WorldWideScience

Sample records for hydraulic turbine draft

  1. Mesh convergence study for hydraulic turbine draft-tube

    Science.gov (United States)

    Devals, C.; Vu, T. C.; Zhang, Y.; Dompierre, J.; Guibault, F.

    2016-11-01

    Computational flow analysis is an essential tool for hydraulic turbine designers. Grid generation is the first step in the flow analysis process. Grid quality and solution accuracy are strongly linked. Even though many studies have addressed the issue of mesh independence, there is still no definitive consensus on mesh best practices, and research on that topic is still needed. This paper presents a mesh convergence study for turbulence flow in hydraulic turbine draft- tubes which represents the most challenging turbine component for CFD predictions. The findings from this parametric study will be incorporated as mesh control rules in an in-house automatic mesh generator for turbine components.

  2. Computational fluid dynamics simulation and geometric design of hydraulic turbine draft tube

    Directory of Open Access Journals (Sweden)

    JB Sosa

    2015-10-01

    Full Text Available Any hydraulic reaction turbine is installed with a draft tube that impacts widely the entire turbine performance, on which its functions are as follows: drive the flux in appropriate manner after it releases its energy to the runner; recover the suction head by a suction effect; and improve the dynamic energy in the runner outlet. All these functions are strongly linked to the geometric definition of the draft tube. This article proposes a geometric parametrization and analysis of a Francis turbine draft tube. Based on the parametric definition, geometric changes in the draft tube are proposed and the turbine performance is modeled by computational fluid dynamics; the boundary conditions are set by measurements performed in a hydroelectric power plant. This modeling allows us to see the influence of the draft tube shape on the entire turbine performance. The numerical analysis is based on the steady-state solution of the turbine component flows for different guide vanes opening and multiple modified draft tubes. The computational fluid dynamics predictions are validated using hydroelectric plant measurements. The prediction of the turbine performance is successful and it is linked to the draft tube geometric features; therefore, it is possible to obtain a draft tube parameter value that results in a desired turbine performance.

  3. NUMERICAL PREDICTION OF VORTEX FLOW IN HYDRAULIC TURBINE DRAFT TUBE FOR LES

    Institute of Scientific and Technical Information of China (English)

    LIU Xiao-bing; ZENG Yong-zhong; CAO Shu-you

    2005-01-01

    The three-dimensional unsteady turbulent flow is studied numerically in the whole flow passage of hydraulic turbine, and vortex flow in the draft tube is predicted accurately in this paper. The numerical prediction is based on the Navier-Stokes equations and Large-Eddy Simulation (LES) model. The SIMPLE algorithm with the body-fitted coordinate and tetrahedroid grid system is applied for the solution of the discretization governing equations.

  4. Simulation of Somatotype of Hydraulic Turbine Draft-Tube

    Institute of Scientific and Technical Information of China (English)

    DU Ting-na; HUI Yuan

    2011-01-01

    Elbow draft-tubes are widely used in large- and medium-sized hydropower stations in many countries. During the application, handling the somatotype of elbow tubes has been found challenging: in order to maintain the designed shape of draft tube and to meet the requirement of construction lofting, the configuration of reinforcing bars and the fabrication of templates, the geometry of elbow tubes has to be accurately calculated to draw engineering graphics. Based on the derived equations in this paper, the motion of elbow tube curve envelope is simulated by using computers, which shows directly the smoothness of the curve and provides dynamic simulation for the study and optimization of the design and construction of elbow draft tubes, along with the front view and bottom view.

  5. Computer Simulation of Turbulent Flow through a Hydraulic Turbine Draft Tube

    Institute of Scientific and Technical Information of China (English)

    HU Ying; CHENG Heming; WANG Quanlong; YU Zhikun

    2006-01-01

    Based on the Navier-Stokes equations and the standard k-ε turbulence model, this paper presents the derivation of the governing equations for the turbulent flow field in a draft tube. The mathematical model for the turbulent flow through a draft tube is set up when the boundary conditions, including the inlet boundary conditions, the outlet boundary conditions and the wall boundary conditions, have been implemented. The governing equations are formulated in a discrete form on a staggered grid system by the finite volume method. The second-order central difference approximation and hybrid scheme are used for discretization. The computation and analysis on internal flow through a draft tube have been carried out by using the simplec algorithm and cfx-tasc flow software so as to obtain the simulated flow fields. The calculation results at the design operating condition for the draft tube are presented in this paper. Thereby, an effective method for simulating the internal flow field in a draft tube has been explored.

  6. Controls of Hydraulic Wind Turbine

    Directory of Open Access Journals (Sweden)

    Zhang Yin

    2016-01-01

    Full Text Available In this paper a hydraulic wind turbine generator system was proposed based on analysis the current wind turbines technologies. The construction and principles were introduced. The mathematical model was verified using MATLAB and AMsim. A displacement closed loop of swash plate of motor and a speed closed loop of generator were setup, a PID control is introduced to maintain a constant speed and fixed frequency at wind turbine generator. Simulation and experiment demonstrated that the system can connect grid to generate electric and enhance reliability. The control system demonstrates a high performance speed regulation and effectiveness. The results are great significant to design a new type hydraulic wind turbine system.

  7. ANALYSIS AND ESTIMATION OF HYDRAULIC STABILITY OF FRANCIS HYDRO TURBINE

    Institute of Scientific and Technical Information of China (English)

    LAI Xi-de

    2004-01-01

    With the development of large-capacity hydro turbines, the hydraulic instability of bydro turbines has become one of the most important problems that affect the stable operation of the hydro-electric units. The hydraulic vibration and unstable operation of Francis hydro turbines are primarily caused by the unsteady pressure pulsations inside draft tubes.The forced rotating vortex core at the runner exit and the channel vortices inside Francis turbine runners are origins of the unsteady pressure pulsations when operating at partial load. This paper briefly analyzes the hydraulic instability of operation caused by the vortex core and channel vortices at partial load, then, presents a way to estimate the hydraulic stability by calculation of the flow behavior at the runner exit.The validity of estimation is examined by comparison with experimental data. This will be helpful to evaluate the alternative design and predict the hydraulic stability for both the prototype and model hydro turbines.

  8. The numerical simulation based on CFD of hydraulic turbine pump

    Science.gov (United States)

    Duan, X. H.; Kong, F. Y.; Liu, Y. Y.; Zhao, R. J.; Hu, Q. L.

    2016-05-01

    As the functions of hydraulic turbine pump including self-adjusting and compensation with each other, it is far-reaching to analyze its internal flow by the numerical simulation based on CFD, mainly including the pressure field and the velocity field in hydraulic turbine and pump.The three-dimensional models of hydraulic turbine pump are made by Pro/Engineer software;the internal flow fields in hydraulic turbine and pump are simulated numerically by CFX ANSYS software. According to the results of the numerical simulation in design condition, the pressure field and the velocity field in hydraulic turbine and pump are analyzed respectively .The findings show that the static pressure decreases systematically and the pressure gradient is obvious in flow area of hydraulic turbine; the static pressure increases gradually in pump. The flow trace is regular in suction chamber and flume without spiral trace. However, there are irregular traces in the turbine runner channels which contrary to that in flow area of impeller. Most of traces in the flow area of draft tube are spiral.

  9. Numerical simulation of draft tube flow of a bulb turbine

    Energy Technology Data Exchange (ETDEWEB)

    Coelho, J.G. [Federal University of Triangulo Mineiro, Institute of Technological and Exact Sciences, Avenida Doutor Randolfo Borges Junior, 1250 – Uberaba – MG (Brazil); Brasil, A.C.P. Jr. [University of Brasilia, Department of Mechanical Engineering, Campus Darcy Ribeiro, Brasilia – DF (Brazil)

    2013-07-01

    In this work a numerical study of draft tube of a bulb hydraulic turbine is presented, where a new geometry is proposed. This new proposal of draft tube has the unaffected ratio area, a great reduction in his length and approximately the same efficiency of the draft tube conventionally used. The numerical simulations were obtained in commercial software of calculation of flow (CFX-14), using the turbulence model SST, that allows a description of the field fluid dynamic near to the wall. The simulation strategy has an intention of identifying the stall of the boundary layer precisely limits near to the wall and recirculations in the central part, once those are the great causes of the decrease of efficiency of a draft tube. Finally, it is obtained qualitative and quantitative results about the flow in draft tubes.

  10. Draft tube flow phenomena across the bulb turbine hill chart

    Science.gov (United States)

    Duquesne, P.; Fraser, R.; Maciel, Y.; Aeschlimann, V.; Deschênes, C.

    2014-03-01

    In the framework of the BulbT project launched by the Consortium on Hydraulic Machines and the LAMH (Hydraulic Machine Laboratory of Laval University) in 2011, an intensive campaign to identify flow phenomena in the draft tube of a model bulb turbine has been done. A special focus was put on the draft tube component since it has a particular importance for recuperation in low head turbines. Particular operating points were chosen to analyse flow phenomena in this component. For each of these operating points, power, efficiency and pressure were measured following the IEC 60193 standard. Visualizations, unsteady wall pressure and efficiency measurements were performed in this component. The unsteady wall pressure was monitored at seven locations in the draft tube. The frequency content of each pressure signal was analyzed in order to characterize the flow phenomena across the efficiency hill chart. Visualizations were recorded with a high speed camera using tufts and cavitation bubbles as markers. The predominant detected phenomena were mapped and categorized in relation to the efficiency hill charts obtained for three runner blade openings. At partial load, the vortex rope was detected and characterized. An inflection in the partial load efficiency curves was found to be related to complex vortex rope instabilities. For overload conditions, the efficiency curves present a sharp drop after the best efficiency point, corresponding to an inflection on the power curves. This break off is more severe towards the highest blade openings. It is correlated to a flow separation at the wall of the draft tube. Also, due to the separation occurring in these conditions, a hysteresis effect was observed on the efficiency curves.

  11. EXPERIMENTAL INVESTIGATION OF CHARACTERISTIC FREQUENCY IN UNSTEADY HYDRAULIC BEHAVIOUR OF A LARGE HYDRAULIC TURBINE

    Institute of Scientific and Technical Information of China (English)

    WANG Fu-jun; LI Xiao-qin; MA Jia-mei; YANG Min; ZHU Yu-liang

    2009-01-01

    The features of unsteady flow such as pressure variation and fluctuation in a large hydraulic turbine usually lead to the instability of operation.This article reports the recent in site investigation concerning the characteristic frequencies in pressure fluctuation,shaft torsional oscillation and structural vibration of a prototype 700 MW Francis turbine unit.The investigation was carried out for a wide load range of 200 MW-700 MW in the condition of water head 57 m-90 m.An extensive analysis of both time-history and frequency data of these unsteady hydraulic behaviours was conducted.It was observed that the pressure fluctuation in a draft tube is stronger than that in upstream flow passage.The low frequency with about one third of rotation frequency is dominative for the pressure fluctuation in part load range.Also the unsteady features of vibration of head cover and torsional oscillation of shaft exhibited the similar features.Numerical analysis showed that the vibration and oscillation are caused by vortex rope in the draft tube.In addition,a strong vibration with special characteristic frequency was observed for the head cover in middle load range.The pressure fluctuation in the draft tube with the same frequency was also recorded.Because this special vibration has appeared in the designed normal running condition,it should be avoided by carefully allocating power load in the future operation.

  12. Turbine efficiency test on a large hydraulic turbine unit

    Institute of Scientific and Technical Information of China (English)

    YAN ZongGuo; ZHOU LingJiu; WANG ZhengWei

    2012-01-01

    The flow rate measurements are the most difficult part of efficiency tests on prototype hydraulic turbines.Among the numerous flow rate measurement methods,the Winter Kennedy method is preferred for measuring turbine flow rates,since it is convenient,practical and economical.This paper describes efficiency tests on a large 300 MW Francis turbine,with the flow rate measured using the Winter Kennedy method and the Winter Kennedy flow rate coefficient calibrated using the Gibson method.The measured turbine efficiency curve is then compared with the curve provided by the manufacturer.The CFD calculations including the spiral case are then used to analyze the influence with the coefficient K and index n in the Winter Kennedy flow rate formula on the flow rate measurement.The uncertainty values of n and K are a key reason for the differences between the curves obtained from the efficiency test and the curves provided by the manufacturer.

  13. Development of a hydraulic turbine design method

    Science.gov (United States)

    Kassanos, Ioannis; Anagnostopoulos, John; Papantonis, Dimitris

    2013-10-01

    In this paper a hydraulic turbine parametric design method is presented which is based on the combination of traditional methods and parametric surface modeling techniques. The blade of the turbine runner is described using Bezier surfaces for the definition of the meridional plane as well as the blade angle distribution, and a thickness distribution applied normal to the mean blade surface. In this way, it is possible to define parametrically the whole runner using a relatively small number of design parameters, compared to conventional methods. The above definition is then combined with a commercial CFD software and a stochastic optimization algorithm towards the development of an automated design optimization procedure. The process is demonstrated with the design of a Francis turbine runner.

  14. Pump Application as Hydraulic Turbine – Pump as Turbine (PaT)

    OpenAIRE

    Rusovs, D

    2009-01-01

    The paper considers pump operation as hydraulic turbine with purpose to produce mechanical power from liquid flow. The Francis hydraulic turbine was selected for comparison with centrifugal pump in reverse operation. Turbine and centrifugal pump velocity triangles were considered with purpose to evaluate PaT efficiency. Shape of impeller blades for turbine and pumps was analysed. Specific speed calculation is carried out with purpose to obtain similarity in pump and turbine description. For ...

  15. Numerical Analysis of the Turbine 99 Draft Tube Flow Field Provoked by Redesigned Inlet Velocity Profiles.

    Science.gov (United States)

    Galván, S.; Reggio, M.; Guibault, F.; Castro, L.

    2014-03-01

    In recent years, several investigations on hydraulic turbine draft tube performance have shown that the hydrodynamic flow field at the runner outlet determines the diffuser efficiency affecting the overall performance of the turbine. This flow field, for which the principal characteristics are the flow rate and the inlet swirling flow intensity, is mostly developed on turbines designed for low head (high specific velocity) and operated away from their best efficiency point. To identify factors of the flow field responsible for loosing draft- tube efficiency, the correlations between the flow pattern along the diffuser and both swirl intensity and flow rate have been examined. An analytical representation of inlet flow field has been manipulated by a Multi Island Genetic Algorithm through the automatic coupling of multidisciplinary commercial software systems in order to obtain redesigned inlet velocity profiles. This loop allowed determining the profile for which the minimum energy loss factor was reached. With different flow field patterns obtained during the optimization process it was possible to undertake a qualitative and quantitative analysis which has helped to understand how to suppress or at least mitigate undesirable draft tube flow characteristics. The direct correlation between the runner blade design and the kinematics of the swirl at the draft tube inlet should suppose the perfect coupling at the runner-draft tube interface without compromising the overall flow stability of the machine.

  16. Efficiency limit factor analysis for the Francis-99 hydraulic turbine

    Science.gov (United States)

    Zeng, Y.; Zhang, L. X.; Guo, J. P.; Guo, Y. K.; Pan, Q. L.; Qian, J.

    2017-01-01

    The energy loss in hydraulic turbine is the most direct factor that affects the efficiency of the hydraulic turbine. Based on the analysis theory of inner energy loss of hydraulic turbine, combining the measurement data of the Francis-99, this paper calculates characteristic parameters of inner energy loss of the hydraulic turbine, and establishes the calculation model of the hydraulic turbine power. Taken the start-up test conditions given by Francis-99 as case, characteristics of the inner energy of the hydraulic turbine in transient and transformation law are researched. Further, analyzing mechanical friction in hydraulic turbine, we think that main ingredients of mechanical friction loss is the rotation friction loss between rotating runner and water body, and defined as the inner mechanical friction loss. The calculation method of the inner mechanical friction loss is given roughly. Our purpose is that explore and research the method and way increasing transformation efficiency of water flow by means of analysis energy losses in hydraulic turbine.

  17. Hydraulic Soft Yaw System for Multi MW Wind Turbines

    DEFF Research Database (Denmark)

    Stubkier, Søren

    Horizontal axis wind turbines utilize a yaw system to keep the rotor plane of the wind turbine perpendicular to the main wind direction. If the wind direction changes, the wind turbine follows the direction change by yawing. If the wind turbine does not yaw, there will be a reduction in produced...... of nine concepts for hydraulic yaw systems and shown that the loading of the turbine structure may be damped if the yaw system is allowed to deflect under loading. An extensions of the open source wind turbine code FAST of a state of the art wind turbine including the yaw degree of freedom and friction...

  18. Hydraulic Motor Driving Variable-Pitch System for Wind Turbine

    Directory of Open Access Journals (Sweden)

    Ye HUANG

    2013-11-01

    Full Text Available The present hydraulic variable-pitch mechanism of wind turbine uses three hydraulic cylinders to drive three crank and connecting rod mechanisms respectively; the blades are moved with the cranks. The hydraulic variable-pitch mechanism has complex structure, occupies a lot of space and its maintenance is trouble. In order to make up for the shortcomings of hydraulic cylinder variable-pitch system, the present hydraulic variable-pitch mechanism should be changed as follows: hydraulic motors are used to drive gears; gears drive blades; the electro-hydraulic proportional valves are used to control hydraulic motors. The hydraulic control part and electrical control part of variable-pitch system is redesigned. The new variable-pitch system is called hydraulic motor driving variable-pitch system. The new variable-pitch system meets the control requirements of blade pitch, makes the structure simple and its application effect is perfect.    

  19. Tidal current turbine based on hydraulic transmission system

    Institute of Scientific and Technical Information of China (English)

    Hong-wei LIU; Wei LI; Yong-gang LIN; Shun MA

    2011-01-01

    Tidal current turbines (TCTs) are newly developed electricity generating devices.Aiming at the stabilization of the power output of TCTs,this paper introduces the hydraulic transmission technologies into TCTs.The hydrodynamics of the turbine was analyzed at first and its power output characteristics were predicted.A hydraulic power transmission system and a hydraulic pitch-controlled system were designed.Then related simulations were conducted.Finally,a TCT prototype was manufactured and tested in the workshop.The test results have confirmed the correctness of the current design and availability of installation of the hydraulic system in TCTs.

  20. Experiences with the hydraulic design of the high specific speed Francis turbine

    Science.gov (United States)

    Obrovsky, J.; Zouhar, J.

    2014-03-01

    The high specific speed Francis turbine is still suitable alternative for refurbishment of older hydro power plants with lower heads and worse cavitation conditions. In the paper the design process of such kind of turbine together with the results comparison of homological model tests performed in hydraulic laboratory of ČKD Blansko Engineering is introduced. The turbine runner was designed using the optimization algorithm and considering the high specific speed hydraulic profile. It means that hydraulic profiles of the spiral case, the distributor and the draft tube were used from a Kaplan turbine. The optimization was done as the automatic cycle and was based on a simplex optimization method as well as on a genetic algorithm. The number of blades is shown as the parameter which changes the resulting specific speed of the turbine between ns=425 to 455 together with the cavitation characteristics. Minimizing of cavitation on the blade surface as well as on the inlet edge of the runner blade was taken into account during the design process. The results of CFD analyses as well as the model tests are mentioned in the paper.

  1. Experimental and Numerical Simulations Predictions Comparison of Power and Efficiency in Hydraulic Turbine

    Directory of Open Access Journals (Sweden)

    Laura Castro

    2011-01-01

    Full Text Available On-site power and mass flow rate measurements were conducted in a hydroelectric power plant (Mexico. Mass flow rate was obtained using Gibson's water hammer-based method. A numerical counterpart was carried out by using the commercial CFD software, and flow simulations were performed to principal components of a hydraulic turbine: runner and draft tube. Inlet boundary conditions for the runner were obtained from a previous simulation conducted in the spiral case. The computed results at the runner's outlet were used to conduct the subsequent draft tube simulation. The numerical results from the runner's flow simulation provided data to compute the torque and the turbine's power. Power-versus-efficiency curves were built, and very good agreement was found between experimental and numerical data.

  2. Performance of nano-hydraulic turbine utilizing waterfalls

    OpenAIRE

    Ikeda, Toshihiko; Iio, Shouichiro; Tatsuno, Kenji

    2010-01-01

    The aim of this investigation was to develop an environmentally friendly nano-hydraulic turbine utilizing waterfalls. A model of an impulse type hydraulic turbine constructed and tested with an indoor type waterfall to arrive at an optimum installation condition. Effects of an installation parameter, namely distance between the rotor and the waterfall on the power performance were studied. The flow field around the rotor was examined visually to clarify influences of installation conditions o...

  3. NUMERICAL SIMULATION AND ANALYSIS OF PRESSURE PULSATION IN FRANCIS HYDRAULIC TURBINE WITH AIR ADMISSION

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    In this article, the three-dimensional unsteady multiphase flow is simulated in the whole passage of Francis hydraulic turbine. The pressure pulsation is predicted and compared with experimental data at positions in the draft tube, in front of runner, guide vanes and at the inlet of the spiral case. The relationship between pressure pulsation in the whole passage and air admission is analyzed. The computational results show: air admission from spindle hole decreases the pressure difference in the horizontal section of draft tube, which in turn decreases the amplitude of low-frequency pressure pulsation in the draft tube; the rotor-stator interaction between the air inlet and the runner increases the blade-frequency pressure pulsation in front of the runner.

  4. Extensive use of computational fluid dynamics in the upgrading of hydraulic turbines

    Energy Technology Data Exchange (ETDEWEB)

    Sabourin, M.; Eremeef, R.; De Henau, V.

    1995-12-31

    Computational fluid dynamics codes, based on turbulent Navier-Stokes equations, allow evaluation of the hydraulic losses of each turbine component with precision. Using those codes with the new generation of computers enables a wide variety of component geometries to be modelled and compared to the original designs under flow conditions obtained from testing, at a reasonable cost and in a relatively short time. This paper reviews the actual method used in the design of a solution to a turbine rehabilitation project involving runner replacement, redesign of upstream components (stay vanes and wicket gates), and downstream components (draft tubes and runner outlets). The paper shows how computational fluid dynamics can help hydraulic engineers to obtain valuable information not only on performance enhancement but also on the phenomena that produce the enhancement, and to reduce the variety of modifications to be tested.

  5. The determination of the operation parameters at the axial hydraulic turbine

    Science.gov (United States)

    Simedru, A. I.

    2016-08-01

    In the operating point of the monitoring moment there are assumed from process the monitoring measured parameters: the active and reactive power, upstream and downstream water levels (after the intake trash rake and at the outlet of the turbine draft tube), wicket gate and runner opening blades, the differential pressure in the spiral chamber and the hydrounit speed. So, there was established the characteristic curves obtained on analytic basis and similitude and compared with the curves measured experimentally on the hydraulic machines from the power plant. The cavitational coefficient of the machine and the cavitational coefficient of the equipment are in function of the system parameters between them especially the suction head, the runner and wicket gates blades angles of opening. The solution proposed is a method of determining the operating turbine parameters and of the cavitation, by reducing the error caused by the similitude phenomenon, using an accurate estimation of the turbine operating parameters according to the universal diagram of the turbine. The numerical obtained values permit the necessary correlation through a complex function which is able to reduce or eliminate the unwished effects of the cavitation phenomena on the hydraulic turbines of the Iron Gates power plant.

  6. Application study of magnetic fluid seal in hydraulic turbine

    Science.gov (United States)

    Yu, Z. Y.; Zhang, W.

    2012-11-01

    The waterpower resources of our country are abundant, and the hydroelectric power is developed, but at present the main shaft sealing device of hydraulic turbine is easy to wear and tear and the leakage is great. The magnetic fluid seal has the advantages of no contact, no wear, self-healing, long life and so on. In this paper, the magnetic fluid seal would be used in the main shaft of hydraulic turbine, the sealing structure was built the model, meshed the geometry, applied loads and solved by using MULTIPHYSICS in ANSYS software, the influence of the various sealing structural parameters such as tooth width, height, slot width, sealing gap on the sealing property were analyzed, the magnetic fluid sealing device suitable for large-diameter shaft and sealing water was designed, the sealing problem of the hydraulic turbine main shaft was solved effectively which will bring huge economic benefits.

  7. Creating new life for hydraulic turbines by upgrading and rehabilitation

    Energy Technology Data Exchange (ETDEWEB)

    Wachter, G.F.

    1998-12-01

    Methods by which to extend the life of aging hydraulic turbines which are still in operation today are discussed. Upgrading some of these turbines which were built as far back as 80 years ago may be feasible with current rehabilitation technology and advanced computer aided hydraulic mechanical design analysis techniques. The benefits achieved with many hydraulic turbine upgrade and rehabilitation programs include: (1) increased performance, (2) extended service life, (3) stopping accelerated deterioration due to cavitation, (4) reducing detrimental symptoms such as unit vibration, component cracking and excessive wearing ring clearances, (5) reducing the possibility of major failures, and (6) reducing unscheduled forced outages. Increased usage of a non-polluting, renewable energy source is an additional benefit of rehabilitation and upgrading of hydro power generating units.2 refs., 2 tabs., 7 figs.

  8. Performance of Savonius Rotor for Environmentally Friendly Hydraulic Turbine

    Science.gov (United States)

    Nakajima, Miyoshi; Iio, Shouichiro; Ikeda, Toshihiko

    The aim of this investigation was to develop an environmentally friendly nano-hydraulic turbine. A model of a two-bucket Savonius type hydraulic turbine was constructed and tested in a water tunnel to arrive at an optimum installation condition. Effects of two installation parameters, namely a distance between a rotor and a bottom wall of the tunnel, a rotation direction of the rotor, on the power performance were studied. A flow field around the rotor was examined visually to clarify influences of installation conditions on the flow field. The flow visualization showed differences of flow pattern around the rotor by the change of these parameters. From this study it was found that the power performances of Savonius hydraulic turbine were changed with the distance between the rotor and the bottom wall of the tunnel and with a rotation direction of the rotor.

  9. Increasing hydro turbine operation range and efficiencies using water injection in draft tubes

    Energy Technology Data Exchange (ETDEWEB)

    Francke, Haakon Hjort

    2010-09-15

    It is a well known fact that most Francis turbines, because of the fixed blade design, faces challenges when running at partial load operation. Especially in the operating range below approximately 50 % of the rated output, it is common to observe severe pressure pulsations and surge in the draft tube. These pressure fluctuations are believed to be related to the swirling flow exiting the runner. By using water jets in the draft tube cone directed towards the swirling flow, the swirl strength is believed to be reduced and thereby also the pressure fluctuations produced by the swirl. This system thus has a potential of increasing the turbine operating range. The system can be activated when needed, and will not affect the turbine when running at its best efficiency point.Based on the main hypothesis, a simplified swirl rig was designed and constructed in order to investigate the nozzle influence on the swirling flow and on the pressure pulsations in a simplified environment. To expand the understanding of the nozzle performance in a Francis turbine, experiments were conducted in a model turbine with a prototype of movable nozzles. To establish a link between laboratory nozzle measurements and full scale nozzle measurements, field measurements were carried out on full scale Francis turbines running at partial discharge. For this purpose the turbines installed at Skarsfjord Power Station and Skibotn Power Station were used, where full scale nozzle injection systems were installed. The test results suggested that the concept of water injection worked, but not unconditionally. A reduction in pressure fluctuations was achieved both in laboratory and field experiments, as well as a noticeable reduction regarding fluctuations in the shaft run-out at Skibotn. In addition, water injection gave a surprisingly positive effect at overload conditions in the model turbine, even though the nozzle angle was directed in the same direction as the overload swirl. Ideally, the results

  10. Study of the velocity distribution influence upon the pressure pulsations in draft tube model of hydro-turbine

    Science.gov (United States)

    Sonin, V.; Ustimenko, A.; Kuibin, P.; Litvinov, I.; Shtork, S.

    2016-11-01

    One of the mechanisms of generation of powerful pressure pulsations in the circuit of the turbine is a precessing vortex core, formed behind the runner at the operation points with partial or forced loads, when the flow has significant residual swirl. To study periodic pressure pulsations behind the runner the authors of this paper use approaches of experimental modeling and methods of computational fluid dynamics. The influence of velocity distributions at the output of the hydro turbine runner on pressure pulsations was studied based on analysis of the existing and possible velocity distributions in hydraulic turbines and selection of the distribution in the extended range. Preliminary numerical calculations have showed that the velocity distribution can be modeled without reproduction of the entire geometry of the circuit, using a combination of two blade cascades of the rotor and stator. Experimental verification of numerical results was carried out in an air bench, using the method of 3D-printing for fabrication of the blade cascades and the geometry of the draft tube of hydraulic turbine. Measurements of the velocity field at the input to a draft tube cone and registration of pressure pulsations due to precessing vortex core have allowed building correlations between the velocity distribution character and the amplitude-frequency characteristics of the pulsations.

  11. LDV survey of cavitation and resonance effect on the precessing vortex rope dynamics in the draft tube of Francis turbines

    Science.gov (United States)

    Favrel, A.; Müller, A.; Landry, C.; Yamamoto, K.; Avellan, F.

    2016-11-01

    The large-scale penetration of the electrical grid by intermittent renewable energy sources requires a continuous operating range extension of hydropower plants. This causes the formation of unfavourable flow patterns in the draft tube of turbines and pump-turbines. At partial load operation, a precessing cavitation vortex rope is formed at the Francis turbine runner outlet, acting as an excitation source for the hydraulic system. In case of resonance, the resulting high-amplitude pressure pulsations can put at risk the stability of the machine and of the electrical grid to which it is connected. It is therefore crucial to understand and accurately simulate the underlying physical mechanisms in such conditions. However, the exact impact of cavitation and hydro-acoustic resonance on the flow velocity fluctuations in the draft tube remains to be established. The flow discharge pulsations expected to occur in the draft tube in resonance conditions have for instance never been verified experimentally. In this study, two-component Laser Doppler Velocimetry is used to investigate the axial and tangential velocity fluctuations at the runner outlet of a reduced scale physical model of a Francis turbine. The investigation is performed for a discharge equal to 64 % of the nominal value and three different pressure levels in the draft tube, including resonance and cavitation-free conditions. Based on the convective pressure fluctuations induced by the vortex precession, the periodical velocity fluctuations over one typical precession period are recovered by phase averaging. The impact of cavitation and hydro-acoustic resonance on both axial and tangential velocity fluctuations in terms of amplitude and phase shift is highlighted for the first time. It is shown that the occurrence of resonance does not have significant effects on the draft tube velocity fields, suggesting that the synchronous axial velocity fluctuations are surprisingly negligible compared to the velocity

  12. EPA Releases Draft Assessment on the Potential Impacts to Drinking Water Resources from Hydraulic Fracturing Activities

    Science.gov (United States)

    WASHINGTON-The Environmental Protection Agency (EPA) is releasing a draft assessment today on the potential impacts of hydraulic fracturing activities on drinking water resources in the United States. The assessment, done at the request of Congress, shows

  13. 3D numerical simulation of transient processes in hydraulic turbines

    Energy Technology Data Exchange (ETDEWEB)

    Cherny, S; Chirkov, D; Lapin, V; Eshkunova, I [Institute of Computational Technologies SB RAS Acad. Lavrentjev avenue 6, Novosibirsk, 630090 (Russian Federation); Bannikov, D; Avdushenko, A [Department of Mechanics and Mathematics, Novosibirsk State University Pirogov st. 2, Novosibirsk, 630090 (Russian Federation); Skorospelov, V, E-mail: chirkov@ict.nsc.r [Institute of Mathematics SB RAS Acad. Koptug avenue 4, Novosibirsk, 630090 (Russian Federation)

    2010-08-15

    An approach for numerical simulation of 3D hydraulic turbine flows in transient operating regimes is presented. The method is based on a coupled solution of incompressible RANS equations, runner rotation equation, and water hammer equations. The issue of setting appropriate boundary conditions is considered in detail. As an illustration, the simulation results for runaway process are presented. The evolution of vortex structure and its effect on computed runaway traces are analyzed.

  14. 3D numerical simulation of transient processes in hydraulic turbines

    Science.gov (United States)

    Cherny, S.; Chirkov, D.; Bannikov, D.; Lapin, V.; Skorospelov, V.; Eshkunova, I.; Avdushenko, A.

    2010-08-01

    An approach for numerical simulation of 3D hydraulic turbine flows in transient operating regimes is presented. The method is based on a coupled solution of incompressible RANS equations, runner rotation equation, and water hammer equations. The issue of setting appropriate boundary conditions is considered in detail. As an illustration, the simulation results for runaway process are presented. The evolution of vortex structure and its effect on computed runaway traces are analyzed.

  15. Computation and analysis of cavitating flow in Francis-class hydraulic turbines

    Science.gov (United States)

    Leonard, Daniel J.

    can occur more abruptly in the model than the prototype, due to lack of Froude similitude between the two. When severe cavitation occurs, clear differences are observed in vapor content between the scales. A stage-by-stage performance decomposition is conducted to analyze the losses within individual components of each scale of the machine. As cavitation becomes more severe, the losses in the draft tube account for an increasing amount of the total losses in the machine. More losses occur in the model draft tube as cavitation formation in the prototype draft tube is prevented by the larger hydrostatic pressure gradient across the machine. Additionally, unsteady Detached Eddy Simulations of the fully-coupled cavitating hydroturbine are performed for both scales. Both mesh and temporal convergence studies are provided. The temporal and spectral content of fluctuations in torque and pressure are monitored and compared between single-phase, cavitating, model, and prototype cases. A shallow draft tube induced runner imbalance results in an asymmetric vapor distribution about the runner, leading to more extensive growth and collapse of vapor on any individual blade as it undergoes a revolution. Unique frequency components manifest and persist through the entire machine only when cavitation is present in the hub vortex. Large maximum pressure spikes, which result from vapor collapse, are observed on the blade surfaces in the multiphase simulations, and these may be a potential source of cavitation damage and erosion. Multiphase CFD is shown to be an accurate and effective technique for simulating and analyzing cavitating flow in Francis-class hydraulic turbines. It is recommended that it be used as an industrial tool to supplement model cavitation experiments for all types of hydraulic turbines. Moreover, multiphase CFD can be equally effective as a research tool, to investigate mechanisms of cavitating hydraulic turbines that are not understood, and to uncover unique new

  16. Influence of the Runner Gap on the Flow Field in the Draft Tube of a Low Head Turbine

    Science.gov (United States)

    Junginger, Bernd; Riedelbauch, Stefan

    2016-11-01

    The gap flow of axial turbines is usually neglected in the design process of hydraulic machines, although it can lead to a stabilization of the draft tube flow. Though, this negligence of the gap can falsify the flow field in the draft tube. Presented in this paper are simulations of an axial propeller turbine operated at Δγ = Δγ BEP with Q > Qbep . Simulations of four gap sizes, using a mesh with about 15 million elements for the entire machine, are performed. Additionally, two turbulence models are applied, the k-ω-SST and the SAS-SST model. At the evaluated operating point a full load vortex develops. Depending on the turbulence model the developing vortex rope can either arise from the hub in a straight shape or in a shape resembling a corkscrew. Integral quantities such as head and torque are compared with experimental model test results performed in the laboratory of the Institute. Flow field simulation results are evaluated for different gap widths. Furthermore, the impact of the gap flow respectively the gap size can be observed in velocity profiles evaluated at different positions downstream the runner until to the end of the draft tube cone. Moreover, the pressure signals recorded at the beginning of the draft tube cone are also affected by the gap flow.

  17. Fatigue design of hydraulic turbine runners

    Energy Technology Data Exchange (ETDEWEB)

    Huth, Hans-Joerg

    2005-07-01

    Turbine runners experience start-stop cycles and vibration cycles. Cracks initiated from service or manufacturing defects and propagated by start-stop cycles become critical when the stress intensity range due to vibrational loading exceeds the threshold for fatigue crack growth. In Francis turbine runners, semi-elliptical surface cracks tend to propagate from the quarter-circular transition of the welded T-joint transition between the blade and the band or crown. Assuming a crack to grow under a constant stress amplitude equal to that at the most highly loaded location at the welded joint between the blade and the band or crown of a Francis turbine runner yields a conservative estimate of the life of the runner. A more accurate prediction of fatigue life is obtained by considering the growth of a crack in the real, inhomogeneous stress field. For an idealised T-joint under pure bending, the stress field has been determined by means of plane strain finite element analysis. Finite element models of the entire Francis runner are built with respect to the calculation of fluid dynamic properties. Since in these models geometry transitions are modelled as a sharp notch, both a finite and a zero transition radius have been modelled, and the influence of the mesh size on the maximum stress has been investigated. For relatively small cracks, it is shown that the structural component geometry does not remarkably influence the stress intensity factor values, provided that the stress field in the vicinity of the crack is approximately the same. Therefore, in order to simplify the stress intensity factor retrieval and to generate a solution of extended applicability, a cracked finite-thickness plate is examined instead of the actual T-joint geometry. The stress intensity factors along the front of a semi-elliptical surface crack in such a plate are determined by means of an analysis using finite quarter-point wedge elements for different elementary loading conditions that can

  18. 3D Numerical Simulation versus Experimental Assessment of Pressure Pulsations Using a Passive Method for Swirling Flow Control in Conical Diffusers of Hydraulic Turbines

    Science.gov (United States)

    TANASA, C.; MUNTEAN, S.; CIOCAN, T.; SUSAN-RESIGA, R. F.

    2016-11-01

    The hydraulic turbines operated at partial discharge (especially hydraulic turbines with fixed blades, i.e. Francis turbine), developing a swirling flow in the conical diffuser of draft tube. As a result, the helical vortex breakdown, also known in the literature as “precessing vortex rope” is developed. A passive method to mitigate the pressure pulsations associated to the vortex rope in the draft tube cone of hydraulic turbines is presented in this paper. The method involves the development of a progressive and controlled throttling (shutter), of the flow cross section at the bottom of the conical diffuser. The adjustable cross section is made on the basis of the shutter-opening of circular diaphragms, while maintaining in all positions the circular cross-sectional shape, centred on the axis of the turbine. The stagnant region and the pressure pulsations associated to the vortex rope are mitigated when it is controlled with the turbine operating regime. Consequently, the severe flow deceleration and corresponding central stagnant are diminished with an efficient mitigation of the precessing helical vortex. Four cases (one without diaphragm and three with diaphragm), are numerically and experimentally investigated, respectively. The present paper focuses on a 3D turbulent swirling flow simulation in order to evaluate the control method. Numerical results are compared against measured pressure recovery coefficient and Fourier spectra. The results prove the vortex rope mitigation and its associated pressure pulsations when employing the diaphragm.

  19. OPTIMAL HYDRAULIC DESIGN AND CAD APPLICATIONS OF AXIAL FLOW HYDRAULIC TURBINE'S RUNNER

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    A method of the optimal hydraulic design and CAD application of runner blades of axial-flow hydraulic turbines are discussed on the basis of optimization principle and CAD technique in this paper. Based on the theory of fluid dynamics, the blade′s main geometrical parameter, working parameters and performances index of the blades and the relationship between them are analysed, and the mathematical model of optimal hydraulic design of axial-flow runners has been established. Through nonlinear programming, the problems can be solved. By making use of the calculation geometry and computer graphics, the distribution method of the singular points, and an CAD applied software, an optimal hydraulic design are presented.

  20. HVOF on the Surface Strengthen Treatment to the flow Parts of Hydraulic Turbine

    Institute of Scientific and Technical Information of China (English)

    AI You-zhong; LU Jin-yu; TU Yang-wen; LI Cui-lin

    2004-01-01

    China has the most outstanding and serious problem of silt abrasion on hydraulic turbine, especially in the power station on mainstream of Yellow River and the upriver anabranch of Yangtze River. For many years, in order to find the destruction rules of silt to hydraulic turbine, and study how to slow down the destruction speed of sandiness stream to surface on flow parts of hydraulic turbine, various kinds of new technology, new material, new craftwork have been verified in lab and on spot. It is proved that using high velocity oxygen fuel to strengthen the surface on flow parts of hydraulic turbine can effectively prolong the service life of hydroelectric generating set.

  1. Shape Optimization of A Turbine-99 Draft Tube Using Design-by-Morphing

    Science.gov (United States)

    Oh, Sahuck; Jiang, Chung-Hsiang; Marcus, Philip; Gutzwiller, David; Demeulenaere, Alain; Jiang, Chiyu

    2016-11-01

    We have found the "optimal" shape of a turbine-99 draft tube that maximizes its pressure recovery factor using a new design method called design-by- morphing. In design-by- morphing, new draft tubes are created by morphing multiple baseline draft tubes with different weights. The surfaces of baseline draft tubes are approximated by a summation of spectral coefficients multiplied by spectral basis functions. Then, a morphed draft tube is produced by computing a new set of spectral coefficients which are a weighted average of the spectral coefficients of the baseline draft tubes. The "optimal" draft tube is obtained by finding the weights such that the mean pressure recovery factor is maximized. After optimization is carried out using design-by- morphing, the high static pressure region is significantly reduced, and the flow is smoother and more uniform than it was in any of the baseline turbine-99 draft tubes. The optimal draft tube shows a 10.9% improvement over the turbine-99 draft tube. We have applied this method to trains and to aircrafts, and have reduced the drag and the drag-to-lift ratio by 13.2% and 23.1%, respectively. We believe that this optimization method is applicable to many engineering applications in which the performance of an object depends on its shape.

  2. Mobile platform for hydraulic turbine blade repair robot

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The wall-climbing mobile platform (MP) of a robot for repairing a hydraulic turbine blade onsite is developed.The MP is equipped with ferromagnetic adhesive devices and can work on a spatial curved surface.The contradiction between mobility and load-bearing ability is analyzed,and the problem of self-adaptation to the curved face is solved using differential-driven wheeled locomotion with ferromagnetic adhesive devices.The platform adheres to the blade surface through the force provided by the ferromagnetic devices,and a certain gap exists between the magnetic devices and the blade's surface.A mechanism of three revolution degrees of freedom,which connects the magnetic devices with the platform's chassis,is developed to make the platform self-adapt to the complex curved surface of the turbine blade.A proofof-principle prototype has been manufactured,and experiments prove the success of the MP.The payload of the zero-turn-radius MP with excellent maneuverability exceeds 80 kg.The platform can automatically adapt to complex spatial surfaces,which satisfy the requirements of a hydraulic turbine blade in-situ repair robot.

  3. Detection of cavitation vortex in hydraulic turbines using acoustic techniques

    Science.gov (United States)

    Candel, I.; Bunea, F.; Dunca, G.; Bucur, D. M.; Ioana, C.; Reeb, B.; Ciocan, G. D.

    2014-03-01

    Cavitation phenomena are known for their destructive capacity in hydraulic machineries and are caused by the pressure decrease followed by an implosion when the cavitation bubbles find an adverse pressure gradient. A helical vortex appears in the turbine diffuser cone at partial flow rate operation and can be cavitating in its core. Cavity volumes and vortex frequencies vary with the under-pressure level. If the vortex frequency comes close to one of the eigen frequencies of the turbine, a resonance phenomenon may occur, the unsteady fluctuations can be amplified and lead to important turbine and hydraulic circuit damage. Conventional cavitation vortex detection techniques are based on passive devices (pressure sensors or accelerometers). Limited sensor bandwidths and low frequency response limit the vortex detection and characterization information provided by the passive techniques. In order to go beyond these techniques and develop a new active one that will remove these drawbacks, previous work in the field has shown that techniques based on acoustic signals using adapted signal content to a particular hydraulic situation, can be more robust and accurate. The cavitation vortex effects in the water flow profile downstream hydraulic turbines runner are responsible for signal content modifications. Basic signal techniques use narrow band signals traveling inside the flow from an emitting transducer to a receiving one (active sensors). Emissions of wide band signals in the flow during the apparition and development of the vortex embeds changes in the received signals. Signal processing methods are used to estimate the cavitation apparition and evolution. Tests done in a reduced scale facility showed that due to the increasing flow rate, the signal -- vortex interaction is seen as modifications on the received signal's high order statistics and bandwidth. Wide band acoustic transducers have a higher dynamic range over mechanical elements; the system's reaction time

  4. Reliable hydraulic turbine governor based on identification and adaptive filtering

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, J.; Doraiswami, R.

    1986-01-01

    A scheme for improving reliable operation of a PID governor of a hydraulic turbine generating unit is proposed. The parameters of governor and actuators are identified on-line to, a) detect their anomalous behaviours, b) facilitate the calibration of the proportional integral and derivative gain settings. An adaptive filter is used to detect the lightly damped oscillations of the system. The proposed scheme was verified via simulation on the real data obtained from one of Mactaquac hydro-generating units of New Brunswick Electrical Power Commission. The simulation results show that the proposed scheme can indeed provide an accurate and rapid detection of the abnormal system operations.

  5. State of the art hydraulic turbine model test

    Science.gov (United States)

    Fabre, Violaine; Duparchy, Alexandre; Andre, Francois; Larroze, Pierre-Yves

    2016-11-01

    Model tests are essential in hydraulic turbine development and related fields. The methods and technologies used to perform these tests show constant progress and provide access to further information. In addition, due to its contractual nature, the test demand evolves continuously in terms of quantity and accuracy. Keeping in mind that the principal aim of model testing is the transposition of the model measurements to the real machine, the measurements should be performed accurately, and a critical analysis of the model test results is required to distinguish the transposable hydraulic phenomena from the test rig interactions. Although the resonances’ effects are known and described in the IEC standard, their identification is difficult. Leaning on a strong experience of model testing, we will illustrate with a few examples of how to identify the potential problems induced by the test rig. This paper contains some of our best practices to obtain the most accurate, relevant, and independent test-rig measurements.

  6. New JSME standard S008 “Performance Conversion Method for Hydraulic Turbines and Pump-Turbines”

    Science.gov (United States)

    Nakanishi, Y.; Kitahora, T.; Suzuki, S.; Suzuki, T.; Sugishita, K.; Suzuki, R.; Tani, K.

    2016-11-01

    JSME Standard S008 “Performance Conversion Method for Hydraulic Turbines and Pump-Turbines” is now being revised and will be published in 2016. This new revision follows the main theory of previous version S008-1999. It enables us to convert the performance of each flow passage component of spiral case, stay vane, guide vane, runner and draft tube of model turbines and pump-turbines to that of prototypes with one-step calculation. The relevant values needed for the performance conversion, e.g. dimension factor, flow velocity factor, relative scalable loss of components δ ECO , etc. are newly organized as functions of specific speeds of turbines and pump-turbines using polynomial expressions. Additional data for high specific speed turbines are included. The resultant factors for conversion of the specific energy efficiency scale factor F E , the discharge efficiency scale factor F Q and the power efficiency scale factor F T are determined by considering friction coefficient ratio for prototype to the model.

  7. Development and industrial tests of the first LNG hydraulic turbine system in China

    Directory of Open Access Journals (Sweden)

    Jie Chen

    2016-10-01

    Full Text Available The cryogenic hydraulic turbine can be used to replace the conventional J–T valve for LNG or mixed refrigerant throttling and depressurization in a natural gas liquefaction plant. This advanced technology is not only to enhance the efficiency of the liquefaction plant, but to usher a new trend in the development of global liquefaction technologies. China has over 136 liquefaction plants, but the cryogenic hydraulic turbines have not been deployed in industrial utilization. In addition, these turbines cannot be manufactured domestically. In this circumstance, through working on the key technologies for LNG hydraulic turbine process & control system development, hydraulic model optimization design, structure design and manufacturing, the first domestic cryogenic hydraulic turbine with a flow rate of 40 m3/h was developed to recover the pressure energy from the LNG of cold box. The turbine was installed in the CNOOC Zhuhai Natural Gas Liquefaction Plant for industrial tests under multiple working conditions, including start-stop, variable flow rates and variable rotation speeds. Test results show that the domestic LNG cryogenic hydraulic turbine has satisfactory mechanical and operational performances at low temperatures as specified in design. In addition, the process & control system and frequency-conversion power-generation system of the turbine system are designed properly to automatically and smoothly replace the existing LNG J–T valve. As a result, the domestic LNG cryogenic hydraulic turbine system can improve LNG production by an average of 2% and generate power of 8.3 kW.

  8. Numerical and experimental study of low-frequency pressure pulsations in hydraulic units with Francis turbine

    Science.gov (United States)

    Platonov, D.; Minakov, A.; Dekterev, D.; Sentyabov, A.; Dekterev, A.

    2016-10-01

    The paper presents the numerical simulation method of three-dimensional turbulent flows in the hydraulic turbine. This technique was verified by means of experimental data obtained on a water model of the Francis turbines. An aerodynamic stand, which is a miniature copy of the real hydraulic turbine, was designed. A series of experiments have been carried out on this stand and the corresponding calculations were performed. The dependence of the velocity and pressure pulsations profiles for different operation regimes are presented.

  9. A Feasibility Study of Power Generation from Sewage Using a Hollowed Pico-Hydraulic Turbine

    Directory of Open Access Journals (Sweden)

    Tomomi Uchiyama

    2016-12-01

    Full Text Available This study is concerned with the feasibility of power generation using a pico-hydraulic turbine from sewage flowing in pipes. First, the sewage flow rate at two connection points to the Toyogawa River-Basin Sewerage, Japan, was explored for over a year to elucidate the hydraulic energy potential of the sewage. Second, the performance of the pico-hydraulic turbine was investigated via laboratory experiments that supposed the turbine to be installed in the sewage pipe at the connection points. This study indicates that the connection points have hydraulic potential that can be used for power generation throughout the year. It also demonstrates that the pico-hydraulic turbine can be usefully employed for power generation from sewage flowing in the pipe at the connection points.

  10. Design of a Kaplan turbine for a wide range of operating head -Curved draft tube design and model test verification-

    Science.gov (United States)

    KO, Pohan; MATSUMOTO, Kiyoshi; OHTAKE, Norio; DING, Hua

    2016-11-01

    As for turbomachine off-design performance improvement is challenging but critical for maximising the performing area. In this paper, a curved draft tube for a medium head Kaplan type hydro turbine is introduced and discussed for its significant effect on expanding operating head range. Without adding any extra structure and working fluid for swirl destruction and damping, a carefully designed outline shape of draft tube with the selected placement of center-piers successfully supresses the growth of turbulence eddy and the transport of the swirl to the outlet. Also, more kinetic energy is recovered and the head lost is improved. Finally, the model test results are also presented. The obvious performance improvement was found in the lower net head area, where the maximum efficiency improvement was measured up to 20% without compromising the best efficiency point. Additionally, this design results in a new draft tube more compact in size and so leads to better construction and manufacturing cost performance for prototype. The draft tube geometry parameter designing process was concerning the best efficiency point together with the off-design points covering various water net heads and discharges. The hydraulic performance and flow behavior was numerically previewed and visualized by solving Reynolds-Averaged Navier-Stokes equations with Shear Stress Transport turbulence model. The simulation was under the assumption of steady-state incompressible turbulence flow inside the flow passage, and the inlet boundary condition was the carefully simulated flow pattern from the runner outlet. For confirmation, the corresponding turbine efficiency performance of the entire operating area was verified by model test.

  11. Experimental investigations of the unsteady flow in a Francis turbine draft tube cone

    Energy Technology Data Exchange (ETDEWEB)

    Baya, A [Department of Hydraulic Machinery, ' Politehnica' University of Timisoara Bv. Mihai Viteazu 1, RO-300222, Timisoara (Romania); Muntean, S [Centre of Advanced Research in Engineering Sciences, Romanian Academy - Timisoara Branch Bv. Mihai Viteazu 24, RO-300223, Timisoara (Romania); Campian, V C; Cuzmos, A [Research Center in Hydraulics, Automation and Heat Transfer, ' Eftimie Murgu' University of Resita P-ta. Traian Vuia 1-4, RO-320085, Resita (Romania); Diaconescu, M; Balan, G, E-mail: abaya@mh.mec.upt.r [Ramnicu Valcea Subsidiary, S.C. Hidroelectrica S.A. Str. Decebal 11, RO-240255, Ramnicu Valcea (Romania)

    2010-08-15

    Operating Francis turbines at partial discharge is often hindered by the development of the helical vortex (so-called vortex rope) downstream the runner, in the draft tube cone. The unsteady pressure field induced by precessing vortex rope leads to pressure fluctuations. The paper presents the experimental investigations of the unsteady pressure field generated by precessing vortex rope and its associated pressure fluctuations into a draft tube of the Francis turbine operating at partial discharge. In situ measurements are performed in order to evaluate the pressure fluctuations and vortex rope frequency at partial load operation. Three pressure taps are installed on the cone wall of the draft tube in order to record the unsteady pressure. As a result, the Fourier spectra are obtained in order to evaluate the amplitude of pressure fluctuations and vortex rope frequency. Moreover, the wall pressure recovery along to the draft tube cone is acquired. Finally, conclusions are drawn in order to present the vortex rope effects.

  12. Strain gauge measurement uncertainties on hydraulic turbine runner blade

    Science.gov (United States)

    Arpin-Pont, J.; Gagnon, M.; Tahan, S. A.; Coutu, A.; Thibault, D.

    2012-11-01

    Strains experimentally measured with strain gauges can differ from those evaluated using the Finite Element (FE) method. This difference is due mainly to the assumptions and uncertainties inherent to each method. To circumvent this difficulty, we developed a numerical method based on Monte Carlo simulations to evaluate measurement uncertainties produced by the behaviour of a unidirectional welded gauge, its position uncertainty and its integration effect. This numerical method uses the displacement fields of the studied part evaluated by an FE analysis. The paper presents a study case using in situ data measured on a hydraulic turbine runner. The FE analysis of the turbine runner blade was computed, and our numerical method used to evaluate uncertainties on strains measured at five locations with welded strain gauges. Then, measured strains and their uncertainty ranges are compared to the estimated strains. The uncertainty ranges obtained extended from 74 μepsilon to 165 μepsilon. Furthermore, the biases observed between the median of the uncertainty ranges and the FE strains varied from -36 to 36 μepsilon. Note that strain gauge measurement uncertainties depend mainly on displacement fields and gauge geometry.

  13. State of the art-hydraulic yaw systems for wind turbines

    DEFF Research Database (Denmark)

    Stubkier, Søren; Pedersen, Henrik C.; Andersen, Torben Ole;

    2011-01-01

    This paper addresses the yawing systems of Horizontal Axis Wind Turbines (HAWT’s). HAWT’s represents close to all of the commercial large wind turbines sold today and must be considered state-of-the art within wind turbine technology. Two choices exists when considering components for the active...... mounted with a reduction gear. This paper presents state-of-the art within; hydraulic yaw system design and control of yaw systems in general. Primary focus on the advantages and disadvantages of using a hydraulic system for controlling the yaw of a wind turbine with a soft yaw concept....

  14. 77 FR 36273 - Public Meeting on Draft Permitting Guidance for Oil and Gas Hydraulic Fracturing Activities Using...

    Science.gov (United States)

    2012-06-18

    ... AGENCY Public Meeting on Draft Permitting Guidance for Oil and Gas Hydraulic Fracturing Activities Using... agency has developed on the use of diesel fuels in oil and gas hydraulic fracturing and to solicit input... discuss ``Permitting Guidance for Oil and Gas Hydraulic Fracturing Activities Using Diesel...

  15. An evaluation of a hubless inducer and a full flow hydraulic turbine driven inducer boost pump

    Science.gov (United States)

    Lindley, B. K.; Martinson, A. R.

    1971-01-01

    The purpose of the study was to compare the performance of several configurations of hubless inducers with a hydrodynamically similar conventional inducer and to demonstrate the performance of a full flow hydraulic turbine driven inducer boost pump using these inducers. A boost pump of this type consists of an inducer connected to a hydraulic turbine with a high speed rotor located in between. All the flow passes through the inducer, rotor, and hydraulic turbine, then into the main pump. The rotor, which is attached to the main pump shaft, provides the input power to drive the hydraulic turbine which, in turn, drives the inducer. The inducer, rotating at a lower speed, develops the necessary head to prevent rotor cavitation. The rotor speed is consistent with present main engine liquid hydrogen pump designs and the overall boost pump head rise is sufficient to provide adequate main pump suction head. This system would have the potential for operating at lower liquid hydrogen tank pressures.

  16. Wind tunnel experiments to prove a hydraulic passive torque control concept for variable speed wind turbines

    NARCIS (Netherlands)

    Diepeveen, N.F.B.; Jarquin-Laguna, A.

    2014-01-01

    In this paper the results are presented of experiments to prove an innovative concept for passive torque control of variable speed wind turbines using fluid power technology. It is demonstrated that by correctly configuring the hydraulic drive train, the wind turbine rotor operates at or near maximu

  17. Wind tunnel experiments to prove a hydraulic passive torque control concept for variable speed wind turbines

    NARCIS (Netherlands)

    Diepeveen, N.F.B.; Jarquin-Laguna, A.

    2014-01-01

    In this paper the results are presented of experiments to prove an innovative concept for passive torque control of variable speed wind turbines using fluid power technology. It is demonstrated that by correctly configuring the hydraulic drive train, the wind turbine rotor operates at or near maximu

  18. Wind turbine certification - the committee draft by IEC-TC88-WG9

    Energy Technology Data Exchange (ETDEWEB)

    Hauge Madsen, P. [Risoe National Lab., Wind Energy and Atmospheric Physics Dept., Roskilde (Denmark)

    1999-03-01

    In 1995 the Technical Committee TC88 of the International Electrotechnical Commission decided to start a new work item, namely to prepare a standard for the certification procedures for wind turbines with respect to safety, performance, interaction with the public grid, environmental requirements and the documentation requested by the certification bodies. The purpose was to provide a common basis for certification of wind turbines, including a basis for accreditation of certification bodies and mutual recognition of certificates. A working group (WG9) was created to prepare a committee draft. WG9 submitted the result late in 1998 to TC88. This paper presents the committee draft Standard, which defines a certification system for Wind Turbine Generator Systems. Key issues in the evaluation of conformity with these standards and identified needs for other technical criteria and procedures are presented. (au) 10 refs.

  19. Energy transformation and flow topology in an elbow draft tube

    Directory of Open Access Journals (Sweden)

    Štefan D.

    2012-06-01

    Full Text Available Paper presents a computational study of energy transformation in two geometrical configurations of Kaplan turbine elbow draft tube. Pressure recovery, hydraulic efficiency and loss coefficient are evaluated for a series of flow rates and swirl numbers corresponding to operating regimes of the turbine. These integral characteristics are then correlated with local flow field properties identified by extraction of topological features. Main focus is to find the reasons for hydraulic efficiency drop of the elbow draft tube.

  20. optimal selection of hydraulic turbines for small hydro electric power ...

    African Journals Online (AJOL)

    eobe

    Results from the analysis showed that turbines that gave maximum and minimum power urbines that ..... turbine application range charts have been developed to assist with .... Results from the study shows that thorough technical knowledge ...

  1. Hydraulic Evaluation and Optimisation of T. Basses Wave Turbine

    DEFF Research Database (Denmark)

    Frigaard, Peter; Kofoed, Jens Peter

    The present study investigates designs of the wing profiles and layouts of the wave turbine in order to optimize the design. Furthermore, the overall power production capability of the device has been estimated for the selected wing profiles and turbine layout.......The present study investigates designs of the wing profiles and layouts of the wave turbine in order to optimize the design. Furthermore, the overall power production capability of the device has been estimated for the selected wing profiles and turbine layout....

  2. Draft Genome Sequence of Methanohalophilus mahii Strain DAL1 Reconstructed from a Hydraulic Fracturing-Produced Water Metagenome

    Science.gov (United States)

    Lipus, Daniel; Vikram, Amit

    2016-01-01

    We report here the 1,882,100-bp draft genome sequence of Methanohalophilus mahii strain DAL1, recovered from Marcellus Shale hydraulic fracturing-produced water using metagenomic contig binning. Genome annotation revealed several key methanogenesis genes and provides valuable information on archaeal activity associated with hydraulic fracturing-produced water environments. PMID:27587817

  3. Draft IEC 61400-24 wind turbines: lightning protection blades

    OpenAIRE

    Hermoso Alameda, Blas; Montañá Puig, Juan

    2009-01-01

    Wind turbine blades are the most exposed parts of the turbine, and would experience the full impact from the electric fields as associated with the lightning attachment process, the lightning currents, and the magnetic field associated with lightning currents.At some point in time hopes were high that lightning would not strike blades made of non-conducting material only, but practical experiences have clearly demonstrated that this is not the case. Lightning does in fact st...

  4. Extensive use of computational fluid dynamics in the upgrading of hydraulic turbines

    Energy Technology Data Exchange (ETDEWEB)

    Sabourin, M.; De Henau, V. [GEC Alsthom Electromechanical Inc., Tracy, PQ (Canada); Eremeef, R. [GEC Alsthom Neyrpic, Grenoble (France)

    1995-12-31

    The use of computational fluid flow dynamics (CFD) and the Navier Stokes equations by GEC Alsthom for turbine rehabilitation were discussed. The process of runner rehabilitation was discussed from a fluid flow perspective, which accounts for the spiral case-distributor set and draft tube. The Kootenay turbine rehabilitation was described with regard to it spiral case and stay vane. The numerical analysis used to model upstream components was explained. The influence of draft tube effects was emphasized as an important efficiency factor. The differences between draft tubes at Sir Adam Beck 2 and La Grande 2 were discussed. Computational fluid flow modelling was claimed to have produced global performance enhancements in a reasonably short time, and at a reasonable cost. 6 refs., 6 figs., 4 tabs.

  5. Design, Optimization and Analysis of Hydraulic Soft Yaw System for 5 MW Wind Turbine

    DEFF Research Database (Denmark)

    Stubkier, Søren; Pedersen, Henrik C.

    2011-01-01

    presents work previous done on this subject with focus on hydraulic yaw systems. By utilizing the HAWC2 aeroelastic code and an extended model of the NREL 5MW turbine combined with a simplified linear model of the turbine, the parameters of the soft yaw system are optimized. Results show that a significant...... reduction in fatigue and extreme loads to the yaw system and rotor shaft are possible, when utilizing the soft yaw drive concept compared to the original stiff yaw system. The physical demands of the hydraulic yaw system are furthermore examined for a life time of 20 years. The duty cycles, based...... on the extrapolated loads, show that it is possible to construct a hydraulic soft yaw system, which is able to reduce the loads on the wind turbine significantly....

  6. Experimental investigation of the draft tube inlet flow of a bulb turbine

    Science.gov (United States)

    Vuillemard, J.; Aeschlimann, V.; Fraser, R.; Lemay, S.; Deschênes, C.

    2014-03-01

    In the BulbT project framework, a bulb turbine model was studied with a strongly diverging draft tube. At high discharge, flow separation occurs in the draft tube correlated to significant efficiency and power drops. In this context, a focus was put on the draft tube inlet flow conditions. Actually, a precise inlet flow velocity field is required for comparison and validation purposes with CFD simulation. This paper presents different laser Doppler velocimetry (LDV) measurements at the draft tube inlet and their analysis. The LDV was setup to measure the axial and circumferential velocity on a radius under the runner and a diameter under the hub. A method was developed to perform indirect measurement of the mean radial velocity component. Five operating conditions were studied to correlate the inlet flow to the separation in the draft tube. Mean velocities, fluctuations and frequencies allowed characterizing the flow. Using this experimental database, the flow structure was characterized. Phase averaged velocities based on the runner position allowed detecting the runner blade wakes. The velocity gradients induced by the blade tip vortices were captured. The guide vane wakes was also detected at the draft tube inlet. The recirculation in the hub wake was observed.

  7. Functional Problems and Maintenance Operations of Hydraulic Turbines

    Directory of Open Access Journals (Sweden)

    Liliana Topliceanu

    2016-02-01

    Full Text Available The exploitation in good conditions of the hydroelectric power plant imposes a rigorous maintenance of equipment and operating facilities, primarily of the turbine. The efficiency of the turbine is strongly affected by any defects which could occur during the operation. The paper makes a synthesis of the most frequent failures which have occurred during the functioning of Kaplan turbines plant and the required maintenance plan that has to be adopted. The maintenance rules for the optimal working of these turbines are also emphasized.

  8. Numerical investigation of draft tube pressure pulsations in a Francis turbine with splitter blades

    Science.gov (United States)

    Kassanos, I.; Anagnostopoulos, J.; Papantonis, D.

    2017-04-01

    Operation of Francis turbines at part load conditions is related to the appearance of the draft tube helical vortex rope. Splitter blades have been employed in high head Francis turbines in order to improve performance as well as their unsteady characteristics. In this work the draft tube unsteady characteristics of a Francis runner with splitter blades are investigated numerically. Two different splitter designs were analysed, and the performance results were compared to the baseline runner with no splitter blades used. The amplitude of pressure pulsation caused by the precessing vortex rope as well as the related frequency was compared for all cases, for two different operating conditions. From the results a relationship between the pulsation frequency and splitter blade geometry was observed.

  9. DETERMINATION OF HYDRAULIC TURBINE EFFICIENCY BY MEANS OF THE CURRENT METER METHOD

    Directory of Open Access Journals (Sweden)

    PURECE C.

    2016-12-01

    Full Text Available The paper presents methodology used for determining the efficiency of a low head Kaplan hydraulic turbine with short converging intake. The measurement method used was the current meters method, the only measurement method recommended by the IEC 41standard for flow measurement in this case. The paper also presents the methodology used for measuring the flow by means of the current meters method and the various procedures for calculating the flow. In the last part the paper presents the flow measurements carried out on the Fughiu HPP hydraulic turbines for determining the actual operating efficiency.

  10. CFD simulation of reverse water-hammer induced by collapse of draft-tube cavity in a model pump-turbine during runaway process

    Science.gov (United States)

    Zhang, Xiaoxi; Cheng, Yongguang; Xia, Linsheng; Yang, Jiandong

    2016-11-01

    This paper reports the preliminary progress in the CFD simulation of the reverse water-hammer induced by the collapse of a draft-tube cavity in a model pump-turbine during the runaway process. Firstly, the Fluent customized 1D-3D coupling model for hydraulic transients and the Schnerr & Sauer cavitation model for cavity development are introduced. Then, the methods are validated by simulating the benchmark reverse water-hammer in a long pipe caused by a valve instant closure. The simulated head history at the valve agrees well with the measured data in literature. After that, the more complicated reverse water-hammer in the draft-tube of a runaway model pump-turbine, which is installed in a model pumped-storage power plant, is simulated. The dynamic processes of a vapor cavity, from generation, expansion, shrink to collapse, are shown. After the cavity collapsed, a sudden increase of pressure can be evidently observed. The process is featured by a locally expending and collapsing vapor cavity that is around the runner cone, which is different from the conventional recognition of violent water- column separation. This work reveals the possibility for simulating the reverse water-hammer phenomenon in turbines by 3D CFD.

  11. Characterization of bead trajectories through the draft tube of a turbine physical model

    Energy Technology Data Exchange (ETDEWEB)

    Weiland, M. A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Mueller, R. P. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Carlson, T. J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Deng, Z. D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); McKinstry, C. A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2005-02-01

    The U.S. Army Corps of Engineers (USACE) makes extensive use of 1:25 scale Plexiglass models of hydroelectric turbines along the Columbia River to study turbine hydraulic performance and to identify potential hazards for fish passing through the turbines. Plastic beads are sent through the models and imaging has been done with laser Doppler velocimetry and high-speed videography to measure flow field variables and to study the probable paths of fish through the turbine units. Understanding has been limited by the lack of data showing actual bead trajectories in three dimensions (3-D) and the lack of quantified velocity, acceleration, and other kinematics describing the trajectories of beads as they pass through the physical models.

  12. Design, analysis and control of hydraulic soft yaw system for 5MW wind turbine

    DEFF Research Database (Denmark)

    Stubkier, Søren; Pedersen, Henrik C.; Andersen, Torben Ole

    2012-01-01

    by active control of a hydraulic yaw system. The control is based on a non-linear and linear model derived based on a concept yaw system for the NREL 5MW wind turbine. The control strategies show a reduction in pressure pulsations under load and it is concluded that the strategie including high......As wind turbines increase in size and the demands for lifetime also increases, new methods of load reduction needs to be examined. One method is to make the yaw system of the turbine soft/flexible and wereby dampen the loads to the system. This paper presents work done on dampening of these loads...

  13. Assessing Hydraulic Conditions through Francis turbines using an autonomous sensor device

    Energy Technology Data Exchange (ETDEWEB)

    Fu, Tao; Deng, Zhiqun; Duncan, Joanne P.; Zhou, Daqing; Carlson, Thomas J.; Johnson, Gary E.; Hou, Hongfei

    2016-08-18

    Downstream migratory fish, including some endangered species, can be injured or killed during turbine passage. In this study an autonomous Sensor Fish device was deployed at Arrowrock Dam, Cougar Dam, and Detroit Dam to evaluate the hydraulic conditions and physical stresses that fish experienced when passing through these Francis turbines. Pressure data was used to identify the location of the Sensor Fish and to calculate the nadir pressure and the magnitude and the rate of change in pressure during turbine passage. Acceleration data was used to identify events (collisions or shear) Sensor Fish experienced and to categorize the severity level (severe, medium, and slight) of each event. The results showed that Sensor Fish experienced severe events mostly in the stay vane/wicket gate region and the runner region. In the stay vane/wicket gate region, almost all severe events were collisions. In the runner region, Sensor fish experienced both severe collisions and severe shear events. Sensor Fish data at three wicket gate opening treatments at Cougar Dam indicated that the wicket gate opening of the Francis turbine can affect the hydraulic conditions in the turbine runner region. Fewer Sensor Fish experienced severe collisions in the turbine runner region at the peak efficiency than at the minimum opening and the maximum opening treatments. Comparisons between the Francis turbines at the three dams and the AHT Kaplan turbine at Wanapum Dam showed that higher percentage of Sensor Fish experienced severe events in the runner region when passing through Francis turbines than the AHT Kaplan turbine. The nadir pressures of the Francis turbines were lower than those of the AHT Kaplan turbine at Wanapum Dam. Both the magnitude and the rate of change in pressure were higher in Francis turbines than in the AHT Kaplan turbine at Wanapum Dam in the runner region. This study can be used to guide future laboratory studies of fish passing through Francis turbine and help the design

  14. Design and Experimental Validation of Hydraulic Yaw System for Multi MW Wind Turbine

    DEFF Research Database (Denmark)

    Stubkier, Søren; Pedersen, Henrik C.; Andersen, Torben Ole

    2013-01-01

    environment. The model and the test rig are tested up against different design load cases and the results are compared. The experiments show that the model is valid for comparing the overall dynamics of the hydraulic yaw system. Based on the results it is concluded that the model derived is suitable......To comply with the increasing demands for life time and reliability of wind turbines as these grow in size, new measures needs to be taken in the design of wind turbines and components hereof. One critical point is the initial testing of the components and systems before they are implemented...... market. A hydraulic yaw system is such a new technology, and so a mathematical model of the full scale system and test rig system is derived and compared to measurements from the system. This is done in order to have a validated model, which wind turbine manufacturers may use for test in their simulation...

  15. Numerical analysis of Coriolis effect on low-head hydraulic turbines

    Science.gov (United States)

    Ahn, S. H.; Xiao, Y. X.; Zhou, X. Z.; Zhang, J.; Zeng, C. J.; Luo, Y. Y.; Xu, W.; Wang, Z. W.

    2016-11-01

    For the low-head hydropower station, the operating head is low, and the turbine intake channel is relatively short. The turbine internal flow behaviour can be influenced by fluid flows in the upstream reservoir easily, then it would influence the turbine hydraulic performance. Water flows in the upstream reservoir can be influenced by the Coriolis force by the Earth rotation, and it differs at the different Rossby number. In this paper, the Coriolis effect on the approach flows and the turbine performances are investigated numerically for the low-head units. Firstly, the Coriolis effect (under the different latitudes and the same characteristic length scale) on reservoir flows was predicted. Secondly, the prototype performance of a bulb-type turbine was simulated including the reservoir flow with the Coriolis effect, and then the effect on the turbine performance is be discussed. Results show that the flow field in the upstream reservoir at the low Rossby number, the ratio of inertial force to Coriolis force, can sufficiently influence the turbine intake flows and the turbine performances. Adjusting the side-wall distance can reduce the Coriolis effects.

  16. Development of the helical reaction hydraulic turbine. Final technical report, July 1, 1996--June 30, 1998

    Energy Technology Data Exchange (ETDEWEB)

    Gorlov, A.

    1998-08-01

    The present report contains the final results obtained during July 1996--July 1998. This report should be considered in association with the Annual Progress Report submitted in July 1997 due to the fact that not all of the intermediate results reflected in the Progress Report have been included in the Final Report. The aim of the project was to build a helical hydraulic turbine prototype and demonstrate its suitability and advantages as a novel apparatus to harness hydropower from ultra low-head rivers and other free water streams such as ocean currents or rivers without dams. The research objectives of the project are: Design, optimization and selection of the hydro foil section for the helical turbine; Design of the turbine for demonstration project; Construction and testing of the turbine module; Assessing test results and determining scale-up feasibility. The research conducted under this project has substantially exceeded the original goals including designing, constructing and testing of a scaled-up triple-helix turbine, as well as developing recommendations for application of the turbine for direct water pumping in irrigation systems and for future use in wind farms. Measurements collected during two years of turbine testing are kept in the PI files.

  17. Numerical study of rotor-stator interactions in a hydraulic turbine with Foam-extend

    Science.gov (United States)

    Romain, Cappato; Guibault, François; Devals, Christophe; Nennemann, Bernd

    2016-11-01

    In the development of high head hydraulic turbines, vibrations are one of the critical problems. In Francis turbines, pressure fluctuations occur at the interface between the blades of the runner and guide vanes. This rotor-stator interaction can be responsible for fatigue failures and cracks. Although the flow inside the turbomachinery is complex, and the unsteadiness makes it difficult to model, the choice of an appropriate setup enables the study of this phenomenon. This study validates a numerical setup of the Foam-extend open source software for rotor-stator simulations. Pressure fluctuations results show a good correspondence with data from experiments.

  18. Mixed-flow vertical tubular hydraulic turbine. Determination of proper design duty point

    Energy Technology Data Exchange (ETDEWEB)

    Sirok, B. [Ljubljana Univ. (Slovenia). Faculty of Mechanical Engineering; Bergant, A. [Litostroj Power, d.o.o., Ljubljana (Slovenia); Hoefler, E.

    2011-12-15

    A new vertical single-regulated mixed-flow turbine with conical guide apparatus and without spiral casing is presented in this paper. Runner blades are fixed to the hub and runner band and resemble to the Francis type runner of extremely high specific speed. Due to lack of information and guidelines for the design of a new turbine, a theoretical model was developed in order to determinate the design duty point, i.e. to determine the optimum narrow operation range of the turbine. It is not necessary to know the kinematic conditions at the runner inlet, but only general information on the geometry of turbine flow-passage, meridional contour of the runner and blading, the number of blades and the turbine speed of rotation. The model is based on the integral tangential lift coefficient, which is the average value over the entire runner blading. The results are calculated for the lift coefficient 0.5 and 0.6, for the flow coefficient range from 0.2 to 0.36, for the number of the blades between 5 and 13, and are finally presented in the Cordier diagram (specific speed vs. specific diameter). Calculated results of the turbine optimum operation in Cordier diagram correspond very well to the adequate area of Kaplan turbines with medium and low specific speed and extends into the area of Francis turbines with high specific speed. Presented model clearly highlights the parameters that affect specific load of the runner blade row and therefore the optimum turbine operation (discharge - turbine head). The presented method is not limited to a specific reaction type of the hydraulic turbine. The method can therefore be applied to a wide range from mixed-flow (radial-axial) turbines to the axial turbines. Applicability of the method may be considered as a tool in the first stage of the turbine design i.e. when designing the meridional geometry and selecting the number of blades according to calculated operating point. Geometric and energy parameters are generally defined to an

  19. Rotating Water Table for the Determination of Non-Steady Forces in a Turbine Stage Through Modified Hydraulic Analogy

    OpenAIRE

    J. S. Rao; E. Raghavacharyulu; Seshadri, V.; V.V.R. Rao

    1983-01-01

    Determination of non-steady forces in a real turbine stage is difficult due to the local flow conditions, for example high pressures, high temperatures and in-accessibility to the region etc. Experimentation in a real turbine is also prohibitive due to the costs involved. An alternate method of arriving at these non-steady forces through the use of modified hydraulic analogy is discussed. A rotating water table facility, developed and fabricated based on the principles of modified hydraulic a...

  20. Theoretical research of hydraulic turbine performance based on slip factor within centripetal impeller

    Directory of Open Access Journals (Sweden)

    Guangtai Shi

    2015-07-01

    Full Text Available The impeller of hydraulic turbine is a kind of centripetal impeller. The slip phenomenon within centripetal impeller is different with centrifugal impeller. In this study, the velocity distribution and the flow form of fluid within centripetal impeller are analyzed, the slip factor within centripetal impeller is calculated, and the basic energy equation of hydraulic turbine is deduced when the slip within centripetal impeller is considered. The results of theoretical calculation, the results of experiment, and the results of computational fluid dynamics calculation are compared. The formula of slip factor within centripetal impeller is obtained, and the relative error between the results of theoretical calculation using the formula and experimental data is less than 5%. The effect factors of slip factor have entrance diameter of centripetal impeller, blade numbers, entrance and outlet blade angles, rotating speed of centripetal impeller, and flow rate.

  1. Straight-flow hydraulic turbine-generator for ultralow-head

    Energy Technology Data Exchange (ETDEWEB)

    Kushimoto, Masakazu; Ujiie, Ryuichi (Fuji Electric Co., Ltd., Tokyo (Japan))

    1989-01-10

    This report introduces features and structures of the straight-flow hydraulic turbine-generator considered for ultralow-head hydropower generation. Largest feature of straight flow(S/F) is that the generator rotor is fitted so as to surround the periphery of runner. This fundamental structure is classified to overhang type, downstream stay-column type and others dependent on the arrangement of main bearing which supports the rotor weight. The essential part of the hydraulic turbine is the sealing equipment for the center part of the rotor. Special attention must be paid to the selection of material and structure of this equipment. The maximum point to determine the structure is the countermeasure for the radial and axial rigidity reduction in the S/F hydro-generator. It is also necessary to conduct moisture prevention for the generator and to insulate to prevent axial current. 13 refs., 6 figs.

  2. Dynamic extending nonlinear H∞ control and its application to hydraulic turbine governor

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    There exists a large class of nonlinear systems with uncertainties, such as hydraulic turbine governors, whose robust control problem is hard to solve by means of the existing robust control approaches. For this class of systems, this work presents a dynamic extending H∞ controller via both differential geometry and H∞ theory. Furthermore, based on differential game theory, it has been verified that the proposed control strategy has robustness in the sense that the disturbance can be attenuated effectively because the L2-gain from the disturbance input to the regulation output signal could be reduced to any given level. Thirdly, a robust control strategy for hydraulic turbine governor is designed according to the proposed extending H∞ control method, and has been developed into a real control equipment. Finally the field experiments are carried out which show clearly that the developed control equipment can enhance transient stability of power systems more effectively than the conventional controller.

  3. A novel scenario of aperiodical impacts appearance in the turbine draft tube

    Science.gov (United States)

    Alekseenko, S. V.; Kuibin, P. A.; Shtork, S. I.; Skripkin, S. G.; Sonin, V. I.; Tsoy, M. A.; Ustimenko, A. S.

    2016-11-01

    The swirling flow in the discharge cone of hydroturbine is characterized by various self-induced instabilities and associated low frequency phenomena when the turbine is operated far from the best efficiency point. In particular, the precessing vortex rope develops at part-load regimes in the draft tube. This rope can serve a reason of the periodical low- frequency pressure oscillations in the whole hydrodynamical system. During the experimental research of flow structure in the discharge cone in a regime of free runner new interesting phenomenon was discovered. Due to instability some coils of helical vortex close to each other and reconnection appears with generation of a vortex ring. The experiments were fulfilled at the cavitational conditions when a cavity arises in the vortex core. So the phenomenon was registered with help of visualization by the high speed video recording. The vortex ring after the reconnection moves apart from the main vortex rope toward the wall and downstream. When it reaches the area with high pressure the cavity collapses with generation of pressure impact. The mechanism of cavitational vortex rings generation and their further collapse can serve as a prototype of the aperiodical pressure impacts inside the turbine draft tube.

  4. Hydro-abrasive erosion of hydraulic turbines caused by sediment - a century of research and development

    Science.gov (United States)

    Felix, D.; Albayrak, I.; Abgottspon, A.; Boes, R. M.

    2016-11-01

    Hydro-abrasive erosion of hydraulic turbines is an economically important issue due to maintenance costs and production losses, in particular at high- and medium-head run-of- river hydropower plants (HPPs) on sediment laden rivers. In this paper, research and development in this field over the last century are reviewed. Facilities for sediment exclusion, typically sand traps, as well as turbine design and materials have been improved considerably. Since the 1980s, hard-coatings have been applied on Francis and Pelton turbine parts of erosion-prone HPPs and became state-of-the-art. These measures have led to increased times between overhauls and smaller efficiency reductions. Analytical, laboratory and field investigations have contributed to a better processes understanding and quantification of sediment-related effects on turbines. More recently, progress has been made in numerical modelling of turbine erosion. To calibrate, validate and further develop prediction models, more measurements from both physical model tests in laboratories and real-scale data from HPPs are required. Significant improvements to mitigate hydro-abrasive erosion have been achieved so far and development is ongoing. A good collaboration between turbine manufacturers, HPP operators, measuring equipment suppliers, engineering consultants, and research institutes is required. This contributes to the energy- and cost-efficient use of the worldwide hydropower potential.

  5. Hydraulic design and analysis of the saxo-type vertical axial turbine

    Energy Technology Data Exchange (ETDEWEB)

    Hofler, Edvard; Gale, Janez; Bergant, Anton

    2010-07-01

    The design of the blade geometry of a wind turbine is highly important as it influences the power generation. The aim of this study is to introduce a method for hydraulic design and analysis of the blade geometry of a highly specific speed runner of the Saxo-type double-regulated vertical axial turbine. The streamline curvature method (SCM) was used to develop four blade shapes which were analyzed with computational fluid dynamics (CFD) tools and the best one chosen in term of turbine efficiency and cavitational characteristics. Results demonstrated that the physical shape of the blade can be found for the design duty point in a rapid and transparent way by using the SCM method with no adjustments required to use the CFD methods. This study proved that the SCM design procedure developed herein can be used to accurately design runner blades.

  6. Experimental studies into the thermal-hydraulic performance of the VK-300 reactor based on a draft tube model

    Directory of Open Access Journals (Sweden)

    N.P. Serdun

    2015-12-01

    Full Text Available The paper presents an experimental study into the thermal-hydraulic performance of the VK-300 reactor based on a model of a single draft tube at a pressure of 3.4MPa, various flow rates and the model inlet relative enthalpies of –0.05 to 0.2. The experimental procedures include generation of a steam-water mixture circulation with a preset flow rate and a relative enthalpy through the test section at a pressure of 3.3 to 3.4MPa, and measurement of thermal-hydraulic parameters within the circuit's representative upflow and downflow lengths of practical interest. There have been confirmed the designs used to support the reactor facility serviceability and the assumptions concerning the thermal-hydraulic performance of a natural circulation circuit used in the analysis thereof. It has been shown that, across the analyzed range of the relative enthalpy values, the draft tube has an annular-dispersed or an annular flow of the steam-water mixture, both providing for the significant separation of the steam-water mixture (Ksep=0.4 at the draft tube edges and in the mixing chamber. The perforation in the upper part of the draft tubes allows the separation coefficient to be increased at the first stage and creates more favorable conditions for the second-stage separation. The measured values of the void fraction in the mixing chamber and in the draft tube are in a satisfactory agreement with calculations based on Z.L. Miropolskiy's method and the RELAP code and may be used to verify the VK-300 thermal-hydraulic codes. It has been shown that steam may enter the ring slit that simulates the annular space and reach the reactor core inlet. Further investigations need to be conducted to study this effect for its guaranteed exclusion and for the development of emergency response procedures.

  7. Wind tunnel experiments to prove a hydraulic passive rotor speed control concept for variable speed wind turbines (poster)

    NARCIS (Netherlands)

    Diepeveen, N.F.B.; Jarquin Laguna, A.

    2012-01-01

    As alternative to geared and direct drive solutions, fluid power drive trains are being developed by several institutions around the world. The common configuration is where the wind turbine rotor is coupled to a hydraulic pump. The pump is connected through a high pressure line to a hydraulic motor

  8. Investigation of Self Yaw and its Potential using a Hydraulic Soft Yaw System for 5 MW Wind Turbine

    DEFF Research Database (Denmark)

    Stubkier, Søren; Pedersen, Henrik C.

    2013-01-01

    The focus of the current paper is on a hydraulic soft yaw system, designed to reduce the loading of the turbine structure, by absorbing wind guest via the hydraulic system, but which also enables the system to be used as a self-aligning yaw system. The system is analyzed with basis in the NREL 5-...... the behavior of the hydraulic system is analyzed and it is concluded that the hydraulic yaw system allows selfyaw under normal operating conditions for the turbine. Self-yaw control is possible in wind speeds above 12 m/s when yaw friction is kept below 1 MNm.......The focus of the current paper is on a hydraulic soft yaw system, designed to reduce the loading of the turbine structure, by absorbing wind guest via the hydraulic system, but which also enables the system to be used as a self-aligning yaw system. The system is analyzed with basis in the NREL 5-MW...... turbine, modeled in FAST, in which a new robust method for implementing Coulomb friction is utilized. Based on this model and a model of the hydraulic system, the influence of friction and wind speed is investigated in relation to the possibility to use the system as a self-aligning yaw system. Similarly...

  9. Hydraulic Turbines: The Pelton Turbine. Technical Terminology Bulletin. Terminotech, Vol. 2, No. 3.

    Science.gov (United States)

    General Electric Co. of Canada, Ltd., Montreal, Quebec.

    This issue of a bulletin of technological terminology is devoted to the Pelton turbine. A brief narrative on the subject is presented in both French and English. An English-French dictionary of terms comprises the bulk of the document. Explanatory illustrations are appended. (JB)

  10. Hydraulic Turbines: The Francis Turbine. Technical Terminology Bulletin. Terminotech, Vol. 2, No. 2.

    Science.gov (United States)

    General Electric Co. of Canada, Ltd., Montreal, Quebec.

    This issue of a bulletin of technological terminology is devoted to the Francis turbine. A brief narrative on the subject is presented in both French and English. An English-French dictionary of terms comprises the bulk of the document. An explanatory illustration is appended. (JB)

  11. Numerical Research on Flow Characteristics around a Hydraulic Turbine Runner at Small Opening of Cylindrical Valve

    Directory of Open Access Journals (Sweden)

    Zhenwei Mo

    2016-01-01

    Full Text Available We use the continuity equation and the Reynolds averaged Navier-Stokes equations to study the flow-pattern characteristics around a turbine runner for the small-opening cylindrical valve of a hydraulic turbine. For closure, we adopt the renormalization-group k-ε two-equation turbulence model and use the computational fluid dynamics (CFD software FLUENT to numerically simulate the three-dimensional unsteady turbulent flow through the entire passage of the hydraulic turbine. The results show that a low-pressure zone develops around the runner blades when the cylindrical valve is closed in a small opening; cavitation occurs at the blades, and a vortex appears at the outlet of the runner. As the cylindrical valve is gradually closed, the flow velocity over the runner area increases, and the pressure gradient becomes more significant as the discharge decreases. In addition, the fluid flow velocity is relatively high between the lower end of the cylindrical valve and the base, so that a high-velocity jet is easily induced. The calculation and analysis provide a theoretical basis for improving the performance of cylindrical-valve operating systems.

  12. Head losses prediction and analysis in a bulb turbine draft tube under different operating conditions using unsteady simulations

    Science.gov (United States)

    Wilhelm, S.; Balarac, G.; Métais, O.; Ségoufin, C.

    2016-11-01

    Flow prediction in a bulb turbine draft tube is conducted for two operating points using Unsteady RANS (URANS) simulations and Large Eddy Simulations (LES). The inlet boundary condition of the draft tube calculation is a rotating two dimensional velocity profile exported from a RANS guide vane- runner calculation. Numerical results are compared with experimental data in order to validate the flow field and head losses prediction. Velocity profiles prediction is improved with LES in the center of the draft tube compared to URANS results. Moreover, more complex flow structures are obtained with LES. A local analysis of the predicted flow field using the energy balance in the draft tube is then introduced in order to detect the hydrodynamic instabilities responsible for head losses in the draft tube. In particular, the production of turbulent kinetic energy next to the draft tube wall and in the central vortex structure is found to be responsible for a large part of the mean kinetic energy dissipation in the draft tube and thus for head losses. This analysis is used in order to understand the differences in head losses for different operating points. The numerical methodology could then be improved thanks to an in-depth understanding of the local flow topology.

  13. Investigation on internal flow of draft tube at overload condition in low specific speed Francis turbine

    Science.gov (United States)

    Tamura, Yuta; Tani, Kiyohito

    2016-11-01

    The cavitating vortices causes the unsteady phenomena like the pressure fluctuation, the noise and the vibration in the draft tube at the overload condition which is the far operating point from the design point. Because the full load was normally near the design point, there were few troubles due to cavitating vortices at the full load. Today, however, the design point is sometimes set to lower load to achieve the high efficiency from the partial load to the full load in low specific speed Francis turbines, which have good performance to a change in a discharge. Then, the full load is relatively further from the design point. As the result, the potential for the cavitating vortices at the full load is increased. To control of the unsteady phenomena at the full load, the study focused on the cavitating vortices at the overload condition is important. This paper presents the unsteady behavior of the cavitating vortices at the overload condition with the scaled model of specific speed NQE=0.083. On the experimental approach, the pressure pulsation in the upper draft tube was measured and the unsteady behavior of cavitating vortices was taken movies with a high speed camera. On the numerical approach, Computational Fluid Dynamics (CFD) adopting a two-phase unsteady analysis was carried out. The pressure fluctuation and the velocity distribution of two runners, an original and a newly designed, were compared.

  14. Application of entropy production theory to hydro-turbine hydraulic analysis

    Institute of Scientific and Technical Information of China (English)

    GONG; RuZhi; WANG; HongJie; CHEN; LiXia; LI; DeYou; ZHANG; HaoChun; WEI; XianZhu

    2013-01-01

    The understanding of hydraulic behavior in the hydro turbine requires the detailed study of fluid flow in the turbine. Previous methods of analyzing the numerical simulation results on the fluid machinery are short of intuitiveness on energy dissipation.In this paper, the energy dissipation was analyzed based on the entropy production theory. 3-D steady flow simulations and entropy production calculations of the reduced hydro turbine were carried out. The results indicated that the entropy production theory was suitable for evaluating the performance of the hydro turbine. The energy dissipation in the guide vanes area weighted nearly 25% of the whole flow passage, and mainly happened at the head and tail areas of the vanes. However, more than half the energy dissipation occurred in the runner, mostly at the leading edge of runner blade and the trailing edge of run-ner blade. Meanwhile, close to 20% of the energy dissipation occurred in the elbow. And it can be concluded that the method of entropy production analysis has the advantages of determining the quantity of energy dissipation and where the dissipation happens.

  15. Draft Genome Sequence of Pseudomonas sp. BDAL1 Reconstructed from a Bakken Shale Hydraulic Fracturing-Produced Water Storage Tank Metagenome

    Energy Technology Data Exchange (ETDEWEB)

    Lipus, Daniel; Ross, Daniel; Bibby, Kyle; Gulliver, Djuna

    2017-03-16

    ABSTRACT

    We report the 5,425,832 bp draft genome ofPseudomonassp. strain BDAL1, recovered from a Bakken shale hydraulic fracturing-produced water tank metagenome. Genome annotation revealed several key biofilm formation genes and osmotic stress response mechanisms necessary for survival in hydraulic fracturing-produced water.

  16. NUMERICAL CALCULATION OF SOLID-LIQUID TWO PHASE FLOW BETWEEN STAY VANES IN HYDRAULIC TURBINE

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    In this paper, an energy equation of silt-laden water flow is educed based on the energy equation of continuum fluid flow. The dissipation functions of liquid phase and solid phase are presented respectively. Then the extremity law of energy dissipation rate is introduced for the research of the silt-laden water flow and a new mathematical model is developed. The corresponding procedure based on the finite difference method (FDM) is developed to calculate the two phase flow in hydraulic turbine. The method is applied to analyze the silt-laden water flow between stay vanes, and the numerical results are in good agreement with the experimental ones.

  17. Rotating water table for the determination of non-steady forces in a turbine stage through modified hydraulic analogy

    Science.gov (United States)

    Rao, J. S.; Raghavacharyulu, E.; Seshadri, V.; Rao, V. V. R.

    1983-10-01

    Determination of non-steady forces in a real turbine stage is difficult due to the local flow conditions, for example high pressures, high temperatures and in-accessibility to the region etc. Experimentation in a real turbine is also prohibitive due to the costs involved. An alternate method of arriving at these non-steady forces through the use of modified hydraulic analogy is discussed. A rotating water table facility, developed and fabricated based on the principles of modified hydraulic analogy is described. A flat plate stage is simulated on the rotating water table, and the results obtained are presented.

  18. Rotating Water Table for the Determination of Non-Steady Forces in a Turbine Stage Through Modified Hydraulic Analogy

    Directory of Open Access Journals (Sweden)

    J. S. Rao

    1983-10-01

    Full Text Available Determination of non-steady forces in a real turbine stage is difficult due to the local flow conditions, for example high pressures, high temperatures and in-accessibility to the region etc. Experimentation in a real turbine is also prohibitive due to the costs involved. An alternate method of arriving at these non-steady forces through the use of modified hydraulic analogy is discussed. A rotating water table facility, developed and fabricated based on the principles of modified hydraulic analogy ia described. A flat plate stage is simulated on the rotating water table, and the results obtalned are presented.

  19. Using genetic algorithm to define the governor parameters of a hydraulic turbine

    Energy Technology Data Exchange (ETDEWEB)

    Andrade, J G P; Ribeiro, L C L J [School of Technology, UNICAMP Rua Paschoal Marmo, 1888, Limeira, Postal Code:13484-332 (Brazil); Junior, E L, E-mail: josegeraldo@ft.unicamp.b [School of Civil Engineering, Architecture and Urbanism, UNICAMP Avenida Albert Einstein, 951, Campinas, Postal Code: 13083-852 (Brazil)

    2010-08-15

    There are several governor architectures, but in general, all of them are designed to maintain the controlled variable fluctuations within acceptable range. The Proportional, Integral and Derivative (PID) governor is one of the types used to regulate a hydraulic turbine, in which the deviation of the variable controlled is corrected through earnings proportional, integral and derivative. For a definition of the governor parameters and its stability analysis there are several methods that in general can be classified into a time domain and frequency domain. The frequency domain method, based on the control theory, have ease application, expeditious manner of obtaining the parameters, but the physical phenomena involved are linearized. However the time domain methods are more difficult to be applied, but have the advantage of being able to take into account the non-linearities presents in physical phenomena. Despite the time-domain method offers advantages, it does not provides a structured way to optimize the parameters of the governor, since the parameters are obtained through simulations with adopted values. This paper presents a methodology to obtain the turbine governor appropriate parameters through a hybrid model (simulation and optimization model), based on method of characteristic to the hydraulic simulation (time domain) and Genetic Algorithm (GA) to obtain appropriate values. Examples are presented showing the application of the proposed methodology.

  20. Dynamic Runner Forces and Pressure Fluctuations on the Draft Tube Wall of a Model Pump-Turbine

    Science.gov (United States)

    Kirschner, O.; Ruprecht, A.; Göde, E.; Riedelbauch, S.

    2016-11-01

    When Francis-turbines and pump-turbines operate at off-design conditions, typically a vortex rope develops. The vortex rope causes pressure oscillations leading to fluctuations of the forces affecting the runner. The presence of dynamic runner forces over a long period of time might damage the bearings and possibly the runner. In this experimental investigation, the fluctuating part of the runner forces and the pressure oscillations on the draft tube wall were measured on a model pump-turbine with a simplified straight cone draft tube in different operating conditions. The investigation focuses on the correlation of the pressure fluctuations frequency measured at the draft tube wall with the frequency of the fluctuating forces on the runner. The comparison between pressure fluctuations and dynamic forces shows a significant correlation in all operating points. For the comparison of different components in the spatial directions of the forces, the pressure fluctuations were separated in a synchronous part and a rotating part for operating points with higher amplitudes. The rotating pressure fluctuations correlate with the radial forces especially in the operating points with a rotating vortex rope. At frequencies with higher amplitudes in the pressure fluctuations caused by the vortex rope movement, there are also higher amplitudes in the radial forces at the same frequencies.

  1. Analysis of load reduction possibilities using a hydraulic soft yaw system for a 5-MW turbine and its sensitivity to yaw-bearing friction

    DEFF Research Database (Denmark)

    Stubkier, S.; Pedersen, H. C.; Jonkman, J. M.

    2014-01-01

    With the increasing size of wind turbines and with increasing lifetime demands, new methods for load reduction in the turbines need to be examined. One method is to make the yaw system of the turbine flexible, thereby dampening the loads to the system. This paper presents a hydraulic soft yaw...

  2. HydroHillChart – Pelton module. Software used to Calculate the Hill Chart of the Pelton Hydraulic Turbines

    Directory of Open Access Journals (Sweden)

    Dorian Nedelcu

    2015-07-01

    Full Text Available The paper presents the HydroHillChart - Pelton module application, used to calculate the hill chart of the Pelton hydraulic turbine models, by processing the data measured on the stand. In addition, the tools offered by the application such as: interface, menu, input data, numerical and graphical results, etc. are described.

  3. New procedures for cavitation recovering in hydraulic turbines; Novos procedimentos em recuperacao de cavitacao em turbinas hidraulicas

    Energy Technology Data Exchange (ETDEWEB)

    Albertazzi, A.; Dutra, J.; Guenther, R.; Martin, C.; Pereira, M.; Raposo, E.; Simas, H.; Stemmer, M. [Santa Catarina Univ., Florianopolis, SC (Brazil); Kapp, W.; Manzolli, A.; Sousa, N.; Procopiak, L. [Instituto de Tecnologia para o Desenvolvimento (LACTEC), Curitiba, PR (Brazil)

    2002-07-01

    This paper describes the Roboturb Project jointly performed by the USFC and LACTEC, financed by the FINEP/PADCT and COPEL/ANEEL. This project aims the development of new procedures on small size hydraulic turbines recovering, by using welding, robotic and optical measurements advanced techniques. The main objective is the system hardware, with only the basic operation software and modules integration.

  4. Experimental investigation of vortex control with an axial jet in the draft tube of a model pump-turbine

    Energy Technology Data Exchange (ETDEWEB)

    Kirschner, O; Schmidt, H; Ruprecht, A [Institute of Fluid Mechanics and Hydraulic Machinery, University of Stuttgart, Pfaffenwaldring 10, 70550 Stuttgart (Germany); Mader, R; Meusburger, P, E-mail: kirschner@ihs.uni-stuttgart.d [Vorarlberger Illwerke A G, atloggstrasse 36, 6780 Schruns (Austria)

    2010-08-15

    The operation of hydropower plants, especially of pump-storage plants, changes since the deregulation of the energy market. They are increasingly operating at off-design conditions in order to follow the demand in the electrical grid. Therefore the ability of hydropower plants handling the operation in a wide range of off-design conditions has become more important. In this context one problem is the vortex rope in the draft tube, especially for Francis turbines and pump-turbines running in part load. An experimental investigation in mitigation of the vortex rope phenomenon by injecting water axially in the centre of the draft tube on a pump-turbine model was carried out. Also the mitigation by additionally injected air in the centre of the draft tube was analysed. The results of the experimental investigation are focused on the reduction of the pressure fluctuations in the draft tube. In this paper two different part-load operating points were investigated. One of these operating points is a high part load operating point where a vortex rope exists. The other one is a low part load operating point, where the pressure fluctuation is not caused by a vortex rope. The results of the investigation show, that the injection of stabilizing water can mitigate the pressure fluctuation caused by a vortex rope. But the investigation of operating points where the pressure fluctuation is not caused by a vortex rope shows, that there is no significant reduction in the pressure fluctuation by this method. In these operating points the method of injecting additionally air reduces the pressure fluctuation better.

  5. Nonlinear Dynamical Analysis of Hydraulic Turbine Governing Systems with Nonelastic Water Hammer Effect

    Directory of Open Access Journals (Sweden)

    Junyi Li

    2014-01-01

    Full Text Available A nonlinear mathematical model for hydroturbine governing system (HTGS has been proposed. All essential components of HTGS, that is, conduit system, turbine, generator, and hydraulic servo system, are considered in the model. Using the proposed model, the existence and stability of Hopf bifurcation of an example HTGS are investigated. In addition, chaotic characteristics of the system with different system parameters are studied extensively and presented in the form of bifurcation diagrams, time waveforms, phase space trajectories, Lyapunov exponent, chaotic attractors, and Poincare maps. Good correlation can be found between the model predictions and theoretical analysis. The simulation results provide a reasonable explanation for the sustained oscillation phenomenon commonly seen in operation of hydroelectric generating set.

  6. Influence of setting condition on characteristics of Savonius hydraulic turbine with a shield plate

    Science.gov (United States)

    Iio, Shouichiro; Katayama, Yusuke; Uchiyama, Fuminori; Sato, Eiichi; Ikeda, Toshihiko

    2011-09-01

    The aim of this investigation was to improve power performance of Savonius hydraulic turbine utilizing small stream for electric generation. An attempt was made to increase the power coefficient of runner by the use of flat shield plate placed upstream of the runner. The difference of the power coefficient is discussed in relation to clearance between the runner and the bottom wall and the rotation direction of the runner. The flow field around the runner was also examined visually to clarify influences of setting conditions on the power performance. From this study it was found that the power coefficient is achieved for 0.47 by only using a flat shield plate, the increase is up to 80% over the runner without the plate. Moreover, it is the proper condition that clearance ratio is 0.73 in this study.

  7. Performance of Double-step Savonius Rotor for Environmentally Friendly Hydraulic Turbine

    Science.gov (United States)

    Nakajima, Miyoshi; Iio, Shouichiro; Ikeda, Toshihiko

    The aim of this investigation is to develop an environmentally friendly nano-hydraulic turbine. Three type models of Savonius rotor are constructed and tested in a water tunnel to improve and clarify the power performance. Flow field around the rotor is examined visually to reveal the enhancement mechanisms of power coefficient using the double-step rotor. Flow visualization showed the difference of flow patterns at the central section between the standard (single-step) rotor and the double-step one. A meandering flow in the axial direction of the rotor was observed only for the double-step rotor. This flow had the pressure restoration effect at the returning blade's concave side and the torque strengthened effect at the advancing blade's convex side. As a consequence, the power coefficient was 10% improved.

  8. Hydraulics.

    Science.gov (United States)

    Decker, Robert L.; Kirby, Klane

    This curriculum guide contains a course in hydraulics to train entry-level workers for automotive mechanics and other fields that utilize hydraulics. The module contains 14 instructional units that cover the following topics: (1) introduction to hydraulics; (2) fundamentals of hydraulics; (3) reservoirs; (4) lines, fittings, and couplers; (5)…

  9. Development of the water-lubricated thrust bearing of the hydraulic turbine generator

    Science.gov (United States)

    Inoue, K.; Deguchi, K.; Okude, K.; Fujimoto, R.

    2012-11-01

    In hydropower plant, a large quantities of turbine oil is used as machine control pressure oil and lubricating oil. If the oil leak out from hydropower plant, it flows into a river. And such oil spill has an adverse effect on natural environment because the oil does not degrade easily. Therefore the KANSAI and Hitachi Mitsubishi Hydro developed the water-lubricated thrust bearing for vertical type hydraulic turbine generator. The water-lubricated bearing has advantages in risk avoidance of river pollution because it does not need oil. For proceeding the development of the water-lubricated thrust bearing, we studied following items. The first is the examination of the trial products of water lubricating liquid. The second is the study of bearing structure which can satisfy bearing performance such as temperature characteristic and so on. The third is the mock-up testing for actual application in the future. As a result, it was found that the water-lubricated thrust bearing was technically applicable to actual equipments.

  10. Bridging the gap between metallurgy and fatigue reliability of hydraulic turbine runners

    Science.gov (United States)

    Thibault, D.; Gagnon, M.; Godin, S.

    2014-03-01

    The failure of hydraulic turbine runners is a very rare event. Hence, in order to assess the reliability of these components, one cannot rely on statistical models based on the number of failures in a given population. However, as there is a limited number of degradation mechanisms involved, it is possible to use physically-based reliability models. Such models are more complicated but have the advantage of being able to account for physical parameters in the prediction of the evolution of runner degradation. They can therefore propose solutions to help improve reliability. With the use of such models, the effect of materials properties on runner reliability can easily be illustrated. This paper will present a brief review of the Kitagawa-Takahashi diagram that links the damage tolerance approach, based on fracture mechanics, to the stress or strain-life approaches. This diagram is at the centre of the reliability model used in this study. Using simplified response spectra obtained from on-site runner stress measurements, the paper will show how fatigue reliability is impacted by materials fatigue properties, namely fatigue crack propagation behaviour and fatigue limit obtained on S-N curves. It will also present a review of the most important microstructural features of 13%Cr- 4%Ni stainless steels used for runner manufacturing and will review how they influence fatigue properties in an effort to bridge the gap between metallurgy and turbine runners reliability.

  11. Investigations of unsteady flow in the draft tube of the pump- turbine model using laser Doppler anemometry

    Science.gov (United States)

    Kaznacheev, A.; Kuznetsov, I.

    2014-03-01

    The measurements and video observation of unsteady flow in the draft tube cone of the pump-turbine model were conducted in the Laboratory of Water Turbines, property of OJSC "Power machines" - "LMZ". The prototype head was about 250 m. The experiments were performed for the turbine mode of operation. Measurements were taken for the unit speed value n11 corresponding to rated head in the generating mode of operation, for a wide range of guide vanes openings at loads ranging from partial to maximum value. The researches of the velocity field in function of the Thoma number were carried out in some operating conditions. The mean values and RMS deviations of the velocity components were the results of laser measurements. The curves of the intensity of the vortex versus the guide vane opening and the Thoma number were plotted. The energy velocity spectra were presented for the points at which the most pronounced frequency precession of the helical axial vortex was observed. Video recording and laser Doppler anemometry were made in the operating conditions of the developed cavitation. Based on the results of video observations and energy spectra obtained via LDA, vortex frequencies were determined i.e. the frequencies of the vortex precession under the runner in the draft tube cone.

  12. HydroHillChart – Francis module. Software used to Calculate the Hill Chart of the Francis Hydraulic Turbines

    Directory of Open Access Journals (Sweden)

    Dorian Nedelcu

    2015-07-01

    Full Text Available The paper presents the Hydro Hill Chart - Francis module application, used to calculate the hill chart of the Pelton, Francis and Kaplan hydraulic turbine models, by processing the data measured on the stand. After describing the interface and menu, the input data is graphically presented and the universal characteristic for measuring scenarios ao=const. and n11=const is calculated. Finally, the two calculated hill charts are compared through a graphical superimposition of the isolines.

  13. Degradation of Phosphate Ester Hydraulic Fluid in Power Station Turbines Investigated by a Three-Magnet Unilateral Magnet Array

    Directory of Open Access Journals (Sweden)

    Pan Guo

    2014-04-01

    Full Text Available A three-magnet array unilateral NMR sensor with a homogeneous sensitive spot was employed for assessing aging of the turbine oils used in two different power stations. The Carr-Purcell-Meiboom-Gill (CPMG sequence and Inversion Recovery-prepared CPMG were employed for measuring the 1H-NMR transverse and longitudinal relaxation times of turbine oils with different service status. Two signal components with different lifetimes were obtained by processing the transverse relaxation curves with a numeric program based on the Inverse Laplace Transformation. The long lifetime components of the transverse relaxation time T2eff and longitudinal relaxation time T1 were chosen to monitor the hydraulic fluid aging. The results demonstrate that an increase of the service time of the turbine oils clearly results in a decrease of T2eff,long and T1,long. This indicates that the T2eff,long and T1,long relaxation times, obtained from the unilateral magnetic resonance measurements, can be applied as indices for degradation of the hydraulic fluid in power station turbines.

  14. Hydraulic development of high specific-speed pump-turbines by means of an inverse design method, numerical flow-simulation (CFD) and model testing

    Science.gov (United States)

    Kerschberger, P.; Gehrer, A.

    2010-08-01

    In recent years an increased interest in pump-turbines has been recognized in the market. The rapid availability of pumped storage schemes and the benefits to the power system by peak lopping, providing reserve and rapid response for frequency control are becoming of growing advantage. In that context it is requested to develop pump-turbines that reliably stand dynamic operation modes, fast changes of the discharge rate by adjusting the variable diffuser vanes as well as fast changes from pump to turbine operation. Within the present study various flow patterns linked to the operation of a pump-turbine system are discussed. In that context pump and turbine mode are presented separately and different load cases at both operation modes are shown. In order to achieve modern, competitive pump-turbine designs it is further explained which design challenges should be considered during the geometry definition of a pump-turbine impeller. Within the present study a runner-blade profile for a low head pump-turbine has been developed. For the initial hydraulic runner-blade design, an inverse design method has been applied. Within this design procedure, a first blade geometry is generated by imposing the pressure loading-distribution and by means of an inverse 3D potential-flow-solution. The hydraulic behavior of both, pump-mode and turbine-mode is then evaluated by solving the full 3D Navier-Stokes equations in combination with a robust turbulence model. Based on this initial design the blade profile has been further optimized and redesigned considering various hydraulic pump-turbine requirements. Finally, the progress in hydraulic design is demonstrated by model test results which show a significant improvement in hydraulic performance compared to an existing reference design.

  15. Hydraulic development of high specific-speed pump-turbines by means of an inverse design method, numerical flow-simulation (CFD) and model testing

    Energy Technology Data Exchange (ETDEWEB)

    Kerschberger, P; Gehrer, A, E-mail: peter.kerschberger@andritz.co [Andritz Hydro Graz A-8045 Graz, Reichsstrasse 68B (Austria)

    2010-08-15

    In recent years an increased interest in pump-turbines has been recognized in the market. The rapid availability of pumped storage schemes and the benefits to the power system by peak lopping, providing reserve and rapid response for frequency control are becoming of growing advantage. In that context it is requested to develop pump-turbines that reliably stand dynamic operation modes, fast changes of the discharge rate by adjusting the variable diffuser vanes as well as fast changes from pump to turbine operation. Within the present study various flow patterns linked to the operation of a pump-turbine system are discussed. In that context pump and turbine mode are presented separately and different load cases at both operation modes are shown. In order to achieve modern, competitive pump-turbine designs it is further explained which design challenges should be considered during the geometry definition of a pump-turbine impeller. Within the present study a runner-blade profile for a low head pump-turbine has been developed. For the initial hydraulic runner-blade design, an inverse design method has been applied. Within this design procedure, a first blade geometry is generated by imposing the pressure loading-distribution and by means of an inverse 3D potential-flow-solution. The hydraulic behavior of both, pump-mode and turbine-mode is then evaluated by solving the full 3D Navier-Stokes equations in combination with a robust turbulence model. Based on this initial design the blade profile has been further optimized and redesigned considering various hydraulic pump-turbine requirements. Finally, the progress in hydraulic design is demonstrated by model test results which show a significant improvement in hydraulic performance compared to an existing reference design.

  16. Exposure to airborne organophosphates originating from hydraulic and turbine oils among aviation technicians and loaders.

    Science.gov (United States)

    Solbu, Kasper; Daae, Hanne Line; Thorud, Syvert; Ellingsen, Dag Gunnar; Lundanes, Elsa; Molander, Paal

    2010-12-01

    This study describes the potential for occupational exposure to organophosphates (OPs) originating from turbine and hydraulic oils, among ground personnel within the aviation industry. The OPs tri-n-butyl phosphate (TnBP), dibutyl phenyl phosphate (DBPP), triphenyl phosphate (TPP) and tricresyl phosphate (TCP) have been emphasized due to their use in such oils. Oil aerosol/vapor and total volatile organic compounds (tVOCs) in air were also determined. In total, 228 and 182 OPs and oil aerosol/vapor samples from technician and loader work tasks during work on 42 and 21 aircrafts, respectively, were collected in pairs. In general, the measured exposure levels were below the limit of quantification (LOQ) for 84%/98% (oil aerosol) and 82%/90% (TCP) of the samples collected during technician/loader work tasks. The air concentration ranges for all samples related to technician work were work the corresponding air concentration ranges were jet engine aircrafts. Investigation of provoked exposure situations revealed substantially higher exposure levels of the contaminants when compared to regular conditions, illustrated by oil aerosol and TCP concentrations up to 240 and 31 mg m(-3), respectively. The tailored OP and the general oil aerosol sampling methods were compared, displaying the advantages of tailored OP sampling for such exposure assessments.

  17. Exposure of aircraft maintenance technicians to organophosphates from hydraulic fluids and turbine oils: a pilot study.

    Science.gov (United States)

    Schindler, Birgit Karin; Koslitz, Stephan; Weiss, Tobias; Broding, Horst Christoph; Brüning, Thomas; Bünger, Jürgen

    2014-01-01

    Hydraulic fluids and turbine oils contain organophosphates like tricresyl phosphate isomers, triphenyl phosphate and tributyl phosphate from very small up to high percentages. The aim of this pilot study was to determine if aircraft maintenance technicians are exposed to relevant amounts of organophosphates. Dialkyl and diaryl phosphate metabolites of seven organophosphates were quantified in pre- and post-shift spot urine samples of technicians (N=5) by GC-MS/MS after solid phase extraction and derivatization. Pre- and post shift values of tributyl phosphate metabolites (dibutyl phosphate (DBP): median pre-shift: 12.5 μg/L, post-shift: 23.5 μg/L) and triphenyl phosphate metabolites (diphenyl phosphate (DPP): median pre-shift: 2.9 μg/L, post-shift: 3.5 μg/L) were statistically higher than in a control group from the general population (median DBP: aircraft maintenance technicians were occupationally exposed to tributyl and triphenyl phosphate but not to tricresyl phosphate, tri-(2-chloroethyl)- and tri-(2-chloropropyl)-phosphate. Further studies are necessary to collect information on sources, routes of uptake and varying exposures during different work tasks, evaluate possible health effects and to set up appropriate protective measures. Copyright © 2013 Elsevier GmbH. All rights reserved.

  18. A study of swirl flow in draft tubes

    Energy Technology Data Exchange (ETDEWEB)

    Dahlhaug, Ole Gunnar

    1997-12-31

    This thesis presents measurements performed inside conical diffuser and bend, draft tubes of model hydro turbines, and draft tube of a prototype hydro turbine. Experimental results for swirling flow in conical diffuser and bend are presented in three different geometries. The axial velocity decreases at the centre of the tube at high swirl numbers because of an axial pressure gradient set up by the downstream frictional damping of the tangential velocities and the pressure increase downstream of the diffuser. Analytical models of the tangential velocity profiles are found and the radial pressure distribution calculated. Good correlation to the measured pressure distribution was achieved. Diffuser efficiency was calculated based on the equations for velocity and pressure profiles, which gave a qualified estimate of the diffuser hydraulic performance. The calculation shows that the bend reduces the efficiency by more than 30%. For a straight tube followed by a diffuser, numerical calculations were done, using K{epsilon}, RNG and RSM turbulence models for all measured swirl numbers. The K{epsilon} model gave best results for the forced vortex profile at low swirl numbers, while the RSM model gave best results at high swirl number. The turbulent kinetic energy at high swirl numbers gave the largest difference between the calculated and the measured values. Measurements on draft tubes in model turbines show the importance of good draft tube design. Prototype measurements on a Francis turbine show how the outlet draft tube flow should be measured for prototype draft tube evaluation. 54 refs., 118 figs., 2 tabs.

  19. Design optimization of axial flow hydraulic turbine runner: Part I - an improved Q3D inverse method

    Science.gov (United States)

    Peng, Guoyi; Cao, Shuliang; Ishizuka, Masaru; Hayama, Shinji

    2002-06-01

    With the aim of constructing a comprehensive design optimization procedure of axial flow hydraulic turbine, an improved quasi-three-dimensional inverse method has been proposed from the viewpoint of system and a set of rotational flow governing equations as well as a blade geometry design equation has been derived. The computation domain is firstly taken from the inlet of guide vane to the far outlet of runner blade in the inverse method and flows in different regions are solved simultaneously. So the influence of wicket gate parameters on the runner blade design can be considered and the difficulty to define the flow condition at the runner blade inlet is surmounted. As a pre-computation of initial blade design on S2m surface is newly adopted, the iteration of S1 and S2m surfaces has been reduced greatly and the convergence of inverse computation has been improved. The present model has been applied to the inverse computation of a Kaplan turbine runner. Experimental results and the direct flow analysis have proved the validation of inverse computation. Numerical investigations show that a proper enlargement of guide vane distribution diameter is advantageous to improve the performance of axial hydraulic turbine runner. Copyright

  20. The numerical research of runner cavitation effects on spiral vortex rope in draft tube of Francis turbine

    Science.gov (United States)

    Yang, J.; Zhou, L. J.; Wang, Z. W.

    2015-12-01

    The spiral cavitating vortex rope developed in the draft tube of Francis turbine under part load condition maybe causes serious pressure fluctuations and power swings, which threatens the safety and stability of the power plant operations. Many works have been performed to explore the mechanisms of it. In this paper, the runner cavitation and spiral vortex rope under part load conditions were studied to investigate the relations of runner cavitation and the spiral vortex rope. The results proved the existence of obvious interaction between them. The swirl flow at the runner outlet plays an important role in the formation of vortex rope. And the periodic procession of vortex rope in turn intensifies the uneven pressure distribution near the runner outlet and causes the asymmetric cavitation on the runner blades, which then give rise to the modification of swirl flow at the runner blades and thereby affects the characteristics of vortex rope.

  1. Calculations of an unsteady flow through a hydraulic axial turbine with reference to interaction between stator and rotor; Instationaere Berechnung einer hydraulischen Axialturbine unter Beruecksichtigung der Interaktion zwischen Leit- und Laufrad

    Energy Technology Data Exchange (ETDEWEB)

    Bauer, C.

    2001-07-01

    The objective of this study is the development of an algorithm enabling coupling of nonmatching computational grids to carry out calculations of an unsteady flow through a hydraulic axial turbine with reference to interaction between stator and rotor. The algorithm should offer the possibility to operate the computational grids in a fixed position relative to each other as well as in relative movement. Furthermore, the calculation should be feasible with separate grids in parallel and different frames of reference. Employing selected examples this method is investigated in detail the results are compared with performed measurements. The unsteady numerical examination of the coupling process is carried out with different examples; especially the interaction effects between stator, rotor and draft tube of a hydraulic axial turbine are observed. In addition, the effect of tip clearance of the mean flow is described. Extensive model tests using the axial turbine have been performed at the Institute for Fluid Mechanics and Hydraulic Machinery, IHS. Flow time dependent velocities have been measured with a Laser Doppler Velocimeter placed at midspan of the blading. Periodical changes in static pressure have been recorded at different locations near the wall of the turbine casing. These measurements serve as reference for the comparison with results derived from the unsteady calculations. The confrontation of the time-dependent fluctuations of the flow quantities and the calculation of the efficiency of the turbine resulting from the simulation results allow a comparison in absolute terms. (orig.) [German] Fuer die instationaere Berechnung einer hydraulischen Axialturbine unter Beruecksichtigung der Interaktion zwischen Leit- und Laufrad wird ein Algorithmus zum Koppeln von nichtpassenden Berechnungsnetzen entwickelt. Diese Berechnungsnetze sollen zueinander ortsfest sein oder auch eine Relativbewegung zueinander haben koennen. Sie sollen ausserdem und in unterschiedlichen

  2. Space and time reconstruction of the precessing vortex core in Francis turbine draft tube by 2D-PIV

    Science.gov (United States)

    Favrel, A.; Müller, A.; Landry, C.; Yamamoto, K.; Avellan, F.

    2016-11-01

    Francis turbines operating at part load conditions experience the development of a high swirling flow at the runner outlet, giving rise to the development of a cavitation precessing vortex rope in the draft tube. The latter acts as an excitation source for the hydro-mechanical system and may jeopardize the system stability if resonance conditions are met. Although many aspects of the part load issue have been widely studied in the past, the accurate stability analysis of hydro-power plants remains challenging. A better understanding of the vortex rope dynamics in a wide range of operating conditions is an important step towards the prediction and the transposition of the pressure fluctuations from reduced to prototype scale. For this purpose, an investigation of the flow velocity fields at the outlet of a Francis turbine reduced scale physical model operating at part load conditions is performed by means of 2D-PIV in three different horizontal cross-sections of the draft tube cone. The measurements are performed in cavitation-free conditions for three values of discharge factor, comprised between 60% and 81% of the value at the Best Efficiency Point. The present article describes a detailed methodology to properly recover the evolution of the velocity fields during one precession cycle by means of phase averaging. The vortex circulation is computed and the vortex trajectory over one typical precession period is finally recovered for each operating point. It is notably shown that below a given value of the discharge factor, the vortex dynamics abruptly change and loose its periodicity and coherence.

  3. Unsteady flow analysis of an axial flow hydraulic turbine with collection devices comprising a different number of blades

    Science.gov (United States)

    Nishi, Yasuyuki; Inagaki, Terumi; Li, Yanrong; Hirama, Sou; Kikuchi, Norio

    2015-06-01

    We previously devised a new type of portable hydraulic turbine that uses the kinetic energy of an open-channel flow to improve output power by catching and accelerating the flow. The turbine contains an axial flow runner with an appended collection device and a diffuser section that is not axisymmetric. The objective of this study is to determine how interference between the collection device and the runner influences performance characteristics of the turbine. We investigated the performance characteristics of the turbine and flow field for different numbers of blades during both unsteady and steady flow. During an unsteady flow, the maximum values of power coefficients for three and two blades increased by approximately 8.8% and 21.4%, respectively, compared to those during a steady flow. For the three-blade runner, the power coefficient showed small fluctuations, but for the two-blade runner, the power coefficient showed large fluctuations. These fluctuations in the power coefficient are attributed to fluctuations in the loading coefficient, which were generated by interference between the runner and the diffuser section of the collection device.

  4. Stability analysis of the governor-turbine-hydraulic system of pumped storage plant during small load variation

    Science.gov (United States)

    Yu, X. D.; Zhang, J.; Chen, S.; Liu, J. C.

    2016-11-01

    Governor-turbine-hydraulic (GTH) system is complex because of strong couplings of hydraulic, mechanical and electrical system. This paper presents a convenient mathematical model of the GTH system of a pumped storage plant (PSP) during small load variation. By using state space method and eigenvalue method, the stability of the GTH system is analyzed and the stable regions of the system can be given as well, which would help to optimize system design or the turning of governors. The proposed method is used to analyze the stability of a practical pumped storage plant during small load variation, which is also simulated in time domain on the basis of characteristics method. The theoretical analysis is in good agreement with numerical simulations. Based on the proposed method, the effect of the system parameters and operating conditions on the stable regions is investigated. These results are useful for the design of the GTH system of pumped storage plants.

  5. Operation of a T63 Turbine Engine Using F24 Contaminated Skydrol 5 Hydraulic Fluid

    Science.gov (United States)

    2016-09-01

    T. Edwards (AFRL/RQTF) Engine Mechanical Systems Branch (AFRL/RQTM) Fuels and Energy Branch (AFRL/RQTF) Turbine Engine Division Chris D...MALDONADO, Branch Chief Program Manager Fuels and Energy Branch Fuels and Energy Branch Turbine Engine Division Turbine Engine Division Aerospace...PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION REPORT NUMBEREngine Mechanical Systems Branch (AFRL/RQTM) Fuels and Energy

  6. Nonlinear dynamic analysis and robust controller design for Francis hydraulic turbine regulating system with a straight-tube surge tank

    Science.gov (United States)

    Liang, Ji; Yuan, Xiaohui; Yuan, Yanbin; Chen, Zhihuan; Li, Yuanzheng

    2017-02-01

    The safety and stability of hydraulic turbine regulating system (HTRS) in hydropower plants become increasingly important since the rapid development and the broad application of hydro energy technology. In this paper, a novel mathematical model of Francis hydraulic turbine regulating system with a straight-tube surge tank based on a few state-space equations is introduced to study the dynamic behaviors of the HTRS system, where the existence of possible unstable oscillations of this model is studied extensively and presented in the forms of the bifurcation diagram, time waveform plot, phase trajectories, and power spectrum. To eliminate these undesirable behaviors, a specified fuzzy sliding mode controller is designed. In this hybrid controller, the sliding mode control law makes full use of the proposed model to guarantee the robust control in the presence of system uncertainties, while the fuzzy system is applied to approximate the proper gains of the switching control in sliding mode technique to reduce the chattering effect, and particle swarm optimization is developed to search the optimal gains of the controller. Numerical simulations are presented to verify the effectiveness of the designed controller, and the results show that the performances of the nonlinear HTRS system assisted with the proposed controller is much better than that with the commonly used optimal PID controller.

  7. Transient pressure measurements at part load operating condition of a high head model Francis turbine

    Indian Academy of Sciences (India)

    RAHUL GOYAL; CHIRAG TRIVEDI; B K GANDHI; MICHEL J CERVANTES; OLE G DAHLHAUG

    2016-11-01

    Hydraulic turbines are operating at part load conditions depending on availability of hydraulic energy or to meet the grid requirements. The turbine experiences more fatigue during the part load operating conditions due to flow phenomena such as vortex breakdown in the draft tube and flow instability in the runner.The present paper focuses on the investigation of a high head model Francis turbine operating at 50% load.Pressure measurements have been carried out experimentally on a model Francis turbine. Total six pressure sensors were mounted inside the turbine and other two pressure sensors were mounted at the turbine inlet pipe. It is observed that the turbine experiences significant pressure fluctuations at the vaneless space and the runner.Moreover, a standing wave is observed between the pressure tank outlet and the turbine inlet. Analysis of the data acquired by the pressure sensors mounted in the draft tube showed the presence of vortex breakdown corotating with the runner. The detailed analysis showed the rotating and plunging components of the vortex breakdown. The influence of the rotating component was observed in the entire hydraulic circuit includingdistributor and turbine inlet but not the plunging one.

  8. Effect of Entrance Section of Hydraulic Turbine on Hydraulic Loss and Velocity Torque%液力透平进口截面对水力损失及速度矩的影响

    Institute of Scientific and Technical Information of China (English)

    史广泰; 杨军虎

    2015-01-01

    The diffusion tube of volute outlet becomes the shrinkable tube of hydraulic turbine when centrifugal pump acts as hy-draulic turbine. The energy loss between the diffusion tube and shrinkable tube is different, as well as the effect of the shrinkable tube of different shrinkage rate on hydraulic loss and velocity torque of hydraulic turbine. In order to reduce hydraulic loss of each the flow components in hydraulic turbine and improve the efficiency of hydraulic turbine, the base circle of volute of a single stage hydraulic tur-bine is regarded as a loop line under the different entrance section. The tangential velocity along the loop line is calculated. Corre-spondingly, the velocity torque is work out with the radius of base circle. Four monitoring points in the loop are set up. At the points, the velocity torque varies with the flow rate. The varieties are analyzed with ANSYS software and effect of the entrance section of volute on hydraulic loss of each the flow components is studied. The results show that the optimum entrance diameter of volute of hydraulic turbine is equal to 65 mm. Compared to the original design, the efficiency of improved hydraulic turbine increases by 1. 83%. Fluctu-ant amplitude of velocity torque of impeller entrance is minimum in the volute entrance. With increasing volute entrance diameter, ve-locity torque of impeller entrance and the hydraulic loss is gradually decreased. Meanwhile the shrinkage rate of shrinkable tube in vo-lute gradually increases.%为减小液力透平各过流部件的水力损失,提高液力透平的效率,在不同蜗壳进口截面下将一单级液力透平蜗壳的基圆作为一环线,计算沿该环线的切向速度值,根据基圆半径计算出相应的速度矩,并在环线上分别设置4个监测点,利用ANSYS软件计算监测点处的速度矩随流量的变化规律,最后研究蜗壳进口截面对各过流部件水力损失的影响。结果表明:所选液力透平的

  9. Repair of Kaplan turbine shaft sealing based on evaluation of hydraulic conditions

    Science.gov (United States)

    Lakatos, K.; Szamosi, Z.; Bereczkei, S.

    2012-11-01

    This paper has been written to call attention to a potential danger what may occur in Kaplan turbine refurbishments. In Tiszalök hydropower plant, Hungary, the shaft sealing of the refurbished turbine was damaged. In searching for the reasons it was assumed that due to increased internal velocities in the turbine, the pressure at the hub clearance became lower than the atmospheric pressure, and therefore the sealing, which always operated satisfactorily before the refurbishment, had uncertain water supply, dry-running occurred, and after some time the sealing was burnt. First the flow conditions in the turbine and the pressure at the hub clearance were calculated by a one-dimensional flow model. Later this was refined by a two-dimensional approach. The above conclusion was also justified by the data acquisition system and by observing the operation of the small dewatering pump. When the turbine operated at a larger discharge than a certain limit value, then the dewatering pump remained standstill, indicating that no water passed through the shaft sealing. External water supply was then applied, and after this the turbine operated all right.

  10. A finite element analysis of a large thrust elastic metal-plastics bearing bush for a hydraulic turbine

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Presents the study on the pressure and friction fields of the lubricant film on the surface of a large thrust elastic metal-plastic bearing bush in a hydraulic turbine using the method of finite element analysis and the stress and displacement fields in the vertical direction of the bush surface obtained to provide a theoretical basis for the design of contour lines and investigation into the causes for destruction of bushes, and concludes with test results that 1 ) the stress on the surface of the bush is not uniform; 2) a tension stress tends to occur near the oil ingress and egress edges but it is minor; 3) the biggest displacement in the vertical direction appears where x = 84 and Y = 1 153 and has a value of 0.022 mm; 4) the deformation of the bearing bush is harmful to the maintenance of lubricant film.

  11. Fundamental investigations for a OWC-tidal power plant with a conventional hydraulic turbine; Basisuntersuchungen fuer ein OWC-Wellenenergiekraftwerk mit konventioneller Hydroturbine. Abschlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Graw, K.U.; Lengricht, J.; Schimmels, S.

    2001-07-01

    At the present the OWC-tidal power plant is the most forward-looking way of converting tidal energy into usable electric power. Current research works focus on the dimensions of the structures in terms of occurring loads, the minimisation of hydraulic losses and the development of new turbine-generator types. The development of all air-turbine systems, which have been investigated so far, is considered as problematic and the commercialisation is likely to be a hindrance. Based on international research results an inventory tata of available hydraulic turbines is supposed to be gathered and fundamental investigations are supposed to check, if the application of conventional hydraulic turbines are an energetic progress in the OWC-tidal power plant. In order to considerably increase the efficiency compared to current developments, small-scale investigations at a physical model are supposed to show if and how a hydraulic turbine can be realised in a OWC-tidal power plant and how a concept of flow rectification as well as a flow-optimised form of inflow and outflow chambers can be achieved. (orig.) [German] Das OWC-Wellenenergiekraftwerk ist der zur Zeit zukunftstraechtigste Typ zur Umwandlung von Wellenenergie in nutzbaren Strom. Die laufenden Forschungsarbeiten beschaeftigen sich insbesondere mit der Dimensionierung der Strukturen hinsichtlich auftretender Belastungen, der Minimierung der hydraulischen Verluste und der Entwicklung von neuartigen Turbinen-Generatoren-Typen. Die Entwicklung aller bisher untersuchten Luftturbinensysteme wird jedoch als problematisch und die Kommerzialisierung hindernd angesehen. Aufbauend auf den internationalen Forschungsergebnissen sollen eine Bestandaufnahme der verfuegbaren Hydroturbinen durchgefuehrt und mit Baisuntersuchungen geprueft werden, ob ein Einsatz konventionaller Hydroturbinen im OWC-Wellenenergiekraftwerk eine energetische Weiterentwicklung darstellen kann. Um den Wirkungsgrad gegenueber derzeitigen Entwicklungen

  12. Studies of field test procedures in hydraulic turbines for SHP; Estudos de procedimentos de ensaios de campo em turbinas hidraulicas para PCH

    Energy Technology Data Exchange (ETDEWEB)

    Justino, Lucimary Aparecida

    2006-07-01

    A supply contract of equipment for Small Hydro Power, contain the power and turbine efficiency guarantees and can contain adds guarantees referring to a rotation and pressure variation, runaway speed and cavitations test. To the determination about the hydraulics turbines performance for contractual guarantees are realized the field acceptance test, that are methods quite a lot used for enterprises like tools to prove the contractual guarantees in substitution to model test, that showed a cost extremely high. In the field acceptance test are measures of some values that added to the others, possibility obtain the turbine efficiency. In the small hydro power, the turbine efficiency represents the hydraulic power percentage that is subject to be transformed in electrical power. In the turbine purchase, the manufacturer has to guarantee the efficiency specified if it is become down to expected, the damages are enormous, then the importance to exist precise methods and reliable for your measurement. The method accuracy of the discharge measurement that has, between another problems, the calibration and installation, that influence hard the value of the efficiency obtained. This work shows the different methodologies about discharge measurement in hydraulic turbines, that can be apply in Small Hydro Power field tests and shows too the procedures used that in specifics cases of small hydro, without quality damage, the site tests could be executed the form that the guarantees will be approve with compatible cots with the investment done. As an example for said above, are show two cases in small hydro where did realized field acceptance tests to assure the contractual guarantees. (author)

  13. Prediction of pressure fluctuation of a hydraulic turbine at no-load condition

    Science.gov (United States)

    Chen, T. J.; Wu, X. J.; Liu, J. T.; Wu, Y. L.

    2015-01-01

    In order to study characteristics of pressure fluctuation of a turbine during the starting period, a turbine with guide vanes device at no-load condition was investigated using RNG k-epsilon turbulence model. The inner flow distribution and pressure fluctuation characteristics were analyzed. Results show that the pressure fluctuations in the region between the runner and guide vanes are different around the runner inlet. The dominant frequency of pressure fluctuation in the vaneless space close to the casing outlet is the blade passing frequency, while the dominant frequency at the rest region is the twice of the blade passing frequency. The increase of amplitude of pressure fluctuation close to the casing outlet can be attribute to the large scale stall at suction side of the runner inlet.

  14. Dynamic Stresses in a Francis Turbine Runner Based on Fluid-Structure Interaction Analysis

    Institute of Scientific and Technical Information of China (English)

    XIAO Ruofu; WANG Zhengwei; LUO Yongyao

    2008-01-01

    Fatigue and cracks have occurred in many large hydraulic turbines after they were put into production.The cracks are thought to be due to dynamic stresses in the runner caused by hydraulic forces.Computational fluid dynamics(CFD)simulations that included the spiral case,stay vane,guide vane,runner vane.and draft tube were run at various operating points to analyze the pressure distribution on the runner surface and the stress characteristics in the runner due to the fluid-structure interactions(FSl).The dynamic stresses in the Francis turbine runner at the most dangerous operating point were then analyzed.The results show that the dynamic stresses caused by the hydraulic forces during off-design operating points are one of the main reasons for the fatigue and cracks in the runner blade.The results can be used to optimize the runner and to analyze other critical components in the hydraulic turbine.

  15. Hydraulic Turbine Cavitation Analysis Based on the Cordon Method%基于Cordon法的水轮机抗空蚀研究

    Institute of Scientific and Technical Information of China (English)

    桂家章; 梁兴

    2013-01-01

    水轮机空蚀与运行工况密切联系,其影响因素较多。为此针对国内某电站,采用cordon法预估电站空蚀破坏,并与电站实际空蚀破坏比较,进而分解cordon法,从水轮机转轮材料、吸出高度以及负荷利用系数等三方面,分析诱发水轮机空蚀的关键因素,提出相应抗空蚀措施,总结水轮机空蚀研究思路,为水电站设计、安全经济运行及技术改造提供具有实用价值的借鉴意见。%The hydraulic turbine cavitation is related with power station operation, and it is influenced by much reasons. Therefore, by comparison with actual cavitation damage, the estimate value which calculated by the cordon method is precise. Based on the cordon method, the cause of hydraulic turbine cavitation are analyzed from the aspects of runner material, suction height and load utilization coefficient, and the anti-measures of hydraulic turbine cavitation is researched. It is valuable for the safe and economic operation, and also useful for technical reformation in hydroelectric power station.

  16. The Design Method of Axial Flow Runners Focusing on Axial Flow Velocity Uniformization and Its Application to an Ultra-Small Axial Flow Hydraulic Turbine

    Directory of Open Access Journals (Sweden)

    Yasuyuki Nishi

    2016-01-01

    Full Text Available We proposed a portable and ultra-small axial flow hydraulic turbine that can generate electric power comparatively easily using the low head of open channels such as existing pipe conduits or small rivers. In addition, we proposed a simple design method for axial flow runners in combination with the conventional one-dimensional design method and the design method of axial flow velocity uniformization, with the support of three-dimensional flow analysis. Applying our design method to the runner of an ultra-small axial flow hydraulic turbine, the performance and internal flow of the designed runner were investigated using CFD analysis and experiment (performance test and PIV measurement. As a result, the runners designed with our design method were significantly improved in turbine efficiency compared to the original runner. Specifically, in the experiment, a new design of the runner achieved a turbine efficiency of 0.768. This reason was that the axial component of absolute velocity of the new design of the runner was relatively uniform at the runner outlet in comparison with that of the original runner, and as a result, the negative rotational flow was improved. Thus, the validity of our design method has been verified.

  17. Sloshing motion dynamics of a free surface in the draft tube cone of a Francis turbine operating in synchronous condenser mode

    Science.gov (United States)

    Vagnoni, Elena; Andolfatto, Loïc; Favrel, Arthur; Avellan, François

    2016-11-01

    The penetration of the electrical grid by intermittent renewable energy sources induces grid fluctuations which must be compensated in order to guarantee the stability of the grid. Hydropower plants can supply reactive power to ensure the grid stabilization by operating in condenser mode. In this operating mode, the turbine operates with the tail water depressed to let the runner spin in air to reduce the power consumption. Pressurized air is injected in the draft tube cone to maintain the water level below the runner and this induces air-water interaction phenomena which cause important power losses. Flow visualization and pressure fluctuation measurements are performed in a reduced scale physical model of a Francis turbine operating in condenser mode to investigate the dynamics of the air-water interaction in the draft tube cone which causes the sloshing motion of the free surface. An image post-processing method is developed, enabling a quantitative description of the sloshing motion. The latter depends on the Froude number. By increasing the value of the Froude number, the amplitude of the sloshing motion decreases, as well as the amplitude of the pressure fluctuations. The frequency of the sloshing motion corresponds to the first natural frequency of the water volume.

  18. Unsteady hydraulic simulation of the cavitating part load vortex rope in Francis turbines

    Science.gov (United States)

    Brammer, J.; Segoufin, C.; Duparchy, F.; Lowys, P. Y.; Favrel, A.; Avellan, F.

    2017-04-01

    For Francis turbines at part load operation a helical vortex rope is formed due to the swirling nature of the flow exiting the runner. This vortex creates pressure fluctuations which can lead to power swings, and the unsteady loading can lead to fatigue damage of the runner. In the case that the vortex rope cavitates there is the additional risk that hydro-acoustic resonance can occur. It is therefore important to be able to accurately simulate this phenomenon to address these issues. In this paper an unsteady, multi-phase CFD model was used to simulate two part-load operating points, for two different cavitation conditions. The simulation results were validated with test-rig data, and showed very good agreement. These results also served as an input for FEA calculations and fatigue analysis, which are presented in a separate study.

  19. Numerical prediction for effects of guide vane blade numbers on hydraulic turbine performance

    Science.gov (United States)

    Shi, F. X.; Yang, J. H.; Wang, X. H.; Li, C. E.

    2013-12-01

    Using unstructured hybrid grid technique and SIMPLEC algorithm,a general three-dimensional simulation based on Reynolds Navier- stocks in multiple reference frames and the RNG k-ε turbulence model, is presented for the reversal centrifugal pump (PAT) with a guide vane. Four different schemes are designed by a change of the number of guide vane blade of PAT. The inner flow field in every scheme is simulated, accordingly, the external characteristic and static pressure distribution in flow field in PAT is obtained. The results obtained show that the efficiency can be improved by adding a guide vane for the PAT, besides, the high efficiency area is wider than before. Guide blade numbers changed, external characteristics of turbine changed, and the external characteristic changed. The optimal value is existent for the guide vane blade number, which has a great impact on the distribution of pressure in runner inlet.

  20. Simulations of the vortex in the Dellenback abrupt expansion, resembling a hydro turbine draft tube operating at part-load

    Science.gov (United States)

    Nilsson, H.

    2012-11-01

    This work presents an OpenFOAM case-study, based on the experimental studies of the swirling flow in the abrupt expansion by Dellenback et al.[1]. The case yields similar flow conditions as those of a helical vortex rope in a hydro turbine draft tube working at part-load. The case-study is set up similar to the ERCOFTAC Conical Diffuser and Centrifugal Pump OpenFOAM case-studies [2,3], making all the files available and the results fully reproducable using OpenSource software. The mesh generation is done using m4 scripting and the OpenFOAM built-in blockMesh mesh generator. The swirling inlet boundary condition is specified as an axi-symmetric profile. The outlet boundary condition uses the zeroGradient condition for all variables except for the pressure, which uses the fixed mean value boundary condition. The wall static pressure is probed at a number of locations during the simulations, and post-processing of the time-averaged solution is done using the OpenFOAM sample utility. Gnuplot scripts are provided for plotting the results. The computational results are compared to one of the operating conditions studied by Dellenback, and measurements for all the experimentally studied operating conditions are available in the case-study. Results from five cases are here presented, based on the kEpsilon model, the kOmegaSST model, and a filtered version of the same kOmegaSST model, named kOmegaSSTF [4,5]. Two different inlet boundary conditions are evaluated. It is shown that kEpsilon and kOmegaSST give steady solutions, while kOmegaSSTF gives a highly unsteady solution. The time-averaged solution of the kOmegaSSTF model is much more accurate than the other models. The kEpsilon and kOmegaSST models are thus unable to accurately model the effect of the large-scale unsteadiness, while kOmegaSSTF resolves those scales and models only the smaller scales. The use of two different boundary conditions shows that the boundary conditions are more important than the choice between

  1. Numerical Simulation and Validation of a High Head Model Francis Turbine at Part Load Operating Condition

    Science.gov (United States)

    Goyal, Rahul; Trivedi, Chirag; Kumar Gandhi, Bhupendra; Cervantes, Michel J.

    2017-07-01

    Hydraulic turbines are operated over an extended operating range to meet the real time electricity demand. Turbines operated at part load have flow parameters not matching the designed ones. This results in unstable flow conditions in the runner and draft tube developing low frequency and high amplitude pressure pulsations. The unsteady pressure pulsations affect the dynamic stability of the turbine and cause additional fatigue. The work presented in this paper discusses the flow field investigation of a high head model Francis turbine at part load: 50% of the rated load. Numerical simulation of the complete turbine has been performed. Unsteady pressure pulsations in the vaneless space, runner, and draft tube are investigated and validated with available experimental data. Detailed analysis of the rotor stator interaction and draft tube flow field are performed and discussed. The analysis shows the presence of a rotating vortex rope in the draft tube at the frequency of 0.3 times of the runner rotational frequency. The frequency of the vortex rope precession, which causes severe fluctuations and vibrations in the draft tube, is predicted within 3.9% of the experimental measured value. The vortex rope results pressure pulsations propagating in the system whose frequency is also perceive in the runner and upstream the runner.

  2. Surrogate runner model for draft tube losses computation within a wide range of operating points

    Science.gov (United States)

    Susan-Resiga, R.; Muntean, S.; Ciocan, T.; de Colombel, T.; Leroy, P.

    2014-03-01

    We introduce a quasi two-dimensional (Q2D) methodology for assessing the swirling flow exiting the runner of hydraulic turbines at arbitrary operating points, within a wide operating range. The Q2D model does not need actual runner computations, and as a result it represents a surrogate runner model for a-priori assessment of the swirling flow ingested by the draft tube. The axial, radial and circumferential velocity components are computed on a conical section located immediately downstream the runner blades trailing edge, then used as inlet conditions for regular draft tube computations. The main advantage of our model is that it allows the determination of the draft tube losses within the intended turbine operating range in the early design stages of a new or refurbished runner, thus providing a robust and systematic methodology to meet the optimal requirements for the flow at the runner outlet.

  3. Statistical Safety Evaluation of BWR Turbine Trip Scenario Using Coupled Neutron Kinetics and Thermal Hydraulics Analysis Code SKETCH-INS/TRACE5.0

    Science.gov (United States)

    Ichikawa, Ryoko; Masuhara, Yasuhiro; Kasahara, Fumio

    The Best Estimate Plus Uncertainty (BEPU) method has been prepared for the regulatory cross-check analysis at Japan Nuclear Energy Safety Organization (JNES) on base of the three-dimensional neutron-kinetics/thermal- hydraulics coupled code SKETCH-INS/TRACE5.0. In the preparation, TRACE5.0 is verified against the large-scale thermal-hydraulic tests carried out with NUPEC facility. These tests were focused on the pressure drop of steam-liquid two phase flow and void fraction distribution. From the comparison of the experimental data with other codes (RELAP5/MOD3.3 and TRAC-BF1), TRACE5.0 was judged better than other codes. It was confirmed that TRACE5.0 has high reliability for thermal hydraulics behavior and are used as a best-estimate code for the statistical safety evaluation. Next, the coupled code SKETCH-INS/TRACE5.0 was applied to turbine trip tests performed at the Peach Bottom-2 BWR4 Plant. The turbine trip event shows the rapid power peak due to the voids collapse with the pressure increase. The analyzed peak value of core power is better simulated than the previous version SKETCH-INS/TRAC-BF1. And the statistical safety evaluation using SKETCH-INS/TRACE5.0 was applied to the loss of load transient for examining the influence of the choice of sampling method.

  4. Assessment of the Potential Impacts of Hydraulic Fracturing for Oil and Gas on Drinking Water Resources (External Review Draft)

    Science.gov (United States)

    This assessment provides a review and synthesis of available scientific literature and data to assess the potential for hydraulic fracturing for oil and gas to impact the quality or quantity of drinking water resources, and identifies factors affecting the frequency or severity o...

  5. 风轮机液压制动控制系统的研究%Research on Hydraulic Braking Control System of Wind Turbine

    Institute of Scientific and Technical Information of China (English)

    张文亭

    2015-01-01

    该文分析了风轮机常用的制动系统和控制系统,设计了基于紧急情况下的风轮机液压制动系统,并通过实验进行了测试,最后进行了紧急情况下的数据仿真研究,指出本制动器在不同最大设置压力和初始转速条件下的制动性能。%This paper analyses common braking system and control system in wind turbine, designs the hydraulic brake system of wind tur-bine based on emergency cases,and verified by experiment, also studies on the data simulation in case of emergency, points out the brake performance at different maximum set pressure and initial speed conditions.

  6. Evaluation of advanced hydraulic turbomachinery for underground pumped hydroelectric storage. Part 1. Single-stage regulated pump turbines for operating heads of 500 to 1000 m

    Energy Technology Data Exchange (ETDEWEB)

    Frigo, A.A.; Blomquist, C.A.; Degnan, J.R.

    1979-10-01

    High-head, large-capacity turbomachinery is needed for the concept of underground pumped hydroelectric storage to be technically and economically attractive. Single-stage, reversible, Francis-type pump turbines with adjustable wicket gates appear to offer the most economically attractive option for heads between about 500 and 1000 m. The feasibility of developing these types of machines for capacities up to 500 MW and operating heads up to 1000 m has been evaluated. Preliminary designs have been generated for six single-stage pump turbines. The designs are for capacities of 350 and 500 MW and for operating heads of 500, 750, and 1000 m. The report contains drawings of the machines along with material specifications and hydraulic performance data. Mechanical, hydraulic, and economic analyses indicate that these machines will behave according to the criteria used to design them and that they can be built at a reasonable cost. The stress and deflection responses of the 500-MW, 100-m-head pump turbine, determined by detailed finite element analysis techniques, give solid evidence of the integrity of the conceptual designs of the six units and indicate no unsolvable problems. Results of a life expectancy analysis of the wicket gates indicate that a near infinite life can be expected for these components when they are subjected to normal design loads. Efficiencies of 90.7 and 91.4% in the generating and pumping modes, respectively, can be expected for the 500-MW, 1000-m-head unit. Performances of the other five machines are comparable. The specific costs of the pump turbines in mid-1978 US dollars per kW vary from 19.2 to 11.8 over a head range of from 500 to 1000 m for the 500-MW machines and from 20.0 to 12.3 for the 350-MW machines.

  7. Experimental analysis of the vibration on the draft tube of a Francis hydraulic turbine during operation at different power levels

    Directory of Open Access Journals (Sweden)

    Fernando Casanova García

    2010-01-01

    Full Text Available En el tubo de aspiración de una turbina hidráulica de 95 MW operando a carga parcial se presentan fuertes vibraciones. Debido a la inestabilidad hidráulica dentro del tubo se presentan fallas frecuentes en elementos estructurales de la planta, principalmente cuando la máquina opera a carga parcial. En este trabajo se midieron las presiones dentro del tubo de aspiración y los esfuerzos en la pared externa del tubo de aspiración a varios niveles de potencia para identificar la potencia donde las condiciones son críticas para la estructura. También, se realizaron mediciones a carga parcial con inyección de aire sobre los alabes fijos y con alivio de presión en el caracol. Se encontró que la inyección de aire reduce efectivamente las vibraciones mientras que el alivio de presión en el caracol no produce ningún efecto útil.

  8. 液压传动风力发电机的恒转速控制%Constant Speed Control of Hydraulic Transmission Wind Turbine

    Institute of Scientific and Technical Information of China (English)

    魏列江; 王栋梁; 胡晓敏

    2013-01-01

    Aiming at the shortcomings of the traditional wind turbine generator,such as large size,heavy weight,high failure rate and much cost for maintenance,a kind of technologies employing hydraulic drive for wind power generation was introduced.A plan that could fulfill this hydraulic drive for wind power generation as a whole was discussed as well as the operation principle.On basis of this,by using hydraulic drive control technology,the speed-governing program which turned un-steady rotating speed input from wind turbine into steady input from electric generator and realization method were described mainly.Among this technical program,a flexible hydraulic transmission was in substitution for a rigid mechanical one and reduced mechanical failure rate of the machine set.The costs of manufacturing and maintenance are lowered.%针对传统风力发电机体积和质量大,故障率及维护成本高的缺点,介绍了利用液压传动的风力发电技术.论述液压传动的风力发电的总体方案及工作原理,在此基础上,重点阐述了利用液压传动控制技术,将风机不稳定转速的输入变为稳定的发电机输入的调速方案和实现方法.在该技术方案中,用液压柔性传动代替了机械刚性传动,减少了机组的机械故障率,降低了制造和维护成本.

  9. Experimental vibration level analysis of a Francis turbine

    Science.gov (United States)

    Bucur, D. M.; Dunca, G.; Cǎlinoiu, C.

    2012-11-01

    In this study the vibration level of a Francis turbine is investigated by experimental work in site. Measurements are carried out for different power output values, in order to highlight the influence of the operation regimes on the turbine behavior. The study focuses on the turbine shaft to identify the mechanical vibration sources and on the draft tube in order to identify the hydraulic vibration sources. Analyzing the vibration results, recommendations regarding the operation of the turbine, at partial load close to minimum values, in the middle of the operating domain or close to maximum values of electric power, can be made in order to keep relatively low levels of vibration. Finally, conclusions are drawn in order to present the real sources of the vibrations.

  10. 调压井水面面积对水轮机稳定运行的影响%Influence of Water Area of Surge Tank on Stable Operation of Hydraulic Turbine

    Institute of Scientific and Technical Information of China (English)

    黄顺礼

    2000-01-01

    利用汤姆计算调压井水位波动的方程,得到在这个波动过程中水轮机流量的振荡曲线,从而证明调压井水面面积的取值大小影响水轮机的稳定运行,当流量振荡严重时,水轮机就会发生振动。%Presents the oscillating curves for hydraulic turbine flow rate during fluctuation of surge tank water level obtained using Thoma equation, which proves that the effect of water area of surge tank on stable operation of hydraulic turbine is so that hydraulic turbine may vibrate when flow rate flucturates significantly.

  11. Secondary flow fields in Francis turbines. Mapping and analyzing dynamics in rotor-stator interaction and draft tube flow with novel methods

    Energy Technology Data Exchange (ETDEWEB)

    Finstad, Paal Henrik Enger

    2012-07-01

    Hydropower, and especially Francis turbines, for electricity production has a history of more than 100 years and has proved to be one of the most efficient ways of utilizing renewable energy for electricity production. Yet, there are several problems to be solved regarding producing and running cost effective, high efficient and durable turbines. Secondary flow fields are all unwanted flow patterns present in the turbine. The major fluctuating flow fields in Francis turbines are caused by rotor-stator interaction when the runner vane passes the guide vane wake and the swirling flow in the draft tube at off-design operation. Such flow fields have a negative effect in terms of causing losses, vibrations, noise or damage to the turbine structure. The flow through a Francis turbine, especially at off-design operation is not optimal, and is characterized by a dynamic and fluctuating flow pattern. It is difficult, but important to understand the behavior of the dynamics to better predict the negative effects of the fluctuating flows, and also in order to minimize or remove the unwanted effects by e.g. geometry modifying or flow control.This work aims to introduce new methods helping to obtain a deeper understanding on the dynamics present in wake flow and in rotor-stator interaction. It is investigated whether vortex generators, VGs, can have a positive effect on the wake with respect to rotor-stator interaction. Experimental TRPIV (Transient Particle Image Velocimetry) wake data recorded at 10 000 Samples/sec from a cylinder in a stream at 1-6 m/s and hydrofoils in a stream at 9 m/s are studied. Both plain hydrofoils, and hydrofoils where Vortex Generators, VGs, are mounted are used in the study. The Reynolds number is in the range of 1.2x104, 7.3x105. The velocity fields from both the cylinder and the hydrofoils are used as inlet boundary condition in a 2D CFD-case simulating rotor-stator interaction. The characteristic frequencies of the system are the vortex shedding

  12. Effects of Tidal Turbine Noise on Fish Hearing and Tissues - Draft Final Report - Environmental Effects of Marine and Hydrokinetic Energy

    Energy Technology Data Exchange (ETDEWEB)

    Halvorsen, Michele B.; Carlson, Thomas J.; Copping, Andrea E.

    2011-09-30

    Snohomish Public Utility District No.1 plans to deploy two 6 meter OpenHydro tidal turbines in Admiralty Inlet in Puget Sound, under a FERC pilot permitting process. Regulators and stakeholders have raised questions about the potential effect of noise from the turbines on marine life. Noise in the aquatic environment is known to be a stressor to many types of aquatic life, including marine mammals, fish and birds. Marine mammals and birds are exceptionally difficult to work with for technical and regulatory reasons. Fish have been used as surrogates for other aquatic organisms as they have similar auditory structures. This project was funded under the FY09 Funding Opportunity Announcement (FOA) to Snohomish PUD, in partnership with the University of Washington - Northwest National Marine Renewable Energy Center, the Sea Mammal Research Unit, and Pacific Northwest National Laboratory. The results of this study will inform the larger research project outcomes. Proposed tidal turbine deployments in coastal waters are likely to propagate noise into nearby waters, potentially causing stress to native organisms. For this set of experiments, juvenile Chinook salmon (Oncorhynchus tshawytscha) were used as the experimental model. Plans exist for prototype tidal turbines to be deployed into their habitat. Noise is known to affect fish in many ways, such as causing a threshold shift in auditory sensitivity or tissue damage. The characteristics of noise, its spectra and level, are important factors that influence the potential for the noise to injure fish. For example, the frequency range of the tidal turbine noise includes the audiogram (frequency range of hearing) of most fish. This study was performed during FY 2011 to determine if noise generated by a 6-m diameter OpenHydro turbine might affect juvenile Chinook salmon hearing or cause barotrauma. Naturally spawning stocks of Chinook salmon that utilize Puget Sound are listed as threatened (http://www.nwr.noaa

  13. EVALUASI UNJUK KERJA TURBIN AIR PELTON TERBUAT DARI KAYU DAN BAMBU SEBAGAI PEMBANGKIT LISTRIK RAMAH LINGKUNGAN UNTUK PEDESAAN (Performance Evaluation of Hydraulic Pelton Turbine Made of Wood and Bamboo as Environmentally Friendly Electric Generation

    Directory of Open Access Journals (Sweden)

    Samsul Kamal

    2013-07-01

    Full Text Available ABSTRAK Pemanfaatan energi air di Indonesia, khususnya untuk pembangkit listrik skala kecil di pedesaan masih perlu diprioritaskan untuk ditingkatkan dalam program memperoleh energi bersih yang ramah lingkungan. Pemanfaatan tersebut masih terkendala oleh biaya investasi yang relatif tinggi serta teknologi yang sesuai. Pemerintah mendorong pemanfaatan energi baru dan terbarukan melalui program Desa Mandiri Energi dengan menggunakan potensi dan sumber daya yang tersedia di pedesaan. Kajian ini bertujuan untuk mengevaluasi unjuk kerja turbin air Pelton untuk pembangkit listrik skala kecil dengan sudu terbuat dari bambu dan roda turbin dari kayu. Data yang terkumpul menunjukkan bahwa efisiensi pembangkitan mampu mencapai sekitar 28% untuk debit aliran 28 liter/detik dan tinggi jatuh efektif 7 m menggunakan nosel berpenampang empat persegi panjang. Walaupun dari aspek teknik dan lingkungan penggunaan bambu sebagai sudu turbin adalah baik dan sesuai untuk digunakan di pedesaan, namun unjuk kerja yang diperoleh masih perlu ditingkatkan dibanding dengan umumnya turbin Pelton yang terbuat dari logam. Hal ini diperkirakan karena bentuk alamiah lengkung bambu yang tidak optimum untuk sudu serta bentuk penampang nosel yang masih harus disesuaikan.   ABSTRACT The use of hydroenergy in Indonesia, especially for small electric generation in rural areas is still to be priority increased in a program to find a clean and environmentally friendly energy.  The use is still limited by relatively high investation cost and appropriate technology. Government has pushed the use of new and renewable energy through the Village Self-Relliant Energy Supply Program by using potential and available resources in the village. The objective of this study is to evaluate the performance of a hydraulic Pelton turbine for small electric generation with the buckets are made of bamboo and the runner is made of wood. Data collected from the study show that the efficiency of the

  14. Creating a potential $5 million revenue gain from hydropower turbines using computational fluid dynamics simulations

    Energy Technology Data Exchange (ETDEWEB)

    Masse, B.

    2001-07-01

    By modifying the runner at the blade trailing edge in the draft tube elbow Hydro-Quebec was able to improve the efficiency of hydropower turbines and through computational fluid dynamic (CFD) simulations achieve revenue gains of between $200,000 and $500,000 per year for each of twelve turbines at one of its plants. The revenue gains were made possible by these modifications, validated by simulations. Power output was raised by 7.8 MW and weighted turbine efficiency by 1.6 per cent. The FIDAP CFD code from Fluent Incorporated, Lebanon, New Hampshire, was used as one of the modeling and analysis tools. This software package uses the finite element approach, and has the advantage of using non-structured grids which provide greater flexibility in modeling the complex and irregular geometries involved in hydropower turbines. The presence of a large eddy in the draft tube elbow was discovered and considered to be the cause of the less than expected hydraulic efficiency of the twelve identical hydro turbines. Water flow between the runner and the draft tube was improved by modification of the runner outlet and the design of a new trailing edge. Significant increase in efficiency at all operating conditions was the result which was confirmed by parametric study on the draft tube flow. This application of CFD simulations provides an excellent illustration of how CFD can identify hydropower problems and help develop alternatives to improve machine performance. The revenue gains resulting from the modifications to reduce the eddy in the runner and the draft tube elbow have been validated in one turbine and the design changes are in the process of being implemented on the other eleven turbines for a combined potential revenue gain in the order of $5 million per year. 3 figs.

  15. Simulations of Steady Cavitating Flow in a Small Francis Turbine

    Directory of Open Access Journals (Sweden)

    Ahmed Laouari

    2016-01-01

    Full Text Available The turbulent flow through a small horizontal Francis turbine is solved by means of Ansys-CFX at different operating points, with the determination of the hydrodynamic performance and the best efficiency point. The flow structures at different regimes reveal a large flow eddy in the runner and a swirl in the draft tube. The use of the mixture model for the cavity/liquid two-phase flow allowed studying the influence of cavitation on the hydrodynamic performance and revealed cavitation pockets near the trailing edge of the runner and a cavitation vortex rope in the draft tube. By maintaining a constant dimensionless head and a distributor vane opening while gradually increasing the cavitation number, the output power and efficiency reached a critical point and then had begun to stabilize. The cavitation number corresponding to the safety margin of cavitation is also predicted for this hydraulic turbine.

  16. Implementation of draft IEC Generic Model of Type 1 Wind Turbine Generator in PowerFactory and Simulink

    DEFF Research Database (Denmark)

    Zhao, Haoran; Wu, Qiuwei; Sørensen, Poul Ejnar

    2013-01-01

    This paper presents the implementation work of IEC generic model of Type 1 wind turbine generator (WTG) in two commercial simulation tools: DIgSILENT PowerFactory (PF) and Matlab Simulink. The model topology, details of the composite blocks and implementation procedure in PF and Simulink...

  17. Degradation of Phosphate Ester Hydraulic Fluid in Power Station Turbines Investigated by a Three-Magnet Unilateral Magnet Array

    OpenAIRE

    Pan Guo; Wei He; García-Naranjo, Juan C.

    2014-01-01

    A three-magnet array unilateral NMR sensor with a homogeneous sensitive spot was employed for assessing aging of the turbine oils used in two different power stations. The Carr-Purcell-Meiboom-Gill (CPMG) sequence and Inversion Recovery-prepared CPMG were employed for measuring the 1H-NMR transverse and longitudinal relaxation times of turbine oils with different service status. Two signal components with different lifetimes were obtained by processing the transverse relaxation curves with a ...

  18. Energy Transfer and Dissipation in of Hydraulic Wind Turbines%液压型风力发电机组能量传递与耗散

    Institute of Scientific and Technical Information of China (English)

    艾超; 闫桂山; 孔祥东; 董彦武

    2015-01-01

    Taking a hydraulic wind turbine as the research object,the energy transfer and dissipa-tion were studied for energy conversion mechanism in hydraulic wind turbine.The entire unit was di-vided into several key sub-units.The energy transfer models were established,and the variation of energy transfer was analyzed.The energy dissipation was derived and analyzed based on energy trans-fer models,and mathematical models of energy dissipation were obtained.Using 30kVA hydraulic wind turbine simulation platform as the simulation and experimental foundation,simulation and ex-perimental researches of energy transfer and dissipation were carried out.The accuracy of theoretical analyses was verified.The results show that energy feature state is changed during operation,contai-ning a certain energy dissipation,and the overall efficiency is about 65.7%.%为分析液压型风力发电机机组能量转化机理,针对其能量传递与耗散问题展开了研究。将整个机组分解为若干个关键子单元,建立机组能量传递模型,分析机组能量传递变化规律;以能量传递模型为基础,对机组能量耗散进行推导分析,得到机组能量耗散数学模型。将30 kV·A液压型风力发电机组实验台作为仿真和实验基础,对机组能量传递与耗散进行仿真与实验研究,进而验证理论分析的准确性。研究结果表明:机组在工作过程中其能量特征状态发生改变,并存在一定的能耗,整机效率约为65.7%。

  19. Pelton turbines

    CERN Document Server

    Zhang, Zhengji

    2016-01-01

    This book concerns the theoretical foundations of hydromechanics of Pelton turbines from the engineering viewpoint. For reference purposes, all relevant flow processes and hydraulic aspects in a Pelton turbine have been analyzed completely and systematically. The analyses especially include the quantification of all possible losses existing in the Pelton turbine and the indication of most available potential for further enhancing the system efficiency. As a guideline the book therefore supports further developments of Pelton turbines with regard to their hydraulic designs and optimizations. It is thus suitable for the development and design engineers as well as those working in the field of turbo machinery. Many laws described in the book can also be directly used to simplify aspects of computational fluid dynamics (CFD) or to develop new computational methods. The well-executed examples help better understand the related flow mechanics.

  20. 大型水电站福伊特水轮机模型试验研究%The Test and Study on the Voith Hydraulic Turbine Model of a Large Hydropower Plant

    Institute of Scientific and Technical Information of China (English)

    李冬亮

    2014-01-01

    为了检验某大型水电站水轮机的水力特性,进行了水轮机福伊特模型验收试验,包括尺寸检查、效率试验、出力试验、飞逸试验、空化试验、蜗壳差压试验、压力脉动试验、导叶水力矩试验、轴向水推力试验、筒阀下拉力试验等内容。试验结果表明:模型水轮机及换算得到的原型的效率、出力、空化、压力脉动、飞逸、轴向水推力、导叶水力矩、筒阀压力等性能指标均满足合同技术要求。%In order to test the hydraulic characteristics of the hydraulic turbines of a large hydropower plant the Yoith hydraulic turbine model acceptance tests were conducted ,including dimensions check ,efficiency test ,output test ,runaway test ,cavitation test ,spiral case differential pressure test ,pressure fluctuation test ,guide vane hydraulic torque test ,axial hydraulic thrust test and cylinder tensile test .T he test results show that the performance indexes of the model turbine and those converted from the prototype such as ef-ficiency ,pressure fluctuation ,runaway ,guide vane hydraulic torque ,axial hydraulic thrust and cylinder valve pressure all meet the technical requirements of the contract .

  1. Custo de bombas centrífugas funcionando como turbinas em microcentrais hidrelétricas Cost of pumps as hydraulic turbines for micro-scale hydropower

    Directory of Open Access Journals (Sweden)

    Carlos R. Balarim

    2004-04-01

    places where they should be implanted. Pumps As Turbines (PAT have been studied. These equipment costs were obtained by consulting directly the manufacturers, and also the Ponta Grossa - PR city, Brazil, market. The results have shown that, concerning the micro hydroelectric power plants, whenever the costs constitute the major aspect and always considering units until 50 kW power, the option to PAT must be considered instead of hydraulic turbines.

  2. High load vortex oscillations developed in Francis turbines

    Science.gov (United States)

    Rodriguez, D.; Rivetti, A.; Lucino, C.

    2016-11-01

    Francis turbines operating at high load conditions produce a typical flow pattern in the draft tube cone characterized by the presence of an axisymmetric central vortex. This central cavity could become unstable, generating synchronic pressure pulsations, usually called self-excited oscillations, which propagate into the whole machine. The on-set and size of the central vortex cavity depend on the geometry of the runner and draft tube and on the operating point as well. Numerical flow simulations and model tests allow for the characterization of the different flow patterns induced by each particular Francis turbine design and, when studied in combination with the hydraulic system, including the intake and penstock, could predict the prototype hydraulic behavior for the complete operation zone. The present work focuses the CFD simulation on the development and dynamic behavior of the central axisymmetric vortex for a medium-head Francis turbine operating at high load conditions. The CFD simulations are based in two-phase transient calculations. Oscillation frequencies against its cavity volume development were obtained and good correlation was found with experimental results.

  3. Analysis of the fault and malfunctioning of a 15 MW hydraulic turbine; Analisis de la falla y malfuncionamiento de una turbina hidraulica de 15 MW

    Energy Technology Data Exchange (ETDEWEB)

    Garcia I, Rafael; Perez R, Norberto [Instituto de Investigaciones Electricas, Cuernavaca, Morelos (Mexico)

    2007-07-01

    An historical case of the rehabilitation process of three hydraulic turbines with capacity of 15 MW each is presented. These units are used for the electrical generation, mainly to supply part of the central zone of the Mexican Republic. The turbo-generator units had been practically destroyed by catastrophic floods and only part of the equipment was rescued and rehabilitated for its operation. One of the three turbines presented serious operational problems, preventing its reliable operation evidenced by the excessive mechanical vibrations and heating of the bearing zone. This article presents the diagnosis of the possible causes of fault and the remedial actions taken. Strong misalignment problems of the runner with respect to its bearings and to the scroll case of the turbine are observed. In addition, during the inspection of the turbine runner and of the bearings it is observed that important frictions have existed, which increased the vibrations. It is shown that these frictions are not the cause of the problem but only one manifestation of the same. Finally some conclusions of the problem and their solution are presented. [Spanish] Se presenta un caso historico del proceso de rehabilitacion de tres turbinas hidraulicas con capacidad de 15 MW cada una. Dichas unidades son empleadas en la generacion electrica, principalmente para abastecer parte de la zona centro de la Republica Mexicana. Las unidades turbogeneradores habian sido practicamente destruidas por inundaciones catastroficas y solo parte del equipo fue rescatado y rehabilitado para su operacion. Una de las tres turbinas presento graves problemas de funcionamiento, impidiendo su operacion confiable, lo cual se manifestaba mediante vibraciones mecanicas excesivas y calentamiento en zona de chumaceras. En este articulo se presenta el diagnostico de las posibles causas de falla y las acciones correctivas tomadas. Se observan problemas fuertes de desalineamiento del rotor respecto a sus chumaceras y al

  4. Analysis of the malfunctioning and failure of a 15 MW hydraulic turbine; Analisis de malfuncionamiento y de falla de una turbina hidraulica de 15 MW

    Energy Technology Data Exchange (ETDEWEB)

    Garcia Illescas, R.; Perez Rodriguez, N. [Instituto de Investigaciones Electricas, Cuernavaca, Morelos (Mexico)

    2007-11-15

    A case history is presented of the rehabilitation process of three hydraulic turbines with a capacity of 15 MW each one. Such units are used for electric power generation, mainly to supply part of the center zone of the Mexican Republic. The turbo-generator units had been practically destroyed by catastrophic floods and only part of the equipment was recovered and reconditioned for its operation. One of the three turbines presented serious functioning problems preventing its reliable operation that was evidenced by excessive mechanical vibrations and heating in the bearing zone. This paper presents the diagnosis of the possible causes of failure and the corrective measures taken. Serious rotor misalignment problems were observed respect to its bearings and the turbine scroll. Additionally, during the inspection of the turbine runner and of the bearing it was observed that important friction have existed, which incremented the vibrations. It is shown that such rubbings are not the cause of the problem but only a manifestation of the same. Finally some of the conclusions and their solution are presented. [Spanish] Se presenta un caso historico del proceso de rehabilitacion de tres turbinas hidraulicas con capacidad de 15 MW cada una. Dichas unidades son empleadas en la generacion electrica, principalmente para abastecer parte de la zona centro de la republica mexicana. Las unidades turbogeneradores habian sido practicamente destruidas por inundaciones catastroficas y solo parte del equipo fue rescatado y rehabilitado para su operacion. Una de las tres turbinas presento graves problemas de funcionamiento, impidiendo su operacion confiable, lo cual se manifestaba mediante vibraciones mecanicas excesivas y calentamiento en zona de chumaceras. En este articulo se presenta el diagnostico de las posibles causas de falla y las acciones correctivas tomandas. Se observan problemas fuertes de desalineamiento del rotor respecto a sus chumaceras y al caracol de la turbina

  5. Water turbine technology for small power stations

    Science.gov (United States)

    Salovaara, T.

    1980-02-01

    The paper examines hydro-power stations and the efficiency and costs of using water turbines to run them. Attention is given to different turbine types emphasizing the use of Kaplan-turbines and runners. Hydraulic characteristics and mechanical properties of low head turbines and small turbines, constructed of fully fabricated steel plate structures, are presented.

  6. Flow measurement in a 170-MW hydraulic turbine using the Gibson method; Medicion del flujo de una turbina hidraulica de 170 MW utilizando el metodo Gibson

    Energy Technology Data Exchange (ETDEWEB)

    Urquiza, Gustavo [Universidad Autonoma del Estado de Morelos (Mexico); Adamkowski, Adam [The Szewalski Institute of Fluid-Flow Machinery (Poland); Kubiak, Janusz; Sierra, Fernando [Universidad Autonoma del Estado de Morelos (Mexico); Janicki, Waldemar [The Szewalski Institute of Fluid-Flow Machinery (Poland); Fernandez, J. Manuel [Comision Federal de Electricidad (Mexico)

    2007-07-15

    This paper describes the methodology applied for measuring water flow through a 170-MW hydraulic turbine. The flow rate was measured using the pressure-time method, also known as the Gibson method. This method uses the well-known water hammer phenomenon in pipelines; in turbine penstocks, for instance. The version of this method used here is based on measuring, during total stop of the water stream, the time-history of pressure change in one section of the turbine penstock and relate it to the pressure in the upper reservoir to which the penstock is connected. The volumetric flow rate is determined from the relevant integration of the measured temporary pressure rise. Flow measurement was possible this way because the influence of the penstock inlet was negligible as far as an error of the measurement is concerned. The length of the penstock was 300 m. Previous experience and a standard IEC-41-1991 were the criteria adopted and applied. A fast and efficient acquisition system, including a 16 bit card, was used. The flow rate was calculated using a computer program developed and tested on several cases. The results obtained with the Gibson method were used for calibration of the on-line flow measuring system based on the Winter-Kennedy method as one of the index methods. This method is very often used for continuous monitoring of the flow rate through hydraulic turbines, when the calibration has been done on site by using the results of measurements obtained by the absolute method. Having measured the flow rate and output power, the efficiency was calculated for any operating conditions. A curve showing the best operating conditions based on the highest efficiency is presented and discussed. The details of the instrumentation, its installation, and the results obtained are discussed in the paper. [Spanish] Este articulo describe la metodologia aplicada para la medicion del flujo en una turbina hidraulica de 170 MW. El flujo se midio utilizando el metodo de presion

  7. Evaluation of Blade-Strike Models for Estimating the Biological Performance of Large Kaplan Hydro Turbines

    Energy Technology Data Exchange (ETDEWEB)

    Deng, Zhiqun; Carlson, Thomas J.; Ploskey, Gene R.; Richmond, Marshall C.

    2005-11-30

    BioIndex testing of hydro-turbines is sought as an analog to the hydraulic index testing conducted on hydro-turbines to optimize their power production efficiency. In BioIndex testing the goal is to identify those operations within the range identified by Index testing where the survival of fish passing through the turbine is maximized. BioIndex testing includes the immediate tailrace region as well as the turbine environment between a turbine's intake trashracks and the exit of its draft tube. The US Army Corps of Engineers and the Department of Energy have been evaluating a variety of means, such as numerical and physical turbine models, to investigate the quality of flow through a hydro-turbine and other aspects of the turbine environment that determine its safety for fish. The goal is to use these tools to develop hypotheses identifying turbine operations and predictions of their biological performance that can be tested at prototype scales. Acceptance of hypotheses would be the means for validation of new operating rules for the turbine tested that would be in place when fish were passing through the turbines. The overall goal of this project is to evaluate the performance of numerical blade strike models as a tool to aid development of testable hypotheses for bioIndexing. Evaluation of the performance of numerical blade strike models is accomplished by comparing predictions of fish mortality resulting from strike by turbine runner blades with observations made using live test fish at mainstem Columbia River Dams and with other predictions of blade strike made using observations of beads passing through a 1:25 scale physical turbine model.

  8. 灯泡贯流式机组调速器的特点及应用%Characteristic of Bulb Hydraulic Turbine Governor

    Institute of Scientific and Technical Information of China (English)

    陈艳; 李学礼

    2016-01-01

    Bulb hydraulic generating units are development very quickly in recent years in low water-head power station for its smaller volume, compact construction and high efficiency. Turbine governor as important control equipment in hydraulic power station provide high-quality, reliable power protection for the industrial production and people's daily lives, the regulation performance will affect the power quality and power plant safety and economic operation. A Special regulation model for bulb generating units has been introduced in this paper through the Thailand NARESUANA station on-site testing.%以泰国NARESUANA电站灯泡贯流式水轮发电机组及其调速器为例证,着重说明了灯泡贯流机组的特点,阐述了调速器的步进电机系统研制和应用:①采用适应式、变结构、变参数、并联 PID 调节模式,使机组在不同状态下均能稳定运行;②采用变参数导叶分段关闭装置,根据水头、负荷、频率等机组工况自动改变导叶分段关闭投入点,减少了快速关闭时造成水击压力的升高,并防止涌浪、低频及水锤的发生;③桨叶根据机组频率自动改变关闭速度,防止涌浪、低频及水锤的发生。

  9. 西藏地区水轮机选型设计的几个主要问题探讨%Selection of Hydraulic Turbine for Hydropower Stations in Tibet

    Institute of Scientific and Technical Information of China (English)

    李修树

    2011-01-01

    介绍了在现有基础条件下西藏地区水电机组选型设计中需重视的几个问题,主要包括机组单机容量选择、机型确定、机组参数、现场加工等方面,并提出了相应的选型思路.%The selection of hydraulic turbine for the hydropower stations in Tibet need to be given close attention as the special conditions.The requirements on unit capacity, type, parameters and on-site processing of turbine are discussed and some ideas in turbine selection are suggested herein.

  10. Failure analysis of a Francis turbine runner

    Energy Technology Data Exchange (ETDEWEB)

    Frunzaverde, D; Campian, V [Research Center in Hydraulics, Automation and Heat Transfer, ' Eftimie Murgu' University of Resita P-ta Traian Vuia 1-4, RO-320085, Resita (Romania); Muntean, S [Centre of Advanced Research in Engineering Sciences, Romanian Academy - Timisoara Branch Bv. Mihai Viteazu 24, RO-300223, Timisoara (Romania); Marginean, G [University of Applied Sciences Gelsenkirchen, Neidenburger Str. 10, 45877 Gelsenkirchen (Germany); Marsavina, L [Department of Strength, ' Politehnica' University of Timisoara, Bv. Mihai Viteazu 1, RO-300222, Timisoara (Romania); Terzi, R; Serban, V, E-mail: gabriela.marginean@fh-gelsenkirchen.d, E-mail: d.frunzaverde@uem.r [Ramnicu Valcea Subsidiary, S.C. Hidroelectrica S.A., Str. Decebal 11, RO-240255, Ramnicu Valcea (Romania)

    2010-08-15

    The variable demand on the energy market requires great flexibility in operating hydraulic turbines. Therefore, turbines are frequently operated over an extended range of regimes. Francis turbines operating at partial load present pressure fluctuations due to the vortex rope in the draft tube cone. This phenomenon generates strong vibrations and noise that may produce failures on the mechanical elements of the machine. This paper presents the failure analysis of a broken Francis turbine runner blade. The failure appeared some months after the welding repair work realized in situ on fatigue cracks initiated near to the trailing edge at the junction with the crown, where stress concentration occurs. In order to determine the causes that led to the fracture of the runner blade, the metallographic investigations on a sample obtained from the blade is carried out. The metallographic investigations included macroscopic and microscopic examinations, both performed with light and scanning electron microscopy, as well as EDX - analyses. These investigations led to the conclusion, that the cracking of the blade was caused by fatigue, initiated by the surface unevenness of the welding seam. The failure was accelerated by the hydrogen embrittlement of the filling material, which appeared as a consequence of improper welding conditions. In addition to the metallographic investigations, numerical computations with finite element analysis are performed in order to evaluate the deformation and stress distribution on blade.

  11. Inverse Kinematics and Model Calibration Optimization of a Five-D.O.F. Robot for Repairing the Surface Profiles of Hydraulic Turbine Blades

    Directory of Open Access Journals (Sweden)

    Jose Mauricio S.T. Motta

    2016-06-01

    Full Text Available This paper presents and discusses the results of an ongoing R&D project aiming to design and build a fully automated prototype of a specialized spherical robotic welding system for repairing hydraulic turbine surfaces eroded by cavitation pitting and/or cracks produced by cyclic loading. The system has an embedded vision sensor built to acquire range images by laser scanning over the blade’s surface and produce 3D models to locate the damaged spots to be registered in a 3D coordinate system into the robot controller, enabling the robot to repair the flaws automatically by welding in layers. The paper is focused on the robot kinematic model and describes an iterative algorithm to process the inverse kinematics with only five degrees-of-freedom. The algorithm makes use of data collected from a vision sensor to ensure that the welding gun axis is perpendicular to the blade’s surface. Besides this, it proposes a modelling and optimization mathematical routine for more efficient robot calibration, which can be used with any type of robot. This robot calibration optimization scheme finds the optimal error parameter vector based on the condition number of the manipulator transformation composed from the partial derivatives of the error parameters. Experimental results proved both the iterative algorithm to perform the inverse kinematics and the technique to optimize robot calibration to be very efficient.

  12. LDA measurements in the Francis-99 draft tube cone

    Science.gov (United States)

    Sundstrom, L. R. J.; Amiri, K.; Bergan, C.; Cervantes, M. J.; Dahlhaug, O. G.

    2014-03-01

    Velocity measurements were performed in the draft tube cone of a 1:5.1 scaled model of the Tokke hydropower plant, Norway; also known as the Francis-99 model. Results from the laser Doppler anemometry measurements undertaken at three operating points will be used as validation data for an upcoming workshop on the state of the art of Francis turbine numerical simulation. With the turbine operating at the best efficiency point, a sensitivity analysis of the flow parameters head, flow rate and runner rotational speed shows that the effects on the dimensionless velocity profiles are small as long as nED and QED are held constant. The results indicate a well-functioning turbine at the best efficiency point and high load. At the part load operating point, a vortex breakdown occurs which distorts the velocity profiles and significantly lowers the turbine's hydraulic efficiency. Frequency spectrums of each LDA signal at part load reveals a peak which is asynchronous to that of the runner angular speed. The peaks might be related to the precession of a rotating vortex rope but the characteristics of the LDA signals are different compared to previous studies involving rotating vortex ropes.

  13. 超低水头水轮机流动数值模拟及水力性能研究%Research on Flow Numerical Simulation and Hydraulic Performance of Ultra Low-head Water Turbine

    Institute of Scientific and Technical Information of China (English)

    肖惠民

    2013-01-01

    In order to develop economical and practical ultra low-head turbine (the net head low than 5m),the internal flow of ultra low-head water turbine with utilization of water and wave energy for generation is simulated by using computational fluid dynamics technology.The efficiency of the entire turbine is predicted and the hydraulic characteristics of the ultra low-head water turbine are analyzed.In the 1.5-5m head range,numerical simulations show that the ultra low-head water turbine has relatively high and slowly changing efficiency,and its output power basically depends on the head.%为开发经济实用超低水头(净水头低于5 m)的水轮机,基于流体动力学理论对可应用于水能、波浪能发电的某超低水头水轮机进行了内部流动数值模拟及性能预测,并分析了水头和转速特性.结果表明,在1.5~5.0m水头范围内,水轮机效率较高,变化平稳,输出功率主要取决于水头.

  14. 海流发电液压传动系统设计及仿真验证%Design of Hydraulic Transmission Systems for Tidal Current Turbines and Its Simulation Validation

    Institute of Scientific and Technical Information of China (English)

    石茂顺; 刘宏伟; 李伟; 林勇刚; 丁金钟; 周宏宾

    2014-01-01

    In light of the problem of speed control for the tidal current turbine,the volume control method is adopted to control the impeller speed and the generator speed of the stand-alone tidal current turbine.Two similar hydraulic transmission systems for the tidal current turbine are designed,both adopting the pump-motor-generator direct connecting structure.To validate the hydraulic transmission systems,the mathematical models for the systems are analyzed and the MATLAB/Simulink models are developed to study the working characteristics of the hydraulic transmission systems.The results show that both hydraulic transmission topologies can realize constant-frequency control of the generator on the premise of meeting the requirement of maximum power point tracking control.%针对海流发电机组转速控制问题,采用容积调速方法控制离网型海流发电液压传动机组的叶轮转速和发电机转速。设计了两种类似的海流发电液压传动系统方案,均采用泵-马达-发电机直接连接的结构形式。为验证所设计的液压传动系统方案的有效性,对其进行数学模型分析,并建立系统的MATLAB/Simulink模型进行系统控制特性仿真研究。结果表明,两种液压传动拓扑结构在满足最大功率跟踪控制要求的前提下,均可以在液压传动系统环节同时实现发电机恒频输出控制。

  15. Analysis and Online Diagnosis on Plugging Fault of Servo Valve in Electro-hydraulic Regulating System of Steam Turbine

    Institute of Scientific and Technical Information of China (English)

    WANG Xuanyin; LI Xiaoxiao; LI Fushang

    2009-01-01

    Through the study on the output signals of the electro-hydraulic regulating system in the thermal power plant, a novel method for online diagnosis of the plugging fault in the servo valve is presented. With the use of the AMESIM software, the changes of the piston displacement, the oil pressure, the magnitude attenuation and the phase lag of the system under different plugging states are studied after simulation. Besides, the influences of the symmetrical and unsymmetrical plugging on the system are also compared and the characteristic table is given. The duo-neural network is put forward to achieve an online diagnosis on the plugging fault of the servo valve. The first level of network helps to make the qualitative diagnosis of the plugging position while the second level is for the quantitative diagnosis of the degree of the plugged position. The research results show that plugging at different positions exerts different influences on the performance of the system. The unsymmetrical plugging mainly affects the regulation time while the symmetrical plugging leads to great changes in the magnitude attenuation and the phase lag.

  16. Improving efficiency and increasing capacity of the hydraulic turbine in Daguangba Hydropower Plant%大广坝水电站水轮机提效增容改造研究

    Institute of Scientific and Technical Information of China (English)

    王钊宁; 罗兴锜; 郭鹏程; 程宦; 王亚林

    2015-01-01

    基于海南大广坝水电站水轮机改造项目,通过分析电站运行中存在的水力不稳定现象和水轮机效率水平偏低的原因,提出了水轮机的改造方案和目标;讨论了水力参数和设计理念;介绍了改造前后转轮流道的本质差异。通过全流道数值仿真计算,定性评估了改造后水轮机的稳定性,定量标定了水轮机的效率水平,预期了模型水轮机的综合特性曲线。结论认为,改造后模型水轮机最优效率大于93.8%,额定效率91%,加权平均效率89.3%;原型水轮机最优效率95.1%,额定效率92.4%,加权平均效率90.8%;与改造前相比,加权平均效率增幅可达2.0%。%A new retrofitting method and target are presented by means of analyzing the phenome‐non of hydraulic instability and the reason of relatively low turbine efficiency based on the trans‐formation project referring to Daguangba Hydropower station in Hainan ,meanwhile ,hydraulic parameters selection and design conception are discussed in details .Also ,this paper introduces the essential difference of runner channel between pre‐and‐post retrofit .According to the full passage numerical simulation computation ,the hydraulic stability of retrofitted Francis runner is qualitatively evaluated and the efficiency level is quantitatively indicated .Finally ,the paper has predicted the comprehensive feature curves of the model water‐turbine .The conclusions indicate that the model turbine optimum efficiency exceeds 93 .8% ,the rated efficiency and weighted aver‐age efficiency are respectively 91% and 89 .3% compared with 95 .1% optimum efficiency ,92 .4%rated efficiency ,and 90 .8% weighted average efficiency originating from the prototype turbine ;the weighted average efficiency of the model turbine significantly increases 2 .0% by contrast with the one of the prototype turbine .

  17. 风电叶片模具液压翻转机构参数化优化设计%Parameters Optimization Design of the Structure of the Hydraulic Turnover Mechanism for Wind Turbine's Blade Mold

    Institute of Scientific and Technical Information of China (English)

    乐韵斐; 邬湘成; 刘长杰

    2011-01-01

    介绍了风电叶片模具液压翻转机构的工作原理,建立了一般的几何模型,通过Matlab优化工具箱对风电叶片模具液压翻转机构进行优化设计,利用LabView设计图形界面,并通过Matlab script专有程序接口调用Matlab优化程序,实现风电叶片模具液压翻转机构的参数化优化设计.%This article introduced the working principle of hydraulic turnover mechanism of wind turbine's blade mold, established a general model, and optimized the design of hydraulic turnover mechanism of wind power mold through Matlab optimization toolbox. Using LabView software to design graphical interface, and called Matlab optimization procedures through proprietary programming interface called the Matlab script, achieving parameterization design of the structure of the hydraulic turnover mechanism for the wind turbine's blade mold.

  18. Application of multi-objective controller to optimal tuning of PID gains for a hydraulic turbine regulating system using adaptive grid particle swam optimization.

    Science.gov (United States)

    Chen, Zhihuan; Yuan, Yanbin; Yuan, Xiaohui; Huang, Yuehua; Li, Xianshan; Li, Wenwu

    2015-05-01

    A hydraulic turbine regulating system (HTRS) is one of the most important components of hydropower plant, which plays a key role in maintaining safety, stability and economical operation of hydro-electrical installations. At present, the conventional PID controller is widely applied in the HTRS system for its practicability and robustness, and the primary problem with respect to this control law is how to optimally tune the parameters, i.e. the determination of PID controller gains for satisfactory performance. In this paper, a kind of multi-objective evolutionary algorithms, named adaptive grid particle swarm optimization (AGPSO) is applied to solve the PID gains tuning problem of the HTRS system. This newly AGPSO optimized method, which differs from a traditional one-single objective optimization method, is designed to take care of settling time and overshoot level simultaneously, in which a set of non-inferior alternatives solutions (i.e. Pareto solution) is generated. Furthermore, a fuzzy-based membership value assignment method is employed to choose the best compromise solution from the obtained Pareto set. An illustrative example associated with the best compromise solution for parameter tuning of the nonlinear HTRS system is introduced to verify the feasibility and the effectiveness of the proposed AGPSO-based optimization approach, as compared with two another prominent multi-objective algorithms, i.e. Non-dominated Sorting Genetic Algorithm II (NSGAII) and Strength Pareto Evolutionary Algorithm II (SPEAII), for the quality and diversity of obtained Pareto solutions set. Consequently, simulation results show that this AGPSO optimized approach outperforms than compared methods with higher efficiency and better quality no matter whether the HTRS system works under unload or load conditions.

  19. Experimental and numerical investigation of a draft tube cone at lower runner speeds

    Science.gov (United States)

    Bosioc, Alin I.; Tanasa, Constantin

    2016-06-01

    The variable demand on the energy market enforces that hydraulic turbine to operate at different regimes, far from the best efficiency point. An experimental test rig was developed in our laboratory in order to reproduce these regimes. As a result, the investigated flow regimes allow us to quantify the flow behavior from part load operation to full load operation. The paper focuses on experimental and numerical investigations of mean velocity profiles and of stagnant region developed in the centre of draft tube cone. First the numerical results are validated against experimental results. At the end a qualitative analysis of the streamline pattern is complemented, giving us an evaluation of the stagnant region from the draft tube cone at different runner speeds.

  20. BP和RBF神经网络在水轮机非线性特性拟合中的应用比较%Application of BP Neural Network and RBF Neural Network in Extending Hydraulic Turbine Combined Characteristic Curve

    Institute of Scientific and Technical Information of China (English)

    张培; 陈光大; 张旭

    2011-01-01

    It is unnecessary to establish concrete function expression, the known discrete data can be fitted by using neural network to extend hydraulic turbine combined characteristic cure. And we can also add boundary conditions to predict unknown zones, so as to raise the work efficiency and data precision in data treatment concerning hydraulic turbine combined characteristics. This paper intro- duces the use of gP neural network and RBF neural network in extending hydraulic turbine combined characteristic curve. I.astly, the results of the two methods are compared and some conclusions are obtained.%利用神经网络对水轮机综合特性曲线进行数据处理和延伸,不必建立具体的函数关系表达式,就可对已知的离散数据进行拟合。并且还可以结合边界约束条件对未知区域内的数据进行预测,从而提高了水轮机综合特性曲线数据处理的工作效率和数据精度。分别介绍了用BP神经网络和RBF神经网络对水轮机综合特性曲线数据处理和延伸的方法。并采用一机组的样本数据进行训练,比较2种方法的训练结果得出结论。

  1. Numerical Simulation Investigation on Hydraulic Performance of the Horizontal-Axis Tidal Current Turbine%水平轴潮流水轮机水力性能的数值模拟研究

    Institute of Scientific and Technical Information of China (English)

    肖惠民

    2015-01-01

    Three-dimensional numerical simulations are carried out to investigate the hydraulic characteristics of the hori -zontal-axis tidal current turbine with speed-up tube .Effects of the dimension parameters of the speed-up tube , such as the length-diameter ratio and the area ratio , on the turbine's performance are also studied .Results show that the horizon-tal-axis tidal current turbine is of high energy utilization rate and great self-starting performance , while it is sensitive to the variation of the tidal current velocity .The speed-up tube can significantly improve the hydraulic performance , espe-cially the output power , of the tidal current turbine .The optimum length-diameter ratio of the speed-up tube is also de-termined .%采用数值模拟方法对一种带增速管的水平轴潮流水轮机的流量特性和转速特性进行了研究,并分析了增速管长径比、面积比对该水轮机水力性能的影响。计算结果表明:该潮流水轮机能量转换效率较高,同时自启动性能好,但对潮流流速变化较敏感;增速管可显著提高水轮机的水力性能,特别是输出功率;对于一定结构形式的潮流水轮机,增速管具有最佳的长径比。

  2. Draft tube discharge fluctuation during self-sustained pressure surge: fluorescent particle image velocimetry in two-phase flow

    Science.gov (United States)

    Müller, A.; Dreyer, M.; Andreini, N.; Avellan, F.

    2013-04-01

    Hydraulic machines play an increasingly important role in providing a secondary energy reserve for the integration of renewable energy sources in the existing power grid. This requires a significant extension of their usual operating range, involving the presence of cavitating flow regimes in the draft tube. At overload conditions, the self-sustained oscillation of a large cavity at the runner outlet, called vortex rope, generates violent periodic pressure pulsations. In an effort to better understand the nature of this unstable behavior and its interaction with the surrounding hydraulic and mechanical system, the flow leaving the runner is investigated by means of particle image velocimetry. The measurements are performed in the draft tube cone of a reduced scale model of a Francis turbine. A cost-effective method for the in-house production of fluorescent seeding material is developed and described, based on off-the-shelf polyamide particles and Rhodamine B dye. Velocity profiles are obtained at three streamwise positions in the draft tube cone, and the corresponding discharge variation in presence of the vortex rope is calculated. The results suggest that 5-10 % of the discharge in the draft tube cone is passing inside the vortex rope.

  3. The impact research of control modes in steam turbine control system (digital electric hydraulic to the low-frequency oscillation of grid

    Directory of Open Access Journals (Sweden)

    Yanghai Li

    2016-01-01

    Full Text Available Through the analysis of the control theory for steam turbine, the transfer function of the steam turbine control modes in the parallel operation was obtained. The frequency domain analysis indicated that different control modes of turbine control system have different influence on the damping characteristics of the power system. The comparative analysis shows the direction and the degree of the influence under the different oscillation frequency range. This can provide the theory for the suppression of the low-frequency oscillation from turbine side and has a guiding significance for the stability of power system. The results of simulation tests are consistent with the theoretic analysis.

  4. Experimental investigation of the mass flow gain factor in a draft tube with cavitation vortex rope

    Science.gov (United States)

    Landry, C.; Favrel, A.; Müller, A.; Yamamoto, K.; Alligné, S.; Avellan, F.

    2017-04-01

    At off-design operating operations, cavitating flow is often observed in hydraulic machines. The presence of a cavitation vortex rope may induce draft tube surge and electrical power swings at part load and full load operations. The stability analysis of these operating conditions requires a numerical pipe model taking into account the complexity of the two-phase flow. Among the hydroacoustic parameters describing the cavitating draft tube flow in the numerical model, the mass flow gain factor, representing the mass excitation source expressed as the rate of change of the cavitation volume as a function of the discharge, remains difficult to model. This paper presents a quasi-static method to estimate the mass flow gain factor in the draft tube for a given cavitation vortex rope volume in the case of a reduced scale physical model of a ν = 0.27 Francis turbine. The methodology is based on an experimental identification of the natural frequency of the test rig hydraulic system for different Thoma numbers. With the identification of the natural frequency, it is possible to model the wave speed, the cavitation compliance and the volume of the cavitation vortex rope. By applying this new methodology for different discharge values, it becomes possible to identify the mass flow gain factor and improve the accuracy of the system stability analysis.

  5. Turbulence Resolving Flow Simulations of a Francis Turbine in Part Load using Highly Parallel CFD Simulations

    Science.gov (United States)

    Krappel, Timo; Riedelbauch, Stefan; Jester-Zuerker, Roland; Jung, Alexander; Flurl, Benedikt; Unger, Friedeman; Galpin, Paul

    2016-11-01

    The operation of Francis turbines in part load conditions causes high fluctuations and dynamic loads in the turbine and especially in the draft tube. At the hub of the runner outlet a rotating vortex rope within a low pressure zone arises and propagates into the draft tube cone. The investigated part load operating point is at about 72% discharge of best efficiency. To reduce the possible influence of boundary conditions on the solution, a flow simulation of a complete Francis turbine is conducted consisting of spiral case, stay and guide vanes, runner and draft tube. As the flow has a strong swirling component for the chosen operating point, it is very challenging to accurately predict the flow and in particular the flow losses in the diffusor. The goal of this study is to reach significantly better numerical prediction of this flow type. This is achieved by an improved resolution of small turbulent structures. Therefore, the Scale Adaptive Simulation SAS-SST turbulence model - a scale resolving turbulence model - is applied and compared to the widely used RANS-SST turbulence model. The largest mesh contains 300 million elements, which achieves LES-like resolution throughout much of the computational domain. The simulations are evaluated in terms of the hydraulic losses in the machine, evaluation of the velocity field, pressure oscillations in the draft tube and visual comparisons of turbulent flow structures. A pre-release version of ANSYS CFX 17.0 is used in this paper, as this CFD solver has a parallel performance up to several thousands of cores for this application which includes a transient rotor-stator interface to support the relative motion between the runner and the stationary portions of the water turbine.

  6. Analysis on hydraulic characteristics of micro Francis hydro-turbine with low specific speed%微型低比转速混流式水轮机的水力特性分析

    Institute of Scientific and Technical Information of China (English)

    张兰金; 王磊; 任岩; 陈德新

    2013-01-01

    A micro Francis hydro-turbine driven by the circulating cooling water in cooling tower is introduced herein; of which the flow rate is restricted to the circulating water discharge, the output power is confined to that of the cooling tower fan and the head is relied on both the discharge and the output power. It has a small dimension with a long and narrow flow path of the runner and without water guiding mechanism. In order to know the hydraulic characteristics of it, a study is made with the method of numerical simulation combined with the relevant experiment. The study result shows that similarities are presented by the characteristics of the flow field inside of it, while the hydraulic characteristics of energy, pressure fluctuation, etc. Also show similarities with the same hydraulic efficiency and loss. The hydraulic efficiency of the turbine is lower with a larger hydraulic loss; of which the hydro-energy is lost mainly from the water rliversion parts and secondly from the runner. Furthermore, the amplitude of the hydraulic vibration on the blade channel of stay vane is higher over 10% due to a less space between both the diversion parts and the runner.%本文介绍了一种由冷却塔中冷却循环水驱动的微型水轮机.该机流量限于循环水流量、功率限于风机功率、水头依赖流量与功率;其蜗壳平面尺寸小,不设导水机构,转轮流道狭长.为了解该水轮机的水力特性,采用数值模拟与试验相结合的方法对其进行研究.研究表明:对于同一水轮机,其内流场特性表现出相似性,能量和压力脉动等水力特性也表现出相似性,水力效率相等,水力损失相等.该水轮机的水力效率较低,水力损失较大,其水能主要损失于引水部件,其次是转轮;由于引水部件距离转轮近,其固定导叶叶道的水力振动幅度达到10%以上.

  7. 1000MW燃煤机组锅炉汽动引风机驱动汽源选择%Selection of steam resources for turbine-driven induced draft fan in 1 000 MW coal fired unit

    Institute of Scientific and Technical Information of China (English)

    范永春; 吴阿峰

    2011-01-01

    The induced draft (ID) fan driven by turbine instead of motor is excellent in several aspects, such as avoiding greater start-up current, reducing service power consumption rate, achieving higher efficiency for ID fan operating with variable speed, avoiding the second transformation of energy and so on. For 1 000 MW unit, both the fourth steam extraction (exhaust steam of middle pressure cylinder) and the cold reheated steam (exhaust steam of high pressure cylinder) can be used to drive steam turbine. Considering the different steam resource and different turbine exhaust mode, the techno-economic analysis of the fourth steam extraction paired with condensing steam turbine and the cold reheated steam paired with back pressure turbine was analyzed. The result shows that both the two schemes are feasible, but the former is more economical.%采用汽轮机代替电动机驱动引风机,可避免过大的电动机启动电流,并且具有降低厂用电率、实现引风机变速高效运行、避免能量二次转换等优点.就l 000MW超超临界机组而言,目前可用于驱动引风机汽轮机的汽源有四段抽汽(中压缸排汽)和冷再热蒸汽(高压缸排汽).结合不同的汽源配置方案和汽轮机排汽方式,重点对四段抽汽配凝汽式汽轮机和冷再热蒸汽配背压式汽轮机2个方案进行了技术经济分析.分析结果表明,这2个方案在技术上均可行,但前者经济性更好.

  8. Investigation of a High Head Francis Turbine at Runaway Operating Conditions

    Directory of Open Access Journals (Sweden)

    Chirag Trivedi

    2016-03-01

    Full Text Available Hydraulic turbines exhibit total load rejection during operation because of high fluctuations in the grid parameters. The generator reaches no-load instantly. Consequently, the turbine runner accelerates to high speed, runaway speed, in seconds. Under common conditions, stable runaway is only reached if after a load rejection, the control and protection mechanisms both fail and the guide vanes cannot be closed. The runner life is affected by the high amplitude pressure loading at the runaway speed. A model Francis turbine was used to investigate the consequences at the runaway condition. Measurements and simulations were performed at three operating points. The numerical simulations were performed using standard k-ε, k-ω shear stress transport (SST and scale-adaptive simulation (SAS models. A total of 12.8 million hexahedral mesh elements were created in the complete turbine, from the spiral casing inlet to the draft tube outlet. The experimental and numerical analysis showed that the runner was subjected to an unsteady pressure loading up to three-times the pressure loading observed at the best efficiency point. Investigates of unsteady pressure pulsations at the vaneless space, runner and draft tube are discussed in the paper. Further, unsteady swirling flow in the blade passages was observed that was rotating at a frequency of 4.8-times the runaway runner angular speed. Apart from the unsteady pressure loading, the development pattern of the swirling flow in the runner is discussed in the paper.

  9. 大型轴流式水轮机座环装配焊接工艺%Assembly and Welding Procedure for Seating Ring of Large-Size Axial Flow Hydraulic Turbine

    Institute of Scientific and Technical Information of China (English)

    甘洪丰

    2014-01-01

    座环是水轮机的重要部件,它既承载着机组的重量,又控制着水的流量与速度。轴流式水轮机座环通常为双环板,固定导叶采用中空结构,各瓣体经通用模具成型后组焊成一体。其成型和焊接面临很大的技术难题,文章着重讨论单环板焊接式座环的装配焊接工艺。%The seating ring was an important part of hydraulic turbine, which not only bore the weight of the whole unit but also controlled the water flow and speed. Double-ring plate were the conventional structure of axi-al flow hydraulic turbine seating ring. Usually, the fixed vane was of hollow construction while the steel plates were welded and integrated into a whole unit after shaping. But the welding and shaping encountered many technology problems, thus, the assembly and welding procedure of the single seating ring were discussed emphatically.

  10. Design of large Francis turbine using optimal methods

    Science.gov (United States)

    Flores, E.; Bornard, L.; Tomas, L.; Liu, J.; Couston, M.

    2012-11-01

    Among a high number of Francis turbine references all over the world, covering the whole market range of heads, Alstom has especially been involved in the development and equipment of the largest power plants in the world : Three Gorges (China -32×767 MW - 61 to 113 m), Itaipu (Brazil- 20x750 MW - 98.7m to 127m) and Xiangjiaba (China - 8x812 MW - 82.5m to 113.6m - in erection). Many new projects are under study to equip new power plants with Francis turbines in order to answer an increasing demand of renewable energy. In this context, Alstom Hydro is carrying out many developments to answer those needs, especially for jumbo units such the planned 1GW type units in China. The turbine design for such units requires specific care by using the state of the art in computation methods and the latest technologies in model testing as well as the maximum feedback from operation of Jumbo plants already in operation. We present in this paper how a large Francis turbine can be designed using specific design methods, including the global and local optimization methods. The design of the spiral case, the tandem cascade profiles, the runner and the draft tube are designed with optimization loops involving a blade design tool, an automatic meshing software and a Navier-Stokes solver, piloted by a genetic algorithm. These automated optimization methods, presented in different papers over the last decade, are nowadays widely used, thanks to the growing computation capacity of the HPC clusters: the intensive use of such optimization methods at the turbine design stage allows to reach very high level of performances, while the hydraulic flow characteristics are carefully studied over the whole water passage to avoid any unexpected hydraulic phenomena.

  11. The Dynamic Analysis of Hydropower House and Unit System in Coupled Hydraulic-mechanical-electric Factors

    Science.gov (United States)

    MA, Z. Y.; Wu, Q. Q.

    2016-11-01

    A hydraulic-mechanical-electric and structures coupled model of hydropower station system including subsystem models of the penstock, hydro-turbine model, speed governor, synchronous generator as well as grid, rotor-bearing system and powerhouse structure is established. This model is used to simulate the small fluctuation transient process of 10% load-up in the part load condition for hydropower station. Mechanical eccentric force, unbalanced magnetic pull and vortex pressure fluctuation at inlet of draft tube are considered in the numerical calculation. The interaction between hydraulic-mechanical-electric coupled factors and structural vibration properties during the small fluctuation transient process is studied. The results indicate that the speed regulation for turbine has very litter impact on the transient process of generator. In the process of small fluctuation with loading method in this paper, structure of powerhouse is greatly influenced by vortex pressure pulse in the draft tube, and the vibration of unit is excited by loads which caused by itself rotating.

  12. Hydraulic Yaw System

    DEFF Research Database (Denmark)

    Stubkier, Søren; Pedersen, Henrik C.; Mørkholt, M.

    As wind turbines increase in size, combined with increased lifetime demands, new methods for load reduction needs to be examined. One method is to make the yaw system of the turbine soft/flexible and hereby dampen the loads to the system, which is the focus of the current paper. By utilizing...... the HAWC2 aeroelastic code and an extended model of the NREL 5MW turbine combined with a simplified linear model of the turbine, the parameters of the soft yaw system are optimized to reduce loading in critical components. Results shows that a significant reduction in fatigue and extreme loads to the yaw...... system and rotor shaft when utilizing the soft yaw drive concept compared to the original stiff yaw system. The physical demands of the hydraulic yaw system are furthermore examined for a life time of 20 years. Based on the extrapolated loads, the duty cycles show that it is possible to construct...

  13. Analysis of Seismic Dynamic Response of HydraulicTurbines under Water Medium%地震作用下水轮机组在水介质中的动态响应计算

    Institute of Scientific and Technical Information of China (English)

    于建华; 魏泳涛; 曹剑绵

    2001-01-01

    The seismic response of hydraulic turbines under water medium isthe typical coupled vibration of l iquid-elastic body. To begin with, this paper briefly introduces the theory bac kground and computation method about dynamic behavior of turbines in water, then focuses on discussing the dynamic governing equations of turbine-water system in consideration of the influence of 3 dimensional coupled vibration of liquid-turbine. The time-history analysis is adopted to resolve the equations. Finally ,an example of a practical case is given, with the computational result compared against the result obtained without considering the influence of water medium.%水轮机在水中受地震作用而引起的地震响应属于液体-弹性体的耦合振动问题。本文中首先简介求解机组在水中的动力特性的理论背景及计算方法,接着重点讨论在考虑机组-水体系的三维液-固耦合振动影响下,水轮机组受地震作用的动力学支配方程及用时程分析法求解的解法。最后介绍结合贯流式水轮机所得出的计算成果,并将其结果与不考虑水介质影响得出的结果进行了比较。

  14. 46 CFR 112.50-3 - Hydraulic starting.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Hydraulic starting. 112.50-3 Section 112.50-3 Shipping... POWER SYSTEMS Emergency Diesel and Gas Turbine Engine Driven Generator Sets § 112.50-3 Hydraulic starting. A hydraulic starting system must meet the following: (a) The hydraulic starting system must be...

  15. Fish-Friendly Hydropower Turbine Development & Deployment: Alden Turbine Preliminary Engineering and Model Testing

    Energy Technology Data Exchange (ETDEWEB)

    Foust, J. [Voith Hydro, Inc., York, PA (USA); Hecker, G. [Alden Research Laboratory, Inc., Holden, MA (USA); Li, S. [Alden Research Laboratory, Inc., Holden, MA (USA); Allen, G. [Alden Research Laboratory, Inc., Holden, MA (USA)

    2011-10-01

    The Alden turbine was developed through the U.S. Department of Energy's (DOE's) former Advanced Hydro Turbine Systems Program (1994-2006) and, more recently, through the Electric Power Research Institute (EPRI) and the DOE's Wind & Water Power Program. The primary goal of the engineering study described here was to provide a commercially competitive turbine design that would yield fish passage survival rates comparable to or better than the survival rates of bypassing or spilling flow. Although the turbine design was performed for site conditions corresponding to 92 ft (28 m) net head and a discharge of 1500 cfs (42.5 cms), the design can be modified for additional sites with differing operating conditions. During the turbine development, design modifications were identified for the spiral case, distributor (stay vanes and wicket gates), runner, and draft tube to improve turbine performance while maintaining features for high fish passage survival. Computational results for pressure change rates and shear within the runner passage were similar in the original and final turbine geometries, while predicted minimum pressures were higher for the final turbine. The final turbine geometry and resulting flow environments are expected to further enhance the fish passage characteristics of the turbine. Computational results for the final design were shown to improve turbine efficiencies by over 6% at the selected operating condition when compared to the original concept. Prior to the release of the hydraulic components for model fabrication, finite element analysis calculations were conducted for the stay vanes, wicket gates, and runner to verify that structural design criteria for stress and deflections were met. A physical model of the turbine was manufactured and tested with data collected for power and efficiency, cavitation limits, runaway speed, axial and radial thrust, pressure pulsations, and wicket gate torque. All parameters were observed to fall

  16. 三峡电站混流式水轮机水力稳定性研究%Prediction of Hydraulic Stability of Francis Turb ines of Three Gorges Hydropower Station

    Institute of Scientific and Technical Information of China (English)

    TIAN; Zi-qin

    2001-01-01

    The Francis turbine of Three Gorges hydropower station is one of the large turbi nes with great head variation in the world. The operational stability of the tur bine has been the top subject for departments of design, research, manufacture a nd operation to be concerned about. During the course of preparing bid invitatio n documents and executing the contract for the Three Gorges left power plants turbogenerator units, the hydraulic stability of the turbine was regarded as the most important problem and specific stability indexes of the model turbine and the prototype turbine were respectively specified in the contract. In the model tests for turbine model acceptance, pressure fluctuation phenomena in the case o f partial load were found to be different from the usual ones as people had known. Within the range of operating water head, there existed a peak value zone of pr essure fluctuations with higher frequencies, and large-amplitude pressure fluct uations simultaneously occurred in several localities from the spiral case entra nce to the draft tube. On the basis of test results from the model, the influenc e of cavitation coefficient and aeration on pressure fluctuations is analyzed, a nd some measures to improve the hydraulic stability of turbines of Three Gorges hydropower station are expounded.

  17. Design and Application of Hydraulic Brake System for Mega-watt Graded Wind Turbine%兆瓦级风力发电机组液压制动系统的设计与应用

    Institute of Scientific and Technical Information of China (English)

    董连俊

    2015-01-01

    阐述了风力发电机组液压制动系统的工作原理,针对兆瓦级风力发电机组对液压制动系统的高集成化、高可靠性的要求,对液压制动系统进行深入研究探讨;针对现场实际应用中容易出现的问题进行了分析,并提出相应的解决方案。%For the purpose of high integration and high reliability, this paper introduces principle of hydraulic brake system for wind turbine, and conducts in-depth research of this system. According to problems during application, proposes corresponding resolving scheme.

  18. 液力透平非定常压力脉动的数值计算与分析%Simulation and analysis of unsteady pressure fluctuation in hydraulic turbine

    Institute of Scientific and Technical Information of China (English)

    杨孙圣; 孔繁余; 张新鹏; 黄志攀; 成军

    2012-01-01

    液力透平内部流场的非定常压力脉动是影响机组运行稳定性的关键因素之一,为了研究液力透平内部压力脉动,采用流场分析软件CFX对液力透平内部流场进行了三维非定常数值模拟,通过设置监测点,得到了不同位置处的压力脉动结果,并对压力脉动进行了频域分析.结果表明,液力透平内部压力沿着流道逐渐减弱;蜗壳环形部分入口位置和割舍处压力脉动较小,割舍前端和蜗壳中部位置处压力脉动较大,压力脉动主频为转频的2倍;叶轮内部的压力脉动在液力透平各过流部件的脉动中最为强烈,最大压力脉动发生在叶轮中间位置,压力脉动主频为叶频的2倍;尾水管内的压力脉动沿着尾水管流道逐渐减弱,压力脉动主频与蜗壳内部的压力脉动主频相同,为转频的2倍.%Pressure pulsation of internal flow field within pump as turbine is one of the major factors affecting the stability of turbine unit. To research the unsteady pressure field in pump as turbine, computational fluid dynamics software CFX was adopted in the unsteady flow field analysis. Pressure pulsation results at various monitoring points were acquired and frequency analyses were performed based on these results. Results show that the pressure value decreases along the flow channel of hydraulic turbine. The pressure pulsations at volute cut water and the inlet of volute spiral development part are small. The main frequency of pressure pulsation in volute is two times of the impeller rotational frequency. The most intensive pressure pulsation of hydraulic part in hydraulic turbine is impeller and the most intensive location happens at the middle of impeller passage. The main frequency of impeller pressure pulsation is two times of the blade passing frequency. The pressure pulsation in outlet pipe gradually decreases along the pipe, and its main frequency of pressure pulsation is two times of the impeller rotational

  19. Equivalent pipe algorithm for metal spiral casing and its application in hydrau-lic transient computation based on equiangular spiral model

    Institute of Scientific and Technical Information of China (English)

    彭小东; 杨朝晖; 刘善均; 鞠小明

    2014-01-01

    For the metal spiral casing of water turbines, a new equivalent pipe algorithm is developed based on the idea of equiangu-lar spiral. Prototype tests and computations are carried out to investigate the hydraulic transient characteristics. The computation re-sults by using the new model are in a good agreement with the prototype test data with respect to the maximum speed of the tur-bine-generator unit, the maximum water hammer pressure in the spiral casing and the maximum vacuum in the draft tube. The propo-sed method is a significant improvement over the conventional algorithm with the accuracy increased and the error reduced by about 3%.

  20. Methodology for fabrication of hydraulics mini turbines with composite materials; Metodologia para a fabricacao de mini turbinas hidraulicas com materiais compostos

    Energy Technology Data Exchange (ETDEWEB)

    Faria, M.T.C. [Universidade Federal de Minas Gerais (DEMEC/UFMG), Belo Horizonte, MG (Brazil). Dept. de Engenharia Mecanica], Email: mtcdf@uol.com.br; Martinez, C.B.; Viana, E.M.F. [Universidade Federal de Minas Gerais (EHR-UFMG), Belo Horizonte, MG (Brazil). Escola de Engenharia. Dept. de Engenharia Hidraulica e Recursos Hidricos], Emails: martinez@cce.ufmg.br, ednamariafaria@bol.com.br

    2009-07-01

    This paper presents the description of methodological procedure specially developed for manufacturing mini turbines. This procedure is used in the design of a Francis type mini turbine with 12.5 kW. The housing volute and the suction tube of this equipment are manufactured with using composed material based on glass fiber and its distributor system is manufactured with stainless steel and brass. At the end it is presented an estimate cost of design / manufacturing of such equipment and a comparison with other equipment in the market.

  1. 基于模糊PID控制的水轮机调节系统应用与仿真研究%Application and simulation of hydraulic turbine regulation system based on fuzzy PID control

    Institute of Scientific and Technical Information of China (English)

    杨科科; 王臻卓

    2012-01-01

    Aiming at the nonlinear, time variable and great inertia characteristics of hydraulic turbine regulation system, a precise mathematical model is built to study the basic principles of fuzzy control and fuzzy control algorithm in the paper. Based on this, the fuzzy PID control model of hydraulic turbine regulation system is constructed and fuzzy controller suitable for hydro-generating set is designed. Finally, the simulation is done using Matlab. The research shows that compared with conventional PID control algorithm, the regulation characteristics of hydro-generating unit with the introduction of fuzzy PID control are improved remarkably and has a good dynamic quality.%针对水轮机调节系统的非线性、时变性及大惯性等特点,建立了其较为精确的数学模型,研究了模糊控制的基本原理,在此基础上构建了水轮机调节系统的模糊PID控制模型,并设计了适合水轮发电机组的模糊控制器,最后利用Matlab软件做了深入细致的仿真研究.研究表明,与常规的PID控制算法相比,引入模糊PID控制的水轮发电机组的调节特性得到了明显改善,并具有良好的动态品质.

  2. Numerical Study of Cavitation in Francis Turbine of a Small Hydro Power Plant

    Directory of Open Access Journals (Sweden)

    Pankaj Gohil

    2016-01-01

    Full Text Available Cavitation is undesirable phenomena and more prone in reaction turbines. It is one of the challenges in any hydro power plant which cause vibration, degradation of performance and the damage to the hydraulic turbine components. Under the present study, an attempt has been made to carry out a numerical analysis to investigate the cavitation effect in a Francis turbine. Three dimensional numerical study approach of unsteady and SST turbulence model are considered for the numerical analysis under multiphase flow such as cavitating flow. The performance parameters and cavitating flow under different operating conditions have been predicted using commercial CFX code. Three different operating conditions under cavitation and without cavitation with part load and overload conditions of the turbine for a plant sigma factor are investigated. The results are presented in the form of efficiency, pressure fluctuation, vortex rope and vapor volume fraction. It has been observed that variation in efficiency and vapor volume fraction is found to be nominal between cavitation and without cavitation conditionsat rated discharge and rated head. Turbine efficiency loss and vapor bubbles formation towards suction side of the runner blade are found to be maximum under overload condition. However, the pressure pulsation has been found maximum under part load condition in the draft tube. The simulation results are found to be in good agreement with model test results for efficiency. The locations of cavitating zone observed wellwith the result of previous studies.

  3. Graphene in turbine blades

    Science.gov (United States)

    Das, D. K.; Swain, P. K.; Sahoo, S.

    2016-07-01

    Graphene, the two-dimensional (2D) nanomaterial, draws interest of several researchers due to its many superior properties. It has extensive applications in numerous fields. A turbine is a hydraulic machine which extracts energy from a fluid and converts it into useful work. Recently, Gudukeya and Madanhire have tried to increase the efficiency of Pelton turbine. Beucher et al. have also tried the same by reducing friction between fluid and turbine blades. In this paper, we study the advantages of using graphene as a coating on Pelton turbine blades. It is found that the efficiency of turbines increases, running and maintenance cost is reduced with more power output. By the application of graphene in pipes, cavitation will be reduced, durability of pipes will increase, operation and maintenance cost of water power plants will be less.

  4. Multi-objective shape optimization of runner blade for Kaplan turbine

    Science.gov (United States)

    Semenova, A.; Chirkov, D.; Lyutov, A.; Chemy, S.; Skorospelov, V.; Pylev, I.

    2014-03-01

    Automatic runner shape optimization based on extensive CFD analysis proved to be a useful design tool in hydraulic turbomachinery. Previously the authors developed an efficient method for Francis runner optimization. It was successfully applied to the design of several runners with different specific speeds. In present work this method is extended to the task of a Kaplan runner optimization. Despite of relatively simpler blade shape, Kaplan turbines have several features, complicating the optimization problem. First, Kaplan turbines normally operate in a wide range of discharges, thus CFD analysis of each variant of the runner should be carried out for several operation points. Next, due to a high specific speed, draft tube losses have a great impact on the overall turbine efficiency, and thus should be accurately evaluated. Then, the flow in blade tip and hub clearances significantly affects the velocity profile behind the runner and draft tube behavior. All these features are accounted in the present optimization technique. Parameterization of runner blade surface using 24 geometrical parameters is described in details. For each variant of runner geometry steady state three-dimensional turbulent flow computations are carried out in the domain, including wicket gate, runner, draft tube, blade tip and hub clearances. The objectives are maximization of efficiency in best efficiency and high discharge operation points, with simultaneous minimization of cavitation area on the suction side of the blade. Multiobjective genetic algorithm is used for the solution of optimization problem, requiring the analysis of several thousands of runner variants. The method is applied to optimization of runner shape for several Kaplan turbines with different heads.

  5. Resonance investigation of pump-turbine during startup process

    Science.gov (United States)

    He, L. Y.; Wang, Z. W.; Kurosawa, S.; Nakahara, Y.

    2014-12-01

    The causes of resonance of a certain model pump-turbine unit during startup process were investigated in this article. A three-dimensional full flow path analysis model which contains spiral case, stay vanes, guide vanes, runner, gaps outside the runner crown and band, and draft tube was constructed. The transient hydraulic excitation force of full flow path was analyzed under five conditions near the resonance region. Based on one-way fluid- structure interaction (FSI) analysis model, the dynamic stress characteristics of the pump-turbine runner was investigated. The results of pressure pulsation, vibration mode and dynamic stress obtained from simulation were consistent with the test results. The study indicated that the hydraulic excitation frequency (Zg*fn) Hz due to rotor-stator interference corresponding to the natural frequency of 2ND+4ND runner mode is the main cause of resonance. The relationship among pressure pulsation, vibration mode and dynamic stress was discussed in this paper. The results revealed the underlying causes of the resonance phenomenon.

  6. Hydraulic wind energy conversion system

    Energy Technology Data Exchange (ETDEWEB)

    1981-07-01

    The purpose of this research was to design, build and test a hydraulic wind energy system. This design used a three bladed turbine, which drove a hydraulic pump. The energy is transmitted from the pump through a long hose and into a hydraulic motor, where the energy is used. This wind system was built and tested during the winter of 1980-1981. The power train included a five meter, three bladed wind turbine, a 9.8:1 ratio gearbox, a 1.44 cubic inch displacement pump with a small supercharge gear pump attached. The hydraulic fluid was pumped through a 70', 3/4'' I-D-high pressure flexhose, then through a volume control valve and into a 1.44 cubic inch displacement motor. The fluid was returned through a 70', 1'' I-D-flexhose.

  7. Evaluation of advanced hydraulic turbomachinery for underground pumped hydroelectric storage. Part 2. Two-stage regulated pump/turbines for operating heads of 1000 to 1500 m

    Energy Technology Data Exchange (ETDEWEB)

    Blomquist, C.A.; Frigo, A.A.; Degnan, J.R.

    1979-10-01

    This UPHS report applies to Francis-type, reversible pump/turbines regulated with gating systems. The first report, however, covered single-stage regulations; this report covers two-stage regulations. Development of a two-stage regulated pump/turbine appears to be attractive because the proposed single-drop UPHS concept requires turbomachinery with a head range of 1000 to 2000 m. With turbomachinery of this range available, the single-drop scheme offers a simple and economic UPHS option. Six different two-stage, top-gated pump/turbines have been analyzed: three that generate 500 MW and three that generate 350 MW. In each capacity, one machine has an operating head of 1000 m, another has a head of 1250 m, and the third has a head of 1500 m. The rated efficiencies of the machines vary from about 90% (1000-m head) to about 88% (1500-m head). Costs in 1978 $/kW for the three 500-MW units are: 20.5 (1000 m), 16.5 (1250 m), and 13.5 (1500 m). Corresponding costs for the three 350-MW units are 23, 18, and 14 $/kW. No major turbomachinery obstacles are foreseen that could hamper development of these pump/turbines. Further model testing and development are needed before building them.

  8. The impact of the utilization of digital technology in hydraulic turbines speed regulators; O impacto da utilizacao de tecnologia digital em reguladores de velocidade de turbinas hidraulicas

    Energy Technology Data Exchange (ETDEWEB)

    Tiburcio, Solange Numeriano Nen; Viegas, Francisco Carlos Ferreira [Comapnhia Hidroeletrica do Sao Franciso, Recife, PE (Brazil)

    1995-12-31

    The aim of this work which was performed based on the experience acquired during the implementation of digital speed regulators in Xingo hydroelectric power plant is to present the characteristics of the system implanted and analyses the technological impact caused to the hydroelectric turbines primary control by the utilization of such kind of regulators 6 figs., 3 refs.

  9. RESEARCH AND DESIGN OF THE STRAFLO-FRANCIS TURBINE

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    A new type of hydraulic turbine and its design theory is presentedThis turbine has the advantages of the most widely used Francis turbine and Straflo tubine,has its own specific theoretical basis,compact structure,small volume,low cost and steady operationAnd it is convenient to be transported,installed and maintained,and has good hydraulic and cavitation performanceIt is named StrafloFrancis turbine

  10. 新型涡轮驱动水力振荡器设计与实验研究%Design and experimental study on a new type of turbine driven hydraulic oscillator

    Institute of Scientific and Technical Information of China (English)

    王杰; 夏成宇; 冯定; 于长柏

    2016-01-01

    提出了一种新型的石油钻井用水力振荡器,可有效降低管柱摩阻,提高钻井效率.该水力振荡器采用涡轮驱动,并使用双偏心动定阀作为压力脉冲发生机构.通过建立双偏心动定阀的运动特性方程,结合实际工况得出阀盘的最优尺寸.通过选定阀型的水力振荡器性能测试实验,得出在模拟钻压为30 kN ,流量为28 L/s ,工作介质为清水时的振动冲击力约为15859 N ,振动位移约为4.1 mm ,振动频率约为11.4 Hz .该分析与实验结果对水力振荡器的设计与应用具有指导意义.%A new type of hydraulic oscillator for oil drilling is presented ,w hich can effectively re‐duce the frictional resistance and increase the drilling efficiency . The hydraulic oscillator was driven by a turbine ,and double eccentric valve was used as the pressure pulse generating mecha‐nism .By establishing the motion characteristic equation of the double eccentric valve ,the optimal size of the valve disc was obtained based on the actual working conditions .The performance test experiment of the hydraulic oscillator with selected valve was carried out ,the experimental re‐sults showed that the vibration impact force of the hydraulic oscillator was about 15 859 N ,the vibration displacement was about 4.1 mm ,and the vibration frequency was about 11.4 Hz when the drilling pressure was 30 kN ,the flow rate was 28 L/s ,and the working medium was water . The analysis and experimental results have guiding significance for the design and application of the hydraulic oscillator .

  11. Advanced Performance Hydraulic Wind Energy

    Science.gov (United States)

    Jones, Jack A.; Bruce, Allan; Lam, Adrienne S.

    2013-01-01

    The Jet Propulsion Laboratory, California Institute of Technology, has developed a novel advanced hydraulic wind energy design, which has up to 23% performance improvement over conventional wind turbine and conventional hydraulic wind energy systems with 5 m/sec winds. It also has significant cost advantages with levelized costs equal to coal (after carbon tax rebate). The design is equally applicable to tidal energy systems and has passed preliminary laboratory proof-of-performance tests, as funded by the Department of Energy.

  12. Offshore Wind Turbine Design

    DEFF Research Database (Denmark)

    Frandsen, Sten; Hansen, Erik Asp; Ibsen, Lars Bo

    2006-01-01

    Current offshore wind turbine design methods have matured to a 1st generation state, manifested in the draft of a possible standard, IEC 61400-3 (2005). It is now time to investigate the possibilities of improving existing methods. To do so in an efficient manner a clear identification of the most...... important uncertainty drivers specific for offshore wind turbine design loads is required. Describing the initial efforts in a Danish research project, the paper points to focal points for research and development. These are mainly: soil-structure interaction, improved modelling of wave loads from deep...

  13. 兆瓦级风力机节能型电-液复合变桨距系统的设计与仿真研究%Design and Simulation Study of Energy-saving Electro-hydraulic Composite Pitch Control System for Megawatt-class Wind Turbine

    Institute of Scientific and Technical Information of China (English)

    刘军龙; 代晶辉; 吕凤池; 李阳; 赵进宝; 姜继海

    2013-01-01

    针对现有的电动变桨距系统和液压变桨距系统所存在的问题,将直驱式容控电液伺服技术与风力机变桨距系统结合,提出了一种节能型电-液复合变桨距系统.并以1.5 MW风力机为例,完成对其变桨距系统的设计、元件选型和Simulink仿真,分析了该节能型电-液复合变桨距系统在大功率风力机上应用的可行性.%Aimed at the existing problem of present electric pitch control system and hydraulic pitch control system,by combining the direct drive volume control electro-hydraulic servo technique and wind turbine pitch control system,a new kind of energy-saving electro-hydraulic composite pitch control system was proposed.By taking the 1.5 mega-watt wind turbine as an example,its pitch control system design,parts selection and Simulink Simulation were accomplished.The possibility of the application of this energy-saving electro-hydraulic composite pitch control system on high-power wind turbines was analyzed.

  14. Concept Evaluation for Hydraulic Yaw System

    DEFF Research Database (Denmark)

    Stubkier, Søren; Pedersen, Henrik C.; Andersen, Torben Ole

    2013-01-01

    a suspension system on a car, leading the loads away from the turbine structure. However, to realize a soft hydraulic yaw system a new design concept must be found. As a part of the development of the new concept a preliminary concept evaluation has been conducted, evaluating seven different hydraulic yaw......The yaw system is the subsystem on a wind turbine which ensures that the rotor plane of the turbine always is facing the wind direction. Studies from [1] show that a soft yaw system may be utilized to dampen the loads in the wind turbine structure. The soft yaw system operates much like...... investigation. Loads and yaw demands are based on the IEC 61400-1 standard for wind turbine design, and the loads for this examination are extrapolated from the HAWC2 aeroelastic design code. The concepts are based on a 5 MW off-shore turbine....

  15. Cavitation in hydraulic turbines: the benefits of new processes and materials utilization; Cavitacao em turbinas hidraulicas: os beneficios da utilizacao de novos processos e novos materiais

    Energy Technology Data Exchange (ETDEWEB)

    Souza, Nelio Cesar de [Parana Univ., Curitiba, PR (Brazil). Centro Politecnico

    1995-12-31

    Due to the introduction of new metallurgic technologies, this work proposes the substitution of the existing materials and processes used for the maintenance of electric turbines which present the cavitation effect. the methodology is presented. Considering the so far obtained results, it was concluded that by the utilization of the suggested techniques it is possible to obtain significant maintenance costs and time reduction 8 figs., 1 tab., 5 refs.

  16. Preliminary investigation of flow dynamics during the start-up of a bulb turbine model

    Science.gov (United States)

    Coulaud, M.; Fraser, R.; Lemay, J.; Duquesne, P.; Aeschlimann, V.; Deschênes, C.

    2016-11-01

    Nowadays, the electricity network undergoes more perturbations due to the market demand. Additionally, an increase of the production from alternative resources such as wind or solar also induces important variations on the grid. Hydraulic power plants are used to respond quickly to these variations to stabilize the network. Hydraulic turbines have to face more frequent start-up and stop sequences that might shorten significantly their life time. In this context, an experimental analysis of start-up sequences has been conducted on the bulb turbine model of the BulbT project at the Hydraulic Machines Laboratory (LAMH) of Laval University. Maintaining a constant head, guide vanes are opened from 0 ° to 30 °. Three guide vanes opening speed have been chosen from 5 °/s to 20 °/s. Several repetitions were done for each guide vanes opening speed. During these sequences, synchronous time resolved measurements have been performed. Pressure signals were recorded at the runner inlet and outlet and along the draft tube. Also, 25 pressure measurements and strain measurements were obtained on the runner blades. Time resolved particle image velocimetry were used to evaluate flowrate during start-up for some repetitions. Torque fluctuations at shaft were also monitored. This paper presents the experimental set-up and start-up conditions chosen to simulate a prototype start-up. Transient flowrate methodology is explained and validation measurements are detailed. The preliminary results of global performances and runner pressure measurements are presented.

  17. Gas turbine

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Ok Ryong

    2004-01-15

    This book introduces gas turbine cycle explaining general thing of gas turbine, full gas turbine cycle, Ericson cycle and Brayton cycle, practical gas turbine cycle without pressure loss, multiaxial type gas turbine cycle and special gas turbine cycle, application of basic theory on a study on suction-cooling gas turbine cycle with turbo-refrigerating machine using the bleed air, and general performance characteristics of the suction-cooling gas turbine cycle combined with absorption-type refrigerating machine.

  18. Design of hydraulic recuperation unit

    Directory of Open Access Journals (Sweden)

    Jandourek Pavel

    2016-01-01

    Full Text Available This article deals with design and measurement of hydraulic recuperation unit. Recuperation unit consist of radial turbine and axial pump, which are coupled on the same shaft. Speed of shaft with impellers are 6000 1/min. For economic reasons, is design of recuperation unit performed using commercially manufactured propellers.

  19. Cause Analysis and Improvement of Mechanical Seal Leakage of Hydraulic Turbine%液力透平机械密封泄漏的原因分析及改进

    Institute of Scientific and Technical Information of China (English)

    潘强; 徐卫忠; 韩维涛; 雷涛

    2015-01-01

    某柴油加氢改质装置液力透平采用旋转式串联机械密封和基于API标准的PLAN 53B冲洗方案的辅助密封系统,在试运行时发现机械密封泄漏严重。通过对机械密封结构和辅助密封冲洗系统的分析,指出机械密封泄漏的主要原因是,泵送环扬程不足及换热器管路阻力过大,旋转式串联密封动环波动影响摩擦热和介质传导热的排出,高温下隔离液会气化等。通过对换热器和泵送环的改造,降低了隔离液腔和密封腔温度;将旋转式串联密封改为静止式双端面密封,提高了换热效率;采用高沸点隔离液,解决了隔离液的气化问题。机械密封改造后,取得了较好的密封效果,且降低了液力透平电机的负荷。%The serious mechanical seal leakage is found for the hydraulic turbine of a diesel hydrogenation modification device during the test run. The hydraulic turbine uses the rotating tandem mechanical seal and the auxiliary sealing system with PLAN 53B irrigation scheme based on API standard. Through the analysis on the mechanical seal structure and the auxiliary flushing system, the main causes of the mechanical seal leakage were pointed out, which was that the pump ring head of the mechanical seal was insufficient and the heat exchanger pipe resistance was too large, the fluctuation of the ro⁃tary series sealing ring affected the dynamic discharge of friction heat and medium transfer heat, and the spacer fluid was vaporized at high temperature. Through the transformation of heat exchanger and pump ring, the temperature in the liquid separation chamber and the sealing cavity is reduced. By transforming the rotary series sealing into double end face static seal, the heat exchange efficiency is improved. By using high boiling point spacer fluid, the problem of gasification of spacer fluid is solved. The transformed mechanical seal achieves a better sealing effect, and the load of hydraulic

  20. Rotor optimization of a Francis type hydraulic turbine through the computer flow analysis (CFD); Optimizacion del rodete de una turbina hidraulica tipo Francis a traves del analisis computacional del flujo (CFD)

    Energy Technology Data Exchange (ETDEWEB)

    Rosado Tamariz, Erick

    2007-06-15

    In the analysis of fluid behavior through hydraulic turbines, two basic methodologies for flow analysis and optimization processes in turbines are used, which are: a) modeled of flow through the entire turbine (joint), or modeled one of each component separately, obtaining satisfactory results by both methodologies. The analysis of computational fluids dynamics (CFD) to geometries improved by means of finite volume method (FVM) with their corresponding initials and boundary conditions is made, to solve a system differential equations of second order that correspond to the flow around the dominion of runner blades; considering nonviscous flow and the implementation of the two equations models for the solution of the equations that govern the turbulent flow. Also, used parameterization techniques based in a parametric geometry an objective function and the diminution of cavitation. This work presents the optimization of a runner from a Francis hydro turbine for a 75 MW considering three different load conditions (75%, 85% and 100%) through CFD as a part of the hydraulic analysis for modernization of the actual condition of a power generation unit. Francis runner optimization is made, through a previous analysis of CFD by means of the FVM, considering the viscous effects of the fluid and the model of turbulence developed by Sparlart and Allmaras; modeling the wicket and runner separately. Later the generation of a parametric model of the runner is made and the simulation for the generation of data base is formed. Finally an objective function is considered to develop the optimal geometry of the runner blades. The results are presented in a graphic form in such a way, that it shows the distributions of pressure and speed around the blades runner, the geometrical and performance (efficiency and power) comparison between original and optimized model. [Spanish] En el analisis del comportamiento del fluido a traves de turbinas hidraulicas, se emplean dos metodologias

  1. 14 CFR 33.72 - Hydraulic actuating systems.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Hydraulic actuating systems. 33.72 Section... AIRWORTHINESS STANDARDS: AIRCRAFT ENGINES Design and Construction; Turbine Aircraft Engines § 33.72 Hydraulic actuating systems. Each hydraulic actuating system must function properly under all conditions in which...

  2. 水轮发电机转子系统磁悬浮承重装置散热研究%Study on heat dissipation of magnetic-levitation bearing device for rotor system of hydraulic turbine-generator unit

    Institute of Scientific and Technical Information of China (English)

    马宏忠; 郭晓宁; 陈远俊

    2011-01-01

    由于水轮发电机轴向重力负荷电磁悬浮承重系统的励磁线圈密封在装置内部,无法与外界空气对流,从而会出现温升过高.为解决此问题,提出了分别在该系统电磁铁的上铁心和衔铁(推力盘)上设置一定数量的通风孔,以便使线圈表面形成对流散热.针对通风孔设计,选用适合此模型结构的对流散热数值模型,推导出对流散热系数的数值,并利用有限元分析软件Ansys进行了温度和磁场仿真分析.结果显示,在满足水轮机组承重要求的前提下,合理设计通风孔可以使电磁悬浮装置线圈温度大大降低,满足系统应用要求.%Since the excitation coils of electromagnetic-levitation bearing system for the axial load of hydraulic turbine-generator are sealed inside of the system, the heat inside is difficult to be dissipated, and then over-high temperature rise would occur therein.For solving this problem, it is put forward that a few vents are respectively arranged on both the electromagnet core and the armature ( thrust disc) of the system, so as to create a convection heat dissipation on the surface of coils.So far as the design of the vent is concerned, suitable numerical models are selected for this model along with the deduction of the coefficient of convection heat dissipation, and then the simulation analysis on the temperature and the magnetic field is made with the softwareAnsys.The results show that under the premise to satisfy the bearing requirement of hydraulic turbine-generator unit, the temperature of the coils can be greatly lowered with the reasonably designed vents, therefore, the application requirement of the system can be met as well.

  3. Concept Evaluation for Hydraulic Yaw System

    DEFF Research Database (Denmark)

    Stubkier, Søren; Pedersen, Henrik C.; Andersen, Torben Ole

    2013-01-01

    a suspension system on a car, leading the loads away from the turbine structure. However, to realize a soft hydraulic yaw system a new design concept must be found. As a part of the development of the new concept a preliminary concept evaluation has been conducted, evaluating seven different hydraulic yaw...... concepts, ranging from a one-to-one copy of the electrical drive (electrical drives replaced by hydraulic dittos), to floating suspension systems mounted on hydraulic cylinders. Rough calculations of size and consequences of the different systems are presented ending up with the final concept for further...... investigation. Loads and yaw demands are based on the IEC 61400-1 standard for wind turbine design, and the loads for this examination are extrapolated from the HAWC2 aeroelastic design code. The concepts are based on a 5 MW off-shore turbine....

  4. Unsteady Flow Analysis of Pump Mode Small Discharge Condition for a Francis Pump-turbine

    Science.gov (United States)

    Xiaoran, ZHAO; Yexiang, XIAO; Jincai, XU; Wei, XU; Jianbo, SUN; Zhengwei, WANG; Yangyang, YAO

    2016-11-01

    Unsteady flow phenomena, including vortex flow at runner inlet, helical backflow in the draft tube and numerous vortexes inside the guide vanes, can occur in pump-turbines under off design conditions at pump mode and can impact normal operation of pump-turbines. All of these phenomena cause serious pressure pulsation, which is quite different from cases in normal pump mode. There is also a difference of pressure pulsation frequency and amplitude in different place through the runner. This paper builds a whole flow passage of a model pump-turbine, simulates flow characteristics in runner by CFD technology, analyses pressure pulsation in the runner and explores the origin and mechanism of pressure pulsations. The SST-CC turbulence model is adopted to perform unsteady simulations of the pump-turbine under 0.46Q BEP small discharge condition at pump mode. Unsteady flow structures are proceeded combined with hydraulic loss and pressure amplitude spectra. The results indicates that there is complicated disordered flow inside the runner under 0.46Q BEP small discharge condition at pump mode, shows the amplitude and frequency characteristic of pressure pulsations through runner flow passage.

  5. 水轮发电机组转动部分动力学分析%Rotor-dynamic Analysis of Hydraulic Turbine Rotor System

    Institute of Scientific and Technical Information of China (English)

    陈德亮

    2013-01-01

    本文根据水轮发电机组中的密封形式及其边界条件特征,选用Muszyska密封力模型近似水轮机上冠、下环间隙流体激振力,并加载到水轮发电机组转动部分中,采用New mark数值方法对包括发电机、主轴、上导轴承、下导轴承、水轮机转轮、上冠和下环密封在内的水轮发电组转动部分-密封系统进行数值仿真,得到了水轮发电机组转动部分动力学特性,并将其与水轮发电机组实际运行数据进行对比,结果证明所建立的密封力模型符合工程实际,对水轮发电机组转动部分的设计有一定的指导意义。%Based on the seal form of hydroelectric generating unit and its boundary conditions, Muszyska model is used to approximate the fluid exciting force in gap flow between the crown and band of Francis turbine, and is loaded into the rotor system. New mark numerical method is selected to simulate rotor-seal system including generator, main shaft, upper guide bearing, lower guide bearing, turbine runner and the seals of the crown and the band of the turbine. Rotor-dynamic characteristics of the hydrogenerator rotor system is obtained and compared with the actual operation data. The result shows that the selected sealing force model can accord with engineering practice, and it has a guiding value to the design of hydrogenerator rotor system.

  6. Study on Heat Treatment Process for Blade Castings of Hydraulic Turbine Set in Three Gorges Project%三峡水轮机组叶片铸件热处理工艺研究

    Institute of Scientific and Technical Information of China (English)

    高扬; 董晓亮

    2014-01-01

    以三峡水轮机组叶片铸件为研究对象,对其热处理工艺进行了研究。采用热膨胀仪进行特征相变点的测定,通过热处理试验确定热处理工艺参数对机械性能的影响关系,提出了叶片铸件最佳热处理工艺路线及工艺参数,并应用于实际生产,生产出的叶片铸件各项性能指标均满足设计要求。%The heat treatment process for the blade castings is studied by taking samples of these blade castings of hydraulic turbine in Three Gorges Project. The feature transition points are measured by thermal dilatometer and the effect of parameters of heat treatment process on me-chanical properties are confirmed by heat treatment test. After that the optimal heat treatment pro-cess and technological parameters for treating blade castings are proposed. When the new process and technological parameters are put into operation, all kinds of properties of the blade castings produced by application of the process and parameters can meet the design requirements.

  7. CFD simulation of pressure and discharge surge in Francis turbine at off-design conditions

    Science.gov (United States)

    Chirkov, D.; Avdyushenko, A.; Panov, L.; Bannikov, D.; Cherny, S.; Skorospelov, V.; Pylev, I.

    2012-11-01

    A hybrid 1D-3D CFD model is developed for the numerical simulation of pressure and discharge surge in hydraulic power plants. The most essential part - the turbine itself - is simulated directly using 3D unsteady equations of turbulent motion of fluid-vapor mixture, while the rest of the hydraulic system is simulated in frames of 1D hydro-acoustic model. Thus the model accounts for the main factors responsible for excitation and propagation of pressure and discharge waves in hydraulic power plant. Boundary conditions at penstock inlet and draft tube outlet are discussed in detail. Then simulations of dynamic behavior at part load and full load operating points are performed. It is shown that the numerical model is able to capture self-excited oscillations in full load conditions. The influence of penstock length and flow structure behind the runner are investigated. The presented approach seems to be a promising tool for prediction and investigation the dynamic behavior in hydraulic power plants.

  8. Expected load spectra of prototype Francis turbines in low-load operation using numerical simulations and site measurements

    Science.gov (United States)

    Eichhorn, M.; Taruffi, A.; Bauer, C.

    2017-04-01

    The operators of hydropower plants are forced to extend the existing operating ranges of their hydraulic machines to remain competitive on the energy market due to the rising amount of wind and solar power. Faster response times and a higher flexibility towards part- and low-load conditions enable a better electric grid control and assure therefore an economic operation of the power plant. The occurring disadvantage is a higher dynamic excitation of affected machine components, especially Francis turbine runners, due to pressure pulsations induced by unsteady flow phenomena (e.g. draft tube vortex ropes). Therefore, fatigue analysis becomes more important even in the design phase of the hydraulic machines to evaluate the static and dynamic load in different operating conditions and to reduce maintenance costs. An approach including a one-way coupled fluid-structure interaction has been already developed using unsteady CFD simulations and transient FEM computations. This is now applied on two Francis turbines with different specific speeds and power ranges, to obtain the load spectra of both machines. The results are compared to strain gauge measurements on the according Francis turbines to validate the overall procedure.

  9. Turbinate surgery

    Science.gov (United States)

    Turbinectomy; Turbinoplasty; Turbinate reduction; Nasal airway surgery; Nasal obstruction - turbinate surgery ... There are several types of turbinate surgery: Turbinectomy: All or ... This can be done in several different ways, but sometimes a ...

  10. 基于响应面法的离心泵作透平水力和声学性能优化%Hydraulic and acoustic property optimization for centrifugal pump as turbine based on response surface method

    Institute of Scientific and Technical Information of China (English)

    代翠; 孔繁余; 董亮; 汪家琼; 柏宇星

    2015-01-01

    为综合优化离心泵作透平的水力和声学性能,建立了一种基于响应面的离心泵作透平水力和声学性能多目标优化方法。首先在对比分析叶轮几何参数对透平水力和噪声影响的基础上,根据敏感度筛选出对噪声影响显著的关键参数;进而应用响应面方法构造显著变量与多目标函数的响应面多元回归模型,分析影响水力效率与噪声的参数间交互作用;最终以水力效率不降低和总声压级最小为响应目标,兼顾性能与噪声确定最优参数组合,即叶片进口安放角为19.5°,叶片出口安放角为20°,叶片出口宽度为16 mm,叶片包角为92°,叶轮进口直径为101 mm,叶片数为12。对某离心泵作透平多目标优化结果表明,叶轮进口直径、叶片出口宽度、叶片数及叶片包角对内场噪声总声压级影响显著;响应面模型能够反映参数与响应值之间的相关性;经试验验证优化后透平水力效率平均提高了1.98个百分点,总声压级降低了4.95 dBA,表明采用的响应面法能够在不影响透平原有水力性能的前提下改善声学性能。%As a way of energy saving by recovery of residual pressure, centrifugal pump as turbine (PAT) has been widely used in many fields. As PAT is gradually developed for high power, flow-induced noise becomes one of the most important issues that cause negative effect on reliability. In order to improve both hydraulic and acoustic performances of PAT, an optimization method combining sensitivity analysis and response surface was established. Firstly, through comparison of impeller parameter impact on hydraulic and noise performances, the geometric parameters with great influence on acoustic were filtered based on sensitivity analysis. Further more, with the efficiency and A-weighted overall sound pressure level (OASPL) as target, the multiple regression models connecting variables and multi-objective functions

  11. Numerical Investigation of Cavitation Improvement for a Francis Turbine

    Science.gov (United States)

    Yao, Zhifeng; Xiao, Ruofu; Wang, Fujun; Yang, Wei

    2015-12-01

    Cavitation in hydraulic machine is undesired due to its negative effects on performances. To improve cavitation performance of a Francis turbine without the change of the best efficiency point, a model runner geometry optimization was carried out. Firstly, the runner outlet diameter was appropriately increased to reduce the flow velocity at runner outlet region. Then, to avoid the change of the flow rate at the best efficiency point, the blade shapes were carefully adjusted by decreasing the blade outlet angles and increasing the blade wrap angles. A large number of the modified runners were tested by computational fluid dynamic (CFD) method. Finally the most appropriate one was selected, which has the runner outlet diameter 10% larger, the blade outlet angles 3 degrees smaller and the blade wrap angles 5 degrees larger. The results showed that the critical cavitation coefficient of the model runner decreased at every unit rotational speed after the optimization, and the effect was much remarkable at relative high flow rate. Besides, by analysing the internal flow field, it was found that the zone of the low pressure on pressure surface of the optimized turbine blades was reduced, the backflow and vortex rope in draft tube were reduced, and the cavitation zone was reduced obviously.

  12. The helical turbine: A new idea for low-head hydro

    Energy Technology Data Exchange (ETDEWEB)

    Gorlov, A.M. [Northeastern Univ., Boston, MA (United States)

    1995-09-01

    Substantial potential exists at small hydro sites where heads are too low for conventional hydraulic turbines. A spiral-bladed turbine may offer a new alternative for tapping that potential in a cost-efficient manner.

  13. Hydraulic structures

    CERN Document Server

    Chen, Sheng-Hong

    2015-01-01

    This book discusses in detail the planning, design, construction and management of hydraulic structures, covering dams, spillways, tunnels, cut slopes, sluices, water intake and measuring works, ship locks and lifts, as well as fish ways. Particular attention is paid to considerations concerning the environment, hydrology, geology and materials etc. in the planning and design of hydraulic projects. It also considers the type selection, profile configuration, stress/stability calibration and engineering countermeasures, flood releasing arrangements and scouring protection, operation and maintenance etc. for a variety of specific hydraulic structures. The book is primarily intended for engineers, undergraduate and graduate students in the field of civil and hydraulic engineering who are faced with the challenges of extending our understanding of hydraulic structures ranging from traditional to groundbreaking, as well as designing, constructing and managing safe, durable hydraulic structures that are economical ...

  14. HYDRAULIC SERVO

    Science.gov (United States)

    Wiegand, D.E.

    1962-05-01

    A hydraulic servo is designed in which a small pressure difference produced at two orifices by an electrically operated flapper arm in a constantly flowing hydraulic loop is hydraulically amplified by two constant flow pumps, two additional orifices, and three unconnected ball pistons. Two of the pistons are of one size and operate against the additional orifices, and the third piston is of a different size and operates between and against the first two pistons. (AEC)

  15. 风力发电机组液压变桨机构运动与强度分析%Analysis on kinematics and strength of the hydraulic pitch mechanism of a wind turbine

    Institute of Scientific and Technical Information of China (English)

    张锁怀; 贾坤; 张平满

    2011-01-01

    After the Solidworks model being inputted into the ANSYS software, the file of mode is created,and the original rigid body is replaced with the flexible body to build a mixed rigid and flexible body model in ADAMS.Then kinematic accuracy of the pitch mechanism of a wind turbine is analyzed, which results show that the difference of the pitch angle and speed exist between the actual and theoretical value due to the elastic deformation of the parts and the hydraulic oil, therefore monitoring sensors are proposed to be fixed on the blade plate and used to control the hydraulic cylinder motion and compensate the moving errorA file related with loads information of the key parts is created after motion simulation. After the file being input in ANSYS,the strength of the key parts is analyzed Based on the results,the location, where the material was easy to yield or the maximum stress exist,is found,which should be protected during designing.%将各个构件的Solidworks实体模型导入ANSYS中,生成柔性体模态中性文件,将该柔性体导入ADAMS中替换原有的刚性体,建立变桨机构的刚柔混合体模型.利用ADAMS对风力发电机组变桨机构的模型进行变桨精度分析,发现实际变桨速度和角位移与理论值有一定误差,提出了在桨叶盘上增设位置传感器,利用传感器发出的信号控制液压缸动作,对变桨误差进行补偿;将运动仿真过程中产生的零件载荷文件,导入ANSYS中,对关键零件进行强度分析,指出了各零件易破坏位置与最大应力位置,设计时应注意保护.

  16. Life cycle assessment of turbines

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-10-15

    This report forms part of the final reporting of the project 'LCA and turbines, which has been carried out as a cooperation between Vestas Wind Systems A/S and Tech-wise A/S on behalf of Elsam A/S. The goal of the project was to create a life cycle model for a big Vestas offshore turbine. Based on the offshore model an analysis has been prepared and this analysis will show the most significant environmental impacts a turbine will be subject to during its life cycle. Furthermore we have prepared a recommendation on how an improvement strategy on a selected area can be drafted. Finally, a preliminary environmental declaration of contents will be prepared for the turbine in question and 1 kWh generated from here. (BA)

  17. Experimental Investigation of Inter-Blade Vortices in a Model Francis Turbine

    Science.gov (United States)

    LIU, Demin; LIU, Xiaobing; ZHAO, Yongzhi

    2017-07-01

    The inter-blade vortex in a Francis turbine becomes one of the main hydraulic factors that are likely to cause blade erosion at deep part load operating conditions. However, the causes and the mechanism of inter-blade vortex are still under investigation according to present researches. Thus the causes of inter-blade vortex and the effect of different hydraulic parameters on the inter-blade vortex are investigated experimentally. The whole life cycle of the inter-blade vortex is observed by a high speed camera. The test results illustrate the whole life cycle of the inter-blade vortex from generation to separation and even to fading. It is observed that the inter-blade vortex becomes stronger with the decreasing of flow and head, which leads to pressure fluctuation. Meanwhile, the pressure fluctuations in the vane-less area and the draft tube section become stronger when inter-blade vortices exist in the blade channel. The turbine will be damaged if operating in the inter-blade vortex zone, so its operating range must be far away from that zone. This paper reveals the main cause of the inter-blade vortex which is the larger incidence angle between the inflow angle and the blade angle on the leading edge of the runner at deep part load operating conditions.

  18. Experimental Investigation of Inter-Blade Vortices in a Model Francis Turbine

    Science.gov (United States)

    LIU, Demin; LIU, Xiaobing; ZHAO, Yongzhi

    2017-03-01

    The inter-blade vortex in a Francis turbine becomes one of the main hydraulic factors that are likely to cause blade erosion at deep part load operating conditions. However, the causes and the mechanism of inter-blade vortex are still under investigation according to present researches. Thus the causes of inter-blade vortex and the effect of different hydraulic parameters on the inter-blade vortex are investigated experimentally. The whole life cycle of the inter-blade vortex is observed by a high speed camera. The test results illustrate the whole life cycle of the inter-blade vortex from generation to separation and even to fading. It is observed that the inter-blade vortex becomes stronger with the decreasing of flow and head, which leads to pressure fluctuation. Meanwhile, the pressure fluctuations in the vane-less area and the draft tube section become stronger when inter-blade vortices exist in the blade channel. The turbine will be damaged if operating in the inter-blade vortex zone, so its operating range must be far away from that zone. This paper reveals the main cause of the inter-blade vortex which is the larger incidence angle between the inflow angle and the blade angle on the leading edge of the runner at deep part load operating conditions.

  19. On the physical mechanisms governing self-excited pressure surge in Francis turbines

    Science.gov (United States)

    Müller, A.; Favrel, A.; Landry, C.; Yamamoto, K.; Avellan, F.

    2014-03-01

    The required operating range for hydraulic machines is continually extended in an effort to integrate renewable energy sources with unsteady power outputs into the existing electrical grid. The off-design operation however brings forth unfavorable flow patterns in the machine, causing dynamic problems involving cavitation, which may represent a limiting factor to the energy production. In Francis turbines it is observed that the self-excited oscillation of a vortex rope in the draft tube cone prevents the delivery of maximum power when required. This phenomenon is referred to as full load pressure surge and has been the object of extensive research during the past decades. Several contributions deepened its understanding through measurement and simulation of the local flow properties and the global stability parameters. The draft tube pressure level and the runner outlet swirl are identified as key variables in the modelling of the vortex rope dynamics. Recently, a cyclic appearance of blade cavitation has been observed at overload conditions in a multiphase numerical simulation coupling the runner and the draft tube. From the analysis of the simulation it becomes obvious that the cyclic appearance of blade cavitation has a direct effect on the runner outlet swirl, thus introducing an additional interaction mechanism that is not accounted for in formerly published models. For the presented work, the results of this numerical study are confirmed experimentally on a reduced scale model of a Francis turbine. Several wall pressure measurements in the draft tube cone are performed, together with high speed visualizations of the vortex rope and the blade cavitation. The flow swirl is calculated based on Laser Doppler Velocimetry measurements. A possible mechanism explaining the coupling between the self-excited pressure and vortex rope oscillation and the cyclic appearance of the blade cavitation is proposed. Furthermore, the streamwise propagation speed of the flow

  20. 叶片尾部形状对双向贯流式水轮机性能的影响%Effect of blade tail’s shape on hydraulic performance of bidirectional bulb turbine

    Institute of Scientific and Technical Information of China (English)

    郑小波; 翁凯; 王玲军

    2015-01-01

    为了研究双向贯流式水轮机反向工况效率低下的问题,该文以某带有后置导叶的双向贯流式机组为对象,针对不同形状和不同厚度的叶片尾部,分析了反向工况下叶片尾部对机组性能的影响。采用 UG 建模软件对机组进行几何建模,基于CFX软件,采用SST k-ω湍流模型对不同形状和厚度的叶片尾部的转轮进行了数值模拟。结果表明:反向工况下采用圆形尾部的叶片其机组效率为59.55%,高于矩形尾部的58.4%和弧形尾部的58.01%,说明反向工况下矩形尾部和弧形尾部的冲击损失较大。增加叶片尾部厚度对机组反向工况的效率提高较为明显,其效率最高能抬高到79%,但叶片尾部厚度增加到一定程度后效率不再增加,叶片尾部厚度的增加使得反向工况下叶片尾部最低压力值降低了1.2×106 Pa,对其反向工况下的空化性能有较大影响,且增加了正向工况运行是出现卡门涡的概率。研究成果为双向贯流式水轮机反向工况下叶片尾部形状的优化设计提供了经验参考。%Tidal power is pollution-free renewable energy and an effective way to reduce coal consumption and guarantee normal social electricity consumption in China. Bidirectional bulb turbine is widely used in tidal power station. Scholars at home and abroad have carried out extensive researches in bidirectional tubular turbine in terms of internal blade clearance flow, the occurrence and location of cavitation and blade airfoil optimization .Scholars in China firstly put forward improving the operating efficiency of the bidirectional tubular turbine under the reverse working condition by means of setting rear guide vanes. In order to solve the low efficiency problem under the reverse condition in bidirectional bulb turbine, how blade tail affected the units' hydraulic performance under reverse working condition by studying bade tails of different shapes and different

  1. Power break off in a bulb turbine: wall pressure sensor investigation

    Science.gov (United States)

    Duquesne, P.; Maciel, Y.; Aeschlimann, V.; Ciocan, G. D.; Deschênes, C.

    2014-03-01

    A measurement campaign using unsteady wall pressure sensors on a bulb turbine draft tube was performed over the power and efficiency break off range of a N11 curve. This study is part of the BulbT project, undertaken by the Consortium on hydraulic machines and the LAMH (Hydraulic Machine Laboratory of Laval University). The chosen operating points include the best efficiency point for a high runner blade angle and a high N11. Three other points, with the same N11, have been selected in the break off zone of the efficiency curve. Flow conditions have been set using the guide vanes while the runner blade angle remained constant. The pressure sensors were developed from small piezoresistive chips with high frequency response. The calibration gave an instrumental error lower than 0.3% of the measurement range. The unsteady wall pressure was measured simultaneously at 13 locations inside the first part of the draft tube, which is conical, and at 16 locations in the circular to rectangular transition part just downstream. It was also measured at 11 locations along a streamwise line path at the bottom left part of the draft tube, where flow separation occurs, covering the whole streamwise extent of the draft tube. For seven radial-azimuthal planes, four sensors were distributed azimuthally. As confirmed by tuft visualizations, the break off phenomenon is correlated to the presence of flow separation inside the diffuser at the wall. The break off is linked to the appearance of a large recirculation in the draft tube. The efficiency drop increases with the size of the separated region. Analysis of the draft tube pressure coefficients confirms that the break off is related to diffuser losses. The streamwise evolution of the mean pressure coefficient is analyzed for the different operating conditions. An azimuthal dissymmetry of the mean pressure produced by the separation is detected. The pressure signals have been analyzed and used to track the separation zone depending on

  2. Bulb turbine operating at medium head: XIA JIANG case study

    Science.gov (United States)

    Loiseau, F.; Desrats, C.; Petit, P.; Liu, J.

    2012-11-01

    With lots of references for 4-blade bulb turbines, such as these of Wu Jin Xia (4 units - 36.1 MW per unit - 9.2 m rated head), Chang Zhou (15 units - 46.7 MW per unit - 9.5 m rated head) and Tong Wan (4 units - 46.2 MW per unit - 11 m rated head), ALSTOM Power Hydro is one of the major suppliers of bulb turbines operating under medium head for the Chinese market. ALSTOM Power Hydro has been awarded in November 2010 a contract by Jiang Xi Province Xia Jiang Water Control Project Headquarters to equip Xia Jiang's new hydropower plant. The power dam is located on the Gan Jiang river, at about 160 km away from Nan Chang town in South Eastern China. The supply will consist in 5 bulb units including the furniture of both the turbine and its generator, for a total capacity of 200 MW, under a rated net head of 8.6 m. The prototype turbine is a 7.8 m diameter runner, rotating at 71.4 rpm speed. For this project, ALSTOM has proposed a fully new design of 4-blade bulb runner. This paper outlines the main steps of the hydraulic development. First of all, a fine tuning of the blade geometry was performed to enhance the runner behaviour at high loads and low heads, so that to fulfill the demanding requirements of efficiencies and maximum output. The challenge was also to keep an excellent cavitation behaviour, especially at the outer blade diameter in order to avoid cavitation erosion on the prototype. The shape of the blade was optimized by using the latest tools in computational fluid dynamics. Steady state simulations of the distributor and the runner were performed, in order to simulate more accurately the pressure fields on the blade and the velocity distribution at the outlet of the runner. Moreover, draft tube computations have been performed close to the design point and at higher loads. Then, a model fully homologous with the prototype was manufactured and tested at ALSTOM's laboratory in Grenoble (France). The model test results confirmed the predicted ones: the

  3. Pressure measurements and high speed visualizations of the cavitation phenomena at deep part load condition in a Francis turbine

    Science.gov (United States)

    Yamamoto, K.; Müller, A.; Favrel, A.; Landry, C.; Avellan, F.

    2014-03-01

    In a hydraulic power plant, it is essential to provide a reliable, sustainable and flexible energy supply. In recent years, in order to cover the variations of the renewable electricity production, hydraulic power plants are demanded to operate with more extended operating range. Under these off-design conditions, a hydraulic turbine is subject to cavitating swirl flow at the runner outlet. It is well-known that the helically/symmetrically shaped cavitation develops at the runner outlet in part load/full load condition, and it gives severe damage to the hydraulic systems under certain conditions. Although there have been many studies about partial and full load conditions, contributions reporting the deep part load condition are limited, and the cavitation behaviour at this condition is not yet understood. This study aims to unveil the cavitation phenomena at deep part load condition by high speed visualizations focusing on the draft tube cone as well as the runner blade channel, and pressure fluctuations associated with the phenomena were also investigated.

  4. Francis-99: Transient CFD simulation of load changes and turbine shutdown in a model sized high-head Francis turbine

    Science.gov (United States)

    Mössinger, Peter; Jester-Zürker, Roland; Jung, Alexander

    2017-01-01

    With increasing requirements for hydropower plant operation due to intermittent renewable energy sources like wind and solar, numerical simulations of transient operations in hydraulic turbo machines become more important. As a continuation of the work performed for the first workshop which covered three steady operating conditions, in the present paper load changes and a shutdown procedure are investigated. The findings of previous studies are used to create a 360° model and compare measurements with simulation results for the operating points part load, high load and best efficiency. A mesh motion procedure is introduced, allowing to represent moving guide vanes for load changes from best efficiency to part load and high load. Additionally an automated re-mesh procedure is added for turbine shutdown to ensure reliable mesh quality during guide vane closing. All three transient operations are compared to PIV velocity measurements in the draft tube and pressure signals in the vaneless space. Simulation results of axial velocity distributions for all three steady operation points, during both load changes and for the shutdown correlated well with the measurement. An offset at vaneless space pressure is found to be a result of guide vane corrections for the simulation to ensure similar velocity fields. Short-time Fourier transformation indicating increasing amplitudes and frequencies at speed-no load conditions. Further studies will discuss the already measured start-up procedure and investigate the necessity to consider the hydraulic system dynamics upstream of the turbine by means of a 1D3D coupling between the 3D flow field and a 1D system model.

  5. Development of New Micro Hydropower Turbine

    OpenAIRE

    Dousith, Phommachanh; Kurokawa, Junichi; Matsui, Jun; Choi, Young-Do

    2005-01-01

    There is a huge of available hydropower potential in the water supply system (WSS) that has been abandoned.Each time when we use a water faucet, the power of 10 to 80 watts is dissipated.In fact, this dissipated energy can be converted to useful energy by hydraulic turbine. Presently, there is not suitable turbine to use in WSS. Therefore, the new type turbine is needed to explore. In this study, Positive Displacement Turbine (PDT) is proposed. The main objective of this study is to develop n...

  6. Hydraulic Soft Yaw System Load Reduction and Prototype Results

    DEFF Research Database (Denmark)

    Stubkier, Søren; Pedersen, Henrik C.; Markussen, Kristian

    2013-01-01

    Introducing a hydraulic soft yaw concept for wind turbines leads to significant load reductions in the wind turbine structure. The soft yaw system operates as a shock absorption system on a car, hence absorbing the loading from turbulent wind conditions instead of leading them into the stiff wind...

  7. Basic hydraulics

    CERN Document Server

    Smith, P D

    1982-01-01

    BASIC Hydraulics aims to help students both to become proficient in the BASIC programming language by actually using the language in an important field of engineering and to use computing as a means of mastering the subject of hydraulics. The book begins with a summary of the technique of computing in BASIC together with comments and listing of the main commands and statements. Subsequent chapters introduce the fundamental concepts and appropriate governing equations. Topics covered include principles of fluid mechanics; flow in pipes, pipe networks and open channels; hydraulic machinery;

  8. Valve exploiting the principle of a side channel turbine

    Directory of Open Access Journals (Sweden)

    Jandourek Pavel

    2017-01-01

    Full Text Available The article deals with a side channel turbine, which can be used as a suitable substitute for a pressure reducing valve. Reducing valves are a source of hydraulic losses. The aim is to replace them by a side channel turbine. With that in mind, hydraulic losses can be replaced by a production of electrical energy at comparable characteristics of the valve and the turbine. The basis for the design is the loss characteristics of the valve. Thereby creating a kind of turbine valve with speed-controlled flow in dependence of runner revolution.

  9. Hydraulic Structures

    Data.gov (United States)

    Department of Homeland Security — This table is required whenever hydraulic structures are shown in the flood profile. It is also required if levees are shown on the FIRM, channels containing the...

  10. 基于短时傅里叶变换的水轮机涡带工况识别%Identification of vortex zone operation of hydraulic turbine based on short-time Fourier Transform

    Institute of Scientific and Technical Information of China (English)

    樊玉林; 张飞; 付婧; 徐静

    2016-01-01

    在对水轮机运行区划分过程中存在着涡带负荷区识别问题,为此开展了专项研究。针对水轮机从空载至满负荷连续升负荷过程中的水导摆度信号,采用高斯窗口函数进行加窗傅里叶变换分析。分析结果表明,采用加窗傅里叶变换这一手段可以精确确定涡带运行区的运行范围,同时根据升负荷过程中主频涡带频率成分出现的先后顺序,将涡带负荷区划分为涡带生成区、强涡带区和涡带消亡区,并对不同区域内涡带影响下的轴心轨迹特点进行了分析。对分析背景、分析方法以及实例分析过程作了比较详细的介绍。%A research is conducted on the identification of the vortex zone in the demarcation of the operation zone of hydraulic turbine. Windowed Fourier Transform analysis with Gaussian window function is carried out for the water guide swing signal in the process of continuous load rise from no-load to full load. The results show that Windowed Fourier Transform is able to accurately identify the operation zone of vortex. The vortex load zone could be divided into vortex generation zone, strong vortex zone and vortex diminishing zone according to the occurrence order of the frequency component of the main vortex in the process of load rise, and the shaft orbits under the effect of vortex in different zones are analyzed. The background, method and process of the a-nalysis are introduced in details.

  11. Hydraulic Soft Yaw System Load Reduction and Prototype Results

    DEFF Research Database (Denmark)

    Stubkier, Søren; Pedersen, Henrik C.; Markussen, Kristian

    2013-01-01

    Introducing a hydraulic soft yaw concept for wind turbines leads to significant load reductions in the wind turbine structure. The soft yaw system operates as a shock absorption system on a car, hence absorbing the loading from turbulent wind conditions instead of leading them into the stiff wind...... operates. Further it is analyzed how the soft yaw system influence the power production of the turbine. It is shown that the influence is minimal, but at larger yaw errors the effect is possitive. Due to the implemeted functions in the hydraulic soft yaw system such as even load distribution on the pinions...

  12. Model tests on a semi-axial pump turbine

    Energy Technology Data Exchange (ETDEWEB)

    Strohmer, F.; Horacek, G.

    1984-03-01

    Due to their good hydraulic characteristic semi-axial pump turbines are used in the medium head range of pumped storage plants. This paper describes model tests performed on a semiaxial pump turbine model and shows the results of these tests. The aim of the model tests was the optimization of the hydraulic water passage, the measurement of the hydraulic characteristics over the whole operating range, the investigation of the cavitation behaviour, the investigation of the hydraulic forces and torques as well as the proof of the values guaranteed to the customer.

  13. Turbine imaging technology assessment

    Energy Technology Data Exchange (ETDEWEB)

    Moursund, R. A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Carlson, T. J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2004-12-01

    The goal of this project was to identify and evaluate imaging technologies for observing juvenile fish within a Kaplan turbine, and specifically that would enable scientists to determine mechanisms of fish injury within an operating turbine unit. This report documents the opportunities and constraints for observing juvenile fish at specific locations during turbine passage. These observations were used to make modifications to dam structures and operations to improve conditions for fish passage while maintaining or improving hydropower production. The physical and hydraulic environment that fish experience as they pass through the hydroelectric plants were studied and the regions with the greatest potential for injury were defined. Biological response data were also studied to determine the probable types of injuries sustained in the turbine intake and what types of injuries are detectable with imaging technologies. The study grouped injury-causing mechanisms into two categories: fluid (pressure/cavitation, shear, turbulence) and mechanical (strike/collision, grinding/pinching, scraping). The physical constraints of the environment, together with the likely types of injuries to fish, provided the parameters needed for a rigorous imaging technology evaluation. Types of technology evaluated included both tracking and imaging systems using acoustic technologies (such as sonar and acoustic tags) and optic technologies (such as pulsed-laser videography, which is high-speed videography using a laser as the flash). Criteria for determining image data quality such as frame rate, target detectability, and resolution were used to quantify the minimum requirements of an imaging sensor.

  14. Application of AMESim and MATLAB on Modeling and Study of Megawatt Wind Turbine Brake System Hydraulic Locking Device%AMESim与MATLAB在兆瓦级风力发电机制动系统液压锁紧装置建模及研究中的应用

    Institute of Scientific and Technical Information of China (English)

    闫利文; 艾存金; 王福山; 谢辉

    2015-01-01

    作为一个兆瓦级风力发电机制动系统,除制动装置外,在适当的位置还应设有风轮的锁定装置,以确保在正常制动系统失效情况下风机在不会突发的再次启动。针对该问题文章设计了一套液压锁紧装置,并分别采用AMEsim和MATLAB软件对其进行了研究与分析,并比较了两种分析软件在液压系统研究中的不同。%As a megawatt wind turbine braking system,in addition to the braking device,there should also have a locking device in the ap-propriate position,In order to ensure not burst start again during normal braking system failure. Aiming at this problem, we designed a set of hydraulic locking device,used AMESim and MATLAB software to research and analysis the hydraulic locking device,compared the differ-ence between two of them in the research of hydraulic system.

  15. Characteristics analysis for different water heads on the efficiency hill chart of Francis turbine

    Science.gov (United States)

    Wang, Z. N.; Guo, P. C.; Luo, X. Q.; Wang, Y. L.; Sun, S. H.

    2016-05-01

    Based on the test results of Francis turbine, the causes and inevitability of various hydraulic phenomena in the model combined characteristic curve for typical water heads were analyzed in this paper. the difference of the model combined characteristic curve from the low water head to the high water head is compared, and the characteristics and commonness of the model combined characteristic curve about different water head are summarized. Further, hydraulic performance and geometric features of Francis turbine are revealed by particularly analyzing model combined characteristic curves, and to provide powerful theoretical basis and definite modification direction for the hydraulic design of hydraulic turbine.

  16. Analysis of S Characteristics and Pressure Pulsations in a Pump-Turbine With Misaligned Guide Vanes.

    Science.gov (United States)

    Sun, Hui; Xiao, Ruofu; Liu, Weichao; Wang, Fujun

    2013-05-01

    Growing environmental concerns and the need for better power balancing and frequency control have increased attention in renewable energy sources such as the reversible pump-turbine which can provide both power generation and energy storage. Pump-turbine operation along the S-shaped curve can lead to difficulties in loading the rejection process with unusual increases in water pressure, which lead to machine vibrations. Pressure fluctuations are the primary reason for unstable operation of pump-turbines. Misaligned guide vanes (MGVs) are widely used to control the stability in the S region. There have been experimental investigations and computational fluid dynamics (CFD) simulations of scale models with aligned guide vanes and MGVs with spectral analyses of the S curve characteristics and the pressure pulsations in the frequency and time-frequency domains at runaway conditions. The course of the S characteristic is related to the centrifugal force and the large incident angle at low flow conditions with large vortices forming between the guide vanes and the blade inlets and strong flow recirculation inside the vaneless space as the main factors that lead to the S-shaped characteristics. Preopening some of the guide vanes enables the pump-turbine to avoid the influence of the S characteristic. However, the increase of the flow during runaway destroys the flow symmetry in the runner leading to all asymmetry forces on the runner that leads to hydraulic system oscillations. The MGV technique also increases the pressure fluctuations in the draft tube and has a negative impact on stable operation of the unit.

  17. Applied hydraulic transients

    CERN Document Server

    Chaudhry, M Hanif

    2014-01-01

    This book covers hydraulic transients in a comprehensive and systematic manner from introduction to advanced level and presents various methods of analysis for computer solution. The field of application of the book is very broad and diverse and covers areas such as hydroelectric projects, pumped storage schemes, water-supply systems, cooling-water systems, oil pipelines and industrial piping systems. Strong emphasis is given to practical applications, including several case studies, problems of applied nature, and design criteria. This will help design engineers and introduce students to real-life projects. This book also: ·         Presents modern methods of analysis suitable for computer analysis, such as the method of characteristics, explicit and implicit finite-difference methods and matrix methods ·         Includes case studies of actual projects ·         Provides extensive and complete treatment of governed hydraulic turbines ·         Presents design charts, desi...

  18. Experimental Hydro-Mechanical Characterization of Full Load Pressure Surge in Francis Turbines

    Science.gov (United States)

    Müller, A.; Favrel, A.; Landry, C.; Yamamoto, K.; Avellan, F.

    2017-04-01

    Full load pressure surge limits the operating range of hydro-electric generating units by causing significant power output swings and by compromising the safety of the plant. It appears during the off-design operation of hydraulic machines, which is increasingly required to regulate the broad integration of volatile renewable energy sources into the existing power network. The underlying causes and governing physical mechanisms of this instability were investigated in the frame of a large European research project and this paper documents the main findings from two experimental campaigns on a reduced scale model of a Francis turbine. The multi-phase flow in the draft tube is characterized by Particle Image Velocimetry, Laser Doppler Velocimetry and high-speed visualizations, along with synchronized measurements of the relevant hydro-mechanical quantities. The final result is a comprehensive overview of how the unsteady draft tube flow and the mechanical torque on the runner shaft behave during one mean period of the pressure oscillation, thus defining the unstable fluid-structure interaction responsible for the power swings. A discussion of the root cause is initiated, based on the state of the art. Finally, the latest results will enable a validation of recent RANS flow simulations used for determining the key parameters of hydro-acoustic stability models.

  19. Modelling polymer draft gears

    Science.gov (United States)

    Wu, Qing; Yang, Xiangjian; Cole, Colin; Luo, Shihui

    2016-09-01

    This paper developed a new and simple approach to model polymer draft gears. Two types of polymer draft gears were modelled and compared with experimental data. Impact characteristics, in-train characteristics and frequency responses of these polymer draft gears were studied and compared with those of a friction draft gear. The impact simulations show that polymer draft gears can withstand higher impact speeds than the friction draft gear. Longitudinal train dynamics simulations show that polymer draft gears have significantly longer deflections than friction draft gears in normal train operations. The maximum draft gear working velocities are lower than 0.2 m/s, which are significantly lower than the impact velocities during shunting operations. Draft gears' in-train characteristics are similar to their static characteristics but are very different from their impact characteristics; this conclusion has also been reached from frequency response simulations. An analysis of gangway bridge plate failures was also conducted and it was found that they were caused by coupler angling behaviour and long draft gear deflections.

  20. Steam Turbines

    Science.gov (United States)

    1981-01-01

    Turbonetics Energy, Inc.'s steam turbines are used as power generating systems in the oil and gas, chemical, pharmaceuticals, metals and mining, and pulp and paper industries. The Turbonetics line benefited from use of NASA research data on radial inflow steam turbines and from company contact with personnel of Lewis Research Center, also use of Lewis-developed computer programs to determine performance characteristics of turbines.

  1. Investigation of the fluid-structure interaction of a high head Francis turbine using OpenFOAM and Code_Aster

    Science.gov (United States)

    Eichhorn, M.; Doujak, E.; Waldner, L.

    2016-11-01

    The increasing energy consumption and highly stressed power grids influence the operating conditions of turbines and pump turbines in the present situation. To provide or use energy as quick as possible, hydraulic turbines are operated more frequent and over longer periods of time in lower part load at off-design conditions. This leads to a more turbulent behavior and to higher requirements of the strength of stressed components (e.g. runner, guide or stay vanes). The modern advantages of computational capabilities regarding numerical investigations allow a precise prediction of appearing flow conditions and thereby induced strains in hydraulic machines. This paper focuses on the calculation of the unsteady pressure field of a high head Francis turbine with a specific speed of nq ≈ 24 min-1 and its impact on the structure at different operating conditions. In the first step, unsteady numerical flow simulations are performed with the open-source CFD software OpenFOAM. To obtain the appearing dynamic flow phenomena, the entire machine, consisting of the spiral casing, the stay vanes, the wicket gate, the runner and the draft tube, is taken into account. Additionally, a reduced model without the spiral casing and with a simplified inlet boundary is used. To evaluate the accuracy of the CFD simulations, operating parameters such as head and torque are compared with the results of site measurements carried out on the corresponding prototype machine. In the second part, the obtained pressure fields are used for a fluid-structure analysis with the open-source Finite Element software Code_Aster, to predict the static loads on the runner.

  2. Turbine system

    Energy Technology Data Exchange (ETDEWEB)

    McMahan, Kevin Weston; Dillard, Daniel Jackson

    2016-05-03

    A turbine system is disclosed. The turbine system includes a transition duct having an inlet, an outlet, and a passage extending between the inlet and the outlet and defining a longitudinal axis, a radial axis, and a tangential axis. The outlet of the transition duct is offset from the inlet along the longitudinal axis and the tangential axis. The turbine system further includes a turbine section connected to the transition duct. The turbine section includes a plurality of shroud blocks at least partially defining a hot gas path, a plurality of buckets at least partially disposed in the hot gas path, and a plurality of nozzles at least partially disposed in the hot gas path. At least one of a shroud block, a bucket, or a nozzle includes means for withstanding high temperatures.

  3. 76 FR 18238 - Wind Turbine Guidelines Advisory Committee; Announcement of Public Meeting

    Science.gov (United States)

    2011-04-01

    ... Fish and Wildlife Service Wind Turbine Guidelines Advisory Committee; Announcement of Public Meeting... and Wildlife Service (Service), will host a Wind Turbine Guidelines Advisory Committee (Committee... presentation and discussion of ] the Service's Draft Land-Based Wind Energy Guidelines. DATES: The meeting will...

  4. 76 FR 38677 - Wind Turbine Guidelines Advisory Committee; Announcement of Public Meeting and Webcast

    Science.gov (United States)

    2011-07-01

    ... Fish and Wildlife Service Wind Turbine Guidelines Advisory Committee; Announcement of Public Meeting.... SUMMARY: We, the U.S. Fish and Wildlife Service (Service), will host a Wind Turbine Guidelines Advisory.... The meeting agenda will include a presentation and discussion of the Service's Draft Land-Based Wind...

  5. Design and Dynamic Analysis of Tension Leg Platform Wind Turbines

    OpenAIRE

    Bachynski, Erin Elizabeth

    2014-01-01

    There is an increasing interest in using wind turbines oshore, and in deeper water. The tension leg platform wind turbine (TLPWT) concept is promising for intermediate (45 - 150 m) or deep (> 150 m) water. The limited platform motions are expected to reduce the structural loading on the tower and blades compared to other floating concepts, without requiring the large draft of a spar or the spread mooring system and complex construction of a semi-submersible. Although numerous TLPWT designs...

  6. For each head differences the corresponding turbine. Energy generating water wheels were already known by Greeks and Romans in the ancient world; Fuer jede Fallhoehe die richtige Turbine. Wasserraeder mit dem Vorteil, damit Energie zu erzeugen, kannten in der Antike schon Griechen und Roemer

    Energy Technology Data Exchange (ETDEWEB)

    Krause, W.

    2006-07-01

    From simple water wheels, working in the Ancient World, to modern hydraulic turbines like Francis, Pelton and Kaplan turbine, the contribution shows the development of this engines generating clean power. Operating with small heads and high flow rates and velocities a new generation like the tube turbine and in special fields the flow rate turbine are able to generate power still more efficiently. (GL)

  7. Gas turbines

    Energy Technology Data Exchange (ETDEWEB)

    Farahan, E.; Eudaly, J.P.

    1978-10-01

    This evaluation provides performance and cost data for commercially available simple- and regenerative-cycle gas turbines. Intercooled, reheat, and compound cycles are discussed from theoretical basis only, because actual units are not currently available, except on a special-order basis. Performance characteristics investigated include unit efficiency at full-load and off-design conditions, and at rated capacity. Costs are tabulated for both simple- and regenerative-cycle gas turbines. The output capacity of the gas turbines investigated ranges from 80 to 134,000 hp for simple units and from 12,000 to 50,000 hp for regenerative units.

  8. Flow characteristics on the blade channel vortex in the Francis turbine

    Science.gov (United States)

    Guo, P. C.; Wang, Z. N.; Luo, X. Q.; Wang, Y. L.; Zuo, J. L.

    2016-05-01

    Depending on the long-term hydraulic development of Francis turbine, the blade channel vortex phenomenon was investigated systematically from hydraulic design, experimental and numerical computation in this paper. The blade channel vortex difference between the high water head and low water head turbine was also analyzed. Meanwhile, the relationship between the blade channel vortex and the operating stability of hydraulic turbine was also investigated. The results show that the phenomenon of blade channel vortex is an intrinsic property for Francis turbine under small flow rate condition, the turning-point of the blade channel vortex inception curve appears at low unit speed region, and the variation trend of the blade channel vortex inception curve is closely related to the blade inlet edge profile. In addition to, the vortex of the high water head turbine can generally be excluded from the stable operation region, while which is more different for the one of the low water head turbine.

  9. Cavitation study of a pump-turbine at turbine mode with critical cavitation coefficient condition

    Science.gov (United States)

    Wang, J.; Yang, D.; Xu, J. W.; Liu, J. T.; Jiao, L.

    2016-05-01

    To study the cavitation phenomenon of a pump-turbine at turbine mode when it ran at the critical cavitation coefficient condition, a high-head model pump-turbine was disperse using hexahedron grid. Three dimensional, steady cavitating flow was numerically studied using SST k-ω model. It is confirmed that ZGB cavitation model and SST k-ω model are useful ways to study the two-phase cavitation flow in pump-turbine. Mass flow inlet and pressure outlet were specified at the casing inlet and draft tube outlet, respectively. The static pressure was set according to the cavitation coefficient. The steady cavitating flows at critical cavitation coefficient condition were analysed. The cavitation area in the runner was investigated. It was found that the pressure of the suction on the blade surface was decreasing gradually with the decrease of the cavitation coefficient. In addition, the vortex flow in the draft tube was observed at the critical cavitation coefficient. It was found that the vortex flow appeared at the center of the draft tube inlet with the decreasing of the cavitation coefficient. Compared with the experimental data, the simulation results show reasonable agreement with the experimental data.

  10. Basic Drafting: Book Two.

    Science.gov (United States)

    Davis, Ronald; And Others

    The second of a two-book course in drafting, this manual consists of 12 topics in the following units: sketching techniques, geometric constructions, orthographic views, dimensioning procedures, basic tolerancing, auxiliary views, sectional views, inking tools and techniques, axonometrics, oblique, perspective, and computer-aided drafting.…

  11. Wind turbines

    Energy Technology Data Exchange (ETDEWEB)

    Yeoman, J.C. Jr.

    1978-12-01

    This evaluation of wind turbines is part of a series of Technology Evaluations of possible components and subsystems of community energy systems. Wind turbines, ranging in size from 200 W to 10 MW, are discussed as candidates for prime movers in community systems. Estimates of performance characteristics and cost as a function of rated capacity and rated wind speed are presented. Data concerning material requirements, environmental effects, and operating procedures also are given and are represented empirically to aid computer simulation.

  12. On the Dynamic Measurements of Hydraulic Characteristics

    Science.gov (United States)

    Hasmatuchi, Vlad; Bosioc, Alin; Münch-Alligné, Cécile

    2016-11-01

    The present work introduces the implementation and validation of a faster method to measure experimentally the efficiency characteristics of hydraulic turbomachines at a model scale on a test rig. The case study is represented by a laboratory prototype of an in-line axial microturbine for water supply networks. The 2.65 kW one-stage variable speed turbine, composed by one upstream 5-blade runner followed by one counter-rotating downstream 7-blade runner, has been installed on the HES-SO Valais/Wallis universal test rig dedicated to assess performances of small hydraulic machinery following the IEC standard recommendations. In addition to the existing acquisition/control system of the test rig used to measure the 3D hill-chart of a turbine by classical static point-by-point method, a second digitizer has been added to acquire synchronized dynamic signals of the employed sensors. The optimal acceleration/deceleration ramps of the electrical drives have been previously identified in order to cope with the purpose of a reduced measurement time while avoiding errors and hysteresis on the acquired hydraulic characteristics. Finally, the comparison between the turbine efficiency hill-charts obtained by dynamic and static point-by-point methods shows a very good agreement in terms of precision and repeatability. Moreover, the applied dynamic method reduces significantly (by a factor of up to ten) the time necessary to measure the efficiency characteristics on model testing.

  13. Numerical simulation of turbulence flow in a Kaplan turbine -Evaluation on turbine performance prediction accuracy-

    Science.gov (United States)

    Ko, P.; Kurosawa, S.

    2014-03-01

    The understanding and accurate prediction of the flow behaviour related to cavitation and pressure fluctuation in a Kaplan turbine are important to the design work enhancing the turbine performance including the elongation of the operation life span and the improvement of turbine efficiency. In this paper, high accuracy turbine and cavitation performance prediction method based on entire flow passage for a Kaplan turbine is presented and evaluated. Two-phase flow field is predicted by solving Reynolds-Averaged Navier-Stokes equations expressed by volume of fluid method tracking the free surface and combined with Reynolds Stress model. The growth and collapse of cavitation bubbles are modelled by the modified Rayleigh-Plesset equation. The prediction accuracy is evaluated by comparing with the model test results of Ns 400 Kaplan model turbine. As a result that the experimentally measured data including turbine efficiency, cavitation performance, and pressure fluctuation are accurately predicted. Furthermore, the cavitation occurrence on the runner blade surface and the influence to the hydraulic loss of the flow passage are discussed. Evaluated prediction method for the turbine flow and performance is introduced to facilitate the future design and research works on Kaplan type turbine.

  14. Study on maximum power control of turbines in a tidal current power generation system based on hydraulic transmission%液压型潮流能发电系统叶轮最大功率控制

    Institute of Scientific and Technical Information of China (English)

    林躜; 李磊; 陈俊华; 郑堤; 唐辰; 李浩

    2014-01-01

    In order to solve the problem of low energy capturing efficiency of the horizontal axis turbine in tidal current power generation system at low current speed, a variable pump counter torque reference value model was established. In this study, based on the maximum power tracking theory and the torque equilibrium equation of turbine versus variable pump, a control system with indirect speed control, pressure feedback, and torque control was designed to achieve the maximum power capture of the turbine by regulating the output of the variable pump in a small range. The performance of the designed control system was simulated by means of the Automation Studio software, and corresponding sea test was conducted. Test results showed that the control system ran steadily, the captured power coefficient of the turbine fluctuated near 0.35 and 0.33, respectively, in the simulation and sea trials; compared with the uncontrolled, these numbers increased by 0.03 and 0.05, respectively. The capture efficiency of the turbine was enhanced, and the effectiveness of the control system was verified.%文章为解决水平轴潮流能发电系统在低于设计流速下叶轮能量捕获效率低的问题,运用最大功率跟踪控制理论及叶轮与变量泵传动轴力矩平衡方程,建立了变量泵反力矩参考值模型,设计了间接速度控制的压力反馈加转矩控制系统,通过小范围内调节变量泵排量,实现叶轮最大功率捕获。整个系统的性能在自动化工作室(automation studio)中进行了仿真测试,实验样机也进行了海上试验。仿真测试和海试结果显示,该控制系统工作稳定性好,仿真和海试时叶轮的捕获功率系数分别在0.35和0.33附近波动,相比不加控制,分别增加了约0.03和0.05,提高了叶轮的捕获效率,验证了控制系统的有效性。

  15. A Floating Offshore Wind Turbine in Extreme Wave Conditions

    DEFF Research Database (Denmark)

    Wehmeyer, Christof

    and peak enhancement factors, based on cyclonic storm conditions (Wehmeyer et al., 2012). 2. Based on Wehmeyer et al. (2012), a physical model test campaign was drafted, where an industry inspired floating offshore wind turbine was tested (Wehmeyer et al., 2013). 3. A comparison of measured pitch responses...

  16. Uncertainty assessment using uncalibrated objects: calibration of a Turbine Blade

    DEFF Research Database (Denmark)

    Savio, Enrico; Costacurta, A.; De Chiffre, Leonardo

    . The Centre for Geometrical Metrology (CGM) at the Technical University of Denmark takes care of free form measurements, in collaboration with DIMEG, University of Padova, Italy. The present report describes the calibration of a turbine blade using the method described in the draft ISO/TS 15530-6....

  17. The calculation of fluid-structure interaction and fatigue analysis for Francis turbine runner

    Science.gov (United States)

    Wang, X. F.; Li, H. L.; Zhu, F. W.

    2012-11-01

    Francis turbine, as a widely used hydro turbine, is especially suited for the hydropower station with high hydraulic head and higher hydraulic head. For such turbine generator units all around the world, the crack streaks usually come out after a long time use and the resulted accidents may cause huge losses. Hence, it is meaningful to refine the design assuring the stability and safety of the Francis turbine. In this paper, the stiffness and strength as well as the fatigue life of the Francis turbine are studied. Concerning on the turbine of one certain hydropower station, the flow field inside the turbine are first simulated and the pressure distribution around the blades are derived. Meanwhile, the stress distributions of the blades are also obtained. Based on these, the fatigue analyses are applied on the turbine. According to the results of fatigue analyses, some optimal designs on the turbine are verified. The results show that with the optimal designs, the hydraulic performances of the turbine do not change too much while the maximum stress on the turbine decrease and the fatigue life increase as well.

  18. Numerical Investigation of the Flow Structure in a Kaplan Draft Tube at Part Load

    Science.gov (United States)

    Maddahian, R.; Cervantes, M. J.; Sotoudeh, N.

    2016-11-01

    This research presents numerical simulation of the unsteady flow field inside the draft tube of a Kaplan turbine at part load condition. Due to curvature of streamlines, the ordinary two-equations turbulence models fail to predict the flow features. Therefore, a modification of the Shear Stress Transport (SST-SAS) model is utilized to approximate the turbulent stresses. A guide vane, complete runner and draft tube are considered to insure the real boundary conditions at the draft tube inlet. The outlet boundary is assumed to discharge into the atmosphere. The obtained pressure fluctuations inside the draft tube are in good agreement with available experimental data. In order to further investigate the RVR formation and its movement, the λ2 criterion, relating the position of the vortex core and strength to the second largest Eigen value of the velocity gradient tensor, is employed. The method used for vortex identification shows the flow structure and vortex motion inside the draft tube accurately.

  19. Computational study of a low head draft tube and validation with experimental data

    Energy Technology Data Exchange (ETDEWEB)

    Henau, V De; Payette, F A; Sabourin, M [Alstom Power Systems, Hydro 1350 chemin Saint-Roch, Sorel-Tracy (Quebec), J3R 5P9 (Canada); Deschenes, C; Gagnon, J M; Gouin, P, E-mail: vincent.dehenau@power.alstom.co [Hydraulic Machinery Laboratory, Laval University 1065 ave. de la Medecine, Quebec (Canada)

    2010-08-15

    The objective of this paper is to investigate methodologies to improve the reliability of CFD analysis of low head turbine draft tubes. When only the draft tube performance is investigated, the study indicates that draft tube only simulations with an adequate treatment of the inlet boundary conditions for velocity and turbulence are a good alternative to rotor/stator (stage) simulations. The definition of the inlet velocity in the near wall regions is critical to get an agreement between the stage and draft tube only solutions. An average turbulent kinetic energy intensity level and average turbulent kinetic energy dissipation length scale are sufficient as turbulence inlet conditions as long as these averages are coherent with the stage solution. Comparisons of the rotor/stator simulation results to the experimental data highlight some discrepancies between the predicted draft tube flow and the experimental observations.

  20. Career Directions for Drafting CAD Technicians.

    Science.gov (United States)

    Moore, Pam

    2002-01-01

    Provides information careers for drafting/computer-assisted drafting technicians, including salaries, responsibilities, employment outlook, working conditions, skills needed, and career advancement opportunities. Lists professional drafting organizations. (JOW)

  1. Very Low Head Turbine Deployment in Canada

    Science.gov (United States)

    Kemp, P.; Williams, C.; Sasseville, Remi; Anderson, N.

    2014-03-01

    The Very Low Head (VLH) turbine is a recent turbine technology developed in Europe for low head sites in the 1.4 - 4.2 m range. The VLH turbine is primarily targeted for installation at existing hydraulic structures to provide a low impact, low cost, yet highly efficient solution. Over 35 VLH turbines have been successfully installed in Europe and the first VLH deployment for North America is underway at Wasdell Falls in Ontario, Canada. Deployment opportunities abound in Canada with an estimated 80,000 existing structures within North America for possible low-head hydro development. There are several new considerations and challenges for the deployment of the VLH turbine technology in Canada in adapting to the hydraulic, environmental, electrical and social requirements. Several studies were completed to determine suitable approaches and design modifications to mitigate risk and confirm turbine performance. Diverse types of existing weirs and spillways pose certain hydraulic design challenges. Physical and numerical modelling of the VLH deployment alternatives provided for performance optimization. For this application, studies characterizing the influence of upstream obstacles using water tunnel model testing as well as full-scale prototype flow dynamics testing were completed. A Cold Climate Adaptation Package (CCA) was developed to allow year-round turbine operation in ice covered rivers. The CCA package facilitates turbine extraction and accommodates ice forces, frazil ice, ad-freezing and cold temperatures that are not present at the European sites. The Permanent Magnet Generator (PMG) presents some unique challenges in meeting Canadian utility interconnection requirements. Specific attention to the frequency driver control and protection requirements resulted in a driver design with greater over-voltage capability for the PMG as well as other key attributes. Environmental studies in Europe included fish friendliness testing comprised of multiple in

  2. 75 FR 42087 - Science Advisory Board Staff Office; Request for Nominations of Experts for the SAB Hydraulic...

    Science.gov (United States)

    2010-07-20

    ..., 2010 (75 FR 13125)]. On June 24, 2010 the SAB provided the EPA Administrator with an advisory report... AGENCY Science Advisory Board Staff Office; Request for Nominations of Experts for the SAB Hydraulic... an SAB Ad Hoc Panel to review EPA's draft Hydraulic Fracturing Study Plan to investigate...

  3. Drafting: Current Trends and Future Practices

    Science.gov (United States)

    Jensen, C.

    1976-01-01

    Various research findings are reported on drafting trends which the author feels should be incorporated into teaching drafting: (1) true position and geometric tolerancing, (2) decimal and metric dimensioning, (3) functional drafting, (4) automated drafting, and (5) drawing reproductions. (BP)

  4. Valve exploiting the principle of a side channel turbine

    Science.gov (United States)

    Jandourek, Pavel; Pochylý, František; Haban, Vladimír

    2017-04-01

    The presented article deals with a side channel turbine, which can be used as a suitable substitute for a pressure reducing valve. Pressure reducing valves are a source of high hydraulic losses. The aim is to replace them by a side channel turbine. With that in mind, hydraulic losses can be replaced by a production of electrical energy at comparable characteristics of the reducing valve and the side channel turbine. The basis for the design is the loss characteristics of the pressure reducing valve. Thereby create a new kind of turbine valve with speed-controlled flow in dependence of the runner revolution. It is technical innovation and new renewable source of energy, which can be in future used in rehabilitation or projecting of pumped-storage power plants. It also increases the power of the power plant.

  5. Experiments on optimization and standardising of turbines for small-scale hydro-power plants

    Energy Technology Data Exchange (ETDEWEB)

    Strohmer, F.

    1983-01-01

    The importance of small scale hydropower plants in the field of power generation increases worldwide. For an economic power generation a standard program for small scale turbines has been developed. Exhaustive test results were the basis for optimizing those turbines hydraulically. Simple, mature and well proven designs ensure troublefree and maintenancefree operation. The advantages of standardization in connection with available hydraulic test results and experience in design make the use of small and even smallest hydropower plants economically efficient.

  6. Hydraulic connection and penstock chambers in the PSP Kops II. Direct crossing from pump- into turbine operation; Hydraulischer Kurzschluss und Druckluftwasserschlosskammern im PSW Kops II. Nahtloser Uebergang vom Pump- in den Turbinenbetrieb

    Energy Technology Data Exchange (ETDEWEB)

    Puerer, E. [Vorarlberger Illwerke AG (VIW), Schruns (Austria)

    2007-04-16

    After a two years' design development phase including the implementation of the approval process and the award of contracts for all major components, the new building of Kopswerk II has been started on the 1st of September 2004. Kopswerk II is a pump storage scheme with an installed capacity of 450 to 510 MW in turbine mode and 450 MW in pumping operation. The conception of this power plant was substantially determined by the modified market conditions since the liberalization of the electricity market. Nowadays the plant is in the third year of construction. The installation of the first turbogenerator unit has advanced and will start-up in at the end of the year 2007. The completion of the total plant with full operation of the three turbogenerator units is planned in the middle of 2008. The erection cost at the end of construction shall be about 370 Mio Euro. (GL)

  7. Computer Assisted Drafting (CNC) Drawings. Drafting Module 6. Instructor's Guide.

    Science.gov (United States)

    Missouri Univ., Columbia. Instructional Materials Lab.

    This Missouri Vocational Instruction Management System instructor's drafting guide has been keyed to the drafting competency profile developed by state industry and education professionals. This unit contains information on computer-assisted drafting drawings. The guide contains a cross-reference table of instructional materials and 20 worksheets.…

  8. Computer Assisted Drafting (CNC) Drawings. Drafting Module 6. Instructor's Guide.

    Science.gov (United States)

    Missouri Univ., Columbia. Instructional Materials Lab.

    This Missouri Vocational Instruction Management System instructor's drafting guide has been keyed to the drafting competency profile developed by state industry and education professionals. This unit contains information on computer-assisted drafting drawings. The guide contains a cross-reference table of instructional materials and 20 worksheets.…

  9. HYDRAULICS, LOUISA COUNTY, USA

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Hydraulic data include spatial datasets and data tables necessary for documenting the hydraulic analysis for estimating flood stages for a flood insurance study. It...

  10. Hydraulic Hybrid Vehicles

    Science.gov (United States)

    EPA and the United Parcel Service (UPS) have developed a hydraulic hybrid delivery vehicle to explore and demonstrate the environmental benefits of the hydraulic hybrid for urban pick-up and delivery fleets.

  11. Numerical Study of Cavitation in Francis Turbine of a Small Hydro Power Plant

    OpenAIRE

    Pankaj Gohil; Rajeshwer Saini

    2016-01-01

    Cavitation is undesirable phenomena and more prone in reaction turbines. It is one of the challenges in any hydro power plant which cause vibration, degradation of performance and the damage to the hydraulic turbine components. Under the present study, an attempt has been made to carry out a numerical analysis to investigate the cavitation effect in a Francis turbine. Three dimensional numerical study approach of unsteady and SST turbulence model are considered for the numerical a...

  12. Biological assessment of the advanced turbine design at Wanapum Dam, 2005

    Energy Technology Data Exchange (ETDEWEB)

    Dauble, D. D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Deng, Z. D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Richmond, M. C. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Moursund, R. A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Carlson, T. J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Rakowski, C. L. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Duncan, J. P. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2007-08-01

    Three studies were conducted to evaluate the biological performance of an advanced design turbine installed at Unit 8 of Wanapum Dam on the Columbia River in 2005 versus a conventional Kaplan turbine, Unit 9. The studies included an evaluation of blade-strike using deterministic and probabilistic models, integrated analysis of the response of the Sensor Fish to sever hydraulic events within the turbine system, and a novel dye technique to measure injury to juvenile salmonids in the field.

  13. European wind turbine testing procedure developments. Task 1: Measurement method to verify wind turbine performance characteristics

    DEFF Research Database (Denmark)

    Hunter, R.; Friis Pedersen, Troels; Dunbabin, P.;

    2001-01-01

    There is currently significant standardisation work ongoing in the context of wind farm energy yield warranty assessment and wind turbine power performance testing. A standards maintenance team is revising the current IEC (EN) 61400-12 Ed 1 standard forwind turbine power performance testing....... The standard is being divided into four documents. Two of them are drafted for evaluation and verification of complete wind farms and of individual wind turbines within wind farms. This document, and the project itdescribes, has been designed to help provide a solid technical foundation for this revised...... standard. The work was wide ranging and addressed 'grey' areas of knowledge, regarding existing methodologies or to carry out basic research in support offundamentally new procedures. The work has given rise to recommendations in all areas of the work, including site calibration procedures, nacelle...

  14. European wind turbine testing procedure developments. Task 1: Measurement method to verify wind turbine performance characteristics

    Energy Technology Data Exchange (ETDEWEB)

    Hunter, R.; Friis Pedersen, T.; Dunbabin, P.; Antoniou, I.; Frandsen, S.; Klug, H.; Albers, A.; Lee, W.K.

    2001-01-01

    There is currently significant standardisation work ongoing in the context of wind farm energy yield warranty assessment and wind turbine power performance testing. A standards maintenance team is revising the current IEC (EN) 61400-12 Ed 1 standard for wind turbine power performance testing. The standard is being divided into four documents. Two of them are drafted for evaluation and verification of complete wind farms and of individual wind turbines within wind farms. This document, and the project it describes, has been designed to help provide a solid technical foundation for this revised standard. The work was wide ranging and addressed 'grey' areas of knowledge, regarding existing methodologies or to carry out basic research in support of fundamentally new procedures. The work has given rise to recommendations in all areas of the work, including site calibration procedures, nacelle anemometry, multi-variate regression analysis and density normalisation. (au)

  15. Wind turbines

    OpenAIRE

    Jorge, Clàudia; Stuer, Joris; Mahy, Philip; Hawksley, Will

    2013-01-01

    The European Project Semester is about much more than a period of study, it is an opportunity to explore new surroundings and embrace new cultures, all while studying in a unique environment with a blend of people from diff erent disciplines. Our project, put together with the help of our supervisor Gunther Steenackers fi nds three product developers and one ICT engineer coming together to work on a project for an urban wind turbine. Our Aim is as follows: “We wi...

  16. 78 FR 20690 - Draft Environmental Impact Statement, Draft Habitat Conservation Plan, Draft Programmatic...

    Science.gov (United States)

    2013-04-05

    ... (MW). The 301.3-MW Fowler Phase I was constructed in 2008 and consists of 40 Clipper Liberty wind... addressed in the draft HCP or draft EIS; 3. Any new information on white-nose syndrome effects on...

  17. Flow calculation in a bulb turbine

    Energy Technology Data Exchange (ETDEWEB)

    Goede, E.; Pestalozzi, J.

    1987-02-01

    In recent years remarkable progress has been made in the field of computational fluid dynamics. Sometimes the impression may arise when reading the relevant literature that most of the problems in this field have already been solved. Upon studying the matter more deeply, however, it is apparent that some questions still remain unanswered. The use of the quasi-3D (Q3D) computational method for calculating the flow in a fuel hydraulic turbine is described.

  18. Transient CFD simulation of a Francis turbine startup

    Science.gov (United States)

    Nicolle, J.; Morissette, J. F.; Giroux, A. M.

    2012-11-01

    To assess the life expectancy of hydraulic turbines, it is essential to obtain the loading on the blades, especially during transient operations known to be the most damaging. This paper presents a simplified CFD setup to model the startup phase of a Francis turbine while it goes from rest to speed no-load condition. The fluid domain included one distributor sector coupled with one runner passage. The guide vane motion and change in the angular velocity were included in a commercial code with user functions. Comparisons between numerical results and measurements acquired on a full-size turbine showed that most of the flow physics occurring during startup were captured.

  19. Numerical and Experimental Study on a Model Draft Tube with Vortex Generators

    Directory of Open Access Journals (Sweden)

    Tian Xiaoqing

    2013-01-01

    Full Text Available A model water turbine draft tube containing vortex generators (VG was studied. Numerical simulations were performed to investigate 55 design variations of the vortex generators in a draft tube. After analyzing the shapes of streamlines and velocity distributions in the tube and comparing static pressure recovery coefficients (SPRC in different design variations, an optimum vortex generator layout, which can raise SPRC of the draft tube by 4.8 percent, was found. To verify the effectiveness of the vortex generator application, a series of experiments were carried out. The results show that by choosing optimal vortex generator parameters, such as the installation type, installation position, blade-to-blade distance, and blade inclination angle, the draft tube equipped vortex generators can effectively raise their SPRC andworking stability.

  20. Turbine main engines

    CERN Document Server

    Main, John B; Herbert, C W; Bennett, A J S

    1965-01-01

    Turbine Main Engines deals with the principle of operation of turbine main engines. Topics covered include practical considerations that affect turbine design and efficiency; steam turbine rotors, blades, nozzles, and diaphragms; lubricating oil systems; and gas turbines for use with nuclear reactors. Gas turbines for naval boost propulsion, merchant ship propulsion, and naval main propulsion are also considered. This book is divided into three parts and begins with an overview of the basic mode of operation of the steam turbine engine and how it converts the pressure energy of the ingoing ste

  1. Dynamic behaviour of pump-turbine runner: From disk to prototype runner

    Science.gov (United States)

    Huang, X. X.; Egusquiza, E.; Valero, C.; Presas, A.

    2013-12-01

    In recent decades, in order to increase output power of hydroelectric turbomachinery, the design head and the flow rate of the hydraulic turbines have been increased greatly. This has led to serious vibratory problems. The pump-turbines have to work at various operation conditions to satisfy the requirements of the power grid. However, larger hydraulic forces will result in high vibration levels on the turbines, especially, when the machines operate at off-design conditions. Due to the economic considerations, the pump-turbines are built as light as possible, which will change the dynamic response of the structures. According to industrial cases, the fatigue damage of the pump-turbine runner induced by hydraulic dynamic forces usually happens on the outer edge of the crown, which is near the leading edges of blades. To better understand the reasons for this kind of fatigue, it is extremely important to investigate the dynamic response behaviour of the hydraulic turbine, especially the runner, by experimental measurement and numerical simulation. The pump-turbine runner has a similar dynamic response behaviour of the circular disk. Therefore, in this paper the dynamic response analyses for circular disks with different dimensions and disk-blades-disk structures were carried out to better understand the fundamental dynamic behaviour for the complex turbomachinery. The influences of the pattern and number of blades were discussed in detail.

  2. K-65-12.8 condensing steam turbine

    Science.gov (United States)

    Valamin, A. E.; Kultyshev, A. Yu.; Gol'dberg, A. A.; Sakhnin, Yu. A.; Bilan, V. N.; Stepanov, M. Yu.; Polyaeva, E. N.; Shekhter, M. V.; Shibaev, T. L.

    2016-11-01

    A new condensing steam turbine K-65-12.8 is considered, which is the continuation of the development of the steam turbine family of 50-70 MW and the fresh steam pressure of 12.8 MPa, such as twocylinder T-50-12.8 and T-60/65-12.8 turbines. The turbine was developed using the modular design. The design and the main distinctive features of the turbine are described, such as a single two-housing cylinder with the steam flow loop; the extraction from the blading section for the regeneration, the inner needs, and heating; and the unification of some assemblies of serial turbines with shorter time of manufacture. The turbine uses the throttling steam distribution; steam from a boiler is supplied to a turbine through a separate valve block consisting of a central shut-off valve and two side control valves. The blading section of a turbine consists of 23 stages: the left flow contains ten stages installed in the inner housing and the right flow contains 13 stages with diaphragm placed in holders installed in the outer housing. The disks of the first 16 stages are forged together with a rotor, and the disks of the rest stages are mounted. Before the two last stages, the uncontrolled steam extraction is performed for the heating of a plant with the heat output of 38-75 GJ/h. Also, a turbine has five regenerative extraction points for feed water heating and the additional steam extraction to a collector for the inner needs with the consumption of up to 10 t/h. The feasibility parameters of a turbine plant are given. The main solutions for the heat flow diagram and the layout of a turbine plant are presented. The main principles and features of the microprocessor electro hydraulic control and protection system are formulated.

  3. Rotating housing turbine

    Energy Technology Data Exchange (ETDEWEB)

    Allouche, Erez; Jaganathan, Arun P.

    2016-10-11

    The invention is a new turbine structure having a housing that rotates. The housing has a sidewall, and turbine blades are attached to a sidewall portion. The turbine may be completely open in the center, allowing space for solids and debris to be directed out of the turbine without jamming the spinning blades/sidewall. The turbine may be placed in a generator for generation of electrical current.

  4. Turbine maintenance and modernization

    Energy Technology Data Exchange (ETDEWEB)

    Unga, E. [Teollisuuden Voima Oy, Olkiluoto (Finland)

    1998-12-31

    The disturbance-free operation of the turbine plant plays an important role in reaching good production results. In the turbine maintenance of the Olkiluoto nuclear power plant the lifetime and efficiency of turbine components and the lifetime costs are taken into account in determining the turbine maintenance and modernization/improvement program. The turbine maintenance program and improvement/modernization measures taken in the plant units are described in this presentation. (orig.)

  5. FOREWORD: 26th IAHR Symposium on Hydraulic Machinery and Systems

    Science.gov (United States)

    Wu, Yulin; Wang, Zhengwei; Liu, Shuhong; Yuan, Shouqi; Luo, Xingqi; Wang, Fujun

    2012-11-01

    The 26th IAHR Symposium on Hydraulic Machinery and Systems, will be held in Beijing, China, 19-23 August 2012. It is jointly organized by Tsinghua University, State Key Laboratory of Hydro Science and Hydraulic Engineering, China, Jiangsu University, Xi'an University of Technology, China Agricultural University, National Engineering Research Center of Hydropower Equipment and Dongfang Electric Machinery Co., Ltd. It is the second time that China hosts such a symposium. By the end of 2011, the China electrical power system had a total of 1 050 GW installed power, out of which 220 GW was in hydropower plants. The energy produced in hydropower facilities was 662.6 TWh from a total of 4,720 TWh electrical energy production in 2011. Moreover, in 2020, new hydropower capacities are going to be developed, with a total of 180 GW installed power and an estimated 708 TWh/year energy production. And in 2011, the installed power of pumped storage stations was about 25GW. In 2020, the data will be 70GW. At the same time, the number of pumps used in China is increasing rapidly. China produces about 29,000,000 pumps with more than 220 series per year. By the end of 2011, the Chinese pumping system has a total of 950 GW installed power. The energy consumed in pumping facilities was 530 TWh in 2011. The pump energy consumption accounted for about 12% of the national electrical energy production. Therefore, there is a large market in the field of hydraulic machinery including water turbines, pump turbines and a variety of pumps in China. There are also many research projects in this field. For example, we have conducted National Key Research Projects on 1000 MW hydraulic turbine, and on the pump turbines with high head, as well as on the large capacity pumps for water supply. Tsinghua University of Beijing is proud to host the 26th IAHR Symposium on Hydraulic Machinery and Systems. Tsinghua University was established in 1911, after the founding of the People's Republic of China. It

  6. Turbine oil

    Energy Technology Data Exchange (ETDEWEB)

    Eminov, E.A.; Bogdanov, Sh.K.; Dovgopolyi, E.E.; Gryaznov, B.V.; Ivanov, V.S.; Ivanova, Z.M.; Kozlova, E.K.; Nikolaeva, N.M.; Rozhdestvenskaya, A.A.

    1981-03-10

    In the known turbine oil (TO), for the purpose of improving the anticorrosion and demulsifying properties, a polyoxypropylene glycol ether, ethylenediamine or propylene glycol or an alkylphenol are additionally introduced, where the C/sub 8/-C/sub 12/ alkyl has a molecular weight of 2000-10,000. The proportions of the components are: 2, 6-di-tert-butyl-4-methylphenol 0.2-1.0%, quinizarin 0.01-0.05%, an acid ester of an alkenylsuccinic acid 0.02-0.1%, a polyoxypropylene glycol ether 0.02-0.2%, polymethylsiloxane 0.003-0.005%, and petroleum oil the remainder. The TO is prepared by mixing the petroleum oil with the additives in any sequence at a temperature of 60-80/sup 0/ by mechanical stirring. On the five TO samples the antioxidative, demulsifying, and anticorrosion properties by comparison with the prototype were investigated. It was shown that the obtained TO possesses improved anticorrosion properties (time until the appearance of Kr (staining.), up to 60 h as against 35 on the prototype) and demulsifying properties (quantity of water separating on breaking the emulsion 10 mg/L as against 65 mg/L on the prototype) for an antioxidative stability equal to that of the analog. The TO is designated for use in various turbo-units, in the first place in marine steam turbine units, where there is the probability of contact of the TO with seawater. Use of the TO makes it possible to increase the service life of the mechanisms, to reduce the amount of oil mixable in the form of an emulsion (by a factor of 1.5 to 2), and to lower the operating expenses.

  7. Thermally Actuated Hydraulic Pumps

    Science.gov (United States)

    Jones, Jack; Ross, Ronald; Chao, Yi

    2008-01-01

    Thermally actuated hydraulic pumps have been proposed for diverse applications in which direct electrical or mechanical actuation is undesirable and the relative slowness of thermal actuation can be tolerated. The proposed pumps would not contain any sliding (wearing) parts in their compressors and, hence, could have long operational lifetimes. The basic principle of a pump according to the proposal is to utilize the thermal expansion and contraction of a wax or other phase-change material in contact with a hydraulic fluid in a rigid chamber. Heating the chamber and its contents from below to above the melting temperature of the phase-change material would cause the material to expand significantly, thus causing a substantial increase in hydraulic pressure and/or a substantial displacement of hydraulic fluid out of the chamber. Similarly, cooling the chamber and its contents from above to below the melting temperature of the phase-change material would cause the material to contract significantly, thus causing a substantial decrease in hydraulic pressure and/or a substantial displacement of hydraulic fluid into the chamber. The displacement of the hydraulic fluid could be used to drive a piston. The figure illustrates a simple example of a hydraulic jack driven by a thermally actuated hydraulic pump. The pump chamber would be a cylinder containing encapsulated wax pellets and containing radial fins to facilitate transfer of heat to and from the wax. The plastic encapsulation would serve as an oil/wax barrier and the remaining interior space could be filled with hydraulic oil. A filter would retain the encapsulated wax particles in the pump chamber while allowing the hydraulic oil to flow into and out of the chamber. In one important class of potential applications, thermally actuated hydraulic pumps, exploiting vertical ocean temperature gradients for heating and cooling as needed, would be used to vary hydraulic pressures to control buoyancy in undersea research

  8. Vibration of hydraulic machinery

    CERN Document Server

    Wu, Yulin; Liu, Shuhong; Dou, Hua-Shu; Qian, Zhongdong

    2013-01-01

    Vibration of Hydraulic Machinery deals with the vibration problem which has significant influence on the safety and reliable operation of hydraulic machinery. It provides new achievements and the latest developments in these areas, even in the basic areas of this subject. The present book covers the fundamentals of mechanical vibration and rotordynamics as well as their main numerical models and analysis methods for the vibration prediction. The mechanical and hydraulic excitations to the vibration are analyzed, and the pressure fluctuations induced by the unsteady turbulent flow is predicted in order to obtain the unsteady loads. This book also discusses the loads, constraint conditions and the elastic and damping characters of the mechanical system, the structure dynamic analysis, the rotor dynamic analysis and the system instability of hydraulic machines, including the illustration of monitoring system for the instability and the vibration in hydraulic units. All the problems are necessary for vibration pr...

  9. Handbook of hydraulic fluid technology

    CERN Document Server

    Totten, George E

    2011-01-01

    ""The Handbook of Hydraulic Fluid Technology"" serves as the foremost resource for designing hydraulic systems and for selecting hydraulic fluids used in engineering applications. Featuring new illustrations, data tables, as well as practical examples, this second edition is updated with essential information on the latest hydraulic fluids and testing methods. The detailed text facilitates unparalleled understanding of the total hydraulic system, including important hardware, fluid properties, and hydraulic lubricants. Written by worldwide experts, the book also offers a rigorous overview of h

  10. The development of advanced hydroelectric turbines to improve fish passage survival

    Energy Technology Data Exchange (ETDEWEB)

    Cada, Glenn F. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2001-09-01

    Recent efforts to improve the survival of hydroelectric turbine-passed juvenile fish have explored modifications to both operation and design of the turbines. Much of this research is being carried out by power producers in the Columbia River basin (U.S. Army Corps of Engineers and the public utility districts), while the development of low impact turbines is being pursued on a national scale by the U.S. Department of Energy. Fisheries managers are involved in all aspects of these efforts. Advanced versions of conventional Kaplan turbines are being installed and tested in the Columbia River basin, and a pilot scale version of a novel turbine concept is undergoing laboratory testing. Field studies in the last few years have shown that improvements in the design of conventional turbines have increased the survival of juvenile fish. There is still much to be learned about the causes and extent of injuries in the turbine system (including the draft tube and tailrace), as well as the significance of indirect mortality and the effects of turbine passage on adult fish. However, improvements in turbine design and operation, as well as new field, laboratory, and modeling techniques to assess turbine-passage survival, are contributing toward resolution of the downstream fish passage issue at hydroelectric power plants.

  11. Turbulence and wind turbines

    DEFF Research Database (Denmark)

    Brand, Arno J.; Peinke, Joachim; Mann, Jakob

    2011-01-01

    The nature of turbulent flow towards, near and behind a wind turbine, the effect of turbulence on the electricity production and the mechanical loading of individual and clustered wind turbines, and some future issues are discussed.......The nature of turbulent flow towards, near and behind a wind turbine, the effect of turbulence on the electricity production and the mechanical loading of individual and clustered wind turbines, and some future issues are discussed....

  12. Turbine Aerothermal Research

    Science.gov (United States)

    2012-05-01

    SONDERGAARD CHARLES W. STEVENS Project Engineer Branch Chief Turbomachinery Branch Turbomachinery Branch Turbine Engine Division Turbine Engine...distribution unlimited. APPENDIX: LIST OF PUBLICATIONS "Pulsed Film Cooling on a Turbine Blade Leading Edge," Captain James L. Rutledge , PhD...Turbine Blade Leading Edge," Rutledge , King & Rivir, AIAA-2009-5104, Proceedings of the 45th IAA/ASME/SAE/ASEE Joint Propulsion Conference

  13. Sliding vane geometry turbines

    Science.gov (United States)

    Sun, Harold Huimin; Zhang, Jizhong; Hu, Liangjun; Hanna, Dave R

    2014-12-30

    Various systems and methods are described for a variable geometry turbine. In one example, a turbine nozzle comprises a central axis and a nozzle vane. The nozzle vane includes a stationary vane and a sliding vane. The sliding vane is positioned to slide in a direction substantially tangent to an inner circumference of the turbine nozzle and in contact with the stationary vane.

  14. Pipe drafting and design

    CERN Document Server

    Parisher, Roy A

    2011-01-01

    Pipe Drafting and Design, Third Edition provides step-by-step instructions to walk pipe designers, drafters, and students through the creation of piping arrangement and isometric drawings. It includes instructions for the proper drawing of symbols for fittings, flanges, valves, and mechanical equipment. More than 350 illustrations and photographs provide examples and visual instructions. A unique feature is the systematic arrangement of drawings that begins with the layout of the structural foundations of a facility and continues through to the development of a 3-D model. Advanced chapters

  15. Pipe drafting and design

    CERN Document Server

    Parisher, Roy A; Parisher

    2000-01-01

    Pipe designers and drafters provide thousands of piping drawings used in the layout of industrial and other facilities. The layouts must comply with safety codes, government standards, client specifications, budget, and start-up date. Pipe Drafting and Design, Second Edition provides step-by-step instructions to walk pipe designers and drafters and students in Engineering Design Graphics and Engineering Technology through the creation of piping arrangement and isometric drawings using symbols for fittings, flanges, valves, and mechanical equipment. The book is appropriate primarily for pipe

  16. Load variation effects on the pressure fluctuations exerted on a Kaplan turbine runner

    Science.gov (United States)

    Amiri, K.; Mulu, B.; Raisee, M.; Cervantes, M. J.

    2014-03-01

    Introduction of intermittent electricity production systems like wind power and solar systems to electricity market together with the consumption-based electricity production resulted in numerous start/stops, load variations and off-design operation of water turbines. The hydropower systems suffer from the varying loads exerted on the stationary and rotating parts of the turbines during load variations which they are not designed for. On the other hand, investigations on part load operation of single regulated turbines, i.e., Francis and propeller, proved the formation of rotating vortex rope (RVR) in the draft tube. The RVR induces oscillating flow both in plunging and rotating modes which results in oscillating force with two different frequencies on the runner blades, bearings and other rotating parts of the turbine. The purpose of this study is to investigate the effect of transient operations on the pressure fluctuations on the runner and mechanism of the RVR formation/mitigation. Draft tube and runner blades of the Porjus U9 model, a Kaplan turbine, were equipped with pressure sensors. The model was run in off-cam mode during different load variation conditions to check the runner performance under unsteady condition. The results showed that the transients between the best efficiency point and the high load happens in a smooth way while transitions to/from the part load, where rotating vortex rope (RVR) forms in the draft tube induces high level of fluctuations with two frequencies on the runner; plunging and rotating mode of the RVR.

  17. Power generation from wind turbines in a solar chimney

    Energy Technology Data Exchange (ETDEWEB)

    Foote, Tudor [Graduate Student, Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, Jolley Hall, Campus Box 1185, One Brookings Drive, St. Louis, Missouri, 63130 (United States); Agarwal, Ramesh K. [William Palm Professor, Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, Jolley Hall, Campus Box 1185, One Brookings Drive, St. Louis, Missouri, 63130 (United States)

    2013-07-01

    Recent studies have shown that shrouded wind turbines can generate greater power compared to bare turbines. A solar chimney generates an upward draft of wind inside a tower and a shroud around the wind turbine. There are numerous empty silos on farms in the U.S. that can be converted to solar chimneys with minor modifications at modest cost. The objective of this study is to determine the potential of these silos/chimneys for generating wind power. The study is conducted through analytical/computational approach by employing the commercial Computational Fluid Dynamics (CFD) software. Computations are performed for five different geometric configurations consisting of a turbine, a cylindrical silo, and/or a venturi and/or a diffuser using the dimensions of typical silos and assuming Class 3 wind velocity. The incompressible Navier-Stokes equations with the Boussinesq approximation and a two equation realizable {kappa}-{epsilon} model are employed in the calculations, and the turbine is modeled as an actuator disk. The power coefficient (Cp) and generated power are calculated for the five cases. Consistent with recent literature, it was found that the silos with diffusers increase the Cp beyond Betz’s limit significantly and thus the generated power. It should be noted that Cp is calculated by normalizing it by the turbine area swept by the wind. This study shows the potential of using abandoned silos in the mid-west and other parts of the country for localized wind power generation.

  18. Power generation from wind turbines in a solar chimney

    Directory of Open Access Journals (Sweden)

    Tudor Foote, Ramesh K. Agarwal

    2013-01-01

    Full Text Available Recent studies have shown that shrouded wind turbines can generate greater power compared to bare turbines. A solar chimney generates an upward draft of wind inside a tower and a shroud around the wind turbine. There are numerous empty silos on farms in the U.S. that can be converted to solar chimneys with minor modifications at modest cost. The objective of this study is to determine the potential of these silos/chimneys for generating wind power. The study is conducted through analytical/computational approach by employing the commercial Computational Fluid Dynamics (CFD software. Computations are performed for five different geometric configurations consisting of a turbine, a cylindrical silo, and/or a venturi and/or a diffuser using the dimensions of typical silos and assuming Class 3 wind velocity. The incompressible Navier-Stokes equations with the Boussinesq approximation and a two equation realizable k – ε model are employed in the calculations, and the turbine is modeled as an actuator disk. The power coefficient (Cp and generated power are calculated for the five cases. Consistent with recent literature, it was found that the silos with diffusers increase the Cp beyond Betz’s limit significantly and thus the generated power. It should be noted that Cp is calculated by normalizing it by the turbine area swept by the wind. This study shows the potential of using abandoned silos in the mid-west and other parts of the country for localized wind power generation.

  19. A modification method on runner blades in a Bulb turbine

    Energy Technology Data Exchange (ETDEWEB)

    Yang, W; Wu, Y; Liu, S, E-mail: yang-w03@mails.tsinghua.edu.c [Department of Thermal Engineering, Tsinghua University No.1 Tsinghua Park Haidian District, Beijing, 100084 (China)

    2010-08-15

    In this paper a modification method of the runner blades in a Bulb turbine is proposed, in which the main scale of the runner is maintained. In the modification method the runner blade is expressed by a gather of coordinate points. In order to make the modification simple and efficient, one of the coordinate is fixed and only the angles of the points are changed according to different modification purposes. The Bezier curve is applied to keep the modified blades smooth. For the purpose of verification, the modification method is used in some a prototype Bulb turbine in China. In order to check the modification effectiveness, a three dimensional turbulent computation is carried out through the whole passage including the bulb body, guide vanes, runner and draft tube of a prototype Bulb turbine under its rated operation. An SST k-{omega} turbulence model is used during the flow simulation. The performance prediction of the bulb turbine is conducted by the steady flow simulation. Comparisons of the computational results between the original turbine and a modified one indicate that the modification method is practical and can improve the performance of the bulb turbine.

  20. Investigation of Francis Turbine Part Load Instabilities using Flow Simulations with a Hybrid RANS-LES Turbulence Model

    Science.gov (United States)

    Krappel, Timo; Ruprecht, Albert; Riedelbauch, Stefan; Jester-Zuerker, Roland; Jung, Alexander

    2014-03-01

    The operation of Francis turbines in part load condition causes high pressure fluctuations and dynamic loads in the turbine as well as high flow losses in the draft tube. Owing to the co-rotating velocity distribution at the runner blade trailing edge a low pressure zone arises in the hub region finally leading to a rotating vortex rope in the draft tube. A better understanding and a more accurate prediction of this phenomenon can help in the design process of a Francis turbine. The goal of this study is to reach a quantitatively better numerical prediction of the flow at part load and to evaluate the necessary numerical depth with respect to effort and benefit. As standard practice, simulation results are obtained for the steady state approach with SST turbulence modelling. Those results are contrasted with transient simulations applying a SST as well as a SAS (Scale Adaptive Simulation) turbulence model. The structure of the SAS model is such, that it is able to resolve the turbulent flow behaviour in more detail. The investigations contain a comparison of the flow losses in different turbine components. A detailed flow evaluation is done in the cone and the diffuser of the draft tube. The different numerical approaches show a different representation of the vortex rope phenomenon indicating differences in pressure pulsations at different geometric positions in the entire turbine. Finally, the turbulent flow structures in the draft tube are illustrated with several evaluation methods, such as turbulent eddy viscosity, velocity invariant and turbulent kinetic energy spectra.

  1. Experimental and Numerical Studies of a High-Head Francis Turbine: A Review of the Francis-99 Test Case

    Directory of Open Access Journals (Sweden)

    Chirag Trivedi

    2016-01-01

    Full Text Available Hydraulic turbines are widely used to meet real-time electricity demands. Computational fluid dynamic (CFD techniques have played an important role in the design and development of such turbines. The simulation of a complete turbine requires substantial computational resources. A specific approach that is applied to investigate the flow field of one turbine may not work for another turbine. A series of Francis-99 workshops have been planned to discuss and explore the CFD techniques applied within the field of hydropower with application to high-head Francis turbines. The first workshop was held in December 2014 at the Norwegian University of Science and Technology, Norway. The steady-state measurements were conducted on a model Francis turbine. Three operating points, part load, best efficiency point, and high load, were investigated. The complete geometry, meshing, and experimental data concerning the hydraulic efficiency, pressure, and velocity were provided to the academic and industrial research groups. Various researchers have conducted extensive numerical studies on the high-head Francis turbine, and the obtained results were presented during the workshop. This paper discusses the presented numerical results and the important outcome of the extensive numerical studies on the Francis turbine. The use of a wall function assuming equilibrium between the production and dissipation of turbulence is widely used in the simulation of hydraulic turbines. The boundary layer of hydraulic turbines is not fully developed because of the continuously-changing geometry and large pressure gradients. There is a need to develop wall functions that enable the estimation of viscous losses under boundary development for accurate simulations. Improved simulations and results enable reliable estimation of the blade loading. Numerical investigations on leakage flow through the labyrinth seals were conducted. The volumetric efficiency and losses in the seals were

  2. Experiences and results from Elkraft 1 MW wind turbine

    Energy Technology Data Exchange (ETDEWEB)

    Raben, N.; Jensen, F.V. [SEAS Distribution A.m.b.A., Wind Power Dept., Haslev (Denmark); Oeye, S. [DTU, Inst. for Energiteknik, Lyngby (Denmark); Markkilde Petersen, S.; Antoniou, I. [Risoe National Lab., Wind Energy and Atmospheric Physics Dept., Roskilde (Denmark)

    1999-03-01

    The Elkraft 1 MW Demonstration wind turbine was at the time of installation in 1993 the largest stall controlled wind turbine in the world. It was constructed to allow accurate comparison of two different forms of operation: pitch control and stall control. A comprehensive programme for the investigation of the two operation modes was established. This paper presents the main experiences from five years of operation and measurements. For a three-year period the wind turbine was in operation in stall controlled mode. During this period the turbine faced problems of various significance. Especially lightning strikes and unusually poor wind conditions caused delays of the project. In early 1997, the wind turbine was modified to enable pitch controlled operation. The gearbox ratio was changed in order to allow higher rotor speed, the hydraulic system was altered and new control software was installed. Tests were carried out successfully during the spring of 1997 and the wind turbine has since been operating as a pitch controlled wind turbine. The most significant events and problems are presented and commented in this paper along with results from the measurement programme. The results cover both stall and pitch controlled operation and include power curves, annual energy production, structural loads, fatigue loads etc. (au) 10 refs.

  3. FEMA DFIRM Hydraulic Structures

    Data.gov (United States)

    Minnesota Department of Natural Resources — This layer and accompanying attribute table is required whenever hydraulic structures are shown in the flood profile. It is also required if levees are shown on the...

  4. Water Hydraulic Systems

    DEFF Research Database (Denmark)

    Conrad, Finn

    2005-01-01

    The paper presents research results using IT-Tools for CAD and dynamic modelling, simulation, analysis, and design of water hydraulic actuators for motion control of machines, lifts, cranes and robots. Matlab/Simulink and CATIA are used as IT-Tools. The contributions include results from on......-going research projects on fluid power and mechatronics based on tap water hydraulic servovalves and linear servo actuators and rotary vane actuators for motion control and power transmission. Development and design a novel water hydraulic rotary vane actuator for robot manipulators. Proposed mathematical...... modelling, control and simulation of a water hydraulic rotary vane actuator applied to power and control a two-links manipulator and evaluate performance. The results include engineering design and test of the proposed simulation models compared with IHA Tampere University’s presentation of research...

  5. Constant-Pressure Hydraulic Pump

    Science.gov (United States)

    Galloway, C. W.

    1982-01-01

    Constant output pressure in gas-driven hydraulic pump would be assured in new design for gas-to-hydraulic power converter. With a force-multiplying ring attached to gas piston, expanding gas would apply constant force on hydraulic piston even though gas pressure drops. As a result, pressure of hydraulic fluid remains steady, and power output of the pump does not vary.

  6. Turbine Imaging Technology Assessment

    Energy Technology Data Exchange (ETDEWEB)

    Moursund, Russell A.; Carlson, Thomas J.

    2004-12-31

    The goal of this project was to identify and evaluate imaging alternatives for observing the behavior of juvenile fish within an operating Kaplan turbine unit with a focus on methods to quantify fish injury mechanisms inside an operating turbine unit. Imaging methods are particularly needed to observe the approach and interaction of fish with turbine structural elements. This evaluation documents both the opportunities and constraints for observing juvenile fish at specific locations during turbine passage. The information may be used to acquire the scientific knowledge to make structural improvements and create opportunities for industry to modify turbines and improve fish passage conditions.

  7. Energy production with a tubular propeller turbine

    Science.gov (United States)

    Samora, I.; Hasmatuchi, V.; Münch-Alligné, C.; Franca, M. J.; Schleiss, A. J.; Ramos, H. M.

    2016-11-01

    Micro-hydropower is a way of improving the energetic efficiency of existent water systems. In the particular case of drinking water systems, several studies have showed that pressure reducing valves can be by-passed with turbines in order to recover the dissipated hydraulic energy to produce electricity. As conventional turbines are not always cost-effective for power under 20 kW, a new energy converter is studied. A five blade tubular propeller (5BTP), assessed through laboratorial tests on a reduced model with a diameter of 85 mm diameter and a maximal output power of 300 W, is addressed in this work. Having showed promising potential for further development, since global efficiencies of around 60% were observed, the turbine has been further used to estimate the potential for energy production in a real case study. A sub-grid of the drinking water system of the city of Lausanne, Switzerland, has been used to obtain an annual energy production through hourly simulations with several turbines.

  8. Severe environment turbine powered steerable motors

    Energy Technology Data Exchange (ETDEWEB)

    Gaynor, T.M. [Neyrfor-Weir Ltd., Aberdeen (United Kingdom). Dept. of Operations

    1995-12-31

    Turbine powered downhole motors have advantages for high temperature, high pressure, sour gas or hard formation drilling which stem from turbodrill construction rather than metallurgy, and from their power characteristics. The first part of the paper will discuss this, and compare turbine and Moineau powered motors in this context. The introduction in the last three years of new bearing materials, hydraulic thrust balancing devices and high performance flexible couplings have extended turbodrill performance and reliability margins in severe environment drilling. It is perfecting feasible to build steerable motors capable of drilling for 250 hours in 6-in. hole at 200 degrees Celsius (392 degrees Fahrenheit) in a deviated high pressure well since the individual problems in this ``Well from Hell`` have successfully been overcome. The second part of the paper will illustrate this through field examples.

  9. Optimization Design and Performance Analysis of a Pit Turbine with Ultralow Head

    Directory of Open Access Journals (Sweden)

    Chunxia Yang

    2014-04-01

    Full Text Available A developed pit turbine with ultralow head was optimization designed under the design head of about 2 meters to achieve the goal of improving the turbine unit's efficiency. At the same time, the turbine's synthetic characteristic curve was drawn to predict the turbine's overall performance. Navier-Stokes equations and SIMPLEC algorithm were used for pit turbine's whole flow passage numerical simulation of the 3D, steady, incompressible, turbulent flow field. Through the CFD numerical simulation, the influence to ultralow head turbine's performance was analyzed by runner blade's different setting angles and guide vane's different axes. Considering the hydraulic performance of various methods, the best blade's setting angle and guide vane's axis were chosen. The results show that, the turbine unit has the best performance on efficiency, hydraulic loss, and so forth, with the blade's setting angle 23° and the angle 72° between the guide vane and the centerline of unit, meeting the power station's design requirements. The development pit turbine with ultralow head shows the highest efficiency of 87.6% under condition of design head of 2.1 meters and design discharge of 10 m3/s. The energy performance of pit turbine with ultralow head was researched by the model test of GD-WS-35 turbine. The model turbine's characteristic curve was drawn. The model turbine's high efficiency area is wide and the efficiency changes mildly. The numerical simulation results are essentially consistent with the model test results, while the former one is slightly higher than the latter one. The error range is ±3%.

  10. Turbine component, turbine blade, and turbine component fabrication process

    Energy Technology Data Exchange (ETDEWEB)

    Delvaux, John McConnell; Cairo, Ronald Ralph; Parolini, Jason Robert

    2017-05-30

    A turbine component, a turbine blade, and a turbine component fabrication process are disclosed. The turbine component includes ceramic matrix composite plies and a feature configured for preventing interlaminar tension of the ceramic matrix composite plies. The feature is selected from the group consisting of ceramic matrix composite tows or precast insert tows extending through at least a portion of the ceramic matrix composite plies, a woven fabric having fiber tows or a precast insert preventing contact between a first set of the ceramic matrix composite plies and a second set of the ceramic matrix composite plies, and combinations thereof. The process includes laying up ceramic matrix composite plies in a preselected arrangement and securing a feature configured for interlaminar tension.

  11. Bilateral inferior turbinate osteoma

    Science.gov (United States)

    Sahemey, R.; Warfield, A.T.; Ahmed, S.

    2016-01-01

    Osteomas are the most common benign osteoclastic tumours of the paranasal sinuses. However, nasal cavity and turbinate osteomas are extremely rare. Only nine middle turbinate, three inferior turbinate and one inferior turbinate osteoma cases have been reported to date. The present case report describes the management and follow-up of symptomatic bilateral inferior turbinate osteoma. A 60-year-old female presented with symptoms of bilateral nasal obstruction and right-sided epiphora. Radiological investigation found hypertrophic bony changes involving both inferior turbinates. The patient was managed successfully by endoscopic inferior turbinectomies in order to achieve a patent airway, with no further recurrence of tumour after 3 months postoperatively. To the best of our knowledge, this is the first reported case of bilateral inferior turbinate osteoma. We describe a safe and minimally invasive method of tumour resection, which has a better cosmetic outcome compared with other approaches. PMID:27534890

  12. A National Assessment of the Potential Impacts of Hydraulic Fracturing Activities on Drinking Water Resources

    Science.gov (United States)

    Ridley, C.; Burden, S.; Fleming, M. M.; Knightes, C. D.; Koplos, J.; LeDuc, S. D.; Ring, S.; Stanek, J.; Tuccillo, M. E.; Weaver, J.; Frithsen, J.

    2015-12-01

    The U.S. Environmental Protection Agency recently released a draft assessment of the potential impacts of hydraulic fracturing on drinking water resources. As part of the draft assessment, we reviewed, analyzed, and synthesized information from over 950 sources and concluded that there are above and below ground mechanisms by which hydraulic fracturing activities have the potential to impact drinking water resources. These mechanisms include: Water withdrawals in times of, or in areas with, low water availability; Spills of hydraulic fracturing fluids and produced water; Fracturing directly into underground drinking water resources; Below ground migration of liquids and gases; and Inadequate treatment and discharge of wastewater. Of the potential mechanisms identified in this report, we found specific instances where one or more mechanisms led to impacts on drinking water resources, including contamination of drinking water wells. The number of identified cases, however, was small compared to the number of hydraulically fractured wells. This finding could reflect a rarity of effects on drinking water resources, but may also be due to other limiting factors. These factors include: insufficient pre- and post-fracturing data on the quality of drinking water resources; the paucity of long-term systematic studies; the presence of other sources of contamination precluding a definitive link between hydraulic fracturing activities and an impact; and the inaccessibility of some information on hydraulic fracturing activities and potential impacts. Disclaimer: The views expressed are those of the authors and do not necessarily reflect the views or polices of the EPA.

  13. Dan jiang kou hydropower station turbine refurbishment

    Science.gov (United States)

    Zhang, R. Y.; Nie, S. Q.; Bazin, D.; Cheng, J. H.

    2012-11-01

    Dan jiangkou hydropower station refurbished project, isan important project of Chinese refurbishment market. Tianjin Alstom Hydro Co., ltd won this contract by right of good performance and design technology,Its design took into account all the constraints linked to the existing frame. It results in a specific and highly advanced shape.The objective of this paper is to introduce the successful turbine hydraulic design, model test and mechanical design of Dan jiangkou project; and also analyze the cavitation phenomena occurred on runner band surface of Unit 4 after putting into commercial operation. These technology and feedback shall be a good reference and experience for other similar projects

  14. Turbine rehabilitation: CFD analysis of distributors

    Energy Technology Data Exchange (ETDEWEB)

    De Henau, V. [GEC ALSTHOM Electromechanical, Quebec (Canada)

    1995-12-31

    A methodology adopted to analyze the three-dimensional flow in turbine distributors is described. The particularity of this work lies in the approach used to account for the interaction casing/distributor in the specification of the boundary conditions for flow simulations on selected stay vane/wicket gate passages. The flexibility of the method is illustrated through its application to various problems. Preliminary comparisons between predictions and available experimental data for head losses and hydraulic torque on wicket gates demonstrate the validity of the procedure.

  15. Determination and generalization of the effects of design parameters on Francis turbine runner performance

    Directory of Open Access Journals (Sweden)

    Ece Ayli

    2016-01-01

    Full Text Available The runner design is the most challenging part of the turbine design process. Several parameters determine the performance and cavitation characteristics of the runner: the metal angle (flow beta angle, the alpha angle, the blade beta angle, the runner inlet and outlet diameters, and the blade height. All of these geometrical parameters need to be optimized to ensure that the head, flow rate and power requirements of the system are met. A hydraulic designer has to allocate time to optimize these parameters and should be experienced in carrying out the iterative design process. In this article, the turbine runner parameters that affect the performance and cavitation characteristics of designed turbines are examined in detail. Furthermore, turbines are custom designed according to the properties of hydroelectric power plants; this makes the design process even more challenging, as the rotational speed, runner geometry, system head and flow rate vary for each turbine. The effects of the design parameters are examined for four different turbine runners specifically designed and used in actual power plants in order to obtain general results and generalizations applicable to turbine design aided by computational fluid dynamics (CFD. The flow behavior, flow angles, head losses, pressure distribution, and cavitation characteristics are computed, analyzed, and compared. To assist hydraulic designers, the general influences of these parameters on the performance of turbines are summarized and empirical formulations are derived for runner performance characterization.

  16. A superelement-based method for computing unsteady three-dimensional potential flows in hydraulic turbomachines

    NARCIS (Netherlands)

    Kruyt, N.P.; Esch, van B.P.M.; Jonker, J.B.

    1999-01-01

    A numerical method is presented for the computation of unsteady, three-dimensional potential flows in hydraulic pumps and turbines. The superelement method has been extended in order to eliminate slave degrees of freedom not only from the governing Laplace equation, but also from the Kutta condition

  17. Hydraulic Power Plant Machine Dynamic Diagnosis

    Directory of Open Access Journals (Sweden)

    Hans Günther Poll

    2006-01-01

    Full Text Available A method how to perform an entire structural and hydraulic diagnosis of prototype Francis power machines is presented and discussed in this report. Machine diagnosis of Francis units consists on a proper evaluation of acquired mechanical, thermal and hydraulic data obtained in different operating conditions of several rotary and non rotary machine components. Many different physical quantities of a Francis machine such as pressure, strains, vibration related data, water flow, air flow, position of regulating devices and displacements are measured in a synchronized way so that a relation of cause an effect can be developed for each operating condition and help one to understand all phenomena that are involved with such kind of machine. This amount of data needs to be adequately post processed in order to allow correct interpretation of the machine dynamics and finally these data must be compared with the expected calculated data not only to fine tuning the calculation methods but also to accomplish fully understanding of the influence of the water passages on such machines. The way how the power plant owner has to operate its Francis machines, many times also determined by a central dispatcher, has a high influence on the fatigue life time of the machine components. The diagnostic method presented in this report helps one to understand the importance of adequate operation to allow a low maintenance cost for the entire power plant. The method how to acquire these quantities is discussed in details together with the importance of correct sensor balancing, calibration and adequate correlation with the physical quantities. Typical results of the dynamic machine behavior, with adequate interpretation, obtained in recent measurement campaigns of some important hydraulic turbines were presented. The paper highlights the investigation focus of the hydraulic machine behavior and how to tailor the measurement strategy to accomplish all goals. Finally some

  18. Design and Optimization of Fast Switching Valves for Large Scale Digital Hydraulic Motors

    DEFF Research Database (Denmark)

    Roemer, Daniel Beck

    of seat valves suitable for large scale digital hydraulic motors and detailed analysis methods for the pressure chambers of such machines. In addition, modeling methods of seat valves within this field have been developed, and a design method utilizing these models including optimization of subdomains has......The present thesis is on the design, analysis and optimization of fast switching valves for digital hydraulic motors with high power ratings. The need for such high power motors origins in the potential use of hydrostatic transmissions in wind turbine drive trains, as digital hydraulic machines...... have been shown to improve the overall efficiency and efficient operation range compared to traditional hydraulic machines. Digital hydraulic motors uses electronically controlled independent seat valves connected to the pressure chambers, which must be fast acting and exhibit low pressure losses...

  19. Coalescing Wind Turbine Wakes

    Science.gov (United States)

    Lee, S.; Churchfield, M.; Sirnivas, S.; Moriarty, P.; Nielsen, F. G.; Skaare, B.; Byklum, E.

    2015-06-01

    A team of researchers from the National Renewable Energy Laboratory and Statoil used large-eddy simulations to numerically investigate the merging wakes from upstream offshore wind turbines. Merging wakes are typical phenomena in wind farm flows in which neighboring turbine wakes consolidate to form complex flow patterns that are as yet not well understood. In the present study, three 6-MW turbines in a row were subjected to a neutrally stable atmospheric boundary layer flow. As a result, the wake from the farthest upstream turbine conjoined the downstream wake, which significantly altered the subsequent velocity deficit structures, turbulence intensity, and the global meandering behavior. The complexity increased even more when the combined wakes from the two upstream turbines mixed with the wake generated by the last turbine, thereby forming a “triplet” structure. Although the influence of the wake generated by the first turbine decayed with downstream distance, the mutated wakes from the second turbine continued to influence the downstream wake. Two mirror-image angles of wind directions that yielded partial wakes impinging on the downstream turbines yielded asymmetric wake profiles that could be attributed to the changing flow directions in the rotor plane induced by the Coriolis force. The turbine wakes persisted for extended distances in the present study, which is a result of low aerodynamic surface roughness typically found in offshore conditions.

  20. Trend of hydraulic units

    Energy Technology Data Exchange (ETDEWEB)

    Deshimaru, Jun' ichi

    1988-11-01

    The gear, vane and piston pumps occupy a more then 90% share in the hydraulic pumps. Comparatively large pumps are mainly variable delivery piston pumps. The piston pumps are comparatively high in output density (output per unit weight), indicating the hydraulic pump in performance, and tend to become higher and higher in it. Though they are mainly 210 to 350kgf/cm/sup 2/ in rated pressure, some of them come to surpass 400kgf/cm/sup 3/ in it. While the progress in computation also requires the high speed operation, high accuracy and other severe conditions for the hydraulic units, which accordingly and increasingly intensify the requirement for hydraulic oil in abrasion resistibility, oxidation stability and response characteristics. While cavitation comes to easily occur, which considerably and disadvantageously influences hydraulic oil in life through degradation, noise level and respondingness. From now on, the development of high performance oil and study of mechanical structure are important. 19 references, 9 figures, 2 tables.

  1. Wind Turbines Wake Aerodynamics

    DEFF Research Database (Denmark)

    Vermeer, L.; Sørensen, Jens Nørkær; Crespo, A.

    2003-01-01

    The aerodynamics of horizontal axis wind turbine wakes is studied. The contents is directed towards the physics of power extraction by wind turbines and reviews both the near and the far wake region. For the near wake, the survey is restricted to uniform, steady and parallel flow conditions......, thereby excluding wind shear, wind speed and rotor setting changes and yawed conditions. The emphasis is put on measurements in controlled conditions.For the far wake, the survey focusses on both single turbines and wind farm effects, and the experimental and numerical work are reviewed; the main interest...... is to study how the far wake decays downstream, in order to estimate the effect produced in downstream turbines.The article is further restricted to horizontal axis wind turbines and excludes all other types of turbines....

  2. Aerodynamics of wind turbines

    DEFF Research Database (Denmark)

    Hansen, Martin Otto Laver

    Aerodynamics of Wind Turbines is the established essential text for the fundamental solutions to efficient wind turbine design. Now in its third edition, it has been substantially updated with respect to structural dynamics and control. The new control chapter now includes details on how to design...... a classical pitch and torque regulator to control rotational speed and power, while the section on structural dynamics has been extended with a simplified mechanical system explaining the phenomena of forward and backward whirling modes. Readers will also benefit from a new chapter on Vertical Axis Wind...... Turbines (VAWT). Topics covered include increasing mass flow through the turbine, performance at low and high wind speeds, assessment of the extreme conditions under which the turbine will perform and the theory for calculating the lifetime of the turbine. The classical Blade Element Momentum method...

  3. Wind Turbines Wake Aerodynamics

    DEFF Research Database (Denmark)

    Vermeer, L.; Sørensen, Jens Nørkær; Crespo, A.

    2003-01-01

    The aerodynamics of horizontal axis wind turbine wakes is studied. The contents is directed towards the physics of power extraction by wind turbines and reviews both the near and the far wake region. For the near wake, the survey is restricted to uniform, steady and parallel flow conditions......, thereby excluding wind shear, wind speed and rotor setting changes and yawed conditions. The emphasis is put on measurements in controlled conditions.For the far wake, the survey focusses on both single turbines and wind farm effects, and the experimental and numerical work are reviewed; the main interest...... is to study how the far wake decays downstream, in order to estimate the effect produced in downstream turbines.The article is further restricted to horizontal axis wind turbines and excludes all other types of turbines....

  4. Cavitation in Hydraulic Machinery

    Energy Technology Data Exchange (ETDEWEB)

    Kjeldsen, M.

    1996-11-01

    The main purpose of this doctoral thesis on cavitation in hydraulic machinery is to change focus towards the coupling of non-stationary flow phenomena and cavitation. It is argued that, in addition to turbulence, superimposed sound pressure fluctuations can have a major impact on cavitation and lead to particularly severe erosion. For the design of hydraulic devices this finding may indicate how to further limit the cavitation problems. Chapter 1 reviews cavitation in general in the context of hydraulic machinery, emphasizing the initial cavitation event and the role of the water quality. Chapter 2 discusses the existence of pressure fluctuations for situations common in such machinery. Chapter 3 on cavitation dynamics presents an algorithm for calculating the nucleation of a cavity cluster. Chapter 4 describes the equipment used in this work. 53 refs., 55 figs.,10 tabs.

  5. Design Calculations and Draft Specifications.

    Science.gov (United States)

    1976-01-01

    v ML •. :.? ... *-. .- VJ, The low rpm required precludes the use of a low speed high torque .- - ( LSHT ) hydraulic motor directly without...7. - 33,000 x .75 Max torque required at drive motor : 7.9 x 33,000 = 69.7 ft-lb - L’ 27rx 1.7 x 350 A Sundstrand Model 1MH-02 LSHT hydraulic motor ...large-diameter hydraulic hoses. The procedure followed here is to size hydraulic motors or actuators based on torque, speed, or force requirements

  6. Hydraulics and pneumatics

    CERN Document Server

    Parr, Andrew

    2006-01-01

    Nearly all industrial processes require objects to be moved, manipulated or subjected to some sort of force. This is frequently accomplished by means of electrical equipment (such as motors or solenoids), or via devices driven by air (pneumatics) or liquids (hydraulics).This book has been written by a process control engineer as a guide to the operation of hydraulic and pneumatic systems for all engineers and technicians who wish to have an insight into the components and operation of such a system.This second edition has been fully updated to include all recent developments su

  7. Popeye Project: Hydraulic umbilical

    Energy Technology Data Exchange (ETDEWEB)

    Jordan, K.G.; Williams, V.T.

    1996-12-31

    For the Popeye Project, the longest super-duplex hydraulic umbilical in the world was installed in the Gulf of Mexico. This paper reports on its selection and project implementation. Material selection addresses corrosion in seawater, water-based hydraulic fluid, and methanol. Five alternatives were considered: (1) carbon-steel with traditional coating and anodes, (2) carbon-steel coated with thermally sprayed aluminum, (3) carbon-steel sheathed in aluminum, (4) super-duplex, and (5) titanium. The merits and risks associated with each alternative are discussed. The manufacture and installation of the selected umbilical are also reported.

  8. Grid impact of variable-speed wind turbines

    Energy Technology Data Exchange (ETDEWEB)

    Larsson, Aa. [Chalmers Univ. of Technology, Dept. of Electric Power Engineering, Goeteborg (Sweden); Soerensen, P. [Risoe National Lab., Roskilde (Denmark); Santjer, F. [German Wind Energy Inst., DEWI, Wilhelmshaven (Germany)

    1999-03-01

    In this paper the power quality of variable-speed wind turbines equipped with forced-commutated inverters is investigated. Measurements have been taken on the same type of variable-speed wind turbines in Germany and Sweden. The measurements have been analysed according to existing IEC standards. Special attention has been paid to the aggregation of several wind turbines on flicker emission and harmonics. The aggregation has been compared with the summation laws used in the draft IEC 61400-21 `Power Quality Requirements for Grid Connected wind turbines`. The methods for calculating and summing flicker proposed by IEC Standards are reliable. Harmonics and inter-harmonics are treated in IEC 61000-4-7 and IEC 61000-3-6. The methods for summing harmonics and inter-harmonics in IEC 61000-3-6 are applicable to wind turbines. In order to obtain a correct magnitude of the frequency components, the use of a well-defined window width, according to IEC 61000-4-7 Amendment 1 is of a great importance. (au)

  9. Wind turbines acoustic measurements

    Science.gov (United States)

    Trematerra, Amelia; Iannace, Gino

    2017-07-01

    The importance of wind turbines has increased over the last few years throughout the European Community. The European energy policy guidelines state that for the year 2020 20% of all energy must be produced by alternative energy sources. Wind turbines are an important type of energy production without petrol. A wind speed in a range from 2.5 m/s to 25.0 m/s is needed. One of the obstacles to the widespread diffusion of wind turbine is noise generation. This work presents some noise measurements of wind turbines in the South of Italy, and discusses the noise problems for the people living near wind farms.

  10. Wind Turbine Technologies

    DEFF Research Database (Denmark)

    Hansen, Anca Daniela

    2017-01-01

    , and with or without gearboxes, using the latest in power electronics, aerodynamics, and mechanical drive train designs [4]. The main differences between all wind turbine concepts developed over the years, concern their electrical design and control. Today, the wind turbines on the market mix and match a variety......, the design of wind turbines has changed from being convention driven to being optimized driven within the operating regime and market environment. Wind turbine designs have progressed from fixed speed, passive controlled and with drive trains with gearboxes, to become variable speed, active controlled......,6] and to implement modern control system strategies....

  11. Rampressor Turbine Design

    Energy Technology Data Exchange (ETDEWEB)

    Ramgen Power Systems

    2003-09-30

    The design of a unique gas turbine engine is presented. The first Rampressor Turbine engine rig will be a configuration where the Rampressor rotor is integrated into an existing industrial gas turbine engine. The Rampressor rotor compresses air which is burned in a traditional stationary combustion system in order to increase the enthalpy of the compressed air. The combustion products are then expanded through a conventional gas turbine which provides both compressor and electrical power. This in turn produces shaft torque, which drives a generator to provide electricity. The design and the associated design process of such an engine are discussed in this report.

  12. Hydraulic Arm Modeling via Matlab SimHydraulics

    OpenAIRE

    Věchet, Stanislav; Krejsa, Jiří

    2009-01-01

    System modeling is a vital tool for cost reduction and design process speed up in most engineering fields. The paper is focused on modeling of hydraulic arm as a part of intelligent prosthesis project, in the form of 2DOF open kinematic chain. The arm model combines mechanical, hydraulic and electric subsystems and uses Matlab as modeling tool. SimMechanics Matlab extension is used for mechanical part modeling, SimHydraulics toolbox is used for modeling of hydraulic circuit used for actuating...

  13. Evaluation of runner cone extension to dampen pressure pulsations in a Francis model turbine

    Science.gov (United States)

    Gogstad, Peter Joachim; Dahlhaug, Ole Gunnar

    2016-11-01

    Today's energy market has a high demand of flexibility due to introduction of other intermittent renewables as wind and solar. To ensure a steady power supply, hydro turbines are often forced to operate more at part load conditions. Originally, turbines were built for steady operation around the best efficiency point. The demand of flexibility, combined with old designs has showed an increase in turbines having problems with hydrodynamic instabilities such as pressure pulsations. Different methods have been investigated to mitigate pressure pulsations. Air injection shows a significant reduction of pressure pulsation amplitudes. However, installation of air injection requires extra piping and a compressor. Investigation of other methods such as shaft extension shows promising results for some operational points, but may significantly reduce the efficiency of the turbine at other operational points. The installation of an extension of the runner cone has been investigated at NTNU by Vekve in 2004. This has resulted in a cylindrical extension at Litjfossen Power Plant in Norway, where the bolt suffered mechanical failure. This indicates high amplitude pressure pulsations in the draft tube centre. The high pressure pulsation amplitudes are believed to be related to high tangential velocity in the draft tube. The mentioned runner cone extension has further been developed to a freely rotating extension. The objective is to reduce the tangential velocity in the draft tube and thereby the pressure pulsation amplitudes.

  14. Interactions Between Channel Topography and Hydrokinetic Turbines: Sediment Transport, Turbine Performance, and Wake Characteristics

    Science.gov (United States)

    Hill, Craig Steven

    Accelerating marine hydrokinetic (MHK) renewable energy development towards commercial viability requires investigating interactions between the engineered environment and its surrounding physical and biological environments. Complex and energetic hydrodynamic and morphodynamic environments desired for such energy conversion installations present difficulties for designing efficient yet robust sustainable devices, while permitting agency uncertainties regarding MHK device environmental interactions result in lengthy and costly processes prior to installing and demonstrating emerging technologies. A research program at St. Anthony Falls Laboratory (SAFL), University of Minnesota, utilized multi-scale physical experiments to study the interactions between axial-flow hydrokinetic turbines, turbulent open channel flow, sediment transport, turbulent turbine wakes, and complex hydro-morphodynamic processes in channels. Model axial-flow current-driven three-bladed turbines (rotor diameters, dT = 0.15m and 0.5m) were installed in open channel flumes with both erodible and non-erodible substrates. Device-induced local scour was monitored over several hydraulic conditions and material sizes. Synchronous velocity, bed elevation and turbine performance measurements provide an indication into the effect channel topography has on device performance. Complimentary experiments were performed in a realistic meandering outdoor research channel with active sediment transport to investigate device interactions with bedform migration and secondary turbulent flow patterns in asymmetric channel environments. The suite of experiments undertaken during this research program at SAFL in multiple channels with stationary and mobile substrates under a variety of turbine configurations provides an in-depth investigation into how axial-flow hydrokinetic devices respond to turbulent channel flow and topographic complexity, and how they impact local and far-field sediment transport characteristics

  15. Development of New, Low-Head Hydropower Turbine - Modeling & Laboratory Test DE-EE0005426

    Energy Technology Data Exchange (ETDEWEB)

    Krouse, Wayne [Hydro Green Energy, Westmont, IL (United States)

    2014-12-05

    Hydro Green Energy, LLC (HGE) will complete the design, fabrication and laboratory testing of a scaled, vertically stackable, low-head hydropower turbine called the Modular Bulb Turbine (MBT). HGE will also complete a summary report that includes the laboratory testing results and analysis of the tests. Project Goals: Design, model and test modular bulb turbine for installation in numerous HGE low-head hydropower projects at non-powered USACE dams. Project Results: The sub-scale prototype was tested successfully at a leading US hydraulic laboratory. Laboratory data results agreed well with predicted results from numerical modeling.

  16. CT demonstration of accessory nasal turbinates: secondary middle turbinate and bifid inferior turbinate

    Energy Technology Data Exchange (ETDEWEB)

    Aksungur, Erol H. [Department of Radiodiagnosis, Cukurova University, Balcali Hospital, Adana, 01330 (Turkey); Bicakci, Kenan [Department of Radiodiagnosis, Cukurova University, Balcali Hospital, Adana, 01330 (Turkey); Inal, Mehmet [Department of Radiodiagnosis, Cukurova University, Balcali Hospital, Adana, 01330 (Turkey); Akguel, Erol [Department of Radiodiagnosis, Cukurova University, Balcali Hospital, Adana, 01330 (Turkey); Binokay, Figen [Department of Radiodiagnosis, Cukurova University, Balcali Hospital, Adana, 01330 (Turkey); Aydogan, Barlas [Department of ENT, Cukurova University, Balcali Hospital, Adana, 01330 (Turkey); Oguz, Mahmut [Department of Radiodiagnosis, Cukurova University, Balcali Hospital, Adana, 01330 (Turkey)

    1999-09-01

    Normally, there are three pairs of nasal turbinates in the nasal cavity. Coronal computed tomographies of 253 cases of sinusitis were examined for the presence of additional turbinates and bilateral secondary middle turbinates were detected in two cases. Also, we describe another accessory turbinate, 'bifid inferior turbinate', in one of these cases. Existence of these accessory turbinates may occur during embryologic development of lateral nasal wall.

  17. HYDRAULICS, TUSCARAWAS COUNTY, OHIO, USA

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Hydraulic data include spatial datasets and data tables necessary for documenting the hydraulic procedures for estimating flood discharges for a flood insurance...

  18. Control of variable speed wind turbine with doubly-fed induction generator

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, A.D.; Soerensen, P. [Risoe National Lab., Wind Energy Dept., Roskilde (Denmark); Iov, F.; Blaabjerg, F. [Aalborg Univ., Inst. of Energy Technology, Aalborg (Denmark)

    2004-07-01

    draIn this paper, a Control method suitable for a variable speed grid connected pitch-controlled wind turbine with doubly-fed induction generator (DFIG) is developed. The targets of the Control system are: 1) to Control the power drawn from the wind turbine in order to track the wind turbine optimum operation point 2) to limit the power in case of high wind speeds and 3) to Control the reactive power interchanged between the wind turbine generator and the grid. The considered configuration of DFIG is an induction generator with a wound rotor connected to the grid through a back-to-back power converter and a stator directly connected to the grid. The paper presents the overall Control system of the variable speed DFIG wind turbine, with focus on the Control strategies and algorithms applied at each hierarchical Control level of the wind turbine. There are two Control levels: a DFIG Control level and wind turbine Control level. The DFIG Control level contains a fast Control of the power converter and of the doubly-fed induction generator and it has as goal to Control the active and reactive power of the wind turbine independently. The wind turbine Control level supervises with Control signals both the DFIG Control level and the hydraulic pitch Control system of the wind turbine. The present Control method is designed for normal continuous operations. The variable speed/variable pitch wind turbine with doubly-fed induction generator is implemented in the dynamic power system simulation tool DIgSILENT, which makes possible to investigate the dynamic performance of gid-connected wind turbines as a part of realistic electrical grid models. Several significant simulation results are performed With the overall Control-implemented algorithm applied on a variable speed, variable pitch wind turbine model. (au)

  19. Hydraulic hoist-press

    Energy Technology Data Exchange (ETDEWEB)

    Babayev, Z.B.; Abashev, Z.V.

    1982-01-01

    The efficiency expert of the Angrenskiy production-technological administration of the production association Sredazugol A. V. Bubnov has suggested a hydraulic hoist-press for repairing road equipment which is a device consisting of lifting mechanism, press and test stand for verifying the high pressure hoses and pumps.

  20. Modelling of Hydraulic Robot

    DEFF Research Database (Denmark)

    Madsen, Henrik; Zhou, Jianjun; Hansen, Lars Henrik

    1997-01-01

    This paper describes a case study of identifying the physical model (or the grey box model) of a hydraulic test robot. The obtained model is intended to provide a basis for model-based control of the robot. The physical model is formulated in continuous time and is derived by application...

  1. Water Treatment Technology - Hydraulics.

    Science.gov (United States)

    Ross-Harrington, Melinda; Kincaid, G. David

    One of twelve water treatment technology units, this student manual on hydraulics provides instructional materials for three competencies. (The twelve units are designed for a continuing education training course for public water supply operators.) The competencies focus on the following areas: head loss in pipes in series, function loss in…

  2. Water Hydraulic Systems

    DEFF Research Database (Denmark)

    Conrad, Finn

    2005-01-01

    The paper presents research results using IT-Tools for CAD and dynamic modelling, simulation, analysis, and design of water hydraulic actuators for motion control of machines, lifts, cranes and robots. Matlab/Simulink and CATIA are used as IT-Tools. The contributions include results from on-going...

  3. CFD Analysis of the Runaway Stability of a Model Pump-Turbine

    Science.gov (United States)

    Xia, L. S.; Cheng, Y. G.; You, J. F.; Jiang, Y. Q.

    2016-11-01

    The relations between the runaway stability characteristics and the flow patterns inside the runner of pump-turbine are supposed to be close and should be studied. The runaway processes of a model pump-turbine at four guide-vane openings (GVOs) were simulated by the three-dimensional computational fluid dynamics. The results show that the runaway stability characteristics for the pump-turbine are different at different GVOs. For the small GVOs, the turbine characteristic trajectory undergoes damped oscillations; however, for large GVOs, the turbine characteristic trajectory settles into an un-damping oscillation. The evolution features of the reverse flow vortex structures (RFVS) at the runner inlet during the runaway oscillations have distinct patterns between the small and large GVOs. For small GVOs, the RFVSs only locate at the mid-span; however, for the large GVOs, the location of the RFVSs switches back and forth between the mid-span section and the hub side when the turbine passes in and out the turbine braking mode. The changes of RFVS at the runner inlet dominate the energy transfer among the hydraulic, mechanical and dissipation energies during the transient processes, and therefore affect the stability of hydraulic system.

  4. Modeling and Simulation of a Counter-Rotating Turbine System for Underwater Vehicles

    Institute of Scientific and Technical Information of China (English)

    Xinping Wang; Jianjun Dang

    2016-01-01

    The structure of a counter-rotating turbine of an underwater vehicle is designed by adding the counter-rotating second-stage turbine disk to the conventional single-stage turbine. The available kinetic energy and the absorption power of the auxiliary system are calculated at different working conditions, and the results show that the power of the main engine and auxiliary system at the counter-rotating turbine system matches well with each other. The technology scheme of the counter-rotating turbine system is proposed, then the experimental simulation of the lubricating oil loop, fuel loop, and seawater loop is completed. The simulation results indicate that the hydraulic transmission system can satisfy the requirements for an underwater vehicle running at a steady sailing or variable working conditions.

  5. Modeling and simulation of a counter-rotating turbine system for underwater vehicles

    Science.gov (United States)

    Wang, Xinping; Dang, Jianjun

    2016-12-01

    The structure of a counter-rotating turbine of an underwater vehicle is designed by adding the counter-rotating second-stage turbine disk after the conventional single-stage turbine. The available kinetic energy and the absorption power of the auxiliary system are calculated at different working conditions, and the results show that the power of the main engine and auxiliary system at the counter-rotating turbine system matches well with each other. The experimental simulation of the lubricating oil loop, fuel loop, and seawater loop are completed right before the technology scheme of the counter-rotating turbine system is proposed. The simulation results indicate that the hydraulic transmission system can satisfy the requirements for an underwater vehicle running at a steady sailing or variable working conditions.

  6. Evaluation of Impulse Unloading Efficiency Pertaining to APS Power Block Turbine for Higher Dynamic Steadiness

    Directory of Open Access Journals (Sweden)

    Yu. Filipchik

    2012-01-01

    Full Text Available The paper considers the influence of impulse unloading of APS power block turbine on its dynamic steadiness. The performed calculations while simulating four various impulse turbine characteristics have shown that the highest effect is obtained while characteristics of APS power block turbine are close to the characteristics of a steam turbine K-300/240. It has been established that an application of standard time interval for emergency automation startup and existing delay in the operation of electro-hydraulic transformer do not allow to influence on acceleration area and the positive effect due to load shedding is reached only due to an increase of braking site. While decreasing time period for control signal supply from 0,2 sec to 0,1 sec it is possible to increase steadiness by 10 %  for impulse characteristics of APS power blocks and by 39,9–42,6 % – for characteristics of the turbine K-300/240.

  7. Digital Manufacture Techniques for Large Hydro Turbine's Blades

    Institute of Scientific and Technical Information of China (English)

    LAI Xide; ZHANG Qinghua; ZHOU Yunfei; YAN Sijie

    2006-01-01

    Blades are one of the vital components and most difficulty in manufacturing of large hydro turbines. In order to cost-effectively and productively manufacture these kinds of blades, a series of digital techniques in manufacturing have been developed, which includes digital design of hydro turbine blades based on manufacture' requirements, Computer-aided location and the machined error evaluation by using 3-dimensional digitized measuring, tool path generation strategy to meet requirements of enhancing machining efficiency and controlling deviation in NC machining, tool path generation and NC machining simulation by establishing a virtual NC machining environment for blades, and reasonable and feasible strategy and the systematic scheme for manufacturing of large blades by using 5-axis simultaneous CNC machining. The developed digital manufacture techniques have been successfully applied in manufacturing of both the large Kaplan and Francis hydraulic turbine blades; it shows that higher efficiency and the better surfaces finish accuracy can be achieved.

  8. Modular structure of wind turbine models in IEC 61400-27-1

    DEFF Research Database (Denmark)

    Sørensen, Poul Ejnar; Andresen, Bjørn; Fortmann, Jens;

    2013-01-01

    This paper presents the modular structure of wind turbine models to be published in a new standard IEC 61400-27 for “Electrical simulation models for wind power generation”. The purpose of this standardization work is to define generic simulation models for wind turbines (Part 1) and wind power...... plants (Part 2), which are intended for short-term power system stability analyses. Part 1 has passed the first committee draft stage, whereas Part 2 is in an early stage of development. Initially, the paper describes the interfaces between wind turbine, wind power plant and grid models, and then gives...... a more detailed description of the modular structure of the types of wind turbines that are included in Part 1....

  9. Flow simulation and efficiency hill chart prediction for a Propeller turbine

    Energy Technology Data Exchange (ETDEWEB)

    Vu, T C; Gauthier, M [Andritz Hydro Ltd. 6100 Transcanadienne, Pointe Claire, H9R 1B9 (Canada); Koller, M [Andritz Hydro AG Hardstrasse 319, 8021 Zuerich (Switzerland); Deschenes, C, E-mail: thi.vu@andritz.co, E-mail: maxime.gauthier@andritz.co [Laval University, Laboratory of Hydraulic Machinery (LAMH) 1065 Avenue de la Medecine, Quebec, G1V 0A6 (Canada)

    2010-08-15

    In the present paper, we focus on the flow computation of a low head Propeller turbine at a wide range of design and off-design operating conditions. First, we will present the results on the efficiency hill chart prediction of the Propeller turbine and discuss the consequences of using non-homologous blade geometries for the CFD simulation. The flow characteristics of the entire turbine will be also investigated and compared with experimental data at different measurement planes. Two operating conditions are selected, the first one at the best efficiency point and the second one at part load condition. At the same time, for the same selected operating points, the numerical results for the entire turbine simulation will be compared with flow simulation with our standard stage calculation approach which includes only guide vane, runner and draft tube geometries.

  10. Development of a more fish-tolerant turbine runner, advanced hydropower turbine project

    Energy Technology Data Exchange (ETDEWEB)

    Cook, T.C.; Hecker, G.E. [Worcester Polytechnic Inst., Holden, MA (United States). Alden Research Lab.; Faulkner, H.B.; Jansen, W. [Northern Research and Engineering Corp., Woburn, MA (United States)

    1997-02-01

    Alden Research Laboratory, Inc. (ARL) and Northern Research and Engineering Corporation (NREC) conducted a research program to develop a turbine runner which will minimize fish injury and mortality at hydroelectric projects. ARL?NREC have developed a runner shape which minimizes the number of blade leading edges, reduces the pressure versus time and the velocity versus distance gradients within the runner, minimizes or eliminates the clearance between the runner and runner housing, and maximizes the size of the flow passages, all with minimal penalty on turbine efficiency. An existing pump impeller provided the starting point for developing the fish tolerant turbine runner. The Hidrostal pump is a single bladed combined screw/centrifugal pump which has been proven to transport fish with minimal injury. The focus of the ARL/NREC research project was to develop a new runner geometry which is effective in downstream fish passage and hydroelectric power generation. A flow of 1,000 cfs and a head in the range of 75 ft to 100 ft were selected for conceptual design of the new runner. Conceptual design of the new runner began with a re-evaluation of studies which have been previously conducted to identify probable sources of injury to fish passing through hydraulic turbines. Criteria relative to hydraulic characteristics which are favorable for fish passage were prepared based on a reassessment of the available information. Important criteria used to develop the new runner design included low pressure change rates, minimum absolute pressures, and minimum shear. Other criteria which are reflected in the runner design are a minimum number of blades (only two), minimum total length of leading edges, and large flow passages. 86 figs., 5 tabs.

  11. Waste burner overfire draft system

    Energy Technology Data Exchange (ETDEWEB)

    Kahlert, G.; Pommer, L.; Davis, J.; Whebell, B.

    1977-11-22

    An overfire draft system for a waste burner is disclosed. Such system comprises air vents arranged circumferentially around the base of the burner for communicating the interior of the burner to the atmosphere and a draft modulated damper plate located in each air vent for automatically regulating the volume of overfire air delivered to the interior of the burner. Each draft modulated damper plate is provided with a lower lip which is deflected by a predetermined angle with respect to the plate to create an aerodynamic lift effect with large opening moment to assist the damper plate in its response under low air velocity conditions, and an oppositely deflected upper lip with proportionately less bent surface to avoid flutter or hunting of the damper as it approaches the maximum open position and to provide added dynamic opening force. The overfire draft system is also provided with ducts connected to the air vents and oriented so as to direct air tangentially around the base of the burner and toward the lower inside wall of the burner so as to minimize the disturbance of the inside air. The waste burner may also be provided with draft modulated or forced air vents arranged circumferentially at mid-elevation around the burner and duct means connected to such vents and directed at a small angle with the radius of the burner so as to cause turbulence in the flame zone and reduce the vertical velocity of gases above the fire, thus reducing emission of particulate materials.

  12. Hydraulic Yaw System for Wind Turbines with New Compact Hydraulic Motor Principle

    DEFF Research Database (Denmark)

    Sørensen, Rasmus Mørk; Hansen, Michael Rygaard; Mouritsen, Ole Ø.

    2011-01-01

    is based on leakage flow. The most critical gaps in the motor, across the end faces of the rotor, are investigated both by a fluid structural interaction simulation model and by experimental prototype tests. The simulation model is the basis for the motor design and the manufacturing tolerances...... volumes is minimizing the deflections, the measured gap height is around ℎ = 10?m and the volumetric efficiency of the motor is around ?v = 0.85. By decreasing the initial gaps from the manufacturing process, this volumetric efficiency can be further increased....

  13. PREFACE: Francis-99 Workshop 1: steady operation of Francis turbines

    Science.gov (United States)

    Cervantes, Michel; Hasmukhlal Trivedi, Chiragkumar; Dahlhaug, Ole-Gunnar; Nielsen, Torbjörn

    2015-01-01

    Francis-99 is a set of upcoming workshops jointly organized by the Norwegian University of Science and Technology (NTNU), Norway and Luleå University of Technology (LTU), Sweden in the same spirit as the previous Turbine-99 workshops. The Francis-99 workshops aim during the coming years to determine the state of the art of high head Francis turbine simulations (flow and structure) under steady and transient operating conditions as well as promote their development and knowledge dissemination openly. Three workshops are initially planned: - Workshop 1: steady operation of Francis turbines (December 2014) - Workshop 2: transient operation of Francis turbines (December 2016) - Workshop 3: FSI of Francis turbines (December 2018) A high head Francis turbine model, named the Tokke model, has been designed and experimentally investigated at the Water Power Laboratory, NTNU. The complete geometry of the model and mesh are now freely available on the site www.francis-99.org together with a large set of experimental pressure and velocity measurements. The organisers expect this geometry to become with time a reference test case to the hydraulic community for research and development on high head Francis turbines and the workshops a meeting place to discuss developments, potentials, issues... on a common and open test case. The present proceeding contains the papers presented at the first workshop at NTNU the 15th and 16th of December 2014. 50 participants were present at the workshop and a total of 14 papers were presented. A large variety of codes and models were used highlighting different issues in the simulation of high Francis turbines. The editors: Prof. Michel J. Cervantes (LTU, NTNU) Dr. Chirag Trivedi (NTNU) Prof O.G. Dahlhaug (NTNU) Prof. T. Nielsen (NTNU)

  14. Pitched Blade Turbine Efficiency at Particle Suspension

    Directory of Open Access Journals (Sweden)

    D. Ceres

    2010-01-01

    Full Text Available Mixing suspensions is a very important hydraulic operation. The pitched six-blade turbine is a widely-used axial-flow impeller. This paper deals with effect relative impeller size and particle content on theefficiency of a pitched six-blade turbine at particle suspension. Two pitched six-blade turbines were used in model measurements of just suspension impeller speed. The ratios of the vessel to agitator diameter D/d were 3 and 4.5. The measurements were carried out in a dish-bottomed vessel 300 mm in diameter. The just suspension impeller speeds were measured using an electrochemical method, and were checked visually. A 2.5 % NaCl water solution was used as the liquid phase, and glass particles with four equivalent diameters between 0.18 and 0.89 mmand volumetric concentration from 2.5 % to 40% were usedasthesolid phase. The criterion values πs=Po√Fr'3(d/D7 were calculated from the particle suspension and power consumption measurements. The dependencies of πs on particle content cv show that larger agitators are more efficient for higher particle content.

  15. 49 CFR 229.61 - Draft system.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Draft system. 229.61 Section 229.61 Transportation... TRANSPORTATION RAILROAD LOCOMOTIVE SAFETY STANDARDS Safety Requirements Draft System § 229.61 Draft system. (a) A.... Suspension System...

  16. Hydraulic behaviour of the floating wave energy converter Wave Dragon

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2002-07-01

    The objective of the project is to establish a scale 1:4.5 test model of the floating offshore wave energy converter - Wave Dragon - for testing at 5 m water depth in the Inlet Nissum Bredning. The test model will be equipped with an existing diameter 340 mm model turbine plus additional outlet tubes simulating the resistance from 1 - 16 turbines. The model will be designed to stay afloat even with a total loss of air pressure in the open bottom buoyancy chambers. The test series will primarily focus on measurements of hydraulic response, forces in the mooring system and overtopping quantities. Also data such as head, rotational speed and power production from the turbine will be monitored during the whole test period. The project will verify the effect of the pressured air buoyancy system, which cannot be scaled correctly in laboratory scale models. The test results will allow for an evaluation of the Wave Dragon power production as a function of sea state and freeboard height, in order to calibrate the existing WD-power simulation software. The model can be utilized for further testing of turbine regulation and stress and strain in the structure, establishing the necessary knowledge base for deploying a full-scale demonstration plant. This CD-ROM contains various videos, reports, notes, conference papers and Power Point presentations on the making of the wave energy converter Wave Dragon. (BA)

  17. Hydraulic manipulator research at ORNL

    Energy Technology Data Exchange (ETDEWEB)

    Kress, R.L.; Jansen, J.F. [Oak Ridge National Lab., TN (United States); Love, L.J. [Oak Ridge Inst. for Science and Education, TN (United States)

    1997-03-01

    Recently, task requirements have dictated that manipulator payload capacity increase to accommodate greater payloads, greater manipulator length, and larger environmental interaction forces. General tasks such as waste storage tank cleanup and facility dismantlement and decommissioning require manipulator life capacities in the range of hundreds of pounds rather than tens of pounds. To meet the increased payload capacities demanded by present-day tasks, manipulator designers have turned once again to hydraulics as a means of actuation. In order to successfully design, build, and deploy a new hydraulic manipulator (or subsystem), sophisticated modeling, analysis, and control experiments are usually needed. Oak Ridge National Laboratory (ORNL) has a history of projects that incorporate hydraulics technology, including mobile robots, teleoperated manipulators, and full-scale construction equipment. In addition, to support the development and deployment of new hydraulic manipulators, ORNL has outfitted a significant experimental laboratory and has developed the software capability for research into hydraulic manipulators, hydraulic actuators, hydraulic systems, modeling of hydraulic systems, and hydraulic controls. The purpose of this article is to describe the past hydraulic manipulator developments and current hydraulic manipulator research capabilities at ORNL. Included are example experimental results from ORNL`s flexible/prismatic test stand.

  18. Uncertainty assessment using uncalibrated objects: calibration of a Turbine Blade

    DEFF Research Database (Denmark)

    Savio, Enrico; Costacurta, A.; De Chiffre, Leonardo

    This report is made as a part of the project Easytrac, an EU project under the programme: Competitive and Sustainable Growth: Contract No: G6RD-CT-2000-00188, coordinated by UNIMETRIK S.A. (Spain). The project is concerned with low uncertainty calibrations on coordinate measuring machines....... The Centre for Geometrical Metrology (CGM) at the Technical University of Denmark takes care of free form measurements, in collaboration with DIMEG, University of Padova, Italy. The present report describes the calibration of a turbine blade using the method described in the draft ISO/TS 15530-6....

  19. Modelisation numerique et algebrique des joints labyrinthe des turbines francis

    Science.gov (United States)

    Bouderlique, Remi

    There are various types of hydraulic turbines. Regarding the operating conditions, geometries and technologies differ. Hydraulic seals are only used in Francis turbines, which are widely used. The role of hydraulic seals is not to be waterproof. Their main aim is to prevent contact between the rotating and static parts of the turbine. Although necessary, hydraulic seals create energetic losses : some fluid does not flow through the runner (leakage loss) and exerts a torque on the rotor (friction loss). In a context of constant progression towards still more efficient turbines, the optimization of each part of the turbine is necessary. Our study is a part of this research seeking to decrease the losses in turbines as much as possible. In order to understand fully the problem, and to ensure an optimal seal exists, an analytical study has been lead in the first place. It establishes the analytical expressions of the speeds, pressure, losses and optimal seal length for laminar flows in straight seals. Various tests were then lead with the ANSYS CFX solver in order to highlight aspects which necessitate a particular attention. For example, the issues of boundary conditions and dimensionless simulations were adressed. A CFD model has then been validated. The results of the experiences lead in the sixties by Dominion Engineering Works, which later became Andritz Hydro Limited, were used in this process. Even if all the tests were not useable, some of them were reproduced numerically. The CFD model which was used features SST turbulence modeling, 2D axisymmetric geometries, parabolic mesh distributions, smooth walls, and a outlet headloss based on the normal speed. For the various tests which were considered, the average discrepancy between numerical and experimental results is 6.5%. More than 60% of the discrepancies of those simulations are below the empirical uncertainty. That is why this model can be used for numerical experiences : as long as these experiences are in

  20. Remotely Adjustable Hydraulic Pump

    Science.gov (United States)

    Kouns, H. H.; Gardner, L. D.

    1987-01-01

    Outlet pressure adjusted to match varying loads. Electrohydraulic servo has positioned sleeve in leftmost position, adjusting outlet pressure to maximum value. Sleeve in equilibrium position, with control land covering control port. For lowest pressure setting, sleeve shifted toward right by increased pressure on sleeve shoulder from servovalve. Pump used in aircraft and robots, where hydraulic actuators repeatedly turned on and off, changing pump load frequently and over wide range.

  1. Design and manufacture of turbine runner blades using CAD/CAM technology

    Energy Technology Data Exchange (ETDEWEB)

    Strohmer, F.; Winkler, S.

    1986-05-01

    Advances in hydraulic and mechanical design and manufacture of hydraulic turbines have occured over the last years. The turbines have reached a high level of performance. This is especially a result of a proper design and accurate manufacture of the turbine runner due to the application of the computer aided design and computer aided manufacturing systems combined with new computerized analysis techniques. The various steps of the modular numerical system - hydraulic computation, interactive blade design, fluid flow analysis, stress analysis and CNC-manufacture of the model blade - are shown on the example of a runner blade for axial turbines. For optimizing the manufacturing of the prototype blade the CAD/CAM-technology is applied. The data flow from the model blade, measured on an electronic coordinate measurement machine, via the CAD/CAM-system, which represents the blade surface in a mathematical form and calculates the tool paths, to the five axis CNC-milling machine is demonstrated. Through the application of the CAD/CAM-technology to hydraulic blades the time frame for designing and manufacturing has been reduced while improving quality and accuracy of the blades.

  2. Undular Hydraulic Jump

    Directory of Open Access Journals (Sweden)

    Oscar Castro-Orgaz

    2015-04-01

    Full Text Available The transition from subcritical to supercritical flow when the inflow Froude number Fo is close to unity appears in the form of steady state waves called undular hydraulic jump. The characterization of the undular hydraulic jump is complex due to the existence of a non-hydrostatic pressure distribution that invalidates the gradually-varied flow theory, and supercritical shock waves. The objective of this work is to present a mathematical model for the undular hydraulic jump obtained from an approximate integration of the Reynolds equations for turbulent flow assuming that the Reynolds number R is high. Simple analytical solutions are presented to reveal the physics of the theory, and a numerical model is used to integrate the complete equations. The limit of application of the theory is discussed using a wave breaking condition for the inception of a surface roller. The validity of the mathematical predictions is critically assessed using physical data, thereby revealing aspects on which more research is needed

  3. Numerical simulation of the two-phase flows in a hydraulic coupling by solving VOF model

    Science.gov (United States)

    Luo, Y.; Zuo, Z. G.; Liu, S. H.; Fan, H. G.; Zhuge, W. L.

    2013-12-01

    The flow in a partially filled hydraulic coupling is essentially a gas-liquid two-phase flow, in which the distribution of two phases has significant influence on its characteristics. The interfaces between the air and the liquid, and the circulating flows inside the hydraulic coupling can be simulated by solving the VOF two-phase model. In this paper, PISO algorithm and RNG k-ɛ turbulence model were employed to simulate the phase distribution and the flow field in a hydraulic coupling with 80% liquid fill. The results indicate that the flow forms a circulating movement on the torus section with decreasing speed ratio. In the pump impeller, the air phase mostly accumulates on the suction side of the blades, while liquid on the pressure side; in turbine runner, air locates in the middle of the flow passage. Flow separations appear near the blades and the enclosing boundaries of the hydraulic coupling.

  4. Wind turbine acoustics

    Science.gov (United States)

    Hubbard, Harvey H.; Shepherd, Kevin P.

    1990-01-01

    Available information on the physical characteristics of the noise generated by wind turbines is summarized, with example sound pressure time histories, narrow- and broadband frequency spectra, and noise radiation patterns. Reviewed are noise measurement standards, analysis technology, and a method of characterizing wind turbine noise. Prediction methods are given for both low-frequency rotational harmonics and broadband noise components. Also included are atmospheric propagation data showing the effects of distance and refraction by wind shear. Human perception thresholds, based on laboratory and field tests, are given. Building vibration analysis methods are summarized. The bibliography of this report lists technical publications on all aspects of wind turbine acoustics.

  5. Wind turbine acoustics

    Science.gov (United States)

    Hubbard, Harvey H.; Shepherd, Kevin P.

    1990-12-01

    Available information on the physical characteristics of the noise generated by wind turbines is summarized, with example sound pressure time histories, narrow- and broadband frequency spectra, and noise radiation patterns. Reviewed are noise measurement standards, analysis technology, and a method of characterizing wind turbine noise. Prediction methods are given for both low-frequency rotational harmonics and broadband noise components. Also included are atmospheric propagation data showing the effects of distance and refraction by wind shear. Human perception thresholds, based on laboratory and field tests, are given. Building vibration analysis methods are summarized. The bibliography of this report lists technical publications on all aspects of wind turbine acoustics.

  6. Composite turbine bucket assembly

    Energy Technology Data Exchange (ETDEWEB)

    Liotta, Gary Charles; Garcia-Crespo, Andres

    2014-05-20

    A composite turbine blade assembly includes a ceramic blade including an airfoil portion, a shank portion and an attachment portion; and a transition assembly adapted to attach the ceramic blade to a turbine disk or rotor, the transition assembly including first and second transition components clamped together, trapping said ceramic airfoil therebetween. Interior surfaces of the first and second transition portions are formed to mate with the shank portion and the attachment portion of the ceramic blade, and exterior surfaces of said first and second transition components are formed to include an attachment feature enabling the transition assembly to be attached to the turbine rotor or disk.

  7. General overview of the AxialT project: A partnership for low head turbine developments

    Energy Technology Data Exchange (ETDEWEB)

    Deschenes, C; Ciocan, G D [Laval University, Quebec, QC (Canada); Henau, V De [Alstom Hydro Canada, Tracy, QC (Canada); Flemming, F; Qian, R [Voith Hydro, York, PA, USA and Montreal, Qc (Canada); Huang, J [CanmetENERGY of Natural Resources Canada (Canada); Koller, M; Vu, T [Andritz Hydro, Zuerich, Switzerland and Pointe-Claire, QC (Canada); Naime, F A [Edelca (Venezuela, Bolivarian Republic of); Page, M, E-mail: Felix.Flemming@Voith.co, E-mail: Marcel.Koller@andritz.co, E-mail: Claire.Deschenes@gmc.ulaval.c [Hydro-Quebec, Varennes, QC (Canada)

    2010-08-15

    An overview of the AxialT project is presented. Initiated in 2007 by the Consortium on Hydraulic Machines, the aim of this four years project is to contribute to the study of time-dependent hydraulic phenomena in a propeller turbine. The geometry of the entire turbine is generously shared by all partners. Numerical simulations carried out by all partners are confronted with experimental measurements carried out at the LAMH laboratory in Laval University. A mix of 2D LDA, 3D PIV and unsteady pressure measurements are adapted to yield precise measurements at eight strategic locations within the turbine and for nine operating points. Phase resolved analysis is performed wherever applicable. An illustration of potential analysis accessible with the database is shown for the identification of a vortex in the runner at part load.

  8. AGILE DRAFTING OF OUTSOURCING CONTRACTS

    DEFF Research Database (Denmark)

    Schlichter, Bjarne Rerup; Storgaard, Kristian

    2015-01-01

    and in several parallel tracks using different competencies. By the use of an illustrative case-study, this paper explores how scrum can be applied to enhance the process of drafting outsourcing contracts. The analysis indicates that the use of an agile method, such as Scrum, can be beneficial in this context...

  9. Hydraulic System Design of Hydraulic Actuators for Large Butterfly Valves

    OpenAIRE

    HUANG, Ye; Liu, Changsheng; Shiongur Bamed

    2014-01-01

    Hydraulic control systems of butterfly valves are presently valve-controlled and pump-controlled. Valve-controlled hydraulic systems have serious power loss and generate much heat during throttling. Pump-controlled hydraulic systems have no overflow or throttling losses but are limited in the speed adjustment of the variable-displacement pump, generate much noise, pollute the environment, and have motor power that does not match load requirements, resulting in low efficiency under...

  10. Hydraulic System Design of Hydraulic Actuators for Large Butterfly Valves

    Directory of Open Access Journals (Sweden)

    Ye HUANG

    2014-09-01

    Full Text Available Hydraulic control systems of butterfly valves are presently valve-controlled and pump-controlled. Valve-controlled hydraulic systems have serious power loss and generate much heat during throttling. Pump-controlled hydraulic systems have no overflow or throttling losses but are limited in the speed adjustment of the variable-displacement pump, generate much noise, pollute the environment, and have motor power that does not match load requirements, resulting in low efficiency under light loads and wearing of the variable-displacement pump. To overcome these shortcomings, this article designs a closed hydraulic control system in which an AC servo motor drives a quantitative pump that controls a spiral swinging hydraulic cylinder, and analyzes and calculates the structure and parameters of a spiral swinging hydraulic cylinder. The hydraulic system adjusts the servo motor’s speed according to the requirements of the control system, and the motor power matches the power provided to components, thus eliminating the throttling loss of hydraulic circuits. The system is compact, produces a large output force, provides stable transmission, has a quick response, and is suitable as a hydraulic control system of a large butterfly valve.

  11. System control model of a turbine for a BWR; Modelo del sistema de control de una turbina para un BWR

    Energy Technology Data Exchange (ETDEWEB)

    Vargas O, Y. [Universidad del Valle de Mexico, Campus Toluca, Av. Las Palmas No. 136, Col. San Jorge Pueblo Nuevo, 52140 Metepec, Estado de Mexico (Mexico); Amador G, R.; Ortiz V, J.; Castillo D, R.; Delfin L, A. [ININ, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico)], e-mail: rodolfo.amador@inin.gob.mx

    2009-10-15

    In this work is presented a design of a control system of a turbine for a nuclear power plant with a BWR like energy source. The model seeks to implement later on at thermal hydraulics code of better estimate RELAP/SCDAPSIM. The model is developed for control and protection of turbine, and the consequent protection to the BWR, considering that the turbine control could be employed for one or several turbines in series. The quality of present designs of control pattern of turbine it is that it considers the parameters more important in the operation of a turbine besides that is has incorporated at control the secondary parameters that will be activated originally as true when the turbine model is substituted by a model more detailed. The development of control model of a turbine will be good in short and medium term to realize analysis about the operation of turbine with different operation conditions, of vapor extraction specific steps of turbine to feed other equipment s, besides analyzing the separate effect and integrated effect. (Author)

  12. Simultaneous transient operation of a high head hydro power plant and a storage pumping station in the same hydraulic scheme

    Science.gov (United States)

    Bucur, D. M.; Dunca, G.; Cervantes, M. J.; Cǎlinoiu, C.; Isbǎşoiu, E. C.

    2014-03-01

    This paper presents an on-site experimental analysis of a high head hydro power plant and a storage pumping station, in an interconnected complex hydraulic scheme during simultaneous transient operation. The investigated hydropower site has a unique structure as the pumping station discharges the water into the hydropower plant penstock. The operation regimes were chosen for critical scenarios such as sudden load rejections of the turbines as well as start-ups and stops with different combinations of the hydraulic turbines and pumps operation. Several parameters were simultaneously measured such as the pumped water discharge, the pressure at the inlet pump section, at the outlet of the pumps and at the vane house of the hydraulic power plant surge tank. The results showed the dependence of the turbines and the pumps operation. Simultaneous operation of the turbines and the pumps is possible in safe conditions, without endangering the machines or the structures. Furthermore, simultaneous operation of the pumping station together with the hydropower plant increases the overall hydraulic efficiency of the site since shortening the discharge circuit of the pumps.

  13. Aeroservoelasticity of Wind Turbines

    DEFF Research Database (Denmark)

    Kallesøe, Bjarne Skovmose

    2007-01-01

    This thesis deals with the fundamental aeroelastic interaction between structural motion, Pitch action and control for a wind turbine blade. As wind turbines become larger, the interaction between pitch action, blade motion, aerodynamic forces, and control become even more important to understand...... to a 2D blade section model, and it can be used instead of this in many applications, giving a transparent connection to a real wind turbine blade. In this work the aeroelastic blade model is used to analyze interaction between pitch action, blade motion and wind speed variations. Furthermore the model...... conditions. So, a new aeroelastic blade model has been derived, which includes important features of large wind turbines, yet simple enough to be suitable for analytical analysis and control design....

  14. Gas turbine engine

    Energy Technology Data Exchange (ETDEWEB)

    Lawlor, Shawn P.; Roberts, II, William Byron

    2016-03-08

    A gas turbine engine with a compressor rotor having compressor impulse blades that delivers gas at supersonic conditions to a stator. The stator includes a one or more aerodynamic ducts that each have a converging portion and a diverging portion for deceleration of the selected gas to subsonic conditions and to deliver a high pressure oxidant containing gas to flameholders. The flameholders may be provided as trapped vortex combustors, for combustion of a fuel to produce hot pressurized combustion gases. The hot pressurized combustion gases are choked before passing out of an aerodynamic duct to a turbine. Work is recovered in a turbine by expanding the combustion gases through impulse blades. By balancing the axial loading on compressor impulse blades and turbine impulse blades, asymmetrical thrust is minimized or avoided.

  15. Wind turbine state estimation

    DEFF Research Database (Denmark)

    Knudsen, Torben

    2014-01-01

    Dynamic inflow is an effect which is normally not included in the models used for wind turbine control design. Therefore, potential improvement from including this effect exists. The objective in this project is to improve the methods previously developed for this and especially to verify...... the results using full-scale wind turbine data. The previously developed methods were based on extended Kalman filtering. This method has several drawback compared to unscented Kalman filtering which has therefore been developed. The unscented Kalman filter was first tested on linear and non-linear test cases...... which was successful. Then the estimation of a wind turbine state including dynamic inflow was tested on a simulated NREL 5MW turbine was performed. This worked perfectly with wind speeds from low to nominal wind speed as the output prediction errors where white. In high wind where the pitch actuator...

  16. Monitoring of wind turbines

    Energy Technology Data Exchange (ETDEWEB)

    White, Jonathan R.; Adams, Douglas E.; Paquette, Josh

    2017-07-25

    Method and apparatus for determining the deflection or curvature of a rotating blade, such as a wind turbine blade or a helicopter blade. Also, methods and apparatus for establishing an inertial reference system on a rotating blade.

  17. Multiobjective optimal design of runner blade using efficiency and draft tube pulsation criteria

    Science.gov (United States)

    Pilev, I. M.; Sotnikov, A. A.; Rigin, V. E.; Semenova, A. V.; Cherny, S. G.; Chirkov, D. V.; Bannikov, D. V.; Skorospelov, V. A.

    2012-11-01

    In the present work new criteria of optimal design method for turbine runner [1] are proposed. Firstly, based on the efficient method which couples direct simulation of 3D turbulent flow and engineering semi empirical formulas, the combined method is built for hydraulic energy losses estimation in the whole turbine water passage and the efficiency criterion is formulated. Secondly, the criterion of dynamic loads minimization is developed for those caused by vortex rope precession downstream of the runner. This criterion is based on the finding that the monotonic increase of meridional velocity component in the direction to runner hub, downstream of its blades, provides for decreasing the intensity of vortex rope and thereafter, minimization of pressure pulsation amplitude. The developed algorithm was applied to optimal design of 640 MW Francis turbine runner. It can ensure high efficiency at best efficiency operating point as well as diminished pressure pulsations at full load regime.

  18. Influence of the vibro-acoustic sensor position on cavitation detection in a Kaplan turbine

    Science.gov (United States)

    Schmidt, H.; Kirschner, O.; Riedelbauch, S.; Necker, J.; Kopf, E.; Rieg, M.; Arantes, G.; Wessiak, M.; Mayrhuber, J.

    2014-03-01

    Hydraulic turbines can be operated close to the limits of the operating range to meet the demand of the grid. When operated close to the limits, the risk increases that cavitation phenomena may occur at the runner and / or at the guide vanes of the turbine. Cavitation in a hydraulic turbine can cause material erosion on the runner and other turbine parts and reduce the durability of the machine leading to required outage time and related repair costs. Therefore it is important to get reliable information about the appearance of cavitation during prototype operation. In this experimental investigation the high frequency acoustic emissions and vibrations were measured at 20 operating points with different cavitation behaviour at different positions in a large prototype Kaplan turbine. The main goal was a comparison of the measured signals at different sensor positions to identify the sensitivity of the location for cavitation detection. The measured signals were analysed statistically and specific values were derived. Based on the measured signals, it is possible to confirm the cavitation limit of the examined turbine. The result of the investigation shows that the position of the sensors has a significant influence on the detection of cavitation.

  19. Noise from wind turbines

    Energy Technology Data Exchange (ETDEWEB)

    Fegeant, Olivier [Royal Inst. of Tech., Stockholm (Sweden). Dept. of Building Sciences

    2002-02-01

    A rapid growth of installed wind power capacity is expected in the next few years. However, the siting of wind turbines on a large scale raises concerns about their environmental impact, notably with respect to noise. To this end, variable speed wind turbines offer a promising solution for applications in densely populated areas like the European countries, as this design would enable an efficient utilisation of the masking effect due to ambient noise. In rural and recreational areas where wind turbines are sited, the ambient noise originates from the action of wind on the vegetation and about the listener's ear (pseudo-noise). It shows a wind speed dependence similar to that of the noise from a variable speed wind turbine and can therefore mask the latter for a wide range of conditions. However, a problem inherent to the design of these machines is their proclivity to pure tone generation, because of the enhanced difficulty of avoiding structural resonances in the mechanical parts. Pure tones are deemed highly annoying and are severely regulated by most noise policies. In relation to this problem, the vibration transmission of structure-borne sound to the tower of the turbine is investigated, in particular when the tower is stiffened at its upper end. Furthermore, since noise annoyance due to wind turbine is mostly a masking issue, the wind-related sources of ambient noise are studied and their masking potentials assessed. With this aim, prediction models for wind-induced vegetation noise and pseudo-noise have been developed. Finally, closely related to the effect of masking, is the difficulty, regularly encountered by local authorities and wind farm developers, to measure noise immission from wind turbines. A new measurement technique has thus been developed in the course of this work. Through improving the signal-to-noise ratio between wind turbine noise and ambient noise, the new technique yields more accurate measurement results.

  20. Coupled Dynamic Modeling of Floating Wind Turbine Systems: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Wayman, E. N.; Sclavounos, P. D.; Butterfield, S.; Jonkman, J.; Musial, W.

    2006-03-01

    This article presents a collaborative research program that the Massachusetts Institute of Technology (MIT) and the National Renewable Energy Laboratory (NREL) have undertaken to develop innovative and cost-effective floating and mooring systems for offshore wind turbines in water depths of 10-200 m. Methods for the coupled structural, hydrodynamic, and aerodynamic analysis of floating wind turbine systems are presented in the frequency domain. This analysis was conducted by coupling the aerodynamics and structural dynamics code FAST [4] developed at NREL with the wave load and response simulation code WAMIT (Wave Analysis at MIT) [15] developed at MIT. Analysis tools were developed to consider coupled interactions between the wind turbine and the floating system. These include the gyroscopic loads of the wind turbine rotor on the tower and floater, the aerodynamic damping introduced by the wind turbine rotor, the hydrodynamic damping introduced by wave-body interactions, and the hydrodynamic forces caused by wave excitation. Analyses were conducted for two floater concepts coupled with the NREL 5-MW Offshore Baseline wind turbine in water depths of 10-200 m: the MIT/NREL Shallow Drafted Barge (SDB) and the MIT/NREL Tension Leg Platform (TLP). These concepts were chosen to represent two different methods of achieving stability to identify differences in performance and cost of the different stability methods. The static and dynamic analyses of these structures evaluate the systems' responses to wave excitation at a range of frequencies, the systems' natural frequencies, and the standard deviations of the systems' motions in each degree of freedom in various wind and wave environments. This article in various wind and wave environments. This article explores the effects of coupling the wind turbine with the floating platform, the effects of water depth, and the effects of wind speed on the systems' performance. An economic feasibility analysis of

  1. Numerical flow simulation and efficiency prediction for axial turbines by advanced turbulence models

    Science.gov (United States)

    Jošt, D.; Škerlavaj, A.; Lipej, A.

    2012-11-01

    Numerical prediction of an efficiency of a 6-blade Kaplan turbine is presented. At first, the results of steady state analysis performed by different turbulence models for different operating regimes are compared to the measurements. For small and optimal angles of runner blades the efficiency was quite accurately predicted, but for maximal blade angle the discrepancy between calculated and measured values was quite large. By transient analysis, especially when the Scale Adaptive Simulation Shear Stress Transport (SAS SST) model with zonal Large Eddy Simulation (ZLES) in the draft tube was used, the efficiency was significantly improved. The improvement was at all operating points, but it was the largest for maximal discharge. The reason was better flow simulation in the draft tube. Details about turbulent structure in the draft tube obtained by SST, SAS SST and SAS SST with ZLES are illustrated in order to explain the reasons for differences in flow energy losses obtained by different turbulence models.

  2. Wind turbines and health

    Energy Technology Data Exchange (ETDEWEB)

    Rideout, K.; Copes, R.; Bos, C. [National Colaborating Centre for Environmental Health, Vancouver, BC (Canada)

    2010-01-15

    This document summarized the potential health hazards associated with wind turbines, such as noise and low frequency sound, vibration and infrasound; electromagnetic fields (EMF); shadow flicker; and ice throw and structural failure. Various symptoms can be attributed to wind turbines, including dizziness, sleep disruption, and headaches. A review of available research regarding potential health affects to residents living in close proximity to wind turbines showed that the sound level associated with wind turbines at common residential setbacks is not sufficient to damage hearing, but may lead to annoyance and sleep disturbance. Research has shown that wind turbines are not a significant source of EMF exposure, and although shadows caused by the blades may be annoying, they are not likely to cause epileptic seizures at normal operational speeds. The risk of injury from ice throw can be minimized with setbacks of 200 to 400 m. Examples of Canadian wind turbine setback guidelines and regulations were also offered. It was concluded that setbacks and operational guidelines can be utilized in combination to address safety hazards, sound levels, land use issues, and impacts on people. 46 refs., 2 tabs., 2 figs.

  3. Research in Aeroelasticity EFP-2006[Wind turbines

    Energy Technology Data Exchange (ETDEWEB)

    Bak, C.

    2007-07-15

    This report contains the results from the Energy Research Project 'Program for Research in Applied Aeroelasticity, EFP-2006' covering the period from 1. April 2006 to 31. March 2007. A summary of the main results from the project is given in the following. The aerodynamics for rotors incl. spinner and winglets were clarified and the needed premises for an optimal rotor were explained. Also, the influence of viscous effects on rotor blades was investigated and the results indicated a range of optimum tip speed ratios. The use of winglets for wind turbine rotor was investigated and it was found that they can be used successfully, but that downwind and short winglets are most efficient. Investigating a strategy for reduction of loads and vibrations at extreme wind speeds showed that there are considerably uncertainties in the numerical models and that the main concluding remark is that measurements on a real blade or a real turbine are needed to further conclude the investigation. In the study of flutter and other torsional vibrations of blades at large deflections, modeling and analysis of the dynamics of a hydraulic pitch system for a 5 MW wind turbine was carried out. It was shown that the compressibility of the hydraulic oil introduced a dynamic mode in the pitch bearing degree of freedom. Also, investigating flutter for blades at large deflections showed that the flutter limit for a 5MW blade was moved significantly compared to blades without large deflections. The influence of modeling nacelle components was investigated by developing a generalized method to interface dynamic systems to the aeroelastic program HAWC2 and by exemplify by modeling the nacelle of an aeroelastic wind turbine model in a more detailed way by including a single planet stage of a gearbox. This simplified gearbox model captures in essence the splitting of the driving torque from the rotor shaft to the frame of the nacelle and to the generator. Investigating the influence of wind

  4. Modelling of Hydraulic Robot

    DEFF Research Database (Denmark)

    Madsen, Henrik; Zhou, Jianjun; Hansen, Lars Henrik

    1997-01-01

    This paper describes a case study of identifying the physical model (or the grey box model) of a hydraulic test robot. The obtained model is intended to provide a basis for model-based control of the robot. The physical model is formulated in continuous time and is derived by application...... of the laws of physics on the system. The unknown (or uncertain) parameters are estimated with Maximum Likelihood (ML) parameter estimation. The identified model has been evaluated by comparing the measurements with simulation of the model. The identified model was much more capable of describing the dynamics...... of the system than the deterministic model....

  5. Hydraulic mining method

    Science.gov (United States)

    Huffman, Lester H.; Knoke, Gerald S.

    1985-08-20

    A method of hydraulically mining an underground pitched mineral vein comprising drilling a vertical borehole through the earth's lithosphere into the vein and drilling a slant borehole along the footwall of the vein to intersect the vertical borehole. Material is removed from the mineral vein by directing a high pressure water jet thereagainst. The resulting slurry of mineral fragments and water flows along the slant borehole into the lower end of the vertical borehole from where it is pumped upwardly through the vertical borehole to the surface.

  6. Spinning hydraulic jump

    Science.gov (United States)

    Abderrahmane, Hamid; Kasimov, Aslan

    2013-11-01

    We report an experimental observation of a new symmetry breaking of circular hydraulic jump into a self-organized structure that consists of a spinning polygonal jump and logarithmic-spiral waves of fluid elevation downstream. The waves are strikingly similar to spiral density waves in galaxies. The fluid flow exhibits counterparts of salient morphological features of galactic flows, in particular the outflow from the center, jets, circum-nuclear rings, gas inflows toward the galactic center, and vortices. The hydrodynamic instability revealed here may have a counterpart that plays a role in the formation and sustainability of spiral arms in galaxies.

  7. Servo-elastic dynamics of a hydraulic actuator pitching a blade with large deflections

    DEFF Research Database (Denmark)

    Hansen, Morten Hartvig; Kallesøe, Bjarne Skovmose

    2007-01-01

    This paper deals with the servo-elastic dynamics of a hydraulic pitch actuator acting on a largely bend wind turbine blade. The compressibility of the oil and flexibility of the hoses introduce a dynamic mode in the pitch bearing degree of freedom. This mode may obtain negative damping...... if the proportional gain on the actuator position error is defined too large relative to the viscous forces in the hydraulic system and the total rotational inertia of the pitch bearing degree of freedom. A simple expression for the stability limit of this proportional gain is derived for tuning the gain based...

  8. Experimental Validation of Mathematical Framework for Fast Switching Valves used in Digital Hydraulic Machines

    DEFF Research Database (Denmark)

    Nørgård, Christian; Roemer, Daniel Beck; Bech, Michael Møller;

    2015-01-01

    A prototype of a fast switching valve designed for a digital hydraulic transmission has been manufactured and experimentally tested. The valve is an annular seat valve composed of a plunger connected with a direct electromagnetic moving coil actuator as the force producing element. Based...... on an elaborate optimization method the valve is designed to maximize the efficiency of a digital hydraulic motor targeted to a wind turbine transmission system. The optimisation method comprises a mathematical framework which predicts a valve switching time of approximately 1 ms with a peak actuator input power...

  9. 46 CFR 28.880 - Hydraulic equipment.

    Science.gov (United States)

    2010-10-01

    ... hydraulic equipment and the adjacent work area. Protection shall be afforded to the operator of hydraulic... 46 Shipping 1 2010-10-01 2010-10-01 false Hydraulic equipment. 28.880 Section 28.880 Shipping... INDUSTRY VESSELS Aleutian Trade Act Vessels § 28.880 Hydraulic equipment. (a) Each hydraulic system must...

  10. 77 FR 74669 - Draft and Revised Draft Guidances for Industry Describing Product-Specific Bioequivalence...

    Science.gov (United States)

    2012-12-17

    ... Product-Specific Bioequivalence Recommendations; Availability AGENCY: Food and Drug Administration, HHS... additional draft and revised draft product-specific bioequivalence (BE) recommendations. The recommendations... industry entitled ``Bioequivalence Recommendations for Specific Products,'' which explained the...

  11. 78 FR 37230 - Draft and Revised Draft Guidances for Industry Describing Product-Specific Bioequivalence...

    Science.gov (United States)

    2013-06-20

    ... Product-Specific Bioequivalence Recommendations; Availability AGENCY: Food and Drug Administration, HHS... additional draft and revised draft product-specific bioequivalence (BE) recommendations. The recommendations... industry entitled ``Bioequivalence Recommendations for Specific Products,'' which explained the...

  12. 78 FR 66745 - Draft and Revised Draft Guidances for Industry Describing Product-Specific Bioequivalence...

    Science.gov (United States)

    2013-11-06

    ... Product-Specific Bioequivalence Recommendations; Availability AGENCY: Food and Drug Administration, HHS... additional draft and revised draft product-specific bioequivalence (BE) recommendations. The recommendations... industry entitled ``Bioequivalence Recommendations for Specific Products,'' which explained the...

  13. 77 FR 10536 - Draft and Revised Draft Guidances for Industry Describing Product-Specific Bioequivalence...

    Science.gov (United States)

    2012-02-22

    ... Product-Specific Bioequivalence Recommendations; Availability AGENCY: Food and Drug Administration, HHS... additional draft and revised draft product-specific bioequivalence (BE) recommendations. The recommendations... guidance for industry entitled ``Bioequivalence Recommendations for Specific Products,'' which...

  14. 78 FR 20925 - Draft and Revised Draft Guidances for Industry Describing Product-Specific Bioequivalence...

    Science.gov (United States)

    2013-04-08

    ... Product-Specific Bioequivalence Recommendations; Availability AGENCY: Food and Drug Administration, HHS... additional draft and revised draft product-specific bioequivalence (BE) recommendations. The recommendations... guidance for industry entitled ``Bioequivalence Recommendations for Specific Products,'' which...

  15. 77 FR 35688 - Draft and Revised Draft Guidances for Industry Describing Product-Specific Bioequivalence...

    Science.gov (United States)

    2012-06-14

    ... Product-Specific Bioequivalence Recommendations; Availability AGENCY: Food and Drug Administration, HHS... additional draft and revised draft product-specific bioequivalence (BE) recommendations. The recommendations... guidance for industry entitled ``Bioequivalence Recommendations for Specific Products,'' which...

  16. Air injection test on a Kaplan turbine: prototype - model comparison

    Science.gov (United States)

    Angulo, M.; Rivetti, A.; Díaz, L.; Liscia, S.

    2016-11-01

    Air injection is a very well-known resource to reduce pressure pulsation magnitude in turbines, especially on Francis type. In the case of large Kaplan designs, even when not so usual, it could be a solution to mitigate vibrations arising when tip vortex cavitation phenomenon becomes erosive and induces structural vibrations. In order to study this alternative, aeration tests were performed on a Kaplan turbine at model and prototype scales. The research was focused on efficiency of different air flow rates injected in reducing vibrations, especially at the draft tube and the discharge ring and also in the efficiency drop magnitude. It was found that results on both scales presents the same trend in particular for vibration levels at the discharge ring. The efficiency drop was overestimated on model tests while on prototype were less than 0.2 % for all power output. On prototype, air has a beneficial effect in reducing pressure fluctuations up to 0.2 ‰ of air flow rate. On model high speed image computing helped to quantify the volume of tip vortex cavitation that is strongly correlated with the vibration level. The hydrophone measurements did not capture the cavitation intensity when air is injected, however on prototype, it was detected by a sonometer installed at the draft tube access gallery.

  17. Next Generation Wind Turbine

    Energy Technology Data Exchange (ETDEWEB)

    Cheraghi, S. Hossein [Western New England Univ., Springfield, MA (United States); Madden, Frank [FloDesign Wind Turbine Corp., Waltham, MA (United States)

    2012-09-01

    The goal of this collaborative effort between Western New England University's College of Engineering and FloDesign Wind Turbine (FDWT) Corporation to wok on a novel areodynamic concept that could potentially lead to the next generation of wind turbines. Analytical studies and early scale model tests of FDWT's Mixer/Ejector Wind Turbine (MEWT) concept, which exploits jet-age advanced fluid dynamics, indicate that the concept has the potential to significantly reduce the cost of electricity over conventional Horizontal Axis Wind Turbines while reducing land usage. This project involved the design, fabrication, and wind tunnel testing of components of MEWT to provide the research and engineering data necessary to validate the design iterations and optimize system performance. Based on these tests, a scale model prototype called Briza was designed, fabricated, installed and tested on a portable tower to investigate and improve the design system in real world conditions. The results of these scale prototype efforts were very promising and have contributed significantly to FDWT's ongoing development of a product scale wind turbine for deployment in multiple locations around the U.S. This research was mutually beneficial to Western New England University, FDWT, and the DOE by utilizing over 30 student interns and a number of faculty in all efforts. It brought real-world wind turbine experience into the classroom to further enhance the Green Engineering Program at WNEU. It also provided on-the-job training to many students, improving their future employment opportunities, while also providing valuable information to further advance FDWT's mixer-ejector wind turbine technology, creating opportunities for future project innovation and job creation.

  18. Next Generation Wind Turbine

    Energy Technology Data Exchange (ETDEWEB)

    Cheraghi, S. Hossein [Western New England University; Madden, Frank [FloDesign Wind Turbine Corp

    2012-09-01

    The goal of this collaborative effort between Western New England University's College of Engineering and FloDesign Wind Turbine (FDWT) Corporation to wok on a novel areodynamic concept that could potentially lead to the next generation of wind turbines. Analytical studies and early scale model tests of FDWT's Mixer/Ejector Wind Turbine (MEWT) concept, which exploits jet-age advanced fluid dynamics, indicate that the concept has the potential to significantly reduce the cost of electricity over conventional Horizontal Axis Wind Turbines while reducing land usage. This project involved the design, fabrication, and wind tunnel testing of components of MEWT to provide the research and engineering data necessary to validate the design iterations and optimize system performance. Based on these tests, a scale model prototype called Briza was designed, fabricated, installed and tested on a portable tower to investigate and improve the design system in real world conditions. The results of these scale prototype efforts were very promising and have contributed significantly to FDWT's ongoing development of a product scale wind turbine for deployment in multiple locations around the U.S. This research was mutually benficial to Western New England University, FDWT, and the DOE by utilizing over 30 student interns and a number of faculty in all efforts. It brought real-world wind turbine experience into the classroom to further enhance the Green Engineering Program at WNEU. It also provided on-the-job training to many students, improving their future employment opportunities, while also providing valuable information to further advance FDWT'w mixer-ejector wind turbine technology, creating opportunities for future project innovation and job creation.

  19. Numerical Investigation of the Internal Flow in a Banki Turbine

    Directory of Open Access Journals (Sweden)

    Jesús De Andrade

    2011-01-01

    Full Text Available The paper refers to the numerical analysis of the internal flow in a hydraulic cross-flow turbine type Banki. A 3D-CFD steady state flow simulation has been performed using ANSYS CFX codes. The simulation includes nozzle, runner, shaft, and casing. The turbine has a specific speed of 63 (metric units, an outside runner diameter of 294 mm. Simulations were carried out using a water-air free surface model and k-ε turbulence model. The objectives of this study were to analyze the velocity and pressure fields of the cross-flow within the runner and to characterize its performance for different runner speeds. Absolute flow velocity angles are obtained at runner entrance for simulations with and without the runner. Flow recirculation in the runner interblade passages and shocks of the internal cross-flow cause considerable hydraulic losses by which the efficiency of the turbine decreases significantly. The CFD simulations results were compared with experimental data and were consistent with global performance parameters.

  20. Hydraulic rams; a comparative investigation

    NARCIS (Netherlands)

    Tacke, J.H.P.M.

    1988-01-01

    A mathematical model describing the essential features of hydraulic ram operation is developed in order to clarify the possibilities and limitations of the ram relative to its site and its adjustments. The model distinguishes three different periods in the pumping cycle of the hydraulic ram: acceler

  1. Hydraulics. FOS: Fundamentals of Service.

    Science.gov (United States)

    John Deere Co., Moline, IL.

    This manual on hydraulics is one of a series of power mechanics texts and visual aids for training in the servicing of agricultural and industrial machinery. Focus is on oil hydraulics. Materials provide basic information and illustrations for use by vocational students and teachers as well as shop servicemen and laymen. The twelve chapters focus…

  2. Evolution of the Sensor Fish Device for Measuring Physical Conditions in Severe Hydraulic Environments

    Energy Technology Data Exchange (ETDEWEB)

    Carlson, Thomas J.; Duncan, Joanne P.

    2003-02-28

    To assist in deriving biological specifications for design of turbine rehabilitation measures, new ''fish-friendly'' turbines, and spillway designs and operations, scientists at the Pacific Northwest National Laboratory (PNNL) have developed and tested an autonomous multi-sensor device called a Sensor Fish that can acquire pressure and tri-axial linear acceleration data during passage through severe hydraulic conditions. The purpose of the Sensor Fish is to characterize physical conditions fish experience during passage through hydro turbines, spill stilling basins, high-discharge outfalls, and other dam passage routes. The Sensor Fish was developed with the support of the U.S. Department of Energy's Advanced Hydropower Turbine System program. Field tests of the Sensor Fish at Rock Island, McNary, The Dalles, Bonneville, and Wanapum dams on the Columbia River and the Prosser Irrigation District on the Yakima River have shown that the device can withstand the severe environments of turbine, spill, and fish bypass passage and provide useful environmental data that can ultimately aid in the design and operation of new and existing turbines, spill, and dam fish bypass facilities.

  3. Hydroscoop - Bulletin of the small-scale hydraulic laboratory MHyLab; Hydroscoop - Bulletin d'information MHyLab laboratoire de petite hydraulique

    Energy Technology Data Exchange (ETDEWEB)

    Denis, V.

    2009-07-01

    This is issue Nr. 5 of the news bulletin of MHyLab, the small-scale hydraulic laboratory in Montcherand, Switzerland. The history of MHyLab development is recalled. The objective of the laboratory is given: the laboratory development of efficient and reliable turbines for the entire small-scale hydraulic range (power: 10 to 2000 kW, flow rate: 0.01 to 10 m{sup 3}/s, hydraulic head: 1 m up to more than 700 m). The first period (1997-2001) was devoted to Pelton turbines for high heads (60 to 70 m) and the second (2001-2009) to Kaplan turbines for low and very low heads (1 to 30 m). In the third period (beginning 2008) diagonal turbines for medium heads (25 to 100 m) are being developed. MHyLab designed, modelled and tested all these different types. The small-scale hydraulic market developed unexpectedly quickly. The potential of small-scale hydraulics in the Canton of Vaud, western Switzerland is presented. Three implemented projects are reported on as examples for MHyLab activities on the market place. The MHyLab staff is presented.

  4. Hydraulic Stability of Accropode Armour

    DEFF Research Database (Denmark)

    Jensen, T.; Burcharth, H. F.; Frigaard, Peter

    , and to assess the influence of core permeability on the hydraulic stability of Accropodes. Two structures were examined, one with a relatively permeable core and one with a relatively impermeable core. In November/December 1995, Ph.D.-student Marten Christensen carried out the model tests on the structure...... with permeable core (crushed granite with a gradation of 5-8 mm). The outcome of this study is described in "Hydraulic Stability of Single-Layer Dolos and Accropode Armour Layers" by Christensen & Burcharth (1995). In January/February 1996, Research Assistant Thomas Jensen carried out a similar study......The present report describes the hydraulic model tests of Accropode armour layers carried out at the Hydraulics Laboratory at Aalborg University from November 1995 through March 1996. The objective of the model tests was to investigate the hydraulic stability of Accropode armour layers...

  5. Hydraulic Stability of Accropode Armour

    DEFF Research Database (Denmark)

    Jensen, T.; Burcharth, H. F.; Frigaard, Peter

    , and to assess the influence of core permeability on the hydraulic stability of Accropodes. Two structures were examined, one with a relatively permeable core and one with a relatively impermeable core. In November/December 1995, Ph.D.-student Marten Christensen carried out the model tests on the structure...... with permeable core (crushed granite with a gradation of 5-8 mm). The outcome of this study is described in "Hydraulic Stability of Single-Layer Dolos and Accropode Armour Layers" by Christensen & Burcharth (1995). In January/February 1996, Research Assistant Thomas Jensen carried out a similar study......The present report describes the hydraulic model tests of Accropode armour layers carried out at the Hydraulics Laboratory at Aalborg University from November 1995 through March 1996. The objective of the model tests was to investigate the hydraulic stability of Accropode armour layers...

  6. Wind turbine control and monitoring

    CERN Document Server

    Luo, Ningsu; Acho, Leonardo

    2014-01-01

    Maximizing reader insights into the latest technical developments and trends involving wind turbine control and monitoring, fault diagnosis, and wind power systems, 'Wind Turbine Control and Monitoring' presents an accessible and straightforward introduction to wind turbines, but also includes an in-depth analysis incorporating illustrations, tables and examples on how to use wind turbine modeling and simulation software.   Featuring analysis from leading experts and researchers in the field, the book provides new understanding, methodologies and algorithms of control and monitoring, comput

  7. Advantage of a lead swimmer in drafting

    CERN Document Server

    Westerweel, J; Pennings, P; Yilmaz, B

    2016-01-01

    We present results from model tests to investigate the effect of drafting in swimming, in particular for the lead swimmer. The drag for scaled-model passive swimmers was determined accurately at Froude numbers comparable to conditions for actual human swimmers. Several positions of a draft swimmer at different separations behind and alongside the lead swimmer were investigated. It was found that a lead swimmer can experience an advantage from a draft swimmer. Several other positions of the draft swimmer relative to the frontal wave generated by the lead swimmer were also considered. These results indicate favourable and undesirable positions during passing.

  8. Improvement of automatic control systems of high-power turbines of PAO tubroatom for nuclear power plants

    Science.gov (United States)

    Shvetsov, V. L.; Babaev, I. N.

    2017-09-01

    The main technical solutions applied by PAO Turboatom used as the compensatory measures at the increase of the period of nonstop operation of nuclear power plants' (NPP) turbines with VVER-1000 type reactors up to 18 months are (1) replacing the standard hydraulic speed controller with an electronic one, (2) introduction of overclocking protection, (3) modernization of units of stop-control valves of high pressures, (4) installation of locking dampers on the receiver tubes of turbines of the first and second modification, and (5) improving the quality of repairs by reviewing the requirements for their implementation. The introduction of complex diagnostics of a control system on the basis of automatic treatment of results of registration of working parameters of the turbine is allocated as a separate prospective direction. Using an electronic controller of speed makes it possible to simplify the procedure of its inclusion in work at the failure of an electro-hydraulic system of control and vice versa. The regimes of maintaining the turbine rotor speed, steam pressure on the outlet of turbine, and the positions of main servomotors were introduced into the functions of the electronic controller. An electronic controller of speed includes its own electro-hydraulic transducer, turbine rotor speed sensor, and sensors of the position of main servomotors. Into the functions of electro- hydraulic control system and electronic speed controller, the function of overclocking protection, which determines the formation of commands for stopping the turbine at the exceeding of both the defined level of rotation speed and the defined combination of achieved rotation speed and angular acceleration of rotor, was introduced. To simplify the correction of forces acting on the control valve cups, the design of the cups was changed, and it has the profiled inserts. The solutions proposed were implemented on K-1100-60/1500-2M turbines of Rostov NPP. From the composition of control system

  9. Ceramic stationary gas turbine

    Energy Technology Data Exchange (ETDEWEB)

    Roode, M. van [Solar Turbines Inc., San Diego, CA (United States)

    1995-10-01

    The performance of current industrial gas turbines is limited by the temperature and strength capabilities of the metallic structural materials in the engine hot section. Because of their superior high-temperature strength and durability, ceramics can be used as structural materials for hot section components (blades, nozzles, combustor liners) in innovative designs at increased turbine firing temperatures. The benefits include the ability to increase the turbine inlet temperature (TIT) to about 1200{degrees}C ({approx}2200{degrees}F) or more with uncooled ceramics. It has been projected that fully optimized stationary gas turbines would have a {approx}20 percent gain in thermal efficiency and {approx}40 percent gain in output power in simple cycle compared to all metal-engines with air-cooled components. Annual fuel savings in cogeneration in the U.S. would be on the order of 0.2 Quad by 2010. Emissions reductions to under 10 ppmv NO{sub x} are also forecast. This paper describes the progress on a three-phase, 6-year program sponsored by the U.S. Department of Energy, Office of Industrial Technologies, to achieve significant performance improvements and emissions reductions in stationary gas turbines by replacing metallic hot section components with ceramic parts. Progress is being reported for the period September 1, 1994, through September 30, 1995.

  10. Floating wind turbine system

    Science.gov (United States)

    Viterna, Larry A. (Inventor)

    2009-01-01

    A floating wind turbine system with a tower structure that includes at least one stability arm extending therefrom and that is anchored to the sea floor with a rotatable position retention device that facilitates deep water installations. Variable buoyancy for the wind turbine system is provided by buoyancy chambers that are integral to the tower itself as well as the stability arm. Pumps are included for adjusting the buoyancy as an aid in system transport, installation, repair and removal. The wind turbine rotor is located downwind of the tower structure to allow the wind turbine to follow the wind direction without an active yaw drive system. The support tower and stability arm structure is designed to balance tension in the tether with buoyancy, gravity and wind forces in such a way that the top of the support tower leans downwind, providing a large clearance between the support tower and the rotor blade tips. This large clearance facilitates the use of articulated rotor hubs to reduced damaging structural dynamic loads. Major components of the turbine can be assembled at the shore and transported to an offshore installation site.

  11. Ceramic stationary gas turbine

    Energy Technology Data Exchange (ETDEWEB)

    Roode, M. van

    1995-12-31

    The performance of current industrial gas turbines is limited by the temperature and strength capabilities of the metallic structural materials in the engine hot section. Because of their superior high-temperature strength and durability, ceramics can be used as structural materials for hot section components (blades, nozzles, combustor liners) in innovative designs at increased turbine firing temperatures. The benefits include the ability to increase the turbine inlet temperature (TIT) to about 1200{degrees}C ({approx}2200{degrees}F) or more with uncooled ceramics. It has been projected that fully optimized stationary gas turbines would have a {approx}20 percent gain in thermal efficiency and {approx}40 percent gain in output power in simple cycle compared to all metal-engines with air-cooled components. Annual fuel savings in cogeneration in the U.S. would be on the order of 0.2 Quad by 2010. Emissions reductions to under 10 ppmv NO{sub x} are also forecast. This paper describes the progress on a three-phase, 6-year program sponsored by the U.S. Department of Energy, Office of Industrial Technologies, to achieve significant performance improvements and emissions reductions in stationary gas turbines by replacing metallic hot section components with ceramic parts. Progress is being reported for the period September 1, 1994, through September 30, 1995.

  12. Electro Hydraulic Hitch Control

    DEFF Research Database (Denmark)

    Hansen, M. R.; Andersen, T. O.; Nielsen, B.

    2003-01-01

    system for agricultural applications and driving for transportation. During tranport phases, the lack of suspension causes the vehicle to bounce and pitch, and makes it difficalt to control. Many systems have been proposed to cope with the oscillatory behavior, and different solutions exist. Common......This paper present and discusses R&D results on electro hydraulic hitch control for off-road vehicle, in particular active damping of oscillation occuring on tractors. The research deals with analysis and control of the oscillations occuring on tractors which are design without any susspection...... for most of the systems are that they operate on the hydrailc actuators generally providing the motive forces for moving the implement and/or attachment, typically a plough. The basic idea and physical working principle are to use the implement, moveable relative to the vehicle, as a damper mass. The paper...

  13. Banki turbines with power adjustment

    Energy Technology Data Exchange (ETDEWEB)

    Darzan, Mihai; Dumitrache, Marius

    2010-09-15

    The paper presents features of the BANKI turbine realized by SC. Electra Total Consulting SA Bucharest, member of Energy Services Group, in consortium with STRAERO SA Bucharest. In this way is presented the prototype of this turbine and its performances which recommends it for the interior rivers of Romania compared with the Ossberger and/or Cink turbines.

  14. Predicting Noise From Wind Turbines

    Science.gov (United States)

    Grosveld, Ferdinand W.

    1990-01-01

    Computer program WINDY predicts broadband noise spectra of horizontal-axis wind-turbine generators. Enables adequate assessment of impact of broadband wind-turbine noise. Effects of turbulence, trailing-edge wakes, and bluntness taken into account. Program has practical application in design and siting of wind-turbine machines acceptable to community. Written in GW-Basic.

  15. Development of a more fish tolerant turbine runner advanced hydropower turbine project. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Cook, T.C.; Hecker, G.E. [Worcester Polytechnic Inst., Holden, MA (United States). Alden Research Lab.; Faulkner, H.B.; Jansen, W. [Northern Research and Engineering Corp., Cambridge, MA (United States)

    1997-01-01

    The Hidrostal pump is a single bladed combined screw/centrifugal pump which has been proven to transport fish with minimal injury. The focus of the ARL/NREC research project was to develop a new runner geometry which is effective in downstream fish passage and hydroelectric power generation. A flow of 1,000 cfs and a head in the range of 75 ft to 100 ft were selected for conceptual design of the new runner. Criteria relative to hydraulic characteristics which are favorable for fish passage were prepared based on a reassessment of the available information. Important criteria used to develop the new runner design included low pressure change rates, minimum absolute pressures, and minimum shear. Other criteria which are reflected in the runner design are a minimum number of blades (only two), minimum total length of leading edges, and large flow passages. Flow characteristics of the new runner were analyzed using two- dimensional and three-dimensional Computational Fluid Dynamic (CFD) models. The basic runner geometry was initially selected using the two-dimensional model. The three-dimensional model was used to investigate the flow characteristics in detail through the entire runner and to refine the design by eliminating potential problem areas at the leading and trailing edges. Results of the analyses indicated that the runner has characteristics which should provide safe fish passage with an overall power efficiency of approximately 90%. The size of the new runner, which is larger than conventional turbine runners with the same design flow and head, will provide engineering, fabrication, and installation.challenges related to the turbine components and the civil works. A small reduction in the overall efficiency would reduce the size of the runner considerably, would simplify the turbine manufacturing operations, and would allow installation of the new turbine at more hydroelectric sites.

  16. Turbine airfoil manufacturing technology

    Energy Technology Data Exchange (ETDEWEB)

    Kortovich, C. [PCC Airfoils, Inc., Beachwood, OH (United States)

    1995-10-01

    The efficiency and effectiveness of the gas turbine engine is directly related to the turbine inlet temperatures. The ability to increase these temperatures has occurred as a result of improvements in materials, design, and processing techniques. A generic sequence indicating the relationship of these factors to temperature capability is schematically shown in Figure 1 for aircraft engine and land based engine materials. A basic contribution that is not captured by the Figure is the significant improvement in process and manufacturing capability that has accompanied each of these innovations. It is this capability that has allowed the designs and innovations to be applied on a high volume, cost effective scale in the aircraft gas turbine market.

  17. Wind turbine spoiler

    Science.gov (United States)

    Sullivan, W.N.

    An aerodynamic spoiler system for a vertical axis wind turbine includes spoilers on the blades initially stored near the rotor axis to minimize drag. A solenoid latch adjacent the central support tower releases the spoilers and centrifugal force causes the spoilers to move up the turbine blades away from the rotor axis, thereby producing a braking effect and actual slowing of the associated wind turbine, if desired. The spoiler system can also be used as an infinitely variable power control by regulated movement of the spoilers on the blades over the range between the undeployed and fully deployed positions. This is done by the use of a suitable powered reel and cable located at the rotor tower to move the spoilers.

  18. Wind Turbine Acoustics

    Science.gov (United States)

    Hubbard, Harvey H.; Shepherd, Kevin P.

    2009-01-01

    Wind turbine generators, ranging in size from a few kilowatts to several megawatts, are producing electricity both singly and in wind power stations that encompass hundreds of machines. Many installations are in uninhabited areas far from established residences, and therefore there are no apparent environmental impacts in terms of noise. There is, however, the potential for situations in which the radiated noise can be heard by residents of adjacent neighborhoods, particularly those neighborhoods with low ambient noise levels. A widely publicized incident of this nature occurred with the operation of the experimental Mod-1 2-MW wind turbine, which is described in detail elsewhere. Pioneering studies which were conducted at the Mod-1 site on the causes and remedies of noise from wind turbines form the foundation of much of the technology described in this chapter.

  19. Superconducting wind turbine generators

    DEFF Research Database (Denmark)

    Abrahamsen, Asger Bech; Mijatovic, Nenad; Seiler, Eugen

    2010-01-01

    , the main challenge of the superconducting direct drive technology is to prove that the reliability is superior to the alternative drive trains based on gearboxes or permanent magnets. A strategy of successive testing of superconducting direct drive trains in real wind turbines of 10 kW, 100 kW, 1 MW and 10...... offshore turbines of 8 and 10 MW have been determined from an up-scaling of an existing 5 MW turbine and the necessary properties of the superconducting drive train are discussed. We have found that the absence of the gear box is the main benefit and the reduced weight and size is secondary. However...... MW generator and it is concluded that the present production capacity of coated conductors must be increased by a factor of 36 by 2020, resulting in a ten times lower price of the tape in order to reach a realistic price level for the superconducting drive train....

  20. Continuously variable transmission for wind turbines

    Energy Technology Data Exchange (ETDEWEB)

    Jamieson, P.

    1996-12-01

    Variable speed is seen as offering clear advantages for wind turbine operation. However, the provision of variable speed incurs additional cost, and the main issue is which, if any, of many alternative variable speed systems offer net cost benefit to the wind turbine. Numerous electrical variable-speed systems have been studied in previous work for the DTI. One mechanical system, the torque limiting gearbox (TLG) concept has also been investigated in a DTI funded project. It compares with a recently developed electrical option, the Vestas ``Opti-Slip`` system and is probably cost-effective. The work described by Bossanyi appears to be the basis of the Vestas Opti-Slip system. These systems are far too limited in speed range to affect noise or energy capture. An innovative system developed by Leyland-DAF for the automobile market, and now licensed to Ford and Toyota by Torotrak Ltd, a company of the British Technology Group (BTG), offers a continuously variable transmission (CVT) of a purely mechanical nature, hydraulically controlled to regulate drive torque as demanded. The Torotrak CVT concept offers wide range variable speed with all the associated advantages. (author)

  1. Torque model of hydro turbine with inner energy loss characteristics

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    This paper presents the result and analysis of the composition of energy loss occurring in the hydro turbine. Two new types of energy losses,namely the hydraulic loss in the flow channel and the impact loss,are defined. All losses within the hydro turbine are divided into four types and the loss coefficients are defined accordingly. Expressions or characteristic descriptions of these losses as well as the calibration method of the loss coefficients are presented. Furthermore,the torque model of the hydro turbine where the inner energy loss takes place is established. The developed model has been used to calculate the power loss due to the mechanical friction generated by the units’ rotation to solve the difficulty of measurements of the mechanical friction loss in the hydro turbine. The definition of the impact loss explains the phenomenon that the loss of no-load is greater than that of the rated operation. A set of conversion coefficients are defined using the characteristic parameters at the rated operation,which are used to transform the parameters in the torque model into those that are easily measured. Therefore,the expression of the hydro turbine power is converted into a function that has the main servomotor displacement as its single variable. This makes the proposed model be convenient to use. Finally,the proposed model and methods are calibrated and verified using the measured data of a hydropower plant. Good agreement between the modeled results and the measurements indicates that the proposed model can represent the inner energy loss characteristics of the hydro turbine.

  2. Comparative Study of Barotrauma Risk during Fish Passage through Kaplan Turbines

    Energy Technology Data Exchange (ETDEWEB)

    Richmond, Marshall C. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States). Hydrology Group; Romero-Gomez, Pedro [Pacific Northwest National Lab. (PNNL), Richland, WA (United States). Hydrology Group; Serkowski, John A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States). Hydrology Group; Rakowski, Cynthia L. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States). Hydrology Group; Graf, Michael J. [Voith Hydro, York, PA (United States)

    2015-10-01

    Rapid pressure changes in hydroelectric turbine flows can cause barotrauma that can be hazardous to the passage of fish, in particular migratory juvenile salmonids. Although numerous laboratory tests have evaluated the effect of rapid decompression in fish species of relevance, numerical modeling studies offer the advantage of predicting, for new turbine designs, the potential risks of mortality and injury from rapid pressure change during turbine passage. However, rapid pressure change is only one of several hydraulic risks encountered by fish during turbine passage in addition to blade strike, shear, and turbulence. To better understand the role of rapid pressure changes, the present work focuses on the application of a computational fluid dynamics based method for evaluating the risk of pressure-related mortality to fish passing through an early 1960s era original hydroelectric Kaplan turbine at Wanapum Dam (Columbia River, Washington), and a modern advanced Kaplan turbine installed in 2005. The results show that the modeling approach acceptably reproduced the nadir pressure distributions compared to field data previously collected at the site using an autonomous sensor. Our findings show that the new advanced-design unit performs better, in terms of reduced barotrauma risk to fish from exposure to low pressures, than the original turbine unit. The outcomes allow for comparative analyses of turbine designs and operations prior to installation, an advantage that can potentially be integrated in the process of designing new turbine units to achieve superior environmental performance. Overall, the results show that modern turbine designs can achieve the multiple objectives of increasing power generation, lowering cavitation potential, and reducing barotrauma risks to passing fish.

  3. 间隙流动对混流式水轮机效率预测的影响%Influence of clearance flow on efficiency prediction of Francis turbines

    Institute of Scientific and Technical Information of China (English)

    冯建军; 罗兴锜; 吴广宽; 朱国俊

    2015-01-01

    simplification. Furthermore, at the same head, the leakage mass flow through the gap near the runner band is nearly constant, depending only on the pressure difference between the inlet and outlet of the gap. Moreover, the leakage flow through the gap near the runner band decreases the meridional velocity near the hub at the runner outlet at the optimal point, causing flow separation near the pier of the draft tube and producing extra hydraulic loss for the turbine. Based on the CFD results obtained from unsteady flow simulations for the optimal point, it is also found that the distributions of the inner and outer disk frictional loss in one period are influenced by the runner blade passing frequency, consisting of 13 peaks and valleys occurring at the same time. However, the phenomenon of rotor-stator interaction induced by the runner rotation has very limited influence on the disk friction loss. The relative peak to peak fluctuation is only 0.15% in one turbine period, denoting that the disk friction loss is nearly independent of the relative position between the runner and guide vanes. In addition, the same phenomenon has been found on the mass flow of the leakage near the runner band, with the relative peak to peak fluctuation of 0.03%. This research can provide useful reference for the prediction of disk friction loss of Francis turbine.%为了分析转轮间隙流动对混流式水轮机效率预测的影响,该文采用CFD数值模拟方法对含有转轮间隙的混流式水轮机内部流动特性进行研究,定量分析了转轮圆盘效率损失,并将CFD仿真结果和模型试验结果进行了对比。研究表明:考虑了转轮圆盘损失后,在最优单位转速附近CFD计算得到的水轮机效率和模型试验结果吻合良好。当偏离最优工况点较远时,由于流场中存在脱流和涡流,CFD计算得到的效率较试验值偏低。转轮下环表面造成的圆盘效率损失远高于上冠表面,且转轮内外圆盘损失

  4. Axial turbine with underwater generator for energy recovery; Axialturbine mit Unterwassergenerator zur Energierueckgewinnung

    Energy Technology Data Exchange (ETDEWEB)

    Welzel, B. [Stuttgart Univ. (Germany). Inst. fuer Stroemungsmechanik und Hydraulische Stroemungsmaschinen

    1997-12-31

    Within the framework of a project sponsored by the Stiftung Energieforschung Baden-Wuerttemberg, an axial turbine was developed as a flash evaporator, which permits energy recovery in all sectors where liquids in piping undergoes pressure relaxation. A specific feature of this turbine is that it forms part, complete with generator, of a single pipeline and that it does not cause any pressure variations worth mentioning in case of mains failure. The report describes the turbine, its advantages, and a pilot operation carried out with a prototype. The turbine`s performance is compared with a return pump. Further, the optimization of the hydraulic design by computer and the results of a market analysis are dealt with. (orig.) [Deutsch] Im Rahmen einer von der Stiftung Energieforschung Baden-Wuerttemberg gefoerderten Neuentwicklung wurde eine Axialturbine als Entspannungsturbine entwickelt, mit der eine Energierueckgewinnung in allen Bereichen erfolgen kann, in denen Fluessigkeiten in Rohrleitungssystemen entspannt werden. Die Turbine zeichnet sich unter anderem dadurch aus, dass sie komplett, inklusive Generator, innerhalb einer Rohrleitung angeordnet ist und bei Netzausfall keine nennenswerte Druckschwankung erzeugt. Es werden die Turbine, deren Vorteile sowie der mit einem Prototypen durchgefuehrte Betriebsversuch beschrieben. Weiterhin werden ein Vergleich des Betriebsverhaltens mit einer rueckwaertslaufenden Pumpe, die rechnerische Optimierung der hydraulischen Formgebung sowie die Ergebnisse einer Marktanalyse behandelt. (orig.)

  5. ADVANCED TURBINE SYSTEMS PROGRAM

    Energy Technology Data Exchange (ETDEWEB)

    Gregory Gaul

    2004-04-21

    Natural gas combustion turbines are rapidly becoming the primary technology of choice for generating electricity. At least half of the new generating capacity added in the US over the next twenty years will be combustion turbine systems. The Department of Energy has cosponsored with Siemens Westinghouse, a program to maintain the technology lead in gas turbine systems. The very ambitious eight year program was designed to demonstrate a highly efficient and commercially acceptable power plant, with the ability to fire a wide range of fuels. The main goal of the Advanced Turbine Systems (ATS) Program was to develop ultra-high efficiency, environmentally superior and cost effective competitive gas turbine systems for base load application in utility, independent power producer and industrial markets. Performance targets were focused on natural gas as a fuel and included: System efficiency that exceeds 60% (lower heating value basis); Less than 10 ppmv NO{sub x} emissions without the use of post combustion controls; Busbar electricity that are less than 10% of state of the art systems; Reliability-Availability-Maintainability (RAM) equivalent to current systems; Water consumption minimized to levels consistent with cost and efficiency goals; and Commercial systems by the year 2000. In a parallel effort, the program was to focus on adapting the ATS engine to coal-derived or biomass fuels. In Phase 1 of the ATS Program, preliminary investigators on different gas turbine cycles demonstrated that net plant LHV based efficiency greater than 60% was achievable. In Phase 2 the more promising cycles were evaluated in greater detail and the closed-loop steam-cooled combined cycle was selected for development because it offered the best solution with least risk for achieving the ATS Program goals for plant efficiency, emissions, cost of electricity and RAM. Phase 2 also involved conceptual ATS engine and plant design and technology developments in aerodynamics, sealing

  6. Vertical axis wind turbines

    Science.gov (United States)

    Krivcov, Vladimir [Miass, RU; Krivospitski, Vladimir [Miass, RU; Maksimov, Vasili [Miass, RU; Halstead, Richard [Rohnert Park, CA; Grahov, Jurij [Miass, RU

    2011-03-08

    A vertical axis wind turbine is described. The wind turbine can include a top ring, a middle ring and a lower ring, wherein a plurality of vertical airfoils are disposed between the rings. For example, three vertical airfoils can be attached between the upper ring and the middle ring. In addition, three more vertical airfoils can be attached between the lower ring and the middle ring. When wind contacts the vertically arranged airfoils the rings begin to spin. By connecting the rings to a center pole which spins an alternator, electricity can be generated from wind.

  7. Ceramic gas turbine shroud

    Science.gov (United States)

    Shi, Jun; Green, Kevin E.

    2014-07-22

    An example gas turbine engine shroud includes a first annular ceramic wall having an inner side for resisting high temperature turbine engine gasses and an outer side with a plurality of radial slots. A second annular metallic wall is positioned radially outwardly of and enclosing the first annular ceramic wall and has a plurality of tabs in communication with the slot of the first annular ceramic wall. The tabs of the second annular metallic wall and slots of the first annular ceramic wall are in communication such that the first annular ceramic wall and second annular metallic wall are affixed.

  8. Aerodynamics of wind turbines

    CERN Document Server

    Hansen, Martin O L

    2015-01-01

    Aerodynamics of Wind Turbines is the established essential text for the fundamental solutions to efficient wind turbine design. Now in its third edition, it has been substantially updated with respect to structural dynamics and control. The new control chapter now includes details on how to design a classical pitch and torque regulator to control rotational speed and power, while the section on structural dynamics has been extended with a simplified mechanical system explaining the phenomena of forward and backward whirling modes. Readers will also benefit from a new chapter on Vertical Axis W

  9. Hydraulic conductivity of compacted zeolites.

    Science.gov (United States)

    Oren, A Hakan; Ozdamar, Tuğçe

    2013-06-01

    Hydraulic conductivities of compacted zeolites were investigated as a function of compaction water content and zeolite particle size. Initially, the compaction characteristics of zeolites were determined. The compaction test results showed that maximum dry unit weight (γ(dmax)) of fine zeolite was greater than that of granular zeolites. The γ(dmax) of compacted zeolites was between 1.01 and 1.17 Mg m(-3) and optimum water content (w(opt)) was between 38% and 53%. Regardless of zeolite particle size, compacted zeolites had low γ(dmax) and high w(opt) when compared with compacted natural soils. Then, hydraulic conductivity tests were run on compacted zeolites. The hydraulic conductivity values were within the range of 2.0 × 10(-3) cm s(-1) to 1.1 × 10(-7) cm s(-1). Hydraulic conductivity of all compacted zeolites decreased almost 50 times as the water content increased. It is noteworthy that hydraulic conductivity of compacted zeolite was strongly dependent on the zeolite particle size. The hydraulic conductivity decreased almost three orders of magnitude up to 39% fine content; then, it remained almost unchanged beyond 39%. Only one report was found in the literature on the hydraulic conductivity of compacted zeolite, which is in agreement with the findings of this study.

  10. Mechanical (turbines and auxiliary equipment)

    CERN Document Server

    Sherry, A; Cruddace, AE

    2013-01-01

    Modern Power Station Practice, Volume 3: Mechanical (Turbines and Auxiliary Equipment) focuses on the development of turbines and auxiliary equipment used in power stations in Great Britain. Topics covered include thermodynamics and steam turbine theory; turbine auxiliary systems such as lubrication systems, feed water heating systems, and the condenser and cooling water plants. Miscellaneous station services, and pipework in power plants are also described. This book is comprised of five chapters and begins with an overview of thermodynamics and steam turbine theory, paying particular attenti

  11. Pumps as turbines for low cost micro hydro power

    Energy Technology Data Exchange (ETDEWEB)

    Williams, A.A. [Nottingham Trent University (United Kingdom)

    1996-09-01

    Small centrifugal pumps are suitable for use as hydraulic turbines and have the advantage of being mass produced in many countries throughout the world. When used with an integral induction motor, they can be installed as a combined turbine and generator unit. Recent research and development work carried out at Nottingham Trent University in collaboration with the Intermediate Technology Development Group has concentrated on two aspects that had previously held back the wider application of this technology. A standard design of Induction Generator Controller (IGC), enabling these units to be used for isolated micro hydro schemes, has been proven, and is now being manufactured in five countries world-wide. Progress has also been made on the application of performance prediction methods which facilitate the selection of a pump unit for particular site conditions. Sites, suitable for the application of small centrifugal pumps as turbines are of two main types: firstly, as a low-cost alternative to crossflow turbines with an output of 5kW or less; secondly, for energy recovery in pipelines. These types of installation may be suitable for industrialized and developing countries. Three examples of different types of scheme are described in the paper and these show the favourable financial returns that are possible. (Author)

  12. Understanding casing flow in Pelton turbines by numerical simulation

    Science.gov (United States)

    Rentschler, M.; Neuhauser, M.; Marongiu, J. C.; Parkinson, E.

    2016-11-01

    For rehabilitation projects of Pelton turbines, the flow in the casing may have an important influence on the overall performance of the machine. Water sheets returning on the jets or on the runner significantly reduce efficiency, and run-away speed depends on the flow in the casing. CFD simulations can provide a detailed insight into this type of flow, but these simulations are computationally intensive. As in general the volume of water in a Pelton turbine is small compared to the complete volume of the turbine housing, a single phase simulation greatly reduces the complexity of the simulation. In the present work a numerical tool based on the SPH-ALE meshless method is used to simulate the casing flow in a Pelton turbine. Using improved order schemes reduces the numerical viscosity. This is necessary to resolve the flow in the jet and on the casing wall, where the velocity differs by two orders of magnitude. The results are compared to flow visualizations and measurement in a hydraulic laboratory. Several rehabilitation projects proved the added value of understanding the flow in the Pelton casing. The flow simulation helps designing casing insert, not only to see their influence on the flow, but also to calculate the stress in the inserts. In some projects, the casing simulation leads to the understanding of unexpected behavior of the flow. One such example is presented where the backsplash of a deflector hit the runner, creating a reversed rotation of the runner.

  13. Development and demonstration of a vertical axis wind turbine POWERHOUSE

    Science.gov (United States)

    Vosburgh, P. N.

    1984-06-01

    A performance of reliable lower cost base assembly and controls was designed for the electricity generating wind energy conversion system of the VAWTPOWER 185 wind turbine. The base assembly includes low speed shaft and couplings, disc or drum brake, hydraulic or pneumatic brake control systems, speed increasing gear box, high speed shaft and couplings, induction motor/generator, bottom rotor bearings, lightning and ground fault protection, support structure, and environmental protection. VAWTPOWER 185 is a 200 kW capacity Vertical Axis Wind Turbine rated 185 kW at 37 mph. After system analysis, subsystem definition, detailed design and engineering, and development of a test plan, two versions of the powerhouse were fabricated and tested. Both appear ready for commercial production.

  14. Hydraulic Actuators with Autonomous Hydraulic Supply for the Mainline Aircrafts

    Directory of Open Access Journals (Sweden)

    I. S. Shumilov

    2014-01-01

    Full Text Available Applied in the aircraft control systems, hydraulic servo actuators with autonomous hydraulic supply, so-called, hydraulic actuators of integrated configuration, i.e. combination of a source of hydraulic power and its load in the single unit, are aimed at increasing control system reliability both owing to elimination of the pipelines connecting the actuator to the hydraulic supply source, and owing to avoidance of influence of other loads failure on the actuator operability. Their purpose is also to raise control system survivability by eliminating the long pipeline communications and their replacing for the electro-conductive power supply system, thus reducing the vulnerability of systems. The main reason for a delayed application of the hydraulic actuators in the cutting-edge aircrafts was that such aircrafts require hydraulic actuators of considerably higher power with considerable heat releases, which caused an unacceptable overheat of the hydraulic actuators. Positive and negative sides of the hydraulic actuators, their alternative options of increased reliability and survivability, local hydraulic systems as an advanced alternative to independent hydraulic actuators are considered.Now to use hydraulic actuators in mainline aircrafts is inexpedient since there are the unfairly large number of the problems reducing, first and last, safety of flights, with no essential weight and operational advantages. Still works to create competitive hydraulic actuators ought to be continued.Application of local hydraulic systems (LHS will allow us to reduce length of pressure head and drain pipelines and mass of pipelines, as well as to raise their general fail-safety and survivability. Application of the LHS principle will allow us to use a majority of steering drive advantages. It is necessary to allocate especially the following:- ease of meeting requirements for the non-local spread of the engine weight;- essentially reducing length and weight of

  15. Hydraulic conductivity of organomodified soil

    Energy Technology Data Exchange (ETDEWEB)

    Wallace, R.B.; Grant, J.M.; Voice, T.C.; Rakhshandehroo, G.; Xu, S.; Boyd, S.A. [Michigan State Univ., East Lansing, MI (United States)

    1995-11-01

    The effects of organomodification on soil hydraulic conductivity were investigated. Hydraulic conductivity and porosity of treated and untreated samples of a sandy loam were measured as a function of effective stress. Batch treatment with hexadecyltrimethyl ammonium (HDTMA) and dry packing produced organomodified samples that were 79% less conducive than untreated samples prior to loading. Treated samples lost less hydraulic conductivity as a result of loading than untreated samples so that treated samples had higher conductivity at high loads. Observed differences in conductivity are explained in terms of the role of the treated and untreated clay in controlling initial effective pore size and its change during consolidation.

  16. Fish Passage though Hydropower Turbines: Simulating Blade Strike using the Discrete Element Method

    Energy Technology Data Exchange (ETDEWEB)

    Richmond, Marshall C.; Romero Gomez, Pedro DJ

    2014-12-08

    mong the hazardous hydraulic conditions affecting anadromous and resident fish during their passage though turbine flows, two are believed to cause considerable injury and mortality: collision on moving blades and decompression. Several methods are currently available to evaluate these stressors in installed turbines, i.e. using live fish or autonomous sensor devices, and in reduced-scale physical models, i.e. registering collisions from plastic beads. However, a priori estimates with computational modeling approaches applied early in the process of turbine design can facilitate the development of fish-friendly turbines. In the present study, we evaluated the frequency of blade strike and nadir pressure environment by modeling potential fish trajectories with the Discrete Element Method (DEM) applied to fish-like composite particles. In the DEM approach, particles are subjected to realistic hydraulic conditions simulated with computational fluid dynamics (CFD), and particle-structure interactions—representing fish collisions with turbine blades—are explicitly recorded and accounted for in the calculation of particle trajectories. We conducted transient CFD simulations by setting the runner in motion and allowing for better turbulence resolution, a modeling improvement over the conventional practice of simulating the system in steady state which was also done here. While both schemes yielded comparable bulk hydraulic performance, transient conditions exhibited a visual improvement in describing flow variability. We released streamtraces (steady flow solution) and DEM particles (transient solution) at the same location from where sensor fish (SF) have been released in field studies of the modeled turbine unit. The streamtrace-based results showed a better agreement with SF data than the DEM-based nadir pressures did because the former accounted for the turbulent dispersion at the intake but the latter did not. However, the DEM-based strike frequency is more

  17. Hydrodynamic and performance of low power turbines: conception, modelling and experimental tests

    Directory of Open Access Journals (Sweden)

    Mariana. Simão, Helena M. Ramos

    2010-05-01

    Full Text Available The present work comprises a research about hydraulic machines with the aim of optimization and the selection of adequate turbines of low power for exploitation of an available energy still unexplored in water supply systems based on analyses of 3D hydrodynamic flows and on characteristic curves which lead to the best efficiency point. The analysis is carried out based on non-dimensional parameters (i.e., discharge, head, efficiency, runner speed and mechanical power in order to be possible comparisons. Mathematical models based on the physical principles, associated to the development of volumetric and rotordynamic machines, are developed. New turbines are suggested, which are based on similar theory among turbo machines based on applications in hydraulic systems with guarantee discharge and available head. The hydrodynamic fluid mechanical analysis requires the use of complex advanced models (CFD which apply the equations of Navier-Stokes by using mathematical models of conservation laws, for the study of the turbulent flow behaviour. To determine the correlation between the flow velocity and pressure fields, the k-? model, is used in this research. Many turbines are evaluated (i.e., positive displacement (PD, pump as turbine (PAT, propeller with volute at inlet, four and five blades tubular propellers and sensitivity analyses, to the best configurations, as well as comparisons between performance curves and experimental tests. Results are presented with the appropriate range variation for each turbine type and application.

  18. Pipe Drafting with CAD. Teacher Edition.

    Science.gov (United States)

    Smithson, Buddy

    This teacher's guide contains nine units of instruction for a course on computer-assisted pipe drafting. The course covers the following topics: introduction to pipe drafting with CAD (computer-assisted design); flow diagrams; pipe and pipe components; valves; piping plans and elevations; isometrics; equipment fabrication drawings; piping design…

  19. Data Element Dictionary: Facilities. Preliminary Draft.

    Science.gov (United States)

    Thomas, Charles R.

    The draft includes--(1) comments on file structure, (2) descriptions of dictionary organization and format, (3) alphabetical lists of elements, and (4) facilities related elements in dictionary form. The data element definitions in this draft are compatible with the Higher Education Facilities Classification and Inventory Procedures Manual, which…

  20. A method to combine hydrodynamics and constructive design in the optimization of the runner blades of Kaplan turbines

    Science.gov (United States)

    Miclosina, C. O.; Balint, D. I.; Campian, C. V.; Frunzaverde, D.; Ion, I.

    2012-11-01

    This paper deals with the optimization of the axial hydraulic turbines of Kaplan type. The optimization of the runner blade is presented systematically from two points of view: hydrodynamic and constructive. Combining these aspects in order to gain a safer operation when unsteady effects occur in the runner of the turbine is attempted. The design and optimization of the runner blade is performed with QTurbo3D software developed at the Center for Research in Hydraulics, Automation and Thermal Processes (CCHAPT) from "Eftimie Murgu" University of Resita, Romania. QTurbo3D software offers possibilities to design the meridian channel of hydraulic turbines design the blades and optimize the runner blade. 3D modeling and motion analysis of the runner blade operating mechanism are accomplished using SolidWorks software. The purpose of motion study is to obtain forces, torques or stresses in the runner blade operating mechanism, necessary to estimate its lifetime. This paper clearly states the importance of combining the hydrodynamics with the structural design in the optimization procedure of the runner of hydraulic turbines.

  1. Experimental and numerical analysis of pressure pulses characteristics in a Francis turbine with partial load

    Energy Technology Data Exchange (ETDEWEB)

    Yexiang, X; Zhengwei, W; Zongguo, Y; Jin, Z, E-mail: xiaoyex@mail.tsinghua.edu.c [State Key Laboratory of Hydroscience and Engineering and Department of Thermal Engineering, Tsinghua University Beijing, 100084 (China)

    2010-08-15

    This study experimentally and numerically investigates the pressure pulses characteristics and unsteady flow behavior in a Francis turbine with partial load. Unsteady wall pressure measurements with partial load condition are performs to investigate thoroughly pressure fields in the spiral case, runner head cover and straight draft tube dynamically. The unsteady Reynolds- averaged Navier-Stokes equations with the k-{omega}based SST turbulence model were used to model the unsteady flow within the entire flow passage of the Francis turbine. The dominate frequency of the predicted pressure pulses at runner inlet agree with the experimental results in the head cover. The influence of the blade passing frequency causes the simulated peak-to-peak amplitudes in the runner inlet to be larger than in the head cover. The measured and predicted pressure pulses at different positions along the runner are comparable. The predicted pressure fluctuations in the draft tube agree well with the experimental results. However the peak-to-peak amplitudes in the spiral case are not as well predicted so the calculation domain and the inlet boundary conditions need to be improved. At the most unstable operating condition, the pulse in the flow passage are due to the rotor-stator interference (RSI) between the runner and the guide vanes, the blade channel vortex in the runner blade passage and the vortex rope in the draft tube. The unsteady flow patterns in the turbine, including the blade channel vortex in the runner and the helical vortex rope in the draft tube, are classified numerically.

  2. Kaplan turbines: design trends in the last decade

    Energy Technology Data Exchange (ETDEWEB)

    Lugaresi, A.; Massa, A. (ELC-Electroconsult, Milan (IT))

    1988-05-01

    This article provides an update to the results previously published on the Kaplan hydraulic turbine. The approach has been essentially statistical, based on data supplied by various manufacturers. The investigation took into account 72 units, designed, with few exceptions, after the year 1976. The research has been limited to the main parameters, such as specific speed and cavitation coefficient, and dimensions that allow for the basic unit to be selected and overall unit size to be determined. The various relationships presented here have been calculated by a regression, and the results are accurate enough for a comparison of options for preliminary design and layout. (author).

  3. Wind Turbine Blade

    DEFF Research Database (Denmark)

    2010-01-01

    The invention relates to a blade for a wind turbine, particularly to a blade that may be produced by an advanced manufacturing process for producing a blade with high quality structural components. Particularly, the structural components, which are preferably manufactured from fibre reinforced...

  4. Turbine exhaust pressure measurements

    Energy Technology Data Exchange (ETDEWEB)

    Burns, J.M. [Stone & Webster Engineering Corp., Boston, MA (United States); Hernandez, E. [Community Energy Alternatives Inc., Ridgewood, NJ (United States)

    1996-05-01

    This paper discusses the dynamic operating environment in the turbine-condenser steam space and the two sensors, basket tips and guideplates, that have been approved by ASME test codes for measurement of the static pressure within that exhaust region. It defines the rigorous geometry and construction requirements of these sensors in order that they be acceptable for guarantee/acceptance testing. The paper also offers a practical alternative to the classical ASME PTC 6 (Turbine Test Code) basket tip design that is easier to fabricate in the typical utility machine shop. The alternative design makes it less expensive, much faster to construct, and facilitates the drainage of any accumulated condensate. Comparative field tests by PSE&G`s Research and Testing Laboratory conducted in 1995 at the 300 MW Mercer Generating Station, Unit 1 will be described which demonstrate the modified basket tip pressure measurements are statistically indistinguishable from those of the PTC 6 design. Noting that basket tip turbine exhaust static pressure sensors are recommended by all the major U.S. turbine manufacturers, the paper also presents the limited available history of the empirical basket tip and the lack of any documented calibration history related to the accuracy of the guideplate. Finally, based on the success of this one basket tip variation, the paper concludes that other even more suitable designs could be developed by further research.

  5. Radial gas turbine design

    Energy Technology Data Exchange (ETDEWEB)

    Krausche, S.; Ohlsson, Johan

    1998-04-01

    The objective of this work was to develop a program dealing with design point calculations of radial turbine machinery, including both compressor and turbine, with as few input data as possible. Some simple stress calculations and turbine metal blade temperatures were also included. This program was then implanted in a German thermodynamics program, Gasturb, a program calculating design and off-design performance of gas turbines. The calculations proceed with a lot of assumptions, necessary to finish the task, concerning pressure losses, velocity distribution, blockage, etc., and have been correlated with empirical data from VAT. Most of these values could have been input data, but to prevent the user of the program from drowning in input values, they are set as default values in the program code. The output data consist of geometry, Mach numbers, predicted component efficiency etc., and a number of graphical plots of geometry and velocity triangles. For the cases examined, the error in predicted efficiency level was within {+-} 1-2% points, and quite satisfactory errors in geometrical and thermodynamic conditions were obtained Examination paper. 18 refs, 36 figs

  6. Wind turbine airfoil catalogue

    DEFF Research Database (Denmark)

    Bertagnolio, F.; Sørensen, Niels N.; Johansen, Jeppe

    2001-01-01

    The aim of this work is two-sided. Firstly, experimental results obtained for numerous sets of airfoil measurements (mainly intended for wind turbine applications) are collected and compared with computational results from the 2D Navier-Stokes solverEllipSys2D, as well as results from the panel...

  7. Wind Turbine Blade

    DEFF Research Database (Denmark)

    2010-01-01

    The invention relates to a blade for a wind turbine, particularly to a blade that may be produced by an advanced manufacturing process for producing a blade with high quality structural components. Particularly, the structural components, which are preferably manufactured from fibre reinforced...

  8. Piezoelectric wind turbine

    Science.gov (United States)

    Kishore, Ravi Anant; Priya, Shashank

    2013-03-01

    In past few years, there has been significant focus towards developing small scale renewable energy based power sources for powering wireless sensor nodes in remote locations such as highways and bridges to conduct continuous health monitoring. These prior efforts have led to the development of micro-scale solar modules, hydrogen fuel cells and various vibration based energy harvesters. However, the cost effectiveness, reliability, and practicality of these solutions remain a concern. Harvesting the wind energy using micro-to-small scale wind turbines can be an excellent solution in variety of outdoor scenarios provided they can operate at few miles per hour of wind speed. The conventional electromagnetic generator used in the wind mills always has some cogging torque which restricts their operation above certain cut-in wind speed. This study aims to develop a novel piezoelectric wind turbine that utilizes bimorph actuators for electro-mechanical energy conversion. This device utilizes a Savonius rotor that is connected to a disk having magnets at the periphery. The piezoelectric actuators arranged circumferentially around the disk also have magnets at the tip which interacts with the magnetic field of the rotating disk and produces cyclical deflection. The wind tunnel experiments were conducted between 2-12 mph of wind speeds to characterize and optimize the power output of the wind turbine. Further, testing was conducted in the open environment to quantify the response to random wind gusts. An attempt was made towards integration of the piezoelectric wind turbine with the wireless sensor node.

  9. HYDRAULICS, ATHENS COUNTY, OHIO, USA

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Hydraulic data include spatial datasets and data tables necessary for documenting the hydrologic procedures for estimating flood discharges for a flood insurance...

  10. HYDRAULICS, JACKSON COUNTY, KENTUCKY, USA

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Hydraulic data include spatial datasets and data tables necessary for documenting the hydrologic procedures for estimating flood discharges for a flood insurance...

  11. HYDRAULICS, MADISON COUNTY, ALABAMA, USA

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — This Hydraulic data was reviewed and approved by FEMA during the initial MT-2 processing. Recent developments in digital terrain and geospatial database management...

  12. HYDRAULICS, HAMPDEN COUNTY, MA, USA

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Hydraulic data in this submittal include spatial datasets and model outputs necessary for computation of the 1-percent flooding extent. The minimum requirement for...

  13. A Study on the Air Vent Valve of the Hydraulic Servo Actuator for Steam Control of Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Yong Bum; Lee, Jong Jik [Korea Institute of Machinery and Materials, Daejeon (Korea, Republic of)

    2016-06-15

    To produce adequate electricity in nuclear and thermal power plants, an optimal amount of steam should be supplied to a generator connected to high- and low-pressure steam turbines. A turbine output control device, which is a special steam valve employed to supply or interrupt the steam to the turbine, is operated using a hydraulic servo actuator. In power plants, the performance of servo actuators is degraded by the air generated from the hydraulic system, or causes frequent failures owing to an increase in the wear of the seal. This is due to the seal being burnt as generated heat using the produced compressed air. Some power plants have exhausted air using a fixed orifice, and thus they encounter power loss due to mass flow exhaust. Failures are generated in hydraulic pumps, electric motors, and valves, which are frequently operated. In this study, we perform modeling and analysis of the load-sensing air-exhaust valves, which can be passed through very fine flow under normal use conditions, and exhaust mass flow air at the beginning stage as with existing fixed orifices. Then, we propose a method to prevent failures due to the compressed air, and to ensure the control accuracy of hydraulic servo actuators.

  14. 14 CFR 29.1435 - Hydraulic systems.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Hydraulic systems. 29.1435 Section 29.1435... STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Equipment Miscellaneous Equipment § 29.1435 Hydraulic systems. (a) Design. Each hydraulic system must be designed as follows: (1) Each element of the hydraulic system...

  15. 14 CFR 23.1435 - Hydraulic systems.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Hydraulic systems. 23.1435 Section 23.1435... § 23.1435 Hydraulic systems. (a) Design. Each hydraulic system must be designed as follows: (1) Each hydraulic system and its elements must withstand, without yielding, the structural loads expected...

  16. 46 CFR 28.405 - Hydraulic equipment.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 1 2010-10-01 2010-10-01 false Hydraulic equipment. 28.405 Section 28.405 Shipping... Operate With More Than 16 Individuals on Board § 28.405 Hydraulic equipment. (a) Each hydraulic system... than four times the system maximum operating pressure. (c) Each hydraulic system must be equipped...

  17. Application requirements for wind turbine gearboxes

    Science.gov (United States)

    Errichello, Robert; Muller, Jane

    1994-09-01

    This report is a technical guide which documents the wind turbine gearbox experience of the GEARTECH consulting firm. The report provides a reference on wind turbine gearbox applications for the gear industry, wind turbine designers, and wind turbine operators. This report will assist in selecting, designing, manufacturing, procuring, operating, and maintaining gearboxes for use on wind turbines.

  18. Optimization design of wind turbine drive train based on Matlab genetic algorithm toolbox

    Science.gov (United States)

    Li, R. N.; Liu, X.; Liu, S. J.

    2013-12-01

    In order to ensure the high efficiency of the whole flexible drive train of the front-end speed adjusting wind turbine, the working principle of the main part of the drive train is analyzed. As critical parameters, rotating speed ratios of three planetary gear trains are selected as the research subject. The mathematical model of the torque converter speed ratio is established based on these three critical variable quantity, and the effect of key parameters on the efficiency of hydraulic mechanical transmission is analyzed. Based on the torque balance and the energy balance, refer to hydraulic mechanical transmission characteristics, the transmission efficiency expression of the whole drive train is established. The fitness function and constraint functions are established respectively based on the drive train transmission efficiency and the torque converter rotating speed ratio range. And the optimization calculation is carried out by using MATLAB genetic algorithm toolbox. The optimization method and results provide an optimization program for exact match of wind turbine rotor, gearbox, hydraulic mechanical transmission, hydraulic torque converter and synchronous generator, ensure that the drive train work with a high efficiency, and give a reference for the selection of the torque converter and hydraulic mechanical transmission.

  19. Investigation of seal technology for Francis turbine

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Wei

    2012-06-01

    Leakage loss and disk friction loss caused by the clearance gap flow at the back of a runner have a major impact on the efficiency of hydraulic turbines. Accordingly, it is extremely important to develop and improve the seal technology by investigating the gap flow. Generally, there are two types of the gap flow: axial gap flow between a rotating disk and a stator (e.g. the flow at the back of a runner) and the annular gap flow (e.g. the flow at an annular seal). Firstly, the overview of previous researches on labyrinth seal, rotating disk flow and Taylor-Couette flow are summarized. Labyrinth seals are the primary type of seals for turbo machinery. However, most researchers studied it for compressible flow only. It is also found that the enclosed rotating disk flow with through-flow can be studied instead of the gap flow in a hydraulic machine. Furthermore, the above mentioned annular gap flow is similar to the Taylor-Couette flow. The Taylor-vortices are formed in the annular gap due to the rotation of disk, which could be used as a resistance of flow. Therefore, in the present work, three parts are investigated. The first part is the investigation of the labyrinth seal for Francis turbines. The second part is the investigation of the gap flow between two stationary walls. The third part is investigation of the annular gap flow between one stationary and one rotating wall, based on the theory of Taylor-Couette flow. Afterwards, the theoretical formulas for leakage flow of a traditional labyrinth seal used in high head Francis turbine is derived and is verified to give acceptable results. The theoretical model is useful to predict the leakage flow by the measurements of Francis turbine at the Aabjoera Power plant. For straight-through labyrinth seal, the effects of cavity dimensions, numbers and locations on the leakage flow are investigated numerically. Smaller cavity depth, longer cavity length and fewer cavity numbers are required in order to reduce leakage

  20. Logical model for the control of a BWR turbine;Modelo logico para el control de una turbina de un BWR

    Energy Technology Data Exchange (ETDEWEB)

    Vargas O, Y. [Universidad del Valle de Mexico, Campus Toluca, Av. Las Palmas No. 136, Col. San Jorge Pueblo Nuevo, 52140 Metepec, Estado de Mexico (Mexico); Amador G, R.; Ortiz V, J.; Castillo D, R., E-mail: yonaeton@hotmail.co [ININ, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico)

    2009-07-01

    In this work a design of a logical model is presented for the turbine control of a nuclear power plant with a BWR like energy source. The model is sought to implement later on inside the thermal hydraulics code of better estimate RELAP/SCDAPSIM. The logical model is developed for the control and protection of the turbine, and the consequent protection to the BWR, considering that the turbine control will be been able to use for one or several turbines in series. The quality of the present design of the logical model of the turbine control is that it considers the most important parameters in the operation of a turbine, besides that they have incorporated to the logical model the secondary parameters that will be activated originally as true when the turbine model is substituted by a detailed model. The development of the logical model of a turbine will be of utility in the short and medium term to carry out analysis on the turbine operation with different operation conditions, of vapor extraction, specific steps of the turbine to feed other equipment s, in addition to analyze the separate and the integrated effect. (Author)

  1. Turbine repair process, repaired coating, and repaired turbine component

    Energy Technology Data Exchange (ETDEWEB)

    Das, Rupak; Delvaux, John McConnell; Garcia-Crespo, Andres Jose

    2015-11-03

    A turbine repair process, a repaired coating, and a repaired turbine component are disclosed. The turbine repair process includes providing a turbine component having a higher-pressure region and a lower-pressure region, introducing particles into the higher-pressure region, and at least partially repairing an opening between the higher-pressure region and the lower-pressure region with at least one of the particles to form a repaired turbine component. The repaired coating includes a silicon material, a ceramic matrix composite material, and a repaired region having the silicon material deposited on and surrounded by the ceramic matrix composite material. The repaired turbine component a ceramic matrix composite layer and a repaired region having silicon material deposited on and surrounded by the ceramic matrix composite material.

  2. Technologies and Innovations for Hydraulic Pumps

    OpenAIRE

    Ivantysynova, Monika

    2016-01-01

    Positive displacement machines working as hydraulic pumps or hydraulic motors have always been, are and will be an essential part of any hydraulic system. Current trends and future demands on energy efficient systems will not only drastically increase the number of positive displacement machines needed for modern efficient hydraulic circuits but will significantly change the performance requirements of pumps and motors. Throttleless system configurations will change the landscape of hydraulic...

  3. SMART POWER TURBINE

    Energy Technology Data Exchange (ETDEWEB)

    Nirm V. Nirmalan

    2003-11-01

    Gas turbines are the choice technology for high-performance power generation and are employed in both simple and combined cycle configurations around the world. The Smart Power Turbine (SPT) program has developed new technologies that are needed to further extend the performance and economic attractiveness of gas turbines for power generation. Today's power generation gas turbines control firing temperatures indirectly, by measuring the exhaust gas temperature and then mathematically calculating the peak combustor temperatures. But temperatures in the turbine hot gas path vary a great deal, making it difficult to control firing temperatures precisely enough to achieve optimal performance. Similarly, there is no current way to assess deterioration of turbine hot-gas-path components without shutting down the turbine. Consequently, maintenance and component replacements are often scheduled according to conservative design practices based on historical fleet-averaged data. Since fuel heating values vary with the prevalent natural gas fuel, the inability to measure heating value directly, with sufficient accuracy and timeliness, can lead to maintenance and operational decisions that are less than optimal. GE Global Research Center, under this Smart Power Turbine program, has developed a suite of novel sensors that would measure combustor flame temperature, online fuel lower heating value (LHV), and hot-gas-path component life directly. The feasibility of using the ratio of the integrated intensities of portions of the OH emission band to determine the specific average temperature of a premixed methane or natural-gas-fueled combustion flame was demonstrated. The temperature determined is the temperature of the plasma included in the field of view of the sensor. Two sensor types were investigated: the first used a low-resolution fiber optic spectrometer; the second was a SiC dual photodiode chip. Both methods worked. Sensitivity to flame temperature changes was

  4. 枕头坝一级水电站水轮机模型验收试验%Acceptance test of turbine model of Zhentouba I Hydropower Station

    Institute of Scientific and Technical Information of China (English)

    柯剑; 李剑君

    2014-01-01

    In order to verify whether the hydraulic performance of turbines of Zhentouba I Hydropower Station meet the contract requirement, the acceptance test of turbine model was carried out on the high pressure hydraulic test stand in a hydraulic labora-tory of Slovenija. The stand and devices of the acceptance test were introduced. The test contents included energy test, cavitation test, pressure fluctuation test, runaway speed test, axial hydraulic thrust test, check of the geometry and size of flow passage components of the turbine model. The results showed that the hydraulic performance of turbines met the requirement of the con-tract.%为了验证枕头坝一级水电站水轮机水力性能是否满足合同要求,在斯诺文尼亚某水力试验室高压水轮机试验台,进行了水轮机模型验收试验。试验主要内容包括能量试验、空化试验、压力脉动试验、飞逸试验、轴向水推力试验、模型水轮机通流部件几何形状及尺寸检查等。试验结果表明,水轮机的水力性能均满足合同要求。

  5. Quantifying Barotrauma Risk to Juvenile Fish during Hydro-turbine Passage

    Energy Technology Data Exchange (ETDEWEB)

    Richmond, Marshall C.; Serkowski, John A.; Ebner, Laurie L.; Sick, Mirjam; Brown, Richard S.; Carlson, Thomas J.

    2014-03-15

    We introduce a method for hydro turbine biological performance assessment (BioPA) to bridge the gap between field and laboratory studies on fish injury and turbine engineering design. Using this method, a suite of biological performance indicators is computed based on simulated data from a computational fluid dynamics (CFD) model of a proposed hydro turbine design. Each performance indicator is a measure of the probability of exposure to a certain dose of an injury mechanism. If the relationship between the dose of an injury mechanism (stressor) and frequency of injury (dose-response) is known from laboratory or field studies, the likelihood of fish injury for a turbine design can be computed from the performance indicator. By comparing the values of the indicators from various turbine designs, engineers and biologists can identify the more-promising designs and operating conditions to minimize hydraulic conditions hazardous to passing fish. In this paper, the BioPA method is applied to estimate barotrauma induced mortal injury rates for Chinook salmon exposed to rapid pressure changes in Kaplan-type hydro turbines. Following the description of the general method, application of the BioPA to estimate the probability of mortal injury from exposure to rapid decompression is illustrated using a Kaplan hydro turbine at the John Day Dam on the Columbia River in the Pacific Northwest region of the USA. The estimated rates of mortal injury increased from 0.3% to 1.7% as discharge through the turbine increased from 334 to 564 m3/s for fish assumed to be acclimated to a depth of 5 m. The majority of pressure nadirs occurred immediately below the runner blades, with the lowest values in the gap at the blade tips and just below the leading edge of the blades. Such information can help engineers focus on problem areas when designing new turbine runners to be more fish-friendly than existing units.

  6. 10 CFR 51.74 - Distribution of draft environmental impact statement and supplement to draft environmental impact...

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 2 2010-01-01 2010-01-01 false Distribution of draft environmental impact statement and supplement to draft environmental impact statement; news releases. 51.74 Section 51.74 Energy NUCLEAR... Impact Statements § 51.74 Distribution of draft environmental impact statement and supplement to draft...

  7. 78 FR 73555 - Deepwater Horizon Oil Spill; Draft Programmatic and Phase III Early Restoration Plan and Draft...

    Science.gov (United States)

    2013-12-06

    ... Environmental Impact Statement (Draft Phase III ERP/PEIS). The Draft Phase III ERP/PEIS considers programmatic... programmatic restoration alternatives. The Draft Phase III ERP/PEIS evaluates these restoration alternatives... the Framework Agreement. The Draft Phase III ERP/PEIS also evaluates the environmental consequences...

  8. Evolution of the sensor fish device for measuring physical conditions in sever hydraulic environments

    Energy Technology Data Exchange (ETDEWEB)

    Carlson, Thomas J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Duncan, J. P. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2003-03-01

    To assist in deriving biological specifications for design of turbine rehabilitation measures, new “fish-friendly” turbines, and spillway designs and operations, Pacific Northwest National Laboratory (PNNL) scientists have developed and tested an autonomous multi-sensor device called a Sensor Fish that can acquire pressure and tri-axial linear acceleration data during passage through severe hydraulic conditions. The purpose of the Sensor Fish is to characterize physical conditions fish experience during passage through hydro turbines, spill stilling basins, high-discharge outfalls, and other dam passage routes. This report discusses the development and field tests of the Sensor Fish at Rock Island, McNary, The Dalles, Bonneville, and Wanapum dams on the Columbia River and the Prosser Irrigation District on the Yakima River, which have shown that the device can withstand the severe environments of turbine, spill, and fish bypass passage and provide useful environmental data that can ultimately aid in the design and operation of new and existing turbines, spill, and dam fish bypass facilities.

  9. Design of Wind Turbine Vibration Monitoring System

    National Research Council Canada - National Science Library

    Shoubin Wang; Wei Gong; Gang Su; Hongyue Sun

    2013-01-01

    In order to ensure safety of wind turbine operation and to reduce the occurrence of faults as well as to improve the reliability of wind turbine operation, a vibration monitoring for wind turbine is developed...

  10. Air Turbines for Wave Energy Conversion

    Directory of Open Access Journals (Sweden)

    Manabu Takao

    2012-01-01

    Full Text Available This paper describes the present status of the art on air turbines, which could be used for wave energy conversion. The air turbines included in the paper are as follows: Wells type turbines, impulse turbines, radial turbines, cross-flow turbine, and Savonius turbine. The overall performances of the turbines under irregular wave conditions, which typically occur in the sea, have been compared by numerical simulation and sea trial. As a result, under irregular wave conditions it is found that the running and starting characteristics of the impulse type turbines could be superior to those of the Wells turbine. Moreover, as the current challenge on turbine technology, the authors explain a twin-impulse turbine topology for wave energy conversion.

  11. Wind Turbine Providing Grid Support

    DEFF Research Database (Denmark)

    2011-01-01

    A variable speed wind turbine is arranged to provide additional electrical power to counteract non-periodic disturbances in an electrical grid. A controller monitors events indicating a need to increase the electrical output power from the wind turbine to the electrical grid. The controller...... is arranged to control the wind turbine as follows: after an indicating event has been detected, the wind turbine enters an overproduction period in which the electrical output power is increased, wherein the additional electrical output power is taken from kinetic energy stored in the rotor and without...... changing the operation of the wind turbine to a more efficient working point.; When the rotational speed of the rotor reaches a minimum value, the wind turbine enters a recovery period to re-accelerate the rotor to the nominal rotational speed while further contributing to the stability of the electrical...

  12. Reliability Analysis of Wind Turbines

    DEFF Research Database (Denmark)

    Toft, Henrik Stensgaard; Sørensen, John Dalsgaard

    2008-01-01

    In order to minimise the total expected life-cycle costs of a wind turbine it is important to estimate the reliability level for all components in the wind turbine. This paper deals with reliability analysis for the tower and blades of onshore wind turbines placed in a wind farm. The limit states...... consideres are in the ultimate limit state (ULS) extreme conditions in the standstill position and extreme conditions during operating. For wind turbines, where the magnitude of the loads is influenced by the control system, the ultimate limit state can occur in both cases. In the fatigue limit state (FLS......) the reliability level for a wind turbine placed in a wind farm is considered, and wake effects from neighbouring wind turbines is taken into account. An illustrative example with calculation of the reliability for mudline bending of the tower is considered. In the example the design is determined according...

  13. Unsteady numerical simulation of the flow in the U9 Kaplan turbine model

    Science.gov (United States)

    Javadi, Ardalan; Nilsson, Håkan

    2014-03-01

    The Reynolds-averaged Navier-Stokes equations with the RNG k-ε turbulence model closure are utilized to simulate the unsteady turbulent flow throughout the whole flow passage of the U9 Kaplan turbine model. The U9 Kaplan turbine model comprises 20 stationary guide vanes and 6 rotating blades (696.3 RPM), working at best efficiency load (0.71 m3/s). The computations are conducted using a general finite volume method, using the OpenFOAM CFD code. A dynamic mesh is used together with a sliding GGI interface to include the effect of the rotating runner. The clearance is included in the guide vane. The hub and tip clearances are also included in the runner. An analysis is conducted of the unsteady behavior of the flow field, the pressure fluctuation in the draft tube, and the coherent structures of the flow. The tangential and axial velocity distributions at three sections in the draft tube are compared against LDV measurements. The numerical result is in reasonable agreement with the experimental data, and the important flow physics close to the hub in the draft tube is captured. The hub and tip vortices and an on-axis forced vortex are captured. The numerical results show that the frequency of the forced vortex in 1/5 of the runner rotation.

  14. On the Drafting of Confidentiality Agreements

    DEFF Research Database (Denmark)

    Drewsen, Merete; Lando, Henrik; Cummins, Tim

    2006-01-01

    This is not a theoretical paper but an application of existing law and economic contract theory to the issue of how to draft a specific kind of contract. It is addressed to practitioners and is intended for practical use. It will be part of a Wiki (as in Wikipedia) for contract drafting, which...... IACCM (International Association for Contract and Commercial Management) has initiated. The main theoretical aspect of the article concerns the application of the value maximization principle (the Coase theorem) to the drafting of confidentiality agreements. While the article is not theoretical, its...

  15. Introduction to wind turbine aerodynamics

    CERN Document Server

    Schaffarczyk, Alois Peter

    2014-01-01

    Wind-Turbine Aerodynamics is a self-contained textbook which shows how to come from the basics of fluid mechanics to modern wind turbine blade design. It presents a fundamentals of fluid dynamics and inflow conditions, and gives a extensive introduction into theories describing the aerodynamics of wind turbines. After introducing experiments the book applies the knowledge to explore the impact on blade design.The book is an introduction for professionals and students of very varying levels.

  16. Mechanical impact of dynamic phenomena in Francis turbines at off design conditions

    Science.gov (United States)

    Duparchy, F.; Brammer, J.; Thibaud, M.; Favrel, A.; Lowys, P. Y.; Avellan, F.

    2017-04-01

    At partial load and overload conditions, Francis turbines are subjected to hydraulic instabilities that can potentially result in high dynamic solicitations of the turbine components and significantly reduce their lifetime. This study presents both experimental data and numerical simulations that were used as complementary approaches to study these dynamic solicitations. Measurements performed on a reduced scale physical model, including a special runner instrumented with on-board strain gauges and pressure sensors, were used to investigate the dynamic phenomena experienced by the runner. They were also taken as reference to validate the numerical simulation results. After validation, advantage was taken from the numerical simulations to highlight the mechanical response of the structure to the unsteady hydraulic phenomena, as well as their impact on the fatigue damage of the runner.

  17. Advanced Hydrogen Turbine Development

    Energy Technology Data Exchange (ETDEWEB)

    Marra, John [Siemens Energy, Inc., Orlando, FL (United States)

    2015-09-30

    Under the sponsorship of the U.S. Department of Energy (DOE) National Energy Technology Laboratories, Siemens has completed the Advanced Hydrogen Turbine Development Program to develop an advanced gas turbine for incorporation into future coal-based Integrated Gasification Combined Cycle (IGCC) plants. All the scheduled DOE Milestones were completed and significant technical progress was made in the development of new technologies and concepts. Advanced computer simulations and modeling, as well as subscale, full scale laboratory, rig and engine testing were utilized to evaluate and select concepts for further development. Program Requirements of: A 3 to 5 percentage point improvement in overall plant combined cycle efficiency when compared to the reference baseline plant; 20 to 30 percent reduction in overall plant capital cost when compared to the reference baseline plant; and NOx emissions of 2 PPM out of the stack. were all met. The program was completed on schedule and within the allotted budget

  18. Forecasting Turbine Icing Events

    DEFF Research Database (Denmark)

    Davis, Neil; Hahmann, Andrea N.; Clausen, Niels-Erik;

    2012-01-01

    is not shut down for its protection. We also found that there is a a large spread across the various turbines within a wind park, in the amount of icing. This is currently not taken into account by our model. Evaluating and adding these small scale differences to the model will be undertaken as future work....... accumulations, which have not been seen in observations. In addition to the model evaluation we were able to investigate the potential occurrence of ice induced power loss at two wind parks in Europe using observed data. We found that the potential loss during an icing event is large even when the turbine......In this study, we present a method for forecasting icing events. The method is validated at two European wind farms in with known icing events. The icing model used was developed using current ice accretion methods, and newly developed ablation algorithms. The model is driven by inputs from the WRF...

  19. Advanced Hydrogen Turbine Development

    Energy Technology Data Exchange (ETDEWEB)

    Joesph Fadok

    2008-01-01

    Siemens has developed a roadmap to achieve the DOE goals for efficiency, cost reduction, and emissions through innovative approaches and novel technologies which build upon worldwide IGCC operational experience, platform technology, and extensive experience in G-class operating conditions. In Phase 1, the technologies and concepts necessary to achieve the program goals were identified for the gas turbine components and supporting technology areas and testing plans were developed to mitigate identified risks. Multiple studies were conducted to evaluate the impact in plant performance of different gas turbine and plant technologies. 2015 gas turbine technologies showed a significant improvement in IGCC plant efficiency, however, a severe performance penalty was calculated for high carbon capture cases. Thermodynamic calculations showed that the DOE 2010 and 2015 efficiency targets can be met with a two step approach. A risk management process was instituted in Phase 1 to identify risk and develop mitigation plans. For the risks identified, testing and development programs are in place and the risks will be revisited periodically to determine if changes to the plan are necessary. A compressor performance prediction has shown that the design of the compressor for the engine can be achieved with additional stages added to the rear of the compressor. Tip clearance effects were studied as well as a range of flow and pressure ratios to evaluate the impacts to both performance and stability. Considerable data was obtained on the four candidate combustion systems: diffusion, catalytic, premix, and distributed combustion. Based on the results of Phase 1, the premixed combustion system and the distributed combustion system were chosen as having the most potential and will be the focus of Phase 2 of the program. Significant progress was also made in obtaining combustion kinetics data for high hydrogen fuels. The Phase 1 turbine studies indicate initial feasibility of the

  20. Advanced Hydrogen Turbine Development

    Energy Technology Data Exchange (ETDEWEB)

    Joesph Fadok

    2008-01-01

    Siemens has developed a roadmap to achieve the DOE goals for efficiency, cost reduction, and emissions through innovative approaches and novel technologies which build upon worldwide IGCC operational experience, platform technology, and extensive experience in G-class operating conditions. In Phase 1, the technologies and concepts necessary to achieve the program goals were identified for the gas turbine components and supporting technology areas and testing plans were developed to mitigate identified risks. Multiple studies were conducted to evaluate the impact in plant performance of different gas turbine and plant technologies. 2015 gas turbine technologies showed a significant improvement in IGCC plant efficiency, however, a severe performance penalty was calculated for high carbon capture cases. Thermodynamic calculations showed that the DOE 2010 and 2015 efficiency targets can be met with a two step approach. A risk management process was instituted in Phase 1 to identify risk and develop mitigation plans. For the risks identified, testing and development programs are in place and the risks will be revisited periodically to determine if changes to the plan are necessary. A compressor performance prediction has shown that the design of the compressor for the engine can be achieved with additional stages added to the rear of the compressor. Tip clearance effects were studied as well as a range of flow and pressure ratios to evaluate the impacts to both performance and stability. Considerable data was obtained on the four candidate combustion systems: diffusion, catalytic, premix, and distributed combustion. Based on the results of Phase 1, the premixed combustion system and the distributed combustion system were chosen as having the most potential and will be the focus of Phase 2 of the program. Significant progress was also made in obtaining combustion kinetics data for high hydrogen fuels. The Phase 1 turbine studies indicate initial feasibility of the