorges Project

    Institute of Scientific and Technical Information of China (English)

    Shao Jianxiong; Liu Jingwang; Yuan Dafu

    2011-01-01

    The main technical problems that should be considered in the design of hydro-turbine generating units of Three Gorges Project (TGP) are analyzed;the key technical researches performed are summarized, and the parameters of hydro-turbine generating units are optimized through the study on key technical problems. The unit operation indicates that the performance of the hydro-turbine generating units is excellent, and the units can operate in a safe, stable and highly efficient mode for a long term. Therefore, it is verified effectively that the general technical design of units is scientific and rational.

  17. Development of realistic thermal-hydraulic system analysis codes ; development of thermal hydraulic test requirements for multidimensional flow modeling

    Energy Technology Data Exchange (ETDEWEB)

    Suh, Kune Yull; Yoon, Sang Hyuk; Noh, Sang Woo; Lee, Il Suk [Seoul National University, Seoul (Korea)

    2002-03-01

    This study is concerned with developing a multidimensional flow model required for the system analysis code MARS to more mechanistically simulate a variety of thermal hydraulic phenomena in the nuclear stem supply system. The capability of the MARS code as a thermal hydraulic analysis tool for optimized system design can be expanded by improving the current calculational methods and adding new models. In this study the relevant literature was surveyed on the multidimensional flow models that may potentially be applied to the multidimensional analysis code. Research items were critically reviewed and suggested to better predict the multidimensional thermal hydraulic behavior and to identify test requirements. A small-scale preliminary test was performed in the downcomer formed by two vertical plates to analyze multidimensional flow pattern in a simple geometry. The experimental result may be applied to the code for analysis of the fluid impingement to the reactor downcomer wall. Also, data were collected to find out the controlling parameters for the one-dimensional and multidimensional flow behavior. 22 refs., 40 figs., 7 tabs. (Author)

  18. Model simplification and optimization of a passive wind turbine generator

    OpenAIRE

    Sareni, Bruno; Abdelli, Abdenour; Roboam, Xavier; Tran, Duc-Hoan

    2009-01-01

    International audience; In this paper, the design of a "low cost full passive structure" of wind turbine system without active electronic part (power and control) is investigated. The efficiency of such device can be obtained only if the design parameters are mutually adapted through an optimization design approach. For this purpose, sizing and simulating models are developed to characterize the behavior and the efficiency of the wind turbine system. A model simplification approach is present...

  19. Development of an Advanced Hydraulic Fracture Mapping System

    Energy Technology Data Exchange (ETDEWEB)

    Norm Warpinski; Steve Wolhart; Larry Griffin; Eric Davis

    2007-01-31

    The project to develop an advanced hydraulic fracture mapping system consisted of both hardware and analysis components in an effort to build, field, and analyze combined data from tiltmeter and microseismic arrays. The hardware sections of the project included: (1) the building of new tiltmeter housings with feedthroughs for use in conjunction with a microseismic array, (2) the development of a means to use separate telemetry systems for the tilt and microseismic arrays, and (3) the selection and fabrication of an accelerometer sensor system to improve signal-to-noise ratios. The analysis sections of the project included a joint inversion for analysis and interpretation of combined tiltmeter and microseismic data and improved methods for extracting slippage planes and other reservoir information from the microseisms. In addition, testing was performed at various steps in the process to assess the data quality and problems/issues that arose during various parts of the project. A prototype array was successfully tested and a full array is now being fabricated for industrial use.

  20. Correlation Dimension in Fault Diagnosis of 600 MW Steam Turbine Generator

    Institute of Scientific and Technical Information of China (English)

    YAO Bao-heng; YANG Xia-ju; TONG De-chun; CHEN Zhao-neng

    2005-01-01

    GP algorithm of correlation dimension computation is ameliorated which overcomes the shortage of traditional one. Improved process of GP algorithm takes the influence of temporal correlative pairs of points on correlation dimension into account and promotes the computational efficiency prominently. Iterative SVD method is applied to remove the influence of noise on the result of correlation dimension. The faults of steam flow turbulence and oil film disturbance which occur in 600MW Steam Turbine Generator are analyzed and whose correlation dimensions are computed. More distinct quantitative index than FFT is gained to distinguish two faults and it's of little importance to apply correlation dimension to study the influence of various factors on steam flow turbulence fault for nonexistence of convergent floor in correlation integral curve, which presents a new way to learn the operational function of large capacity steam turbine generator and carry out comprehensive condition monitoring.

  1. Short Circuits of a 10 MW High Temperature Superconducting Wind Turbine Generator

    DEFF Research Database (Denmark)

    Song, Xiaowei (Andy); Liu, Dong; Polinder, Henk

    2016-01-01

    Direct drive high temperature superconducting (HTS) wind turbine generators have been proposed to tackle challenges for ever increasing wind turbine ratings. Due to smaller reactances in HTS generators, higher fault currents and larger transient torques could occur if sudden short circuits happen...... at generator terminals. In this paper, a finite element model that couples magnetic fields and the generator’s equivalent circuits is developed to simulate short circuit faults. Afterwards, the model is used to study the transient performance of a 10 MW HTS wind turbine generator under four different short...... circuits, i.e., three-phase, phase-phase clear of earth, phase-phase-earth, and phase-earth. The stator current, fault torque, and field current under each short circuit scenario are examined. Also included are the forces experienced by the field winding under short circuits. The results show...

  2. Mod 1 wind turbine generator failure modes and effects analysis

    Science.gov (United States)

    1979-01-01

    A failure modes and effects analysis (FMEA) was directed primarily at identifying those critical failure modes that would be hazardous to life or would result in major damage to the system. Each subsystem was approached from the top down, and broken down to successive lower levels where it appeared that the criticality of the failure mode warranted more detail analysis. The results were reviewed by specialists from outside the Mod 1 program, and corrective action taken wherever recommended.

  3. Adaptive Control System of Hydraulic Pressure Based on The Mathematical Modeling

    Science.gov (United States)

    Pilipenko, A. V.; Pilipenko, A. P.; Kanatnikov, N. V.

    2016-04-01

    In this paper, the authors highlight the problem of replacing an old heavy industrial equipment, and offer the replacement of obsolete control systems on the modern adaptive control system, which takes into account changes in the hydraulic system of the press and compensates them with a corrective action. The proposed system can reduce a water hammer and thereby increase the durability of the hydraulic system and tools.

  4. Mod-5A wind turbine generator program design report. Volume 4: Drawings and specifications, book 3

    Science.gov (United States)

    1984-01-01

    The design, development and analysis of the 7.3 MW MOD-5A wind turbine generator is documented. This volume contains the drawings and specifications developed for the final design. This volume is divided into 5 books of which this is the third, containing drawings 47A380074 through 47A380126. A full breakdown parts listing is provided as well as a where used list.

  5. Design study of a 10 MW MgB2 superconductor direct drive wind turbine generator

    DEFF Research Database (Denmark)

    Abrahamsen, Asger Bech; Magnusson, Niklas; Liu, Dong

    A design study of a 10 MW direct drive wind turbine generator based on MgB2 superconducting wires is presented and the cost of the active materials of the generator is estimated to be between 226 €/kW and 84 €/kw, which is lower than the threshold values of 300 €/kW of the INNWIND.EU project. A n...

  6. EMTP Simulation Model of a Wind Turbine Generator using Induction Generator

    Science.gov (United States)

    Tokunaga, Yoshitaka; Iio, Naotaka; Tanomura, Kenichi; Shinohara, Hirofumi

    This paper presents an EMTP simulation model for the wind turbine generator using induction generator. This model was developed to add the model of a wind turbine portion to the precision model using the standard specification data and operation data of induction generator. It verified that the inrush current at starting and the residual voltage at islanding state were analyzed, and measured data could be reproduced by this model.

  7. Numerical simulation on a throttle governing system with hydraulic butterfly valves in a marine environment

    Science.gov (United States)

    Wan, Hui-Xiong; Fang, Jun; Huang, Hui

    2010-12-01

    Hydraulic butterfly valves have been widely applied in marine engineering because of their large switching torque, low pressure loss and suitability for large and medium diameter pipelines. Due to control problems resulting from switching angular speeds of the hydraulic butterfly valve, a throttle-governing control mode has been widely adopted, and detailed analysis has been carried out worldwide on the structural principle concerning speed-regulation and the load torque on the shaft while opening or closing a hydraulic butterfly valve. However relevant reports have yet been published on the change law, the error and the influencing factors of the rotational angular velocity of the hydraulic butterfly valve while opening and closing. In this article, research was based on some common specifications of a hydraulic butterfly valve with a symmetrical valve flap existing in a marine environment. The throttle governing system supplied by the accumulator to achieve the switching of the hydraulic control valve was adopted, and the mathematical models of the system were established in the actual conditions while the numerical simulations took place. The simulation results and analysis show that the rotational angular velocity and the error of the hydraulic butterfly valve while switching is influenced greatly by the drainage amount of the accumulator, resulting in pressure loss in the pipeline, the temperature of hydraulic medium and the load of the hydraulic butterfly valve. The simulation results and analysis provide a theoretical basis for the choice of the total capacity of the accumulator and pipeline diameters in a throttle governing system with a hydraulic butterfly valve. It also determines the type and specification of the hydraulic butterfly valve and the design of motion parameters of the transported fluid.

  8. Propagation of Partial Discharge and Noise Pulses in Turbine Generators

    DEFF Research Database (Denmark)

    Henriksen, Mogens; Stone, G. C.; Kurtz, M.

    1986-01-01

    Changes with time in the partial discharge (PD) activity originating in a generator stator's insulation system provide information about the electrical integrity of the stator winding. It is desirable to measure PD during normal service to minimize costs. To do this successfully, the influence...... of electrical interference must be reduced. Tests are reported which characterize the nature of discharge and noise pulses when using capacitive couplers mounted on each of the phase leads and an RF current transformer mounted on the neutral lead for signal detection. Significant differences between PD...

  9. Wind turbine/generator set and method of making same

    Science.gov (United States)

    Bevington, Christopher M.; Bywaters, Garrett L.; Coleman, Clint C.; Costin, Daniel P.; Danforth, William L.; Lynch, Jonathan A.; Rolland, Robert H.

    2013-06-04

    A wind turbine comprising an electrical generator that includes a rotor assembly. A wind rotor that includes a wind rotor hub is directly coupled to the rotor assembly via a simplified connection. The wind rotor and generator rotor assembly are rotatably mounted on a central spindle via a bearing assembly. The wind rotor hub includes an opening having a diameter larger than the outside diameter of the central spindle adjacent the bearing assembly so as to allow access to the bearing assembly from a cavity inside the wind rotor hub. The spindle is attached to a turret supported by a tower. Each of the spindle, turret and tower has an interior cavity that permits personnel to traverse therethrough to the cavity of the wind rotor hub. The wind turbine further includes a frictional braking system for slowing, stopping or keeping stopped the rotation of the wind rotor and rotor assembly.

  10. Heat exchange and hydraulic resistance of compact laser mirror cooling systems

    Science.gov (United States)

    Shanin, Yu. I.; Shanin, O. I.

    2013-07-01

    The hydraulic resistance of cooling systems for laser mirrors and the heat exchange in them have been investigated experimentally. The data obtained have been generalized for several cooling systems with different porous elements.

  11. HYDRAULIC ACTIVE GUIDE ROLLER SYSTEM FOR HIGH-SPEED ELEVATOR BASED ON FUZZY CONTROLLER

    Institute of Scientific and Technical Information of China (English)

    FENG Yonghui; ZHANG Jianwu

    2007-01-01

    Increase of elevator speed brings about amplified vibrations of high-speed elevator. In order to reduce the horizontal vibrations of high-speed elevator, a new type of hydraulic active guide roller system based on fuzzy logic controller is developed. First the working principle of the hydraulic guide system is introduced, then the dynamic model of the horizontal vibrations for elevator cage with active guide roller system and the mathematical model of the hydraulic system are given. A fuzzy logic controller for the hydraulic system is designed to control the hydraulic actuator. To improve the control performance, preview compensation for the controller is provided. Finally, simulation and experiments are executed to verify the hydraulic active guide roller system and the control strategy. Both the simulation and experimental results indicate that the hydraulic active guide roller system can reduce the horizontal vibrations of the elevator effectively and has better effects than the passive one, and the fuzzy logic controller with preview compensation can give superior control performance.

  12. A Review on Mechanical and Hydraulic System Modeling of Excavator Manipulator System

    Directory of Open Access Journals (Sweden)

    Jiaqi Xu

    2016-01-01

    Full Text Available A recent trend in the development of off-highway construction equipment, such as excavators, is to use a system model for model-based system design in a virtual environment. Also, control system design for advanced excavation systems, such as automatic excavators and hybrid excavators, requires system models in order to design and simulate the control systems. Therefore, modeling of an excavator is an important first step toward the development of advanced excavators. This paper reviews results of recent studies on the modeling of mechanical and hydraulic subsystems for the simulation, design, and control development of excavator systems. Kinematic and dynamic modeling efforts are reviewed first. Then, various approaches in the hydraulic system modeling are presented.

  13. Thermal hydraulics of accelerator driven system windowless targets

    Directory of Open Access Journals (Sweden)

    Bruno ePanella

    2015-07-01

    Full Text Available The study of the fluid dynamics of the windowless spallation target of an Accelerator Driven System (ADS is presented. Several target mockup configurations have been investigated: the first one was a symmetrical target, that was made by two concentric cylinders, the other configurations are not symmetrical. In the experiments water has been used as hydraulic equivalent to lead-bismuth eutectic fluid. The experiments have been carried out at room temperature and flow rate up to 24 kg/s. The fluid velocity components have been measured by an ultrasound technique. The velocity field of the liquid within the target region either for the approximately axial-symmetrical configuration or for the not symmetrical ones as a function of the flow rate and the initial liquid level is presented. A comparison of experimental data with the prediction of the finite volume FLUENT code is also presented. Moreover the results of a 2D-3D numerical analysis that investigates the effect on the steady state thermal and flow fields due to the insertion of guide vanes in the windowless target unit of the EFIT project ADS nuclear reactor are presented, by analysing both the cold flow case (absence of power generation and the hot flow case (nominal power generation inside the target unit.

  14. Engineered Barrier Systems Thermal-Hydraulic-Chemical Column Test Report

    Energy Technology Data Exchange (ETDEWEB)

    W.E. Lowry

    2001-12-13

    The Engineered Barrier System (EBS) Thermal-Hydraulic-Chemical (THC) Column Tests provide data needed for model validation. The EBS Degradation, Flow, and Transport Process Modeling Report (PMR) will be based on supporting models for in-drift THC coupled processes, and the in-drift physical and chemical environment. These models describe the complex chemical interaction of EBS materials, including granular materials, with the thermal and hydrologic conditions that will be present in the repository emplacement drifts. Of particular interest are the coupled processes that result in mineral and salt dissolution/precipitation in the EBS environment. Test data are needed for thermal, hydrologic, and geochemical model validation and to support selection of introduced materials (CRWMS M&O 1999c). These column tests evaluated granular crushed tuff as potential invert ballast or backfill material, under accelerated thermal and hydrologic environments. The objectives of the THC column testing are to: (1) Characterize THC coupled processes that could affect performance of EBS components, particularly the magnitude of permeability reduction (increases or decreases), the nature of minerals produced, and chemical fractionation (i.e., concentrative separation of salts and minerals due to boiling-point elevation). (2) Generate data for validating THC predictive models that will support the EBS Degradation, Flow, and Transport PMR, Rev. 01.

  15. Evaluation of Linear and Non-Linear Control Schemes Applied to a Hydraulic Servo System

    DEFF Research Database (Denmark)

    Andersen, Torben Ole; Hansen, Michael Rygaard; Pedersen, Henrik Clemmensen

    2005-01-01

    Due to the innovation of low-cost electronics such as sensors, microcontrollers etc., the focus on highperformance motion control is increasing. This work focuses on position control of single-input single-output hydraulic servo-systems in general. A hydraulically actuated robotic manipulator...... is used as test facility acting as load for the hydraulic servo system. An experimentally verified non-linear model of the complete system has been developed and used to design a series of both linear and non-linear control schemes. The controllers from each category are compared with respect to design...

  16. Specific features pertinent to modeling of hydraulic systems containing control members

    Science.gov (United States)

    Tverskoy, Yu. S.; Marshalov, E. D.

    2014-09-01

    The theoretical principles applied for modeling of hydraulic systems fitted with control members that allow a hydraulic line's specific features (topology) to be taken into account are considered. Such modeling opens the possibility to predict the actual flow (throttling) characteristics at early design stages and timely introduce the appropriate corrections in pipeline topology. The modeling problem is solved with the use of generalized thermodynamic analysis methods. The mathematical models of hydraulic systems containing control members are brought to the level of real-time simulation models, which can be used for setting up computation experiments for achieving better performance of automatic closed-loop control systems.

  17. RESEARCH ON STABILITY AND MINIMUM ORIFICE AREA OF HYDRAULIC SERVO POSITION CONTROL SYSTEM

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    This paper reports results of research on the stability of a hydraulic servo position system using generalization pulse code modulation (GPCM) and common on/off valves for hydraulic servo control. The de- scribing function was first used to analyze the system′s stability, and based on the nonlinear theory, an equation calculating the minimum orifice area of GPCM valves was derived by applying results of analysis on the stability of the GPCM control system. In the end, aimed at developing a hydraulic servo position system to be used in a paint robot, simulation and experiment were carried out. The results show that the theoretical conclusions accorded with practical results.

  18. Powered orthosis and attachable power-assist device with Hydraulic Bilateral Servo System.

    Science.gov (United States)

    Ohnishi, Kengo; Saito, Yukio; Oshima, Toru; Higashihara, Takanori

    2013-01-01

    This paper discusses the developments and control strategies of exoskeleton-type robot systems for the application of an upper limb powered orthosis and an attachable power-assist device for care-givers. Hydraulic Bilateral Servo System, which consist of a computer controlled motor, parallel connected hydraulic actuators, position sensors, and pressure sensors, are installed in the system to derive the joint motion of the exoskeleton arm. The types of hydraulic component structure and the control strategy are discussed in relation to the design philosophy and target joints motions.

  19. Development and industrial tests of the first LNG hydraulic turbine system in China

    Directory of Open Access Journals (Sweden)

    Jie Chen

    2016-10-01

    Full Text Available The cryogenic hydraulic turbine can be used to replace the conventional J–T valve for LNG or mixed refrigerant throttling and depressurization in a natural gas liquefaction plant. This advanced technology is not only to enhance the efficiency of the liquefaction plant, but to usher a new trend in the development of global liquefaction technologies. China has over 136 liquefaction plants, but the cryogenic hydraulic turbines have not been deployed in industrial utilization. In addition, these turbines cannot be manufactured domestically. In this circumstance, through working on the key technologies for LNG hydraulic turbine process & control system development, hydraulic model optimization design, structure design and manufacturing, the first domestic cryogenic hydraulic turbine with a flow rate of 40 m3/h was developed to recover the pressure energy from the LNG of cold box. The turbine was installed in the CNOOC Zhuhai Natural Gas Liquefaction Plant for industrial tests under multiple working conditions, including start-stop, variable flow rates and variable rotation speeds. Test results show that the domestic LNG cryogenic hydraulic turbine has satisfactory mechanical and operational performances at low temperatures as specified in design. In addition, the process & control system and frequency-conversion power-generation system of the turbine system are designed properly to automatically and smoothly replace the existing LNG J–T valve. As a result, the domestic LNG cryogenic hydraulic turbine system can improve LNG production by an average of 2% and generate power of 8.3 kW.

  20. Use of single chip microcomputer in hydraulic digital adaptive control system

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Presents a one-grade adaptive controller with one reference model which is built according to δ MRACS adaptive control theorv and used to control an actual high-order hydraulic system, and the whole hard ware system used, which includes a AT89C51 single chip microcomputer, 74Ls373 flip-latch, 6116 store, eight-bit ADC0809, and so on, and the satisfactory results obtained in study on hydraulic control system.

  1. Research on the improvement of nuclear safety -Thermal hydraulic tests for reactor safety system-

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Moon Kee; Park, Choon Kyung; Yang, Sun Kyoo; Chun, Se Yung; Song, Chul Hwa; Jun, Hyung Kil; Jung, Heung Joon; Won, Soon Yun; Cho, Yung Roh; Min, Kyung Hoh; Jung, Jang Hwan; Jang, Suk Kyoo; Kim, Bok Deuk; Kim, Wooi Kyung; Huh, Jin; Kim, Sook Kwan; Moon, Sang Kee; Lee, Sang Il [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1995-06-01

    The present research aims at the development of the thermal hydraulic verification test technology for the safety system of the conventional and advanced nuclear power plant and the development of the advanced thermal hydraulic measuring techniques. In this research, test facilities simulating the primary coolant system and safety system are being constructed for the design verification tests of the existing and advanced nuclear power plant. 97 figs, 14 tabs, 65 refs. (Author).

  2. Thermal-Hydraulic Experiments and Modelling for Advanced Nuclear Reactor Systems

    Energy Technology Data Exchange (ETDEWEB)

    Song, C. H.; Chung, M. K.; Park, C. K. and others

    2005-04-15

    The objectives of the project are to study thermal hydraulic characteristics of reactor primary system for the verification of the reactor safety and to evaluate new safety concepts of new safety design features. To meet the research goal, several thermal hydraulic experiments were performed and related thermal hydraulic models were developed with the experimental data which were produced through the thermal hydraulic experiments. Followings are main research topics; - Multi-dimensional Phenomena in a Reactor Vessel Downcomer - Condensation Load and Thermal Mixing in the IRWST - Development of Thermal-Hydraulic Models for Two-Phase Flow - Development of Measurement Techniques for Two-Phase Flow - Supercritical Reactor T/H Characteristics Analysis From the above experimental and analytical studies, new safety design features of the advanced power reactors were verified and lots of the safety issues were also resolved.

  3. Fundamental characteristics of oil hydraulic servo system; Yuatsu servo kei no kihonteki tokusei

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, K. [Musashi Instsitute of Technology, Tokyo (Japan)

    1999-05-15

    Since a hydraulic servo generates a great force very quickly upon receiving a small force or electric power, it is widely used in machine tools, construction machinery, and vehicles. The basics are that a high pressure fluid generated by a hydraulic pump is controlled by a valve and forwarded to a hydraulic cylinder or rotary hydraulic motor for the generation of a parallel motion or rotation. For the control of the valve, there are the mechanical-hydraulic servo mechanism in which the valve is operated by mechanical linkage and the electrical-hydraulic servo system in which the valve is driven by electric signals. It is difficult to perform sophisticated control such as optimum control by use of the mechanical method while the electrical method may be applied to such sophisticated control. In the former, a hydraulic servo system is constructed using mechanical feedback. It is simpler and more reliable than the other, and is used for the control of aircraft wings and for the steering of ships and vehicles. Using the latter, electric signals low in power are amplified in a servo amplifier before being sent to the servo valve. For the driving of the spool in a servo valve, the nozzle and flapper system is widely in use. (NEDO)

  4. Numerical analysis of fracture propagation during hydraulic fracturing operations in shale gas systems

    Science.gov (United States)

    Researchers used the TOUGH+ geomechanics computational software and simulation system to examine the likelihood of hydraulic fracture propagation (the spread of fractures) traveling long distances to connect with drinking water aquifers.

  5. Knowledge-based Adaptive Tracking Control of Electro-hydraulic Actuator Systems

    DEFF Research Database (Denmark)

    Hansen, Poul Erik

    1997-01-01

    The paper deal with intelligent motion control and electro-hydraulic actuator systems for multiaxis machynes and robots.The research results are from the IMCIA research Programme supported by the Danish Technical Research Council, STVF.......The paper deal with intelligent motion control and electro-hydraulic actuator systems for multiaxis machynes and robots.The research results are from the IMCIA research Programme supported by the Danish Technical Research Council, STVF....

  6. A quantitative analysis of hydraulic interaction processes in stream-aquifer systems.

    Science.gov (United States)

    Wang, Wenke; Dai, Zhenxue; Zhao, Yaqian; Li, Junting; Duan, Lei; Wang, Zhoufeng; Zhu, Lin

    2016-01-28

    The hydraulic relationship between the stream and aquifer can be altered from hydraulic connection to disconnection when the pumping rate exceeds the maximum seepage flux of the streambed. This study proposes to quantitatively analyze the physical processes of stream-aquifer systems from connection to disconnection. A free water table equation is adopted to clarify under what conditions a stream starts to separate hydraulically from an aquifer. Both the theoretical analysis and laboratory tests have demonstrated that the hydraulic connectedness of the stream-aquifer system can reach a critical disconnection state when the horizontal hydraulic gradient at the free water surface is equal to zero and the vertical is equal to 1. A boundary-value problem for movement of the critical point of disconnection is established for an analytical solution of the inverted water table movement beneath the stream. The result indicates that the maximum distance or thickness of the inverted water table is equal to the water depth in the stream, and at a steady state of disconnection, the maximum hydraulic gradient at the streambed center is 2. This study helps us to understand the hydraulic phenomena of water flow near streams and accurately assess surface water and groundwater resources.

  7. Co-Simulation Research of the Mechanical-Hydraulic-Control Coupling System of ITER Tractor

    Science.gov (United States)

    Yang, Xiuqing; Luo, Minzhou; Mei, Tao; Yao, Damao

    2009-06-01

    The virtual prototyping models of the mechanical, hydraulic and control system of the ITER tractor were built with CATIA, ADAMS and MATLAB/Simulink respectively according to its heavy load and high precision characteristics, and the data transfer between the different models was accomplished by the integration interface between different software. Consequently the virtual experimental platform for the multi-disciplinary co-simulation was established. A co-simulation study of the mechanical-hydraulic-control coupling system of the ITER tractor was carried out. The synchronization servo control of parallel hydraulic cylinders was implemented, and the tracking control of the preconcerted trajectory of the hydraulic cylinders was realized on the established experimental platform. This paper presents the optimization design and technology rebuilding for the complicated coupling system with its theoretic foundation and co-simulation virtual experimental platform.

  8. Co-Simulation Research of the Mechanical-Hydraulic-Control Coupling System of ITER Tractor

    Institute of Scientific and Technical Information of China (English)

    YANG Xiuqing; LUO Minzhou; MEI Tao; YAO Damao

    2009-01-01

    The virtual prototyping models of the mechanical, hydraulic and control system of the ITER tractor were built with CATIA, ADAMS and MATLAB/Simulink respectively according to its heavy load and high precision characteristics, and the data transfer between the different models was accomplished by the integration interface between different software. Consequently the virtual experimental platform for the multi-disciplinary co-simulation was established. A co-simulation study of the mechanical-hydraulic-control coupling system of the ITER tractor was carried out. The synchronization servo control of parallel hydraulic cylinders was implemented, and the tracking control of the preconcerted trajectory of the hydraulic cylinders was realized on the established experimental platform. This paper presents the optimization design and technology rebuilding for the complicated coupling system with its theoretic foundation and co-simulation virtual experimental platform.

  9. Continuous rotary motor electro-hydraulic servo system based on the improved repetitive controller

    Institute of Scientific and Technical Information of China (English)

    WANG Xiao-jing; JIANG ji-hai; LI Shang-yi

    2010-01-01

    In order to suppress the periodic interference of the continuous rotary electro-hydraulic servo motor,this paper makes the motor tracking the periodic signals with high accuracy,and improves the influence of friction interference to the performance of continuous rotary electro-hydraulic servo motor.The mathematic model of the electro-hydraulic position servo system of the continuous rotary motor was established,and the compound control method was adopted based on the repetitive control,feed forward and PID to suppress the friction interference.Through the simulation,the result confirms that the compound control method decreases the tracking error of the system,increases the robust performance of the system and improves the performance of the continuous rotary electro-hydraulic servo motor.

  10. Protection algorithm for a wind turbine generator based on positive- and negative-sequence fault components

    DEFF Research Database (Denmark)

    Zheng, Tai-Ying; Cha, Seung-Tae; Crossley, Peter A.;

    2011-01-01

    A protection relay for a wind turbine generator (WTG) based on positive- and negative-sequence fault components is proposed in the paper. The relay uses the magnitude of the positive-sequence component in the fault current to detect a fault on a parallel WTG, connected to the same power collection...... feeder, or a fault on an adjacent feeder; but for these faults, the relay remains stable and inoperative. A fault on the power collection feeder or a fault on the collection bus, both of which require an instantaneous tripping response, are distinguished from an inter-tie fault or a grid fault, which...

  11. Power train analysis for the DOE/NASA 100-kW wind turbine generator

    Science.gov (United States)

    Seidel, R. C.; Gold, H.; Wenzel, L. M.

    1978-01-01

    Progress in explaining variations of power experienced in the on-line operation of a 100 kW experimental wind turbine-generator is reported. Data are presented that show the oscillations tend to be characteristic of a wind-driven synchronous generator because of low torsional damping in the power train, resonances of its large structure, and excitation by unsteady and nonuniform wind flow. The report includes dynamic analysis of the drive-train torsion, the generator, passive driveline damping, and active pitch control as well as correlation with experimental recordings. The analysis assumes one machine on an infinite bus with constant generator-field excitation.

  12. Direct Reuse of Rare Earth Permanent Magnets - Wind Turbine Generator Case Study

    DEFF Research Database (Denmark)

    Högberg, Stig; Pedersen, Thomas Stigsberg; Bendixen, Flemming Buus;

    2016-01-01

    A novel recycling strategy, direct reuse, for rare earth permanent magnets were investigated in this article. Direct reuse uses small, unit-cell (segmented) magnets to replace the normal solid pole configuration, which is not directly reusable due its unique shape and size. The unit-cell magnets...... are directly reusable due to their standard shape and size, and direct reuse effectively bypasses a number of the expensive and energy intensive processes of normal recycling. Based on a model of a 3 MW direct drive wind turbine generator, the finite element studies concluded that normal values of average...

  13. Characterization of a Power Electronic Grid Simulator for Wind Turbine Generator Compliance Testing

    DEFF Research Database (Denmark)

    Glasdam, Jakob Bærholm; Gevorgian, V.; Wallen, R.

    2014-01-01

    This paper presents the commissioning results and testing capabilities of a multi-megawatt power electronic grid simulator situated in National Renewable Energy Laboratory’s (NREL’s) new testing facility. The commissioning is done using a commercial type 4 multi-megawatt sized wind turbine...... generator (WTG) installed in NREL’s new 5 MW dynamometer and a kilowatt sized type 1 WTG connected to the existing 2.5 MW dynamometer at NREL. The paper demonstrates the outstanding testing capability of the grid simulator and its application in the grid code compliance evaluation of WTGs including balanced...

  14. Transient stability and control of wind turbine generation based on Hamiltonian surface shaping and power flow control

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, David G.; Robinett, Rush D. III [Sandia National Laboratories, Albuquerque, NM (United States). Energy, Resources and Systems Analysis Center

    2010-07-01

    The swing equations for renewable generators connected to the grid are developed and a simple wind turbine with UPFC is used as an example. The swing equations for renewable generator are formulated as a natural Hamiltonian system with externally applied non-conservative forces. A two-step process referred to as Hamiltonian Surface Shaping and Power Flow Control (HSSPFC) is used to analyze and design feedback controllers for the renewable generators system. This formulation extends previous results on the analytical verification of the Potential Energy Boundary Surface (PEBS) method to nonlinear control analysis and design and justifies the decomposition of the system into conservative and nonconservative systems to enable a two-step, serial analysis and design procedure. This paper presents the analysis and numerical simulation results for a nonlinear control design example that includes the One-Machine Infinite Bus (OMIB) system with a Unified Power Flow Control (UPEC) and applied to a simplified wind turbine generator. The needed power and energy storage/charging responses are also determined. (orig.)

  15. PRESSURE OSCILLATIONS IN TRANSIENT PROCESSES OF HYDRAULIC SYSTEMS WITH VARIABLE DISPLACEMENT PUMPS

    Directory of Open Access Journals (Sweden)

    Hennadii Zaionchkovskyi

    2015-12-01

    Full Text Available In aviation hydraulic drive of high power as a power supply the axial-piston variable displacement pumps became wide spreaded. The pump operational modes with air isolation and cavitation are accompanied by increased noise, delivery reduction and intensive pressure oscillations. The negative results of such phenomena are hydraulic elements erosion, pipeline fatigue failure, working fluid viscosity reduction and its contamination by wear products. The mechanism of cavitation rising in axial-piston pumps is considered, and factors which influence the cavitation rising and working fluid aeration are specified. The features of transient processes in aircraft hydraulic systems with variable displacement pumps are considered. It has been showed that as the pump delivery changes from its minimum to maximum great pressure oscillations in the aircraft pressure pipeline of the hydraulic system takes place, and have a negative influence on the pump service life. The recommendations concerning such pressure oscillation reduction are given.

  16. Hydraulic engine valve actuation system including independent feedback control

    Science.gov (United States)

    Marriott, Craig D

    2013-06-04

    A hydraulic valve actuation assembly may include a housing, a piston, a supply control valve, a closing control valve, and an opening control valve. The housing may define a first fluid chamber, a second fluid chamber, and a third fluid chamber. The piston may be axially secured to an engine valve and located within the first, second and third fluid chambers. The supply control valve may control a hydraulic fluid supply to the piston. The closing control valve may be located between the supply control valve and the second fluid chamber and may control fluid flow from the second fluid chamber to the supply control valve. The opening control valve may be located between the supply control valve and the second fluid chamber and may control fluid flow from the supply control valve to the second fluid chamber.

  17. Theoretical aspects concerning working fluids in hydraulic systems

    Directory of Open Access Journals (Sweden)

    Tița Irina

    2017-01-01

    Full Text Available Among the properties of working fluid, viscosity is the most important as it regards especially to pumps. In order to study the behavior of hydrostatic transmission it is important to create a reliable research instrument for dynamic simulation. Our research expertise being in SimHydraulics consequently this instrument is the suitable block diagram. The purpose of this paper is to present the possible ways to customize the properties of the working fluid in the block diagram.

  18. Primary system thermal hydraulics of future Indian fast reactors

    Energy Technology Data Exchange (ETDEWEB)

    Velusamy, K., E-mail: kvelu@igcar.gov.in [Thermal Hydraulics Section, Indira Gandhi Centre for Atomic Research, Kalpakkam 603102 (India); Natesan, K.; Maity, Ram Kumar; Asokkumar, M.; Baskar, R. Arul; Rajendrakumar, M.; Sarathy, U. Partha; Selvaraj, P.; Chellapandi, P. [Thermal Hydraulics Section, Indira Gandhi Centre for Atomic Research, Kalpakkam 603102 (India); Kumar, G. Senthil; Jebaraj, C. [AU-FRG Centre for CAD/CAM, Anna University, Chennai 600 025 (India)

    2015-12-01

    Highlights: • We present innovative design options proposed for future Indian fast reactor. • These options have been validated by extensive CFD simulations. • Hotspot factors in fuel subassembly are predicted by parallel CFD simulations. • Significant safety improvement in the thermal hydraulic design is quantified. - Abstract: As a follow-up to PFBR (Indian prototype fast breeder reactor), many FBRs of 500 MWe capacity are planned. The focus of these future FBRs is improved economy and enhanced safety. They are envisaged to have a twin-unit concept. Design and construction experiences gained from PFBR project have provided motivation to achieve an optimized design for future FBRs with significant design changes for many critical components. Some of the design changes include, (i) provision of four primary pipes per primary sodium pump, (ii) inner vessel with single torus lower part, (iii) dome shape roof slab supported on reactor vault, (iv) machined thick plate rotating plugs, (v) reduced main vessel diameter with narrow-gap cooling baffles and (vi) safety vessel integrated with reactor vault. This paper covers thermal hydraulic design validation of the chosen options with respect to hot and cold pool thermal hydraulics, flow requirement for main vessel cooling, inner vessel temperature distribution, safety analysis of primary pipe rupture event, adequacy of decay heat removal capacity by natural convection cooling, cold pool transient thermal loads and thermal management of top shield and reactor vault.

  19. Performance and Potential Study of 10kW Wind Turbine Generator for 6 Cities in Malaysia

    Directory of Open Access Journals (Sweden)

    Mustaqimah Mustaqimah

    2013-04-01

    Full Text Available ABSTRACT. This study presents an analysis of the optimization by using HOMER software and financial viability of 10 kW wind turbine generator (WTG through grid connected system for six different locations in Malaysia (Mersing, Kuching, K.Trengganu, Kudat, Melaka and Labuan. Assessment criteria comprised Total Net Present Cost (TNPC, and Cost of Energy ( COE . The HOMER ( National Renewable Energy laboratory, US was utilized as the assessment tool with modeling performed with hourly load data input from six cities in Malaysia. The results demonstrate that WTG has the potential to supply significant power for small scale load in conjunction with the grid-electricity supply. Optimization modeling demonstrated that the TNPC for grid connected configuration is Mersing for the lowest TNPC among the other cities which is TNPC recorded at $ -28,436 and initial cost is about $ 20,000. This mean wind grid system in Mersing is very benefit be built and reduction in greenhouse gas emission of 9,452 kg/yr. Optimization modeling also showed that Mersing is the only one among other city had showed a high potential of WTG which produced energy at 85,326 kWh/yr and purchase grid only at 4,082 kWh/year. Kajian Kinerja dan Potensi Generator Turbin Angin 10kW untuk 6 kota di Malaysia ABSTRAK. Penelitian ini menyajikan analisis optimasi dengan menggunakan software HOMER dan kesesuaian biaya untuk generator turbin angin (wind turbine generator=WTG 10 kW sistem grid untuk enam lokasi yang berbeda di Malaysia (Mersing, Kuching, K.Trengganu, Kudat, Melaka dan Labuan. Kriteria penilaian terdiri Total Net Present Cost (TNPC dan Cost of Energy (COE. software HOMER (National Renewable Energy laboratory, US digunakan sebagai pemodelan dengan memasukkan data beban daya per jam dari enam kota tersebut. Hasil penelitian menunjukkan bahwa generator turbin angin (WTG memiliki potensi untuk memasok daya yang signifikan untuk beban kecil dalam hubungannya dengan pasokan grid

  20. Method study on fuzzy-PID adaptive control of electric-hydraulic hitch system

    Science.gov (United States)

    Li, Mingsheng; Wang, Liubu; Liu, Jian; Ye, Jin

    2017-03-01

    In this paper, fuzzy-PID adaptive control method is applied to the control of tractor electric-hydraulic hitch system. According to the characteristics of the system, a fuzzy-PID adaptive controller is designed and the electric-hydraulic hitch system model is established. Traction control and position control performance simulation are carried out with the common PID control method. A field test rig was set up to test the electric-hydraulic hitch system. The test results showed that, after the fuzzy-PID adaptive control is adopted, when the tillage depth steps from 0.1m to 0.3m, the system transition process time is 4s, without overshoot, and when the tractive force steps from 3000N to 7000N, the system transition process time is 5s, the system overshoot is 25%.

  1. Analysis on the Pressure Fluctuation Law of a Hydraulic Exciting System with a Wave-exciter

    Institute of Scientific and Technical Information of China (English)

    WEI Xiu-ye; KOU Zi-ming; LU Zi-rong

    2011-01-01

    A hydraulic exciting system with a wave exciter has been constructed in order to study the hydraulic vibra- tion law. The system consists of an oil source, wave-exciter and oil cylinder, and is controlled by a wave-exciter. The working principle of the hydraulic exciting system and wave exciter has been analyzed, and its excitation process has been illustrated. The law of every pipe's pressure fluctuation of the system is obtained by experiment. The theo- retical analysis and experimental data prove that the pipeline pressure periodically changes and the pipeline pressure fluctuation frequency is independently controlled by the excitation frequency of the wave-exciter. Every pipelinc's pressure wave is produced by system flow fluctuation and water hammer coupling. The pressure fluctuation rules of the system provide a theoretical basis for the study of the associated liberation system.

  2. 振动压路机液压系统研究%On the Hydraulic Driving System Based on Full Hydraulic Vibratory Roller

    Institute of Scientific and Technical Information of China (English)

    杨平; 许炳照

    2011-01-01

    According to the application of hydraulic control technology of full hydraulic vibratory roller,the paper presents a design scheme of how to select hydraulic driving pumps and the rotators for the hydraulic component parts.Before selecting the methods of the hydraulic driving pumps and the rotators,the design scheme of the hydraulic system power and the engine should be mated properly,so as to determine the data of full hydraulic vibratory roller.%对全液压振动压路机的液压系统进行配置设计,在确定液压泵及液压马达型号规格后,计算液压系统功率与整机的功率合理匹配,从而确定全液压振动压路机各液压系统的参数,完成整机液压系统的合理配置。

  3. Comparison between InfoWorks hydraulic results and a physical model of an urban drainage system.

    Science.gov (United States)

    Rubinato, Matteo; Shucksmith, James; Saul, Adrian J; Shepherd, Will

    2013-01-01

    Urban drainage systems are frequently analysed using hydraulic modelling software packages such as InfoWorks CS or MIKE-Urban. The use of such modelling tools allows the evaluation of sewer capacity and the likelihood and impact of pluvial flood events. Models can also be used to plan major investments such as increasing storage capacity or the implementation of sustainable urban drainage systems. In spite of their widespread use, when applied to flooding the results of hydraulic models are rarely compared with field or laboratory (i.e. physical modelling) data. This is largely due to the time and expense required to collect reliable empirical data sets. This paper describes a laboratory facility which will enable an urban flood model to be verified and generic approaches to be built. Results are presented from the first phase of testing, which compares the sub-surface hydraulic performance of a physical scale model of a sewer network in Yorkshire, UK, with downscaled results from a calibrated 1D InfoWorks hydraulic model of the site. A variety of real rainfall events measured in the catchment over a period of 15 months (April 2008-June 2009) have been both hydraulically modelled and reproduced in the physical model. In most cases a comparison of flow hydrographs generated in both hydraulic and physical models shows good agreement in terms of velocities which pass through the system.

  4. Does reintroducing large wood influence the hydraulic landscape of a lowland river system?

    Science.gov (United States)

    Matheson, Adrian; Thoms, Martin; Reid, Michael

    2017-09-01

    Our understanding of the effectiveness of reintroduced large wood for restoration is largely based on studies from high energy river systems. By contrast, few studies of the effectiveness of reintroducing large wood have been undertaken on large, low energy, lowland river systems: river systems where large wood is a significant physical feature on the in-channel environment. This study investigated the effect of reintroduced large wood on the hydraulic landscape of the Barwon-Darling River, Australia, at low flows. To achieve this, the study compared three hydraulic landscapes of replicated reference (naturally wooded), control (unwooded,) and managed (wood reintroduced) treatments on three low flow periods. These time periods were prior to the reintroduction of large wood to managed reaches; several months after the reintroduction of large wood into the managed reaches; and then more than four years after wood reintroduction following several large flood events. Hydraulic landscapes of reaches were characterised using a range of spatial measures calculated from velocity measurements taken with a boat-mounted Acoustic Doppler Profiler. We hypothesised that reintroduced large wood would increase the diversity of the hydraulic landscape at low flows and that managed reaches would be more similar to the reference reaches. Our results suggest that the reintroduction of large wood did not significantly change the character of the hydraulic landscape at the reach scale after several months (p = 0.16) or several years (p = 0.29). Overall, the character of the hydraulic landscape in the managed reaches was more similar to the hydraulic landscape of the control reaches than the hydraulic landscape of the reference reaches, at low flows. Some variability in the hydraulic landscapes was detected over time, and this may reflect reworking of riverbed sediments and sensitivity to variation in discharge. The lack of a response in the low flow hydraulic landscape to the

  5. Power Smoothing of a Variable-Speed Wind Turbine Generator in Association With the Rotor-Speed-Dependent Gain

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Yeonhee; Kang, Moses; Muljadi, Eduard; Park, Jung-Wook; Kang, Yong Cheol

    2017-07-01

    This paper proposes a power-smoothing scheme for a variable-speed wind turbine generator (WTG) that can smooth out the WTG's fluctuating power caused by varying wind speeds, and thereby keep the system frequency within a narrow range. The proposed scheme employs an additional loop based on the system frequency deviation that operates in conjunction with the maximum power point tracking (MPPT) control loop. Unlike the conventional, fixed-gain scheme, its control gain is modified with the rotor speed. In the proposed scheme, the control gain is determined by considering the ratio of the output of the additional loop to that of the MPPT loop. To improve the contribution of the scheme toward maintaining the frequency while ensuring the stable operation of WTGs, in the low rotor speed region, the ratio is set to be proportional to the rotor speed; in the high rotor speed region, the ratio remains constant. The performance of the proposed scheme is investigated under varying wind conditions for the IEEE 14-bus system. The simulation results demonstrate that the scheme successfully operates regardless of the output power fluctuation of a WTG by adjusting the gain with the rotor speed, and thereby improves the frequency-regulating capability of a WTG.

  6. Parameter Identification for the Valve Control Cylinder System of a Hydraulic Manipulator

    Institute of Scientific and Technical Information of China (English)

    XIE Qing-hua; PEI Wen-kai; JIANG Bin; ZHANG Qi

    2006-01-01

    In mechanical, hydraulic and electronic systems, the determination of system parameters is often challenging because liquid parameters often change significantly, due to variations in working and environmental conditions. Therefore, it is of significant practical importance to identify those parameters through experimental procedures. A systematic approach to identifying parameters in the valve controlling cylinder system of hydraulic manipulators is provided. It first derives the transfer function of the system, and then uses P control of PID control to predict system parameters. The predicted parameters are further validated using PID control. The prediction through simulation using MatLab language is utilized, which agrees well with experimental results.

  7. Research on Electro Hydraulic Proportional Control for Heavy Vehicle Blend Braking System

    Institute of Scientific and Technical Information of China (English)

    XU Ming

    2009-01-01

    A blend braking system of heavy vehicle was proposed. The main control part of the system is the electro hydraulic proportional servo valve. A nonlinear model of brake cylinder controlled by the valve was deduced through the analysis of its control property and system feature. The transfer function of the system was also proposed, and the hydraulic inherent frequency and the PID closed-loop system feature were calculated. The simulated result is consistent with those tested in the bench and on the site with 50t heavy vehicle. The experimental result shows that the control method has quick response and high precision.

  8. Control method and system for hydraulic machines employing a dynamic joint motion model

    Science.gov (United States)

    Danko, George

    2011-11-22

    A control method and system for controlling a hydraulically actuated mechanical arm to perform a task, the mechanical arm optionally being a hydraulically actuated excavator arm. The method can include determining a dynamic model of the motion of the hydraulic arm for each hydraulic arm link by relating the input signal vector for each respective link to the output signal vector for the same link. Also the method can include determining an error signal for each link as the weighted sum of the differences between a measured position and a reference position and between the time derivatives of the measured position and the time derivatives of the reference position for each respective link. The weights used in the determination of the error signal can be determined from the constant coefficients of the dynamic model. The error signal can be applied in a closed negative feedback control loop to diminish or eliminate the error signal for each respective link.

  9. An electro-hydraulic servo control system research for CFETR blanket RH

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Changqi [Hefei University of Technology, Hefei 230009, Anhui (China); Tang, Hongjun, E-mail: taurustang@126.com [Hefei University of Technology, Hefei 230009, Anhui (China); Qi, Songsong [Hefei University of Technology, Hefei 230009, Anhui (China); Cheng, Yong; Feng, Hansheng; Peng, Xuebing; Song, Yuntao [Institute of Plasma Physics Chinese Academy of Sciences, Hefei 230031, Anhui (China)

    2014-11-15

    Highlights: • We discussed the conceptual design of CFETR blanket RH maintenance system. • The mathematical model of electro-hydraulic servo system was calculated. • A fuzzy adaptive PD controller was designed based on control theory and experience. • The co-simulation models of the system were established with AMESim/Simulink. • The fuzzy adaptive PD algorithm was designed as the core strategy of the system. - Abstract: Based on the technical design requirements of China Fusion Engineering Test Reactor (CFETR) blanket remote handling (RH) maintenance, this paper focus on the control method of achieving high synchronization accuracy of electro-hydraulic servo system. Based on fuzzy control theory and practical experience, a fuzzy adaptive proportional-derivative (PD) controller was designed. Then a more precise co-simulation model was established with AMESim/Simulink. Through the analysis of simulation results, a fuzzy adaptive PD control algorithm was designed as the core strategy of electro-hydraulic servo control system.

  10. Design, Optimization and Analysis of Hydraulic Soft Yaw System for 5 MW Wind Turbine

    DEFF Research Database (Denmark)

    Stubkier, Søren; Pedersen, Henrik C.

    2011-01-01

    presents work previous done on this subject with focus on hydraulic yaw systems. By utilizing the HAWC2 aeroelastic code and an extended model of the NREL 5MW turbine combined with a simplified linear model of the turbine, the parameters of the soft yaw system are optimized. Results show that a significant...... reduction in fatigue and extreme loads to the yaw system and rotor shaft are possible, when utilizing the soft yaw drive concept compared to the original stiff yaw system. The physical demands of the hydraulic yaw system are furthermore examined for a life time of 20 years. The duty cycles, based...... on the extrapolated loads, show that it is possible to construct a hydraulic soft yaw system, which is able to reduce the loads on the wind turbine significantly....

  11. ZERO MODE NATURAL FREQUENCY AND NONLINEAR VIBRATION OF COUPLED LATERAL AND TORSION OF A LARGE TURBINE GENERATOR

    Institute of Scientific and Technical Information of China (English)

    Ta Na; Qiu Jiajun; Cai Ganhua

    2005-01-01

    Zero mode natural frequency (ZMNF) is found during experiments. The ZMNF and vibrations resulted by it are studied. First, calculating method of the ZMNF excited by electromagnetic in vibrational system of coupled mechanics and electrics are given from the view of magnetic energy.Laws that the ZMNF varies with active power and exciting current are obtained and are verified by experiments. Then, coupled lateral and torsional vibration of rotor shaft system is studied by considering rest eccentricity, rotating eccentricity and swing eccentricity. Using Largrange-Maxwell equation when three phases are asymmetric derives differential equation of the coupled vibration. With energy method of nonlinear vibration, amplitude-frequency characteristics of resonance are studied when rotating speed of rotor equals to ZMNF. The results show that ZMNF will occur in turbine generators by the action of electromagnetic. Because ZMNF varies with electromagnetic parameters,resonance can occur when exciting frequency of the rotor speed is fixed whereas exciting current change. And also find that a generator is in the state of large amplitude in rated exciting current.

  12. Kurokawa 150-kW wind turbine generator demonstration; 150 kW Kurokawa furyoku hatsudensho ni tsuite

    Energy Technology Data Exchange (ETDEWEB)

    Okamoto, M.; Shinohara, M.; Sugiyama, T. [Kansai Electric Power Co. Inc., Osaka (Japan)

    1996-10-27

    This paper presents the 150kW wind turbine generator erected at a site near Kurokawa dam lake of Kansai Electric Power Co. in Hyogo prefecture. This generator is composed of a horizontal-axis propeller with 3 blades of 27m in diameter and 36/27rpm, and a tower of 30m high. Harmony with the environment was also considered because of the site in a natural park area. Its demonstration test started in Oct. 1996 at annual mean wind velocity of 2m/s. Soft start was realized by controlling inrush current and preventing voltage drop in system interconnection by use of a thyristor circuit. The dual operation system was adopted of a 30kW small generator at lower wind velocity and a 150kW large one at higher velocity. Two kinds of brakes are used, and rotor revolution was reduced by air brake (blade tip spoiler). Mechanical disk brake works for the stopped rotor or emergency stopping. Even if the wind turbine was stopped by exterior factor, if no anomaly of the turbine is found, it automatically re-starts after removal of the factor. The generator is controlled from a remote control station 150km apart through NTT communication line. 6 figs., 2 tabs.

  13. Determination and discussion hydraulic retention time in membrane bioreactor system

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Based on the microorganism kinetic model, the formulafor computing hydraulic retention time in a membrane bioreactorsystem (MBR) is derived. With considering HRT as an evaluationindex a combinational approach was used to discuss factors whichhave an effect on MBR. As a result, the influencing factors werelisted in order from strength to weakness as: maximum specificremoval rate K, saturation constant Ks, maintenance coefficient m,Moreover, the formula was simplified, whose parameters wereexperimentally determined in petrochemical wastewater treatment. The simplified formula is (=1.1((1/(-1)(Ks+S)/KX0, forpetrochemical wastewater treatment K and Ks equaled 0.185 and154.2, respectively.

  14. RELIABILITY-BASED DESIGN AND ANALYSIS ON HYDRAULIC SYSTEM FOR SYNTHETIC RUBBER PRESS

    Institute of Scientific and Technical Information of China (English)

    Yao Chengyu; Zhao Jingyi

    2005-01-01

    To overcome the design limitations of traditional hydraulic control system for synthetic rubber press and such faults as high fault rate, low reliability, high energy-consuming and which always led to shutting down of post-treatment product line for synthetic rubber, brand-new hydraulic system combining with PC control and two-way cartridge valves for the press is developed, whose reliability is analyzed, reliability model of the hydraulic system for the press is established by analyzing processing steps, and reliability simulation of each step and the whole system is carried out by software MATLAB, which is verified through reliability test. The fixed time test has proved not that theory analysis is sound, but the system has characteristics of reasonable design and high reliability,and can lower the required power supply and operational energy cost.

  15. Robust Adaptive Backstepping Control Design for a Nonlinear Hydraulic-Mechanical System

    DEFF Research Database (Denmark)

    Choux, Martin; Karimi, Hamid Reza; Hovland, Geir

    2009-01-01

    converge to zero despite the uncertainties in the system according to the Barbalat lemma. The resulting controllers are able to take into account the interval uncertainties in Coulomb friction parameters and in the internal leakage parameters in the cylinders. Two adaptation laws are obtained by using......The complex dynamics that characterize hydraulic systems make it difficult for the control design to achieve prescribed goals in an efficient manner. In this paper, we present the design and analysis of a robust nonlinear controller for a nonlinear hydraulic-mechanical (NHM) system. The system...... consists of an electrohydraulic servo valve and two hydraulic cylinders. Specifically, by considering a part of the dynamics of the NHM system as a norm-bounded uncertainty, two adaptive controllers are developed based on the backstepping technique that ensure the tracking error signals asymptotically...

  16. State of the art-hydraulic yaw systems for wind turbines

    DEFF Research Database (Denmark)

    Stubkier, Søren; Pedersen, Henrik C.; Andersen, Torben Ole;

    2011-01-01

    This paper addresses the yawing systems of Horizontal Axis Wind Turbines (HAWT’s). HAWT’s represents close to all of the commercial large wind turbines sold today and must be considered state-of-the art within wind turbine technology. Two choices exists when considering components for the active...... mounted with a reduction gear. This paper presents state-of-the art within; hydraulic yaw system design and control of yaw systems in general. Primary focus on the advantages and disadvantages of using a hydraulic system for controlling the yaw of a wind turbine with a soft yaw concept....

  17. Optimisation of Working Areas in Discrete Hydraulic Power Take off-system for Wave Energy Converters

    DEFF Research Database (Denmark)

    Hansen, Anders Hedegaard; Hansen, Rico Hjerm; Pedersen, Henrik C.

    2012-01-01

    Fluid power is the leading technology in Power Take Off(PTO) systems in Wave Energy Converters(WEC’s), due to the capability of generating high force at low velocity. However, as hydraulic force controlling system may suffer from large energy losses the efficiency of the hydraulic PTO systems may...... be a limiting factor for wave energy. Therefore, a secondary controlled force system has been proposed as PTO element for WEC’s. This paper investigates the configuration of a multi-chamber cylinder utilising two common pressure lines. By usage of model based optimisation an optimal number and size of working...

  18. Fuzzy Control System of Hydraulic Roll Bending Based on Genetic Neural Network

    Institute of Scientific and Technical Information of China (English)

    JIA Chun-yu; LIU Hong-min; ZHOU Hui-feng

    2005-01-01

    For nonlinear hydraulic roll bending control, a new fuzzy intelligent control method was proposed based on the genetic neural network. The method taking account of dynamic and static characteristics of control system has settled the problems of recognizing and controlling the unknown, uncertain and nonlinear system successfully,and has been applied to hydraulic roll bending control. The simulation results indicate that the system has good performance and strong robustness, and is better than traditional PID and neural-fuzzy control. The method is an effective tool to control roll bending force with increased dynamic response speed of control system and enhanced tracking accuracy.

  19. Effects of hedgerow systems on soil moisture and unsaturated hydraulics conductivity measured by the Libardi method

    Directory of Open Access Journals (Sweden)

    S . Prijono

    2016-01-01

    Full Text Available The hedgerow systems are the agroforestry practices suggesting any positive impacts and negative impacts on soil characteristics. This study evaluated the effects of hedgerows on the unsaturated hydraulic conductivity of soil with the Libardi method approach. This study was conducted in North Lampung for 3 months on the hedgerow plots of Peltophorum dassyrachis (P, Gliricidia sepium (G, and without hedgerow plot (K, with four replications. Each plot was watered as much as 150 liters of water until saturated, then the soil surface were covered with the plastic film. Observation of soil moisture content was done to a depth of 70 cm by the 10 cm intervals. Soil moisture content was measured using the Neutron probe that was calibrated to get the value of volumetric water content. Unsaturated hydraulic conductivity of soil was calculated by using the Libardi Equation. Data were tested using the analysis of variance, the least significant different test (LSD, Duncan Multiple Range Test (DMRT, correlation and regression analysis. The results showed that the hedgerow significantly affected the soil moisture content and unsaturated hydraulic conductivity. Soil moisture content on the hedgerow plots was lower than the control plots. The value of unsaturated hydraulic conductivity in the hedgerow plots was higher than the control plots. Different types of hedgerows affected the soil moisture content and unsaturated hydraulic conductivity. The positive correlation was found between the volumetric soil moisture content and the unsaturated hydraulic conductivity of soil.

  20. Final design of a free-piston hydraulic advanced Stirling conversion system

    Science.gov (United States)

    Wallace, D. A.; Noble, J. E.; Emigh, S. G.; Ross, B. A.; Lehmann, G. A.

    1991-01-01

    Under the US Department of Energy's (DOEs) Solar Thermal Technology Program, Sandia National Laboratories is evaluating heat engines for solar distributed receiver systems. The final design is described of an engineering prototype advanced Stirling conversion system (ASCS) with a free-piston hydraulic engine output capable of delivering about 25 kW of electric power to a utility grid. The free-piston Stirling engine has the potential for a highly reliable engine with long life because it has only a few moving parts, has noncontacting bearings, and can be hermetically sealed. The ASCS is designed to deliver maximum power per year over a range of solar input with a design life of 30 years (60,000 h). The system includes a liquid Nak pool boiler heat transport system and a free-piston Stirling engine with high-pressure hydraulic output, coupled with a bent axis variable displacement hydraulic motor and a rotary induction generator.

  1. A Serially-Connected Compensator for Eliminating the Unbalanced Three-Phase Voltage Impact on Wind Turbine Generators

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Ziping; Hsu, Ping; Muljadi, Eduard; Gao, Wenzhong

    2015-10-05

    Untransposed transmission lines, unbalanced tap changer operations, and unbalanced loading in weak distribution lines can cause unbalanced-voltage conditions. The resulting unbalanced voltage at the point of interconnection affects proper gird integration and reduces the lifetime of wind turbines due to power oscillations, torque pulsations, mechanical stresses, energy losses, and uneven and overheating of the generator stator winding. This work investigates the dynamic impact of unbalanced voltage on the mechanical and electrical components of integrated Fatigue, Aerodynamics, Structures, and Turbulence (FAST) wind turbine generation systems (WTGs) of Type 1 (squirrel-cage induction generator) and Type 3 (doubly-fed induction generator). To alleviate this impact, a serially-connected compensator for a three-phase power line is proposed to balance the wind turbine-side voltage. Dynamic simulation studies are conducted in MATLAB/Simulink to compare the responses of these two types of wind turbine models under normal and unbalanced-voltage operation conditions and demonstrate the effectiveness of the proposed compensator.

  2. Serially-Connected Compensator for Eliminating the Unbalanced Three-Phase Voltage Impact on Wind Turbine Generators: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Z.; Hsu, P.; Muljadi, E.; Gao, W.

    2015-04-06

    Untransposed transmission lines, unbalanced tap changer operations, and unbalanced loading in weak distribution lines can cause unbalanced-voltage conditions. The resulting unbalanced voltage at the point of interconnection affects proper gird integration and reduces the lifetime of wind turbines due to power oscillations, torque pulsations, mechanical stresses, energy losses, and uneven and overheating of the generator stator winding. This work investigates the dynamic impact of unbalanced voltage on the mechanical and electrical components of integrated Fatigue, Aerodynamics, Structures, and Turbulence (FAST) wind turbine generation systems (WTGs) of Type 1 (squirrel-cage induction generator) and Type 3 (doubly-fed induction generator). To alleviate this impact, a serially-connected compensator for a three-phase power line is proposed to balance the wind turbine-side voltage. Dynamic simulation studies are conducted in MATLAB/Simulink to compare the responses of these two types of wind turbine models under normal and unbalanced-voltage operation conditions and demonstrate the effectiveness of the proposed compensator.

  3. Experimental System Identification and Black Box Modeling of Hydraulic Directional Control Valve

    Directory of Open Access Journals (Sweden)

    Sondre Sanden Tørdal

    2015-10-01

    Full Text Available Directional control valves play a large role in most hydraulic systems. When modeling the hydraulic systems, it is important that both the steady state and dynamic characteristics of the valves are modeled correctly to reproduce the dynamic characteristics of the entire system. In this paper, a proportional valve (Brevini HPV 41 is investigated to identify its dynamic and steady state characteristics. The steady state characteristics are identified by experimental flow curves. The dynamics are determined through frequency response analysis and identified using several transfer functions. The paper also presents a simulation model of the valve describing both steady state and dynamic characteristics. The simulation results are verified through several experiments.

  4. Improving the Hydraulic Performance of Stormwater Infiltration Systems in Clay Tills

    DEFF Research Database (Denmark)

    Bockhorn, Britta

    D study was initiated with the objective to test and evaluate if the hydraulic performance of stormwater infiltration systems can be significantly improved if the site-specific geological heterogeneity is incorporated into the design and siting of such systems. The assessment is based on different field...... infiltration systems. Models employing standard soil physical parameters should be used with care as they do not always realistically describe site-specific hydrologic properties. A fourth study showed that the hydraulic performance of infiltration trenches was increased by a factor of two, when spear auger......Many cities of the Northern Hemisphere are covered by low permeable clay tills, which pose a challenge for stormwater infiltration practices. However, clay tills are amongst the most heterogeneous types of sediments and hydraulic conductivities can vary by several orders of magnitude. This Ph...

  5. The 25 kWe solar thermal Stirling hydraulic engine system: Conceptual design

    Science.gov (United States)

    White, Maurice; Emigh, Grant; Noble, Jack; Riggle, Peter; Sorenson, Torvald

    1988-01-01

    The conceptual design and analysis of a solar thermal free-piston Stirling hydraulic engine system designed to deliver 25 kWe when coupled to a 11 meter test bed concentrator is documented. A manufacturing cost assessment for 10,000 units per year was made. The design meets all program objectives including a 60,000 hr design life, dynamic balancing, fully automated control, more than 33.3 percent overall system efficiency, properly conditioned power, maximum utilization of annualized insolation, and projected production costs. The system incorporates a simple, rugged, reliable pool boiler reflux heat pipe to transfer heat from the solar receiver to the Stirling engine. The free-piston engine produces high pressure hydraulic flow which powers a commercial hydraulic motor that, in turn, drives a commercial rotary induction generator. The Stirling hydraulic engine uses hermetic bellows seals to separate helium working gas from hydraulic fluid which provides hydrodynamic lubrication to all moving parts. Maximum utilization of highly refined, field proven commercial components for electric power generation minimizes development cost and risk.

  6. Analysis of the steady state hydraulic behaviour of the ITER blanket cooling system

    Energy Technology Data Exchange (ETDEWEB)

    Di Maio, P.A., E-mail: pietroalessandro.dimaio@unipa.it [Dipartimento di Energia, Ingegneria dell’Informazione e Modelli Matematici, Università di Palermo, Viale delle Scienze, 90128 Palermo (Italy); Dell’Orco, G.; Furmanek, A. [ITER Organization, Route de Vinon-sur-Verdon, CS 90 046, 13067 St Paul Lez Durance Cedex (France); Garitta, S. [Dipartimento di Energia, Ingegneria dell’Informazione e Modelli Matematici, Università di Palermo, Viale delle Scienze, 90128 Palermo (Italy); Merola, M.; Mitteau, R.; Raffray, R. [ITER Organization, Route de Vinon-sur-Verdon, CS 90 046, 13067 St Paul Lez Durance Cedex (France); Spagnuolo, G.A.; Vallone, E. [Dipartimento di Energia, Ingegneria dell’Informazione e Modelli Matematici, Università di Palermo, Viale delle Scienze, 90128 Palermo (Italy)

    2015-10-15

    Highlights: • Nominal steady state hydraulic behaviour of ITER blanket standard sector cooling system has been investigated. • Numerical simulations have been run adopting a qualified thermal-hydraulic system code. • Hydraulic characteristic functions and coolant mass flow rates, velocities and pressure drops have been assessed. • Most of the considered circuits are able to effectively cool blanket modules, meeting ITER requirements. - Abstract: The blanket system is the ITER reactor component devoted to providing a physical boundary for plasma transients and contributing to thermal and nuclear shielding of vacuum vessel, magnets and external components. It is expected to be subjected to significant heat loads under nominal conditions and its cooling system has to ensure an adequate cooling, preventing any risk of critical heat flux occurrence while complying with pressure drop limits. At the University of Palermo a study has been performed, in cooperation with the ITER Organization, to investigate the steady state hydraulic behaviour of the ITER blanket standard sector cooling system. A theoretical–computational approach based on the finite volume method has been followed, adopting the RELAP5 system code. Finite volume models of the most critical blanket cooling circuits have been set-up, realistically simulating the coolant flow domain. The steady state hydraulic behaviour of each cooling circuit has been investigated, determining its hydraulic characteristic function and assessing the spatial distribution of coolant mass flow rates, velocities and pressure drops under reference nominal conditions. Results obtained have indicated that the investigated cooling circuits are able to provide an effective cooling to blanket modules, generally meeting ITER requirements in term of pressure drop and velocity distribution, except for a couple of circuits that are being revised.

  7. Permeability Enhancement in Enhanced Geothermal System as a result of Hydraulic Fracturing and Jacking

    Science.gov (United States)

    Jalali, Mohammadreza; Klepikova, Maria; Fisch, Hansruedi; Amann, Florian; Loew, Simon

    2016-04-01

    A decameter-scale in-situ hydraulic stimulation and circulation (ISC) experiment has been initiated by the newly-founded Swiss Competence Centre for Energy Research - Supply of Electricity (SCCER-SoE) at Nagra's Grimsel Test Site (GTS) as a part of the work-package WP1 of the Deep Underground Laboratory (DUG-Lab) initiative. The experiment area is situated in the southern part of the GTS in a low fracture density volume of the Grimsel granodiorite. The hydraulic properties of the granitic rock mass are supposed to be similar to those expected in the crystalline basement of the alpine foreland where deep enhanced geothermal systems might be developed in future. The main objectives of the multi-disciplinary experiment are to provide a high resolution pre- and post-stimulation characterization of fracture permeability and connectivity, to investigate patterns of preferential flow paths, to describe the pressure propagation during the stimulation phases and to evaluate the efficiency of the fracture-matrix heat exchanger. A comprehensive test & monitoring layout including a fair number of boreholes instrumented with a variety of sensors (e.g. pressure, strain, displacement, temperature, and seismic sensors) is designed to collect detailed data during multiple hydraulic stimulation runs. The diffusion of fluid pressure is expected to be governed mainly by the properties and geometry of the existent fracture network. The hydraulic transmissivity of fractures are in the range of 10-7 to 10-9 m2/s whereas the matrix rock has a very low hydraulic conductivity (K ˜ 10-12 m/s). As part of the stress measurement campaign during the pre-stimulation phase of the ISC experiment, a series of hydraulic fracturing (HF) and hydraulic tests in pre-existing fractures (HTPF) were conducted. The tests were accompanied by micro-seismic monitoring within several observation boreholes to investigate the initiation and propagation of the induced fractures. Together with results from over

  8. Feasibility of large-scale calorimetric efficiency measurement for wind turbine generator drivetrains

    Science.gov (United States)

    Pagitsch, Michael; Jacobs, Georg; Schelenz, Ralf; Bosse, Dennis; Liewen, Christian; Reisch, Sebastian; Deicke, Matthias

    2016-09-01

    In the course of the global energy turnaround, the importance of wind energy is increasing continuously. For making wind energy more competitive with fossil energy, reducing the costs is an important measure. One way to reach this goal is to improve the efficiency. As the major potentials have already been exploited, improvements in the efficiency are made in small steps. One of the main preconditions for enabling these development activities is the sufficiently accurate measurement of the efficiency. This paper presents a method for measuring the efficiency of geared wind turbine generator drivetrains with errors below 0.5% by directly quantifying the power losses. The presented method is novel for wind turbines in the multi- MW-class.

  9. Weak characteristic information extraction from early fault of wind turbine generator gearbox

    Science.gov (United States)

    Xu, Xiaoli; Liu, Xiuli

    2017-04-01

    Given the weak early degradation characteristic information during early fault evolution in gearbox of wind turbine generator, traditional singular value decomposition (SVD)-based denoising may result in loss of useful information. A weak characteristic information extraction based on μ-SVD and local mean decomposition (LMD) is developed to address this problem. The basic principle of the method is as follows: Determine the denoising order based on cumulative contribution rate, perform signal reconstruction, extract and subject the noisy part of signal to LMD and μ-SVD denoising, and obtain denoised signal through superposition. Experimental results show that this method can significantly weaken signal noise, effectively extract the weak characteristic information of early fault, and facilitate the early fault warning and dynamic predictive maintenance.

  10. Implementation and Validation of IEC Generic Type 1A Wind Turbine Generator Model

    DEFF Research Database (Denmark)

    Zhao, Haoran; Wu, Qiuwei; Margaris, Ioannis

    2015-01-01

    This paper presents the implementation of the International Electrotechnical Commission (IEC) generic Type 1A wind turbine generator (WTG) model in Power Factory (PF) and the validation of the implemented model against field measurements. The IEC generic Type 1A WTG model structure is briefly...... described. The details are explained regarding how the two mass mechanical model is implemented when the generator mass is included in the PF built-in generator model. In order to verify the IEC generic Type 1A WTG model, the model to field measurement validation method was employed. The model to field...... the simulation results and measurements were calculated according to the voltage dip windows and the index definition specified in the IEC 61400-27-1 committee draft. Copyright © 2014 John Wiley & Sons, Ltd....

  11. Fast Coordinated Control of DFIG Wind Turbine Generators for Low and High Voltage Ride-Through

    Directory of Open Access Journals (Sweden)

    Yun Wang

    2014-06-01

    Full Text Available This paper presents a fast coordinated control scheme of the rotor side converter (RSC, the Direct Current (DC chopper and the grid side converter (GSC of doubly fed induction generator (DFIG wind turbine generators (WTGs to improve the low voltage ride through (LVRT and high voltage ride through (HVRT capability of the DFIG WTGs. The characteristics of DFIG WTGs under voltage sags and swells were studied focusing on the DFIG WTG stator flux and rotor voltages during the transient periods of grid voltage changes. The protection schemes of the rotor crowbar circuit and the DC chopper circuit were proposed considering the characteristics of the DFIG WTGs during voltage changes. The fast coordinated control of RSC and GSC were developed based on the characteristic analysis in order to realize efficient LVRT and HVRT of the DFIG WTGs. The proposed fast coordinated control schemes were verified by time domain simulations using Matlab-Simulink.

  12. Simulation Tool to Assess Mechanical and Electrical Stresses on Wind Turbine Generators: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Singh, M.; Muljadi, E.; Gevorgian, V.; Jonkman, J.

    2013-10-01

    Wind turbine generators (WTGs) consist of many different components to convert kinetic energy of the wind into electrical energy for end users. Wind energy is accessed to provide mechanical torque for driving the shaft of the electrical generator. The conversion from wind power to mechanical power is governed by the aerodynamic conversion. The aerodynamic-electrical-conversion efficiency of a WTGis influenced by the efficiency of the blades, the gearbox, the generator, and the power converter. This paper describes the use of MATLAB/Simulink to simulate the electrical and grid-related aspects of a WTG coupled with the FAST aero-elastic wind turbine computer-aided engineering tool to simulate the aerodynamic and mechanical aspects of a WTG. The combination of the two enables studiesinvolving both electrical and mechanical aspects of a WTG. This digest includes some examples of the capabilities of the FAST and MATLAB coupling, namely the effects of electrical faults on the blade moments.

  13. Operational-Condition-Independent Criteria Dedicated to Monitoring Wind Turbine Generators

    Directory of Open Access Journals (Sweden)

    Richard Court

    2013-01-01

    Full Text Available Condition monitoring is beneficial to the wind industry for both onshore and offshore plants. However, due to the variations in operational conditions, its potential has not been fully explored. There is a need to develop an operational-condition-independent condition monitoring technique, which has motivated the research presented here. In this paper, three operational-condition-independent criteria are developed. The criteria accomplish the condition monitoring by analyzing the wind turbine electrical signals in the time domain. Therefore, they are simple to calculate and ideal for online use. All proposed criteria were tested through both simulated and practical experiments. The experiments have shown that these criteria not only provide a solution for detecting both mechanical and electrical faults that occur in wind turbine generators, but provide a potential tool for diagnosing generator winding faults.

  14. Noise measurements for single and multiple operation of 50 kw wind turbine generators

    Science.gov (United States)

    Hubbard, H. H.; Shepherd, K. P.

    1982-01-01

    The noise characteristics of the U.S. Windpower Inc., 50 kw wind turbine generator were measured at various distances from 30 m to 1100 m and for a range of output power. The generated noise is affected by the aerodynamic wakes of the tower legs at frequencies below about 120 Hz and the blade trailing edge thickness at frequencies of about 2 kHz. Rope strakes and airfoil fairings on the legs did not result in substantial noise reductions. Sharpening the blade trailing edges near the tip was effective in reducing broad band noise near 2 kHz. For multiple machines the sound fields are superposed. A three-fold increase in number of machines (from 1 to 3) results in a predicted increase in he sound pressure level of about 5 dB. The detection threshold for 14 machines operating in a 13 - 20 mph wind is observed to be at approximately 1160 m in the downwind direction.

  15. Measurement and prediction of broadband noise from large horizontal axis wind turbine generators

    Science.gov (United States)

    Grosveld, F. W.; Shepherd, K. P.; Hubbard, H. H.

    1995-01-01

    A method is presented for predicting the broadband noise spectra of large wind turbine generators. It includes contributions from such noise sources as the inflow turbulence to the rotor, the interactions between the turbulent boundary layers on the blade surfaces with their trailing edges and the wake due to a blunt trailing edge. The method is partly empirical and is based on acoustic measurements of large wind turbines and airfoil models. Spectra are predicted for several large machines including the proposed MOD-5B. Measured data are presented for the MOD-2, the WTS-4, the MOD-OA, and the U.S. Windpower Inc. machines. Good agreement is shown between the predicted and measured far field noise spectra.

  16. Prediction of broadband noise from large horizontal axis wind turbine generators

    Science.gov (United States)

    Grosveld, F. W.

    1984-01-01

    A method is presented for predicting the broadband noise spectra of large horizontal axis wind turbine generators. It includes contributions from such noise sources as the inflow turbulence to the rotor, the interactions between the turbulent boundary layers on the blade surfaces with their trailing edges and the wake due to a blunt trailing edge. The method is partly empirical and is based on acoustic measurements of large wind turbines and airfoil models. The predicted frequency spectra are compared with measured data from several machines including the MOD-OA, the MOD-2, the WTS-4 and the U.S. Wind-power Inc. machine. Also included is a broadband noise prediction for the proposed MOD-5B. The significance of the effects of machine size, power output, trailing edge bluntness and distance to the receiver is illustrated. Good agreement is obtained between the predicted and measured far field noise spectra.

  17. Weak characteristic information extraction from early fault of wind turbine generator gearbox

    Science.gov (United States)

    Xu, Xiaoli; Liu, Xiuli

    2017-09-01

    Given the weak early degradation characteristic information during early fault evolution in gearbox of wind turbine generator, traditional singular value decomposition (SVD)-based denoising may result in loss of useful information. A weak characteristic information extraction based on μ-SVD and local mean decomposition (LMD) is developed to address this problem. The basic principle of the method is as follows: Determine the denoising order based on cumulative contribution rate, perform signal reconstruction, extract and subject the noisy part of signal to LMD and μ-SVD denoising, and obtain denoised signal through superposition. Experimental results show that this method can significantly weaken signal noise, effectively extract the weak characteristic information of early fault, and facilitate the early fault warning and dynamic predictive maintenance.

  18. Long term reliability and machine operation diagnosis with fiber optic sensors at large turbine generators

    Science.gov (United States)

    Bosselmann, T.; Strack, S.; Villnow, M.; Weidner, J. R.; Willsch, M.

    2013-05-01

    The increasing quantity of renewable energy in electric power generation leads to a higher flexibility in the operation of conventional power plants. The turbo generator has to face the influence of frequent start-stop-operation on thermal movement and vibration of the stator end windings. Large indirect cooled turbo generators have been equipped with FBG strain and temperature sensors to monitor the influence of peak load operation. Fiber optic accelerometers measure the vibration of the end windings at several turbine generators since many years of operation. The long term reliability of fiber optic vibration, temperature and strain sensors has been successfully proved during years of online operation. The analysis of these data in correlation to significant operation parameter lead to important diagnostic information.

  19. Power Generation and Voltage Regulation of 132KV Karbala grid using DFIG Wind Turbine Generator

    Directory of Open Access Journals (Sweden)

    Qasim Kamil Mohsin

    2015-06-01

    Full Text Available Due to increasing demand on electrical energy in Iraq and to have clean energy that is environmental friendly, wind energy would be one of the most important and promising sources of renewable energy to achieve this goal. This paper discussed the reasons to use the Doubly-Feed Induction Generator (DFIG amongst the available types of wind turbine generators, and in section (III illustrate Motivations to select place to the wind farm construction. using decupling method (the vector control strategy to change reactive power of DFIG 2MW connected to middle of the 132KV transmission line (Karbala north – Alahkader without effect about the active power generated from DFIG itself with fixed wind speed value assumed to provide the voltage regulation, and control of the transmission line In addition to power generating. By using PSCAD/EMTDC, different simulation results are presented based on various scenarios.

  20. Application of Fuzzy Clustering in Modeling of a Water Hydraulics System

    DEFF Research Database (Denmark)

    Zhou, Jianjun; Kroszynski, Uri

    2000-01-01

    This article presents a case study of applying fuzzy modeling techniques for a water hydraulics system. The obtained model is intended to provide a basis for model-based control of the system. Fuzzy clustering is used for classifying measured input-output data points into partitions. The fuzzy mo...

  1. Adaptive impedance control of a hydraulic suspension system using particle swarm optimisation

    Science.gov (United States)

    Fateh, Mohammad Mehdi; Moradi Zirkohi, Majid

    2011-12-01

    This paper presents a novel active control approach for a hydraulic suspension system subject to road disturbances. A novel impedance model is used as a model reference in a particular robust adaptive control which is applied for the first time to the hydraulic suspension system. A scheme is introduced for selecting the impedance parameters. The impedance model prescribes a desired behaviour of the active suspension system in a wide range of different road conditions. Moreover, performance of the control system is improved by applying a particle swarm optimisation algorithm for optimising control design parameters. Design of the control system consists of two interior loops. The inner loop is a force control of the hydraulic actuator, while the outer loop is a robust model reference adaptive control (MRAC). This type of MRAC has been applied for uncertain linear systems. As another novelty, despite nonlinearity of the hydraulic actuator, the suspension system and the force loop together are presented as an uncertain linear system to the MRAC. The proposed control method is simulated on a quarter-car model. Simulation results show effectiveness of the method.

  2. DETERMINATION OF OPERATING FIELDS OF TOLERANCES OF HYDRAULIC SYSTEMS PARAMETERS FOR AIRCRAFT BOARD COMPUTER COMPLEX

    Directory of Open Access Journals (Sweden)

    2016-01-01

    Full Text Available To determine the operating fields of the tolerances of hydraulic systems parameters for various conditions of work and phases of flight given mathematical relationships and the results obtained in Mathcad in analytical form for the board computer system.

  3. Mathematic Modeling of Complex Hydraulic Machinery Systems When Evaluating Reliability Using Graph Theory

    Science.gov (United States)

    Zemenkova, M. Yu; Shipovalov, A. N.; Zemenkov, Yu D.

    2016-04-01

    The main technological equipment of pipeline transport of hydrocarbons are hydraulic machines. During transportation of oil mainly used of centrifugal pumps, designed to work in the “pumping station-pipeline” system. Composition of a standard pumping station consists of several pumps, complex hydraulic piping. The authors have developed a set of models and algorithms for calculating system reliability of pumps. It is based on the theory of reliability. As an example, considered one of the estimation methods with the application of graph theory.

  4. FRF based position controller design through system identification for A hydraulic cylinder

    Energy Technology Data Exchange (ETDEWEB)

    Seo, Hyoung Kyu; Kim, Dong Hwan [Dept. of Mechanical Design and Robot Engineering, Seoul National University of Science and Technology, Seoul (Korea, Republic of); Park, Jong Won [Reliability Assessment Center, Korea Institute of Machinery and Materials, Daejeon (Korea, Republic of)

    2015-11-15

    In this study, we have focused on the design of a controller and an operating program for the operation of the hydraulic actuators used in a shaker. To control the motion of the shaker accurately, the position of each hydraulic cylinder should be controlled precisely even under an uncertain environment. For this purpose, we have suggested a control algorithm using an FRF (frequency response function) based control which senses the behavior of the actuator in advance, calculates a transfer function through the system identification method, and provides the final control input. The experimental results on the performance of this system were compared with that of a simple PID control algorithm.

  5. CONSTANT WORK-POINT CONTROL FOR PARALLEL HYBRID SYSTEM WITH CAPACITOR ACCUMULATOR IN HYDRAULIC EXCAVATOR

    Institute of Scientific and Technical Information of China (English)

    ZHANG Yanting; WANG Qingfeng; XIAO Qing; FU Qiang

    2006-01-01

    Limitations of various accumulators in hybrid hydraulic excavator are analyzed. A program using capacitor as the accumulator based on constant work-point control is put forward. A simulating experimental system of hybrid construction machinery is established, and experimental study on constant work-point control for parallel hybrid system with capacitor accumulator is carried out using the pressure and flow rate derived from boom cylinder of hydraulic excavator in actual work as the simulating loads. A program of double work-point control is proposed and proved by further experiments.

  6. Application of a load-bearing passive and active vibration isolation system in hydraulic drives

    Science.gov (United States)

    Unruh, Oliver; Haase, Thomas; Pohl, Martin

    2016-09-01

    Hydraulic drives are widely used in many engineering applications due to their high power to weight ratio. The high power output of the hydraulic drives produces high static and dynamic reaction forces and moments which must be carried by the mounts and the surrounding structure. A drawback of hydraulic drives based on rotating pistons consists in multi-tonal disturbances which propagate through the mounts and the load bearing structure and produce structure borne sound at the surrounding structures and cavities. One possible approach to overcome this drawback is to use an optimised mounting, which combines vibration isolation in the main disturbance direction with the capability to carry the reaction forces and moments. This paper presents an experimental study, which addresses the vibration isolation performance of an optimised mounting. A dummy hydraulic drive is attached to a generic surrounding structure with optimised mounting and excited by multiple shakers. In order to improve the performance of the passive vibration isolation system, piezoelectric transducers are applied on the mounting and integrated into a feed-forward control loop. It is shown that the optimised mounting of the hydraulic drive decreases the vibration transmission to the surrounding structure by 8 dB. The presented study also reveals that the use of the active control system leads to a further decrease of vibration transmission of up to 14 dB and also allows an improvement of the vibration isolation in an additional degree of freedom and higher harmonic frequencies.

  7. The study on measures to improve the reliability of the hydraulic systems of shearers

    Institute of Scientific and Technical Information of China (English)

    袁辉; 徐龙江; 田大宝; 赵燕玲

    2001-01-01

    The authors indicate that the failure of hydraulic systems of shearers can drop greatly, its' reliability and service life can be increased by the use of a field oil contamination analyser and filter device to control the oil contamination of the hydraulic systems of shearers. Experimental provement of silting-theory contamination analyser are carried out. The filter effect of portable hydraulic driving oil-filter model YLJ-21 is examinationed in laboratory and field experiment. From January to August 1992, on-site experimental research using a silting-theory contamination analyser and oil-filter model YLJ-21 to control the oil contamination was carried out in the Datong Coat Mining Bureau.

  8. Hydraulic vs. Electric: A Review of Actuation Systems in Offshore Drilling Equipment

    Directory of Open Access Journals (Sweden)

    Witold Pawlus

    2016-01-01

    Full Text Available This article presents a survey on actuation systems encountered in offshore drilling applications. Specifically, it focuses on giving a comparison of hydraulic and electric drivetrains along with detailed explanations of their advantages and drawbacks. A significant number of industrial case studies is examined in addition to the collection of academic publications, in order to accurately describe the current market situation. Some key directions of research and development required to satisfy increasing demands on powertrains operating offshore are identified. The impact of the literature and application surveys is further strengthened by benchmarking two designs of a full-scale pipe handling machine. Apart from other benefits, the electrically actuated machine reduces the total power consumption by 70% compared to its hydraulically driven counterpart. It is concluded that electric actuation systems, among other advantages, in general offer higher efficiency and flexibility, however, in some specific applications (such as energy accumulation or translational motion control hydraulic powertrains are favorable.

  9. Thermal Equilibrium Analysis of Hydraulic System%液压系统热平衡分析

    Institute of Scientific and Technical Information of China (English)

    李永衡

    2016-01-01

    For hydraulic system due to the ageing of the equipment caused to the system temperature is too high,don’t adopt the traditional method,for the heat generated by the power loss and heat coming from the system to calculate,but only for the Newly added heat of the hydraulic system for testing,calculation.Select the corre-sponding cooling mode,the hydraulic system is maintained at the set temperature range.When QAbsorption is equal to QRelease ,the new thermal balance of hydraulic system is realized.%针对液压系统因设备老化而造成的系统温度过高,传统的方法采用对功率损耗产生的热量与系统散发的热量进行计算,而本文是仅对液压系统的新增热量进行测试、计算。选择相对应的冷却方式,使液压系统保持在设定的温度范围内,当Q吸=Q放时,即实现了液压系统新的热平衡。

  10. Synchronization of the ERDA-NASA 100 LkW wind turbine generator with large utility networks

    Science.gov (United States)

    Hwang, H. H.; Gilbert, L. J.

    1977-01-01

    The synchronizing of a wind turbine generator against an infinite bus under random conditions is studied. With a digital computer, complete solutions for rotor speed, generator power angle, electromagnetic torque, wind turbine torque, wind turbine blade pitch angle, and armature current are obtained and presented by graphs.

  11. Implementation of draft IEC Generic Model of Type 1 Wind Turbine Generator in PowerFactory and Simulink

    DEFF Research Database (Denmark)

    Zhao, Haoran; Wu, Qiuwei; Sørensen, Poul Ejnar

    2013-01-01

    This paper presents the implementation work of IEC generic model of Type 1 wind turbine generator (WTG) in two commercial simulation tools: DIgSILENT PowerFactory (PF) and Matlab Simulink. The model topology, details of the composite blocks and implementation procedure in PF and Simulink...

  12. Mod-5A wind turbine generator program design report. Volume 2: Conceptual and preliminary design, book 2

    Science.gov (United States)

    1984-01-01

    The design, development and analysis of the 7.3 MW MOD-5A wind tunnel generator is documented. There are four volumes. In Volume 2, book 2 the requirements and criteria for the design are presented. The development tests, which determined or characterized many of the materials and components of the wind turbine generator, are described.

  13. Effect of Hydraulic Accumulator on Pressure Surge of a Hydrostatic Transmission System

    Science.gov (United States)

    Kumar, Ajit; Das, Jayanta; Dasgupta, Kabir; Barnwal, Manish Kumar

    2017-05-01

    Hydraulic power system is generally used in off-road vehicles for power transmission such as Heavy Earth Moving Machineries (HEMM). Their energy efficiency and unsubstantial failure becomes an extensive subject of analysis. Various arrangements in the system are compassed along with the utilization of some appropriate components. Application of a hydraulic accumulator is one among them. Benefits of accumulator is its multi-purpose usages like energy saving and pressure surge damping. This paper deals with the control of pressure surges in the hydraulic system and energy saving from the surges by using accumulator. For this purpose, the simulation of the hydraulic system is done in MATLAB/SimulinkR environment and an external disturbance is introduced to generate the pressure surge. The surge absorptivity of the accumulator is studied for different sizes at different pre-charged conditions of the accumulator. The discharge characteristics of different sized accumulators are also analyzed in this paper. It is observed that the ability to absorb the surge and stabilize the system is high in the smaller capacity accumulator. However the energy delivery time of larger sized accumulator is high.

  14. Design and Development of Hydraulic Disc Brake Systems for Well Servicing Rig Drawworks

    Institute of Scientific and Technical Information of China (English)

    Gao xiangqian; Zhou Yongxia

    1996-01-01

    @@ The conventional band brakes have been known to be important but also the most unlnerable part in servicing rig deawworks.. The failures in braking and releasing operations haven't well been avoided. There have evidently existed the problems of difficult operation and inconvenient maintenance in this connection. The use of power-assisted hydraulic cylinders or pneumatic cylinders can not meet the requirements of operations either. Since the late 1980s, we have cooperated with Shengli oilfields and others in the successful design and development of PST25 hydraulic disc brake systems for well servicing rig in a fully closed working state.

  15. HYDRAULIC UNITS FOR DRIVING SYSTEMS OF RUNNING EQUIPMENT IN ROAD CONSTRUCTION MACHINERY

    Directory of Open Access Journals (Sweden)

    A. Ja. Kotlobai

    2016-01-01

    Full Text Available Operational efficiency of multi-functional road construction machines depends on number of working bodies which are simultaneously performing technological operations. Systems for propulsion pto to the running equipment drive and active working bodies of road construction machines are developing in the way of using three-axis hydraulic drives. When designing a hydraulic system for road construction machinery dividing of power flow from propulsion to the running equipment drive and active working bodies is considered as rather essential problem. Leading companies do not pay attention to the development of flow divider designs, preferring to produce more expensive multi-flow pumps. One of the ways to increase efficiency of multi-functional road construction machinery is an implementation of running equipment hydraulic driving system based on a mono-aggregate pump unit which consists of a pump and a volumetric divider of power fluid flow. A principle of volumetric division and summing-up of power fluid flows, technical realization and methodology for calculation of key parameters of discrete flow distributors has been developed on the basis of discrete hydraulics regulations. The paper presents results of mathematical modeling of hydraulic systems equipped with the discrete flow distributor. Analysis of a dual-motor hydraulic drive operation has shown the following results: a discrete flow distributor ensures independent load mode of the current consumer circuit operation from the load mode of the second consumer circuit within a wide range of loads; rational value of working fluid flow discretization parameter is the following value interval k = 4–6, maximum value of parameter efficiency is reached when an angular velocity of a distributor rotor coincides with the angular velocity of a pump shaft; discrete flow distributor provides a possibility to change parameters of hydraulic flow feeding in consumers’ pressure lines within a wide range

  16. High Resolution Hydraulic Profiling and Groundwater Sampling using FLUTe™ System in a Fractured Limestone Setting

    DEFF Research Database (Denmark)

    Janniche, Gry Sander; Christensen, Anders G.; Grosen, Bernt;

    innovative investi-gation methods for characterization of the source zone hydrogeology and contamination, including FLUTe system hydraulic profiling and Water-FLUTe multilevel groundwater sampling, in fractured bryo-zoan limestone bedrock. High resolution hydraulic profiling was conducted in three cored......Characterization of the contaminant source zone architecture and the hydraulics is essential to develop accurate site specific conceptual models, delineate and quantify contaminant mass, perform risk as-sessment, and select and design remediation alternatives. This characterization is particularly...... challeng-ing in deposit types as fractured limestone. The activities of a bulk distribution facility for perchloroe-thene (PCE) and trichloroethene (TCE) at the Naverland site near Copenhagen, Denmark, has resulted in PCE and TCE DNAPL impacts to a fractured clay till and an underlying fractured limestone...

  17. The hydraulic lifting system for the main magnets of CYCIAE-30 cyclotron

    CERN Document Server

    Zhao Zhen Lu; Chen Rong Fan; Chu Cheng Jie

    2002-01-01

    The oil-line structure, control system and their working principles of the hydraulic lifting system for the main magnets of CYCIAE-30 cyclotron are introduced. The six years practice proves that the specification of the system matches the requirements: the oil cylinder maximum stroke of 850 mm, the eight slot positioning dowels repositioning accuracy of +-0.01 mm, the two oil cylinders moving in step accuracy of 5-10 mm. The system is safe, reliable and easy to be operated

  18. Investigation of Self Yaw and its Potential using a Hydraulic Soft Yaw System for 5 MW Wind Turbine

    DEFF Research Database (Denmark)

    Stubkier, Søren; Pedersen, Henrik C.

    2013-01-01

    The focus of the current paper is on a hydraulic soft yaw system, designed to reduce the loading of the turbine structure, by absorbing wind guest via the hydraulic system, but which also enables the system to be used as a self-aligning yaw system. The system is analyzed with basis in the NREL 5-...... the behavior of the hydraulic system is analyzed and it is concluded that the hydraulic yaw system allows selfyaw under normal operating conditions for the turbine. Self-yaw control is possible in wind speeds above 12 m/s when yaw friction is kept below 1 MNm.......The focus of the current paper is on a hydraulic soft yaw system, designed to reduce the loading of the turbine structure, by absorbing wind guest via the hydraulic system, but which also enables the system to be used as a self-aligning yaw system. The system is analyzed with basis in the NREL 5-MW...... turbine, modeled in FAST, in which a new robust method for implementing Coulomb friction is utilized. Based on this model and a model of the hydraulic system, the influence of friction and wind speed is investigated in relation to the possibility to use the system as a self-aligning yaw system. Similarly...

  19. 49 CFR 571.105 - Standard No. 105; Hydraulic and electric brake systems.

    Science.gov (United States)

    2010-10-01

    ... signal or signals. Electric vehicle or EV means a motor vehicle that is powered by an electric motor... or control signals in an antilock brake system, or a total functional electrical failure in a... 49 Transportation 6 2010-10-01 2010-10-01 false Standard No. 105; Hydraulic and electric...

  20. Aircraft Fuel, Hydraulic and Pneumatic Systems (Course Outlines), Aviation Mechanics 3 (Air Frame): 9067.01.

    Science.gov (United States)

    Dade County Public Schools, Miami, FL.

    This document presents an outline for a 135-hour course designed to familiarize the student with the operation, inspection, and repair of aircraft fuel, hydraulic, and pneumatic systems. It is designed to help the trainee master the knowledge and skills necessary to become an aviation airframe mechanic. The aviation airframe maintenance technician…

  1. Cascade Controller Including Back-stepping for Hydraulic-Mechanical Systems

    DEFF Research Database (Denmark)

    Choux, Martin; Hovland, Geir; Blanke, Mogens

    2012-01-01

    Development of a cascade controller structure including adaptive backstepping for a nonlinear hydraulic-mechanical system is considered in this paper where a dynamic friction (LuGre) model is included to obtain the necessary accuracy. The paper compares the performance of two variants of an adapt...

  2. Multi-physics Coupling of Hydraulic System%液压系统多场耦合

    Institute of Scientific and Technical Information of China (English)

    张健; 罗念宁; 姜继海

    2013-01-01

    概述了液压系统多物理场耦合问题,介绍了各种耦合关系的分类方法以及液压系统中所涉及的主要物理场,并介绍了液压系统多场耦合问题的国内外研究现状.针对液压系统中常见的热、气穴、压力与流量脉动问题,分析了这些常见问题主要受到了哪些物理场的影响,并简要介绍了这些问题中存在的多物理场耦合现象,对这些问题的研究趋势进行了预测,指出在日后的研究工作中应建立多场耦合问题数学模型.最后提出了针对液压系统多场耦合特性的研究方法.%In this paper,a summary of multi-physics coupling of hydraulic system is given.The paper introduces the taxonomy of various coupling relationship and the mainly physics fields in the hydraulic system.And this paper introduces a summary of multi-physics coupling of hydraulic system both within China and abroad.According to some common problems of thermal,cavitation,pressure ripple and flow ripple on hydraulic system,this paper analyzes which fields influence on these problems,and briefly introduces the existing multi-physics coupling phenomena of problems.This paper predicts the research trend of these problems,and points out that the mathematical model of multi-physics coupling needs to be established in the future research work.studies on the mainly physics fields are involved in hydraulic system when these problems influence hydraulic system.Finally,this paper puts forward the research method of multi-physics coupling of hydraulic system.

  3. Voltage dips ride-through capability. Model validation of a resistance-commutated rotor wind turbine generator from in-field testing results

    Energy Technology Data Exchange (ETDEWEB)

    Martinez Guillen, Miguel A.; Paz Comech, M.; Ruiz Guillen, Javier; Giraut Ruso, Elizabeth; Garcia-Gracia, Miguel

    2009-07-01

    The present wind energy penetration into the electrical network has forced system operators to adapt their Grid Codes to this new generation, preventing an unacceptable effect on the system safety and reliability. There are several wind turbine models that can be used to study the effects of voltage dips and the corresponding wind turbine responses but these models need to be validated by comparing their results with the data obtained during field tests. This paper describe the process followed for the validation of a Resistance-Commutated rotor wind turbine generator from in-field testing results according to the Spanish procedure for verification, validation and certification of the requirements of the P.O. 12.3 on the response of wind farms in the event of voltage dips. (orig.)

  4. Design and Experimental Validation of Hydraulic Yaw System for Multi MW Wind Turbine

    DEFF Research Database (Denmark)

    Stubkier, Søren; Pedersen, Henrik C.; Andersen, Torben Ole

    2013-01-01

    environment. The model and the test rig are tested up against different design load cases and the results are compared. The experiments show that the model is valid for comparing the overall dynamics of the hydraulic yaw system. Based on the results it is concluded that the model derived is suitable......To comply with the increasing demands for life time and reliability of wind turbines as these grow in size, new measures needs to be taken in the design of wind turbines and components hereof. One critical point is the initial testing of the components and systems before they are implemented...... market. A hydraulic yaw system is such a new technology, and so a mathematical model of the full scale system and test rig system is derived and compared to measurements from the system. This is done in order to have a validated model, which wind turbine manufacturers may use for test in their simulation...

  5. Backstepping Adaptive Controller of Electro-Hydraulic Servo System of Continuous Rotary Motor

    Institute of Scientific and Technical Information of China (English)

    XiaoJing Wang; ChangFu Xian; CaoLei Wan; JinBao Zhao; LiWei Xiu; AnCai Yu

    2014-01-01

    In order to consider the influence of the continuous rotary motor electro-hydraulic servo system parameters change on its performance, the design method of backstepping adaptive controller is put forward. The mathematical model of electro-hydraulic servo system of continuous rotary motor is established, and the whole system is decomposed into several lower order subsystems, and the virtual control signal is designed for each subsystem from the final subsystem with motor angular displacement to the subsystem with system control input voltage. Based on Lyapunov method and the backstepping theory, an adaptive backstepping controller is designed with the changed parameters adaptive law. It is proved that the system reaches the global asymptotic stability, and the system tracking error asymptotically tends to zero. The simulation results show that the backstepping adaptive controller based on the adaptive law of the changed parameters can improve the performance of continuous rotary motor, and the proposed control strategy is feasible.

  6. Modeling and Optimal Design of 3 Degrees of Freedom Helmholtz Resonator in Hydraulic System

    Institute of Scientific and Technical Information of China (English)

    GUAN Changbin; JIAO Zongxia

    2012-01-01

    Three degrees of freedom (3-DOF) Helmholtz resonator which consists of three cylindrical necks and cavities connected in series (neck-cavity-ncck-cavity-neck-cavity) is suitable to reduce flow pulsation in hydraulic system.A novel lumped parameter model (LPM) of 3-DOF Helmholtz resonator in hydraulic system is developed which considers the viscous friction loss of hydraulic fluid in the necks.Applying the Newton's second law of motion to the equivalent mechanical model of the resonator,closed-form expression of transmission loss and resonance frequency is presented.Based on the LPM,an optimal design method which employs rotate vector optimization method (RVOM) is proposed.The purpose of the optimal design is to search the resonator's unknown parameters so that its resonance frequencies can coincide with the pump-induced flow pulsation harmonics respectively.The optimal design method is realized to design 3-DOF Helmholtz resonator for a certain type of aviation piston pump hydraulic system.The optimization result shows the feasibility of this method,and the simulation under optimum parameters reveals that the LPM can get the same precision as transfer matrix method (TMM).

  7. Coupled-disturbance-observer-based position tracking control for a cascade electro-hydraulic system.

    Science.gov (United States)

    Guo, Qing; Yin, Jing-Min; Yu, Tian; Jiang, Dan

    2017-05-01

    The disturbance suppression is one of the most common control problems in electro-hydraulic systems. especially largely an unknown disturbance often obviously degrades the dynamic performance by biasing the desired actuator outputs (e.g., load forces or torques). In order to reject the dynamic disturbances in some multi-degree-of-freedom manipulators driven by electro-hydraulic actuators, this paper proposes a state feedback control of the cascade electro-hydraulic system based on a coupled disturbance observer with backstepping. The coupled disturbance observer is designed to estimate both the independent element and the coupled element of the external loads on each electro-hydraulic actuator. The cascade controller has the ability to compensate for the disturbance estimating, as well as guarantees the system state error convergence to a prescribed steady state level. The effectiveness of the proposed controller for the suppression of largely unknown disturbances has been demonstrated by comparative study, which implies the proposed approach can achieve better dynamic performance on the motion control of Two-Degree-of-Freedom robotic arm. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  8. Effect of hydraulic head and slope on water distribution uniformity of the IDE drip irrigation system

    OpenAIRE

    Ella, Victor B.; Reyes, Manuel R.; R. Yoder

    2008-01-01

    Assessment of the effect of topography and operating heads on the emission uniformity distribution in drip irrigation systems is important in water management and could serve as the basis for optimizing water-use efficiency and crop productivity. This study was carried out to evaluate the effect of slope and hydraulic head on the water distribution uniformity of a low-cost drip irrigation system developed by International Development Enterprises (IDE). The drip system was tested for water dis...

  9. Thermal-hydraulics Analysis of a Radioisotope-powered Mars Hopper Propulsion System

    Energy Technology Data Exchange (ETDEWEB)

    Robert C. O' Brien; Andrew C. Klein; William T. Taitano; Justice Gibson; Brian Myers; Steven D. Howe

    2011-02-01

    Thermal-hydraulics analyses results produced using a combined suite of computational design and analysis codes are presented for the preliminary design of a concept Radioisotope Thermal Rocket (RTR) propulsion system. Modeling of the transient heating and steady state temperatures of the system is presented. Simulation results for propellant blow down during impulsive operation are also presented. The results from this study validate the feasibility of a practical thermally capacitive RTR propulsion system.

  10. Handbook of hydraulic fluid technology

    CERN Document Server

    Totten, George E

    2011-01-01

    ""The Handbook of Hydraulic Fluid Technology"" serves as the foremost resource for designing hydraulic systems and for selecting hydraulic fluids used in engineering applications. Featuring new illustrations, data tables, as well as practical examples, this second edition is updated with essential information on the latest hydraulic fluids and testing methods. The detailed text facilitates unparalleled understanding of the total hydraulic system, including important hardware, fluid properties, and hydraulic lubricants. Written by worldwide experts, the book also offers a rigorous overview of h

  11. Understanding the Space Shuttle Main Engine Hydraulic Actuation System and Reviewing Its Evolution

    Science.gov (United States)

    McWade, Robert J.; Minor, Robert B.; McNutt, Leslie M.

    2010-01-01

    The complex engine start and thrust control requirements of the Space Shuttle Main Engine (SSME) require unique valve, actuator and control system hardware. The Hydraulic Actuation System (HAS) was designed, developed, and now operates to meet tight engine control requirement limits to assure safe, reliable and correct engine thrust at all times. The actuator is designed to be fail safe and fail operate in the areas where redundancy is important. The HAS has an additional pneumatic operating capability that insures a safe sequential closure of all actuators and propellant valves in the event of the loss of hydraulic system pressure or loss of electrical closed loop control of the actuator. The objective of this paper is to provide a complete description of the actuator s internal operating system, along with its interaction with all SSME system interfaces. Additionally the paper addresses the challenges, problems identified, and corrected, and lessons learned, during the course of the almost 35 years of engine operation.

  12. STUDY ON THE CONTROL SYSTEM OF HYDRAULIC MOMENT-ADJUSTED BRAKE FOR DOWNWARD BELT CONVEYOR

    Institute of Scientific and Technical Information of China (English)

    孟国营; 徐志强; 霍森; 方佳雨

    1997-01-01

    Having analyzed the drawbacks on the design of control system of hydraulic momentadjusted brake system, the author presents a closed loop control system in the process of start and braking of the conveyer. On the basis of the concept of the critical time and the critical acceleration and its deductions, the working mode of the conveyer can be identified and controlled in feedback, furthermore, thus realize the process of soft start. In the deceleration process, the author points out the problems that exist in the present control system and sets forward the control process that acted by the combined function of brake moment of motor and the drag torque of hydraulic brake at the beginning of deceleration, it will further improved reliability of conveyor system.

  13. Understanding the Space Shuttle Main Engine Hydraulic Actuation System and Reviewing Its Evolution

    Science.gov (United States)

    McWade, Robert J.; Minor, Robert B.; McNutt, Leslie M.

    2010-01-01

    The complex engine start and thrust control requirements of the Space Shuttle Main Engine (SSME) require unique valve, actuator and control system hardware. The Hydraulic Actuation System (HAS) was designed, developed, and now operates to meet tight engine control requirement limits to assure safe, reliable and correct engine thrust at all times. The actuator is designed to be fail safe and fail operate in the areas where redundancy is important. The HAS has an additional pneumatic operating capability that insures a safe sequential closure of all actuators and propellant valves in the event of the loss of hydraulic system pressure or loss of electrical closed loop control of the actuator. The objective of this paper is to provide a complete description of the actuator s internal operating system, along with its interaction with all SSME system interfaces. Additionally the paper addresses the challenges, problems identified, and corrected, and lessons learned, during the course of the almost 35 years of engine operation.

  14. A Hydraulic Motor-Alternator System for Ocean-Submersible Vehicles

    Science.gov (United States)

    Aintablian, Harry O.; Valdez, Thomas I.; Jones, Jack A.

    2012-01-01

    An ocean-submersible vehicle has been developed at JPL that moves back and forth between sea level and a depth of a few hundred meters. A liquid volumetric change at a pressure of 70 bars is created by means of thermal phase change. During vehicle ascent, the phase-change material (PCM) is melted by the circulation of warm water and thus pressure is increased. During vehicle descent, the PCM is cooled resulting in reduced pressure. This pressure change is used to generate electric power by means of a hydraulic pump that drives a permanent magnet (PM) alternator. The output energy of the alternator is stored in a rechargeable battery that powers an on-board computer, instrumentation and other peripherals.The focus of this paper is the performance evaluation of a specific hydraulic motor-alternator system. Experimental and theoretical efficiency data of the hydraulic motor and the alternator are presented. The results are used to evaluate the optimization of the hydraulic motor-alternator system. The integrated submersible vehicle was successfully operated in the Pacific Ocean near Hawaii. A brief overview of the actual test results is presented.

  15. Chapter 13. Industrial Application of Tap Water Hydraulic Systems

    DEFF Research Database (Denmark)

    Conrad, Finn; Adelstorp, Anders

    1997-01-01

    Design and application of modern pure tap water components and systems in industries, in particular food processing industry.......Design and application of modern pure tap water components and systems in industries, in particular food processing industry....

  16. PI-type Iterative Learning Control for Nonlinear Electro-hydraulic Servo Vibrating System

    Institute of Scientific and Technical Information of China (English)

    LUO Xiaohui; ZHU Yuquan; HU Junhua

    2009-01-01

    For the electro-hydraulic servo vibrating system(ESVS) with the characteristics of non-linearity and repeating motion, a novel method, PI-type iterative learning control(ILC), is proposed on the basis of traditional PID control. By using memory ability of computer, the method keeps last time's tracking error of the system and then applies the error information to the next time's control process. At the same time, a forgetting factor and a D-type learning law of feedforward fuzzy-inferring referenced displacement error under the optimal objective are employed to enhance the systemic robustness and tracking accuracy. The results of simulation and test reveal that the algorithm has a trait of high repeating precision, and could restrain the influence of nonlinear factors like leaking, external disturbance, aerated oil, etc. Compared with traditional PID control, it could better meet the requirement of nonlinear electro-hydraulic servo vibrating system.

  17. Active disturbance rejection control for hydraulic width control system for rough mill

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The highly nonlinear behavior of the system limits the performance of classical linear proportional and integral (PI) controllers used for hot rolling. An active disturbance rejection controller is proposed in this paper to deal with the nonlinear problem of hydraulic servo system in order to preserve fast response and small overshoot of control system. The active disturbance rejection (ADR) controller is composed of nonlinear tracking differentiator (TD), extended state observer (ESO) and nonlinear feedback (NF) law. An example of the hydraulic edger system case study is investigated to show the effectiveness and robustness of the proposed nonlinear controller, especially, in the circumstance of foreign disturbance and working condition variation,compared with classic PI controller.

  18. Parameter Design for the Energy-Regeneration System of Series Hydraulic-Hybrid Bus

    Directory of Open Access Journals (Sweden)

    SONG Yunpu

    2012-10-01

    Full Text Available This paper simplifies the energy recovery process in the series hydraulic hybrid bus’ energy regeneration system into a process in which the main axle’s moment of inertia drives the secondary element variable delivery pump/motor and brings hydraulic oil from the oil tank to the accumulator. This process enables braking of the vehicle and also allows recovery of energy to the accumulator. Based on the flow equation for the secondary element variable delivery pump/motor and the torque equilibrium equation for its axle, the force equilibrium equation for vehicle braking and the pressure variation and flow continuity equations for the accumulator, simulation studies are conducted to analyze the effects of various system parameters, such as accumulator capacity, displacement of the secondary element variable delivery pump/motor, initial operating pressure of the system, etc. on system performance during regenerative braking.  

  19. Dynamic Modeling of Hydraulic Power Steering System with Variable Ratio Rack and Pinion Gear

    Science.gov (United States)

    Zhang, Nong; Wang, Miao

    A comprehensive mathematical model of a typical hydraulic power steering system equipped with variable ratio rack and pinion gear is developed. The steering system’s dynamic characteristics are investigated and its forced vibrations are compared with those obtained from a counterpart system with a constant ratio rack and pinion gear. The modeling details of the mechanism subsystem, hydraulic supply lines subsystem and the rotary spool valve subsystem are provided and included in the integrated steering system model. The numerical simulations are conducted to investigate the dynamics of the nonlinear parametric steering system. From the comparison between simulated results and the experimental ones, it is shown that the model accurately integrates the boost characteristics of the rotary spool valve which is the key component of hydraulic power steering system. The variable ratio rack-pinion gear behaviors significantly differently from its constant ratio counterpart does. It significantly affects not only the system natural frequencies but also reduces vibrations under constant rate and ramp torque steering inputs. The developed steering model produces valid predictions of the system’s behavior and therfore could assist engineers in the design and analysis of integrated steering systems.

  20. FOREWORD: The XXV IAHR Symposium on Hydraulic Machinery and Systems marks half a century tradition

    Science.gov (United States)

    Susan-Resiga, Romeo

    2010-05-01

    IAHR75_logoUPT90_logoARFT_logo International Association of Hydro-Environment Engineering and Research'Politehnica' University of TimisoaraRomanian Academy - Timisoara Branch The 25th edition of the IAHR Symposium on Hydraulic Machinery and Systems, held in Timisoara, Romania, 20-24 September 2010, jointly organized by the 'Politehnica' University of Timisoara and the Romanian Academy - Timisoara Branch, marks a half century tradition of these prestigious symposia. However, it is the first time that Romania hosts such a symposium, and for good reasons. The Romanian electrical power system has a total of 20,630 MW installed power, out of which 6,422 MW in hydropower plants. The energy produced in hydropower facilities was in 2008 of 17,105 GWh from a total of 64,772 GWh electrical energy production. Moreover, for the period 2009-2015, new hydropower capacities are going to be developed, with a total of 2,157 MW installed power and an estimated 5,770 GWh/year energy production. Within the same period of time, the refurbishment, modernization and repair programs will increase the actual hydropower production with an estimated 349 GWh/year. The 'Politehnica' University of Timisoara is proud to host the 25th IAHR Symposium on Hydraulic Machinery and Systems, in the year of its 90th anniversary. The 'Politehnica' University of Timisoara is one of the largest and most well-known technical universities from Central and Eastern Europe. It was founded in 1920, a short time after the union into one state of all the Romanian territories, following the end of the First World War, in order to respond to the need engineers felt by the Romanian society at that time, within the economical development framework. During its 90 years of existence, 'Politehnica' University of Timisoara educated over 100,000 engineers, greatly appreciated both in Romania and abroad, for their competence and seriousness. King Ferdinand I of Romania said while visiting the recently established

  1. Thermal Hydraulic Analysis of a Passive Residual Heat Removal System for an Integral Pressurized Water Reactor

    OpenAIRE

    2009-01-01

    A theoretical investigation on the thermal hydraulic characteristics of a new type of passive residual heat removal system (PRHRS), which is connected to the reactor coolant system via the secondary side of the steam generator, for an integral pressurized water reactor is presented in this paper. Three-interknited natural circulation loops are adopted by this PRHRS to remove the residual heat of the reactor core after a reactor trip. Based on the one-dimensional model and a simulation code (S...

  2. Dynamic Analysis of Jacket Substructure for Offshore Wind Turbine Generators under Extreme Environmental Conditions

    Directory of Open Access Journals (Sweden)

    Wen-Jeng Lai

    2016-10-01

    Full Text Available In order to develop dynamic analysis technologies regarding the design of offshore wind turbine generators (OWTGs, a special project called Offshore Code Comparison Collaboration Continuation (OC4 was conducted by IEA (International Energy Agency in 2010. A similar project named INER-OC4 has been performed by the Institute of Nuclear Energy Research (INER to develop the OWTG technologies of Taiwan. Since the jacket substructure will be applied to Taiwan OWTGs before 2020, the INER-OC4 project has been devoted to the design and analysis of jacket support structure. In this work, the preliminary result of INER-OC4 is presented. A simplified analysis procedure for jacket support structure has been proposed. Both of the NREL (National Renewable Energy Laboratory 5 MW OWTG FAST model and OC4 jacket substructure model have been built and analyzed under severe design load cases (DLCs of IEC (International Electrotechnical commission 61400-3. Simulation results of six severe DLCs are performed in this work and the results are in agreement with the requirements of API (American Petroleum Institute and NORSOK (Norwegian Petroleum Industry standards.

  3. MOD-5A wind turbine generator program design report: Volume 1: Executive Summary

    Science.gov (United States)

    1984-01-01

    The design, development and analysis of the 7.3 MW MOD-5A wind turbine generator covering work performed between July 1980 and June 1984 is discussed. The report is divided into four volumes: Volume 1 summarizes the entire MOD-5A program, Volume 2 discusses the conceptual and preliminary design phases, Volume 3 describes the final design of the MOD-5A, and Volume 4 contains the drawings and specifications developed for the final design. Volume 1, the Executive Summary, summarizes all phases of the MOD-5A program. The performance and cost of energy generated by the MOD-5A are presented. Each subsystem - the rotor, drivetrain, nacelle, tower and foundation, power generation, and control and instrumentation subsystems - is described briefly. The early phases of the MOD-5A program, during which the design was analyzed and optimized, and new technologies and materials were developed, are discussed. Manufacturing, quality assurance, and safety plans are presented. The volume concludes with an index of volumes 2 and 3.

  4. Use of hydraulic models to identify and resolve design isssues in FGD systems

    Energy Technology Data Exchange (ETDEWEB)

    Strock, T.W. [Babcock & Wilcox, Alliance, OH (United States); Gohara, W.F. [Babcock & Wilcox, Barberton, OH (United States)

    1995-06-01

    The hydraulics within a wet flue gas desulfurization (FGD) scrubber involve several complex two-phase gas/liquid interactions that directly affect the scrubber pressure drop, mist elimination efficiency, and the mass transfer process of SO{sub 2} removal. Current industrial efforts to develop cost effective, high-efficiency wet FGD scrubbers are focusing, in part, on the hydraulics. The development of an experimental approach and test facility for understanding and optimizing wet scrubber flow characteristics has been completed. Hydraulic models simulate full-scale units and allow the designer to view the gas/liquid flow interactions. Modeling procedures for downsizing the wet scrubber for the laboratory have been developed and validated with field data comparisons. A one-eighth scale hydraulic model has been used to study several FGD scrubber design issues. Design changes to reduce capital and operating cost have been developed and tested. Recently, the model was used to design a commercial, uniform flow, high gas velocity absorber for the next generation of FGD systems.

  5. The gravitational potential energy regeneration system with closed-circuit of boom of hydraulic excavator

    Science.gov (United States)

    Chen, Mingdong; Zhao, Dingxuan

    2017-01-01

    Considering the disadvantage of higher throttling loss for the open-circuit hydrostatic transmission at present, a novel gravitational potential energy regeneration system (GPERS) of the boom of hydraulic excavator, namely the closed-circuit GPERS, is proposed in this paper. The closed-circuit GPERS is based on a closed-circuit hydrostatic transmission and adopts a hydraulic accumulator as main energy storage element fabricated in novel configuration to recover the entire gravitational potential energy of the boom of hydraulic excavator. The matching parameter and control system design are carried out for the proposed system, and the system is modeled based on its physical attributes. Simulation and experiments are performed to validate the employed mathematical models, and then, the velocity and the pressure performance of system are analyzed. It is observed that the closed-circuit GPERS shows better velocity control of the boom and response characteristics. After that, the average working efficiency of the closed-circuit GPERS of boom is estimated under different load conditions. The results indicate that the proposed system is highly effective and that the average working efficiency in different load conditions varied from 60% to 68.2% for the experiment platform.

  6. Thermal-Hydraulic System Codes in Nulcear Reactor Safety and Qualification Procedures

    Directory of Open Access Journals (Sweden)

    Alessandro Petruzzi

    2008-01-01

    Full Text Available In the last four decades, large efforts have been undertaken to provide reliable thermal-hydraulic system codes for the analyses of transients and accidents in nuclear power plants. Whereas the first system codes, developed at the beginning of the 1970s, utilized the homogenous equilibrium model with three balance equations to describe the two-phase flow, nowadays the more advanced system codes are based on the so-called “two-fluid model” with separation of the water and vapor phases, resulting in systems with at least six balance equations. The wide experimental campaign, constituted by the integral and separate effect tests, conducted under the umbrella of the OECD/CSNI was at the basis of the development and validation of the thermal-hydraulic system codes by which they have reached the present high degree of maturity. However, notwithstanding the huge amounts of financial and human resources invested, the results predicted by the code are still affected by errors whose origins can be attributed to several reasons as model deficiencies, approximations in the numerical solution, nodalization effects, and imperfect knowledge of boundary and initial conditions. In this context, the existence of qualified procedures for a consistent application of qualified thermal-hydraulic system code is necessary and implies the drawing up of specific criteria through which the code-user, the nodalization, and finally the transient results are qualified.

  7. Error Analysis and Compensation Method on the Mechanical Structure of the Hydraulic Control System

    Directory of Open Access Journals (Sweden)

    Luo Yanyan

    2016-01-01

    Full Text Available Mechanical deformation of mechanical transmission part in hydraulic control system directly affects the loading accuracy of the system. For improving the mechanical properties of the system, The force analysis and motion analysis of mechanism are simulated based on the four-bar linkage structure (FLS, and kinematics simulation is designed by using Matlab program, then came to a system error bar graph. The system error was calculated accurately according to the results of the structural mechanics simulation made by Solidworks motion module. The structure of the system will be modified when systematic errors exceed the required limit values until it reach the required value.

  8. Test Rig Design and Presentation for a Hydraulic Yaw System

    DEFF Research Database (Denmark)

    Stubkier, Søren; Pedersen, Henrik C.; Andersen, Torben Ole

    2013-01-01

    dynamics under real conditions. The behavior of the system is analyzed with regard to 20 years of operation. This is for example done by applying loads from different design load cases, e.g. normal turbulence, extreme turbulence and different fault scenarios on the turbine. The paper first presents...... an introduction with the current state of the art and problem description, followed by a system description, where the system is designed and dimensioned. Based on the design, results from the test rig are presented and analyzed. Finally a conclusion summing up the design, model and test results is given....

  9. Hydraulic characterization of an activated sludge reactor with recycling system by tracer experiment and analytical models.

    Science.gov (United States)

    Sánchez, F; Viedma, A; Kaiser, A S

    2016-09-15

    Fluid dynamic behaviour plays an important role in wastewater treatment. An efficient treatment requires the inexistence of certain hydraulic problems such as dead zones or short-circuiting flows. Residence time distribution (RTD) analysis is an excellent technique for detecting these inefficiencies. However, many wastewater treatment installations include water or sludge recycling systems, which prevent us from carrying out a conventional tracer pulse experiment to obtain the RTD curve of the installation. This paper develops an RTD analysis of an activated sludge reactor with recycling system. A tracer experiment in the reactor is carried out. Three analytical models, derived from the conventional pulse model, are proposed to obtain the RTD curve of the reactor. An analysis of the results is made, studying which model is the most suitable for each situation. This paper is useful to analyse the hydraulic efficiency of reactors with recycling systems.

  10. New method to improve dynamic stiffness of electro-hydraulic servo systems

    Science.gov (United States)

    Bai, Yanhong; Quan, Long

    2013-09-01

    Most current researches working on improving stiffness focus on the application of control theories. But controller in closed-loop hydraulic control system takes effect only after the controlled position is deviated, so the control action is lagged. Thus dynamic performance against force disturbance and dynamic load stiffness can’t be improved evidently by advanced control algorithms. In this paper, the elementary principle of maintaining piston position unchanged under sudden external force load change by charging additional oil is analyzed. On this basis, the conception of raising dynamic stiffness of electro hydraulic position servo system by flow feedforward compensation is put forward. And a scheme using double servo valves to realize flow feedforward compensation is presented, in which another fast response servo valve is added to the regular electro hydraulic servo system and specially utilized to compensate the compressed oil volume caused by load impact in time. The two valves are arranged in parallel to control the cylinder jointly. Furthermore, the model of flow compensation is derived, by which the product of the amplitude and width of the valve’s pulse command signal can be calculated. And determination rules of the amplitude and width of pulse signal are concluded by analysis and simulations. Using the proposed scheme, simulations and experiments at different positions with different force changes are conducted. The simulation and experimental results show that the system dynamic performance against load force impact is largely improved with decreased maximal dynamic position deviation and shortened settling time. That is, system dynamic load stiffness is evidently raised. This paper proposes a new method which can effectively improve the dynamic stiffness of electro-hydraulic servo systems.

  11. Staged cost optimization of urban storm drainage systems based on hydraulic performance in a changing environment

    Directory of Open Access Journals (Sweden)

    M. Maharjan

    2008-06-01

    Full Text Available Urban flooding causes large economic losses, property damage and loss of lives. The impact of environmental changes mainly, the urbanization and the climatic change leads to increased runoff and increased peak flows which the drainage system must be able to cope with to overcome possible damage and inconveniences caused by the induced flooding. Allowing for detention storage to compliment the capacity of the drainage system network is one of the approaches to reduce urban floods. The traditional practice was to design systems against stationary environmental forcings – including design rainfall, landuse, etc. Due to the rapid change in climate-environment, this approach is no longer economically viable and safe, and explicit consideration of changes that gradually take place during the life-time of the drainage system is warranted. In this paper, a staged cost optimization tool based on the hydraulic performance of the drainage system is presented. A one dimensional hydraulic model is used for hydraulic evaluation of the network together with a genetic algorithm based optimization tool to determine optimal intervention timings and amounts throughout the lifespan of the drainage network. The model was applied in a case study area in the city of Porto Alegre, Brazil. It was concluded that considerable financial savings and/or additional level of flood-safety can be achieved by approaching the design problem as a staged plan rather than one-off scheme.

  12. Staged cost optimization of urban storm drainage systems based on hydraulic performance in a changing environment

    Science.gov (United States)

    Maharjan, M.; Pathirana, A.; Gersonius, B.; Vairavamoorthy, K.

    2009-04-01

    Urban flooding causes large economic losses, property damage and loss of lives. The impact of environmental changes, mainly urbanization and climatic change, leads to increased runoff and peak flows which the drainage system must be able to cope with to reduce potential damage and inconvenience. Allowing for detention storage to compliment the conveyance capacity of the drainage system network is one of the approaches to reduce urban floods. Contemporary practice is to design systems against stationary environmental forcings - including design rainfall, landuse, etc. Due to the rapid change in the climate- and the urban environment, this approach is no longer appropriate, and explicit consideration of gradual changes during the life-time of the drainage system is warranted. In this paper, a staged cost optimization tool based on the hydraulic performance of the drainage system is presented. A one dimensional hydraulic model is used for hydraulic evaluation of the network together with a genetic algorithm based optimization tool to determine optimal intervention timings and responses over the analysis period. The model was applied in a case study area in the city of Porto Alegre, Brazil. It was concluded that considerable financial savings and/or additional level of flood-safety can be achieved by approaching the design problem as a staged plan rather than one-off scheme.

  13. Staged cost optimization of urban storm drainage systems based on hydraulic performance in a changing environment

    Directory of Open Access Journals (Sweden)

    M. Maharjan

    2009-04-01

    Full Text Available Urban flooding causes large economic losses, property damage and loss of lives. The impact of environmental changes, mainly urbanization and climatic change, leads to increased runoff and peak flows which the drainage system must be able to cope with to reduce potential damage and inconvenience. Allowing for detention storage to compliment the conveyance capacity of the drainage system network is one of the approaches to reduce urban floods. Contemporary practice is to design systems against stationary environmental forcings – including design rainfall, landuse, etc. Due to the rapid change in the climate- and the urban environment, this approach is no longer appropriate, and explicit consideration of gradual changes during the life-time of the drainage system is warranted. In this paper, a staged cost optimization tool based on the hydraulic performance of the drainage system is presented. A one dimensional hydraulic model is used for hydraulic evaluation of the network together with a genetic algorithm based optimization tool to determine optimal intervention timings and responses over the analysis period. The model was applied in a case study area in the city of Porto Alegre, Brazil. It was concluded that considerable financial savings and/or additional level of flood-safety can be achieved by approaching the design problem as a staged plan rather than one-off scheme.

  14. Free-piston Stirling hydraulic engine and drive system for automobiles

    Science.gov (United States)

    Beremand, D. G.; Slaby, J. G.; Nussle, R. C.; Miao, D.

    1982-01-01

    The calculated fuel economy for an automotive free piston Stirling hydraulic engine and drive system using a pneumatic accumulator with the fuel economy of both a conventional 1980 spark ignition engine in an X body class vehicle and the estimated fuel economy of a 1984 spark ignition vehicle system are compared. The results show that the free piston Stirling hydraulic system with a two speed transmission has a combined fuel economy nearly twice that of the 1980 spark ignition engine - 21.5 versus 10.9 km/liter (50.7 versus 25.6 mpg) under comparable conditions. The fuel economy improvement over the 1984 spark ignition engine was 81 percent. The fuel economy sensitivity of the Stirling hydraulic system to system weight, number of transmission shifts, accumulator pressure ratio and maximum pressure, auxiliary power requirements, braking energy recovery, and varying vehicle performance requirements are considered. An important finding is that a multispeed transmission is not required. The penalty for a single speed versus a two speed transmission is about a 12 percent drop in combined fuel economy to 19.0 km/liter (44.7 mpg). This is still a 60 percent improvement in combined fuel economy over the projected 1984 spark ignition vehicle.

  15. Optimal Design and Hybrid Control for the Electro-Hydraulic Dual-Shaking Table System

    Directory of Open Access Journals (Sweden)

    Lianpeng Zhang

    2016-08-01

    Full Text Available This paper is to develop an optimal electro-hydraulic dual-shaking table system with high waveform replication precision. The parameters of hydraulic cylinders, servo valves, hydraulic supply power and gravity balance system are designed and optimized in detail. To improve synchronization and tracking control precision, a hybrid control strategy is proposed. The cross-coupled control using a novel based on sliding mode control based on adaptive reaching law (ASMC, which can adaptively tune the parameters of sliding mode control (SMC, is proposed to reduce the synchronization error. To improve the tracking performance, the observer-based inverse control scheme combining the feed-forward inverse model controller and disturbance observer is proposed. The system model is identified applying the recursive least squares (RLS algorithm and then the feed-forward inverse controller is designed based on zero phase error tracking controller (ZPETC technique. To compensate disturbance and model errors, disturbance observer is used cooperating with the designed inverse controller. The combination of the novel ASMC cross-coupled controller and proposed observer-based inverse controller can improve the control precision noticeably. The dual-shaking table experiment system is built and various experiments are performed. The experimental results indicate that the developed system with the proposed hybrid control strategy is feasible and efficient and can reduce the tracking errors to 25% and synchronization error to 16% compared with traditional control schemes.

  16. Energy Saving in Water Distribution Network through Pump as Turbine Generators: Economic and Environmental Analysis

    Directory of Open Access Journals (Sweden)

    Mauro De Marchis

    2016-10-01

    Full Text Available Complex systems of water distribution networks (WDS are used to supply water to users. WDSs are systems where a lot of distributed energy is available. Historically, this energy is artificially dissipated by pressure reduction valves (PRVs, thanks to which water utilities manage the pressure level in selected nodes of the network. The present study explores the use of economic hydraulic machines, pumps as turbines (PATs to produce energy in a small network located in a town close to Palermo (Italy. The main idea is to avoid dissipation in favor of renewable energy production. The proposed study is applied to a WDN typical of the Mediterranean countries, where the users, to collect water during the period of water scarcity conditions, install private tanks. The presence of private tanks deeply modifies the network from its designed condition. In the proposed analysis, the economic benefit of PATs application in water distribution networks has been investigated, accounting for the presence of users’ private tanks. The analysis, carried out by mean of a mathematical model able to dynamically simulate the water distribution network with PATs, shows the advantage of their installation in terms of renewable energy recovery, even though the energy production of PATs is strictly conditioned by their installation position.

  17. Model predictive control of servo motor driven constant pump hydraulic system in injection molding process based on neurodynamic optimization

    Institute of Scientific and Technical Information of China (English)

    Yong-gang PENG; Jun WANG; Wei WEI

    2014-01-01

    In view of the high energy consumption and low response speed of the traditional hydraulic system for an injection molding machine, a servo motor driven constant pump hydraulic system is designed for a precision injection molding process, which uses a servo motor, a constant pump, and a pressure sensor, instead of a common motor, a constant pump, a pressure pro-portion valve, and a flow proportion valve. A model predictive control strategy based on neurodynamic optimization is proposed to control this new hydraulic system in the injection molding process. Simulation results showed that this control method has good control precision and quick response.

  18. Method for achieving hydraulic balance in typical Chinese building heating systems by managing differential pressure and flow

    DEFF Research Database (Denmark)

    Zhang, Lipeng; Xia, Jianjun; Thorsen, Jan Eric;

    2017-01-01

    Hydraulic unbalance is a common problem in Chinese district heating (DH) systems. Hydraulic unbalance has resulted in poor flow distribution among heating branches and overheating of apartments. Studies show that nearly 30% of the total heat supply is being wasted in Chinese DH systems due...... to a lack of pressure and flow control. This study investigated using pre-set radiator valves combined with differential pressure (DP) controllers to achieve hydraulic balance in building distribution systems, and consequently save energy and reduce the emissions. We considered a multi-storey building...

  19. Generic Models of Wind Turbine Generators for Advanced Applications in a VSC-based Offshore HVDC Network

    DEFF Research Database (Denmark)

    Zeni, Lorenzo; Margaris, Ioannis; Hansen, Anca Daniela;

    This paper focuses on generic Type 4 wind turbine generators models, their applicability in modern HVDC connections and their capability to provide advanced ancillary services therefrom. A point-to-point HVDC offshore connection is considered. Issues concerning coordinated HVDC and wind farm...... involving the HVDC converters- The performance against frequency disturbances of the two presented configurations is assessed and discussed by means of simulations....

  20. Position control of nonlinear hydraulic system using an improved PSO based PID controller

    Science.gov (United States)

    Ye, Yi; Yin, Chen-Bo; Gong, Yue; Zhou, Jun-jing

    2017-01-01

    This paper addresses the position control of valve-controlled cylinder system employed in hydraulic excavator. Nonlinearities such as dead zone, saturation, discharge coefficient and friction existed in the system are highlighted during the mathematical modeling. On this basis, simulation model is established and then validated against experiments. Aim for achieving excellent position control performances, an improved particle swarm optimization (PSO) algorithm is presented to search for the optimal proportional-integral-derivative (PID) controller gains for the nonlinear hydraulic system. The proposed algorithm is a hybrid based on the standard PSO algorithm but with the addition of selection and crossover operators from genetic algorithm in order to enhance the searching efficiency. Furthermore, a nonlinear decreasing scheme for the inertia weight of the improved PSO algorithm is adopted to balance global exploration and local exploration abilities of particles. Then a co-simulation platform combining the simulation model with the improved PSO tuning based PID controller is developed. Comparisons of the improved PSO, standard PSO and Phase Margin (PM) tuning methods are carried out with three position references as step signal, ramp signal and sinusoidal wave using the co-simulation platform. The results demonstrated that the improved PSO algorithm can perform well in PID control for positioning of nonlinear hydraulic system.

  1. NUMERICAL MODELING OF MULTICYLINDER ELECTRO-HYDRAULIC SYSTEM AND CONTROLLER DESIGN FOR SHOCK TEST MACHINE

    Institute of Scientific and Technical Information of China (English)

    CHU Deying; ZHANG Zhiyi; WANG Gongxian; HUA Hongxing

    2007-01-01

    A high fidelity dynamic model of a high-energy hydraulically-actuated shock test machine for heavy weight devices is presented to satisfy the newly-built shock resistance standard and simulate the actual underwater explosion environments in laboratory as well as increase the testing capability of shock test machine. In order to produce the required negative shock pulse in the given time duration, four hydraulic actuators are utilized. The model is then used to formulate an advanced feedforward controller for the system to produce the required negative waveform and to address the motion synchronization of the four cylinders. The model provides a safe and easily controllable way to perform a "virtual testing" before starting potentially destructive tests on specimen and to predict performance of the system. Simulation results have demonstrated the effectiveness of the controller.

  2. The study on measures to improve the reliability of the hydraulic systems of shearers

    Institute of Scientific and Technical Information of China (English)

    YUAN Hui; XU Long-jiang; TIAN Da-biao; ZHAO Yan-ling

    2001-01-01

    The authors indicate that the failure of hydraulic systems of shearers can drop greatly, its' reliability and service life can be increased by the use of a field oil contamination analyser and filter device to control the oil cont amination of the hydraulic systems of shearers. Experimental provement of siltin g-theory contamination analyser are carried out.The filter effect of portable h ydraulic driving oil-filter model YLJ-21 is examinationed in laboratory and fi e ld experiment. From January to August 1992, on-site experimental research using a silting-theory contamination analyser and oil-filter model YLJ-21 to contr o l the oil contamination was carried out in the Datong Coal Mining Bureau.

  3. Towards quantitative root hydraulic phenotyping: novel mathematical functions to calculate plant-scale hydraulic parameters from root system functional and structural traits.

    Science.gov (United States)

    Meunier, F; Couvreur, V; Draye, X; Vanderborght, J; Javaux, M

    2017-03-02

    Predicting root water uptake and plant transpiration is crucial for managing plant irrigation and developing drought-tolerant root system ideotypes (i.e. ideal root systems). Today, three-dimensional structural functional models exist, which allows solving the water flow equation in the soil and in the root systems under transient conditions and in heterogeneous soils. Yet, these models rely on the full representation of the three-dimensional distribution of the root hydraulic properties, which is not always easy to access. Recently, new models able to represent this complex system without the full knowledge of the plant 3D hydraulic architecture and with a limited number of parameters have been developed. However, the estimation of the macroscopic parameters a priori still requires a numerical model and the knowledge of the full three-dimensional hydraulic architecture. The objective of this study is to provide analytical mathematical models to estimate the values of these parameters as a function of local plant general features, like the distance between laterals, the number of primaries or the ratio of radial to axial root conductances. Such functions would allow one to characterize the behaviour of a root system (as characterized by its macroscopic parameters) directly from averaged plant root traits, thereby opening new possibilities for developing quantitative ideotypes, by linking plant scale parameters to mean functional or structural properties. With its simple form, the proposed model offers the chance to perform sensitivity and optimization analyses as presented in this study.

  4. Application of cyclic coherence function to bearing fault detection in a wind turbine generator under electromagnetic vibration

    Science.gov (United States)

    Teng, Wei; Ding, Xian; Zhang, Yangyang; Liu, Yibing; Ma, Zhiyong; Kusiak, Andrew

    2017-03-01

    In a wind turbine generator, there is an intrinsic electromagnetic vibration originated from an alternating magnetic field acting on a low stiffness stator, which modulates vibration signals of the generator and impedes fault feature extraction of bearings. When defects arise in a bearing, the statistics of the vibration signal are periodic and this phenomenon is described as cyclostationarity. Correspondingly, cyclostationary analysis enables finding the degree of cyclostationarity representing potential fault modulation information. In this paper, the electromagnetic vibration acting as a disturbance source for fault feature extraction is deduced. Additionally, the spectral correlation density and cyclic coherence function used for vibration analysis are estimated. A real 2 MW wind turbine generator with a faulty bearing was tested and the vibration signals were analyzed separately using conventional demodulation analysis, cyclic coherence function, complex wavelet transform and spectral kurtosis. The analysis results have demonstrated that the cyclic coherence function can detect the fault feature of inner race successfully, while the feature is concealed by intensive electromagnetic vibration in the other three methods. The disassembled bearing of the wind turbine generator illustrates the effectiveness of the analysis result, and precautionary measures for protecting bearings in generators are suggested.

  5. Field investigation on consumer behavior and hydraulic performance of a district heating system in Tianjin, China

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Baoping; Fu, Lin; Di, Hongfa [Department of Building Science, Tsinghua University, Beijing 100084 (China)

    2009-02-15

    With the implementation of heat reforms in China, the application of thermostatic radiator valves (TRVs) has been gaining popularity in the new-style district heating systems (DHSs). The objective of this study was to investigate consumer behavior (including regulation of TRVs and opening of windows) and its influences on the hydraulic performance and energy consumption of individuals and the whole system. The concurrence rate of individual behaviors and hydraulic interactions between individuals were analyzed. This study should be helpful to gain a comprehensive understanding of the new DHSs in China and consider a proper design/control strategy for these systems. Questionnaires and field observations of consumer behavior, tests of hydraulic performance, and surveys of energy consumption were carried out in a DHS in Tianjin, which was one of the heat metering and billing demonstration projects in China. The main results of the tests were as follows: water flow performance in apartment-level heating systems were diverse because consumers' behavior was varied and unpredictable, and the hydraulic interaction between consumers living along the line of a vertical pipe was obvious, and was stronger for terminal consumers with their TRVs set to higher values; however, flow variations in the whole DHS, which included 910 households, were relatively constant. A probability analysis was carried out to explain this phenomenon, and the conclusion was drawn that when there were more than 200 consumers, the stochastic consumer regulation behavior would bring less than 10% of total flow variations. Finally, the power consumption of the circulation pump, heat consumption and energy-saving potential of this type of DHS were discussed and some suggestions for TRV regulation and pump operation were made. (author)

  6. ITHNA.SYS: An Integrated Thermal Hydraulic and Neutronic Analyzer SYStem for NUR research reactor

    Energy Technology Data Exchange (ETDEWEB)

    Mazidi, S., E-mail: samirmazidi@gmail.com [Division Physique et Applications Nucléaires, Centre de Recherche Nucléaire de Draria (CRND), BP 43 Sebala, Draria, Alger (Algeria); Meftah, B., E-mail: b_meftah@yahoo.com [Division Physique et Applications Nucléaires, Centre de Recherche Nucléaire de Draria (CRND), BP 43 Sebala, Draria, Alger (Algeria); Belgaid, M., E-mail: belgaidm@yahoo.com [Faculté de Physique, Université Houari Boumediene, USTHB, BP 31, Bab Ezzouar, Alger (Algeria); Letaim, F., E-mail: fletaim@yahoo.fr [Faculté des Sciences et Technologies, Université d’El-oued, PO Box 789, El-oued (Algeria); Halilou, A., E-mail: hal_rane@yahoo.fr [Division Réacteur NUR, Centre de Recherche Nucléaire de Draria, BP 43 Sebala, Draria, Alger (Algeria)

    2015-08-15

    Highlights: • We develop a neutronic and thermal hydraulic MTR reactor analyzer. • The analyzer allows a rapid determination of the reactor core parameters. • Some NUR reactor parameters have been analyzed. - Abstract: This paper introduces the Integrated Thermal Hydraulic and Neutronic Analyzer SYStem (ITHNA.SYS) that has been developed for the Algerian research reactor NUR. It is used both as an operating aid tool and as a core physics engineering analysis tool. The system embeds three modules of the MTR-PC software package developed by INVAP SE: the cell calculation code WIMSD, the core calculation code CITVAP and the program TERMIC for thermal hydraulic analysis of a material testing reactor (MTR) core in forced convection. ITHNA.SYS operates both in on-line and off-line modes. In the on-line mode, the system is linked, via the computer parallel port, to the data acquisition console of the reactor control room and allows a real time monitoring of major physical and safety parameters of the NUR core. PC-based ITHNA.SYS provides a viable and convenient way of using an accumulated and often complex reactor physics stock of knowledge and frees the user from the intricacy of adequate reactor core modeling. This guaranties an accurate, though rapid, determination of a variety of neutronic and thermal hydraulic parameters of importance for the operation and safety analysis of the NUR research reactor. Instead of the several hours usually required, the processing time for the determination of such parameters is now reduced to few seconds. Validation of the system was performed with respect to experimental measurements and to calculations using reference codes. ITHNA.SYS can be easily adapted to accommodate other kinds of MTR reactors.

  7. System and method for controlling engine knock using electro-hydraulic valve actuation

    Science.gov (United States)

    Brennan, Daniel G

    2013-12-10

    A control system for an engine includes a knock control module and a valve control module. The knock control module adjusts a period that one or more of an intake valve and an exhaust valve of a cylinder are open based on engine knock corresponding to the cylinder. The valve control module, based on the adjusted period, controls the one or more of the intake valve and the exhaust valve using one or more hydraulic actuators.

  8. Design, analysis and control of hydraulic soft yaw system for 5MW wind turbine

    DEFF Research Database (Denmark)

    Stubkier, Søren; Pedersen, Henrik C.; Andersen, Torben Ole

    2012-01-01

    by active control of a hydraulic yaw system. The control is based on a non-linear and linear model derived based on a concept yaw system for the NREL 5MW wind turbine. The control strategies show a reduction in pressure pulsations under load and it is concluded that the strategie including high......As wind turbines increase in size and the demands for lifetime also increases, new methods of load reduction needs to be examined. One method is to make the yaw system of the turbine soft/flexible and wereby dampen the loads to the system. This paper presents work done on dampening of these loads...

  9. Borehole Heat Exchanger Systems: Hydraulic Conductivity and Frost-Resistance of Backfill Materials

    Science.gov (United States)

    Anbergen, Hauke; Sass, Ingo

    2016-04-01

    Ground source heat pump (GSHP) systems are economic solutions for both, domestic heating energy supply, as well as underground thermal energy storage (UTES). Over the past decades the technology developed to complex, advanced and highly efficient systems. For an efficient operation of the most common type of UTES, borehole heat exchanger (BHE) systems, it is necessary to design the system for a wide range of carrier fluid temperatures. During heat extraction, a cooled carrier fluid is heated up by geothermal energy. This collected thermal energy is energetically used by the heat pump. Thereby the carrier fluid temperature must have a lower temperature than the surrounding underground in order to collect heat energy. The steeper the thermal gradient, the more energy is transferred to the carrier fluid. The heat injection case works vice versa. For fast and sufficient heat extraction, even over long periods of heating (winter), it might become necessary to run the BHE with fluid temperatures below 0°C. As the heat pump runs periodically, a cyclic freezing of the pore water and corresponding ice-lens growth in the nearfield of the BHE pipes becomes possible. These so called freeze-thaw-cycles (FTC) are a critical state for the backfill material, as the sealing effect eventually decreases. From a hydrogeological point of view the vertical sealing of the BHE needs to be secured at any time (e.g. VDI 4640-2, Draft 2015). The vertical hydraulic conductivity of the BHE is influenced not only by the permeability of the grouting material itself, but by the contact area between BHE pipes and grout. In order to assess the sealing capacity of grouting materials a laboratory testing procedure was developed that measures the vertical hydraulic conductivity of the system BHE pipe and grout. The key features of the procedure are: • assessment of the systeḿs hydraulic conductivity • assessment of the systeḿs hydraulic conductivity after simulation of freeze-thaw-cycle

  10. Development of a High Pressure/High Temperature Down-hole Turbine Generator

    Energy Technology Data Exchange (ETDEWEB)

    Ben Plamp

    2008-06-30

    As oil & natural gas deposits become more difficult to obtain by conventional means, wells must extend to deeper more heat-intensive environments. The technology of the drilling equipment required to reach these depths has exceeded the availability of electrical power sources needed to operate these tools. Historically, logging while drilling (LWD) and measure while drilling (MWD) devices utilized a wireline to supply power and communication from the operator to the tool. Lithium ion batteries were used in scenarios where a wireline was not an option, as it complicated operations. In current downhole applications, lithium ion battery (LIB) packs are the primary source for electrical power. LIB technology has been proven to supply reliable downhole power at temperatures up to 175 °C. Many of the deeper well s reach ambient temperatures above 200 °C, creating an environment too harsh for current LIB technology. Other downfalls of LIB technology are cost, limitations on charge cycles, disposal issues and possible safety hazards including explosions and fires. Downhole power generation can also be achieved by utilizing drilling fluid flow and converting it to rotational motion. This rotational motion can be harnessed to spin magnets around a series of windings to produce power proportional to the rpm experienced by the driven assembly. These generators are, in most instances, driven by turbine blades or moyno-based drilling fluid pumps. To date, no commercially available downhole power generators are capable of operating at ambient temperatures of 250 °C. A downhole power g enerator capable of operation in a 250 °C and 20,000 psi ambient environment will be an absolute necessity in the future. Dexter Magnetic Technologies’ High-Pressure High-Temperature (HPHT) Downhole Turbine Generator is capable of operating at 250 °C and 20, 000 psi, but has not been tested in an actual drilling application. The technology exists, but to date no company has been willing to

  11. 百万千瓦级核电汽轮发电机组选型%The Selecion of the speed of 1000MW Nuclear Steam Turbine Generator

    Institute of Scientific and Technical Information of China (English)

    王雪松

    2001-01-01

    This paper is to show how to select the speed of 1000MW nuclear steam turbine generator forour country's next nuclear power plants in accordance with the developing trend of the nuclear steam turbine generator abroad as well as a comprehensive analysis and comparison of full speed nuclear steam turbine generator and half speed steam turbine generator at 1000MW.%通过对国外核汽轮发电机组发展趋势的分析和对百万千瓦全转速与半转速机组的综合分析比较,简要阐述广东继岭澳一期电站工程后百万千瓦级核电站汽轮发电机组的选型问题。

  12. Speed-variable Switched Differential Pump System for Direct Operation of Hydraulic Cylinders

    DEFF Research Database (Denmark)

    Schmidt, Lasse; Roemer, Daniel Beck; Pedersen, Henrik Clemmensen;

    2015-01-01

    Efforts to overcome the inherent loss of energy due to throttling in valve driven hydraulic systems are many, and various approaches have been proposed by research communities as well as the industry. Recently, a so-called speed-variable differential pump was proposed for direct drive of hydraulic...... differential cylinders. The main idea was here to utilize an electric rotary drive, with the shaft interconnected to two antiparallel fixed displacement gear pumps, to actuate a differential cylinder. With the design carried out such that the area ratio of the cylinder matches the displacement ratio of the two...... gear pumps, the throttling losses are confined to cross port leakage in the cylinder and leakage of the pumps. However, it turns out that the volumetric pump losses and the pressure dynamics of the cylinder and connecting pipes may cause pressure increase- or decrease in the cylinder chambers, which...

  13. Determination of minimum sample size for fault diagnosis of automobile hydraulic brake system using power analysis

    Directory of Open Access Journals (Sweden)

    V. Indira

    2015-03-01

    Full Text Available Hydraulic brake in automobile engineering is considered to be one of the important components. Condition monitoring and fault diagnosis of such a component is very essential for safety of passengers, vehicles and to minimize the unexpected maintenance time. Vibration based machine learning approach for condition monitoring of hydraulic brake system is gaining momentum. Training and testing the classifier are two important activities in the process of feature classification. This study proposes a systematic statistical method called power analysis to find the minimum number of samples required to train the classifier with statistical stability so as to get good classification accuracy. Descriptive statistical features have been used and the more contributing features have been selected by using C4.5 decision tree algorithm. The results of power analysis have also been verified using a decision tree algorithm namely, C4.5.

  14. Metallic particles into mechanical and hydraulic systems in agricultural and construction machines

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Jair Rosas da; Silva, Deise Paula da [Instituto Agronomico de Campinas (IAC), Campinas, SP (Brazil). Centro de Engenharia Agricola; Bormio, Marcos Roberto [Universidade Estadual Paulista (UNESP), Bauru, SP (Brazil). Fac. de Engenharia

    2008-07-01

    The lubricant oil analysis are an indicator of the conditions how the lubricant is, may to allow the prevision of damages that occurred into machine due to the internal abrasion of hydraulic and mechanical components of the machines. The present study had the objective to determine the kind and quantity of the metallic particles that occurred into the lubricant oil of the mechanical and hydraulic compartments of the energy transmission systems of three kinds of machines: a tracked-tractor, a sugarcane harvester and a group of power-shovels. The metallic particles presents into these compartments were determined under laboratory tests and concerning to the following elements: iron, copper, chromium, lead, nickel, aluminum, silex, tin and molybdenum. About to the tracked-tractor, the metallic contaminators into to the oil charges surpasses the tolerate levels, considering the technical standards adopted in this evaluation. In the sugarcane harvester only a metallic element in excess was identified and, in a power-shovel group it was showed the need to correct air false entrances in the hydraulic or mechanical systems due the high presence of silex element. (author)

  15. Methodology for comparison of hydraulic and thermal performance of alternative heat transfer fluids in complex systems

    Energy Technology Data Exchange (ETDEWEB)

    Ghajar, A.J.; Tang, W.C. [Oklahoma State Univ., Stillwater, OK (United States). School of Mechanical and Aerospace Engineering; Beam, J.E. [Power Technology Branch, Wright Patterson AFB, OH (United States). Thermal Technology Section

    1995-01-01

    A general method for the comparison of hydraulic and thermal performance of different liquid coolants in complex systems is offered. As a case study, the performance of polyalphaolefin (PAO) and a silicate ester-based fluid (Coolanol 25R) used as liquid coolants in avionic systems is presented. Thermophysical property expressions for the variation of density, specific heat, thermal conductivity, and kinematic viscosity with temperature for PAO and Coolanol 25R were developed. The range of temperature for this study was from {minus}54 to 135 C. Based on the results, the hydraulic performance of Coolanol 25R is much better than that of PAO at low temperatures (below 0 C) and in the laminar flow regime. In the turbulent region, PAO outperforms Coolanol 25R hydraulically over the entire temperature range. The thermal performance of PAO at temperatures below 61 C and in the laminar flow region is slightly better than that of Coolanol 25R. In the low-temperature turbulent region, Coolanol 25R outperforms PAO thermally. At other temperatures, the performance of the two liquid coolants is reasonably close and fairly independent of the flow regime.

  16. VARIABLE STRUCTURE CONTROL APPLIED IN ELECTRO-HYDRAULIC SERVO SYSTEM WITH ANN

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    The variable structure control (VSC) theory is applied to the electro-hydraulic servo system here. The VSC control law is achieved using Lyapunov method and pole placement. To eliminate the chattering phenomena, a saturation function is adopted. The proposed VSC approach is fairly robust to load disturbance and system parameter variation. Since the distortion including phase lag and amplitude attenuation occurs in the system sinusoid response, the amplitude and phase control (APC)algorithm, based on Adaline neural network and using LMS algorithm, is developed for distortion cancellation. The APC controller is simple and can on-line adjust, thus it gives accurate tracking.

  17. Study on Wireless Network Communication in Stage Hydraulic Monitoring System Based on Internet of Things

    OpenAIRE

    2015-01-01

    A novel stage hydraulic monitoring system based on Internet of Things (IoT) is proposed in this paper. Compared with the traditional wired system, the proposed system is a flexible working method and can save the cost. Furthermore, it has the low power consumption, high safety, and large scale network. The real-time pressure and flow data can be collected by using the nodes in ZigBee network. The fault detection and diagnosis process was used in this study, which was facilitated by measuring ...

  18. Software Tool for Automated Failure Modes and Effects Analysis (FMEA) of Hydraulic Systems

    DEFF Research Database (Denmark)

    Stecki, J. S.; Conrad, Finn; Oh, B.

    2002-01-01

    Offshore, marine,aircraft and other complex engineering systems operate in harsh environmental and operational conditions and must meet stringent requirements of reliability, safety and maintability. To reduce the hight costs of development of new systems in these fields improved the design...... management techniques and a vast array of computer aided techniques are applied during design and testing stages. The paper present and discusses the research and development of a software tool for automated failure mode and effects analysis - FMEA - of hydraulic systems. The paper explains the underlying...

  19. Resolution of thermal-hydraulic safety and licensing issues for the system 80+{sup {trademark}} design

    Energy Technology Data Exchange (ETDEWEB)

    Carpentino, S.E.; Ritterbusch, S.E.; Schneider, R.E. [ABB-Combustion Engineering, Windsor, CT (United States)] [and others

    1995-09-01

    The System 80+{sup {trademark}} Standard Design is an evolutionary Advanced Light Water Reactor (ALWR) with a generating capacity of 3931 MWt (1350 MWe). The Final Design Approval (FDA) for this design was issued by the Nuclear Regulatory Commission (NRC) in July 1994. The design certification by the NRC is anticipated by the end of 1995 or early 1996. NRC review of the System 80+ design has involved several new safety issues never before addressed in a regulatory atmosphere. In addition, conformance with the Electric Power Research Institute (EPRI) ALWR Utility Requirements Document (URD) required that the System 80+ plant address nuclear industry concerns with regard to design, construction, operation and maintenance of nuclear power plants. A large number of these issues/concerns deals with previously unresolved generic thermal-hydraulic safety issues and severe accident prevention and mitigation. This paper discusses the thermal-hydraulic analyses and evaluations performed for the System 80+ design to resolve safety and licensing issues relevant to both the Nuclear Stream Supply System (NSSS) and containment designs. For the NSSS design, the Safety Depressurization System mitigation capability and resolution of the boron dilution concern are described. Examples of containment design issues dealing with containment shell strength, robustness of the reactor cavity walls and hydrogen mixing under severe accident conditions are also provided. Finally, the overall approach used in the application of NRC`s new (NUREG-1465) radiological source term for System 80+ evaluation is described. The robustness of the System 80+ containment design to withstand severe accident consequences was demonstrated through detailed thermal-hydraulic analyses and evaluations. This advanced design to shown to meet NRC severe accident policy goals and ALWR URD requirements without any special design features and unnecessary costs.

  20. Development of numerical simulation system for thermal-hydraulic analysis in fuel assembly of sodium-cooled fast reactor

    Science.gov (United States)

    Ohshima, Hiroyuki; Uwaba, Tomoyuki; Hashimoto, Akihiko; Imai, Yasutomo; Ito, Masahiro

    2015-12-01

    A numerical simulation system, which consists of a deformation analysis program and three kinds of thermal-hydraulics analysis programs, is being developed in Japan Atomic Energy Agency in order to offer methodologies to clarify thermal-hydraulic phenomena in fuel assemblies of sodium-cooled fast reactors under various operating conditions. This paper gives the outline of the system and its applications to fuel assembly analyses as a validation study.

  1. Development of numerical simulation system for thermal-hydraulic analysis in fuel assembly of sodium-cooled fast reactor

    Energy Technology Data Exchange (ETDEWEB)

    Ohshima, Hiroyuki; Uwaba, Tomoyuki [Japan Atomic Energy Agency (4002 Narita, O-arai, Ibaraki 311-1393, Japan) (Japan); Hashimoto, Akihiko; Imai, Yasutomo [NDD Corporation (1-1-6 Jounan, Mito, Ibaraki 310-0803, Japan) (Japan); Ito, Masahiro [NESI Inc. (4002 Narita, O-arai, Ibaraki 311-1393, Japan) (Japan)

    2015-12-31

    A numerical simulation system, which consists of a deformation analysis program and three kinds of thermal-hydraulics analysis programs, is being developed in Japan Atomic Energy Agency in order to offer methodologies to clarify thermal-hydraulic phenomena in fuel assemblies of sodium-cooled fast reactors under various operating conditions. This paper gives the outline of the system and its applications to fuel assembly analyses as a validation study.

  2. Dynamic Analysis and Design Optimization of Series Hydraulic Hybrid System through Power Bond Graph Approach

    Directory of Open Access Journals (Sweden)

    R. Ramakrishnan

    2014-01-01

    Full Text Available The availability of natural gas and crude oil resources has been declining over the years. In automobile sector, the consumption of crude oil is 63% of total crude oil production in the world. Hence, automobile industries are placing more emphasis on energy efficient hydraulic hybrid systems, which can replace their conventional transmission systems. Series hydraulic hybrid system (SHHS is a multidomain mechatronics system with two distinct power sources that includes prime mover and hydropneumatic accumulator. It replaces the conventional transmission system to drive the vehicle. The sizing of the subsystems in SHHS plays a major role in improving the energy efficiency of the vehicle. In this paper, a power bond graph approach is used to model the dynamics of the SHHS. The obtained simulation results indicate the energy flow during various modes of operations. It also includes the dynamic response of hydropneumatic accumulator, prime mover, and system output speed. Further, design optimization of the system is carried out to optimize the process parameters for maximizing the system energy efficiency. This leads to increase in fuel economy and environmentally friendly vehicle.

  3. The Maintenance of Heading Machine Hydraulic System%掘进机液压系统的维护

    Institute of Scientific and Technical Information of China (English)

    卞丽霞

    2011-01-01

    The paper mainly discussed the rotation of hydraulic tank, oil return filter system and the axial piston pump of heading machine's hydraulic system, the adjustment of axial piston pump, relief valve pressure and one-way throttle valve and the maintenance of hydraulic system and the using of hydraulic components.%本文主要阐述了掘进机液压系统的液压油箱、液压系统的回油过滤器、轴向柱塞泵的旋转、轴向柱塞泵、溢流阀压力的调整、单向节流阀的调整、液压系统维护、液压元件的使用等维护.

  4. Design of A Hydraulic Power Take-off System for the Wave Energy Device with An Inverse Pendulum

    Institute of Scientific and Technical Information of China (English)

    张大海; 李伟; 赵海涛; 鲍经纬; 林勇刚

    2014-01-01

    This paper describes a dual-stroke acting hydraulic power take-off (PTO) system employed in the wave energy converter (WEC) with an inverse pendulum. The hydraulic PTO converts slow irregular reciprocating wave motions to relatively smooth, fast rotation of an electrical generator. The design of the hydraulic PTO system and its control are critical to maximize the generated power. A time domain simulation study and the laboratory experiment of the full-scale beach test are presented. The results of the simulation and laboratory experiments including their comparison at full-scale are also presented, which have validated the rationality of the design and the reliability of some key components of the prototype of the WEC with an inverse pendulum with the dual-stroke acting hydraulic PTO system.

  5. Reduced-order model based active disturbance rejection control of hydraulic servo system with singular value perturbation theory.

    Science.gov (United States)

    Wang, Chengwen; Quan, Long; Zhang, Shijie; Meng, Hongjun; Lan, Yuan

    2017-03-01

    Hydraulic servomechanism is the typical mechanical/hydraulic double-dynamics coupling system with the high stiffness control and mismatched uncertainties input problems, which hinder direct applications of many advanced control approaches in the hydraulic servo fields. In this paper, by introducing the singular value perturbation theory, the original double-dynamics coupling model of the hydraulic servomechanism was reduced to a integral chain system. So that, the popular ADRC (active disturbance rejection control) technology could be directly applied to the reduced system. In addition, the high stiffness control and mismatched uncertainties input problems are avoided. The validity of the simplified model is analyzed and proven theoretically. The standard linear ADRC algorithm is then developed based on the obtained reduced-order model. Extensive comparative co-simulations and experiments are carried out to illustrate the effectiveness of the proposed method.

  6. 远洋船用伸缩折叠起重机液压系统设计%Marine telescopic folding crane hydraulic system design

    Institute of Scientific and Technical Information of China (English)

    卢志珍; 倪学虎; 舒希勇; 王成龙

    2012-01-01

    在分析伸缩折叠起重机对液压系统要求的基础上,针对起重机技术参数及客户要求提出了液压系统设计的思路.对关键液压元件——液压泵、液压马达、液压缸进行了计算选型,设计了液压原理图,并阐述了起重机液压回路的工作原理.%Based on the analysis of telescopic folding crane hydraulic system requirements,put forward the hydraulic system design thinking according to crane technical parameters and requirements of customers. Calculation and type selection of the key hydraulic components------hydraulic pump and hydraulic motor, hydraulic cylinder, design hydraulic principle diagram and expoundscrane hydraulic loop principle of work.

  7. Advance of Study on Design Methods of Hydraulic System of Radio Remote Control of Construction Machinery

    Institute of Scientific and Technical Information of China (English)

    FENG Kai-lin; YANG Wei-min; CHEN kang-ning

    2003-01-01

    The working principle of radio remote controlling of construction machinery should be that signals of the radio wave from the transmitter obtained in the receiver were controlled and then changed into electronic analog or digital signals which can be used to drive different actuators and mechanisms of the vehicle.The vehicle could be acted by following the controlling instructions sent by the operator.The best operation mode of construction machinery is suitable not only to manual operating but also to remote controlling in the same vehicle.The design methods of the hydraulic system used for the radio remote controlling of construction machinery are discussed.The design methods of hydraulic circuits for the actuators controlled by solenoid on-off type valves,hydro-electronic multi-way proportional valves,closed loop proportional servo driver or three-way proportional reducing valves are discussed in detail (with real example).The design methods of the power shift transmission of electro-hydraulic controlling,the devices of braking and the directional streering are discussed in this paper.

  8. Lead Coolant Test Facility Systems Design, Thermal Hydraulic Analysis and Cost Estimate

    Energy Technology Data Exchange (ETDEWEB)

    Soli Khericha; Edwin Harvego; John Svoboda; Ryan Dalling

    2012-01-01

    The Idaho National Laboratory prepared a preliminary technical and functional requirements (T&FR), thermal hydraulic design and cost estimate for a lead coolant test facility. The purpose of this small scale facility is to simulate lead coolant fast reactor (LFR) coolant flow in an open lattice geometry core using seven electrical rods and liquid lead or lead-bismuth eutectic coolant. Based on review of current world lead or lead-bismuth test facilities and research needs listed in the Generation IV Roadmap, five broad areas of requirements were identified as listed: (1) Develop and Demonstrate Feasibility of Submerged Heat Exchanger; (2) Develop and Demonstrate Open-lattice Flow in Electrically Heated Core; (3) Develop and Demonstrate Chemistry Control; (4) Demonstrate Safe Operation; and (5) Provision for Future Testing. This paper discusses the preliminary design of systems, thermal hydraulic analysis, and simplified cost estimate. The facility thermal hydraulic design is based on the maximum simulated core power using seven electrical heater rods of 420 kW; average linear heat generation rate of 300 W/cm. The core inlet temperature for liquid lead or Pb/Bi eutectic is 4200 C. The design includes approximately seventy-five data measurements such as pressure, temperature, and flow rates. The preliminary estimated cost of construction of the facility is $3.7M (in 2006 $). It is also estimated that the facility will require two years to be constructed and ready for operation.

  9. Lead coolant test facility systems design, thermal hydraulic analysis and cost estimate

    Energy Technology Data Exchange (ETDEWEB)

    Khericha, Soli, E-mail: slk2@inel.gov [Battelle Energy Alliance, LLC, Idaho National Laboratory, Idaho Falls, ID 83415 (United States); Harvego, Edwin; Svoboda, John; Evans, Robert [Battelle Energy Alliance, LLC, Idaho National Laboratory, Idaho Falls, ID 83415 (United States); Dalling, Ryan [ExxonMobil Gas and Power Marketing, Houston, TX 77069 (United States)

    2012-01-15

    The Idaho National Laboratory prepared a preliminary technical and functional requirements (T and FR), thermal hydraulic design and cost estimate for a lead coolant test facility. The purpose of this small scale facility is to simulate lead coolant fast reactor (LFR) coolant flow in an open lattice geometry core using seven electrical rods and liquid lead or lead-bismuth eutectic coolant. Based on review of current world lead or lead-bismuth test facilities and research needs listed in the Generation IV Roadmap, five broad areas of requirements were identified as listed below: Bullet Develop and demonstrate feasibility of submerged heat exchanger. Bullet Develop and demonstrate open-lattice flow in electrically heated core. Bullet Develop and demonstrate chemistry control. Bullet Demonstrate safe operation. Bullet Provision for future testing. This paper discusses the preliminary design of systems, thermal hydraulic analysis, and simplified cost estimated. The facility thermal hydraulic design is based on the maximum simulated core power using seven electrical heater rods of 420 kW; average linear heat generation rate of 300 W/cm. The core inlet temperature for liquid lead or Pb/Bi eutectic is 4200 Degree-Sign C. The design includes approximately seventy-five data measurements such as pressure, temperature, and flow rates. The preliminary estimated cost of construction of the facility is $3.7M (in 2006 $). It is also estimated that the facility will require two years to be constructed and ready for operation.

  10. Stabilization of soil hydraulic properties under a long term no-till system

    Directory of Open Access Journals (Sweden)

    Luis Alberto Lozano

    2014-08-01

    Full Text Available The area under the no-tillage system (NT has been increasing over the last few years. Some authors indicate that stabilization of soil physical properties is reached after some years under NT while other authors debate this. The objective of this study was to determine the effect of the last crop in the rotation sequence (1st year: maize, 2nd year: soybean, 3rd year: wheat/soybean on soil pore configuration and hydraulic properties in two different soils (site 1: loam, site 2: sandy loam from the Argentinean Pampas region under long-term NT treatments in order to determine if stabilization of soil physical properties is reached apart from a specific time in the crop sequence. In addition, we compared two procedures for evaluating water-conducting macroporosities, and evaluated the efficiency of the pedotransfer function ROSETTA in estimating the parameters of the van Genuchten-Mualem (VGM model in these soils. Soil pore configuration and hydraulic properties were not stable and changed according to the crop sequence and the last crop grown in both sites. For both sites, saturated hydraulic conductivity, K0, water-conducting macroporosity, εma, and flow-weighted mean pore radius, R0ma, increased from the 1st to the 2nd year of the crop sequence, and this was attributed to the creation of water-conducting macropores by the maize roots. The VGM model adequately described the water retention curve (WRC for these soils, but not the hydraulic conductivity (K vs tension (h curve. The ROSETTA function failed in the estimation of these parameters. In summary, mean values of K0 ranged from 0.74 to 3.88 cm h-1. In studies on NT effects on soil physical properties, the crop effect must be considered.

  11. Multiobjective optimization of water distribution systems accounting for economic cost, hydraulic reliability, and greenhouse gas emissions

    Science.gov (United States)

    Wu, Wenyan; Maier, Holger R.; Simpson, Angus R.

    2013-03-01

    In this paper, three objectives are considered for the optimization of water distribution systems (WDSs): the traditional objectives of minimizing economic cost and maximizing hydraulic reliability and the recently proposed objective of minimizing greenhouse gas (GHG) emissions. It is particularly important to include the GHG minimization objective for WDSs involving pumping into storages or water transmission systems (WTSs), as these systems are the main contributors of GHG emissions in the water industry. In order to better understand the nature of tradeoffs among these three objectives, the shape of the solution space and the location of the Pareto-optimal front in the solution space are investigated for WTSs and WDSs that include pumping into storages, and the implications of the interaction between the three objectives are explored from a practical design perspective. Through three case studies, it is found that the solution space is a U-shaped curve rather than a surface, as the tradeoffs among the three objectives are dominated by the hydraulic reliability objective. The Pareto-optimal front of real-world systems is often located at the "elbow" section and lower "arm" of the solution space (i.e., the U-shaped curve), indicating that it is more economic to increase the hydraulic reliability of these systems by increasing pipe capacity (i.e., pipe diameter) compared to increasing pumping power. Solutions having the same GHG emission level but different cost-reliability tradeoffs often exist. Therefore, the final decision needs to be made in conjunction with expert knowledge and the specific budget and reliability requirements of the system.

  12. Thermal—hydraulic stability of a natural circulation system with nuclear feedback

    Institute of Scientific and Technical Information of China (English)

    XuZhan-Jie; ChenLi-Qiang; 等

    1997-01-01

    The stability of low temperature nuclear heating reactor with varous subcoolings of reacotr core inlet has been studied by means of simulating experiments.The thermalhydraulic system and the data acquisition and processing system are presented.Especially,the process of realizing the simulating nuclear feedback is introduced in detail>finally,the experimental results are discussed in the opinions of nuclear reactor physics and thermal-hydraulics,The conclusion is that the nuclear reactor can operate stably only when the subcoopling of reactor core inlet is high enough.

  13. Mechatronic System Design and Intelligent Motion Control of Hydraulic Robots and Machines

    DEFF Research Database (Denmark)

    Conrad, Finn; Sørensen, Torben

    2003-01-01

    The paper presents an approach and concept to mechatronic system design and intelligent motion control. The Information Technology (IT) offers software and hardware for improvement of R&D Mechatronic Teams to create products and solutions for industrial applications. The latest progress in IT makes...... control as well as from the Esprit project SWING on IT-tools for rapid prototyping of fluid power components and systems. A mechatronic test facility for a DTU-AAU hydraulic robot ¿Thor¿, and a CNC XY-machine table was implemented. The controller applies digital signal processors (DSPs). The DSP...

  14. Using Feedback Error Learning for Control of Electro Hydraulic Servo System by Laguerre

    Directory of Open Access Journals (Sweden)

    Amir Reza Zare Bidaki

    2014-01-01

    Full Text Available In this paper, a new Laguerre controller is proposed to control the electro hydraulic servo system. The proposed controller uses feedback error learning method and leads to significantly improve performance in terms of settling time and amplitude of control signal rather than other controllers. All derived results are validated by simulation of nonlinear mathematical model of the system. The simulation results show the advantages of the proposed method for improved control in terms of both settling time and amplitude of control signal.

  15. Discrete Displacement Hydraulic Power Take-Off System for the Wavestar Wave Energy Converter

    DEFF Research Database (Denmark)

    Hansen, Rico Hjerm; Kramer, Morten; Vidal, Enrique

    2013-01-01

    The Wavestar Wave Energy Converter (WEC) is a multiple absorber concept, consisting of 20 hemisphere shaped floats attached to a single platform. The heart of the Wavestar WEC is the Power Take-Off (PTO) system, converting the wave induced motion of the floats into a steady power output to the grid....... In the present work, a PTO based on a novel discrete displacement fluid power technology is explored for the Wavestar WEC. Absorption of power from the floats is performed by hydraulic cylinders, supplying power to a common fixed pressure system with accumulators for energy smoothing. The stored pressure energy...

  16. Virtual Training System for Hydraulic Pump Cart Based on Virtual Reality

    Directory of Open Access Journals (Sweden)

    Wusha Huang

    2013-08-01

    Full Text Available This paper dissertates the application of Virtual Reality Technology in the training process. Virtual training system has more advantages than traditional training system. The design of virtual training system based on PTC DIVISION Mockup software, position tracker and 3-D mouse is proposed. The system is divided into two parts: directing part and operating part. Collision detection is discussed to improve the sense of reality in the virtual environment .This system is applied to the training process of hydraulic pump cart’s assembly and disassembly. More immersive training effect is obtained in this system. The goal of reducing training costs and improving the efficiency of training can be achieved in the virtual training system.  

  17. A Study on Integration of Energy Harvesting System and Semi-Active Control for a Hydraulic Suspension System

    OpenAIRE

    Chiang, Mao-Hsiung; Sung, Yung-Ching; Liu, Han-Hsiang

    2016-01-01

    Suspension systems are used to diminish the vibration of vehicles. The hydraulic dampers in conventional suspension systems are mainly designed with the orifices of the piston; however, the vibration energy will be transferred into waste heat. In recent years, conventional vehicles with internal combustion engines and hybrid vehicles are used commonly. However, with the gradual depletion of fossil fuels, electric vehicles are developing. For this reason, the research focuses on recycling ener...

  18. 液压CAT系统测试误差分析%Error Analysis of the Hydraulic CAT System Test

    Institute of Scientific and Technical Information of China (English)

    胡森; 胡晓波

    2011-01-01

    本文对液压CAT技术的发展现状和趋势进行了探讨,并对液压元件CAT系统误差来源进行了分析,介绍一些液压CAT系统误差处理办法.%The development status and trends of hydraulic CAT technology are discussed, and the error sources of hydraulic component CAT system were analyzed, and some approaches are introduced in this paper.

  19. Modelling, Testing and Analysis of a Regenerative Hydraulic Shock Absorber System

    Directory of Open Access Journals (Sweden)

    Ruichen Wang

    2016-05-01

    Full Text Available To improve vehicle fuel economy whilst enhancing road handling and ride comfort, power generating suspension systems have recently attracted increased attention in automotive engineering. This paper presents our study of a regenerative hydraulic shock absorber system which converts the oscillatory motion of a vehicle suspension into unidirectional rotary motion of a generator. Firstly a model which takes into account the influences of the dynamics of hydraulic flow, rotational motion and power regeneration is developed. Thereafter the model parameters of fluid bulk modulus, motor efficiencies, viscous friction torque, and voltage and torque constant coefficients are determined based on modelling and experimental studies of a prototype system. The model is then validated under different input excitations and load resistances, obtaining results which show good agreement between prediction and measurement. In particular, the system using piston-rod dimensions of 50–30 mm achieves recoverable power of 260 W with an efficiency of around 40% under sinusoidal excitation of 1 Hz frequency and 25 mm amplitude when the accumulator capacity is set to 0.32 L with the load resistance 20 Ω. It is then shown that the appropriate damping characteristics required from a shock absorber in a heavy-haulage vehicle can be met by using variable load resistances and accumulator capacities in a device akin to the prototype. The validated model paves the way for further system optimisation towards maximising the performance of regeneration, ride comfort and handling.

  20. Direct Drive Electro-hydraulic Servo Control System Design with Self-Tuning Fuzzy PID Controller

    Directory of Open Access Journals (Sweden)

    Wang Yeqin

    2013-06-01

    Full Text Available According to the nonlinear and time-varying uncertainty characteristics of direct drive electro-hydraulic servo control system, a self-tuning fuzzy PID control method with speed change integral and differential ahead optimizing operator is put forward by combining fuzzy inference and traditional PID control in this paper.The rule of fuzzy logic is designed, the membership function of the fuzzy subsets is determined and lookup table method is used to correcte the PID parameters in real-time. Finally the simulation is conducted with the typical input signal, such as tracking step, sine etc. The simulation results show that,the self-tuning fuzzy PID control system can effectively improve the dynamic characteristic when the system is out of the range of the operating point compared with the traditional PID control system, there is obvious improvement in the indexes of rapidity, stability and accuracy,  and fuzzy self-tuning PID Control is more robust, and more suitable for direct drive electro-hydraulic servo system.

  1. Hydraulic System Design of Hydraulic-Driven Load Exoskeleton Robot%液压驱动型负重外骨骼机器人液压系统设计

    Institute of Scientific and Technical Information of China (English)

    周加永; 张昂; 莫新民; 赵浩; 纪平鑫

    2016-01-01

    Started from human motion characteristics, the hydraulic drive overall load exoskeleton robot skeleton structure was an-alyzed. According to the characteristics of the load exoskeleton robot, a complete hydraulic drive system was designed, and the main el-ements of the selection calculation were carried out as hydraulic system, hydraulic pumps, servo valves and hydraulic cylinders, and etc. Simhydraulics software was used to establish the simulation schematics for hydraulic system of load exoskeleton robot, study and simulation analysis were carried out for the hydraulic system, and simulation results were proved of the rational design of the hydraulic system. In the last, technology challenges faced by the hydraulic drive load exoskeleton robot are analyzed, which provide reference for further design of the hydraulic system.%从人体运动特征出发,分析了液压驱动负重外骨骼机器人的整体骨架结构。根据负重外骨骼机器人的特点要求设计了一套完整的液压传动系统,对液压系统中液压泵、伺服阀和液压缸等主要元件进行了选型计算。利用Simhydraulics软件建立了负重外骨骼机器人液压系统仿真原理图,并对液压系统进行了仿真分析研究,由仿真结果证明了所设计液压系统的合理性。最后对液压驱动型负重外骨骼机器人技术面临的挑战进行了分析,为该液压系统的深化设计提供了参考。

  2. The Integration of an Electro-Hydraulic Manipulator Arm into a Self-Contained Mobile Delivery System

    Energy Technology Data Exchange (ETDEWEB)

    M. Borland; S. M. Berry

    1999-04-01

    The Portable Articulated Arm Deployment System (PAADS) is a remotely controlled vehicle for delivering a tele-operated electro-hydraulic manipulator arm to a field-deployable location. The self-contained system includes a boom vehicle with long reach capability, an electro-hydraulic manipulator arm, closed circuit television (CCTV) systems, and onboard tools. On board power systems consist of a self-contained, propane-fired 8-KW generator and an air compressor for pneumatic tools. The generator provides the power to run the air compressor as well as power to operate the 110-VAC auxiliary lighting system for the video cameras. The separate control console can be located up to 500 ft from the vehicle. PAADS is a fully integrated system, containing all equipment required to perform complex field operations. Hydraulic integration of the manipulator arm into the vehicle hydraulic drive system was necessary to eliminate the tether management of hoses, which extended vehicle operating range, minimized hydraulic pressure losses, and provided the opportunity to go to a radio frequency (RF) control system in the future, thereby eliminating the control cable. This paper presents the key decision points during system development. Emphasis is placed on ease of operator control and not on an intelligent machine approach. In addition, emphasis is placed on the philosophy of remote operation based on sound principles of integration.

  3. The Integration of an Electro-hydraulic Manipulator Arm into a Self-contained Mobile Delivery System

    Energy Technology Data Exchange (ETDEWEB)

    Borland, Mark Wilson; Berry, Stephen Michael

    1999-04-01

    The Portable Articulated Arm Deployment System (PAADS) is a remotely controlled vehicle for delivering a tele-operated electro-hydraulic manipulator arm to a field deployable location. The self-contained system includes a boom vehicle with long reach capability, an electro-hydraulic manipulator arm, closed circuit television (CCTV) systems, and onboard tools. On board power systems consist of a self contained, propane fired 8 KW generator and an air compressor for pneumatic tools. The generator provides the power to run the air compressor as well as provide power to operate the 110 VAC auxiliary lighting system for the video cameras. The separate control console can be located up to 500 ft from the vehicle. PAADS is a fully integrated system, containing all equipment required to perform complex field operations. Hydraulic integration of the manipulator arm into the vehicle hydraulic drive system was necessary to eliminate the tether management of hoses, which extended vehicle operating range, minimized hydraulic pressure losses, and provided the opportunity to go to a radio frequency (RF) control system in the future, thereby eliminating the control cable. This paper presents the key decision points during system development. Emphasis is placed on ease of operator control and not on an intelligent machine approach. In addition, emphasis is placed on the philosophy of remote operation based on sound principles on integration.

  4. Creation of an Enhanced Geothermal System through Hydraulic and Thermal Stimulation

    Energy Technology Data Exchange (ETDEWEB)

    Rose, Peter Eugene [Energy and Geoscience Institute at the Univerity of Utah

    2013-04-15

    This report describes a 10-year DOE-funded project to design, characterize and create an Engineered Geothermal System (EGS) through a combination of hydraulic, thermal and chemical stimulation techniques. Volume 1 describes a four-year Phase 1 campaign, which focused on the east compartment of the Coso geothermal field. It includes a description of the geomechanical, geophysical, hydraulic, and geochemical studies that were conducted to characterize the reservoir in anticipation of the hydraulic stimulation experiment. Phase 1 ended prematurely when the drill bit intersected a very permeable fault zone during the redrilling of target stimulation well 34-9RD2. A hydraulic stimulation was inadvertently achieved, however, since the flow of drill mud from the well into the formation created an earthquake swarm near the wellbore that was recorded, located, analyzed and interpreted by project seismologists. Upon completion of Phase 1, the project shifted focus to a new target well, which was located within the southwest compartment of the Coso geothermal field. Volume 2 describes the Phase 2 studies on the geomechanical, geophysical, hydraulic, and geochemical aspects of the reservoir in and around target-stimulation well 46A-19RD, which is the deepest and hottest well ever drilled at Coso. Its total measured depth exceeding 12,000 ft. It spite of its great depth, this well is largely impermeable below a depth of about 9,000 ft, thus providing an excellent target for stimulation. In order to prepare 46A-19RD for stimulation, however, it was necessary to pull the slotted liner. This proved to be unachievable under the budget allocated by the Coso Operating Company partners, and this aspect of the project was abandoned, ending the program at Coso. The program then shifted to the EGS project at Desert Peak, which had a goal similar to the one at Coso of creating an EGS on the periphery of an existing geothermal reservoir. Volume 3 describes the activities that the Coso team

  5. Creation of an Enhanced Geothermal System through Hydraulic and Thermal Stimulation

    Energy Technology Data Exchange (ETDEWEB)

    Rose, Peter Eugene [Energy and Geoscience Institute at the University of Utah

    2013-04-15

    This report describes a 10-year DOE-funded project to design, characterize and create an Engineered Geothermal System (EGS) through a combination of hydraulic, thermal and chemical stimulation techniques. Volume 1 describes a four-year Phase 1 campaign, which focused on the east compartment of the Coso geothermal field. It includes a description of the geomechanical, geophysical, hydraulic, and geochemical studies that were conducted to characterize the reservoir in anticipation of the hydraulic stimulation experiment. Phase 1 ended prematurely when the drill bit intersected a very permeable fault zone during the redrilling of target stimulation well 34-9RD2. A hydraulic stimulation was inadvertently achieved, however, since the flow of drill mud from the well into the formation created an earthquake swarm near the wellbore that was recorded, located, analyzed and interpreted by project seismologists. Upon completion of Phase 1, the project shifted focus to a new target well, which was located within the southwest compartment of the Coso geothermal field. Volume 2 describes the Phase 2 studies on the geomechanical, geophysical, hydraulic, and geochemical aspects of the reservoir in and around target-stimulation well 46A-19RD, which is the deepest and hottest well ever drilled at Coso. Its total measured depth exceeding 12,000 ft. It spite of its great depth, this well is largely impermeable below a depth of about 9,000 ft, thus providing an excellent target for stimulation. In order to prepare 46A-19RD for stimulation, however, it was necessary to pull the slotted liner. This proved to be unachievable under the budget allocated by the Coso Operating Company partners, and this aspect of the project was abandoned, ending the program at Coso. The program then shifted to the EGS project at Desert Peak, which had a goal similar to the one at Coso of creating an EGS on the periphery of an existing geothermal reservoir. Volume 3 describes the activities that the Coso team

  6. Thermal hydraulic feasibility assessment of the hot conditioning system and process

    Energy Technology Data Exchange (ETDEWEB)

    Heard, F.J.

    1996-10-10

    The Spent Nuclear Fuel Project was established to develop engineered solutions for the expedited removal, stabilization, and storage of spent nuclear fuel from the K Basins at the U.S. Department of Energy`s Hanford Site in Richland, Washington. A series of analyses have been completed investigating the thermal-hydraulic performance and feasibility of the proposed Hot Conditioning System and process for the Spent Nuclear Fuel Project. The analyses were performed using a series of thermal-hydraulic models that could respond to all process and safety-related issues that may arise pertaining to the Hot Conditioning System. The subject efforts focus on independently investigating, quantifying, and establishing the governing heat production and removal mechanisms, flow distributions within the multi-canister overpack, and performing process simulations for various purge gases under consideration for the Hot Conditioning System, as well as obtaining preliminary results for comparison with and verification of other analyses, and providing technology- based recommendations for consideration and incorporation into the Hot Conditioning System design bases.

  7. Study on Wireless Network Communication in Stage Hydraulic Monitoring System Based on Internet of Things

    Directory of Open Access Journals (Sweden)

    Yue Dong

    2015-01-01

    Full Text Available A novel stage hydraulic monitoring system based on Internet of Things (IoT is proposed in this paper. Compared with the traditional wired system, the proposed system is a flexible working method and can save the cost. Furthermore, it has the low power consumption, high safety, and large scale network. The real-time pressure and flow data can be collected by using the nodes in ZigBee network. The fault detection and diagnosis process was used in this study, which was facilitated by measuring pressure of flow. When the monitored data exceeds the normal range, some failure may occur in the stage hydraulic system. If any failure occurs in the circuit, the maintainers can be informed immediately, which can greatly improve maintenance efficiency, ensuring the failure to be eliminated in time. Meanwhile, we can take advantage of wireless sensor network (WSN to connect the multiple loops and then monitor the loops by using ZigBee technology, which greatly improves the efficiency of monitoring.

  8. Stabilizing Gap of Pole Electric Arc Furnace Using Smart Hydraulic System

    Directory of Open Access Journals (Sweden)

    Maher Yahya Sallom

    2015-03-01

    Full Text Available Electric arc furnace applications in industry are related to position system of its pole, up and down of pole. The pole should be set the certain gap. These setting are needed to calibrate. It is done manually. In this research will proposed smart hydraulic to make this pole works as intelligent using proportional directional control valve. The output of this research will develop and improve the working of the electric arc furnace. This research requires study and design of the system to achieve the purpose and representation using Automation Studio software (AS, in addition to mathematically analyzed and where they were building a laboratory device similar to the design and conduct experiments to study the system in practice and compared with simulation.Experimental tests show that the performance of electro hydraulic closed loop system (EHCLS for position control is good and the output results are good and acceptable. The practical results and simulation using (AS software are clearly convergence. It was concluded that the possibility of the implementation of this project in industrial processes such as electric arc furnaces to control the distance between the pole and smelting molten material in addition to other applications.

  9. Benefit Evaluation of Wind Turbine Generators in Wind Farms Using Capacity-Factor Analysis and Economic-Cost Methods

    DEFF Research Database (Denmark)

    Chen, Zhe; Wang, L.; Yeh, T-H.

    2009-01-01

    Due to the recent price spike of the international oil and the concern of global warming, the development and deployment of renewable energy become one of the most important energy policies around the globe. Currently, there are different capacities and hub heights for commercial wind turbine...... generators (WTGs). To fully capture wind energy, different wind farms (WFs) should select adequate capacity of WTGs to effectively harvest wind energy and maximize their economic benefit. To establish selection criterion, this paper first derives the equations for capacity factor (CF) and pairing performance...

  10. Implementation of IEC Generic Model of Type 1 Wind Turbine Generator in DIgSILENT PowerFactory

    DEFF Research Database (Denmark)

    Zhao, Haoran; Wu, Qiuwei; Margaris, Ioannis;

    2013-01-01

    The implementation method for the International Electrotechnical Commission (IEC) generic models of Type 1 wind turbine generator (WTG) in DIgSILENT PowerFactory is presented. The following items are described, i.e. model structure, model blocks and how to implement these blocks in the Power......Factory environment. Case studies under both normal and fault conditions are done with the implemented IEC generic models of Type 1 WTG, and dynamic responses are captured and analyzed. The case study results show that the IEC generic models of Type 1 WTG can correctly represent the performances of Type 1 WTG under...

  11. Design & Evaluation of a Protection Algorithm for a Wind Turbine Generator based on the fault-generated Symmetrical Components

    DEFF Research Database (Denmark)

    Zheng, T. Y.; Cha, Seung-Tae; Lee, B. E.

    2011-01-01

    A protection relay for a wind turbine generator (WTG) based on the fault-generated symmetrical components is proposed in the paper. At stage 1, the relay uses the magnitude of the positive-sequence component in the fault current to distinguish faults on a parallel WTG, connected to the same feeder...... the relationships of the fault-generated symmetrical components. Then, the magnitude of the positive-sequence component in the fault current is used again to decide on either instantaneous or delayed operation. The operating performance of the relay is then verified using various fault scenarios modelled using...

  12. Implementation of IEC Generic Models of Type 1 Wind Turbine Generator in DIgSILENT PowerFactory

    Institute of Scientific and Technical Information of China (English)

    Haoran ZHAO; Qiuwei WU; Ioannis MARGARIS; Poul S(O)RENSEN

    2013-01-01

    The implementation method for the International Electrotechnical Commission (IEC) generic models of Type 1 wind turbine generator (WTG) in DIgSILENT PowerFactory is presented.The following items are described,i.e.model structure,model blocks and how to implement these blocks in the PowerFactory environment.Case studies under both normal and fault conditions are done with the implemented IEC generic models of Type 1 WTG,and dynamic responses are captured and analyzed.The case study results show that the IEC generic models of Type 1 WTG can correctly represent the performances of Type 1 WTG under both normal and fault conditions.

  13. An Experimental Study of Measuring Oscillatory and Transient Pressures in Hydraulic Systems.

    Science.gov (United States)

    1978-12-01

    dynamic conditions. One of these computer programs that was of interest in this study was the Hydraulic Systems Frequency Response (HsFR). H- SFR program...reason for that failure is that the model for the hose was not accurate enough. The predicted amplitudes were much lower than measurec’ values except...the line. 6. P(%)- in line - Pclanp on x 100 ( 6 Pin line 7. Span - The distance between two clamps. The trans- ducers were located in the center of the

  14. Flood Hazard Mapping by Using Geographic Information System and Hydraulic Model: Mert River, Samsun, Turkey

    Directory of Open Access Journals (Sweden)

    Vahdettin Demir

    2016-01-01

    Full Text Available In this study, flood hazard maps were prepared for the Mert River Basin, Samsun, Turkey, by using GIS and Hydrologic Engineering Centers River Analysis System (HEC-RAS. In this river basin, human life losses and a significant amount of property damages were experienced in 2012 flood. The preparation of flood risk maps employed in the study includes the following steps: (1 digitization of topographical data and preparation of digital elevation model using ArcGIS, (2 simulation of flood lows of different return periods using a hydraulic model (HEC-RAS, and (3 preparation of flood risk maps by integrating the results of (1 and (2.

  15. Using hydraulic modeling to simulate human interactions with water resources in an Omani irrigation system

    Science.gov (United States)

    Xanthopoulou, Themis; Ertsen, Maurits; Düring, Bleda; Kolen, Jan

    2017-04-01

    In the dry Southern Oman, more than a thousand years ago, a large water system that connected the mountain mass with the coastal region was constructed. Its length (up to 30 km) and the fact that the coastal region has a rich groundwater aquifer create confusion as to why the system was initially built. Nonetheless, it was abandoned a couple of centuries later only to be partially revived by small farming communities in the 17th to 18th century. The focus of our research is one of the irrigation systems that used the water conveyed from the large water system. Not much is known about these small irrigation systems functioning in the Wadi Al Jizzi of the greater Sohar region. There are no written records and we can only make guesses about the way the systems were managed based on ethnographical studies and the traditional Omani techniques. On the other hand, the good preservation state of the canals offers a great opportunity for hydraulic reconstruction of irrigation events. More than that, the material remains suggest and at the same time limit the ways in which humans interacted with the system and the water resources of the region. All irrigation activities and some daily activities had to be realized through the canal system and only if the canal system permits it these actions would have been feasible. We created a conceptual model of irrigation that includes the human agent and feedback mechanisms through hydraulics and then we simulated irrigation events using the Sobek software. Scenarios and sensibility analysis were used to address the unknown aspects of the system. Our research yielded insights about the way the farming community interacted with the larger water system, the levels of co-ordination and co-operation required for successful irrigation and the predisposition of conflict and power relations.

  16. Experimental Study of a Small Scale Hydraulic System for Mechanical Wind Energy Conversion into Heat

    Directory of Open Access Journals (Sweden)

    Tadas Zdankus

    2016-07-01

    Full Text Available Significant potential for reducing thermal energy consumption in buildings of moderate and cold climate countries lies within wind energy utilisation. Unlike solar irradiation, character of wind speeds in Central and Northern Europe correspond to the actual thermal energy demand in buildings. However, mechanical wind energy undergoes transformation into electrical energy before being actually used as thermal energy in most wind energy applications. The study presented in this paper deals with hydraulic systems, designed for small-scale applications to eliminate the intermediate energy transformation as it converts mechanical wind energy into heat directly. The prototype unit containing a pump, flow control valve, oil tank and piping was developed and tested under laboratory conditions. Results of the experiments showed that the prototype system is highly efficient and adjustable to a broad wind velocity range by modifying the definite hydraulic system resistance. Development of such small-scale replicable units has the potential to promote “bottom-up” solutions for the transition to a zero carbon society.

  17. ADAPTIVE FEED-FORWARD COMPENSATOR FOR HARMONIC CANCELLATION IN ELECTRO- HYDRAULIC SERVO SYSTEM

    Institute of Scientific and Technical Information of China (English)

    YAO Jianjun; WANG Liquan; JIANG Hongzhou; WU Zhenshun; HAN Junwei

    2008-01-01

    Since the dead zone phenomenon occurs in electro-hydraulic servo system, the output of the system corresponding to a sinusoidal input contains higher harmonic besides the fundamental input, which causes harmonic distortion of the output signal. The method for harmonic cancellation based on adaptive filter is proposed. The task is accomplished by generating reference signals with frequency that should be eliminated from the output. The reference inputs are weighted by the adaptive filter in such a way that it closely matches the harmonic. The output of the adaptive filter is a harmonic replica and is injected to the fundamental signal such that the output harmonic is cancelled leaving the desired signal alone, and the total harmonic distortion (THD) is greatly reduced. The weights of filter are adjusted on-line according to the control error by using least-mean-square (LMS) algorithm. Simulation results performed with a hydraulic system demonstrate the efficiency and validity of the proposed adaptive feed-forward compensator (AFC) control scheme.

  18. 液压泵试验台系统设计%Research of Test System of Hydraulic Pump

    Institute of Scientific and Technical Information of China (English)

    阳宝元; 黄志坚; 何曼

    2015-01-01

    One test system of hydraulic pump which includes hydraulic system, electronic control system and computer control system is de-signed, and some critical types of components are selected. The whole system is simple, practical which can reliably and quickly test perfor-mance parameters of hydraulic pump.%设计了一种液压泵试验台系统,包括液压系统、电控系统和计算机测控系统,对系统的相关元件进行了选型,整个系统简单实用,能可靠、快捷地对液压泵的性能参数进行测试。

  19. 用于风力发电的双馈型电机%Quantitative Comparison of Wind Turbine Generators Using Numerical Modeling

    Institute of Scientific and Technical Information of China (English)

    马质璞; 张抗; 陈飞飞

    2016-01-01

    风能是一种可再生的清洁能源。与火电、核能、水力发电相比,风力发电的环境效益和社会效益显著。风力发电机是将风能转换成机械能,再把机械能转换成电能的机电设备,通常由风轮、对风装置、调速装置、传动装置、发电机、塔架、停车机构等组成。在风力发电系统中,发电机是一个非常重要的部分,在很大程度上影响整个风力发电系统的性能。变速恒频模式是风力发电的发展趋势,因此重点分析变速恒频发电方案,主要针对几种常用的双馈风力发电机,并比较它们的性能。重点分析3种类型的风力发电机,分别是双馈感应发电机、单定子无刷双馈磁阻发电机和双定子无刷双馈磁阻发电机。%Wind power is a kind of renewable clean energy. Both the environmental benefits and social benefits of wind power are significant when comparing with electricity generation of thermal power, nuclear power, and water power. Wind turbines are equipment which can convert wind energy into mechanical energy,and then convert the mechanical energy back to electrical energy. Wind turbines are usually consist of wind wheel, yawing device, speed regulating device, transmission device, generators, tower and the stop mechanism, etc. In wind turbine system, generator is a very important part, it can largely impact the performance of the whole wind generation system. Since variable-speed constant-frequency mode is the trend of wind power. This paper is to have a quantitative comparison on the performance of several commonly used high-power wind turbine generator,while focus on analyzing the variable speed scheme. There are 3 kinds of wind turbine generators involved, including Doubly-Fed Induction Generator (DFIG), Single Stator Brushless Doubly-Fed Reluctance Generator (BDFRG) and Dual Stator Brushless Doubly-Fed Reluctance Generator (DS-BDFRG).

  20. Proportional-integral-derivative control of nonlinear half-car electro-hydraulic suspension systems

    Institute of Scientific and Technical Information of China (English)

    John E.D.EKORU; Jimoh O.PEDRO

    2013-01-01

    This paper presents the development of a proportional-integral-derivative (PID)-based control method for application to active vehicle suspension systems (AVSS).This method uses an inner PID hydraulic actuator force control loop,in combination with an outer PID suspension travel control loop,to control a nonlinear half-car AVSS.Robustness to model uncertainty in the form of variation in suspension damping is tested,comparing performance of the AVSS with a passive vehicle suspension system (PVSS),with similar model parameters.Spectral analysis of suspension system model output data,obtained by performing a road input disturbance frequency sweep,provides frequency response plots for both nonlinear vehicle suspension systems and time domain vehicle responses to a sinusoidal road input disturbance on a smooth road.The results show the greater robustness of the AVSS over the PVSS to parametric uncertainty in the frequency and time domains.

  1. A switched energy saving position controller for variable-pressure electro-hydraulic servo systems.

    Science.gov (United States)

    Tivay, Ali; Zareinejad, Mohammad; Rezaei, S Mehdi; Baghestan, Keivan

    2014-07-01

    The electro-hydraulic servo system (EHSS) demonstrates a relatively low level of efficiency compared to other available actuation methods. The objective of this paper is to increase this efficiency by introducing a variable supply pressure into the system and controlling this pressure during the task of position tracking. For this purpose, an EHSS structure with controllable supply pressure is proposed and its dynamic model is derived from the basic laws of physics. A switching control structure is then proposed to control both the supply pressure and the cylinder position at the same time, in a way that reduces the overall energy consumption of the system. The stability of the proposed switching control system is guaranteed by proof, and its performance is verified by experimental testing.

  2. 液压在线监控系统在步进梁液压系统中的应用%Hydraulic Online Monitoring System in the Application of the Hydraulic System of Walking Beam

    Institute of Scientific and Technical Information of China (English)

    徐萍

    2015-01-01

    This chapter first do the walking beam hydraulic scheme comparison of on-line monitoring system, then discusses the walking beam hydraulic scheme comparison of the monitoring system, the determination of scheme of actual monitoring model, and the main configuration of the monitoring system.%首先做了步进梁液压在线监控系统方案的比较,接着论述了步进梁液压监控系统方案的比较,方案的确定,实际的监控模型以及该监控系统的主要配置。

  3. Status and Inspiration of Development of Standard and of Wind Turbine Generator of Countries in the World%各国风力发电机组标准及认证发展现状和启示

    Institute of Scientific and Technical Information of China (English)

    陶建光; 秦志伟

    2013-01-01

    对风电机组的国际标准以及国内相关标准化工作进行回顾,研究对比了德国、丹麦、美国和印度的风电认证体系,明确了认证对于风电设备制造企业及整个风电产业的重要意义,提出中国风电机组标准和认证体系发展建议。%The paper was reviewed international standard and domestic related standardization work of wind turbine generator, and researched certification systems of wind turbines in Germany, Denmark, the United States and India. Then, the paper was determined significance of certification systems to enterprises of wind turbine equipment manufacture and entire wind turbine industry. Finally, the paper was put forward suggestions for development of Chinese wind turbine generator standard and cer-tification system.

  4. 自动上粕机液压系统设计%Design of Hydraulic System for Automatic Loading Machine

    Institute of Scientific and Technical Information of China (English)

    高军霞

    2016-01-01

    An introduction to the main functions and design principle of the hydraulic system for a automatic loading machine was presented.Based on analyzing the action and functions of the hydraulic system of the automatic loading machine, the design scheme of the hydraulic system was put forward and the circuit design process and hydraulic system working principle were introduced in detail.By practical test, the hydraulic system whose performance can meet the demand of automatic loading machine and work stably, has the good market application prospect.%介绍自动上粕机液压系统的主要功能和设计原理。在分析自动上粕机液压系统动作和功能的基础上,提出该液压系统的设计方案,详细阐述了液压系统回路设计过程以及工作原理。经实践测试:该液压系统工作运行平稳,各项性能可满足自动上粕机作业需求,具有良好的市场应用前景。

  5. Growth model for large branched three-dimensional hydraulic crack system in gas or oil shale.

    Science.gov (United States)

    Chau, Viet T; Bažant, Zdeněk P; Su, Yewang

    2016-10-13

    Recent analysis of gas outflow histories at wellheads shows that the hydraulic crack spacing must be of the order of 0.1 m (rather than 1 m or 10 m). Consequently, the existing models, limited to one or several cracks, are unrealistic. The reality is 10(5)-10(6) almost vertical hydraulic cracks per fracking stage. Here, we study the growth of two intersecting near-orthogonal systems of parallel hydraulic cracks spaced at 0.1 m, preferably following pre-existing rock joints. One key idea is that, to model lateral cracks branching from a primary crack wall, crack pressurization, by viscous Poiseuille-type flow, of compressible (proppant-laden) frac water must be complemented with the pressurization of a sufficient volume of micropores and microcracks by Darcy-type water diffusion into the shale, to generate tension along existing crack walls, overcoming the strength limit of the cohesive-crack or crack-band model. A second key idea is that enforcing the equilibrium of stresses in cracks, pores and water, with the generation of tension in the solid phase, requires a new three-phase medium concept, which is transitional between Biot's two-phase medium and Terzaghi's effective stress and introduces the loading of the solid by pressure gradients of diffusing pore water. A computer program, combining finite elements for deformation and fracture with volume elements for water flow, is developed to validate the new model.This article is part of the themed issue 'Energy and the subsurface'.

  6. Feasibility of a Hydraulic Power Assist System for Use in Hybrid Neuroprostheses

    Directory of Open Access Journals (Sweden)

    Kevin M. Foglyano

    2015-01-01

    Full Text Available Feasibility of using pressurized hydraulic fluid as a source of on-demand assistive power for hybrid neuroprosthesis combining exoskeleton with functional neuromuscular stimulation was explored. Hydraulic systems were selected as an alternative to electric motors for their high torque/mass ratio and ability to be located proximally on the exoskeleton and distribute power distally to assist in moving the joints. The power assist system (PAS was designed and constructed using off-the-shelf components to test the feasibility of using high pressure fluid from an accumulator to provide assistive torque to an exoskeletal hip joint. The PAS was able to provide 21 Nm of assistive torque at an input pressure of 3171 kPa with a response time of 93 ms resulting in 32° of hip flexion in an able-bodied test. The torque output was independent of initial position of the joint and was linearly related to pressure. Thus, accumulator pressure can be specified to provide assistive torque as needed in exoskeletal devices for walking or stair climbing beyond those possible either volitionally or with electrical stimulation alone.

  7. DESIGNING HYDRAULIC AIR CHAMBER IN WATER TRANSMISSION SYSTEMS USING GENETIC ALGORITHM

    Directory of Open Access Journals (Sweden)

    Abdorahim Jamal

    2016-09-01

    Full Text Available Transient flow control in Water Transmission Systems (WTS is one of the requirements of designing these systems. Hence, among control equipment, air chambers offer the best solution to control transient flow effects, i.e. both prevents water column separation and absorbs pressure increase. It is essential to carry out an accurate and optimized design of air chambers, not only due to high costs of their manufacturing but also their important protective role. Accordingly, hydraulic design parameters comprise tank volume, diameter of nozzle and coefficients of inflow and outflow of nozzle. In this paper, it is intended to optimize these parameters in order to minimize manufacturing costs. On the other hand, maximum and minimum pressures in main pipeline are considered as constraints which shall fall in allowed range. Therefore, a model has been developed which is a combination of a hydraulic simulation model of WTS and an optimization model based on genetic algorithm. This model is first applied to WTS of Dehgolan-Ghorveh plain as a case study. Results of this research demonstrate that based on suggested model, negative wave creation and pressure increase in pipeline is prevented as well as decrease in manufacturing costs of air chamber.

  8. The application of Biological-Hydraulic coupled model for Tubificidae-microorganism interaction system

    Science.gov (United States)

    Zhong, Xiao; Sun, Peide; Song, Yingqi; Wang, Ruyi; Fang, Zhiguo

    2010-11-01

    Based on the fully coupled activated sludge model (FCASM), the novel model Tubificidae -Fully Coupled Activated Sludge Model-hydraulic (T-FCASM-Hydro), has been developed in our previous work. T-FCASM-Hydro not only describe the interactive system between Tubificidae and functional microorganisms for the sludge reduction and nutrient removal simultaneously, but also considere the interaction between biological and hydraulic field, After calibration and validation of T-FCASM-Hydro at Zhuji Feida-hongyu Wastewater treatment plant (WWTP) in Zhejiang province, T-FCASM-Hydro was applied for determining optimal operating condition in the WWTP. Simulation results showed that nitrogen and phosphorus could be removed efficiently, and the efficiency of NH4+-N removal enhanced with increase of DO concentration. At a certain low level of DO concentration in the aerobic stage, shortcut nitrification-denitrification dominated in the process of denitrification in the novel system. However, overhigh agitation (>6 mgṡL-1) could result in the unfavorable feeding behavior of Tubificidae because of the strong flow disturbance, which might lead to low rate of sludge reduction. High sludge reduction rate and high removal rate of nitrogen and phosphorus could be obtained in the new-style oxidation ditch when DO concentration at the aerobic stage with Tubificidae was maintained at 3.6 gṡm-3.

  9. The Dynamic Analysis of Hydropower House and Unit System in Coupled Hydraulic-mechanical-electric Factors

    Science.gov (United States)

    MA, Z. Y.; Wu, Q. Q.

    2016-11-01

    A hydraulic-mechanical-electric and structures coupled model of hydropower station system including subsystem models of the penstock, hydro-turbine model, speed governor, synchronous generator as well as grid, rotor-bearing system and powerhouse structure is established. This model is used to simulate the small fluctuation transient process of 10% load-up in the part load condition for hydropower station. Mechanical eccentric force, unbalanced magnetic pull and vortex pressure fluctuation at inlet of draft tube are considered in the numerical calculation. The interaction between hydraulic-mechanical-electric coupled factors and structural vibration properties during the small fluctuation transient process is studied. The results indicate that the speed regulation for turbine has very litter impact on the transient process of generator. In the process of small fluctuation with loading method in this paper, structure of powerhouse is greatly influenced by vortex pressure pulse in the draft tube, and the vibration of unit is excited by loads which caused by itself rotating.

  10. Fault detection of excavator's hydraulic system based on dynamic principal component analysis

    Institute of Scientific and Technical Information of China (English)

    HE Qing-hua; HE Xiang-yu; ZHU Jian-xin

    2008-01-01

    In order to improve reliability of the excavator's hydraulic system, a fault detection approach based on dynamic principal component analysis(PCA) was proposed. Dynamic PCA is an extension of PCA, which can effectively extract the dynamic relations among process variables. With this approach, normal samples were used as training data to develop a dynamic PCA model in the first step. Secondly, the dynamic PCA model decomposed the testing data into projections to the principal component subspace(PCS) and residual subspace(RS). Thirdly, T2 statistic and Q statistic performed as indexes of fault detection in PCS and RS, respectively.Several simulated faults were introduced to validate the approach. The results show that the dynamic PCA model developed is able to detect overall faults by using T2 statistic and Q statistic. By simulation analysis, the proposed approach achieves an accuracy of 95% for 20 test sample sets, which shows that the fault detection approach can be effectively applied to the excavator's hydraulic system.

  11. Dynamic strain measurement of hydraulic system pipeline using fibre Bragg grating sensors

    Directory of Open Access Journals (Sweden)

    Qiang Wang

    2016-04-01

    Full Text Available Fatigue failure is a serious problem in hydraulic piping systems installed in the machinery and equipment working in harsh operational conditions. To alleviate this problem, health monitoring of pipes can be conducted by measuring and analysing vibration-induced strain. Fibre Bragg grating is considered as a promising sensing approach for dynamic load monitoring. In this article, dynamic strain measurements based on fibre Bragg grating sensors for small-bore metal pipes have been investigated. The quasi-distributed strain sensing of fibre Bragg grating sensors is introduced. Two comparison experiments were carried out under vibration and impact loads among the methods of electrical strain gauge, piezoelectric accelerometer and fibre Bragg grating sensor. Experimental results indicate that fibre Bragg grating sensor possesses an outstanding ability to resist electromagnetic interference compared with strain gauge. The natural frequency measurement results, captured by fibre Bragg grating sensor, agree well with the modal analysis results obtained from finite element analysis. In addition, the attached fibre Bragg grating sensor brings a smaller impact on the dynamic characteristics of the measured pipe than the accelerometer due to its small size and lightweight. Fibre Bragg grating sensors have great potential for the quasi-distributed measurement of dynamic strain for the dynamic characteristic research and health monitoring of hydraulic system pipeline.

  12. FFT Analysis on Coupling Effect of Axial and Torsional Vibrations in Circular Cross Section Beam of Steam Turbine Generators

    Directory of Open Access Journals (Sweden)

    Xiang Xu

    2013-09-01

    Full Text Available This paper presents a novel method to nonlinearly investigate the dynamics of the coupled axial and torsional vibrations in the circular cross section beam of the steam turbine generator using the FFT analysis. Firstly, the coupled axial and torsional vibrations of a beam are proved by equivalent law of shearing stress and different boundary conditions. Then, a nonlinear mathematical model of the coupled axial and torsional vibrations is established by the Galerkin method. Lastly, the fast Fourier transform (FFT is employed to investigate the coupled effect of the beam vibration. A practical calculation example is calculated numerically and the coupled mechanism of the beam’s axial and torsional vibrations is analyzed in detail. The analysis results show that the frequencies of the coupled response would be existed in some special orders and the coupled response frequencies are smaller than the single vibration. Since for the first time the coupled mechanism of the beam’s axial and torsional vibrations is theoretically analyzed, the findings in this work may provide directive reference for practical engineering problems in design of steam turbine generators.

  13. Design of a Magnetostrictive-Hydraulic Actuator Considering Nonlinear System Dynamics and Fluid-Structure Coupling

    Science.gov (United States)

    Larson, John Philip

    Smart material electro-hydraulic actuators (EHAs) utilize fluid rectification via one-way check valves to amplify the small, high-frequency vibrations of certain smart materials into large motions of a hydraulic cylinder. Although the concept has been demonstrated in previously, the operating frequency of smart material EHA systems has been limited to a small fraction of the available bandwidth of the driver materials. The focus of this work is to characterize and model the mechanical performance of a magnetostrictive EHA considering key system components: rectification valves, smart material driver, and fluid-system components, leading to an improved actuator design relative to prior work. The one-way valves were modeled using 3-D finite element analysis, and their behavior was characterized experimentally by static and dynamic experimental measurement. Taking into account the effect of the fluid and mechanical conditions applied to the valves within the pump, the dynamic response of the valve was quantified and applied to determine rectification bandwidth of different valve configurations. A novel miniature reed valve, designed for a frequency response above 10~kHz, was fabricated and tested within a magnetostrictive EHA. The nonlinear response of the magnetostrictive driver, including saturation and hysteresis effects, was modeled using the Jiles-Atherton approach to calculate the magnetization and the resulting magnetostriction based on the applied field calculated within the rod from Maxwell's equations. The dynamic pressure response of the fluid system components (pumping chamber, hydraulic cylinder, and connecting passages) was measured over a range of input frequencies. For the magnetostrictive EHA tested, the peak performance frequency was found to be limited by the fluid resonances within the system. A lumped-parameter modeling approach was applied to model the overall behavior of a magnetostrictive EHA, incorporating models for the reed valve response

  14. Oil sensor system for online condition monitoring of technical equipment and machines; Oelsensorsystem zur Echtzeit-Zustandsueberwachung von technischen Anlagen und Maschinen

    Energy Technology Data Exchange (ETDEWEB)

    Gegner, Juergen [SKF GmbH, Schweinfurt (Germany); Kuipers, Ulrich [Fachhochschule Suedwestfalen, Hagen (Germany); Mauntz, Manfred [cmc Instruments GmbH, Eschborn (Germany)

    2010-07-01

    A novel oil sensor system is introduced for the continuous online measurement of the oil quality via the parameters electrical conductivity and relative permittivity for the evaluation of component wear and oil aging. The determination of contamination and decrease of lubricant quality permits on-demand maintenance. Since the conductivity of the oil is considerably lower compared to impurities, there is a direct correlation to the degree of contamination. Moisture content in oil or the decomposition of additives is quantified by an accurate measurement of the relative permittivity. Important applications are the online lubricant condition monitoring in (industrial) gearboxes, hydraulic systems, turbines, generators, and transformers. (orig.)

  15. Hydraulic Closed Loop Synchronization Control System and Its Application in the Hydraulic Bending Machine%液压闭环同步控制系统在液压式卷板机中的应用

    Institute of Scientific and Technical Information of China (English)

    宋亚林

    2015-01-01

    This paper discusses the hydraulic open loop and closed loop system and its characteristics of synchronous control. The Application of hydraulic closed loop synchronization control system in hydraulic type three roller symmetrical bending machine was introduced in this paper.%论述了液压开环与闭环同步控制系统及其特点,并对液压闭环同步控制系统在液压式三辊对称卷板机中的应用进行了介绍。

  16. DERIVATION AND INTEGRAL SLIDING MODE VARIABLE STRUCTURE CONTROL OF HYDRAULIC VELOCITY TRACKING SYSTEM

    Institute of Scientific and Technical Information of China (English)

    Wei Jianhua; Guan Cheng

    2005-01-01

    The velocity tracking control of a hydraulic servo system is studied. Since the dynamics of the system are highly nonlinear and have large extent of model uncertainties, such as big changes in load and parameters, a derivation and integral sliding mode variable structure control scheme (DI-SVSC) is proposed. An integral controller is introduced to avoid the assumption that the derivative of desired signal must be known in conventional sliding mode variable structure control, a nonlinear derivation controller is used to weaken the chattering of system. The design method of switching function in integral sliding mode control, nonlinear derivation coefficient and controllers of DI-SVSC is presented respectively. Simulation shows that the control approach is of nice robustness and improves velocity tracking accuracy considerably.

  17. Fault detection approach based on Bond Graph observers: Hydraulic System Case Study

    Directory of Open Access Journals (Sweden)

    Ghada Saoudi

    2016-10-01

    Full Text Available The present paper deals with a bond graph procedure to design graphical observers for fault detection purpose. First of all, a bond Graph approach to build a graphical proportional observer is shown. The estimators’ performance for fault detection purpose is improved using a residual sensitivity analysis to actuator, structural and parametric faults. For uncertain bond graph models in linear fractional transformation LFT, the method is extended to build a graphical proportional-integralPI observer more robust to the presence of parameter uncertainties. The proposed methods allows the computing of the gain matrix graphically using causal paths and loops on the bond graph model of the system. As application, the method is used over a hydraulic system. The simulation results show the dynamic behavior of system variables and the performance of the developed graphical observers

  18. 46 CFR 28.880 - Hydraulic equipment.

    Science.gov (United States)

    2010-10-01

    ... hydraulic equipment and the adjacent work area. Protection shall be afforded to the operator of hydraulic... 46 Shipping 1 2010-10-01 2010-10-01 false Hydraulic equipment. 28.880 Section 28.880 Shipping... INDUSTRY VESSELS Aleutian Trade Act Vessels § 28.880 Hydraulic equipment. (a) Each hydraulic system must...

  19. Hydraulic Shuttle Irradiation System (HSIS) Recently Installed in the Advanced Test Reactor (ATR)

    Energy Technology Data Exchange (ETDEWEB)

    A. Joseph Palmer; Gerry L. McCormick; Shannon J. Corrigan

    2010-06-01

    2010 International Congress on Advances in Nuclear Power Plants (ICAPP’10) ANS Annual Meeting Imbedded Topical San Diego, CA June 13 – 17, 2010 Hydraulic Shuttle Irradiation System (HSIS) Recently Installed in the Advanced Test Reactor (ATR) Author: A. Joseph Palmer, Mechanical Engineer, Irradiation Test Programs, 208-526-8700, Joe.Palmer@INL.gov Affiliation: Idaho National Laboratory P.O. Box 1625, MS-3840 Idaho Falls, ID 83415 INL/CON-10-17680 ABSTRACT Most test reactors are equipped with shuttle facilities (sometimes called rabbit tubes) whereby small capsules can be inserted into the reactor and retrieved during power operations. With the installation of Hydraulic Shuttle Irradiation System (HSIS) this capability has been restored to the Advanced Test Reactor (ATR) at Idaho National Laboratory (INL). The general design and operating principles of this system were patterned after the hydraulic rabbit at Oak Ridge National Laboratory’s (ORNL) High Flux Isotope Reactor (HFIR), which has operated successfully for many years. Using primary coolant as the motive medium the HSIS system is designed to simultaneously transport fourteen shuttle capsules, each 16 mm OD x 57 mm long, to and from the B-7 position of the reactor. The B-7 position is one of the higher flux positions in the reactor with typical thermal and fast (>1 Mev) fluxes of 2.8E+14 n/cm2/sec and 1.9E+14 n/cm2/sec respectively. The available space inside each shuttle is approximately 14 mm diameter x 50 mm long. The shuttle containers are made from titanium which was selected for its low neutron activation properties and durability. Shuttles can be irradiated for time periods ranging from a few minutes to several months. The Send and Receive Station (SRS) for the HSIS is located 2.5 m deep in the ATR canal which allows irradiated shuttles to be easily moved from the SRS to a wet loaded cask, or transport pig. The HSIS system first irradiated (empty) shuttles in September 2009 and has since completed

  20. Fault Diagnosis of AGC Hydraulic System%AGC液压系统的故障诊断

    Institute of Scientific and Technical Information of China (English)

    吴根生

    2009-01-01

    通过液压油理化分析、油料光谱、红外光谱、X射线荧光能谱等多种分析技术的综合应用,快速而准确地诊断出AGC液压系统存在的故障,指出液压油中抗磨添加剂ZDDP的降解是中过滤器上不明析出物的主要来源,及时地为生产厂找到故障原因并迅速排除故障.%By means of the integrated application of several analytical technologies, such as physico-chemical analysis, oil spectrographic analysis, infrared spectrum analysis, EDS (Energy Dispersive XRF Spectrometer) analysis and so on, the faults of AGC hydraulic system were diagnosed accurately and quickly. It was pointed out that the main source of the unknown precipitates on the filter is the degradation of the antiwear additive ZDDP in hydraulic oil. Thus the reason of the fault was found and solved quickly.

  1. Design and Optimization of the Slide Guide System of Hydraulic Press Based on Energy Loss Analysis

    Directory of Open Access Journals (Sweden)

    Mengdi Gao

    2016-06-01

    Full Text Available The clearances in the slide guide system of a hydraulic press are one of the significant factors affecting its accuracy. These clearances also affect the energy consumption of the press. An energy loss model that considers the oil leaks and friction associated with these clearances was proposed, and the size of clearances was optimized based on the model. The maximum allowable eccentric load and the energy loss on the wedge clearance condition were calculated to ensure the slide and guide pillars function properly. The stiffness of pillars and wear of guide rails were checked under an eccentric load condition. A case for rapid sheet metal forming with a 20 MN hydraulic press was examined. For this case, the optimum fit clearances were found to be approximately 0.4 mm. The energy loss under an eccentric load condition was increased by approximately 83% compared to a non-eccentric load condition. The pillars were optimized by reducing excessive stiffness, which served to decrease the pillar weight by nearly 20%.

  2. Status and subjects of thermal-hydraulic analysis for next-generation LWRs with passive safety systems

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-03-01

    The present status and subjects on thermal-hydraulic analysis for next-generation light water reactors (LWRs) with passive safety systems were summarized based on survey results and discussion by subcommittee on improvement of reactor thermal-hydraulic analysis codes under nuclear code committee in Japan Atomic Energy Research Institute. This survey was performed to promote the research of improvement of reactor thermal-hydraulic analysis codes in future. In the first part of this report, the status and subjects on system analysis and those on evaluation of passive safety system performance are summarized for various types of reactor proposed before. In the second part, the status and subjects on multidimensional two-phase flow analysis are reviewed, since the multidimensional analysis was recognized as one of most important subjects through the investigation in the first part. Besides, databases for bubbly flow and annular dispersed flow were explored, those are needed to assess and verify each multidimensional analytical method. The contents in this report are the forefront of thermal-hydraulic analysis for LWRs and those include current findings for the development of multidimensional two-phase flow analytical method. Thus, we expect that the contents can offer various useful information against the improvement of reactor thermal-hydraulic analysis codes in future. (author)

  3. Status and subjects of thermal-hydraulic analysis for next-generation LWRs with passive safety systems

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-03-01

    The present status and subjects on thermal-hydraulic analysis for next-generation light water reactors (LWRs) with passive safety systems were summarized based on survey results and discussion by subcommittee on improvement of reactor thermal-hydraulic analysis codes under nuclear code committee in Japan Atomic Energy Research Institute. This survey was performed to promote the research of improvement of reactor thermal-hydraulic analysis codes in future. In the first part of this report, the status and subjects on system analysis and those on evaluation of passive safety system performance are summarized for various types of reactor proposed before. In the second part, the status and subjects on multidimensional two-phase flow analysis are reviewed, since the multidimensional analysis was recognized as one of most important subjects through the investigation in the first part. Besides, databases for bubbly flow and annular dispersed flow were explored, those are needed to assess and verify each multidimensional analytical method. The contents in this report are the forefront of thermal-hydraulic analysis for LWRs and those include current findings for the development of multidimensional two-phase flow analytical method. Thus, we expect that the contents can offer various useful information against the improvement of reactor thermal-hydraulic analysis codes in future. (author)

  4. Speed-variable Switched Differential Pump System for Direct Operation of Hydraulic Cylinders

    DEFF Research Database (Denmark)

    Schmidt, Lasse; Roemer, Daniel Beck; Pedersen, Henrik Clemmensen

    2015-01-01

    proportional valves, this design allows to control the lower chamber pressure levels, throttling excess compression flow to tank. The resulting design introduces additional losses due to throttling of excess compression flow, but also improves the dynamic properties of the system significantly. The proposed...... differential cylinders. The main idea was here to utilize an electric rotary drive, with the shaft interconnected to two antiparallel fixed displacement gear pumps, to actuate a differential cylinder. With the design carried out such that the area ratio of the cylinder matches the displacement ratio of the two...... may seriously influence the dynamics and hence the performance during operation. This paper presents an analysis of these properties, and a redesign of the hydraulic system concept is proposed. Here the area- and displacement ratios are deliberately mismatched, causing inherent pressure build...

  5. PI control based on fuzzy set-point weighting tracking for hydraulic crane boom system

    Institute of Scientific and Technical Information of China (English)

    Yong YANG; An LUO; Karl-Erik RYDBERG

    2006-01-01

    A PI control strategy based on fuzzy set-point weighting following was proposed for the active damping control of a hydraulic crane boom system (HCBS). Two valve-controlled PI controllers, which include a proportional feedforward controller based on fuzzy set-point weighting following and a limited semi-integrator(LSI), are designed respectively. LSI is used to limit output signal and to prevent wind up at the low frequency of the spectrum. By using a range camera and an electronic feedback control, the tip damping on the HCBS can be adjusted artificially. A collaborative control simulation technique of HOPSAN and MATLAB/SIMULINK is applied to the controller design. Simulation results show that the proposed PI control system has less overshoot as well as faster response. The tip damping on the HCBS during operation is improved.

  6. Development of system analysis code for thermal-hydraulic simulation of integral reactor, Rex-10

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-10-15

    Rex-10 is an environment-friendly and economical small-scale nuclear reactor to provide the energy for district heating as well as the electric power in micro-grid. This integral reactor comprises several innovative concepts supported by advanced primary circuit components, low coolant parameters and natural circulation cooling. To evaluate the system performance and thermal-hydraulic behavior of the reactor, a system analysis code is being developed so that the new designs and technologies adopted in Rex-10 can be reflected. The research efforts are absorbed in programming the simple and fast-running thermal-hydraulic analysis software. The details of hydrodynamic governing equations component models and numerical solution scheme used in this code are presented in this paper. On the basis of one-dimensional momentum integral model, the models of point reactor neutron kinetics for thorium-fueled core, physical processes in the steam-gas pressurizer, and heat transfers in helically coiled steam generator are implemented to the system code. Implicit numerical scheme is employed to momentum and energy equations to assure the numerical stability. The accuracy of simulation is validated by applying the solution method to the Rex-10 test facility. Calculated natural circulation flow rate and coolant temperature at steady-state are compared to the experimental data. The validation is also carried out for the transients in which the sudden reduction in the core power or the feedwater flow takes place. The code's capability to predict the steady-state flow by natural convection and the qualitative behaviour of the primary system in the transients is confirmed. (Author)

  7. EFFECT OF HYDRAULIC AND GEOMETRICAL PROPERTIES ON STEPPED CASCADE AERATION SYSTEM

    Directory of Open Access Journals (Sweden)

    VEDHACHALAM RATHINAKUMAR

    2017-03-01

    Full Text Available Stepped cascade aeration system is commonly used to aerate the water and wastewater to increase the dissolved oxygen during pre and post treatment process. In the present research, experiments were conducted to evaluate the performance of a rectangular Cascade Aeration System with varying flow rates, risers and tread by maintaining constant width of the channel using water collected from reverse osmosis plant. The experiments were carried out with four different risers such as 0.15 m, 0.18 m, 0.225 m and 0.30 m. Each rise was investigated with five different tread of 0.60 m, 0.55 m, 0.50 m, 0.45 m and 0.40 m. Comprehensive experimental investigations were carried out for different hydraulic loading rates of 0.005 to 0.035 m3/s/m2. Results obtained from the experiments reveals that increasing dimensionless discharges promotes more aeration, attains a maximum up to dimensionless discharge= 2.22 and beyond this there was a significant decrease in aeration. In addition, the increased in number of steps significantly enhances air entertainment and surface fall rate in the Stepped Cascade Aeration System. A regression equation was derived by keeping aeration efficiency as response with dimensionless discharge and oxygen saturation concentration as influencing parameters. The dimension less discharge is a function of critical depth of the rectangular channel and step height, whereas oxygen saturation concentration represents the ratio of oxygen deficit and oxygen saturation concentration. Based on the experimental results, the optimum design and/or results such as number of steps (12 numbers and hydraulic loading rate (0.025 m3/s/m2 with fixed tread width of 0.6 m were identified to achieve maximum aeration rate (0.5-0.60 in Aeration system.

  8. Discrete Displacement Hydraulic Power Take-Off System for the Wavestar Wave Energy Converter

    Directory of Open Access Journals (Sweden)

    Enrique Vidal

    2013-08-01

    Full Text Available The Wavestar Wave Energy Converter (WEC is a multiple absorber concept, consisting of 20 hemisphere shaped floats attached to a single platform. The heart of the Wavestar WEC is the Power Take-Off (PTO system, converting the wave induced motion of the floats into a steady power output to the grid. In the present work, a PTO based on a novel discrete displacement fluid power technology is explored for the Wavestar WEC. Absorption of power from the floats is performed by hydraulic cylinders, supplying power to a common fixed pressure system with accumulators for energy smoothing. The stored pressure energy is converted into electricity at a steady pace by hydraulic motors and generators. The storage, thereby, decouples the complicated process of wave power absorption from power generation. The core for enabling this PTO technology is implementing a near loss-free force control of the energy absorbing cylinders. This is achieved by using special multi-chambered cylinders, where the different chambers may be connected to the available system pressures using fast on/off valves. Resultantly, a Discrete Displacement Cylinder (DDC is created, allowing near loss free discrete force control. This paper presents a complete PTO system for a 20 float Wavestar based on the DDC. The WEC and PTO is rigorously modeled from incident waves to the electric output to the grid. The resulting model of +600 states is simulated in different irregular seas, showing that power conversion efficiencies above 70% from input power to electrical power is achievable for all relevant sea conditions.

  9. Thermal hydraulic investigations and optimization on the EVC system of a PWR by CFD simulation

    Energy Technology Data Exchange (ETDEWEB)

    Xi, Mengmeng [Department of Nuclear Science and Technology, State Key Laboratory of Multiphase Flow in Power Engineering, Xi’an Jiaotong University, 710049 Xi’an (China); Zhang, Dalin, E-mail: dlzhang@mail.xjtu.edu.cn [Department of Nuclear Science and Technology, State Key Laboratory of Multiphase Flow in Power Engineering, Xi’an Jiaotong University, 710049 Xi’an (China); Tang, Mao [China Nuclear Power Design Engineering Co., Ltd., 518124 Shenzhen (China); Wang, Chenglong; Zheng, Meiyin; Qiu, Suizheng [Department of Nuclear Science and Technology, State Key Laboratory of Multiphase Flow in Power Engineering, Xi’an Jiaotong University, 710049 Xi’an (China)

    2015-08-15

    Highlights: • This study constructs a full CFD model for the EVC system of a PWR. • The complex fluid and solid coupling is treated in the computation. • Primary characteristics of the velocity, pressure and temperature distributions in the EVC system are investigated. • The optimization of the EVC system with different inlet boundaries are performed. - Abstract: In order to optimize the design of Reactor Pit Ventilation (EVC) system in a Pressurized Water Reactor (PWR), it is necessary to study the characteristics of the velocity, pressure and temperature fields in the EVC system. A full computational fluid dynamics (CFD) model for the EVC system is constructed by a commercial CFD code, where the complex fluid and solid coupling is treated. The Shear Stress Transport (SST) model is adopted to perform the turbulence calculation. This paper numerically investigates the characteristics of the velocity, pressure and temperature distributions in the EVC system. In particular, the effects of inlet air parameters on the thermal hydraulic characteristics and the reactor pit structure are also discussed for the EVC system optimization. Simulations are carried out with different mesh sizes and boundary conditions for sensitivity analysis. The computational results are important references to optimize the design and verify the rationality of the EVC system.

  10. Design of a hydraulic analog of the circulatory system for evaluating artificial hearts.

    Science.gov (United States)

    Donovan, F M

    1975-01-01

    A major problem in improving artificial heart designs is the absence of methods for accurate in vitro testing of artificial heart systems. A mock circulatory system has been constructed which hydraulically simulates the systemic and pulmonary circulations of the normal human. The device is constructed of 1/2 in. acrylic sheet and has overall dimensions of 24 in. wide, 16 in. tall, and 8 in. deep. The artificial heart to be tested is attached to the front of the device, and pumps fluid from the systemic venous chamber into the pulmonary arterial chamber and from the pulmonary venous chamber into the systemic arterial chamber. Each of the four chambers is hermetically sealed. The compliance of each chamber is determined by the volume of air trapped above the fluid in that chamber. The pulmonary and systemic resistances are set automatically by bellows-operated valves to simulate the barroreceptor response in the systemic arteries and the passive pulmonary resistance response in the pulmonary arteries. Cardiac output is measured by a turbine flowmeter in the systemic circulation. Results using the Kwan-Gett artificial heart show a good comparison between the mock circulatory system response and the calf response.

  11. Vibration of hydraulic machinery

    CERN Document Server

    Wu, Yulin; Liu, Shuhong; Dou, Hua-Shu; Qian, Zhongdong

    2013-01-01

    Vibration of Hydraulic Machinery deals with the vibration problem which has significant influence on the safety and reliable operation of hydraulic machinery. It provides new achievements and the latest developments in these areas, even in the basic areas of this subject. The present book covers the fundamentals of mechanical vibration and rotordynamics as well as their main numerical models and analysis methods for the vibration prediction. The mechanical and hydraulic excitations to the vibration are analyzed, and the pressure fluctuations induced by the unsteady turbulent flow is predicted in order to obtain the unsteady loads. This book also discusses the loads, constraint conditions and the elastic and damping characters of the mechanical system, the structure dynamic analysis, the rotor dynamic analysis and the system instability of hydraulic machines, including the illustration of monitoring system for the instability and the vibration in hydraulic units. All the problems are necessary for vibration pr...

  12. ADAPTIVE HARMONIC CANCELLATION APPLIED IN ELECTRO-HYDRAULIC SERVO SYSTEM WITH ANN

    Institute of Scientific and Technical Information of China (English)

    Yao Jianjun; Wu Zhenshun; Han Junwei; Yue Donghai

    2004-01-01

    The method for harmonic cancellation based on artificial neural network (ANN) is proposed. The task is accomplished by generating reference signal with frequency that should be eliminated from the output. The reference input is weighted by the ANN in such a way that it closely matches the harmonic. The weighted reference signal is added to the fundamental signal such that the output harmonic is cancelled leaving the desired signal alone. The weights of ANN are adjusted by output harmonic, which is isolated by a bandpass filter. The above concept is used as a basis for the development of adaptive harmonic cancellation (AHC) algorithm. Simulation results performed with a hydraulic system demonstrate the efficiency and validity of the proposed AHC control scheme.

  13. PID Controller Optimization by GA and Its Performances on the Electro-hydraulic Servo Control System

    Institute of Scientific and Technical Information of China (English)

    Karam M. Eibayomy; Jiao Zongxia; Zhang Huaqing

    2008-01-01

    A proportional integral derivative (PID) controller is designed and attached to electro-hydraulic servo actuator system (EHSAS) to control the angular position of the rotary actuator which control the movable surface of space vehicles. The PID gain parameters areoptimized by the genetic algorithm (GA). The controller is verified on the new state-space model of servo-valves attached to the physical rotary actuator by SIMULINK program. The controller and the state-space model are verified experimentally. Simulation and experimental results verify the effectiveness of the PID controller adaptive by GA to control the angular position of the rotary actuator as compared with the classical PID controller and the compensator controller.

  14. S-IV-B Aft Swing Arm Hydraulic With Drain System Orifice Valve

    Science.gov (United States)

    1967-01-01

    The Marshall Space Flight Center (MSFC) played a crucial role in the development of the huge Saturn rockets that delivered humans to the moon in the 1960s. Many unique facilities existed at MSFC for the development and testing of the Saturn rockets. Affectionately nicknamed 'The Arm Farm', the Random Motion/ Lift-Off Simulator was one of those unique facilities. This facility was developed to test the swing arm mechanisms that were used to hold the rocket in position until liftoff. The Arm Farm provided the capability of testing the detachment and reconnection of various arms under brutally realistic conditions. The 18-acre facility consisted of more than a half dozen arm test positions and one position for testing access arms used by the Apollo astronauts. Each test position had two elements: a vehicle simulator for duplicating motions during countdown and launch; and a section duplicating the launch tower. The vehicle simulator duplicated the portion of the vehicle skin that contained the umbilical connections and personnel access hatches. Driven by a hydraulic servo system, the vehicle simulator produced relative motion between the vehicle and tower. On the Arm Farm, extreme environmental conditions (such as a launch scrub during an approaching Florida thunderstorm) could be simulated. The dramatic scenes that the Marshall engineers and technicians created at the Arm Farm permitted the gathering of crucial technical and engineering data to ensure a successful real time launch from the Kennedy Space Center. This photo depicts a close up view of the S-IV-B aft swing arm hydraulic with drain system orifice valve.

  15. Simulation research on hydraulic transformer system fault of 300 MN die forging hydraulic press%300MN模锻液压机液压变压系统故障仿真研究

    Institute of Scientific and Technical Information of China (English)

    刘石梅; 谭建平; 陈晖

    2011-01-01

    In order to analyze the fault of hydraulic transformer which failed to work in long-stroke pressurizing because of its too long return time, a simulation model about hydraulic transformer system of 300 MN forging hydraulic press was established based on AMESim software. The influence of opening height of drain valves and pressure of liquidfilled tank on the return time of hydraulic transformer was simulated quantitatively. The condition, which would result in fault, was obtained and used to analyze the actual fault. The result shows that the fault can be eliminated through reducing the space between the cam plunger and drain valve stem by 4. 6 mm.Keywords: die forging hydraulic press; hydraulic transformer; simulationDesign and manufacture of multi-transfer hydraulic press with resistant-bias loading and synchronization mechanismAbstract: Multi-transfer hydraulic press, a kind of hydraulic equipment with the compact structure and high-efficiency,is widely used in sheet metal shaping and forming operations in the developed countries. To the problem appeared in multi-transfer hydraulic press, such as the wide table, serious bias loading and high-precision forming etc., a four-column multi-transfer hydraulic press developed for the forming of auto parts and components was designed and introduced. Through the research and analysis to the mainframe structure style and closed loop electric-hydraulic control system, the stationary motion performances as well as the integrated performances of equipment were improved and the resistant-bias loading capacity was enhanced in order to meet the high accuracy and compaction requirements.%针对300 MN模锻液压机实际生产中存在的变压器回程时间过长而无法长行程加压故障,基于AMESim软件建立了变压系统的仿真模型并进行了故障仿真,定量地得到了变压器操纵分配器排水阀开启度与充液罐压力对回程时间的影响规律.推导出变压器发生无法长行程加压故

  16. Impact of treated wastewater on growth, respiration and hydraulic conductivity of citrus root systems in light and heavy soils.

    Science.gov (United States)

    Paudel, Indira; Cohen, Shabtai; Shaviv, Avi; Bar-Tal, Asher; Bernstein, Nirit; Heuer, Bruria; Ephrath, Jhonathan

    2016-06-01

    Roots interact with soil properties and irrigation water quality leading to changes in root growth, structure and function. We studied these interactions in an orchard and in lysimeters with clay and sandy loam soils. Minirhizotron imaging and manual sampling showed that root growth was three times lower in the clay relative to sandy loam soil. Treated wastewater (TWW) led to a large reduction in root growth with clay (45-55%) but not with sandy loam soil (hydraulic conductivity was severely reduced in clay soil. Treated wastewater increased respiration rate and reduced hydraulic conductivity of all root orders in clay but only of the lower root orders in sandy loam soil. Loss of hydraulic conductivity increased with root order in clay and clay irrigated with TWW. Respiration and hydraulic properties of all root orders were significantly affected by sodium-amended TWW in sandy loam soil. These changes in root order morphology, anatomy, physiology and hydraulic properties indicate rapid and major modifications of root systems in response to differences in soil type and water quality.

  17. Stability analysis of the governor-turbine-hydraulic system of pumped storage plant during small load variation

    Science.gov (United States)

    Yu, X. D.; Zhang, J.; Chen, S.; Liu, J. C.

    2016-11-01

    Governor-turbine-hydraulic (GTH) system is complex because of strong couplings of hydraulic, mechanical and electrical system. This paper presents a convenient mathematical model of the GTH system of a pumped storage plant (PSP) during small load variation. By using state space method and eigenvalue method, the stability of the GTH system is analyzed and the stable regions of the system can be given as well, which would help to optimize system design or the turning of governors. The proposed method is used to analyze the stability of a practical pumped storage plant during small load variation, which is also simulated in time domain on the basis of characteristics method. The theoretical analysis is in good agreement with numerical simulations. Based on the proposed method, the effect of the system parameters and operating conditions on the stable regions is investigated. These results are useful for the design of the GTH system of pumped storage plants.

  18. Response measurements for two building structures excited by noise from a large horizontal axis wind turbine generator

    Science.gov (United States)

    Hubbard, H. H.; Shepherd, K. P.

    1984-01-01

    Window and wall acceleration measurements and interior noise measurements ere made for two different building structures during excitation by noise from the WTS-4 horizontal axis wind turbine generator operating in a normal power generation mode. With turbine noise input pulses resulted in acceleration pulses for the wall and window elements of the two tests buildings. Response spectra suggest that natural vibration modes of the structures are excited. Responses of a house trailer were substantially greater than those for a building of sturdier construction. Peak acceleration values correlate well with similar data for houses excited by flyover noise from commercial and military airplanes and helicopters, and sonic booms from supersonic aircraft. Interior noise spectra have peaks at frequencies corresponding to structural vibration modes and room standing waves; and the levels for particular frequencies and locations can be higher than the outside levels.

  19. A Full-size High Temperature Superconducting Coil Employed in a Wind Turbine Generator Set-up

    DEFF Research Database (Denmark)

    Song, Xiaowei (Andy); Mijatovic, Nenad; Kellers, Jürgen

    2016-01-01

    is tested in LN2 first, and then tested in the set-up so that the magnetic environment in a real generator is reflected. The experimental results are reported, followed by a finite element simulation and a discussion on the deviation of the results. The tested and estimated Ic in LN2 are 148 A and 143 A......A full-size stationary experimental set-up, which is a pole pair segment of a 2 MW high temperature superconducting (HTS) wind turbine generator, has been built and tested under the HTS-GEN project in Denmark. The performance of the HTS coil is crucial to the set-up, and further to the development...

  20. Apu/hydraulic/actuator Subsystem Computer Simulation. Space Shuttle Engineering and Operation Support, Engineering Systems Analysis. [for the space shuttle

    Science.gov (United States)

    1975-01-01

    Major developments are examined which have taken place to date in the analysis of the power and energy demands on the APU/Hydraulic/Actuator Subsystem for space shuttle during the entry-to-touchdown (not including rollout) flight regime. These developments are given in the form of two subroutines which were written for use with the Space Shuttle Functional Simulator. The first subroutine calculates the power and energy demand on each of the three hydraulic systems due to control surface (inboard/outboard elevons, rudder, speedbrake, and body flap) activity. The second subroutine incorporates the R. I. priority rate limiting logic which limits control surface deflection rates as a function of the number of failed hydraulic. Typical results of this analysis are included, and listings of the subroutines are presented in appendicies.

  1. ELECTRO-HYDRAULIC COMPOUND CONTROL METHOD AND CHARACTERISTIC OF CONTROL FOR TENSION SYSTEM WITH HIGH INERTIA LOADS

    Institute of Scientific and Technical Information of China (English)

    ZHONG Tianyu; WANG Qingfeng; LI Yanmin; GONG Fangyou

    2006-01-01

    Based on the pressure regulation circuit adopting electro-hydraulic proportional relief valve to control tension, a new type of electro-hydraulic compound control circuit with throttle control unit is presented, which can obtain optimal dynamic damping ratio through real-time altering pressure-flow gain of the throttle control unit, improve the dynamic characteristic of tension follow-up control for the tension system with high inertia loads. Moreover, the characteristic when the cable linear velocity variation causes change of tension is investigated, and a compound control strategy is proposed. The theoretical analysis and experimental results show that the electro-hydraulic compound control circuit is effective and the characteristic of the compound control strategy is satisfactory.

  2. 46 CFR 28.405 - Hydraulic equipment.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 1 2010-10-01 2010-10-01 false Hydraulic equipment. 28.405 Section 28.405 Shipping... Operate With More Than 16 Individuals on Board § 28.405 Hydraulic equipment. (a) Each hydraulic system... than four times the system maximum operating pressure. (c) Each hydraulic system must be equipped...

  3. A Water Hammer Protection Method for Mine Drainage System Based on Velocity Adjustment of Hydraulic Control Valve

    OpenAIRE

    Yanfei Kou; Jieming Yang; Ziming Kou

    2016-01-01

    Water hammer analysis is a fundamental work of pipeline systems design process for water distribution networks. The main characteristics for mine drainage system are the limited space and high cost of equipment and pipeline changing. In order to solve the protection problem of valve-closing water hammer for mine drainage system, a water hammer protection method for mine drainage system based on velocity adjustment of HCV (Hydraulic Control Valve) is proposed in this paper. The mathematic mode...

  4. Historical potentiometric surface of the Edwards-Trinity aquifer system and contiguous hydraulically connected units, west-central Texas

    Science.gov (United States)

    Bush, Peter W.; Ardis, Ann F.; Wynn, Kirby H.

    1993-01-01

    The Edwards-Trinity aquifer system is a sequence of near-surface, hydraulically connected, Cretaceous carbonate and quartzose clastic rocks that underlie about 42,000 mi2 of west-central Texas (fig. 1). The aquifer system is currently (1991) being studied as a part of the U.S. Geological Survey's Regional Aquifer-System Analysis (RASA) program, which is intended to describe the regional hydrogeology of important aquifer systems nationwide.

  5. Hydraulic Arm Modeling via Matlab SimHydraulics

    OpenAIRE

    Věchet, Stanislav; Krejsa, Jiří

    2009-01-01

    System modeling is a vital tool for cost reduction and design process speed up in most engineering fields. The paper is focused on modeling of hydraulic arm as a part of intelligent prosthesis project, in the form of 2DOF open kinematic chain. The arm model combines mechanical, hydraulic and electric subsystems and uses Matlab as modeling tool. SimMechanics Matlab extension is used for mechanical part modeling, SimHydraulics toolbox is used for modeling of hydraulic circuit used for actuating...

  6. Hydraulic Evaluation of Marmet Lock Filling and Emptying System, Kanawha River, West Virginia

    Science.gov (United States)

    2015-04-01

    Army Engineer Waterways Experiment Station. Headquarters, U.S. Army Corps of Engineers. 1975. Hydraulic design of lock culvert valves . Engineer Manual ...operations with various valve operations was computed. The numerical model results indicate that the hydraulic conditions are not significantly...2 1.3 Vertical-Lift Valves

  7. Comparison of System Identification Techniques for the Hydraulic Manipulator Test Bed (HMTB)

    Science.gov (United States)

    Morris, A. Terry

    1996-01-01

    In this thesis linear, dynamic, multivariable state-space models for three joints of the ground-based Hydraulic Manipulator Test Bed (HMTB) are identified. HMTB, housed at the NASA Langley Research Center, is a ground-based version of the Dexterous Orbital Servicing System (DOSS), a representative space station manipulator. The dynamic models of the HMTB manipulator will first be estimated by applying nonparametric identification methods to determine each joint's response characteristics using various input excitations. These excitations include sum of sinusoids, pseudorandom binary sequences (PRBS), bipolar ramping pulses, and chirp input signals. Next, two different parametric system identification techniques will be applied to identify the best dynamical description of the joints. The manipulator is localized about a representative space station orbital replacement unit (ORU) task allowing the use of linear system identification methods. Comparisons, observations, and results of both parametric system identification techniques are discussed. The thesis concludes by proposing a model reference control system to aid in astronaut ground tests. This approach would allow the identified models to mimic on-orbit dynamic characteristics of the actual flight manipulator thus providing astronauts with realistic on-orbit responses to perform space station tasks in a ground-based environment.

  8. Determination of important pipes segments in water distribution systems using the hydraulic vulnerability

    Directory of Open Access Journals (Sweden)

    Bruno Segalla Pizzolatti

    2008-12-01

    Full Text Available Water supply systems, due to their configuration, tend to be vulnerable to internal and external threats, which can potentially cause instability in water distribution. The vulnerability assessment is a tool that has been used to ensure the water supply in different failure scenarios, and can assist in seeking alternatives for supplying water in emergency situations. This work aimed mainly at determining the most important or critical segments for an adequate performance of the water supply system when there are emergency conditions such as the ones caused by natural disasters. The system’s hydraulic performance was evaluated based on simulations using EPANET 2.0. The vulnerability was determined by using an application written in Visual Basic 6.0 to customize EPANET using its Programmer's Toolkit. The system vulnerability was determined with the interruption of one segment at a time to calculate, in a dynamic way, the importance of each segment to the system, and by comparison of these results to the index of relative importance by flow rate. The results showed that using the indices Vulnerability-System and Vulnerability-Node was adequate to establish the importance of a critical segment in the performance of a network.

  9. Vibration characteristics of a hydraulic generator unit rotor system with parallel misalignment and rub-impact

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Zhiwei; Zhou, Jianzhong; Yang, Mengqi; Zhang, Yongchuan [Huazhong University of Science and Technology, College of Hydraulic and Digitalization Engineering, Wuhan, Hubei Province (China)

    2011-07-15

    The object of this research aims at the hydraulic generator unit rotor system. According to fault problems of the generator rotor local rubbing caused by the parallel misalignment and mass eccentricity, a dynamic model for the rotor system coupled with misalignment and rub-impact is established. The dynamic behaviors of this system are investigated using numerical integral method, as the parallel misalignment, mass eccentricity and bearing stiffness vary. The nonlinear dynamic responses of the generator rotor and turbine rotor with coupling faults are analyzed by means of bifurcation diagrams, Poincare maps, axis orbits, time histories and amplitude spectrum diagrams. Various nonlinear phenomena in the system, such as periodic, three-periodic and quasi-periodic motions, are studied with the change of the parallel misalignment. The results reveal that vibration characteristics of the rotor system with coupling faults are extremely complex and there are some low frequencies with large amplitude in the 0.3-0.4 x components. As the increase in mass eccentricity, the interval of nonperiodic motions will be continuously moved forward. It suggests that the reduction in mass eccentricity or increase in bearing stiffness could preclude nonlinear vibration. These might provide some important theory references for safety operating and exact identification of the faults in rotating machinery. (orig.)

  10. Trends in Modelling, Simulation and Design of Water Hydraulic Systems – Motion Control and Open-Ended Solutions

    DEFF Research Database (Denmark)

    Conrad, Finn

    2006-01-01

    The paper presents and discusses a R&D-view on trends in development and best practise in modelling, simulation and design of both low-pressure and high-pressure tap water hydraulic components and systems for motion control as well as open-ended solutions various industrial applications. The focus...

  11. An Appraisal of Qualifying Role of Hydraulic Heritage Systems: A Case Study of Qanat in the Central Iran

    NARCIS (Netherlands)

    Fasihi Harandi, M.; De Vries, M.J.

    2014-01-01

    Hydraulic heritage systems, both underground and exposed, have been known to be sustainable for millennia. Persian and also Roman aqueducts are examples of such hydrosystems. Their value is often overlooked but they have undeniable advantages: they have functional interconnectedness with their surro

  12. Modeling water potentials and flows in the soil-plant system comparing hydraulic resistances and transpiration reduction fuctions

    NARCIS (Netherlands)

    Jong, de Q.; Dam, van J.C.; Durigon, A.; Santos, dos M.A.; Metselaar, K.

    2013-01-01

    Crop transpiration depends on resistances in the soil–plant–atmosphere system. We present a new deterministic root water uptake model to estimate transpiration and compare it with two other models. We show the sensitivity of actual transpiration to parameters like soil and plant hydraulic properties

  13. Study of the performance of four repairing material systems for hydraulic structures of concrete dams

    Directory of Open Access Journals (Sweden)

    Kormann A. C. M.

    2003-01-01

    Full Text Available Four types of repairing materials are studied as function of either a conventional concrete or a reference-concrete (RefC, these are: polymer-modified cement mortar (PMor, steel fiber concrete (SFco, epoxy mortar (EMor and silica fume mortar (SFmo, to be applied in hydraulic structures surfaces subjected to a high velocity water flow. Besides the mechanical requests and wearing resistance of hydraulic concrete dam structures, especially the spillway surfaces, the high solar radiation, the environmental temperature and wet and dry cycles, contribute significantly to the reduction of their lifespan. RefC and the SFco were developed based on a usual concrete mixture used in slabs of spillways. The average RefC mixture used was 1: 1.61: 2.99: 0.376, with Pozzolan-modified Portland cement consumption of 425 kg/m³. EMor and PMor mixtures followed the information given by the manufacturers and lab experience. Tests on concrete samples were carried out in laboratory simulating normally found environmental situations in order to control the mechanical resistance and the aging imposed conditions, such as solar radiation and humidity. Also, physicochemical characterizing tests were made for all used materials. From the analyzed results, two of them presented a higher performance: the EMor and SFmo. SFco presented good adherence to the RefC and good mechanical performance. However, it also presented apparent metal corrosion in humidity tests, being indicated for use, with caution, as an intermediate layer in underwater repairs. In a general classification, considering all tests, including their field applications, the better performance material systems were EMor- SFmo> SFco> PMor.

  14. An energy-saving nonlinear position control strategy for electro-hydraulic servo systems.

    Science.gov (United States)

    Baghestan, Keivan; Rezaei, Seyed Mehdi; Talebi, Heidar Ali; Zareinejad, Mohammad

    2015-11-01

    The electro-hydraulic servo system (EHSS) demonstrates numerous advantages in size and performance compared to other actuation methods. Oftentimes, its utilization in industrial and machinery settings is limited by its inferior efficiency. In this paper, a nonlinear backstepping control algorithm with an energy-saving approach is proposed for position control in the EHSS. To achieve improved efficiency, two control valves including a proportional directional valve (PDV) and a proportional relief valve (PRV) are used to achieve the control objectives. To design the control algorithm, the state space model equations of the system are transformed to their normal form and the control law through the PDV is designed using a backstepping approach for position tracking. Then, another nonlinear set of laws is derived to achieve energy-saving through the PRV input. This control design method, based on the normal form representation, imposes internal dynamics on the closed-loop system. The stability of the internal dynamics is analyzed in special cases of operation. Experimental results verify that both tracking and energy-saving objectives are satisfied for the closed-loop system.

  15. Reliability and safety of the K Reactor cooling system: Part 2, Engineering analysis of hydraulic and mechanical aspects

    Energy Technology Data Exchange (ETDEWEB)

    Shoemaker, R.H.

    1960-04-04

    Subsequent to the recent formulation and adoption of safety criteria for reactor cooling systems, there appeared the need for an independent evaluation of the safety and reliability of the K-Reactor cooling system in terms of these criteria. The primary, secondary and last-ditch cooling systems of this reactor involve a strong inter-dependence between electrical and hydraulic components of the water plant. Because of the complexity of inter-relationships between these components, the analysis was divided into two parallel studies which were accomplished during the simmer of 1959. F. D. Robbins has presented his analysis of the electrical power and control system in HW-61887. This report deals with an engineering analysis of the hydraulic and mechanical aspects of the reliability and safety of the K-Reactor Cooling System. The system, as described in this report, is that which existed during the simmer of 1959, prior to modification under Project CG-775 (now Project CG-883).

  16. Validation of the thermal-hydraulic system code ATHLET based on selected pressure drop and void fraction BFBT tests

    Energy Technology Data Exchange (ETDEWEB)

    Di Marcello, Valentino, E-mail: valentino.marcello@kit.edu; Escalante, Javier Jimenez; Espinoza, Victor Sanchez

    2015-07-15

    Highlights: • Simulation of BFBT-BWR steady-state and transient tests with ATHLET. • Validation of thermal-hydraulic models based on pressure drops and void fraction measurements. • TRACE system code is used for the comparative study. • Predictions result in a good agreement with the experiments. • Discrepancies are smaller or comparable with respect to the measurements uncertainty. - Abstract: Validation and qualification of thermal-hydraulic system codes based on separate effect tests are essential for the reliability of numerical tools when applied to nuclear power plant analyses. To this purpose, the Institute for Neutron Physics and Reactor Technology (INR) at the Karlsruhe Institute of Technology (KIT) is involved in various validation and qualification activities of different CFD, sub-channel and system codes. In this paper, the capabilities of the thermal-hydraulic code ATHLET are assessed based on the experimental results provided within the NUPEC BFBT benchmark related to key Boiling Water Reactors (BWR) phenomena. Void fraction and pressure drops measurements in the BFBT bundle performed under steady-state and transient conditions which are representative for e.g. turbine trip and recirculation pump trip events, are compared with the numerical results of ATHLET. The comparison of code predictions with the BFBT data has shown good agreement given the experimental uncertainty and the results are consistent with the trends obtained with similar thermal-hydraulic codes.

  17. Hydraulic Geometry, GIS and Remote Sensing, Techniques against Rainfall-Runoff Models for Estimating Flood Magnitude in Ephemeral Fluvial Systems

    Directory of Open Access Journals (Sweden)

    Rafael Garcia-Lorenzo

    2010-11-01

    Full Text Available This paper shows the combined use of remotely sensed data and hydraulic geometry methods as an alternative to rainfall-runoff models. Hydraulic geometric data and boolean images of water sheets obtained from satellite images after storm events were integrated in a Geographical Information System. Channel cross-sections were extracted from a high resolution Digital Terrain Model (DTM and superimposed on the image cover to estimate the peak flow using HEC-RAS. The proposed methodology has been tested in ephemeral channels (ramblas on the coastal zone in south-eastern Spain. These fluvial systems constitute an important natural hazard due to their high discharges and sediment loads. In particular, different areas affected by floods during the period 1997 to 2009 were delimited through HEC-GeoRAs from hydraulic geometry data and Landsat images of these floods (Landsat‑TM5 and Landsat-ETM+7. Such an approach has been validated against rainfall-surface runoff models (SCS Dimensionless Unit Hydrograph, SCSD, Témez gamma HU Tγ and the Modified Rational method, MRM comparing their results with flood hydrographs of the Automatic Hydrologic Information System (AHIS in several ephemeral channels in the Murcia Region. The results obtained from the method providing a better fit were used to calculate different hydraulic geometry parameters, especially in residual flood areas.

  18. Research on Pressure Shock in Hydraulic System%液压系统中的压力冲击研究

    Institute of Scientific and Technical Information of China (English)

    杨斌

    2016-01-01

    Based on theoretical calculation and simulation analysis, this paper got the key factor which affect the pressure shock in valve-control hydraulic system. Then concluded how the tube length and valve open-time affect pressure shock in hydraulic system. And the conclusions were verified based on test. It showed that tube length and valve open-time affect pressure shock in hydraulic system directly. The research also showed that shortening tube length and increasing valve open-time properly can reduce pressure shock effectively. All above provide the direction for the layout and design of hydraulic system part/product, and also provide theoretical basis for optimizing hydraulic system.%通过理论计算和仿真分析,研究影响阀控液压系统压力冲击的关键因素,得出阀控液压系统中的压力冲击与管路长度、阀开启时间的关系,并进行试验验证。结果表明,管路长度、阀开启时间直接影响着阀控液压系统中的压力冲击。缩短管路长度和适当延长阀开启时间,都能有效减小阀控系统中的压力冲击。这为飞机液压系统中元部件的布局和设计提供了方向,为飞机液压系统的完善和优化提供了依据。

  19. The Effect Of Thermal Insulation Of An Apartment Building On The Thermo-Hydraulic Stability Of Its Heating System

    Science.gov (United States)

    Kurčová, Mária

    2015-12-01

    The contribution aims to investigate the effect of the decreased thermal losses of an apartment building due to the thermal insulation of opaque external building constructions and the replacement of transparent constructions. It emphasizes the effect of the thermal characteristics of external constructions on the functionality of the existing heating system in the building and the related requirements for the renovation of the heating system in order to ensure the hydraulic stability of the system and the thermal comfort of the inhabitants.

  20. Hydraulic structures

    CERN Document Server

    Chen, Sheng-Hong

    2015-01-01

    This book discusses in detail the planning, design, construction and management of hydraulic structures, covering dams, spillways, tunnels, cut slopes, sluices, water intake and measuring works, ship locks and lifts, as well as fish ways. Particular attention is paid to considerations concerning the environment, hydrology, geology and materials etc. in the planning and design of hydraulic projects. It also considers the type selection, profile configuration, stress/stability calibration and engineering countermeasures, flood releasing arrangements and scouring protection, operation and maintenance etc. for a variety of specific hydraulic structures. The book is primarily intended for engineers, undergraduate and graduate students in the field of civil and hydraulic engineering who are faced with the challenges of extending our understanding of hydraulic structures ranging from traditional to groundbreaking, as well as designing, constructing and managing safe, durable hydraulic structures that are economical ...