WorldWideScience

Sample records for hydraulic turbine components

  1. Hydraulic turbines

    International Nuclear Information System (INIS)

    Meluk O, G.

    1998-01-01

    The hydraulic turbines are defined according to the specific speed, in impulse turbines and in reaction turbines. Currently, the Pelton turbines (of impulse) and the Francis and Kaplan turbines (of reaction), they are the most important machines in the hydroelectric generation. The hydraulic turbines are capable of generating in short times, large powers, from its loads zero until the total load and reject the load instantly without producing damages in the operation. When the hydraulic resources are important, the hydraulic turbines are converted in the axle of the electric system. Its combination with thermoelectric generation systems, it allow the continuing supply of the variations in demand of energy system. The available hydraulic resource in Colombia is of 93085 MW, of which solely 9% is exploited, become 79% of all the electrical country generation, 21% remaining is provided by means of the thermoelectric generation

  2. Hydraulic turbines and auxiliary equipment

    Energy Technology Data Exchange (ETDEWEB)

    Luo Gaorong [Organization of the United Nations, Beijing (China). International Centre of Small Hydroelectric Power Plants

    1995-07-01

    This document presents a general overview on hydraulic turbines and auxiliary equipment, emphasizing the turbine classification, in accordance with the different types of turbines, standard turbine series in China, turbine selection based on the basic data required for the preliminary design, general hill model curves, chart of turbine series and the arrangement of application for hydraulic turbines, hydraulic turbine testing, and speed regulating device.

  3. Novel Repair Technique for Life-Extension of Hydraulic Turbine Components in Hydroelectric Power Stations

    Science.gov (United States)

    Hiramatsu, Yoichi; Ishii, Jun; Funato, Kazuhiro

    A significant number of hydraulic turbines operated in Japan were installed in the first half of the 20th century. Today, aging degradation and flaws are observed in these turbine equipments. So far, Japanese engineers have applied NDI technology of Ultrasonic Testing (UT) to detect the flaws, and after empirical evaluation of the remaining life they decided an adequate moment to replace the equipments. Since the replacement requires a large-scale field site works and high-cost, one of the solutions for life-extension of the equipments is introduction of repair services. We have been working in order to enhance the accuracy of results during the detection of flaws and flaws dimensioning, in particular focusing on the techniques of Tip-echo, TOFD and Phased-Array UT, accompanied by the conventional UT. These NDI methods made possible to recognize the entire image of surface and embedded flaws with complicated geometry. Then, we have developed an evaluation system of these flaws based on the theory of crack propagation, of the logic of crack growth driven by the stress-intensity factor of the crack tip front. The sophisticated evaluation system is constituted by a hand-made software and database of stress-intensity factor. Based on these elemental technologies, we propose a technique of repair welding to provide a life-extension of hydraulic turbine components.

  4. Hydraulic design development of Xiluodu Francis turbine

    International Nuclear Information System (INIS)

    Wang, Y L; Li, G Y; Shi, Q H; Wang, Z N

    2012-01-01

    Hydraulic optimization design with CFD (Computational Fluid Dynamics) method, hydraulic optimization measures and model test results in the hydraulic development of Xiluodu hydropower station by DFEM (Dongfang Electric Machinery) of DEC (Dongfang Electric Corporation) of China were analyzed in this paper. The hydraulic development conditions of turbine, selection of design parameter, comparison of geometric parameters and optimization measure of turbine flow components were expatiated. And the measures of improving turbine hydraulic performance and the results of model turbine acceptance experiment were discussed in details.

  5. Small hydraulic turbine drives

    Science.gov (United States)

    Rostafinski, W. A.

    1970-01-01

    Turbine, driven by the fluid being pumped, requires no external controls, is completely integrated into the flow system, and has bearings which utilize the main fluid for lubrication and cooling. Torque capabilities compare favorably with those developed by positive displacement hydraulic motors.

  6. Controls of Hydraulic Wind Turbine

    Directory of Open Access Journals (Sweden)

    Zhang Yin

    2016-01-01

    Full Text Available In this paper a hydraulic wind turbine generator system was proposed based on analysis the current wind turbines technologies. The construction and principles were introduced. The mathematical model was verified using MATLAB and AMsim. A displacement closed loop of swash plate of motor and a speed closed loop of generator were setup, a PID control is introduced to maintain a constant speed and fixed frequency at wind turbine generator. Simulation and experiment demonstrated that the system can connect grid to generate electric and enhance reliability. The control system demonstrates a high performance speed regulation and effectiveness. The results are great significant to design a new type hydraulic wind turbine system.

  7. Hydraulic efficiency of a Rushton turbine impeller

    Science.gov (United States)

    Chara, Z.; Kysela, B.; Fort, I.

    2017-07-01

    Based on CFD simulations hydraulic efficiency of a standard Rushton turbine impeller in a baffled tank was determined at a Reynolds number of ReM=33330. Instantaneous values of pressure and velocity components were used to draw up the macroscopic balance of the mechanical energy. It was shown that the hydraulic efficiency of the Rushton turbine impeller (energy dissipated in a bulk volume) is about 57%. Using this result we estimated a length scale in a non-dimensional equation of kinetic energy dissipation rate in the bulk volume as L=D/2.62.

  8. Optimization of hydraulic turbine diffuser

    Directory of Open Access Journals (Sweden)

    Moravec Prokop

    2016-01-01

    Full Text Available Hydraulic turbine diffuser recovers pressure energy from residual kinetic energy on turbine runner outlet. Efficiency of this process is especially important for high specific speed turbines, where almost 50% of available head is utilized within diffuser. Magnitude of the coefficient of pressure recovery can be significantly influenced by designing its proper shape. Present paper focuses on mathematical shape optimization method coupled with CFD. First method is based on direct search Nelder-Mead algorithm, while the second method employs adjoint solver and morphing. Results obtained with both methods are discussed and their advantages/disadvantages summarized.

  9. Cavitation Erosion in Hydraulic Turbine Components and Mitigation by Coatings: Current Status and Future Needs

    Science.gov (United States)

    Singh, Raghuvir; Tiwari, S. K.; Mishra, Suman K.

    2012-07-01

    Cavitation erosion is a frequently observed phenomenon in underwater engineering materials and is the primary reason for component failure. The damage due to cavitation erosion is not yet fully understood, as it is influenced by several parameters, such as hydrodynamics, component design, environment, and material chemistry. This article gives an overview of the current state of understanding of cavitation erosion of materials used in hydroturbines, coatings and coating methodologies for combating cavitation erosion, and methods to characterize cavitation erosion. No single material property fully characterizes the resistance to cavitation erosion. The combination of ultimate resilience, hardness, and toughness rather may be useful to estimate the cavitation erosion resistance of material. Improved hydrodynamic design and appropriate surface engineering practices reduce damage due to cavitation erosion. The coatings suggested for combating the cavitation erosion encompasses carbides (WC Cr2C3, Cr3C2, 20CrC-80WC), cermets of different compositions (e.g., 56W2C/Ni/Cr, 41WC/Ni/Cr/Co), intermetallic composites, intermetallic matrix composites with TiC reinforcement, composite nitrides such as TiAlN and elastomers. A few of them have also been used commercially. Thermal spraying, arc plasma spraying, and high velocity oxy-fuel (HVOF) processes have been used commercially to apply the coatings. Boronizing, laser surface hardening and cladding, chemical vapor deposition, physical vapor deposition, and plasma nitriding have been tried for surface treatments at laboratory levels and have shown promise to be used on actual components.

  10. Turbine hydraulic assessment and optimization in rehabilitation projects

    International Nuclear Information System (INIS)

    Bornard, L; Debeissat, F; Labrecque, Y; Sabourin, M; Tomas, L

    2014-01-01

    As turbines age after years of operation, a major rehabilitation is needed to give new life. The owner has two choices: resetting the turbine to the original state or an upgrade with new hydraulic components designed and optimized using state of the art technology. The second solution is by far a more interesting option which can maximize the efficiency gain, increase the turbine capacity and revenues, eliminate cavitation erosion and the needs for repair, reduce the turbine instabilities and smooth unit regulation, and adapt the design to new operation conditions. This paper shows some aspects of the turbine hydraulic assessment and possible solutions to improve existing water passages

  11. Research of performance prediction to energy on hydraulic turbine

    International Nuclear Information System (INIS)

    Quan, H; Li, R N; Li, Q F; Han, W; Su, Q M

    2012-01-01

    Refer to the low specific speed Francis turbine blade design principle and double-suction pump structure. Then, design a horizontal double-channel hydraulic turbine Francis. Through adding different guide vane airfoil and and no guide vane airfoil on the hydraulic conductivity components to predict hydraulic turbine energy and using Fluent software to numerical simulation that the operating conditions and point. The results show that the blade pressure surface and suction surface pressure is low when the hydraulic turbine installation is added standard positive curvature of the guide vane and modified positive curvature of guide vane. Therefore, the efficiency of energy recovery is low. However, the pressure of negative curvature guide vane and symmetric guide vane added on hydraulic turbine installations is larger than that of the former ones, and it is conducive to working of runner. With the decreasing of guide vane opening, increasing of inlet angle, flow state gets significantly worse. Then, others obvious phenomena are that the reflux and horizontal flow appeared in blade pressure surface. At the same time, the vortex was formed in Leaf Road, leading to the loss of energy. Through analyzing the distribution of pressure, velocity, flow lines of over-current flow in the the back hydraulic conductivity components in above programs we can known that the hydraulic turbine installation added guide vane is more reasonable than without guide vanes, it is conducive to improve efficiency of energy conversion.

  12. Hydraulic Soft Yaw System for Multi MW Wind Turbines

    DEFF Research Database (Denmark)

    Stubkier, Søren

    energy and an increase in the loading of the wind turbine structure and components. This dissertation examines the hypothesis that there are advantages of basing a yaw system on hydraulic components instead of normal electrical components. This is done through a state of the art analysis followed...... in the wind turbine yaw system along with minor reductions in the blades and main shaft. Optimization of the damping and stiffness of the hydraulic soft yaw system have been conducted and an optimum found for load reduction. Linear control algorithms for control of damping pressure peaks have been developed...... the full turbine code in FAST, and the mathematical model of the hydraulic yaw system in Matlab/Simulink and Amesim is developed in order to analyze a full scale model of the hydraulic yaw system in combination with the implemented friction model for the yaw system. These results are also promising...

  13. Hydraulic Yaw System for Wind Turbines with New Compact Hydraulic Motor Principle

    DEFF Research Database (Denmark)

    Sørensen, Rasmus Mørk; Hansen, Michael Rygaard; Mouritsen, Ole Ø.

    2011-01-01

    This paper presents a new hydraulic yaw system for wind turbines. The basic component is a new type of hydraulic motor characterized by an extraordinary high specific displacement yielding high output torque in a compact form. The focus in the paper is the volumetric efficiency of the motor, which...

  14. Multimodel Robust Control for Hydraulic Turbine

    OpenAIRE

    Osuský, Jakub; Števo, Stanislav

    2014-01-01

    The paper deals with the multimodel and robust control system design and their combination based on M-Δ structure. Controller design will be done in the frequency domain with nominal performance specified by phase margin. Hydraulic turbine model is analyzed as system with unstructured uncertainty, and robust stability condition is included in controller design. Multimodel and robust control approaches are presented in detail on hydraulic turbine model. Control design approaches are compared a...

  15. Review of fluid and control technology of hydraulic wind turbines

    Science.gov (United States)

    Cai, Maolin; Wang, Yixuan; Jiao, Zongxia; Shi, Yan

    2017-09-01

    This study examines the development of the fluid and control technology of hydraulic wind turbines. The current state of hydraulic wind turbines as a new technology is described, and its basic fluid model and typical control method are expounded by comparing various study results. Finally, the advantages of hydraulic wind turbines are enumerated. Hydraulic wind turbines are expected to become the main development direction of wind turbines.

  16. Review of fluid and control technology of hydraulic wind turbines

    Institute of Scientific and Technical Information of China (English)

    Maolin CAI; Yixuan WANG; Zongxia JIAO; Yan SHI

    2017-01-01

    This study examines the development of the fluid and control technology of hydraulic wind turbines.The current state of hydraulic wind turbines as a new technology is described,and its basic fluid model and typical control method are expounded by comparing various study results.Finally,the advantages of hydraulic wind turbines are enumerated.Hydraulic wind turbines are expected to become the main development direction of wind turbines.

  17. Hydraulic design of Three Gorges right bank powerhouse turbine for improvement of hydraulic stability

    International Nuclear Information System (INIS)

    Shi, Q

    2010-01-01

    This paper presents the hydraulic design of Three Gorges Right Bank Powerhouse turbine for improvement of hydraulic stability. The technical challenges faced in the hydraulic design of the turbine are given. The method of hydraulic design for improving the hydraulic stability and particularly for eliminating the upper part load pressure pulsations is clarified. The final hydraulic design results of Three Gorges Right Bank Powerhouse turbine based on modern hydraulic design techniques are presented.

  18. Hydraulic design of Three Gorges right bank powerhouse turbine for improvement of hydraulic stability

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Q, E-mail: qhshi@dfem.com.c [Dong Fang Electrical Machinery Co., Ltd., DEC 188, Huanghe West Road, Deyang, 618000 (China)

    2010-08-15

    This paper presents the hydraulic design of Three Gorges Right Bank Powerhouse turbine for improvement of hydraulic stability. The technical challenges faced in the hydraulic design of the turbine are given. The method of hydraulic design for improving the hydraulic stability and particularly for eliminating the upper part load pressure pulsations is clarified. The final hydraulic design results of Three Gorges Right Bank Powerhouse turbine based on modern hydraulic design techniques are presented.

  19. Sprayed skin turbine component

    Science.gov (United States)

    Allen, David B

    2013-06-04

    Fabricating a turbine component (50) by casting a core structure (30), forming an array of pits (24) in an outer surface (32) of the core structure, depositing a transient liquid phase (TLP) material (40) on the outer surface of the core structure, the TLP containing a melting-point depressant, depositing a skin (42) on the outer surface of the core structure over the TLP material, and heating the assembly, thus forming both a diffusion bond and a mechanical interlock between the skin and the core structure. The heating diffuses the melting-point depressant away from the interface. Subsurface cooling channels (35) may be formed by forming grooves (34) in the outer surface of the core structure, filling the grooves with a fugitive filler (36), depositing and bonding the skin (42), then removing the fugitive material.

  20. A new bladeless hydraulic turbine

    Czech Academy of Sciences Publication Activity Database

    Beran, V.; Sedláček, M.; Maršík, František

    2013-01-01

    Roč. 104, APR 2013 (2013), s. 978-983 ISSN 0306-2619 R&D Projects: GA ČR GAP201/10/0357 Institutional research plan: CEZ:AV0Z20760514 Institutional support: RVO:61388998 Keywords : rolling turbine * low head hydro power * stability of flow Subject RIV: BK - Fluid Dynamics Impact factor: 5.261, year: 2013 http://dx.doi.org/10.1016/j.apenergy.2012.12.016

  1. Experience in small hydropower indigenous manufacture of mini hydraulic turbines

    Energy Technology Data Exchange (ETDEWEB)

    Luo Gao Rong [Organization of the United Nations, Beijing (China). International Centre of Small Hydropowers

    1995-07-01

    This document reports the China experience with fabrication of mini hydraulic turbines for small hydroelectric power plants. The document presents the necessity of indigenous manufacture for MHP equipment, the standardized and serialized production, the planning of the series of turbines, the manufacturing of turbine runners, and as a case study the basic conditions for manufacturing MHP turbines.

  2. Detection of cavitation in hydraulic turbines

    Science.gov (United States)

    Escaler, Xavier; Egusquiza, Eduard; Farhat, Mohamed; Avellan, François; Coussirat, Miguel

    2006-05-01

    An experimental investigation has been carried out in order to evaluate the detection of cavitation in actual hydraulic turbines. The methodology is based on the analysis of structural vibrations, acoustic emissions and hydrodynamic pressures measured in the machine. The proposed techniques have been checked in real prototypes suffering from different types of cavitation. In particular, one Kaplan, two Francis and one Pump-Turbine have been investigated in the field. Additionally, one Francis located in a laboratory has also been tested. First, a brief description of the general features of cavitation phenomenon is given as well as of the main types of cavitation occurring in hydraulic turbines. The work presented here is focused on the most important ones which are the leading edge cavitation due to its erosive power, the bubble cavitation because it affects the machine performance and the draft tube swirl that limits the operation stability. Cavitation detection is based on the previous understanding of the cavity dynamics and its location inside the machine. This knowledge has been gained from flow visualisations and measurements in laboratory devices such as a high-speed cavitation tunnel and a reduced scale turbine test rig. The main techniques are the study of the high frequency spectral content of the signals and of their amplitude demodulation for a given frequency band. Moreover, low frequency spectral content can also be used in certain cases. The results obtained for the various types of cavitation found in the selected machines are presented and discussed in detail in the paper. Conclusions are drawn about the best sensor, measuring location, signal processing and analysis for each type of cavitation, which serve to validate and to improve the detection techniques.

  3. Pump Application as Hydraulic Turbine – Pump as Turbine (PaT)

    OpenAIRE

    Rusovs, D

    2009-01-01

    The paper considers pump operation as hydraulic turbine with purpose to produce mechanical power from liquid flow. The Francis hydraulic turbine was selected for comparison with centrifugal pump in reverse operation. Turbine and centrifugal pump velocity triangles were considered with purpose to evaluate PaT efficiency. Shape of impeller blades for turbine and pumps was analysed. Specific speed calculation is carried out with purpose to obtain similarity in pump and turbine description. For ...

  4. Efficiency limit factor analysis for the Francis-99 hydraulic turbine

    Science.gov (United States)

    Zeng, Y.; Zhang, L. X.; Guo, J. P.; Guo, Y. K.; Pan, Q. L.; Qian, J.

    2017-01-01

    The energy loss in hydraulic turbine is the most direct factor that affects the efficiency of the hydraulic turbine. Based on the analysis theory of inner energy loss of hydraulic turbine, combining the measurement data of the Francis-99, this paper calculates characteristic parameters of inner energy loss of the hydraulic turbine, and establishes the calculation model of the hydraulic turbine power. Taken the start-up test conditions given by Francis-99 as case, characteristics of the inner energy of the hydraulic turbine in transient and transformation law are researched. Further, analyzing mechanical friction in hydraulic turbine, we think that main ingredients of mechanical friction loss is the rotation friction loss between rotating runner and water body, and defined as the inner mechanical friction loss. The calculation method of the inner mechanical friction loss is given roughly. Our purpose is that explore and research the method and way increasing transformation efficiency of water flow by means of analysis energy losses in hydraulic turbine.

  5. MODEL TESTING OF LOW PRESSURE HYDRAULIC TURBINE WITH HIGHER EFFICIENCY

    Directory of Open Access Journals (Sweden)

    V. K. Nedbalsky

    2007-01-01

    Full Text Available A design of low pressure turbine has been developed and it is covered by an invention patent and a useful model patent. Testing of the hydraulic turbine model has been carried out when it was installed on a vertical shaft. The efficiency was equal to 76–78 % that exceeds efficiency of the known low pressure blade turbines

  6. Power Generation from Sewage by a Micro-Hydraulic Turbine

    OpenAIRE

    Tomomi Uchiyama; Tomoko Okayama; Yukio Ide

    2016-01-01

    This study is concerned with the development of a micro-hydraulic turbine for power generation installed in sewer pipes. The runner has a circular hollow around the central (rotating) axis so that solid materials included in water can be easily flow through the runner without blocking the turbine. The laboratory experiments are also conducted. The hollow is very effective to make polyester fibers pass through the turbine. The guide vane is useful to heighten the turbine performance. But it is...

  7. Optimization of hydraulic turbine governor parameters based on WPA

    Science.gov (United States)

    Gao, Chunyang; Yu, Xiangyang; Zhu, Yong; Feng, Baohao

    2018-01-01

    The parameters of hydraulic turbine governor directly affect the dynamic characteristics of the hydraulic unit, thus affecting the regulation capacity and the power quality of power grid. The governor of conventional hydropower unit is mainly PID governor with three adjustable parameters, which are difficult to set up. In order to optimize the hydraulic turbine governor, this paper proposes wolf pack algorithm (WPA) for intelligent tuning since the good global optimization capability of WPA. Compared with the traditional optimization method and PSO algorithm, the results show that the PID controller designed by WPA achieves a dynamic quality of hydraulic system and inhibits overshoot.

  8. ESRC guide vanes of hydraulic turbine for Three Gorges project

    Directory of Open Access Journals (Sweden)

    Rui CHEN

    2005-05-01

    Full Text Available The mechanical properties and internal quality of low carbon martensite Electroslag Remelting Casting (ESRCstainless steel castings are superior to that of sand casting ones. The key technologies for the equipments and ESRC processes have been resolved during the experimental research period of guide vanes of hydraulic turbines for Three Gorges project. And ESRC guide vanes of hydraulic turbines for Three Gorges project have been produced successfully.

  9. Design and Experimental Validation of Hydraulic Yaw System for Multi MW Wind Turbine

    DEFF Research Database (Denmark)

    Stubkier, Søren; Pedersen, Henrik C.; Andersen, Torben Ole

    2013-01-01

    market. A hydraulic yaw system is such a new technology, and so a mathematical model of the full scale system and test rig system is derived and compared to measurements from the system. This is done in order to have a validated model, which wind turbine manufacturers may use for test in their simulation......To comply with the increasing demands for life time and reliability of wind turbines as these grow in size, new measures needs to be taken in the design of wind turbines and components hereof. One critical point is the initial testing of the components and systems before they are implemented...... in an actual turbine. Full scale hardware testing is both extremely expensive and time consuming, and so the wind turbine industry moves more towards simulations when testing. In order to meet these demands it is necessary with valid models of systems in order to introduce new technologies to the wind turbine...

  10. Turbine repair process, repaired coating, and repaired turbine component

    Science.gov (United States)

    Das, Rupak; Delvaux, John McConnell; Garcia-Crespo, Andres Jose

    2015-11-03

    A turbine repair process, a repaired coating, and a repaired turbine component are disclosed. The turbine repair process includes providing a turbine component having a higher-pressure region and a lower-pressure region, introducing particles into the higher-pressure region, and at least partially repairing an opening between the higher-pressure region and the lower-pressure region with at least one of the particles to form a repaired turbine component. The repaired coating includes a silicon material, a ceramic matrix composite material, and a repaired region having the silicon material deposited on and surrounded by the ceramic matrix composite material. The repaired turbine component a ceramic matrix composite layer and a repaired region having silicon material deposited on and surrounded by the ceramic matrix composite material.

  11. Performance and safety of hydraulic turbines

    International Nuclear Information System (INIS)

    Brekke, H

    2010-01-01

    The first part of the paper contains the choice of small turbines for run of the river power plants. Then a discussion is given on the optimization of the performance of different types of large turbines. Finally a discussion on the safety and necessary maintenance of turbines is given with special attention to bolt connections.

  12. Application study of magnetic fluid seal in hydraulic turbine

    International Nuclear Information System (INIS)

    Yu, Z Y; Zhang, W

    2012-01-01

    The waterpower resources of our country are abundant, and the hydroelectric power is developed, but at present the main shaft sealing device of hydraulic turbine is easy to wear and tear and the leakage is great. The magnetic fluid seal has the advantages of no contact, no wear, self-healing, long life and so on. In this paper, the magnetic fluid seal would be used in the main shaft of hydraulic turbine, the sealing structure was built the model, meshed the geometry, applied loads and solved by using MULTIPHYSICS in ANSYS software, the influence of the various sealing structural parameters such as tooth width, height, slot width, sealing gap on the sealing property were analyzed, the magnetic fluid sealing device suitable for large-diameter shaft and sealing water was designed, the sealing problem of the hydraulic turbine main shaft was solved effectively which will bring huge economic benefits.

  13. ANALYTICAL EVALUATION OF CRACK PROPAGATION FOR BULB HYDRAULIC TURBINES SHAFTS

    Directory of Open Access Journals (Sweden)

    Mircea O. POPOVICU

    2011-05-01

    Full Text Available The Hydroelectric Power Plants uses the regenerating energy of rivers. The hydraulic Bulb turbines running with low heads are excellent alternative energy sources. The shafts of these units present themselves as massive pieces, with cylindrical shape, manufactured from low-alloyed steels. The paper analyses the fatigue cracks occurring at some turbines in the neighbourhood of the connection zone between the shaft and the turbine runner flange. To obtain the tension state in this zone ANSIS and AFGROW computing programs were used. The number of running hours until the piercing of the shaft wall is established as a useful result.

  14. Hydraulic turbines uses for rural electric generation

    International Nuclear Information System (INIS)

    Genta, J.; Nunes, V.

    1994-01-01

    The micro turbines use for electric generation either in autonomous systems or in connection to the national net is presented like an alternative whose viability has been studied in the Agreement taken place between the UTE Administracion Nacional de Usinas y transmisiones Electricas y la Facultad de Ingenieria. The Agreement S tudy for the Installation of Micro turbines that initially considered areas far from the national electric net it extended then to near areas to the same one to analyze the cogeneration alternative. They were considered smaller and bigger powers than 1 MW and up to 5MW. For the whole study range a methodology is described of calculate primary, starting from a minimum of field information that allows a first estimate of viability of a certain place and the selection of the turbine type, for a later detailed study

  15. Fixed-Time Stability of the Hydraulic Turbine Governing System

    Directory of Open Access Journals (Sweden)

    Caoyuan Ma

    2018-01-01

    Full Text Available This paper studies the problem of fixed-time stability of hydraulic turbine governing system with the elastic water hammer nonlinear model. To control and improve the quality of hydraulic turbine governing system, a new fixed-time control strategy is proposed, which can stabilize the water turbine governing system within a fixed time. Compared with the finite-time control strategy where the convergence rate depends on the initial state, the settling time of the fixed-time control scheme can be adjusted to the required value regardless of the initial conditions. Finally, we numerically show that the fixed-time control is more effective than and superior to the finite-time control.

  16. Robust Control Analysis of Hydraulic Turbine Speed

    Science.gov (United States)

    Jekan, P.; Subramani, C.

    2018-04-01

    An effective control strategy for the hydro-turbine governor in time scenario is adjective for this paper. Considering the complex dynamic characteristic and the uncertainty of the hydro-turbine governor model and taking the static and dynamic performance of the governing system as the ultimate goal, the designed logic combined the classical PID control theory with artificial intelligence used to obtain the desired output. The used controller will be a variable control techniques, therefore, its parameters can be adaptively adjusted according to the information about the control error signal.

  17. Extensive use of computational fluid dynamics in the upgrading of hydraulic turbines

    Energy Technology Data Exchange (ETDEWEB)

    Sabourin, M.; Eremeef, R.; De Henau, V.

    1995-12-31

    Computational fluid dynamics codes, based on turbulent Navier-Stokes equations, allow evaluation of the hydraulic losses of each turbine component with precision. Using those codes with the new generation of computers enables a wide variety of component geometries to be modelled and compared to the original designs under flow conditions obtained from testing, at a reasonable cost and in a relatively short time. This paper reviews the actual method used in the design of a solution to a turbine rehabilitation project involving runner replacement, redesign of upstream components (stay vanes and wicket gates), and downstream components (draft tubes and runner outlets). The paper shows how computational fluid dynamics can help hydraulic engineers to obtain valuable information not only on performance enhancement but also on the phenomena that produce the enhancement, and to reduce the variety of modifications to be tested.

  18. Hydraulic pitch control system for wind turbines: Advanced modeling and verification of an hydraulic accumulator

    DEFF Research Database (Denmark)

    Irizar, Victor; Andreasen, Casper Schousboe

    2017-01-01

    Hydraulic pitch systems provide robust and reliable control of power and speed of modern wind turbines. During emergency stops, where the pitch of the blades has to be taken to a full stop position to avoid over speed situations, hydraulic accumulators play a crucial role. Their efficiency...... and capability of providing enough energy to rotate the blades is affected by thermal processes due to the compression and decompression of the gas chamber. This paper presents an in depth study of the thermodynamical processes involved in an hydraulic accumulator during operation, and how they affect the energy...

  19. 3D numerical simulation of transient processes in hydraulic turbines

    International Nuclear Information System (INIS)

    Cherny, S; Chirkov, D; Lapin, V; Eshkunova, I; Bannikov, D; Avdushenko, A; Skorospelov, V

    2010-01-01

    An approach for numerical simulation of 3D hydraulic turbine flows in transient operating regimes is presented. The method is based on a coupled solution of incompressible RANS equations, runner rotation equation, and water hammer equations. The issue of setting appropriate boundary conditions is considered in detail. As an illustration, the simulation results for runaway process are presented. The evolution of vortex structure and its effect on computed runaway traces are analyzed.

  20. Hydrodynamics automatic optimization of runner blades for reaction hydraulic turbines

    Science.gov (United States)

    Balint, D.; Câmpian, V.; Nedelcu, D.; Megheles, O.

    2012-11-01

    The aim of this paper is to optimize the hydrodynamics of the runner blades of hydraulic turbines. The runner presented is an axial Kaplan one, but the methodology is common also to Francis runners. The whole methodology is implemented in the in-house software QTurbo3D. The effect of the runner blades geometry modification upon its hydrodynamics is shown both from energetic and cavitation points of view.

  1. Hydrodynamics automatic optimization of runner blades for reaction hydraulic turbines

    International Nuclear Information System (INIS)

    Balint, D; Câmpian, V; Nedelcu, D; Megheles, O

    2012-01-01

    The aim of this paper is to optimize the hydrodynamics of the runner blades of hydraulic turbines. The runner presented is an axial Kaplan one, but the methodology is common also to Francis runners. The whole methodology is implemented in the in-house software QTurbo3D. The effect of the runner blades geometry modification upon its hydrodynamics is shown both from energetic and cavitation points of view.

  2. 3D numerical simulation of transient processes in hydraulic turbines

    Science.gov (United States)

    Cherny, S.; Chirkov, D.; Bannikov, D.; Lapin, V.; Skorospelov, V.; Eshkunova, I.; Avdushenko, A.

    2010-08-01

    An approach for numerical simulation of 3D hydraulic turbine flows in transient operating regimes is presented. The method is based on a coupled solution of incompressible RANS equations, runner rotation equation, and water hammer equations. The issue of setting appropriate boundary conditions is considered in detail. As an illustration, the simulation results for runaway process are presented. The evolution of vortex structure and its effect on computed runaway traces are analyzed.

  3. Performance of nano-hydraulic turbine utilizing waterfalls

    Energy Technology Data Exchange (ETDEWEB)

    Ikeda, Toshihiko; Iio, Shouichiro; Tatsuno, Kenji [Faculty of Engineering, Shinshu University, 4-17-1 Wakasato, Nagano, 380-8553 (Japan)

    2010-01-15

    The aim of this investigation was to develop an environmentally friendly nano-hydraulic turbine utilizing waterfalls. A model of an impulse type hydraulic turbine constructed and tested with an indoor type waterfall to arrive at an optimum installation condition. Effects of an installation parameter, namely distance between the rotor and the waterfall on the power performance were studied. The flow field around the rotor was examined visually to clarify influences of installation conditions on the flow field. The flow visualization showed differences of flow pattern around the rotor by the change of flow rate and rotational speed of the rotor. From this study it was found that the power performances of the rotor were changed with the distance between the rotor and the waterfalls. The maximum power coefficient of this turbine is approximately 60%. Also, to respond to changes in the waterfall flow rate, we placed a flat plate on the upper side of the rotor to control the water flow direction. As a result, we found that the coefficient of this turbine is increased with the flow rate and power could be obtained even when the flow rate changed by 3.5 times if the plate was placed on the upper side of the rotor. Although the power coefficient decreased when the plate was installed, the power coefficient still is from 53 to 58%. (author)

  4. Probabilistic Modeling of Wind Turbine Drivetrain Components

    DEFF Research Database (Denmark)

    Rafsanjani, Hesam Mirzaei

    Wind energy is one of several energy sources in the world and a rapidly growing industry in the energy sector. When placed in offshore or onshore locations, wind turbines are exposed to wave excitations, highly dynamic wind loads and/or the wakes from other wind turbines. Therefore, most components...... in a wind turbine experience highly dynamic and time-varying loads. These components may fail due to wear or fatigue, and this can lead to unplanned shutdown repairs that are very costly. The design by deterministic methods using safety factors is generally unable to account for the many uncertainties. Thus......, a reliability assessment should be based on probabilistic methods where stochastic modeling of failures is performed. This thesis focuses on probabilistic models and the stochastic modeling of the fatigue life of the wind turbine drivetrain. Hence, two approaches are considered for stochastic modeling...

  5. Advanced technology for aero gas turbine components

    Energy Technology Data Exchange (ETDEWEB)

    1987-09-01

    The Symposium is aimed at highlighting the development of advanced components for new aero gas turbine propulsion systems in order to provide engineers and scientists with a forum to discuss recent progress in these technologies and to identify requirements for future research. Axial flow compressors, the operation of gas turbine engines in dust laden atmospheres, turbine engine design, blade cooling, unsteady gas flow through the stator and rotor of a turbomachine, gear systems for advanced turboprops, transonic blade design and the development of a plenum chamber burner system for an advanced VTOL engine are among the topics discussed.

  6. A Feasibility Study of Power Generation from Sewage Using a Hollowed Pico-Hydraulic Turbine

    OpenAIRE

    Tomomi Uchiyama; Satoshi Honda; Tomoko Okayama; Tomohiro Degawa

    2016-01-01

    This study is concerned with the feasibility of power generation using a pico-hydraulic turbine from sewage flowing in pipes. First, the sewage flow rate at two connection points to the Toyogawa River-Basin Sewerage, Japan, was explored for over a year to elucidate the hydraulic energy potential of the sewage. Second, the performance of the pico-hydraulic turbine was investigated via laboratory experiments that supposed the turbine to be installed in the sewage pipe at the connection points. ...

  7. Effects of draft tube on the hydraulic performance of a Francis turbine

    International Nuclear Information System (INIS)

    Jeon, J H; Byeon, S S; Kim, Y J

    2013-01-01

    The draft tube is an important component of a Francis turbine which influences the hydraulic performance. It is located just under the runner and allowed to decelerate the flow velocity exiting the runner, thereby converting the excess of kinetic energy into static pressure. In this study, we have numerically investigated the hydraulic performance of a Francis turbine on the 15MW hydropower generation with various design parameters (three types of draft tube, thickness of guide vane) through a three-dimensional numerical method with the SST turbulent model. The vortex rope characteristics of the draft tube were confirmed. The results of the vortex flow fields and flow characteristics were graphically depicted with different design parameters and operating conditions

  8. Stochastic Modeling Of Wind Turbine Drivetrain Components

    DEFF Research Database (Denmark)

    Rafsanjani, Hesam Mirzaei; Sørensen, John Dalsgaard

    2014-01-01

    reliable components are needed for wind turbine. In this paper focus is on reliability of critical components in drivetrain such as bearings and shafts. High failure rates of these components imply a need for more reliable components. To estimate the reliability of these components, stochastic models...... are needed for initial defects and damage accumulation. In this paper, stochastic models are formulated considering some of the failure modes observed in these components. The models are based on theoretical considerations, manufacturing uncertainties, size effects of different scales. It is illustrated how...

  9. Study on an Axial Flow Hydraulic Turbine with Collection Device

    Directory of Open Access Journals (Sweden)

    Yasuyuki Nishi

    2014-01-01

    Full Text Available We propose a new type of portable hydraulic turbine that uses the kinetic energy of flow in open channels. The turbine comprises a runner with an appended collection device that includes a diffuser section in an attempt to improve the output by catching and accelerating the flow. With such turbines, the performance of the collection device, and a composite body comprising the runner and collection device were studied using numerical analysis. Among four stand-alone collection devices, the inlet velocity ratio was most improved by the collection device featuring an inlet nozzle and brim. The inlet velocity ratio of the composite body was significantly lower than that of the stand-alone collection device, owing to the resistance of the runner itself, the decreased diffuser pressure recovery coefficient, and the increased backpressure coefficient. However, at the maximum output tip speed ratio, the inlet velocity ratio and the loading coefficient were approximately 31% and 22% higher, respectively, for the composite body than for the isolated runner. In particular, the input power coefficient significantly increased (by approximately 2.76 times owing to the increase in the inlet velocity ratio. Verification tests were also conducted in a real canal to establish the actual effectiveness of the turbine.

  10. Detection of cavitation vortex in hydraulic turbines using acoustic techniques

    International Nuclear Information System (INIS)

    Candel, I; Ioana, C; Bunea, F; Politehnica University of Bucharest (Romania))" data-affiliation=" (Power Engineering Faculty, Politehnica University of Bucharest (Romania))" >Dunca, G; Politehnica University of Bucharest (Romania))" data-affiliation=" (Power Engineering Faculty, Politehnica University of Bucharest (Romania))" >Bucur, D M; Division Technique Générale, Grenoble (France))" data-affiliation=" (Electricité de France, Division Technique Générale, Grenoble (France))" >Reeb, B; Ciocan, G D

    2014-01-01

    Cavitation phenomena are known for their destructive capacity in hydraulic machineries and are caused by the pressure decrease followed by an implosion when the cavitation bubbles find an adverse pressure gradient. A helical vortex appears in the turbine diffuser cone at partial flow rate operation and can be cavitating in its core. Cavity volumes and vortex frequencies vary with the under-pressure level. If the vortex frequency comes close to one of the eigen frequencies of the turbine, a resonance phenomenon may occur, the unsteady fluctuations can be amplified and lead to important turbine and hydraulic circuit damage. Conventional cavitation vortex detection techniques are based on passive devices (pressure sensors or accelerometers). Limited sensor bandwidths and low frequency response limit the vortex detection and characterization information provided by the passive techniques. In order to go beyond these techniques and develop a new active one that will remove these drawbacks, previous work in the field has shown that techniques based on acoustic signals using adapted signal content to a particular hydraulic situation, can be more robust and accurate. The cavitation vortex effects in the water flow profile downstream hydraulic turbines runner are responsible for signal content modifications. Basic signal techniques use narrow band signals traveling inside the flow from an emitting transducer to a receiving one (active sensors). Emissions of wide band signals in the flow during the apparition and development of the vortex embeds changes in the received signals. Signal processing methods are used to estimate the cavitation apparition and evolution. Tests done in a reduced scale facility showed that due to the increasing flow rate, the signal -- vortex interaction is seen as modifications on the received signal's high order statistics and bandwidth. Wide band acoustic transducers have a higher dynamic range over mechanical elements; the system

  11. Development and industrial tests of the first LNG hydraulic turbine system in China

    Directory of Open Access Journals (Sweden)

    Jie Chen

    2016-10-01

    Full Text Available The cryogenic hydraulic turbine can be used to replace the conventional J–T valve for LNG or mixed refrigerant throttling and depressurization in a natural gas liquefaction plant. This advanced technology is not only to enhance the efficiency of the liquefaction plant, but to usher a new trend in the development of global liquefaction technologies. China has over 136 liquefaction plants, but the cryogenic hydraulic turbines have not been deployed in industrial utilization. In addition, these turbines cannot be manufactured domestically. In this circumstance, through working on the key technologies for LNG hydraulic turbine process & control system development, hydraulic model optimization design, structure design and manufacturing, the first domestic cryogenic hydraulic turbine with a flow rate of 40 m3/h was developed to recover the pressure energy from the LNG of cold box. The turbine was installed in the CNOOC Zhuhai Natural Gas Liquefaction Plant for industrial tests under multiple working conditions, including start-stop, variable flow rates and variable rotation speeds. Test results show that the domestic LNG cryogenic hydraulic turbine has satisfactory mechanical and operational performances at low temperatures as specified in design. In addition, the process & control system and frequency-conversion power-generation system of the turbine system are designed properly to automatically and smoothly replace the existing LNG J–T valve. As a result, the domestic LNG cryogenic hydraulic turbine system can improve LNG production by an average of 2% and generate power of 8.3 kW.

  12. Performance of nickel base superalloy components in gas turbines

    DEFF Research Database (Denmark)

    Dahl, Kristian Vinter

    2006-01-01

    The topic of this thesis is the microstructural behaviour of hot section components in the industrial gas turbine......The topic of this thesis is the microstructural behaviour of hot section components in the industrial gas turbine...

  13. Control design and optimization for the DOT500 hydraulic wind turbine

    NARCIS (Netherlands)

    Mulders, S.P.; Jager, Stéphane; Diepeveen, N.F.B.; van Wingerden, J.W.

    2017-01-01

    The drivetrain of most wind turbines currently being deployed commercially consists of a rotor-gearboxgenerator configuration in the nacelle. This abstract introduces the control system design and optimization for a wind turbine with a hydraulic drivetrain, based on the Delft Offshore Turbine (DOT)

  14. Computational and experimental study of effects of sediment shape on erosion of hydraulic turbines

    International Nuclear Information System (INIS)

    Poudel, L; Thapa, B; Shrestha, B P; Thapa, B S; Shrestha, K P; Shrestha, N K

    2012-01-01

    Hard particles as Quartz and Feldspar are present in large amount in most of the rivers across the Himalayan basins. In run-off-river hydro power plants these particles find way to turbine and cause its components to erode. Loss of turbine material due to the erosion and subsequent change in flow pattern induce several operational and maintenance problems in the power plants. Reduction in overall efficiency, vibrations and reduced life of turbine components are the major effects of sediment erosion of hydraulic turbines. Sediment erosion of hydraulic turbines is a complex phenomenon and depends upon several factors. One of the most influencing parameter is the characteristics of sediment particles. Quantity of sediment particles, which are harder than the turbine material, is one of the bases to indicate erosion potential of a particular site. Research findings have indicated that shape and size of the hard particles together with velocity of impact play a major role to decide the mode and rate of erosion in turbine components. It is not a common practice in Himalayan basins to conduct a detail study of sediment characteristics as a part of feasibility study for hydropower projects. Lack of scientifically verified procedures and guidelines to conduct the sediment analysis to estimate its erosion potential is one of the reasons to overlook this important part of feasibility study. Present study has been conducted by implementing computational tools to characterize the sediment particles with respect to their shape and size. Experimental studies have also been done to analyze the effects of different combinations of shape and size of hard particles on turbine material. Efforts have also been given to develop standard procedures to conduct similar study to compare erosion potential between different hydropower sites. Digital image processing software and sieve analyzer have been utilized to extract shape and size of sediment particles from the erosion sensitive power

  15. Model with Peach Bottom Turbine trip and thermal-Hydraulic code TRACE V5P3

    International Nuclear Information System (INIS)

    Mesado, C.; Miro, R.; Barrachina, T.; Verdu, G.

    2014-01-01

    This work is the continuation of the work presented previously in the thirty-ninth meeting annual of the Spanish Nuclear society. The semi-automatic translation of the Thermo-hydraulic model TRAC-BF1 Peach Bottom Turbine Trip to TRACE was presented in such work. This article is intended to validate the model obtained in TRACE, why compare the model results result from the translation with the Benchmark results: NEA/OECD BWR Peach Bottom Turbine Trip (PBTT), in particular is of the extreme scenario 2 of exercise 3, in which there is SCRAM in the reactor. Among other data present in the (transitional) Benchmark , are: total power, axial profile of power, pressure Dome, total reactivity and its components. (Author)

  16. Experimental and Numerical Simulations Predictions Comparison of Power and Efficiency in Hydraulic Turbine

    Directory of Open Access Journals (Sweden)

    Laura Castro

    2011-01-01

    Full Text Available On-site power and mass flow rate measurements were conducted in a hydroelectric power plant (Mexico. Mass flow rate was obtained using Gibson's water hammer-based method. A numerical counterpart was carried out by using the commercial CFD software, and flow simulations were performed to principal components of a hydraulic turbine: runner and draft tube. Inlet boundary conditions for the runner were obtained from a previous simulation conducted in the spiral case. The computed results at the runner's outlet were used to conduct the subsequent draft tube simulation. The numerical results from the runner's flow simulation provided data to compute the torque and the turbine's power. Power-versus-efficiency curves were built, and very good agreement was found between experimental and numerical data.

  17. Study on the application of energy storage system in offshore wind turbine with hydraulic transmission

    International Nuclear Information System (INIS)

    Fan, Yajun; Mu, Anle; Ma, Tao

    2016-01-01

    Highlights: • Hydraulic offshore wind turbine is capable of outputting near constant power. • Open loop hydraulic transmission uses seawater as the working fluid. • Linear control strategy distributes total flow according to demand and supply. • Constant pressure hydraulic accumulator stores/releases the surplus energy. • Simulations show the dynamic performance of the hybrid system. - Abstract: A novel offshore wind turbine comprising fluid power transmission and energy storage system is proposed. In this wind turbine, the conventional mechanical transmission is replaced by an open-loop hydraulic system, in which seawater is sucked through a variable displacement pump in nacelle connected directly with the rotor and utilized to drive a Pelton turbine installed on the floating platform. Aiming to smooth and stabilize the output power, an energy storage system with the capability of flexible charging and discharging is applied. The related mathematical model is developed, which contains some sub-models that are categorized as the wind turbine rotor, hydraulic pump, transmission pipeline, proportional valve, accumulator and hydraulic turbine. A linear control strategy is adopted to distribute the flow out of the proportional valve through comparing the demand power with captured wind energy by hydraulic pump. Ultimately, two time domain simulations demonstrate the operation of the hybrid system when the hydraulic accumulator is utilized and show how this system can be used for load leveling and stabilizing the output power.

  18. Strain gauge measurement uncertainties on hydraulic turbine runner blade

    International Nuclear Information System (INIS)

    Arpin-Pont, J; Gagnon, M; Tahan, S A; Coutu, A; Thibault, D

    2012-01-01

    Strains experimentally measured with strain gauges can differ from those evaluated using the Finite Element (FE) method. This difference is due mainly to the assumptions and uncertainties inherent to each method. To circumvent this difficulty, we developed a numerical method based on Monte Carlo simulations to evaluate measurement uncertainties produced by the behaviour of a unidirectional welded gauge, its position uncertainty and its integration effect. This numerical method uses the displacement fields of the studied part evaluated by an FE analysis. The paper presents a study case using in situ data measured on a hydraulic turbine runner. The FE analysis of the turbine runner blade was computed, and our numerical method used to evaluate uncertainties on strains measured at five locations with welded strain gauges. Then, measured strains and their uncertainty ranges are compared to the estimated strains. The uncertainty ranges obtained extended from 74 με to 165 με. Furthermore, the biases observed between the median of the uncertainty ranges and the FE strains varied from −36 to 36 με. Note that strain gauge measurement uncertainties depend mainly on displacement fields and gauge geometry.

  19. Hydraulic optimization of 'S' characteristics of the pump-turbine for Xianju pumped storage plant

    International Nuclear Information System (INIS)

    Liu, W C; Zheng, J S; Cheng, J; Shi, Q H

    2012-01-01

    The pump-turbine with a rated power capacity of 375MW each at Xianju pumped storage plant is the most powerful one under construction in China. In order to avoid the instability near no-load conditions, the hydraulic design of the pump-turbine has been optimized to improving the 'S' characteristic in the development of the model pump-turbine. This paper presents the cause of 'S' characteristic of a pump-turbine by CFD simulation of the internal flow. Based on the CFD analysis, the hydraulic design optimization of the pump-turbine was carried out to eliminate the 'S' characteristics of the machine at Xianju pumped storage plant and a big step for removing the 'S' characteristic of a pump-turbine has been obtained. The model test results demonstrate that the pump-turbine designed for Xianju pumped storage plant can smoothly operate near no-load conditions without an addition of misaligned guide vanes.

  20. Process management using component thermal-hydraulic function classes

    Science.gov (United States)

    Morman, J.A.; Wei, T.Y.C.; Reifman, J.

    1999-07-27

    A process management expert system where following malfunctioning of a component, such as a pump, for determining system realignment procedures such as for by-passing the malfunctioning component with on-line speeds to maintain operation of the process at full or partial capacity or to provide safe shut down of the system while isolating the malfunctioning component. The expert system uses thermal-hydraulic function classes at the component level for analyzing unanticipated as well as anticipated component malfunctions to provide recommended sequences of operator actions. Each component is classified according to its thermal-hydraulic function, and the generic and component-specific characteristics for that function. Using the diagnosis of the malfunctioning component and its thermal hydraulic class, the expert system analysis is carried out using generic thermal-hydraulic first principles. One aspect of the invention employs a qualitative physics-based forward search directed primarily downstream from the malfunctioning component in combination with a subsequent backward search directed primarily upstream from the serviced component. Generic classes of components are defined in the knowledge base according to the three thermal-hydraulic functions of mass, momentum and energy transfer and are used to determine possible realignment of component configurations in response to thermal-hydraulic function imbalance caused by the malfunctioning component. Each realignment to a new configuration produces the accompanying sequence of recommended operator actions. All possible new configurations are examined and a prioritized list of acceptable solutions is produced. 5 figs.

  1. Process management using component thermal-hydraulic function classes

    Science.gov (United States)

    Morman, James A.; Wei, Thomas Y. C.; Reifman, Jaques

    1999-01-01

    A process management expert system where following malfunctioning of a component, such as a pump, for determining system realignment procedures such as for by-passing the malfunctioning component with on-line speeds to maintain operation of the process at full or partial capacity or to provide safe shut down of the system while isolating the malfunctioning component. The expert system uses thermal-hydraulic function classes at the component level for analyzing unanticipated as well as anticipated component malfunctions to provide recommended sequences of operator actions. Each component is classified according to its thermal-hydraulic function, and the generic and component-specific characteristics for that function. Using the diagnosis of the malfunctioning component and its thermal hydraulic class, the expert system analysis is carried out using generic thermal-hydraulic first principles. One aspect of the invention employs a qualitative physics-based forward search directed primarily downstream from the malfunctioning component in combination with a subsequent backward search directed primarily upstream from the serviced component. Generic classes of components are defined in the knowledge base according to the three thermal-hydraulic functions of mass, momentum and energy transfer and are used to determine possible realignment of component configurations in response to thermal-hydraulic function imbalance caused by the malfunctioning component. Each realignment to a new configuration produces the accompanying sequence of recommended operator actions. All possible new configurations are examined and a prioritized list of acceptable solutions is produced.

  2. An evaluation of a hubless inducer and a full flow hydraulic turbine driven inducer boost pump

    Science.gov (United States)

    Lindley, B. K.; Martinson, A. R.

    1971-01-01

    The purpose of the study was to compare the performance of several configurations of hubless inducers with a hydrodynamically similar conventional inducer and to demonstrate the performance of a full flow hydraulic turbine driven inducer boost pump using these inducers. A boost pump of this type consists of an inducer connected to a hydraulic turbine with a high speed rotor located in between. All the flow passes through the inducer, rotor, and hydraulic turbine, then into the main pump. The rotor, which is attached to the main pump shaft, provides the input power to drive the hydraulic turbine which, in turn, drives the inducer. The inducer, rotating at a lower speed, develops the necessary head to prevent rotor cavitation. The rotor speed is consistent with present main engine liquid hydrogen pump designs and the overall boost pump head rise is sufficient to provide adequate main pump suction head. This system would have the potential for operating at lower liquid hydrogen tank pressures.

  3. Development and industrial tests of the first LNG hydraulic turbine system in China

    OpenAIRE

    Jie Chen; Yihuai Hua; Qingbo Su; Xueli Wan; Zhenlin Li

    2016-01-01

    The cryogenic hydraulic turbine can be used to replace the conventional J–T valve for LNG or mixed refrigerant throttling and depressurization in a natural gas liquefaction plant. This advanced technology is not only to enhance the efficiency of the liquefaction plant, but to usher a new trend in the development of global liquefaction technologies. China has over 136 liquefaction plants, but the cryogenic hydraulic turbines have not been deployed in industrial utilization. In addition, these ...

  4. Modeling and control of a hybrid wind-tidal turbine with hydraulic accumulator

    International Nuclear Information System (INIS)

    Fan, YaJun; Mu, AnLe; Ma, Tao

    2016-01-01

    This paper presents the modeling and control of a hybrid wind-tidal turbine with hydraulic accumulator. The hybrid turbine captures the offshore wind energy and tidal current energy simultaneously and stores the excess energy in hydraulic accumulator prior to electricity generation. Two hydraulic pumps installed respectively in wind and tidal turbine nacelles are used to transform the captured mechanical energy into hydraulic energy. To extract the maximal power from wind and tidal current, standard torque controls are achieved by regulating the displacements of the hydraulic pumps. To meet the output power demand, a Proportion Integration Differentiation (PID) controller is designed to distribute the hydraulic energy between the accumulator and the Pelton turbine. A simulation case study based on combining a 5 MW offshore wind turbine and a 1 MW tidal current turbine is undertaken. Case study demonstrates that the hybrid generation system not only captures all the available wind and tidal energy and also delivers the desired generator power precisely through the accumulator damping out all the power fluctuations from the wind and tidal speed disturbances. Energy and exergy analyses show that the energy efficiency can exceed 100% as the small input speeds are considered, and the exergy efficiency has the consistent change trends with demand power. Further more parametric sensitivity study on hydraulic accumulator shows that there is an inversely proportional relationship between accumulator and hydraulic equipments including the pump and nozzle in terms of dimensions. - Highlights: • A hybrid wind-tidal turbine is presented. • Hydraulic accumulator stores/releases the surplus energy. • Standard torque controls extract the maximal power from wind and tidal. • Generator outputs meet the electricity demand precisely. • Parametric sensitivity study on accumulator is implemented.

  5. Wind tunnel experiments to prove a hydraulic passive torque control concept for variable speed wind turbines

    NARCIS (Netherlands)

    Diepeveen, N.F.B.; Jarquin-Laguna, A.

    2014-01-01

    In this paper the results are presented of experiments to prove an innovative concept for passive torque control of variable speed wind turbines using fluid power technology. It is demonstrated that by correctly configuring the hydraulic drive train, the wind turbine rotor operates at or near

  6. Experimental Study on Abrasive Waterjet Polishing of Hydraulic Turbine Blades

    International Nuclear Information System (INIS)

    Khakpour, H; Birglenl, L; Tahan, A; Paquet, F

    2014-01-01

    In this paper, an experimental investigation is implemented on the abrasive waterjet polishing technique to evaluate its capability in polishing of surfaces and edges of hydraulic turbine blades. For this, the properties of this method are studied and the main parameters affecting its performance are determined. Then, an experimental test-rig is designed, manufactured and tested to be used in this study. This test-rig can be used to polish linear and planar areas on the surface of the desired workpieces. Considering the number of parameters and their levels, the Taguchi method is used to design the preliminary experiments. All experiments are then implemented according to the Taguchi L 18 orthogonal array. The signal-to-noise ratios obtained from the results of these experiments are used to determine the importance of the controlled polishing parameters on the final quality of the polished surface. The evaluations on these ratios reveal that the nozzle angle and the nozzle diameter have the most important impact on the results. The outcomes of these experiments can be used as a basis to design a more precise set of experiments in which the optimal values of each parameter can be estimated

  7. Water hammer 2 phase analysis hydraulic system with a Kaplan turbine

    OpenAIRE

    Dudlik, A.; Koutnik, J.

    2009-01-01

    This investigation has been carried out for a case of sudden closing of a Kaplan turbine from a runaway operation. This work has been done at Fraunhofer UMSICHT, supported by VH. The runaway case has been selected as it is known that the discharge through a Kaplan turbine increases with its speed, and may reach up to twice the value of nominal discharge. The simulation model consists of: - penstock - Kaplan turbine (modelled with a valve characteristic) - draft tube All hydraulic pipe element...

  8. Experimental comparison of cavitation erosion rates of different steels used in hydraulic turbines

    International Nuclear Information System (INIS)

    Ton-That, L

    2010-01-01

    The prediction of cavitation erosion rates has an important role in order to evaluate the exact life of components in fluid machineries. Hydro-Quebec has studied this phenomenon for several years, in particular in hydraulic turbine runners, to try to understand the different degradation mechanisms related to this phenomenon. This paper presents part of this work. In this study, we carried out experimental erosion tests to compare different steels used in actual hydraulic turbine runners (carbon steels, austenitic and martensitic stainless steels) to high strength steels in terms of cavitation erosion resistance. The results for these different classes of steels are presented. The tests have been performed in a cavitating liquid jet apparatus according to the ASTM G134-95 standard to simulate the flow conditions. The mass loss has been followed during the exposure time. The maximum depth of erosion, the mean depth of erosion, and the mean depth erosion rate are determined. As a result we found that ASTM-A514 high strength steels present excellent cavitation erosion resistance properties. The cavitation eroded surface is followed by optical profilometry technique. Determination of mechanical properties and examinations of the eroded surfaces of the samples have also been carried out in order to identify the erosion mechanisms involved in the degradation of these kinds of materials.

  9. Preventive maintenance basis: Volume 37 -- Main turbine EHC hydraulics. Final report

    International Nuclear Information System (INIS)

    Worledge, D.; Hinchcliffe, G.

    1998-11-01

    US nuclear power plants are implementing preventive maintenance (PM) tasks with little documented basis beyond fundamental vendor information to support the tasks or their intervals. The Preventive Maintenance Basis project provides utilities with the technical basis for PM tasks and task intervals associated with 40 specific components such as valves, electric motors, pumps, and HVAC equipment. This document provides a program of preventive maintenance tasks suitable for application to the main turbine EHC hydraulic fluid and associated components. The PM tasks that are recommended provide a cost-effective way to intercept the causes and mechanisms that lead to degradation and failure. They can be used in conjunction with material from other sources, to develop a complete PM program or to improve an existing program

  10. Operation of a T63 Turbine Engine Using F24 Contaminated Skydrol 5 Hydraulic Fluid

    Science.gov (United States)

    2016-09-01

    hydraulic fluids were originally developed by the Douglas Aircraft Company during the 1940s to reduce fire risk from leaking high pressure mineral oil...thermal load demands in modern hydraulic systems and reduced density to lower weight impact on the aircraft. Eastman Chemical is the current producer of...AFRL-RQ-WP-TM-2016-0155 OPERATION OF A T63 TURBINE ENGINE USING F24 CONTAMINATED SKYDROL 5 HYDRAULIC FLUID Matthew J. Wagner (AFRL/RQTM) James

  11. CWTC business plan; Wind turbine component centre

    Energy Technology Data Exchange (ETDEWEB)

    Hjuler Jensen, P; Hillestroem, A; Markou, H; Berring, P; Friis, P

    2011-04-15

    This report presents the Business Plan for the establishment of the Wind Turbine Component Centre (CWTC) to meet the objectives of performing theoretical research and experimental testing. The core idea of a CWTC is to support the Danish wind energy industry and research activities at the component level improving the competitive advantage of that industry. The CWTC will in itself operate its activities, including access to test and experimental facilities, on a semi commercial basis. The business model for the CWTC presented is based on revenues coming from component manufacturers as well as research grants, and will include membership fees as well as hourly payment and larger projects where payment is a limited project sum. The presented roadmap model clarifies the development path towards a fully developed CWTC, which will cover test of all important components along the drive-train as well as offering a comprehensive systematic understanding of the entire drive-train. The CWTC will over time market and sell its products and services on a global scale, but first and foremost the CWTC is established to support and strengthen the Danish wind energy industry and specifically the Danish sub suppliers to the Danish wind turbine industry and also the Danish research establishments. The presented organizational structure reflects that there are certain functions that are separated from the operations and it also reflects that scientific staffing are hired in on a project basis. Machine operators will be hired in on a permanent basis. The breakdown of the cost for running the rig, both for R and D and commercial projects is presented. The income from the other activities is calculated based on the cost for the research staff, both for R and D activities and commercial. In the first year the income will be 100% from R and D activities, which is the cost for the staff to set-up the test-rig, the guidelines and test procedures, and partly for running the rig. Within 3

  12. Hydraulic Evaluation and Optimisation of T. Basses Wave Turbine

    DEFF Research Database (Denmark)

    Frigaard, Peter; Kofoed, Jens Peter

    The present study investigates designs of the wing profiles and layouts of the wave turbine in order to optimize the design. Furthermore, the overall power production capability of the device has been estimated for the selected wing profiles and turbine layout.......The present study investigates designs of the wing profiles and layouts of the wave turbine in order to optimize the design. Furthermore, the overall power production capability of the device has been estimated for the selected wing profiles and turbine layout....

  13. Effects of turbine's selection on hydraulic transients in the long pressurized water conveyance system

    International Nuclear Information System (INIS)

    Zhou, J X; Hu, M; Cai, F L; Huang, X T

    2014-01-01

    For a hydropower station with longer water conveyance system, an optimum turbine's selection will be beneficial to its reliable and stable operation. Different optional turbines will result in possible differences of the hydraulic characteristics in the hydromechanical system, and have different effects on the hydraulic transients' analysis and control. Therefore, the premise for turbine's selection is to fully understand the properties of the optional turbines and their effects on the hydraulic transients. After a brief introduction of the simulation models for hydraulic transients' computation and stability analysis, the effects of hydraulic turbine's characteristics at different operating points on the hydro-mechanical system's free vibration analysis were theoretically investigated with the hydraulic impedance analysis of the hydraulic turbine. For a hydropower station with long water conveyance system, based on the detailed hydraulic transients' computation respectively for two different optional turbines, the effects of the turbine's selection on hydraulic transients were analyzed. Furthermore, considering different operating conditions for each turbine and the similar operating conditions for these two turbines, free vibration analysis was comprehensively carried out to reveal the effects of turbine's impedance on system's vibration characteristics. The results indicate that, respectively with two different turbines, most of the controlling parameters under the worst cases have marginal difference, and few shows obvious differences; the turbine's impedances under different operating conditions have less effect on the natural angular frequencies; different turbine's characteristics and different operating points have obvious effects on system's vibration stability; for the similar operating conditions of these two turbines, system's vibration characteristics are basically consistent with

  14. Degradation of phosphate ester hydraulic fluid in power station turbines investigated by a three-magnet unilateral magnet array.

    Science.gov (United States)

    Guo, Pan; He, Wei; García-Naranjo, Juan C

    2014-04-14

    A three-magnet array unilateral NMR sensor with a homogeneous sensitive spot was employed for assessing aging of the turbine oils used in two different power stations. The Carr-Purcell-Meiboom-Gill (CPMG) sequence and Inversion Recovery-prepared CPMG were employed for measuring the ¹H-NMR transverse and longitudinal relaxation times of turbine oils with different service status. Two signal components with different lifetimes were obtained by processing the transverse relaxation curves with a numeric program based on the Inverse Laplace Transformation. The long lifetime components of the transverse relaxation time T₂eff and longitudinal relaxation time T₁ were chosen to monitor the hydraulic fluid aging. The results demonstrate that an increase of the service time of the turbine oils clearly results in a decrease of T₂eff,long and T₁,long. This indicates that the T₂eff,long and T₁,long relaxation times, obtained from the unilateral magnetic resonance measurements, can be applied as indices for degradation of the hydraulic fluid in power station turbines.

  15. Stability analysis for a delay differential equations model of a hydraulic turbine speed governor

    Science.gov (United States)

    Halanay, Andrei; Safta, Carmen A.; Dragoi, Constantin; Piraianu, Vlad F.

    2017-01-01

    The paper aims to study the dynamic behavior of a speed governor for a hydraulic turbine using a mathematical model. The nonlinear mathematical model proposed consists in a system of delay differential equations (DDE) to be compared with already established mathematical models of ordinary differential equations (ODE). A new kind of nonlinearity is introduced as a time delay. The delays can characterize different running conditions of the speed governor. For example, it is considered that spool displacement of hydraulic amplifier might be blocked due to oil impurities in the oil supply system and so the hydraulic amplifier has a time delay in comparison to the time control. Numerical simulations are presented in a comparative manner. A stability analysis of the hydraulic control system is performed, too. Conclusions of the dynamic behavior using the DDE model of a hydraulic turbine speed governor are useful in modeling and controlling hydropower plants.

  16. Nonlinear Dynamical Analysis of Hydraulic Turbine Governing Systems with Nonelastic Water Hammer Effect

    Directory of Open Access Journals (Sweden)

    Junyi Li

    2014-01-01

    Full Text Available A nonlinear mathematical model for hydroturbine governing system (HTGS has been proposed. All essential components of HTGS, that is, conduit system, turbine, generator, and hydraulic servo system, are considered in the model. Using the proposed model, the existence and stability of Hopf bifurcation of an example HTGS are investigated. In addition, chaotic characteristics of the system with different system parameters are studied extensively and presented in the form of bifurcation diagrams, time waveforms, phase space trajectories, Lyapunov exponent, chaotic attractors, and Poincare maps. Good correlation can be found between the model predictions and theoretical analysis. The simulation results provide a reasonable explanation for the sustained oscillation phenomenon commonly seen in operation of hydroelectric generating set.

  17. Computation and analysis of cavitating flow in Francis-class hydraulic turbines

    Science.gov (United States)

    Leonard, Daniel J.

    can occur more abruptly in the model than the prototype, due to lack of Froude similitude between the two. When severe cavitation occurs, clear differences are observed in vapor content between the scales. A stage-by-stage performance decomposition is conducted to analyze the losses within individual components of each scale of the machine. As cavitation becomes more severe, the losses in the draft tube account for an increasing amount of the total losses in the machine. More losses occur in the model draft tube as cavitation formation in the prototype draft tube is prevented by the larger hydrostatic pressure gradient across the machine. Additionally, unsteady Detached Eddy Simulations of the fully-coupled cavitating hydroturbine are performed for both scales. Both mesh and temporal convergence studies are provided. The temporal and spectral content of fluctuations in torque and pressure are monitored and compared between single-phase, cavitating, model, and prototype cases. A shallow draft tube induced runner imbalance results in an asymmetric vapor distribution about the runner, leading to more extensive growth and collapse of vapor on any individual blade as it undergoes a revolution. Unique frequency components manifest and persist through the entire machine only when cavitation is present in the hub vortex. Large maximum pressure spikes, which result from vapor collapse, are observed on the blade surfaces in the multiphase simulations, and these may be a potential source of cavitation damage and erosion. Multiphase CFD is shown to be an accurate and effective technique for simulating and analyzing cavitating flow in Francis-class hydraulic turbines. It is recommended that it be used as an industrial tool to supplement model cavitation experiments for all types of hydraulic turbines. Moreover, multiphase CFD can be equally effective as a research tool, to investigate mechanisms of cavitating hydraulic turbines that are not understood, and to uncover unique new

  18. Functional Problems and Maintenance Operations of Hydraulic Turbines

    Directory of Open Access Journals (Sweden)

    Liliana Topliceanu

    2016-02-01

    Full Text Available The exploitation in good conditions of the hydroelectric power plant imposes a rigorous maintenance of equipment and operating facilities, primarily of the turbine. The efficiency of the turbine is strongly affected by any defects which could occur during the operation. The paper makes a synthesis of the most frequent failures which have occurred during the functioning of Kaplan turbines plant and the required maintenance plan that has to be adopted. The maintenance rules for the optimal working of these turbines are also emphasized.

  19. optimal selection of hydraulic turbines for small hydro electric power

    African Journals Online (AJOL)

    eobe

    Keywords: optimal selection, SHP turbine, flow duration curve, energy efficiency, annual capacity factor. 1. INTRODUCTION ... depleted, with adverse environmental impacts downstream ..... Technologies, Financing Cogeneration and Small -.

  20. State of the art-hydraulic yaw systems for wind turbines

    DEFF Research Database (Denmark)

    Stubkier, Søren; Pedersen, Henrik C.; Andersen, Torben Ole

    2011-01-01

    This paper addresses the yawing systems of Horizontal Axis Wind Turbines (HAWT’s). HAWT’s represents close to all of the commercial large wind turbines sold today and must be considered state-of-the art within wind turbine technology. Two choices exists when considering components for the active ...

  1. Digital electro-hydraulic control system for nuclear turbine

    International Nuclear Information System (INIS)

    Yokota, Yutaka; Tone, Youichi; Ozono, Jiro

    1985-01-01

    The unit capacity of steam turbines for nuclear power generation is very large, accordingly their unexpected stop disturbs power system, and the lowering of their capacity ratio exerts large influence on power generation cost. Therefore, very high reliability is required for turbine EHC controllers which directly control the turbines for nuclear power generation. In order to meet such requirement, Toshiba Corp. has developed high reliability type analog tripled turbine EHC controllers, and delivered them to No. 3 plant in the Fukushima No. 2 Nuclear Power Station and No. 1 plant in the Kashiwazaki Kariwa Nuclear Power Station, Tokyo Electric Power Co., Inc. At present, the trial operation is under way. The development of digital EHC controllers was begun in 1976, and through the digital EHC for a test turbine and that for a small turbine, the digital EHC controllers for the turbines for nuclear power generation were developed. In this paper, the function, constitution, features and maintenance of the digital tripled EHC controllers for the turbines for nuclear power generation, the application of new technology to them, and the confirmation of the control function by simulation are reported. (Kako, I.)

  2. Feasibility of Detecting Natural Frequencies of Hydraulic Turbines While in Operation, Using Strain Gauges.

    Science.gov (United States)

    Valentín, David; Presas, Alexandre; Bossio, Matias; Egusquiza, Mònica; Egusquiza, Eduard; Valero, Carme

    2018-01-10

    Nowadays, hydropower plays an essential role in the energy market. Due to their fast response and regulation capacity, hydraulic turbines operate at off-design conditions with a high number of starts and stops. In this situation, dynamic loads and stresses over the structure are high, registering some failures over time, especially in the runner. Therefore, it is important to know the dynamic response of the runner while in operation, i.e., the natural frequencies, damping and mode shapes, in order to avoid resonance and fatigue problems. Detecting the natural frequencies of hydraulic turbine runners while in operation is challenging, because they are inaccessible structures strongly affected by their confinement in water. Strain gauges are used to measure the stresses of hydraulic turbine runners in operation during commissioning. However, in this paper, the feasibility of using them to detect the natural frequencies of hydraulic turbines runners while in operation is studied. For this purpose, a large Francis turbine runner (444 MW) was instrumented with several strain gauges at different positions. First, a complete experimental strain modal testing (SMT) of the runner in air was performed using the strain gauges and accelerometers. Then, the natural frequencies of the runner were estimated during operation by means of analyzing accurately transient events or rough operating conditions.

  3. DETERMINATION OF HYDRAULIC TURBINE EFFICIENCY BY MEANS OF THE CURRENT METER METHOD

    Directory of Open Access Journals (Sweden)

    PURECE C.

    2016-12-01

    Full Text Available The paper presents methodology used for determining the efficiency of a low head Kaplan hydraulic turbine with short converging intake. The measurement method used was the current meters method, the only measurement method recommended by the IEC 41standard for flow measurement in this case. The paper also presents the methodology used for measuring the flow by means of the current meters method and the various procedures for calculating the flow. In the last part the paper presents the flow measurements carried out on the Fughiu HPP hydraulic turbines for determining the actual operating efficiency.

  4. Overview of SPH-ALE applications for hydraulic turbines in ANDRITZ Hydro

    Science.gov (United States)

    Rentschler, M.; Marongiu, J. C.; Neuhauser, M.; Parkinson, E.

    2018-02-01

    Over the past 13 years, ANDRITZ Hydro has developed an in-house tool based on the SPH-ALE method for applications in flow simulations in hydraulic turbines. The initial motivation is related to the challenging simulation of free surface flows in Pelton turbines, where highly dynamic water jets interact with rotating buckets, creating thin water jets traveling inside the housing and possibly causing disturbances on the runner. The present paper proposes an overview of industrial applications allowed by the developed tool, including design evaluation of Pelton runners and casings, transient operation of Pelton units and free surface flows in hydraulic structures.

  5. Determination of the performance of the Kaplan hydraulic turbines through simplified procedure

    Science.gov (United States)

    Pădureanu, I.; Jurcu, M.; Campian, C. V.; Haţiegan, C.

    2018-01-01

    A simplified procedure has been developed, compared to the complex one recommended by IEC 60041 (i.e. index samples), for measurement of the performance of the hydraulic turbines. The simplified procedure determines the minimum and maximum powers, the efficiency at maximum power, the evolution of powers by head and flow and to determine the correct relationship between runner/impeller blade angle and guide vane opening for most efficient operation of double-regulated machines. The simplified procedure can be used for a rapid and partial estimation of the performance of hydraulic turbines for repair and maintenance work.

  6. Model and simulation of the hydraulic turbine speed regulator of the Atucha I nuclear power plant

    International Nuclear Information System (INIS)

    Copparoni, G.; Etchepareborda, A.; Urrutia, G.

    1992-01-01

    The hydraulics turbines of Atucha I Nuclear Power Plant takes advantage of condenser cooling water level difference between the plant and the river to recover about 2,5 MW e. It also supplies emergency power until diesel generators start up. Speed regulation is needed due to the transients that during this process occur. The purpose is to minimize the diesels start up time, and to avoid overshoots on the internal grid frequency. The hydraulic turbine, its speed regulator and the electric system associated with this transient have been modeled. The models and some simulation results are presented in this work. (author)

  7. Hydraulic design and optimization of a modular pump-turbine runner

    International Nuclear Information System (INIS)

    Schleicher, W.C.; Oztekin, A.

    2015-01-01

    Highlights: • A modular pumped-storage scheme using elevated water storage towers is investigated. • The pumped-storage scheme also aides in the wastewater treatment process. • A preliminary hydraulic pump-turbine runner design is created based on existing literature. • The preliminary design is optimized using a response surface optimization methodology. • The performance and flow fields between preliminary and optimized designs are compared. - Abstract: A novel modular pumped-storage scheme is investigated that uses elevated water storage towers and cement pools as the upper and lower reservoirs. The scheme serves a second purpose as part of the wastewater treatment process, providing multiple benefits besides energy storage. A small pumped-storage scheme has been shown to be a competitive energy storage solution for micro renewable energy grids; however, pumped-storage schemes have not been implemented on scales smaller than megawatts. Off-the-shelf runner designs are not available for modular pumped-storage schemes, so a custom runner design is sought. A preliminary hydraulic design for a pump-turbine runner is examined and optimized for increased pumping hydraulic efficiency using a response surface optimization methodology. The hydraulic pumping efficiency was found to have improved by 1.06% at the best efficiency point, while turbine hydraulic efficiency decreased by 0.70% at the turbine best efficiency point. The round-trip efficiency for the system was estimated to be about 78%, which is comparable to larger pumped-storage schemes currently in operation

  8. Bridging the gap between metallurgy and fatigue reliability of hydraulic turbine runners

    International Nuclear Information System (INIS)

    Thibault, D; Gagnon, M; Godin, S

    2014-01-01

    The failure of hydraulic turbine runners is a very rare event. Hence, in order to assess the reliability of these components, one cannot rely on statistical models based on the number of failures in a given population. However, as there is a limited number of degradation mechanisms involved, it is possible to use physically-based reliability models. Such models are more complicated but have the advantage of being able to account for physical parameters in the prediction of the evolution of runner degradation. They can therefore propose solutions to help improve reliability. With the use of such models, the effect of materials properties on runner reliability can easily be illustrated. This paper will present a brief review of the Kitagawa-Takahashi diagram that links the damage tolerance approach, based on fracture mechanics, to the stress or strain-life approaches. This diagram is at the centre of the reliability model used in this study. Using simplified response spectra obtained from on-site runner stress measurements, the paper will show how fatigue reliability is impacted by materials fatigue properties, namely fatigue crack propagation behaviour and fatigue limit obtained on S-N curves. It will also present a review of the most important microstructural features of 13%Cr- 4%Ni stainless steels used for runner manufacturing and will review how they influence fatigue properties in an effort to bridge the gap between metallurgy and turbine runners reliability

  9. Numerical Simulations of Vortex Shedding in Hydraulic Turbines

    Science.gov (United States)

    Dorney, Daniel; Marcu, Bogdan

    2004-01-01

    Turbomachines for rocket propulsion applications operate with many different working fluids and flow conditions. Oxidizer boost turbines often operate in liquid oxygen, resulting in an incompressible flow field. Vortex shedding from airfoils in this flow environment can have adverse effects on both turbine performance and durability. In this study the effects of vortex shedding in a low-pressure oxidizer turbine are investigated. Benchmark results are also presented for vortex shedding behind a circular cylinder. The predicted results are compared with available experimental data.

  10. Design, analysis and control of hydraulic soft yaw system for 5MW wind turbine

    DEFF Research Database (Denmark)

    Stubkier, Søren; Pedersen, Henrik C.; Andersen, Torben Ole

    2012-01-01

    by active control of a hydraulic yaw system. The control is based on a non-linear and linear model derived based on a concept yaw system for the NREL 5MW wind turbine. The control strategies show a reduction in pressure pulsations under load and it is concluded that the strategie including high......As wind turbines increase in size and the demands for lifetime also increases, new methods of load reduction needs to be examined. One method is to make the yaw system of the turbine soft/flexible and wereby dampen the loads to the system. This paper presents work done on dampening of these loads...

  11. Research on Darrieus-type hydraulic turbine for extra-low head hydropower utilization

    International Nuclear Information System (INIS)

    Furukawa, A; Watanabe, S; Okuma, K

    2012-01-01

    A Darrieus-type turbine has been investigated for extra-low head hydropower utilization. In the present paper, authors'research on Darrieus-type hydraulic turbine is briefly reviewed. The working principle of Darrieus turbine is explained with advantage of its simple structure, at first. Then the fluid-dynamic difference between rotating and linear motions of a blade in a uniform flow is clarified with guiding principle of high performance design of Darrieus turbine. Cavitation problem is also described. Next, effects of duct-casing, consisting of an intake, runner section and draft tube, are discussed and a simplified structure of Darrieus turbine is shown by installing the inlet nozzle. Finally, in the practical use, an adjustment of inlet nozzle section by lowering the inlet nozzle height is proposed when flow rate is varied temporally and seasonally.

  12. The hydraulic turbines of the Three Gorges dam; Les turbines hydrauliques du barrage des trois gorges

    Energy Technology Data Exchange (ETDEWEB)

    Bremond, J. [Societe GEC-Alsthom Neyrpic (France); Vuillerod, G. [Alsthom Hydro (France)

    1999-10-01

    As part of the hydroelectric installation of the Three Gorges on the Yangtze river in China, the Alsthom group recorded a major order for the supply of 8 Francis turbines out of the 14 to be installed in the left bank power station. This colossal project will include 26 Francis turbines of 710 MW, a spillway designed for a maximum flow of 116 000 m{sup 3}/s, a ship-lock of 5 steps with a capacity of 10 000 tons and a ship-lift of 3000 tons. The concrete gravity dam will be 2.3 km long. As oriented by the Specifications, and due to their exceptional size (runner diameter: 9800 mm), the design of these units relies upon well-proofed solutions such as those already experienced on the Itaipu south American large scale hydro project, in which Alsthom already contributed 20 years ago. The runners (450 tons each, external diameter 10 600 mm) will be fabricated by welding of separate elements made of martensitic stainless steel. Most of the components have to be delivered in several parts and reassembled at site by welding or bolting. The left bank power station is scheduled to be operational in 2006. (authors) 2 refs.

  13. Study on stress characteristics of Francis hydraulic turbine runner based on two-way FSI

    International Nuclear Information System (INIS)

    Zhu, W R; Xiao, R F; Yang, W; Wang, F J; Liu, J

    2012-01-01

    In recent years, cracking phenomenon occurs in many large-sized turbines both nationally and internationally, which has threatened the stable operation of hydraulic turbines. Consequently, Stress characteristics calculation and analysis of a Francis hydraulic turbine runner by application of fluid-structure interaction (FSI) technology become significantly important. In order to introduce two-way coupling technology to hydraulic machinery, two-way FSI technology is applied in this article to calculate and analyze stress characteristics. Through coordinate system transformation, the continuity equations and Navier-Stokes equations in the Cartesian coordinates system are firstly transformed to ALE coordinates system. The fluid field control equations are then constructed and discrete equations can be obtained by using flow-condition-based interpolation (FBIC-C). The structure static mechanics equations used are established in rotation coordinate system, and modeled with the finite method. Two-way coupling is computed by using iteration method. The fluid equations and structure equations are iterated until coupling coefficients converge. According to structure result, the maximum stress, displacement as well as its location can be found. As a result, the most easily wear position can be discovered which provides valuable basis for optimized design and stable operation of Francis hydraulic turbines. After comparing the results with that of one-way coupling, it is discovered that displacements is the key factors which affects the results of one-way and two-way coupling.

  14. Design, Optimization and Analysis of Hydraulic Soft Yaw System for 5 MW Wind Turbine

    DEFF Research Database (Denmark)

    Stubkier, Søren; Pedersen, Henrik C.

    2011-01-01

    As wind turbines increase in size and the demands for lifetime also increases, new methods of load reduction needs to be examined. One method is to make the yaw system of the turbine soft/flexible and hence dampen the loads to the system, which is the focus of the current paper. The paper first p...... on the extrapolated loads, show that it is possible to construct a hydraulic soft yaw system, which is able to reduce the loads on the wind turbine significantly....... presents work previous done on this subject with focus on hydraulic yaw systems. By utilizing the HAWC2 aeroelastic code and an extended model of the NREL 5MW turbine combined with a simplified linear model of the turbine, the parameters of the soft yaw system are optimized. Results show that a significant...... reduction in fatigue and extreme loads to the yaw system and rotor shaft are possible, when utilizing the soft yaw drive concept compared to the original stiff yaw system. The physical demands of the hydraulic yaw system are furthermore examined for a life time of 20 years. The duty cycles, based...

  15. Experiences with the hydraulic design of the high specific speed Francis turbine

    International Nuclear Information System (INIS)

    Obrovsky, J; Zouhar, J

    2014-01-01

    The high specific speed Francis turbine is still suitable alternative for refurbishment of older hydro power plants with lower heads and worse cavitation conditions. In the paper the design process of such kind of turbine together with the results comparison of homological model tests performed in hydraulic laboratory of ČKD Blansko Engineering is introduced. The turbine runner was designed using the optimization algorithm and considering the high specific speed hydraulic profile. It means that hydraulic profiles of the spiral case, the distributor and the draft tube were used from a Kaplan turbine. The optimization was done as the automatic cycle and was based on a simplex optimization method as well as on a genetic algorithm. The number of blades is shown as the parameter which changes the resulting specific speed of the turbine between n s =425 to 455 together with the cavitation characteristics. Minimizing of cavitation on the blade surface as well as on the inlet edge of the runner blade was taken into account during the design process. The results of CFD analyses as well as the model tests are mentioned in the paper

  16. Experiences with the hydraulic design of the high specific speed Francis turbine

    Science.gov (United States)

    Obrovsky, J.; Zouhar, J.

    2014-03-01

    The high specific speed Francis turbine is still suitable alternative for refurbishment of older hydro power plants with lower heads and worse cavitation conditions. In the paper the design process of such kind of turbine together with the results comparison of homological model tests performed in hydraulic laboratory of ČKD Blansko Engineering is introduced. The turbine runner was designed using the optimization algorithm and considering the high specific speed hydraulic profile. It means that hydraulic profiles of the spiral case, the distributor and the draft tube were used from a Kaplan turbine. The optimization was done as the automatic cycle and was based on a simplex optimization method as well as on a genetic algorithm. The number of blades is shown as the parameter which changes the resulting specific speed of the turbine between ns=425 to 455 together with the cavitation characteristics. Minimizing of cavitation on the blade surface as well as on the inlet edge of the runner blade was taken into account during the design process. The results of CFD analyses as well as the model tests are mentioned in the paper.

  17. Stochastic Models of Defects in Wind Turbine Drivetrain Components

    DEFF Research Database (Denmark)

    Rafsanjani, Hesam Mirzaei; Sørensen, John Dalsgaard

    2013-01-01

    The drivetrain in a wind turbine nacelle typically consists of a variety of heavily loaded components, like the main shaft, bearings, gearbox and generator. The variations in environmental load challenge the performance of all the components of the drivetrain. Failure of each of these components...

  18. Transmission of High Frequency Vibrations in Rotating Systems. Application to Cavitation Detection in Hydraulic Turbines

    Directory of Open Access Journals (Sweden)

    David Valentín

    2018-03-01

    Full Text Available One of the main causes of damage in hydraulic turbines is cavitation. While not all cavitation appearing in a turbine is of a destructive type, erosive cavitation can severely affect the structure, thus increasing maintenance costs and reducing the remaining useful life of the machine. Of all types of cavitation, the maximum erosion occurs when clouds of bubbles collapse on the runner surface (cloud cavitation. When this occurs it is associated with a substantial increase in noise, and vibrations that are propagated everywhere throughout the machine. The generation of these cavitation clouds may occur naturally or it may be the response to a periodic pressure fluctuation, like the rotor/stator interaction in a hydraulic turbine. Erosive bubble cavitation generates high-frequency vibrations that are modulated by the shedding frequency. Therefore, the methods for the detection of erosive cavitation in hydraulic turbines are based on the measurement and demodulation of high-frequency vibrations. In this paper, the feasibility of detecting erosive cavitation in hydraulic turbines is investigated experimentally in a rotating disk system, which represents a simplified hydraulic turbine structure. The test rig used consists of a rotating disk submerged in a tank of water and confined with nearby axial and radial rigid surfaces. The excitation patterns produced by cloud cavitation are reproduced with a PZT (piezoelectric patch located on the disk. These patterns include pseudo-random excitations of different frequency bands modulated by one low carrier frequency, which model the erosive cavitation characteristics. Different types of sensors have been placed in the stationary and in the rotating parts (accelerometers, acoustic emission (AE, and a microphone in order to detect the excitation pattern. The results obtained for all the sensors tested have been compared in detail for the different excitation patterns applied to the disk. With this information

  19. Electrical components library for HAWC2; Wind turbines

    Energy Technology Data Exchange (ETDEWEB)

    Cutululis, N.A.; Larsen, Torben J.; Soerensen, Poul; Hansen, Anca D. (Risoe National Lab., DTU, Wind Energy Dept., Roskilde (DK)); Iov, F. (Aalborg Univ., Institute of Energy Technology (DK))

    2007-12-15

    The work presented in this report is part of the EFP project called ''A Simulation Platform to Model, Optimize and Design Wind Turbines'' partly funded by the Danish Energy Authority under contract number 1363/04-0008. The project is carried out in cooperation between Risoe National Laboratory and Aalborg University. In this project, the focus is on the development of a simulation platform for wind turbine systems using different simulation tools. This report presents the electric component library developed for use in the aeroelastic code HAWC2. The developed library includes both steady state and dynamical models for fixed and variable speed wind turbines. A simple steady-state slip model was developed for the fixed speed wind turbine. This model is suitable for aeroelastic design of wind turbines under normal operation. A dynamic model of an induction generator for the fixed speed wind turbine was developed. The model includes the dynamics of the rotor fluxes. The model is suitable for a more detailed investigation of the mechanical-electrical interaction, both under normal and fault operation. For the variable speed wind turbine, a steadystate model, typically used in aeroelastic design, was implemented. The model can be used for normal and, to some extent, for fault operation. The reduced order dynamic model of a DFIG was implemented. The model includes only the active power controller and can be used for normal operation conditions. (au)

  20. The application of hydraulics in the 2,000 kW wind turbine generator

    Science.gov (United States)

    Onufreiczuk, S.

    1978-01-01

    A 2000 kW turbine generator using hydraulic power in two of its control systems is being built under the management of NASA Lewis Research Center. The hydraulic systems providing the control torques and forces for the yaw and blade pitch control systems are discussed. The yaw-drive-system hydraulic supply provides the power for positioning the nacelle so that the rotary axis is kept in line with the direction of the prevailing wind, as well as pressure to the yaw and high speed shaft brakes. The pitch-change-mechanism hydraulic system provides the actuation to the pitch change mechanism and permits feathering of the blades during an emergency situation. It operates in conjunction with the overall windmill computer system, with the feather control permitting slewing control flow to pass from the servo valve to the actuators without restriction.

  1. Hydraulic Darrieus turbines efficiency for free fluid flow conditions versus power farms conditions

    Energy Technology Data Exchange (ETDEWEB)

    Antheaume, Sylvain [Electricite de France, Recherche et Developpement, Laboratoire National d' Hydraulique et Environnement, 6 Quai Watier, 78400 Chatou (France); Maitre, Thierry; Achard, Jean-Luc [Laboratoire des Ecoulements Geophysiques et Industriels, BP 53, 38041 Grenoble (France)

    2008-10-15

    The present study deals with the efficiency of cross flow water current turbine for free stream conditions versus power farm conditions. In the first part, a single turbine for free fluid flow conditions is considered. The simulations are carried out with a new in house code which couples a Navier-Stokes computation of the outer flow field with a description of the inner flow field around the turbine. The latter is based on experimental results of a Darrieus wind turbine in an unbounded domain. This code is applied for the description of a hydraulic turbine. In the second part, the interest of piling up several turbines on the same axis of rotation to make a tower is investigated. Not only is it profitable because only one alternator is needed but the simulations demonstrate the advantage of the tower configuration for the efficiency. The tower is then inserted into a cluster of several lined up towers which makes a barge. Simulations show that the average barge efficiency rises as the distance between towers is decreased and as the number of towers is increased within the row. Thereby, the efficiency of a single isolated turbine is greatly increased when set both into a tower and into a cluster of several towers corresponding to possible power farm arrangements. (author)

  2. Mixed-flow vertical tubular hydraulic turbine. Determination of proper design duty point

    Energy Technology Data Exchange (ETDEWEB)

    Sirok, B. [Ljubljana Univ. (Slovenia). Faculty of Mechanical Engineering; Bergant, A. [Litostroj Power, d.o.o., Ljubljana (Slovenia); Hoefler, E.

    2011-12-15

    A new vertical single-regulated mixed-flow turbine with conical guide apparatus and without spiral casing is presented in this paper. Runner blades are fixed to the hub and runner band and resemble to the Francis type runner of extremely high specific speed. Due to lack of information and guidelines for the design of a new turbine, a theoretical model was developed in order to determinate the design duty point, i.e. to determine the optimum narrow operation range of the turbine. It is not necessary to know the kinematic conditions at the runner inlet, but only general information on the geometry of turbine flow-passage, meridional contour of the runner and blading, the number of blades and the turbine speed of rotation. The model is based on the integral tangential lift coefficient, which is the average value over the entire runner blading. The results are calculated for the lift coefficient 0.5 and 0.6, for the flow coefficient range from 0.2 to 0.36, for the number of the blades between 5 and 13, and are finally presented in the Cordier diagram (specific speed vs. specific diameter). Calculated results of the turbine optimum operation in Cordier diagram correspond very well to the adequate area of Kaplan turbines with medium and low specific speed and extends into the area of Francis turbines with high specific speed. Presented model clearly highlights the parameters that affect specific load of the runner blade row and therefore the optimum turbine operation (discharge - turbine head). The presented method is not limited to a specific reaction type of the hydraulic turbine. The method can therefore be applied to a wide range from mixed-flow (radial-axial) turbines to the axial turbines. Applicability of the method may be considered as a tool in the first stage of the turbine design i.e. when designing the meridional geometry and selecting the number of blades according to calculated operating point. Geometric and energy parameters are generally defined to an

  3. Investigation of Self Yaw and its Potential using a Hydraulic Soft Yaw System for 5 MW Wind Turbine

    DEFF Research Database (Denmark)

    Stubkier, Søren; Pedersen, Henrik C.

    2013-01-01

    The focus of the current paper is on a hydraulic soft yaw system, designed to reduce the loading of the turbine structure, by absorbing wind guest via the hydraulic system, but which also enables the system to be used as a self-aligning yaw system. The system is analyzed with basis in the NREL 5-MW...... turbine, modeled in FAST, in which a new robust method for implementing Coulomb friction is utilized. Based on this model and a model of the hydraulic system, the influence of friction and wind speed is investigated in relation to the possibility to use the system as a self-aligning yaw system. Similarly...... the behavior of the hydraulic system is analyzed and it is concluded that the hydraulic yaw system allows selfyaw under normal operating conditions for the turbine. Self-yaw control is possible in wind speeds above 12 m/s when yaw friction is kept below 1 MNm....

  4. Use of cooling ponds and hydraulic turbines to save SRP energy consumption

    International Nuclear Information System (INIS)

    Price, J.B.

    1980-01-01

    A substantial amount of energy can be saved by using cooling ponds to supply C and K reactors with cooling water. Hydraulic turbines between the reactor and the cooling pond can recover some of the power used to pump cooling water to the reactors. Cooling ponds would also reduce effluent temperature in the swamps adjacent to the Savannah River. Cooling ponds are evaluated in this memorandum

  5. Hydro-abrasive erosion of hydraulic turbines caused by sediment - a century of research and development

    Science.gov (United States)

    Felix, D.; Albayrak, I.; Abgottspon, A.; Boes, R. M.

    2016-11-01

    Hydro-abrasive erosion of hydraulic turbines is an economically important issue due to maintenance costs and production losses, in particular at high- and medium-head run-of- river hydropower plants (HPPs) on sediment laden rivers. In this paper, research and development in this field over the last century are reviewed. Facilities for sediment exclusion, typically sand traps, as well as turbine design and materials have been improved considerably. Since the 1980s, hard-coatings have been applied on Francis and Pelton turbine parts of erosion-prone HPPs and became state-of-the-art. These measures have led to increased times between overhauls and smaller efficiency reductions. Analytical, laboratory and field investigations have contributed to a better processes understanding and quantification of sediment-related effects on turbines. More recently, progress has been made in numerical modelling of turbine erosion. To calibrate, validate and further develop prediction models, more measurements from both physical model tests in laboratories and real-scale data from HPPs are required. Significant improvements to mitigate hydro-abrasive erosion have been achieved so far and development is ongoing. A good collaboration between turbine manufacturers, HPP operators, measuring equipment suppliers, engineering consultants, and research institutes is required. This contributes to the energy- and cost-efficient use of the worldwide hydropower potential.

  6. Prediction of hydraulic force and momentum on pelton turbine jet deflector based on cfd simulation

    International Nuclear Information System (INIS)

    Popovski, Boro

    2015-01-01

    The numerical simulation of three-dimensional turbulent flow through the jet-distributor, free stream jet and deflector of Pelton Turbine is presented in this work. The calculations are performed using the CFD package Ansys CFX (Navie-Stokes equations and the k-omega SST turbulent model). A traditional definition for calculation of hydraulic forces and momentum on the jet deflector and a method for experimental evaluation are described. The steps for flow modelling, mesh (grid) generation, as well as the results obtained from the numerical simulation of the flow and stress deformation calculations of the jet-deflector are presented. This work corresponds with the actual approach of methods development for flow simulation and calculations of Pelton Turbines. The kinematic and dynamic parameters are calculated based on CFD simulations. The results of the calculations represents reliable tool in the procedure of development and construction of Pelton Turbines. (author)

  7. Hydraulic and structural co-simulation analysis of turbine runner during operation

    International Nuclear Information System (INIS)

    Markov, Zoran; Popovski, Predrag; Lipej, Andrej; Djelic, Vesko

    2006-01-01

    Modern concept of HPP refurbishment procedure consists of many aspects of the turbine re-design. One of the most useful data is the previous operational data during the lifetime of the unit. In many cases, high stressed areas are damaged. Lack of the measurements makes the solution of the problems and verification of the numerical results very difficult. This work represents an integrated approach in solving hydraulic and structural problems in design stage or optimization of an aial hydro turbine. CFD approach is implemented in solving the flow through a complete aial turbine, taking into account all the necessary factors influencing the real flow. Frozen rotor condition is taken as an input in the computations. The results from the CFD calculations are used as an input for the performed FEA modeling and structural analysis.

  8. Fatigue Analysis of the Piston Rod in a Kaplan Turbine Based on Crack Propagation under Unsteady Hydraulic Loads

    International Nuclear Information System (INIS)

    Liu, X; Luo, Y Y; Wang, Z W

    2014-01-01

    As an important component of the blade-control system in Kaplan turbines, piston rods are subjected to fluctuating forces transferred by the turbines blades from hydraulic pressure oscillations. Damage due to unsteady hydraulic loads might generate unexpected down time and high repair cost. In one running hydropower plant, the fracture failure of the piston rod was found twice at the same location. With the transient dynamic analysis, the retainer ring structure of the piston rod existed a relative high stress concentration. This predicted position of the stress concentration agreed well with the actual fracture position in the plant. However, the local strain approach was not able to explain why this position broke frequently. Since traditional structural fatigue analyses use a local stress strain approach to assess structural integrity, do not consider the effect of flaws which can significantly degrade structural life. Using linear elastic fracture mechanism (LEFM) approaches that include the effect of flaws is becoming common practice in many industries. In this research, a case involving a small semi-ellipse crack was taken into account at the stress concentration area, crack growth progress was calculated by FEM. The relationship between crack length and remaining life was obtained. The crack propagation path approximately agreed with the actual fracture section. The results showed that presence of the crack had significantly changed the local stress and strain distributions of the piston rod compared with non-flaw assumption

  9. Fatigue Analysis of the Piston Rod in a Kaplan Turbine Based on Crack Propagation under Unsteady Hydraulic Loads

    Science.gov (United States)

    Liu, X.; Y Luo, Y.; Wang, Z. W.

    2014-03-01

    As an important component of the blade-control system in Kaplan turbines, piston rods are subjected to fluctuating forces transferred by the turbines blades from hydraulic pressure oscillations. Damage due to unsteady hydraulic loads might generate unexpected down time and high repair cost. In one running hydropower plant, the fracture failure of the piston rod was found twice at the same location. With the transient dynamic analysis, the retainer ring structure of the piston rod existed a relative high stress concentration. This predicted position of the stress concentration agreed well with the actual fracture position in the plant. However, the local strain approach was not able to explain why this position broke frequently. Since traditional structural fatigue analyses use a local stress strain approach to assess structural integrity, do not consider the effect of flaws which can significantly degrade structural life. Using linear elastic fracture mechanism (LEFM) approaches that include the effect of flaws is becoming common practice in many industries. In this research, a case involving a small semi-ellipse crack was taken into account at the stress concentration area, crack growth progress was calculated by FEM. The relationship between crack length and remaining life was obtained. The crack propagation path approximately agreed with the actual fracture section. The results showed that presence of the crack had significantly changed the local stress and strain distributions of the piston rod compared with non-flaw assumption.

  10. Wind tunnel experiments to prove a hydraulic passive rotor speed control concept for variable speed wind turbines (poster)

    NARCIS (Netherlands)

    Diepeveen, N.F.B.; Jarquin Laguna, A.

    2012-01-01

    As alternative to geared and direct drive solutions, fluid power drive trains are being developed by several institutions around the world. The common configuration is where the wind turbine rotor is coupled to a hydraulic pump. The pump is connected through a high pressure line to a hydraulic motor

  11. Fatigue Reliability Analysis of Wind Turbine Cast Components

    DEFF Research Database (Denmark)

    Rafsanjani, Hesam Mirzaei; Sørensen, John Dalsgaard; Fæster, Søren

    2017-01-01

    .) and to quantify the relevant uncertainties using available fatigue tests. Illustrative results are presented as obtained by statistical analysis of a large set of fatigue data for casted test components typically used for wind turbines. Furthermore, the SN curves (fatigue life curves based on applied stress......The fatigue life of wind turbine cast components, such as the main shaft in a drivetrain, is generally determined by defects from the casting process. These defects may reduce the fatigue life and they are generally distributed randomly in components. The foundries, cutting facilities and test...... facilities can affect the verification of properties by testing. Hence, it is important to have a tool to identify which foundry, cutting and/or test facility produces components which, based on the relevant uncertainties, have the largest expected fatigue life or, alternatively, have the largest reliability...

  12. A study on reliability of electro-hydraulic governor control system for large steam turbine in power plant

    International Nuclear Information System (INIS)

    Kang, Gu Hwa; Lee, Tae Hoon; Moon, Seung Jae; Lee, Jae Heon; Yoo, Ho Seon

    2008-01-01

    In this work, the right management procedure for hydraulic power oil will be discussed and suggested. A thermal power plant turbine should respond to the change of load status. However, to satisfy the frequency of alternating current, the revolution per minute should be kept constant. Therefore, by controlling the flow rate of the steam to the turbine, the governor satisfies the load variation without alternating the revolution per minutes of the turbine. To protect the governor, the hydraulic power unit should be managed carefully by controlling the quality and the flow rate of the oil

  13. Advanced materials for critical components in industrial gas turbines

    Energy Technology Data Exchange (ETDEWEB)

    Gibbons, T.B. (Div. of Materials Metrology, National Physical Lab., Teddington (United Kingdom))

    1992-06-01

    Combined-cycle plant for power production has advantages in terms of capital costs and flexibility compared to large power plants either nuclear of fossil-fired, used for base load. In combined-cycle plant the overall efficiency is highly dependent on the performance of the gas turbine and turbine entry temperatures of > 1200deg C will be required to obtain attractive levels of efficiency. Bearing in mind the need for reliability and longterm performance from components such as turbine blades, the challenge to the materials enginer is formidable. In this paper some of the recent developments in Ni - Cr-base alloys are described and the potential for advanced materials such as ceramics and intermetallics is briefly considered. Development in coating technology to provide effective thermal barriers and good resistance to aggressive environments are discussed. (orig./MM).

  14. Selection of axial hydraulic turbines for low-head microhydropower plants

    Science.gov (United States)

    Šoukal, J.; Pochylý, F.; Varchola, M.; Parygin, A. G.; Volkov, A. V.; Khovanov, G. P.; Naumov, A. V.

    2015-12-01

    The creation of highly efficient hydroturbines for low-head microhydropower plants is considered. The use of uncontrolled (propeller) hydroturbines is a promising means of minimizing costs and the time for their recoupment. As an example, experimental results from Brno University of Technology are presented. The model axial hydraulic turbine produced by Czech specialists performs well. The rotor diameter of this turbine is 194 mm. In the design of the working rotor, ANSYS Fluent software is employed. Means of improving the efficiency of microhydropower plants by optimal selection of the turbine parameters in the early stages of design are outlined. The energy efficiency of the hydroturbine designed for use in a microhydropower plant may be assessed on the basis of the coefficient of energy utilization, which is a function of the total losses in all the pipeline elements and losses in the channel including the hydroturbine rotor. The limit on the coefficient of energy utilization in the pressure pipeline is the hydraulic analog of the Betz-Joukowsky limit, which is widely used in the design of wind generators. The proposed approach is experimentally verified at Moscow Power Engineering Institute. A model axial hydraulic turbine with four different rotors is designed for the research. The diameter of all four rotors is the same: 80 mm. The pipeline takes the form of a siphon. Working rotor R2, designed with parameter optimization, is characterized by the highest coefficient of energy utilization of the pressure pipeline and maximum efficiency. That confirms that the proposed approach is a promising means of maximizing the overall energy efficiency of the microhydropower plant.

  15. Hydraulic Turbines: The Francis Turbine. Technical Terminology Bulletin. Terminotech, Vol. 2, No. 2.

    Science.gov (United States)

    General Electric Co. of Canada, Ltd., Montreal, Quebec.

    This issue of a bulletin of technological terminology is devoted to the Francis turbine. A brief narrative on the subject is presented in both French and English. An English-French dictionary of terms comprises the bulk of the document. An explanatory illustration is appended. (JB)

  16. Hydraulic Turbines: The Pelton Turbine. Technical Terminology Bulletin. Terminotech, Vol. 2, No. 3.

    Science.gov (United States)

    General Electric Co. of Canada, Ltd., Montreal, Quebec.

    This issue of a bulletin of technological terminology is devoted to the Pelton turbine. A brief narrative on the subject is presented in both French and English. An English-French dictionary of terms comprises the bulk of the document. Explanatory illustrations are appended. (JB)

  17. Numerical Research on Flow Characteristics around a Hydraulic Turbine Runner at Small Opening of Cylindrical Valve

    Directory of Open Access Journals (Sweden)

    Zhenwei Mo

    2016-01-01

    Full Text Available We use the continuity equation and the Reynolds averaged Navier-Stokes equations to study the flow-pattern characteristics around a turbine runner for the small-opening cylindrical valve of a hydraulic turbine. For closure, we adopt the renormalization-group k-ε two-equation turbulence model and use the computational fluid dynamics (CFD software FLUENT to numerically simulate the three-dimensional unsteady turbulent flow through the entire passage of the hydraulic turbine. The results show that a low-pressure zone develops around the runner blades when the cylindrical valve is closed in a small opening; cavitation occurs at the blades, and a vortex appears at the outlet of the runner. As the cylindrical valve is gradually closed, the flow velocity over the runner area increases, and the pressure gradient becomes more significant as the discharge decreases. In addition, the fluid flow velocity is relatively high between the lower end of the cylindrical valve and the base, so that a high-velocity jet is easily induced. The calculation and analysis provide a theoretical basis for improving the performance of cylindrical-valve operating systems.

  18. Design optimization of axial flow hydraulic turbine runner: Part II - multi-objective constrained optimization method

    Science.gov (United States)

    Peng, Guoyi; Cao, Shuliang; Ishizuka, Masaru; Hayama, Shinji

    2002-06-01

    This paper is concerned with the design optimization of axial flow hydraulic turbine runner blade geometry. In order to obtain a better design plan with good performance, a new comprehensive performance optimization procedure has been presented by combining a multi-variable multi-objective constrained optimization model with a Q3D inverse computation and a performance prediction procedure. With careful analysis of the inverse design of axial hydraulic turbine runner, the total hydraulic loss and the cavitation coefficient are taken as optimization objectives and a comprehensive objective function is defined using the weight factors. Parameters of a newly proposed blade bound circulation distribution function and parameters describing positions of blade leading and training edges in the meridional flow passage are taken as optimization variables.The optimization procedure has been applied to the design optimization of a Kaplan runner with specific speed of 440 kW. Numerical results show that the performance of designed runner is successfully improved through optimization computation. The optimization model is found to be validated and it has the feature of good convergence. With the multi-objective optimization model, it is possible to control the performance of designed runner by adjusting the value of weight factors defining the comprehensive objective function. Copyright

  19. Aperiodic pressure pulsation under non optimal hydraulic turbine regimes at low swirl number

    Science.gov (United States)

    Skripkin, S. G.; Tsoy, M. A.; Kuibin, P. A.; Shtork, S. I.

    2017-09-01

    Off-design operating conditions of hydraulic turbines is hindered by pressure fluctuations in the draft tube of the turbine. A precessing helical vortex rope develops, which imperils the mechanical structure and limits the operation flexibility of hydropower station. Understanding of the underlying instabilities of precessing vortex rope at low swirl number is incomplete. In this paper flow regimes with different residual swirl is analysed, particular attention is paid to the regime with a small swirl parameter. Study defines upper and low boundaries of regime where aperiodic pressure surge is observed. Flow field at the runner exit is investigated by Laser Doppler Velocimetry and high-speed visualizations, which are complemented draft tube wall pressure measurements.

  20. Methods of Si based ceramic components volatilization control in a gas turbine engine

    Science.gov (United States)

    Garcia-Crespo, Andres Jose; Delvaux, John; Dion Ouellet, Noemie

    2016-09-06

    A method of controlling volatilization of silicon based components in a gas turbine engine includes measuring, estimating and/or predicting a variable related to operation of the gas turbine engine; correlating the variable to determine an amount of silicon to control volatilization of the silicon based components in the gas turbine engine; and injecting silicon into the gas turbine engine to control volatilization of the silicon based components. A gas turbine with a compressor, combustion system, turbine section and silicon injection system may be controlled by a controller that implements the control method.

  1. Control System on a Wind Turbine: Evaluation of Control Strategies for a Wind Turbine with Hydraulic Drive Train by Means of Aeroelastic Analysis

    OpenAIRE

    Frøyd, Lars

    2009-01-01

    The evolution of wind turbines are going towards floating offshore structures. To improve the stability of these turbines, the weight of the nacelle should be as low as possible. The company ChapDrive has developed a hydraulic drive train that gives the ability to move the generator to the base of the tower and to replace the traditional gearbox. To test the system, ChapDrive has constructed a prototype turbine which is located at Valsneset.This thesis describes the combined aero-elastic and...

  2. The status of ceramic turbine component fabrication and quality assurance relevant to automotive turbine needs

    Energy Technology Data Exchange (ETDEWEB)

    Richerson, D.W.

    2000-02-01

    This report documents a study funded by the U.S. Department of Energy (DOE) Office of Transportation Technologies (OTT) with guidance from the Ceramics Division of the United States Automotive Materials Partnership (USAMP). DOE and the automotive companies have funded extensive development of ceramic materials for automotive gas turbine components, the most recent effort being under the Partnership for a New Generation of Vehicles (PNGV) program.

  3. The Design Method of Axial Flow Runners Focusing on Axial Flow Velocity Uniformization and Its Application to an Ultra-Small Axial Flow Hydraulic Turbine

    Directory of Open Access Journals (Sweden)

    Yasuyuki Nishi

    2016-01-01

    Full Text Available We proposed a portable and ultra-small axial flow hydraulic turbine that can generate electric power comparatively easily using the low head of open channels such as existing pipe conduits or small rivers. In addition, we proposed a simple design method for axial flow runners in combination with the conventional one-dimensional design method and the design method of axial flow velocity uniformization, with the support of three-dimensional flow analysis. Applying our design method to the runner of an ultra-small axial flow hydraulic turbine, the performance and internal flow of the designed runner were investigated using CFD analysis and experiment (performance test and PIV measurement. As a result, the runners designed with our design method were significantly improved in turbine efficiency compared to the original runner. Specifically, in the experiment, a new design of the runner achieved a turbine efficiency of 0.768. This reason was that the axial component of absolute velocity of the new design of the runner was relatively uniform at the runner outlet in comparison with that of the original runner, and as a result, the negative rotational flow was improved. Thus, the validity of our design method has been verified.

  4. Tests Performed on Hydraulic Turbines at Commissioning or after Capital Repairs. Part II. Tests Performed on a 6.5 MW Kaplan Turbine

    Directory of Open Access Journals (Sweden)

    Adrian Cuzmoş

    2015-07-01

    Full Text Available The paper presents the tests performed on a hydraulic turbine on commissioning, the devices, test methods and the results obtained from the respective tests, as well as the conclusions and recommendations resulted from these tests. This kind of tests can be performed for the verification of guarantees.

  5. Using genetic algorithm to define the governor parameters of a hydraulic turbine

    International Nuclear Information System (INIS)

    Andrade, J G P; Ribeiro, L C L J; Junior, E L

    2010-01-01

    There are several governor architectures, but in general, all of them are designed to maintain the controlled variable fluctuations within acceptable range. The Proportional, Integral and Derivative (PID) governor is one of the types used to regulate a hydraulic turbine, in which the deviation of the variable controlled is corrected through earnings proportional, integral and derivative. For a definition of the governor parameters and its stability analysis there are several methods that in general can be classified into a time domain and frequency domain. The frequency domain method, based on the control theory, have ease application, expeditious manner of obtaining the parameters, but the physical phenomena involved are linearized. However the time domain methods are more difficult to be applied, but have the advantage of being able to take into account the non-linearities presents in physical phenomena. Despite the time-domain method offers advantages, it does not provides a structured way to optimize the parameters of the governor, since the parameters are obtained through simulations with adopted values. This paper presents a methodology to obtain the turbine governor appropriate parameters through a hybrid model (simulation and optimization model), based on method of characteristic to the hydraulic simulation (time domain) and Genetic Algorithm (GA) to obtain appropriate values. Examples are presented showing the application of the proposed methodology.

  6. Erosion estimation of guide vane end clearance in hydraulic turbines with sediment water flow

    Science.gov (United States)

    Han, Wei; Kang, Jingbo; Wang, Jie; Peng, Guoyi; Li, Lianyuan; Su, Min

    2018-04-01

    The end surface of guide vane or head cover is one of the most serious parts of sediment erosion for high-head hydraulic turbines. In order to investigate the relationship between erosion depth of wall surface and the characteristic parameter of erosion, an estimative method including a simplified flow model and a modificatory erosion calculative function is proposed in this paper. The flow between the end surfaces of guide vane and head cover is simplified as a clearance flow around a circular cylinder with a backward facing step. Erosion characteristic parameter of csws3 is calculated with the mixture model for multiphase flow and the renormalization group (RNG) k-𝜀 turbulence model under the actual working conditions, based on which, erosion depths of guide vane and head cover end surfaces are estimated with a modification of erosion coefficient K. The estimation results agree well with the actual situation. It is shown that the estimative method is reasonable for erosion prediction of guide vane and can provide a significant reference to determine the optimal maintenance cycle for hydraulic turbine in the future.

  7. Using genetic algorithm to define the governor parameters of a hydraulic turbine

    Energy Technology Data Exchange (ETDEWEB)

    Andrade, J G P; Ribeiro, L C L J [School of Technology, UNICAMP Rua Paschoal Marmo, 1888, Limeira, Postal Code:13484-332 (Brazil); Junior, E L, E-mail: josegeraldo@ft.unicamp.b [School of Civil Engineering, Architecture and Urbanism, UNICAMP Avenida Albert Einstein, 951, Campinas, Postal Code: 13083-852 (Brazil)

    2010-08-15

    There are several governor architectures, but in general, all of them are designed to maintain the controlled variable fluctuations within acceptable range. The Proportional, Integral and Derivative (PID) governor is one of the types used to regulate a hydraulic turbine, in which the deviation of the variable controlled is corrected through earnings proportional, integral and derivative. For a definition of the governor parameters and its stability analysis there are several methods that in general can be classified into a time domain and frequency domain. The frequency domain method, based on the control theory, have ease application, expeditious manner of obtaining the parameters, but the physical phenomena involved are linearized. However the time domain methods are more difficult to be applied, but have the advantage of being able to take into account the non-linearities presents in physical phenomena. Despite the time-domain method offers advantages, it does not provides a structured way to optimize the parameters of the governor, since the parameters are obtained through simulations with adopted values. This paper presents a methodology to obtain the turbine governor appropriate parameters through a hybrid model (simulation and optimization model), based on method of characteristic to the hydraulic simulation (time domain) and Genetic Algorithm (GA) to obtain appropriate values. Examples are presented showing the application of the proposed methodology.

  8. Advanced Materials Test Methods for Improved Life Prediction of Turbine Engine Components

    National Research Council Canada - National Science Library

    Stubbs, Jack

    2000-01-01

    Phase I final report developed under SBIR contract for Topic # AF00-149, "Durability of Turbine Engine Materials/Advanced Material Test Methods for Improved Use Prediction of Turbine Engine Components...

  9. HydroHillChart – Pelton module. Software used to Calculate the Hill Chart of the Pelton Hydraulic Turbines

    OpenAIRE

    Dorian Nedelcu; Adelina Bostan; Florin Peris-Bendu

    2015-01-01

    The paper presents the HydroHillChart - Pelton module application, used to calculate the hill chart of the Pelton hydraulic turbine models, by processing the data measured on the stand. In addition, the tools offered by the application such as: interface, menu, input data, numerical and graphical results, etc. are described.

  10. HydroHillChart – Pelton module. Software used to Calculate the Hill Chart of the Pelton Hydraulic Turbines

    Directory of Open Access Journals (Sweden)

    Dorian Nedelcu

    2015-07-01

    Full Text Available The paper presents the HydroHillChart - Pelton module application, used to calculate the hill chart of the Pelton hydraulic turbine models, by processing the data measured on the stand. In addition, the tools offered by the application such as: interface, menu, input data, numerical and graphical results, etc. are described.

  11. Sensor-Based Optimized Control of the Full Load Instability in Large Hydraulic Turbines

    Directory of Open Access Journals (Sweden)

    Alexandre Presas

    2018-03-01

    Full Text Available Hydropower plants are of paramount importance for the integration of intermittent renewable energy sources in the power grid. In order to match the energy generated and consumed, Large hydraulic turbines have to work under off-design conditions, which may lead to dangerous unstable operating points involving the hydraulic, mechanical and electrical system. Under these conditions, the stability of the grid and the safety of the power plant itself can be compromised. For many Francis Turbines one of these critical points, that usually limits the maximum output power, is the full load instability. Therefore, these machines usually work far away from this unstable point, reducing the effective operating range of the unit. In order to extend the operating range of the machine, working closer to this point with a reasonable safety margin, it is of paramount importance to monitor and to control relevant parameters of the unit, which have to be obtained with an accurate sensor acquisition strategy. Within the framework of a large EU project, field tests in a large Francis Turbine located in Canada (rated power of 444 MW have been performed. Many different sensors were used to monitor several working parameters of the unit for all its operating range. Particularly for these tests, more than 80 signals, including ten type of different sensors and several operating signals that define the operating point of the unit, were simultaneously acquired. The present study, focuses on the optimization of the acquisition strategy, which includes type, number, location, acquisition frequency of the sensors and corresponding signal analysis to detect the full load instability and to prevent the unit from reaching this point. A systematic approach to determine this strategy has been followed. It has been found that some indicators obtained with different types of sensors are linearly correlated with the oscillating power. The optimized strategy has been determined

  12. Sensor-Based Optimized Control of the Full Load Instability in Large Hydraulic Turbines.

    Science.gov (United States)

    Presas, Alexandre; Valentin, David; Egusquiza, Mònica; Valero, Carme; Egusquiza, Eduard

    2018-03-30

    Hydropower plants are of paramount importance for the integration of intermittent renewable energy sources in the power grid. In order to match the energy generated and consumed, Large hydraulic turbines have to work under off-design conditions, which may lead to dangerous unstable operating points involving the hydraulic, mechanical and electrical system. Under these conditions, the stability of the grid and the safety of the power plant itself can be compromised. For many Francis Turbines one of these critical points, that usually limits the maximum output power, is the full load instability. Therefore, these machines usually work far away from this unstable point, reducing the effective operating range of the unit. In order to extend the operating range of the machine, working closer to this point with a reasonable safety margin, it is of paramount importance to monitor and to control relevant parameters of the unit, which have to be obtained with an accurate sensor acquisition strategy. Within the framework of a large EU project, field tests in a large Francis Turbine located in Canada (rated power of 444 MW) have been performed. Many different sensors were used to monitor several working parameters of the unit for all its operating range. Particularly for these tests, more than 80 signals, including ten type of different sensors and several operating signals that define the operating point of the unit, were simultaneously acquired. The present study, focuses on the optimization of the acquisition strategy, which includes type, number, location, acquisition frequency of the sensors and corresponding signal analysis to detect the full load instability and to prevent the unit from reaching this point. A systematic approach to determine this strategy has been followed. It has been found that some indicators obtained with different types of sensors are linearly correlated with the oscillating power. The optimized strategy has been determined based on the

  13. Parameters identification of hydraulic turbine governing system using improved gravitational search algorithm

    Energy Technology Data Exchange (ETDEWEB)

    Chaoshun Li; Jianzhong Zhou [College of Hydroelectric Digitization Engineering, Huazhong University of Science and Technology, Wuhan 430074 (China)

    2011-01-15

    Parameter identification of hydraulic turbine governing system (HTGS) is crucial in precise modeling of hydropower plant and provides support for the analysis of stability of power system. In this paper, a newly developed optimization algorithm, called gravitational search algorithm (GSA), is introduced and applied in parameter identification of HTGS, and the GSA is improved by combination of the search strategy of particle swarm optimization. Furthermore, a new weighted objective function is proposed in the identification frame. The improved gravitational search algorithm (IGSA), together with genetic algorithm, particle swarm optimization and GSA, is employed in parameter identification experiments and the procedure is validated by comparing experimental and simulated results. Consequently, IGSA is shown to locate more precise parameter values than the compared methods with higher efficiency. (author)

  14. Parameters identification of hydraulic turbine governing system using improved gravitational search algorithm

    International Nuclear Information System (INIS)

    Li Chaoshun; Zhou Jianzhong

    2011-01-01

    Parameter identification of hydraulic turbine governing system (HTGS) is crucial in precise modeling of hydropower plant and provides support for the analysis of stability of power system. In this paper, a newly developed optimization algorithm, called gravitational search algorithm (GSA), is introduced and applied in parameter identification of HTGS, and the GSA is improved by combination of the search strategy of particle swarm optimization. Furthermore, a new weighted objective function is proposed in the identification frame. The improved gravitational search algorithm (IGSA), together with genetic algorithm, particle swarm optimization and GSA, is employed in parameter identification experiments and the procedure is validated by comparing experimental and simulated results. Consequently, IGSA is shown to locate more precise parameter values than the compared methods with higher efficiency.

  15. Determination of material behavior in 700 C turbine components under component and load specific conditions

    Energy Technology Data Exchange (ETDEWEB)

    Lueckemeyer, N.; Kirchner, H.; Kern, T.U. [Siemens AG, Muehlheim (Germany). Energy Sector; Reigl, M. [Alstom Power, Baden (Switzerland); Klenk, A.; Klein, T. [Stuttgart Univ. (Germany). MPA; Schwienheer, M.; Cui, L.; Scholz, A.; Berger, C. [Institut fuer Werkstoffkunde (IfW), Darmstadt (Germany)

    2010-07-01

    With global warming being one of mankind's greatest challenges, an increasing demand for electricity world-wide, and studies showing that fossil resources like coal and gas will remain a major source for electricity for the next couple of decades, research into the development of highest efficiency fossil power plants has become a top priority. Calculations for coal fired power plants have shown that CO{sub 2} emissions can be reduced by as much as 7% compared to the current state of the art equipment. It can be reached by increasing the live steam parameters to 700 C and 350bar. To achieve the desired operating hours at this temperature the application of nickel base materials is necessary for the main components such as rotors, inner casings and valves. Nowadays, the use of Nickel base alloys is common practice for selected gas turbine components. However, with steam turbine rotors being 1000mm in diameter and casings with wall thicknesses higher than 100mm the gas turbine application range and experience for nickel base alloys are well exceeded. This paper uses a basic design for a steam turbine to illustrate the core challenges in developing nickel based steam turbine components, such as casting, forging, nondestructive testing and welding. Suitable nickel based alloys have been investigated in research projects over the past years. The research results are summarized and an explanation is given as to why Alloy617 was selected for forged components and Alloy625 for cast components. This paper then focuses on the material behavior under long term and complex loading conditions and on the development of life time concepts for thick walled components made from these alloys. Due to the differences in the material behavior of nickel base alloys, the existing steel design philosophies cannot be completely adopted but rather must be carefully evaluated and modified where necessary. To do this, large test components were manufactured. Based on both standard tests

  16. Development of the water-lubricated thrust bearing of the hydraulic turbine generator

    International Nuclear Information System (INIS)

    Inoue, K; Deguchi, K; Okude, K; Fujimoto, R

    2012-01-01

    In hydropower plant, a large quantities of turbine oil is used as machine control pressure oil and lubricating oil. If the oil leak out from hydropower plant, it flows into a river. And such oil spill has an adverse effect on natural environment because the oil does not degrade easily. Therefore the KANSAI and Hitachi Mitsubishi Hydro developed the water-lubricated thrust bearing for vertical type hydraulic turbine generator. The water-lubricated bearing has advantages in risk avoidance of river pollution because it does not need oil. For proceeding the development of the water-lubricated thrust bearing, we studied following items. The first is the examination of the trial products of water lubricating liquid. The second is the study of bearing structure which can satisfy bearing performance such as temperature characteristic and so on. The third is the mock-up testing for actual application in the future. As a result, it was found that the water-lubricated thrust bearing was technically applicable to actual equipments.

  17. Metallurgical and fatigue assessments of welds in cast welded hydraulic turbine runners

    International Nuclear Information System (INIS)

    Trudel, A; Sabourin, M

    2014-01-01

    Decades of hydraulic turbine operation around the world have shown one undeniable fact; welded turbine runners can be prone to fatigue cracking, especially in the vicinity of welds. In this regard, three factors are essential to consider in runner fatigue assessments: (1) the runner's design, which can induce stress concentrations in the fillets, (2) the casting process, which inherently creates defects such as shrinkage cavities and (3) the welding process, which induces significant residual stresses as well as a heat affected zone in the cast pieces near the interface with the filler metal. This study focuses on the latter, the welding process, with emphasis on the influence of the heat affected zone on the runner's fatigue behavior. In a recently concluded study by a large research consortium in Montreal, the microstructure and fatigue crack propagation properties of a CA6NM runner weld heat affected zone were thoroughly investigated to find if this zone deteriorates the runner's resistance to fatigue cracking. The main results showed that this zone's intrinsic fatigue crack propagation resistance is only slightly lower than the unaffected base metal because of its somewhat finer martensitic microstructure leading to a less tortuous crack path. However, it was also confirmed that weld-induced residual stresses represent the dominant influencing factor regarding fatigue crack propagation, though post-weld heat treatments are usually very effective in reducing such residual stresses. This paper aims to further confirm, through a case study, that the weld-induced heat affected zone does not compromise the reliability of welded turbine runners when its fatigue crack propagation properties are considered in fatigue damage models

  18. Development of impact design methods for ceramic gas turbine components

    Science.gov (United States)

    Song, J.; Cuccio, J.; Kington, H.

    1990-01-01

    Impact damage prediction methods are being developed to aid in the design of ceramic gas turbine engine components with improved impact resistance. Two impact damage modes were characterized: local, near the impact site, and structural, usually fast fracture away from the impact site. Local damage to Si3N4 impacted by Si3N4 spherical projectiles consists of ring and/or radial cracks around the impact point. In a mechanistic model being developed, impact damage is characterized as microcrack nucleation and propagation. The extent of damage is measured as volume fraction of microcracks. Model capability is demonstrated by simulating late impact tests. Structural failure is caused by tensile stress during impact exceeding material strength. The EPIC3 code was successfully used to predict blade structural failures in different size particle impacts on radial and axial blades.

  19. Electrochemical machining - manufacturing of turbine and reactor components

    International Nuclear Information System (INIS)

    Otto, K.

    1987-01-01

    Electrochemical machining is a shaping process for metallic workpieces with complex geometries. Using an electrode corresponding to the negative of the desired shape, the material to be removed is dissolved anodically at erosion rates of up to 10 mm/min. The reproducible shape accuracy lies between 0,02 and 0,08 mm, depending on the machining problem. Surface finishes of less than 18 μm are attained. The hardness of the material has no influence on the metal removal process. The workpiece is not subjected to any thermal stressing during machining. The process is well suited for quantity production of complex parts and is used inter alia for turbine blades and components for nuclear reactors. (orig.) [de

  20. Turbine component casting core with high resolution region

    Science.gov (United States)

    Kamel, Ahmed; Merrill, Gary B.

    2014-08-26

    A hollow turbine engine component with complex internal features can include a first region and a second, high resolution region. The first region can be defined by a first ceramic core piece formed by any conventional process, such as by injection molding or transfer molding. The second region can be defined by a second ceramic core piece formed separately by a method effective to produce high resolution features, such as tomo lithographic molding. The first core piece and the second core piece can be joined by interlocking engagement that once subjected to an intermediate thermal heat treatment process thermally deform to form a three dimensional interlocking joint between the first and second core pieces by allowing thermal creep to irreversibly interlock the first and second core pieces together such that the joint becomes physically locked together providing joint stability through thermal processing.

  1. Hydraulic Yaw System

    DEFF Research Database (Denmark)

    Stubkier, Søren; Pedersen, Henrik C.; Mørkholt, M.

    a hydraulic soft yaw system, which is able to reduce the loads on the wind turbine significantly. A full scale hydraulic yaw test rig is available for experiments and tests. The test rig is presented as well as the system schematics of the hydraulic yaw system....... the HAWC2 aeroelastic code and an extended model of the NREL 5MW turbine combined with a simplified linear model of the turbine, the parameters of the soft yaw system are optimized to reduce loading in critical components. Results shows that a significant reduction in fatigue and extreme loads to the yaw...... system and rotor shaft when utilizing the soft yaw drive concept compared to the original stiff yaw system. The physical demands of the hydraulic yaw system are furthermore examined for a life time of 20 years. Based on the extrapolated loads, the duty cycles show that it is possible to construct...

  2. Building 65 Hydraulic Systems Handbook: Components, Systems, and Applications

    Science.gov (United States)

    2016-04-01

    Dump Buttons OVERVIEW Pump Dump Buttons...hydraulic system? There are different types of dump buttons that control a hierarchy of flow paths. Some dump buttons are used to shut down a pump ...that branch. The use of this dump button is preferred over the Pump Dump Button when possible. Test Site Dump

  3. Extensive use of computational fluid dynamics in the upgrading of hydraulic turbines

    Energy Technology Data Exchange (ETDEWEB)

    Sabourin, M.; De Henau, V. [GEC Alsthom Electromechanical Inc., Tracy, PQ (Canada); Eremeef, R. [GEC Alsthom Neyrpic, Grenoble (France)

    1995-12-31

    The use of computational fluid flow dynamics (CFD) and the Navier Stokes equations by GEC Alsthom for turbine rehabilitation were discussed. The process of runner rehabilitation was discussed from a fluid flow perspective, which accounts for the spiral case-distributor set and draft tube. The Kootenay turbine rehabilitation was described with regard to it spiral case and stay vane. The numerical analysis used to model upstream components was explained. The influence of draft tube effects was emphasized as an important efficiency factor. The differences between draft tubes at Sir Adam Beck 2 and La Grande 2 were discussed. Computational fluid flow modelling was claimed to have produced global performance enhancements in a reasonably short time, and at a reasonable cost. 6 refs., 6 figs., 4 tabs.

  4. The impact of inlet angle and outlet angle of guide vane on pump in reversal based hydraulic turbine performance

    International Nuclear Information System (INIS)

    Shi, F X; Yang, J H; Wang, X H; Zhang, R H; Li, C E

    2012-01-01

    In this paper, in order to research the impact of inlet angle and outlet angle of guide vane on hydraulic turbine performance, a centrifugal pump in reversal is adopted as turbine. A numerical simulation method is adopted for researching outer performance and flow field of turbine. The results show: inlet angle has a crucial role to turbine, to the same flow, there is a noticeable decline for the efficiency and head of turbine with the inlet angle increases. At the best efficiency point(EFP),to a same inlet angle, when the inlet angle greater than inlet angle, velocity circulation in guide vane outlet decreases, which lead the efficiency of turbine to reduce, Contrarily, the efficiency rises. With the increase of inlet angle and outlet angle, the EFP moves to the big flow area and the uniformity of pressure distribution becomes worse. The paper indicates that the inlet angle and outlet angle have great impact on the turbine performance, and the best combination exists for the inlet angle and outlet angle of the guide vane.

  5. Evaluation of Hydraulic Loads on the Runner Blades of a Kaplan Turbine using CFD Simulation and Model Test

    Directory of Open Access Journals (Sweden)

    Zoltan-Iosif Korka

    2016-10-01

    Full Text Available CFD (Computational Fluid Dynamic is today a standard procedure for analyzing and simulating the flow through several hydraulic machines. In this process, the fluid flow domain is divided into small volumes where the governing equations are converted into algebraic ones, which are numerically solved. Computational results strongly depend on the applied mathematical model and on the numerical methods used for converting the governing equations into the algebraic ones. The goal of the paper is to evaluate, by numerical simulation, the hydraulic loads (forces and torques on the runner blades of an existent Kaplan turbine and to compare them with the experimental results obtained from model test.

  6. Reliability Analysis of Fatigue Failure of Cast Components for Wind Turbines

    OpenAIRE

    Hesam Mirzaei Rafsanjani; John Dalsgaard Sørensen

    2015-01-01

    Fatigue failure is one of the main failure modes for wind turbine drivetrain components made of cast iron. The wind turbine drivetrain consists of a variety of heavily loaded components, like the main shaft, the main bearings, the gearbox and the generator. The failure of each component will lead to substantial economic losses such as cost of lost energy production and cost of repairs. During the design lifetime, the drivetrain components are exposed to variable loads from winds and waves an...

  7. Analysis of load reduction possibilities using a hydraulic soft yaw system for a 5-MW turbine and its sensitivity to yaw-bearing friction

    DEFF Research Database (Denmark)

    Stubkier, S.; Pedersen, H. C.; Jonkman, J. M.

    2014-01-01

    With the increasing size of wind turbines and with increasing lifetime demands, new methods for load reduction in the turbines need to be examined. One method is to make the yaw system of the turbine flexible, thereby dampening the loads to the system. This paper presents a hydraulic soft yaw...... concept and investigates the effect this has on critical loads in the turbine. To analyze the system, a novel friction model is developed and implemented for the yaw system using the NREL 5-MW turbine in the aerodynamic code FAST. Based on this model, the influence of friction is investigated...

  8. HydroHillChart – Francis module. Software used to Calculate the Hill Chart of the Francis Hydraulic Turbines

    Directory of Open Access Journals (Sweden)

    Dorian Nedelcu

    2015-07-01

    Full Text Available The paper presents the Hydro Hill Chart - Francis module application, used to calculate the hill chart of the Pelton, Francis and Kaplan hydraulic turbine models, by processing the data measured on the stand. After describing the interface and menu, the input data is graphically presented and the universal characteristic for measuring scenarios ao=const. and n11=const is calculated. Finally, the two calculated hill charts are compared through a graphical superimposition of the isolines.

  9. Instance Analysis for the Error of Three-pivot Pressure Transducer Static Balancing Method for Hydraulic Turbine Runner

    Science.gov (United States)

    Weng, Hanli; Li, Youping

    2017-04-01

    The working principle, process device and test procedure of runner static balancing test method by weighting with three-pivot pressure transducers are introduced in this paper. Based on an actual instance of a V hydraulic turbine runner, the error and sensitivity of the three-pivot pressure transducer static balancing method are analysed. Suggestions about improving the accuracy and the application of the method are also proposed.

  10. Reliability & availability of wind turbine electrical & electronic components

    NARCIS (Netherlands)

    Tavner, P.; Faulstich, S.; Hahn, B.; Bussel, van G.J.W.

    2010-01-01

    Recent analysis of European onshore wind turbine reliability data has shown that whilst wind turbine mechanical subassemblies tend to have relatively low failure rates but long downtimes, electrical and electronic subassemblies have relatively high failure rates and short downtimes. For onshore wind

  11. Grid dependency and relaxation of an iteration procedure for flow calculations in stationary hydraulic turbine parts

    Energy Technology Data Exchange (ETDEWEB)

    Iliev, Igor; Markov, Zoran [Faculty of Mechanical Engineering, ' Ss. Cyril and Methodius' University, Skopje (Macedonia, The Former Yugoslav Republic of)

    2014-07-01

    The numerical methods for iterative solving of discretized governing equations often require special treatment for the purpose of achieving not only sufficiently accurate and reliable results, but stable and gradual convergence of the solution too. The general remedy for such challenge, for a certain case, is to use a fine mesh to a certain level and/or to slow down the numerical procedure, a two useful strategies by which numerical instabilities will be avoided on the account of a greater CPU load. This paper presents the employment of these two strategies by conducting a grid dependency analysis for a 2D model of the stay and guide vanes of a hydraulic Francis turbine and furthering the solution to iteration procedure adjustment for a 3D representation of the same model. The ultimate accent is placed on how to deal with a particular numerical instability problem in a pure mathematical fashion without getting into the experimental validation of the results and calibration of the method. (Author)

  12. Exposure of aircraft maintenance technicians to organophosphates from hydraulic fluids and turbine oils: a pilot study.

    Science.gov (United States)

    Schindler, Birgit Karin; Koslitz, Stephan; Weiss, Tobias; Broding, Horst Christoph; Brüning, Thomas; Bünger, Jürgen

    2014-01-01

    Hydraulic fluids and turbine oils contain organophosphates like tricresyl phosphate isomers, triphenyl phosphate and tributyl phosphate from very small up to high percentages. The aim of this pilot study was to determine if aircraft maintenance technicians are exposed to relevant amounts of organophosphates. Dialkyl and diaryl phosphate metabolites of seven organophosphates were quantified in pre- and post-shift spot urine samples of technicians (N=5) by GC-MS/MS after solid phase extraction and derivatization. Pre- and post shift values of tributyl phosphate metabolites (dibutyl phosphate (DBP): median pre-shift: 12.5 μg/L, post-shift: 23.5 μg/L) and triphenyl phosphate metabolites (diphenyl phosphate (DPP): median pre-shift: 2.9 μg/L, post-shift: 3.5 μg/L) were statistically higher than in a control group from the general population (median DBP: <0.25 μg/L, median DPP: 0.5 μg/L). No tricresyl phosphate metabolites were detected. The aircraft maintenance technicians were occupationally exposed to tributyl and triphenyl phosphate but not to tricresyl phosphate, tri-(2-chloroethyl)- and tri-(2-chloropropyl)-phosphate. Further studies are necessary to collect information on sources, routes of uptake and varying exposures during different work tasks, evaluate possible health effects and to set up appropriate protective measures. Copyright © 2013 Elsevier GmbH. All rights reserved.

  13. Design optimization of hydraulic turbine draft tube based on CFD and DOE method

    Science.gov (United States)

    Nam, Mun chol; Dechun, Ba; Xiangji, Yue; Mingri, Jin

    2018-03-01

    In order to improve performance of the hydraulic turbine draft tube in its design process, the optimization for draft tube is performed based on multi-disciplinary collaborative design optimization platform by combining the computation fluid dynamic (CFD) and the design of experiment (DOE) in this paper. The geometrical design variables are considered as the median section in the draft tube and the cross section in its exit diffuser and objective function is to maximize the pressure recovery factor (Cp). Sample matrixes required for the shape optimization of the draft tube are generated by optimal Latin hypercube (OLH) method of the DOE technique and their performances are evaluated through computational fluid dynamic (CFD) numerical simulation. Subsequently the main effect analysis and the sensitivity analysis of the geometrical parameters of the draft tube are accomplished. Then, the design optimization of the geometrical design variables is determined using the response surface method. The optimization result of the draft tube shows a marked performance improvement over the original.

  14. Modernization of the turbine control technique and the turbine hydraulics aimed to improved maneuverability in the load range, system safety and plant availability, plant transparency for diagnosis and long-term performance

    International Nuclear Information System (INIS)

    Baran, Detlef

    2012-01-01

    In the contribution H.Mauell GmbH presents modernization projects for the nuclear power plants Tihange-3 and Doel-4. The project volume included control technique and the turbine hydraulics for the steam turbo generating set including turbine auxiliary devices and two turbine feeding pumps. The modernizations were successfully completed in 2010 and 2011, respectively. The nuclear power plants are trouble-free operated.

  15. Report on the thermal-hydraulics computational component

    International Nuclear Information System (INIS)

    Laughton, T.; Jones, B.G.

    1996-01-01

    The nodal methods computer code utilizing hexagonal geometry, which is being developed as part of this DOE contract, is called THMZ. The computational objective of the code is to calculate the steady-state thermal-hydraulic conditions in a hexagonal geometry reactor core given the appropriate initial conditions and the axial neutron flux profile. The latter is given by a companion nodal neutronics code which was developed in an earlier part of the contact. The joining of these two codes to provide a coupled analysis tool for hexagonal lattice cores is the ultimate objective of the contract and its follow-on work. The remaining part of this report presents the current status of the development and the results which have been obtained to date. These will appear in the MS thesis of Mr. Terrill Laughton in the Department of Nuclear Engineering which is currently in preparation

  16. THE USE OF COATINGS FOR HOT CORROSION AND EROSION PROTECTION IN TURBINE HOT SECTION COMPONENTS

    OpenAIRE

    Hayrettin AHLATCI

    1999-01-01

    High pressure turbine components are subjected to a wide variety of thermal and mechanical loading during service. In addition, the components are exposed to a highly oxidizing atmosphere which may contain contaminants such as sulphates, chlorides and sulphuorous gases along with erosive media. So the variety of surface coatings and deposition processes available for the protection of blade and vane components in gas turbines are summarised in this study. Coating types range from simple diff...

  17. Hydraulic development of high specific-speed pump-turbines by means of an inverse design method, numerical flow-simulation (CFD) and model testing

    International Nuclear Information System (INIS)

    Kerschberger, P; Gehrer, A

    2010-01-01

    In recent years an increased interest in pump-turbines has been recognized in the market. The rapid availability of pumped storage schemes and the benefits to the power system by peak lopping, providing reserve and rapid response for frequency control are becoming of growing advantage. In that context it is requested to develop pump-turbines that reliably stand dynamic operation modes, fast changes of the discharge rate by adjusting the variable diffuser vanes as well as fast changes from pump to turbine operation. Within the present study various flow patterns linked to the operation of a pump-turbine system are discussed. In that context pump and turbine mode are presented separately and different load cases at both operation modes are shown. In order to achieve modern, competitive pump-turbine designs it is further explained which design challenges should be considered during the geometry definition of a pump-turbine impeller. Within the present study a runner-blade profile for a low head pump-turbine has been developed. For the initial hydraulic runner-blade design, an inverse design method has been applied. Within this design procedure, a first blade geometry is generated by imposing the pressure loading-distribution and by means of an inverse 3D potential-flow-solution. The hydraulic behavior of both, pump-mode and turbine-mode is then evaluated by solving the full 3D Navier-Stokes equations in combination with a robust turbulence model. Based on this initial design the blade profile has been further optimized and redesigned considering various hydraulic pump-turbine requirements. Finally, the progress in hydraulic design is demonstrated by model test results which show a significant improvement in hydraulic performance compared to an existing reference design.

  18. Hydraulic development of high specific-speed pump-turbines by means of an inverse design method, numerical flow-simulation (CFD) and model testing

    Science.gov (United States)

    Kerschberger, P.; Gehrer, A.

    2010-08-01

    In recent years an increased interest in pump-turbines has been recognized in the market. The rapid availability of pumped storage schemes and the benefits to the power system by peak lopping, providing reserve and rapid response for frequency control are becoming of growing advantage. In that context it is requested to develop pump-turbines that reliably stand dynamic operation modes, fast changes of the discharge rate by adjusting the variable diffuser vanes as well as fast changes from pump to turbine operation. Within the present study various flow patterns linked to the operation of a pump-turbine system are discussed. In that context pump and turbine mode are presented separately and different load cases at both operation modes are shown. In order to achieve modern, competitive pump-turbine designs it is further explained which design challenges should be considered during the geometry definition of a pump-turbine impeller. Within the present study a runner-blade profile for a low head pump-turbine has been developed. For the initial hydraulic runner-blade design, an inverse design method has been applied. Within this design procedure, a first blade geometry is generated by imposing the pressure loading-distribution and by means of an inverse 3D potential-flow-solution. The hydraulic behavior of both, pump-mode and turbine-mode is then evaluated by solving the full 3D Navier-Stokes equations in combination with a robust turbulence model. Based on this initial design the blade profile has been further optimized and redesigned considering various hydraulic pump-turbine requirements. Finally, the progress in hydraulic design is demonstrated by model test results which show a significant improvement in hydraulic performance compared to an existing reference design.

  19. Contribution to life-time predictions of gas turbine components under cyclic load

    Energy Technology Data Exchange (ETDEWEB)

    Hoelscher, R.

    1982-02-15

    The low cycle fatique life of gas turbine components is analysed using the turbine blade of the ATAR 101 F jet engine turbine as example. The results show that, among other things thermal stresses during start-up and shut-off cause considerable damage to the material. Tests using a model rig showed that damage caused by material creep and LCF-mechanisms stongly depended on cyclic parameters such as temperature, temperature development, and power etc. Two long-term tests confirm that the Manson model can be used to give a reasonable prediction of turbine blade life.

  20. Electrical and non-electrical environment of wind turbine main components

    DEFF Research Database (Denmark)

    Holboell, J.; Henriksen, M.; Olsen, R.S.

    of the electrical components or even lead to catastrophic component failure. In the present paper, results are presented from investigations on existing standards which give detailed descriptions of the environmental and operational conditions of wind turbine components. It is found that there is currently a lack...... of application standards for wind turbine electrical equipment. Component-level environmental requirements as given in equipment-specific standards are compared with the environment described in the IEC's 61400 series concerning wind turbines. Based on methods defined in IEC 60721, the non-electrical environment...... of wind turbine is described by means of specific classes. In the paper, new class combinations are suggested covering the different operating conditions the components are exposed to. The class combinations include factors of climatic, mechanical and chemical character. The factors occur in different...

  1. Exposure to airborne organophosphates originating from hydraulic and turbine oils among aviation technicians and loaders.

    Science.gov (United States)

    Solbu, Kasper; Daae, Hanne Line; Thorud, Syvert; Ellingsen, Dag Gunnar; Lundanes, Elsa; Molander, Paal

    2010-12-01

    This study describes the potential for occupational exposure to organophosphates (OPs) originating from turbine and hydraulic oils, among ground personnel within the aviation industry. The OPs tri-n-butyl phosphate (TnBP), dibutyl phenyl phosphate (DBPP), triphenyl phosphate (TPP) and tricresyl phosphate (TCP) have been emphasized due to their use in such oils. Oil aerosol/vapor and total volatile organic compounds (tVOCs) in air were also determined. In total, 228 and 182 OPs and oil aerosol/vapor samples from technician and loader work tasks during work on 42 and 21 aircrafts, respectively, were collected in pairs. In general, the measured exposure levels were below the limit of quantification (LOQ) for 84%/98% (oil aerosol) and 82%/90% (TCP) of the samples collected during technician/loader work tasks. The air concentration ranges for all samples related to technician work were

  2. Replacement of Chromium Electroplating on Gas Turbine Engine Components Using Thermal Spray Coatings

    National Research Council Canada - National Science Library

    Sartwell, Bruce D; Legg, Keith O; Schell, Jerry; Bondaruk, Bob; Alford, Charles; Natishan, Paul; Lawrence, Steven; Shubert, Gary; Bretz, Philip; Kaltenhauser, Anne

    2005-01-01

    .... This document constitutes the final report on a project to qualify high-velocity oxygen-fuel (HVOF) and plasma thermal spray coatings as a replacement for hard chrome plating on gas turbine engine components...

  3. Design optimization of axial flow hydraulic turbine runner: Part I - an improved Q3D inverse method

    Science.gov (United States)

    Peng, Guoyi; Cao, Shuliang; Ishizuka, Masaru; Hayama, Shinji

    2002-06-01

    With the aim of constructing a comprehensive design optimization procedure of axial flow hydraulic turbine, an improved quasi-three-dimensional inverse method has been proposed from the viewpoint of system and a set of rotational flow governing equations as well as a blade geometry design equation has been derived. The computation domain is firstly taken from the inlet of guide vane to the far outlet of runner blade in the inverse method and flows in different regions are solved simultaneously. So the influence of wicket gate parameters on the runner blade design can be considered and the difficulty to define the flow condition at the runner blade inlet is surmounted. As a pre-computation of initial blade design on S2m surface is newly adopted, the iteration of S1 and S2m surfaces has been reduced greatly and the convergence of inverse computation has been improved. The present model has been applied to the inverse computation of a Kaplan turbine runner. Experimental results and the direct flow analysis have proved the validation of inverse computation. Numerical investigations show that a proper enlargement of guide vane distribution diameter is advantageous to improve the performance of axial hydraulic turbine runner. Copyright

  4. Air cooled turbine component having an internal filtration system

    Science.gov (United States)

    Beeck, Alexander R [Orlando, FL

    2012-05-15

    A centrifugal particle separator is provided for removing particles such as microscopic dirt or dust particles from the compressed cooling air prior to reaching and cooling the turbine blades or turbine vanes of a turbine engine. The centrifugal particle separator structure has a substantially cylindrical body with an inlet arranged on a periphery of the substantially cylindrical body. Cooling air enters centrifugal particle separator through the separator inlet port having a linear velocity. When the cooling air impinges the substantially cylindrical body, the linear velocity is transformed into a rotational velocity, separating microscopic particles from the cooling air. Microscopic dust particles exit the centrifugal particle separator through a conical outlet and returned to a working medium.

  5. The condition monitoring system of turbine system components for nuclear power plants

    International Nuclear Information System (INIS)

    Ono, Shigetoshi

    2013-01-01

    The thermal and nuclear power plants have been imposed a stable supply of electricity. To certainly achieve this, we built the plant condition monitoring system based on the heat and mass balance calculation. If there are some performance changes on the turbine system components of their power plants, the heat and mass balance of the turbine system will change. This system has ability to detect the abnormal signs of their components by finding the changes of the heat and mass balance. Moreover we note that this system is built for steam turbine cycle operating with saturated steam conditions. (author)

  6. Evaluation of premature failure of a gas turbine component

    CSIR Research Space (South Africa)

    Dedekind, MO

    1996-01-03

    Full Text Available A case study of certain gas turbine stator vanes which fail prematurely is presented, with a view to determining whether operational procedure might have caused the failures. The engines had been operated from a ‘hot-and-high’ environment...

  7. THE USE OF COATINGS FOR HOT CORROSION AND EROSION PROTECTION IN TURBINE HOT SECTION COMPONENTS

    Directory of Open Access Journals (Sweden)

    Hayrettin AHLATCI

    1999-01-01

    Full Text Available High pressure turbine components are subjected to a wide variety of thermal and mechanical loading during service. In addition, the components are exposed to a highly oxidizing atmosphere which may contain contaminants such as sulphates, chlorides and sulphuorous gases along with erosive media. So the variety of surface coatings and deposition processes available for the protection of blade and vane components in gas turbines are summarised in this study. Coating types range from simple diffusion aluminides to modified aluminides and a CoCrAlY overlayer. The recommendations for corrosion-resistant coatings (for low temperature and high temperature hot corrosion environments are as follows: silicon aluminide and platinumchromium aluminide for different gas turbine section superalloys substrates. Platinum metal additions are used to improve the properties of coatings on turbine components. Inorganic coatings based on ceramic films which contain aluminium or aluminium and silicon are very effective in engines and gas turbines. Diffusion, overlayer and thermal barrier coatings which are deposited on superalloys gas turbine components by pack cementation, plasma spraying processes and a number of chemical vapour deposition, physical vapour deposition processes (such as electron beam, sputtering, ion plating are described. The principles underlying the development of protective coatings serve as a useful guide in the choice of coatings for other high temperature applications.

  8. Experimental determination of unsteady flow forces on turbine blades by hydraulic analogy; Determination experimentale, par analogie hydraulique, des efforts instationnaires sur les aubages d`une turbine

    Energy Technology Data Exchange (ETDEWEB)

    Verdonk, G. [GEC Alsthom Rateau, 93 - La Courneuve (France); Naudin, M. [Framatome Thermodyn, 71 - Le Creusot (France); Pluviose, M. [CNAM, 75 - Paris (France); Sankale, H. [CETIM, 44 - Nantes (France)

    1998-06-01

    The blades of turbomachinery undergo unsteady flow forces, created principally by the presence of a series of stator or diffuser blades prior to a series of rotor blades. The stage geometry is the main factor which defines the magnitude of these forces. The influence of both geometric and thermodynamic parameters is currently being analysed using a model representing the turbine blades and by applying the hydraulic analogy technique. The study is being conducted at CETIM in Nantes amongst a working group including manufacturers, research organisms, and technical center. Work is in progress and initial results have proved sufficiently encouraging for presentation at the forthcoming Symposium on multidisciplinary turbomachinery issues organised by the Societe Francaise des Mecaniciens. The study should eventually facilitate the optimisation of rotor blade dimensioning for total and partial injection turbine applications and furthermore to reduce the risk of blade failure. Following quantitative study, results obtained for a given geometry of total injection turbine are presented in this paper. (authors) 16 refs.

  9. The comparison between the acquisition vibration data obtained by different types of transducers for hydraulic turbine head cover

    Science.gov (United States)

    Li, Youping; Lu, Jinsong; Cheng, Jian; Yin, Yongzhen; Wang, Jianlan

    2017-04-01

    Based on the summaries of the rules about the vibration measurement for hydro-generator sets with respect to relevant standards, the key issues of the vibration measurement, such as measurement modes, the transducer selection are illustrated. In addition, the problems existing in vibration measurement are pointed out. The actual acquisition data of head cover vertical vibration respectively obtained by seismic transducer and eddy current transducer in site hydraulic turbine performance tests during the rising of the reservoir upstream level in a certain hydraulic power plant are compared. The difference of the data obtained by the two types of transducers and the potential reasons are presented. The application conditions of seismic transducer and eddy current transducer for hydro-generator set vibration measurement are given based on the analysis. Research subjects that should be focused on about the topic discussed in this paper are suggested.

  10. FFTF thermal-hydraulic testing results affecting piping and vessel component design in LMFBR's

    International Nuclear Information System (INIS)

    Stover, R.L.; Beaver, T.R.; Chang, S.C.

    1983-01-01

    The Fast Flux Test Facility completed four years of pre-operational testing in April 1982. This paper describes thermal-hydraulic testing results from this period which impact piping and vessel component design in LMFBRs. Data discussed are piping flow oscillations, piping thermal stratification and vessel upper plenum stratification. Results from testing verified that plant design limits were met

  11. High-cycle notch sensitivity of alloy steel ASTM A743 CA6NM used in hydrogenator turbine components

    Directory of Open Access Journals (Sweden)

    José Alexander Araújo

    2010-10-01

    Full Text Available The presence of notches and other stress concentrations in turbine blades and other notch hydraulic components is a current problem in engineering. It causes a reduction of endurance limit of material. In that sense, specimens of the ASTM A743 CA6NM alloy steel using in several hydrogenator turbine components was tested. The specimens were tested under uniaxial fatigue loading with a load ratio equal to -1, and the considered stress concentration factors, Kt, values, calculated with respect to net area, were 1.55, 2.04 and 2.42. In order to determine the fatigue limit for such notch type, a reduction data method by Dixon and Mood, Staircase method was used. This approach is based on the assumed target distribution of the fatigue limit. For such geometry at least 8 specimens were tested. In addition, the Peterson and Neuber’s notch fatigue factor were compared through fatigue notch reduction factor, Kf, obtained from experimental data. According to results obtained it was possible to conclude that the tested material is less sensitive to notches than the prediction of the Peterson and Neuber’s empirical models.

  12. The measurement of the vertical component of hydraulic conductivity in single cased and uncased boreholes

    International Nuclear Information System (INIS)

    Black, J.H.; Noy, D.J.; Brightman, M.A.

    1986-11-01

    The project summarised in the paper aimed to assess the different existing methods of measuring vertical hydraulic conductivity in single boreholes by carrying out some actual field testing. The measurements are relevant to the disposal of radioactive waste into argillaceous rocks, where the primary geological barrier to potential leachate migration is the mudrock. Also the prime parameter of interest in the assessment of mudrocks is the vertical component of hydraulic conductivity. A description of the methods of test analysis and interpretation is given. The experimental programme for open borehole testing and cased borehole testing is described, along with the practical and theoretical considerations. (U.K.)

  13. CFD Analysis of The Hydraulic Turbine Draft Tube to Improve System Efficiency

    Directory of Open Access Journals (Sweden)

    Chakrabarty Spandan

    2016-01-01

    Full Text Available Demand of the power is increasing day by day with the development of the science and technology. Development of the renewable energy sector has become essential issue at the present situation due to the limited source of the non-renewable energy. Hydro energy power generation sector is superior over the other renewable sector due to the high efficiency, ability to continuous generation and low generation cost. In India a great amount of the power generation is taken care by the hydro power system but still some more potential have unexplored. The efficiency improvement of the hydro turbine system can be done for the new installation or installed system by the improvement in component level. The system can be installed by the state of the art equipment, like modern inlet guide vane (IGV control system, improved design of the runner, IGV system, draft tube, penstock to reduce the loss, hence improve the efficiency. The energy recovery in the draft tube depends on the design of draft tube. In the present work the optimized design of the draft tube shape through computational fluid dynamics (CFD simulation has been carried out in ANSYS FLUENT platform. The design objective of the draft tube is to reduce the flow loss and improve the energy recovery, hence to improve the efficiency.

  14. Nonlinear dynamic analysis and robust controller design for Francis hydraulic turbine regulating system with a straight-tube surge tank

    Science.gov (United States)

    Liang, Ji; Yuan, Xiaohui; Yuan, Yanbin; Chen, Zhihuan; Li, Yuanzheng

    2017-02-01

    The safety and stability of hydraulic turbine regulating system (HTRS) in hydropower plants become increasingly important since the rapid development and the broad application of hydro energy technology. In this paper, a novel mathematical model of Francis hydraulic turbine regulating system with a straight-tube surge tank based on a few state-space equations is introduced to study the dynamic behaviors of the HTRS system, where the existence of possible unstable oscillations of this model is studied extensively and presented in the forms of the bifurcation diagram, time waveform plot, phase trajectories, and power spectrum. To eliminate these undesirable behaviors, a specified fuzzy sliding mode controller is designed. In this hybrid controller, the sliding mode control law makes full use of the proposed model to guarantee the robust control in the presence of system uncertainties, while the fuzzy system is applied to approximate the proper gains of the switching control in sliding mode technique to reduce the chattering effect, and particle swarm optimization is developed to search the optimal gains of the controller. Numerical simulations are presented to verify the effectiveness of the designed controller, and the results show that the performances of the nonlinear HTRS system assisted with the proposed controller is much better than that with the commonly used optimal PID controller.

  15. 3D Numerical Simulation versus Experimental Assessment of Pressure Pulsations Using a Passive Method for Swirling Flow Control in Conical Diffusers of Hydraulic Turbines

    Science.gov (United States)

    TANASA, C.; MUNTEAN, S.; CIOCAN, T.; SUSAN-RESIGA, R. F.

    2016-11-01

    The hydraulic turbines operated at partial discharge (especially hydraulic turbines with fixed blades, i.e. Francis turbine), developing a swirling flow in the conical diffuser of draft tube. As a result, the helical vortex breakdown, also known in the literature as “precessing vortex rope” is developed. A passive method to mitigate the pressure pulsations associated to the vortex rope in the draft tube cone of hydraulic turbines is presented in this paper. The method involves the development of a progressive and controlled throttling (shutter), of the flow cross section at the bottom of the conical diffuser. The adjustable cross section is made on the basis of the shutter-opening of circular diaphragms, while maintaining in all positions the circular cross-sectional shape, centred on the axis of the turbine. The stagnant region and the pressure pulsations associated to the vortex rope are mitigated when it is controlled with the turbine operating regime. Consequently, the severe flow deceleration and corresponding central stagnant are diminished with an efficient mitigation of the precessing helical vortex. Four cases (one without diaphragm and three with diaphragm), are numerically and experimentally investigated, respectively. The present paper focuses on a 3D turbulent swirling flow simulation in order to evaluate the control method. Numerical results are compared against measured pressure recovery coefficient and Fourier spectra. The results prove the vortex rope mitigation and its associated pressure pulsations when employing the diaphragm.

  16. An expert system for diagnostics and estimation of steam turbine components condition

    Science.gov (United States)

    Murmansky, B. E.; Aronson, K. E.; Brodov, Yu. M.

    2017-11-01

    The report describes an expert system of probability type for diagnostics and state estimation of steam turbine technological subsystems components. The expert system is based on Bayes’ theorem and permits to troubleshoot the equipment components, using expert experience, when there is a lack of baseline information on the indicators of turbine operation. Within a unified approach the expert system solves the problems of diagnosing the flow steam path of the turbine, bearings, thermal expansion system, regulatory system, condensing unit, the systems of regenerative feed-water and hot water heating. The knowledge base of the expert system for turbine unit rotors and bearings contains a description of 34 defects and of 104 related diagnostic features that cause a change in its vibration state. The knowledge base for the condensing unit contains 12 hypotheses and 15 evidence (indications); the procedures are also designated for 20 state parameters estimation. Similar knowledge base containing the diagnostic features and faults hypotheses are formulated for other technological subsystems of turbine unit. With the necessary initial information available a number of problems can be solved within the expert system for various technological subsystems of steam turbine unit: for steam flow path it is the correlation and regression analysis of multifactor relationship between the vibration parameters variations and the regime parameters; for system of thermal expansions it is the evaluation of force acting on the longitudinal keys depending on the temperature state of the turbine cylinder; for condensing unit it is the evaluation of separate effect of the heat exchange surface contamination and of the presence of air in condenser steam space on condenser thermal efficiency performance, as well as the evaluation of term for condenser cleaning and for tube system replacement and so forth. With a lack of initial information the expert system enables to formulate a diagnosis

  17. The Impact of Gas Turbine Component Leakage Fault on GPA Performance Diagnostics

    Directory of Open Access Journals (Sweden)

    E. L. Ntantis

    2016-01-01

    Full Text Available The leakage analysis is a key factor in determining energy loss from a gas turbine. Once the components assembly fails, air leakage through the opening increases resulting in a performance loss. Therefore, the performance efficiency of the engine cannot be reliably determined, without good estimates and analysis of leakage faults. Consequently, the implementation of a leakage fault within a gas turbine engine model is necessary for any performance diagnostic technique that can expand its diagnostics capabilities for more accurate predictions. This paper explores the impact of gas turbine component leakage fault on GPA (Gas Path Analysis Performance Diagnostics. The analysis is demonstrated with a test case where gas turbine performance simulation and diagnostics code TURBOMATCH is used to build a performance model of a model engine similar to Rolls-Royce Trent 500 turbofan engine, and carry out the diagnostic analysis with the presence of different component fault cases. Conclusively, to improve the reliability of the diagnostic results, a leakage fault analysis of the implemented faults is made. The diagnostic tool used to deal with the analysis of the gas turbine component implemented faults is a model-based method utilizing a non-linear GPA.

  18. Repair of Kaplan turbine shaft sealing based on evaluation of hydraulic conditions

    International Nuclear Information System (INIS)

    Lakatos, K; Szamosi, Z; Bereczkei, S

    2012-01-01

    This paper has been written to call attention to a potential danger what may occur in Kaplan turbine refurbishments. In Tiszalök hydropower plant, Hungary, the shaft sealing of the refurbished turbine was damaged. In searching for the reasons it was assumed that due to increased internal velocities in the turbine, the pressure at the hub clearance became lower than the atmospheric pressure, and therefore the sealing, which always operated satisfactorily before the refurbishment, had uncertain water supply, dry-running occurred, and after some time the sealing was burnt. First the flow conditions in the turbine and the pressure at the hub clearance were calculated by a one-dimensional flow model. Later this was refined by a two-dimensional approach. The above conclusion was also justified by the data acquisition system and by observing the operation of the small dewatering pump. When the turbine operated at a larger discharge than a certain limit value, then the dewatering pump remained standstill, indicating that no water passed through the shaft sealing. External water supply was then applied, and after this the turbine operated all right.

  19. Repair of Kaplan turbine shaft sealing based on evaluation of hydraulic conditions

    Science.gov (United States)

    Lakatos, K.; Szamosi, Z.; Bereczkei, S.

    2012-11-01

    This paper has been written to call attention to a potential danger what may occur in Kaplan turbine refurbishments. In Tiszalök hydropower plant, Hungary, the shaft sealing of the refurbished turbine was damaged. In searching for the reasons it was assumed that due to increased internal velocities in the turbine, the pressure at the hub clearance became lower than the atmospheric pressure, and therefore the sealing, which always operated satisfactorily before the refurbishment, had uncertain water supply, dry-running occurred, and after some time the sealing was burnt. First the flow conditions in the turbine and the pressure at the hub clearance were calculated by a one-dimensional flow model. Later this was refined by a two-dimensional approach. The above conclusion was also justified by the data acquisition system and by observing the operation of the small dewatering pump. When the turbine operated at a larger discharge than a certain limit value, then the dewatering pump remained standstill, indicating that no water passed through the shaft sealing. External water supply was then applied, and after this the turbine operated all right.

  20. Development of active-X component for use in web based thermal hydraulic data bank

    International Nuclear Information System (INIS)

    Lee, Y. J.; Chung, B. D.

    2003-01-01

    An active-X component to use as the engine for the web-based thermal hydraulic data bank has been developed. The development of the active-X component was carried out primarily for employment in the web-based thermal-hydraulic databank. The active-X component was developed with the objective to minimize the size of the component and the data traffic while maximizing the functionality. For this end, the data is downloaded in a compressed format to minimize the downloading time, and Delphi language is used in the efforts to minimize the size of the active-X component as well as for fast execution time. The functionality of active-X component was tested on ENCOUNTER data package by embedding the component in a prototype web-page under a server-client environment. The test demonstrated that the active-X component functions as intended and that it is capable of very easy data retrieval and display

  1. Effects of Gas Turbine Component Performance on Engine and Rotary Wing Vehicle Size and Performance

    Science.gov (United States)

    Snyder, Christopher A.; Thurman, Douglas R.

    2010-01-01

    In support of the Fundamental Aeronautics Program, Subsonic Rotary Wing Project, further gas turbine engine studies have been performed to quantify the effects of advanced gas turbine technologies on engine weight and fuel efficiency and the subsequent effects on a civilian rotary wing vehicle size and mission fuel. The Large Civil Tiltrotor (LCTR) vehicle and mission and a previous gas turbine engine study will be discussed as a starting point for this effort. Methodology used to assess effects of different compressor and turbine component performance on engine size, weight and fuel efficiency will be presented. A process to relate engine performance to overall LCTR vehicle size and fuel use will also be given. Technology assumptions and levels of performance used in this analysis for the compressor and turbine components performances will be discussed. Optimum cycles (in terms of power specific fuel consumption) will be determined with subsequent engine weight analysis. The combination of engine weight and specific fuel consumption will be used to estimate their effect on the overall LCTR vehicle size and mission fuel usage. All results will be summarized to help suggest which component performance areas have the most effect on the overall mission.

  2. Mitigation of pressure fluctuations in the discharge cone of hydraulic turbines using flow-feedback

    International Nuclear Information System (INIS)

    Tanasa, C; Susan-Resiga, R; Bosioc, A; Muntean, S

    2010-01-01

    Our previous experimental and numerical investigations of decelerated swirling flows in conical diffusers have demonstrated that water jet injection along the symmetry axis mitigates the pressure fluctuations associated with the precessing vortex rope. However, for swirling flows similar to Francis turbines operated at partial discharge, the jet becomes effective when the jet discharge is larger than 10% from the turbine discharge, leading to large volumetric losses when the jet is supplied from upstream the runner. As a result, we introduce in this paper a new approach for supplying the jet by using a fraction of the discharge collected downstream the conical diffuser. We present the technical implementation of this flow-feedback approach, and we investigated experimentally its capability in mitigating the pressure fluctuations generated by the precessing vortex rope. The main advantage of this flow-feedback approach is that is does not require additional energy to supply the jet and it does not decrease the turbine efficiency.

  3. Reliability of Wind Turbine Components-Solder Elements Fatigue Failure

    DEFF Research Database (Denmark)

    Kostandyan, Erik; Sørensen, John Dalsgaard

    2012-01-01

    on the temperature mean and temperature range. Constant terms and model errors are estimated. The proposed methods are useful to predict damage values for solder joint in power electrical components. Based on the proposed methods it is described how to find the damage level for a given temperature loading profile....... The proposed methods are discussed for application in reliability assessment of Wind Turbine’s electrical components considering physical, model and measurement uncertainties. For further research it is proposed to evaluate damage criteria for electrical components due to the operational temperature...

  4. Recent experience of IFFM PAS in the design process of lowhead propeller hydraulic turbines for Small Hydro

    International Nuclear Information System (INIS)

    Kaniecki, M; Krzemianowski, Z

    2010-01-01

    The paper contains the short description of the design process of the axial flow turbines for Small Hydro. The crucial elements of the process are: ARDES programme for 1D inverse problem (containing the statistic information of the well performed hydraulic units, applying the lifting aerofoil theory); determination of universal hill diagram and optimization of the runner blades geometry by utilization of the 3D CFD codes. As the result of design process with utilization of both design steps, the generated runner blades geometry (1D inverse problem) and some computational results of 3D CFD solver have been presented. As the conclusion some crucial remarks of the designed process have been brought forward.

  5. Recent trends in repair and refurbishing of steam turbine components

    Indian Academy of Sciences (India)

    M. Senthilkumar (Newgen Imaging) 1461 1996 Oct 15 13:05:22

    be adequately addressed at various stages of its design and fabrication. ... lead to plant shutdown, loss in production and productivity, fire explosion, radiation or gas ..... component manufacturers, there is a growing necessity for in-house ...

  6. Component design considerations for gas turbine HTGR waste-heat power plant

    International Nuclear Information System (INIS)

    McDonald, C.F.; Vrable, D.L.

    1976-01-01

    Component design considerations are described for the ammonia waste-heat power conversion system of a large helium gas-turbine nuclear power plant under development by General Atomic Company. Initial component design work was done for a reference plant with a 3000-MW(t) High-Temperature Gas-Cooled Reactor (HTGR), and this is discussed. Advanced designs now being evaluated include higher core outlet temperature, higher peak system pressures, improved loop configurations, and twin 4000-MW(t) reactor units. Presented are the design considerations of the major components (turbine, condenser, heat input exchanger, and pump) for a supercritical ammonia Rankine waste heat power plant. The combined cycle (nuclear gas turbine and waste-heated plant) has a projected net plant efficiency of over 50 percent. While specifically directed towards a nuclear closed-cycle helium gas-turbine power plant (GT-HTGR), it is postulated that the bottoming waste-heat cycle component design considerations presented could apply to other low-grade-temperature power conversion systems such as geothermal plants

  7. Evaluation of material integrity on electricity power steam generator cycles (turbine casing) component

    International Nuclear Information System (INIS)

    Histori; Benedicta; Farokhi; S A, Soedardjo; Triyadi, Ari; Natsir, M

    1999-01-01

    The evaluation of material integrity on power steam generator cycles component was done. The test was carried out on casing turbine which is made from Inconel 617. The tested material was taken from t anjung Priok plant . The evaluation was done by metallography analysis using microscope with magnification of 400. From the result, it is shown that the material grains are equiaxed

  8. Three-component particle image velocimetry in a generic can-type gas turbine combustor

    CSIR Research Space (South Africa)

    Meyers, Bronwyn C

    2012-11-01

    Full Text Available -1 Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy November 2012/ Vol. 226(7) Three-componentParticle Image Velocimetry in a Generic Can-type Gas Turbine Combustor B C Meyers 1, 2* , G C Snedden 1 , J P...

  9. Modern technical diagnostic system for the main components of powerful turbine generator

    International Nuclear Information System (INIS)

    Ezovit, G.P.; Uglyarenko, V.P.; Burlaka, S.I.; Goroz, N.I.; Orinin, S.E.; Komaritsa, V.N.; Zav'yalov, D.N.; Mazurenko, O.A.

    2011-01-01

    The modern diagnostic system to monitor the technical state of a powerful turbine generator is considered. This system permits the detection of defects in its main components and cooling system at the early stage of their development, prevention of damage and, as a consequence, emergency shutdown of nuclear power units

  10. To Examine effect of Flow Zone Generation Techniques for Numerical Flow Analysis in Hydraulic Turbine

    International Nuclear Information System (INIS)

    Hussain, M.; Khan, J.A.

    2004-01-01

    A numerical study of flow in distributor of Francis Turbine is carried out by using two different techniques of flow zone generation. Distributor of GAMM Francis Turbine is used for present calculation. In present work, flow is assumed to be periodic around the distributor in steady state conditions, therefore computational domain consists of only one blade channel (one stay vane and one guide vane). The distributor computational domain is bounded up stream by cylindrical and downstream by conical patches. The first one corresponds to the spiral casing outflow section, while the second one is considered to be the distributor outlet or runner inlet. Upper and lower surfaces are generated by the revolution of hub and shroud edges. Single connected and multiple connected techniques are considered to generate distributor flow zone for numerical flow analysis of GAMM Francis turbine. The tetrahedral meshes are generated in both the flow zones. Same boundary conditions are applied for both the equivalent flow zones. The three dimensional, laminar flow analysis for both the distributor flow zones of the GAMM Francis turbine operating at the best efficiency point is performed. Gambit and G- Turbo are used as a preprocessor while calculations are done by using Fluent. Finally, numerical results obtained on the distributor outlet are compared with the available experimental data to validate the two different methodologies and examine their accuracy. (author)

  11. Gas turbine blades and disks. Materials and component behaviour

    International Nuclear Information System (INIS)

    1990-01-01

    This progress report summarizes the research results obtained by the special research programme 339 in the years 1988 and 1989. Emphasis is given to the following aspects and problems: Optimisation of structure, protective coatings, connection between structure parameters and mechanical materials behaviour, tribologic materials and component behaviour, impacts of overall loads, and of stress and deformation state in the inelastic regime under mechanical and thermal load, and impacts of the manufacturing process on component behaviour, quality assurance. Eleven of the fifteen papers of the report have been separately analysed for the ENERGY database, and thirteen for the DELURA database. (orig./MM) With 191 figs., 13 tabs [de

  12. Examples of fatigue lifetime and reliability evaluation of larger wind turbine components

    DEFF Research Database (Denmark)

    Tarp-Johansen, N.J.

    2003-01-01

    This report is one out of several that constitute the final report on the ELSAM funded PSO project “Vindmøllekomponenters udmattelsesstyrke og levetid”, project no. 2079, which regards the lifetime distribution of larger wind turbine components in ageneric turbine that has real life dimensions....... Though it was the initial intention of the project to consider only the distribution of lifetimes the work reported in this document provides also calculations of reliabilities and partial load safetyfactors under specific assumptions about uncertainty sources, as reliabilities are considered...

  13. On risk-based operation and maintenance of offshore wind turbine components

    DEFF Research Database (Denmark)

    Nielsen, Jannie Jessen; Sørensen, John Dalsgaard

    2011-01-01

    Operation and maintenance are significant contributors to the cost of energy for offshore wind turbines. Optimal planning could rationally be based on Bayesian pre-posterior decision theory, and all costs through the lifetime of the structures should be included. This paper contains a study...... of a generic case where the costs are evaluated for a single wind turbine with a single component. Costs due to inspections, repairs, and lost production are included in the model. The costs are compared for two distinct maintenance strategies, namely with and without inclusion of periodic imperfect...

  14. Reliability Analysis of Fatigue Fracture of Wind Turbine Drivetrain Components

    DEFF Research Database (Denmark)

    Berzonskis, Arvydas; Sørensen, John Dalsgaard

    2016-01-01

    in the volume of the casted ductile iron main shaft, on the reliability of the component. The probabilistic reliability analysis conducted is based on fracture mechanics models. Additionally, the utilization of the probabilistic reliability for operation and maintenance planning and quality control is discussed....

  15. Reliability Analysis of Fatigue Failure of Cast Components for Wind Turbines

    Directory of Open Access Journals (Sweden)

    Hesam Mirzaei Rafsanjani

    2015-04-01

    Full Text Available Fatigue failure is one of the main failure modes for wind turbine drivetrain components made of cast iron. The wind turbine drivetrain consists of a variety of heavily loaded components, like the main shaft, the main bearings, the gearbox and the generator. The failure of each component will lead to substantial economic losses such as cost of lost energy production and cost of repairs. During the design lifetime, the drivetrain components are exposed to variable loads from winds and waves and other sources of loads that are uncertain and have to be modeled as stochastic variables. The types of loads are different for offshore and onshore wind turbines. Moreover, uncertainties about the fatigue strength play an important role in modeling and assessment of the reliability of the components. In this paper, a generic stochastic model for fatigue failure of cast iron components based on fatigue test data and a limit state equation for fatigue failure based on the SN-curve approach and Miner’s rule is presented. The statistical analysis of the fatigue data is performed using the Maximum Likelihood Method which also gives an estimate of the statistical uncertainties. Finally, illustrative examples are presented with reliability analyses depending on various stochastic models and partial safety factors.

  16. Compressive residual stresses as a preventive measure against stress corrosion cracking on turbine components

    International Nuclear Information System (INIS)

    Berger, C.; Ewald, J.; Fischer, K.; Gruendler, O.; Potthast, E.; Stuecker, E.; Winzen, G.

    1987-01-01

    Disk type low pressure turbine rotors have been designed for a large variety of power plant applications. Developing disk type rotors required a concerted effort to design a shaft/disk shrink fit with a minimum of tensile stress concentrations in order to aim for the lowest possible susceptibility to corrosive attack, i.e. stress corrosion cracking. As a result of stresses, the regions of greatest concern are the shrink fit boundaries and the keyways of turbine disks. These stresses are caused by service loading, i.e. centrifugal and shrinkage stresses and by manufacturing procedure, i.e. residual stresses. The compressive residual stresses partly compensate the tensile service stresses so that an increase of compressive residual stresses decreases the whole stress state of the component. Special manufacturing procedures, e.g. accelerated cooling after tempering can induce compressive residual stresses up to about 400 MPa in the hub bore region of turbine disk

  17. Modern challenges for flow investigations in model hydraulic turbines on classical test rig

    International Nuclear Information System (INIS)

    Deschênes, C; Houde, S; Aeschlimann, V; Fraser, R; Ciocan, G D

    2014-01-01

    The BulbT project involved several investigations of flow phenomena in different parts of a model bulb turbine installed on the test rig of Laval University Laboratory. The aim is to create a comprehensive data base in order to increase the knowledge of the flow phenomena in this type of turbines and to validate or improve numerical flow simulation strategies. This validation being based on a kinematic comparison between experimental and numerical data, the project had to overcome challenges to facilitate the use of the experimental data for that purpose. Many parameters were checked, such as the test bench repeatability, the intrusiveness of a priori non-intrusive methods, the geometry of the runner and draft tube. This paper illustrates how some of those problematic were solved

  18. Effect of tip clearance on performance of small axial hydraulic turbine

    Science.gov (United States)

    Boynton, J. L.; Rohlik, H. E.

    1976-01-01

    The first two stages of a six stage liquid oxygen turbine were tested in water. One and two stage performance was determined for one shrouded and two unshrouded blade end configurations over ranges of clearance and blade-jet speed ratio. First stage, two stage, and second stage efficiencies are included as well as the effect of clearance on mass flow for two stage operation.

  19. Practical Aspects of Suspension Plasma Spray for Thermal Barrier Coatings on Potential Gas Turbine Components

    Science.gov (United States)

    Ma, X.; Ruggiero, P.

    2018-04-01

    Suspension plasma spray (SPS) process has attracted extensive efforts and interests to produce fine-structured and functional coatings. In particular, thermal barrier coatings (TBCs) applied by SPS process gain increasing interest due to its potential for superior thermal protection of gas turbine hot sections as compared to conventional TBCs. Unique columnar architectures and nano- and submicrometric grains in the SPS-TBC demonstrated some advantages of thermal shock durability, low thermal conductivity, erosion resistance and strain-tolerant microstructure. This work aimed to look into some practical aspects of SPS processing for TBC applications before it becomes a reliable industry method. The spray capability and applicability of SPS process to achieve uniformity thickness and microstructure on curved substrates were emphasized in designed spray trials to simulate the coating fabrication onto industrial turbine parts with complex configurations. The performances of the SPS-TBCs were tested in erosion, falling ballistic impact and indentational loading tests as to evaluate SPS-TBC performances in simulated turbine service conditions. Finally, a turbine blade was coated and sectioned to verify SPS sprayability in multiple critical sections. The SPS trials and test results demonstrated that SPS process is promising for innovative TBCs, but some challenges need to be addressed and resolved before it becomes an economic and capable industrial process, especially for complex turbine components.

  20. Fundamental investigations for a OWC-tidal power plant with a conventional hydraulic turbine; Basisuntersuchungen fuer ein OWC-Wellenenergiekraftwerk mit konventioneller Hydroturbine. Abschlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Graw, K.U.; Lengricht, J.; Schimmels, S.

    2001-07-01

    At the present the OWC-tidal power plant is the most forward-looking way of converting tidal energy into usable electric power. Current research works focus on the dimensions of the structures in terms of occurring loads, the minimisation of hydraulic losses and the development of new turbine-generator types. The development of all air-turbine systems, which have been investigated so far, is considered as problematic and the commercialisation is likely to be a hindrance. Based on international research results an inventory tata of available hydraulic turbines is supposed to be gathered and fundamental investigations are supposed to check, if the application of conventional hydraulic turbines are an energetic progress in the OWC-tidal power plant. In order to considerably increase the efficiency compared to current developments, small-scale investigations at a physical model are supposed to show if and how a hydraulic turbine can be realised in a OWC-tidal power plant and how a concept of flow rectification as well as a flow-optimised form of inflow and outflow chambers can be achieved. (orig.) [German] Das OWC-Wellenenergiekraftwerk ist der zur Zeit zukunftstraechtigste Typ zur Umwandlung von Wellenenergie in nutzbaren Strom. Die laufenden Forschungsarbeiten beschaeftigen sich insbesondere mit der Dimensionierung der Strukturen hinsichtlich auftretender Belastungen, der Minimierung der hydraulischen Verluste und der Entwicklung von neuartigen Turbinen-Generatoren-Typen. Die Entwicklung aller bisher untersuchten Luftturbinensysteme wird jedoch als problematisch und die Kommerzialisierung hindernd angesehen. Aufbauend auf den internationalen Forschungsergebnissen sollen eine Bestandaufnahme der verfuegbaren Hydroturbinen durchgefuehrt und mit Baisuntersuchungen geprueft werden, ob ein Einsatz konventionaller Hydroturbinen im OWC-Wellenenergiekraftwerk eine energetische Weiterentwicklung darstellen kann. Um den Wirkungsgrad gegenueber derzeitigen Entwicklungen

  1. Statistical analysis of manufacturing defects on fatigue life of wind turbine casted Component

    DEFF Research Database (Denmark)

    Rafsanjani, Hesam Mirzaei; Sørensen, John Dalsgaard; Mukherjee, Krishnendu

    2014-01-01

    Wind turbine components experience heavily variable loads during its lifetime and fatigue failure is a main failure mode of casted components during their design working life. The fatigue life is highly dependent on the microstructure (grain size and graphite form and size), number, type, location...... and size of defects in the casted components and is therefore rather uncertain and needs to be described by stochastic models. Uncertainties related to such defects influence prediction of the fatigue strengths and are therefore important in modelling and assessment of the reliability of wind turbine...... for the fatigue life, namely LogNormal and Weibull distributions. The statistical analyses are performed using the Maximum Likelihood Method and the statistical uncertainty is estimated. Further, stochastic models for the fatigue life obtained from the statistical analyses are used for illustration to assess...

  2. Apparatus and method for temperature mapping a turbine component in a high temperature combustion environment

    Science.gov (United States)

    Baleine, Erwan; Sheldon, Danny M

    2014-06-10

    Method and system for calibrating a thermal radiance map of a turbine component in a combustion environment. At least one spot (18) of material is disposed on a surface of the component. An infrared (IR) imager (14) is arranged so that the spot is within a field of view of the imager to acquire imaging data of the spot. A processor (30) is configured to process the imaging data to generate a sequence of images as a temperature of the combustion environment is increased. A monitor (42, 44) may be coupled to the processor to monitor the sequence of images of to determine an occurrence of a physical change of the spot as the temperature is increased. A calibration module (46) may be configured to assign a first temperature value to the surface of the turbine component when the occurrence of the physical change of the spot is determined.

  3. Testing of ceramic gas turbine components under service-like conditions

    Energy Technology Data Exchange (ETDEWEB)

    Siebmanns, W [Motoren- und Turbinen-Union G.m.b.H., Muenchen (Germany, F.R.)

    1978-08-01

    If all gas turbine components which are in contact with hot gas are manufactured from special ceramics (silicon nitride, silicon carbide), cycle and component temperatures can be increased up to 1600/sup 0/K. MTU is developing various components, such as combustor and turbine wheel, step by step until they are ready for service. At present, combustors are surviving comprehensive service-like cyclic tests in hot gas at atmospheric pressure (1000 h, 1000 starts per component) without damage. Tests above atmospheric pressure (5 bar) are underway. At MTU, a rotor wheel variant consisting of a metallic hub with inserted single blades is being constructed. The step to aerodynamically contoured airfoils will follow, as soon as the stress problems encountered in connection with the blade root are fully under control. The program will be completed in 1980 with a test run of a prototype turbine made from ceramic components developed by various companies under the leadership of the DFVLR (Aerospace Research and Testing Institute).

  4. Studies of field test procedures in hydraulic turbines for SHP; Estudos de procedimentos de ensaios de campo em turbinas hidraulicas para PCH

    Energy Technology Data Exchange (ETDEWEB)

    Justino, Lucimary Aparecida

    2006-07-01

    A supply contract of equipment for Small Hydro Power, contain the power and turbine efficiency guarantees and can contain adds guarantees referring to a rotation and pressure variation, runaway speed and cavitations test. To the determination about the hydraulics turbines performance for contractual guarantees are realized the field acceptance test, that are methods quite a lot used for enterprises like tools to prove the contractual guarantees in substitution to model test, that showed a cost extremely high. In the field acceptance test are measures of some values that added to the others, possibility obtain the turbine efficiency. In the small hydro power, the turbine efficiency represents the hydraulic power percentage that is subject to be transformed in electrical power. In the turbine purchase, the manufacturer has to guarantee the efficiency specified if it is become down to expected, the damages are enormous, then the importance to exist precise methods and reliable for your measurement. The method accuracy of the discharge measurement that has, between another problems, the calibration and installation, that influence hard the value of the efficiency obtained. This work shows the different methodologies about discharge measurement in hydraulic turbines, that can be apply in Small Hydro Power field tests and shows too the procedures used that in specifics cases of small hydro, without quality damage, the site tests could be executed the form that the guarantees will be approve with compatible cots with the investment done. As an example for said above, are show two cases in small hydro where did realized field acceptance tests to assure the contractual guarantees. (author)

  5. Turbine component having surface cooling channels and method of forming same

    Science.gov (United States)

    Miranda, Carlos Miguel; Trimmer, Andrew Lee; Kottilingam, Srikanth Chandrudu

    2017-09-05

    A component for a turbine engine includes a substrate that includes a first surface, and an insert coupled to the substrate proximate the substrate first surface. The component also includes a channel. The channel is defined by a first channel wall formed in the substrate and a second channel wall formed by at least one coating disposed on the substrate first surface. The component further includes an inlet opening defined in flow communication with the channel. The inlet opening is defined by a first inlet wall formed in the substrate and a second inlet wall defined by the insert.

  6. The influence of thermodynamic state of mineral hydraulic oil on flow rate through radial clearance at zero overlap inside the hydraulic components

    Directory of Open Access Journals (Sweden)

    Knežević Darko M.

    2016-01-01

    Full Text Available In control hydraulic components (servo valves, LS regulators, etc. there is a need for precise mathematical description of fluid flow through radial clearances between the control piston and body of component at zero overlap, small valve opening and small lengths of overlap. Such a mathematical description would allow for a better dynamic analysis and stability analysis of hydraulic systems. The existing formulas in the literature do not take into account the change of the physical properties of the fluid with a change of thermodynamic state of the fluid to determine the flow rate through radial clearances in hydraulic components at zero overlap, a small opening, and a small overlap lengths, which leads to the formation of insufficiently precise mathematical models. In this paper model description of fluid flow through radial clearances at zero overlap is developed, taking into account the changes of physical properties of hydraulic fluid as a function of pressure and temperature. In addition, the experimental verification of the mathematical model is performed.

  7. 75 FR 2159 - In the Matter of Certain Variable Speed Wind Turbines and Components Thereof; Termination of...

    Science.gov (United States)

    2010-01-14

    ... INTERNATIONAL TRADE COMMISSION [Investigation No. 337-TA-641] In the Matter of Certain Variable Speed Wind Turbines and Components Thereof; Termination of Investigation With Final Determination of No..., and the sale within the United States after importation of certain variable speed wind turbines and...

  8. Reliability Assessment of Offshore Wind Turbines Considering Faults of Electrical / Mechanical Components

    DEFF Research Database (Denmark)

    Kostandyan, Erik; Sørensen, John Dalsgaard

    2013-01-01

    For offshore wind turbines, the cost contribution to Cost of Energy from inspections and Operation & Maintenance can be substantial, and can be expected to increase when wind farms are placed at deeper water depths, further from the coast and in more harsh environments. Estimates of the reliability...... is considered and related to reliability estimation by taking into account faults e.g. due to failure of an electrical component or loss of grid....

  9. Feasibility of a Simple Small Wind Turbine with Variable-Speed Regulation Made of Commercial Components

    Directory of Open Access Journals (Sweden)

    Jesús Peláez Vara

    2013-07-01

    Full Text Available The aim of this study was to propose and evaluate a very small wind turbine (VSWT that competes with commercial grid-connected VSWTs in terms of simplicity, robustness and price. Its main components are a squirrel-cage induction generator (SCIG driven by a frequency converter. The system has a direct-drive shaft, and may be constructed with commercial equipment. Simulation of the wind turbine effect is done with a motor. A control program regulates the variable-speed of rotation through three operational modes: (i to drive the turbine to its optimum operation point; (ii to limit its maximum rotational speed; and (iii to limit the maximum power it generates. Two tests were performed, in order to evaluate the dynamic response of this system under variable wind speeds. The tests demonstrate that the system operates at the optimum operational point of the turbine, and within the set limits of maximum rotational speed and maximum generated power. The drop in performance in relation to its nominal value is about 75%, when operating at 50% of the nominal power. In summary, this VSWT with its proposed control program is feasible and reliable for operating direct-shaft grid-connected VSWTs.

  10. Unsteady hydraulic simulation of the cavitating part load vortex rope in Francis turbines

    Science.gov (United States)

    Brammer, J.; Segoufin, C.; Duparchy, F.; Lowys, P. Y.; Favrel, A.; Avellan, F.

    2017-04-01

    For Francis turbines at part load operation a helical vortex rope is formed due to the swirling nature of the flow exiting the runner. This vortex creates pressure fluctuations which can lead to power swings, and the unsteady loading can lead to fatigue damage of the runner. In the case that the vortex rope cavitates there is the additional risk that hydro-acoustic resonance can occur. It is therefore important to be able to accurately simulate this phenomenon to address these issues. In this paper an unsteady, multi-phase CFD model was used to simulate two part-load operating points, for two different cavitation conditions. The simulation results were validated with test-rig data, and showed very good agreement. These results also served as an input for FEA calculations and fatigue analysis, which are presented in a separate study.

  11. Numerical prediction for effects of guide vane blade numbers on hydraulic turbine performance

    International Nuclear Information System (INIS)

    Shi, F X; Yang, J H; Wang, X H; Li, C E

    2013-01-01

    Using unstructured hybrid grid technique and SIMPLEC algorithm,a general three-dimensional simulation based on Reynolds Navier- stocks in multiple reference frames and the RNG k-ε turbulence model, is presented for the reversal centrifugal pump (PAT) with a guide vane. Four different schemes are designed by a change of the number of guide vane blade of PAT. The inner flow field in every scheme is simulated, accordingly, the external characteristic and static pressure distribution in flow field in PAT is obtained. The results obtained show that the efficiency can be improved by adding a guide vane for the PAT, besides, the high efficiency area is wider than before. Guide blade numbers changed, external characteristics of turbine changed, and the external characteristic changed. The optimal value is existent for the guide vane blade number, which has a great impact on the distribution of pressure in runner inlet

  12. Design and experimental validation of the inlet guide vane system of a mini hydraulic bulb-turbine

    Energy Technology Data Exchange (ETDEWEB)

    Ferro, L.M.C. [Department of Mechanical Engineering, Escola Superior de Tecnologia de Setubal, Polytechnic Institute of Setubal, Campus do IPS, Estefanilha, 2910-761 Setubal (Portugal); IDMEC, Instituto Superior Tecnico, Technical University of Lisbon, Av. Rovisco Pais,1049-001 Lisboa (Portugal); Gato, L.M.C.; Falcao, A.F.O. [IDMEC, Instituto Superior Tecnico, Technical University of Lisbon, Av. Rovisco Pais,1049-001 Lisboa (Portugal)

    2010-09-15

    The paper presents a fast design method for the inlet guide vanes of low-cost mini hydraulic bulb turbines. The guide vanes are positioned between two conical surfaces with a common vertex and have constant thickness distribution, except close to the leading and the trailing edges. The conical-walled inlet guide vane row is designed using a quasi-three-dimensional calculation method, by prescribing the angular-momentum distribution along the span at the outlet section of the guide vanes. The meridional through-flow is computed by a streamline curvature method and the blade-to-blade flow by a singularity surface method. The stagger angle and the vane camber are computed to fulfil the required design circulation and zero-incidence flow at the leading edge. The final vane shape is a single-curvature surface with straight leading and trailing edges. To validate the design method, a conical-walled inlet guide vane row nozzle-model with six fixed vanes was designed, manufactured and tested in an airflow rig. Traversing measurements along the circumferential and radial directions were made with a five-hole probe. The experimental results are compared with the prescribed design conditions and with numerical results from the three-dimensional inviscid and viscous flow computed with the FLUENT code. (author)

  13. Nondestructive Induced Residual Stress Assessment in Superalloy Turbine Engine Components Using Induced Positron Annihilation (IPA)

    International Nuclear Information System (INIS)

    Rideout, C. A.; Ritchie, S. J.; Denison, A.

    2007-01-01

    Induced Positron Analysis (IPA) has demonstrated the ability to nondestructively quantify shot peening/surface treatments and relaxation effects in single crystal superalloys, steels, titanium and aluminum with a single measurement as part of a National Science Foundation SBIR program and in projects with commercial companies. IPA measurement of surface treatment effects provides a demonstrated ability to quantitatively measure initial treatment effectiveness along with the effect of operationally induced changes over the life of the treated component. Use of IPA to nondestructively quantify surface and subsurface residual stresses in turbine engine materials and components will lead to improvements in current engineering designs and maintenance procedures

  14. Thermal-hydraulic and thermo-mechanical design of plasma facing components for SST-1 tokamak

    International Nuclear Information System (INIS)

    Chaudhuri, Paritosh; Santra, P.; Chenna Reddy, D.; Parashar, S.K.S.

    2014-01-01

    The Plasma Facing Components (PFCs) are one of the major sub-systems of ssT-1 tokamak. PFC of ssT-1 consisting of divertors, passive stabilizers, baffles and limiters are designed to be compatible for steady state operation. The main consideration in the design of the PFC cooling is the steady state heat removal of up to 1 MW/m 2 . The PFC has been designed to withstand the peak heat fluxes and also without significant erosion such that frequent replacement of the armor is not necessary. Design considerations included 2-D steady state and transient tile temperature distribution and resulting thermal loads in PFC during baking, and cooling, coolant parameters necessary to maintain optimum thermal-hydraulic design, and tile fitting mechanism. Finite Element (FE) models using ANSYS have been developed to carry out the heat transfer and stress analyses of the PFC to understand its thermal and mechanical behaviors. The results of the calculation led to a good understanding of the coolant flow behavior and the temperature distribution in the tube wall and the different parts of the PFC. Thermal analysis of the PFC is carried out with the purpose of evaluating the thermal mechanical behavior of PFCs. The detailed thermal-hydraulic and thermo-mechanical designs of PFCs of ssT-1 are discussed in this paper. (authors)

  15. Problems of the Starting and Operating of Hydraulic Components and Systems in Low Ambient Temperature (Part IV

    Directory of Open Access Journals (Sweden)

    Jasiński Ryszard

    2017-09-01

    Full Text Available Designers of hydraulically driven machines and devices are obliged to ensure during design process their high service life with taking into account their operational conditions. Some of the machines may be started in low ambient temperature and even in thermal shock conditions (due to delivering hot working medium to cold components. In order to put such devices into operation appropriate investigations, including experimental ones - usually very expensive and time-consuming, are carried out. For this reason numerical calculations can be used to determine serviceability of a hydraulic component or system operating in thermal shock conditions. Application of numerical calculation methods is much less expensive in comparison to experimental ones. This paper presents a numerical calculation method which makes it possible to solve issues of heat exchange in elements of investigated hydraulic components by using finite elements method. For performing the simulations the following data are necessary: ambient temperature, oil temperature, heat transfer coefficient between oil and surfaces of elements, as well as areas of surfaces being in contact with oil. By means of computer simulation method values of clearance between cooperating elements as well as ranges of parameters of correct and incorrect operation of hydraulic components have been determined. In this paper results of computer simulation of some experimentally tested hydraulic components such as axial piston pump and proportional spool valve, are presented. The computer simulation results were compared with the experimental ones and high conformity was obtained.

  16. Design concept of a pump stage with replaceable hydraulic components and prediction of its performance curves

    International Nuclear Information System (INIS)

    Lugova, S O; Knyazeva, E G; Tverdokhleb, I B; Kochevsky, A N

    2010-01-01

    In many cases, centrifugal pump units are expected to deliver the required performance under varying operating conditions. In particular, the pumps for oil extraction and transportation should deliver a constant head, although their capacity often changes during the life cycle. In order to keep the efficiency at a high level and not to replace a whole pump, the authors suggest to replace in such cases only hydraulic components of the pump (impellers and stationary sections of diffuser channels) that are to be installed in the same casing. The paper describes an approach for designing of radial-flow impellers and sections of diffuser channels to be used as replaceable. It allows for delivering a required head and providing a high efficiency in a wide range of capacities. The components intended for smaller capacities are featured with narrower flow passages. However, the dimensions of replaceable components are the same. The paper describes also a numerical simulation of fluid flow in a pump stage with two sets of replaceable radial-flow impellers and sections of diffuser channels. The CFD software used in this research is ANSYS CFX 11. Good correspondence of results is observed. Difference in flow pattern at various capacities and its influence on the performance curves delivered with replaceable components is demonstrated. Basing on the obtained results, the analysis of energy losses is presented.

  17. A Component Mode Synthesis Algorithm for Multibody Dynamics of Wind Turbines

    DEFF Research Database (Denmark)

    Holm-Jørgensen, Kristian; Nielsen, Søren R.K.

    2009-01-01

    A system reduction scheme related to a multibody formulation of wind turbine dynamics is devised. Each substructure is described in its own frame of reference, which is moving freely in the vicinity of the moving substructure, in principle without any constraints to the rigid body part of the mot......A system reduction scheme related to a multibody formulation of wind turbine dynamics is devised. Each substructure is described in its own frame of reference, which is moving freely in the vicinity of the moving substructure, in principle without any constraints to the rigid body part...... of the motion of the substructure. The system reduction is based on a component mode synthesis method, where the response of the internal degrees of freedom of the substructure is described as the quasi-static response induced by the boundary degrees of freedom via the constraint modes superimposed...

  18. On risk-based operation and maintenance of offshore wind turbine components

    International Nuclear Information System (INIS)

    Jessen Nielsen, Jannie; Dalsgaard Sorensen, John

    2011-01-01

    Operation and maintenance are significant contributors to the cost of energy for offshore wind turbines. Optimal planning could rationally be based on Bayesian pre-posterior decision theory, and all costs through the lifetime of the structures should be included. This paper contains a study of a generic case where the costs are evaluated for a single wind turbine with a single component. Costs due to inspections, repairs, and lost production are included in the model. The costs are compared for two distinct maintenance strategies, namely with and without inclusion of periodic imperfect inspections. Finally the influence of different important parameters, e.g. failure rate, reliability of inspections, inspection interval, and decision rule for repairs, is evaluated.

  19. Tracking and Control of Gas Turbine Engine Component Damage/Life

    Science.gov (United States)

    Jaw, Link C.; Wu, Dong N.; Bryg, David J.

    2003-01-01

    This paper describes damage mechanisms and the methods of controlling damages to extend the on-wing life of critical gas turbine engine components. Particularly, two types of damage mechanisms are discussed: creep/rupture and thermo-mechanical fatigue. To control these damages and extend the life of engine hot-section components, we have investigated two methodologies to be implemented as additional control logic for the on-board electronic control unit. This new logic, the life-extending control (LEC), interacts with the engine control and monitoring unit and modifies the fuel flow to reduce component damages in a flight mission. The LEC methodologies were demonstrated in a real-time, hardware-in-the-loop simulation. The results show that LEC is not only a new paradigm for engine control design, but also a promising technology for extending the service life of engine components, hence reducing the life cycle cost of the engine.

  20. Horizon Expansion of Thermal-Hydraulic Activities into HTGR Safety Analysis Including Gas-Turbine Cycle and Hydrogen Plant

    International Nuclear Information System (INIS)

    No, Hee Cheon; Yoon, Ho Joon; Kim, Seung Jun; Lee, Byeng Jin; Kim, Ji Hwan; Kim, Hyeun Min; Lim, Hong Sik

    2009-01-01

    We present three nuclear/hydrogen-related R and D activities being performed at KAIST: air-ingressed LOCA analysis code development, gas turbine analysis tool development, and hydrogen-production system analysis model development. The ICE numerical technique widely used for the safety analysis of water-reactors is successfully implemented into GAMMA, with which we solve the basic equations for continuity, momentum conservation, energy conservation of the gas mixture, and mass conservation of 6 species (He, N2, O2, CO, CO2, and H2O). GAMMA has been extensively validated using data from 14 test facilities. We developed a tool to predict the characteristics of HTGR helium turbines based on the through flow calculation with a Newton- Raphson method that overcomes the weakness of the conventional method based on the successive iteration scheme. It is found that the current method reaches stable and quick convergence even under the off-normal condition with the same degree of accuracy. The dynamic equations for the distillation column of HI process are described with 4 material components involved in the HI process: H2O, HI, I2, H2. For the HI process we improved the Neumann model based on the NRTL (Non-Random Two-Liquid) model. The improved Neumann model predicted a total pressure with 8.6% maximum relative deviation from the data and 2.5% mean relative deviation, and liquid-liquid-separation with 9.52% maximum relative deviation from the data

  1. Multi-component wind measurements of wind turbine wakes performed with three LiDARs

    Science.gov (United States)

    Iungo, G. V.; Wu, Y.-T.; Porté-Agel, F.

    2012-04-01

    LiDARs are performed over the mean vertical symmetry plane of the wind turbine wake, while a third LiDAR measures the incoming wind over a vertical plane parallel to the mean wind direction and lying outside of the wake. One LiDAR is placed in proximity of the wind turbine location and measures pointing downstream, whereas a second LiDAR is located along the mean wind direction at a downstream distance of 6.5 diameters and measures pointing upstream. For these measurements axial and vertical velocity components are retrieved only for measurement points where the two laser beams result to be roughly orthogonal. Statistics of the two velocity components show in the near wake at hub height strong flow fluctuations with magnitudes about 30% of the mean value, and a gradual reduction for downstream distances larger than three rotor diameters.

  2. On Different Maintenance Strategies for Casted Components of Offshore Wind Turbines

    DEFF Research Database (Denmark)

    Ambühl, Simon; Sørensen, John Dalsgaard

    . This maintenance tool uses Crude Monte Carlo Simulations to estimate the expected maintenance costs. Corrective and preventive maintenance strategies with a constant inspection interval or a condition monitoring system are considered. Furthermore, transportation from shore to the wind turbines by boat...... and transportation strategy. The case study shows that the maintenance expenses of casted components correspond to roughly 5% of the overall expected maintenance costs when using a corrective maintenance strategy. This amount can be decreased to roughly 2% when using a condition monitoring system and following...

  3. Service-cycle component-feature specimen TMF testing of steam turbine rotor steels

    Energy Technology Data Exchange (ETDEWEB)

    Radosavljevic, M.; Holdsworth, S.R. [Eidgenoessische Materialpruefungs- und Forschungsanstalt, Duebendorf (Switzerland); Mazza, E. [Eidgenoessische Materialpruefungs- und Forschungsanstalt, Duebendorf (Switzerland); Eidgenoessische Technische Hochschule (ETH), Zurich (Switzerland); Grossmann, P.; Ripamonti, L. [ALSTOM Power (Switzerland) Ltd., Baden (Switzerland)

    2010-07-01

    This paper reviews the methodology adopted in a Swiss Research Collaboration to devise a component-feature representative specimen geometry and the TMF cycle parameters necessary to closely simulate arduous steam turbine operating duty. Implementation of these service-like experimental conditions provides a practical indication of the effectiveness of deformation and crack initiation endurance predictions. Comprehensive post test inspection provides evidence to demonstrate the physical realism of the laboratory simulations in terms of the creep-fatigue damage generated during the benchmark tests. Mechanical response results and physical damage observations are presented and their practical implications discussed for the example of a 2%CrMoNiWV rotor service cycle. (orig.)

  4. Statistical safety evaluation of BWR turbine trip scenario using coupled neutron kinetics and thermal hydraulics analysis code SKETCH-INS/TRACE5.0

    International Nuclear Information System (INIS)

    Ichikawa, Ryoko; Masuhara, Yasuhiro; Kasahara, Fumio

    2012-01-01

    The Best Estimate Plus Uncertainty (BEPU) method has been prepared for the regulatory cross-check analysis at Japan Nuclear Energy Safety Organization (JNES) on base of the three-dimensional neutron-kinetics/thermal-hydraulics coupled code SKETCH-INS/TRACE5.0. In the preparation, TRACE5.0 is verified against the large-scale thermal-hydraulic tests carried out with NUPEC facility. These tests were focused on the pressure drop of steam-liquid two phase flow and void fraction distribution. From the comparison of the experimental data with other codes (RELAP5/MOD3.3 and TRAC-BF1), TRACE5.0 was judged better than other codes. It was confirmed that TRACE5.0 has high reliability for thermal hydraulics behavior and are used as a best-estimate code for the statistical safety evaluation. Next, the coupled code SKETCH-INS/TRACE5.0 was applied to turbine trip tests performed at the Peach Bottom-2 BWR4 Plant. The turbine trip event shows the rapid power peak due to the voids collapse with the pressure increase. The analyzed peak value of core power is better simulated than the previous version SKETCH-INS/TRAC-BF1. And the statistical safety evaluation using SKETCH-INS/TRACE5.0 was applied to the loss of load transient for examining the influence of the choice of sampling method. (author)

  5. Application of multi-objective controller to optimal tuning of PID gains for a hydraulic turbine regulating system using adaptive grid particle swam optimization.

    Science.gov (United States)

    Chen, Zhihuan; Yuan, Yanbin; Yuan, Xiaohui; Huang, Yuehua; Li, Xianshan; Li, Wenwu

    2015-05-01

    A hydraulic turbine regulating system (HTRS) is one of the most important components of hydropower plant, which plays a key role in maintaining safety, stability and economical operation of hydro-electrical installations. At present, the conventional PID controller is widely applied in the HTRS system for its practicability and robustness, and the primary problem with respect to this control law is how to optimally tune the parameters, i.e. the determination of PID controller gains for satisfactory performance. In this paper, a kind of multi-objective evolutionary algorithms, named adaptive grid particle swarm optimization (AGPSO) is applied to solve the PID gains tuning problem of the HTRS system. This newly AGPSO optimized method, which differs from a traditional one-single objective optimization method, is designed to take care of settling time and overshoot level simultaneously, in which a set of non-inferior alternatives solutions (i.e. Pareto solution) is generated. Furthermore, a fuzzy-based membership value assignment method is employed to choose the best compromise solution from the obtained Pareto set. An illustrative example associated with the best compromise solution for parameter tuning of the nonlinear HTRS system is introduced to verify the feasibility and the effectiveness of the proposed AGPSO-based optimization approach, as compared with two another prominent multi-objective algorithms, i.e. Non-dominated Sorting Genetic Algorithm II (NSGAII) and Strength Pareto Evolutionary Algorithm II (SPEAII), for the quality and diversity of obtained Pareto solutions set. Consequently, simulation results show that this AGPSO optimized approach outperforms than compared methods with higher efficiency and better quality no matter whether the HTRS system works under unload or load conditions. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.

  6. Manufacturing Hydraulic Components for the Primary Double Entry S-Pump Model

    Directory of Open Access Journals (Sweden)

    S. Iu. Kuptsov

    2015-01-01

    Full Text Available The article describes a new design of the primary pump to run in powerful units (more than 1 GW of power plants. The new construction has some advantages such as compactness, theoretical lack of radial and axial forces, and high efficiency in a wide range of flow. The abovementioned advantages can be possible owing to applying an innovative shape of the pump flow path. An impeller with the guide vanes forms the three-row single stage in the each row axial double entry blade system. The inlet and outlet parts have a shape of the involute that can ensure (according to calculated data the efficiency and stability in a wide range of flow because of a lack of the spiral parts. The results of numerical calculations of the pump working flow theoretically confirm that demanding parameters of the pump (H=286 m; Q=1,15 m3 /s can be obtained with competitive efficiency. To verify the proposed advantages of the construction, there was decision made to conduct the real physical experiment. For this purpose the small model of a real pump was designed with parameters H=14 m, Q=13 l/s. Construction of the pump model has a cartridge conception. In addition, there is a possibility for quick replacement of the some parts of the blade system in case of operational development of the pump. In order to obtain hydraulic characteristics of the pump to say nothing of the electromotor the torque gauge coupling is used. Numerical calculations for the pump model were also performed which confirm the operability. For manufacturing of the blade system the new perspective technology is applied. The main hydraulic components (impellers and guide vanes are made of ABS plastic by using 3D-printer. According to this technology parts are made layer by layer by means of welded plastic filament. Using this method the satisfactory tolerance (approximately ±0,3 mm of the parts was obtained. At that moment, it is possible to create the parts with the maximum size no higher than 150 mm

  7. Experimental results showing the internal three-component velocity field and outlet temperature contours for a model gas turbine combustor

    CSIR Research Space (South Africa)

    Meyers, BC

    2011-09-01

    Full Text Available by the American Institute of Aeronautics and Astronautics Inc. All rights reserved ISABE-2011-1129 EXPERIMENTAL RESULTS SHOWING THE INTERNAL THREE-COMPONENT VELOCITY FIELD AND OUTLET TEMPERATURE CONTOURS FOR A MODEL GAS TURBINE COMBUSTOR BC Meyers*, GC... identifier c Position identifier F Fuel i Index L (Combustor) Liner OP Orifice plate Introduction There are often inconsistencies when comparing experimental and Computational Fluid Dynamics (CFD) simulations for gas turbine combustors [1...

  8. Development of thermal-hydraulic safety codes for HTGRs with gas-turbine and hydrogen process cycles

    International Nuclear Information System (INIS)

    No, Hee Cheon; Yoon, Ho Joon; Lee, Byung Jin; Kim, Yong Soo; Jin, Hyeng Gon; Kim, Ji Hwan; Kim, Hyeun Min; Lim, Hong Sik

    2008-01-01

    We present three nuclear/hydrogen-related R and D activities being performed at KAIST: air-ingressed LOCA analysis code development, gas turbine analysis tool development, and hydrogen-production system analysis model development. The ICE numerical technique widely used for the safety analysis of water-reactors is successfully implemented into GAMMA in which we solve the basic equations for continuity, momentum conservation, energy conservation of the gas mixture, and mass conservation of 6 species (He, N2, O2, CO, CO2, and H2O). GAMMA has been extensively validated using data from 14 test facilities. We developed SANA code to predict the characteristics of HTGR helium turbines based on the throughflow calculation with a Newton-Raphson method that overcomes the weakness of the conventional method based on the successive iteration scheme. It is found out that the current method reaches stable and quick convergence even under the off-normal condition with the same degree of accuracy. The GAMMA-SANA coupled code was assessed by comparing its results with the steady-state of the GTHTR300, and the load reduction transient was simulated for the 100% to 70% power operation. The calculation results confirm that two-dimensional throughflow modeling can be successfully used to describe the gas turbine behavior. The dynamic equations for the distillation column of the HI process in the I-S cycle are described with 4 material components involved in the HI process: H2O, HI, I2, and H2. For the VLE prediction in the HI process we improved the Neumann model based on the NRTL (Non-Random Two-Liquid) model. Relative to the experimental data, the improved Neumann model shows deviations of 8.6% in maximum and 2.5% in average for the total pressure, and 9.5% in maximum for the liquid-liquid separation composition. Through a parametric analysis using the published experimental data related to the Bunsen reaction and liquid-liquid separation, an optimized operating condition for the

  9. Protection algorithm for a wind turbine generator based on positive- and negative-sequence fault components

    DEFF Research Database (Denmark)

    Zheng, Tai-Ying; Cha, Seung-Tae; Crossley, Peter A.

    2011-01-01

    A protection relay for a wind turbine generator (WTG) based on positive- and negative-sequence fault components is proposed in the paper. The relay uses the magnitude of the positive-sequence component in the fault current to detect a fault on a parallel WTG, connected to the same power collection...... feeder, or a fault on an adjacent feeder; but for these faults, the relay remains stable and inoperative. A fault on the power collection feeder or a fault on the collection bus, both of which require an instantaneous tripping response, are distinguished from an inter-tie fault or a grid fault, which...... in the fault current is used to decide on either instantaneous or delayed operation. The operating performance of the relay is then verified using various fault scenarios modelled using EMTP-RV. The scenarios involve changes in the position and type of fault, and the faulted phases. Results confirm...

  10. Investigation into CO2 laser cleaning of titanium alloys for gas-turbine component manufacture

    International Nuclear Information System (INIS)

    Turner, M.W.; Crouse, P.L.; Li, L; Smith, A.J.E.

    2006-01-01

    This paper reports results of the investigation into the feasibility of using a CO 2 laser technology to perform critical cleaning of gas-turbine aero-engine components for manufacture. It reports the results of recent trials and relates these to a thermal model of the cleaning mechanisms, and describes resultant component integrity. The paper defines the experimental conditions for the laser cleaning of various aerospace-grade contaminated titanium alloys, using a continuous wave CO 2 laser. Laser cleaning of Ti64 proved successful for electron beam welding, but not for the more sensitive Ti6246. For diffusion bonding the trials produced a defective standard of joint. Effects of oxide formation is modelled and examined experimentally

  11. Analysis of the OECD/NRC BWR Turbine Trip Transient Benchmark with the Coupled Thermal-Hydraulics and Neutronics Code TRAC-M/PARCS

    International Nuclear Information System (INIS)

    Lee, Deokjung; Downar, Thomas J.; Ulses, Anthony; Akdeniz, Bedirhan; Ivanov, Kostadin N.

    2004-01-01

    An analysis of the Peach Bottom Unit 2 Turbine Trip 2 (TT2) experiment has been performed using the U.S. Nuclear Regulatory Commission coupled thermal-hydraulics and neutronics code TRAC-M/PARCS. The objective of the analysis was to assess the performance of TRAC-M/PARCS on a BWR transient with significance in two-phase flow and spatial variations of the neutron flux. TRAC-M/PARCS results are found to be in good agreement with measured plant data for both steady-state and transient phases of the benchmark. Additional analyses of four fictitious extreme scenarios are performed to provide a basis for code-to-code comparisons and comprehensive testing of the thermal-hydraulics/neutronics coupling. The obtained results of sensitivity studies on the effect of direct moderator heating on transient simulation indicate the importance of this modeling aspect

  12. 3D computations of flow field in a guide vane blading designed by means of 2D model for a low head hydraulic turbine

    International Nuclear Information System (INIS)

    Krzemianowski, Z; Puzyrewski, R

    2014-01-01

    The paper presents the main parameters of the flow field behind the guide vane cascade designed by means of 2D inverse problem and following check by means of 3D commercial program ANSYS/Fluent applied for a direct problem. This approach of using different models reflects the contemporary design procedure for non-standardized turbomachinery stage. Depending on the model, the set of conservation equation to be solved differs, although the physical background remains the same. The example of computations for guide vane cascade for a low head hydraulic turbine is presented.

  13. Engineering design and thermal hydraulics of plasma facing components of SST-1

    International Nuclear Information System (INIS)

    Pragash, N. Ravi; Chaudhuri, P.; Santra, P.; Chenna Reddy, D.; Khirwadkar, S.; Saxena, Y.C.

    2001-01-01

    SST-1 is a medium size tokamak with super conducting magnetic field coils. All the subsystems of SST-1 are designed for quasi steady state (∼1000 s) operation. Plasma Facing Components (PFCs) of SST-1 consisting of divertors, passive stabilizers, baffles and poloidal limiters are also designed to be compatible for steady state operation. As SST-1 is designed to run double null divertor plasmas, these components also have up-down symmetry. A closed divertor configuration is chosen to produce high recycling and high pumping speed in the divertor region. All the PFC are made of copper alloys (CuCrZr and CuZr) on which graphite tiles are mechanically attached. These copper alloy back plates are actively cooled with water flowing in the channels grooved on them with the main consideration in the design of PFCs as the steady state heat removal of about 1.0 MW/m 2 . In addition to be able to remove high heat fluxes, the PFCs are also designed to be compatible for baking at 350 degree sign C. Extensive studies, involving different flow parameters and various cooling layouts, have been done to select the final cooling parameters and layout. Thermal response of the PFCs and vacuum vessel during baking, has been calculated using a FORTRAN code and a 2-D finite element analysis. The PFCs and their supports are also designed to withstand large electro-magnetic forces. Finite element analysis using ANSYS software package is used in this and other PFCs design. The engineering design including thermal hydraulics for cooling and baking of all the PFCs is completed. Poloidal limiters are being fabricated. The remaining PFCs, viz. divertors, stabilizers and baffles are likely to go for fabrication in the next few months. The detailed engineering design, the finite element calculations in the structural and thermal designs are presented in this paper

  14. Statistical and time domain signal analysis of the thermal behaviour of wind turbine drive train components under dynamic operation conditions

    International Nuclear Information System (INIS)

    Nienhaus, K; Baltes, R; Bernet, C; Hilbert, M

    2012-01-01

    Gearboxes and generators are fundamental components of all electrical machines and the backbone of all electricity generation. Since the wind energy represents one of the key energy sources of the future, the number of wind turbines installed worldwide is rapidly increasing. Unlike in the past wind turbines are more often positioned in arctic as well as in desert like regions, and thereby exposed to harsh environmental conditions. Especially the temperature in those regions is a key factor that defines the design and choice of components and materials of the drive train. To optimize the design and health monitoring under varying temperatures it is important to understand the thermal behaviour dependent on environmental and machine parameters. This paper investigates the behaviour of the stator temperature of the double fed induction generator of a wind turbine. Therefore, different scenarios such as start of the turbine after a long period of no load, stop of the turbine after a long period of full load and others are isolated and analysed. For each scenario the dependences of the temperature on multiple wind turbine parameters such as power, speed and torque are studied. With the help of the regression analysis for multiple variables, it is pointed out which parameters have high impact on the thermal behaviour. Furthermore, an analysis was done to study the dependences in the time domain. The research conducted is based on 10 months of data of a 2 MW wind turbine using an adapted data acquisition system for high sampled data. The results appear promising, and lead to a better understanding of the thermal behaviour of a wind turbine drive train. Furthermore, the results represent the base of future research of drive trains under harsh environmental conditions, and it can be used to improve the fault diagnosis and design of electrical machines.

  15. Improving Durability of Turbine Components Through Trenched Film Cooling and Contoured Endwalls

    Energy Technology Data Exchange (ETDEWEB)

    Bogard, David G. [Univ. of Texas, Austin, TX (United States); Thole, Karen A. [Pennsylvania State Univ., State College, PA (United States)

    2014-09-30

    The experimental and computational studies of the turbine endwall and vane models completed in this research program have provided a comprehensive understanding of turbine cooling with combined film cooling and TBC. To correctly simulate the cooling effects of TBC requires the use of matched Biot number models, a technique developed in our laboratories. This technique allows for the measurement of the overall cooling effectiveness which is a measure of the combined internal and external cooling for a turbine component. The overall cooling effectiveness provides an indication of the actual metal temperature that would occur at engine conditions, and is hence a more powerful performance indicator than the film effectiveness parameter that is commonly used for film cooling studies. Furthermore these studies include the effects of contaminant depositions which are expected to occur when gas turbines are operated with syngas fuels. Results from the endwall studies performed at Penn State University and the vane model studies performed at the University of Texas are the first direct measurements of the combined effects of film cooling and TBC. These results show that TBC has a dominating effect on the overall cooling effectiveness, which enhances the importance of the internal cooling mechanisms, and downplays the importance of the film cooling of the external surface. The TBC was found to increase overall cooling effectiveness by a factor of two to four. When combined with TBC, the primary cooling from film cooling holes was found to be due to the convective cooling within the holes, not from the film effectiveness on the surface of the TBC. Simulations of the deposition of contaminants on the endwall and vane surfaces showed that these depositions caused a large increase in surface roughness and significant degradation of film effectiveness. However, despite these negative factors, the depositions caused only a slight decrease in the overall cooling effectiveness on

  16. Influence of prolonged service of steam turbines on the properties of materials of rotor and vessel components

    International Nuclear Information System (INIS)

    Anfimov, V.M.; Artamonov, V.V.; Chizhik, T.A.

    1984-01-01

    The structure and mechanical properties of steam turbine elements of 25Kh1MF, 25Kh1M1FA (rotors), 15Kh1M1FL (vessel components) steels have been investigated both in initial state and after 200 000 h operation. The structure stability and phase composition of rotor steels providing conservation of heat resistance at a required level was established. Examination of vessel components showed a decrease in the yield strength by 15-20% and durability - by 10% as compared to initial ones. The conclusion on a possible prolongation of the steam turbine service life to 200 000 h is drawn. The nominal service life equals 100 000 h

  17. Hydraulic efficiency and safety of vascular and non-vascular components in Pinus pinaster leaves.

    Science.gov (United States)

    Charra-Vaskou, Katline; Badel, Eric; Burlett, Régis; Cochard, Hervé; Delzon, Sylvain; Mayr, Stefan

    2012-09-01

    Leaves, the distal section of the soil-plant-atmosphere continuum, exhibit the lowest water potentials in a plant. In contrast to angiosperm leaves, knowledge of the hydraulic architecture of conifer needles is scant. We investigated the hydraulic efficiency and safety of Pinus pinaster needles, comparing different techniques. The xylem hydraulic conductivity (k(s)) and embolism vulnerability (P(50)) of both needle and stem were measured using the cavitron technique. The conductance and vulnerability of whole needles were measured via rehydration kinetics, and Cryo-SEM and 3D X-ray microtomographic observations were used as reference tools to validate physical measurements. The needle xylem of P. pinaster had lower hydraulic efficiency (k(s) = 2.0 × 10(-4) m(2) MPa(-1) s(-1)) and safety (P(50) = - 1.5 MPa) than stem xylem (k(s) = 7.7 × 10(-4) m(2) MPa(-1) s(-1); P(50) = - 3.6 to - 3.2 MPa). P(50) of whole needles (both extra-vascular and vascular pathways) was - 0.5 MPa, suggesting that non-vascular tissues were more vulnerable than the xylem. During dehydration to - 3.5 MPa, collapse and embolism in xylem tracheids, and gap formation in surrounding tissues were observed. However, a discrepancy in hydraulic and acoustic results appeared compared with visualizations, arguing for greater caution with these techniques when applied to needles. Our results indicate that the most distal parts of the water transport pathway are limiting for hydraulics of P. pinaster. Needle tissues exhibit a low hydraulic efficiency and low hydraulic safety, but may also act to buffer short-term water deficits, thus preventing xylem embolism.

  18. Application of feal intermetallic phase matrix based alloys in the turbine components of a turbocharger

    Directory of Open Access Journals (Sweden)

    J. Cebulski

    2015-01-01

    Full Text Available This paper presents a possible application of the state-of-the-art alloys based on the FeAl intermetallic phases as materials for the manufacture of heat-proof turbine components in an automobile turbocharger. The research was aimed at determining the resistance to corrosion of Fe40Al5CrTiB alloy in a gaseous environment containing 9 % O2 + 0,2 % HCl + 0,08 % SO2 + N2. First the kinetics of corrosion processes for the considered alloy were determined at the temperatures of 900 °C, 1 000 °C and 1 100 °C, which was followed by validation under operating conditions. To do so, the tests were carried out over a distance of 20 000 km. The last stage involved examination of the surfaces after the test drive. The obtained results are the basis for further research in this field.

  19. Hydro turbine rehab benefits from modeling

    International Nuclear Information System (INIS)

    Froehlich, D.R.; Veatch, J.A.

    1991-01-01

    The turbine aging process, while seemingly imperceptible, inevitably results in reduced turbine efficiency and capacity. The primary causes of these reductions are runner hydraulic profile changes during weld repairs, surface finish deterioration from cavitation, and runner seal clearance increases due to wear. Many aging turbines require more frequent repairs due to runner cavitation, and wicket gate mechanism, shaft seal, and guide bearing wear. In many instances turbine component repair can be performed in-place. On older units, runner seals, wicket gate bearings, and wicket gate end seals can be repaired only when the turbine is disassembled. Since the significant cost to disassemble and overhaul units must be offset by future maintenance savings and generation increases, turbine rehabilitation is often postponed as owners consider other alternatives. Rehabilitation is a general term used to describe a wide range of turbine reconditioning and design alternatives. Turbine rehabilitation can include a major overhaul of components, runner replacement, and component modifications. Deteriorated runners can be replaced with either a new identical runner or a new modern design having increased efficiency and capacity. The comparative turbine performance of an original, existing, and a modern runner design are shown in this paper. Component overhauls can extend turbine life and restore original efficiency and capacity to existing units. However, the overhaul of existing components cannot increase plant capacity and generation above the as-new values. As a result, owners of aging plants are considering the benefits of replacing existing turbines with modern, more efficient, higher capacity turbines, or expanding the sites. Where expansion is not feasible, hydroelectric power plant owners are finding that turbine rehabilitation is the most cost-effective method to increase plant value and life

  20. EVALUASI UNJUK KERJA TURBIN AIR PELTON TERBUAT DARI KAYU DAN BAMBU SEBAGAI PEMBANGKIT LISTRIK RAMAH LINGKUNGAN UNTUK PEDESAAN (Performance Evaluation of Hydraulic Pelton Turbine Made of Wood and Bamboo as Environmentally Friendly Electric Generation

    Directory of Open Access Journals (Sweden)

    Samsul Kamal

    2013-07-01

    Full Text Available ABSTRAK Pemanfaatan energi air di Indonesia, khususnya untuk pembangkit listrik skala kecil di pedesaan masih perlu diprioritaskan untuk ditingkatkan dalam program memperoleh energi bersih yang ramah lingkungan. Pemanfaatan tersebut masih terkendala oleh biaya investasi yang relatif tinggi serta teknologi yang sesuai. Pemerintah mendorong pemanfaatan energi baru dan terbarukan melalui program Desa Mandiri Energi dengan menggunakan potensi dan sumber daya yang tersedia di pedesaan. Kajian ini bertujuan untuk mengevaluasi unjuk kerja turbin air Pelton untuk pembangkit listrik skala kecil dengan sudu terbuat dari bambu dan roda turbin dari kayu. Data yang terkumpul menunjukkan bahwa efisiensi pembangkitan mampu mencapai sekitar 28% untuk debit aliran 28 liter/detik dan tinggi jatuh efektif 7 m menggunakan nosel berpenampang empat persegi panjang. Walaupun dari aspek teknik dan lingkungan penggunaan bambu sebagai sudu turbin adalah baik dan sesuai untuk digunakan di pedesaan, namun unjuk kerja yang diperoleh masih perlu ditingkatkan dibanding dengan umumnya turbin Pelton yang terbuat dari logam. Hal ini diperkirakan karena bentuk alamiah lengkung bambu yang tidak optimum untuk sudu serta bentuk penampang nosel yang masih harus disesuaikan.   ABSTRACT The use of hydroenergy in Indonesia, especially for small electric generation in rural areas is still to be priority increased in a program to find a clean and environmentally friendly energy.  The use is still limited by relatively high investation cost and appropriate technology. Government has pushed the use of new and renewable energy through the Village Self-Relliant Energy Supply Program by using potential and available resources in the village. The objective of this study is to evaluate the performance of a hydraulic Pelton turbine for small electric generation with the buckets are made of bamboo and the runner is made of wood. Data collected from the study show that the efficiency of the

  1. Steady state and transient thermal-hydraulic characterization of full-scale ITER divertor plasma facing components

    International Nuclear Information System (INIS)

    Tincani, A.; Malavasi, A.; Ricapito, I.; Riccardi, B.; Di Maio, P.A.; Vella, G.

    2007-01-01

    In the frame of the activities related to ITER divertor R and D, ENEA CR Brasimone was charged by EFDA (European Fusion Design Agreement) to investigate the thermal-hydraulic behaviour of the full-scale divertor plasma facing components, i.e. Inner Vertical Target, Dome Liner and Outer Vertical Target, both in steady state and during draining and drying transient. More in detail, for each PFC, the first phase of the work is the steady state hydraulic characterization which consists of: - measurements of pressure drops at different temperatures; - determination of the velocity distribution in the internal channels; - check the possible insurgence of cavitation. The subsequent phase of the thermal-hydraulic characterization foresees a testing campaign of draining and drying procedure by means of a suitable gas flow. The objective of this experimental procedure is to eliminate in the most efficient way the residual amount of water after gravity discharge. In order to accomplish this experimental campaign a significant modification of CEF1 loop has been designed and realized. This paper presents, first of all, the experimental set-up, the agreed test matrix and the achieved results for both steady state and transient tests. Moreover, the level of the implementation of a predictive hydraulic model, based on RELAP 5 code, as well as its results are described, discussed and compared with the experimental ones. (orig.)

  2. Thermal hydraulic considerations in liquid-metal-cooled components of tokamak fusion reactors

    International Nuclear Information System (INIS)

    Picologlou, B.F.; Reed, C.B.; Hua, T.Q.

    1989-01-01

    The basic considerations of MHD thermal hydraulics for liquid-metal-cooled blankets and first walls of tokamak fusion reactors are discussed. The liquid-metal MHD program of Argonne National Laboratory (ANL) dedicated to analytical and experimental investigations of reactor relevant MHD flows and development of relevant thermal hydraulic design tools is presented. The status of the experimental program and examples of local velocity measurements are given. An account of the MHD codes developed to date at ANL is also presented as is an example of a 3-D thermal hydraulic analysis carried out with such codes. Finally, near term plans for experimental investigations and code development are outlined. 20 refs., 8 figs., 1 tab

  3. Enhanced Component Performance Study: Turbine-Driven Pumps 1998–2014

    Energy Technology Data Exchange (ETDEWEB)

    Schroeder, John Alton [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-11-01

    This report presents an enhanced performance evaluation of turbine-driven pumps (TDPs) at U.S. commercial nuclear power plants. The data used in this study are based on the operating experience failure reports from fiscal year 1998 through 2014 for the component reliability as reported in the Institute of Nuclear Power Operations (INPO) Consolidated Events Database (ICES). The TDP failure modes considered are failure to start (FTS), failure to run less than or equal to one hour (FTR=1H), failure to run more than one hour (FTR>1H), and normally running systems FTS and failure to run (FTR). The component reliability estimates and the reliability data are trended for the most recent 10-year period while yearly estimates for reliability are provided for the entire active period. Statistically significant increasing trends were identified for TDP unavailability, for frequency of start demands for standby TDPs, and for run hours in the first hour after start. Statistically significant decreasing trends were identified for start demands for normally running TDPs, and for run hours per reactor critical year for normally running TDPs.

  4. Hydraulic turbines uses for rural electric generation; Utilizacion de microturbinas para la generacion electrica en el medio rural

    Energy Technology Data Exchange (ETDEWEB)

    Genta, J [Facultad de Ingenieria, Instituto de Mecanica de Fluidos e Ingenieria Ambiental, Montevideo, (Uruguay); Nunes, V [Facultad de Ingenieria, Instituto de Ingenieria Electrica, Montevideo, (Uruguay)

    1994-07-01

    The micro turbines use for electric generation either in autonomous systems or in connection to the national net is presented like an alternative whose viability has been studied in the Agreement taken place between the UTE Administracion Nacional de Usinas y transmisiones Electricas y la Facultad de Ingenieria. The Agreement {sup S}tudy for the Installation of Micro turbines that initially considered areas far from the national electric net it extended then to near areas to the same one to analyze the cogeneration alternative. They were considered smaller and bigger powers than 1 MW and up to 5MW. For the whole study range a methodology is described of calculate primary, starting from a minimum of field information that allows a first estimate of viability of a certain place and the selection of the turbine type, for a later detailed study.

  5. Pelton turbines

    CERN Document Server

    Zhang, Zhengji

    2016-01-01

    This book concerns the theoretical foundations of hydromechanics of Pelton turbines from the engineering viewpoint. For reference purposes, all relevant flow processes and hydraulic aspects in a Pelton turbine have been analyzed completely and systematically. The analyses especially include the quantification of all possible losses existing in the Pelton turbine and the indication of most available potential for further enhancing the system efficiency. As a guideline the book therefore supports further developments of Pelton turbines with regard to their hydraulic designs and optimizations. It is thus suitable for the development and design engineers as well as those working in the field of turbo machinery. Many laws described in the book can also be directly used to simplify aspects of computational fluid dynamics (CFD) or to develop new computational methods. The well-executed examples help better understand the related flow mechanics.

  6. The measurement of the vertical component of hydraulic conductivity in single-cased and uncased boreholes

    International Nuclear Information System (INIS)

    Black, J.H.; Noy, D.J.; Brightman, M.A.

    1987-01-01

    The project aimed to assess the different existing methods of measuring vertical hydraulic conductivity in single boreholes by carrying out some actual field testing. A review of existing techniques for both field practice and analysis of the results is reported. After consideration of the various techniques a combination method of testing is proposed. A set of equipment to carry out this combination of tests was designed and built. The uncased testing revealed that it was possible to derive a value for vertical hydraulic conductivity. The doublet method, however, was not particularly successful and numerical simulation was cumbersome. The type-curve approach of appraising whether or not analysis concepts were appropriate proved the most robust method. It is clear that reconnaissance measurements of environmental pressure are very useful in defining where detailed testing should take place. The second phase of testing through perforations proved very difficult. There were many problems associated with location both of the wireline testing system within the borehole and especially of the previous measurements. However, analysis of the results in terms of skin indicated that the perforations produced a negative skin. The measurement of vertical hydraulic conductivity cannot at the moment be regarded as routine

  7. Three-component hydraulic penile prosthesis malfunction due to penile fibrolipoma secondary to augmentative phalloplasty: A case report

    Directory of Open Access Journals (Sweden)

    Gabriele Antonini

    2016-01-01

    Full Text Available Fibrolipomas are an infrequent type of lipomas. We describe a case of a man suffering from subcutaneous penile fibrolipoma, who twelve months earlier has been submitted to augmentative phalloplasty due to aesthetic dysmorphophobia. The same patient three years earlier has been submitted to three-component hydraulic penile prostheses implantation due to erectile dysfunction. After six months from removing of the mass, the penile elongation and penile enlargement were stable, the prostheses were correctly functioning and the patient was satisfied with his sexual intercourse and life. The diagnostics and surgical characteristics of this case are reported.

  8. A probability evaluation method of early deterioration condition for the critical components of wind turbine generator systems

    DEFF Research Database (Denmark)

    Hu, Y.; Li, H.; Liao, X

    2016-01-01

    method of early deterioration condition for critical components based only on temperature characteristic parameters. First, the dynamic threshold of deterioration degree function was proposed by analyzing the operational data between temperature and rotor speed. Second, a probability evaluation method...... of early deterioration condition was presented. Finally, two cases showed the validity of the proposed probability evaluation method in detecting early deterioration condition and in tracking their further deterioration for the critical components.......This study determines the early deterioration condition of critical components for a wind turbine generator system (WTGS). Due to the uncertainty nature of the fluctuation and intermittence of wind, early deterioration condition evaluation poses a challenge to the traditional vibration...

  9. Advanced SiC/SiC Ceramic Composites For Gas-Turbine Engine Components

    Science.gov (United States)

    Yun, H. M.; DiCarlo, J. A.; Easler, T. E.

    2004-01-01

    NASA Glenn Research Center (GRC) is developing a variety of advanced SiC/SiC ceramic composite (ASC) systems that allow these materials to operate for hundreds of hours under stress in air at temperatures approaching 2700 F. These SiC/SiC composite systems are lightweight (approximately 30% metal density) and, in comparison to monolithic ceramics and carbon fiber-reinforced ceramic composites, are able to reliably retain their structural properties for long times under aggressive gas-turbine engine environments. The key for the ASC systems is related first to the NASA development of the Sylramic-iBN Sic fiber, which displays higher thermal stability than any other SiC- based ceramic fibers and possesses an in-situ grown BN surface layer for higher environmental durability. This fiber is simply derived from Sylramic Sic fiber type that is currently produced at ATK COI Ceramics (COIC). Further capability is then derived by using chemical vapor infiltration (CVI) and/or polymer infiltration and pyrolysis (PIP) to form a Sic-based matrix with high creep and rupture resistance as well as high thermal conductivity. The objectives of this study were (1) to optimize the constituents and processing parameters for a Sylramic-iBN fiber reinforced ceramic composite system in which the Sic-based matrix is formed at COIC almost entirely by PIP (full PIP approach), (2) to evaluate the properties of this system in comparison to other 2700 F Sylramic-iBN systems in which the matrix is formed by full CVI and CVI + PIP, and (3) to examine the pros and cons of the full PIP approach for fabricating hot-section engine components. A key goal is the development of a composite system with low porosity, thereby providing high modulus, high matrix cracking strength, high interlaminar strength, and high thermal conductivity, a major property requirement for engine components that will experience high thermal gradients during service. Other key composite property goals are demonstration at

  10. Thermo-mechanical lifetime assessment of components for 700 °C steam turbine applications

    International Nuclear Information System (INIS)

    Ehrhardt, F.

    2014-01-01

    In order to increase thermal efficiency, steam turbine technology has been oriented to cover steam inlet temperatures above 700 °C and steam pressures exceeding 350 bar. These temperature levels require the use of nickel and cobalt based alloys. Nickel-based alloys were identified as being suitable for forgeable high-pressure steam turbine rotor materials, including welding procedures for joints between nickel-based alloys and alloyed ferritic steels. Expensive nickel-based alloys should be replaced with conventional heat-resistant steels in applications operating below ∼500-550°C. Since a welded rotor design is favoured, dissimilar metal weldments are required. The research work presented is aimed at the development of thermo-mechanical lifetime assessment methodologies for 700°C steam turbine components. The first main objective was the development of advanced creep-fatigue (CF) lifetime assessment methodologies for the evaluation of Alloy 617 steam turbine rotor features at maximum application temperatures. For the characterisation of the material behaviour under static loading conditions, creep rupture experiments for both medium temperatures and target application temperature have been conducted in order to investigate the influence of ageing treatment on Alloy 617. A creep deformation equation was developed on the basis of a modified Graham-Walles law. Continuous Low Cycle Fatigue (LCF) experiments have been performed. A plasticity model of Chaboche type has been developed. Cyclic/hold experiments have been conducted on Alloy 617. A modification on the creep law was introduced for the description of the material’s decreased creep resistance under combined CF loading. A very promising approach considering plastic and creep-dissipated energy was developed. The effectiveness of this energy exhaustion method was verified with the calculation of endurance curves for continuous cycling LCF and cyclic/hold conditions over a broad range of temperatures, strain

  11. Thermo-mechanical lifetime assessment of components for 700 °C steam turbine applications

    Energy Technology Data Exchange (ETDEWEB)

    Ehrhardt, F.

    2014-07-01

    In order to increase thermal efficiency, steam turbine technology has been oriented to cover steam inlet temperatures above 700 °C and steam pressures exceeding 350 bar. These temperature levels require the use of nickel and cobalt based alloys. Nickel-based alloys were identified as being suitable for forgeable high-pressure steam turbine rotor materials, including welding procedures for joints between nickel-based alloys and alloyed ferritic steels. Expensive nickel-based alloys should be replaced with conventional heat-resistant steels in applications operating below ∼500-550°C. Since a welded rotor design is favoured, dissimilar metal weldments are required. The research work presented is aimed at the development of thermo-mechanical lifetime assessment methodologies for 700°C steam turbine components. The first main objective was the development of advanced creep-fatigue (CF) lifetime assessment methodologies for the evaluation of Alloy 617 steam turbine rotor features at maximum application temperatures. For the characterisation of the material behaviour under static loading conditions, creep rupture experiments for both medium temperatures and target application temperature have been conducted in order to investigate the influence of ageing treatment on Alloy 617. A creep deformation equation was developed on the basis of a modified Graham-Walles law. Continuous Low Cycle Fatigue (LCF) experiments have been performed. A plasticity model of Chaboche type has been developed. Cyclic/hold experiments have been conducted on Alloy 617. A modification on the creep law was introduced for the description of the material’s decreased creep resistance under combined CF loading. A very promising approach considering plastic and creep-dissipated energy was developed. The effectiveness of this energy exhaustion method was verified with the calculation of endurance curves for continuous cycling LCF and cyclic/hold conditions over a broad range of temperatures, strain

  12. Validated Loads Prediction Models for Offshore Wind Turbines for Enhanced Component Reliability

    DEFF Research Database (Denmark)

    Koukoura, Christina

    To improve the reliability of offshore wind turbines, accurate prediction of their response is required. Therefore, validation of models with site measurements is imperative. In the present thesis a 3.6MW pitch regulated-variable speed offshore wind turbine on a monopole foundation is built...... are used for the modification of the sub-structure/foundation design for possible material savings. First, the background of offshore wind engineering, including wind-wave conditions, support structure, blade loading and wind turbine dynamics are presented. Second, a detailed description of the site...

  13. Custo de bombas centrífugas funcionando como turbinas em microcentrais hidrelétricas Cost of pumps as hydraulic turbines for micro-scale hydropower

    Directory of Open Access Journals (Sweden)

    Carlos R. Balarim

    2004-04-01

    places where they should be implanted. Pumps As Turbines (PAT have been studied. These equipment costs were obtained by consulting directly the manufacturers, and also the Ponta Grossa - PR city, Brazil, market. The results have shown that, concerning the micro hydroelectric power plants, whenever the costs constitute the major aspect and always considering units until 50 kW power, the option to PAT must be considered instead of hydraulic turbines.

  14. Vertical-axial component wind turbine with a high coefficient using for wind energy

    International Nuclear Information System (INIS)

    Yersin, Ch. Sh.; Manatbev, R.K.; Yersina, A. K.; Tulepbergenov, A. K.

    2012-01-01

    The report presents the results of research and development on of promising wind units carousel type with a high ratio utilization of wind energy. This devices use a well-known invention – the wind turbine Darrieus. The rotation of the turbine is due to the action of ascensional power to aerodynamic well-streamlined symmetrical about the chord wing profiles of NASA, which are working wind turbine blades. The shaft rotation can be connected with the working blades of one of two ways: using the “swings” or the way “troposkino”. Darrieus turbine has a ratio utilization of wind energy xmax=045. Despite the fact that this is a good indicator of the efficiency of the turbine working, the proposed option allows us to significantly increase the value of this coefficient. The bases methodology of this research is a method of technical and technological research and development design of prospective wind energy construction (WES). Key words: wind turbine, the blade, coefficient utilization of wind energy

  15. Laser Engineered Net Shape (LENS) Technology for the Repair of Ni-Base Superalloy Turbine Components

    Science.gov (United States)

    Liu, Dejian; Lippold, John C.; Li, Jia; Rohklin, Stan R.; Vollbrecht, Justin; Grylls, Richard

    2014-09-01

    The capability of the laser engineered net shape (LENS) process was evaluated for the repair of casting defects and improperly machined holes in gas turbine engine components. Various repair geometries, including indentations, grooves, and through-holes, were used to simulate the actual repair of casting defects and holes in two materials: Alloy 718 and Waspaloy. The influence of LENS parameters, including laser energy density, laser scanning speed, and deposition pattern, on the repair of these defects and holes was studied. Laser surface remelting of the substrate prior to repair was used to remove machining defects and prevent heat-affected zone (HAZ) liquation cracking. Ultrasonic nondestructive evaluation techniques were used as a possible approach for detecting lack-of-fusion in repairs. Overall, Alloy 718 exhibited excellent repair weldability, with essentially no defects except for some minor porosity in repairs representative of deep through-holes and simulated large area casting defects. In contrast, cracking was initially observed during simulated repair of Waspaloy. Both solidification cracking and HAZ liquation cracking were observed in the repairs, especially under conditions of high heat input (high laser power and/or low scanning speed). For Waspaloy, the degree of cracking was significantly reduced and, in most cases, completely eliminated by the combination of low laser energy density and relatively high laser scanning speeds. It was found that through-hole repairs of Waspaloy made using a fine powder size exhibited excellent repair weldability and were crack-free relative to repairs using coarser powder. Simulated deep (7.4 mm) blind-hole repairs, representative of an actual Waspaloy combustor case, were successfully produced by the combination use of fine powder and relatively high laser scanning speeds.

  16. Analysis of the malfunctioning and failure of a 15 MW hydraulic turbine; Analisis de malfuncionamiento y de falla de una turbina hidraulica de 15 MW

    Energy Technology Data Exchange (ETDEWEB)

    Garcia Illescas, R.; Perez Rodriguez, N. [Instituto de Investigaciones Electricas, Cuernavaca, Morelos (Mexico)

    2007-11-15

    A case history is presented of the rehabilitation process of three hydraulic turbines with a capacity of 15 MW each one. Such units are used for electric power generation, mainly to supply part of the center zone of the Mexican Republic. The turbo-generator units had been practically destroyed by catastrophic floods and only part of the equipment was recovered and reconditioned for its operation. One of the three turbines presented serious functioning problems preventing its reliable operation that was evidenced by excessive mechanical vibrations and heating in the bearing zone. This paper presents the diagnosis of the possible causes of failure and the corrective measures taken. Serious rotor misalignment problems were observed respect to its bearings and the turbine scroll. Additionally, during the inspection of the turbine runner and of the bearing it was observed that important friction have existed, which incremented the vibrations. It is shown that such rubbings are not the cause of the problem but only a manifestation of the same. Finally some of the conclusions and their solution are presented. [Spanish] Se presenta un caso historico del proceso de rehabilitacion de tres turbinas hidraulicas con capacidad de 15 MW cada una. Dichas unidades son empleadas en la generacion electrica, principalmente para abastecer parte de la zona centro de la republica mexicana. Las unidades turbogeneradores habian sido practicamente destruidas por inundaciones catastroficas y solo parte del equipo fue rescatado y rehabilitado para su operacion. Una de las tres turbinas presento graves problemas de funcionamiento, impidiendo su operacion confiable, lo cual se manifestaba mediante vibraciones mecanicas excesivas y calentamiento en zona de chumaceras. En este articulo se presenta el diagnostico de las posibles causas de falla y las acciones correctivas tomandas. Se observan problemas fuertes de desalineamiento del rotor respecto a sus chumaceras y al caracol de la turbina

  17. Analysis of the fault and malfunctioning of a 15 MW hydraulic turbine; Analisis de la falla y malfuncionamiento de una turbina hidraulica de 15 MW

    Energy Technology Data Exchange (ETDEWEB)

    Garcia I, Rafael; Perez R, Norberto [Instituto de Investigaciones Electricas, Cuernavaca, Morelos (Mexico)

    2007-07-01

    An historical case of the rehabilitation process of three hydraulic turbines with capacity of 15 MW each is presented. These units are used for the electrical generation, mainly to supply part of the central zone of the Mexican Republic. The turbo-generator units had been practically destroyed by catastrophic floods and only part of the equipment was rescued and rehabilitated for its operation. One of the three turbines presented serious operational problems, preventing its reliable operation evidenced by the excessive mechanical vibrations and heating of the bearing zone. This article presents the diagnosis of the possible causes of fault and the remedial actions taken. Strong misalignment problems of the runner with respect to its bearings and to the scroll case of the turbine are observed. In addition, during the inspection of the turbine runner and of the bearings it is observed that important frictions have existed, which increased the vibrations. It is shown that these frictions are not the cause of the problem but only one manifestation of the same. Finally some conclusions of the problem and their solution are presented. [Spanish] Se presenta un caso historico del proceso de rehabilitacion de tres turbinas hidraulicas con capacidad de 15 MW cada una. Dichas unidades son empleadas en la generacion electrica, principalmente para abastecer parte de la zona centro de la Republica Mexicana. Las unidades turbogeneradores habian sido practicamente destruidas por inundaciones catastroficas y solo parte del equipo fue rescatado y rehabilitado para su operacion. Una de las tres turbinas presento graves problemas de funcionamiento, impidiendo su operacion confiable, lo cual se manifestaba mediante vibraciones mecanicas excesivas y calentamiento en zona de chumaceras. En este articulo se presenta el diagnostico de las posibles causas de falla y las acciones correctivas tomadas. Se observan problemas fuertes de desalineamiento del rotor respecto a sus chumaceras y al

  18. The Thermal-hydraulic Analysis for the Aging Effect of the Component in CANDU-6 Reactor

    International Nuclear Information System (INIS)

    Bae, Jun Ho; Jung, Jong Yeob

    2014-01-01

    CANDU reactor consists of a lot of components, including pressure tube, reactor pump, steam generator, feeder pipe, and so on. These components become to have the aging characteristics as the reactor operates for a long time. The aging phenomena of these components lead to the change of operating parameters, and it finally results to the decrease of the operating safety margin. Actually, due to the aging characteristics of components, CANDU reactor power plant has the operating license for the duration of 30 years and the plant regularly check the plant operating state in the overhaul period. As the reactor experiences the aging, the reactor operators should reduce the reactor power level in order to keep the minimum safety margin, and it results to the deficit of economical profit. Therefore, in order to establish the safety margin for the aged reactor, the aging characteristics for components should be analyzed and the effect of aging of components on the operating parameter should be studied. In this study, the aging characteristics of components are analyzed and revealed how the aging of components affects to the operating parameter by using NUCIRC code. Finally, by scrutinizing the effect of operating parameter on the operating safety margin, the effect of aging of components on the safety margin has been revealed

  19. Usage of Parameterized Fatigue Spectra and Physics-Based Systems Engineering Models for Wind Turbine Component Sizing: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Parsons, Taylor; Guo, Yi; Veers, Paul; Dykes, Katherine; Damiani, Rick

    2016-01-26

    Software models that use design-level input variables and physics-based engineering analysis for estimating the mass and geometrical properties of components in large-scale machinery can be very useful for analyzing design trade-offs in complex systems. This study uses DriveSE, an OpenMDAO-based drivetrain model that uses stress and deflection criteria to size drivetrain components within a geared, upwind wind turbine. Because a full lifetime fatigue load spectrum can only be defined using computationally-expensive simulations in programs such as FAST, a parameterized fatigue loads spectrum that depends on wind conditions, rotor diameter, and turbine design life has been implemented. The parameterized fatigue spectrum is only used in this paper to demonstrate the proposed fatigue analysis approach. This paper details a three-part investigation of the parameterized approach and a comparison of the DriveSE model with and without fatigue analysis on the main shaft system. It compares loads from three turbines of varying size and determines if and when fatigue governs drivetrain sizing compared to extreme load-driven design. It also investigates the model's sensitivity to shaft material parameters. The intent of this paper is to demonstrate how fatigue considerations in addition to extreme loads can be brought into a system engineering optimization.

  20. Research and Development (R&D) on Advanced Nonstructural Materials. Delivery Order 0001: Study of Hydraulic System Component Storage With Operational and Rust-Inhibited Hydraulic Fluids

    National Research Council Canada - National Science Library

    Gschwender, Lois J; Snyder Jr, Carl E; Sharma, Shashi K; Jenney, Tim; Campo, Angela

    2004-01-01

    .... Jars, containing bearings and pistons, as well as hydraulic pumps were stored for up to 3 years in a laboratory environment to determine if operational fluids would protect them from rusting during storage...

  1. Rotor optimization of a Francis type hydraulic turbine through the computer flow analysis (CFD); Optimizacion del rodete de una turbina hidraulica tipo Francis a traves del analisis computacional del flujo (CFD)

    Energy Technology Data Exchange (ETDEWEB)

    Rosado Tamariz, Erick

    2007-06-15

    In the analysis of fluid behavior through hydraulic turbines, two basic methodologies for flow analysis and optimization processes in turbines are used, which are: a) modeled of flow through the entire turbine (joint), or modeled one of each component separately, obtaining satisfactory results by both methodologies. The analysis of computational fluids dynamics (CFD) to geometries improved by means of finite volume method (FVM) with their corresponding initials and boundary conditions is made, to solve a system differential equations of second order that correspond to the flow around the dominion of runner blades; considering nonviscous flow and the implementation of the two equations models for the solution of the equations that govern the turbulent flow. Also, used parameterization techniques based in a parametric geometry an objective function and the diminution of cavitation. This work presents the optimization of a runner from a Francis hydro turbine for a 75 MW considering three different load conditions (75%, 85% and 100%) through CFD as a part of the hydraulic analysis for modernization of the actual condition of a power generation unit. Francis runner optimization is made, through a previous analysis of CFD by means of the FVM, considering the viscous effects of the fluid and the model of turbulence developed by Sparlart and Allmaras; modeling the wicket and runner separately. Later the generation of a parametric model of the runner is made and the simulation for the generation of data base is formed. Finally an objective function is considered to develop the optimal geometry of the runner blades. The results are presented in a graphic form in such a way, that it shows the distributions of pressure and speed around the blades runner, the geometrical and performance (efficiency and power) comparison between original and optimized model. [Spanish] En el analisis del comportamiento del fluido a traves de turbinas hidraulicas, se emplean dos metodologias

  2. Flow measurement in a 170-MW hydraulic turbine using the Gibson method; Medicion del flujo de una turbina hidraulica de 170 MW utilizando el metodo Gibson

    Energy Technology Data Exchange (ETDEWEB)

    Urquiza, Gustavo [Universidad Autonoma del Estado de Morelos (Mexico); Adamkowski, Adam [The Szewalski Institute of Fluid-Flow Machinery (Poland); Kubiak, Janusz; Sierra, Fernando [Universidad Autonoma del Estado de Morelos (Mexico); Janicki, Waldemar [The Szewalski Institute of Fluid-Flow Machinery (Poland); Fernandez, J. Manuel [Comision Federal de Electricidad (Mexico)

    2007-07-15

    This paper describes the methodology applied for measuring water flow through a 170-MW hydraulic turbine. The flow rate was measured using the pressure-time method, also known as the Gibson method. This method uses the well-known water hammer phenomenon in pipelines; in turbine penstocks, for instance. The version of this method used here is based on measuring, during total stop of the water stream, the time-history of pressure change in one section of the turbine penstock and relate it to the pressure in the upper reservoir to which the penstock is connected. The volumetric flow rate is determined from the relevant integration of the measured temporary pressure rise. Flow measurement was possible this way because the influence of the penstock inlet was negligible as far as an error of the measurement is concerned. The length of the penstock was 300 m. Previous experience and a standard IEC-41-1991 were the criteria adopted and applied. A fast and efficient acquisition system, including a 16 bit card, was used. The flow rate was calculated using a computer program developed and tested on several cases. The results obtained with the Gibson method were used for calibration of the on-line flow measuring system based on the Winter-Kennedy method as one of the index methods. This method is very often used for continuous monitoring of the flow rate through hydraulic turbines, when the calibration has been done on site by using the results of measurements obtained by the absolute method. Having measured the flow rate and output power, the efficiency was calculated for any operating conditions. A curve showing the best operating conditions based on the highest efficiency is presented and discussed. The details of the instrumentation, its installation, and the results obtained are discussed in the paper. [Spanish] Este articulo describe la metodologia aplicada para la medicion del flujo en una turbina hidraulica de 170 MW. El flujo se midio utilizando el metodo de presion

  3. Conversion of the thermal hydraulics components of Almaraz NPP model from RELAP5 into TRAC-M

    International Nuclear Information System (INIS)

    Queral, C.; Mulas, J.; Collazo, I.; Concejal, A.; Burbano, N.; Gallego, I.; Lopez Lechas, A.

    2002-01-01

    In the scope of a joint project between the Spanish Nuclear Regulatory Commission (CSN) and the electric energy industry of Spain (UNESA) on the USNRC state-of-the-art thermal hydraulic code, TRAC-M, there is a task relating to the translation of the Spanish NPP models from other TH codes to the new one. As part of this project, our team is working on the translation of Almaraz NPP model from RELAP5/MOD3.2 to TRAC-M. At present, several portions of the input deck have been converted to TRAC-M, and the output data have also been compared with RELAP5 data. This paper refers to the translation of the following thermal hydraulic models: pressurizer, hot and cold legs (including the pumps and the injection systems), and steam generators. The comparison of the results obtained with both codes shows a good agreement. However, some difficulties have been found in the translation of some code components, like pipes, heat structures, pumps, branchs, valves and boundary conditions. In this paper, these translation problems and their solutions are described.(author)

  4. Design & Evaluation of a Protection Algorithm for a Wind Turbine Generator based on the fault-generated Symmetrical Components

    DEFF Research Database (Denmark)

    Zheng, T. Y.; Cha, Seung-Tae; Lee, B. E.

    2011-01-01

    A protection relay for a wind turbine generator (WTG) based on the fault-generated symmetrical components is proposed in the paper. At stage 1, the relay uses the magnitude of the positive-sequence component in the fault current to distinguish faults on a parallel WTG, connected to the same feeder......, or on an adjacent feeder from those on the connected feeder, on the collection bus, at an inter-tie or at a grid. For the former faults, the relay should remain stable and inoperative whilst the instantaneous or delayed tripping is required for the latter faults. At stage 2, the fault type is first evaluated using...... the relationships of the fault-generated symmetrical components. Then, the magnitude of the positive-sequence component in the fault current is used again to decide on either instantaneous or delayed operation. The operating performance of the relay is then verified using various fault scenarios modelled using...

  5. Water turbine technology for small power stations

    Science.gov (United States)

    Salovaara, T.

    1980-02-01

    The paper examines hydro-power stations and the efficiency and costs of using water turbines to run them. Attention is given to different turbine types emphasizing the use of Kaplan-turbines and runners. Hydraulic characteristics and mechanical properties of low head turbines and small turbines, constructed of fully fabricated steel plate structures, are presented.

  6. Thermal-hydraulic limitations on water-cooled fusion reactor components

    International Nuclear Information System (INIS)

    Cha, Y.S.; Misra, B.

    1986-01-01

    An assessment of the cooling requirements for fusion reactor components, such as the first wall and limiter/divertor, was carried out using pressurized water as the coolant. In order to establish the coolant operating conditions, a survey of the literature on departure from nucleate boiling, critical heat flux, asymmetrical heating and heat transfer augmentation techniques was carried out. The experimental data and the empirical correlations indicate that thermal protection for the fusion reactor components based on conventional design concepts can be provided with an adequate margin of safety without resorting to either high coolant velocities, excessive coolant pressures, or heat transfer augmentation techniques. If, however, the future designs require unconventional shapes or heat transfer enhancement techniques, experimental verification would be necessary since no data on heat transfer augmentation techniques exist for complex geometries, especially under asymmetrically heated conditions. Since the data presented herein are concerned primarily with thermal protection of the reactor components, the final design should consider other factors such as thermal stresses, temperature limits, and fatigue

  7. Analytical Formulation for Sizing and Estimating the Dimensions and Weight of Wind Turbine Hub and Drivetrain Components

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Y. [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Parsons, T. [National Renewable Energy Laboratory (NREL), Golden, CO (United States); King, R. [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Dykes, K. [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Veers, P. [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2015-06-09

    This report summarizes the theory, verification, and validation of a new sizing tool for wind turbine drivetrain components, the Drivetrain Systems Engineering (DriveSE) tool. DriveSE calculates the dimensions and mass properties of the hub, main shaft, main bearing(s), gearbox, bedplate, transformer if up-tower, and yaw system. The level of fi¬ delity for each component varies depending on whether semiempirical parametric or physics-based models are used. The physics-based models have internal iteration schemes based on system constraints and design criteria. Every model is validated against available industry data or finite-element analysis. The verification and validation results show that the models reasonably capture primary drivers for the sizing and design of major drivetrain components.

  8. Fracture toughness evaluation of elastic-plastic J-integral for high temperature components of gas turbine in power plants

    International Nuclear Information System (INIS)

    Chung, Nam Yong; Kim, Moon Young; Kim, Jong Woo

    1999-01-01

    In the study, the analysis of elastic-plastic J-integral was performed in high temperature components for gas turbine based on elastic-plastic fracture mechanics. It had been operated on the range of about 700 deg C and degraded by high temperature. It was tested for material properties of used component because of material properties changing at high temperature condition. The elastic-plastic fracture mechanics parameter, J is obtained with finite element method. A method is suggested which determines J Ic applying analysis of elastic-plastic finite element method and results of experimental load-displacements with CT specimen. It is also investigated that J-integral is applied for the elastic-plastic analysis in high temperature components. The elastic-plastic fracture toughness. J Ic determined by finite element was obtained with high accuracy using the experimental method.=20

  9. Developmental assessment of the multidimensional component in RELAP5 for Savannah River Site thermal hydraulic analysis

    International Nuclear Information System (INIS)

    Hanson, R.G.; Johnson, E.C.; Carlson, K.E.; Chou, C.Y.; Davis, C.B.; Martin, R.P.; Riemke, R.A.; Wagner, R.J.

    1992-07-01

    This report documents ten developmental assessment problems which were used to test the multidimensional component in RELAP5/MOD2.5, Version 3w. The problems chosen were a rigid body rotation problem, a pure radial symmetric flow problem, an r-θ symmetric flow problem, a fall problem, a rest problem, a basic one-dimensional flow test problem, a gravity wave problem, a tank draining problem, a flow through the center problem, and coverage analysis using PIXIE. The multidimensional code calculations are compared to analytical solutions and one-dimensional code calculations. The discussion section of each problem contains information relative to the code's ability to simulate these problems

  10. Laser/fluorescent dye flow visualization technique developed for system component thermal hydraulic studies

    International Nuclear Information System (INIS)

    Oras, J.J.; Kasza, K.E.

    1988-01-01

    A novel laser flow visualization technique is presented together with examples of its use in visualizing complex flow patterns and plans for its further development. This technique has been successfully used to study (1) the flow in a horizontal pipe subject to temperature transients, to view the formation and breakup of thermally stratified flow and to determine instantaneous velocity distributions in the same flow at various axial locations; (2) the discharge of a stratified pipe flow into a plenum exhibiting a periodic vortex pattern; and (3) the thermal-buoyancy-induced flow channeling on the shell side of a heat exchanger with glass tubes and shell. This application of the technique to heat exchangers is unique. The flow patterns deep within a large tube bundle can be studied under steady or transient conditions. This laser flow visualization technique constitutes a very powerful tool for studying single or multiphase flows in complex thermal system components

  11. Materials for Advanced Ultra-supercritical (A-USC) Steam Turbines – A-USC Component Demonstration

    Energy Technology Data Exchange (ETDEWEB)

    Purgert, Robert [Energy Industries Of Ohio Inc., Independence, OH (United States); Phillips, Jeffrey [Energy Industries Of Ohio Inc., Independence, OH (United States); Hendrix, Howard [Energy Industries Of Ohio Inc., Independence, OH (United States); Shingledecker, John [Energy Industries Of Ohio Inc., Independence, OH (United States); Tanzosh, James [Energy Industries Of Ohio Inc., Independence, OH (United States)

    2016-10-01

    The work by the United States Department of Energy (U.S. DOE)/Ohio Coal Development Office (OCDO) advanced ultra-supercritical (A-USC) Steam Boiler and Turbine Materials Consortia from 2001 through September 2015 was primarily focused on lab scale and pilot scale materials testing. This testing included air- or steam-cooled “loops” that were inserted into existing utility boilers to gain exposure of these materials to realistic conditions of high temperature and corrosion due to the constituents in the coal. Successful research and development resulted in metallic alloy materials and fabrication processes suited for power generation applications with metal temperatures up to approximately 1472°F (800°C). These materials or alloys have shown, in extensive laboratory tests and shop fabrication studies, to have excellent applicability for high-efficiency low CO2 transformational power generation technologies previously mentioned. However, as valuable as these material loops have been for obtaining information, their scale is significantly below that required to minimize the risk associated with a power company building a multi-billion dollar A-USC power plant. To decrease the identified risk barriers to full-scale implementation of these advanced materials, the U.S. DOE/OCDO A-USC Steam Boiler and Turbine Materials Consortia identified the key areas of the technology that need to be tested at a larger scale. Based upon the recommendations and outcome of a Consortia-sponsored workshop with the U.S.’s leading utilities, a Component Test (ComTest) Program for A-USC was proposed. The A-USC ComTest program would define materials performance requirements, plan for overall advanced system integration, design critical component tests, fabricate components for testing from advanced materials, and carry out the tests. The AUSC Component Test was premised on the program occurring at multiple facilities, with the operating temperatures, pressure and/or size of

  12. Consideration of a design optimization method for advanced nuclear power plant thermal-hydraulic components

    International Nuclear Information System (INIS)

    Ridluan, Artit; Tokuhiro, Akira; Manic, Milos; Patterson, Michael; Danchus, William

    2009-01-01

    In order to meet the global energy demand and also mitigate climate change, we anticipate a significant resurgence of nuclear power in the next 50 years. Globally, Generation III plants (ABWR) have been built; Gen' III+ plants (EPR, AP1000 others) are anticipated in the near term. The U.S. DOE and Japan are respectively pursuing the NGNP and MSFR. There is renewed interest in closing the fuel cycle and gradually introducing the fast reactor into the LWR-dominated global fleet. In order to meet Generation IV criteria, i.e. thermal efficiency, inherent safety, proliferation resistance and economic competitiveness, plant and energy conversion system engineering design have to increasingly meet strict design criteria with reduced margin for reliable safety and uncertainties. Here, we considered a design optimization approach using an anticipated NGNP thermal system component as a Case Study. A systematic, efficient methodology is needed to reduce time consuming trial-and-error and computationally-intensive analyses. We thus developed a design optimization method linking three elements; that is, benchmarked CFD used as a 'design tool', artificial neural networks (ANN) to accommodate non-linear system behavior and enhancement of the 'design space', and finally, response surface methodology (RSM) to optimize the design solution with targeted constraints. The paper presents the methodology including guiding principles, an integration of CFD into design theory and practice, consideration of system non-linearities (such as fluctuating operating conditions) and systematic enhancement of the design space via application of ANN, and a stochastic optimization approach (RSM) with targeted constraints. Results from a Case Study optimizing the printed circuit heat exchanger for the NGNP energy conversion system will be presented. (author)

  13. Substantiation of the hydrodynamic disintegration of hydraulic fluid’s mineral component of high-clay sand in precious metals placers

    Directory of Open Access Journals (Sweden)

    N.P. Khrunina

    2018-03-01

    Full Text Available General regularities and theoretical approaches determining hydroimpulsive effects on the mineral component of the hydraulic fluid are analyzed, with reference to the disintegration of high-clay sands of gold-bearing placers. Theoretical conclusions on the hydrodynamic effect on the solid component of the hydraulic fluid give insight into emerging processes in multicomponent media under hydrodynamic influences initiated by various sources of physical and mechanical influence. It is noted that the theoretical justification of the structurally complex hydrodynamic effect on the hydraulic fluid with the formation of phenomena arising from the collision of solid components with each other and obstacles includes the consideration of changes in such force characteristics as speed, pressure, flow power, and also changes in design parameters and characteristics of the environment. A conceptual approach is given to the theoretical substantiation of the disintegration of the hydraulic fluid’s mineral component using the example of the proposed installation. Calculation of economic indicators for the use of a hydrodynamic generator in comparison with processes based on known technologies has shown significant advantages of using the proposed installation, which can increase productivity and quality production indicators.

  14. Turbine related fish mortality

    International Nuclear Information System (INIS)

    Eicher, G.J.

    1993-01-01

    A literature review was conducted to assess the factors affecting turbine-related fish mortality. The mechanics of fish passage through a turbine is outlined, and various turbine related stresses are described, including pressure and shear effects, hydraulic head, turbine efficiency, and tailwater level. The methodologies used in determining the effects of fish passage are evaluated. The necessity of adequate controls in each test is noted. It is concluded that mortality is the result of several factors such as hardiness of study fish, fish size, concentrations of dissolved gases, and amounts of cavitation. Comparisons between Francis and Kaplan turbines indicate little difference in percent mortality. 27 refs., 5 figs

  15. Casting defects and fatigue behaviour of ductile cast iron for wind turbine components: A comprehensive study

    Energy Technology Data Exchange (ETDEWEB)

    Haerkegaard, G. [Norwegian University of Science and Technology, Dept. of Engineering Design and Materials, Trondheim (Norway); Shirani, M.

    2011-12-15

    Two types of EN-GJS-400-18-LT ductile cast iron were investigated in this research, clean baseline material in the shape of castings with different thicknesses and also defective material from a rejected wind turbine hub. P-S-N curves for baseline EN-GJS-400-18-LT specimens with different dimensions and from castings with different thicknesses at different load ratios were established. Geometrical size effect, technological size effects and mean stress effect on fatigue strength of baseline EN-GJS-400-18-LT were evaluated. Fatigue strength of baseline EN-GJS-400-18-LT was compared with that of defective material from the rejected hub. The effect of defects type, shape, size and position on fatigue strength of this material was evaluated. The hypothesis that the endurance observed in an S-N test can be predicted based on the analysis of crack growth from casting defects through defect-free 'base' material was tested for the analyzed defective material. 3D X-ray computed tomography was use to detect defects in defective specimens and find the defect size distribution. The obtained defect size distribution for the defective material was used in random defect analysis to establish the scatter of fatigue life for defective specimens. Finally both safe-life design and damage tolerant design of wind turbine castings were analyzed and compared. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  16. Application of fluid-structure coupling to predict the dynamic behavior of turbine components

    Energy Technology Data Exchange (ETDEWEB)

    Huebner, B; Seidel, U [Voith Hydro Holding GmbH and Co. KG, Alexanderstr. 11, 89522 Heidenheim (Germany); Roth, S, E-mail: bjoern.huebner@voith.co [Laboratory for Hydraulic Machines, EPFL, Avenue de Cour 33 Bis, 1007 Lausanne (Switzerland)

    2010-08-15

    In hydro turbine design, fluid-structure interaction (FSI) may play an important role. Examples are flow induced inertia and damping effects, vortex induced vibrations in the lock-in vicinity, or hydroelastic instabilities of flows in deforming gaps (e.g. labyrinth seals). In contrast to aeroelasticity, hydroelastic systems require strongly (iteratively) coupled or even monolithic solution procedures, since the fluid mass which is moving with the structure (added-mass effect) is much higher and changes the dynamic behavior of submerged structures considerably. Depending on the mode shape, natural frequencies of a turbine runner in water may be reduced to less than 50% of the corresponding frequencies in air, and flow induced damping effects may become one or two orders of magnitude higher than structural damping. In order to reduce modeling effort and calculation time, the solution strategy has to be adapted precisely to a given application. Hence, depending on the problem to solve, different approximations may apply. Examples are the calculation of natural frequencies and response spectra in water using an acoustic fluid formulation, the determination of flow induced damping effects by means of partitioned FSI including complex turbulent flows, and the identification of hydroelastic instabilities using monolithic coupling of non-linear structural dynamics and water flow.

  17. Design of a fractional order PID controller for hydraulic turbine regulating system using chaotic non-dominated sorting genetic algorithm II

    International Nuclear Information System (INIS)

    Chen, Zhihuan; Yuan, Xiaohui; Ji, Bin; Wang, Pengtao; Tian, Hao

    2014-01-01

    Highlights: • Multi-objective optimization based fractional order controller is designed for HTRS. • NSGAII is improved by iterative chaotic map with infinite collapses (ICMIC) operator. • ISE and ITSE are as chosen as objective functions in tuning parameters of HTRS. • FOPID controller outperforms the PID controller under various running conditions. • Trade-off between speed of reference tracking and damping of oscillation are shown. - Abstract: Fractional-order PID (FOPID) controller is a generalization of traditional PID controller using fractional calculus. Compared to the traditional PID controller, in FOPID controller, the order of derivative portion and integral portion is not integer, which provides more flexibility in achieving control objectives. Design stage of such an FOPID controller consists of determining five parameters, i.e. proportional, integral and derivative gains {Kp, Ki, Kd}, and extra integration and differentiation orders {λ,μ}, which has a large difference comparing with the conventional PID tuning rules, thus a suitable optimization algorithm is essential to the parameters tuning of FOPID controller. This paper focuses on the design of the FOPID controller using chaotic non-dominated sorting genetic algorithm II (NSGAII) for hydraulic turbine regulating system (HTRS). The parameters chosen of the FOPID controller is formulated as a multi-objective optimization problem, in which the objective functions are composed by the integral of the squared error (ISE) and integral of the time multiplied squared error (ITSE). The chaotic NSGAII algorithm, which is an incorporation of chaotic behaviors into NSGAII, is used as the optimizer to search true Pareto-front of the FOPID controller and designers can implement each of them based on objective functions priority. The designed chaotic NSGAII based FOPID controller procedure is applied to a HTRS system. A comparison study between the optimum integer order PID controller and optimum

  18. Selective Laser Melting of Hot Gas Turbine Components: Materials, Design and Manufacturing Aspects

    DEFF Research Database (Denmark)

    Goutianos, Stergios

    2017-01-01

    are built additively to nearly net shape. This allows the fabrication of arbitrary complex geometries that cannot be made by conventional manufacturing techniques. However, despite the powerful capabilities of SLM, a number of issues (e.g. part orientation, support structures, internal stresses), have......Selective Laser Melting (SLM) allows the design and manufacturing of novel parts and structures with improved performance e.g. by incorporating complex and more efficient cooling schemes in hot gas turbine parts. In contrast to conventional manufacturing of removing material, with SLM parts...... to be considered in order to manufacture cost-effective and high quality parts at an industrial scale. These issues are discussed in the present work from an engineering point of view with the aim to provide simple quidelines to produce high quality SLM parts....

  19. A Fully Non-Metallic Gas Turbine Engine Enabled by Additive Manufacturing Part I: System Analysis, Component Identification, Additive Manufacturing, and Testing of Polymer Composites

    Science.gov (United States)

    Grady, Joseph E.; Haller, William J.; Poinsatte, Philip E.; Halbig, Michael C.; Schnulo, Sydney L.; Singh, Mrityunjay; Weir, Don; Wali, Natalie; Vinup, Michael; Jones, Michael G.; hide

    2015-01-01

    The research and development activities reported in this publication were carried out under NASA Aeronautics Research Institute (NARI) funded project entitled "A Fully Nonmetallic Gas Turbine Engine Enabled by Additive Manufacturing." The objective of the project was to conduct evaluation of emerging materials and manufacturing technologies that will enable fully nonmetallic gas turbine engines. The results of the activities are described in three part report. The first part of the report contains the data and analysis of engine system trade studies, which were carried out to estimate reduction in engine emissions and fuel burn enabled due to advanced materials and manufacturing processes. A number of key engine components were identified in which advanced materials and additive manufacturing processes would provide the most significant benefits to engine operation. The technical scope of activities included an assessment of the feasibility of using additive manufacturing technologies to fabricate gas turbine engine components from polymer and ceramic matrix composites, which were accomplished by fabricating prototype engine components and testing them in simulated engine operating conditions. The manufacturing process parameters were developed and optimized for polymer and ceramic composites (described in detail in the second and third part of the report). A number of prototype components (inlet guide vane (IGV), acoustic liners, engine access door) were additively manufactured using high temperature polymer materials. Ceramic matrix composite components included turbine nozzle components. In addition, IGVs and acoustic liners were tested in simulated engine conditions in test rigs. The test results are reported and discussed in detail.

  20. Collaborative Technology Assessments Of Transient Field Processing And Additive Manufacturing Technologies As Applied To Gas Turbine Components

    Energy Technology Data Exchange (ETDEWEB)

    Ludtka, Gerard Michael [ORNL; Dehoff, Ryan R [ORNL; Szabo, Attila [General Electric (GE) Power and Water; Ucok, Ibrahim [General Electric (GE) Power and Water

    2016-01-01

    ORNL partnered with GE Power & Water to investigate the effect of thermomagnetic processing on the microstructure and mechanical properties of GE Power & Water newly developed wrought Ni-Fe-Cr alloys. Exploration of the effects of high magnetic field process during heat treatment of the alloys indicated conditions where applications of magnetic fields yields significant property improvements. The alloy aged using high magnetic field processing exhibited 3 HRC higher hardness compared to the conventionally-aged alloy. The alloy annealed at 1785 F using high magnetic field processing demonstrated an average creep life 2.5 times longer than that of the conventionally heat-treated alloy. Preliminary results show that high magnetic field processing can improve the mechanical properties of Ni-Fe-Cr alloys and potentially extend the life cycle of the gas turbine components such as nozzles leading to significant energy savings.

  1. Turbine maintenance and modernization

    Energy Technology Data Exchange (ETDEWEB)

    Unga, E. [Teollisuuden Voima Oy, Olkiluoto (Finland)

    1998-12-31

    The disturbance-free operation of the turbine plant plays an important role in reaching good production results. In the turbine maintenance of the Olkiluoto nuclear power plant the lifetime and efficiency of turbine components and the lifetime costs are taken into account in determining the turbine maintenance and modernization/improvement program. The turbine maintenance program and improvement/modernization measures taken in the plant units are described in this presentation. (orig.)

  2. Turbine maintenance and modernization

    Energy Technology Data Exchange (ETDEWEB)

    Unga, E [Teollisuuden Voima Oy, Olkiluoto (Finland)

    1999-12-31

    The disturbance-free operation of the turbine plant plays an important role in reaching good production results. In the turbine maintenance of the Olkiluoto nuclear power plant the lifetime and efficiency of turbine components and the lifetime costs are taken into account in determining the turbine maintenance and modernization/improvement program. The turbine maintenance program and improvement/modernization measures taken in the plant units are described in this presentation. (orig.)

  3. Calculations of an unsteady flow through a hydraulic axial turbine with reference to interaction between stator and rotor; Instationaere Berechnung einer hydraulischen Axialturbine unter Beruecksichtigung der Interaktion zwischen Leit- und Laufrad

    Energy Technology Data Exchange (ETDEWEB)

    Bauer, C.

    2001-07-01

    The objective of this study is the development of an algorithm enabling coupling of nonmatching computational grids to carry out calculations of an unsteady flow through a hydraulic axial turbine with reference to interaction between stator and rotor. The algorithm should offer the possibility to operate the computational grids in a fixed position relative to each other as well as in relative movement. Furthermore, the calculation should be feasible with separate grids in parallel and different frames of reference. Employing selected examples this method is investigated in detail the results are compared with performed measurements. The unsteady numerical examination of the coupling process is carried out with different examples; especially the interaction effects between stator, rotor and draft tube of a hydraulic axial turbine are observed. In addition, the effect of tip clearance of the mean flow is described. Extensive model tests using the axial turbine have been performed at the Institute for Fluid Mechanics and Hydraulic Machinery, IHS. Flow time dependent velocities have been measured with a Laser Doppler Velocimeter placed at midspan of the blading. Periodical changes in static pressure have been recorded at different locations near the wall of the turbine casing. These measurements serve as reference for the comparison with results derived from the unsteady calculations. The confrontation of the time-dependent fluctuations of the flow quantities and the calculation of the efficiency of the turbine resulting from the simulation results allow a comparison in absolute terms. (orig.) [German] Fuer die instationaere Berechnung einer hydraulischen Axialturbine unter Beruecksichtigung der Interaktion zwischen Leit- und Laufrad wird ein Algorithmus zum Koppeln von nichtpassenden Berechnungsnetzen entwickelt. Diese Berechnungsnetze sollen zueinander ortsfest sein oder auch eine Relativbewegung zueinander haben koennen. Sie sollen ausserdem und in unterschiedlichen

  4. Experiment study on sediment erosion of Pelton turbine flow passage component material

    Science.gov (United States)

    Liu, J.; Lu, L.; Zhu, L.

    2012-11-01

    A rotating and jet experiment system with high flow velocity is designed to study the anti-erosion performance of materials. The resultant velocity of the experiment system is high to 120 m/s. The anti-erosion performance of materials used in needle and nozzle and bucket of Pelton turbine, which is widely used in power station with high head and little discharge, was studied in detail by this experiment system. The experimental studies were carried with different resultant velocities and sediment concentrations. Multiple linear regression analysis method was applied to get the exponents of velocity and sediment concentration. The exponents for different materials are different. The exponents of velocity ranged from 3 to 3.5 for three kinds of material. And the exponents of sediment concentration ranged from 0.97 to 1.03 in this experiment. The SEM analysis on the erosion surface of different materials was also carried. On the erosion condition with high resultant impact velocity, the selective cutting loss of material is the mainly erosion mechanism for metal material.

  5. Experiment study on sediment erosion of Pelton turbine flow passage component material

    International Nuclear Information System (INIS)

    Liu, J; Lu, L; Zhu, L

    2012-01-01

    A rotating and jet experiment system with high flow velocity is designed to study the anti-erosion performance of materials. The resultant velocity of the experiment system is high to 120 m/s. The anti-erosion performance of materials used in needle and nozzle and bucket of Pelton turbine, which is widely used in power station with high head and little discharge, was studied in detail by this experiment system. The experimental studies were carried with different resultant velocities and sediment concentrations. Multiple linear regression analysis method was applied to get the exponents of velocity and sediment concentration. The exponents for different materials are different. The exponents of velocity ranged from 3 to 3.5 for three kinds of material. And the exponents of sediment concentration ranged from 0.97 to 1.03 in this experiment. The SEM analysis on the erosion surface of different materials was also carried. On the erosion condition with high resultant impact velocity, the selective cutting loss of material is the mainly erosion mechanism for metal material.

  6. The impact research of control modes in steam turbine control system (digital electric hydraulic to the low-frequency oscillation of grid

    Directory of Open Access Journals (Sweden)

    Yanghai Li

    2016-01-01

    Full Text Available Through the analysis of the control theory for steam turbine, the transfer function of the steam turbine control modes in the parallel operation was obtained. The frequency domain analysis indicated that different control modes of turbine control system have different influence on the damping characteristics of the power system. The comparative analysis shows the direction and the degree of the influence under the different oscillation frequency range. This can provide the theory for the suppression of the low-frequency oscillation from turbine side and has a guiding significance for the stability of power system. The results of simulation tests are consistent with the theoretic analysis.

  7. Effect of Defects Distribution on Fatigue Life of Wind Turbine Components

    DEFF Research Database (Denmark)

    Rafsanjani, Hesam Mirzaei; Sørensen, John Dalsgaard

    2015-01-01

    by a Poisson process / field where the defects form clusters that consist of a parent defect and related defects around the parent defect. The fatigue life is dependent on the number, type, location and size of the defects in the component and is therefore quite uncertain and needs to be described...

  8. Reliability Analysis of Fatigue Failure of Cast Components for Wind Turbines

    DEFF Research Database (Denmark)

    Rafsanjani, Hesam Mirzaei; Sørensen, John Dalsgaard

    2015-01-01

    to substantial economic losses such as cost of lost energy production and cost of repairs. During the design lifetime, the drivetrain components are exposed to variable loads from winds and waves and other sources of loads that are uncertain and have to be modeled as stochastic variables. The types of loads...

  9. Report on the achievements in fiscal 1998. Hydrogen utilizing international clean energy system technology (WE-NET). Subtask 8. Development of hydrogen combustion turbine (development of major components such as turbine blades and rotors); 1998 nendo suiso riyo kokusai clean energy system gijutsu (WE-NET). 8. Suiso nensho turbine no kaihatsu (turbine yoku, rotor nado shuyo kosei kiki no kaihatsu)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    The present research and development is intended to establish the fundamental technologies required to develop a pilot plant, by investigating development of such major component devices as turbine blades and rotors in a hydrogen combustion turbine. In the turbine moving and stator blade cooling technology, it is intended to achieve the power plant efficiency of 60% (based on HHV) as established in the interim evaluation performed in fiscal 1996. Therefore, the necessary element tests, detailed blade design, and partial fabrication were moved forward on the three kinds of the selected blade cooling systems as the cooling systems that can deal with the steam temperature condition as high as 1,700 degrees C. Fiscal 1998 will execute the design and fabrication of test blades and testing devices for blade cooling evaluation tests to be performed at Tashiro Township in Akita Prefecture. At the same time, evaluation and selection will be made on the three kinds of the cooling blades. In the rotor cooling technology, for the purpose of analyzing the rolling-in phenomenon of steam in the main turbine flow, a method will be developed to analyze rotor disk cavity temperatures based on CFD, the basic sealing conditions based thereon will be discussed, and generalization will be made on the rotor cooling technology. (NEDO)

  10. Simulation of a heavy-duty diesel engine with electrical turbocompounding system using operating charts for turbocharger components and power turbine

    International Nuclear Information System (INIS)

    Katsanos, C.O.; Hountalas, D.T.; Zannis, T.C.

    2013-01-01

    Highlights: • A diesel model was developed using charts for turbocharger and power turbine. • The maximum value of bsfc improvement is 4.1% at 100% engine load. • The generated electric power ranges from 23 kW to 62 kW. • Turbocharger turbine efficiency decreases slightly with the power turbine speed. • Turbocompounding increases the average pressure value in the exhaust manifold. - Abstract: In diesel engines, approximately 30–40% of the energy supplied by the fuel is rejected to the ambience through exhaust gases. Therefore, there is a potentiality for further considerable increase of diesel engine efficiency with the utilization of exhaust gas heat and its conversion to mechanical or electrical energy. In the present study, the operational behavior of a heavy-duty (HD) diesel truck engine equipped with an electric turbocompounding system is examined on a theoretical basis. The electrical turbocompounding configuration comprised of a power turbine coupled to an electric generator, which is installed downstream to the turbocharger (T/C) turbine. A diesel engine simulation model has been developed using operating charts for both turbocharger and power turbine. A method for introducing the operating charts into the engine model is described thoroughly. A parametric analysis is conducted with the developed simulation tool, where the varying parameter is the rotational speed of power turbine shaft. In this study, the interaction between the power turbine and the turbocharged diesel engine is examined in detail. The effect of power turbine speed on T/C components efficiencies, power turbine efficiency, exhaust pressure and temperature, engine boost pressure and air to fuel ratio is evaluated. In addition, theoretical results for the potential impact of electrical turbocompounding on the generated electric power, net engine power and relative improvement of brake specific fuel consumption (bsfc) are provided. The critical evaluation of the theoretical

  11. Influence of Hydraulic Design on Stability and on Pressure Pulsations in Francis Turbines at Overload, Part Load and Deep Part Load based on Numerical Simulations and Experimental Model Test Results

    International Nuclear Information System (INIS)

    Magnoli, M V; Maiwald, M

    2014-01-01

    Francis turbines have been running more and more frequently in part load conditions, in order to satisfy the new market requirements for more dynamic and flexible energy generation, ancillary services and grid regulation. The turbines should be able to be operated for longer durations with flows below the optimum point, going from part load to deep part load and even speed-no-load. These operating conditions are characterised by important unsteady flow phenomena taking place at the draft tube cone and in the runner channels, in the respective cases of part load and deep part load. The current expectations are that new Francis turbines present appropriate hydraulic stability and moderate pressure pulsations at overload, part load, deep part load and speed-no-load with high efficiency levels at normal operating range. This study presents series of investigations performed by Voith Hydro with the objective to improve the hydraulic stability of Francis turbines at overload, part load and deep part load, reduce pressure pulsations and enlarge the know-how about the transient fluid flow through the turbine at these challenging conditions. Model test measurements showed that distinct runner designs were able to influence the pressure pulsation level in the machine. Extensive experimental investigations focused on the runner deflector geometry, on runner features and how they could reduce the pressure oscillation level. The impact of design variants and machine configurations on the vortex rope at the draft tube cone at overload and part load and on the runner channel vortex at deep part load were experimentally observed and evaluated based on the measured pressure pulsation amplitudes. Numerical investigations were employed for improving the understanding of such dynamic fluid flow effects. As example for the design and experimental investigations, model test observations and pressure pulsation curves for Francis machines in mid specific speed range, around n qopt = 50

  12. Full and part load exergetic analysis of a hybrid micro gas turbine fuel cell system based on existing components

    International Nuclear Information System (INIS)

    Bakalis, Diamantis P.; Stamatis, Anastassios G.

    2012-01-01

    Highlights: ► Hybrid SOFC/GT system based on existing components. ► Exergy analysis using AspenPlus™ software. ► Greenhouse gases emission is significantly affected by SOFC stack temperature. ► Comparison with a conventional GT of similar power. ► SOFC/GT is almost twice efficient in terms of second low efficiency and CO 2 emission. - Abstract: The paper deals with the examination of a hybrid system consisting of a pre-commercially available high temperature solid oxide fuel cell and an existing recuperated microturbine. The irreversibilities and thermodynamic inefficiencies of the system are evaluated after examining the full and partial load exergetic performance and estimating the amount of exergy destruction and the efficiency of each hybrid system component. At full load operation the system achieves an exergetic efficiency of 59.8%, which increases during the partial load operation, as a variable speed control method is utilized. Furthermore, the effects of the various performance parameters such as fuel cell stack temperature and fuel utilization factor are assessed. The results showed that the components in which chemical reactions occur have the higher exergy destruction rates. The exergetic performance of the system is affected significantly by the stack temperature. Based on the exergetic analysis, suggestions are given for reducing the overall system irreversibility. Finally, the environmental impact of the operation of the hybrid system is evaluated and compared with a similarly rated conventional gas turbine plant. From the comparison it is apparent that the hybrid system obtains nearly double exergetic efficiency and about half the amount of greenhouse gas emissions compared with the conventional plant.

  13. A method for uncertainty quantification in the life prediction of gas turbine components

    Energy Technology Data Exchange (ETDEWEB)

    Lodeby, K.; Isaksson, O.; Jaervstraat, N. [Volvo Aero Corporation, Trolhaettan (Sweden)

    1998-12-31

    A failure in an aircraft jet engine can have severe consequences which cannot be accepted and high requirements are therefore raised on engine reliability. Consequently, assessment of the reliability of life predictions used in design and maintenance are important. To assess the validity of the predicted life a method to quantify the contribution to the total uncertainty in the life prediction from different uncertainty sources is developed. The method is a structured approach for uncertainty quantification that uses a generic description of the life prediction process. It is based on an approximate error propagation theory combined with a unified treatment of random and systematic errors. The result is an approximate statistical distribution for the predicted life. The method is applied on life predictions for three different jet engine components. The total uncertainty became of reasonable order of magnitude and a good qualitative picture of the distribution of the uncertainty contribution from the different sources was obtained. The relative importance of the uncertainty sources differs between the three components. It is also highly dependent on the methods and assumptions used in the life prediction. Advantages and disadvantages of this method is discussed. (orig.) 11 refs.

  14. Design and Optimization of Fast Switching Valves for Large Scale Digital Hydraulic Motors

    DEFF Research Database (Denmark)

    Roemer, Daniel Beck

    The present thesis is on the design, analysis and optimization of fast switching valves for digital hydraulic motors with high power ratings. The need for such high power motors origins in the potential use of hydrostatic transmissions in wind turbine drive trains, as digital hydraulic machines...... have been shown to improve the overall efficiency and efficient operation range compared to traditional hydraulic machines. Digital hydraulic motors uses electronically controlled independent seat valves connected to the pressure chambers, which must be fast acting and exhibit low pressure losses...... to enable efficient operation. These valves are complex components to design, as multiple design aspects are present in these integrated valve units, with conflicting objectives and interdependencies. A preliminary study on a small scale single-cylinder digital hydraulic pump has initially been conducted...

  15. 46 CFR 112.50-3 - Hydraulic starting.

    Science.gov (United States)

    2010-10-01

    ... POWER SYSTEMS Emergency Diesel and Gas Turbine Engine Driven Generator Sets § 112.50-3 Hydraulic starting. A hydraulic starting system must meet the following: (a) The hydraulic starting system must be a... 46 Shipping 4 2010-10-01 2010-10-01 false Hydraulic starting. 112.50-3 Section 112.50-3 Shipping...

  16. Methodology for fabrication of hydraulics mini turbines with composite materials; Metodologia para a fabricacao de mini turbinas hidraulicas com materiais compostos

    Energy Technology Data Exchange (ETDEWEB)

    Faria, M.T.C. [Universidade Federal de Minas Gerais (DEMEC/UFMG), Belo Horizonte, MG (Brazil). Dept. de Engenharia Mecanica], Email: mtcdf@uol.com.br; Martinez, C.B.; Viana, E.M.F. [Universidade Federal de Minas Gerais (EHR-UFMG), Belo Horizonte, MG (Brazil). Escola de Engenharia. Dept. de Engenharia Hidraulica e Recursos Hidricos], Emails: martinez@cce.ufmg.br, ednamariafaria@bol.com.br

    2009-07-01

    This paper presents the description of methodological procedure specially developed for manufacturing mini turbines. This procedure is used in the design of a Francis type mini turbine with 12.5 kW. The housing volute and the suction tube of this equipment are manufactured with using composed material based on glass fiber and its distributor system is manufactured with stainless steel and brass. At the end it is presented an estimate cost of design / manufacturing of such equipment and a comparison with other equipment in the market.

  17. FOREWORD: 26th IAHR Symposium on Hydraulic Machinery and Systems

    Science.gov (United States)

    Wu, Yulin; Wang, Zhengwei; Liu, Shuhong; Yuan, Shouqi; Luo, Xingqi; Wang, Fujun

    2012-11-01

    was molded into a polytechnic institute focusing on engineering in the nationwide restructuring of universities and colleges undertaken in 1952. At present, the university has 14 schools and 56 departments with faculties in science, engineering, humanities, law, medicine, history, philosophy, economics, management, education and art. The University now has over 25 900 students, including 13 100 undergraduates and 12 800 graduate students. As one of China's most renowned universities, Tsinghua has become an important institution for fostering talents and scientific research. The International Association of Hydro-Environment Engineering and Research (IAHR) particularly promotes the advancement and exchange of knowledge through working groups, specialty symposia, congresses, and publications on water resources, river and coastal hydraulics, risk analysis, energy, environment, disaster prevention, and industrial processes. The IAHR Committee on Hydraulic Machinery and Systems deals with the advancement of technology associated with the understanding of steady and unsteady flow characteristics in hydraulic machinery and conduit systems connected to the machinery. The technology elements include the fluid behaviour within machine components, hydro-elastic behaviour of machine components, cavitation and two phase flow in turbines and pumps, hydraulic machine and plant control systems, the use of hydraulic machines to improve water quality, and even considerations to improve fish survival in their passage through hydro plants. The main emphases of the IAHR Committee on Hydraulic Machinery and Systems are to stimulate research and understanding of the technologies associated with hydraulic machinery and to promote interaction between the machine designers, machine users, the academic community, and the community as a whole. Hydraulic machinery is both cost effective and environmentally friendly. The goals of the IAHR Committee on Hydraulic Machinery and Systems are to improve

  18. Adsorption of hydraulic fracturing fluid components 2-butoxyethanol and furfural onto granular activated carbon and shale rock.

    Science.gov (United States)

    Manz, Katherine E; Haerr, Gregory; Lucchesi, Jessica; Carter, Kimberly E

    2016-12-01

    The objective of this study was to understand the adsorption ability of a surfactant and a non-surfactant chemical additive used in hydraulic fracturing onto shale and GAC. Experiments were performed at varying temperatures and sodium chloride concentrations to establish these impacts on the adsorption of the furfural (a non-surfactant) and 2-Butoxyethanol (2-BE) (a surfactant). Experiments were carried out in continuously mixed batch experiments with Langmuir and Freundlich isotherm modeling. The results of the experiments showed that adsorption of these compounds onto shale does not occur, which may allow these compounds to return to the surface in flowback and produced waters. The adsorption potential for these chemicals onto GAC follows the assumptions of the Langmuir model more strongly than those of the Freundlich model. The results show uptake of furfural and 2-BE occurs within 23 h in the presence of DI water, 0.1 mol L -1 sodium chloride, and in lab synthesized hydraulic fracturing brine. Based on the data, 83% of the furfural and 62% of the 2-BE was adsorbed using GAC. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Dynamic characteristics of a pump-turbine during hydraulic transients of a model pumped-storage system: 3D CFD simulation

    International Nuclear Information System (INIS)

    Zhang, X X; Cheng, Y G; Xia, L S; Yang, J D

    2014-01-01

    The runaway process in a model pumped-storage system was simulated for analyzing the dynamic characteristics of a pump-turbine. The simulation was adopted by coupling 1D (One Dimensional) pipeline MOC (Method of Characteristics) equations with a 3D (Three Dimensional) pump-turbine CFD (Computational Fluid Dynamics) model, in which the water hammer wave in the 3D zone was defined by giving a pressure dependent density. We found from the results that the dynamic performances of the pump-turbine do not coincide with the static operating points, especially in the S-shaped characteristics region, where the dynamic trajectories follow ring-shaped curves. Specifically, the transient operating points with the same Q 11 and M 11 in different moving directions of the dynamic trajectories give different n 11 . The main reason of this phenomenon is that the transient flow patterns inside the pump-turbine are influenced by the ones in the previous time step, which leads to different flow patterns between the points with the same Q 11 and M 11 in different moving directions of the dynamic trajectories

  20. Experience acquired by Turboatom in the modernization of hydraulic turbines and associated equipment; Experiencia en la modernizacion de turbinas hidraulicas y equipos asociados acumulada por Turboatom

    Energy Technology Data Exchange (ETDEWEB)

    Veremeyenko, Igor S. [Turboatom, Jarkov (Ukraine)]. E-mail: office@turboatom.kharkov.ua; Kukalev, Viacheslav M. [Energomashexport, Moscow (Russian Federation)]. E-mail: nb_kuk@energomashexport. ru

    2000-07-01

    This work describes the experience acquired by TURBOATOM with hydroelectric turbines and related equipment modernization during the last years. The best parameters of the modernized equipment are obtained due to the replacement of the directional blades by the new ones with improved design, or replacement of the weared out parts.

  1. Dynamic characteristics of a pump-turbine during hydraulic transients of a model pumped-storage system: 3D CFD simulation

    Science.gov (United States)

    Zhang, X. X.; Cheng, Y. G.; Xia, L. S.; Yang, J. D.

    2014-03-01

    The runaway process in a model pumped-storage system was simulated for analyzing the dynamic characteristics of a pump-turbine. The simulation was adopted by coupling 1D (One Dimensional) pipeline MOC (Method of Characteristics) equations with a 3D (Three Dimensional) pump-turbine CFD (Computational Fluid Dynamics) model, in which the water hammer wave in the 3D zone was defined by giving a pressure dependent density. We found from the results that the dynamic performances of the pump-turbine do not coincide with the static operating points, especially in the S-shaped characteristics region, where the dynamic trajectories follow ring-shaped curves. Specifically, the transient operating points with the same Q11 and M11 in different moving directions of the dynamic trajectories give different n11. The main reason of this phenomenon is that the transient flow patterns inside the pump-turbine are influenced by the ones in the previous time step, which leads to different flow patterns between the points with the same Q11 and M11 in different moving directions of the dynamic trajectories.

  2. Status on the Component Models Developed in the Modelica Framework: High-Temperature Steam Electrolysis Plant & Gas Turbine Power Plant

    Energy Technology Data Exchange (ETDEWEB)

    Suk Kim, Jong [Idaho National Lab. (INL), Idaho Falls, ID (United States); McKellar, Michael [Idaho National Lab. (INL), Idaho Falls, ID (United States); Bragg-Sitton, Shannon M. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Boardman, Richard D. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2016-10-01

    This report has been prepared as part of an effort to design and build a modeling and simulation (M&S) framework to assess the economic viability of a nuclear-renewable hybrid energy system (N-R HES). In order to facilitate dynamic M&S of such an integrated system, research groups in multiple national laboratories have been developing various subsystems as dynamic physics-based components using the Modelica programming language. In fiscal year (FY) 2015, Idaho National Laboratory (INL) performed a dynamic analysis of two region-specific N-R HES configurations, including the gas-to-liquid (natural gas to Fischer-Tropsch synthetic fuel) and brackish water reverse osmosis desalination plants as industrial processes. In FY 2016, INL has developed two additional subsystems in the Modelica framework: a high-temperature steam electrolysis (HTSE) plant and a gas turbine power plant (GTPP). HTSE has been proposed as a high priority industrial process to be integrated with a light water reactor (LWR) in an N-R HES. This integrated energy system would be capable of dynamically apportioning thermal and electrical energy (1) to provide responsive generation to the power grid and (2) to produce alternative industrial products (i.e., hydrogen and oxygen) without generating any greenhouse gases. A dynamic performance analysis of the LWR/HTSE integration case was carried out to evaluate the technical feasibility (load-following capability) and safety of such a system operating under highly variable conditions requiring flexible output. To support the dynamic analysis, the detailed dynamic model and control design of the HTSE process, which employs solid oxide electrolysis cells, have been developed to predict the process behavior over a large range of operating conditions. As first-generation N-R HES technology will be based on LWRs, which provide thermal energy at a relatively low temperature, complementary temperature-boosting technology was suggested for integration with the

  3. TurbinAID

    International Nuclear Information System (INIS)

    Moradian, M.A.; Chow, M.P.; Osborne, R.L.; Jenkins, M.A.

    1991-01-01

    The Westinghouse Turbine Artificial Intelligence Diagnostics system or TurbinAID, can diagnose both thermodynamic and mechanical component anomalies within the turbine, and around the turbine cycle. any monitoring system can detect that a variable is in an abnormal state, but TurbinAID can also indicate the cause, and provide recommended corrective action(s). The TurbinAID Expert Systems utilize multiple sensor and variable inputs, and their interdependencies in the generation of a diagnosis. The system performs sensor validation as part of the data acquisition scheme. The TurbinAID system has been in operation for several years. This paper describes the monitoring and diagnostic functions provided by TurbinAID, and how the utility industry both nuclear and fossil, can utilize the system to enhance unit operation

  4. Statistically based uncertainty analysis for ranking of component importance in the thermal-hydraulic safety analysis of the Advanced Neutron Source Reactor

    International Nuclear Information System (INIS)

    Wilson, G.E.

    1992-01-01

    The Analytic Hierarchy Process (AHP) has been used to help determine the importance of components and phenomena in thermal-hydraulic safety analyses of nuclear reactors. The AHP results are based, in part on expert opinion. Therefore, it is prudent to evaluate the uncertainty of the AHP ranks of importance. Prior applications have addressed uncertainty with experimental data comparisons and bounding sensitivity calculations. These methods work well when a sufficient experimental data base exists to justify the comparisons. However, in the case of limited or no experimental data the size of the uncertainty is normally made conservatively large. Accordingly, the author has taken another approach, that of performing a statistically based uncertainty analysis. The new work is based on prior evaluations of the importance of components and phenomena in the thermal-hydraulic safety analysis of the Advanced Neutron Source Reactor (ANSR), a new facility now in the design phase. The uncertainty during large break loss of coolant, and decay heat removal scenarios is estimated by assigning a probability distribution function (pdf) to the potential error in the initial expert estimates of pair-wise importance between the components. Using a Monte Carlo sampling technique, the error pdfs are propagated through the AHP software solutions to determine a pdf of uncertainty in the system wide importance of each component. To enhance the generality of the results, study of one other problem having different number of elements is reported, as are the effects of a larger assumed pdf error in the expert ranks. Validation of the Monte Carlo sample size and repeatability are also documented

  5. Graphene in turbine blades

    Science.gov (United States)

    Das, D. K.; Swain, P. K.; Sahoo, S.

    2016-07-01

    Graphene, the two-dimensional (2D) nanomaterial, draws interest of several researchers due to its many superior properties. It has extensive applications in numerous fields. A turbine is a hydraulic machine which extracts energy from a fluid and converts it into useful work. Recently, Gudukeya and Madanhire have tried to increase the efficiency of Pelton turbine. Beucher et al. have also tried the same by reducing friction between fluid and turbine blades. In this paper, we study the advantages of using graphene as a coating on Pelton turbine blades. It is found that the efficiency of turbines increases, running and maintenance cost is reduced with more power output. By the application of graphene in pipes, cavitation will be reduced, durability of pipes will increase, operation and maintenance cost of water power plants will be less.

  6. An effect of humid climate on micro structure and chemical component of natural composite (Boehmeria nivea-Albizia falcata based wind turbine blade

    Directory of Open Access Journals (Sweden)

    Sudarsono S.

    2018-01-01

    Full Text Available In this work, wind turbine blade NACA 4415 is fabricated from natural composite of Boehmeria nivea and Albizia falcate. The composite fabrication method used is hand lay up method. The aim of the work is to investigate an effect of humid climate of coastal area on micro structure and chemical composition of composite material of the blade. The wind turbine is tested at Pantai Baru, Bantul, Yogyakarta for 5.5 months. The micro structure scanning is performed with Scanning Electron Microscope (SEM and material component is measured with Energy Dispersive X-ray spectrometer (EDS. The samples are tested before and after the use within 5.5 month at the location. The results show that composite material inexperienced interface degradation and insignificant change of micro structure. From EDS test, it is observed that Na filtration reduces C and increases O in composite material after 5.5 months.

  7. An effect of humid climate on micro structure and chemical component of natural composite (Boehmeria nivea-Albizia falcata) based wind turbine blade

    Science.gov (United States)

    Sudarsono, S.; Purwanto; Sudarsono, Johny W.

    2018-02-01

    In this work, wind turbine blade NACA 4415 is fabricated from natural composite of Boehmeria nivea and Albizia falcate. The composite fabrication method used is hand lay up method. The aim of the work is to investigate an effect of humid climate of coastal area on micro structure and chemical composition of composite material of the blade. The wind turbine is tested at Pantai Baru, Bantul, Yogyakarta for 5.5 months. The micro structure scanning is performed with Scanning Electron Microscope (SEM) and material component is measured with Energy Dispersive X-ray spectrometer (EDS). The samples are tested before and after the use within 5.5 month at the location. The results show that composite material inexperienced interface degradation and insignificant change of micro structure. From EDS test, it is observed that Na filtration reduces C and increases O in composite material after 5.5 months.

  8. Advanced Performance Hydraulic Wind Energy

    Science.gov (United States)

    Jones, Jack A.; Bruce, Allan; Lam, Adrienne S.

    2013-01-01

    The Jet Propulsion Laboratory, California Institute of Technology, has developed a novel advanced hydraulic wind energy design, which has up to 23% performance improvement over conventional wind turbine and conventional hydraulic wind energy systems with 5 m/sec winds. It also has significant cost advantages with levelized costs equal to coal (after carbon tax rebate). The design is equally applicable to tidal energy systems and has passed preliminary laboratory proof-of-performance tests, as funded by the Department of Energy.

  9. Mathematical Models of Gas Turbine Engines and Their Components (Les Modeles Mathematiques des Turbomoteurs et de leurs organes)

    Science.gov (United States)

    1994-12-01

    measurements of heat-transfer rate to a gas turbine rotor blade. J.Engng Power . V. 104. No.3. 1982. pp. 542-551. 19. Venediktov V.D., Granovsky A.V...Preprint CIAM, No 11, 1993 (in Russian). 28. Granovsky AV., Danilkin A.V., Rogkov S.G., Rudenko S.V. Numerical and experimental investigation of

  10. Concept Evaluation for Hydraulic Yaw System

    DEFF Research Database (Denmark)

    Stubkier, Søren; Pedersen, Henrik C.; Andersen, Torben Ole

    2013-01-01

    The yaw system is the subsystem on a wind turbine which ensures that the rotor plane of the turbine always is facing the wind direction. Studies from [1] show that a soft yaw system may be utilized to dampen the loads in the wind turbine structure. The soft yaw system operates much like...... investigation. Loads and yaw demands are based on the IEC 61400-1 standard for wind turbine design, and the loads for this examination are extrapolated from the HAWC2 aeroelastic design code. The concepts are based on a 5 MW off-shore turbine....... a suspension system on a car, leading the loads away from the turbine structure. However, to realize a soft hydraulic yaw system a new design concept must be found. As a part of the development of the new concept a preliminary concept evaluation has been conducted, evaluating seven different hydraulic yaw...

  11. Wind Turbine Generator Efficiency Based on Powertrain Combination and Annual Power Generation Prediction

    Directory of Open Access Journals (Sweden)

    Dongmyung Kim

    2018-05-01

    Full Text Available Wind turbine generators are eco-friendly generators that produce electric energy using wind energy. In this study, wind turbine generator efficiency is examined using a powertrain combination and annual power generation prediction, by employing an analysis model. Performance testing was conducted in order to analyze the efficiency of a hydraulic pump and a motor, which are key components, and so as to verify the analysis model. The annual wind speed occurrence frequency for the expected installation areas was used to predict the annual power generation of the wind turbine generators. It was found that the parallel combination of the induction motors exhibited a higher efficiency when the wind speed was low and the serial combination showed higher efficiency when wind speed was high. The results of predicting the annual power generation considering the regional characteristics showed that the power generation was the highest when the hydraulic motors were designed in parallel and the induction motors were designed in series.

  12. Argonne Liquid-Metal Advanced Burner Reactor : components and in-vessel system thermal-hydraulic research and testing experience - pathway forward.

    Energy Technology Data Exchange (ETDEWEB)

    Kasza, K.; Grandy, C.; Chang, Y.; Khalil, H.; Nuclear Engineering Division

    2007-06-30

    This white paper provides an overview and status report of the thermal-hydraulic nuclear research and development, both experimental and computational, conducted predominantly at Argonne National Laboratory. Argonne from the early 1970s through the early 1990s was the Department of Energy's (DOE's) lead lab for thermal-hydraulic development of Liquid Metal Reactors (LMRs). During the 1970s and into the mid-1980s, Argonne conducted thermal-hydraulic studies and experiments on individual reactor components supporting the Experimental Breeder Reactor-II (EBR-II), Fast Flux Test Facility (FFTF), and the Clinch River Breeder Reactor (CRBR). From the mid-1980s and into the early 1990s, Argonne conducted studies on phenomena related to forced- and natural-convection thermal buoyancy in complete in-vessel models of the General Electric (GE) Prototype Reactor Inherently Safe Module (PRISM) and Rockwell International (RI) Sodium Advanced Fast Reactor (SAFR). These two reactor initiatives involved Argonne working closely with U.S. industry and DOE. This paper describes the very important impact of thermal hydraulics dominated by thermal buoyancy forces on reactor global operation and on the behavior/performance of individual components during postulated off-normal accident events with low flow. Utilizing Argonne's LMR expertise and design knowledge is vital to the further development of safe, reliable, and high-performance LMRs. Argonne believes there remains an important need for continued research and development on thermal-hydraulic design in support of DOE's and the international community's renewed thrust for developing and demonstrating the Global Nuclear Energy Partnership (GNEP) reactor(s) and the associated Argonne Liquid Metal-Advanced Burner Reactor (LM-ABR). This white paper highlights that further understanding is needed regarding reactor design under coolant low-flow events. These safety-related events are associated with the transition

  13. Hydro turbines: An introduction

    International Nuclear Information System (INIS)

    Gordon, J.L.

    1993-01-01

    The various types of hydraulic turbines currently used in hydroelectric power plants are described. The descriptions are intended for use by non-engineers who are concerned with fish passage and fish mortality at a hydro power facility. Terminology used in the hydro industry is explained. Since the extent of cavitation is one of the factors affecting mortality rates of fish passing through hydraulic turbines, an equation is introduced which measures the extent of cavitation likely to be experienced in a turbine. An example of how the cavitation index can be calculated is provided for two typical power plants. The relation between certain parameters of power plant operation and the extent of cavitation, and therefore of fish mortality, is illustrated. 2 refs., 14 figs

  14. CFD Modelling of a Pump as Turbine (PAT with Rounded Leading Edge Impellers for Micro Hydro Systems

    Directory of Open Access Journals (Sweden)

    Ismail Mohd Azlan

    2017-01-01

    Full Text Available A Pump as Turbine (PAT is one of micro hydro system components that is used to substitute a commercially available turbine due to its wide availability and low acquisition cost. However, PAT have high hydraulic losses due to differences in pump-turbine operation and hydraulic design. The fluid flowing inside the PAT is subjected to hydraulic losses due to the longer flow passage and unmatched fluid flow within the wall boundaries. This paper presents the effect of rounding the impeller leading edges of the pump on turbine performance. A CFD model of a PAT was designed to simulate virtual performance for the analysis. The aim of this study is to observe the internal hydraulic performance resulting from the changes in the performance characteristics. Highest efficiency was recorded at 17.0 l/s, an increase of 0.18%. The simulation results reveal that there is an improvement in hydraulic performance at overflow operation. The velocity vector visualization shows that there is a reduction in wake and consequently less flow separation along impeller flow passages. However, adjusting the sensitive impeller inlet geometry will also alter the velocity inlet vector and consequently change the velocity triangles for the turbo machinery system.

  15. Gas turbine

    International Nuclear Information System (INIS)

    Yang, Ok Ryong

    2004-01-01

    This book introduces gas turbine cycle explaining general thing of gas turbine, full gas turbine cycle, Ericson cycle and Brayton cycle, practical gas turbine cycle without pressure loss, multiaxial type gas turbine cycle and special gas turbine cycle, application of basic theory on a study on suction-cooling gas turbine cycle with turbo-refrigerating machine using the bleed air, and general performance characteristics of the suction-cooling gas turbine cycle combined with absorption-type refrigerating machine.

  16. Strength and Reliability of Wood for the Components of Low-cost Wind Turbines: Computational and Experimental Analysis and Applications

    DEFF Research Database (Denmark)

    Mishnaevsky, Leon; Freere, Peter; Sharma, Ranjan

    2009-01-01

    of experiments and computational investigations. Low cost testing machines have been designed, and employed for the systematic analysis of different sorts of Nepali wood, to be used for the wind turbine construction. At the same time, computational micromechanical models of deformation and strength of wood......This paper reports the latest results of the comprehensive program of experimental and computational analysis of strength and reliability of wooden parts of low cost wind turbines. The possibilities of prediction of strength and reliability of different types of wood are studied in the series...... are developed, which should provide the basis for microstructure-based correlating of observable and service properties of wood. Some correlations between microstructure, strength and service properties of wood have been established....

  17. Design of hydraulic recuperation unit

    Directory of Open Access Journals (Sweden)

    Jandourek Pavel

    2016-01-01

    Full Text Available This article deals with design and measurement of hydraulic recuperation unit. Recuperation unit consist of radial turbine and axial pump, which are coupled on the same shaft. Speed of shaft with impellers are 6000 1/min. For economic reasons, is design of recuperation unit performed using commercially manufactured propellers.

  18. 14 CFR 33.72 - Hydraulic actuating systems.

    Science.gov (United States)

    2010-01-01

    ... AIRWORTHINESS STANDARDS: AIRCRAFT ENGINES Design and Construction; Turbine Aircraft Engines § 33.72 Hydraulic actuating systems. Each hydraulic actuating system must function properly under all conditions in which the... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Hydraulic actuating systems. 33.72 Section...

  19. Detection of gear cracks in a complex gearbox of wind turbines using supervised bounded component analysis of vibration signals collected from multi-channel sensors

    Science.gov (United States)

    Li, Zhixiong; Yan, Xinping; Wang, Xuping; Peng, Zhongxiao

    2016-06-01

    In the complex gear transmission systems, in wind turbines a crack is one of the most common failure modes and can be fatal to the wind turbine power systems. A single sensor may suffer with issues relating to its installation position and direction, resulting in the collection of weak dynamic responses of the cracked gear. A multi-channel sensor system is hence applied in the signal acquisition and the blind source separation (BSS) technologies are employed to optimally process the information collected from multiple sensors. However, literature review finds that most of the BSS based fault detectors did not address the dependence/correlation between different moving components in the gear systems; particularly, the popular used independent component analysis (ICA) assumes mutual independence of different vibration sources. The fault detection performance may be significantly influenced by the dependence/correlation between vibration sources. In order to address this issue, this paper presents a new method based on the supervised order tracking bounded component analysis (SOTBCA) for gear crack detection in wind turbines. The bounded component analysis (BCA) is a state of art technology for dependent source separation and is applied limitedly to communication signals. To make it applicable for vibration analysis, in this work, the order tracking has been appropriately incorporated into the BCA framework to eliminate the noise and disturbance signal components. Then an autoregressive (AR) model built with prior knowledge about the crack fault is employed to supervise the reconstruction of the crack vibration source signature. The SOTBCA only outputs one source signal that has the closest distance with the AR model. Owing to the dependence tolerance ability of the BCA framework, interfering vibration sources that are dependent/correlated with the crack vibration source could be recognized by the SOTBCA, and hence, only useful fault information could be preserved in

  20. Implementation of wall film condensation model to two-fluid model in component thermal hydraulic analysis code CUPID - 15237

    International Nuclear Information System (INIS)

    Lee, J.H.; Park, G.C.; Cho, H.K.

    2015-01-01

    In the containment of a nuclear reactor, the wall condensation occurs when containment cooling system and structures remove the mass and energy release and this phenomenon is of great importance to ensure containment integrity. If the phenomenon occurs in the presence of non-condensable gases, their accumulation near the condensate film leads to significant reduction in heat transfer during the condensation. This study aims at simulating the wall film condensation in the presence of non-condensable gas using CUPID, a computational multi-fluid dynamics code, which is developed by the Korea Atomic Energy Research Institute (KAERI) for the analysis of transient two-phase flows in nuclear reactor components. In order to simulate the wall film condensation in containment, the code requires a proper wall condensation model and liquid film model applicable to the analysis of the large scale system. In the present study, the liquid film model and wall film condensation model were implemented in the two-fluid model of CUPID. For the condensation simulation, a wall function approach with heat and mass transfer analogy was applied in order to save computational time without considerable refinement for the boundary layer. This paper presents the implemented wall film condensation model and then, introduces the simulation result using CUPID with the model for a conceptual condensation problem in a large system. (authors)

  1. Aging and service wear of hydraulic and mechanical snubbers used on safety-related piping and components of nuclear power plants. Phase I study

    Energy Technology Data Exchange (ETDEWEB)

    Bush, S H; Heasler, P G; Dodge, R E

    1986-02-01

    This report presents an overview of hydraulic and mechanical snubbers used on nuclear piping systems and components, based on information from the literature and other sources. The functions and functional requirements of snubbers are discussed. The real versus perceived need for snubbers is reviewed, based primarily on studies conducted by a Pressure Vessel Research Committee. Tests conducted to qualify snubbers, to accept them on a case-by-case basis, and to establish their fitness for continued operation are reviewed. This report had two primary purposes. The first was to assess the effects of various aging mechanisms on snubber operation. The second was to determine the efficacy of existing tests in determining the effects of aging and degradation mechanisms. These tests include breakaway force, drag force, velocity/ acceleration range for activation in tension or compression, release rates within specified tension/compression limits, and restricted thermal movement. The snubber operating experience was reviewed using licensee event reports and other historical data for a period of more than 10 years. Data were statistically analyzed using arbitrary snubber populations. Value-impact was considered in terms of exposure to a radioactive environment for examination/ testing and the influence of lost snubber function and subsequent testing program expansion on the costs and operation of a nuclear power plant. The implications of the observed trends were assessed; recommendations include modifying or improving examination and testing procedures to enhance snubber reliability. Optimization of snubber populations by selective removal of unnecessary snubbers was also considered. (author)

  2. Turbinate surgery

    Science.gov (United States)

    Turbinectomy; Turbinoplasty; Turbinate reduction; Nasal airway surgery; Nasal obstruction - turbinate surgery ... There are several types of turbinate surgery: Turbinectomy: All or ... This can be done in several different ways, but sometimes a ...

  3. Hydraulic structures

    CERN Document Server

    Chen, Sheng-Hong

    2015-01-01

    This book discusses in detail the planning, design, construction and management of hydraulic structures, covering dams, spillways, tunnels, cut slopes, sluices, water intake and measuring works, ship locks and lifts, as well as fish ways. Particular attention is paid to considerations concerning the environment, hydrology, geology and materials etc. in the planning and design of hydraulic projects. It also considers the type selection, profile configuration, stress/stability calibration and engineering countermeasures, flood releasing arrangements and scouring protection, operation and maintenance etc. for a variety of specific hydraulic structures. The book is primarily intended for engineers, undergraduate and graduate students in the field of civil and hydraulic engineering who are faced with the challenges of extending our understanding of hydraulic structures ranging from traditional to groundbreaking, as well as designing, constructing and managing safe, durable hydraulic structures that are economical ...

  4. Advanced 3D tools used in reverse engineering and ray tracing simulation of phased array inspection of turbine components with complex geometry

    International Nuclear Information System (INIS)

    Daks, W.; Kovacshazy, C.; Mair, D.; Ciorau, P.

    2002-01-01

    This paper outlines the practical aspects of reverse engineering and the integration of multiple pieces of software (Drafting, CNC Machining, Ray Tracing, Inspection Simulation Scenario and Phased Array UT Analysis), in order to inspect turbine components comprised of complex geometry. The CNC software, Mastercam, and design software, CADKEY/FastSURF, were used to validate the phased-array automated and manual inspection of blade root, rotor steeples and disk-blade rim attachment. The integration of a 3D part in the software engine, Imagine 3D and SimScan, as well as Tomoview analysis (specimen feature) is based on CADKEY Developer Kit - IGES/SAT file format. A generic Ray Tracing simulation for multi-probe beam was integrated into Imagine 3D. Representative examples of reference blocks and mock-ups, UT simulation and phased-array data comparison are presented. (author)

  5. Hydraulic Power Plant Machine Dynamic Diagnosis

    Directory of Open Access Journals (Sweden)

    Hans Günther Poll

    2006-01-01

    Full Text Available A method how to perform an entire structural and hydraulic diagnosis of prototype Francis power machines is presented and discussed in this report. Machine diagnosis of Francis units consists on a proper evaluation of acquired mechanical, thermal and hydraulic data obtained in different operating conditions of several rotary and non rotary machine components. Many different physical quantities of a Francis machine such as pressure, strains, vibration related data, water flow, air flow, position of regulating devices and displacements are measured in a synchronized way so that a relation of cause an effect can be developed for each operating condition and help one to understand all phenomena that are involved with such kind of machine. This amount of data needs to be adequately post processed in order to allow correct interpretation of the machine dynamics and finally these data must be compared with the expected calculated data not only to fine tuning the calculation methods but also to accomplish fully understanding of the influence of the water passages on such machines. The way how the power plant owner has to operate its Francis machines, many times also determined by a central dispatcher, has a high influence on the fatigue life time of the machine components. The diagnostic method presented in this report helps one to understand the importance of adequate operation to allow a low maintenance cost for the entire power plant. The method how to acquire these quantities is discussed in details together with the importance of correct sensor balancing, calibration and adequate correlation with the physical quantities. Typical results of the dynamic machine behavior, with adequate interpretation, obtained in recent measurement campaigns of some important hydraulic turbines were presented. The paper highlights the investigation focus of the hydraulic machine behavior and how to tailor the measurement strategy to accomplish all goals. Finally some

  6. Ultrasonic simulation - Imagine3D and SimScan: Tools to solve the inverse problem for complex turbine components

    International Nuclear Information System (INIS)

    Mair, H.D.; Ciorau, P.; Owen, D.; Hazelton, T.; Dunning, G.

    2000-01-01

    Two ultrasonic simulation packages: Imagine 3D and SIMSCAN have specifically been developed to solve the inverse problem for blade root and rotor steeple of low-pressure turbine. The software was integrated with the 3D drawing of the inspected parts, and with the dimensions of linear phased-array probes. SIMSCAN simulates the inspection scenario in both optional conditions: defect location and probe movement/refracted angle range. The results are displayed into Imagine 3-D, with a variety of options: rendering, display 1:1, grid, generated UT beam. The results are very useful for procedure developer, training and to optimize the phased-array probe inspection sequence. A spreadsheet is generated to correlate the defect coordinates with UT data (probe position, skew and refracted angle, UT path, and probe movement). The simulation models were validated during experimental work with phased-array systems. The accuracy in probe position is ±1 mm, and the refracted/skew angle is within ±0.5 deg. . Representative examples of phased array focal laws/probe movement for a specific defect location, are also included

  7. Composite turbine bucket assembly

    Science.gov (United States)

    Liotta, Gary Charles; Garcia-Crespo, Andres

    2014-05-20

    A composite turbine blade assembly includes a ceramic blade including an airfoil portion, a shank portion and an attachment portion; and a transition assembly adapted to attach the ceramic blade to a turbine disk or rotor, the transition assembly including first and second transition components clamped together, trapping said ceramic airfoil therebetween. Interior surfaces of the first and second transition portions are formed to mate with the shank portion and the attachment portion of the ceramic blade, and exterior surfaces of said first and second transition components are formed to include an attachment feature enabling the transition assembly to be attached to the turbine rotor or disk.

  8. Additive Manufacturing of IN100 Superalloy Through Scanning Laser Epitaxy for Turbine Engine Hot-Section Component Repair: Process Development, Modeling, Microstructural Characterization, and Process Control

    Science.gov (United States)

    Acharya, Ranadip; Das, Suman

    2015-09-01

    This article describes additive manufacturing (AM) of IN100, a high gamma-prime nickel-based superalloy, through scanning laser epitaxy (SLE), aimed at the creation of thick deposits onto like-chemistry substrates for enabling repair of turbine engine hot-section components. SLE is a metal powder bed-based laser AM technology developed for nickel-base superalloys with equiaxed, directionally solidified, and single-crystal microstructural morphologies. Here, we combine process modeling, statistical design-of-experiments (DoE), and microstructural characterization to demonstrate fully metallurgically bonded, crack-free and dense deposits exceeding 1000 μm of SLE-processed IN100 powder onto IN100 cast substrates produced in a single pass. A combined thermal-fluid flow-solidification model of the SLE process compliments DoE-based process development. A customized quantitative metallography technique analyzes digital cross-sectional micrographs and extracts various microstructural parameters, enabling process model validation and process parameter optimization. Microindentation measurements show an increase in the hardness by 10 pct in the deposit region compared to the cast substrate due to microstructural refinement. The results illustrate one of the very few successes reported for the crack-free deposition of IN100, a notoriously "non-weldable" hot-section alloy, thus establishing the potential of SLE as an AM method suitable for hot-section component repair and for future new-make components in high gamma-prime containing crack-prone nickel-based superalloys.

  9. Proceedings of the 1991 national conference on hydraulic engineering

    International Nuclear Information System (INIS)

    Shane, R.M.

    1991-01-01

    This book contains the proceedings of the 1991 National Conference of Hydraulic Engineering. The conference was held in conjunction with the International Symposium on Ground Water and a Software Exchange that facilitated exchange of information on recent software developments of interest to hydraulic engineers. Also included in the program were three mini-symposia on the Exclusive Economic Zone, Data Acquisition, and Appropriate Technology. Topics include sedimentation; appropriate technology; exclusive economic zone hydraulics; hydraulic data acquisition and display; innovative hydraulic structures and water quality applications of hydraulic research, including the hydraulics of aerating turbines; wetlands; hydraulic and hydrologic extremes; highway drainage; overtopping protection of dams; spillway design; coastal and estuarine hydraulics; scale models; computation hydraulics; GIS and expert system applications; watershed response to rainfall; probabilistic approaches; and flood control investigations

  10. Fish-Friendly Hydropower Turbine Development & Deployment: Alden Turbine Preliminary Engineering and Model Testing

    Energy Technology Data Exchange (ETDEWEB)

    Foust, J. [Voith Hydro, Inc., York, PA (USA); Hecker, G. [Alden Research Laboratory, Inc., Holden, MA (USA); Li, S. [Alden Research Laboratory, Inc., Holden, MA (USA); Allen, G. [Alden Research Laboratory, Inc., Holden, MA (USA)

    2011-10-01

    The Alden turbine was developed through the U.S. Department of Energy's (DOE's) former Advanced Hydro Turbine Systems Program (1994-2006) and, more recently, through the Electric Power Research Institute (EPRI) and the DOE's Wind & Water Power Program. The primary goal of the engineering study described here was to provide a commercially competitive turbine design that would yield fish passage survival rates comparable to or better than the survival rates of bypassing or spilling flow. Although the turbine design was performed for site conditions corresponding to 92 ft (28 m) net head and a discharge of 1500 cfs (42.5 cms), the design can be modified for additional sites with differing operating conditions. During the turbine development, design modifications were identified for the spiral case, distributor (stay vanes and wicket gates), runner, and draft tube to improve turbine performance while maintaining features for high fish passage survival. Computational results for pressure change rates and shear within the runner passage were similar in the original and final turbine geometries, while predicted minimum pressures were higher for the final turbine. The final turbine geometry and resulting flow environments are expected to further enhance the fish passage characteristics of the turbine. Computational results for the final design were shown to improve turbine efficiencies by over 6% at the selected operating condition when compared to the original concept. Prior to the release of the hydraulic components for model fabrication, finite element analysis calculations were conducted for the stay vanes, wicket gates, and runner to verify that structural design criteria for stress and deflections were met. A physical model of the turbine was manufactured and tested with data collected for power and efficiency, cavitation limits, runaway speed, axial and radial thrust, pressure pulsations, and wicket gate torque. All parameters were observed to fall

  11. Analysis of Pressure Fluctuations in a Prototype Pump-Turbine with Different Numbers of Runner Blades in Turbine Mode

    Directory of Open Access Journals (Sweden)

    Deyou Li

    2018-06-01

    Full Text Available In pump-turbines, high pressure fluctuation is one of the crucial instabilities, which is harmful to the stable and effective operation of the entire unit. Extensive studies have been carried out to investigate pressure fluctuations (amplitude and frequency at specific locations. However, limited research was conducted on the distribution of pressure fluctuations in turbine mode in a pump-turbine, as well as the influence of the number of runner blades on pressure fluctuations. Hence, in this study, three dimensional numerical simulations were performed to predict the distribution of pressure fluctuations with different numbers of runner blades in a prototype pump-turbine in turbine mode using the shear stress transport (SST k-ω turbulence model. Three operating points with the same hydraulic head and different mass flow rates were simulated. The distribution of pressure fluctuation components of blade passing frequency and its harmonics in the direction along the whole flow path, as well as along the circumferential direction, was presented. The mass flow rate and number of runner blades have great influence on the distribution of pressure fluctuations, especially at blade passing frequency along circumferential direction. The mass flow rate mainly affects the position of peak pressure fluctuations, while the number of runner blades mainly changes the number of peak pressure fluctuations. Additionally, the number of runner blades influences the dominant frequencies of pressure fluctuations especially in the spiral casing and draft tube.

  12. Sustainable Energy Solutions Task 2.0: Wind Turbine Reliability and Maintainability Enhancement through System-wide Structure Health Monitoring and Modifications to Rotating Components

    Energy Technology Data Exchange (ETDEWEB)

    Twomey, Janet M. [Wichita State Univ., Wichita, KS (United States)

    2010-04-30

    An evaluation of nondestructive structural health monitoring methods was completed with over 132 documents, 37 specifically about wind turbines, summarized into a technology matrix. This matrix lists the technology, what can be monitored with this technology, and gives a short summary of the key aspects of the technology and its application. Passive and active acoustic emission equipment from Physical Acoustics Corp. and Acellent Technologies have been evaluated and selected for use in experimental state loading and fatigue tests of composite wind turbine blade materials. Acoustic Emission (AE) and Active Ultrasonic Testing (AUT), were applied to composite coupons with both simulated and actual damage. The results found that, while composites are more complicated in nature, compared to metallic structures, an artificial neural network analysis could still be used to determine damage. For the AE system, the failure mode could be determined (i.e. fiber breakage, delamination, etc.). The Acellent system has been evaluated to work well with composite materials. A test-rig for reliability testing of the rotating components was constructed. The research on the types of bearings used in the wind turbines indicated that in most of the designs, the main bearings utilized to support the shaft are cylindrical roller bearings. The accelerated degradation testing of a population of bearings was performed. Vibration and acoustic emission data was collected and analyzed in order to identify a representative degradation signal for each bearing to identify the initiation of the degradation process in the bearings. Afterwards, the RMS of the vibration signal from degradation initiation up to the end of the useful life of the bearing was selected to predict the remaining useful life of the bearing. This step included fitting Autoregressive Moving Average (ARMA) models to the degradation signals and approximating the probability distribution function (PDF) of remaining useful life

  13. TG 220 MW hydraulic control system diagnostics

    International Nuclear Information System (INIS)

    Svabcik, A.

    1996-01-01

    The TG power output control system comprises a hydraulic and an electronic part. TG speed, power output or the main steam header pressure (HPK) depend on the steam flow at the turbine inlet. The steam admission into the turbine is controlled by four control valves and one by-pass valve in case of the HP part and by four capture flap valves in case of the LP part. The task of the SKODA K-220 MW turbine protection and control systems is to provide both the turbine speed and power output control to the setpoint value. Diagnostic measurements were aimed at getting an overview of both technical and functional states of all power output control elements. Principally, it can be stated that some deficiencies of a design nature originating from the manufacturer's factory were revealed and some other deficiencies related to hydraulic control elements functionality were identified more closely by the new method. 5 figs

  14. TG 220 MW hydraulic control system diagnostics

    Energy Technology Data Exchange (ETDEWEB)

    Svabcik, A [Atomova Elektraren Bohunice, Jaslovske Bohunice (Slovakia)

    1997-12-31

    The TG power output control system comprises a hydraulic and an electronic part. TG speed, power output or the main steam header pressure (HPK) depend on the steam flow at the turbine inlet. The steam admission into the turbine is controlled by four control valves and one by-pass valve in case of the HP part and by four capture flap valves in case of the LP part. The task of the SKODA K-220 MW turbine protection and control systems is to provide both the turbine speed and power output control to the setpoint value. Diagnostic measurements were aimed at getting an overview of both technical and functional states of all power output control elements. Principally, it can be stated that some deficiencies of a design nature originating from the manufacturer`s factory were revealed and some other deficiencies related to hydraulic control elements functionality were identified more closely by the new method. 5 figs.

  15. Numerical analysis on pump turbine runaway points

    International Nuclear Information System (INIS)

    Guo, L; Liu, J T; Wang, L Q; Jiao, L; Li, Z F

    2012-01-01

    To research the character of pump turbine runaway points with different guide vane opening, a hydraulic model was established based on a pumped storage power station. The RNG k-ε model and SMPLEC algorithms was used to simulate the internal flow fields. The result of the simulation was compared with the test data and good correspondence was got between experimental data and CFD result. Based on this model, internal flow analysis was carried out. The result show that when the pump turbine ran at the runway speed, lots of vortexes appeared in the flow passage of the runner. These vortexes could always be observed even if the guide vane opening changes. That is an important way of energy loss in the runaway condition. Pressure on two sides of the runner blades were almost the same. So the runner power is very low. High speed induced large centrifugal force and the small guide vane opening gave the water velocity a large tangential component, then an obvious water ring could be observed between the runner blades and guide vanes in small guide vane opening condition. That ring disappeared when the opening bigger than 20°. These conclusions can provide a theory basis for the analysis and simulation of the pump turbine runaway points.

  16. Hysteresis phenomena in hydraulic measurement

    International Nuclear Information System (INIS)

    Ran, H J; Farhat, M; Luo, X W; Chen, Y L; Xu, H Y

    2012-01-01

    Hysteresis phenomena demonstrate the lag between the generation and the removal of some physical phenomena. This paper studies the hysteresis phenomena of the head-drop in a scaled model pump turbine using experiment test and CFD methods. These lag is induced by complicated flow patterns, which influenced the reliability of rotating machine. Keeping the same measurement procedure is concluded for the hydraulic machine measurement.

  17. Highly reliable electro-hydraulic control system

    International Nuclear Information System (INIS)

    Mande, Morima; Hiyama, Hiroshi; Takahashi, Makoto

    1984-01-01

    The unscheduled shutdown of nuclear power stations disturbs power system, and exerts large influence on power generation cost due to the lowering of capacity ratio; therefore, high reliability is required for the control system of nuclear power stations. Toshiba Corp. has exerted effort to improve the reliability of the control system of power stations, and in this report, the electro-hydraulic control system for the turbines of nuclear power stations is described. The main functions of the electro-hydraulic control system are the control of main steam pressure with steam regulation valves and turbine bypass valves, the control of turbine speed and load, the prevention of turbine overspeed, the protection of turbines and so on. The system is composed of pressure sensors and a speed sensor, the control board containing the electronic circuits for control computation and protective sequence, the oil cylinders, servo valves and opening detectors of the valves for control, a high pressure oil hydraulic machine and piping, the operating panel and so on. The main features are the adoption of tripling intermediate value selection method, the multiplying of protection sensors and the adoption of 2 out of 3 trip logic, the multiplying of power sources, the improvement of the reliability of electronic circuit hardware and oil hydraulic system. (Kako, I.)

  18. The hydraulic wheel

    International Nuclear Information System (INIS)

    Alvarez Cardona, A.

    1985-01-01

    The present article this dedicated to recover a technology that key in disuse for the appearance of other techniques. It is the hydraulic wheel with their multiple possibilities to use their energy mechanical rotational in direct form or to generate electricity directly in the fields in the place and to avoid the high cost of transport and transformation. The basic theory is described that consists in: the power of the currents of water and the hydraulic receivers. The power of the currents is determined knowing the flow and east knowing the section of the flow and its speed; they are given you formulate to know these and direct mensuration methods by means of floodgates, drains and jumps of water. The hydraulic receivers or properly this hydraulic wheels that are the machines in those that the water acts like main force and they are designed to transmit the biggest proportion possible of absolute work of the water, the hydraulic wheels of horizontal axis are the common and they are divided in: you rotate with water for under, you rotate with side water and wheels with water for above. It is analyzed each one of them, their components are described; the conditions that should complete to produce a certain power and formulate them to calculate it. There are 25 descriptive figures of the different hydraulic wheels

  19. Basic hydraulics

    CERN Document Server

    Smith, P D

    1982-01-01

    BASIC Hydraulics aims to help students both to become proficient in the BASIC programming language by actually using the language in an important field of engineering and to use computing as a means of mastering the subject of hydraulics. The book begins with a summary of the technique of computing in BASIC together with comments and listing of the main commands and statements. Subsequent chapters introduce the fundamental concepts and appropriate governing equations. Topics covered include principles of fluid mechanics; flow in pipes, pipe networks and open channels; hydraulic machinery;

  20. Partitioning washoff of manure-borne fecal indicators (Escherichia coli and stanols) into splash and hydraulic components: field rainfall simulations in a tropical agro-ecosystem.

    Science.gov (United States)

    Ribolzi, Olivier; Rochelle-Newall, Emma J.; Janeau, Jean-Louis; Viguier, Marion; Jardé, Emilie; Latsachack, Keooudone; Henri-Des-Tureaux, Thierry; Thammahacksac, Chanthamousone; Mugler, Claude; Valentin, Christian; Sengtaheuanghoung, Oloth

    2017-04-01

    Overland flow from manured fields and pastures is known to be an important mechanism by which organisms of faecal origin are transferred to streams in rural watersheds. In the tropical montane areas of South-East Asia, recent changes in land use have induced increased runoff, soil erosion, in-stream suspended sediment loads resulting in increased microbial pathogen dissemination and contamination of stream waters. The majority of enteric and environmental bacteria in aquatic systems are associated with particles such as sediments which can strongly influence their survival and transport characteristics. Escherichia coli (E. coli) has emerged as one of the most appropriate microbial indicators of faecal contamination of natural waters, with the presence of E. coli indicating that faecal contamination is present. In association with E. coli, faecal stanols can also be used as microbial source tracking tool for the identification of the origin of the faecal contamination (e.g. livestock, human, etc). Field rain simulations were used to examine how E.coli and stanols are exported from the surface of upland, agricultural soils during overland flow events. The objectives were to characterize the loss dynamics of these indicators from agricultural soils contaminated with livestock waste, and to partition total detachment into the splash and hydraulic components. Nine 1m2 microplots were divided in triplicated treatment groups: (a) controls with no amendments, (b) amended with pig manure or (c) poultry manure. Each plot was divided into two 0.5m2 rectangular subplots. For each simulation, one subplot was designated as a rain splash treatment; the other was covered with 2-mm grid size wire screen 10 cm above the soil surface to break the raindrops into fine droplets, thus drastically reducing their kinetic energy. E. coli concentrations in overland flow were estimated for both the attached and free living fractions and stanols were measured on the particulate matter washed

  1. A cyclostationary multi-domain analysis of fluid instability in Kaplan turbines

    Science.gov (United States)

    Pennacchi, P.; Borghesani, P.; Chatterton, S.

    2015-08-01

    Hydraulic instabilities represent a critical problem for Francis and Kaplan turbines, reducing their useful life due to increase of fatigue on the components and cavitation phenomena. Whereas an exhaustive list of publications on computational fluid-dynamic models of hydraulic instability is available, the possibility of applying diagnostic techniques based on vibration measurements has not been investigated sufficiently, also because the appropriate sensors seldom equip hydro turbine units. The aim of this study is to fill this knowledge gap and to exploit fully, for this purpose, the potentiality of combining cyclostationary analysis tools, able to describe complex dynamics such as those of fluid-structure interactions, with order tracking procedures, allowing domain transformations and consequently the separation of synchronous and non-synchronous components. This paper will focus on experimental data obtained on a full-scale Kaplan turbine unit, operating in a real power plant, tackling the issues of adapting such diagnostic tools for the analysis of hydraulic instabilities and proposing techniques and methodologies for a highly automated condition monitoring system.

  2. Hydraulic Structures

    Data.gov (United States)

    Department of Homeland Security — This table is required whenever hydraulic structures are shown in the flood profile. It is also required if levees are shown on the FIRM, channels containing the...

  3. Reliability assessment of Wind turbines

    DEFF Research Database (Denmark)

    Sørensen, John Dalsgaard

    2015-01-01

    Wind turbines can be considered as structures that are in between civil engineering structures and machines since they consist of structural components and many electrical and machine components together with a control system. Further, a wind turbine is not a one-of-a-kind structure...... but manufactured in series production based on many component tests, some prototype tests and zeroseries wind turbines. These characteristics influence the reliability assessment where focus in this paper is on the structural components. Levelized Cost Of Energy is very important for wind energy, especially when...... comparing to other energy sources. Therefore much focus is on cost reductions and improved reliability both for offshore and onshore wind turbines. The wind turbine components should be designed to have sufficient reliability level with respect to both extreme and fatigue loads but also not be too costly...

  4. Turbine blade vibration dampening

    Science.gov (United States)

    Cornelius, C.C.; Pytanowski, G.P.; Vendituoli, J.S.

    1997-07-08

    The present turbine wheel assembly increases component life and turbine engine longevity. The combination of the strap and the opening combined with the preestablished area of the outer surface of the opening and the preestablished area of the outer circumferential surface of the strap and the friction between the strap and the opening increases the life and longevity of the turbine wheel assembly. Furthermore, the mass ``M`` or combined mass ``CM`` of the strap or straps and the centrifugal force assist in controlling vibrations and damping characteristics. 5 figs.

  5. Researches regarding primary control in hydraulic systems

    OpenAIRE

    Tița Irina; Mardare Irina

    2017-01-01

    The technology in wind turbines has developed very rapidly but there are still a lot that can be improved also regarding new technologies. One example is wind turbine with hydraulic transmission. At the beginning low power wind turbines are in view. First of all the wind energy is meant to be used by isolated users for household and garden equipment or pumping water. Later, if results will be as expected, and wind potential satisfactory, such systems could be connected to electric grid. In ou...

  6. Water hydraulic applications in hazardous environments

    International Nuclear Information System (INIS)

    Siuko, M.; Koskinen, K.T.; Vilenius, M.J.

    1996-01-01

    Water hydraulic technology provides several advantages for devices operating in critical environment. Though water hydraulics has traditionally been used in very rough applications, gives recent strong development of components possibility to build more sophisticated applications and devices with similar capacity and control properties than those of oil hydraulics without the disadvantages of oil hydraulic systems. In this paper, the basic principles, possibilities and advantages of water hydraulics are highlighted, some of the most important design considerations are presented and recent developments of water hydraulic technology are presented. Also one interesting application area, ITER fusion reactor remote handling devices, are discussed. (Author)

  7. Hydraulics and pneumatics

    CERN Document Server

    Parr, Andrew

    2006-01-01

    Nearly all industrial processes require objects to be moved, manipulated or subjected to some sort of force. This is frequently accomplished by means of electrical equipment (such as motors or solenoids), or via devices driven by air (pneumatics) or liquids (hydraulics).This book has been written by a process control engineer as a guide to the operation of hydraulic and pneumatic systems for all engineers and technicians who wish to have an insight into the components and operation of such a system.This second edition has been fully updated to include all recent developments su

  8. Development of New Micro Hydropower Turbine

    OpenAIRE

    Dousith, Phommachanh; Kurokawa, Junichi; Matsui, Jun; Choi, Young-Do

    2005-01-01

    There is a huge of available hydropower potential in the water supply system (WSS) that has been abandoned.Each time when we use a water faucet, the power of 10 to 80 watts is dissipated.In fact, this dissipated energy can be converted to useful energy by hydraulic turbine. Presently, there is not suitable turbine to use in WSS. Therefore, the new type turbine is needed to explore. In this study, Positive Displacement Turbine (PDT) is proposed. The main objective of this study is to develop n...

  9. Hydraulic System Design of Hydraulic Actuators for Large Butterfly Valves

    Directory of Open Access Journals (Sweden)

    Ye HUANG

    2014-09-01

    Full Text Available Hydraulic control systems of butterfly valves are presently valve-controlled and pump-controlled. Valve-controlled hydraulic systems have serious power loss and generate much heat during throttling. Pump-controlled hydraulic systems have no overflow or throttling losses but are limited in the speed adjustment of the variable-displacement pump, generate much noise, pollute the environment, and have motor power that does not match load requirements, resulting in low efficiency under light loads and wearing of the variable-displacement pump. To overcome these shortcomings, this article designs a closed hydraulic control system in which an AC servo motor drives a quantitative pump that controls a spiral swinging hydraulic cylinder, and analyzes and calculates the structure and parameters of a spiral swinging hydraulic cylinder. The hydraulic system adjusts the servo motor’s speed according to the requirements of the control system, and the motor power matches the power provided to components, thus eliminating the throttling loss of hydraulic circuits. The system is compact, produces a large output force, provides stable transmission, has a quick response, and is suitable as a hydraulic control system of a large butterfly valve.

  10. FOREWORD: The XXV IAHR Symposium on Hydraulic Machinery and Systems marks half a century tradition

    Science.gov (United States)

    Susan-Resiga, Romeo

    2010-05-01

    far from the best efficiency regime. The traditional partnership with the Romanian Academy - Timisoara Branch, Laboratory for Hydrodynamics and Cavitation, led to complex projects that combine both basic theoretical developments with advanced experimental investigations leading to practical engineering solutions for modern hydraulic machines. The International Association of Hydro-Environment Engineering and Research (IAHR) celebrates its 75th anniversary this year. IAHR particularly promotes the advancement and exchange of knowledge through working groups, specialty symposia, congresses, and publications on water resources, river and coastal hydraulics, risk analysis, energy, environment, disaster prevention, industrial processes. The IAHR - Committee on Hydraulic Machinery and Systems deals with the advancement of technology associated with the understanding of steady and unsteady flow characteristics in hydraulic machinery and conduit systems connected to the machinery. The technology elements include the fluid behaviour within machine components, hydro-elastic behaviour of machine components, cavitation, and two phase flow in turbines and pumps, hydraulic machine and plant control systems, the use of hydraulic machines to improve water quality, and even considerations to improve fish survival in their passage through hydro plants. The main emphases of the IAHR Committee on Hydraulic Machinery and Systems are to stimulate research and understanding of the technologies associated with hydraulic machinery and to promote interaction between the machine designers, machine users, the academic community, and the community at large. Hydraulic machinery is both cost effective and environmentally responsible. The increasing atmospheric content of carbon dioxide related to pollution from thermal power plants, is one of the most significant threats to our global ecology. The problem is exacerbated by the need for increased energy production in third world countries. This

  11. Study of the use of a micro hydro in knockdown container completed with a cylindrical form housing of francis hydraulic turbine to support the development program of energy self-sustainability for remote and isolated areas in Indonesia

    Directory of Open Access Journals (Sweden)

    Kamal Samsul

    2017-01-01

    It shows that the implementation of the unit in a remote area has reduced the total site construction time by 1/3 compared to the predicted one with conventional unit. The performance of the Francis turbine with cylindrical form housing has shown comparable with the conventional one which has volute form housing. The superiority was even more pronounced by introducing a deflection insert in its input flow channel. The insertion was capable to create more distributed flow into the runner. Efficiency of the turbine up to 80% was performed in this research. Local manufacture for turbine usually use many craft work and welding to built a volute form housing for the Francis turbine. The cylindrical form housing here has also proven significantly in reducing the time and price for the turbine manufacturing process.

  12. Wind Turbine Blade

    DEFF Research Database (Denmark)

    2010-01-01

    The invention relates to a blade for a wind turbine, particularly to a blade that may be produced by an advanced manufacturing process for producing a blade with high quality structural components. Particularly, the structural components, which are preferably manufactured from fibre reinforced...

  13. Valve exploiting the principle of a side channel turbine

    Directory of Open Access Journals (Sweden)

    Jandourek Pavel

    2017-01-01

    Full Text Available The article deals with a side channel turbine, which can be used as a suitable substitute for a pressure reducing valve. Reducing valves are a source of hydraulic losses. The aim is to replace them by a side channel turbine. With that in mind, hydraulic losses can be replaced by a production of electrical energy at comparable characteristics of the valve and the turbine. The basis for the design is the loss characteristics of the valve. Thereby creating a kind of turbine valve with speed-controlled flow in dependence of runner revolution.

  14. Development of a pump-turbine runner based on multiobjective optimization

    International Nuclear Information System (INIS)

    Xuhe, W; Baoshan, Z; Lei, T; Jie, Z; Shuliang, C

    2014-01-01

    As a key component of reversible pump-turbine unit, pump-turbine runner rotates at pump or turbine direction according to the demand of power grid, so higher efficiencies under both operating modes have great importance for energy saving. In the present paper, a multiobjective optimization design strategy, which includes 3D inverse design method, CFD calculations, response surface method (RSM) and multiobjective genetic algorithm (MOGA), is introduced to develop a model pump-turbine runner for middle-high head pumped storage plant. Parameters that controlling blade shape, such as blade loading and blade lean angle at high pressure side are chosen as input parameters, while runner efficiencies under both pump and turbine modes are selected as objective functions. In order to validate the availability of the optimization design system, one runner configuration from Pareto front is manufactured for experimental research. Test results show that the highest unit efficiency is 91.0% under turbine mode and 90.8% under pump mode for the designed runner, of which prototype efficiencies are 93.88% and 93.27% respectively. Viscous CFD calculations for full passage model are also conducted, which aim at finding out the hydraulic improvement from internal flow analyses

  15. Cogeneration steam turbines from Siemens: New solutions

    Science.gov (United States)

    Kasilov, V. F.; Kholodkov, S. V.

    2017-03-01

    The Enhanced Platform system intended for the design and manufacture of Siemens AG turbines is presented. It combines organizational and production measures allowing the production of various types of steam-turbine units with a power of up to 250 MWel from standard components. The Enhanced Platform designs feature higher efficiency, improved reliability, better flexibility, longer overhaul intervals, and lower production costs. The design features of SST-700 and SST-900 steam turbines are outlined. The SST-700 turbine is used in backpressure steam-turbine units (STU) or as a high-pressure cylinder in a two-cylinder condensing turbine with steam reheat. The design of an SST-700 single-cylinder turbine with a casing without horizontal split featuring better flexibility of the turbine unit is presented. An SST-900 turbine can be used as a combined IP and LP cylinder (IPLPC) in steam-turbine or combined-cycle power units with steam reheat. The arrangements of a turbine unit based on a combination of SST-700 and SST-900 turbines or SST-500 and SST-800 turbines are presented. Examples of this combination include, respectively, PGU-410 combinedcycle units (CCU) with a condensing turbine and PGU-420 CCUs with a cogeneration turbine. The main equipment items of a PGU-410 CCU comprise an SGT5-4000F gas-turbine unit (GTU) and STU consisting of SST-700 and SST-900RH steam turbines. The steam-turbine section of a PGU-420 cogeneration power unit has a single-shaft turbine unit with two SST-800 turbines and one SST-500 turbine giving a power output of N el. STU = 150 MW under condensing conditions.

  16. Chapter 12. Pure Tap Water Hydraulic Systems and Applications

    DEFF Research Database (Denmark)

    Conrad, Finn; Adelstorp, Anders

    1997-01-01

    Presentation of developed a modern pure tap water hydraulic components (Nessie), systems and industrial applications.......Presentation of developed a modern pure tap water hydraulic components (Nessie), systems and industrial applications....

  17. Reliability Assessment Of Wind Turbines

    DEFF Research Database (Denmark)

    Sørensen, John Dalsgaard

    2014-01-01

    Reduction of cost of energy for wind turbines are very important in order to make wind energy competitive compared to other energy sources. Therefore the turbine components should be designed to have sufficient reliability but also not be too costly (and safe). This paper presents models...... for uncertainty modeling and reliability assessment of especially the structural components such as tower, blades, substructure and foundation. But since the function of a wind turbine is highly dependent on many electrical and mechanical components as well as a control system also reliability aspects...... of these components are discussed and it is described how there reliability influences the reliability of the structural components. Two illustrative examples are presented considering uncertainty modeling, reliability assessment and calibration of partial safety factors for structural wind turbine components exposed...

  18. Hydraulic Soft Yaw System Load Reduction and Prototype Results

    DEFF Research Database (Denmark)

    Stubkier, Søren; Pedersen, Henrik C.; Markussen, Kristian

    2013-01-01

    Introducing a hydraulic soft yaw concept for wind turbines leads to significant load reductions in the wind turbine structure. The soft yaw system operates as a shock absorption system on a car, hence absorbing the loading from turbulent wind conditions instead of leading them into the stiff wind...... turbine structure. Results presented shows fatigue reductions of up to 40% and ultimate load reduction of up to 19%. The ultimate load reduction increases even more when the over load protection system in the hydraulic soft yaw system is introduced and results show how the exact extreme load cut off...... operates. Further it is analyzed how the soft yaw system influence the power production of the turbine. It is shown that the influence is minimal, but at larger yaw errors the effect is possitive. Due to the implemeted functions in the hydraulic soft yaw system such as even load distribution on the pinions...

  19. Turbine imaging technology assessment

    Energy Technology Data Exchange (ETDEWEB)

    Moursund, R. A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Carlson, T. J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2004-12-01

    The goal of this project was to identify and evaluate imaging technologies for observing juvenile fish within a Kaplan turbine, and specifically that would enable scientists to determine mechanisms of fish injury within an operating turbine unit. This report documents the opportunities and constraints for observing juvenile fish at specific locations during turbine passage. These observations were used to make modifications to dam structures and operations to improve conditions for fish passage while maintaining or improving hydropower production. The physical and hydraulic environment that fish experience as they pass through the hydroelectric plants were studied and the regions with the greatest potential for injury were defined. Biological response data were also studied to determine the probable types of injuries sustained in the turbine intake and what types of injuries are detectable with imaging technologies. The study grouped injury-causing mechanisms into two categories: fluid (pressure/cavitation, shear, turbulence) and mechanical (strike/collision, grinding/pinching, scraping). The physical constraints of the environment, together with the likely types of injuries to fish, provided the parameters needed for a rigorous imaging technology evaluation. Types of technology evaluated included both tracking and imaging systems using acoustic technologies (such as sonar and acoustic tags) and optic technologies (such as pulsed-laser videography, which is high-speed videography using a laser as the flash). Criteria for determining image data quality such as frame rate, target detectability, and resolution were used to quantify the minimum requirements of an imaging sensor.

  20. Applied hydraulic transients

    CERN Document Server

    Chaudhry, M Hanif

    2014-01-01

    This book covers hydraulic transients in a comprehensive and systematic manner from introduction to advanced level and presents various methods of analysis for computer solution. The field of application of the book is very broad and diverse and covers areas such as hydroelectric projects, pumped storage schemes, water-supply systems, cooling-water systems, oil pipelines and industrial piping systems. Strong emphasis is given to practical applications, including several case studies, problems of applied nature, and design criteria. This will help design engineers and introduce students to real-life projects. This book also: ·         Presents modern methods of analysis suitable for computer analysis, such as the method of characteristics, explicit and implicit finite-difference methods and matrix methods ·         Includes case studies of actual projects ·         Provides extensive and complete treatment of governed hydraulic turbines ·         Presents design charts, desi...

  1. Fish passage through hydropower turbines: Simulating blade strike using the discrete element method

    International Nuclear Information System (INIS)

    Richmond, M C; Romero-Gomez, P

    2014-01-01

    Among the hazardous hydraulic conditions affecting anadromous and resident fish during their passage though hydro-turbines two common physical processes can lead to injury and mortality: collisions/blade-strike and rapid decompression. Several methods are currently available to evaluate these stressors in installed turbines, e.g. using live fish or autonomous sensor devices, and in reduced-scale physical models, e.g. registering collisions from plastic beads. However, a priori estimates with computational modeling approaches applied early in the process of turbine design can facilitate the development of fish-friendly turbines. In the present study, we evaluated the frequency of blade strike and rapid pressure change by modeling potential fish trajectories with the Discrete Element Method (DEM) applied to fish-like composite particles. In the DEM approach, particles are subjected to realistic hydraulic conditions simulated with computational fluid dynamics (CFD), and particle-structure interactions-representing fish collisions with turbine components such as blades-are explicitly recorded and accounted for in the calculation of particle trajectories. We conducted transient CFD simulations by setting the runner in motion and allowing for unsteady turbulence using detached eddy simulation (DES), as compared to the conventional practice of simulating the system in steady state (which was also done here for comparison). While both schemes yielded comparable bulk hydraulic performance values, transient conditions exhibited an improvement in describing flow temporal and spatial variability. We released streamtraces (in the steady flow solution) and DEM particles (transient solution) at the same locations where sensor fish (SF) were released in previous field studies of the advanced turbine unit. The streamtrace- based results showed a better agreement with SF data than the DEM-based nadir pressures did because the former accounted for the turbulent dispersion at the

  2. Control system for NPP powerfull turbines

    International Nuclear Information System (INIS)

    Osipenko, V.D.; Rozhanskij, V.E.; Rokhlenko, V.Yu.

    1985-01-01

    A control system for NPP 1000 MW turbines safety is described. The turbine safety system has a hydraulic drive to actuate in case of increasipg of rotational speed of a turbine rotor and an electrohydraulic drce to operate in case of pressure reduction in the lubrication system, axial displacement deviation, etc. The system is highly reliable due to application of a safety system without slide valves and long-term operation of hydraulic controls in guarding conditions; the system epsures multifunctional control with high accuracy and speed due to application of the intricate electronic part, high speed of response with a limited use of high pressure oil due to application of two-pressure pumps, pneumohydraulic accumulators and oil discharge valves. Steady-state serviceability of the system is maintained by devices for valve cooling dawn. A shockless change from electrohydraulic to hydraulic control channels is provided

  3. Research on the Robustness of the Constant Speed Control of Hydraulic Energy Storage Generation

    Directory of Open Access Journals (Sweden)

    Zengguang Liu

    2018-05-01

    Full Text Available Energy storage plays a major role in solving the fluctuation and intermittence problem of wind and the effective use of wind power. The application of the hydraulic accumulator is the most efficient and convenient way to store wind energy in hydraulic wind turbines. A hydraulic energy storage generation system (HESGS can transform hydraulic energy stored in the hydraulic accumulator into stable and constant electrical energy by controlling the variable motor, regardless of wind changes. The aim of the present study is to design a constant speed control method for the variable motor in the HESGS and investigate the influence of the controller’s main parameters on the resistance of the HESGS to external load power disturbances. Mathematical equations of all components in this system are introduced and an entire system simulation model is built. A double closed-loop control method of the variable motor is presented within this paper, which keeps the motor speed constant for the fixed frequency of electrical power generated by the HESGS. Ultimately, a series of simulations with different proportional gains and integral gains under the environment of changeless load power step are conducted. At the same time, comparison analyses of the experiment and simulation under variable load power step are performed. The results verify the correctness and the usability of the simulation model, and also indicate that the proposed control method is robust to the disturbances of changing load power.

  4. Reliability Analysis of Wind Turbines

    DEFF Research Database (Denmark)

    Toft, Henrik Stensgaard; Sørensen, John Dalsgaard

    2008-01-01

    In order to minimise the total expected life-cycle costs of a wind turbine it is important to estimate the reliability level for all components in the wind turbine. This paper deals with reliability analysis for the tower and blades of onshore wind turbines placed in a wind farm. The limit states...... consideres are in the ultimate limit state (ULS) extreme conditions in the standstill position and extreme conditions during operating. For wind turbines, where the magnitude of the loads is influenced by the control system, the ultimate limit state can occur in both cases. In the fatigue limit state (FLS......) the reliability level for a wind turbine placed in a wind farm is considered, and wake effects from neighbouring wind turbines is taken into account. An illustrative example with calculation of the reliability for mudline bending of the tower is considered. In the example the design is determined according...

  5. Steam turbines for the future

    International Nuclear Information System (INIS)

    Trassl, W.

    1988-01-01

    Approximately 75% of the electrical energy produced in the world is generated in power plants with steam turbines (fossil and nuclear). Although gas turbines are increasingly applied in combined cycle power plants, not much will change in this matter in the future. As far as the steam parameters and the maximum unit output are concerned, a certain consolidation was noted during the past decades. The standard of development and mathematical penetration of the various steam turbine components is very high today and is applied in the entire field: For saturated steam turbines in nuclear power plants and for steam turbines without reheat, with reheat and with double reheat in fossil-fired power plants and for steam turbines with and without reheat in combined cycle power plants. (orig.) [de

  6. Research in Aeroelasticity EFP-2006[Wind turbines

    Energy Technology Data Exchange (ETDEWEB)

    Bak, C.

    2007-07-15

    This report contains the results from the Energy Research Project 'Program for Research in Applied Aeroelasticity, EFP-2006' covering the period from 1. April 2006 to 31. March 2007. A summary of the main results from the project is given in the following. The aerodynamics for rotors incl. spinner and winglets were clarified and the needed premises for an optimal rotor were explained. Also, the influence of viscous effects on rotor blades was investigated and the results indicated a range of optimum tip speed ratios. The use of winglets for wind turbine rotor was investigated and it was found that they can be used successfully, but that downwind and short winglets are most efficient. Investigating a strategy for reduction of loads and vibrations at extreme wind speeds showed that there are considerably uncertainties in the numerical models and that the main concluding remark is that measurements on a real blade or a real turbine are needed to further conclude the investigation. In the study of flutter and other torsional vibrations of blades at large deflections, modeling and analysis of the dynamics of a hydraulic pitch system for a 5 MW wind turbine was carried out. It was shown that the compressibility of the hydraulic oil introduced a dynamic mode in the pitch bearing degree of freedom. Also, investigating flutter for blades at large deflections showed that the flutter limit for a 5MW blade was moved significantly compared to blades without large deflections. The influence of modeling nacelle components was investigated by developing a generalized method to interface dynamic systems to the aeroelastic program HAWC2 and by exemplify by modeling the nacelle of an aeroelastic wind turbine model in a more detailed way by including a single planet stage of a gearbox. This simplified gearbox model captures in essence the splitting of the driving torque from the rotor shaft to the frame of the nacelle and to the generator. Investigating the influence of wind

  7. Simulation model of nuclear power plant turbine

    International Nuclear Information System (INIS)

    Dutta, Anu; Thangamani, I.; Chakraborty, G.; Ghosh, A.K.

    2006-04-01

    A computer code TURDYN has been developed for prediction of HP and LP turbine torque under thermodynamic transient conditions. The model is based on the conservation laws of mass and energy. All the important components of turbine systems e.g. high pressure turbine, low pressure turbine, feed heaters, reheater, moisture separator have been considered. The details of the mathematical formulation of the model and open loop responses for specific disturbances are presented. (author)

  8. Research status and trend of wind turbine aerodynamic noise?

    Institute of Scientific and Technical Information of China (English)

    Xiaodong LI; Baohong BAI; Yingbo XU; Min JIANG

    2016-01-01

    The main components of the wind turbine aerodynamic noise are introduced. A detailed review is given on the theoretical prediction, experimental measurement, and numerical simulation methods of wind turbine noise, with speci?c attention to appli-cations. Furthermore, suppression techniques of wind turbine aerodynamic noise are discussed. The perspective of future research on the wind turbine aerodynamic noise is presented.

  9. Advanced Technology for Aero Gas Turbine Components: Conference Proceedings Held at the Propulsion and Energetics Panel (69th) Symposium in Paris (France) on 4-8 May 1987

    Science.gov (United States)

    1987-09-01

    Simuitaniment, Ia forte composante tangentielle de l’coulement absolu en sortie du mobile doit Otre annulbe, ce qui corres pond A une diviation de...calculs quasi-tridimensionnpls. Le essais a froid de la turbine sur le banc et len ensais correnpondants A chaud sur le turbomoteur permettent d...0.5Re 0 e 6 .10 6 (A froid ) Rapport de la vitesse p~riph~rique sur la vitesse de jet U er/V.j = 0.69 3 - PREDIMENSIONNEMENT DE LA TURBINE RADIALE

  10. Blades and disks in gas turbines. Material and component behaviour. Project department D. Final report; Schaufeln und Scheiben in Gasturbinen. Werkstoff- und Bauteilverhalten. Projektbereich D. Abschlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-04-01

    The Special Research Department No. 339, ``Disks and Blades in Gas Turbines - Material and Component Characteristics`` received financial support from 1988 through 1996. This final report discusses activities of the years 1994, 1995, and 1996. Project group D, ``Production and Quality Assurance``, investigated rotors and blades. Grinding techniques were developed and optimized for nickel base materials, and the effects of grinding on the marginal zones was investigated, including an analysis of intrinsic stresses induced by machining. In the field of ceramics, separation and production of reinforced ceramics was investigated, and techniques for vacuum soldering of ceramic/ceramic and ceramic/metal compounds for high-temperature applications were developed. In the framework of a part-project carried out at HMI, neutron diffraction was used for nondestructive analysis of volume intrinsic stresses near the joint both on model geometries and on the joint between metal shaft and ceramic rotor. The development and application of computerized tomography for testing of ceramic rotors and joints was an important contribution to quality assurance. (orig./MM) [Deutsch] Der Sonderforschungsbereich 339 `Schaufeln und Scheiben in Gasturbinen - Werkstoff- und Bauteilverhalten` wurde von 1988 bis Ende 1996 gefoerdert. Der vorliegende Abschlussbericht behandelt vor allem die Arbeiten der Jahre 1994, 1995 und 1996. Am Bauteil Rotor und Schaufel orientierten sich die Arbeiten des Projektbereichs D `Fertigung und Qualitaetssicherung`. Zum einen wurden hier Schleifverfahren fuer Nickelbasis-Werkstoffe entwickelt und optimiert und der Einfluss der Schleifbearbeitung auf die Randzoneneigenschaften studiert. Zur Randzonencharakterisierung gehoerte insbesondere auch die Analyse bearbeitungsinduzierter Eigenspannungen. Auf der Seite der Keramiken wurde zum einen die trennende Fertigung verstaerkter Keramiken untersucht. Zum anderen wurden Techniken fuer das Hochvakuumloeten von Keramik

  11. Determination of turbine relative efficiency in SHPP

    Directory of Open Access Journals (Sweden)

    Džepčeski Dane

    2017-01-01

    Full Text Available To assess the fulfillment of contract conditions for the equipment delivery, determining the properties and capabilities of a generating unit or some part of it, the measurements carried out under real operating conditions were necessary. In this paper, the results of the test that was carried out in a small hydropower plant (SHPP, aimed at determining the relative efficiency of the hydraulic turbine and its comparison with the guaranteed values, are presented. The dependence of the turbine efficiency on the turbine discharge was determined based on the test results, using the index method. The test was performed at one net head.

  12. Hydraulic manipulator

    International Nuclear Information System (INIS)

    Sinha, A.K.; Srikrishnamurty, G.

    1990-01-01

    Successful operation of nuclear plant is largely dependent on safe handling of radio-active material. In order to reduce this handling problem and minimise the exposure of radiation, various handling equipment and manipulators have been developed according to the requirements. Manufacture of nuclear fuel, which is the most important part of the nuclear industry, involves handling of uranium ingots weighing approximately 250 kg. This paper describes a specially designed hydraulic manipulator for handling of the ingots in a limited space. It was designed to grab and handle the ingots in any position. This has following drive motions: (1)gripping and releasing, (2)lifting and lowering (z-motion), (3)rotation about the horizontal axis (azimuth drive), (4)rotation about the job axis, and (5)rotation about the vertical axis. For horizontal motion (X and Y axis motion) this equipment is mounted on a motorised trolley, so that it can move inside the workshop. For all drives except the rotation about the job axis, hydraulic cylinders have been used with a battery operated power pack. Trolley drive is also given power from same battery. This paper describes the design aspects of this manipulator. (author). 4 figs

  13. Study of the use of a micro hydro in knockdown container completed with a cylindrical form housing of francis hydraulic turbine to support the development program of energy self-sustainability for remote and isolated areas in Indonesia

    Science.gov (United States)

    Kamal, Samsul; Prajitno; Pardadi, Janu

    2017-11-01

    With an intention to reduce the consumption of energy from fossil fuels and the CO2 emission in relation with the climate change solution, Indonesian Government has targeted that the role of the New and Renewable Energy (NRE) resources reaches at least 23% , or about 27 GW , in 2025 and it is expected to increase to the extent of about 134 GW in 2050 within the scenario of mixed energy supply. Geographically Indonesia has many remote and isolated areas with lack of appropriate infrastructure supports. But in the most of the areas, huge potential of new and renewable energy are available such as hydro energy is about 75 GW, biomass energy is about 32 GW and bio fuel is about 32 GW. The total utilization of the energy from small hydro energy up to this year for example is only about 300 MW. The significant obstacle in optimizing the utilization of small hydro energy in the areas is mainly on the infrastructure conditions and the local manufacture capabilities. Difficulties in mobilization of experts, skill worker , parts and constructions material result in very time consuming and costly for site construction. In this research a hydro turbine built in knock down container completed with a Francis turbine in cylindrical form housing is proposed and reported its performance on implementation. The hydro in a knock down container concept comes from the idea to manufacture hydro power solutions in a knock down container, readymade to be transported to installation sites. It can be easily manufactured in a quality controlled and cost effective environment, transported and installed in remote areas, to operate and maintain with minimal amount of equipment. It shows that the implementation of the unit in a remote area has reduced the total site construction time by 1/3 compared to the predicted one with conventional unit. The performance of the Francis turbine with cylindrical form housing has shown comparable with the conventional one which has volute form housing. The

  14. Method and apparatus for wind turbine braking

    Science.gov (United States)

    Barbu, Corneliu [Laguna Hills, CA; Teichmann, Ralph [Nishkayuna, NY; Avagliano, Aaron [Houston, TX; Kammer, Leonardo Cesar [Niskayuna, NY; Pierce, Kirk Gee [Simpsonville, SC; Pesetsky, David Samuel [Greenville, SC; Gauchel, Peter [Muenster, DE

    2009-02-10

    A method for braking a wind turbine including at least one rotor blade coupled to a rotor. The method includes selectively controlling an angle of pitch of the at least one rotor blade with respect to a wind direction based on a design parameter of a component of the wind turbine to facilitate reducing a force induced into the wind turbine component as a result of braking.

  15. Next Generation Wind Turbine

    Energy Technology Data Exchange (ETDEWEB)

    Cheraghi, S. Hossein [Western New England Univ., Springfield, MA (United States); Madden, Frank [FloDesign Wind Turbine Corp., Waltham, MA (United States)

    2012-09-01

    The goal of this collaborative effort between Western New England University's College of Engineering and FloDesign Wind Turbine (FDWT) Corporation to wok on a novel areodynamic concept that could potentially lead to the next generation of wind turbines. Analytical studies and early scale model tests of FDWT's Mixer/Ejector Wind Turbine (MEWT) concept, which exploits jet-age advanced fluid dynamics, indicate that the concept has the potential to significantly reduce the cost of electricity over conventional Horizontal Axis Wind Turbines while reducing land usage. This project involved the design, fabrication, and wind tunnel testing of components of MEWT to provide the research and engineering data necessary to validate the design iterations and optimize system performance. Based on these tests, a scale model prototype called Briza was designed, fabricated, installed and tested on a portable tower to investigate and improve the design system in real world conditions. The results of these scale prototype efforts were very promising and have contributed significantly to FDWT's ongoing development of a product scale wind turbine for deployment in multiple locations around the U.S. This research was mutually beneficial to Western New England University, FDWT, and the DOE by utilizing over 30 student interns and a number of faculty in all efforts. It brought real-world wind turbine experience into the classroom to further enhance the Green Engineering Program at WNEU. It also provided on-the-job training to many students, improving their future employment opportunities, while also providing valuable information to further advance FDWT's mixer-ejector wind turbine technology, creating opportunities for future project innovation and job creation.

  16. Flow-Induced Instabilities in Pump-Turbines in China

    Directory of Open Access Journals (Sweden)

    Zhigang Zuo

    2017-08-01

    Full Text Available The stability of pump-turbines is of great importance to the operation of pumped storage power (PSP stations. Both hydraulic instabilities and operational instabilities have been reported in PSP stations in China. In order to provide a reference to the engineers and scientists working on pump-turbines, this paper summarizes the hydraulic instabilities and performance characteristics that promote the operational instabilities encountered in pump-turbine operations in China. Definitions, analytical methods, numerical and experimental studies, and main results are clarified. Precautions and countermeasures are also provided based on a literature review. The gaps between present studies and the need for engineering practice are pointed out.

  17. Numerical analysis of solid–liquidtwo-phase turbulent flow in Francis turbine runner with splitter bladesin sandy water

    Directory of Open Access Journals (Sweden)

    Hua Hong

    2015-03-01

    Full Text Available As the key component of a hydroelectric power generation system, hydraulic turbine plays a decisive role in the overall performance of the system. There are many sandy rivers in the world, and turbines working in these rivers are seriously damaged. Therefore, the research of flow in sandy water has great theoretical significance and practical value. Based on the specific hydrological conditions of a hydropower station, the solid–liquid two-phase flow in the whole flow passage of a Francis turbine with splitter blades in sandy water was numerically studied. A geometric model of the whole flow passage of the Francis turbine was established on the basis of given design parameters. The solid–liquid two-phase turbulent flows in Francis turbine runner under three different loads were numerically analyzed by using this model. The three different loads are as follows: Condition 1: single unit with 1/4 load, Condition 2: single unit with 1/2 load, and Condition 3: single unit with full load. The distributions of pressure and sand concentration on the leading side and the suction side of the runner blades, as well as the velocity vector distribution of water and sand on the horizontal section of the runner, were obtained under different load conditions. Therefore, the damages to various flow passage components by sand can be qualitatively predicated under various conditions. To guarantee the safety and stability of the unit, the adverse conditions shall be avoided, which can provide certain reference for plant operation.

  18. Achievement report for fiscal 1993. International clean energy system technology to utilize hydrogen - WE-NET (Sub-task 8. Development of hydrogen burning turbines - Development of main components including turbine blades and rotors); 1993 nendo seika hokokusho. Suiso riyo kokusai clean energy system gijutsu (WE-NET) (Sub tusk 8: Suiso nensho tabin no kaihatsu - tabin yoku rota tou shuyou kosei kiki no kaihatsu)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-03-01

    Among the research and development items in relation with the 'development of hydrogen burning turbines' based on the WE-NET project, surveys have been performed on developing the main components including turbine blades and rotors. The current fiscal year has surveyed the latest trends in the existing gas turbine and rotor cooling technologies, and the technological problems were extracted from the viewpoint of application to the hydrogen fueled turbines. Since the hydrogen fueled turbines have the entrance temperature higher than that of power generation gas turbines, development of the blade cooling technology is important. Main cooling methods available are the film cooling and transpiration cooling, whose technological development is necessary in the advanced forms. Cooling method for the inner side of blades includes the impingement cooling and the pin fin cooling, whereas the V-letter shaped turbulence accelerating rib and the serpentine flow path structure are considered promising. Increasing the anti-heat temperature of blades may be realized by utilizing ceramics. As a technology close to putting it into practical use, application of heat shield coating is promising. (NEDO)

  19. Floating wind turbine system

    Science.gov (United States)

    Viterna, Larry A. (Inventor)

    2009-01-01

    A floating wind turbine system with a tower structure that includes at least one stability arm extending therefrom and that is anchored to the sea floor with a rotatable position retention device that facilitates deep water installations. Variable buoyancy for the wind turbine system is provided by buoyancy chambers that are integral to the tower itself as well as the stability arm. Pumps are included for adjusting the buoyancy as an aid in system transport, installation, repair and removal. The wind turbine rotor is located downwind of the tower structure to allow the wind turbine to follow the wind direction without an active yaw drive system. The support tower and stability arm structure is designed to balance tension in the tether with buoyancy, gravity and wind forces in such a way that the top of the support tower leans downwind, providing a large clearance between the support tower and the rotor blade tips. This large clearance facilitates the use of articulated rotor hubs to reduced damaging structural dynamic loads. Major components of the turbine can be assembled at the shore and transported to an offshore installation site.

  20. Gas turbines

    Energy Technology Data Exchange (ETDEWEB)

    Farahan, E.; Eudaly, J.P.

    1978-10-01

    This evaluation provides performance and cost data for commercially available simple- and regenerative-cycle gas turbines. Intercooled, reheat, and compound cycles are discussed from theoretical basis only, because actual units are not currently available, except on a special-order basis. Performance characteristics investigated include unit efficiency at full-load and off-design conditions, and at rated capacity. Costs are tabulated for both simple- and regenerative-cycle gas turbines. The output capacity of the gas turbines investigated ranges from 80 to 134,000 hp for simple units and from 12,000 to 50,000 hp for regenerative units.

  1. Peatlands as Filters for Polluted Mine Water?—A Case Study from an Uranium-Contaminated Karst System in South Africa—Part III: Quantifying the Hydraulic Filter Component

    Directory of Open Access Journals (Sweden)

    Frank Winde

    2011-03-01

    Full Text Available As Part III of a four-part series on the filter function of peat for uranium (U, this paper focuses on the hydraulic component of a conceptual filter model introduced in Part II. This includes the quantification of water flow through the wetland as a whole, which was largely unknown and found to be significantly higher that anticipated. Apart from subaquatic artesian springs associated with the underlying karst aquifer the higher flow volumes were also caused by plumes of polluted groundwater moving laterally into the wetland. Real-time, quasi-continuous in situ measurements of porewater in peat and non-peat sediments indicate that rising stream levels (e.g., during flood conditions lead to the infiltration of stream water into adjacent peat deposits and thus allow for a certain proportion of flood water to be filtered. However, changes in porewater quality triggered by spring rains may promote the remobilization of possibly sorbed U.

  2. On the Fatigue Analysis of Wind Turbines

    Energy Technology Data Exchange (ETDEWEB)

    Sutherland, Herbert J.

    1999-06-01

    Modern wind turbines are fatigue critical machines that are typically used to produce electrical power from the wind. Operational experiences with these large rotating machines indicated that their components (primarily blades and blade joints) were failing at unexpectedly high rates, which led the wind turbine community to develop fatigue analysis capabilities for wind turbines. Our ability to analyze the fatigue behavior of wind turbine components has matured to the point that the prediction of service lifetime is becoming an essential part of the design process. In this review paper, I summarize the technology and describe the ''best practices'' for the fatigue analysis of a wind turbine component. The paper focuses on U.S. technology, but cites European references that provide important insights into the fatigue analysis of wind turbines.

  3. Gas fired advanced turbine system

    Science.gov (United States)

    Lecren, R. T.; White, D. J.

    The basic concept thus derived from the Ericsson cycle is an intercooled, recuperated, and reheated gas turbine. Theoretical performance analyses, however, showed that reheat at high turbine rotor inlet temperatures (TRIT) did not provide significant efficiency gains and that the 50 percent efficiency goal could be met without reheat. Based upon these findings, the engine concept adopted as a starting point for the gas-fired advanced turbine system is an intercooled, recuperated (ICR) gas turbine. It was found that, at inlet temperatures greater than 2450 F, the thermal efficiency could be maintained above 50%, provided that the turbine cooling flows could be reduced to 7% of the main air flow or lower. This dual and conflicting requirement of increased temperatures and reduced cooling will probably force the abandonment of traditional air cooled turbine parts. Thus, the use of either ceramic materials or non-air cooling fluids has to be considered for the turbine nozzle guide vanes and turbine blades. The use of ceramic components for the proposed engine system is generally preferred because of the potential growth to higher temperatures that is available with such materials.

  4. Sensitivity analysis of a Pelton hydropower station based on a novel approach of turbine torque

    International Nuclear Information System (INIS)

    Xu, Beibei; Yan, Donglin; Chen, Diyi; Gao, Xiang; Wu, Changzhi

    2017-01-01

    Highlights: • A novel approach of the turbine torque is proposed. • A unify model is capable of the dynamic characteristics of Pelton hydropower stations. • Sensitivity analysis from hydraulic parameters, mechanic parameters and electric parameters are performed. • Numerical simulations show the sensitivity ranges of the above three parameters. - Abstract: Hydraulic turbine generator units with long-running operation may cause the values of hydraulic, mechanic or electric parameters changing gradually, which brings a new challenge, namely that whether the operating stability of these units will be changed in the next thirty or forty years. This paper is an attempt to seek a relatively unified model for sensitivity analysis from three aspects: hydraulic parameters (turbine flow and turbine head), mechanic parameters (axis coordinates and axial misalignment) and electric parameters (generator speed and excitation current). First, a novel approach of the Pelton turbine torque is proposed, which can make connections between the hydraulic turbine governing system and the shafting system of the hydro-turbine generator unit. Moreover, the correctness of this approach is verified by comparing with other three models of hydropower stations. Second, this latter is analyzed to obtain the sensitivity of electric parameter (excitation current), the mechanic parameters (axial misalignment, upper guide bearing rigidity, lower guide bearing rigidity, and turbine guide bearing rigidity) on hydraulic parameters on the operating stability of the unit. In addition to this, some critical values and ranges are proposed. Finally, these results can provide some bases for the design and stable operation of Peltonhydropower stations.

  5. A reference Pelton turbine design

    International Nuclear Information System (INIS)

    Solemslie, B W; Dahlhaug, O G

    2012-01-01

    The designs of hydraulic turbines are usually close kept corporation secrets. Therefore, the possibility of innovation and co-operation between different academic institutions regarding a specific turbine geometry is difficult. A Ph.D.-project at the Waterpower Laboratory, NTNU, aim to design several model Pelton turbines where all measurements, simulations, the design strategy, design software in addition to the physical model will be available to the public. In the following paper a short description of the methods and the test rig that are to be utilized in the project are described. The design will be based on empirical data and NURBS will be used as the descriptive method for the turbine geometry. In addition CFX and SPH simulations will be included in the design process. Each turbine designed and produced in connection to this project will be based on the experience and knowledge gained from the previous designs. The first design will be based on the philosophy to keep a near constant relative velocity through the bucket.

  6. A reference Pelton turbine design

    Science.gov (United States)

    Solemslie, B. W.; Dahlhaug, O. G.

    2012-09-01

    The designs of hydraulic turbines are usually close kept corporation secrets. Therefore, the possibility of innovation and co-operation between different academic institutions regarding a specific turbine geometry is difficult. A Ph.D.-project at the Waterpower Laboratory, NTNU, aim to design several model Pelton turbines where all measurements, simulations, the design strategy, design software in addition to the physical model will be available to the public. In the following paper a short description of the methods and the test rig that are to be utilized in the project are described. The design will be based on empirical data and NURBS will be used as the descriptive method for the turbine geometry. In addition CFX and SPH simulations will be included in the design process. Each turbine designed and produced in connection to this project will be based on the experience and knowledge gained from the previous designs. The first design will be based on the philosophy to keep a near constant relative velocity through the bucket.

  7. Hydrogen utilization international clean energy system technology (WE-NET). Subtask 8. Development of hydrogen combustion turbines (development of the main component devices such as turbine blades and rotors); Suiso riyo kokusai clean energy system gijutsu (WE-NET). Subtask 8. Suiso nensho turbine no kaihatsu (turbine yoku, rotor nado shuyo kosei kiki no kaihatsu)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-03-01

    The paper described the result of the fiscal 1996 development relating to hydrogen combustion turbines, as one of the hydrogen utilization technologies, which have excellent environmentality and are expected of remarkably high efficiency. In the film cooling system of first-stage moving/stationary blades, the smaller the pitch of film pore is, the higher the mean cooling efficiency becomes, indicating 0.7 at maximum. As compared with the conventional shower head type, the metal temperature can be reduced 30-40degC. In the recovery type inner (convection) cooling system, by reducing the blade number, the consumption amount of coolant can be reduced 6% in stationary blade and 13% in moving blade, as compared with the result of the preceding year. In the element test of the hybrid cooling system, film cooling efficiency was actually measured by the porous module test equipment, and the result well agreed with the calculation result. In the water cooling system, studied were water (stationary blade) and vapor (moving blade) of the closed cooling structure for realization of a cycle efficiency of 60%. In rotor/disk cooling, analyses were made of seal characteristic grasp tests and characteristics of the rotor. The effect of deflection in the mainstream was small. Besides, proper value of the seal overlapping amount could be obtained. 6 refs., 368 figs., 55 tabs.

  8. Optimization of a Low Heat Load Turbine Nozzle Guide Vane

    National Research Council Canada - National Science Library

    Johnson, Jamie J

    2006-01-01

    .... However, future aircraft systems require ever increasing levels of gas-turbine inlet temperature causing the durability and reliability of turbine components to be an ever more important design concern...

  9. HTR-E project. High-temperature components and systems

    International Nuclear Information System (INIS)

    Breuil, E.; Exner, R.

    2002-01-01

    The HTR-E European project (four years project) is proposed for the 5th Framework Programme and concerns the technical developments needed for the innovative components of a modern HTR with a direct cycle. These components have been selected with reference to the present projects (GT-MHR, PBMR): (1) the helium turbine, the recuperator heat exchanger, the electro-magnetic bearings and the helium rotating seal; (2) the tribology. Sliding innovative components in helium environment are particularly concerned. (3) the helium purification system. Recommendations on impurities contents have to be provided in accordance with the materials proposed for the innovative components. The main outcomes expected from the HTR-E project are the design recommendations and identification of further R and D needs for these components. This will be based: (1) on experience feedback from European past helium test loops and reactors; (2) on design studies, thermal-hydraulic and structural analyses; (3) and on experimental tests

  10. Effects of water compressibility on the pressure fluctuation prediction in pump turbine

    International Nuclear Information System (INIS)

    Yin, J L; Wang, D Z; Wang, L Q; Wu, Y L; Wei, X Z

    2012-01-01

    The compressible effect of water is a key factor in transient flows. However, it is always neglected in the unsteady simulations for hydraulic machinery. In light of this, the governing equation of the flow is deduced to combine the compressibility of water, and then simulations with compressible and incompressible considerations to the typical unsteady flow phenomenon (Rotor stator interaction) in a pump turbine model are carried out and compared with each other. The results show that water compressibility has great effects on the magnitude and frequency of pressure fluctuation. As the operating condition concerned, the compressibility of water will induce larger pressure fluctuation, which agrees better with measured data. Moreover, the lower frequency component of the pressure signal can only be captured with the combination of water compressibility. It can be concluded that water compressibility is a fatal factor, which cannot be neglected in the unsteady simulations for pump turbines.

  11. Numerical Simulation of the Francis Turbine and CAD used to Optimized the Runner Design (2nd).

    Science.gov (United States)

    Sutikno, Priyono

    2010-06-01

    Hydro Power is the most important renewable energy source on earth. The water is free of charge and with the generation of electric energy in a Hydroelectric Power station the production of green house gases (mainly CO2) is negligible. Hydro Power Generation Stations are long term installations and can be used for 50 years and more, care must be taken to guarantee a smooth and safe operation over the years. Maintenance is necessary and critical parts of the machines have to be replaced if necessary. Within modern engineering the numerical flow simulation plays an important role in order to optimize the hydraulic turbine in conjunction with connected components of the plant. Especially for rehabilitation and upgrading existing Power Plants important point of concern are to predict the power output of turbine, to achieve maximum hydraulic efficiency, to avoid or to minimize cavitations, to avoid or to minimized vibrations in whole range operation. Flow simulation can help to solve operational problems and to optimize the turbo machinery for hydro electric generating stations or their component through, intuitive optimization, mathematical optimization, parametric design, the reduction of cavitations through design, prediction of draft tube vortex, trouble shooting by using the simulation. The classic design through graphic-analytical method is cumbersome and can't give in evidence the positive or negative aspects of the designing options. So it was obvious to have imposed as necessity the classical design methods to an adequate design method using the CAD software. There are many option chose during design calculus in a specific step of designing may be verified in ensemble and detail form a point of view. The final graphic post processing would be realized only for the optimal solution, through a 3 D representation of the runner as a whole for the final approval geometric shape. In this article it was investigated the redesign of the hydraulic turbine's runner

  12. Draft tube flow phenomena across the bulb turbine hill chart

    International Nuclear Information System (INIS)

    Duquesne, P; Fraser, R; Maciel, Y; Aeschlimann, V; Deschênes, C

    2014-01-01

    In the framework of the BulbT project launched by the Consortium on Hydraulic Machines and the LAMH (Hydraulic Machine Laboratory of Laval University) in 2011, an intensive campaign to identify flow phenomena in the draft tube of a model bulb turbine has been done. A special focus was put on the draft tube component since it has a particular importance for recuperation in low head turbines. Particular operating points were chosen to analyse flow phenomena in this component. For each of these operating points, power, efficiency and pressure were measured following the IEC 60193 standard. Visualizations, unsteady wall pressure and efficiency measurements were performed in this component. The unsteady wall pressure was monitored at seven locations in the draft tube. The frequency content of each pressure signal was analyzed in order to characterize the flow phenomena across the efficiency hill chart. Visualizations were recorded with a high speed camera using tufts and cavitation bubbles as markers. The predominant detected phenomena were mapped and categorized in relation to the efficiency hill charts obtained for three runner blade openings. At partial load, the vortex rope was detected and characterized. An inflection in the partial load efficiency curves was found to be related to complex vortex rope instabilities. For overload conditions, the efficiency curves present a sharp drop after the best efficiency point, corresponding to an inflection on the power curves. This break off is more severe towards the highest blade openings. It is correlated to a flow separation at the wall of the draft tube. Also, due to the separation occurring in these conditions, a hysteresis effect was observed on the efficiency curves

  13. Hydraulic Actuators with Autonomous Hydraulic Supply for the Mainline Aircrafts

    Directory of Open Access Journals (Sweden)

    I. S. Shumilov

    2014-01-01

    pipelines, as well as their increasing reliability. It is also possible, in addition, in addition to increase reliability of the remained pipelines, having applied the last developments, e.g. introduction of one-piece connections (thermo-mechanical ones, high-strength steels for pipelines with σв˃85 кг/мм 2 σ to increase control of residual assembly tension, and so on;- to eliminate essentially all the shortcomings of hydraulic actuators, which constrain their introduction in aircraft industry;- to simplify essentially steering drive structures and designs, which allow to apply the tried and tested components and principles;- to simplify essentially a solution for cooling of working liquid;- to simplify essentially a solution for the steering drive configuration in a zone of control vanes;- to simplify essentially a solution for meeting requirements for dynamic rigidity and dynamic sensitivity of hydraulic actuators;- to simplify essentially a solution for the aircraft fire safety, etc.

  14. Wind Turbine Contingency Control Through Generator De-Rating

    Science.gov (United States)

    Frost, Susan; Goebel, Kai; Balas, Mark

    2013-01-01

    Maximizing turbine up-time and reducing maintenance costs are key technology drivers for wind turbine operators. Components within wind turbines are subject to considerable stresses due to unpredictable environmental conditions resulting from rapidly changing local dynamics. In that context, systems health management has the aim to assess the state-of-health of components within a wind turbine, to estimate remaining life, and to aid in autonomous decision-making to minimize damage to the turbine. Advanced contingency control is one way to enable autonomous decision-making by providing the mechanism to enable safe and efficient turbine operation. The work reported herein explores the integration of condition monitoring of wind turbines with contingency control to balance the trade-offs between maintaining system health and energy capture. The contingency control involves de-rating the generator operating point to achieve reduced loads on the wind turbine. Results are demonstrated using a high fidelity simulator of a utility-scale wind turbine.

  15. Hydrodynamics and heat transfer in reactor components cooled by liquid metal coolants in single/two phase. 11. meeting of the International Association for Hydraulic Research (IAHR) Working Group. Working material

    International Nuclear Information System (INIS)

    2005-01-01

    This Working Material includes the papers presented at the International Meeting 'Hydrodynamics and heat transfer in reactor components cooled by liquid metal coolants in single/two-phase', which was held 5-9 July 2004 at the State Scientific Center of Russian Federation - Institute for Physics and Power Engineering named after A.I. Leypunsky, in Obninsk near Moscow. The objectives of the meeting were to discuss new results obtained in the field of liquid metal coolant and to recommend the lines of further general physics and applied investigations, with the purpose of validating existing and codes under development for liquid metal cooled advanced and new generation nuclear reactors. Most of the contributions present results of experimental and numerical investigations into velocity, temperature and heat transfer in fuel subassemblies of fast reactors cooled by sodium or lead. In the frame of the meeting a benchmark problem devoted to heat transfer in the model subassembly of the fast reactor BREST-OD-300 was proposed. Experts from 5 countries (Japan, Netherlands, Spain, Republic of Korea, and Russia) took part in this benchmark exercise. The results of the benchmark calculations are summarized in the Working Material. The results of hydrodynamic studies of pressure head chambers and collector systems of liquid metal cooled reactors are presented in a number of papers. Also attention was given to the generalization of experimental data on hydraulic losses in the pipelines in case of mutual influence of local pressure drops, and to the modeling of natural convection in the fuel subassemblies and circuits with liquid metal cooling. Special emphasis at the meeting was placed on thermal hydraulics issues related to the development and design of target systems, such as heat removal in the target unit of the cascade subcritical reactor cooled by liquid salt; the target complex MK-1 for accelerator driven systems cooled by eutectic lead-bismuth alloy; and the test

  16. Hydrodynamics and heat transfer in reactor components cooled by liquid metal coolants in single/two phase. 11. meeting of the International Association for Hydraulic Research (IAHR) Working Group. Working material

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2005-07-01

    This Working Material includes the papers presented at the International Meeting 'Hydrodynamics and heat transfer in reactor components cooled by liquid metal coolants in single/two-phase', which was held 5-9 July 2004 at the State Scientific Center of Russian Federation - Institute for Physics and Power Engineering named after A.I. Leypunsky, in Obninsk near Moscow. The objectives of the meeting were to discuss new results obtained in the field of liquid metal coolant and to recommend the lines of further general physics and applied investigations, with the purpose of validating existing and codes under development for liquid metal cooled advanced and new generation nuclear reactors. Most of the contributions present results of experimental and numerical investigations into velocity, temperature and heat transfer in fuel subassemblies of fast reactors cooled by sodium or lead. In the frame of the meeting a benchmark problem devoted to heat transfer in the model subassembly of the fast reactor BREST-OD-300 was proposed. Experts from 5 countries (Japan, Netherlands, Spain, Republic of Korea, and Russia) took part in this benchmark exercise. The results of the benchmark calculations are summarized in the Working Material. The results of hydrodynamic studies of pressure head chambers and collector systems of liquid metal cooled reactors are presented in a number of papers. Also attention was given to the generalization of experimental data on hydraulic losses in the pipelines in case of mutual influence of local pressure drops, and to the modeling of natural convection in the fuel subassemblies and circuits with liquid metal cooling. Special emphasis at the meeting was placed on thermal hydraulics issues related to the development and design of target systems, such as heat removal in the target unit of the cascade subcritical reactor cooled by liquid salt; the target complex MK-1 for accelerator driven systems cooled by eutectic lead-bismuth alloy; and the test

  17. Energy balance of hydro-aggregate with Pelton water turbine

    International Nuclear Information System (INIS)

    Obretenov, V.

    2005-01-01

    One of the major tasks in the field of hydraulic power engineering refers to machines and equipment modernization in the hydropower plants and pumped storage power plants commissioned more than 20 years ago. The increase of hydraulic units operation efficiency will allow in a number of cases to substantially reduce the specific water consumption and to drive the output of electric energy up. In these cases it is crucial to find out the operational efficiency of individual system elements and to precisely focus the modernization endeavours on such elements where the energy losses go beyond all admissible limits. Besides, the determination of the energy losses in the hydro energy turbo system will allow valid defining of hydraulic units operational scope. This work treats the methods of balance study of a hydraulic unit with Peiton water turbine. The experimental results of the balance study of Belmeken pumped storage power plant hydraulic unit No 5 under turbine operational mode are presented

  18. Numerical simulation of turbulence flow in a Kaplan turbine -Evaluation on turbine performance prediction accuracy-

    Science.gov (United States)

    Ko, P.; Kurosawa, S.

    2014-03-01

    The understanding and accurate prediction of the flow behaviour related to cavitation and pressure fluctuation in a Kaplan turbine are important to the design work enhancing the turbine performance including the elongation of the operation life span and the improvement of turbine efficiency. In this paper, high accuracy turbine and cavitation performance prediction method based on entire flow passage for a Kaplan turbine is presented and evaluated. Two-phase flow field is predicted by solving Reynolds-Averaged Navier-Stokes equations expressed by volume of fluid method tracking the free surface and combined with Reynolds Stress model. The growth and collapse of cavitation bubbles are modelled by the modified Rayleigh-Plesset equation. The prediction accuracy is evaluated by comparing with the model test results of Ns 400 Kaplan model turbine. As a result that the experimentally measured data including turbine efficiency, cavitation performance, and pressure fluctuation are accurately predicted. Furthermore, the cavitation occurrence on the runner blade surface and the influence to the hydraulic loss of the flow passage are discussed. Evaluated prediction method for the turbine flow and performance is introduced to facilitate the future design and research works on Kaplan type turbine.

  19. Numerical simulation of turbulence flow in a Kaplan turbine -Evaluation on turbine performance prediction accuracy-

    International Nuclear Information System (INIS)

    Ko, P; Kurosawa, S

    2014-01-01

    The understanding and accurate prediction of the flow behaviour related to cavitation and pressure fluctuation in a Kaplan turbine are important to the design work enhancing the turbine performance including the elongation of the operation life span and the improvement of turbine efficiency. In this paper, high accuracy turbine and cavitation performance prediction method based on entire flow passage for a Kaplan turbine is presented and evaluated. Two-phase flow field is predicted by solving Reynolds-Averaged Navier-Stokes equations expressed by volume of fluid method tracking the free surface and combined with Reynolds Stress model. The growth and collapse of cavitation bubbles are modelled by the modified Rayleigh-Plesset equation. The prediction accuracy is evaluated by comparing with the model test results of Ns 400 Kaplan model turbine. As a result that the experimentally measured data including turbine efficiency, cavitation performance, and pressure fluctuation are accurately predicted. Furthermore, the cavitation occurrence on the runner blade surface and the influence to the hydraulic loss of the flow passage are discussed. Evaluated prediction method for the turbine flow and performance is introduced to facilitate the future design and research works on Kaplan type turbine

  20. ADVANCED TURBINE SYSTEMS PROGRAM

    Energy Technology Data Exchange (ETDEWEB)

    Gregory Gaul

    2004-04-21

    , combustion, cooling, materials, coatings and casting development. The market potential for the ATS gas turbine in the 2000-2014 timeframe was assessed for combined cycle, simple cycle and integrated gasification combined cycle, for three engine sizes. The total ATS market potential was forecasted to exceed 93 GW. Phase 3 and Phase 3 Extension involved further technology development, component testing and W501ATS engine detail design. The technology development efforts consisted of ultra low NO{sub x} combustion, catalytic combustion, sealing, heat transfer, advanced coating systems, advanced alloys, single crystal casting development and determining the effect of steam on turbine alloys. Included in this phase was full-load testing of the W501G engine at the McIntosh No. 5 site in Lakeland, Florida.

  1. Lightning protection system for a wind turbine

    Science.gov (United States)

    Costin, Daniel P [Chelsea, VT; Petter, Jeffrey K [Williston, VT

    2008-05-27

    In a wind turbine (104, 500, 704) having a plurality of blades (132, 404, 516, 744) and a blade rotor hub (120, 712), a lightning protection system (100, 504, 700) for conducting lightning strikes to any one of the blades and the region surrounding the blade hub along a path around the blade hub and critical components of the wind turbine, such as the generator (112, 716), gearbox (708) and main turbine bearings (176, 724).

  2. Wind turbine

    Science.gov (United States)

    Cheney, Jr., Marvin C.

    1982-01-01

    A wind turbine of the type having an airfoil blade (15) mounted on a flexible beam (20) and a pitch governor (55) which selectively, torsionally twists the flexible beam in response to wind turbine speed thereby setting blade pitch, is provided with a limiter (85) which restricts unwanted pitch change at operating speeds due to torsional creep of the flexible beam. The limiter allows twisting of the beam by the governor under excessive wind velocity conditions to orient the blades in stall pitch positions, thereby preventing overspeed operation of the turbine. In the preferred embodiment, the pitch governor comprises a pendulum (65,70) which responds to changing rotor speed by pivotal movement, the limiter comprising a resilient member (90) which engages an end of the pendulum to restrict further movement thereof, and in turn restrict beam creep and unwanted blade pitch misadjustment.

  3. Radial gas turbine design

    Energy Technology Data Exchange (ETDEWEB)

    Krausche, S.; Ohlsson, Johan

    1998-04-01

    The objective of this work was to develop a program dealing with design point calculations of radial turbine machinery, including both compressor and turbine, with as few input data as possible. Some simple stress calculations and turbine metal blade temperatures were also included. This program was then implanted in a German thermodynamics program, Gasturb, a program calculating design and off-design performance of gas turbines. The calculations proceed with a lot of assumptions, necessary to finish the task, concerning pressure losses, velocity distribution, blockage, etc., and have been correlated with empirical data from VAT. Most of these values could have been input data, but to prevent the user of the program from drowning in input values, they are set as default values in the program code. The output data consist of geometry, Mach numbers, predicted component efficiency etc., and a number of graphical plots of geometry and velocity triangles. For the cases examined, the error in predicted efficiency level was within {+-} 1-2% points, and quite satisfactory errors in geometrical and thermodynamic conditions were obtained Examination paper. 18 refs, 36 figs

  4. Proceedings of transient thermal-hydraulics and coupled vessel and piping system responses 1991

    International Nuclear Information System (INIS)

    Wang, G.Y.; Shin, Y.W.; Moody, F.J.

    1991-01-01

    This book reports on transient thermal-hydraulics and coupled vessel and piping system responses. Topics covered include: nuclear power plant containment designs; analysis of control rods; gate closure of hydraulic turbines; and shock wave solutions for steam water mixtures in piping systems

  5. The calculation of fluid-structure interaction and fatigue analysis for Francis turbine runner

    International Nuclear Information System (INIS)

    Wang, X F; Li, H L; Zhu, F W

    2012-01-01

    Francis turbine, as a widely used hydro turbine, is especially suited for the hydropower station with high hydraulic head and higher hydraulic head. For such turbine generator units all around the world, the crack streaks usually come out after a long time use and the resulted accidents may cause huge losses. Hence, it is meaningful to refine the design assuring the stability and safety of the Francis turbine. In this paper, the stiffness and strength as well as the fatigue life of the Francis turbine are studied. Concerning on the turbine of one certain hydropower station, the flow field inside the turbine are first simulated and the pressure distribution around the blades are derived. Meanwhile, the stress distributions of the blades are also obtained. Based on these, the fatigue analyses are applied on the turbine. According to the results of fatigue analyses, some optimal designs on the turbine are verified. The results show that with the optimal designs, the hydraulic performances of the turbine do not change too much while the maximum stress on the turbine decrease and the fatigue life increase as well.

  6. SMART POWER TURBINE

    Energy Technology Data Exchange (ETDEWEB)

    Nirm V. Nirmalan

    2003-11-01

    Gas turbines are the choice technology for high-performance power generation and are employed in both simple and combined cycle configurations around the world. The Smart Power Turbine (SPT) program has developed new technologies that are needed to further extend the performance and economic attractiveness of gas turbines for power generation. Today's power generation gas turbines control firing temperatures indirectly, by measuring the exhaust gas temperature and then mathematically calculating the peak combustor temperatures. But temperatures in the turbine hot gas path vary a great deal, making it difficult to control firing temperatures precisely enough to achieve optimal performance. Similarly, there is no current way to assess deterioration of turbine hot-gas-path components without shutting down the turbine. Consequently, maintenance and component replacements are often scheduled according to conservative design practices based on historical fleet-averaged data. Since fuel heating values vary with the prevalent natural gas fuel, the inability to measure heating value directly, with sufficient accuracy and timeliness, can lead to maintenance and operational decisions that are less than optimal. GE Global Research Center, under this Smart Power Turbine program, has developed a suite of novel sensors that would measure combustor flame temperature, online fuel lower heating value (LHV), and hot-gas-path component life directly. The feasibility of using the ratio of the integrated intensities of portions of the OH emission band to determine the specific average temperature of a premixed methane or natural-gas-fueled combustion flame was demonstrated. The temperature determined is the temperature of the plasma included in the field of view of the sensor. Two sensor types were investigated: the first used a low-resolution fiber optic spectrometer; the second was a SiC dual photodiode chip. Both methods worked. Sensitivity to flame temperature changes was

  7. Very Low Head Turbine Deployment in Canada

    International Nuclear Information System (INIS)

    Kemp, P; Williams, C; Sasseville, Remi; Anderson, N

    2014-01-01

    The Very Low Head (VLH) turbine is a recent turbine technology developed in Europe for low head sites in the 1.4 - 4.2 m range. The VLH turbine is primarily targeted for installation at existing hydraulic structures to provide a low impact, low cost, yet highly efficient solution. Over 35 VLH turbines have been successfully installed in Europe and the first VLH deployment for North America is underway at Wasdell Falls in Ontario, Canada. Deployment opportunities abound in Canada with an estimated 80,000 existing structures within North America for possible low-head hydro development. There are several new considerations and challenges for the deployment of the VLH turbine technology in Canada in adapting to the hydraulic, environmental, electrical and social requirements. Several studies were completed to determine suitable approaches and design modifications to mitigate risk and confirm turbine performance. Diverse types of existing weirs and spillways pose certain hydraulic design challenges. Physical and numerical modelling of the VLH deployment alternatives provided for performance optimization. For this application, studies characterizing the influence of upstream obstacles using water tunnel model testing as well as full-scale prototype flow dynamics testing were completed. A Cold Climate Adaptation Package (CCA) was developed to allow year-round turbine operation in ice covered rivers. The CCA package facilitates turbine extraction and accommodates ice forces, frazil ice, ad-freezing and cold temperatures that are not present at the European sites. The Permanent Magnet Generator (PMG) presents some unique challenges in meeting Canadian utility interconnection requirements. Specific attention to the frequency driver control and protection requirements resulted in a driver design with greater over-voltage capability for the PMG as well as other key attributes. Environmental studies in Europe included fish friendliness testing comprised of multiple in

  8. Very Low Head Turbine Deployment in Canada

    Science.gov (United States)

    Kemp, P.; Williams, C.; Sasseville, Remi; Anderson, N.

    2014-03-01

    The Very Low Head (VLH) turbine is a recent turbine technology developed in Europe for low head sites in the 1.4 - 4.2 m range. The VLH turbine is primarily targeted for installation at existing hydraulic structures to provide a low impact, low cost, yet highly efficient solution. Over 35 VLH turbines have been successfully installed in Europe and the first VLH deployment for North America is underway at Wasdell Falls in Ontario, Canada. Deployment opportunities abound in Canada with an estimated 80,000 existing structures within North America for possible low-head hydro development. There are several new considerations and challenges for the deployment of the VLH turbine technology in Canada in adapting to the hydraulic, environmental, electrical and social requirements. Several studies were completed to determine suitable approaches and design modifications to mitigate risk and confirm turbine performance. Diverse types of existing weirs and spillways pose certain hydraulic design challenges. Physical and numerical modelling of the VLH deployment alternatives provided for performance optimization. For this application, studies characterizing the influence of upstream obstacles using water tunnel model testing as well as full-scale prototype flow dynamics testing were completed. A Cold Climate Adaptation Package (CCA) was developed to allow year-round turbine operation in ice covered rivers. The CCA package facilitates turbine extraction and accommodates ice forces, frazil ice, ad-freezing and cold temperatures that are not present at the European sites. The Permanent Magnet Generator (PMG) presents some unique challenges in meeting Canadian utility interconnection requirements. Specific attention to the frequency driver control and protection requirements resulted in a driver design with greater over-voltage capability for the PMG as well as other key attributes. Environmental studies in Europe included fish friendliness testing comprised of multiple in

  9. Hydraulic jett mixing

    International Nuclear Information System (INIS)

    Ackerman, J.R.

    1989-01-01

    Efficient mixing of reactants into a waste stream has always been a problem in that there has been no mixer capable of combining all the elements of enhanced mixing into a single piece of equipment. Through the development of a mixing system for the mining industry to treat acid mine water containing heavy metals, a versatile new hydraulic jetting static mixer has been developed that has no moving parts and a clean bore with no internal components. This paper reports that the main goal of the development of the hydraulic jett mixer was to reduce the size of the tankage required for an acid mine drainage (AMD) treatment plant through development of a static mixing device that could coincidentally aerate the treatment flow. This process equipment being developed would simultaneously adjust the pH and oxidize the metals allowing formation of the hydroxide sludges required for sedimentation and removal of the metals from the treatment stream. In effect, the device eliminates two reaction tanks, the neutralization/mixing tank and the aeration tank

  10. A Critical Review of Future Materials for Wind Turbine Blades

    DEFF Research Database (Denmark)

    Raghavalu Thirumalai, Durai Prabhakaran

    2014-01-01

    Wind turbine industry is continuously evaluating materials systems to replace the current thermoset composite technologies. Since turbine blades are the key component in the wind turbines and the size of the blade is increasing in todays wind design, the materials selection has become crucial...

  11. Future Materials for Wind Turbine Blades - A Critical Review

    DEFF Research Database (Denmark)

    Raghavalu Thirumalai, Durai Prabhakaran

    2012-01-01

    Wind turbine industry is continuously evaluating material systems to replace the current thermoset composite technologies. Since turbine blades are the key component in the wind turbines and the size of the blade is increasing in today’s wind design, the material selection has become crucial...

  12. Analysis of turbine-grid interaction of grid-connected wind turbine using HHT

    Science.gov (United States)

    Chen, A.; Wu, W.; Miao, J.; Xie, D.

    2018-05-01

    This paper processes the output power of the grid-connected wind turbine with the denoising and extracting method based on Hilbert Huang transform (HHT) to discuss the turbine-grid interaction. At first, the detailed Empirical Mode Decomposition (EMD) and the Hilbert Transform (HT) are introduced. Then, on the premise of decomposing the output power of the grid-connected wind turbine into a series of Intrinsic Mode Functions (IMFs), energy ratio and power volatility are calculated to detect the unessential components. Meanwhile, combined with vibration function of turbine-grid interaction, data fitting of instantaneous amplitude and phase of each IMF is implemented to extract characteristic parameters of different interactions. Finally, utilizing measured data of actual parallel-operated wind turbines in China, this work accurately obtains the characteristic parameters of turbine-grid interaction of grid-connected wind turbine.

  13. Integrating Structural Health Management with Contingency Control for Wind Turbines

    Directory of Open Access Journals (Sweden)

    Kai Goebel

    2013-01-01

    Full Text Available Maximizing turbine up-time and reducing maintenance costs are key technology drivers for wind turbine operators. Components within wind turbines are subject to considerable stresses due to unpredictable environmental conditions resulting from rapidly changing local dynamics. In that context, systems health management has the aim to assess the state-of-health of components within a wind turbine, to estimate remaining life, and to aid in autonomous decision-making to minimize damage to the turbine. Advanced contingency control is one way to enable autonomous decision-making by providing the mechanism to enable safe and efficient turbine operation. The work reported herein explores the integration of condition monitoring of wind turbine blades with contingency control to balance the trade-offs between maintaining system health and energy capture. Results are demonstrated using a high fidelity simulator of a utility-scale wind turbine.

  14. Hydraulic Hybrid Vehicles

    Science.gov (United States)

    EPA and the United Parcel Service (UPS) have developed a hydraulic hybrid delivery vehicle to explore and demonstrate the environmental benefits of the hydraulic hybrid for urban pick-up and delivery fleets.

  15. Variable geometry gas turbines for improving the part-load performance of marine combined cycles - Gas turbine performance

    DEFF Research Database (Denmark)

    Haglind, Fredrik

    2010-01-01

    The part-load performance of gas and steam turbine combined cycles intended for naval use is of great importance, and it is influenced by the gas turbine configuration and load control strategy. This paper is aimed at quantifying the effects of variable geometry on the gas turbine part...... of various components within gas turbines. Two different gas turbine configurations are studied, a two-shaft aero-derivative configuration and a single-shaft industrial configuration. When both gas turbine configurations are running in part-load using fuel flow control, the results indicate better part......-load performance for the two-shaft gas turbine. Reducing the load this way is accompanied by a much larger decrease in exhaust gas temperature for the single-shaft gas turbine than for the two-shaft configuration. As used here, the results suggest that variable geometry generally deteriorates the gas turbine part...

  16. Analysis of Hydraulic Conductance Components in Field Grown, Mature Sweet Cherry Trees Análisis de los Componentes de Conductancia Hidráulica en Árboles Maduros de Cerezo Dulce en Condiciones de Campo

    Directory of Open Access Journals (Sweden)

    Ricardo Oyarzún

    2010-03-01

    Full Text Available As a necessary step towards understanding soil water extraction and plant water relationships, the components of hydraulic conductance (K of mature sweet cherry (Prunus avium L. trees were evaluated in situ based on a Ohm´s law analog method. In June 2004, K was determined for 10-yr-old ‘Bing’/‘Gisela® 5’ trees, from simultaneous measurements of whole canopy gas exchange and leaf (sunlit and shaded and stem water potentials (Ψ. Leaf water potential of sunlit leaves was lower than shaded leaves, reaching minimum values of ca. -2.3 MPa around 14:00 h (solar time. Average total hydraulic conductance was 60 ± 6 mmol s-1 MPa-1, presenting a slight decreasing trend as the season progressed. The analysis of tree K components showed that it was higher on the stem-leaf pathway (150 ± 50 mmol s-1 MPa-1, compared to the root-stem component (100 ± 20 mmol s-1 MPa-1, which is in agreement with literature reports for other fruit trees. A weak hysteresis pattern in the daily relationship between whole-canopy transpiration (weighted sunlit and shaded leaves vs. Ψ was observed, suggesting that water storage within the tree is not a significant component of sweet cherry water balance.Como un paso necesario para la comprensión de la extracción de agua desde el suelo y las relaciones suelo-agua-planta, los componentes de la conductancia hidráulica (K en árboles adultos de cerezo (Prunus avium L. fue evaluada in situ con un método basado en una analogía de la Ley de Ohm. En Junio de 2004, K fue determinada para árboles ‘Bing’/‘Gisela® 5’ de 10 años de edad, a partir de mediciones simultáneas de intercambio gaseoso del follaje en forma integrada y potenciales hídricos (Ψ de hojas individuales (soleadas y sombreadas y del xilema. Los potenciales hídricos de las hojas soleadas fueron menores que los de las hojas sombreadas, alcanzando valores mínimos de ca. -2.3 MPa alrededor de 14:00 h (hora solar. La conductancia hidr

  17. Jet array impingement flow distributions and heat transfer characteristics. Effects of initial crossflow and nonuniform array geometry. [gas turbine engine component cooling

    Science.gov (United States)

    Florschuetz, L. W.; Metzger, D. E.; Su, C. C.; Isoda, Y.; Tseng, H. H.

    1982-01-01

    Two-dimensional arrays of circular air jets impinging on a heat transfer surface parallel to the jet orifice plate are considered. The jet flow, after impingement, is constrained to exit in a single direction along the channel formed by the jet orifice plate and the heat transfer surface. The configurations considered are intended to model those of interest in current and contemplated gas turbine airfoil midchord cooling applications. The effects of an initial crossflow which approaches the array through an upstream extension of the channel are considered. Flow distributions as well as heat transfer coefficients and adiabatic wall temperatures resolved to one streamwise hole spacing were measured as a function of the initial crossflow rate and temperature relative to the jet flow rate and temperature. Both Nusselt number profiles and dimensionless adiabatic wall temperature (effectiveness) profiles are presented and discussed. Special test results which show a significant reduction of jet orifice discharge coefficients owing to the effect of a confined crossflow are also presented, along with a flow distribution model which incorporates those effects. A nonuniform array flow distribution model is developed and validated.

  18. REGENERATIVE GAS TURBINES WITH DIVIDED EXPANSION

    DEFF Research Database (Denmark)

    Elmegaard, Brian; Qvale, Einar Bjørn

    2004-01-01

    Recuperated gas turbines are currently drawing an increased attention due to the recent commercialization of micro gas turbines with recuperation. This system may reach a high efficiency even for the small units of less than 100 kW. In order to improve the economics of the plants, ways to improve...... their efficiency are always of interest. Recently, two independent studies have proposed recuperated gas turbines to be configured with the turbine expansion divided, in order to obtain higher efficiency. The idea is to operate the system with a gas generator and a power turbine, and use the gas from the gas...... divided expansion can be advantageous under certain circumstances. But, in order for todays micro gas turbines to be competitive, the thermodynamic efficiencies will have to be rather high. This requires that all component efficiencies including the recuperator effectiveness will have to be high...

  19. Expected load spectra of prototype Francis turbines in low-load operation using numerical simulations and site measurements

    Science.gov (United States)

    Eichhorn, M.; Taruffi, A.; Bauer, C.

    2017-04-01

    The operators of hydropower plants are forced to extend the existing operating ranges of their hydraulic machines to remain competitive on the energy market due to the rising amount of wind and solar power. Faster response times and a higher flexibility towards part- and low-load conditions enable a better electric grid control and assure therefore an economic operation of the power plant. The occurring disadvantage is a higher dynamic excitation of affected machine components, especially Francis turbine runners, due to pressure pulsations induced by unsteady flow phenomena (e.g. draft tube vortex ropes). Therefore, fatigue analysis becomes more important even in the design phase of the hydraulic machines to evaluate the static and dynamic load in different operating conditions and to reduce maintenance costs. An approach including a one-way coupled fluid-structure interaction has been already developed using unsteady CFD simulations and transient FEM computations. This is now applied on two Francis turbines with different specific speeds and power ranges, to obtain the load spectra of both machines. The results are compared to strain gauge measurements on the according Francis turbines to validate the overall procedure.

  20. Hydraulic loop: practices using open control systems

    International Nuclear Information System (INIS)

    Carrasco, J.A.; Alonso, L.; Sanchez, F.

    1998-01-01

    The Tecnatom Hydraulic Loop is a dynamic training platform. It has been designed with the purpose of improving the work in teams. With this system, the student can obtain a full scope vision of a system. The hydraulic Loop is a part of the Tecnatom Maintenance Centre. The first objective of the hydraulic Loop is the instruction in components, process and process control using open control system. All the personal of an electric power plant can be trained in the Hydraulic Loop with specific courses. The development of a dynamic tool for tests previous to plant installations has been an additional objective of the Hydraulic Loop. The use of this platform is complementary to the use of full-scope simulators in order to debug and to analyse advanced control strategies. (Author)

  1. Equipment for hydraulic testing

    International Nuclear Information System (INIS)

    Jacobsson, L.; Norlander, H.

    1981-07-01

    Hydraulic testing in boreholes is one major task of the hydrogeological program in the Stripa Project. A new testing equipment for this purpose was constructed. It consists of a downhole part and a surface part. The downhole part consists of two packers enclosing two test-sections when inflated; one between the packers and one between the bottom packer and the bottom of the borehole. A probe for downhole electronics is also included in the downhole equipment together with electrical cable and nylon tubing. In order to perform shut-in and pulse tests with high accuracy a surface controlled downhole valve was constructed. The surface equipment consists of the data acquisition system, transducer amplifier and surface gauges. In the report detailed descriptions of each component in the whole testing equipment are given. (Auth.)

  2. Cavitation instabilities in hydraulic machines

    International Nuclear Information System (INIS)

    Tsujimoto, Y

    2013-01-01

    Cavitation instabilities in hydraulic machines, hydro turbines and turbopump inducers, are reviewed focusing on the cause of instabilities. One-dimensional model of hydro turbine system shows that the overload surge is caused by the diffuser effect of the draft tube. Experiments show that this effect also causes the surge mode oscillations at part load. One dimensional model of a cavitating turbopump inducer shows that the mass flow gain factor, representing the cavity volume increase caused by the incidence angle increase is the cause of cavitation surge and rotating cavitation. Two dimensional model of a cavitating turbopump inducer shows that various modes of cavitation instabilities start to occur when the cavity length becomes about 65% of the blade spacing. This is caused by the interaction of the local flow near the cavity trailing edge with the leading edge of the next blade. It was shown by a 3D CFD that this is true also for real cases with tip cavitation. In all cases, it was shown that cavitation instabilities are caused by the fundamental characteristics of cavities that the cavity volume increases with the decrease of ambient pressure or the increase of the incidence angle

  3. MAINTAINANCE OF KAPLAN TURBINE TO ENHANCE THE EFFICIENCY

    OpenAIRE

    Mr. Shakti Prasanna Khadanga*; Nitish Kumar; Milind Kumar Singh; L. Raj Kumar

    2016-01-01

    Hydro power plant is the source of renewable energy which leads to reduction in burning of fossil fuels. So the environment is no longer polluted. This project depicts how sediment erosion occurs in Kaplan turbine and the various components of Kaplan turbine where actually erosion takes place. It reduces efficiency [7] and life of hydro power turbine but also causes problems in operations and maintenance. We conducted some necessary test on Kaplan turbine in fluid power laboratory. We are d...

  4. Experimental study of air delivery into water-conveyance system of the radial-axial turbine

    Science.gov (United States)

    Maslennikova, Alexandra; Platonov, Dmitry; Minakov, Andrey; Dekterev, Dmitry

    2017-10-01

    The paper presents an experimental study of oscillatory response in the Francis turbine of hydraulic unit. The experiment was performed on large-scale hydrodynamic test-bench with impeller diameter of 0.3 m. The effect of air injection on the intensity of pressure pulsations was studied at the maximum pressure pulsations in the hydraulic unit. It was revealed that air delivery into the water-conveyance system of the turbine results in almost two-fold reduction of pressure pulsations.

  5. Insight analysis of biplane Wells turbine performance

    International Nuclear Information System (INIS)

    Shaaban, S.

    2012-01-01

    Highlights: ► Downstream rotor reduces overall turbine efficiency during normal operation. ► Recirculation behind downstream rotor significantly reduces the torque delivered by the turbine. ► Upstream rotor significantly affects downstream rotor performance even at high gap to chord ratios. ► Downstream rotor produces only 10–30% of the turbine power despite its feasible exergy level. ► The downstream rotor significantly delays turbine start up. - Abstract: Wells turbines are very promising in converting wave energy. Improving the design and performance of Wells turbines requires deep understanding of the energy conversion process and losses mechanisms of these energy convertors. The performance of a biplane Wells turbine having 45° stagger angle between rotors is numerically investigated. The turbine performance is simulated by solving the steady 3D incompressible Reynolds Averaged Navier–Stocks equation (RANS). The present numerical investigation shows that the upstream rotor significantly affects the downstream rotor performance even at high gap-to-chord ratio (G/c = 1.4). The contribution of the downstream rotor in the overall biplane Wells turbine performance is limited. The downstream rotor torque represents 10–30% of the total turbine torque and the upstream rotor efficiency is 1.5–5 times the downstream rotor efficiency at normal operating conditions. Exergy analysis shows that the downstream rotor is the main component that reduces the turbine second law efficiency. The blade exergy increases from hub to tip and decreases from leading edge to trailing edge. Therefore, 3D blade profile optimization is essential for substantial improvement of the energy conversion process. Improving the design of the inter-rotors zone can significantly improve biplane Wells turbine performance. Future biplane Wells turbine designs should focus essentially on improving the downstream rotor performance.

  6. Noise immission from wind turbines

    International Nuclear Information System (INIS)

    1999-01-01

    The project has dealt with practical ways to reduce the influence of background noise caused by wind acting on the measuring microphones. The uncertainty of measured noise emission (source strength) has been investigated. The main activity was a Round Robin Test involving measurements by five laboratories at the same wind turbine. Each laboratory brought its own instrumentation and performed the measurements and analyses according to their interpretation. The tonality of wind turbine noise is an essential component of the noise impact on the environment. In the present project the uncertainty in the newest existing methods for assessing tonality was investigated. The project included noise propagation measurements in different weather conditions around wind turbines situated in different types of terrain. The results were used to validate a noise propagation model developed in the project. Finally, the project also included a study with listeners evaluating recordings of wind turbine noise. The results are intended as guidance for wind turbine manufacturers in identifying the aspects of wind turbine noise most important to annoyance. (author)

  7. The development of control systems for high power steam turbines

    International Nuclear Information System (INIS)

    Mathey, M.

    1983-01-01

    The functional and technological aspects of developments in the field of control systems for steam turbines over the last twenty years are analyzed. These developments have now culminated in very sophisticated systems which closely link electronics to high pressure hydraulic technology. A detailed description of these systeme high-lighting the high technical level of the control methods and the flexibility and reliability in service of turbines controlled in this way is given [fr

  8. Power Management in Mobile Hydraulic Applications - An Approach for Designing Hydraulic Power Supply Systems

    DEFF Research Database (Denmark)

    Pedersen, Henrik Clemmensen

    2004-01-01

    Throughout the last three decades energy consumption has become one of the primary design aspects in hydraulic systems, especially for mobile hydraulic systems, as power and cooling capacity here is at limited disposal. Considering the energy usage, this is dependent on component efficiency, but ...... the hydraulic power supply in the most energy efficient way, when considering a number of load situations. Finally an example of the approach is shown to prove its validity.}......Throughout the last three decades energy consumption has become one of the primary design aspects in hydraulic systems, especially for mobile hydraulic systems, as power and cooling capacity here is at limited disposal. Considering the energy usage, this is dependent on component efficiency...

  9. System control model of a turbine for a BWR

    International Nuclear Information System (INIS)

    Vargas O, Y.; Amador G, R.; Ortiz V, J.; Castillo D, R.; Delfin L, A.

    2009-10-01

    In this work is presented a design of a control system of a turbine for a nuclear power plant with a BWR like energy source. The model seeks to implement later on at thermal hydraulics code of better estimate RELAP/SCDAPSIM. The model is developed for control and protection of turbine, and the consequent protection to the BWR, considering that the turbine control could be employed for one or several turbines in series. The quality of present designs of control pattern of turbine it is that it considers the parameters more important in the operation of a turbine besides that is has incorporated at control the secondary parameters that will be activated originally as true when the turbine model is substituted by a model more detailed. The development of control model of a turbine will be good in short and medium term to realize analysis about the operation of turbine with different operation conditions, of vapor extraction specific steps of turbine to feed other equipment s, besides analyzing the separate effect and integrated effect. (Author)

  10. Logical model for the control of a BWR turbine

    International Nuclear Information System (INIS)

    Vargas O, Y.; Amador G, R.; Ortiz V, J.; Castillo D, R.

    2009-01-01

    In this work a design of a logical model is presented for the turbine control of a nuclear power plant with a BWR like energy source. The model is sought to implement later on inside the thermal hydraulics code of better estimate RELAP/SCDAPSIM. The logical model is developed for the control and protection of the turbine, and the consequent protection to the BWR, considering that the turbine control will be been able to use for one or several turbines in series. The quality of the present design of the logical model of the turbine control is that it considers the most important parameters in the operation of a turbine, besides that they have incorporated to the logical model the secondary parameters that will be activated originally as true when the turbine model is substituted by a detailed model. The development of the logical model of a turbine will be of utility in the short and medium term to carry out analysis on the turbine operation with different operation conditions, of vapor extraction, specific steps of the turbine to feed other equipment s, in addition to analyze the separate and the integrated effect. (Author)

  11. Stationary Engineers Apprenticeship. Related Training Modules. 15.1-15.5 Turbines.

    Science.gov (United States)

    Lane Community Coll., Eugene, OR.

    This learning module, one in a series of 20 related training modules for apprentice stationary engineers, deals with turbines. addressed in the individual instructional packages included in the module are the following topics: types and components of steam turbines, steam turbine auxiliaries, operation and maintenance of steam turbines, and gas…

  12. Millwright Apprenticeship. Related Training Modules. 8.1-8.5 Turbines.

    Science.gov (United States)

    Lane Community Coll., Eugene, OR.

    This packet, part of the instructional materials for the Oregon apprenticeship program for millwright training, contains five modules covering turbines. The modules provide information on the following topics: types, components, and auxiliaries of steam turbines; operation and maintenance of steam turbines; and gas turbines. Each module consists…

  13. Experimental thermal hydraulics in support of FBR

    International Nuclear Information System (INIS)

    Padmakumar, G.; Anand Babu, C.; Kalyanasundaram, P.; Vaidyanathan, G.

    2009-01-01

    The thermal hydraulic design plays a crucial role for the safe and economical deployment of Liquid Metal Cooled Fast Breeder Reactor (LMFBR). Robust experimental programmes are required in support of LMFBR thermal hydraulics design. The philosophy of testing has been to construct small scale models to understand the physical behaviour and to build larger scale models to optimize the component design. The experiments are conducted either in sodium or using a simulant like water/air. The paper gives a brief account of the various thermal hydraulic experiments carried out in support of the design of Prototype Fast Breeder Reactor (PFBR). (author)

  14. Turbine stage model

    International Nuclear Information System (INIS)

    Kazantsev, A.A.

    2009-01-01

    A model of turbine stage for calculations of NPP turbine department dynamics in real time was developed. The simulation results were compared with manufacturer calculations for NPP low-speed and fast turbines. The comparison results have shown that the model is valid for real time simulation of all modes of turbines operation. The model allows calculating turbine stage parameters with 1% accuracy. It was shown that the developed turbine stage model meets the accuracy requirements if the data of turbine blades setting angles for all turbine stages are available [ru

  15. Hydraulics and pneumatics a technician's and engineer's guide

    CERN Document Server

    Parr, Andrew

    1991-01-01

    Hydraulics and Pneumatics: A Technician's and Engineer's Guide provides an introduction to the components and operation of a hydraulic or pneumatic system. This book discusses the main advantages and disadvantages of pneumatic or hydraulic systems.Organized into eight chapters, this book begins with an overview of industrial prime movers. This text then examines the three different types of positive displacement pump used in hydraulic systems, namely, gear pumps, vane pumps, and piston pumps. Other chapters consider the pressure in a hydraulic system, which can be quickly and easily controlled

  16. HVOF Thermal Spray TiC/TiB2 Coatings for AUSC Boiler/Turbine Components for Enhanced Corrosion Protection

    Energy Technology Data Exchange (ETDEWEB)

    Mondal, Kanchan [Southern Illinois Univ., Carbondale, IL (United States). Dept. of Mechanical Engineering and Energy Processes; Koc, Rasit [Southern Illinois Univ., Carbondale, IL (United States). Dept. of Mechanical Engineering and Energy Processes; Fan, Chinbay [Gas Technology Inst., Des Plaines, IL (United States)

    2016-12-07

    The high temperatures of operations still pose significant risk of degradation and fatigue from oxidizing, corroding and eroding environment. In addition to unused O2, water from combustion and SOx from the coal sulfur oxidation that result in highly corrosive environment, acid gases such as HCl and other sulfur compounds may also be present. These adverse effects are further accelerated due to the elevated temperatures. In addition, ash particulates and unburnt carbon and pyritic sulfur can cause erosion of the surface and thus loss of material. Unburnt carbon and pyritic sulfur may also cause localized reduction sites. Thus, fireside corrosion protection and steam oxidation protection alternatives to currently used Ni-Cr overlays need to be identified and evaluated. Titanium carbide (TiC) is a suitable alternative on account of the material features such as the high hardness, the high melting point, the high strength and the low density for the substitution or to be used in conjunction with NiCr for enhancing the fireside corrosion and erosion of the materials. Another alternative is the use of titanium boride as a coating for chemical stability required for long-term service and high erosion resistance over the state-of-the-art, high fracture toughness (K1C ~12 MPam1/2) and excellent corrosion resistance (kp~1.9X10-11 g2/cm4/s at 800°C in air). The overarching aim of the research endeavor was to synthesize oxidation, corrosion and wear resistant TiC and TiB2 coating powders, apply thermal spray coating on existing boiler materials and characterize the coated substrates for corrosion resistance for applications at high temperatures (500 -750 °C) and high pressures (~350 bars) using the HVOF process and to demonstrate the feasibility of these coating to be used in AUSC boilers and turbines.

  17. Numerical prediction of a bulb turbine performance hill chart through RANS simulations

    International Nuclear Information System (INIS)

    Guénette, V; Houde, S; Ciocan, G D; Deschênes, C; Dumas, G; Huang, J

    2012-01-01

    Within the framework of an international research consortium on low-head hydraulic turbine flow dynamics, the predictive behavior of Reynolds Averaged Navier-Stokes (RANS) simulations of the efficiency (η) hill chart of a bulb turbine is investigated. The paper presents the impacts of the blade tip gap and the hub gaps on performance predictions.

  18. Airfoil seal system for gas turbine engine

    Science.gov (United States)

    None, None

    2013-06-25

    A turbine airfoil seal system of a turbine engine having a seal base with a plurality of seal strips extending therefrom for sealing gaps between rotational airfoils and adjacent stationary components. The seal strips may overlap each other and may be generally aligned with each other. The seal strips may flex during operation to further reduce the gap between the rotational airfoils and adjacent stationary components.

  19. Trends in Wind Turbine Generator Systems

    DEFF Research Database (Denmark)

    Polinder, Henk; Ferreira, Jan Abraham; Jensen, Bogi Bech

    2013-01-01

    This paper reviews the trends in wind turbine generator systems. After discussing some important requirements and basic relations, it describes the currently used systems: the constant speed system with squirrel-cage induction generator, and the three variable speed systems with doubly fed...... induction generator (DFIG), with gearbox and fully rated converter, and direct drive (DD). Then, possible future generator systems are reviewed. Hydraulic transmissions are significantly lighter than gearboxes and enable continuously variable transmission, but their efficiency is lower. A brushless DFIG...

  20. Researches regarding primary control in hydraulic systems

    Directory of Open Access Journals (Sweden)

    Tița Irina

    2017-01-01

    Full Text Available The technology in wind turbines has developed very rapidly but there are still a lot that can be improved also regarding new technologies. One example is wind turbine with hydraulic transmission. At the beginning low power wind turbines are in view. First of all the wind energy is meant to be used by isolated users for household and garden equipment or pumping water. Later, if results will be as expected, and wind potential satisfactory, such systems could be connected to electric grid. In our research laboratory we must build an experimental setup. The simulation for wind turbine and fixed displacement pump coupled to it will be realized using a variable displacement piston pump. As the variable wind speed has as a result variations of the pump flow, the variable displacement pump from the test rig may reproduce a similar variation law. In this paper some aspects regarding the variable displacement pump are detailed. This study is necessary for the future development of the research.

  1. Life expectancy, adapted technology and cold climate conditions : key issues for wind turbines in Canada; Duree de vie, adaptation technologique et conditions froides : un enjeu majeur pour les eoliennes au Canada

    Energy Technology Data Exchange (ETDEWEB)

    Chaumel, J.L.; Nanta, R. [Quebec Univ., Rimouski, PQ (Canada); Golbeck, P. [Peter Golbeck Consultant, Rimouski, PQ (Canada)

    2007-07-01

    This presentation discussed the service life of wind turbines, particularly those operating in cold climates. A map of Quebec was included to indicate the potential sites for an additional 450 MW of wind energy capacity for northern Quebec, near James Bay. Different types of wind turbines were described in terms of their size and power, including those without transformers. It was noted that a 30 per cent growth in the wind power industry is anticipated annually. However, there is currently a lack of wind turbines. A 2 MW wind turbine costs $3 million and major reinvestment is needed after 10 years of service life due to component wear. It was noted that a gear box lasts less than 15 years and other generator components also require maintenance. The primary reasons for increased risk and cost include equipment failures due to component fatigue, cold weather operation, lack of maintenance and bad design for winter conditions. The components affected by failures include gearboxes, generators, pitch controls, and hydraulics. Since the industry is relatively new, there are no replacement parts available for these components and cranage costs are high. In addition, since Canada's entry into the wind industry is also relatively new, there is a lack of machine testing in Canada as well as a lack of understanding of energy capacity and the effects of cold weather. Overproduction also occurs frequently. tabs., figs.

  2. Biological assessment of the advanced turbine design at Wanapum Dam, 2005

    Energy Technology Data Exchange (ETDEWEB)

    Dauble, D. D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Deng, Z. D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Richmond, M. C. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Moursund, R. A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Carlson, T. J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Rakowski, C. L. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Duncan, J. P. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2007-08-01

    Three studies were conducted to evaluate the biological performance of an advanced design turbine installed at Unit 8 of Wanapum Dam on the Columbia River in 2005 versus a conventional Kaplan turbine, Unit 9. The studies included an evaluation of blade-strike using deterministic and probabilistic models, integrated analysis of the response of the Sensor Fish to sever hydraulic events within the turbine system, and a novel dye technique to measure injury to juvenile salmonids in the field.

  3. Prediction of Francis Turbine Prototype Part Load Pressure and Output Power Fluctuations with Hydroelectric Model

    Science.gov (United States)

    Alligné, S.; Nicolet, C.; Béguin, A.; Landry, C.; Gomes, J.; Avellan, F.

    2017-04-01

    The prediction of pressure and output power fluctuations amplitudes on Francis turbine prototype is a challenge for hydro-equipment industry since it is subjected to guarantees to ensure smooth and reliable operation of the hydro units. The European FP7 research project Hyperbole aims to setup a methodology to transpose the pressure fluctuations induced by the cavitation vortex rope from the reduced scale model to the prototype generating units. A Francis turbine unit of 444MW with a specific speed value of ν = 0.29, is considered as case study. A SIMSEN model of the power station including electrical system, controllers, rotating train and hydraulic system with transposed draft tube excitation sources is setup. Based on this model, a frequency analysis of the hydroelectric system is performed for all technologies to analyse potential interactions between hydraulic excitation sources and electrical components. Three technologies have been compared: the classical fixed speed configuration with Synchronous Machine (SM) and the two variable speed technologies which are Doubly Fed Induction Machine (DFIM) and Full Size Frequency Converter (FSFC).

  4. Transient CFD simulation of a Francis turbine startup

    International Nuclear Information System (INIS)

    Nicolle, J; Morissette, J F; Giroux, A M

    2012-01-01

    To assess the life expectancy of hydraulic turbines, it is essential to obtain the loading on the blades, especially during transient operations known to be the most damaging. This paper presents a simplified CFD setup to model the startup phase of a Francis turbine while it goes from rest to speed no-load condition. The fluid domain included one distributor sector coupled with one runner passage. The guide vane motion and change in the angular velocity were included in a commercial code with user functions. Comparisons between numerical results and measurements acquired on a full-size turbine showed that most of the flow physics occurring during startup were captured.

  5. Ceramic Parts for Turbines

    Science.gov (United States)

    Jones, R. D.; Carpenter, Harry W.; Tellier, Jim; Rollins, Clark; Stormo, Jerry

    1987-01-01

    Abilities of ceramics to serve as turbine blades, stator vanes, and other elements in hot-gas flow of rocket engines discussed in report. Ceramics prime candidates, because of resistance to heat, low density, and tolerance of hostile environments. Ceramics considered in report are silicon nitride, silicon carbide, and new generation of such ceramic composites as transformation-toughened zirconia and alumina and particulate- or whisker-reinforced matrices. Report predicts properly designed ceramic components viable in advanced high-temperature rocket engines and recommends future work.

  6. Reliability Modeling of Wind Turbines

    DEFF Research Database (Denmark)

    Kostandyan, Erik

    Cost reductions for offshore wind turbines are a substantial requirement in order to make offshore wind energy more competitive compared to other energy supply methods. During the 20 – 25 years of wind turbines useful life, Operation & Maintenance costs are typically estimated to be a quarter...... and uncertainties are quantified. Further, estimation of annual failure probability for structural components taking into account possible faults in electrical or mechanical systems is considered. For a representative structural failure mode, a probabilistic model is developed that incorporates grid loss failures...

  7. Reliability of wind turbine blades: An overview of materials testing

    DEFF Research Database (Denmark)

    Holmes, John W.; Sørensen, Bent F.; Brøndsted, Povl

    2007-01-01

    an understanding of how damage develops in composite structures, composite materials and adhesives. Designing reliable wind turbine blades also requires the further development of laboratory scale and full scale test methods to evaluate the structural response and durability of new materials under various loading......The structural reliability of wind turbine components can have a profound impact on both the profitability and reputation of a wind turbine manufacturer or supplier of wind turbine components. The issue of reliability is of critical concern when large wind farm co-operatives are considered......, and when wind turbines are located in remote regions where the cost of inspections and repairs can be very high. From a structural viewpoint, wind turbine blades are subjected to very complex loading histories with coupled deformation modes. The long-term reliability of wind turbine blades requires...

  8. General characteristics and technical subjects on helium closed cycle gas turbine

    International Nuclear Information System (INIS)

    Shimomura, Hiroaki

    1996-06-01

    Making the subjects clarified on nuclear-heated gas turbine that will apply the inherent features of HTGR, the present paper discusses the difference of the helium closed cycle gas turbine, which is a candidate of nuclear gas turbine, with the open cycle gas turbine and indicates inherent problems of closed cycle gas turbine, its effects onto thermal efficiency and turbine output and difficulties due to the pressure ratio and specific speed from use of helium. The paper also discusses effects of the external pressure losses onto the efficiencies of compressor and turbine that are major components of the gas turbine. According to the discussions above, the paper concludes indicating the key idea on heat exchangers for the closed cycle gas turbine and design basis to solve the problems and finally offers new gas turbine conception using nitrogen or air that is changeable into open cycle gas turbine. (author)

  9. Structural integrity analysis of a steam turbine

    International Nuclear Information System (INIS)

    Villagarcia, Maria P.

    1997-01-01

    One of the most critical components of a power utility is the rotor of the steam turbine. Catastrophic failures of the last decades have promoted the development of life assessment procedures for rotors. The present study requires the knowledge of operating conditions, component geometry, the properties of materials, history of the component, size, location and nature of the existing flaws. The aim of the present work is the obtention of a structural integrity analysis procedure for a steam turbine rotor, taking into account the above-mentioned parameters. In this procedure, a stress thermal analysis by finite elements is performed initially, in order to obtain the temperature and stress distribution for a subsequent analysis by fracture mechanics. The risk of a fast fracture due to flaws in the central zone of the rotor is analyzed. The procedure is applied to an operating turbine: the main steam turbine of the Atucha I nuclear power utility. (author)

  10. Turbine main engines

    CERN Document Server

    Main, John B; Herbert, C W; Bennett, A J S

    1965-01-01

    Turbine Main Engines deals with the principle of operation of turbine main engines. Topics covered include practical considerations that affect turbine design and efficiency; steam turbine rotors, blades, nozzles, and diaphragms; lubricating oil systems; and gas turbines for use with nuclear reactors. Gas turbines for naval boost propulsion, merchant ship propulsion, and naval main propulsion are also considered. This book is divided into three parts and begins with an overview of the basic mode of operation of the steam turbine engine and how it converts the pressure energy of the ingoing ste

  11. 14 CFR 33.91 - Engine system and component tests.

    Science.gov (United States)

    2010-01-01

    ... AIRWORTHINESS STANDARDS: AIRCRAFT ENGINES Block Tests; Turbine Aircraft Engines § 33.91 Engine system and..., reliability, and durability. (c) Each unpressurized hydraulic fluid tank may not fail or leak when subjected... hydraulic fluid tank must meet the requirements of § 33.64. (d) For an engine type certificated for use in...

  12. Reliability Modeling of Wind Turbines

    DEFF Research Database (Denmark)

    Kostandyan, Erik

    Cost reductions for offshore wind turbines are a substantial requirement in order to make offshore wind energy more competitive compared to other energy supply methods. During the 20 – 25 years of wind turbines useful life, Operation & Maintenance costs are typically estimated to be a quarter...... for Operation & Maintenance planning. Concentrating efforts on development of such models, this research is focused on reliability modeling of Wind Turbine critical subsystems (especially the power converter system). For reliability assessment of these components, structural reliability methods are applied...... to one third of the total cost of energy. Reduction of Operation & Maintenance costs will result in significant cost savings and result in cheaper electricity production. Operation & Maintenance processes mainly involve actions related to replacements or repair. Identifying the right times when...

  13. Turbine system and adapter

    Science.gov (United States)

    Hogberg, Nicholas Alvin; Garcia-Crespo, Andres Jose

    2017-05-30

    A turbine system and adapter are disclosed. The adapter includes a turbine attachment portion having a first geometry arranged to receive a corresponding geometry of a wheelpost of a turbine rotor, and a bucket attachment portion having a second geometry arranged to receive a corresponding geometry of a root portion of a non-metallic turbine bucket. Another adapter includes a turbine attachment portion arranged to receive a plurality of wheelposts of a turbine rotor, and a bucket attachment portion arranged to receive a plurality of non-metallic turbine buckets having single dovetail configuration root portions. The turbine system includes a turbine rotor wheel configured to receive metal buckets, at least one adapter secured to at least one wheelpost on the turbine rotor wheel, and at least one non-metallic bucket secured to the at least one adapter.

  14. Technology of turbine plant operating with wet steam

    International Nuclear Information System (INIS)

    1989-01-01

    The technology of turbine plant operating with wet steam is a subject of continuing interest and importance, notably in view of the widespread use of wet steam cycles in nuclear power plants and the recent developments of advanced low pressure blading for both conventional and wet steam turbines. The nature of water formation in expanding steam has an important influence on the efficiency of turbine blading and on the integrity and safe operating life of blading and associated turbine and plant components. The subjects covered in this book include research, flow analysis and measurement, development and design of turbines and ancillary plant, selection of materials of construction, manufacturing methods and operating experience. (author)

  15. Dynamic stresses in a Francis model turbine at deep part load

    Science.gov (United States)

    Weber, Wilhelm; von Locquenghien, Florian; Conrad, Philipp; Koutnik, Jiri

    2017-04-01

    A comparison between numerically obtained dynamic stresses in a Francis model turbine at deep part load with experimental ones is presented. Due to the change in the electrical power mix to more content of new renewable energy sources, Francis turbines are forced to operate at deep part load in order to compensate stochastic nature of wind and solar power and to ensure grid stability. For the extension of the operating range towards deep part load improved understanding of the harsh flow conditions and their impact on material fatigue of hydraulic components is required in order to ensure long life time of the power unit. In this paper pressure loads on a model turbine runner from unsteady two-phase computational fluid dynamics simulation at deep part load are used for calculation of mechanical stresses by finite element analysis. Therewith, stress distribution over time is determined. Since only few runner rotations are simulated due to enormous numerical cost, more effort has to be spent to evaluation procedure in order to obtain objective results. By comparing the numerical results with measured strains accuracy of the whole simulation procedure is verified.

  16. Numerical investigation of the air injection effect on the cavitating flow in Francis hydro turbine

    Science.gov (United States)

    Chirkov, D. V.; Shcherbakov, P. K.; Cherny, S. G.; Skorospelov, V. A.; Turuk, P. A.

    2017-09-01

    At full and over load operating points, some Francis turbines experience strong self-excited pressure and power oscillations. These oscillations are occuring due to the hydrodynamic instability of the cavitating fluid flow. In many cases, the amplitude of such pulsations may be reduced substantially during the turbine operation by the air injection/ admission below the runner. Such an effect is investigated numerically in the present work. To this end, the hybrid one-three-dimensional model of the flow of the mixture "liquid-vapor" in the duct of a hydroelectric power station, which was proposed previously by the present authors, is augmented by the second gaseous component — the noncondensable air. The boundary conditions and the numerical method for solving the equations of the model are described. To check the accuracy of computing the interface "liquid-gas", the numerical method was applied at first for solving the dam break problem. The algorithm was then used for modeling the flow in a hydraulic turbine with air injection below the runner. It is shown that with increasing flow rate of the injected air, the amplitude of pressure pulsations decreases. The mechanism of the flow structure alteration in the draft tube cone has been elucidated, which leads to flow stabilization at air injection.

  17. The AGT 101 advanced automotive gas turbine

    Science.gov (United States)

    Rackley, R. A.; Kidwell, J. R.

    1982-01-01

    A development program is described whose goal is the accumulation of the technology base needed by the U.S. automotive industry for the production of automotive gas turbine powertrains. Such gas turbine designs must exhibit reduced fuel consumption, a multi-fuel capability, and low exhaust emissions. The AGT101 powertrain described is a 74.6 kW, regenerated single-shaft gas turbine, operating at a maximum inlet temperature of 1644 K and coupled to a split differential gearbox and automatic overdrive transmission. The engine's single stage centrifugal compressor and single stage radial inflow turbine are mounted on a common shaft, and will operate at a maximum rotor speed of 100,000 rpm. All high temperature components, including the turbine rotor, are ceramic.

  18. The main features of control and operation of steam turbines at nuclear power plants

    International Nuclear Information System (INIS)

    Czinkoczky, B.

    1981-01-01

    The output and speed control of steam turbines at nuclear power plants as well as the combination of both controls are reviewed and evaluated. At the same time the tasks of unit control at nuclear power plants, the control of steady main steam pressure and medium pressure of primary circuit, further the connection of reactor and turbine controls and the self-controlling properties of pressurized water reactor are dealt with. Hydraulic and electro-hydraulic speed control, the connection of cach-up dampers and speed control and the application of electro-hydraulic signal converters are discussed. The accomplishment of protection is also described. (author)

  19. Simulating Collisions for Hydrokinetic Turbines

    Energy Technology Data Exchange (ETDEWEB)

    Richmond, Marshall C.; Romero Gomez, Pedro DJ; Rakowski, Cynthia L.

    2013-10-01

    Evaluations of blade-strike on an axial-flow Marine Hydrokinetic turbine were conducted using a conventional methodology as well as an alternative modeling approach proposed in the present document. The proposed methodology integrates the following components into a Computa- tional Fluid Dynamics (CFD) model: (i) advanced eddy-resolving flow simulations, (ii) ambient turbulence based on field data, (iii) moving turbine blades in highly transient flows, and (iv) Lagrangian particles to mimic the potential fish pathways. The sensitivity of blade-strike prob- ability to the following conditions was also evaluated: (i) to the turbulent environment, (ii) to fish size and (iii) to mean stream flow velocity. The proposed methodology provided fraction of collisions and offered the capability of analyzing the causal relationships between the flow envi- ronment and resulting strikes on rotating blades. Overall, the conventional methodology largely overestimates the probability of strike, and lacks the ability to produce potential fish and aquatic biota trajectories as they interact with the rotating turbine. By using a set of experimental corre- lations of exposure-response of living fish colliding on moving blades, the occurrence, frequency and intensity of the particle collisions was next used to calculate the survival rate of fish crossing the MHK turbine. This step indicated survival rates always greater than 98%. Although the proposed CFD framework is computationally more expensive, it provides the advantage of evaluating multiple mechanisms of stress and injury of hydrokinetic turbine devices on fish.

  20. HIGH EFFICIENCY TURBINE

    OpenAIRE

    VARMA, VIJAYA KRUSHNA

    2012-01-01

    Varma designed ultra modern and high efficiency turbines which can use gas, steam or fuels as feed to produce electricity or mechanical work for wide range of usages and applications in industries or at work sites. Varma turbine engines can be used in all types of vehicles. These turbines can also be used in aircraft, ships, battle tanks, dredgers, mining equipment, earth moving machines etc, Salient features of Varma Turbines. 1. Varma turbines are simple in design, easy to manufac...

  1. Small-scale hydro power: from theory to practice - 15 international manufacturers implement MHyLab hydraulic profiles; Petite hydroelectricite: de la theorie a la pratique. 15 constucteurs internationaux ont recours aux profils hydrauliques de MHyLab

    Energy Technology Data Exchange (ETDEWEB)

    Denis, V. [MHyLab, Montcherand (Switzerland)

    2010-07-01

    This article takes a look at MHyLab, the Research and Development Laboratory for Small-scale Hydropower Turbines in Montcherand, Switzerland. Founded in 1996 this laboratory develops tailored hydraulic turbines for small-scale hydro power plants. Three types of turbines were modeled and tested on MHyLab test rig: Pelton turbines for hydraulic heads between 60 and 700 m; axial turbines of the Kaplan type for 1 to 30 m heads; diagonal turbines for 25 to 100 m heads. Up to 2010, 15 manufacturers from Switzerland, France, Germany, New Zealand and Japan have used hydraulic profiles developed by MHyLab. 70 turbines have been manufactured and installed, the total power of which is about 38 MW. Their total annual production is estimated to 189 GWh. The illustrated article describes the methodology followed by MHyLab and some of its realisations in Switzerland and Jordan.

  2. Thermally Actuated Hydraulic Pumps

    Science.gov (United States)

    Jones, Jack; Ross, Ronald; Chao, Yi

    2008-01-01

    Thermally actuated hydraulic pumps have been proposed for diverse applications in which direct electrical or mechanical actuation is undesirable and the relative slowness of thermal actuation can be tolerated. The proposed pumps would not contain any sliding (wearing) parts in their compressors and, hence, could have long operational lifetimes. The basic principle of a pump according to the proposal is to utilize the thermal expansion and contraction of a wax or other phase-change material in contact with a hydraulic fluid in a rigid chamber. Heating the chamber and its contents from below to above the melting temperature of the phase-change material would cause the material to expand significantly, thus causing a substantial increase in hydraulic pressure and/or a substantial displacement of hydraulic fluid out of the chamber. Similarly, cooling the chamber and its contents from above to below the melting temperature of the phase-change material would cause the material to contract significantly, thus causing a substantial decrease in hydraulic pressure and/or a substantial displacement of hydraulic fluid into the chamber. The displacement of the hydraulic fluid could be used to drive a piston. The figure illustrates a simple example of a hydraulic jack driven by a thermally actuated hydraulic pump. The pump chamber would be a cylinder containing encapsulated wax pellets and containing radial fins to facilitate transfer of heat to and from the wax. The plastic encapsulation would serve as an oil/wax barrier and the remaining interior space could be filled with hydraulic oil. A filter would retain the encapsulated wax particles in the pump chamber while allowing the hydraulic oil to flow into and out of the chamber. In one important class of potential applications, thermally actuated hydraulic pumps, exploiting vertical ocean temperature gradients for heating and cooling as needed, would be used to vary hydraulic pressures to control buoyancy in undersea research

  3. Advanced coal-fueled gas turbine systems

    Energy Technology Data Exchange (ETDEWEB)

    Wenglarz, R.A.

    1994-08-01

    Several technology advances since the early coal-fueled turbine programs that address technical issues of coal as a turbine fuel have been developed in the early 1980s: Coal-water suspensions as fuel form, improved methods for removing ash and contaminants from coal, staged combustion for reducing NO{sub x} emissions from fuel-bound nitrogen, and greater understanding of deposition/erosion/corrosion and their control. Several Advanced Coal-Fueled Gas Turbine Systems programs were awarded to gas turbine manufacturers for for components development and proof of concept tests; one of these was Allison. Tests were conducted in a subscale coal combustion facility and a full-scale facility operating a coal combustor sized to the Allison Model 501-K industrial turbine. A rich-quench-lean (RQL), low nitrogen oxide combustor design incorporating hot gas cleanup was developed for coal fuels; this should also be applicable to biomass, etc. The combustor tests showed NO{sub x} and CO emissions {le} levels for turbines operating with natural gas. Water washing of vanes from the turbine removed the deposits. Systems and economic evaluations identified two possible applications for RQL turbines: Cogeneration plants based on Allison 501-K turbine (output 3.7 MW(e), 23,000 lbs/hr steam) and combined cycle power plants based on 50 MW or larger gas turbines. Coal-fueled cogeneration plant configurations were defined and evaluated for site specific factors. A coal-fueled turbine combined cycle plant design was identified which is simple, compact, and results in lower capital cost, with comparable efficiency and low emissions relative to other coal technologies (gasification, advanced PFBC).

  4. Dynamic behaviour of pump-turbine runner: From disk to prototype runner

    International Nuclear Information System (INIS)

    Huang, X X; Egusquiza, E; Valero, C; Presas, A

    2013-01-01

    In recent decades, in order to increase output power of hydroelectric turbomachinery, the design head and the flow rate of the hydraulic turbines have been increased greatly. This has led to serious vibratory problems. The pump-turbines have to work at various operation conditions to satisfy the requirements of the power grid. However, larger hydraulic forces will result in high vibration levels on the turbines, especially, when the machines operate at off-design conditions. Due to the economic considerations, the pump-turbines are built as light as possible, which will change the dynamic response of the structures. According to industrial cases, the fatigue damage of the pump-turbine runner induced by hydraulic dynamic forces usually happens on the outer edge of the crown, which is near the leading edges of blades. To better understand the reasons for this kind of fatigue, it is extremely important to investigate the dynamic response behaviour of the hydraulic turbine, especially the runner, by experimental measurement and numerical simulation. The pump-turbine runner has a similar dynamic response behaviour of the circular disk. Therefore, in this paper the dynamic response analyses for circular disks with different dimensions and disk-blades-disk structures were carried out to better understand the fundamental dynamic behaviour for the complex turbomachinery. The influences of the pattern and number of blades were discussed in detail

  5. Digital switched hydraulics

    Science.gov (United States)

    Pan, Min; Plummer, Andrew

    2018-06-01

    This paper reviews recent developments in digital switched hydraulics particularly the switched inertance hydraulic systems (SIHSs). The performance of SIHSs is presented in brief with a discussion of several possible configurations and control strategies. The soft switching technology and high-speed switching valve design techniques are discussed. Challenges and recommendations are given based on the current research achievements.

  6. Hydraulic Structures : Caissons

    NARCIS (Netherlands)

    Voorendt, M.Z.; Molenaar, W.F.; Bezuyen, K.G.

    These lecture notes on caissons are part of the study material belonging to the course 'Hydraulic Structures 1' (code CTB3355), part of the Bachelor of Science education and the Hydraulic Engineering track of the Master of Science education for civil engineering students at Delft University of

  7. Probability and containment of turbine missiles

    International Nuclear Information System (INIS)

    Yeh, G.C.K.

    1976-01-01

    With the trend toward ever larger power generating plants with large high-speed turbines, an important plant design consideration is the potential for and consequences of mechanical failure of turbine rotors. Such rotor failure could result in high-velocity disc fragments (turbine missiles) perforating the turbine casing and jeopardizing vital plant systems. The designer must first estimate the probability of any turbine missile damaging any safety-related plant component for his turbine and his plant arrangement. If the probability is not low enough to be acceptable to the regulatory agency, he must design a shield to contain the postulated turbine missiles. Alternatively, the shield could be designed to retard (to reduce the velocity of) the missiles such that they would not damage any vital plant system. In this paper, some of the presently available references that can be used to evaluate the probability, containment and retardation of turbine missiles are reviewed; various alternative methods are compared; and subjects for future research are recommended. (Auth.)

  8. Verification of CTF/PARCSv3.2 coupled code in a Turbine Trip scenario

    International Nuclear Information System (INIS)

    Abarca, A.; Hidalga, P.; Miro, R.; Verdu, G.; Sekhri, A.

    2017-01-01

    Multiphysics codes had revealed as a best-estimate approach to simulate core behavior in LWR. Coupled neutronics and thermal-hydraulics codes are being used and improved to achieve reliable results for reactor safety transient analysis. The implementation of the feedback procedure between the coupled codes at each time step allows a more accurate simulation and a better prediction of the safety limits of analyzed scenarios. With the objective of testing the recently developed CTF/PARCSv3.2 coupled code, a code-to-code verification against TRACE has been developed in a BWR Turbine Trip scenario. CTF is a thermal-hydraulic subchannel code that features two-fluid, three-field representation of the two-phase flow, while PARCS code solves the neutronic diffusion equation in a 3D nodal distribution. PARCS features allow as well the use of extended sets of cross section libraries for a more precise neutronic performance in different formats like PMAX or NEMTAB. Using this option the neutronic core composition of KKL will be made taking advantage of the core follow database. The results of the simulation will be verified against TRACE results. TRACE will be used as a reference code for the validation process since it has been a recommended code by the USNRC. The model used for TRACE includes a full core plus relevant components such as the steam lines and the valves affecting and controlling the turbine trip evolution. The coupled code performance has been evaluated using the Turbine Trip event that took place in Kern Kraftwerk Leibstadt (KKL), at the fuel cycle 18. KKL is a Nuclear Power Plant (NPP) located in Leibstadt, Switzerland. This NPP operates with a BWR developing 3600 MWt in fuel cycles of one year. The Turbine Trip is a fast transient developing a pressure peak in the reactor followed by a power decreasing due to the selected control rod insertion. This kind of transient is very useful to check the feedback performance between both coupled codes due to the fast

  9. Vibration of hydraulic machinery

    CERN Document Server

    Wu, Yulin; Liu, Shuhong; Dou, Hua-Shu; Qian, Zhongdong

    2013-01-01

    Vibration of Hydraulic Machinery deals with the vibration problem which has significant influence on the safety and reliable operation of hydraulic machinery. It provides new achievements and the latest developments in these areas, even in the basic areas of this subject. The present book covers the fundamentals of mechanical vibration and rotordynamics as well as their main numerical models and analysis methods for the vibration prediction. The mechanical and hydraulic excitations to the vibration are analyzed, and the pressure fluctuations induced by the unsteady turbulent flow is predicted in order to obtain the unsteady loads. This book also discusses the loads, constraint conditions and the elastic and damping characters of the mechanical system, the structure dynamic analysis, the rotor dynamic analysis and the system instability of hydraulic machines, including the illustration of monitoring system for the instability and the vibration in hydraulic units. All the problems are necessary for vibration pr...

  10. Hydraulic release oil tool

    International Nuclear Information System (INIS)

    Mims, M.G.; Mueller, M.D.; Ehlinger, J.C.

    1992-01-01

    This patent describes a hydraulic release tool. It comprises a setting assembly; a coupling member for coupling to drill string or petroleum production components, the coupling member being a plurality of sockets for receiving the dogs in the extended position and attaching the coupling member the setting assembly; whereby the setting assembly couples to the coupling member by engagement of the dogs in the sockets of releases from and disengages the coupling member in movement of the piston from its setting to its reposition in response to a pressure in the body in exceeding the predetermined pressure; and a relief port from outside the body into its bore and means to prevent communication between the relief port and the bore of the body axially of the piston when the piston is in the setting position and to establish such communication upon movement of the piston from the setting position to the release position and reduce the pressure in the body bore axially of the piston, whereby the reduction of the pressure signals that the tool has released the coupling member

  11. Handbook of hydraulic fluid technology

    CERN Document Server

    Totten, George E

    2011-01-01

    ""The Handbook of Hydraulic Fluid Technology"" serves as the foremost resource for designing hydraulic systems and for selecting hydraulic fluids used in engineering applications. Featuring new illustrations, data tables, as well as practical examples, this second edition is updated with essential information on the latest hydraulic fluids and testing methods. The detailed text facilitates unparalleled understanding of the total hydraulic system, including important hardware, fluid properties, and hydraulic lubricants. Written by worldwide experts, the book also offers a rigorous overview of h

  12. Operating Experience Insights into Pipe Failures for Electro-Hydraulic Control and Instrument Air Systems in Nuclear Power Plant. A Topical Report from the Component Operational Experience, Degradation and Ageing Programme

    International Nuclear Information System (INIS)

    2015-01-01

    Structural integrity of piping systems is important for plant safety and operability. In recognition of this, information on degradation and failure of piping components and systems is collected and evaluated by regulatory agencies, international organisations (e.g. OECD/NEA and IAEA) and industry organisations worldwide to provide systematic feedback for example to reactor regulation and research and development programmes associated with non-destructive examination (NDE) technology, in-service inspection (ISI) programmes, leak-before-break evaluations, risk-informed ISI, and probabilistic safety assessment (PSA) applications involving passive component reliability. Several OECD member countries have agreed to establish the OECD/NEA 'Component Operational Experience, Degradation and Ageing Programme' (CODAP) to encourage multilateral co-operation in the collection and analysis of data relating to degradation and failure of metallic piping and non-piping metallic passive components in commercial nuclear power plants. The scope of the data collection includes service-induced wall thinning, part through-wall cracks, through-wall cracks with and without active leakage, and instances of significant degradation of metallic passive components, including piping pressure boundary integrity. The OECD/NEA Committee on the Safety of Nuclear Installations (CSNI) acts as an umbrella committee of the Project. CODAP is the continuation of the 2002-2011 'OECD/NEA Pipe Failure Data Exchange Project' (OPDE) and the Stress Corrosion Cracking Working Group of the 2006-2010 'OECD/NEA Stress Corrosion Cracking and Cable Ageing Project' (SCAP). OPDE was formally launched in May 2002. Upon completion of the third term (May 2011), the OPDE project was officially closed to be succeeded by CODAP. SCAP was enabled by a voluntary contribution from Japan. It was formally launched in June 2006 and officially closed with an international workshop held in Tokyo in May

  13. RELIABILITY OF MACHINE ELEMENTS IN WIND TURBINES

    Directory of Open Access Journals (Sweden)

    Willi GRUENDER

    2010-06-01

    Full Text Available Worldwide electrical energy production generated by wind turbines grows at a rate of 30 percent. This doubles the total production every three years. At the same time the power of individual stations goes up by 20 percent annually. Whereas today the towers, rotors and drive trains have to handle 5 MW, in about six to eight years they might produce up to fifteen MW. As a consequence, enormous pressure is put on the wind turbine manufacturers, the component suppliers and the operators. And because prototype and field testing is limited by its expense, the design of new turbines demands thorough analysis and simulation. Looking at the critical components of a wind turbine this paper describes advanced design tools which help to anticipate failures, but also assists in optimizing reliability and service life. Development of the software tools has been supported by research activities in many universities.

  14. Rotating transformers in wind turbine applications

    Energy Technology Data Exchange (ETDEWEB)

    Hylander, J. [Chalmers Univ. of Technology, Goeteborg (Sweden); Engstroem, S. [Aegir konsult AB, Lidingoe (Sweden)

    1996-12-01

    The power consumption of rotating electrical components is often supplied via slip-rings in wind turbines. Slip-ring equipment is expensive and need maintenance and are prone to malfunction. If the slip-rings could be replaced with contact-less equipment better turbines could be designed. This paper presents the design, some FE calculations and some measurements on a prototype rotating transformer. The proposed transformer consists of a secondary rotating winding and a stationary exciting primary winding. The results indicate that this transformer could be used to replace slip-rings in wind turbines. 4 refs, 3 figs

  15. Improvement of hydro-turbine draft tube efficiency using vortex generator

    Directory of Open Access Journals (Sweden)

    Xiaoqing Tian

    2015-07-01

    Full Text Available Computational fluid dynamics simulation was employed in a hydraulic turbine (from inlet tube to draft tube. The calculated turbine efficiencies were compared with measured results, and the relative error is 1.12%. In order to improve the efficiency of the hydraulic turbine, 15 kinds of vortex generators were installed at the vortex development section of the draft tube, and all of them were simulated using the same method. Based on the turbine efficiencies, distribution of streamlines, velocities, and pressures in the draft tube, an optimal draft tube was found, which can increase the efficiency of this hydraulic turbine more than 1.5%. The efficiency of turbine with the optimal draft tube, draft tube with four pairs of middle-sized vortex generator, and draft tube without vortex generator under different heads of turbine (5–14 m was calculated, and it was verified that these two kinds of draft tubes can increase the efficiency of this turbine in every situation.

  16. Vortex rope patterns at different load of hydro turbine model

    Directory of Open Access Journals (Sweden)

    Skripkin Sergey

    2017-01-01

    Full Text Available Operation of hydraulic turbines beyond optimal conditions leads to formation of precessing vortex core in a draft tube that generates powerful pressure pulsations in a hydraulic system. In case of resonance it leads to stability decreasing of hydraulic unit and electrical grid on the whole. In present work, such regimes are explored in a conical part of simplified turbine model. Studies are performed at constant flowrate Q = 70 m3/h and varying the runner rotational speed to explore different loads of the hydroturbine unit. The experiments involve pressure measurements, high speed-visualization and velocity measurements by means of laser Doppler anemometer technique. Interesting finding is related with abrupt increasing precession frequency at low swirl parameter of flow near optimal regime.

  17. Influence of the material used to build the blades of a wind turbine on their starting conditions

    Directory of Open Access Journals (Sweden)

    Năstase Eugen-Vlad

    2017-01-01

    Full Text Available Wind energy has been shown to be one of the most viable sources of renewable energy. Hydraulic machines that convert the energy of a fluid into mechanical energy are called turbines. A wind turbine is a device which extracts kinetic energy from the wind. With increasing energy demands is necessary to increase the size of wind turbines. Under these conditions the turbine will start only at high wind speeds. On the other hand, the control of high speed is more difficult and the reduction of the inertial forces becomes mandatory. This study presents an analysis of the material influence on the wind turbine starting conditions.

  18. Steam turbine cycle

    International Nuclear Information System (INIS)

    Okuzumi, Naoaki.

    1994-01-01

    In a steam turbine cycle, steams exhausted from the turbine are extracted, and they are connected to a steam sucking pipe of a steam injector, and a discharge pipe of the steam injector is connected to an inlet of a water turbine. High pressure discharge water is obtained from low pressure steams by utilizing a pressurizing performance of the steam injector and the water turbine is rotated by the high pressure water to generate electric power. This recover and reutilize discharged heat of the steam turbine effectively, thereby enabling to improve heat efficiency of the steam turbine cycle. (T.M.)

  19. The swirl turbine

    Science.gov (United States)

    Haluza, M.; Pochylý, F.; Rudolf, P.

    2012-11-01

    In the article is introduced the new type of the turbine - swirl turbine. This turbine is based on opposite principle than Kaplan turbine. Euler equation is satisfied in the form gHηh = -u2vu2. From this equation is seen, that inflow of liquid into the runner is without rotation and on the outflow is a rotation of liquid opposite of rotation of runner. This turbine is suitable for small head and large discharge. Some constructional variants of this turbine are introduced in the article and theoretical aspects regarding losses in the draft tube. The theory is followed by computational simulations in Fluent and experiments using laser Doppler anemometry.

  20. Concurrent Aeroservoelastic Design and Optimization of Wind Turbines

    DEFF Research Database (Denmark)

    Tibaldi, Carlo

    This work develops and investigates methods to integrate controllers in the wind turbine design process and to perform wind turbine optimization. These techniques can exploit the synergy between wind turbine components and generate new design solutions. Two frameworks to perform wind turbine...... optimization design are presented. These tools handle workflows to model a wind turbine and to evaluate loads and performances under specific conditions. Three approaches to evaluate loads are proposed and integrated in the optimization codes. The first method is based on time domain simulations, the second...... simulations, allows the selection of any controller parameter. The methods to evaluate loads and the pole-placement technique are then employed to carry out wind turbine optimization design from an aeroservoelastic prospective. Several analysis of the NREL 5 MW Reference Wind Turbine and the DTU 10 MW...

  1. Influence of the boundary conditions on the dynamic behavior of large hydraulic machines

    OpenAIRE

    Valentín Ruiz, David

    2018-01-01

    Nowadays, hydropower plays an essential role in the energy market. With the massive entrance of new renewable sources such as wind or solar power, hydropower is the only renewable generating source that can provide fast response and regulation capacity to the electric grid. It can even store the surplus of energy when it is necessary using Reversible Pump-Turbine (RPT) power plants. However, this situation makes that hydraulic turbines are increasingly working at off-design conditions with a ...

  2. Numerical and experimental study of the pressure pulsations at the free discharge of water through the turbine

    Science.gov (United States)

    Platonov, D. V.

    2017-09-01

    The free discharge through the turbine is applied in the course of construction of hydro power plant or in case of excessive water inflow during floods or emergency situation. The experimental and numerical investigation of flow-induced pressure pulsation in hydraulic turbine draft tube at free discharge was performed.

  3. Several new thermo-hydraulic test facilities in NPIC

    International Nuclear Information System (INIS)

    Ye Shurong; Sun Yufa; Ji Fuyun; Zong Guifang; Guo Zhongchuan

    1997-01-01

    Several new thermo-hydraulic test facilities are under construction in Nuclear Power Institute of Chinese (NPIC) at Chengdu. These facilities include: 1. Nuclear Power Component Comprehensive Test Facility. 2. Reactor Hydraulic Modeling Test Facility. 3. Control Rod Drive Line Hydraulic Test Facility. 4. Large Scale Thermo-Hydraulic Test Facility. The construction of these facilities will make huge progress in the research and development capability of nuclear power technology in CHINA. The author will present a brief description of the design parameters flowchart and test program of these facilities

  4. ERP-IV-A program for transient thermal-hydraulic analysis of PWR plant

    International Nuclear Information System (INIS)

    Dai Anguo; Tang Jiahuan; Qian Huifu; Gao Zhikang

    1987-12-01

    The author deal with the descriptions of physical model of transient process in PWR plant and the function of ERP-IV (ERR-IV Transient Thermo-Hydraulic Analysis Code). The code has been developed for safety analysis and design transient. The code is characterized by the multi-loop long-term, short term, wide-range plant simulation with the capability to analyze natural circulation condition. The description of ERP-IV includes following parts: reactor, primary coolant loops, pressurizer, steam generators, main steam system, turbine, feedwater system, steam dump, relive valves, and safety valves in secondary side, etc.. The code can use for accident analysis, such as loss of all A.C. power to power plant auxiliaries (a station blackout), loss of normal feedwater, loss of load, loss of condenser vacuum and other events causing a turbine trip, complete loss of forced reactor coolant flow, uncontrolled rod cluster control assembly bank withdrawal. It can also be used for accident analysis of the emergency and limiting conditions, such as feedwater line break and main steam line rupture. It can also be utilized as a tool for system design studies, component design, setpoint studies and design transition studies, etc

  5. Aerodynamics of Wind Turbines

    DEFF Research Database (Denmark)

    Hansen, Martin Otto Laver

    Aerodynamics of Wind Turbines is the established essential text for the fundamental solutions to efficient wind turbine design. Now in its second edition, it has been entirely updated and substantially extended to reflect advances in technology, research into rotor aerodynamics and the structural...... response of the wind turbine structure. Topics covered include increasing mass flow through the turbine, performance at low and high wind speeds, assessment of the extreme conditions under which the turbine will perform and the theory for calculating the lifetime of the turbine. The classical Blade Element...... Momentum method is also covered, as are eigenmodes and the dynamic behavior of a turbine. The new material includes a description of the effects of the dynamics and how this can be modeled in an aeroelastic code, which is widely used in the design and verification of modern wind turbines. Further...

  6. Aerodynamics of wind turbines

    DEFF Research Database (Denmark)

    Hansen, Martin Otto Laver

    Aerodynamics of Wind Turbines is the established essential text for the fundamental solutions to efficient wind turbine design. Now in its third edition, it has been substantially updated with respect to structural dynamics and control. The new control chapter now includes details on how to design...... Turbines (VAWT). Topics covered include increasing mass flow through the turbine, performance at low and high wind speeds, assessment of the extreme conditions under which the turbine will perform and the theory for calculating the lifetime of the turbine. The classical Blade Element Momentum method...... is also covered, as are eigenmodes and the dynamic behaviour of a turbine. The book describes the effects of the dynamics and how this can be modelled in an aeroelastic code, which is widely used in the design and verification of modern wind turbines. Furthermore, it examines how to calculate...

  7. Wind power plants. Hydraulic transmission with control systems for unrestricted number of revolutions

    Energy Technology Data Exchange (ETDEWEB)

    Andersson, R

    1976-09-01

    Basic ideas are presented for the design of a hydraulic transmission with its control system adapted to an electric generator operated by a wind turbine with unrestricted revolutions. The settlement of the principle is shown by means of commercially available parts. The relations of the installed effect, its cost and the length of operational life are discussed. The control system is directly integrated to the hydraulic circuits.

  8. NEXT GENERATION TURBINE PROGRAM

    Energy Technology Data Exchange (ETDEWEB)

    William H. Day

    2002-05-03

    The Next Generation Turbine (NGT) Program's technological development focused on a study of the feasibility of turbine systems greater than 30 MW that offer improvement over the 1999 state-of-the-art systems. This program targeted goals of 50 percent turndown ratios, 15 percent reduction in generation cost/kW hour, improved service life, reduced emissions, 400 starts/year with 10 minutes to full load, and multiple fuel usage. Improvement in reliability, availability, and maintainability (RAM), while reducing operations, maintenance, and capital costs by 15 percent, was pursued. This program builds on the extensive low emissions stationary gas turbine work being carried out by Pratt & Whitney (P&W) for P&W Power Systems (PWPS), which is a company under the auspices of the United Technologies Corporation (UTC). This study was part of the overall Department of Energy (DOE) NGT Program that extends out to the year 2008. A follow-on plan for further full-scale component hardware testing is conceptualized for years 2002 through 2008 to insure a smooth and efficient transition to the marketplace for advanced turbine design and cycle technology. This program teamed the National Energy Technology Laboratory (NETL), P&W, United Technologies Research Center (UTRC), kraftWork Systems Inc., a subcontractor on-site at UTRC, and Multiphase Power and Processing Technologies (MPPT), an off-site subcontractor. Under the auspices of the NGT Program, a series of analyses were performed to identify the NGT engine system's ability to serve multiple uses. The majority were in conjunction with a coal-fired plant, or used coal as the system fuel. Identified also was the ability of the NGT system to serve as the basis of an advanced performance cycle: the humid air turbine (HAT) cycle. The HAT cycle is also used with coal gasification in an integrated cycle HAT (IGHAT). The NGT systems identified were: (1) Feedwater heating retrofit to an existing coal-fired steam plant, which

  9. Advanced Hydrogen Turbine Development

    Energy Technology Data Exchange (ETDEWEB)

    Joesph Fadok

    2008-01-01

    Siemens has developed a roadmap to achieve the DOE goals for efficiency, cost reduction, and emissions through innovative approaches and novel technologies which build upon worldwide IGCC operational experience, platform technology, and extensive experience in G-class operating conditions. In Phase 1, the technologies and concepts necessary to achieve the program goals were identified for the gas turbine components and supporting technology areas and testing plans were developed to mitigate identified risks. Multiple studies were conducted to evaluate the impact in plant performance of different gas turbine and plant technologies. 2015 gas turbine technologies showed a significant improvement in IGCC plant efficiency, however, a severe performance penalty was calculated for high carbon capture cases. Thermodynamic calculations showed that the DOE 2010 and 2015 efficiency targets can be met with a two step approach. A risk management process was instituted in Phase 1 to identify risk and develop mitigation plans. For the risks identified, testing and development programs are in place and the risks will be revisited periodically to determine if changes to the plan are necessary. A compressor performance prediction has shown that the design of the compressor for the engine can be achieved with additional stages added to the rear of the compressor. Tip clearance effects were studied as well as a range of flow and pressure ratios to evaluate the impacts to both performance and stability. Considerable data was obtained on the four candidate combustion systems: diffusion, catalytic, premix, and distributed combustion. Based on the results of Phase 1, the premixed combustion system and the distributed combustion system were chosen as having the most potential and will be the focus of Phase 2 of the program. Significant progress was also made in obtaining combustion kinetics data for high hydrogen fuels. The Phase 1 turbine studies indicate initial feasibility of the

  10. Test Rig Design and Presentation for a Hydraulic Yaw System

    DEFF Research Database (Denmark)

    Stubkier, Søren; Pedersen, Henrik C.; Andersen, Torben Ole

    2013-01-01

    The design and development of a hydraulic yaw system for multi MWturbines is presented and the concept explained. As part of the development of the new concept a full scale test rig for a 5 MW wind turbine has been designed and constructed. The test rig is presented along with its unique design...... features. The design process is outlined to give insight in the design criteria driving the design. Loads and yaw demands are based on the IEC 61400-1 standard for wind turbine design, and the loads for this examination are extrapolated from the FAST aero elastic design software. The concepts are based...... on a 5 MW offshore turbine. After the system presentation, measurement results are presented to verify the behavior of the system. The loads to the system are applied by torque controlled electrical servo drives, which can add a load of up to 3 MNm to the system. This gives an exact picture of the system...

  11. Water Hydraulic Systems

    DEFF Research Database (Denmark)

    Conrad, Finn

    2005-01-01

    The paper presents research results using IT-Tools for CAD and dynamic modelling, simulation, analysis, and design of water hydraulic actuators for motion control of machines, lifts, cranes and robots. Matlab/Simulink and CATIA are used as IT-Tools. The contributions include results from on......-going research projects on fluid power and mechatronics based on tap water hydraulic servovalves and linear servo actuators and rotary vane actuators for motion control and power transmission. Development and design a novel water hydraulic rotary vane actuator for robot manipulators. Proposed mathematical...... modelling, control and simulation of a water hydraulic rotary vane actuator applied to power and control a two-links manipulator and evaluate performance. The results include engineering design and test of the proposed simulation models compared with IHA Tampere University’s presentation of research...

  12. Hydraulic hoisting and backfilling

    Science.gov (United States)

    Sauermann, H. B.

    In a country such as South Africa, with its large deep level mining industry, improvements in mining and hoisting techniques could result in substantial savings. Hoisting techniques, for example, may be improved by the introduction of hydraulic hoisting. The following are some of the advantages of hydraulic hoisting as against conventional skip hoisting: (1) smaller shafts are required because the pipes to hoist the same quantity of ore hydraulically require less space in the shaft than does skip hoisting equipment; (2) the hoisting capacity of a mine can easily be increased without the necessity of sinking new shafts. Large savings in capital costs can thus be made; (3) fully automatic control is possible with hydraulic hoisting and therefore less manpower is required; and (4) health and safety conditions will be improved.

  13. Turbulence and wind turbines

    DEFF Research Database (Denmark)

    Brand, Arno J.; Peinke, Joachim; Mann, Jakob

    2011-01-01

    The nature of turbulent flow towards, near and behind a wind turbine, the effect of turbulence on the electricity production and the mechanical loading of individual and clustered wind turbines, and some future issues are discussed.......The nature of turbulent flow towards, near and behind a wind turbine, the effect of turbulence on the electricity production and the mechanical loading of individual and clustered wind turbines, and some future issues are discussed....

  14. Gas turbine designer computer program - a study of using a computer for preliminary design of gas turbines

    Energy Technology Data Exchange (ETDEWEB)

    Petersson, Rickard

    1995-11-01

    This thesis presents calculation schemes and theories for preliminary design of the fan, high pressure compressor and turbine of a gas turbine. The calculations are presented step by step, making it easier to implement in other applications. The calculation schemes have been implemented as a subroutine in a thermodynamic program. The combination of the thermodynamic cycle calculation and the design calculation turned out to give quite relevant results, when predicting the geometry and performance of an existing aero engine. The program developed is able to handle several different gas turbines, including those in which the flow is split (i.e. turbofan engines). The design process is limited to the fan, compressor and turbine of the gas turbine, the rest of the components have not been considered. Output from the program are main geometry, presented both numerically and as a scale plot, component efficiencies, stresses in critical points and a simple prediction of turbine blade temperatures. 11 refs, 21 figs, 1 tab

  15. Power Swing Generated in Francis Turbines by Part Load and Overload Instabilities

    Directory of Open Access Journals (Sweden)

    David Valentín

    2017-12-01

    Full Text Available Hydropower plays a key role in the actual energy market due to its fast response and regulation capacity. In that way, hydraulic turbines are increasingly demanded to work at off-design conditions, where complex flow patterns and cavitation appear, especially in Francis turbines. The draft tube cavitation surge is a hydraulic phenomenon that appears in Francis turbines below and above its Best Efficiency Point (BEP. It is a low frequency phenomenon consisting of a vortex rope in the runner outlet and draft tube, which can become unstable when its frequency coincides with a natural frequency of the hydraulic circuit. At this situation, the output power can significantly swing, endangering the electrical grid stability. This study is focused on the detection of these instabilities in Francis turbines and their relationship with the output power swings. To do so, extensive experimental tests for different operating conditions have been carried out in a large prototype Francis turbine (444 MW of rated power within the frame of the European Project Hyperbole (FP7-ENERGY-2013-1. Several sensors have been installed in the hydraulic circuit (pressure sensors in the draft tube, spiral casing, and penstock, in the rotating and static structures (vibration sensors, proximity probes, and strain gauges in the runner and in the shaft, as well as in the electrical side (output power, intensity, and voltage. Moreover, a numerical Finite Element Method (FEM has been also used to relate the hydraulic excitation with the output power swing.

  16. Sliding vane geometry turbines

    Science.gov (United States)

    Sun, Harold Huimin; Zhang, Jizhong; Hu, Liangjun; Hanna, Dave R

    2014-12-30

    Various systems and methods are described for a variable geometry turbine. In one example, a turbine nozzle comprises a central axis and a nozzle vane. The nozzle vane includes a stationary vane and a sliding vane. The sliding vane is positioned to slide in a direction substantially tangent to an inner circumference of the turbine nozzle and in contact with the stationary vane.

  17. Development and optimization design of pit turbine with super low-head

    International Nuclear Information System (INIS)

    Yang, C X; Li, X X; Huang, F J; Zheng, Y; QZhou, D

    2012-01-01

    Tubular turbines have many advantages such as large flow, high-speed, high efficiency, wide and high efficiency area, compact structure, simple layout, etc. With those advantages, tubular turbine is becoming one of the most economic and suitable types of turbines to develop low head hydraulic resources. According to the general situation of the hydropower station in the north of Jiangsu, a super low head pit turbine which head is set as about 2m is developed by the research to utilize the low head hydraulic resource.The CFD technology was used to calculate the flow field. The computing zone was meshed with unstructured gird. The whole flow passage of shaft type tubular turbine was calculated by 3-d steady turbulent numerical simulation. The detail of flowthrough the whole flowpassage was attained and the influence to the turbine's performance was analyzed by the low head runner blade's various diameters, airfoils and setting angles. The best turbine runner was obtained by considering all the methods. Meeting the station's requirements, the results show that the runner exhibits the highest performance in the efficiency, hydraulic loss and static pressure sides with 1.75m diameter, optimized airfoil and 23 degree setting angle. The developed super low head pit turbine shows highest efficiency under the design condition of 2.1m water head and 10m 3 /s flow rate. GD-WS-35 turbine model test was carried out tostudy the performance of the turbine. On the basis ofmodel transformation principle,the numerical simulationresultof GD-WS-175turbine was compared with the model results. It's showed that the model test result is basically consistent with numerical simulationresult. The producing error in the numerical computation is not easy to control. The efficiency's error range is ±3%.

  18. Experimental vibration level analysis of a Francis turbine

    International Nuclear Information System (INIS)

    Bucur, D M; Dunca, G; Calinoiu, C

    2012-01-01

    In this study the vibration level of a Francis turbine is investigated by experimental work in site. Measurements are carried out for different power output values, in order to highlight the influence of the operation regimes on the turbine behavior. The study focuses on the turbine shaft to identify the mechanical vibration sources and on the draft tube in order to identify the hydraulic vibration sources. Analyzing the vibration results, recommendations regarding the operation of the turbine, at partial load close to minimum values, in the middle of the operating domain or close to maximum values of electric power, can be made in order to keep relatively low levels of vibration. Finally, conclusions are drawn in order to present the real sources of the vibrations.

  19. Blades and discs in gas turbines. Behaviour of material and components. Project department A-C. Final report; Schaufeln und Scheiben in Gasturbinen. Werkstoff- und Bauteilverhalten. Projektbereiche A bis C. Abschlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-04-01

    The special research area 339 `Blades and discs in gas turbines, behaviour of material and components` was carried on from 1988 to the end of 1196. This final report deals with the work in the years 1994, 1995 and 1996. In the project area A `Development of material` manufacturing processes both for metallic and ceramic high temperature materials were developed, tested and optimised. In the area of optimising casting structure, it was shown that the making grains finer up to the medium temperature range can be a suitable means for significantly raising the resistance to LCF loading with nearly unchanged heat and creep strength properties. Another main point was the characterisation and optimisation of sprayed ceramic layers on metallic substrates (heat insulating layers) and compound ceramic materials. In project area B `Material behaviour` the mechanisms were studied, which, particularly in metallic high temperature materials such as nickel-based superalloys, lead to failure of the material under thermo-mechanical stresses. In project area C `Component design`, on the one hand models for estimating service life for metallic high temperature materials under different thermo-mechanical stresses were developed. [Deutsch] Der Sonderforschungsbereich 339, `Schaufeln und Scheiben in Gasturbinen - Werkstoff- und Bauteilverhalten` wurde von 1988 bis Ende 1996 gefoerdert. Dieser Abschlussbericht behandelt die Arbeiten der Jahre 1994, 1995 und 1996. Im Projektbereich A `Werkstoffentwicklung` wurden Herstellungsverfahren sowohl fuer metallische als auch fuer keramische Hochtemperaturwerkstoffe entwickelt, erprobt und optimiert. Auf dem Gebiet der Gussgefuegeoptimierung konnte gezeigt werden, dass die Kornfeinung bis in den mittleren Temperaturbereich ein geeignetes Mittel sein kann, um den Widerstand gegen LCF-Belastung bei annaehernd unveraenderten Warm- und Kriechfestigkeitseigenschaften signifikant zu erhoehen. Einen weiteren Schwerpunkt bildete die Charakterisierung und

  20. Turbine-missile casing exit tests

    International Nuclear Information System (INIS)

    Yoshimura, H.R.; Sliter, G.E.

    1978-01-01

    Nuclear power plant designers are required to provide safety-related components with adequate protection against hypothetical turbine-missile impacts. In plants with a ''peninsula'' arrangement, protection is provided by installing the turbine axis radially from the reactor building, so that potential missile trajectories are not in line with the plant. In plants with a ''non-peninsula'' arrangement (turbine axis perpendicular to a radius), designers rely on the low probability of a missile strike and on the protection provided by reinforced concrete walls in order to demonstrate an adequate level of protection USNRC Regulatory Guide 1.115). One of the critical first steps in demonstrating adequacy is the determination of the energy and spin of the turbine segments as they exit the turbine casing. The spin increases the probability that a subsequent impact with a protective barrier will be off-normal and therefore less severe than the normal impact assumed in plant designs. Two full-scale turbine-missile casing exit tests which were conducted by Sandia Laboratories at their rocket-sled facility in Albuquerque, New Mexico, are described. Because of wide variations in turbine design details, postulated failure conditions, and missile exit scenarios, the conditions for the two tests were carefully selected to be as prototypical as possible, while still maintaining the well-controlled and well-characterized test conditions needed for generating benchmark data