WorldWideScience

Sample records for hydraulic turbine components

  1. Controls of Hydraulic Wind Turbine

    Directory of Open Access Journals (Sweden)

    Zhang Yin

    2016-01-01

    Full Text Available In this paper a hydraulic wind turbine generator system was proposed based on analysis the current wind turbines technologies. The construction and principles were introduced. The mathematical model was verified using MATLAB and AMsim. A displacement closed loop of swash plate of motor and a speed closed loop of generator were setup, a PID control is introduced to maintain a constant speed and fixed frequency at wind turbine generator. Simulation and experiment demonstrated that the system can connect grid to generate electric and enhance reliability. The control system demonstrates a high performance speed regulation and effectiveness. The results are great significant to design a new type hydraulic wind turbine system.

  2. Mesh convergence study for hydraulic turbine draft-tube

    Science.gov (United States)

    Devals, C.; Vu, T. C.; Zhang, Y.; Dompierre, J.; Guibault, F.

    2016-11-01

    Computational flow analysis is an essential tool for hydraulic turbine designers. Grid generation is the first step in the flow analysis process. Grid quality and solution accuracy are strongly linked. Even though many studies have addressed the issue of mesh independence, there is still no definitive consensus on mesh best practices, and research on that topic is still needed. This paper presents a mesh convergence study for turbulence flow in hydraulic turbine draft- tubes which represents the most challenging turbine component for CFD predictions. The findings from this parametric study will be incorporated as mesh control rules in an in-house automatic mesh generator for turbine components.

  3. Turbine component, turbine blade, and turbine component fabrication process

    Energy Technology Data Exchange (ETDEWEB)

    Delvaux, John McConnell; Cairo, Ronald Ralph; Parolini, Jason Robert

    2017-05-30

    A turbine component, a turbine blade, and a turbine component fabrication process are disclosed. The turbine component includes ceramic matrix composite plies and a feature configured for preventing interlaminar tension of the ceramic matrix composite plies. The feature is selected from the group consisting of ceramic matrix composite tows or precast insert tows extending through at least a portion of the ceramic matrix composite plies, a woven fabric having fiber tows or a precast insert preventing contact between a first set of the ceramic matrix composite plies and a second set of the ceramic matrix composite plies, and combinations thereof. The process includes laying up ceramic matrix composite plies in a preselected arrangement and securing a feature configured for interlaminar tension.

  4. Creating new life for hydraulic turbines by upgrading and rehabilitation

    Energy Technology Data Exchange (ETDEWEB)

    Wachter, G.F.

    1998-12-01

    Methods by which to extend the life of aging hydraulic turbines which are still in operation today are discussed. Upgrading some of these turbines which were built as far back as 80 years ago may be feasible with current rehabilitation technology and advanced computer aided hydraulic mechanical design analysis techniques. The benefits achieved with many hydraulic turbine upgrade and rehabilitation programs include: (1) increased performance, (2) extended service life, (3) stopping accelerated deterioration due to cavitation, (4) reducing detrimental symptoms such as unit vibration, component cracking and excessive wearing ring clearances, (5) reducing the possibility of major failures, and (6) reducing unscheduled forced outages. Increased usage of a non-polluting, renewable energy source is an additional benefit of rehabilitation and upgrading of hydro power generating units.2 refs., 2 tabs., 7 figs.

  5. Turbine efficiency test on a large hydraulic turbine unit

    Institute of Scientific and Technical Information of China (English)

    YAN ZongGuo; ZHOU LingJiu; WANG ZhengWei

    2012-01-01

    The flow rate measurements are the most difficult part of efficiency tests on prototype hydraulic turbines.Among the numerous flow rate measurement methods,the Winter Kennedy method is preferred for measuring turbine flow rates,since it is convenient,practical and economical.This paper describes efficiency tests on a large 300 MW Francis turbine,with the flow rate measured using the Winter Kennedy method and the Winter Kennedy flow rate coefficient calibrated using the Gibson method.The measured turbine efficiency curve is then compared with the curve provided by the manufacturer.The CFD calculations including the spiral case are then used to analyze the influence with the coefficient K and index n in the Winter Kennedy flow rate formula on the flow rate measurement.The uncertainty values of n and K are a key reason for the differences between the curves obtained from the efficiency test and the curves provided by the manufacturer.

  6. Sprayed skin turbine component

    Science.gov (United States)

    Allen, David B

    2013-06-04

    Fabricating a turbine component (50) by casting a core structure (30), forming an array of pits (24) in an outer surface (32) of the core structure, depositing a transient liquid phase (TLP) material (40) on the outer surface of the core structure, the TLP containing a melting-point depressant, depositing a skin (42) on the outer surface of the core structure over the TLP material, and heating the assembly, thus forming both a diffusion bond and a mechanical interlock between the skin and the core structure. The heating diffuses the melting-point depressant away from the interface. Subsurface cooling channels (35) may be formed by forming grooves (34) in the outer surface of the core structure, filling the grooves with a fugitive filler (36), depositing and bonding the skin (42), then removing the fugitive material.

  7. Development of a hydraulic turbine design method

    Science.gov (United States)

    Kassanos, Ioannis; Anagnostopoulos, John; Papantonis, Dimitris

    2013-10-01

    In this paper a hydraulic turbine parametric design method is presented which is based on the combination of traditional methods and parametric surface modeling techniques. The blade of the turbine runner is described using Bezier surfaces for the definition of the meridional plane as well as the blade angle distribution, and a thickness distribution applied normal to the mean blade surface. In this way, it is possible to define parametrically the whole runner using a relatively small number of design parameters, compared to conventional methods. The above definition is then combined with a commercial CFD software and a stochastic optimization algorithm towards the development of an automated design optimization procedure. The process is demonstrated with the design of a Francis turbine runner.

  8. Pump Application as Hydraulic Turbine – Pump as Turbine (PaT)

    OpenAIRE

    Rusovs, D

    2009-01-01

    The paper considers pump operation as hydraulic turbine with purpose to produce mechanical power from liquid flow. The Francis hydraulic turbine was selected for comparison with centrifugal pump in reverse operation. Turbine and centrifugal pump velocity triangles were considered with purpose to evaluate PaT efficiency. Shape of impeller blades for turbine and pumps was analysed. Specific speed calculation is carried out with purpose to obtain similarity in pump and turbine description. For ...

  9. State of the art-hydraulic yaw systems for wind turbines

    DEFF Research Database (Denmark)

    Stubkier, Søren; Pedersen, Henrik C.; Andersen, Torben Ole;

    2011-01-01

    This paper addresses the yawing systems of Horizontal Axis Wind Turbines (HAWT’s). HAWT’s represents close to all of the commercial large wind turbines sold today and must be considered state-of-the art within wind turbine technology. Two choices exists when considering components for the active...... mounted with a reduction gear. This paper presents state-of-the art within; hydraulic yaw system design and control of yaw systems in general. Primary focus on the advantages and disadvantages of using a hydraulic system for controlling the yaw of a wind turbine with a soft yaw concept....

  10. Efficiency limit factor analysis for the Francis-99 hydraulic turbine

    Science.gov (United States)

    Zeng, Y.; Zhang, L. X.; Guo, J. P.; Guo, Y. K.; Pan, Q. L.; Qian, J.

    2017-01-01

    The energy loss in hydraulic turbine is the most direct factor that affects the efficiency of the hydraulic turbine. Based on the analysis theory of inner energy loss of hydraulic turbine, combining the measurement data of the Francis-99, this paper calculates characteristic parameters of inner energy loss of the hydraulic turbine, and establishes the calculation model of the hydraulic turbine power. Taken the start-up test conditions given by Francis-99 as case, characteristics of the inner energy of the hydraulic turbine in transient and transformation law are researched. Further, analyzing mechanical friction in hydraulic turbine, we think that main ingredients of mechanical friction loss is the rotation friction loss between rotating runner and water body, and defined as the inner mechanical friction loss. The calculation method of the inner mechanical friction loss is given roughly. Our purpose is that explore and research the method and way increasing transformation efficiency of water flow by means of analysis energy losses in hydraulic turbine.

  11. ANALYSIS AND ESTIMATION OF HYDRAULIC STABILITY OF FRANCIS HYDRO TURBINE

    Institute of Scientific and Technical Information of China (English)

    LAI Xi-de

    2004-01-01

    With the development of large-capacity hydro turbines, the hydraulic instability of bydro turbines has become one of the most important problems that affect the stable operation of the hydro-electric units. The hydraulic vibration and unstable operation of Francis hydro turbines are primarily caused by the unsteady pressure pulsations inside draft tubes.The forced rotating vortex core at the runner exit and the channel vortices inside Francis turbine runners are origins of the unsteady pressure pulsations when operating at partial load. This paper briefly analyzes the hydraulic instability of operation caused by the vortex core and channel vortices at partial load, then, presents a way to estimate the hydraulic stability by calculation of the flow behavior at the runner exit.The validity of estimation is examined by comparison with experimental data. This will be helpful to evaluate the alternative design and predict the hydraulic stability for both the prototype and model hydro turbines.

  12. Hydraulic Soft Yaw System for Multi MW Wind Turbines

    DEFF Research Database (Denmark)

    Stubkier, Søren

    Horizontal axis wind turbines utilize a yaw system to keep the rotor plane of the wind turbine perpendicular to the main wind direction. If the wind direction changes, the wind turbine follows the direction change by yawing. If the wind turbine does not yaw, there will be a reduction in produced...... of nine concepts for hydraulic yaw systems and shown that the loading of the turbine structure may be damped if the yaw system is allowed to deflect under loading. An extensions of the open source wind turbine code FAST of a state of the art wind turbine including the yaw degree of freedom and friction...

  13. The numerical simulation based on CFD of hydraulic turbine pump

    Science.gov (United States)

    Duan, X. H.; Kong, F. Y.; Liu, Y. Y.; Zhao, R. J.; Hu, Q. L.

    2016-05-01

    As the functions of hydraulic turbine pump including self-adjusting and compensation with each other, it is far-reaching to analyze its internal flow by the numerical simulation based on CFD, mainly including the pressure field and the velocity field in hydraulic turbine and pump.The three-dimensional models of hydraulic turbine pump are made by Pro/Engineer software;the internal flow fields in hydraulic turbine and pump are simulated numerically by CFX ANSYS software. According to the results of the numerical simulation in design condition, the pressure field and the velocity field in hydraulic turbine and pump are analyzed respectively .The findings show that the static pressure decreases systematically and the pressure gradient is obvious in flow area of hydraulic turbine; the static pressure increases gradually in pump. The flow trace is regular in suction chamber and flume without spiral trace. However, there are irregular traces in the turbine runner channels which contrary to that in flow area of impeller. Most of traces in the flow area of draft tube are spiral.

  14. Hydraulic Motor Driving Variable-Pitch System for Wind Turbine

    Directory of Open Access Journals (Sweden)

    Ye HUANG

    2013-11-01

    Full Text Available The present hydraulic variable-pitch mechanism of wind turbine uses three hydraulic cylinders to drive three crank and connecting rod mechanisms respectively; the blades are moved with the cranks. The hydraulic variable-pitch mechanism has complex structure, occupies a lot of space and its maintenance is trouble. In order to make up for the shortcomings of hydraulic cylinder variable-pitch system, the present hydraulic variable-pitch mechanism should be changed as follows: hydraulic motors are used to drive gears; gears drive blades; the electro-hydraulic proportional valves are used to control hydraulic motors. The hydraulic control part and electrical control part of variable-pitch system is redesigned. The new variable-pitch system is called hydraulic motor driving variable-pitch system. The new variable-pitch system meets the control requirements of blade pitch, makes the structure simple and its application effect is perfect.    

  15. Tidal current turbine based on hydraulic transmission system

    Institute of Scientific and Technical Information of China (English)

    Hong-wei LIU; Wei LI; Yong-gang LIN; Shun MA

    2011-01-01

    Tidal current turbines (TCTs) are newly developed electricity generating devices.Aiming at the stabilization of the power output of TCTs,this paper introduces the hydraulic transmission technologies into TCTs.The hydrodynamics of the turbine was analyzed at first and its power output characteristics were predicted.A hydraulic power transmission system and a hydraulic pitch-controlled system were designed.Then related simulations were conducted.Finally,a TCT prototype was manufactured and tested in the workshop.The test results have confirmed the correctness of the current design and availability of installation of the hydraulic system in TCTs.

  16. Performance of nano-hydraulic turbine utilizing waterfalls

    OpenAIRE

    Ikeda, Toshihiko; Iio, Shouichiro; Tatsuno, Kenji

    2010-01-01

    The aim of this investigation was to develop an environmentally friendly nano-hydraulic turbine utilizing waterfalls. A model of an impulse type hydraulic turbine constructed and tested with an indoor type waterfall to arrive at an optimum installation condition. Effects of an installation parameter, namely distance between the rotor and the waterfall on the power performance were studied. The flow field around the rotor was examined visually to clarify influences of installation conditions o...

  17. Turbine repair process, repaired coating, and repaired turbine component

    Energy Technology Data Exchange (ETDEWEB)

    Das, Rupak; Delvaux, John McConnell; Garcia-Crespo, Andres Jose

    2015-11-03

    A turbine repair process, a repaired coating, and a repaired turbine component are disclosed. The turbine repair process includes providing a turbine component having a higher-pressure region and a lower-pressure region, introducing particles into the higher-pressure region, and at least partially repairing an opening between the higher-pressure region and the lower-pressure region with at least one of the particles to form a repaired turbine component. The repaired coating includes a silicon material, a ceramic matrix composite material, and a repaired region having the silicon material deposited on and surrounded by the ceramic matrix composite material. The repaired turbine component a ceramic matrix composite layer and a repaired region having silicon material deposited on and surrounded by the ceramic matrix composite material.

  18. Application study of magnetic fluid seal in hydraulic turbine

    Science.gov (United States)

    Yu, Z. Y.; Zhang, W.

    2012-11-01

    The waterpower resources of our country are abundant, and the hydroelectric power is developed, but at present the main shaft sealing device of hydraulic turbine is easy to wear and tear and the leakage is great. The magnetic fluid seal has the advantages of no contact, no wear, self-healing, long life and so on. In this paper, the magnetic fluid seal would be used in the main shaft of hydraulic turbine, the sealing structure was built the model, meshed the geometry, applied loads and solved by using MULTIPHYSICS in ANSYS software, the influence of the various sealing structural parameters such as tooth width, height, slot width, sealing gap on the sealing property were analyzed, the magnetic fluid sealing device suitable for large-diameter shaft and sealing water was designed, the sealing problem of the hydraulic turbine main shaft was solved effectively which will bring huge economic benefits.

  19. Performance of Savonius Rotor for Environmentally Friendly Hydraulic Turbine

    Science.gov (United States)

    Nakajima, Miyoshi; Iio, Shouichiro; Ikeda, Toshihiko

    The aim of this investigation was to develop an environmentally friendly nano-hydraulic turbine. A model of a two-bucket Savonius type hydraulic turbine was constructed and tested in a water tunnel to arrive at an optimum installation condition. Effects of two installation parameters, namely a distance between a rotor and a bottom wall of the tunnel, a rotation direction of the rotor, on the power performance were studied. A flow field around the rotor was examined visually to clarify influences of installation conditions on the flow field. The flow visualization showed differences of flow pattern around the rotor by the change of these parameters. From this study it was found that the power performances of Savonius hydraulic turbine were changed with the distance between the rotor and the bottom wall of the tunnel and with a rotation direction of the rotor.

  20. Fatigue design of hydraulic turbine runners

    Energy Technology Data Exchange (ETDEWEB)

    Huth, Hans-Joerg

    2005-07-01

    Turbine runners experience start-stop cycles and vibration cycles. Cracks initiated from service or manufacturing defects and propagated by start-stop cycles become critical when the stress intensity range due to vibrational loading exceeds the threshold for fatigue crack growth. In Francis turbine runners, semi-elliptical surface cracks tend to propagate from the quarter-circular transition of the welded T-joint transition between the blade and the band or crown. Assuming a crack to grow under a constant stress amplitude equal to that at the most highly loaded location at the welded joint between the blade and the band or crown of a Francis turbine runner yields a conservative estimate of the life of the runner. A more accurate prediction of fatigue life is obtained by considering the growth of a crack in the real, inhomogeneous stress field. For an idealised T-joint under pure bending, the stress field has been determined by means of plane strain finite element analysis. Finite element models of the entire Francis runner are built with respect to the calculation of fluid dynamic properties. Since in these models geometry transitions are modelled as a sharp notch, both a finite and a zero transition radius have been modelled, and the influence of the mesh size on the maximum stress has been investigated. For relatively small cracks, it is shown that the structural component geometry does not remarkably influence the stress intensity factor values, provided that the stress field in the vicinity of the crack is approximately the same. Therefore, in order to simplify the stress intensity factor retrieval and to generate a solution of extended applicability, a cracked finite-thickness plate is examined instead of the actual T-joint geometry. The stress intensity factors along the front of a semi-elliptical surface crack in such a plate are determined by means of an analysis using finite quarter-point wedge elements for different elementary loading conditions that can

  1. Design and Experimental Validation of Hydraulic Yaw System for Multi MW Wind Turbine

    DEFF Research Database (Denmark)

    Stubkier, Søren; Pedersen, Henrik C.; Andersen, Torben Ole

    2013-01-01

    environment. The model and the test rig are tested up against different design load cases and the results are compared. The experiments show that the model is valid for comparing the overall dynamics of the hydraulic yaw system. Based on the results it is concluded that the model derived is suitable......To comply with the increasing demands for life time and reliability of wind turbines as these grow in size, new measures needs to be taken in the design of wind turbines and components hereof. One critical point is the initial testing of the components and systems before they are implemented...... market. A hydraulic yaw system is such a new technology, and so a mathematical model of the full scale system and test rig system is derived and compared to measurements from the system. This is done in order to have a validated model, which wind turbine manufacturers may use for test in their simulation...

  2. Extensive use of computational fluid dynamics in the upgrading of hydraulic turbines

    Energy Technology Data Exchange (ETDEWEB)

    Sabourin, M.; Eremeef, R.; De Henau, V.

    1995-12-31

    Computational fluid dynamics codes, based on turbulent Navier-Stokes equations, allow evaluation of the hydraulic losses of each turbine component with precision. Using those codes with the new generation of computers enables a wide variety of component geometries to be modelled and compared to the original designs under flow conditions obtained from testing, at a reasonable cost and in a relatively short time. This paper reviews the actual method used in the design of a solution to a turbine rehabilitation project involving runner replacement, redesign of upstream components (stay vanes and wicket gates), and downstream components (draft tubes and runner outlets). The paper shows how computational fluid dynamics can help hydraulic engineers to obtain valuable information not only on performance enhancement but also on the phenomena that produce the enhancement, and to reduce the variety of modifications to be tested.

  3. Computational fluid dynamics simulation and geometric design of hydraulic turbine draft tube

    Directory of Open Access Journals (Sweden)

    JB Sosa

    2015-10-01

    Full Text Available Any hydraulic reaction turbine is installed with a draft tube that impacts widely the entire turbine performance, on which its functions are as follows: drive the flux in appropriate manner after it releases its energy to the runner; recover the suction head by a suction effect; and improve the dynamic energy in the runner outlet. All these functions are strongly linked to the geometric definition of the draft tube. This article proposes a geometric parametrization and analysis of a Francis turbine draft tube. Based on the parametric definition, geometric changes in the draft tube are proposed and the turbine performance is modeled by computational fluid dynamics; the boundary conditions are set by measurements performed in a hydroelectric power plant. This modeling allows us to see the influence of the draft tube shape on the entire turbine performance. The numerical analysis is based on the steady-state solution of the turbine component flows for different guide vanes opening and multiple modified draft tubes. The computational fluid dynamics predictions are validated using hydroelectric plant measurements. The prediction of the turbine performance is successful and it is linked to the draft tube geometric features; therefore, it is possible to obtain a draft tube parameter value that results in a desired turbine performance.

  4. 3D numerical simulation of transient processes in hydraulic turbines

    Energy Technology Data Exchange (ETDEWEB)

    Cherny, S; Chirkov, D; Lapin, V; Eshkunova, I [Institute of Computational Technologies SB RAS Acad. Lavrentjev avenue 6, Novosibirsk, 630090 (Russian Federation); Bannikov, D; Avdushenko, A [Department of Mechanics and Mathematics, Novosibirsk State University Pirogov st. 2, Novosibirsk, 630090 (Russian Federation); Skorospelov, V, E-mail: chirkov@ict.nsc.r [Institute of Mathematics SB RAS Acad. Koptug avenue 4, Novosibirsk, 630090 (Russian Federation)

    2010-08-15

    An approach for numerical simulation of 3D hydraulic turbine flows in transient operating regimes is presented. The method is based on a coupled solution of incompressible RANS equations, runner rotation equation, and water hammer equations. The issue of setting appropriate boundary conditions is considered in detail. As an illustration, the simulation results for runaway process are presented. The evolution of vortex structure and its effect on computed runaway traces are analyzed.

  5. 3D numerical simulation of transient processes in hydraulic turbines

    Science.gov (United States)

    Cherny, S.; Chirkov, D.; Bannikov, D.; Lapin, V.; Skorospelov, V.; Eshkunova, I.; Avdushenko, A.

    2010-08-01

    An approach for numerical simulation of 3D hydraulic turbine flows in transient operating regimes is presented. The method is based on a coupled solution of incompressible RANS equations, runner rotation equation, and water hammer equations. The issue of setting appropriate boundary conditions is considered in detail. As an illustration, the simulation results for runaway process are presented. The evolution of vortex structure and its effect on computed runaway traces are analyzed.

  6. OPTIMAL HYDRAULIC DESIGN AND CAD APPLICATIONS OF AXIAL FLOW HYDRAULIC TURBINE'S RUNNER

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    A method of the optimal hydraulic design and CAD application of runner blades of axial-flow hydraulic turbines are discussed on the basis of optimization principle and CAD technique in this paper. Based on the theory of fluid dynamics, the blade′s main geometrical parameter, working parameters and performances index of the blades and the relationship between them are analysed, and the mathematical model of optimal hydraulic design of axial-flow runners has been established. Through nonlinear programming, the problems can be solved. By making use of the calculation geometry and computer graphics, the distribution method of the singular points, and an CAD applied software, an optimal hydraulic design are presented.

  7. HVOF on the Surface Strengthen Treatment to the flow Parts of Hydraulic Turbine

    Institute of Scientific and Technical Information of China (English)

    AI You-zhong; LU Jin-yu; TU Yang-wen; LI Cui-lin

    2004-01-01

    China has the most outstanding and serious problem of silt abrasion on hydraulic turbine, especially in the power station on mainstream of Yellow River and the upriver anabranch of Yangtze River. For many years, in order to find the destruction rules of silt to hydraulic turbine, and study how to slow down the destruction speed of sandiness stream to surface on flow parts of hydraulic turbine, various kinds of new technology, new material, new craftwork have been verified in lab and on spot. It is proved that using high velocity oxygen fuel to strengthen the surface on flow parts of hydraulic turbine can effectively prolong the service life of hydroelectric generating set.

  8. Mobile platform for hydraulic turbine blade repair robot

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The wall-climbing mobile platform (MP) of a robot for repairing a hydraulic turbine blade onsite is developed.The MP is equipped with ferromagnetic adhesive devices and can work on a spatial curved surface.The contradiction between mobility and load-bearing ability is analyzed,and the problem of self-adaptation to the curved face is solved using differential-driven wheeled locomotion with ferromagnetic adhesive devices.The platform adheres to the blade surface through the force provided by the ferromagnetic devices,and a certain gap exists between the magnetic devices and the blade's surface.A mechanism of three revolution degrees of freedom,which connects the magnetic devices with the platform's chassis,is developed to make the platform self-adapt to the complex curved surface of the turbine blade.A proofof-principle prototype has been manufactured,and experiments prove the success of the MP.The payload of the zero-turn-radius MP with excellent maneuverability exceeds 80 kg.The platform can automatically adapt to complex spatial surfaces,which satisfy the requirements of a hydraulic turbine blade in-situ repair robot.

  9. Detection of cavitation vortex in hydraulic turbines using acoustic techniques

    Science.gov (United States)

    Candel, I.; Bunea, F.; Dunca, G.; Bucur, D. M.; Ioana, C.; Reeb, B.; Ciocan, G. D.

    2014-03-01

    Cavitation phenomena are known for their destructive capacity in hydraulic machineries and are caused by the pressure decrease followed by an implosion when the cavitation bubbles find an adverse pressure gradient. A helical vortex appears in the turbine diffuser cone at partial flow rate operation and can be cavitating in its core. Cavity volumes and vortex frequencies vary with the under-pressure level. If the vortex frequency comes close to one of the eigen frequencies of the turbine, a resonance phenomenon may occur, the unsteady fluctuations can be amplified and lead to important turbine and hydraulic circuit damage. Conventional cavitation vortex detection techniques are based on passive devices (pressure sensors or accelerometers). Limited sensor bandwidths and low frequency response limit the vortex detection and characterization information provided by the passive techniques. In order to go beyond these techniques and develop a new active one that will remove these drawbacks, previous work in the field has shown that techniques based on acoustic signals using adapted signal content to a particular hydraulic situation, can be more robust and accurate. The cavitation vortex effects in the water flow profile downstream hydraulic turbines runner are responsible for signal content modifications. Basic signal techniques use narrow band signals traveling inside the flow from an emitting transducer to a receiving one (active sensors). Emissions of wide band signals in the flow during the apparition and development of the vortex embeds changes in the received signals. Signal processing methods are used to estimate the cavitation apparition and evolution. Tests done in a reduced scale facility showed that due to the increasing flow rate, the signal -- vortex interaction is seen as modifications on the received signal's high order statistics and bandwidth. Wide band acoustic transducers have a higher dynamic range over mechanical elements; the system's reaction time

  10. Reliable hydraulic turbine governor based on identification and adaptive filtering

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, J.; Doraiswami, R.

    1986-01-01

    A scheme for improving reliable operation of a PID governor of a hydraulic turbine generating unit is proposed. The parameters of governor and actuators are identified on-line to, a) detect their anomalous behaviours, b) facilitate the calibration of the proportional integral and derivative gain settings. An adaptive filter is used to detect the lightly damped oscillations of the system. The proposed scheme was verified via simulation on the real data obtained from one of Mactaquac hydro-generating units of New Brunswick Electrical Power Commission. The simulation results show that the proposed scheme can indeed provide an accurate and rapid detection of the abnormal system operations.

  11. State of the art hydraulic turbine model test

    Science.gov (United States)

    Fabre, Violaine; Duparchy, Alexandre; Andre, Francois; Larroze, Pierre-Yves

    2016-11-01

    Model tests are essential in hydraulic turbine development and related fields. The methods and technologies used to perform these tests show constant progress and provide access to further information. In addition, due to its contractual nature, the test demand evolves continuously in terms of quantity and accuracy. Keeping in mind that the principal aim of model testing is the transposition of the model measurements to the real machine, the measurements should be performed accurately, and a critical analysis of the model test results is required to distinguish the transposable hydraulic phenomena from the test rig interactions. Although the resonances’ effects are known and described in the IEC standard, their identification is difficult. Leaning on a strong experience of model testing, we will illustrate with a few examples of how to identify the potential problems induced by the test rig. This paper contains some of our best practices to obtain the most accurate, relevant, and independent test-rig measurements.

  12. Development and industrial tests of the first LNG hydraulic turbine system in China

    Directory of Open Access Journals (Sweden)

    Jie Chen

    2016-10-01

    Full Text Available The cryogenic hydraulic turbine can be used to replace the conventional J–T valve for LNG or mixed refrigerant throttling and depressurization in a natural gas liquefaction plant. This advanced technology is not only to enhance the efficiency of the liquefaction plant, but to usher a new trend in the development of global liquefaction technologies. China has over 136 liquefaction plants, but the cryogenic hydraulic turbines have not been deployed in industrial utilization. In addition, these turbines cannot be manufactured domestically. In this circumstance, through working on the key technologies for LNG hydraulic turbine process & control system development, hydraulic model optimization design, structure design and manufacturing, the first domestic cryogenic hydraulic turbine with a flow rate of 40 m3/h was developed to recover the pressure energy from the LNG of cold box. The turbine was installed in the CNOOC Zhuhai Natural Gas Liquefaction Plant for industrial tests under multiple working conditions, including start-stop, variable flow rates and variable rotation speeds. Test results show that the domestic LNG cryogenic hydraulic turbine has satisfactory mechanical and operational performances at low temperatures as specified in design. In addition, the process & control system and frequency-conversion power-generation system of the turbine system are designed properly to automatically and smoothly replace the existing LNG J–T valve. As a result, the domestic LNG cryogenic hydraulic turbine system can improve LNG production by an average of 2% and generate power of 8.3 kW.

  13. Numerical and experimental study of low-frequency pressure pulsations in hydraulic units with Francis turbine

    Science.gov (United States)

    Platonov, D.; Minakov, A.; Dekterev, D.; Sentyabov, A.; Dekterev, A.

    2016-10-01

    The paper presents the numerical simulation method of three-dimensional turbulent flows in the hydraulic turbine. This technique was verified by means of experimental data obtained on a water model of the Francis turbines. An aerodynamic stand, which is a miniature copy of the real hydraulic turbine, was designed. A series of experiments have been carried out on this stand and the corresponding calculations were performed. The dependence of the velocity and pressure pulsations profiles for different operation regimes are presented.

  14. Probabilistic Modeling of Wind Turbine Drivetrain Components

    DEFF Research Database (Denmark)

    Rafsanjani, Hesam Mirzaei

    Wind energy is one of several energy sources in the world and a rapidly growing industry in the energy sector. When placed in offshore or onshore locations, wind turbines are exposed to wave excitations, highly dynamic wind loads and/or the wakes from other wind turbines. Therefore, most components....../nodules on fatigue life of cast iron samples. The cast iron samples scanned by 3D tomography equipment at the DTU Wind Energy (Risø campus), and the distribution of nodules are used to estimate the fatigue life....

  15. Performance of nickel base superalloy components in gas turbines

    DEFF Research Database (Denmark)

    Dahl, Kristian Vinter

    2006-01-01

    The topic of this thesis is the microstructural behaviour of hot section components in the industrial gas turbine......The topic of this thesis is the microstructural behaviour of hot section components in the industrial gas turbine...

  16. A Feasibility Study of Power Generation from Sewage Using a Hollowed Pico-Hydraulic Turbine

    Directory of Open Access Journals (Sweden)

    Tomomi Uchiyama

    2016-12-01

    Full Text Available This study is concerned with the feasibility of power generation using a pico-hydraulic turbine from sewage flowing in pipes. First, the sewage flow rate at two connection points to the Toyogawa River-Basin Sewerage, Japan, was explored for over a year to elucidate the hydraulic energy potential of the sewage. Second, the performance of the pico-hydraulic turbine was investigated via laboratory experiments that supposed the turbine to be installed in the sewage pipe at the connection points. This study indicates that the connection points have hydraulic potential that can be used for power generation throughout the year. It also demonstrates that the pico-hydraulic turbine can be usefully employed for power generation from sewage flowing in the pipe at the connection points.

  17. Experimental and Numerical Simulations Predictions Comparison of Power and Efficiency in Hydraulic Turbine

    Directory of Open Access Journals (Sweden)

    Laura Castro

    2011-01-01

    Full Text Available On-site power and mass flow rate measurements were conducted in a hydroelectric power plant (Mexico. Mass flow rate was obtained using Gibson's water hammer-based method. A numerical counterpart was carried out by using the commercial CFD software, and flow simulations were performed to principal components of a hydraulic turbine: runner and draft tube. Inlet boundary conditions for the runner were obtained from a previous simulation conducted in the spiral case. The computed results at the runner's outlet were used to conduct the subsequent draft tube simulation. The numerical results from the runner's flow simulation provided data to compute the torque and the turbine's power. Power-versus-efficiency curves were built, and very good agreement was found between experimental and numerical data.

  18. EXPERIMENTAL INVESTIGATION OF CHARACTERISTIC FREQUENCY IN UNSTEADY HYDRAULIC BEHAVIOUR OF A LARGE HYDRAULIC TURBINE

    Institute of Scientific and Technical Information of China (English)

    WANG Fu-jun; LI Xiao-qin; MA Jia-mei; YANG Min; ZHU Yu-liang

    2009-01-01

    The features of unsteady flow such as pressure variation and fluctuation in a large hydraulic turbine usually lead to the instability of operation.This article reports the recent in site investigation concerning the characteristic frequencies in pressure fluctuation,shaft torsional oscillation and structural vibration of a prototype 700 MW Francis turbine unit.The investigation was carried out for a wide load range of 200 MW-700 MW in the condition of water head 57 m-90 m.An extensive analysis of both time-history and frequency data of these unsteady hydraulic behaviours was conducted.It was observed that the pressure fluctuation in a draft tube is stronger than that in upstream flow passage.The low frequency with about one third of rotation frequency is dominative for the pressure fluctuation in part load range.Also the unsteady features of vibration of head cover and torsional oscillation of shaft exhibited the similar features.Numerical analysis showed that the vibration and oscillation are caused by vortex rope in the draft tube.In addition,a strong vibration with special characteristic frequency was observed for the head cover in middle load range.The pressure fluctuation in the draft tube with the same frequency was also recorded.Because this special vibration has appeared in the designed normal running condition,it should be avoided by carefully allocating power load in the future operation.

  19. Strain gauge measurement uncertainties on hydraulic turbine runner blade

    Science.gov (United States)

    Arpin-Pont, J.; Gagnon, M.; Tahan, S. A.; Coutu, A.; Thibault, D.

    2012-11-01

    Strains experimentally measured with strain gauges can differ from those evaluated using the Finite Element (FE) method. This difference is due mainly to the assumptions and uncertainties inherent to each method. To circumvent this difficulty, we developed a numerical method based on Monte Carlo simulations to evaluate measurement uncertainties produced by the behaviour of a unidirectional welded gauge, its position uncertainty and its integration effect. This numerical method uses the displacement fields of the studied part evaluated by an FE analysis. The paper presents a study case using in situ data measured on a hydraulic turbine runner. The FE analysis of the turbine runner blade was computed, and our numerical method used to evaluate uncertainties on strains measured at five locations with welded strain gauges. Then, measured strains and their uncertainty ranges are compared to the estimated strains. The uncertainty ranges obtained extended from 74 μepsilon to 165 μepsilon. Furthermore, the biases observed between the median of the uncertainty ranges and the FE strains varied from -36 to 36 μepsilon. Note that strain gauge measurement uncertainties depend mainly on displacement fields and gauge geometry.

  20. An evaluation of a hubless inducer and a full flow hydraulic turbine driven inducer boost pump

    Science.gov (United States)

    Lindley, B. K.; Martinson, A. R.

    1971-01-01

    The purpose of the study was to compare the performance of several configurations of hubless inducers with a hydrodynamically similar conventional inducer and to demonstrate the performance of a full flow hydraulic turbine driven inducer boost pump using these inducers. A boost pump of this type consists of an inducer connected to a hydraulic turbine with a high speed rotor located in between. All the flow passes through the inducer, rotor, and hydraulic turbine, then into the main pump. The rotor, which is attached to the main pump shaft, provides the input power to drive the hydraulic turbine which, in turn, drives the inducer. The inducer, rotating at a lower speed, develops the necessary head to prevent rotor cavitation. The rotor speed is consistent with present main engine liquid hydrogen pump designs and the overall boost pump head rise is sufficient to provide adequate main pump suction head. This system would have the potential for operating at lower liquid hydrogen tank pressures.

  1. Wind tunnel experiments to prove a hydraulic passive torque control concept for variable speed wind turbines

    NARCIS (Netherlands)

    Diepeveen, N.F.B.; Jarquin-Laguna, A.

    2014-01-01

    In this paper the results are presented of experiments to prove an innovative concept for passive torque control of variable speed wind turbines using fluid power technology. It is demonstrated that by correctly configuring the hydraulic drive train, the wind turbine rotor operates at or near maximu

  2. Wind tunnel experiments to prove a hydraulic passive torque control concept for variable speed wind turbines

    NARCIS (Netherlands)

    Diepeveen, N.F.B.; Jarquin-Laguna, A.

    2014-01-01

    In this paper the results are presented of experiments to prove an innovative concept for passive torque control of variable speed wind turbines using fluid power technology. It is demonstrated that by correctly configuring the hydraulic drive train, the wind turbine rotor operates at or near maximu

  3. 14 CFR 35.43 - Propeller hydraulic components.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Propeller hydraulic components. 35.43 Section 35.43 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: PROPELLERS Tests and Inspections § 35.43 Propeller hydraulic components....

  4. Cooling arrangement for a gas turbine component

    Science.gov (United States)

    Lee, Ching-Pang; Heneveld, Benjamin E

    2015-02-10

    A cooling arrangement (82) for a gas turbine engine component, the cooling arrangement (82) having a plurality of rows (92, 94, 96) of airfoils (98), wherein adjacent airfoils (98) within a row (92, 94, 96) define segments (110, 130, 140) of cooling channels (90), and wherein outlets (114, 134) of the segments (110, 130) in one row (92, 94) align aerodynamically with inlets (132, 142) of segments (130, 140) in an adjacent row (94, 96) to define continuous cooling channels (90) with non continuous walls (116, 120), each cooling channel (90) comprising a serpentine shape.

  5. New JSME standard S008 “Performance Conversion Method for Hydraulic Turbines and Pump-Turbines”

    Science.gov (United States)

    Nakanishi, Y.; Kitahora, T.; Suzuki, S.; Suzuki, T.; Sugishita, K.; Suzuki, R.; Tani, K.

    2016-11-01

    JSME Standard S008 “Performance Conversion Method for Hydraulic Turbines and Pump-Turbines” is now being revised and will be published in 2016. This new revision follows the main theory of previous version S008-1999. It enables us to convert the performance of each flow passage component of spiral case, stay vane, guide vane, runner and draft tube of model turbines and pump-turbines to that of prototypes with one-step calculation. The relevant values needed for the performance conversion, e.g. dimension factor, flow velocity factor, relative scalable loss of components δ ECO , etc. are newly organized as functions of specific speeds of turbines and pump-turbines using polynomial expressions. Additional data for high specific speed turbines are included. The resultant factors for conversion of the specific energy efficiency scale factor F E , the discharge efficiency scale factor F Q and the power efficiency scale factor F T are determined by considering friction coefficient ratio for prototype to the model.

  6. optimal selection of hydraulic turbines for small hydro electric power ...

    African Journals Online (AJOL)

    eobe

    Results from the analysis showed that turbines that gave maximum and minimum power urbines that ..... turbine application range charts have been developed to assist with .... Results from the study shows that thorough technical knowledge ...

  7. Hydraulic Evaluation and Optimisation of T. Basses Wave Turbine

    DEFF Research Database (Denmark)

    Frigaard, Peter; Kofoed, Jens Peter

    The present study investigates designs of the wing profiles and layouts of the wave turbine in order to optimize the design. Furthermore, the overall power production capability of the device has been estimated for the selected wing profiles and turbine layout.......The present study investigates designs of the wing profiles and layouts of the wave turbine in order to optimize the design. Furthermore, the overall power production capability of the device has been estimated for the selected wing profiles and turbine layout....

  8. Degradation of Phosphate Ester Hydraulic Fluid in Power Station Turbines Investigated by a Three-Magnet Unilateral Magnet Array

    Directory of Open Access Journals (Sweden)

    Pan Guo

    2014-04-01

    Full Text Available A three-magnet array unilateral NMR sensor with a homogeneous sensitive spot was employed for assessing aging of the turbine oils used in two different power stations. The Carr-Purcell-Meiboom-Gill (CPMG sequence and Inversion Recovery-prepared CPMG were employed for measuring the 1H-NMR transverse and longitudinal relaxation times of turbine oils with different service status. Two signal components with different lifetimes were obtained by processing the transverse relaxation curves with a numeric program based on the Inverse Laplace Transformation. The long lifetime components of the transverse relaxation time T2eff and longitudinal relaxation time T1 were chosen to monitor the hydraulic fluid aging. The results demonstrate that an increase of the service time of the turbine oils clearly results in a decrease of T2eff,long and T1,long. This indicates that the T2eff,long and T1,long relaxation times, obtained from the unilateral magnetic resonance measurements, can be applied as indices for degradation of the hydraulic fluid in power station turbines.

  9. Nonlinear Dynamical Analysis of Hydraulic Turbine Governing Systems with Nonelastic Water Hammer Effect

    Directory of Open Access Journals (Sweden)

    Junyi Li

    2014-01-01

    Full Text Available A nonlinear mathematical model for hydroturbine governing system (HTGS has been proposed. All essential components of HTGS, that is, conduit system, turbine, generator, and hydraulic servo system, are considered in the model. Using the proposed model, the existence and stability of Hopf bifurcation of an example HTGS are investigated. In addition, chaotic characteristics of the system with different system parameters are studied extensively and presented in the form of bifurcation diagrams, time waveforms, phase space trajectories, Lyapunov exponent, chaotic attractors, and Poincare maps. Good correlation can be found between the model predictions and theoretical analysis. The simulation results provide a reasonable explanation for the sustained oscillation phenomenon commonly seen in operation of hydroelectric generating set.

  10. Computation and analysis of cavitating flow in Francis-class hydraulic turbines

    Science.gov (United States)

    Leonard, Daniel J.

    can occur more abruptly in the model than the prototype, due to lack of Froude similitude between the two. When severe cavitation occurs, clear differences are observed in vapor content between the scales. A stage-by-stage performance decomposition is conducted to analyze the losses within individual components of each scale of the machine. As cavitation becomes more severe, the losses in the draft tube account for an increasing amount of the total losses in the machine. More losses occur in the model draft tube as cavitation formation in the prototype draft tube is prevented by the larger hydrostatic pressure gradient across the machine. Additionally, unsteady Detached Eddy Simulations of the fully-coupled cavitating hydroturbine are performed for both scales. Both mesh and temporal convergence studies are provided. The temporal and spectral content of fluctuations in torque and pressure are monitored and compared between single-phase, cavitating, model, and prototype cases. A shallow draft tube induced runner imbalance results in an asymmetric vapor distribution about the runner, leading to more extensive growth and collapse of vapor on any individual blade as it undergoes a revolution. Unique frequency components manifest and persist through the entire machine only when cavitation is present in the hub vortex. Large maximum pressure spikes, which result from vapor collapse, are observed on the blade surfaces in the multiphase simulations, and these may be a potential source of cavitation damage and erosion. Multiphase CFD is shown to be an accurate and effective technique for simulating and analyzing cavitating flow in Francis-class hydraulic turbines. It is recommended that it be used as an industrial tool to supplement model cavitation experiments for all types of hydraulic turbines. Moreover, multiphase CFD can be equally effective as a research tool, to investigate mechanisms of cavitating hydraulic turbines that are not understood, and to uncover unique new

  11. CWTC business plan; Wind turbine component centre

    Energy Technology Data Exchange (ETDEWEB)

    Hjuler Jensen, P.; Hillestroem, A.; Markou, H.; Berring, P.; Friis, P.

    2011-04-15

    This report presents the Business Plan for the establishment of the Wind Turbine Component Centre (CWTC) to meet the objectives of performing theoretical research and experimental testing. The core idea of a CWTC is to support the Danish wind energy industry and research activities at the component level improving the competitive advantage of that industry. The CWTC will in itself operate its activities, including access to test and experimental facilities, on a semi commercial basis. The business model for the CWTC presented is based on revenues coming from component manufacturers as well as research grants, and will include membership fees as well as hourly payment and larger projects where payment is a limited project sum. The presented roadmap model clarifies the development path towards a fully developed CWTC, which will cover test of all important components along the drive-train as well as offering a comprehensive systematic understanding of the entire drive-train. The CWTC will over time market and sell its products and services on a global scale, but first and foremost the CWTC is established to support and strengthen the Danish wind energy industry and specifically the Danish sub suppliers to the Danish wind turbine industry and also the Danish research establishments. The presented organizational structure reflects that there are certain functions that are separated from the operations and it also reflects that scientific staffing are hired in on a project basis. Machine operators will be hired in on a permanent basis. The breakdown of the cost for running the rig, both for R and D and commercial projects is presented. The income from the other activities is calculated based on the cost for the research staff, both for R and D activities and commercial. In the first year the income will be 100% from R and D activities, which is the cost for the staff to set-up the test-rig, the guidelines and test procedures, and partly for running the rig. Within 3

  12. Design, Optimization and Analysis of Hydraulic Soft Yaw System for 5 MW Wind Turbine

    DEFF Research Database (Denmark)

    Stubkier, Søren; Pedersen, Henrik C.

    2011-01-01

    presents work previous done on this subject with focus on hydraulic yaw systems. By utilizing the HAWC2 aeroelastic code and an extended model of the NREL 5MW turbine combined with a simplified linear model of the turbine, the parameters of the soft yaw system are optimized. Results show that a significant...... reduction in fatigue and extreme loads to the yaw system and rotor shaft are possible, when utilizing the soft yaw drive concept compared to the original stiff yaw system. The physical demands of the hydraulic yaw system are furthermore examined for a life time of 20 years. The duty cycles, based...... on the extrapolated loads, show that it is possible to construct a hydraulic soft yaw system, which is able to reduce the loads on the wind turbine significantly....

  13. Functional Problems and Maintenance Operations of Hydraulic Turbines

    Directory of Open Access Journals (Sweden)

    Liliana Topliceanu

    2016-02-01

    Full Text Available The exploitation in good conditions of the hydroelectric power plant imposes a rigorous maintenance of equipment and operating facilities, primarily of the turbine. The efficiency of the turbine is strongly affected by any defects which could occur during the operation. The paper makes a synthesis of the most frequent failures which have occurred during the functioning of Kaplan turbines plant and the required maintenance plan that has to be adopted. The maintenance rules for the optimal working of these turbines are also emphasized.

  14. DETERMINATION OF HYDRAULIC TURBINE EFFICIENCY BY MEANS OF THE CURRENT METER METHOD

    Directory of Open Access Journals (Sweden)

    PURECE C.

    2016-12-01

    Full Text Available The paper presents methodology used for determining the efficiency of a low head Kaplan hydraulic turbine with short converging intake. The measurement method used was the current meters method, the only measurement method recommended by the IEC 41standard for flow measurement in this case. The paper also presents the methodology used for measuring the flow by means of the current meters method and the various procedures for calculating the flow. In the last part the paper presents the flow measurements carried out on the Fughiu HPP hydraulic turbines for determining the actual operating efficiency.

  15. Bridging the gap between metallurgy and fatigue reliability of hydraulic turbine runners

    Science.gov (United States)

    Thibault, D.; Gagnon, M.; Godin, S.

    2014-03-01

    The failure of hydraulic turbine runners is a very rare event. Hence, in order to assess the reliability of these components, one cannot rely on statistical models based on the number of failures in a given population. However, as there is a limited number of degradation mechanisms involved, it is possible to use physically-based reliability models. Such models are more complicated but have the advantage of being able to account for physical parameters in the prediction of the evolution of runner degradation. They can therefore propose solutions to help improve reliability. With the use of such models, the effect of materials properties on runner reliability can easily be illustrated. This paper will present a brief review of the Kitagawa-Takahashi diagram that links the damage tolerance approach, based on fracture mechanics, to the stress or strain-life approaches. This diagram is at the centre of the reliability model used in this study. Using simplified response spectra obtained from on-site runner stress measurements, the paper will show how fatigue reliability is impacted by materials fatigue properties, namely fatigue crack propagation behaviour and fatigue limit obtained on S-N curves. It will also present a review of the most important microstructural features of 13%Cr- 4%Ni stainless steels used for runner manufacturing and will review how they influence fatigue properties in an effort to bridge the gap between metallurgy and turbine runners reliability.

  16. Design, analysis and control of hydraulic soft yaw system for 5MW wind turbine

    DEFF Research Database (Denmark)

    Stubkier, Søren; Pedersen, Henrik C.; Andersen, Torben Ole

    2012-01-01

    by active control of a hydraulic yaw system. The control is based on a non-linear and linear model derived based on a concept yaw system for the NREL 5MW wind turbine. The control strategies show a reduction in pressure pulsations under load and it is concluded that the strategie including high......As wind turbines increase in size and the demands for lifetime also increases, new methods of load reduction needs to be examined. One method is to make the yaw system of the turbine soft/flexible and wereby dampen the loads to the system. This paper presents work done on dampening of these loads...

  17. Assessing Hydraulic Conditions through Francis turbines using an autonomous sensor device

    Energy Technology Data Exchange (ETDEWEB)

    Fu, Tao; Deng, Zhiqun; Duncan, Joanne P.; Zhou, Daqing; Carlson, Thomas J.; Johnson, Gary E.; Hou, Hongfei

    2016-08-18

    Downstream migratory fish, including some endangered species, can be injured or killed during turbine passage. In this study an autonomous Sensor Fish device was deployed at Arrowrock Dam, Cougar Dam, and Detroit Dam to evaluate the hydraulic conditions and physical stresses that fish experienced when passing through these Francis turbines. Pressure data was used to identify the location of the Sensor Fish and to calculate the nadir pressure and the magnitude and the rate of change in pressure during turbine passage. Acceleration data was used to identify events (collisions or shear) Sensor Fish experienced and to categorize the severity level (severe, medium, and slight) of each event. The results showed that Sensor Fish experienced severe events mostly in the stay vane/wicket gate region and the runner region. In the stay vane/wicket gate region, almost all severe events were collisions. In the runner region, Sensor fish experienced both severe collisions and severe shear events. Sensor Fish data at three wicket gate opening treatments at Cougar Dam indicated that the wicket gate opening of the Francis turbine can affect the hydraulic conditions in the turbine runner region. Fewer Sensor Fish experienced severe collisions in the turbine runner region at the peak efficiency than at the minimum opening and the maximum opening treatments. Comparisons between the Francis turbines at the three dams and the AHT Kaplan turbine at Wanapum Dam showed that higher percentage of Sensor Fish experienced severe events in the runner region when passing through Francis turbines than the AHT Kaplan turbine. The nadir pressures of the Francis turbines were lower than those of the AHT Kaplan turbine at Wanapum Dam. Both the magnitude and the rate of change in pressure were higher in Francis turbines than in the AHT Kaplan turbine at Wanapum Dam in the runner region. This study can be used to guide future laboratory studies of fish passing through Francis turbine and help the design

  18. Experiences with the hydraulic design of the high specific speed Francis turbine

    Science.gov (United States)

    Obrovsky, J.; Zouhar, J.

    2014-03-01

    The high specific speed Francis turbine is still suitable alternative for refurbishment of older hydro power plants with lower heads and worse cavitation conditions. In the paper the design process of such kind of turbine together with the results comparison of homological model tests performed in hydraulic laboratory of ČKD Blansko Engineering is introduced. The turbine runner was designed using the optimization algorithm and considering the high specific speed hydraulic profile. It means that hydraulic profiles of the spiral case, the distributor and the draft tube were used from a Kaplan turbine. The optimization was done as the automatic cycle and was based on a simplex optimization method as well as on a genetic algorithm. The number of blades is shown as the parameter which changes the resulting specific speed of the turbine between ns=425 to 455 together with the cavitation characteristics. Minimizing of cavitation on the blade surface as well as on the inlet edge of the runner blade was taken into account during the design process. The results of CFD analyses as well as the model tests are mentioned in the paper.

  19. Reliability-Based Design of Wind Turbine Components

    DEFF Research Database (Denmark)

    Toft, Henrik Stensgaard; Sørensen, John Dalsgaard

    2010-01-01

    wind turbine design a deterministic design approach based on partial safety factors is normally used. In the present paper a numerical example demonstrates how information from tests with wind turbine blades can be used to establish a probabilistic basis for reliabilitybased design. It is also......Application of reliability-based design for wind turbines requires a definition of the probabilistic basis for the individual components of the wind turbine. In the present paper reliability-based design of structural wind turbine components is considered. A framework for the uncertainties which...... demonstrated how partial safety factors can be derived for reliability-based design and how the partial safety factors changes dependent on the uncertainty in the test results....

  20. Numerical analysis of Coriolis effect on low-head hydraulic turbines

    Science.gov (United States)

    Ahn, S. H.; Xiao, Y. X.; Zhou, X. Z.; Zhang, J.; Zeng, C. J.; Luo, Y. Y.; Xu, W.; Wang, Z. W.

    2016-11-01

    For the low-head hydropower station, the operating head is low, and the turbine intake channel is relatively short. The turbine internal flow behaviour can be influenced by fluid flows in the upstream reservoir easily, then it would influence the turbine hydraulic performance. Water flows in the upstream reservoir can be influenced by the Coriolis force by the Earth rotation, and it differs at the different Rossby number. In this paper, the Coriolis effect on the approach flows and the turbine performances are investigated numerically for the low-head units. Firstly, the Coriolis effect (under the different latitudes and the same characteristic length scale) on reservoir flows was predicted. Secondly, the prototype performance of a bulb-type turbine was simulated including the reservoir flow with the Coriolis effect, and then the effect on the turbine performance is be discussed. Results show that the flow field in the upstream reservoir at the low Rossby number, the ratio of inertial force to Coriolis force, can sufficiently influence the turbine intake flows and the turbine performances. Adjusting the side-wall distance can reduce the Coriolis effects.

  1. Effect of Entrance Section of Hydraulic Turbine on Hydraulic Loss and Velocity Torque%液力透平进口截面对水力损失及速度矩的影响

    Institute of Scientific and Technical Information of China (English)

    史广泰; 杨军虎

    2015-01-01

    The diffusion tube of volute outlet becomes the shrinkable tube of hydraulic turbine when centrifugal pump acts as hy-draulic turbine. The energy loss between the diffusion tube and shrinkable tube is different, as well as the effect of the shrinkable tube of different shrinkage rate on hydraulic loss and velocity torque of hydraulic turbine. In order to reduce hydraulic loss of each the flow components in hydraulic turbine and improve the efficiency of hydraulic turbine, the base circle of volute of a single stage hydraulic tur-bine is regarded as a loop line under the different entrance section. The tangential velocity along the loop line is calculated. Corre-spondingly, the velocity torque is work out with the radius of base circle. Four monitoring points in the loop are set up. At the points, the velocity torque varies with the flow rate. The varieties are analyzed with ANSYS software and effect of the entrance section of volute on hydraulic loss of each the flow components is studied. The results show that the optimum entrance diameter of volute of hydraulic turbine is equal to 65 mm. Compared to the original design, the efficiency of improved hydraulic turbine increases by 1. 83%. Fluctu-ant amplitude of velocity torque of impeller entrance is minimum in the volute entrance. With increasing volute entrance diameter, ve-locity torque of impeller entrance and the hydraulic loss is gradually decreased. Meanwhile the shrinkage rate of shrinkable tube in vo-lute gradually increases.%为减小液力透平各过流部件的水力损失,提高液力透平的效率,在不同蜗壳进口截面下将一单级液力透平蜗壳的基圆作为一环线,计算沿该环线的切向速度值,根据基圆半径计算出相应的速度矩,并在环线上分别设置4个监测点,利用ANSYS软件计算监测点处的速度矩随流量的变化规律,最后研究蜗壳进口截面对各过流部件水力损失的影响。结果表明:所选液力透平的

  2. Development of the helical reaction hydraulic turbine. Final technical report, July 1, 1996--June 30, 1998

    Energy Technology Data Exchange (ETDEWEB)

    Gorlov, A.

    1998-08-01

    The present report contains the final results obtained during July 1996--July 1998. This report should be considered in association with the Annual Progress Report submitted in July 1997 due to the fact that not all of the intermediate results reflected in the Progress Report have been included in the Final Report. The aim of the project was to build a helical hydraulic turbine prototype and demonstrate its suitability and advantages as a novel apparatus to harness hydropower from ultra low-head rivers and other free water streams such as ocean currents or rivers without dams. The research objectives of the project are: Design, optimization and selection of the hydro foil section for the helical turbine; Design of the turbine for demonstration project; Construction and testing of the turbine module; Assessing test results and determining scale-up feasibility. The research conducted under this project has substantially exceeded the original goals including designing, constructing and testing of a scaled-up triple-helix turbine, as well as developing recommendations for application of the turbine for direct water pumping in irrigation systems and for future use in wind farms. Measurements collected during two years of turbine testing are kept in the PI files.

  3. The determination of the operation parameters at the axial hydraulic turbine

    Science.gov (United States)

    Simedru, A. I.

    2016-08-01

    In the operating point of the monitoring moment there are assumed from process the monitoring measured parameters: the active and reactive power, upstream and downstream water levels (after the intake trash rake and at the outlet of the turbine draft tube), wicket gate and runner opening blades, the differential pressure in the spiral chamber and the hydrounit speed. So, there was established the characteristic curves obtained on analytic basis and similitude and compared with the curves measured experimentally on the hydraulic machines from the power plant. The cavitational coefficient of the machine and the cavitational coefficient of the equipment are in function of the system parameters between them especially the suction head, the runner and wicket gates blades angles of opening. The solution proposed is a method of determining the operating turbine parameters and of the cavitation, by reducing the error caused by the similitude phenomenon, using an accurate estimation of the turbine operating parameters according to the universal diagram of the turbine. The numerical obtained values permit the necessary correlation through a complex function which is able to reduce or eliminate the unwished effects of the cavitation phenomena on the hydraulic turbines of the Iron Gates power plant.

  4. Numerical study of rotor-stator interactions in a hydraulic turbine with Foam-extend

    Science.gov (United States)

    Romain, Cappato; Guibault, François; Devals, Christophe; Nennemann, Bernd

    2016-11-01

    In the development of high head hydraulic turbines, vibrations are one of the critical problems. In Francis turbines, pressure fluctuations occur at the interface between the blades of the runner and guide vanes. This rotor-stator interaction can be responsible for fatigue failures and cracks. Although the flow inside the turbomachinery is complex, and the unsteadiness makes it difficult to model, the choice of an appropriate setup enables the study of this phenomenon. This study validates a numerical setup of the Foam-extend open source software for rotor-stator simulations. Pressure fluctuations results show a good correspondence with data from experiments.

  5. Mixed-flow vertical tubular hydraulic turbine. Determination of proper design duty point

    Energy Technology Data Exchange (ETDEWEB)

    Sirok, B. [Ljubljana Univ. (Slovenia). Faculty of Mechanical Engineering; Bergant, A. [Litostroj Power, d.o.o., Ljubljana (Slovenia); Hoefler, E.

    2011-12-15

    A new vertical single-regulated mixed-flow turbine with conical guide apparatus and without spiral casing is presented in this paper. Runner blades are fixed to the hub and runner band and resemble to the Francis type runner of extremely high specific speed. Due to lack of information and guidelines for the design of a new turbine, a theoretical model was developed in order to determinate the design duty point, i.e. to determine the optimum narrow operation range of the turbine. It is not necessary to know the kinematic conditions at the runner inlet, but only general information on the geometry of turbine flow-passage, meridional contour of the runner and blading, the number of blades and the turbine speed of rotation. The model is based on the integral tangential lift coefficient, which is the average value over the entire runner blading. The results are calculated for the lift coefficient 0.5 and 0.6, for the flow coefficient range from 0.2 to 0.36, for the number of the blades between 5 and 13, and are finally presented in the Cordier diagram (specific speed vs. specific diameter). Calculated results of the turbine optimum operation in Cordier diagram correspond very well to the adequate area of Kaplan turbines with medium and low specific speed and extends into the area of Francis turbines with high specific speed. Presented model clearly highlights the parameters that affect specific load of the runner blade row and therefore the optimum turbine operation (discharge - turbine head). The presented method is not limited to a specific reaction type of the hydraulic turbine. The method can therefore be applied to a wide range from mixed-flow (radial-axial) turbines to the axial turbines. Applicability of the method may be considered as a tool in the first stage of the turbine design i.e. when designing the meridional geometry and selecting the number of blades according to calculated operating point. Geometric and energy parameters are generally defined to an

  6. Rotating Water Table for the Determination of Non-Steady Forces in a Turbine Stage Through Modified Hydraulic Analogy

    OpenAIRE

    J. S. Rao; E. Raghavacharyulu; Seshadri, V.; V.V.R. Rao

    1983-01-01

    Determination of non-steady forces in a real turbine stage is difficult due to the local flow conditions, for example high pressures, high temperatures and in-accessibility to the region etc. Experimentation in a real turbine is also prohibitive due to the costs involved. An alternate method of arriving at these non-steady forces through the use of modified hydraulic analogy is discussed. A rotating water table facility, developed and fabricated based on the principles of modified hydraulic a...

  7. Theoretical research of hydraulic turbine performance based on slip factor within centripetal impeller

    Directory of Open Access Journals (Sweden)

    Guangtai Shi

    2015-07-01

    Full Text Available The impeller of hydraulic turbine is a kind of centripetal impeller. The slip phenomenon within centripetal impeller is different with centrifugal impeller. In this study, the velocity distribution and the flow form of fluid within centripetal impeller are analyzed, the slip factor within centripetal impeller is calculated, and the basic energy equation of hydraulic turbine is deduced when the slip within centripetal impeller is considered. The results of theoretical calculation, the results of experiment, and the results of computational fluid dynamics calculation are compared. The formula of slip factor within centripetal impeller is obtained, and the relative error between the results of theoretical calculation using the formula and experimental data is less than 5%. The effect factors of slip factor have entrance diameter of centripetal impeller, blade numbers, entrance and outlet blade angles, rotating speed of centripetal impeller, and flow rate.

  8. Straight-flow hydraulic turbine-generator for ultralow-head

    Energy Technology Data Exchange (ETDEWEB)

    Kushimoto, Masakazu; Ujiie, Ryuichi (Fuji Electric Co., Ltd., Tokyo (Japan))

    1989-01-10

    This report introduces features and structures of the straight-flow hydraulic turbine-generator considered for ultralow-head hydropower generation. Largest feature of straight flow(S/F) is that the generator rotor is fitted so as to surround the periphery of runner. This fundamental structure is classified to overhang type, downstream stay-column type and others dependent on the arrangement of main bearing which supports the rotor weight. The essential part of the hydraulic turbine is the sealing equipment for the center part of the rotor. Special attention must be paid to the selection of material and structure of this equipment. The maximum point to determine the structure is the countermeasure for the radial and axial rigidity reduction in the S/F hydro-generator. It is also necessary to conduct moisture prevention for the generator and to insulate to prevent axial current. 13 refs., 6 figs.

  9. Dynamic extending nonlinear H∞ control and its application to hydraulic turbine governor

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    There exists a large class of nonlinear systems with uncertainties, such as hydraulic turbine governors, whose robust control problem is hard to solve by means of the existing robust control approaches. For this class of systems, this work presents a dynamic extending H∞ controller via both differential geometry and H∞ theory. Furthermore, based on differential game theory, it has been verified that the proposed control strategy has robustness in the sense that the disturbance can be attenuated effectively because the L2-gain from the disturbance input to the regulation output signal could be reduced to any given level. Thirdly, a robust control strategy for hydraulic turbine governor is designed according to the proposed extending H∞ control method, and has been developed into a real control equipment. Finally the field experiments are carried out which show clearly that the developed control equipment can enhance transient stability of power systems more effectively than the conventional controller.

  10. Recent trends in repair and refurbishing of steam turbine components

    Indian Academy of Sciences (India)

    A K Bhaduri; S K Albert; S K Ray; P Rodriguez

    2003-06-01

    The repair and refurbishing of steam generator components is discussed from the perspective of repair welding philosophy including applicable codes and regulations. Some case histories of repair welding of steam generator components are discussed with special emphasis on details of repair welding of cracked steam turbine blades and shrouds in some of the commercial nuclear power plants using procedures developed.

  11. Fatigue Reliability Analysis of Wind Turbine Cast Components

    DEFF Research Database (Denmark)

    Rafsanjani, Hesam Mirzaei; Sørensen, John Dalsgaard; Fæster, Søren

    2017-01-01

    The fatigue life of wind turbine cast components, such as the main shaft in a drivetrain, is generally determined by defects from the casting process. These defects may reduce the fatigue life and they are generally distributed randomly in components. The foundries, cutting facilities and test...

  12. Needs assessment for manufacturing ceramic gas turbine components

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, D.R.; McSpadden, S.B.; Morris, T.O.; Pasto, A.E.

    1995-11-01

    An assessment of needs for the manufacturing of ceramic gas turbine components was undertaken to provide a technical basis for planning R&D activities to support DOE`s gas turbine programs. The manufacturing processes for ceramic turbine engine components were examined from design through final inspection and testing. The following technology needs were identified: Concurrent engineering early in the design phase to develop ceramic components that are more readily manufacturable. Additional effort in determining the boundaries of acceptable design dimensions and tolerances through experimental and/or analytical means. Provision, by the designer, of a CAD based model of the component early in the design cycle. Standardization in the way turbine components are dimensioned and toleranced, and in the way component datum features are defined. Rapid means of fabricating hard tooling, including intelligent systems for design of tooling and rapid prototyping of tooling. Determination of process capabilities by manufacturing significant numbers of parts. Development of more robust ceramic manufacturing processes which are tolerant of process variations. Development of intelligent processing as a means of controlling yield and quality of components. Development of computer models of key manufacturing steps, such as green forming to reduce the number of iterations required to manufacture intolerance components. Development of creep feed or other low-damage precision grinding for finish machining of components. Improved means of fixturing components for finish machining. Fewer and lower-cost final inspection requirements. Standard procedures, including consistent terminology and analytical software for dimensional inspection of components. Uniform data requirements from the US turbine engine companies. An agreed-upon system of naming ceramic materials and updating the name when changes have been made.

  13. Hydro-abrasive erosion of hydraulic turbines caused by sediment - a century of research and development

    Science.gov (United States)

    Felix, D.; Albayrak, I.; Abgottspon, A.; Boes, R. M.

    2016-11-01

    Hydro-abrasive erosion of hydraulic turbines is an economically important issue due to maintenance costs and production losses, in particular at high- and medium-head run-of- river hydropower plants (HPPs) on sediment laden rivers. In this paper, research and development in this field over the last century are reviewed. Facilities for sediment exclusion, typically sand traps, as well as turbine design and materials have been improved considerably. Since the 1980s, hard-coatings have been applied on Francis and Pelton turbine parts of erosion-prone HPPs and became state-of-the-art. These measures have led to increased times between overhauls and smaller efficiency reductions. Analytical, laboratory and field investigations have contributed to a better processes understanding and quantification of sediment-related effects on turbines. More recently, progress has been made in numerical modelling of turbine erosion. To calibrate, validate and further develop prediction models, more measurements from both physical model tests in laboratories and real-scale data from HPPs are required. Significant improvements to mitigate hydro-abrasive erosion have been achieved so far and development is ongoing. A good collaboration between turbine manufacturers, HPP operators, measuring equipment suppliers, engineering consultants, and research institutes is required. This contributes to the energy- and cost-efficient use of the worldwide hydropower potential.

  14. NUMERICAL PREDICTION OF VORTEX FLOW IN HYDRAULIC TURBINE DRAFT TUBE FOR LES

    Institute of Scientific and Technical Information of China (English)

    LIU Xiao-bing; ZENG Yong-zhong; CAO Shu-you

    2005-01-01

    The three-dimensional unsteady turbulent flow is studied numerically in the whole flow passage of hydraulic turbine, and vortex flow in the draft tube is predicted accurately in this paper. The numerical prediction is based on the Navier-Stokes equations and Large-Eddy Simulation (LES) model. The SIMPLE algorithm with the body-fitted coordinate and tetrahedroid grid system is applied for the solution of the discretization governing equations.

  15. The diagnosis of turbine component degradation - case histories

    Energy Technology Data Exchange (ETDEWEB)

    Kubiak S, J. [Universidad Autonoma del Estado de Morelos, Cuernavaca (Mexico). Centro de Investigacio en Ingeniera y Ciencias; Garcia-Gutierrez, A. [Instituto de Investigaciones Electricas,Gerencia de Geotermia, Temixco (Mexico); Urquiza B, G. [Instituto de Investigaciones Electricas, Gerencia de Turbomaquinaria, Temixco (Mexico)

    2002-12-01

    Four case histories of steam and gas turbine components degradation identified during operation and verified during overhaul are presented. The diagnosis was carried out before the overhauls to indicate major problems to the personnel of the plants. The estimation of degrees of degradation of the steam turbine components was carried out applying simplified flow equation considering three key pressures. In the case of the gas turbine the output capacity and pressures, temperature and air and gas flow were analyzed. The results obtained during on-line analysis were confirmed by measurements of the dimensions of degraded components during an overhaul. Also, the results obtained from a sophisticated computer program proved the usefulness of the applied methods.(author)

  16. Hydraulic design and analysis of the saxo-type vertical axial turbine

    Energy Technology Data Exchange (ETDEWEB)

    Hofler, Edvard; Gale, Janez; Bergant, Anton

    2010-07-01

    The design of the blade geometry of a wind turbine is highly important as it influences the power generation. The aim of this study is to introduce a method for hydraulic design and analysis of the blade geometry of a highly specific speed runner of the Saxo-type double-regulated vertical axial turbine. The streamline curvature method (SCM) was used to develop four blade shapes which were analyzed with computational fluid dynamics (CFD) tools and the best one chosen in term of turbine efficiency and cavitational characteristics. Results demonstrated that the physical shape of the blade can be found for the design duty point in a rapid and transparent way by using the SCM method with no adjustments required to use the CFD methods. This study proved that the SCM design procedure developed herein can be used to accurately design runner blades.

  17. Wind tunnel experiments to prove a hydraulic passive rotor speed control concept for variable speed wind turbines (poster)

    NARCIS (Netherlands)

    Diepeveen, N.F.B.; Jarquin Laguna, A.

    2012-01-01

    As alternative to geared and direct drive solutions, fluid power drive trains are being developed by several institutions around the world. The common configuration is where the wind turbine rotor is coupled to a hydraulic pump. The pump is connected through a high pressure line to a hydraulic motor

  18. Investigation of Self Yaw and its Potential using a Hydraulic Soft Yaw System for 5 MW Wind Turbine

    DEFF Research Database (Denmark)

    Stubkier, Søren; Pedersen, Henrik C.

    2013-01-01

    The focus of the current paper is on a hydraulic soft yaw system, designed to reduce the loading of the turbine structure, by absorbing wind guest via the hydraulic system, but which also enables the system to be used as a self-aligning yaw system. The system is analyzed with basis in the NREL 5-...... the behavior of the hydraulic system is analyzed and it is concluded that the hydraulic yaw system allows selfyaw under normal operating conditions for the turbine. Self-yaw control is possible in wind speeds above 12 m/s when yaw friction is kept below 1 MNm.......The focus of the current paper is on a hydraulic soft yaw system, designed to reduce the loading of the turbine structure, by absorbing wind guest via the hydraulic system, but which also enables the system to be used as a self-aligning yaw system. The system is analyzed with basis in the NREL 5-MW...... turbine, modeled in FAST, in which a new robust method for implementing Coulomb friction is utilized. Based on this model and a model of the hydraulic system, the influence of friction and wind speed is investigated in relation to the possibility to use the system as a self-aligning yaw system. Similarly...

  19. Impact design methods for ceramic components in gas turbine engines

    Science.gov (United States)

    Song, J.; Cuccio, J.; Kington, H.

    1991-01-01

    Methods currently under development to design ceramic turbine components with improved impact resistance are presented. Two different modes of impact damage are identified and characterized, i.e., structural damage and local damage. The entire computation is incorporated into the EPIC computer code. Model capability is demonstrated by simulating instrumented plate impact and particle impact tests.

  20. Hydraulic Turbines: The Pelton Turbine. Technical Terminology Bulletin. Terminotech, Vol. 2, No. 3.

    Science.gov (United States)

    General Electric Co. of Canada, Ltd., Montreal, Quebec.

    This issue of a bulletin of technological terminology is devoted to the Pelton turbine. A brief narrative on the subject is presented in both French and English. An English-French dictionary of terms comprises the bulk of the document. Explanatory illustrations are appended. (JB)

  1. Hydraulic Turbines: The Francis Turbine. Technical Terminology Bulletin. Terminotech, Vol. 2, No. 2.

    Science.gov (United States)

    General Electric Co. of Canada, Ltd., Montreal, Quebec.

    This issue of a bulletin of technological terminology is devoted to the Francis turbine. A brief narrative on the subject is presented in both French and English. An English-French dictionary of terms comprises the bulk of the document. An explanatory illustration is appended. (JB)

  2. Numerical Research on Flow Characteristics around a Hydraulic Turbine Runner at Small Opening of Cylindrical Valve

    Directory of Open Access Journals (Sweden)

    Zhenwei Mo

    2016-01-01

    Full Text Available We use the continuity equation and the Reynolds averaged Navier-Stokes equations to study the flow-pattern characteristics around a turbine runner for the small-opening cylindrical valve of a hydraulic turbine. For closure, we adopt the renormalization-group k-ε two-equation turbulence model and use the computational fluid dynamics (CFD software FLUENT to numerically simulate the three-dimensional unsteady turbulent flow through the entire passage of the hydraulic turbine. The results show that a low-pressure zone develops around the runner blades when the cylindrical valve is closed in a small opening; cavitation occurs at the blades, and a vortex appears at the outlet of the runner. As the cylindrical valve is gradually closed, the flow velocity over the runner area increases, and the pressure gradient becomes more significant as the discharge decreases. In addition, the fluid flow velocity is relatively high between the lower end of the cylindrical valve and the base, so that a high-velocity jet is easily induced. The calculation and analysis provide a theoretical basis for improving the performance of cylindrical-valve operating systems.

  3. Advanced materials for critical components in industrial gas turbines

    Energy Technology Data Exchange (ETDEWEB)

    Gibbons, T.B. (Div. of Materials Metrology, National Physical Lab., Teddington (United Kingdom))

    1992-06-01

    Combined-cycle plant for power production has advantages in terms of capital costs and flexibility compared to large power plants either nuclear of fossil-fired, used for base load. In combined-cycle plant the overall efficiency is highly dependent on the performance of the gas turbine and turbine entry temperatures of > 1200deg C will be required to obtain attractive levels of efficiency. Bearing in mind the need for reliability and longterm performance from components such as turbine blades, the challenge to the materials enginer is formidable. In this paper some of the recent developments in Ni - Cr-base alloys are described and the potential for advanced materials such as ceramics and intermetallics is briefly considered. Development in coating technology to provide effective thermal barriers and good resistance to aggressive environments are discussed. (orig./MM).

  4. Application of entropy production theory to hydro-turbine hydraulic analysis

    Institute of Scientific and Technical Information of China (English)

    GONG; RuZhi; WANG; HongJie; CHEN; LiXia; LI; DeYou; ZHANG; HaoChun; WEI; XianZhu

    2013-01-01

    The understanding of hydraulic behavior in the hydro turbine requires the detailed study of fluid flow in the turbine. Previous methods of analyzing the numerical simulation results on the fluid machinery are short of intuitiveness on energy dissipation.In this paper, the energy dissipation was analyzed based on the entropy production theory. 3-D steady flow simulations and entropy production calculations of the reduced hydro turbine were carried out. The results indicated that the entropy production theory was suitable for evaluating the performance of the hydro turbine. The energy dissipation in the guide vanes area weighted nearly 25% of the whole flow passage, and mainly happened at the head and tail areas of the vanes. However, more than half the energy dissipation occurred in the runner, mostly at the leading edge of runner blade and the trailing edge of run-ner blade. Meanwhile, close to 20% of the energy dissipation occurred in the elbow. And it can be concluded that the method of entropy production analysis has the advantages of determining the quantity of energy dissipation and where the dissipation happens.

  5. NUMERICAL CALCULATION OF SOLID-LIQUID TWO PHASE FLOW BETWEEN STAY VANES IN HYDRAULIC TURBINE

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    In this paper, an energy equation of silt-laden water flow is educed based on the energy equation of continuum fluid flow. The dissipation functions of liquid phase and solid phase are presented respectively. Then the extremity law of energy dissipation rate is introduced for the research of the silt-laden water flow and a new mathematical model is developed. The corresponding procedure based on the finite difference method (FDM) is developed to calculate the two phase flow in hydraulic turbine. The method is applied to analyze the silt-laden water flow between stay vanes, and the numerical results are in good agreement with the experimental ones.

  6. The Design Method of Axial Flow Runners Focusing on Axial Flow Velocity Uniformization and Its Application to an Ultra-Small Axial Flow Hydraulic Turbine

    Directory of Open Access Journals (Sweden)

    Yasuyuki Nishi

    2016-01-01

    Full Text Available We proposed a portable and ultra-small axial flow hydraulic turbine that can generate electric power comparatively easily using the low head of open channels such as existing pipe conduits or small rivers. In addition, we proposed a simple design method for axial flow runners in combination with the conventional one-dimensional design method and the design method of axial flow velocity uniformization, with the support of three-dimensional flow analysis. Applying our design method to the runner of an ultra-small axial flow hydraulic turbine, the performance and internal flow of the designed runner were investigated using CFD analysis and experiment (performance test and PIV measurement. As a result, the runners designed with our design method were significantly improved in turbine efficiency compared to the original runner. Specifically, in the experiment, a new design of the runner achieved a turbine efficiency of 0.768. This reason was that the axial component of absolute velocity of the new design of the runner was relatively uniform at the runner outlet in comparison with that of the original runner, and as a result, the negative rotational flow was improved. Thus, the validity of our design method has been verified.

  7. Reliability Analysis of Fatigue Fracture of Wind Turbine Drivetrain Components

    DEFF Research Database (Denmark)

    Berzonskis, Arvydas; Sørensen, John Dalsgaard

    2016-01-01

    in the volume of the casted ductile iron main shaft, on the reliability of the component. The probabilistic reliability analysis conducted is based on fracture mechanics models. Additionally, the utilization of the probabilistic reliability for operation and maintenance planning and quality control is discussed....... of operation and maintenance. The manufacturing of casted drivetrain components, like the main shaft of the wind turbine, commonly result in many smaller defects through the volume of the component with sizes that depend on the manufacturing method. This paper considers the effect of the initial defect present...

  8. Methods of Si based ceramic components volatilization control in a gas turbine engine

    Science.gov (United States)

    Garcia-Crespo, Andres Jose; Delvaux, John; Dion Ouellet, Noemie

    2016-09-06

    A method of controlling volatilization of silicon based components in a gas turbine engine includes measuring, estimating and/or predicting a variable related to operation of the gas turbine engine; correlating the variable to determine an amount of silicon to control volatilization of the silicon based components in the gas turbine engine; and injecting silicon into the gas turbine engine to control volatilization of the silicon based components. A gas turbine with a compressor, combustion system, turbine section and silicon injection system may be controlled by a controller that implements the control method.

  9. Rotating water table for the determination of non-steady forces in a turbine stage through modified hydraulic analogy

    Science.gov (United States)

    Rao, J. S.; Raghavacharyulu, E.; Seshadri, V.; Rao, V. V. R.

    1983-10-01

    Determination of non-steady forces in a real turbine stage is difficult due to the local flow conditions, for example high pressures, high temperatures and in-accessibility to the region etc. Experimentation in a real turbine is also prohibitive due to the costs involved. An alternate method of arriving at these non-steady forces through the use of modified hydraulic analogy is discussed. A rotating water table facility, developed and fabricated based on the principles of modified hydraulic analogy is described. A flat plate stage is simulated on the rotating water table, and the results obtained are presented.

  10. Rotating Water Table for the Determination of Non-Steady Forces in a Turbine Stage Through Modified Hydraulic Analogy

    Directory of Open Access Journals (Sweden)

    J. S. Rao

    1983-10-01

    Full Text Available Determination of non-steady forces in a real turbine stage is difficult due to the local flow conditions, for example high pressures, high temperatures and in-accessibility to the region etc. Experimentation in a real turbine is also prohibitive due to the costs involved. An alternate method of arriving at these non-steady forces through the use of modified hydraulic analogy is discussed. A rotating water table facility, developed and fabricated based on the principles of modified hydraulic analogy ia described. A flat plate stage is simulated on the rotating water table, and the results obtalned are presented.

  11. Using genetic algorithm to define the governor parameters of a hydraulic turbine

    Energy Technology Data Exchange (ETDEWEB)

    Andrade, J G P; Ribeiro, L C L J [School of Technology, UNICAMP Rua Paschoal Marmo, 1888, Limeira, Postal Code:13484-332 (Brazil); Junior, E L, E-mail: josegeraldo@ft.unicamp.b [School of Civil Engineering, Architecture and Urbanism, UNICAMP Avenida Albert Einstein, 951, Campinas, Postal Code: 13083-852 (Brazil)

    2010-08-15

    There are several governor architectures, but in general, all of them are designed to maintain the controlled variable fluctuations within acceptable range. The Proportional, Integral and Derivative (PID) governor is one of the types used to regulate a hydraulic turbine, in which the deviation of the variable controlled is corrected through earnings proportional, integral and derivative. For a definition of the governor parameters and its stability analysis there are several methods that in general can be classified into a time domain and frequency domain. The frequency domain method, based on the control theory, have ease application, expeditious manner of obtaining the parameters, but the physical phenomena involved are linearized. However the time domain methods are more difficult to be applied, but have the advantage of being able to take into account the non-linearities presents in physical phenomena. Despite the time-domain method offers advantages, it does not provides a structured way to optimize the parameters of the governor, since the parameters are obtained through simulations with adopted values. This paper presents a methodology to obtain the turbine governor appropriate parameters through a hybrid model (simulation and optimization model), based on method of characteristic to the hydraulic simulation (time domain) and Genetic Algorithm (GA) to obtain appropriate values. Examples are presented showing the application of the proposed methodology.

  12. Analysis of load reduction possibilities using a hydraulic soft yaw system for a 5-MW turbine and its sensitivity to yaw-bearing friction

    DEFF Research Database (Denmark)

    Stubkier, S.; Pedersen, H. C.; Jonkman, J. M.

    2014-01-01

    With the increasing size of wind turbines and with increasing lifetime demands, new methods for load reduction in the turbines need to be examined. One method is to make the yaw system of the turbine flexible, thereby dampening the loads to the system. This paper presents a hydraulic soft yaw...

  13. The status of ceramic turbine component fabrication and quality assurance relevant to automotive turbine needs

    Energy Technology Data Exchange (ETDEWEB)

    Richerson, D.W.

    2000-02-01

    This report documents a study funded by the U.S. Department of Energy (DOE) Office of Transportation Technologies (OTT) with guidance from the Ceramics Division of the United States Automotive Materials Partnership (USAMP). DOE and the automotive companies have funded extensive development of ceramic materials for automotive gas turbine components, the most recent effort being under the Partnership for a New Generation of Vehicles (PNGV) program.

  14. High integrity adaptive SMA components for gas turbine applications

    Science.gov (United States)

    Webster, John

    2006-03-01

    The use of Shape Memory Alloys (SMAs) is growing rapidly. They have been under serious development for aerospace applications for over 15 years, but are still restricted to niche areas and small scale applications. Very few applications have found their way into service. Whilst they have been predominantly aimed at airframe applications, they also offer major advantages for adaptive gas turbine components. The harsh environment within a gas turbine with its high loads, temperatures and vibration excitation provide considerable challenges which must be met whilst still delivering high integrity, light weight, aerodynamic and efficient structures. A novel method has been developed which will deliver high integrity, stiff mechanical components which can provide massive shape change capability without the need for conventional moving parts. The lead application is for a shape changing engine nozzle to provide noise reduction at take off but will withdraw at cruise to remove any performance penalty. The technology also promises to provide significant advantages for applications in a gas turbine such as shape change aerofoils, heat exchanger controls, and intake shapes. The same mechanism should be directly applicable to other areas such as air frames, automotive and civil structures, where similar high integrity requirements exist.

  15. SCADA alarms processing for wind turbine component failure detection

    Science.gov (United States)

    Gonzalez, E.; Reder, M.; Melero, J. J.

    2016-09-01

    Wind turbine failure and downtime can often compromise the profitability of a wind farm due to their high impact on the operation and maintenance (O&M) costs. Early detection of failures can facilitate the changeover from corrective maintenance towards a predictive approach. This paper presents a cost-effective methodology to combine various alarm analysis techniques, using data from the Supervisory Control and Data Acquisition (SCADA) system, in order to detect component failures. The approach categorises the alarms according to a reviewed taxonomy, turning overwhelming data into valuable information to assess component status. Then, different alarms analysis techniques are applied for two purposes: the evaluation of the SCADA alarm system capability to detect failures, and the investigation of the relation between components faults being followed by failure occurrences in others. Various case studies are presented and discussed. The study highlights the relationship between faulty behaviour in different components and between failures and adverse environmental conditions.

  16. HydroHillChart – Pelton module. Software used to Calculate the Hill Chart of the Pelton Hydraulic Turbines

    Directory of Open Access Journals (Sweden)

    Dorian Nedelcu

    2015-07-01

    Full Text Available The paper presents the HydroHillChart - Pelton module application, used to calculate the hill chart of the Pelton hydraulic turbine models, by processing the data measured on the stand. In addition, the tools offered by the application such as: interface, menu, input data, numerical and graphical results, etc. are described.

  17. New procedures for cavitation recovering in hydraulic turbines; Novos procedimentos em recuperacao de cavitacao em turbinas hidraulicas

    Energy Technology Data Exchange (ETDEWEB)

    Albertazzi, A.; Dutra, J.; Guenther, R.; Martin, C.; Pereira, M.; Raposo, E.; Simas, H.; Stemmer, M. [Santa Catarina Univ., Florianopolis, SC (Brazil); Kapp, W.; Manzolli, A.; Sousa, N.; Procopiak, L. [Instituto de Tecnologia para o Desenvolvimento (LACTEC), Curitiba, PR (Brazil)

    2002-07-01

    This paper describes the Roboturb Project jointly performed by the USFC and LACTEC, financed by the FINEP/PADCT and COPEL/ANEEL. This project aims the development of new procedures on small size hydraulic turbines recovering, by using welding, robotic and optical measurements advanced techniques. The main objective is the system hardware, with only the basic operation software and modules integration.

  18. Fatigue Reliability Analysis of Wind Turbine Cast Components

    Directory of Open Access Journals (Sweden)

    Hesam Mirzaei Rafsanjani

    2017-04-01

    Full Text Available The fatigue life of wind turbine cast components, such as the main shaft in a drivetrain, is generally determined by defects from the casting process. These defects may reduce the fatigue life and they are generally distributed randomly in components. The foundries, cutting facilities and test facilities can affect the verification of properties by testing. Hence, it is important to have a tool to identify which foundry, cutting and/or test facility produces components which, based on the relevant uncertainties, have the largest expected fatigue life or, alternatively, have the largest reliability to be used for decision-making if additional cost considerations are added. In this paper, a statistical approach is presented based on statistical hypothesis testing and analysis of covariance (ANCOVA which can be applied to compare different groups (manufacturers, suppliers, test facilities, etc. and to quantify the relevant uncertainties using available fatigue tests. Illustrative results are presented as obtained by statistical analysis of a large set of fatigue data for casted test components typically used for wind turbines. Furthermore, the SN curves (fatigue life curves based on applied stress for fatigue assessment are estimated based on the statistical analyses and by introduction of physical, model and statistical uncertainties used for the illustration of reliability assessment.

  19. Method and system for providing cooling for turbine components

    Energy Technology Data Exchange (ETDEWEB)

    Morgan, Victor John; Lacy, Benjamin Paul

    2016-08-16

    A system for providing cooling for a turbine component that includes an outer surface exposed to combustion gases is provided. A component base includes at least one fluid supply passage coupleable to a source of cooling fluid. At least one feed passage communicates with the at least one fluid supply passage. At least one delivery channel communicates with the at least one feed passage. At least one cover layer covers the at least one feed passage and the at least one delivery channel, defining at least in part the component outer surface. At least one discharge passage extends to the outer surface. A diffuser section is defined in at least one of the at least one delivery channel and the at least one discharge passage, such that a fluid channeled through the system is diffused prior to discharge adjacent the outer surface.

  20. NUMERICAL SIMULATION AND ANALYSIS OF PRESSURE PULSATION IN FRANCIS HYDRAULIC TURBINE WITH AIR ADMISSION

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    In this article, the three-dimensional unsteady multiphase flow is simulated in the whole passage of Francis hydraulic turbine. The pressure pulsation is predicted and compared with experimental data at positions in the draft tube, in front of runner, guide vanes and at the inlet of the spiral case. The relationship between pressure pulsation in the whole passage and air admission is analyzed. The computational results show: air admission from spindle hole decreases the pressure difference in the horizontal section of draft tube, which in turn decreases the amplitude of low-frequency pressure pulsation in the draft tube; the rotor-stator interaction between the air inlet and the runner increases the blade-frequency pressure pulsation in front of the runner.

  1. Influence of setting condition on characteristics of Savonius hydraulic turbine with a shield plate

    Science.gov (United States)

    Iio, Shouichiro; Katayama, Yusuke; Uchiyama, Fuminori; Sato, Eiichi; Ikeda, Toshihiko

    2011-09-01

    The aim of this investigation was to improve power performance of Savonius hydraulic turbine utilizing small stream for electric generation. An attempt was made to increase the power coefficient of runner by the use of flat shield plate placed upstream of the runner. The difference of the power coefficient is discussed in relation to clearance between the runner and the bottom wall and the rotation direction of the runner. The flow field around the runner was also examined visually to clarify influences of setting conditions on the power performance. From this study it was found that the power coefficient is achieved for 0.47 by only using a flat shield plate, the increase is up to 80% over the runner without the plate. Moreover, it is the proper condition that clearance ratio is 0.73 in this study.

  2. Performance of Double-step Savonius Rotor for Environmentally Friendly Hydraulic Turbine

    Science.gov (United States)

    Nakajima, Miyoshi; Iio, Shouichiro; Ikeda, Toshihiko

    The aim of this investigation is to develop an environmentally friendly nano-hydraulic turbine. Three type models of Savonius rotor are constructed and tested in a water tunnel to improve and clarify the power performance. Flow field around the rotor is examined visually to reveal the enhancement mechanisms of power coefficient using the double-step rotor. Flow visualization showed the difference of flow patterns at the central section between the standard (single-step) rotor and the double-step one. A meandering flow in the axial direction of the rotor was observed only for the double-step rotor. This flow had the pressure restoration effect at the returning blade's concave side and the torque strengthened effect at the advancing blade's convex side. As a consequence, the power coefficient was 10% improved.

  3. Hydraulics.

    Science.gov (United States)

    Decker, Robert L.; Kirby, Klane

    This curriculum guide contains a course in hydraulics to train entry-level workers for automotive mechanics and other fields that utilize hydraulics. The module contains 14 instructional units that cover the following topics: (1) introduction to hydraulics; (2) fundamentals of hydraulics; (3) reservoirs; (4) lines, fittings, and couplers; (5)…

  4. Development of the water-lubricated thrust bearing of the hydraulic turbine generator

    Science.gov (United States)

    Inoue, K.; Deguchi, K.; Okude, K.; Fujimoto, R.

    2012-11-01

    In hydropower plant, a large quantities of turbine oil is used as machine control pressure oil and lubricating oil. If the oil leak out from hydropower plant, it flows into a river. And such oil spill has an adverse effect on natural environment because the oil does not degrade easily. Therefore the KANSAI and Hitachi Mitsubishi Hydro developed the water-lubricated thrust bearing for vertical type hydraulic turbine generator. The water-lubricated bearing has advantages in risk avoidance of river pollution because it does not need oil. For proceeding the development of the water-lubricated thrust bearing, we studied following items. The first is the examination of the trial products of water lubricating liquid. The second is the study of bearing structure which can satisfy bearing performance such as temperature characteristic and so on. The third is the mock-up testing for actual application in the future. As a result, it was found that the water-lubricated thrust bearing was technically applicable to actual equipments.

  5. Welding metallurgy of nickel alloys in gas turbine components

    Energy Technology Data Exchange (ETDEWEB)

    Lingenfelter, A. C., LLNL

    1997-05-21

    Materials for gas turbine engines are required to meet a wide range of temperature and stress application requirements. These alloys exhibit a combination of creep resistance, creep rupture strength, yield and tensile strength over a wide temperature range, resistance to environmental attack (including oxidation, nitridation, sulphidation and carburization), fatigue and thermal fatigue resistance, metallurgical stability and useful thermal expansion characteristics. These properties are exhibited by a series of solid-solution-strengthened and precipitation-hardened nickel, iron and cobalt alloys. The properties needed to meet the turbine engine requirements have been achieved by specific alloy additions, by heat treatment and by thermal mechanical processing. A thorough understanding of the metallurgy and metallurgical processing of these materials is imperative in order to successfully fusion weld them. This same basic understanding is required for repair of a component with the added dimension of the potential effects of thermal cycling and environmental exposure the component will have endured in service. This article will explore the potential problems in joining and repair welding these materials.

  6. A novel lightning protection technique of wind turbine components

    Directory of Open Access Journals (Sweden)

    M.A. Abd-Allah

    2015-12-01

    Full Text Available The lightning energy can be very harmful to wind turbine (WT farm components; therefore an effective lightning protection technique is required. In this study, a novel technique for WT components protection is presented. This technique used ferromagnetic rings placed around the WT blade roots. Ferrite ring was moulded into particular shapes from the powder of compounds of ferric oxide, manganese, and zinc, and then sintered. The dimensions of rings used are 990 mm (inner diameter, 1030 mm (outer diameter, and 100 mm (thickness. The effectiveness of the novel technique in overvoltage mitigation during lightning strokes is presented and discussed. The results show that the overvoltage is effectively damped with using this technique. The transient overvoltage at control devices is reduced to 16% of its original value, while at distribution system; it is reduced to 5% of its original value.

  7. Gas Turbine Engine Component Development : An Integrated Approach

    Directory of Open Access Journals (Sweden)

    Willem Jansen

    1988-10-01

    Full Text Available Computer - aided engineering methods have made a significant impact in the design technologies of advanced machinery. These methods have been applied in several areas such as aerodynamics and fluid dynamic theory for high efficiency, stress and vibration theory for reliability, and manufacturing strategies to produce machined components at low cost and with short time schedules. The integration of these various design technologies offer the opportunity for even greater productivity in the engineering design and manufacturing process. This paper addresses the application of various engineering disciplines to the demand of producing a reliable, efficient design and the subsequent manufacture of components with short lead times through the interaction of these computer - aided engineering technologies. The concept is further illustrated by simple cases for a centrifugal compressor and a gas turbine.

  8. Extensive use of computational fluid dynamics in the upgrading of hydraulic turbines

    Energy Technology Data Exchange (ETDEWEB)

    Sabourin, M.; De Henau, V. [GEC Alsthom Electromechanical Inc., Tracy, PQ (Canada); Eremeef, R. [GEC Alsthom Neyrpic, Grenoble (France)

    1995-12-31

    The use of computational fluid flow dynamics (CFD) and the Navier Stokes equations by GEC Alsthom for turbine rehabilitation were discussed. The process of runner rehabilitation was discussed from a fluid flow perspective, which accounts for the spiral case-distributor set and draft tube. The Kootenay turbine rehabilitation was described with regard to it spiral case and stay vane. The numerical analysis used to model upstream components was explained. The influence of draft tube effects was emphasized as an important efficiency factor. The differences between draft tubes at Sir Adam Beck 2 and La Grande 2 were discussed. Computational fluid flow modelling was claimed to have produced global performance enhancements in a reasonably short time, and at a reasonable cost. 6 refs., 6 figs., 4 tabs.

  9. Evaluation of advanced hydraulic turbomachinery for underground pumped hydroelectric storage. Part 1. Single-stage regulated pump turbines for operating heads of 500 to 1000 m

    Energy Technology Data Exchange (ETDEWEB)

    Frigo, A.A.; Blomquist, C.A.; Degnan, J.R.

    1979-10-01

    High-head, large-capacity turbomachinery is needed for the concept of underground pumped hydroelectric storage to be technically and economically attractive. Single-stage, reversible, Francis-type pump turbines with adjustable wicket gates appear to offer the most economically attractive option for heads between about 500 and 1000 m. The feasibility of developing these types of machines for capacities up to 500 MW and operating heads up to 1000 m has been evaluated. Preliminary designs have been generated for six single-stage pump turbines. The designs are for capacities of 350 and 500 MW and for operating heads of 500, 750, and 1000 m. The report contains drawings of the machines along with material specifications and hydraulic performance data. Mechanical, hydraulic, and economic analyses indicate that these machines will behave according to the criteria used to design them and that they can be built at a reasonable cost. The stress and deflection responses of the 500-MW, 100-m-head pump turbine, determined by detailed finite element analysis techniques, give solid evidence of the integrity of the conceptual designs of the six units and indicate no unsolvable problems. Results of a life expectancy analysis of the wicket gates indicate that a near infinite life can be expected for these components when they are subjected to normal design loads. Efficiencies of 90.7 and 91.4% in the generating and pumping modes, respectively, can be expected for the 500-MW, 1000-m-head unit. Performances of the other five machines are comparable. The specific costs of the pump turbines in mid-1978 US dollars per kW vary from 19.2 to 11.8 over a head range of from 500 to 1000 m for the 500-MW machines and from 20.0 to 12.3 for the 350-MW machines.

  10. Development of impact design methods for ceramic gas turbine components

    Science.gov (United States)

    Song, J.; Cuccio, J.; Kington, H.

    1990-01-01

    Impact damage prediction methods are being developed to aid in the design of ceramic gas turbine engine components with improved impact resistance. Two impact damage modes were characterized: local, near the impact site, and structural, usually fast fracture away from the impact site. Local damage to Si3N4 impacted by Si3N4 spherical projectiles consists of ring and/or radial cracks around the impact point. In a mechanistic model being developed, impact damage is characterized as microcrack nucleation and propagation. The extent of damage is measured as volume fraction of microcracks. Model capability is demonstrated by simulating late impact tests. Structural failure is caused by tensile stress during impact exceeding material strength. The EPIC3 code was successfully used to predict blade structural failures in different size particle impacts on radial and axial blades.

  11. HydroHillChart – Francis module. Software used to Calculate the Hill Chart of the Francis Hydraulic Turbines

    Directory of Open Access Journals (Sweden)

    Dorian Nedelcu

    2015-07-01

    Full Text Available The paper presents the Hydro Hill Chart - Francis module application, used to calculate the hill chart of the Pelton, Francis and Kaplan hydraulic turbine models, by processing the data measured on the stand. After describing the interface and menu, the input data is graphically presented and the universal characteristic for measuring scenarios ao=const. and n11=const is calculated. Finally, the two calculated hill charts are compared through a graphical superimposition of the isolines.

  12. Hydraulic development of high specific-speed pump-turbines by means of an inverse design method, numerical flow-simulation (CFD) and model testing

    Science.gov (United States)

    Kerschberger, P.; Gehrer, A.

    2010-08-01

    In recent years an increased interest in pump-turbines has been recognized in the market. The rapid availability of pumped storage schemes and the benefits to the power system by peak lopping, providing reserve and rapid response for frequency control are becoming of growing advantage. In that context it is requested to develop pump-turbines that reliably stand dynamic operation modes, fast changes of the discharge rate by adjusting the variable diffuser vanes as well as fast changes from pump to turbine operation. Within the present study various flow patterns linked to the operation of a pump-turbine system are discussed. In that context pump and turbine mode are presented separately and different load cases at both operation modes are shown. In order to achieve modern, competitive pump-turbine designs it is further explained which design challenges should be considered during the geometry definition of a pump-turbine impeller. Within the present study a runner-blade profile for a low head pump-turbine has been developed. For the initial hydraulic runner-blade design, an inverse design method has been applied. Within this design procedure, a first blade geometry is generated by imposing the pressure loading-distribution and by means of an inverse 3D potential-flow-solution. The hydraulic behavior of both, pump-mode and turbine-mode is then evaluated by solving the full 3D Navier-Stokes equations in combination with a robust turbulence model. Based on this initial design the blade profile has been further optimized and redesigned considering various hydraulic pump-turbine requirements. Finally, the progress in hydraulic design is demonstrated by model test results which show a significant improvement in hydraulic performance compared to an existing reference design.

  13. Hydraulic development of high specific-speed pump-turbines by means of an inverse design method, numerical flow-simulation (CFD) and model testing

    Energy Technology Data Exchange (ETDEWEB)

    Kerschberger, P; Gehrer, A, E-mail: peter.kerschberger@andritz.co [Andritz Hydro Graz A-8045 Graz, Reichsstrasse 68B (Austria)

    2010-08-15

    In recent years an increased interest in pump-turbines has been recognized in the market. The rapid availability of pumped storage schemes and the benefits to the power system by peak lopping, providing reserve and rapid response for frequency control are becoming of growing advantage. In that context it is requested to develop pump-turbines that reliably stand dynamic operation modes, fast changes of the discharge rate by adjusting the variable diffuser vanes as well as fast changes from pump to turbine operation. Within the present study various flow patterns linked to the operation of a pump-turbine system are discussed. In that context pump and turbine mode are presented separately and different load cases at both operation modes are shown. In order to achieve modern, competitive pump-turbine designs it is further explained which design challenges should be considered during the geometry definition of a pump-turbine impeller. Within the present study a runner-blade profile for a low head pump-turbine has been developed. For the initial hydraulic runner-blade design, an inverse design method has been applied. Within this design procedure, a first blade geometry is generated by imposing the pressure loading-distribution and by means of an inverse 3D potential-flow-solution. The hydraulic behavior of both, pump-mode and turbine-mode is then evaluated by solving the full 3D Navier-Stokes equations in combination with a robust turbulence model. Based on this initial design the blade profile has been further optimized and redesigned considering various hydraulic pump-turbine requirements. Finally, the progress in hydraulic design is demonstrated by model test results which show a significant improvement in hydraulic performance compared to an existing reference design.

  14. Exposure to airborne organophosphates originating from hydraulic and turbine oils among aviation technicians and loaders.

    Science.gov (United States)

    Solbu, Kasper; Daae, Hanne Line; Thorud, Syvert; Ellingsen, Dag Gunnar; Lundanes, Elsa; Molander, Paal

    2010-12-01

    This study describes the potential for occupational exposure to organophosphates (OPs) originating from turbine and hydraulic oils, among ground personnel within the aviation industry. The OPs tri-n-butyl phosphate (TnBP), dibutyl phenyl phosphate (DBPP), triphenyl phosphate (TPP) and tricresyl phosphate (TCP) have been emphasized due to their use in such oils. Oil aerosol/vapor and total volatile organic compounds (tVOCs) in air were also determined. In total, 228 and 182 OPs and oil aerosol/vapor samples from technician and loader work tasks during work on 42 and 21 aircrafts, respectively, were collected in pairs. In general, the measured exposure levels were below the limit of quantification (LOQ) for 84%/98% (oil aerosol) and 82%/90% (TCP) of the samples collected during technician/loader work tasks. The air concentration ranges for all samples related to technician work were work the corresponding air concentration ranges were jet engine aircrafts. Investigation of provoked exposure situations revealed substantially higher exposure levels of the contaminants when compared to regular conditions, illustrated by oil aerosol and TCP concentrations up to 240 and 31 mg m(-3), respectively. The tailored OP and the general oil aerosol sampling methods were compared, displaying the advantages of tailored OP sampling for such exposure assessments.

  15. Exposure of aircraft maintenance technicians to organophosphates from hydraulic fluids and turbine oils: a pilot study.

    Science.gov (United States)

    Schindler, Birgit Karin; Koslitz, Stephan; Weiss, Tobias; Broding, Horst Christoph; Brüning, Thomas; Bünger, Jürgen

    2014-01-01

    Hydraulic fluids and turbine oils contain organophosphates like tricresyl phosphate isomers, triphenyl phosphate and tributyl phosphate from very small up to high percentages. The aim of this pilot study was to determine if aircraft maintenance technicians are exposed to relevant amounts of organophosphates. Dialkyl and diaryl phosphate metabolites of seven organophosphates were quantified in pre- and post-shift spot urine samples of technicians (N=5) by GC-MS/MS after solid phase extraction and derivatization. Pre- and post shift values of tributyl phosphate metabolites (dibutyl phosphate (DBP): median pre-shift: 12.5 μg/L, post-shift: 23.5 μg/L) and triphenyl phosphate metabolites (diphenyl phosphate (DPP): median pre-shift: 2.9 μg/L, post-shift: 3.5 μg/L) were statistically higher than in a control group from the general population (median DBP: aircraft maintenance technicians were occupationally exposed to tributyl and triphenyl phosphate but not to tricresyl phosphate, tri-(2-chloroethyl)- and tri-(2-chloropropyl)-phosphate. Further studies are necessary to collect information on sources, routes of uptake and varying exposures during different work tasks, evaluate possible health effects and to set up appropriate protective measures. Copyright © 2013 Elsevier GmbH. All rights reserved.

  16. Unsteady Interaction Between a Transonic Turbine Stage and Downstream Components

    OpenAIRE

    Davis Roger; Yao Jixian; Clark John; Stetson Gary; Alonso Juan; Jameson Antony; Haldeman Charles; Dunn Michael

    2004-01-01

    Results from a numerical simulation of the unsteady flow through one quarter of the circumference of a transonic high-pressure turbine stage, transition duct, and low-pressure turbine first vane are presented and compared with experimental data. Analysis of the unsteady pressure field resulting from the simulation shows the effects of not only the rotor/stator interaction of the high-pressure turbine stage but also new details of the interaction between the blade and the downstream transition...

  17. Increased Reliability of Gas Turbine Components by Robust Coatings Manufacturing

    Science.gov (United States)

    Sharma, A.; Dudykevych, T.; Sansom, D.; Subramanian, R.

    2017-08-01

    The expanding operational windows of the advanced gas turbine components demand increasing performance capability from protective coating systems. This demand has led to the development of novel multi-functional, multi-materials coating system architectures over the last years. In addition, the increasing dependency of components exposed to extreme environment on protective coatings results in more severe penalties, in case of a coating system failure. This emphasizes that reliability and consistency of protective coating systems are equally important to their superior performance. By means of examples, this paper describes the effects of scatter in the material properties resulting from manufacturing variations on coating life predictions. A strong foundation in process-property-performance correlations as well as regular monitoring and control of the coating process is essential for robust and well-controlled coating process. Proprietary and/or commercially available diagnostic tools can help in achieving these goals, but their usage in industrial setting is still limited. Various key contributors to process variability are briefly discussed along with the limitations of existing process and product control methods. Other aspects that are important for product reliability and consistency in serial manufacturing as well as advanced testing methodologies to simplify and enhance product inspection and improve objectivity are briefly described.

  18. Electrical and non-electrical environment of wind turbine main components

    DEFF Research Database (Denmark)

    Holboell, J.; Henriksen, M.; Olsen, R.S.;

    Focus on the development of offshore wind power, and expectations to turbines and substations to operate reliably under all conditions, causes interest in determining exactly what is unique about the wind turbine environment. If not properly dealt with, this environment can shorten the lifetime...... of the electrical components or even lead to catastrophic component failure. In the present paper, results are presented from investigations on existing standards which give detailed descriptions of the environmental and operational conditions of wind turbine components. It is found that there is currently a lack...... of application standards for wind turbine electrical equipment. Component-level environmental requirements as given in equipment-specific standards are compared with the environment described in the IEC's 61400 series concerning wind turbines. Based on methods defined in IEC 60721, the non-electrical environment...

  19. Degradation of Phosphate Ester Hydraulic Fluid in Power Station Turbines Investigated by a Three-Magnet Unilateral Magnet Array

    OpenAIRE

    Pan Guo; Wei He; García-Naranjo, Juan C.

    2014-01-01

    A three-magnet array unilateral NMR sensor with a homogeneous sensitive spot was employed for assessing aging of the turbine oils used in two different power stations. The Carr-Purcell-Meiboom-Gill (CPMG) sequence and Inversion Recovery-prepared CPMG were employed for measuring the 1H-NMR transverse and longitudinal relaxation times of turbine oils with different service status. Two signal components with different lifetimes were obtained by processing the transverse relaxation curves with a ...

  20. Design optimization of axial flow hydraulic turbine runner: Part I - an improved Q3D inverse method

    Science.gov (United States)

    Peng, Guoyi; Cao, Shuliang; Ishizuka, Masaru; Hayama, Shinji

    2002-06-01

    With the aim of constructing a comprehensive design optimization procedure of axial flow hydraulic turbine, an improved quasi-three-dimensional inverse method has been proposed from the viewpoint of system and a set of rotational flow governing equations as well as a blade geometry design equation has been derived. The computation domain is firstly taken from the inlet of guide vane to the far outlet of runner blade in the inverse method and flows in different regions are solved simultaneously. So the influence of wicket gate parameters on the runner blade design can be considered and the difficulty to define the flow condition at the runner blade inlet is surmounted. As a pre-computation of initial blade design on S2m surface is newly adopted, the iteration of S1 and S2m surfaces has been reduced greatly and the convergence of inverse computation has been improved. The present model has been applied to the inverse computation of a Kaplan turbine runner. Experimental results and the direct flow analysis have proved the validation of inverse computation. Numerical investigations show that a proper enlargement of guide vane distribution diameter is advantageous to improve the performance of axial hydraulic turbine runner. Copyright

  1. Unsteady flow analysis of an axial flow hydraulic turbine with collection devices comprising a different number of blades

    Science.gov (United States)

    Nishi, Yasuyuki; Inagaki, Terumi; Li, Yanrong; Hirama, Sou; Kikuchi, Norio

    2015-06-01

    We previously devised a new type of portable hydraulic turbine that uses the kinetic energy of an open-channel flow to improve output power by catching and accelerating the flow. The turbine contains an axial flow runner with an appended collection device and a diffuser section that is not axisymmetric. The objective of this study is to determine how interference between the collection device and the runner influences performance characteristics of the turbine. We investigated the performance characteristics of the turbine and flow field for different numbers of blades during both unsteady and steady flow. During an unsteady flow, the maximum values of power coefficients for three and two blades increased by approximately 8.8% and 21.4%, respectively, compared to those during a steady flow. For the three-blade runner, the power coefficient showed small fluctuations, but for the two-blade runner, the power coefficient showed large fluctuations. These fluctuations in the power coefficient are attributed to fluctuations in the loading coefficient, which were generated by interference between the runner and the diffuser section of the collection device.

  2. Environmental Severity Classes for Main Electrical Components in Offshore Wind Turbine

    DEFF Research Database (Denmark)

    Henriksen, Matthew Lee; Koldby, Erik; Holbøll, Joachim;

    2011-01-01

    This paper works toward a better understanding of how the environmental operating conditions for offshore wind turbine electrical components should be quantified. Different aspects of the operating environment are introduced and discussed, with reference to their relevance in offshore wind turbin....... When speaking of the ‘main electrical components’, the distinction ‘main’ implies that the load current passes through the component. Components which are the main topic of this discussion are therefore generators, power converters, and power transformers.......This paper works toward a better understanding of how the environmental operating conditions for offshore wind turbine electrical components should be quantified. Different aspects of the operating environment are introduced and discussed, with reference to their relevance in offshore wind turbines...

  3. Stability analysis of the governor-turbine-hydraulic system of pumped storage plant during small load variation

    Science.gov (United States)

    Yu, X. D.; Zhang, J.; Chen, S.; Liu, J. C.

    2016-11-01

    Governor-turbine-hydraulic (GTH) system is complex because of strong couplings of hydraulic, mechanical and electrical system. This paper presents a convenient mathematical model of the GTH system of a pumped storage plant (PSP) during small load variation. By using state space method and eigenvalue method, the stability of the GTH system is analyzed and the stable regions of the system can be given as well, which would help to optimize system design or the turning of governors. The proposed method is used to analyze the stability of a practical pumped storage plant during small load variation, which is also simulated in time domain on the basis of characteristics method. The theoretical analysis is in good agreement with numerical simulations. Based on the proposed method, the effect of the system parameters and operating conditions on the stable regions is investigated. These results are useful for the design of the GTH system of pumped storage plants.

  4. Operation of a T63 Turbine Engine Using F24 Contaminated Skydrol 5 Hydraulic Fluid

    Science.gov (United States)

    2016-09-01

    T. Edwards (AFRL/RQTF) Engine Mechanical Systems Branch (AFRL/RQTM) Fuels and Energy Branch (AFRL/RQTF) Turbine Engine Division Chris D...MALDONADO, Branch Chief Program Manager Fuels and Energy Branch Fuels and Energy Branch Turbine Engine Division Turbine Engine Division Aerospace...PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION REPORT NUMBEREngine Mechanical Systems Branch (AFRL/RQTM) Fuels and Energy

  5. Air cooled turbine component having an internal filtration system

    Science.gov (United States)

    Beeck, Alexander R [Orlando, FL

    2012-05-15

    A centrifugal particle separator is provided for removing particles such as microscopic dirt or dust particles from the compressed cooling air prior to reaching and cooling the turbine blades or turbine vanes of a turbine engine. The centrifugal particle separator structure has a substantially cylindrical body with an inlet arranged on a periphery of the substantially cylindrical body. Cooling air enters centrifugal particle separator through the separator inlet port having a linear velocity. When the cooling air impinges the substantially cylindrical body, the linear velocity is transformed into a rotational velocity, separating microscopic particles from the cooling air. Microscopic dust particles exit the centrifugal particle separator through a conical outlet and returned to a working medium.

  6. Stochastic Models of Defects in Wind Turbine Drivetrain Components

    DEFF Research Database (Denmark)

    Rafsanjani, Hesam Mirzaei; Sørensen, John Dalsgaard

    2013-01-01

    of the drivetrain will lead to substantial economic losses such as cost of lost energy production, cost of repairs, cost of crew and cost of transportation. For offshore wind turbines, the marine environment affects the repair & maintenance process and in some case because of the rush environment, the maintenance...... team cannot operate properly and the wind turbine does not work for several days and consequently the cost of lost energy increases drastically. In this paper is presented stochastic models for fatigue failure based on test data and the accuracy of the models are compared....

  7. Materials and Component Development for Advanced Turbine Systems

    Energy Technology Data Exchange (ETDEWEB)

    Alvin, M A; Pettit, F; Meier, G H; Yanar, M; Helminiak, M; Chyu, M; Siw, S; Slaughter, W S; Karaivanov, V; Kang, B S; Feng, C; Tannebaum, J M; Chen, R; Zhang, B; Fu, T; Richards, G A; Sidwell, T G; Straub, D; Casleton, K H; Dogan, O M

    2008-07-01

    Hydrogen-fired and oxy-fueled land-based gas turbines currently target inlet operating temperatures of ~1425-1760°C (~2600-3200°F). In view of natural gas or syngas-fired engines, advancements in both materials, as well as aerothermal cooling configurations are anticipated prior to commercial operation. This paper reviews recent technical accomplishments resulting from NETL’s collaborative research efforts with the University of Pittsburgh and West Virginia University for future land-based gas turbine applications.

  8. THE USE OF COATINGS FOR HOT CORROSION AND EROSION PROTECTION IN TURBINE HOT SECTION COMPONENTS

    Directory of Open Access Journals (Sweden)

    Hayrettin AHLATCI

    1999-01-01

    Full Text Available High pressure turbine components are subjected to a wide variety of thermal and mechanical loading during service. In addition, the components are exposed to a highly oxidizing atmosphere which may contain contaminants such as sulphates, chlorides and sulphuorous gases along with erosive media. So the variety of surface coatings and deposition processes available for the protection of blade and vane components in gas turbines are summarised in this study. Coating types range from simple diffusion aluminides to modified aluminides and a CoCrAlY overlayer. The recommendations for corrosion-resistant coatings (for low temperature and high temperature hot corrosion environments are as follows: silicon aluminide and platinumchromium aluminide for different gas turbine section superalloys substrates. Platinum metal additions are used to improve the properties of coatings on turbine components. Inorganic coatings based on ceramic films which contain aluminium or aluminium and silicon are very effective in engines and gas turbines. Diffusion, overlayer and thermal barrier coatings which are deposited on superalloys gas turbine components by pack cementation, plasma spraying processes and a number of chemical vapour deposition, physical vapour deposition processes (such as electron beam, sputtering, ion plating are described. The principles underlying the development of protective coatings serve as a useful guide in the choice of coatings for other high temperature applications.

  9. 3D Numerical Simulation versus Experimental Assessment of Pressure Pulsations Using a Passive Method for Swirling Flow Control in Conical Diffusers of Hydraulic Turbines

    Science.gov (United States)

    TANASA, C.; MUNTEAN, S.; CIOCAN, T.; SUSAN-RESIGA, R. F.

    2016-11-01

    The hydraulic turbines operated at partial discharge (especially hydraulic turbines with fixed blades, i.e. Francis turbine), developing a swirling flow in the conical diffuser of draft tube. As a result, the helical vortex breakdown, also known in the literature as “precessing vortex rope” is developed. A passive method to mitigate the pressure pulsations associated to the vortex rope in the draft tube cone of hydraulic turbines is presented in this paper. The method involves the development of a progressive and controlled throttling (shutter), of the flow cross section at the bottom of the conical diffuser. The adjustable cross section is made on the basis of the shutter-opening of circular diaphragms, while maintaining in all positions the circular cross-sectional shape, centred on the axis of the turbine. The stagnant region and the pressure pulsations associated to the vortex rope are mitigated when it is controlled with the turbine operating regime. Consequently, the severe flow deceleration and corresponding central stagnant are diminished with an efficient mitigation of the precessing helical vortex. Four cases (one without diaphragm and three with diaphragm), are numerically and experimentally investigated, respectively. The present paper focuses on a 3D turbulent swirling flow simulation in order to evaluate the control method. Numerical results are compared against measured pressure recovery coefficient and Fourier spectra. The results prove the vortex rope mitigation and its associated pressure pulsations when employing the diaphragm.

  10. Evaluation of premature failure of a gas turbine component

    CSIR Research Space (South Africa)

    Dedekind, MO

    1996-01-03

    Full Text Available A case study of certain gas turbine stator vanes which fail prematurely is presented, with a view to determining whether operational procedure might have caused the failures. The engines had been operated from a ‘hot-and-high’ environment...

  11. Materials and Component Development for Advanced Turbine Systems

    Energy Technology Data Exchange (ETDEWEB)

    Alvin, M.A.; Pettit, F.; Meier, G.; Yanar, N.; Chyu, M.; Mazzotta, D.; Slaughter, W.; Karaivanov, V.; Kang, B.; Feng, C.; Chen, R.; Fu, T-C.

    2008-10-01

    In order to meet the 2010-2020 DOE Fossil Energy goals for Advanced Power Systems, future oxy-fuel and hydrogen-fired turbines will need to be operated at higher temperatures for extended periods of time, in environments that contain substantially higher moisture concentrations in comparison to current commercial natural gas-fired turbines. Development of modified or advanced material systems, combined with aerothermal concepts are currently being addressed in order to achieve successful operation of these land-based engines. To support the advanced turbine technology development, the National Energy Technology Laboratory (NETL) has initiated a research program effort in collaboration with the University of Pittsburgh (UPitt), and West Virginia University (WVU), working in conjunction with commercial material and coating suppliers as Howmet International and Coatings for Industry (CFI), and test facilities as Westinghouse Plasma Corporation (WPC) and Praxair, to develop advanced material and aerothermal technologies for use in future oxy-fuel and hydrogen-fired turbine applications. Our program efforts and recent results are presented.

  12. Nonlinear dynamic analysis and robust controller design for Francis hydraulic turbine regulating system with a straight-tube surge tank

    Science.gov (United States)

    Liang, Ji; Yuan, Xiaohui; Yuan, Yanbin; Chen, Zhihuan; Li, Yuanzheng

    2017-02-01

    The safety and stability of hydraulic turbine regulating system (HTRS) in hydropower plants become increasingly important since the rapid development and the broad application of hydro energy technology. In this paper, a novel mathematical model of Francis hydraulic turbine regulating system with a straight-tube surge tank based on a few state-space equations is introduced to study the dynamic behaviors of the HTRS system, where the existence of possible unstable oscillations of this model is studied extensively and presented in the forms of the bifurcation diagram, time waveform plot, phase trajectories, and power spectrum. To eliminate these undesirable behaviors, a specified fuzzy sliding mode controller is designed. In this hybrid controller, the sliding mode control law makes full use of the proposed model to guarantee the robust control in the presence of system uncertainties, while the fuzzy system is applied to approximate the proper gains of the switching control in sliding mode technique to reduce the chattering effect, and particle swarm optimization is developed to search the optimal gains of the controller. Numerical simulations are presented to verify the effectiveness of the designed controller, and the results show that the performances of the nonlinear HTRS system assisted with the proposed controller is much better than that with the commonly used optimal PID controller.

  13. High-cycle notch sensitivity of alloy steel ASTM A743 CA6NM used in hydrogenator turbine components

    Directory of Open Access Journals (Sweden)

    José Alexander Araújo

    2010-10-01

    Full Text Available The presence of notches and other stress concentrations in turbine blades and other notch hydraulic components is a current problem in engineering. It causes a reduction of endurance limit of material. In that sense, specimens of the ASTM A743 CA6NM alloy steel using in several hydrogenator turbine components was tested. The specimens were tested under uniaxial fatigue loading with a load ratio equal to -1, and the considered stress concentration factors, Kt, values, calculated with respect to net area, were 1.55, 2.04 and 2.42. In order to determine the fatigue limit for such notch type, a reduction data method by Dixon and Mood, Staircase method was used. This approach is based on the assumed target distribution of the fatigue limit. For such geometry at least 8 specimens were tested. In addition, the Peterson and Neuber’s notch fatigue factor were compared through fatigue notch reduction factor, Kf, obtained from experimental data. According to results obtained it was possible to conclude that the tested material is less sensitive to notches than the prediction of the Peterson and Neuber’s empirical models.

  14. Analysis on Service Life of Hot-end Components of Gas Turbine Using Equivalent Operation

    Directory of Open Access Journals (Sweden)

    Taixing Wang

    2013-01-01

    Full Text Available The reliability of the gas turbine depends on the technical status and the maintenance level of the hot-end components in a large part.The three main factors influencing on the service life of the hot-end components of the gas turbine were analyzed first.On this basis,various common service life assessment methods for gas turbine were discussed in detail.Aiming at the features of the M701F gas-steam combined cycle unit in Huizhou LNG power plant,a gas turbine life assessment method based on equivalent operation time analysis was put forward.The calculation result of an example shows that the equivalent operation time analysis method is a simple and practical assessment method.

  15. Repair of Kaplan turbine shaft sealing based on evaluation of hydraulic conditions

    Science.gov (United States)

    Lakatos, K.; Szamosi, Z.; Bereczkei, S.

    2012-11-01

    This paper has been written to call attention to a potential danger what may occur in Kaplan turbine refurbishments. In Tiszalök hydropower plant, Hungary, the shaft sealing of the refurbished turbine was damaged. In searching for the reasons it was assumed that due to increased internal velocities in the turbine, the pressure at the hub clearance became lower than the atmospheric pressure, and therefore the sealing, which always operated satisfactorily before the refurbishment, had uncertain water supply, dry-running occurred, and after some time the sealing was burnt. First the flow conditions in the turbine and the pressure at the hub clearance were calculated by a one-dimensional flow model. Later this was refined by a two-dimensional approach. The above conclusion was also justified by the data acquisition system and by observing the operation of the small dewatering pump. When the turbine operated at a larger discharge than a certain limit value, then the dewatering pump remained standstill, indicating that no water passed through the shaft sealing. External water supply was then applied, and after this the turbine operated all right.

  16. Condition Based Monitoring of Gas Turbine Combustion Components

    Energy Technology Data Exchange (ETDEWEB)

    Ulerich, Nancy; Kidane, Getnet; Spiegelberg, Christine; Tevs, Nikolai

    2012-09-30

    The objective of this program is to develop sensors that allow condition based monitoring of critical combustion parts of gas turbines. Siemens teamed with innovative, small companies that were developing sensor concepts that could monitor wearing and cracking of hot turbine parts. A magnetic crack monitoring sensor concept developed by JENTEK Sensors, Inc. was evaluated in laboratory tests. Designs for engine application were evaluated. The inability to develop a robust lead wire to transmit the signal long distances resulted in a discontinuation of this concept. An optical wear sensor concept proposed by K Sciences GP, LLC was tested in proof-of concept testing. The sensor concept depended, however, on optical fiber tips wearing with the loaded part. The fiber tip wear resulted in too much optical input variability; the sensor could not provide adequate stability for measurement. Siemens developed an alternative optical wear sensor approach that used a commercial PHILTEC, Inc. optical gap sensor with an optical spacer to remove fibers from the wearing surface. The gap sensor measured the length of the wearing spacer to follow loaded part wear. This optical wear sensor was developed to a Technology Readiness Level (TRL) of 5. It was validated in lab tests and installed on a floating transition seal in an F-Class gas turbine. Laboratory tests indicate that the concept can measure wear on loaded parts at temperatures up to 800{degrees}C with uncertainty of < 0.3 mm. Testing in an F-Class engine installation showed that the optical spacer wore with the wearing part. The electro-optics box located outside the engine enclosure survived the engine enclosure environment. The fiber optic cable and the optical spacer, however, both degraded after about 100 operating hours, impacting the signal analysis.

  17. On Different Maintenance Strategies for Casted Components of Offshore Wind Turbines

    DEFF Research Database (Denmark)

    Ambühl, Simon; Sørensen, John Dalsgaard

    and transportation strategy. The case study shows that the maintenance expenses of casted components correspond to roughly 5% of the overall expected maintenance costs when using a corrective maintenance strategy. This amount can be decreased to roughly 2% when using a condition monitoring system and following......This report, which is a part of the REWIND project, focuses on maintenance expenses for casted components mounted on offshore wind turbines. The maintenance costs for casted components are extracted from a maintenance operation tool, which simulates maintenance operations at wind turbine farms....... This maintenance tool uses Crude Monte Carlo Simulations to estimate the expected maintenance costs. Corrective and preventive maintenance strategies with a constant inspection interval or a condition monitoring system are considered. Furthermore, transportation from shore to the wind turbines by boat...

  18. Hydraulic Yaw System

    DEFF Research Database (Denmark)

    Stubkier, Søren; Pedersen, Henrik C.; Mørkholt, M.

    As wind turbines increase in size, combined with increased lifetime demands, new methods for load reduction needs to be examined. One method is to make the yaw system of the turbine soft/flexible and hereby dampen the loads to the system, which is the focus of the current paper. By utilizing...... the HAWC2 aeroelastic code and an extended model of the NREL 5MW turbine combined with a simplified linear model of the turbine, the parameters of the soft yaw system are optimized to reduce loading in critical components. Results shows that a significant reduction in fatigue and extreme loads to the yaw...... system and rotor shaft when utilizing the soft yaw drive concept compared to the original stiff yaw system. The physical demands of the hydraulic yaw system are furthermore examined for a life time of 20 years. Based on the extrapolated loads, the duty cycles show that it is possible to construct...

  19. Characterization of component interactions in two-stage axial turbine

    Directory of Open Access Journals (Sweden)

    Adel Ghenaiet

    2016-08-01

    Full Text Available This study concerns the characterization of both the steady and unsteady flows and the analysis of stator/rotor interactions of a two-stage axial turbine. The predicted aerodynamic performances show noticeable differences when simulating the turbine stages simultaneously or separately. By considering the multi-blade per row and the scaling technique, the Computational fluid dynamics (CFD produced better results concerning the effect of pitchwise positions between vanes and blades. The recorded pressure fluctuations exhibit a high unsteadiness characterized by a space–time periodicity described by a double Fourier decomposition. The Fast Fourier Transform FFT analysis of the static pressure fluctuations recorded at different interfaces reveals the existence of principal harmonics and their multiples, and each lobed structure of pressure wave corresponds to the number of vane/blade count. The potential effect is seen to propagate both upstream and downstream of each blade row and becomes accentuated at low mass flow rates. Between vanes and blades, the potential effect is seen to dominate the quasi totality of blade span, while downstream the blades this effect seems to dominate from hub to mid span. Near the shroud the prevailing effect is rather linked to the blade tip flow structure.

  20. Characterization of component interactions in two-stage axial turbine

    Institute of Scientific and Technical Information of China (English)

    Adel Ghenaiet; Kaddour Touil

    2016-01-01

    This study concerns the characterization of both the steady and unsteady flows and the analysis of stator/rotor interactions of a two-stage axial turbine. The predicted aerodynamic perfor-mances show noticeable differences when simulating the turbine stages simultaneously or sepa-rately. By considering the multi-blade per row and the scaling technique, the Computational fluid dynamics (CFD) produced better results concerning the effect of pitchwise positions between vanes and blades. The recorded pressure fluctuations exhibit a high unsteadiness characterized by a space–time periodicity described by a double Fourier decomposition. The Fast Fourier Transform FFT analysis of the static pressure fluctuations recorded at different interfaces reveals the existence of principal harmonics and their multiples, and each lobed structure of pressure wave corresponds to the number of vane/blade count. The potential effect is seen to propagate both upstream and downstream of each blade row and becomes accentuated at low mass flow rates. Between vanes and blades, the potential effect is seen to dominate the quasi totality of blade span, while down-stream the blades this effect seems to dominate from hub to mid span. Near the shroud the prevail-ing effect is rather linked to the blade tip flow structure.

  1. A finite element analysis of a large thrust elastic metal-plastics bearing bush for a hydraulic turbine

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Presents the study on the pressure and friction fields of the lubricant film on the surface of a large thrust elastic metal-plastic bearing bush in a hydraulic turbine using the method of finite element analysis and the stress and displacement fields in the vertical direction of the bush surface obtained to provide a theoretical basis for the design of contour lines and investigation into the causes for destruction of bushes, and concludes with test results that 1 ) the stress on the surface of the bush is not uniform; 2) a tension stress tends to occur near the oil ingress and egress edges but it is minor; 3) the biggest displacement in the vertical direction appears where x = 84 and Y = 1 153 and has a value of 0.022 mm; 4) the deformation of the bearing bush is harmful to the maintenance of lubricant film.

  2. Investigation of Data Fusion Applied to Health Monitoring of Wind Turbine Drive train Components

    Science.gov (United States)

    Dempsey, Paula J.; Sheng, Shuangwen

    2011-01-01

    The research described was performed on diagnostic tools used to detect damage to dynamic mechanical components in a wind turbine gearbox. Different monitoring technologies were evaluated by collecting vibration and oil debris data from tests performed on a "healthy" gearbox and a damaged gearbox in a dynamometer test stand located at the National Renewable Energy Laboratory. The damaged gearbox tested was removed from the field after experiencing component damage due to two losses of oil events and was retested under controlled conditions in the dynamometer test stand. Preliminary results indicate oil debris and vibration can be integrated to assess the health of the wind turbine gearbox.

  3. Effects of Gas Turbine Component Performance on Engine and Rotary Wing Vehicle Size and Performance

    Science.gov (United States)

    Snyder, Christopher A.; Thurman, Douglas R.

    2010-01-01

    In support of the Fundamental Aeronautics Program, Subsonic Rotary Wing Project, further gas turbine engine studies have been performed to quantify the effects of advanced gas turbine technologies on engine weight and fuel efficiency and the subsequent effects on a civilian rotary wing vehicle size and mission fuel. The Large Civil Tiltrotor (LCTR) vehicle and mission and a previous gas turbine engine study will be discussed as a starting point for this effort. Methodology used to assess effects of different compressor and turbine component performance on engine size, weight and fuel efficiency will be presented. A process to relate engine performance to overall LCTR vehicle size and fuel use will also be given. Technology assumptions and levels of performance used in this analysis for the compressor and turbine components performances will be discussed. Optimum cycles (in terms of power specific fuel consumption) will be determined with subsequent engine weight analysis. The combination of engine weight and specific fuel consumption will be used to estimate their effect on the overall LCTR vehicle size and mission fuel usage. All results will be summarized to help suggest which component performance areas have the most effect on the overall mission.

  4. The effects of variable speed and drive train component efficiencies on wind turbine energy capture

    Energy Technology Data Exchange (ETDEWEB)

    Fingersh, L.J.; Robinson, M.C.

    1998-05-01

    A wind turbine rotor achieves optimal aerodynamic efficiency at a single tip-speed ratio (TSR). To maintain that optimal TSR and maximize energy capture in the stochastic wind environment, it is necessary to employ variable-speed operation. Conventional constant-speed wind turbines have, in the past, been converted into variable-speed turbines by attaching power electronics to the conventional induction generator and gearbox drive train. Such turbines have shown marginal, if any, improvement in energy capture over their constant-speed counterparts. These discrepancies have been shown to be the result of drive train components that are not optimized for variable-speed operation. Traditional drive trains and power electronic converters are designed to achieve maximum efficiency at full load and speed. However, the main energy producing winds operate the turbine at light load for long periods of time. Because of this, significant losses to efficiency occur. This investigation employs a quasi-static model to demonstrate the dramatic effect that component efficiency curves can have on overall annual energy capture.

  5. Fundamental investigations for a OWC-tidal power plant with a conventional hydraulic turbine; Basisuntersuchungen fuer ein OWC-Wellenenergiekraftwerk mit konventioneller Hydroturbine. Abschlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Graw, K.U.; Lengricht, J.; Schimmels, S.

    2001-07-01

    At the present the OWC-tidal power plant is the most forward-looking way of converting tidal energy into usable electric power. Current research works focus on the dimensions of the structures in terms of occurring loads, the minimisation of hydraulic losses and the development of new turbine-generator types. The development of all air-turbine systems, which have been investigated so far, is considered as problematic and the commercialisation is likely to be a hindrance. Based on international research results an inventory tata of available hydraulic turbines is supposed to be gathered and fundamental investigations are supposed to check, if the application of conventional hydraulic turbines are an energetic progress in the OWC-tidal power plant. In order to considerably increase the efficiency compared to current developments, small-scale investigations at a physical model are supposed to show if and how a hydraulic turbine can be realised in a OWC-tidal power plant and how a concept of flow rectification as well as a flow-optimised form of inflow and outflow chambers can be achieved. (orig.) [German] Das OWC-Wellenenergiekraftwerk ist der zur Zeit zukunftstraechtigste Typ zur Umwandlung von Wellenenergie in nutzbaren Strom. Die laufenden Forschungsarbeiten beschaeftigen sich insbesondere mit der Dimensionierung der Strukturen hinsichtlich auftretender Belastungen, der Minimierung der hydraulischen Verluste und der Entwicklung von neuartigen Turbinen-Generatoren-Typen. Die Entwicklung aller bisher untersuchten Luftturbinensysteme wird jedoch als problematisch und die Kommerzialisierung hindernd angesehen. Aufbauend auf den internationalen Forschungsergebnissen sollen eine Bestandaufnahme der verfuegbaren Hydroturbinen durchgefuehrt und mit Baisuntersuchungen geprueft werden, ob ein Einsatz konventionaller Hydroturbinen im OWC-Wellenenergiekraftwerk eine energetische Weiterentwicklung darstellen kann. Um den Wirkungsgrad gegenueber derzeitigen Entwicklungen

  6. Fatigue Reliability of Casted Wind Turbine Components Due to Defects

    DEFF Research Database (Denmark)

    Rafsanjani, Hesam Mirzaei; Sørensen, John Dalsgaard

    2015-01-01

    and their influence on the fatigue strength of the components. The fatigue life is dependent on the number, type, location and size of the defects in the component and is therefore quite uncertain and needs to be described by stochastic models. In this paper, the Poisson distribution for modeling of defects...... of component are considered and the surface and sub-surface defects categorized. Furthermore, a model to estimate the probability of failure by fatigue due to the defects is proposed. This model is used to estimate the failure location of component and it is compared to models of defect distributions...

  7. Resistance of Silicon Nitride Turbine Components to Erosion and Hot Corrosion/oxidation Attack

    Science.gov (United States)

    Strangmen, Thomas E.; Fox, Dennis S.

    1994-01-01

    Silicon nitride turbine components are under intensive development by AlliedSignal to enable a new generation of higher power density auxiliary power systems. In order to be viable in the intended applications, silicon nitride turbine airfoils must be designed for survival in aggressive oxidizing combustion gas environments. Erosive and corrosive damage to ceramic airfoils from ingested sand and sea salt must be avoided. Recent engine test experience demonstrated that NT154 silicon nitride turbine vanes have exceptional resistance to sand erosion, relative to superalloys used in production engines. Similarly, NT154 silicon nitride has excellent resistance to oxidation in the temperature range of interest - up to 1400 C. Hot corrosion attack of superalloy gas turbine components is well documented. While hot corrosion from ingested sea salt will attack silicon nitride substantially less than the superalloys being replaced in initial engine applications, this degradation has the potential to limit component lives in advanced engine applications. Hot corrosion adversely affects the strength of silicon nitride in the 850 to 1300 C range. Since unacceptable reductions in strength must be rapidly identified and avoided, AlliedSignal and the NASA Lewis Research Center have pioneered the development of an environmental life prediction model for silicon nitride turbine components. Strength retention in flexure specimens following 1 to 3300 hour exposures to high temperature oxidation and hot corrosion has been measured and used to calibrate the life prediction model. Predicted component life is dependent upon engine design (stress, temperature, pressure, fuel/air ratio, gas velocity, and inlet air filtration), mission usage (fuel sulfur content, location (salt in air), and times at duty cycle power points), and material parameters. Preliminary analyses indicate that the hot corrosion resistance of NT154 silicon nitride is adequate for AlliedSignal's initial engine

  8. Combustor and Vane Features and Components Tested in a Gas Turbine Environment

    Science.gov (United States)

    Roinson, R. Craig; Verrilli, Michael J.

    2003-01-01

    The use of ceramic matrix composites (CMCs) as combustor liners and turbine vanes provides the potential of improving next-generation turbine engine performance, through lower emissions and higher cycle efficiency, relative to today s use of superalloy hot-section components. For example, the introduction of film-cooling air in metal combustor liners has led to higher levels of nitrogen oxide (NOx) emissions from the combustion process. An environmental barrier coated (EBC) siliconcarbide- fiber-reinforced silicon carbide matrix (SiC/SiC) composite is a new material system that can operate at higher temperatures, significantly reducing the film-cooling requirements and enabling lower NOx production. Evaluating components and subcomponents fabricated from these advanced CMCs under gas turbine conditions is paramount to demonstrating that the material system can perform as required in the complex thermal stress and environmentally aggressive engine environment. To date, only limited testing has been conducted on CMC combustor and turbine concepts and subelements of this type throughout the industry. As part of the Ultra-Efficient Engine Technology (UEET) Program, the High Pressure Burner Rig (HPBR) at the NASA Glenn Research Center was selected to demonstrate coupon, subcomponent feature, and component testing because it can economically provide the temperatures, pressures, velocities, and combustion gas compositions that closely simulate the engine environments. The results have proven the HPBR to be a highly versatile test rig amenable to multiple test specimen configurations essential to coupon and component testing.

  9. Three-component particle image velocimetry in a generic can-type gas turbine combustor

    CSIR Research Space (South Africa)

    Meyers, Bronwyn C

    2012-11-01

    Full Text Available -1 Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy November 2012/ Vol. 226(7) Three-componentParticle Image Velocimetry in a Generic Can-type Gas Turbine Combustor B C Meyers 1, 2* , G C Snedden 1 , J P...

  10. Studies of field test procedures in hydraulic turbines for SHP; Estudos de procedimentos de ensaios de campo em turbinas hidraulicas para PCH

    Energy Technology Data Exchange (ETDEWEB)

    Justino, Lucimary Aparecida

    2006-07-01

    A supply contract of equipment for Small Hydro Power, contain the power and turbine efficiency guarantees and can contain adds guarantees referring to a rotation and pressure variation, runaway speed and cavitations test. To the determination about the hydraulics turbines performance for contractual guarantees are realized the field acceptance test, that are methods quite a lot used for enterprises like tools to prove the contractual guarantees in substitution to model test, that showed a cost extremely high. In the field acceptance test are measures of some values that added to the others, possibility obtain the turbine efficiency. In the small hydro power, the turbine efficiency represents the hydraulic power percentage that is subject to be transformed in electrical power. In the turbine purchase, the manufacturer has to guarantee the efficiency specified if it is become down to expected, the damages are enormous, then the importance to exist precise methods and reliable for your measurement. The method accuracy of the discharge measurement that has, between another problems, the calibration and installation, that influence hard the value of the efficiency obtained. This work shows the different methodologies about discharge measurement in hydraulic turbines, that can be apply in Small Hydro Power field tests and shows too the procedures used that in specifics cases of small hydro, without quality damage, the site tests could be executed the form that the guarantees will be approve with compatible cots with the investment done. As an example for said above, are show two cases in small hydro where did realized field acceptance tests to assure the contractual guarantees. (author)

  11. Prediction of pressure fluctuation of a hydraulic turbine at no-load condition

    Science.gov (United States)

    Chen, T. J.; Wu, X. J.; Liu, J. T.; Wu, Y. L.

    2015-01-01

    In order to study characteristics of pressure fluctuation of a turbine during the starting period, a turbine with guide vanes device at no-load condition was investigated using RNG k-epsilon turbulence model. The inner flow distribution and pressure fluctuation characteristics were analyzed. Results show that the pressure fluctuations in the region between the runner and guide vanes are different around the runner inlet. The dominant frequency of pressure fluctuation in the vaneless space close to the casing outlet is the blade passing frequency, while the dominant frequency at the rest region is the twice of the blade passing frequency. The increase of amplitude of pressure fluctuation close to the casing outlet can be attribute to the large scale stall at suction side of the runner inlet.

  12. On risk-based operation and maintenance of offshore wind turbine components

    DEFF Research Database (Denmark)

    Nielsen, Jannie Jessen; Sørensen, John Dalsgaard

    2011-01-01

    Operation and maintenance are significant contributors to the cost of energy for offshore wind turbines. Optimal planning could rationally be based on Bayesian pre-posterior decision theory, and all costs through the lifetime of the structures should be included. This paper contains a study...... of a generic case where the costs are evaluated for a single wind turbine with a single component. Costs due to inspections, repairs, and lost production are included in the model. The costs are compared for two distinct maintenance strategies, namely with and without inclusion of periodic imperfect...

  13. Examples of fatigue lifetime and reliability evaluation of larger wind turbine components

    DEFF Research Database (Denmark)

    Tarp-Johansen, N.J.

    2003-01-01

    This report is one out of several that constitute the final report on the ELSAM funded PSO project “Vindmøllekomponenters udmattelsesstyrke og levetid”, project no. 2079, which regards the lifetime distribution of larger wind turbine components in ageneric turbine that has real life dimensions....... Though it was the initial intention of the project to consider only the distribution of lifetimes the work reported in this document provides also calculations of reliabilities and partial load safetyfactors under specific assumptions about uncertainty sources, as reliabilities are considered...

  14. Feasibility of a Simple Small Wind Turbine with Variable-Speed Regulation Made of Commercial Components

    OpenAIRE

    Jesús Peláez Vara; Justo Ruiz Calvo; Jesús Ausín Rodríguez; Juan Vicente Martín Fraile; Francisco Javier Gomez-Gil; Andrés Bravo Cuesta

    2013-01-01

    The aim of this study was to propose and evaluate a very small wind turbine (VSWT) that competes with commercial grid-connected VSWTs in terms of simplicity, robustness and price. Its main components are a squirrel-cage induction generator (SCIG) driven by a frequency converter. The system has a direct-drive shaft, and may be constructed with commercial equipment. Simulation of the wind turbine effect is done with a motor. A control program regulates the variable-speed of rotation through thr...

  15. Reliability of Wind Turbine Components-Solder Elements Fatigue Failure

    DEFF Research Database (Denmark)

    Kostandyan, Erik; Sørensen, John Dalsgaard

    2012-01-01

    on the temperature mean and temperature range. Constant terms and model errors are estimated. The proposed methods are useful to predict damage values for solder joint in power electrical components. Based on the proposed methods it is described how to find the damage level for a given temperature loading profile....... The proposed methods are discussed for application in reliability assessment of Wind Turbine’s electrical components considering physical, model and measurement uncertainties. For further research it is proposed to evaluate damage criteria for electrical components due to the operational temperature...

  16. Reliability Analysis of Fatigue Failure of Cast Components for Wind Turbines

    Directory of Open Access Journals (Sweden)

    Hesam Mirzaei Rafsanjani

    2015-04-01

    Full Text Available Fatigue failure is one of the main failure modes for wind turbine drivetrain components made of cast iron. The wind turbine drivetrain consists of a variety of heavily loaded components, like the main shaft, the main bearings, the gearbox and the generator. The failure of each component will lead to substantial economic losses such as cost of lost energy production and cost of repairs. During the design lifetime, the drivetrain components are exposed to variable loads from winds and waves and other sources of loads that are uncertain and have to be modeled as stochastic variables. The types of loads are different for offshore and onshore wind turbines. Moreover, uncertainties about the fatigue strength play an important role in modeling and assessment of the reliability of the components. In this paper, a generic stochastic model for fatigue failure of cast iron components based on fatigue test data and a limit state equation for fatigue failure based on the SN-curve approach and Miner’s rule is presented. The statistical analysis of the fatigue data is performed using the Maximum Likelihood Method which also gives an estimate of the statistical uncertainties. Finally, illustrative examples are presented with reliability analyses depending on various stochastic models and partial safety factors.

  17. Apparatus and method for temperature mapping a turbine component in a high temperature combustion environment

    Science.gov (United States)

    Baleine, Erwan; Sheldon, Danny M

    2014-06-10

    Method and system for calibrating a thermal radiance map of a turbine component in a combustion environment. At least one spot (18) of material is disposed on a surface of the component. An infrared (IR) imager (14) is arranged so that the spot is within a field of view of the imager to acquire imaging data of the spot. A processor (30) is configured to process the imaging data to generate a sequence of images as a temperature of the combustion environment is increased. A monitor (42, 44) may be coupled to the processor to monitor the sequence of images of to determine an occurrence of a physical change of the spot as the temperature is increased. A calibration module (46) may be configured to assign a first temperature value to the surface of the turbine component when the occurrence of the physical change of the spot is determined.

  18. Hydraulic Turbine Cavitation Analysis Based on the Cordon Method%基于Cordon法的水轮机抗空蚀研究

    Institute of Scientific and Technical Information of China (English)

    桂家章; 梁兴

    2013-01-01

    水轮机空蚀与运行工况密切联系,其影响因素较多。为此针对国内某电站,采用cordon法预估电站空蚀破坏,并与电站实际空蚀破坏比较,进而分解cordon法,从水轮机转轮材料、吸出高度以及负荷利用系数等三方面,分析诱发水轮机空蚀的关键因素,提出相应抗空蚀措施,总结水轮机空蚀研究思路,为水电站设计、安全经济运行及技术改造提供具有实用价值的借鉴意见。%The hydraulic turbine cavitation is related with power station operation, and it is influenced by much reasons. Therefore, by comparison with actual cavitation damage, the estimate value which calculated by the cordon method is precise. Based on the cordon method, the cause of hydraulic turbine cavitation are analyzed from the aspects of runner material, suction height and load utilization coefficient, and the anti-measures of hydraulic turbine cavitation is researched. It is valuable for the safe and economic operation, and also useful for technical reformation in hydroelectric power station.

  19. 75 FR 2159 - In the Matter of Certain Variable Speed Wind Turbines and Components Thereof; Termination of...

    Science.gov (United States)

    2010-01-14

    ... COMMISSION In the Matter of Certain Variable Speed Wind Turbines and Components Thereof; Termination of..., and the sale within the United States after importation of certain variable speed wind turbines and..., Connecticut (``GE'') on February 7, 2008. 73 FR 16910. The complaint alleged violations of section 337 of...

  20. Unsteady hydraulic simulation of the cavitating part load vortex rope in Francis turbines

    Science.gov (United States)

    Brammer, J.; Segoufin, C.; Duparchy, F.; Lowys, P. Y.; Favrel, A.; Avellan, F.

    2017-04-01

    For Francis turbines at part load operation a helical vortex rope is formed due to the swirling nature of the flow exiting the runner. This vortex creates pressure fluctuations which can lead to power swings, and the unsteady loading can lead to fatigue damage of the runner. In the case that the vortex rope cavitates there is the additional risk that hydro-acoustic resonance can occur. It is therefore important to be able to accurately simulate this phenomenon to address these issues. In this paper an unsteady, multi-phase CFD model was used to simulate two part-load operating points, for two different cavitation conditions. The simulation results were validated with test-rig data, and showed very good agreement. These results also served as an input for FEA calculations and fatigue analysis, which are presented in a separate study.

  1. Numerical prediction for effects of guide vane blade numbers on hydraulic turbine performance

    Science.gov (United States)

    Shi, F. X.; Yang, J. H.; Wang, X. H.; Li, C. E.

    2013-12-01

    Using unstructured hybrid grid technique and SIMPLEC algorithm,a general three-dimensional simulation based on Reynolds Navier- stocks in multiple reference frames and the RNG k-ε turbulence model, is presented for the reversal centrifugal pump (PAT) with a guide vane. Four different schemes are designed by a change of the number of guide vane blade of PAT. The inner flow field in every scheme is simulated, accordingly, the external characteristic and static pressure distribution in flow field in PAT is obtained. The results obtained show that the efficiency can be improved by adding a guide vane for the PAT, besides, the high efficiency area is wider than before. Guide blade numbers changed, external characteristics of turbine changed, and the external characteristic changed. The optimal value is existent for the guide vane blade number, which has a great impact on the distribution of pressure in runner inlet.

  2. Turbine component having surface cooling channels and method of forming same

    Energy Technology Data Exchange (ETDEWEB)

    Miranda, Carlos Miguel; Trimmer, Andrew Lee; Kottilingam, Srikanth Chandrudu

    2017-09-05

    A component for a turbine engine includes a substrate that includes a first surface, and an insert coupled to the substrate proximate the substrate first surface. The component also includes a channel. The channel is defined by a first channel wall formed in the substrate and a second channel wall formed by at least one coating disposed on the substrate first surface. The component further includes an inlet opening defined in flow communication with the channel. The inlet opening is defined by a first inlet wall formed in the substrate and a second inlet wall defined by the insert.

  3. Risk-based damage assessment and maintenance management for turbine components

    Energy Technology Data Exchange (ETDEWEB)

    Fujiyama, Kazunari; Fujiwara, Toshihiro; Nakatani, Yujiro; Sawa, Testu; Ishii, Junji; Horino, Masayoshi; Nishimura, Mariko; Kitayama, Kazuhiro [Industrial and Power Systems and Services Company, Toshiba Corporation, Tokyo (Japan)

    2004-05-15

    A statistical approach for risk-based maintenance of damage tolerant components is presented. Damage risk is defined here as the expected cost due to repair of damage in the course of component life. The thermomechanical fatigue cracking was studied statistically as the typical damage phenomena for gas turbine nozzles. Probabilities of cycles to critical crack size and cycles to total amount of cracks were calculated through plant inspection data and experimental results of low cycle fatigue. The life cycle cost of damage tolerant components was proved to be optimized by considering the failure risk and the damage risk simultaneously. (orig.)

  4. Analysis of Dynamic Interactions between Different Drivetrain Components with a Detailed Wind Turbine Model

    Science.gov (United States)

    Bartschat, A.; Morisse, M.; Mertens, A.; Wenske, J.

    2016-09-01

    The presented work describes a detailed analysis of the dynamic interactions among mechanical and electrical drivetrain components of a modern wind turbine under the influence of parameter variations, different control mechanisms and transient excitations. For this study, a detailed model of a 2MW wind turbine with a gearbox, a permanent magnet synchronous generator and a full power converter has been developed which considers all relevant characteristics of the mechanical and electrical subsystems. This model includes an accurate representation of the aerodynamics and the mechanical properties of the rotor and the complete mechanical drivetrain. Furthermore, a detailed electrical modelling of the generator, the full scale power converter with discrete switching devices, its filters, the transformer and the grid as well as the control structure is considered. The analysis shows that, considering control measures based on active torsional damping, interactions between mechanical and electrical subsystems can significantly affect the loads and thus the individual lifetime of the components.

  5. Feasibility of a Simple Small Wind Turbine with Variable-Speed Regulation Made of Commercial Components

    Directory of Open Access Journals (Sweden)

    Jesús Peláez Vara

    2013-07-01

    Full Text Available The aim of this study was to propose and evaluate a very small wind turbine (VSWT that competes with commercial grid-connected VSWTs in terms of simplicity, robustness and price. Its main components are a squirrel-cage induction generator (SCIG driven by a frequency converter. The system has a direct-drive shaft, and may be constructed with commercial equipment. Simulation of the wind turbine effect is done with a motor. A control program regulates the variable-speed of rotation through three operational modes: (i to drive the turbine to its optimum operation point; (ii to limit its maximum rotational speed; and (iii to limit the maximum power it generates. Two tests were performed, in order to evaluate the dynamic response of this system under variable wind speeds. The tests demonstrate that the system operates at the optimum operational point of the turbine, and within the set limits of maximum rotational speed and maximum generated power. The drop in performance in relation to its nominal value is about 75%, when operating at 50% of the nominal power. In summary, this VSWT with its proposed control program is feasible and reliable for operating direct-shaft grid-connected VSWTs.

  6. Fault detection of excavator's hydraulic system based on dynamic principal component analysis

    Institute of Scientific and Technical Information of China (English)

    HE Qing-hua; HE Xiang-yu; ZHU Jian-xin

    2008-01-01

    In order to improve reliability of the excavator's hydraulic system, a fault detection approach based on dynamic principal component analysis(PCA) was proposed. Dynamic PCA is an extension of PCA, which can effectively extract the dynamic relations among process variables. With this approach, normal samples were used as training data to develop a dynamic PCA model in the first step. Secondly, the dynamic PCA model decomposed the testing data into projections to the principal component subspace(PCS) and residual subspace(RS). Thirdly, T2 statistic and Q statistic performed as indexes of fault detection in PCS and RS, respectively.Several simulated faults were introduced to validate the approach. The results show that the dynamic PCA model developed is able to detect overall faults by using T2 statistic and Q statistic. By simulation analysis, the proposed approach achieves an accuracy of 95% for 20 test sample sets, which shows that the fault detection approach can be effectively applied to the excavator's hydraulic system.

  7. Dynamic Response of Rub Caused by a Shedding Annular Component Happening in a Steam Turbine

    Directory of Open Access Journals (Sweden)

    J. M. Chen

    2015-01-01

    Full Text Available Rub caused by a shedding annular component is a severe fault happening in a steam turbine, which could result in a long-term wearing effect on the shaft. The shafting abrasion defects shortened the service life and damaged the unit. To identify the fault in time, the dynamic response of rub caused by a shedding annular component was studied as follows: (I a rotor-bearing model was established based on the structural features of certain steam turbines; node-to-node contact constraint and penalty method were utilized to analyze the impact and friction; (II dynamic response of the rotor-bearing system and the shedding component was simulated with the development of rub after the component was dropping; (III fault features were extracted from the vibration near the bearing position by time-domain and frequency-domain analysis. The results indicate that the shedding annular component would not only rotate pivoting its axis but also revolve around the shaft after a period of time. Under the excitation of the contact force, the peak-peak vibration fluctuates greatly. The frequency spectrum contains two main components, that is, the working rotating frequency and revolving frequency. The same phenomenon was observed from the historical data in the field.

  8. Protection algorithm for a wind turbine generator based on positive- and negative-sequence fault components

    DEFF Research Database (Denmark)

    Zheng, Tai-Ying; Cha, Seung-Tae; Crossley, Peter A.;

    2011-01-01

    A protection relay for a wind turbine generator (WTG) based on positive- and negative-sequence fault components is proposed in the paper. The relay uses the magnitude of the positive-sequence component in the fault current to detect a fault on a parallel WTG, connected to the same power collection...... feeder, or a fault on an adjacent feeder; but for these faults, the relay remains stable and inoperative. A fault on the power collection feeder or a fault on the collection bus, both of which require an instantaneous tripping response, are distinguished from an inter-tie fault or a grid fault, which...

  9. On risk-based operation and maintenance of offshore wind turbine components

    DEFF Research Database (Denmark)

    Nielsen, Jannie Jessen; Sørensen, John Dalsgaard

    2011-01-01

    Operation and maintenance are significant contributors to the cost of energy for offshore wind turbines. Optimal planning could rationally be based on Bayesian pre-posterior decision theory, and all costs through the lifetime of the structures should be included. This paper contains a study...... of a generic case where the costs are evaluated for a single wind turbine with a single component. Costs due to inspections, repairs, and lost production are included in the model. The costs are compared for two distinct maintenance strategies, namely with and without inclusion of periodic imperfect...... inspections. Finally the influence of different important parameters, e.g. failure rate, reliability of inspections, inspection interval, and decision rule for repairs, is evaluated....

  10. Statistical Safety Evaluation of BWR Turbine Trip Scenario Using Coupled Neutron Kinetics and Thermal Hydraulics Analysis Code SKETCH-INS/TRACE5.0

    Science.gov (United States)

    Ichikawa, Ryoko; Masuhara, Yasuhiro; Kasahara, Fumio

    The Best Estimate Plus Uncertainty (BEPU) method has been prepared for the regulatory cross-check analysis at Japan Nuclear Energy Safety Organization (JNES) on base of the three-dimensional neutron-kinetics/thermal- hydraulics coupled code SKETCH-INS/TRACE5.0. In the preparation, TRACE5.0 is verified against the large-scale thermal-hydraulic tests carried out with NUPEC facility. These tests were focused on the pressure drop of steam-liquid two phase flow and void fraction distribution. From the comparison of the experimental data with other codes (RELAP5/MOD3.3 and TRAC-BF1), TRACE5.0 was judged better than other codes. It was confirmed that TRACE5.0 has high reliability for thermal hydraulics behavior and are used as a best-estimate code for the statistical safety evaluation. Next, the coupled code SKETCH-INS/TRACE5.0 was applied to turbine trip tests performed at the Peach Bottom-2 BWR4 Plant. The turbine trip event shows the rapid power peak due to the voids collapse with the pressure increase. The analyzed peak value of core power is better simulated than the previous version SKETCH-INS/TRAC-BF1. And the statistical safety evaluation using SKETCH-INS/TRACE5.0 was applied to the loss of load transient for examining the influence of the choice of sampling method.

  11. Characteristics and performance analysis report of the major thermal hydraulic components in the high temperature/high pressure thermal hydraulic test facility (VISTA)

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Ki Yong; Park, Hyun Sik; Cho, Seok; Lee, Sung Jae; Song, Chul Hwa; Park, Chun Kyong; Chung, Moon Ki

    2003-12-01

    The VISTA (Experimental Verification by Integral Simulation of Transients and Accidents) is an experimental facility to verify the performance and safety issues of the SMART-P (Pilot plant of the System-integrated Modular Advanced Reactor). The basic design of the SMART-P has been completed by KAERI. The present report describes the characteristics and performance of the major thermal hydraulic components in the VISTA Facility.

  12. Application of multi-objective controller to optimal tuning of PID gains for a hydraulic turbine regulating system using adaptive grid particle swam optimization.

    Science.gov (United States)

    Chen, Zhihuan; Yuan, Yanbin; Yuan, Xiaohui; Huang, Yuehua; Li, Xianshan; Li, Wenwu

    2015-05-01

    A hydraulic turbine regulating system (HTRS) is one of the most important components of hydropower plant, which plays a key role in maintaining safety, stability and economical operation of hydro-electrical installations. At present, the conventional PID controller is widely applied in the HTRS system for its practicability and robustness, and the primary problem with respect to this control law is how to optimally tune the parameters, i.e. the determination of PID controller gains for satisfactory performance. In this paper, a kind of multi-objective evolutionary algorithms, named adaptive grid particle swarm optimization (AGPSO) is applied to solve the PID gains tuning problem of the HTRS system. This newly AGPSO optimized method, which differs from a traditional one-single objective optimization method, is designed to take care of settling time and overshoot level simultaneously, in which a set of non-inferior alternatives solutions (i.e. Pareto solution) is generated. Furthermore, a fuzzy-based membership value assignment method is employed to choose the best compromise solution from the obtained Pareto set. An illustrative example associated with the best compromise solution for parameter tuning of the nonlinear HTRS system is introduced to verify the feasibility and the effectiveness of the proposed AGPSO-based optimization approach, as compared with two another prominent multi-objective algorithms, i.e. Non-dominated Sorting Genetic Algorithm II (NSGAII) and Strength Pareto Evolutionary Algorithm II (SPEAII), for the quality and diversity of obtained Pareto solutions set. Consequently, simulation results show that this AGPSO optimized approach outperforms than compared methods with higher efficiency and better quality no matter whether the HTRS system works under unload or load conditions.

  13. 风轮机液压制动控制系统的研究%Research on Hydraulic Braking Control System of Wind Turbine

    Institute of Scientific and Technical Information of China (English)

    张文亭

    2015-01-01

    该文分析了风轮机常用的制动系统和控制系统,设计了基于紧急情况下的风轮机液压制动系统,并通过实验进行了测试,最后进行了紧急情况下的数据仿真研究,指出本制动器在不同最大设置压力和初始转速条件下的制动性能。%This paper analyses common braking system and control system in wind turbine, designs the hydraulic brake system of wind tur-bine based on emergency cases,and verified by experiment, also studies on the data simulation in case of emergency, points out the brake performance at different maximum set pressure and initial speed conditions.

  14. Creep-fatigue interaction in aircraft gas turbine components by simulation and testing at scaled temperatures

    Science.gov (United States)

    Sabour, Mohammad Hossein

    Advanced gas turbine engines, which use hot section airfoil cooling, present a wide range of design problems. The frequencies of applied loads and the natural frequencies of the blade also are important since they have significant effects on failure of the component due to fatigue phenomenon. Due to high temperature environment the thermal creep and fatigue are quite severe. One-dimensional creep model, using ANSYS has been formulated in order to predict the creep life of a gas turbine engine blade. Innovative mathematical models for the prediction of the operating life of aircraft components, specifically gas turbine blades, which are subjected to creep-fatigue at high temperatures, are proposed. The components are modeled by FEM, mathematically, and using similitude principles. Three models have been suggested and evaluated numerically and experimentally. Using FEM method for natural frequencies causes phenomena such as curve veering which is studied in more detail. The simulation studies on the life-limiting modes of failure, as well as estimating the expected lifetime of the blade, using the proposed models have been carried out. Although the scale model approach has been used for quite some time, the thermal scaling has been used in this study for the first time. The only thermal studies in literature using scaling for structures is by NASA in which materials of both the prototype and the model are the same, but in the present study materials also are different. The finite element method is employed to model the structure. Because of stress redistribution due to the creep process, it is necessary to include a full inelastic creep step in the finite element formulation. Otherwise over-conservative creep life predictions will be estimated if only the initial elastic stresses are considered. The experimental investigations are carried out in order to validate the models. The main contributions in the thesis are: (1) Using similitude theory for life prediction of

  15. Reliability Analysis of Fatigue Failure of Cast Components for Wind Turbines

    DEFF Research Database (Denmark)

    Rafsanjani, Hesam Mirzaei; Sørensen, John Dalsgaard

    2015-01-01

    are different for offshore and onshore wind turbines. Moreover, uncertainties about the fatigue strength play an important role in modeling and assessment of the reliability of the components. In this paper, a generic stochastic model for fatigue failure of cast iron components based on fatigue test data...... and a limit state equation for fatigue failure based on the SN-curve approach and Miner’s rule is presented. The statistical analysis of the fatigue data is performed using the Maximum Likelihood Method which also gives an estimate of the statistical uncertainties. Finally, illustrative examples are presented...... to substantial economic losses such as cost of lost energy production and cost of repairs. During the design lifetime, the drivetrain components are exposed to variable loads from winds and waves and other sources of loads that are uncertain and have to be modeled as stochastic variables. The types of loads...

  16. PROcedures for TESTing and measuring wind turbine components. Results for yaw and pitch system and drive train

    Energy Technology Data Exchange (ETDEWEB)

    Holierhoek, J.G.; Savenije, F.J.; Engels, W.P.; Van de Pieterman, R.P. [Unit Wind Energy, Energy research Centre of the Netherlands, 1755 ZG Petten (Netherlands); Lekou, D.J. [Wind Energy Section, Centre for Renewable Energy Sources and Saving (Greece); Hecquet, T. [SWE, Universitaet Stuttgart, Stuttgart (Germany); Soeker, H. [DEWI, Wilhelmshaven (Germany); Ehlers, B. [Suzlon Energy GmbH, Suzlon Energy GmbH, Rostock (Germany); Ristow, M.; Kochmann, M. [Load Assumptions, Germanischer Lloyd Industrial Services GmbH, Hamburg (Germany); Smolders, K.; Peeters, J. [R and D technology, Hansen Transmissions International, Lommel (Belgium)

    2012-07-16

    PROcedures for TESTing (PROTEST) and measuring wind energy systems was a pre-normative project that ran from 2008 to 2010 in order to improve the reliability of mechanical components of wind turbines. Initiating the project, it was concluded that the procedures concerning these components should be further improved. Within the PROTEST project, complementary procedures have been developed to improve the specification of the design loads at the interfaces where the mechanical components (pitch and yaw system, as well as the drive train) are attached to the wind turbine. This is required, since in optimizing wind turbine operation and improving reliability, focus should be given to the design, not only to safety related components but also to the rest of the components affecting the overall behaviour of the wind turbine as a system. The project has resulted in a proposal for new design load cases, specifically for the drive train, a description of the loads to be defined at the interfaces of each mechanical system, as well as a method to set up and use the prototype measurements to validate or improve the load calculations concerning the mechanical components. Following this method would improve the reliability of wind turbines, although more experience is needed to efficiently use the method. Examples are given for the analysis of the drive train, pitch system and yaw system.

  17. 液压传动风力发电机的恒转速控制%Constant Speed Control of Hydraulic Transmission Wind Turbine

    Institute of Scientific and Technical Information of China (English)

    魏列江; 王栋梁; 胡晓敏

    2013-01-01

    Aiming at the shortcomings of the traditional wind turbine generator,such as large size,heavy weight,high failure rate and much cost for maintenance,a kind of technologies employing hydraulic drive for wind power generation was introduced.A plan that could fulfill this hydraulic drive for wind power generation as a whole was discussed as well as the operation principle.On basis of this,by using hydraulic drive control technology,the speed-governing program which turned un-steady rotating speed input from wind turbine into steady input from electric generator and realization method were described mainly.Among this technical program,a flexible hydraulic transmission was in substitution for a rigid mechanical one and reduced mechanical failure rate of the machine set.The costs of manufacturing and maintenance are lowered.%针对传统风力发电机体积和质量大,故障率及维护成本高的缺点,介绍了利用液压传动的风力发电技术.论述液压传动的风力发电的总体方案及工作原理,在此基础上,重点阐述了利用液压传动控制技术,将风机不稳定转速的输入变为稳定的发电机输入的调速方案和实现方法.在该技术方案中,用液压柔性传动代替了机械刚性传动,减少了机组的机械故障率,降低了制造和维护成本.

  18. 调压井水面面积对水轮机稳定运行的影响%Influence of Water Area of Surge Tank on Stable Operation of Hydraulic Turbine

    Institute of Scientific and Technical Information of China (English)

    黄顺礼

    2000-01-01

    利用汤姆计算调压井水位波动的方程,得到在这个波动过程中水轮机流量的振荡曲线,从而证明调压井水面面积的取值大小影响水轮机的稳定运行,当流量振荡严重时,水轮机就会发生振动。%Presents the oscillating curves for hydraulic turbine flow rate during fluctuation of surge tank water level obtained using Thoma equation, which proves that the effect of water area of surge tank on stable operation of hydraulic turbine is so that hydraulic turbine may vibrate when flow rate flucturates significantly.

  19. Experience with integrally-cast compressor and turbine components for a small, low-cost, expendable-type turbojet engine

    Science.gov (United States)

    Dengler, R. P.

    1975-01-01

    A discussion regarding experiences with integrally-cast compressor and turbine components during fabrication and testing of four engine assemblies of a small (29 cm (11-1/2 in.) maximum diameter) experimental turbojet engine design for an expendable application is presented. Various operations such as metal removal, welding, and re-shaping of these components are performed in preparation of full-scale engine tests. Engines with these components have been operated for a total of 157 hours at engine speeds as high as 38,000 rpm and at turbine inlet temperatures as high as 1256 K (1800 F).

  20. High Pressure Burner Rig Testing of Advanced Environmental Barrier Coatings for Si3N4 Turbine Components

    Science.gov (United States)

    Zhu, Dongming; Fox, Dennis S.; Pastel, Robert T.

    2007-01-01

    Advanced thermal and environmental barrier coatings are being developed for Si3N4 components for turbine engine propulsion applications. High pressure burner rig testing was used to evaluate the coating system performance and durability. Test results demonstrated the feasibility and durability of the coating component systems under the simulated engine environments.

  1. Statistical analysis of manufacturing defects on fatigue life of wind turbine casted Component

    DEFF Research Database (Denmark)

    Rafsanjani, Hesam Mirzaei; Sørensen, John Dalsgaard; Mukherjee, Krishnendu;

    2014-01-01

    and size of defects in the casted components and is therefore rather uncertain and needs to be described by stochastic models. Uncertainties related to such defects influence prediction of the fatigue strengths and are therefore important in modelling and assessment of the reliability of wind turbine...... for the fatigue life, namely LogNormal and Weibull distributions. The statistical analyses are performed using the Maximum Likelihood Method and the statistical uncertainty is estimated. Further, stochastic models for the fatigue life obtained from the statistical analyses are used for illustration to assess...... components. The defect distribution is usually affected by the manufacturing process. In this paper, two methods of casting, sand casting and chill casting are considered. These are compared in statistical analyses of a large number of representative test samples using two basic stochastic models...

  2. Physics-Based Design Tools for Lightweight Ceramic Composite Turbine Components with Durable Microstructures

    Science.gov (United States)

    DiCarlo, James A.

    2011-01-01

    Under the Supersonics Project of the NASA Fundamental Aeronautics Program, modeling and experimental efforts are underway to develop generic physics-based tools to better implement lightweight ceramic matrix composites into supersonic engine components and to assure sufficient durability for these components in the engine environment. These activities, which have a crosscutting aspect for other areas of the Fundamental Aero program, are focusing primarily on improving the multi-directional design strength and rupture strength of high-performance SiC/SiC composites by advanced fiber architecture design. This presentation discusses progress in tool development with particular focus on the use of 2.5D-woven architectures and state-of-the-art constituents for a generic un-cooled SiC/SiC low-pressure turbine blade.

  3. Enhanced Component Performance Study: Turbine-Driven Pumps 1998–2012

    Energy Technology Data Exchange (ETDEWEB)

    T. E. Wierman

    2013-10-01

    This report presents an enhanced performance evaluation of turbine-driven pumps (TDPs) at U.S. commercial nuclear power plants. The data used in this study are based on the operating experience failure reports from fiscal year 1998 through 2012 for the component reliability as reported in the Equipment Performance and Information Exchange (EPIX). The TDP failure modes considered are failure to start, failure to run less than or equal to 1 hour, failure to run more than 1 hour, and (for normally running systems) failure to run. The component reliability estimates and the reliability data are trended for the most recent 10-year period while yearly estimates for reliability are provided for the entire active period. No statistically significant increasing trends were identified in the TDP results. Statistically significant decreasing trends were identified for TDP run hours per reactor critical year and start demands.

  4. EVALUASI UNJUK KERJA TURBIN AIR PELTON TERBUAT DARI KAYU DAN BAMBU SEBAGAI PEMBANGKIT LISTRIK RAMAH LINGKUNGAN UNTUK PEDESAAN (Performance Evaluation of Hydraulic Pelton Turbine Made of Wood and Bamboo as Environmentally Friendly Electric Generation

    Directory of Open Access Journals (Sweden)

    Samsul Kamal

    2013-07-01

    Full Text Available ABSTRAK Pemanfaatan energi air di Indonesia, khususnya untuk pembangkit listrik skala kecil di pedesaan masih perlu diprioritaskan untuk ditingkatkan dalam program memperoleh energi bersih yang ramah lingkungan. Pemanfaatan tersebut masih terkendala oleh biaya investasi yang relatif tinggi serta teknologi yang sesuai. Pemerintah mendorong pemanfaatan energi baru dan terbarukan melalui program Desa Mandiri Energi dengan menggunakan potensi dan sumber daya yang tersedia di pedesaan. Kajian ini bertujuan untuk mengevaluasi unjuk kerja turbin air Pelton untuk pembangkit listrik skala kecil dengan sudu terbuat dari bambu dan roda turbin dari kayu. Data yang terkumpul menunjukkan bahwa efisiensi pembangkitan mampu mencapai sekitar 28% untuk debit aliran 28 liter/detik dan tinggi jatuh efektif 7 m menggunakan nosel berpenampang empat persegi panjang. Walaupun dari aspek teknik dan lingkungan penggunaan bambu sebagai sudu turbin adalah baik dan sesuai untuk digunakan di pedesaan, namun unjuk kerja yang diperoleh masih perlu ditingkatkan dibanding dengan umumnya turbin Pelton yang terbuat dari logam. Hal ini diperkirakan karena bentuk alamiah lengkung bambu yang tidak optimum untuk sudu serta bentuk penampang nosel yang masih harus disesuaikan.   ABSTRACT The use of hydroenergy in Indonesia, especially for small electric generation in rural areas is still to be priority increased in a program to find a clean and environmentally friendly energy.  The use is still limited by relatively high investation cost and appropriate technology. Government has pushed the use of new and renewable energy through the Village Self-Relliant Energy Supply Program by using potential and available resources in the village. The objective of this study is to evaluate the performance of a hydraulic Pelton turbine for small electric generation with the buckets are made of bamboo and the runner is made of wood. Data collected from the study show that the efficiency of the

  5. Use of laser flow visualization techniques in reactor component thermal-hydraulic studies

    Energy Technology Data Exchange (ETDEWEB)

    Oras, J.J.; Kasza, K.E.

    1984-01-01

    To properly design reactor components, an understanding of the various thermal hydraulic phenomena, i.e., thermal stratification flow channeling, recirculation regions, shear layers, etc., is necessary. In the liquid metal breeder reactor program, water is commonly used to replace sodium in experimental testing to facilitate the investigations, (i.e., reduce cost and allow fluid velocity measurement or flow pattern study). After water testing, limited sodium tests can be conducted to validate the extrapolation of the water results to sodium. This paper describes a novel laser flow visualization technique being utilized at ANL together with various examples of its use and plans for further development. A 3-watt argon-ion laser, in conjunction with a cylindrical opticallens, has been used to create a thin (approx. 1-mm) intense plane of laser light for the illuminiation of various flow tracers in precisely defined regions of interest within a test article having windows. Both fluorescing dyes tuned to the wavelength of the laser light (to maximize brightness and sharpness of flow image) and small (< 0.038-mm, 0.0015-in. dia.) opaque, nearly neutrally buoyant polystyrene spheres (to ensure that the particles trace out the fluid motion) have been used as flow tracers.

  6. Improving Durability of Turbine Components Through Trenched Film Cooling and Contoured Endwalls

    Energy Technology Data Exchange (ETDEWEB)

    Bogard, David G. [Univ. of Texas, Austin, TX (United States); Thole, Karen A. [Pennsylvania State Univ., State College, PA (United States)

    2014-09-30

    The experimental and computational studies of the turbine endwall and vane models completed in this research program have provided a comprehensive understanding of turbine cooling with combined film cooling and TBC. To correctly simulate the cooling effects of TBC requires the use of matched Biot number models, a technique developed in our laboratories. This technique allows for the measurement of the overall cooling effectiveness which is a measure of the combined internal and external cooling for a turbine component. The overall cooling effectiveness provides an indication of the actual metal temperature that would occur at engine conditions, and is hence a more powerful performance indicator than the film effectiveness parameter that is commonly used for film cooling studies. Furthermore these studies include the effects of contaminant depositions which are expected to occur when gas turbines are operated with syngas fuels. Results from the endwall studies performed at Penn State University and the vane model studies performed at the University of Texas are the first direct measurements of the combined effects of film cooling and TBC. These results show that TBC has a dominating effect on the overall cooling effectiveness, which enhances the importance of the internal cooling mechanisms, and downplays the importance of the film cooling of the external surface. The TBC was found to increase overall cooling effectiveness by a factor of two to four. When combined with TBC, the primary cooling from film cooling holes was found to be due to the convective cooling within the holes, not from the film effectiveness on the surface of the TBC. Simulations of the deposition of contaminants on the endwall and vane surfaces showed that these depositions caused a large increase in surface roughness and significant degradation of film effectiveness. However, despite these negative factors, the depositions caused only a slight decrease in the overall cooling effectiveness on

  7. Evaluating the Hot Corrosion Behavior of High-Temperature Alloys for Gas Turbine Engine Components

    Science.gov (United States)

    Deodeshmukh, V. P.

    2015-11-01

    The hot corrosion behavior of high-temperature alloys is critically important for gas turbine engine components operating near the marine environments. The two test methods—Two-Zone and Burner-Rig—used to evaluate the hot corrosion performance of high-temperature alloys are illustrated by comparing the Type I hot corrosion behavior of selected high-temperature alloys. Although the ranking of the alloys is quite comparable, it is evident that the two-zone hot corrosion test is significantly more aggressive than the burner-rig test. The effect of long-term exposures and the factors that influence the hot corrosion performance of high-temperature alloys are briefly discussed.

  8. An easily installable groundwater lysimeter to determine waterbalance components and hydraulic properties of peat soils

    Directory of Open Access Journals (Sweden)

    K. Schwaerzel

    2003-01-01

    Full Text Available A simple method for the installation of groundwater lysimeters in peat soils was developed which reduces both time and financial effort significantly. The method was applied on several sites in the Rhinluch, a fen peat land 60 km northwest of Berlin, Germany. Over a two-year period, upward capillary flow and evapotranspiration rates under grassland with different groundwater levels were measured. The installation of tensiometers and TDR probes additionally allowed the in situ determination of the soil hydraulic properties (water retention and unsaturated hydraulic conductivity. The results of the measurements of the unsaturated hydraulic conductivity demonstrate that more than one single method has to be applied if the whole range of the conductivity function from saturation to highly unsaturated is to be covered. Measuring the unsaturated conductivity can be done only in the lab for an adequately wide range of soil moisture conditions. Keywords: peat soils, soil hydraulic properties, evapotranspiration, capillary flow, root distribution, unsaturated zone

  9. Energy Transfer and Dissipation in of Hydraulic Wind Turbines%液压型风力发电机组能量传递与耗散

    Institute of Scientific and Technical Information of China (English)

    艾超; 闫桂山; 孔祥东; 董彦武

    2015-01-01

    Taking a hydraulic wind turbine as the research object,the energy transfer and dissipa-tion were studied for energy conversion mechanism in hydraulic wind turbine.The entire unit was di-vided into several key sub-units.The energy transfer models were established,and the variation of energy transfer was analyzed.The energy dissipation was derived and analyzed based on energy trans-fer models,and mathematical models of energy dissipation were obtained.Using 30kVA hydraulic wind turbine simulation platform as the simulation and experimental foundation,simulation and ex-perimental researches of energy transfer and dissipation were carried out.The accuracy of theoretical analyses was verified.The results show that energy feature state is changed during operation,contai-ning a certain energy dissipation,and the overall efficiency is about 65.7%.%为分析液压型风力发电机机组能量转化机理,针对其能量传递与耗散问题展开了研究。将整个机组分解为若干个关键子单元,建立机组能量传递模型,分析机组能量传递变化规律;以能量传递模型为基础,对机组能量耗散进行推导分析,得到机组能量耗散数学模型。将30 kV·A液压型风力发电机组实验台作为仿真和实验基础,对机组能量传递与耗散进行仿真与实验研究,进而验证理论分析的准确性。研究结果表明:机组在工作过程中其能量特征状态发生改变,并存在一定的能耗,整机效率约为65.7%。

  10. Pelton turbines

    CERN Document Server

    Zhang, Zhengji

    2016-01-01

    This book concerns the theoretical foundations of hydromechanics of Pelton turbines from the engineering viewpoint. For reference purposes, all relevant flow processes and hydraulic aspects in a Pelton turbine have been analyzed completely and systematically. The analyses especially include the quantification of all possible losses existing in the Pelton turbine and the indication of most available potential for further enhancing the system efficiency. As a guideline the book therefore supports further developments of Pelton turbines with regard to their hydraulic designs and optimizations. It is thus suitable for the development and design engineers as well as those working in the field of turbo machinery. Many laws described in the book can also be directly used to simplify aspects of computational fluid dynamics (CFD) or to develop new computational methods. The well-executed examples help better understand the related flow mechanics.

  11. Numerical Study of Cavitation in Francis Turbine of a Small Hydro Power Plant

    OpenAIRE

    Pankaj Gohil; Rajeshwer Saini

    2016-01-01

    Cavitation is undesirable phenomena and more prone in reaction turbines. It is one of the challenges in any hydro power plant which cause vibration, degradation of performance and the damage to the hydraulic turbine components. Under the present study, an attempt has been made to carry out a numerical analysis to investigate the cavitation effect in a Francis turbine. Three dimensional numerical study approach of unsteady and SST turbulence model are considered for the numerical a...

  12. Enhanced Component Performance Study: Turbine-Driven Pumps 1998–2014

    Energy Technology Data Exchange (ETDEWEB)

    Schroeder, John Alton [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-11-01

    This report presents an enhanced performance evaluation of turbine-driven pumps (TDPs) at U.S. commercial nuclear power plants. The data used in this study are based on the operating experience failure reports from fiscal year 1998 through 2014 for the component reliability as reported in the Institute of Nuclear Power Operations (INPO) Consolidated Events Database (ICES). The TDP failure modes considered are failure to start (FTS), failure to run less than or equal to one hour (FTR=1H), failure to run more than one hour (FTR>1H), and normally running systems FTS and failure to run (FTR). The component reliability estimates and the reliability data are trended for the most recent 10-year period while yearly estimates for reliability are provided for the entire active period. Statistically significant increasing trends were identified for TDP unavailability, for frequency of start demands for standby TDPs, and for run hours in the first hour after start. Statistically significant decreasing trends were identified for start demands for normally running TDPs, and for run hours per reactor critical year for normally running TDPs.

  13. A new high temperature resistant glass–ceramic coating for gas turbine engine components

    Indian Academy of Sciences (India)

    Someswar Datta; Sumana Das

    2005-12-01

    A new high temperature and abrasion resistant glass–ceramic coating system (based on MgO–Al2O3–TiO2 and ZnO–Al2O3–SiO2 based glass systems) for gas turbine engine components has been developed. Thermal shock resistance, adherence at 90°-bend test and static oxidation resistance at the required working temperature (1000°C) for continuous service and abrasion resistance are evaluated using suitable standard methods. The coating materials and the resultant coatings are characterized using differential thermal analysis, differential thermogravimetric analysis, X-ray diffraction analysis, optical microscopy and scanning electron microscopy. The properties evaluated clearly showed the suitability of these coatings for protection of different hot zone components in different types of engines. XRD analysis of the coating materials and the resultant coatings showed presence of a number of microcrystalline phases. SEM micrographs indicate strong chemical bonding at the metal–ceramic interface. Optical micrographs showed smooth glossy impervious defect free surface finish.

  14. Enhanced Component Performance Study: Turbine-Driven Pumps 1998–2013

    Energy Technology Data Exchange (ETDEWEB)

    Schroeder, John Alton [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-02-01

    This report presents an enhanced performance evaluation of turbine-driven pumps (TDPs) at U.S. commercial nuclear power plants. The data used in this study are based on the operating experience failure reports from fiscal year 1998 through 2013 for the component reliability as reported in the Institute of Nuclear Power Operations Consolidated Events Database. The TDP failure modes considered are failure to start, failure to run less than or equal to 1 hour, failure to run more than 1 hour, and (for normally running systems) failure to run. The component reliability estimates and the reliability data are trended for the most recent 10-year period while yearly estimates for reliability are provided for the entire active period. Statistically significant increasing trends were identified for TDP unavailability, for frequency of start demands for standby TDPs, and for run hours in the first hour after start. Statistically significant decreasing trends were identified for start demands for normally running TDPs, and for run hours per reactor critical year for normally running TDPs.

  15. 大型水电站福伊特水轮机模型试验研究%The Test and Study on the Voith Hydraulic Turbine Model of a Large Hydropower Plant

    Institute of Scientific and Technical Information of China (English)

    李冬亮

    2014-01-01

    为了检验某大型水电站水轮机的水力特性,进行了水轮机福伊特模型验收试验,包括尺寸检查、效率试验、出力试验、飞逸试验、空化试验、蜗壳差压试验、压力脉动试验、导叶水力矩试验、轴向水推力试验、筒阀下拉力试验等内容。试验结果表明:模型水轮机及换算得到的原型的效率、出力、空化、压力脉动、飞逸、轴向水推力、导叶水力矩、筒阀压力等性能指标均满足合同技术要求。%In order to test the hydraulic characteristics of the hydraulic turbines of a large hydropower plant the Yoith hydraulic turbine model acceptance tests were conducted ,including dimensions check ,efficiency test ,output test ,runaway test ,cavitation test ,spiral case differential pressure test ,pressure fluctuation test ,guide vane hydraulic torque test ,axial hydraulic thrust test and cylinder tensile test .T he test results show that the performance indexes of the model turbine and those converted from the prototype such as ef-ficiency ,pressure fluctuation ,runaway ,guide vane hydraulic torque ,axial hydraulic thrust and cylinder valve pressure all meet the technical requirements of the contract .

  16. Hydraulic Performance Modifications of a Zeolite Membrane after an Alkaline Treatment: Contribution of Polar and Apolar Surface Tension Components

    Directory of Open Access Journals (Sweden)

    Patrick Dutournié

    2015-01-01

    Full Text Available Hydraulic permeability measurements are performed on low cut-off Na-mordenite (MOR-type zeolites membranes after a mild alkaline treatment. A decrease of the hydraulic permeability is systematically observed. Contact angle measurements are carried out (with three polar liquids on Na-mordenite films seeded onto alumina plates (flat membranes. A decrease of the contact angles is observed after the alkaline treatment for the three liquids. According to the theory of Lifshitz-van der Waals interactions in condensated state, surface modifications are investigated and a variation of the polar component of the material surface tension is observed. After the alkaline treatment, the electron-donor contribution (mainly due to the two remaining lone electron pairs of the oxygen atoms present in the zeolite extra frameworks decreases and an increase of the electron-receptor contribution is observed and quantified. The contribution of the polar component to the surface tension is attributed to the presence of surface defaults, which increase the surface hydrophilicity. The estimated modifications of the surface interaction energy between the solvent (water and the Na-mordenite active layer are in good agreement with the decrease of the hydraulic permeability observed after a mild alkaline treatment.

  17. Design & Evaluation of a Protection Algorithm for a Wind Turbine Generator based on the fault-generated Symmetrical Components

    DEFF Research Database (Denmark)

    Zheng, T. Y.; Cha, Seung-Tae; Lee, B. E.

    2011-01-01

    A protection relay for a wind turbine generator (WTG) based on the fault-generated symmetrical components is proposed in the paper. At stage 1, the relay uses the magnitude of the positive-sequence component in the fault current to distinguish faults on a parallel WTG, connected to the same feeder...... the relationships of the fault-generated symmetrical components. Then, the magnitude of the positive-sequence component in the fault current is used again to decide on either instantaneous or delayed operation. The operating performance of the relay is then verified using various fault scenarios modelled using...

  18. Custo de bombas centrífugas funcionando como turbinas em microcentrais hidrelétricas Cost of pumps as hydraulic turbines for micro-scale hydropower

    Directory of Open Access Journals (Sweden)

    Carlos R. Balarim

    2004-04-01

    places where they should be implanted. Pumps As Turbines (PAT have been studied. These equipment costs were obtained by consulting directly the manufacturers, and also the Ponta Grossa - PR city, Brazil, market. The results have shown that, concerning the micro hydroelectric power plants, whenever the costs constitute the major aspect and always considering units until 50 kW power, the option to PAT must be considered instead of hydraulic turbines.

  19. Transient pressure measurements at part load operating condition of a high head model Francis turbine

    Indian Academy of Sciences (India)

    RAHUL GOYAL; CHIRAG TRIVEDI; B K GANDHI; MICHEL J CERVANTES; OLE G DAHLHAUG

    2016-11-01

    Hydraulic turbines are operating at part load conditions depending on availability of hydraulic energy or to meet the grid requirements. The turbine experiences more fatigue during the part load operating conditions due to flow phenomena such as vortex breakdown in the draft tube and flow instability in the runner.The present paper focuses on the investigation of a high head model Francis turbine operating at 50% load.Pressure measurements have been carried out experimentally on a model Francis turbine. Total six pressure sensors were mounted inside the turbine and other two pressure sensors were mounted at the turbine inlet pipe. It is observed that the turbine experiences significant pressure fluctuations at the vaneless space and the runner.Moreover, a standing wave is observed between the pressure tank outlet and the turbine inlet. Analysis of the data acquired by the pressure sensors mounted in the draft tube showed the presence of vortex breakdown corotating with the runner. The detailed analysis showed the rotating and plunging components of the vortex breakdown. The influence of the rotating component was observed in the entire hydraulic circuit includingdistributor and turbine inlet but not the plunging one.

  20. Experimental damage detection in a wind turbine blade model using principal components of response correlation functions

    Science.gov (United States)

    Hoell, S.; Omenzetter, P.

    2015-07-01

    The utilization of vibration signals for structural damage detection (SDD) is appealing due to the strong theoretical foundation of such approaches, ease of data acquisition and processing efficiency. Different methods are available for defining damage sensitive features (DSFs) based on vibrations, such as modal analysis or time series methods. The present paper proposes the use of partial autocorrelation coefficients of acceleration responses as DSFs. Principal component (PC) analysis is used to transform the initial DSFs to scores. The resulting scores from the healthy and damaged states are used to select the PCs which are most sensitive to damage. These are then used for making decisions about the structural state by means of statistical hypothesis testing conducted on the scores. The approach is applied to experiments with a laboratory scale wind turbine blade (WTB) made of glass-fibre reinforced epoxy composite. Damage is non-destructively simulated by attaching small masses and the WTB is excited with the help of an electrodynamic shaker using band-limited white noise. The SDD results for the selected subsets of PCs show a clear improvement of the detectability of early damages compared to other DSF selections.

  1. Analysis of the fault and malfunctioning of a 15 MW hydraulic turbine; Analisis de la falla y malfuncionamiento de una turbina hidraulica de 15 MW

    Energy Technology Data Exchange (ETDEWEB)

    Garcia I, Rafael; Perez R, Norberto [Instituto de Investigaciones Electricas, Cuernavaca, Morelos (Mexico)

    2007-07-01

    An historical case of the rehabilitation process of three hydraulic turbines with capacity of 15 MW each is presented. These units are used for the electrical generation, mainly to supply part of the central zone of the Mexican Republic. The turbo-generator units had been practically destroyed by catastrophic floods and only part of the equipment was rescued and rehabilitated for its operation. One of the three turbines presented serious operational problems, preventing its reliable operation evidenced by the excessive mechanical vibrations and heating of the bearing zone. This article presents the diagnosis of the possible causes of fault and the remedial actions taken. Strong misalignment problems of the runner with respect to its bearings and to the scroll case of the turbine are observed. In addition, during the inspection of the turbine runner and of the bearings it is observed that important frictions have existed, which increased the vibrations. It is shown that these frictions are not the cause of the problem but only one manifestation of the same. Finally some conclusions of the problem and their solution are presented. [Spanish] Se presenta un caso historico del proceso de rehabilitacion de tres turbinas hidraulicas con capacidad de 15 MW cada una. Dichas unidades son empleadas en la generacion electrica, principalmente para abastecer parte de la zona centro de la Republica Mexicana. Las unidades turbogeneradores habian sido practicamente destruidas por inundaciones catastroficas y solo parte del equipo fue rescatado y rehabilitado para su operacion. Una de las tres turbinas presento graves problemas de funcionamiento, impidiendo su operacion confiable, lo cual se manifestaba mediante vibraciones mecanicas excesivas y calentamiento en zona de chumaceras. En este articulo se presenta el diagnostico de las posibles causas de falla y las acciones correctivas tomadas. Se observan problemas fuertes de desalineamiento del rotor respecto a sus chumaceras y al

  2. Analysis of the malfunctioning and failure of a 15 MW hydraulic turbine; Analisis de malfuncionamiento y de falla de una turbina hidraulica de 15 MW

    Energy Technology Data Exchange (ETDEWEB)

    Garcia Illescas, R.; Perez Rodriguez, N. [Instituto de Investigaciones Electricas, Cuernavaca, Morelos (Mexico)

    2007-11-15

    A case history is presented of the rehabilitation process of three hydraulic turbines with a capacity of 15 MW each one. Such units are used for electric power generation, mainly to supply part of the center zone of the Mexican Republic. The turbo-generator units had been practically destroyed by catastrophic floods and only part of the equipment was recovered and reconditioned for its operation. One of the three turbines presented serious functioning problems preventing its reliable operation that was evidenced by excessive mechanical vibrations and heating in the bearing zone. This paper presents the diagnosis of the possible causes of failure and the corrective measures taken. Serious rotor misalignment problems were observed respect to its bearings and the turbine scroll. Additionally, during the inspection of the turbine runner and of the bearing it was observed that important friction have existed, which incremented the vibrations. It is shown that such rubbings are not the cause of the problem but only a manifestation of the same. Finally some of the conclusions and their solution are presented. [Spanish] Se presenta un caso historico del proceso de rehabilitacion de tres turbinas hidraulicas con capacidad de 15 MW cada una. Dichas unidades son empleadas en la generacion electrica, principalmente para abastecer parte de la zona centro de la republica mexicana. Las unidades turbogeneradores habian sido practicamente destruidas por inundaciones catastroficas y solo parte del equipo fue rescatado y rehabilitado para su operacion. Una de las tres turbinas presento graves problemas de funcionamiento, impidiendo su operacion confiable, lo cual se manifestaba mediante vibraciones mecanicas excesivas y calentamiento en zona de chumaceras. En este articulo se presenta el diagnostico de las posibles causas de falla y las acciones correctivas tomandas. Se observan problemas fuertes de desalineamiento del rotor respecto a sus chumaceras y al caracol de la turbina

  3. Comparison of electron beam and laser beam powder bed fusion additive manufacturing process for high temperature turbine component materials

    Energy Technology Data Exchange (ETDEWEB)

    Dryepondt, Sebastien N [ORNL; Kirka, Michael M [ORNL; Pint, Bruce A [ORNL; Ryan, Daniel [Solar Turbines, Inc.

    2016-04-01

    The evolving 3D printer technology is now at the point where some turbine components could be additive manufactured (AM) for both development and production purposes. However, this will require a significant evaluation program to qualify the process and components to meet current design and quality standards. The goal of the project was to begin characterization of the microstructure and mechanical properties of Nickel Alloy X (Ni-22Cr-18Fe-9Mo) test bars fabricated by powder bed fusion (PBF) AM processes that use either an electron beam (EB) or laser beam (LB) power source. The AM materials produced with the EB and LB processes displayed significant differences in microstructure and resultant mechanical properties. Accordingly, during the design analysis of AM turbine components, the specific mechanical behavior of the material produced with the selected AM process should be considered. Comparison of the mechanical properties of both the EB and LB materials to those of conventionally processed Nickel Alloy X materials indicates the subject AM materials are viable alternatives for manufacture of some turbine components.

  4. Skin deposition of nickel, cobalt, and chromium in production of gas turbines and space propulsion components.

    Science.gov (United States)

    Julander, Anneli; Skare, Lizbet; Mulder, Marie; Grandér, Margaretha; Vahter, Marie; Lidén, Carola

    2010-04-01

    Skin exposure to nickel, cobalt, and chromium may cause sensitization and allergic contact dermatitis and it is known that many alloys and platings may release significant amounts of the metals upon contact with skin. Occupational exposure to these sensitizing metals has been studied in different settings with regards to airborne dust and different biological end points, but little is known about deposition on skin from airborne dust and direct contact with materials containing the metals. In this study, skin deposition was studied in 24 workers in an industry for development and manufacturing of gas turbines and space propulsion components. The workers were employed in three departments, representing different exposure scenarios: tools sharpening of hard metal items, production of space propulsion structures, and thermal application of different metal-containing powders. A novel acid wipe sampling technique was used to sample metals from specific skin surfaces on the hands and the forehead of the workers. Total amounts of nickel, cobalt, and chromium were measured by inductively coupled plasma mass spectrometry. The result showed that nickel, cobalt, and chromium could be detected on all skin surfaces sampled. The highest level of nickel was 15 microg cm(-2) h(-1), the highest for cobalt was 4.5 microg cm(-2) h(-1), and for chromium 0.6 microg cm(-2) h(-1). The three departments had different exposures regarding the metals. The highest levels of nickel on the skin of the workers were found in the thermal applications department, cobalt in the tools sharpening department, and chromium in the space propulsion components department. In conclusion, the workers' exposure to the metals was more likely to come from direct skin contact with items, rather than from airborne dust, based on the fact that the levels of metals were much higher on the fingers than on the back side of the hands and the forehead. The skin exposure levels of nickel and cobalt detected are judged

  5. Water turbine technology for small power stations

    Science.gov (United States)

    Salovaara, T.

    1980-02-01

    The paper examines hydro-power stations and the efficiency and costs of using water turbines to run them. Attention is given to different turbine types emphasizing the use of Kaplan-turbines and runners. Hydraulic characteristics and mechanical properties of low head turbines and small turbines, constructed of fully fabricated steel plate structures, are presented.

  6. Novel wave power analysis linking pressure-flow waves, wave potential, and the forward and backward components of hydraulic power.

    Science.gov (United States)

    Mynard, Jonathan P; Smolich, Joseph J

    2016-04-15

    Wave intensity analysis provides detailed insights into factors influencing hemodynamics. However, wave intensity is not a conserved quantity, so it is sensitive to diameter variations and is not distributed among branches of a junction. Moreover, the fundamental relation between waves and hydraulic power is unclear. We, therefore, propose an alternative to wave intensity called "wave power," calculated via incremental changes in pressure and flow (dPdQ) and a novel time-domain separation of hydraulic pressure power and kinetic power into forward and backward wave-related components (ΠP±and ΠQ±). Wave power has several useful properties:1) it is obtained directly from flow measurements, without requiring further calculation of velocity;2) it is a quasi-conserved quantity that may be used to study the relative distribution of waves at junctions; and3) it has the units of power (Watts). We also uncover a simple relationship between wave power and changes in ΠP±and show that wave reflection reduces transmitted power. Absolute values of ΠP±represent wave potential, a recently introduced concept that unifies steady and pulsatile aspects of hemodynamics. We show that wave potential represents the hydraulic energy potential stored in a compliant pressurized vessel, with spatial gradients producing waves that transfer this energy. These techniques and principles are verified numerically and also experimentally with pressure/flow measurements in all branches of a central bifurcation in sheep, under a wide range of hemodynamic conditions. The proposed "wave power analysis," encompassing wave power, wave potential, and wave separation of hydraulic power provides a potent time-domain approach for analyzing hemodynamics.

  7. Three-component hydraulic penile prosthesis malfunction due to penile fibrolipoma secondary to augmentative phalloplasty: A case report

    Directory of Open Access Journals (Sweden)

    Gabriele Antonini

    2016-01-01

    Full Text Available Fibrolipomas are an infrequent type of lipomas. We describe a case of a man suffering from subcutaneous penile fibrolipoma, who twelve months earlier has been submitted to augmentative phalloplasty due to aesthetic dysmorphophobia. The same patient three years earlier has been submitted to three-component hydraulic penile prostheses implantation due to erectile dysfunction. After six months from removing of the mass, the penile elongation and penile enlargement were stable, the prostheses were correctly functioning and the patient was satisfied with his sexual intercourse and life. The diagnostics and surgical characteristics of this case are reported.

  8. Dynamic Response of Wind Turbines to Theoretical 3D Seismic Motions Taking into Account the Rotational Component

    OpenAIRE

    Hermanns, Lutz Karl Heinz; Santoyo, M.A.; Quiros, L.E.; Vega Domínguez, Jaime; Gaspar Escribano, Jorge M.; Benito Oterino, Belen

    2011-01-01

    We study the dynamic response of a wind turbine structure subjected to theoretical seismic motions, taking into account the rotational component of ground shaking. Models are generated for a shallow moderate crustal earthquake in the Madrid Region (Spain). Synthetic translational and rotational time histories are computed using the Discrete Wavenumber Method, assuming a point source and a horizontal layered earth structure. These are used to analyze the dynamic response of a wind turb...

  9. Rotor optimization of a Francis type hydraulic turbine through the computer flow analysis (CFD); Optimizacion del rodete de una turbina hidraulica tipo Francis a traves del analisis computacional del flujo (CFD)

    Energy Technology Data Exchange (ETDEWEB)

    Rosado Tamariz, Erick

    2007-06-15

    In the analysis of fluid behavior through hydraulic turbines, two basic methodologies for flow analysis and optimization processes in turbines are used, which are: a) modeled of flow through the entire turbine (joint), or modeled one of each component separately, obtaining satisfactory results by both methodologies. The analysis of computational fluids dynamics (CFD) to geometries improved by means of finite volume method (FVM) with their corresponding initials and boundary conditions is made, to solve a system differential equations of second order that correspond to the flow around the dominion of runner blades; considering nonviscous flow and the implementation of the two equations models for the solution of the equations that govern the turbulent flow. Also, used parameterization techniques based in a parametric geometry an objective function and the diminution of cavitation. This work presents the optimization of a runner from a Francis hydro turbine for a 75 MW considering three different load conditions (75%, 85% and 100%) through CFD as a part of the hydraulic analysis for modernization of the actual condition of a power generation unit. Francis runner optimization is made, through a previous analysis of CFD by means of the FVM, considering the viscous effects of the fluid and the model of turbulence developed by Sparlart and Allmaras; modeling the wicket and runner separately. Later the generation of a parametric model of the runner is made and the simulation for the generation of data base is formed. Finally an objective function is considered to develop the optimal geometry of the runner blades. The results are presented in a graphic form in such a way, that it shows the distributions of pressure and speed around the blades runner, the geometrical and performance (efficiency and power) comparison between original and optimized model. [Spanish] En el analisis del comportamiento del fluido a traves de turbinas hidraulicas, se emplean dos metodologias

  10. Flow measurement in a 170-MW hydraulic turbine using the Gibson method; Medicion del flujo de una turbina hidraulica de 170 MW utilizando el metodo Gibson

    Energy Technology Data Exchange (ETDEWEB)

    Urquiza, Gustavo [Universidad Autonoma del Estado de Morelos (Mexico); Adamkowski, Adam [The Szewalski Institute of Fluid-Flow Machinery (Poland); Kubiak, Janusz; Sierra, Fernando [Universidad Autonoma del Estado de Morelos (Mexico); Janicki, Waldemar [The Szewalski Institute of Fluid-Flow Machinery (Poland); Fernandez, J. Manuel [Comision Federal de Electricidad (Mexico)

    2007-07-15

    This paper describes the methodology applied for measuring water flow through a 170-MW hydraulic turbine. The flow rate was measured using the pressure-time method, also known as the Gibson method. This method uses the well-known water hammer phenomenon in pipelines; in turbine penstocks, for instance. The version of this method used here is based on measuring, during total stop of the water stream, the time-history of pressure change in one section of the turbine penstock and relate it to the pressure in the upper reservoir to which the penstock is connected. The volumetric flow rate is determined from the relevant integration of the measured temporary pressure rise. Flow measurement was possible this way because the influence of the penstock inlet was negligible as far as an error of the measurement is concerned. The length of the penstock was 300 m. Previous experience and a standard IEC-41-1991 were the criteria adopted and applied. A fast and efficient acquisition system, including a 16 bit card, was used. The flow rate was calculated using a computer program developed and tested on several cases. The results obtained with the Gibson method were used for calibration of the on-line flow measuring system based on the Winter-Kennedy method as one of the index methods. This method is very often used for continuous monitoring of the flow rate through hydraulic turbines, when the calibration has been done on site by using the results of measurements obtained by the absolute method. Having measured the flow rate and output power, the efficiency was calculated for any operating conditions. A curve showing the best operating conditions based on the highest efficiency is presented and discussed. The details of the instrumentation, its installation, and the results obtained are discussed in the paper. [Spanish] Este articulo describe la metodologia aplicada para la medicion del flujo en una turbina hidraulica de 170 MW. El flujo se midio utilizando el metodo de presion

  11. Hybrid fault patterns for the diagnosis of gas turbine component degradation

    Energy Technology Data Exchange (ETDEWEB)

    Kubiak S, J [Instituto Politecnico Nacional, Mexico D.F. (Mexico); Gonzalez R, G; Garcia G, A [Instituto de Investigaciones Electricas, Cuernavaca, Morelos (Mexico); Gomez Mancilla, G [Universidad Autonoma del Estado de Morelos, Cuernavaca, Morelos (Mexico); Urquiza B, G [Instituto Politecnico Nacional, Mexico D.F. (Mexico)

    2005-04-15

    A degree of wearing out or scaling of the internal components (blading, seals, etc.) can be estimated analyzing the efficiency of the turbo compressor. The wearing out or deposits on the blade or seal deterioration affects the efficiency of the machine which in turn compared to a reference data permits to identify faulty components or a group of components and a degree of their deterioration. However a precision of this identification can be improved involving vibration analysis. It is important to make this identification on line thus facilitating constructing an appropriate plan for a major overhaul. On the other hand, wearing out of the blades changes their natural frequencies and vibration spectrum; seals deterioration are caused by excessive rotor vibration or casing distortion mostly during start-ups. Analyzing simultaneously the efficiency and vibrations the faults and their locations can be identified more precisely. Analogrithm for identification of some faults of the gas turbine using hybrid patterns (efficiency vibration) is developed. [Spanish] El grado de desgaste o incrustacion en los componentes internos de un turbocompresor (alabes, sellos, etc.) puede ser estimado mediante el analisis de su eficiencia. El desgaste depositos en los alabes o el deterioro de los sellos afectan la eficiencia de la maquina la cual comparando con las especificaciones permite identificar componentes defectuosos o a un grupo de ellos y un indice de su degradacion. Sin embargo puede lograrse una identificacion mas precisa cuando se involucra el analisis de su respuesta vibratoria. Es importante hacer dicha identificacion en-linea ya que facilita la elaboracion de un plan apropiado para el mantenimiento general. Por otro lado, el desgaste de los alabes cambia su frecuencia natural y su espectro de vibracion; el deterioro de los sellos es causado por la excesiva vibracion del rotor o la distorsion de la cubierta, sobre todo durante los arranques. Analizando simultaneamente la

  12. CMC Property Variability and Life Prediction Methods for Turbine Engine Component Application

    Science.gov (United States)

    Cheplak, Matthew L.

    2004-01-01

    The ever increasing need for lower density and higher temperature-capable materials for aircraft engines has led to the development of Ceramic Matrix Composites (CMCs). Today's aircraft engines operate with >3000"F gas temperatures at the entrance to the turbine section, but unless heavily cooled, metallic components cannot operate above approx.2000 F. CMCs attempt to push component capability to nearly 2700 F with much less cooling, which can help improve engine efficiency and performance in terms of better fuel efficiency, higher thrust, and reduced emissions. The NASA Glenn Research Center has been researching the benefits of the SiC/SiC CMC for engine applications. A CMC is made up of a matrix material, fibers, and an interphase, which is a protective coating over the fibers. There are several methods or architectures in which the orientation of the fibers can be manipulated to achieve a particular material property objective as well as a particular component geometric shape and size. The required shape manipulation can be a limiting factor in the design and performance of the component if there is a lack of bending capability of the fiber as making the fiber more flexible typically sacrifices strength and other fiber properties. Various analysis codes are available (pcGINA, CEMCAN) that can predict the effective Young's Moduli, thermal conductivities, coefficients of thermal expansion (CTE), and various other properties of a CMC. There are also various analysis codes (NASAlife) that can be used to predict the life of CMCs under expected engine service conditions. The objective of this summer study is to utilize and optimize these codes for examining the tradeoffs between CMC properties and the complex fiber architectures that will be needed for several different component designs. For example, for the pcGINA code, there are six variations of architecture available. Depending on which architecture is analyzed, the user is able to specify the fiber tow size, tow

  13. Laser Engineered Net Shape (LENS) Technology for the Repair of Ni-Base Superalloy Turbine Components

    Science.gov (United States)

    Liu, Dejian; Lippold, John C.; Li, Jia; Rohklin, Stan R.; Vollbrecht, Justin; Grylls, Richard

    2014-09-01

    The capability of the laser engineered net shape (LENS) process was evaluated for the repair of casting defects and improperly machined holes in gas turbine engine components. Various repair geometries, including indentations, grooves, and through-holes, were used to simulate the actual repair of casting defects and holes in two materials: Alloy 718 and Waspaloy. The influence of LENS parameters, including laser energy density, laser scanning speed, and deposition pattern, on the repair of these defects and holes was studied. Laser surface remelting of the substrate prior to repair was used to remove machining defects and prevent heat-affected zone (HAZ) liquation cracking. Ultrasonic nondestructive evaluation techniques were used as a possible approach for detecting lack-of-fusion in repairs. Overall, Alloy 718 exhibited excellent repair weldability, with essentially no defects except for some minor porosity in repairs representative of deep through-holes and simulated large area casting defects. In contrast, cracking was initially observed during simulated repair of Waspaloy. Both solidification cracking and HAZ liquation cracking were observed in the repairs, especially under conditions of high heat input (high laser power and/or low scanning speed). For Waspaloy, the degree of cracking was significantly reduced and, in most cases, completely eliminated by the combination of low laser energy density and relatively high laser scanning speeds. It was found that through-hole repairs of Waspaloy made using a fine powder size exhibited excellent repair weldability and were crack-free relative to repairs using coarser powder. Simulated deep (7.4 mm) blind-hole repairs, representative of an actual Waspaloy combustor case, were successfully produced by the combination use of fine powder and relatively high laser scanning speeds.

  14. 灯泡贯流式机组调速器的特点及应用%Characteristic of Bulb Hydraulic Turbine Governor

    Institute of Scientific and Technical Information of China (English)

    陈艳; 李学礼

    2016-01-01

    Bulb hydraulic generating units are development very quickly in recent years in low water-head power station for its smaller volume, compact construction and high efficiency. Turbine governor as important control equipment in hydraulic power station provide high-quality, reliable power protection for the industrial production and people's daily lives, the regulation performance will affect the power quality and power plant safety and economic operation. A Special regulation model for bulb generating units has been introduced in this paper through the Thailand NARESUANA station on-site testing.%以泰国NARESUANA电站灯泡贯流式水轮发电机组及其调速器为例证,着重说明了灯泡贯流机组的特点,阐述了调速器的步进电机系统研制和应用:①采用适应式、变结构、变参数、并联 PID 调节模式,使机组在不同状态下均能稳定运行;②采用变参数导叶分段关闭装置,根据水头、负荷、频率等机组工况自动改变导叶分段关闭投入点,减少了快速关闭时造成水击压力的升高,并防止涌浪、低频及水锤的发生;③桨叶根据机组频率自动改变关闭速度,防止涌浪、低频及水锤的发生。

  15. 西藏地区水轮机选型设计的几个主要问题探讨%Selection of Hydraulic Turbine for Hydropower Stations in Tibet

    Institute of Scientific and Technical Information of China (English)

    李修树

    2011-01-01

    介绍了在现有基础条件下西藏地区水电机组选型设计中需重视的几个问题,主要包括机组单机容量选择、机型确定、机组参数、现场加工等方面,并提出了相应的选型思路.%The selection of hydraulic turbine for the hydropower stations in Tibet need to be given close attention as the special conditions.The requirements on unit capacity, type, parameters and on-site processing of turbine are discussed and some ideas in turbine selection are suggested herein.

  16. Usage of Parameterized Fatigue Spectra and Physics-Based Systems Engineering Models for Wind Turbine Component Sizing: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Parsons, Taylor; Guo, Yi; Veers, Paul; Dykes, Katherine; Damiani, Rick

    2016-01-26

    Software models that use design-level input variables and physics-based engineering analysis for estimating the mass and geometrical properties of components in large-scale machinery can be very useful for analyzing design trade-offs in complex systems. This study uses DriveSE, an OpenMDAO-based drivetrain model that uses stress and deflection criteria to size drivetrain components within a geared, upwind wind turbine. Because a full lifetime fatigue load spectrum can only be defined using computationally-expensive simulations in programs such as FAST, a parameterized fatigue loads spectrum that depends on wind conditions, rotor diameter, and turbine design life has been implemented. The parameterized fatigue spectrum is only used in this paper to demonstrate the proposed fatigue analysis approach. This paper details a three-part investigation of the parameterized approach and a comparison of the DriveSE model with and without fatigue analysis on the main shaft system. It compares loads from three turbines of varying size and determines if and when fatigue governs drivetrain sizing compared to extreme load-driven design. It also investigates the model's sensitivity to shaft material parameters. The intent of this paper is to demonstrate how fatigue considerations in addition to extreme loads can be brought into a system engineering optimization.

  17. Dynamic Stresses in a Francis Turbine Runner Based on Fluid-Structure Interaction Analysis

    Institute of Scientific and Technical Information of China (English)

    XIAO Ruofu; WANG Zhengwei; LUO Yongyao

    2008-01-01

    Fatigue and cracks have occurred in many large hydraulic turbines after they were put into production.The cracks are thought to be due to dynamic stresses in the runner caused by hydraulic forces.Computational fluid dynamics(CFD)simulations that included the spiral case,stay vane,guide vane,runner vane.and draft tube were run at various operating points to analyze the pressure distribution on the runner surface and the stress characteristics in the runner due to the fluid-structure interactions(FSl).The dynamic stresses in the Francis turbine runner at the most dangerous operating point were then analyzed.The results show that the dynamic stresses caused by the hydraulic forces during off-design operating points are one of the main reasons for the fatigue and cracks in the runner blade.The results can be used to optimize the runner and to analyze other critical components in the hydraulic turbine.

  18. Inverse Kinematics and Model Calibration Optimization of a Five-D.O.F. Robot for Repairing the Surface Profiles of Hydraulic Turbine Blades

    Directory of Open Access Journals (Sweden)

    Jose Mauricio S.T. Motta

    2016-06-01

    Full Text Available This paper presents and discusses the results of an ongoing R&D project aiming to design and build a fully automated prototype of a specialized spherical robotic welding system for repairing hydraulic turbine surfaces eroded by cavitation pitting and/or cracks produced by cyclic loading. The system has an embedded vision sensor built to acquire range images by laser scanning over the blade’s surface and produce 3D models to locate the damaged spots to be registered in a 3D coordinate system into the robot controller, enabling the robot to repair the flaws automatically by welding in layers. The paper is focused on the robot kinematic model and describes an iterative algorithm to process the inverse kinematics with only five degrees-of-freedom. The algorithm makes use of data collected from a vision sensor to ensure that the welding gun axis is perpendicular to the blade’s surface. Besides this, it proposes a modelling and optimization mathematical routine for more efficient robot calibration, which can be used with any type of robot. This robot calibration optimization scheme finds the optimal error parameter vector based on the condition number of the manipulator transformation composed from the partial derivatives of the error parameters. Experimental results proved both the iterative algorithm to perform the inverse kinematics and the technique to optimize robot calibration to be very efficient.

  19. Validated Loads Prediction Models for Offshore Wind Turbines for Enhanced Component Reliability

    DEFF Research Database (Denmark)

    Koukoura, Christina

    To improve the reliability of offshore wind turbines, accurate prediction of their response is required. Therefore, validation of models with site measurements is imperative. In the present thesis a 3.6MW pitch regulated-variable speed offshore wind turbine on a monopole foundation is built...... response of a boat impact. The first and second modal damping of the system during normal operation both from measurements and simulations are identified with the implementation of the Enhanced Frequency Domain Decomposition technique. The effect of damping on the side-side fatigue of the support structure...

  20. Cooling system having reduced mass pin fins for components in a gas turbine engine

    Science.gov (United States)

    Lee, Ching-Pang; Jiang, Nan; Marra, John J

    2014-03-11

    A cooling system having one or more pin fins with reduced mass for a gas turbine engine is disclosed. The cooling system may include one or more first surfaces defining at least a portion of the cooling system. The pin fin may extend from the surface defining the cooling system and may have a noncircular cross-section taken generally parallel to the surface and at least part of an outer surface of the cross-section forms at least a quartercircle. A downstream side of the pin fin may have a cavity to reduce mass, thereby creating a more efficient turbine airfoil.

  1. A Component Mode Synthesis Algorithm for Multibody Dynamics of Wind Turbines

    DEFF Research Database (Denmark)

    Holm-Jørgensen, Kristian; Nielsen, Søren R.K.

    2009-01-01

    A system reduction scheme related to a multibody formulation of wind turbine dynamics is devised. Each substructure is described in its own frame of reference, which is moving freely in the vicinity of the moving substructure, in principle without any constraints to the rigid body part of the mot...

  2. Selective Laser Melting of Hot Gas Turbine Components: Materials, Design and Manufacturing Aspects

    DEFF Research Database (Denmark)

    Goutianos, Stergios

    2017-01-01

    Selective Laser Melting (SLM) allows the design and manufacturing of novel parts and structures with improved performance e.g. by incorporating complex and more efficient cooling schemes in hot gas turbine parts. In contrast to conventional manufacturing of removing material, with SLM parts...

  3. 超低水头水轮机流动数值模拟及水力性能研究%Research on Flow Numerical Simulation and Hydraulic Performance of Ultra Low-head Water Turbine

    Institute of Scientific and Technical Information of China (English)

    肖惠民

    2013-01-01

    In order to develop economical and practical ultra low-head turbine (the net head low than 5m),the internal flow of ultra low-head water turbine with utilization of water and wave energy for generation is simulated by using computational fluid dynamics technology.The efficiency of the entire turbine is predicted and the hydraulic characteristics of the ultra low-head water turbine are analyzed.In the 1.5-5m head range,numerical simulations show that the ultra low-head water turbine has relatively high and slowly changing efficiency,and its output power basically depends on the head.%为开发经济实用超低水头(净水头低于5 m)的水轮机,基于流体动力学理论对可应用于水能、波浪能发电的某超低水头水轮机进行了内部流动数值模拟及性能预测,并分析了水头和转速特性.结果表明,在1.5~5.0m水头范围内,水轮机效率较高,变化平稳,输出功率主要取决于水头.

  4. 海流发电液压传动系统设计及仿真验证%Design of Hydraulic Transmission Systems for Tidal Current Turbines and Its Simulation Validation

    Institute of Scientific and Technical Information of China (English)

    石茂顺; 刘宏伟; 李伟; 林勇刚; 丁金钟; 周宏宾

    2014-01-01

    In light of the problem of speed control for the tidal current turbine,the volume control method is adopted to control the impeller speed and the generator speed of the stand-alone tidal current turbine.Two similar hydraulic transmission systems for the tidal current turbine are designed,both adopting the pump-motor-generator direct connecting structure.To validate the hydraulic transmission systems,the mathematical models for the systems are analyzed and the MATLAB/Simulink models are developed to study the working characteristics of the hydraulic transmission systems.The results show that both hydraulic transmission topologies can realize constant-frequency control of the generator on the premise of meeting the requirement of maximum power point tracking control.%针对海流发电机组转速控制问题,采用容积调速方法控制离网型海流发电液压传动机组的叶轮转速和发电机转速。设计了两种类似的海流发电液压传动系统方案,均采用泵-马达-发电机直接连接的结构形式。为验证所设计的液压传动系统方案的有效性,对其进行数学模型分析,并建立系统的MATLAB/Simulink模型进行系统控制特性仿真研究。结果表明,两种液压传动拓扑结构在满足最大功率跟踪控制要求的前提下,均可以在液压传动系统环节同时实现发电机恒频输出控制。

  5. Analysis and Online Diagnosis on Plugging Fault of Servo Valve in Electro-hydraulic Regulating System of Steam Turbine

    Institute of Scientific and Technical Information of China (English)

    WANG Xuanyin; LI Xiaoxiao; LI Fushang

    2009-01-01

    Through the study on the output signals of the electro-hydraulic regulating system in the thermal power plant, a novel method for online diagnosis of the plugging fault in the servo valve is presented. With the use of the AMESIM software, the changes of the piston displacement, the oil pressure, the magnitude attenuation and the phase lag of the system under different plugging states are studied after simulation. Besides, the influences of the symmetrical and unsymmetrical plugging on the system are also compared and the characteristic table is given. The duo-neural network is put forward to achieve an online diagnosis on the plugging fault of the servo valve. The first level of network helps to make the qualitative diagnosis of the plugging position while the second level is for the quantitative diagnosis of the degree of the plugged position. The research results show that plugging at different positions exerts different influences on the performance of the system. The unsymmetrical plugging mainly affects the regulation time while the symmetrical plugging leads to great changes in the magnitude attenuation and the phase lag.

  6. CFD Study for the Optimization of the Drying Process of Foundry Moulds used in the Production of Wind Turbine Components

    Directory of Open Access Journals (Sweden)

    Giovanni Luca Di Muoio

    2015-02-01

    Full Text Available In order to drive down the cost of wind turbine cast components, the optimization of each production step is necessary. In particular, foundry moulds used for the production of cast components undergo a process of drying needed to avoid quality problems in the final parts. In order to reduce drying times forced convection by the use of fans is needed. In this work we perform Computational Fluid Dynamic studies with the aim to optimize the drying process for mould geometries typically used for the production of wind turbine components. Representative geometries are modelled in a 3D software, imported in a fluid flow solver and complete NavierStokes equations coupled with energy transport equations are solved. Velocity profiles from shop floor measurements are used as boundary conditions for the problem. Finally surface heat exchange coefficients are determined and results analyzed. Results show that it is possible to use this methodology to optimize the drying process, and determine areas of the moulds that are more difficult to dry than others. Optimal fan arrangement for typical geometries are also provided.

  7. Analytical Formulation for Sizing and Estimating the Dimensions and Weight of Wind Turbine Hub and Drivetrain Components

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Y. [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Parsons, T. [National Renewable Energy Laboratory (NREL), Golden, CO (United States); King, R. [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Dykes, K. [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Veers, P. [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2015-06-09

    This report summarizes the theory, verification, and validation of a new sizing tool for wind turbine drivetrain components, the Drivetrain Systems Engineering (DriveSE) tool. DriveSE calculates the dimensions and mass properties of the hub, main shaft, main bearing(s), gearbox, bedplate, transformer if up-tower, and yaw system. The level of fi¬ delity for each component varies depending on whether semiempirical parametric or physics-based models are used. The physics-based models have internal iteration schemes based on system constraints and design criteria. Every model is validated against available industry data or finite-element analysis. The verification and validation results show that the models reasonably capture primary drivers for the sizing and design of major drivetrain components.

  8. A probability evaluation method of early deterioration condition for the critical components of wind turbine generator systems

    Science.gov (United States)

    Hu, Yaogang; Li, Hui; Liao, Xinglin; Song, Erbing; Liu, Haitao; Chen, Z.

    2016-08-01

    This study determines the early deterioration condition of critical components for a wind turbine generator system (WTGS). Due to the uncertainty nature of the fluctuation and intermittence of wind, early deterioration condition evaluation poses a challenge to the traditional vibration-based condition monitoring methods. Considering the its thermal inertia and strong anti-interference capacity, temperature characteristic parameters as a deterioration indication cannot be adequately disturbed by the uncontrollable noise and uncertainty nature of wind. This paper provides a probability evaluation method of early deterioration condition for critical components based only on temperature characteristic parameters. First, the dynamic threshold of deterioration degree function was proposed by analyzing the operational data between temperature and rotor speed. Second, a probability evaluation method of early deterioration condition was presented. Finally, two cases showed the validity of the proposed probability evaluation method in detecting early deterioration condition and in tracking their further deterioration for the critical components.

  9. Steam oxidation resistant coatings for steam turbine components: a feasibility study

    Energy Technology Data Exchange (ETDEWEB)

    Agueero, A.; Garcia de Blas, J.; Muelas, R.; Sanchez, A.; Tsipas, S. [Instituto de Tecnica Aeroespacial, Madrid (Spain). Area de Materiales

    2001-07-01

    The principal objective of the COST Action 522 is to raise the operating temperatures of both gas and steam turbines in order to increase their efficiency to reduce fuel consumption and emissions. Concerning steam turbines, the operating temperature is expected to rise from 550 C to 650 C, and the use of oxidation resistant coatings is being considered for the first time in Europe. In this preliminary work, two deposition techniques have so far been explored: slurry paints and atmospheric plasma spray (APS). Commercially available materials, known to have good oxidation resistance, were selected for both deposition techniques: one aluminium slurry and three alloyed materials for thermal spray: AlFe, FeCrAl and NiAl. The coatings were characterised by SEM-EDS and steam oxidation testing was carried out at 650 C. The preliminary findings show that some of the studied coatings may offer adequate protection. (orig.)

  10. Metal Injection Moulding: A Near Net Shape Fabrication Method for the Manufacture of Turbine Engine Component

    Science.gov (United States)

    2006-05-01

    annealing. 1 INTRODUCTION Nickel superalloys such as Inconel 625 were developed to withstand the intense conditions present in gas turbine engines...where carbides present. Acicular (delta) Blocky irregular (Laves) 866°C-1033°C (1100°F-1400°F) γ’’ Plate of disc shaped particles...1991), The Influence of Processing Variables on the Microstructure and Properties of PM 625 Alloy, Superalloys 718, 625, 706 and Various Derivatives

  11. Wireless monitoring of structural components of wind turbines including tower and foundations

    Science.gov (United States)

    Wondra, B.; Botz, M.; Grosse, C. U.

    2016-09-01

    Only few large wind turbines contain an extensive structural health monitoring (SHM) system. Such SHM systems could provide deeper insight into the real load history of a wind turbine along its standard lifetime of 20 years and support a justified extension of operation beyond the original intended period. This paper presents a new concept of a wireless SHM system based on acceleration measurement sensor nodes to permanently record acceleration of the tower structure at different heights. Exploitation of acceleration data and its referring position on the turbine tower enables calculation of vibration frequencies, their amplitudes and subsequently eigenmodes. Tower heights of 100 m and more are within the transmission range of wireless nodes, enabling a complete surveillance of the tower in three dimensions without the need for long cabling or electric signal amplification. Mounting of the sensor nodes on the tower is not limited to a few positions by the presence of an electric cable anymore. Still a comparison between data recorded by wireless sensors and data recorded by high-resolution wire-based sensors shows that the present resolution of the wireless sensors has to be improved to record accelerations more accurately and thus analyze vibration frequencies more precisely.

  12. Improving efficiency and increasing capacity of the hydraulic turbine in Daguangba Hydropower Plant%大广坝水电站水轮机提效增容改造研究

    Institute of Scientific and Technical Information of China (English)

    王钊宁; 罗兴锜; 郭鹏程; 程宦; 王亚林

    2015-01-01

    基于海南大广坝水电站水轮机改造项目,通过分析电站运行中存在的水力不稳定现象和水轮机效率水平偏低的原因,提出了水轮机的改造方案和目标;讨论了水力参数和设计理念;介绍了改造前后转轮流道的本质差异。通过全流道数值仿真计算,定性评估了改造后水轮机的稳定性,定量标定了水轮机的效率水平,预期了模型水轮机的综合特性曲线。结论认为,改造后模型水轮机最优效率大于93.8%,额定效率91%,加权平均效率89.3%;原型水轮机最优效率95.1%,额定效率92.4%,加权平均效率90.8%;与改造前相比,加权平均效率增幅可达2.0%。%A new retrofitting method and target are presented by means of analyzing the phenome‐non of hydraulic instability and the reason of relatively low turbine efficiency based on the trans‐formation project referring to Daguangba Hydropower station in Hainan ,meanwhile ,hydraulic parameters selection and design conception are discussed in details .Also ,this paper introduces the essential difference of runner channel between pre‐and‐post retrofit .According to the full passage numerical simulation computation ,the hydraulic stability of retrofitted Francis runner is qualitatively evaluated and the efficiency level is quantitatively indicated .Finally ,the paper has predicted the comprehensive feature curves of the model water‐turbine .The conclusions indicate that the model turbine optimum efficiency exceeds 93 .8% ,the rated efficiency and weighted aver‐age efficiency are respectively 91% and 89 .3% compared with 95 .1% optimum efficiency ,92 .4%rated efficiency ,and 90 .8% weighted average efficiency originating from the prototype turbine ;the weighted average efficiency of the model turbine significantly increases 2 .0% by contrast with the one of the prototype turbine .

  13. 风电叶片模具液压翻转机构参数化优化设计%Parameters Optimization Design of the Structure of the Hydraulic Turnover Mechanism for Wind Turbine's Blade Mold

    Institute of Scientific and Technical Information of China (English)

    乐韵斐; 邬湘成; 刘长杰

    2011-01-01

    介绍了风电叶片模具液压翻转机构的工作原理,建立了一般的几何模型,通过Matlab优化工具箱对风电叶片模具液压翻转机构进行优化设计,利用LabView设计图形界面,并通过Matlab script专有程序接口调用Matlab优化程序,实现风电叶片模具液压翻转机构的参数化优化设计.%This article introduced the working principle of hydraulic turnover mechanism of wind turbine's blade mold, established a general model, and optimized the design of hydraulic turnover mechanism of wind power mold through Matlab optimization toolbox. Using LabView software to design graphical interface, and called Matlab optimization procedures through proprietary programming interface called the Matlab script, achieving parameterization design of the structure of the hydraulic turnover mechanism for the wind turbine's blade mold.

  14. The effect of wakes on the fatigue damage of wind turbine components over their entire lifetime using short-term load measurements

    Science.gov (United States)

    Karlina-Barber, Sarah; Mechler, Sebastian; Nitschke, Mario

    2016-09-01

    A method is developed for quantifying the effect of neighboring wind turbines on the fatigue damage of the main components of a wind turbine over its entire operating time using short-term load measurements. This method could be used in the future for improving wind farm planning software that takes into account fatigue damage as well as energy yield or for improving lifetime extension calculations of wind turbines. The method is applied here to a measurement campaign on a Vestas V66 wind turbine located in northern Germany and the results are found to be plausible. Furthermore, the results show that the increase in total lifetime fatigue damage due to neighboring wind turbines for wind turbine separations of the order of 5D is significant and needs to be taken account of in wind farm planning software. The accuracy of the method is examined by investigating the sensitivity of the main assumptions on the results. It is found to be strongly dependent on the number of measured time-series in a wind speed bin as well as on the choice of wind speed frequency distribution. The method therefore needs to be standardized before it is applied to improving wind farm planning software or lifetime extension calculations of wind turbines.

  15. Materials for Advanced Ultra-supercritical (A-USC) Steam Turbines – A-USC Component Demonstration

    Energy Technology Data Exchange (ETDEWEB)

    Purgert, Robert [Energy Industries Of Ohio Inc., Independence, OH (United States); Phillips, Jeffrey [Energy Industries Of Ohio Inc., Independence, OH (United States); Hendrix, Howard [Energy Industries Of Ohio Inc., Independence, OH (United States); Shingledecker, John [Energy Industries Of Ohio Inc., Independence, OH (United States); Tanzosh, James [Energy Industries Of Ohio Inc., Independence, OH (United States)

    2016-10-01

    The work by the United States Department of Energy (U.S. DOE)/Ohio Coal Development Office (OCDO) advanced ultra-supercritical (A-USC) Steam Boiler and Turbine Materials Consortia from 2001 through September 2015 was primarily focused on lab scale and pilot scale materials testing. This testing included air- or steam-cooled “loops” that were inserted into existing utility boilers to gain exposure of these materials to realistic conditions of high temperature and corrosion due to the constituents in the coal. Successful research and development resulted in metallic alloy materials and fabrication processes suited for power generation applications with metal temperatures up to approximately 1472°F (800°C). These materials or alloys have shown, in extensive laboratory tests and shop fabrication studies, to have excellent applicability for high-efficiency low CO2 transformational power generation technologies previously mentioned. However, as valuable as these material loops have been for obtaining information, their scale is significantly below that required to minimize the risk associated with a power company building a multi-billion dollar A-USC power plant. To decrease the identified risk barriers to full-scale implementation of these advanced materials, the U.S. DOE/OCDO A-USC Steam Boiler and Turbine Materials Consortia identified the key areas of the technology that need to be tested at a larger scale. Based upon the recommendations and outcome of a Consortia-sponsored workshop with the U.S.’s leading utilities, a Component Test (ComTest) Program for A-USC was proposed. The A-USC ComTest program would define materials performance requirements, plan for overall advanced system integration, design critical component tests, fabricate components for testing from advanced materials, and carry out the tests. The AUSC Component Test was premised on the program occurring at multiple facilities, with the operating temperatures, pressure and/or size of

  16. Turbine maintenance and modernization

    Energy Technology Data Exchange (ETDEWEB)

    Unga, E. [Teollisuuden Voima Oy, Olkiluoto (Finland)

    1998-12-31

    The disturbance-free operation of the turbine plant plays an important role in reaching good production results. In the turbine maintenance of the Olkiluoto nuclear power plant the lifetime and efficiency of turbine components and the lifetime costs are taken into account in determining the turbine maintenance and modernization/improvement program. The turbine maintenance program and improvement/modernization measures taken in the plant units are described in this presentation. (orig.)

  17. Theory manual for FAROW version 1.1: A numerical analysis of the Fatigue And Reliability Of Wind turbine components

    Energy Technology Data Exchange (ETDEWEB)

    WUBTERSTEUBMSTEVEB R.; VEERS,PAUL S.

    2000-01-01

    Because the fatigue lifetime of wind turbine components depends on several factors that are highly variable, a numerical analysis tool called FAROW has been created to cast the problem of component fatigue life in a probabilistic framework. The probabilistic analysis is accomplished using methods of structural reliability (FORM/SORM). While the workings of the FAROW software package are defined in the user's manual, this theory manual outlines the mathematical basis. A deterministic solution for the time to failure is made possible by assuming analytical forms for the basic inputs of wind speed, stress response, and material resistance. Each parameter of the assumed forms for the inputs can be defined to be a random variable. The analytical framework is described and the solution for time to failure is derived.

  18. A probability evaluation method of early deterioration condition for the critical components of wind turbine generator systems

    DEFF Research Database (Denmark)

    Hu, Y.; Li, H.; Liao, X;

    2016-01-01

    This study determines the early deterioration condition of critical components for a wind turbine generator system (WTGS). Due to the uncertainty nature of the fluctuation and intermittence of wind, early deterioration condition evaluation poses a challenge to the traditional vibration......-based condition monitoring methods. Considering the its thermal inertia and strong anti-interference capacity, temperature characteristic parameters as a deterioration indication cannot be adequately disturbed by the uncontrollable noise and uncertainty nature of wind. This paper provides a probability evaluation...... method of early deterioration condition for critical components based only on temperature characteristic parameters. First, the dynamic threshold of deterioration degree function was proposed by analyzing the operational data between temperature and rotor speed. Second, a probability evaluation method...

  19. BP和RBF神经网络在水轮机非线性特性拟合中的应用比较%Application of BP Neural Network and RBF Neural Network in Extending Hydraulic Turbine Combined Characteristic Curve

    Institute of Scientific and Technical Information of China (English)

    张培; 陈光大; 张旭

    2011-01-01

    It is unnecessary to establish concrete function expression, the known discrete data can be fitted by using neural network to extend hydraulic turbine combined characteristic cure. And we can also add boundary conditions to predict unknown zones, so as to raise the work efficiency and data precision in data treatment concerning hydraulic turbine combined characteristics. This paper intro- duces the use of gP neural network and RBF neural network in extending hydraulic turbine combined characteristic curve. I.astly, the results of the two methods are compared and some conclusions are obtained.%利用神经网络对水轮机综合特性曲线进行数据处理和延伸,不必建立具体的函数关系表达式,就可对已知的离散数据进行拟合。并且还可以结合边界约束条件对未知区域内的数据进行预测,从而提高了水轮机综合特性曲线数据处理的工作效率和数据精度。分别介绍了用BP神经网络和RBF神经网络对水轮机综合特性曲线数据处理和延伸的方法。并采用一机组的样本数据进行训练,比较2种方法的训练结果得出结论。

  20. Numerical Simulation Investigation on Hydraulic Performance of the Horizontal-Axis Tidal Current Turbine%水平轴潮流水轮机水力性能的数值模拟研究

    Institute of Scientific and Technical Information of China (English)

    肖惠民

    2015-01-01

    Three-dimensional numerical simulations are carried out to investigate the hydraulic characteristics of the hori -zontal-axis tidal current turbine with speed-up tube .Effects of the dimension parameters of the speed-up tube , such as the length-diameter ratio and the area ratio , on the turbine's performance are also studied .Results show that the horizon-tal-axis tidal current turbine is of high energy utilization rate and great self-starting performance , while it is sensitive to the variation of the tidal current velocity .The speed-up tube can significantly improve the hydraulic performance , espe-cially the output power , of the tidal current turbine .The optimum length-diameter ratio of the speed-up tube is also de-termined .%采用数值模拟方法对一种带增速管的水平轴潮流水轮机的流量特性和转速特性进行了研究,并分析了增速管长径比、面积比对该水轮机水力性能的影响。计算结果表明:该潮流水轮机能量转换效率较高,同时自启动性能好,但对潮流流速变化较敏感;增速管可显著提高水轮机的水力性能,特别是输出功率;对于一定结构形式的潮流水轮机,增速管具有最佳的长径比。

  1. Use of High Magnetic Fields to Improve Material Properties for Hydraulics, Automotive and Truck Components

    Energy Technology Data Exchange (ETDEWEB)

    Ludtka, Gerard Michael [ORNL; Ludtka, Gail Mackiewicz- [ORNL; Wilgen, John B [ORNL; Kisner, Roger A [ORNL; Ahmad, Aquil [Eaton Corporation

    2010-08-01

    In this CRADA, research and development activities were successfully conducted on magnetic processing effects for the purpose of manipulating microstructure and the application specific performance of three alloys provided by Eaton (alloys provided were: carburized steel, plain low carbon steel and medium carbon spring steel). Three specific industrial/commercial application areas were considered where HMFP can be used to provide significant energy savings and improve materials performance include using HMFP to: 1.) Produce higher material strengths enabling higher torque bearing capability for drive shafts and other motor components; 2.) Increase the magnetic response in an iron-based material, thereby improving its magnetic permeability resulting in improved magnetic coupling and power density, and 3.) Improve wear resistance. The very promising results achieved in this endeavor include: 1.) a significant increase in tensile strength and a major reduction in volume percent retained austenite for the carburized alloy, and 2.) a substantial improvement in magnetic perm respect to a no-field processed sample (which also represents a significant improvement over the nominal conventional automotive condition of no heat treatment). The successful completion of these activities has resulted in the current 3-year CRADA No. NFE-09-02522 Prototyping Energy Efficient ThermoMagnetic and Induction Hardening for Heat Treat and Net Shape Forming Applications .

  2. Calculations of an unsteady flow through a hydraulic axial turbine with reference to interaction between stator and rotor; Instationaere Berechnung einer hydraulischen Axialturbine unter Beruecksichtigung der Interaktion zwischen Leit- und Laufrad

    Energy Technology Data Exchange (ETDEWEB)

    Bauer, C.

    2001-07-01

    The objective of this study is the development of an algorithm enabling coupling of nonmatching computational grids to carry out calculations of an unsteady flow through a hydraulic axial turbine with reference to interaction between stator and rotor. The algorithm should offer the possibility to operate the computational grids in a fixed position relative to each other as well as in relative movement. Furthermore, the calculation should be feasible with separate grids in parallel and different frames of reference. Employing selected examples this method is investigated in detail the results are compared with performed measurements. The unsteady numerical examination of the coupling process is carried out with different examples; especially the interaction effects between stator, rotor and draft tube of a hydraulic axial turbine are observed. In addition, the effect of tip clearance of the mean flow is described. Extensive model tests using the axial turbine have been performed at the Institute for Fluid Mechanics and Hydraulic Machinery, IHS. Flow time dependent velocities have been measured with a Laser Doppler Velocimeter placed at midspan of the blading. Periodical changes in static pressure have been recorded at different locations near the wall of the turbine casing. These measurements serve as reference for the comparison with results derived from the unsteady calculations. The confrontation of the time-dependent fluctuations of the flow quantities and the calculation of the efficiency of the turbine resulting from the simulation results allow a comparison in absolute terms. (orig.) [German] Fuer die instationaere Berechnung einer hydraulischen Axialturbine unter Beruecksichtigung der Interaktion zwischen Leit- und Laufrad wird ein Algorithmus zum Koppeln von nichtpassenden Berechnungsnetzen entwickelt. Diese Berechnungsnetze sollen zueinander ortsfest sein oder auch eine Relativbewegung zueinander haben koennen. Sie sollen ausserdem und in unterschiedlichen

  3. A Fully Non-Metallic Gas Turbine Engine Enabled by Additive Manufacturing Part I: System Analysis, Component Identification, Additive Manufacturing, and Testing of Polymer Composites

    Science.gov (United States)

    Grady, Joseph E.; Haller, William J.; Poinsatte, Philip E.; Halbig, Michael C.; Schnulo, Sydney L.; Singh, Mrityunjay; Weir, Don; Wali, Natalie; Vinup, Michael; Jones, Michael G.; Patterson, Clark; Santelle, Tom; Mehl, Jeremy

    2015-01-01

    The research and development activities reported in this publication were carried out under NASA Aeronautics Research Institute (NARI) funded project entitled "A Fully Nonmetallic Gas Turbine Engine Enabled by Additive Manufacturing." The objective of the project was to conduct evaluation of emerging materials and manufacturing technologies that will enable fully nonmetallic gas turbine engines. The results of the activities are described in three part report. The first part of the report contains the data and analysis of engine system trade studies, which were carried out to estimate reduction in engine emissions and fuel burn enabled due to advanced materials and manufacturing processes. A number of key engine components were identified in which advanced materials and additive manufacturing processes would provide the most significant benefits to engine operation. The technical scope of activities included an assessment of the feasibility of using additive manufacturing technologies to fabricate gas turbine engine components from polymer and ceramic matrix composites, which were accomplished by fabricating prototype engine components and testing them in simulated engine operating conditions. The manufacturing process parameters were developed and optimized for polymer and ceramic composites (described in detail in the second and third part of the report). A number of prototype components (inlet guide vane (IGV), acoustic liners, engine access door) were additively manufactured using high temperature polymer materials. Ceramic matrix composite components included turbine nozzle components. In addition, IGVs and acoustic liners were tested in simulated engine conditions in test rigs. The test results are reported and discussed in detail.

  4. The impact research of control modes in steam turbine control system (digital electric hydraulic to the low-frequency oscillation of grid

    Directory of Open Access Journals (Sweden)

    Yanghai Li

    2016-01-01

    Full Text Available Through the analysis of the control theory for steam turbine, the transfer function of the steam turbine control modes in the parallel operation was obtained. The frequency domain analysis indicated that different control modes of turbine control system have different influence on the damping characteristics of the power system. The comparative analysis shows the direction and the degree of the influence under the different oscillation frequency range. This can provide the theory for the suppression of the low-frequency oscillation from turbine side and has a guiding significance for the stability of power system. The results of simulation tests are consistent with the theoretic analysis.

  5. Selective Laser Melting of Hot Gas Turbine Components: Materials, Design and Manufacturing Aspects

    Science.gov (United States)

    Goutianos, Stergios

    2017-07-01

    Selective Laser Melting (SLM) allows the design and manufacturing of novel parts and structures with improved performance e.g. by incorporating complex and more efficient cooling schemes in hot gas turbine parts. In contrast to conventional manufacturing of removing material, with SLM parts are built additively to nearly net shape. This allows the fabrication of arbitrary complex geometries that cannot be made by conventional manufacturing techniques. However, despite the powerful capabilities of SLM, a number of issues (e.g. part orientation, support structures, internal stresses), have to be considered in order to manufacture cost-effective and high quality parts at an industrial scale. These issues are discussed in the present work from an engineering point of view with the aim to provide simple quidelines to produce high quality SLM parts.

  6. 叶片尾部形状对双向贯流式水轮机性能的影响%Effect of blade tail’s shape on hydraulic performance of bidirectional bulb turbine

    Institute of Scientific and Technical Information of China (English)

    郑小波; 翁凯; 王玲军

    2015-01-01

    为了研究双向贯流式水轮机反向工况效率低下的问题,该文以某带有后置导叶的双向贯流式机组为对象,针对不同形状和不同厚度的叶片尾部,分析了反向工况下叶片尾部对机组性能的影响。采用 UG 建模软件对机组进行几何建模,基于CFX软件,采用SST k-ω湍流模型对不同形状和厚度的叶片尾部的转轮进行了数值模拟。结果表明:反向工况下采用圆形尾部的叶片其机组效率为59.55%,高于矩形尾部的58.4%和弧形尾部的58.01%,说明反向工况下矩形尾部和弧形尾部的冲击损失较大。增加叶片尾部厚度对机组反向工况的效率提高较为明显,其效率最高能抬高到79%,但叶片尾部厚度增加到一定程度后效率不再增加,叶片尾部厚度的增加使得反向工况下叶片尾部最低压力值降低了1.2×106 Pa,对其反向工况下的空化性能有较大影响,且增加了正向工况运行是出现卡门涡的概率。研究成果为双向贯流式水轮机反向工况下叶片尾部形状的优化设计提供了经验参考。%Tidal power is pollution-free renewable energy and an effective way to reduce coal consumption and guarantee normal social electricity consumption in China. Bidirectional bulb turbine is widely used in tidal power station. Scholars at home and abroad have carried out extensive researches in bidirectional tubular turbine in terms of internal blade clearance flow, the occurrence and location of cavitation and blade airfoil optimization .Scholars in China firstly put forward improving the operating efficiency of the bidirectional tubular turbine under the reverse working condition by means of setting rear guide vanes. In order to solve the low efficiency problem under the reverse condition in bidirectional bulb turbine, how blade tail affected the units' hydraulic performance under reverse working condition by studying bade tails of different shapes and different

  7. Reliability Assessment of Offshore Wind Turbines Considering Faults of Electrical / Mechanical Components

    DEFF Research Database (Denmark)

    Kostandyan, Erik; Sørensen, John Dalsgaard

    2013-01-01

    of structural, mechanical and electrical components are important, in order to optimally plan Operation & Maintenance strategies. A general model for reliability estimation of structural, mechanical or electrical components is described. For a representative failure mode a corresponding limit state...

  8. Collaborative Technology Assessments Of Transient Field Processing And Additive Manufacturing Technologies As Applied To Gas Turbine Components

    Energy Technology Data Exchange (ETDEWEB)

    Ludtka, Gerard Michael [ORNL; Dehoff, Ryan R [ORNL; Szabo, Attila [General Electric (GE) Power and Water; Ucok, Ibrahim [General Electric (GE) Power and Water

    2016-01-01

    ORNL partnered with GE Power & Water to investigate the effect of thermomagnetic processing on the microstructure and mechanical properties of GE Power & Water newly developed wrought Ni-Fe-Cr alloys. Exploration of the effects of high magnetic field process during heat treatment of the alloys indicated conditions where applications of magnetic fields yields significant property improvements. The alloy aged using high magnetic field processing exhibited 3 HRC higher hardness compared to the conventionally-aged alloy. The alloy annealed at 1785 F using high magnetic field processing demonstrated an average creep life 2.5 times longer than that of the conventionally heat-treated alloy. Preliminary results show that high magnetic field processing can improve the mechanical properties of Ni-Fe-Cr alloys and potentially extend the life cycle of the gas turbine components such as nozzles leading to significant energy savings.

  9. Wind turbines

    Energy Technology Data Exchange (ETDEWEB)

    Yeoman, J.C. Jr.

    1978-12-01

    This evaluation of wind turbines is part of a series of Technology Evaluations of possible components and subsystems of community energy systems. Wind turbines, ranging in size from 200 W to 10 MW, are discussed as candidates for prime movers in community systems. Estimates of performance characteristics and cost as a function of rated capacity and rated wind speed are presented. Data concerning material requirements, environmental effects, and operating procedures also are given and are represented empirically to aid computer simulation.

  10. Analysis on hydraulic characteristics of micro Francis hydro-turbine with low specific speed%微型低比转速混流式水轮机的水力特性分析

    Institute of Scientific and Technical Information of China (English)

    张兰金; 王磊; 任岩; 陈德新

    2013-01-01

    A micro Francis hydro-turbine driven by the circulating cooling water in cooling tower is introduced herein; of which the flow rate is restricted to the circulating water discharge, the output power is confined to that of the cooling tower fan and the head is relied on both the discharge and the output power. It has a small dimension with a long and narrow flow path of the runner and without water guiding mechanism. In order to know the hydraulic characteristics of it, a study is made with the method of numerical simulation combined with the relevant experiment. The study result shows that similarities are presented by the characteristics of the flow field inside of it, while the hydraulic characteristics of energy, pressure fluctuation, etc. Also show similarities with the same hydraulic efficiency and loss. The hydraulic efficiency of the turbine is lower with a larger hydraulic loss; of which the hydro-energy is lost mainly from the water rliversion parts and secondly from the runner. Furthermore, the amplitude of the hydraulic vibration on the blade channel of stay vane is higher over 10% due to a less space between both the diversion parts and the runner.%本文介绍了一种由冷却塔中冷却循环水驱动的微型水轮机.该机流量限于循环水流量、功率限于风机功率、水头依赖流量与功率;其蜗壳平面尺寸小,不设导水机构,转轮流道狭长.为了解该水轮机的水力特性,采用数值模拟与试验相结合的方法对其进行研究.研究表明:对于同一水轮机,其内流场特性表现出相似性,能量和压力脉动等水力特性也表现出相似性,水力效率相等,水力损失相等.该水轮机的水力效率较低,水力损失较大,其水能主要损失于引水部件,其次是转轮;由于引水部件距离转轮近,其固定导叶叶道的水力振动幅度达到10%以上.

  11. 大型轴流式水轮机座环装配焊接工艺%Assembly and Welding Procedure for Seating Ring of Large-Size Axial Flow Hydraulic Turbine

    Institute of Scientific and Technical Information of China (English)

    甘洪丰

    2014-01-01

    座环是水轮机的重要部件,它既承载着机组的重量,又控制着水的流量与速度。轴流式水轮机座环通常为双环板,固定导叶采用中空结构,各瓣体经通用模具成型后组焊成一体。其成型和焊接面临很大的技术难题,文章着重讨论单环板焊接式座环的装配焊接工艺。%The seating ring was an important part of hydraulic turbine, which not only bore the weight of the whole unit but also controlled the water flow and speed. Double-ring plate were the conventional structure of axi-al flow hydraulic turbine seating ring. Usually, the fixed vane was of hollow construction while the steel plates were welded and integrated into a whole unit after shaping. But the welding and shaping encountered many technology problems, thus, the assembly and welding procedure of the single seating ring were discussed emphatically.

  12. Hydraulic Performance Modifications of a Zeolite Membrane after an Alkaline Treatment: Contribution of Polar and Apolar Surface Tension Components

    OpenAIRE

    2015-01-01

    Hydraulic permeability measurements are performed on low cut-off Na-mordenite (MOR-type zeolites) membranes after a mild alkaline treatment. A decrease of the hydraulic permeability is systematically observed. Contact angle measurements are carried out (with three polar liquids) on Na-mordenite films seeded onto alumina plates (flat membranes). A decrease of the contact angles is observed after the alkaline treatment for the three liquids. According to the theory of Lifshitz-van der Waals in...

  13. Analysis of Seismic Dynamic Response of HydraulicTurbines under Water Medium%地震作用下水轮机组在水介质中的动态响应计算

    Institute of Scientific and Technical Information of China (English)

    于建华; 魏泳涛; 曹剑绵

    2001-01-01

    The seismic response of hydraulic turbines under water medium isthe typical coupled vibration of l iquid-elastic body. To begin with, this paper briefly introduces the theory bac kground and computation method about dynamic behavior of turbines in water, then focuses on discussing the dynamic governing equations of turbine-water system in consideration of the influence of 3 dimensional coupled vibration of liquid-turbine. The time-history analysis is adopted to resolve the equations. Finally ,an example of a practical case is given, with the computational result compared against the result obtained without considering the influence of water medium.%水轮机在水中受地震作用而引起的地震响应属于液体-弹性体的耦合振动问题。本文中首先简介求解机组在水中的动力特性的理论背景及计算方法,接着重点讨论在考虑机组-水体系的三维液-固耦合振动影响下,水轮机组受地震作用的动力学支配方程及用时程分析法求解的解法。最后介绍结合贯流式水轮机所得出的计算成果,并将其结果与不考虑水介质影响得出的结果进行了比较。

  14. 基于短时傅里叶变换的水轮机涡带工况识别%Identification of vortex zone operation of hydraulic turbine based on short-time Fourier Transform

    Institute of Scientific and Technical Information of China (English)

    樊玉林; 张飞; 付婧; 徐静

    2016-01-01

    在对水轮机运行区划分过程中存在着涡带负荷区识别问题,为此开展了专项研究。针对水轮机从空载至满负荷连续升负荷过程中的水导摆度信号,采用高斯窗口函数进行加窗傅里叶变换分析。分析结果表明,采用加窗傅里叶变换这一手段可以精确确定涡带运行区的运行范围,同时根据升负荷过程中主频涡带频率成分出现的先后顺序,将涡带负荷区划分为涡带生成区、强涡带区和涡带消亡区,并对不同区域内涡带影响下的轴心轨迹特点进行了分析。对分析背景、分析方法以及实例分析过程作了比较详细的介绍。%A research is conducted on the identification of the vortex zone in the demarcation of the operation zone of hydraulic turbine. Windowed Fourier Transform analysis with Gaussian window function is carried out for the water guide swing signal in the process of continuous load rise from no-load to full load. The results show that Windowed Fourier Transform is able to accurately identify the operation zone of vortex. The vortex load zone could be divided into vortex generation zone, strong vortex zone and vortex diminishing zone according to the occurrence order of the frequency component of the main vortex in the process of load rise, and the shaft orbits under the effect of vortex in different zones are analyzed. The background, method and process of the a-nalysis are introduced in details.

  15. 46 CFR 112.50-3 - Hydraulic starting.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Hydraulic starting. 112.50-3 Section 112.50-3 Shipping... POWER SYSTEMS Emergency Diesel and Gas Turbine Engine Driven Generator Sets § 112.50-3 Hydraulic starting. A hydraulic starting system must meet the following: (a) The hydraulic starting system must be...

  16. Effect of Defects Distribution on Fatigue Life of Wind Turbine Components

    DEFF Research Database (Denmark)

    Rafsanjani, Hesam Mirzaei; Sørensen, John Dalsgaard

    2015-01-01

    by a Poisson process / field where the defects form clusters that consist of a parent defect and related defects around the parent defect. The fatigue life is dependent on the number, type, location and size of the defects in the component and is therefore quite uncertain and needs to be described...

  17. Design and optimization of the WEST ICRH antenna front face components based on thermal and hydraulic analysis

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Zhaoxi, E-mail: chenzx@ipp.ac.cn [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China); University of Science and Technology of China, Hefei 230026 (China); Vulliez, Karl [Laboratoire d’étanchéité, DEN/DTEC/SDTC, Commissariat à l’énergie atomique et aux énergies alternatives, 2 rue James Watt, 26700 Pierrelatte (France); Ferlay, Fabien; Martinez, André; Mollard, Patrick; Hillairet, Julien; Doceul, Louis; Bernard, Jean-Michel; Larroque, Sébastien; Helou, Walid [CEA, IRFM, F-13108, Saint-Paul-Lez-Durance (France); Song, Yuntao; Yang, Qingxi; Wang, Yongsheng [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China)

    2015-05-15

    Highlights: • Three ICRH antennas are designed to realize continuous-wave operation. • Fully active cooling structure is designed which takes the balance of structure safety and cooling performance. • High cooling efficiency is achieved for the current cooling circuit design based on the thermal-hydraulic simulation. - Abstract: The WEST (Tungsten (W) Environment in Steady-state Tokamak) is an upgrade of Tore-Supra (TS) which aims it into an X-point magnetic configuration tokamak equipped with an actively cooled tungsten divertor. To be a platform of ITER technologies of high heat flux components testing, three sets of Ion Cyclotron Resonant Heating (ICRH) antennas have been designed to inject 9 MW during 30 s or 3 MW during 1000 s. The antenna design is based on a load resilient prototype successfully tested in Tore Supra in 2007. In order to allow continuous-wave (CW) operations, the mechanical design of the WEST ICRH antenna is emphasized on its cooling performances by designing fully active cooling structure. Two kinds of cooling water loops are used, with temperature and pressure of 70 °C/30 bar and 25 °C/5.2 bar, respectively. The hot water loop is used for the Faraday screen (FS) and the housing box (HB), while the cold water loop is used for the straps, the matching capacitors and the impedance transformer. To enhance the heat removal ability and control the pressure drop, the cooling channels in the FS and HB are drilled directly and parallel connected as much as possible. By performing the hydraulic–thermal analysis, the lack of cooling efficiency was found in the front face of lateral collector where 1 MW/m{sup 2} is imposed and fluid dead zones were found in some of the bars. After optimization, the cooling performance of the cooling circuit increased significantly. With a mass flow rate of 2.5 kg/s, the total pressure drop is 3.1 bar, and the peak temperatures on the FS and HB are 500 °C and 261 °C, respectively. Besides, no cavitation is

  18. FOREWORD: 26th IAHR Symposium on Hydraulic Machinery and Systems

    Science.gov (United States)

    Wu, Yulin; Wang, Zhengwei; Liu, Shuhong; Yuan, Shouqi; Luo, Xingqi; Wang, Fujun

    2012-11-01

    was molded into a polytechnic institute focusing on engineering in the nationwide restructuring of universities and colleges undertaken in 1952. At present, the university has 14 schools and 56 departments with faculties in science, engineering, humanities, law, medicine, history, philosophy, economics, management, education and art. The University now has over 25 900 students, including 13 100 undergraduates and 12 800 graduate students. As one of China's most renowned universities, Tsinghua has become an important institution for fostering talents and scientific research. The International Association of Hydro-Environment Engineering and Research (IAHR) particularly promotes the advancement and exchange of knowledge through working groups, specialty symposia, congresses, and publications on water resources, river and coastal hydraulics, risk analysis, energy, environment, disaster prevention, and industrial processes. The IAHR Committee on Hydraulic Machinery and Systems deals with the advancement of technology associated with the understanding of steady and unsteady flow characteristics in hydraulic machinery and conduit systems connected to the machinery. The technology elements include the fluid behaviour within machine components, hydro-elastic behaviour of machine components, cavitation and two phase flow in turbines and pumps, hydraulic machine and plant control systems, the use of hydraulic machines to improve water quality, and even considerations to improve fish survival in their passage through hydro plants. The main emphases of the IAHR Committee on Hydraulic Machinery and Systems are to stimulate research and understanding of the technologies associated with hydraulic machinery and to promote interaction between the machine designers, machine users, the academic community, and the community as a whole. Hydraulic machinery is both cost effective and environmentally friendly. The goals of the IAHR Committee on Hydraulic Machinery and Systems are to improve

  19. A method for uncertainty quantification in the life prediction of gas turbine components

    Energy Technology Data Exchange (ETDEWEB)

    Lodeby, K.; Isaksson, O.; Jaervstraat, N. [Volvo Aero Corporation, Trolhaettan (Sweden)

    1998-12-31

    A failure in an aircraft jet engine can have severe consequences which cannot be accepted and high requirements are therefore raised on engine reliability. Consequently, assessment of the reliability of life predictions used in design and maintenance are important. To assess the validity of the predicted life a method to quantify the contribution to the total uncertainty in the life prediction from different uncertainty sources is developed. The method is a structured approach for uncertainty quantification that uses a generic description of the life prediction process. It is based on an approximate error propagation theory combined with a unified treatment of random and systematic errors. The result is an approximate statistical distribution for the predicted life. The method is applied on life predictions for three different jet engine components. The total uncertainty became of reasonable order of magnitude and a good qualitative picture of the distribution of the uncertainty contribution from the different sources was obtained. The relative importance of the uncertainty sources differs between the three components. It is also highly dependent on the methods and assumptions used in the life prediction. Advantages and disadvantages of this method is discussed. (orig.) 11 refs.

  20. Design and Application of Hydraulic Brake System for Mega-watt Graded Wind Turbine%兆瓦级风力发电机组液压制动系统的设计与应用

    Institute of Scientific and Technical Information of China (English)

    董连俊

    2015-01-01

    阐述了风力发电机组液压制动系统的工作原理,针对兆瓦级风力发电机组对液压制动系统的高集成化、高可靠性的要求,对液压制动系统进行深入研究探讨;针对现场实际应用中容易出现的问题进行了分析,并提出相应的解决方案。%For the purpose of high integration and high reliability, this paper introduces principle of hydraulic brake system for wind turbine, and conducts in-depth research of this system. According to problems during application, proposes corresponding resolving scheme.

  1. 液力透平非定常压力脉动的数值计算与分析%Simulation and analysis of unsteady pressure fluctuation in hydraulic turbine

    Institute of Scientific and Technical Information of China (English)

    杨孙圣; 孔繁余; 张新鹏; 黄志攀; 成军

    2012-01-01

    液力透平内部流场的非定常压力脉动是影响机组运行稳定性的关键因素之一,为了研究液力透平内部压力脉动,采用流场分析软件CFX对液力透平内部流场进行了三维非定常数值模拟,通过设置监测点,得到了不同位置处的压力脉动结果,并对压力脉动进行了频域分析.结果表明,液力透平内部压力沿着流道逐渐减弱;蜗壳环形部分入口位置和割舍处压力脉动较小,割舍前端和蜗壳中部位置处压力脉动较大,压力脉动主频为转频的2倍;叶轮内部的压力脉动在液力透平各过流部件的脉动中最为强烈,最大压力脉动发生在叶轮中间位置,压力脉动主频为叶频的2倍;尾水管内的压力脉动沿着尾水管流道逐渐减弱,压力脉动主频与蜗壳内部的压力脉动主频相同,为转频的2倍.%Pressure pulsation of internal flow field within pump as turbine is one of the major factors affecting the stability of turbine unit. To research the unsteady pressure field in pump as turbine, computational fluid dynamics software CFX was adopted in the unsteady flow field analysis. Pressure pulsation results at various monitoring points were acquired and frequency analyses were performed based on these results. Results show that the pressure value decreases along the flow channel of hydraulic turbine. The pressure pulsations at volute cut water and the inlet of volute spiral development part are small. The main frequency of pressure pulsation in volute is two times of the impeller rotational frequency. The most intensive pressure pulsation of hydraulic part in hydraulic turbine is impeller and the most intensive location happens at the middle of impeller passage. The main frequency of impeller pressure pulsation is two times of the blade passing frequency. The pressure pulsation in outlet pipe gradually decreases along the pipe, and its main frequency of pressure pulsation is two times of the impeller rotational

  2. Methodology for fabrication of hydraulics mini turbines with composite materials; Metodologia para a fabricacao de mini turbinas hidraulicas com materiais compostos

    Energy Technology Data Exchange (ETDEWEB)

    Faria, M.T.C. [Universidade Federal de Minas Gerais (DEMEC/UFMG), Belo Horizonte, MG (Brazil). Dept. de Engenharia Mecanica], Email: mtcdf@uol.com.br; Martinez, C.B.; Viana, E.M.F. [Universidade Federal de Minas Gerais (EHR-UFMG), Belo Horizonte, MG (Brazil). Escola de Engenharia. Dept. de Engenharia Hidraulica e Recursos Hidricos], Emails: martinez@cce.ufmg.br, ednamariafaria@bol.com.br

    2009-07-01

    This paper presents the description of methodological procedure specially developed for manufacturing mini turbines. This procedure is used in the design of a Francis type mini turbine with 12.5 kW. The housing volute and the suction tube of this equipment are manufactured with using composed material based on glass fiber and its distributor system is manufactured with stainless steel and brass. At the end it is presented an estimate cost of design / manufacturing of such equipment and a comparison with other equipment in the market.

  3. 基于模糊PID控制的水轮机调节系统应用与仿真研究%Application and simulation of hydraulic turbine regulation system based on fuzzy PID control

    Institute of Scientific and Technical Information of China (English)

    杨科科; 王臻卓

    2012-01-01

    Aiming at the nonlinear, time variable and great inertia characteristics of hydraulic turbine regulation system, a precise mathematical model is built to study the basic principles of fuzzy control and fuzzy control algorithm in the paper. Based on this, the fuzzy PID control model of hydraulic turbine regulation system is constructed and fuzzy controller suitable for hydro-generating set is designed. Finally, the simulation is done using Matlab. The research shows that compared with conventional PID control algorithm, the regulation characteristics of hydro-generating unit with the introduction of fuzzy PID control are improved remarkably and has a good dynamic quality.%针对水轮机调节系统的非线性、时变性及大惯性等特点,建立了其较为精确的数学模型,研究了模糊控制的基本原理,在此基础上构建了水轮机调节系统的模糊PID控制模型,并设计了适合水轮发电机组的模糊控制器,最后利用Matlab软件做了深入细致的仿真研究.研究表明,与常规的PID控制算法相比,引入模糊PID控制的水轮发电机组的调节特性得到了明显改善,并具有良好的动态品质.

  4. Graphene in turbine blades

    Science.gov (United States)

    Das, D. K.; Swain, P. K.; Sahoo, S.

    2016-07-01

    Graphene, the two-dimensional (2D) nanomaterial, draws interest of several researchers due to its many superior properties. It has extensive applications in numerous fields. A turbine is a hydraulic machine which extracts energy from a fluid and converts it into useful work. Recently, Gudukeya and Madanhire have tried to increase the efficiency of Pelton turbine. Beucher et al. have also tried the same by reducing friction between fluid and turbine blades. In this paper, we study the advantages of using graphene as a coating on Pelton turbine blades. It is found that the efficiency of turbines increases, running and maintenance cost is reduced with more power output. By the application of graphene in pipes, cavitation will be reduced, durability of pipes will increase, operation and maintenance cost of water power plants will be less.

  5. Hydraulic wind energy conversion system

    Energy Technology Data Exchange (ETDEWEB)

    1981-07-01

    The purpose of this research was to design, build and test a hydraulic wind energy system. This design used a three bladed turbine, which drove a hydraulic pump. The energy is transmitted from the pump through a long hose and into a hydraulic motor, where the energy is used. This wind system was built and tested during the winter of 1980-1981. The power train included a five meter, three bladed wind turbine, a 9.8:1 ratio gearbox, a 1.44 cubic inch displacement pump with a small supercharge gear pump attached. The hydraulic fluid was pumped through a 70', 3/4'' I-D-high pressure flexhose, then through a volume control valve and into a 1.44 cubic inch displacement motor. The fluid was returned through a 70', 1'' I-D-flexhose.

  6. Simulation of the passive condensation cooling tank of the PASCAL test facility using the component thermal-hydraulic analysis code CUPID

    Energy Technology Data Exchange (ETDEWEB)

    Cho, H. K.; Lee, S. J.; Kang, K. H.; Yoon, H. Y. [Korea Atomic Energy Research Inst., 1045 Daeduk-daero, Daejeon (Korea, Republic of)

    2012-07-01

    For the analysis of transient two-phase flows in nuclear reactor components, a three-dimensional thermal hydraulics code, named CUPID, has been being developed. In the present study, the CUPID code was applied for the simulation of the PASCAL (PAFS Condensing Heat Removal Assessment Loop) test facility constructed with an aim of validating the cooling and operational performance of the PAFS (Passive Auxiliary Feedwater System). The PAFS is one of the advanced safety features adopted in the APR+ (Advanced Power Reactor +), which is intended to completely replace the conventional active auxiliary feedwater system. This paper presents the preliminary simulation results of the PASCAL facility performed with the CUPID code in order to verify its applicability to the thermal-hydraulic phenomena inside the system. A standalone calculation for the passive condensation cooling tank was performed by imposing a heat source boundary condition and the transient thermal-hydraulic behaviors inside the system, such as the water level, temperature and velocity, were qualitatively investigated. The simulation results verified that the natural circulation and boiling phenomena in the water pool can be well reproduced by the CUPID code. (authors)

  7. Simulation of the Passive Condensation Cooling Tank of the PASCAL Test Facility using the Component Thermal-hydraulic Analysis Code CUPID

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Hyoung Kyu; Lee, Seung Jun; Yoon, Han Young [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2012-05-15

    The need for a multi-dimensional analysis of transient thermal hydraulic phenomena in a component of a nuclear reactor is increasing with the advanced design features, such as a direct vessel injection system, a gravity-driven safety injection system, and a passive cooling system. Motivated by this, the development of a new thermal-hydraulic analysis code, named CUPID, is in progress at KAERI (Korea Atomic Energy Research Institute). Its numerical solver and two-phase flow models have been verified against standard conceptual problems of single and two-phase flows and validated for thermal-hydraulic experiments in our previous studies. The simulation of the passive secondary cooling system, PAFS (Passive Auxiliary Feedwater System) has been considered as one of the practical applications of CUPID. In the present study, the PCCT (Passive Condensation Cooling Tank) of the PASCAL test facility was analyzed with CUPID prior to simulating the prototype PAFS system. The objectives of the PASCAL simulation were to validate physical models of CUPID and its applicability to the PAFS analysis. This paper presents the two-dimensional transient calculation results and the comparisons with the experimental data

  8. Evaluation of advanced hydraulic turbomachinery for underground pumped hydroelectric storage. Part 2. Two-stage regulated pump/turbines for operating heads of 1000 to 1500 m

    Energy Technology Data Exchange (ETDEWEB)

    Blomquist, C.A.; Frigo, A.A.; Degnan, J.R.

    1979-10-01

    This UPHS report applies to Francis-type, reversible pump/turbines regulated with gating systems. The first report, however, covered single-stage regulations; this report covers two-stage regulations. Development of a two-stage regulated pump/turbine appears to be attractive because the proposed single-drop UPHS concept requires turbomachinery with a head range of 1000 to 2000 m. With turbomachinery of this range available, the single-drop scheme offers a simple and economic UPHS option. Six different two-stage, top-gated pump/turbines have been analyzed: three that generate 500 MW and three that generate 350 MW. In each capacity, one machine has an operating head of 1000 m, another has a head of 1250 m, and the third has a head of 1500 m. The rated efficiencies of the machines vary from about 90% (1000-m head) to about 88% (1500-m head). Costs in 1978 $/kW for the three 500-MW units are: 20.5 (1000 m), 16.5 (1250 m), and 13.5 (1500 m). Corresponding costs for the three 350-MW units are 23, 18, and 14 $/kW. No major turbomachinery obstacles are foreseen that could hamper development of these pump/turbines. Further model testing and development are needed before building them.

  9. The impact of the utilization of digital technology in hydraulic turbines speed regulators; O impacto da utilizacao de tecnologia digital em reguladores de velocidade de turbinas hidraulicas

    Energy Technology Data Exchange (ETDEWEB)

    Tiburcio, Solange Numeriano Nen; Viegas, Francisco Carlos Ferreira [Comapnhia Hidroeletrica do Sao Franciso, Recife, PE (Brazil)

    1995-12-31

    The aim of this work which was performed based on the experience acquired during the implementation of digital speed regulators in Xingo hydroelectric power plant is to present the characteristics of the system implanted and analyses the technological impact caused to the hydroelectric turbines primary control by the utilization of such kind of regulators 6 figs., 3 refs.

  10. RESEARCH AND DESIGN OF THE STRAFLO-FRANCIS TURBINE

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    A new type of hydraulic turbine and its design theory is presentedThis turbine has the advantages of the most widely used Francis turbine and Straflo tubine,has its own specific theoretical basis,compact structure,small volume,low cost and steady operationAnd it is convenient to be transported,installed and maintained,and has good hydraulic and cavitation performanceIt is named StrafloFrancis turbine

  11. 新型涡轮驱动水力振荡器设计与实验研究%Design and experimental study on a new type of turbine driven hydraulic oscillator

    Institute of Scientific and Technical Information of China (English)

    王杰; 夏成宇; 冯定; 于长柏

    2016-01-01

    提出了一种新型的石油钻井用水力振荡器,可有效降低管柱摩阻,提高钻井效率.该水力振荡器采用涡轮驱动,并使用双偏心动定阀作为压力脉冲发生机构.通过建立双偏心动定阀的运动特性方程,结合实际工况得出阀盘的最优尺寸.通过选定阀型的水力振荡器性能测试实验,得出在模拟钻压为30 kN ,流量为28 L/s ,工作介质为清水时的振动冲击力约为15859 N ,振动位移约为4.1 mm ,振动频率约为11.4 Hz .该分析与实验结果对水力振荡器的设计与应用具有指导意义.%A new type of hydraulic oscillator for oil drilling is presented ,w hich can effectively re‐duce the frictional resistance and increase the drilling efficiency . The hydraulic oscillator was driven by a turbine ,and double eccentric valve was used as the pressure pulse generating mecha‐nism .By establishing the motion characteristic equation of the double eccentric valve ,the optimal size of the valve disc was obtained based on the actual working conditions .The performance test experiment of the hydraulic oscillator with selected valve was carried out ,the experimental re‐sults showed that the vibration impact force of the hydraulic oscillator was about 15 859 N ,the vibration displacement was about 4.1 mm ,and the vibration frequency was about 11.4 Hz when the drilling pressure was 30 kN ,the flow rate was 28 L/s ,and the working medium was water . The analysis and experimental results have guiding significance for the design and application of the hydraulic oscillator .

  12. Advanced Performance Hydraulic Wind Energy

    Science.gov (United States)

    Jones, Jack A.; Bruce, Allan; Lam, Adrienne S.

    2013-01-01

    The Jet Propulsion Laboratory, California Institute of Technology, has developed a novel advanced hydraulic wind energy design, which has up to 23% performance improvement over conventional wind turbine and conventional hydraulic wind energy systems with 5 m/sec winds. It also has significant cost advantages with levelized costs equal to coal (after carbon tax rebate). The design is equally applicable to tidal energy systems and has passed preliminary laboratory proof-of-performance tests, as funded by the Department of Energy.

  13. 兆瓦级风力机节能型电-液复合变桨距系统的设计与仿真研究%Design and Simulation Study of Energy-saving Electro-hydraulic Composite Pitch Control System for Megawatt-class Wind Turbine

    Institute of Scientific and Technical Information of China (English)

    刘军龙; 代晶辉; 吕凤池; 李阳; 赵进宝; 姜继海

    2013-01-01

    针对现有的电动变桨距系统和液压变桨距系统所存在的问题,将直驱式容控电液伺服技术与风力机变桨距系统结合,提出了一种节能型电-液复合变桨距系统.并以1.5 MW风力机为例,完成对其变桨距系统的设计、元件选型和Simulink仿真,分析了该节能型电-液复合变桨距系统在大功率风力机上应用的可行性.%Aimed at the existing problem of present electric pitch control system and hydraulic pitch control system,by combining the direct drive volume control electro-hydraulic servo technique and wind turbine pitch control system,a new kind of energy-saving electro-hydraulic composite pitch control system was proposed.By taking the 1.5 mega-watt wind turbine as an example,its pitch control system design,parts selection and Simulink Simulation were accomplished.The possibility of the application of this energy-saving electro-hydraulic composite pitch control system on high-power wind turbines was analyzed.

  14. Concept Evaluation for Hydraulic Yaw System

    DEFF Research Database (Denmark)

    Stubkier, Søren; Pedersen, Henrik C.; Andersen, Torben Ole

    2013-01-01

    a suspension system on a car, leading the loads away from the turbine structure. However, to realize a soft hydraulic yaw system a new design concept must be found. As a part of the development of the new concept a preliminary concept evaluation has been conducted, evaluating seven different hydraulic yaw......The yaw system is the subsystem on a wind turbine which ensures that the rotor plane of the turbine always is facing the wind direction. Studies from [1] show that a soft yaw system may be utilized to dampen the loads in the wind turbine structure. The soft yaw system operates much like...... investigation. Loads and yaw demands are based on the IEC 61400-1 standard for wind turbine design, and the loads for this examination are extrapolated from the HAWC2 aeroelastic design code. The concepts are based on a 5 MW off-shore turbine....

  15. Cavitation in hydraulic turbines: the benefits of new processes and materials utilization; Cavitacao em turbinas hidraulicas: os beneficios da utilizacao de novos processos e novos materiais

    Energy Technology Data Exchange (ETDEWEB)

    Souza, Nelio Cesar de [Parana Univ., Curitiba, PR (Brazil). Centro Politecnico

    1995-12-31

    Due to the introduction of new metallurgic technologies, this work proposes the substitution of the existing materials and processes used for the maintenance of electric turbines which present the cavitation effect. the methodology is presented. Considering the so far obtained results, it was concluded that by the utilization of the suggested techniques it is possible to obtain significant maintenance costs and time reduction 8 figs., 1 tab., 5 refs.

  16. Adsorption of hydraulic fracturing fluid components 2-butoxyethanol and furfural onto granular activated carbon and shale rock.

    Science.gov (United States)

    Manz, Katherine E; Haerr, Gregory; Lucchesi, Jessica; Carter, Kimberly E

    2016-12-01

    The objective of this study was to understand the adsorption ability of a surfactant and a non-surfactant chemical additive used in hydraulic fracturing onto shale and GAC. Experiments were performed at varying temperatures and sodium chloride concentrations to establish these impacts on the adsorption of the furfural (a non-surfactant) and 2-Butoxyethanol (2-BE) (a surfactant). Experiments were carried out in continuously mixed batch experiments with Langmuir and Freundlich isotherm modeling. The results of the experiments showed that adsorption of these compounds onto shale does not occur, which may allow these compounds to return to the surface in flowback and produced waters. The adsorption potential for these chemicals onto GAC follows the assumptions of the Langmuir model more strongly than those of the Freundlich model. The results show uptake of furfural and 2-BE occurs within 23 h in the presence of DI water, 0.1 mol L(-1) sodium chloride, and in lab synthesized hydraulic fracturing brine. Based on the data, 83% of the furfural and 62% of the 2-BE was adsorbed using GAC.

  17. Status on the Component Models Developed in the Modelica Framework: High-Temperature Steam Electrolysis Plant & Gas Turbine Power Plant

    Energy Technology Data Exchange (ETDEWEB)

    Suk Kim, Jong [Idaho National Lab. (INL), Idaho Falls, ID (United States); McKellar, Michael [Idaho National Lab. (INL), Idaho Falls, ID (United States); Bragg-Sitton, Shannon M. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Boardman, Richard D. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2016-10-01

    This report has been prepared as part of an effort to design and build a modeling and simulation (M&S) framework to assess the economic viability of a nuclear-renewable hybrid energy system (N-R HES). In order to facilitate dynamic M&S of such an integrated system, research groups in multiple national laboratories have been developing various subsystems as dynamic physics-based components using the Modelica programming language. In fiscal year (FY) 2015, Idaho National Laboratory (INL) performed a dynamic analysis of two region-specific N-R HES configurations, including the gas-to-liquid (natural gas to Fischer-Tropsch synthetic fuel) and brackish water reverse osmosis desalination plants as industrial processes. In FY 2016, INL has developed two additional subsystems in the Modelica framework: a high-temperature steam electrolysis (HTSE) plant and a gas turbine power plant (GTPP). HTSE has been proposed as a high priority industrial process to be integrated with a light water reactor (LWR) in an N-R HES. This integrated energy system would be capable of dynamically apportioning thermal and electrical energy (1) to provide responsive generation to the power grid and (2) to produce alternative industrial products (i.e., hydrogen and oxygen) without generating any greenhouse gases. A dynamic performance analysis of the LWR/HTSE integration case was carried out to evaluate the technical feasibility (load-following capability) and safety of such a system operating under highly variable conditions requiring flexible output. To support the dynamic analysis, the detailed dynamic model and control design of the HTSE process, which employs solid oxide electrolysis cells, have been developed to predict the process behavior over a large range of operating conditions. As first-generation N-R HES technology will be based on LWRs, which provide thermal energy at a relatively low temperature, complementary temperature-boosting technology was suggested for integration with the

  18. Digital Manufacture Techniques for Large Hydro Turbine's Blades

    Institute of Scientific and Technical Information of China (English)

    LAI Xide; ZHANG Qinghua; ZHOU Yunfei; YAN Sijie

    2006-01-01

    Blades are one of the vital components and most difficulty in manufacturing of large hydro turbines. In order to cost-effectively and productively manufacture these kinds of blades, a series of digital techniques in manufacturing have been developed, which includes digital design of hydro turbine blades based on manufacture' requirements, Computer-aided location and the machined error evaluation by using 3-dimensional digitized measuring, tool path generation strategy to meet requirements of enhancing machining efficiency and controlling deviation in NC machining, tool path generation and NC machining simulation by establishing a virtual NC machining environment for blades, and reasonable and feasible strategy and the systematic scheme for manufacturing of large blades by using 5-axis simultaneous CNC machining. The developed digital manufacture techniques have been successfully applied in manufacturing of both the large Kaplan and Francis hydraulic turbine blades; it shows that higher efficiency and the better surfaces finish accuracy can be achieved.

  19. Gas turbine

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Ok Ryong

    2004-01-15

    This book introduces gas turbine cycle explaining general thing of gas turbine, full gas turbine cycle, Ericson cycle and Brayton cycle, practical gas turbine cycle without pressure loss, multiaxial type gas turbine cycle and special gas turbine cycle, application of basic theory on a study on suction-cooling gas turbine cycle with turbo-refrigerating machine using the bleed air, and general performance characteristics of the suction-cooling gas turbine cycle combined with absorption-type refrigerating machine.

  20. Strength and Reliability of Wood for the Components of Low-cost Wind Turbines: Computational and Experimental Analysis and Applications

    DEFF Research Database (Denmark)

    Mishnaevsky, Leon; Freere, Peter; Sharma, Ranjan

    2009-01-01

    of experiments and computational investigations. Low cost testing machines have been designed, and employed for the systematic analysis of different sorts of Nepali wood, to be used for the wind turbine construction. At the same time, computational micromechanical models of deformation and strength of wood......This paper reports the latest results of the comprehensive program of experimental and computational analysis of strength and reliability of wooden parts of low cost wind turbines. The possibilities of prediction of strength and reliability of different types of wood are studied in the series...

  1. Design of hydraulic recuperation unit

    Directory of Open Access Journals (Sweden)

    Jandourek Pavel

    2016-01-01

    Full Text Available This article deals with design and measurement of hydraulic recuperation unit. Recuperation unit consist of radial turbine and axial pump, which are coupled on the same shaft. Speed of shaft with impellers are 6000 1/min. For economic reasons, is design of recuperation unit performed using commercially manufactured propellers.

  2. Cause Analysis and Improvement of Mechanical Seal Leakage of Hydraulic Turbine%液力透平机械密封泄漏的原因分析及改进

    Institute of Scientific and Technical Information of China (English)

    潘强; 徐卫忠; 韩维涛; 雷涛

    2015-01-01

    某柴油加氢改质装置液力透平采用旋转式串联机械密封和基于API标准的PLAN 53B冲洗方案的辅助密封系统,在试运行时发现机械密封泄漏严重。通过对机械密封结构和辅助密封冲洗系统的分析,指出机械密封泄漏的主要原因是,泵送环扬程不足及换热器管路阻力过大,旋转式串联密封动环波动影响摩擦热和介质传导热的排出,高温下隔离液会气化等。通过对换热器和泵送环的改造,降低了隔离液腔和密封腔温度;将旋转式串联密封改为静止式双端面密封,提高了换热效率;采用高沸点隔离液,解决了隔离液的气化问题。机械密封改造后,取得了较好的密封效果,且降低了液力透平电机的负荷。%The serious mechanical seal leakage is found for the hydraulic turbine of a diesel hydrogenation modification device during the test run. The hydraulic turbine uses the rotating tandem mechanical seal and the auxiliary sealing system with PLAN 53B irrigation scheme based on API standard. Through the analysis on the mechanical seal structure and the auxiliary flushing system, the main causes of the mechanical seal leakage were pointed out, which was that the pump ring head of the mechanical seal was insufficient and the heat exchanger pipe resistance was too large, the fluctuation of the ro⁃tary series sealing ring affected the dynamic discharge of friction heat and medium transfer heat, and the spacer fluid was vaporized at high temperature. Through the transformation of heat exchanger and pump ring, the temperature in the liquid separation chamber and the sealing cavity is reduced. By transforming the rotary series sealing into double end face static seal, the heat exchange efficiency is improved. By using high boiling point spacer fluid, the problem of gasification of spacer fluid is solved. The transformed mechanical seal achieves a better sealing effect, and the load of hydraulic

  3. 14 CFR 33.72 - Hydraulic actuating systems.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Hydraulic actuating systems. 33.72 Section... AIRWORTHINESS STANDARDS: AIRCRAFT ENGINES Design and Construction; Turbine Aircraft Engines § 33.72 Hydraulic actuating systems. Each hydraulic actuating system must function properly under all conditions in which...

  4. 水轮发电机转子系统磁悬浮承重装置散热研究%Study on heat dissipation of magnetic-levitation bearing device for rotor system of hydraulic turbine-generator unit

    Institute of Scientific and Technical Information of China (English)

    马宏忠; 郭晓宁; 陈远俊

    2011-01-01

    由于水轮发电机轴向重力负荷电磁悬浮承重系统的励磁线圈密封在装置内部,无法与外界空气对流,从而会出现温升过高.为解决此问题,提出了分别在该系统电磁铁的上铁心和衔铁(推力盘)上设置一定数量的通风孔,以便使线圈表面形成对流散热.针对通风孔设计,选用适合此模型结构的对流散热数值模型,推导出对流散热系数的数值,并利用有限元分析软件Ansys进行了温度和磁场仿真分析.结果显示,在满足水轮机组承重要求的前提下,合理设计通风孔可以使电磁悬浮装置线圈温度大大降低,满足系统应用要求.%Since the excitation coils of electromagnetic-levitation bearing system for the axial load of hydraulic turbine-generator are sealed inside of the system, the heat inside is difficult to be dissipated, and then over-high temperature rise would occur therein.For solving this problem, it is put forward that a few vents are respectively arranged on both the electromagnet core and the armature ( thrust disc) of the system, so as to create a convection heat dissipation on the surface of coils.So far as the design of the vent is concerned, suitable numerical models are selected for this model along with the deduction of the coefficient of convection heat dissipation, and then the simulation analysis on the temperature and the magnetic field is made with the softwareAnsys.The results show that under the premise to satisfy the bearing requirement of hydraulic turbine-generator unit, the temperature of the coils can be greatly lowered with the reasonably designed vents, therefore, the application requirement of the system can be met as well.

  5. Concept Evaluation for Hydraulic Yaw System

    DEFF Research Database (Denmark)

    Stubkier, Søren; Pedersen, Henrik C.; Andersen, Torben Ole

    2013-01-01

    a suspension system on a car, leading the loads away from the turbine structure. However, to realize a soft hydraulic yaw system a new design concept must be found. As a part of the development of the new concept a preliminary concept evaluation has been conducted, evaluating seven different hydraulic yaw...... concepts, ranging from a one-to-one copy of the electrical drive (electrical drives replaced by hydraulic dittos), to floating suspension systems mounted on hydraulic cylinders. Rough calculations of size and consequences of the different systems are presented ending up with the final concept for further...... investigation. Loads and yaw demands are based on the IEC 61400-1 standard for wind turbine design, and the loads for this examination are extrapolated from the HAWC2 aeroelastic design code. The concepts are based on a 5 MW off-shore turbine....

  6. Argonne Liquid-Metal Advanced Burner Reactor : components and in-vessel system thermal-hydraulic research and testing experience - pathway forward.

    Energy Technology Data Exchange (ETDEWEB)

    Kasza, K.; Grandy, C.; Chang, Y.; Khalil, H.; Nuclear Engineering Division

    2007-06-30

    This white paper provides an overview and status report of the thermal-hydraulic nuclear research and development, both experimental and computational, conducted predominantly at Argonne National Laboratory. Argonne from the early 1970s through the early 1990s was the Department of Energy's (DOE's) lead lab for thermal-hydraulic development of Liquid Metal Reactors (LMRs). During the 1970s and into the mid-1980s, Argonne conducted thermal-hydraulic studies and experiments on individual reactor components supporting the Experimental Breeder Reactor-II (EBR-II), Fast Flux Test Facility (FFTF), and the Clinch River Breeder Reactor (CRBR). From the mid-1980s and into the early 1990s, Argonne conducted studies on phenomena related to forced- and natural-convection thermal buoyancy in complete in-vessel models of the General Electric (GE) Prototype Reactor Inherently Safe Module (PRISM) and Rockwell International (RI) Sodium Advanced Fast Reactor (SAFR). These two reactor initiatives involved Argonne working closely with U.S. industry and DOE. This paper describes the very important impact of thermal hydraulics dominated by thermal buoyancy forces on reactor global operation and on the behavior/performance of individual components during postulated off-normal accident events with low flow. Utilizing Argonne's LMR expertise and design knowledge is vital to the further development of safe, reliable, and high-performance LMRs. Argonne believes there remains an important need for continued research and development on thermal-hydraulic design in support of DOE's and the international community's renewed thrust for developing and demonstrating the Global Nuclear Energy Partnership (GNEP) reactor(s) and the associated Argonne Liquid Metal-Advanced Burner Reactor (LM-ABR). This white paper highlights that further understanding is needed regarding reactor design under coolant low-flow events. These safety-related events are associated with the transition

  7. 水轮发电机组转动部分动力学分析%Rotor-dynamic Analysis of Hydraulic Turbine Rotor System

    Institute of Scientific and Technical Information of China (English)

    陈德亮

    2013-01-01

    本文根据水轮发电机组中的密封形式及其边界条件特征,选用Muszyska密封力模型近似水轮机上冠、下环间隙流体激振力,并加载到水轮发电机组转动部分中,采用New mark数值方法对包括发电机、主轴、上导轴承、下导轴承、水轮机转轮、上冠和下环密封在内的水轮发电组转动部分-密封系统进行数值仿真,得到了水轮发电机组转动部分动力学特性,并将其与水轮发电机组实际运行数据进行对比,结果证明所建立的密封力模型符合工程实际,对水轮发电机组转动部分的设计有一定的指导意义。%Based on the seal form of hydroelectric generating unit and its boundary conditions, Muszyska model is used to approximate the fluid exciting force in gap flow between the crown and band of Francis turbine, and is loaded into the rotor system. New mark numerical method is selected to simulate rotor-seal system including generator, main shaft, upper guide bearing, lower guide bearing, turbine runner and the seals of the crown and the band of the turbine. Rotor-dynamic characteristics of the hydrogenerator rotor system is obtained and compared with the actual operation data. The result shows that the selected sealing force model can accord with engineering practice, and it has a guiding value to the design of hydrogenerator rotor system.

  8. Study on Heat Treatment Process for Blade Castings of Hydraulic Turbine Set in Three Gorges Project%三峡水轮机组叶片铸件热处理工艺研究

    Institute of Scientific and Technical Information of China (English)

    高扬; 董晓亮

    2014-01-01

    以三峡水轮机组叶片铸件为研究对象,对其热处理工艺进行了研究。采用热膨胀仪进行特征相变点的测定,通过热处理试验确定热处理工艺参数对机械性能的影响关系,提出了叶片铸件最佳热处理工艺路线及工艺参数,并应用于实际生产,生产出的叶片铸件各项性能指标均满足设计要求。%The heat treatment process for the blade castings is studied by taking samples of these blade castings of hydraulic turbine in Three Gorges Project. The feature transition points are measured by thermal dilatometer and the effect of parameters of heat treatment process on me-chanical properties are confirmed by heat treatment test. After that the optimal heat treatment pro-cess and technological parameters for treating blade castings are proposed. When the new process and technological parameters are put into operation, all kinds of properties of the blade castings produced by application of the process and parameters can meet the design requirements.

  9. 枕头坝一级水电站水轮机模型验收试验%Acceptance test of turbine model of Zhentouba I Hydropower Station

    Institute of Scientific and Technical Information of China (English)

    柯剑; 李剑君

    2014-01-01

    In order to verify whether the hydraulic performance of turbines of Zhentouba I Hydropower Station meet the contract requirement, the acceptance test of turbine model was carried out on the high pressure hydraulic test stand in a hydraulic labora-tory of Slovenija. The stand and devices of the acceptance test were introduced. The test contents included energy test, cavitation test, pressure fluctuation test, runaway speed test, axial hydraulic thrust test, check of the geometry and size of flow passage components of the turbine model. The results showed that the hydraulic performance of turbines met the requirement of the con-tract.%为了验证枕头坝一级水电站水轮机水力性能是否满足合同要求,在斯诺文尼亚某水力试验室高压水轮机试验台,进行了水轮机模型验收试验。试验主要内容包括能量试验、空化试验、压力脉动试验、飞逸试验、轴向水推力试验、模型水轮机通流部件几何形状及尺寸检查等。试验结果表明,水轮机的水力性能均满足合同要求。

  10. Detection of gear cracks in a complex gearbox of wind turbines using supervised bounded component analysis of vibration signals collected from multi-channel sensors

    Science.gov (United States)

    Li, Zhixiong; Yan, Xinping; Wang, Xuping; Peng, Zhongxiao

    2016-06-01

    In the complex gear transmission systems, in wind turbines a crack is one of the most common failure modes and can be fatal to the wind turbine power systems. A single sensor may suffer with issues relating to its installation position and direction, resulting in the collection of weak dynamic responses of the cracked gear. A multi-channel sensor system is hence applied in the signal acquisition and the blind source separation (BSS) technologies are employed to optimally process the information collected from multiple sensors. However, literature review finds that most of the BSS based fault detectors did not address the dependence/correlation between different moving components in the gear systems; particularly, the popular used independent component analysis (ICA) assumes mutual independence of different vibration sources. The fault detection performance may be significantly influenced by the dependence/correlation between vibration sources. In order to address this issue, this paper presents a new method based on the supervised order tracking bounded component analysis (SOTBCA) for gear crack detection in wind turbines. The bounded component analysis (BCA) is a state of art technology for dependent source separation and is applied limitedly to communication signals. To make it applicable for vibration analysis, in this work, the order tracking has been appropriately incorporated into the BCA framework to eliminate the noise and disturbance signal components. Then an autoregressive (AR) model built with prior knowledge about the crack fault is employed to supervise the reconstruction of the crack vibration source signature. The SOTBCA only outputs one source signal that has the closest distance with the AR model. Owing to the dependence tolerance ability of the BCA framework, interfering vibration sources that are dependent/correlated with the crack vibration source could be recognized by the SOTBCA, and hence, only useful fault information could be preserved in

  11. Turbinate surgery

    Science.gov (United States)

    Turbinectomy; Turbinoplasty; Turbinate reduction; Nasal airway surgery; Nasal obstruction - turbinate surgery ... There are several types of turbinate surgery: Turbinectomy: All or ... This can be done in several different ways, but sometimes a ...

  12. 基于响应面法的离心泵作透平水力和声学性能优化%Hydraulic and acoustic property optimization for centrifugal pump as turbine based on response surface method

    Institute of Scientific and Technical Information of China (English)

    代翠; 孔繁余; 董亮; 汪家琼; 柏宇星

    2015-01-01

    为综合优化离心泵作透平的水力和声学性能,建立了一种基于响应面的离心泵作透平水力和声学性能多目标优化方法。首先在对比分析叶轮几何参数对透平水力和噪声影响的基础上,根据敏感度筛选出对噪声影响显著的关键参数;进而应用响应面方法构造显著变量与多目标函数的响应面多元回归模型,分析影响水力效率与噪声的参数间交互作用;最终以水力效率不降低和总声压级最小为响应目标,兼顾性能与噪声确定最优参数组合,即叶片进口安放角为19.5°,叶片出口安放角为20°,叶片出口宽度为16 mm,叶片包角为92°,叶轮进口直径为101 mm,叶片数为12。对某离心泵作透平多目标优化结果表明,叶轮进口直径、叶片出口宽度、叶片数及叶片包角对内场噪声总声压级影响显著;响应面模型能够反映参数与响应值之间的相关性;经试验验证优化后透平水力效率平均提高了1.98个百分点,总声压级降低了4.95 dBA,表明采用的响应面法能够在不影响透平原有水力性能的前提下改善声学性能。%As a way of energy saving by recovery of residual pressure, centrifugal pump as turbine (PAT) has been widely used in many fields. As PAT is gradually developed for high power, flow-induced noise becomes one of the most important issues that cause negative effect on reliability. In order to improve both hydraulic and acoustic performances of PAT, an optimization method combining sensitivity analysis and response surface was established. Firstly, through comparison of impeller parameter impact on hydraulic and noise performances, the geometric parameters with great influence on acoustic were filtered based on sensitivity analysis. Further more, with the efficiency and A-weighted overall sound pressure level (OASPL) as target, the multiple regression models connecting variables and multi-objective functions

  13. Secondary Development Graphic Symbol Library of Hydraulic Components by ACAD%基于ACAD二次开发的液压元件图形符号库

    Institute of Scientific and Technical Information of China (English)

    王盛智; 蓝晓民

    2012-01-01

    利用AutoCAD提供的二次开发方法,通过建立用户文件夹、用户快捷方式、定义用户菜单文件、修改图像控件菜单格式等,在不需要掌握编程语言的情况下,即可开发出实用的元器件图形符号库.建立的应用图库可以对元器件图形符号进行预览、插入等操作.以开发的液压元件符号库图库为例,详尽介绍建库方法.%Using the method of secondary development from AutoCAD to set up users folder, user shortcuts and define user menu documents, modify the form of graphics' control menu.etc, in the case of master the programming language,can develop practical components graphic symbols library, which can preview, insert for the graphic symbols in the graphic symbols library. Taking hydraulic component symbols library for example to introduce the method in detailed.

  14. Hydraulic Power Plant Machine Dynamic Diagnosis

    Directory of Open Access Journals (Sweden)

    Hans Günther Poll

    2006-01-01

    Full Text Available A method how to perform an entire structural and hydraulic diagnosis of prototype Francis power machines is presented and discussed in this report. Machine diagnosis of Francis units consists on a proper evaluation of acquired mechanical, thermal and hydraulic data obtained in different operating conditions of several rotary and non rotary machine components. Many different physical quantities of a Francis machine such as pressure, strains, vibration related data, water flow, air flow, position of regulating devices and displacements are measured in a synchronized way so that a relation of cause an effect can be developed for each operating condition and help one to understand all phenomena that are involved with such kind of machine. This amount of data needs to be adequately post processed in order to allow correct interpretation of the machine dynamics and finally these data must be compared with the expected calculated data not only to fine tuning the calculation methods but also to accomplish fully understanding of the influence of the water passages on such machines. The way how the power plant owner has to operate its Francis machines, many times also determined by a central dispatcher, has a high influence on the fatigue life time of the machine components. The diagnostic method presented in this report helps one to understand the importance of adequate operation to allow a low maintenance cost for the entire power plant. The method how to acquire these quantities is discussed in details together with the importance of correct sensor balancing, calibration and adequate correlation with the physical quantities. Typical results of the dynamic machine behavior, with adequate interpretation, obtained in recent measurement campaigns of some important hydraulic turbines were presented. The paper highlights the investigation focus of the hydraulic machine behavior and how to tailor the measurement strategy to accomplish all goals. Finally some

  15. Studies on the heat shield structure of ceramic gas turbine components, first report: heat shield properties of the ceramic combustor

    Energy Technology Data Exchange (ETDEWEB)

    Watanabe, K.; Hisamatsu, T.; Yuri, I. (CRIEPI, Yokosuka-shi (Japan). Yokosuka Research Lab.)

    1993-04-01

    The ceramic gas turbine for power generation consists of ceramic parts and metal parts. In order to improve the performance and reliability of the ceramic gas turbine, it is important to develop a heat shield structure between ceramics and metal. CRIEPI proposed a heat shield structure for the ceramic combustor wall in which a small amount of air is introduced in a ceramic fibre layer in the ceramic combustor wall. It was confirmed that the heat shield structure has excellent performance in a high pressure combustion test. This report describes the heat transfer property of the heat shield structure in the ceramic combustor wall by numerical analysis. As a result of analysis, it was clarified that the ceramic fibre temperature changes rapidly near the ceramic tiles, and that the heat transfer property of the heat shield structure is as follows: heat shield performance is maintained by introducing a small amount of air; metal wall temperature is little affected by combustion gas temperature, thermophysical property of ceramic fibres and so on. 9 refs., 19 figs., 2 tabs.

  16. Fish-Friendly Hydropower Turbine Development & Deployment: Alden Turbine Preliminary Engineering and Model Testing

    Energy Technology Data Exchange (ETDEWEB)

    Foust, J. [Voith Hydro, Inc., York, PA (USA); Hecker, G. [Alden Research Laboratory, Inc., Holden, MA (USA); Li, S. [Alden Research Laboratory, Inc., Holden, MA (USA); Allen, G. [Alden Research Laboratory, Inc., Holden, MA (USA)

    2011-10-01

    The Alden turbine was developed through the U.S. Department of Energy's (DOE's) former Advanced Hydro Turbine Systems Program (1994-2006) and, more recently, through the Electric Power Research Institute (EPRI) and the DOE's Wind & Water Power Program. The primary goal of the engineering study described here was to provide a commercially competitive turbine design that would yield fish passage survival rates comparable to or better than the survival rates of bypassing or spilling flow. Although the turbine design was performed for site conditions corresponding to 92 ft (28 m) net head and a discharge of 1500 cfs (42.5 cms), the design can be modified for additional sites with differing operating conditions. During the turbine development, design modifications were identified for the spiral case, distributor (stay vanes and wicket gates), runner, and draft tube to improve turbine performance while maintaining features for high fish passage survival. Computational results for pressure change rates and shear within the runner passage were similar in the original and final turbine geometries, while predicted minimum pressures were higher for the final turbine. The final turbine geometry and resulting flow environments are expected to further enhance the fish passage characteristics of the turbine. Computational results for the final design were shown to improve turbine efficiencies by over 6% at the selected operating condition when compared to the original concept. Prior to the release of the hydraulic components for model fabrication, finite element analysis calculations were conducted for the stay vanes, wicket gates, and runner to verify that structural design criteria for stress and deflections were met. A physical model of the turbine was manufactured and tested with data collected for power and efficiency, cavitation limits, runaway speed, axial and radial thrust, pressure pulsations, and wicket gate torque. All parameters were observed to fall

  17. Composite turbine bucket assembly

    Energy Technology Data Exchange (ETDEWEB)

    Liotta, Gary Charles; Garcia-Crespo, Andres

    2014-05-20

    A composite turbine blade assembly includes a ceramic blade including an airfoil portion, a shank portion and an attachment portion; and a transition assembly adapted to attach the ceramic blade to a turbine disk or rotor, the transition assembly including first and second transition components clamped together, trapping said ceramic airfoil therebetween. Interior surfaces of the first and second transition portions are formed to mate with the shank portion and the attachment portion of the ceramic blade, and exterior surfaces of said first and second transition components are formed to include an attachment feature enabling the transition assembly to be attached to the turbine rotor or disk.

  18. The helical turbine: A new idea for low-head hydro

    Energy Technology Data Exchange (ETDEWEB)

    Gorlov, A.M. [Northeastern Univ., Boston, MA (United States)

    1995-09-01

    Substantial potential exists at small hydro sites where heads are too low for conventional hydraulic turbines. A spiral-bladed turbine may offer a new alternative for tapping that potential in a cost-efficient manner.

  19. Hydraulic structures

    CERN Document Server

    Chen, Sheng-Hong

    2015-01-01

    This book discusses in detail the planning, design, construction and management of hydraulic structures, covering dams, spillways, tunnels, cut slopes, sluices, water intake and measuring works, ship locks and lifts, as well as fish ways. Particular attention is paid to considerations concerning the environment, hydrology, geology and materials etc. in the planning and design of hydraulic projects. It also considers the type selection, profile configuration, stress/stability calibration and engineering countermeasures, flood releasing arrangements and scouring protection, operation and maintenance etc. for a variety of specific hydraulic structures. The book is primarily intended for engineers, undergraduate and graduate students in the field of civil and hydraulic engineering who are faced with the challenges of extending our understanding of hydraulic structures ranging from traditional to groundbreaking, as well as designing, constructing and managing safe, durable hydraulic structures that are economical ...

  20. HYDRAULIC SERVO

    Science.gov (United States)

    Wiegand, D.E.

    1962-05-01

    A hydraulic servo is designed in which a small pressure difference produced at two orifices by an electrically operated flapper arm in a constantly flowing hydraulic loop is hydraulically amplified by two constant flow pumps, two additional orifices, and three unconnected ball pistons. Two of the pistons are of one size and operate against the additional orifices, and the third piston is of a different size and operates between and against the first two pistons. (AEC)

  1. 风力发电机组液压变桨机构运动与强度分析%Analysis on kinematics and strength of the hydraulic pitch mechanism of a wind turbine

    Institute of Scientific and Technical Information of China (English)

    张锁怀; 贾坤; 张平满

    2011-01-01

    After the Solidworks model being inputted into the ANSYS software, the file of mode is created,and the original rigid body is replaced with the flexible body to build a mixed rigid and flexible body model in ADAMS.Then kinematic accuracy of the pitch mechanism of a wind turbine is analyzed, which results show that the difference of the pitch angle and speed exist between the actual and theoretical value due to the elastic deformation of the parts and the hydraulic oil, therefore monitoring sensors are proposed to be fixed on the blade plate and used to control the hydraulic cylinder motion and compensate the moving errorA file related with loads information of the key parts is created after motion simulation. After the file being input in ANSYS,the strength of the key parts is analyzed Based on the results,the location, where the material was easy to yield or the maximum stress exist,is found,which should be protected during designing.%将各个构件的Solidworks实体模型导入ANSYS中,生成柔性体模态中性文件,将该柔性体导入ADAMS中替换原有的刚性体,建立变桨机构的刚柔混合体模型.利用ADAMS对风力发电机组变桨机构的模型进行变桨精度分析,发现实际变桨速度和角位移与理论值有一定误差,提出了在桨叶盘上增设位置传感器,利用传感器发出的信号控制液压缸动作,对变桨误差进行补偿;将运动仿真过程中产生的零件载荷文件,导入ANSYS中,对关键零件进行强度分析,指出了各零件易破坏位置与最大应力位置,设计时应注意保护.

  2. Hydraulic connection and penstock chambers in the PSP Kops II. Direct crossing from pump- into turbine operation; Hydraulischer Kurzschluss und Druckluftwasserschlosskammern im PSW Kops II. Nahtloser Uebergang vom Pump- in den Turbinenbetrieb

    Energy Technology Data Exchange (ETDEWEB)

    Puerer, E. [Vorarlberger Illwerke AG (VIW), Schruns (Austria)

    2007-04-16

    After a two years' design development phase including the implementation of the approval process and the award of contracts for all major components, the new building of Kopswerk II has been started on the 1st of September 2004. Kopswerk II is a pump storage scheme with an installed capacity of 450 to 510 MW in turbine mode and 450 MW in pumping operation. The conception of this power plant was substantially determined by the modified market conditions since the liberalization of the electricity market. Nowadays the plant is in the third year of construction. The installation of the first turbogenerator unit has advanced and will start-up in at the end of the year 2007. The completion of the total plant with full operation of the three turbogenerator units is planned in the middle of 2008. The erection cost at the end of construction shall be about 370 Mio Euro. (GL)

  3. 基于AMESim液压元件设计库的液压系统建模与仿真研究%Modeling and Simulation Research of Hydraulic System Based on Hydraulic Component Design Library of AMESim

    Institute of Scientific and Technical Information of China (English)

    张宪宇; 陈小虎; 何庆飞; 万俊盛

    2012-01-01

    A hydraulic system test-bed was taken as research object, and AMESim was used for simulation analysis. Hie HCD simulation model of the hydraulic system was built. In order to verify the correctness of the model, characteristics simulation was proceeded and compared with physical characteristics. The HCD simulation model was used to analyze the characteristic factors which in- flueneed hydraulic actuator velocity. The quantification contrast curves of hydraulic actuator velocity were gotten, which were influenced by flow, piston diameter, piston rod diameter and leakage. It provides basis for hydraulic system design and fault diagnosis.%以某液压实验台为研究对象,运用AMESim对液压系统进行仿真分析.建立液压系统的HCD仿真模型;进行特性仿真,并与物理特性进行对比,验证了HCD仿真模型的正确性;运用所建立的HCD仿真模型对影响液压缸运动速度的因素进行分析,给出不同的流量、活塞缸直径、活塞杆直径及泄漏影响液压缸运动速度的量化对比曲线,从而为液压系统的设计及故障诊断提供依据.

  4. 燃气轮机应用的热障涂层%The Application of Thermal Barrier C oatings for Gas Turbine Components

    Institute of Scientific and Technical Information of China (English)

    徐文文; 赵迎炬

    2001-01-01

    A concise account is given of the recent progress in the use of thermal barrier coating technology for gas turbine flow path components. The newly developed EB - PVD (electronic beam - physical vapor deposition) method represents a major bre a kthrough in thermal barrier coating technology. The present paper briefly explai ns the EB PVD method and its related equipment%简要叙述了燃气轮机热燃气通流部件上热障涂层镀敷工艺的 进展情况。最新开发的EB-PVD方法是TBC技术的重大突破,简介了EB-PVD方法及其设备。

  5. Mechanical impact of dynamic phenomena in Francis turbines at off design conditions

    Science.gov (United States)

    Duparchy, F.; Brammer, J.; Thibaud, M.; Favrel, A.; Lowys, P. Y.; Avellan, F.

    2017-04-01

    At partial load and overload conditions, Francis turbines are subjected to hydraulic instabilities that can potentially result in high dynamic solicitations of the turbine components and significantly reduce their lifetime. This study presents both experimental data and numerical simulations that were used as complementary approaches to study these dynamic solicitations. Measurements performed on a reduced scale physical model, including a special runner instrumented with on-board strain gauges and pressure sensors, were used to investigate the dynamic phenomena experienced by the runner. They were also taken as reference to validate the numerical simulation results. After validation, advantage was taken from the numerical simulations to highlight the mechanical response of the structure to the unsteady hydraulic phenomena, as well as their impact on the fatigue damage of the runner.

  6. Additive Manufacturing of IN100 Superalloy Through Scanning Laser Epitaxy for Turbine Engine Hot-Section Component Repair: Process Development, Modeling, Microstructural Characterization, and Process Control

    Science.gov (United States)

    Acharya, Ranadip; Das, Suman

    2015-09-01

    This article describes additive manufacturing (AM) of IN100, a high gamma-prime nickel-based superalloy, through scanning laser epitaxy (SLE), aimed at the creation of thick deposits onto like-chemistry substrates for enabling repair of turbine engine hot-section components. SLE is a metal powder bed-based laser AM technology developed for nickel-base superalloys with equiaxed, directionally solidified, and single-crystal microstructural morphologies. Here, we combine process modeling, statistical design-of-experiments (DoE), and microstructural characterization to demonstrate fully metallurgically bonded, crack-free and dense deposits exceeding 1000 μm of SLE-processed IN100 powder onto IN100 cast substrates produced in a single pass. A combined thermal-fluid flow-solidification model of the SLE process compliments DoE-based process development. A customized quantitative metallography technique analyzes digital cross-sectional micrographs and extracts various microstructural parameters, enabling process model validation and process parameter optimization. Microindentation measurements show an increase in the hardness by 10 pct in the deposit region compared to the cast substrate due to microstructural refinement. The results illustrate one of the very few successes reported for the crack-free deposition of IN100, a notoriously "non-weldable" hot-section alloy, thus establishing the potential of SLE as an AM method suitable for hot-section component repair and for future new-make components in high gamma-prime containing crack-prone nickel-based superalloys.

  7. Reliability Assessment of Wind Turbines

    DEFF Research Database (Denmark)

    Sørensen, John Dalsgaard

    2015-01-01

    Wind turbines can be considered as structures that are in between civil engineering structures and machines since they consist of structural components and many electrical and machine components together with a control system. Further, a wind turbine is not a one-of-a-kind structure...... but manufactured in series production based on many component tests, some prototype tests and zeroseries wind turbines. These characteristics influence the reliability assessment where focus in this paper is on the structural components. Levelized Cost Of Energy is very important for wind energy, especially when...... comparing to other energy sources. Therefore much focus is on cost reductions and improved reliability both for offshore and onshore wind turbines. The wind turbine components should be designed to have sufficient reliability level with respect to both extreme and fatigue loads but also not be too costly...

  8. Reliability assessment of Wind turbines

    DEFF Research Database (Denmark)

    Sørensen, John Dalsgaard

    2015-01-01

    Wind turbines can be considered as structures that are in between civil engineering structures and machines since they consist of structural components and many electrical and machine components together with a control system. Further, a wind turbine is not a one-of-a-kind structure...... but manufactured in series production based on many component tests, some prototype tests and zeroseries wind turbines. These characteristics influence the reliability assessment where focus in this paper is on the structural components. Levelized Cost Of Energy is very important for wind energy, especially when...... comparing to other energy sources. Therefore much focus is on cost reductions and improved reliability both for offshore and onshore wind turbines. The wind turbine components should be designed to have sufficient reliability level with respect to both extreme and fatigue loads but also not be too costly...

  9. Development of New Micro Hydropower Turbine

    OpenAIRE

    Dousith, Phommachanh; Kurokawa, Junichi; Matsui, Jun; Choi, Young-Do

    2005-01-01

    There is a huge of available hydropower potential in the water supply system (WSS) that has been abandoned.Each time when we use a water faucet, the power of 10 to 80 watts is dissipated.In fact, this dissipated energy can be converted to useful energy by hydraulic turbine. Presently, there is not suitable turbine to use in WSS. Therefore, the new type turbine is needed to explore. In this study, Positive Displacement Turbine (PDT) is proposed. The main objective of this study is to develop n...

  10. Wind turbine acoustics

    Science.gov (United States)

    Hubbard, Harvey H.; Shepherd, Kevin P.

    1990-01-01

    Available information on the physical characteristics of the noise generated by wind turbines is summarized, with example sound pressure time histories, narrow- and broadband frequency spectra, and noise radiation patterns. Reviewed are noise measurement standards, analysis technology, and a method of characterizing wind turbine noise. Prediction methods are given for both low-frequency rotational harmonics and broadband noise components. Also included are atmospheric propagation data showing the effects of distance and refraction by wind shear. Human perception thresholds, based on laboratory and field tests, are given. Building vibration analysis methods are summarized. The bibliography of this report lists technical publications on all aspects of wind turbine acoustics.

  11. Wind turbine acoustics

    Science.gov (United States)

    Hubbard, Harvey H.; Shepherd, Kevin P.

    1990-12-01

    Available information on the physical characteristics of the noise generated by wind turbines is summarized, with example sound pressure time histories, narrow- and broadband frequency spectra, and noise radiation patterns. Reviewed are noise measurement standards, analysis technology, and a method of characterizing wind turbine noise. Prediction methods are given for both low-frequency rotational harmonics and broadband noise components. Also included are atmospheric propagation data showing the effects of distance and refraction by wind shear. Human perception thresholds, based on laboratory and field tests, are given. Building vibration analysis methods are summarized. The bibliography of this report lists technical publications on all aspects of wind turbine acoustics.

  12. Sustainable Energy Solutions Task 2.0: Wind Turbine Reliability and Maintainability Enhancement through System-wide Structure Health Monitoring and Modifications to Rotating Components

    Energy Technology Data Exchange (ETDEWEB)

    Twomey, Janet M. [Wichita State Univ., Wichita, KS (United States)

    2010-04-30

    An evaluation of nondestructive structural health monitoring methods was completed with over 132 documents, 37 specifically about wind turbines, summarized into a technology matrix. This matrix lists the technology, what can be monitored with this technology, and gives a short summary of the key aspects of the technology and its application. Passive and active acoustic emission equipment from Physical Acoustics Corp. and Acellent Technologies have been evaluated and selected for use in experimental state loading and fatigue tests of composite wind turbine blade materials. Acoustic Emission (AE) and Active Ultrasonic Testing (AUT), were applied to composite coupons with both simulated and actual damage. The results found that, while composites are more complicated in nature, compared to metallic structures, an artificial neural network analysis could still be used to determine damage. For the AE system, the failure mode could be determined (i.e. fiber breakage, delamination, etc.). The Acellent system has been evaluated to work well with composite materials. A test-rig for reliability testing of the rotating components was constructed. The research on the types of bearings used in the wind turbines indicated that in most of the designs, the main bearings utilized to support the shaft are cylindrical roller bearings. The accelerated degradation testing of a population of bearings was performed. Vibration and acoustic emission data was collected and analyzed in order to identify a representative degradation signal for each bearing to identify the initiation of the degradation process in the bearings. Afterwards, the RMS of the vibration signal from degradation initiation up to the end of the useful life of the bearing was selected to predict the remaining useful life of the bearing. This step included fitting Autoregressive Moving Average (ARMA) models to the degradation signals and approximating the probability distribution function (PDF) of remaining useful life

  13. Hydraulic Soft Yaw System Load Reduction and Prototype Results

    DEFF Research Database (Denmark)

    Stubkier, Søren; Pedersen, Henrik C.; Markussen, Kristian

    2013-01-01

    Introducing a hydraulic soft yaw concept for wind turbines leads to significant load reductions in the wind turbine structure. The soft yaw system operates as a shock absorption system on a car, hence absorbing the loading from turbulent wind conditions instead of leading them into the stiff wind...

  14. Basic hydraulics

    CERN Document Server

    Smith, P D

    1982-01-01

    BASIC Hydraulics aims to help students both to become proficient in the BASIC programming language by actually using the language in an important field of engineering and to use computing as a means of mastering the subject of hydraulics. The book begins with a summary of the technique of computing in BASIC together with comments and listing of the main commands and statements. Subsequent chapters introduce the fundamental concepts and appropriate governing equations. Topics covered include principles of fluid mechanics; flow in pipes, pipe networks and open channels; hydraulic machinery;

  15. Development of a pump-turbine runner based on multiobjective optimization

    Science.gov (United States)

    Xuhe, W.; Baoshan, Z.; Lei, T.; Jie, Z.; Shuliang, C.

    2014-03-01

    As a key component of reversible pump-turbine unit, pump-turbine runner rotates at pump or turbine direction according to the demand of power grid, so higher efficiencies under both operating modes have great importance for energy saving. In the present paper, a multiobjective optimization design strategy, which includes 3D inverse design method, CFD calculations, response surface method (RSM) and multiobjective genetic algorithm (MOGA), is introduced to develop a model pump-turbine runner for middle-high head pumped storage plant. Parameters that controlling blade shape, such as blade loading and blade lean angle at high pressure side are chosen as input parameters, while runner efficiencies under both pump and turbine modes are selected as objective functions. In order to validate the availability of the optimization design system, one runner configuration from Pareto front is manufactured for experimental research. Test results show that the highest unit efficiency is 91.0% under turbine mode and 90.8% under pump mode for the designed runner, of which prototype efficiencies are 93.88% and 93.27% respectively. Viscous CFD calculations for full passage model are also conducted, which aim at finding out the hydraulic improvement from internal flow analyses.

  16. Valve exploiting the principle of a side channel turbine

    Directory of Open Access Journals (Sweden)

    Jandourek Pavel

    2017-01-01

    Full Text Available The article deals with a side channel turbine, which can be used as a suitable substitute for a pressure reducing valve. Reducing valves are a source of hydraulic losses. The aim is to replace them by a side channel turbine. With that in mind, hydraulic losses can be replaced by a production of electrical energy at comparable characteristics of the valve and the turbine. The basis for the design is the loss characteristics of the valve. Thereby creating a kind of turbine valve with speed-controlled flow in dependence of runner revolution.

  17. Hydraulic Structures

    Data.gov (United States)

    Department of Homeland Security — This table is required whenever hydraulic structures are shown in the flood profile. It is also required if levees are shown on the FIRM, channels containing the...

  18. Cogeneration steam turbines from Siemens: New solutions

    Science.gov (United States)

    Kasilov, V. F.; Kholodkov, S. V.

    2017-03-01

    The Enhanced Platform system intended for the design and manufacture of Siemens AG turbines is presented. It combines organizational and production measures allowing the production of various types of steam-turbine units with a power of up to 250 MWel from standard components. The Enhanced Platform designs feature higher efficiency, improved reliability, better flexibility, longer overhaul intervals, and lower production costs. The design features of SST-700 and SST-900 steam turbines are outlined. The SST-700 turbine is used in backpressure steam-turbine units (STU) or as a high-pressure cylinder in a two-cylinder condensing turbine with steam reheat. The design of an SST-700 single-cylinder turbine with a casing without horizontal split featuring better flexibility of the turbine unit is presented. An SST-900 turbine can be used as a combined IP and LP cylinder (IPLPC) in steam-turbine or combined-cycle power units with steam reheat. The arrangements of a turbine unit based on a combination of SST-700 and SST-900 turbines or SST-500 and SST-800 turbines are presented. Examples of this combination include, respectively, PGU-410 combinedcycle units (CCU) with a condensing turbine and PGU-420 CCUs with a cogeneration turbine. The main equipment items of a PGU-410 CCU comprise an SGT5-4000F gas-turbine unit (GTU) and STU consisting of SST-700 and SST-900RH steam turbines. The steam-turbine section of a PGU-420 cogeneration power unit has a single-shaft turbine unit with two SST-800 turbines and one SST-500 turbine giving a power output of N el. STU = 150 MW under condensing conditions.

  19. Multivariable Control for a Variable Area Turbine Engine

    Science.gov (United States)

    1977-08-01

    high turbine gas flow total temperature after energy loss to seals and dis.s. TT45hi - low turbine gas flow total temperature after energy loss to...vanes and blades. TT451o - low turbine gas flow total temperature after energy loss to seals and discs. TT5 - low turbine gas flow exit total temperature...Proposed advanced gas turbine engine cycles will have many variable geometry components including fan and compressorvane angles, high and low turbine flow

  20. Hydraulics and pneumatics

    CERN Document Server

    Parr, Andrew

    2006-01-01

    Nearly all industrial processes require objects to be moved, manipulated or subjected to some sort of force. This is frequently accomplished by means of electrical equipment (such as motors or solenoids), or via devices driven by air (pneumatics) or liquids (hydraulics).This book has been written by a process control engineer as a guide to the operation of hydraulic and pneumatic systems for all engineers and technicians who wish to have an insight into the components and operation of such a system.This second edition has been fully updated to include all recent developments su

  1. Hydraulic Soft Yaw System Load Reduction and Prototype Results

    DEFF Research Database (Denmark)

    Stubkier, Søren; Pedersen, Henrik C.; Markussen, Kristian

    2013-01-01

    Introducing a hydraulic soft yaw concept for wind turbines leads to significant load reductions in the wind turbine structure. The soft yaw system operates as a shock absorption system on a car, hence absorbing the loading from turbulent wind conditions instead of leading them into the stiff wind...... operates. Further it is analyzed how the soft yaw system influence the power production of the turbine. It is shown that the influence is minimal, but at larger yaw errors the effect is possitive. Due to the implemeted functions in the hydraulic soft yaw system such as even load distribution on the pinions...

  2. Model tests on a semi-axial pump turbine

    Energy Technology Data Exchange (ETDEWEB)

    Strohmer, F.; Horacek, G.

    1984-03-01

    Due to their good hydraulic characteristic semi-axial pump turbines are used in the medium head range of pumped storage plants. This paper describes model tests performed on a semiaxial pump turbine model and shows the results of these tests. The aim of the model tests was the optimization of the hydraulic water passage, the measurement of the hydraulic characteristics over the whole operating range, the investigation of the cavitation behaviour, the investigation of the hydraulic forces and torques as well as the proof of the values guaranteed to the customer.

  3. Hydraulic System Design of Hydraulic Actuators for Large Butterfly Valves

    Directory of Open Access Journals (Sweden)

    Ye HUANG

    2014-09-01

    Full Text Available Hydraulic control systems of butterfly valves are presently valve-controlled and pump-controlled. Valve-controlled hydraulic systems have serious power loss and generate much heat during throttling. Pump-controlled hydraulic systems have no overflow or throttling losses but are limited in the speed adjustment of the variable-displacement pump, generate much noise, pollute the environment, and have motor power that does not match load requirements, resulting in low efficiency under light loads and wearing of the variable-displacement pump. To overcome these shortcomings, this article designs a closed hydraulic control system in which an AC servo motor drives a quantitative pump that controls a spiral swinging hydraulic cylinder, and analyzes and calculates the structure and parameters of a spiral swinging hydraulic cylinder. The hydraulic system adjusts the servo motor’s speed according to the requirements of the control system, and the motor power matches the power provided to components, thus eliminating the throttling loss of hydraulic circuits. The system is compact, produces a large output force, provides stable transmission, has a quick response, and is suitable as a hydraulic control system of a large butterfly valve.

  4. Development of high-temperature resistant noncorrodible silicon-carbide components for gas turbine application. Follow-up-report. Entwicklung von hochwarmfesten, korrosionsbestaendigen Siliciumcarbid-Formkoerpern fuer die Verwendung im Gasturbinenbau. Fortschrittsbericht

    Energy Technology Data Exchange (ETDEWEB)

    Blecha, M.; Pohlmann, H.J.

    1985-03-01

    The report under review describes the work of phase 3 (1980 - 1983) of the project 'Ceramic Materials for Automobile Gas Turbines', which has been sponsored by the Ministry for Research and Technology of the Federal Republic of Germany since 1974. Special effort has been put on the improvement of different silicon carbide materials and suitable production techniques for the production of static gas turbine components and a heat exchanger prototype. Tight connection of production techniques, construction and testing in simulated application conditions made it possible to transfer improved material data from test specimens to structural components. Prototypes of combustion chambers, heat exchangers were produced and tested. The positive results of this R+D-project lead to the series production of silicon carbide components for engineering.

  5. Partitioning washoff of manure-borne fecal indicators (Escherichia coli and stanols) into splash and hydraulic components: field rainfall simulations in a tropical agro-ecosystem.

    Science.gov (United States)

    Ribolzi, Olivier; Rochelle-Newall, Emma J.; Janeau, Jean-Louis; Viguier, Marion; Jardé, Emilie; Latsachack, Keooudone; Henri-Des-Tureaux, Thierry; Thammahacksac, Chanthamousone; Mugler, Claude; Valentin, Christian; Sengtaheuanghoung, Oloth

    2017-04-01

    Overland flow from manured fields and pastures is known to be an important mechanism by which organisms of faecal origin are transferred to streams in rural watersheds. In the tropical montane areas of South-East Asia, recent changes in land use have induced increased runoff, soil erosion, in-stream suspended sediment loads resulting in increased microbial pathogen dissemination and contamination of stream waters. The majority of enteric and environmental bacteria in aquatic systems are associated with particles such as sediments which can strongly influence their survival and transport characteristics. Escherichia coli (E. coli) has emerged as one of the most appropriate microbial indicators of faecal contamination of natural waters, with the presence of E. coli indicating that faecal contamination is present. In association with E. coli, faecal stanols can also be used as microbial source tracking tool for the identification of the origin of the faecal contamination (e.g. livestock, human, etc). Field rain simulations were used to examine how E.coli and stanols are exported from the surface of upland, agricultural soils during overland flow events. The objectives were to characterize the loss dynamics of these indicators from agricultural soils contaminated with livestock waste, and to partition total detachment into the splash and hydraulic components. Nine 1m2 microplots were divided in triplicated treatment groups: (a) controls with no amendments, (b) amended with pig manure or (c) poultry manure. Each plot was divided into two 0.5m2 rectangular subplots. For each simulation, one subplot was designated as a rain splash treatment; the other was covered with 2-mm grid size wire screen 10 cm above the soil surface to break the raindrops into fine droplets, thus drastically reducing their kinetic energy. E. coli concentrations in overland flow were estimated for both the attached and free living fractions and stanols were measured on the particulate matter washed

  6. Wind Turbine Blade

    DEFF Research Database (Denmark)

    2010-01-01

    The invention relates to a blade for a wind turbine, particularly to a blade that may be produced by an advanced manufacturing process for producing a blade with high quality structural components. Particularly, the structural components, which are preferably manufactured from fibre reinforced...

  7. Wind Turbine Blade

    DEFF Research Database (Denmark)

    2010-01-01

    The invention relates to a blade for a wind turbine, particularly to a blade that may be produced by an advanced manufacturing process for producing a blade with high quality structural components. Particularly, the structural components, which are preferably manufactured from fibre reinforced...

  8. Reliability Assessment Of Wind Turbines

    DEFF Research Database (Denmark)

    Sørensen, John Dalsgaard

    2014-01-01

    Reduction of cost of energy for wind turbines are very important in order to make wind energy competitive compared to other energy sources. Therefore the turbine components should be designed to have sufficient reliability but also not be too costly (and safe). This paper presents models...... for uncertainty modeling and reliability assessment of especially the structural components such as tower, blades, substructure and foundation. But since the function of a wind turbine is highly dependent on many electrical and mechanical components as well as a control system also reliability aspects...... of these components are discussed and it is described how there reliability influences the reliability of the structural components. Two illustrative examples are presented considering uncertainty modeling, reliability assessment and calibration of partial safety factors for structural wind turbine components exposed...

  9. Chapter 12. Pure Tap Water Hydraulic Systems and Applications

    DEFF Research Database (Denmark)

    Conrad, Finn; Adelstorp, Anders

    1997-01-01

    Presentation of developed a modern pure tap water hydraulic components (Nessie), systems and industrial applications.......Presentation of developed a modern pure tap water hydraulic components (Nessie), systems and industrial applications....

  10. Fish passage through hydropower turbines: Simulating blade strike using the discrete element method

    Science.gov (United States)

    Richmond, M. C.; Romero-Gomez, P.

    2014-03-01

    Among the hazardous hydraulic conditions affecting anadromous and resident fish during their passage though hydro-turbines two common physical processes can lead to injury and mortality: collisions/blade-strike and rapid decompression. Several methods are currently available to evaluate these stressors in installed turbines, e.g. using live fish or autonomous sensor devices, and in reduced-scale physical models, e.g. registering collisions from plastic beads. However, a priori estimates with computational modeling approaches applied early in the process of turbine design can facilitate the development of fish-friendly turbines. In the present study, we evaluated the frequency of blade strike and rapid pressure change by modeling potential fish trajectories with the Discrete Element Method (DEM) applied to fish-like composite particles. In the DEM approach, particles are subjected to realistic hydraulic conditions simulated with computational fluid dynamics (CFD), and particle-structure interactions-representing fish collisions with turbine components such as blades-are explicitly recorded and accounted for in the calculation of particle trajectories. We conducted transient CFD simulations by setting the runner in motion and allowing for unsteady turbulence using detached eddy simulation (DES), as compared to the conventional practice of simulating the system in steady state (which was also done here for comparison). While both schemes yielded comparable bulk hydraulic performance values, transient conditions exhibited an improvement in describing flow temporal and spatial variability. We released streamtraces (in the steady flow solution) and DEM particles (transient solution) at the same locations where sensor fish (SF) were released in previous field studies of the advanced turbine unit. The streamtrace- based results showed a better agreement with SF data than the DEM-based nadir pressures did because the former accounted for the turbulent dispersion at the

  11. Component

    Directory of Open Access Journals (Sweden)

    Tibor Tot

    2011-01-01

    Full Text Available A unique case of metaplastic breast carcinoma with an epithelial component showing tumoral necrosis and neuroectodermal stromal component is described. The tumor grew rapidly and measured 9 cm at the time of diagnosis. No lymph node metastases were present. The disease progressed rapidly and the patient died two years after the diagnosis from a hemorrhage caused by brain metastases. The morphology and phenotype of the tumor are described in detail and the differential diagnostic options are discussed.

  12. Turbine imaging technology assessment

    Energy Technology Data Exchange (ETDEWEB)

    Moursund, R. A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Carlson, T. J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2004-12-01

    The goal of this project was to identify and evaluate imaging technologies for observing juvenile fish within a Kaplan turbine, and specifically that would enable scientists to determine mechanisms of fish injury within an operating turbine unit. This report documents the opportunities and constraints for observing juvenile fish at specific locations during turbine passage. These observations were used to make modifications to dam structures and operations to improve conditions for fish passage while maintaining or improving hydropower production. The physical and hydraulic environment that fish experience as they pass through the hydroelectric plants were studied and the regions with the greatest potential for injury were defined. Biological response data were also studied to determine the probable types of injuries sustained in the turbine intake and what types of injuries are detectable with imaging technologies. The study grouped injury-causing mechanisms into two categories: fluid (pressure/cavitation, shear, turbulence) and mechanical (strike/collision, grinding/pinching, scraping). The physical constraints of the environment, together with the likely types of injuries to fish, provided the parameters needed for a rigorous imaging technology evaluation. Types of technology evaluated included both tracking and imaging systems using acoustic technologies (such as sonar and acoustic tags) and optic technologies (such as pulsed-laser videography, which is high-speed videography using a laser as the flash). Criteria for determining image data quality such as frame rate, target detectability, and resolution were used to quantify the minimum requirements of an imaging sensor.

  13. Reliability Analysis of Wind Turbines

    DEFF Research Database (Denmark)

    Toft, Henrik Stensgaard; Sørensen, John Dalsgaard

    2008-01-01

    In order to minimise the total expected life-cycle costs of a wind turbine it is important to estimate the reliability level for all components in the wind turbine. This paper deals with reliability analysis for the tower and blades of onshore wind turbines placed in a wind farm. The limit states...... consideres are in the ultimate limit state (ULS) extreme conditions in the standstill position and extreme conditions during operating. For wind turbines, where the magnitude of the loads is influenced by the control system, the ultimate limit state can occur in both cases. In the fatigue limit state (FLS......) the reliability level for a wind turbine placed in a wind farm is considered, and wake effects from neighbouring wind turbines is taken into account. An illustrative example with calculation of the reliability for mudline bending of the tower is considered. In the example the design is determined according...

  14. Application of AMESim and MATLAB on Modeling and Study of Megawatt Wind Turbine Brake System Hydraulic Locking Device%AMESim与MATLAB在兆瓦级风力发电机制动系统液压锁紧装置建模及研究中的应用

    Institute of Scientific and Technical Information of China (English)

    闫利文; 艾存金; 王福山; 谢辉

    2015-01-01

    作为一个兆瓦级风力发电机制动系统,除制动装置外,在适当的位置还应设有风轮的锁定装置,以确保在正常制动系统失效情况下风机在不会突发的再次启动。针对该问题文章设计了一套液压锁紧装置,并分别采用AMEsim和MATLAB软件对其进行了研究与分析,并比较了两种分析软件在液压系统研究中的不同。%As a megawatt wind turbine braking system,in addition to the braking device,there should also have a locking device in the ap-propriate position,In order to ensure not burst start again during normal braking system failure. Aiming at this problem, we designed a set of hydraulic locking device,used AMESim and MATLAB software to research and analysis the hydraulic locking device,compared the differ-ence between two of them in the research of hydraulic system.

  15. Research in Aeroelasticity EFP-2006[Wind turbines

    Energy Technology Data Exchange (ETDEWEB)

    Bak, C.

    2007-07-15

    This report contains the results from the Energy Research Project 'Program for Research in Applied Aeroelasticity, EFP-2006' covering the period from 1. April 2006 to 31. March 2007. A summary of the main results from the project is given in the following. The aerodynamics for rotors incl. spinner and winglets were clarified and the needed premises for an optimal rotor were explained. Also, the influence of viscous effects on rotor blades was investigated and the results indicated a range of optimum tip speed ratios. The use of winglets for wind turbine rotor was investigated and it was found that they can be used successfully, but that downwind and short winglets are most efficient. Investigating a strategy for reduction of loads and vibrations at extreme wind speeds showed that there are considerably uncertainties in the numerical models and that the main concluding remark is that measurements on a real blade or a real turbine are needed to further conclude the investigation. In the study of flutter and other torsional vibrations of blades at large deflections, modeling and analysis of the dynamics of a hydraulic pitch system for a 5 MW wind turbine was carried out. It was shown that the compressibility of the hydraulic oil introduced a dynamic mode in the pitch bearing degree of freedom. Also, investigating flutter for blades at large deflections showed that the flutter limit for a 5MW blade was moved significantly compared to blades without large deflections. The influence of modeling nacelle components was investigated by developing a generalized method to interface dynamic systems to the aeroelastic program HAWC2 and by exemplify by modeling the nacelle of an aeroelastic wind turbine model in a more detailed way by including a single planet stage of a gearbox. This simplified gearbox model captures in essence the splitting of the driving torque from the rotor shaft to the frame of the nacelle and to the generator. Investigating the influence of wind

  16. Characteristics analysis for different water heads on the efficiency hill chart of Francis turbine

    Science.gov (United States)

    Wang, Z. N.; Guo, P. C.; Luo, X. Q.; Wang, Y. L.; Sun, S. H.

    2016-05-01

    Based on the test results of Francis turbine, the causes and inevitability of various hydraulic phenomena in the model combined characteristic curve for typical water heads were analyzed in this paper. the difference of the model combined characteristic curve from the low water head to the high water head is compared, and the characteristics and commonness of the model combined characteristic curve about different water head are summarized. Further, hydraulic performance and geometric features of Francis turbine are revealed by particularly analyzing model combined characteristic curves, and to provide powerful theoretical basis and definite modification direction for the hydraulic design of hydraulic turbine.

  17. Ceramic stationary gas turbine

    Energy Technology Data Exchange (ETDEWEB)

    Roode, M. van [Solar Turbines Inc., San Diego, CA (United States)

    1995-10-01

    The performance of current industrial gas turbines is limited by the temperature and strength capabilities of the metallic structural materials in the engine hot section. Because of their superior high-temperature strength and durability, ceramics can be used as structural materials for hot section components (blades, nozzles, combustor liners) in innovative designs at increased turbine firing temperatures. The benefits include the ability to increase the turbine inlet temperature (TIT) to about 1200{degrees}C ({approx}2200{degrees}F) or more with uncooled ceramics. It has been projected that fully optimized stationary gas turbines would have a {approx}20 percent gain in thermal efficiency and {approx}40 percent gain in output power in simple cycle compared to all metal-engines with air-cooled components. Annual fuel savings in cogeneration in the U.S. would be on the order of 0.2 Quad by 2010. Emissions reductions to under 10 ppmv NO{sub x} are also forecast. This paper describes the progress on a three-phase, 6-year program sponsored by the U.S. Department of Energy, Office of Industrial Technologies, to achieve significant performance improvements and emissions reductions in stationary gas turbines by replacing metallic hot section components with ceramic parts. Progress is being reported for the period September 1, 1994, through September 30, 1995.

  18. Ceramic stationary gas turbine

    Energy Technology Data Exchange (ETDEWEB)

    Roode, M. van

    1995-12-31

    The performance of current industrial gas turbines is limited by the temperature and strength capabilities of the metallic structural materials in the engine hot section. Because of their superior high-temperature strength and durability, ceramics can be used as structural materials for hot section components (blades, nozzles, combustor liners) in innovative designs at increased turbine firing temperatures. The benefits include the ability to increase the turbine inlet temperature (TIT) to about 1200{degrees}C ({approx}2200{degrees}F) or more with uncooled ceramics. It has been projected that fully optimized stationary gas turbines would have a {approx}20 percent gain in thermal efficiency and {approx}40 percent gain in output power in simple cycle compared to all metal-engines with air-cooled components. Annual fuel savings in cogeneration in the U.S. would be on the order of 0.2 Quad by 2010. Emissions reductions to under 10 ppmv NO{sub x} are also forecast. This paper describes the progress on a three-phase, 6-year program sponsored by the U.S. Department of Energy, Office of Industrial Technologies, to achieve significant performance improvements and emissions reductions in stationary gas turbines by replacing metallic hot section components with ceramic parts. Progress is being reported for the period September 1, 1994, through September 30, 1995.

  19. Applied hydraulic transients

    CERN Document Server

    Chaudhry, M Hanif

    2014-01-01

    This book covers hydraulic transients in a comprehensive and systematic manner from introduction to advanced level and presents various methods of analysis for computer solution. The field of application of the book is very broad and diverse and covers areas such as hydroelectric projects, pumped storage schemes, water-supply systems, cooling-water systems, oil pipelines and industrial piping systems. Strong emphasis is given to practical applications, including several case studies, problems of applied nature, and design criteria. This will help design engineers and introduce students to real-life projects. This book also: ·         Presents modern methods of analysis suitable for computer analysis, such as the method of characteristics, explicit and implicit finite-difference methods and matrix methods ·         Includes case studies of actual projects ·         Provides extensive and complete treatment of governed hydraulic turbines ·         Presents design charts, desi...

  20. Development of a more fish tolerant turbine runner advanced hydropower turbine project. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Cook, T.C.; Hecker, G.E. [Worcester Polytechnic Inst., Holden, MA (United States). Alden Research Lab.; Faulkner, H.B.; Jansen, W. [Northern Research and Engineering Corp., Cambridge, MA (United States)

    1997-01-01

    The Hidrostal pump is a single bladed combined screw/centrifugal pump which has been proven to transport fish with minimal injury. The focus of the ARL/NREC research project was to develop a new runner geometry which is effective in downstream fish passage and hydroelectric power generation. A flow of 1,000 cfs and a head in the range of 75 ft to 100 ft were selected for conceptual design of the new runner. Criteria relative to hydraulic characteristics which are favorable for fish passage were prepared based on a reassessment of the available information. Important criteria used to develop the new runner design included low pressure change rates, minimum absolute pressures, and minimum shear. Other criteria which are reflected in the runner design are a minimum number of blades (only two), minimum total length of leading edges, and large flow passages. Flow characteristics of the new runner were analyzed using two- dimensional and three-dimensional Computational Fluid Dynamic (CFD) models. The basic runner geometry was initially selected using the two-dimensional model. The three-dimensional model was used to investigate the flow characteristics in detail through the entire runner and to refine the design by eliminating potential problem areas at the leading and trailing edges. Results of the analyses indicated that the runner has characteristics which should provide safe fish passage with an overall power efficiency of approximately 90%. The size of the new runner, which is larger than conventional turbine runners with the same design flow and head, will provide engineering, fabrication, and installation.challenges related to the turbine components and the civil works. A small reduction in the overall efficiency would reduce the size of the runner considerably, would simplify the turbine manufacturing operations, and would allow installation of the new turbine at more hydroelectric sites.

  1. AGT 100 automotive gas turbine system development

    Science.gov (United States)

    Helms, H. E. G.

    1982-01-01

    General Motors is developing an automotive gas turbine system that can be an alternate powerplant for future automobiles. Work sponsored by DOE and administered by NASA Lewis Research Center is emphasizing small component aerodynamics and high-temperature structural ceramics. Reliability requirements of the AGT 100 turbine system include chemical and structural ceramic component stability in the gas turbine environment. The power train system, its configuration and schedule are presented, and its performance tested. The aerodynamic component development is reviewed with discussions on the compressor, turbine, regenerator, interturbine duct and scroll, and combustor. Ceramic component development is also reviewed, and production cost and required capital investment are taken into consideration.

  2. Turbine oil

    Energy Technology Data Exchange (ETDEWEB)

    Eminov, E.A.; Bogdanov, Sh.K.; Dovgopolyi, E.E.; Gryaznov, B.V.; Ivanov, V.S.; Ivanova, Z.M.; Kozlova, E.K.; Nikolaeva, N.M.; Rozhdestvenskaya, A.A.

    1981-03-10

    In the known turbine oil (TO), for the purpose of improving the anticorrosion and demulsifying properties, a polyoxypropylene glycol ether, ethylenediamine or propylene glycol or an alkylphenol are additionally introduced, where the C/sub 8/-C/sub 12/ alkyl has a molecular weight of 2000-10,000. The proportions of the components are: 2, 6-di-tert-butyl-4-methylphenol 0.2-1.0%, quinizarin 0.01-0.05%, an acid ester of an alkenylsuccinic acid 0.02-0.1%, a polyoxypropylene glycol ether 0.02-0.2%, polymethylsiloxane 0.003-0.005%, and petroleum oil the remainder. The TO is prepared by mixing the petroleum oil with the additives in any sequence at a temperature of 60-80/sup 0/ by mechanical stirring. On the five TO samples the antioxidative, demulsifying, and anticorrosion properties by comparison with the prototype were investigated. It was shown that the obtained TO possesses improved anticorrosion properties (time until the appearance of Kr (staining.), up to 60 h as against 35 on the prototype) and demulsifying properties (quantity of water separating on breaking the emulsion 10 mg/L as against 65 mg/L on the prototype) for an antioxidative stability equal to that of the analog. The TO is designated for use in various turbo-units, in the first place in marine steam turbine units, where there is the probability of contact of the TO with seawater. Use of the TO makes it possible to increase the service life of the mechanisms, to reduce the amount of oil mixable in the form of an emulsion (by a factor of 1.5 to 2), and to lower the operating expenses.

  3. Reliability Modeling of Wind Turbines

    DEFF Research Database (Denmark)

    Kostandyan, Erik

    Cost reductions for offshore wind turbines are a substantial requirement in order to make offshore wind energy more competitive compared to other energy supply methods. During the 20 – 25 years of wind turbines useful life, Operation & Maintenance costs are typically estimated to be a quarter...... the actions should be made and the type of actions requires knowledge on the accumulated damage or degradation state of the wind turbine components. For offshore wind turbines, the action times could be extended due to weather restrictions and result in damage or degradation increase of the remaining...... for Operation & Maintenance planning. Concentrating efforts on development of such models, this research is focused on reliability modeling of Wind Turbine critical subsystems (especially the power converter system). For reliability assessment of these components, structural reliability methods are applied...

  4. Steam Turbines

    Science.gov (United States)

    1981-01-01

    Turbonetics Energy, Inc.'s steam turbines are used as power generating systems in the oil and gas, chemical, pharmaceuticals, metals and mining, and pulp and paper industries. The Turbonetics line benefited from use of NASA research data on radial inflow steam turbines and from company contact with personnel of Lewis Research Center, also use of Lewis-developed computer programs to determine performance characteristics of turbines.

  5. Numerical Study of Cavitation in Francis Turbine of a Small Hydro Power Plant

    Directory of Open Access Journals (Sweden)

    Pankaj Gohil

    2016-01-01

    Full Text Available Cavitation is undesirable phenomena and more prone in reaction turbines. It is one of the challenges in any hydro power plant which cause vibration, degradation of performance and the damage to the hydraulic turbine components. Under the present study, an attempt has been made to carry out a numerical analysis to investigate the cavitation effect in a Francis turbine. Three dimensional numerical study approach of unsteady and SST turbulence model are considered for the numerical analysis under multiphase flow such as cavitating flow. The performance parameters and cavitating flow under different operating conditions have been predicted using commercial CFX code. Three different operating conditions under cavitation and without cavitation with part load and overload conditions of the turbine for a plant sigma factor are investigated. The results are presented in the form of efficiency, pressure fluctuation, vortex rope and vapor volume fraction. It has been observed that variation in efficiency and vapor volume fraction is found to be nominal between cavitation and without cavitation conditionsat rated discharge and rated head. Turbine efficiency loss and vapor bubbles formation towards suction side of the runner blade are found to be maximum under overload condition. However, the pressure pulsation has been found maximum under part load condition in the draft tube. The simulation results are found to be in good agreement with model test results for efficiency. The locations of cavitating zone observed wellwith the result of previous studies.

  6. Improved automobile gas turbine engine

    Science.gov (United States)

    Kofskey, M. G.; Katsanis, T.; Roelke, R. J.; Mclallin, K. L.; Wong, R. Y.; Schumann, L. F.; Galvas, M. R.

    1976-01-01

    Upgraded engine delivers 100 hp in 3500 lb vehicle. Improved fuel economy is due to combined effects of reduced weight, reduced power-to-weight ratio, increased turbine inlet pressure, and improved component efficiencies at part power.

  7. 对电液比例阀几个基本问题的讨论%Discussion on Some Basic Problems of Electro-hydraulic Proportion Control Component

    Institute of Scientific and Technical Information of China (English)

    李运华; 刘源; 何刘宇

    2013-01-01

    电液比例阀是机电一体化液压控制系统的重要控制元件.对其基本原理的弄清有助于对其正确使用并提升电液比例控制系统的性能.文中针对电机械转换元件阀口开度控制原理及特性分析和比例放大器控制信号及PWM信号频率大小对阀口性能的影响进行了分析讨论,获得了一些有意义的结论.%Electro-hydraulic proportional control valve is an important control component to be applied to electro-mechanical integration hydraulic control system. To understand its basic principle can help to appropriately use it and to enhance the performance of the electro-hydraulic proportional control system. Addressed the control principle, modeling and simulation for the valve opening of the proportional valve, and the influence of the control signal of proportion amplifier and the frequency of PWM signal on the control performance of the valve opening, the analysis and discussion were carried out in the paper, and some significant conclusions were acquired.

  8. “工业4.0”下的“液压4.0”与智能液压元件技术%'Hydraulic 4.0' and Intelligent Hydraulic Component Technology under 'Industry 4.0'

    Institute of Scientific and Technical Information of China (English)

    许仰曾

    2016-01-01

    根据工业革命的发展规律与液压技术的比照,由于液压技术的发展与历次工业革命高度重合,因此从“工业4.0”引申出“液压4.0”的概念,并有其本身的发展特点。为了让液气密行业更加深入和更加快速地开展“工业4.0”的智能化发展,在这里比较深入地剖析了智能液压元件的原理、构成与功能,与此同时,对于传统液气密行业过去很少涉及的CAN总线的技术基础与概念作了介绍,并涉及一些入门的技术概念,以便行业的企业管理者与工程技术人员能更快运用它们。最后也分析了智能液压元件给用户与生产商带来的效益。%In terms of comparison, we found that the historic development of hydraulic industry development is total-ly as same as the historic development of whole industry. Therefore, we propose 'Hydraulic 4.0' to represent 'Indus-try 4.0' in our hydraulic industry with its own feature. In order to expedite the development of 'Hydraulic 4.0' in Chi-na, the author introduces about structure, schematic and function of intelligent hydraulic components. It involves CAN bus and its fundament which is seldom introduced in our industry. Finally, the benefits gained from applying hydraulic intelligent product and its technology by customers as well as manufactures are analyzed in this paper al-so. This paper is to contribute to entrepreneurs and engineers for them to use such techonology and develop such products.

  9. Computational thermo-fluid dynamics contributions to advanced gas turbine engine design

    Science.gov (United States)

    Graham, R. W.; Adamczyk, J. J.; Rohlik, H. E.

    1985-01-01

    The design practices for the gas turbine are traced throughout history with particular emphasis on the calculational or analytical methods. Three principal components of the gas turbine engine will be considered: namely, the compressor, the combustor and the turbine.

  10. Integrating Systems Health Management with Adaptive Controls for a Utility-scale Wind Turbine

    Data.gov (United States)

    National Aeronautics and Space Administration — Increasing turbine up-time and reducing maintenance costs are key technology drivers for wind turbine operators. Components within wind turbines are subject to...

  11. Cooling of Gas Turbines I - Effects of Addition of Fins to Blade Tips and Rotor, Admission of Cooling Air Through Part of Nozzles, and Change in Thermal Conductivity of Turbine Components

    Science.gov (United States)

    Brown, Byron

    1947-01-01

    An analysis was developed for calculating the radial temperature distribution in a gas turbine with only the temperatures of the gas and the cooling air and the surface heat-transfer coefficient known. This analysis was applied to determine the temperatures of a complete wheel of a conventional single-stage impulse exhaust-gas turbine. The temperatures were first calculated for the case of the turbine operating at design conditions of speed, gas flow, etc. and with only the customary cooling arising from exposure of the outer blade flange and one face of the rotor to the air. Calculations were next made for the case of fins applied to the outer blade flange and the rotor. Finally the effects of using part of the nozzles (from 0 to 40 percent) for supplying cooling air and the effects of varying the metal thermal conductivity from 12 to 260 Btu per hour per foot per degree Farenheit on the wheel temperatures were determined. The gas temperatures at the nozzle box used in the calculations ranged from 1600F to 2000F. The results showed that if more than a few hundred degrees of cooling of turbine blades are required other means than indirect cooling with fins on the rotor and outer blade flange would be necessary. The amount of cooling indicated for the type of finning used could produce some improvement in efficiency and a large increase in durability of the wheel. The results also showed that if a large difference is to exist between the effective temperature of the exhaust gas and that of the blade material, as must be the case with present turbine materials and the high exhaust-gas temperatures desired (2000F and above), two alternatives are suggested: (a) If metal with a thermal conductivity comparable with copper is used, then the blade temperature can be reduced by strong cooling at both the blade tip and root. The center of the blade will be less than 2000F hotter than the ends; (b) With low conductivity materials some method of direct cooling other than

  12. Numerical analysis of solid–liquidtwo-phase turbulent flow in Francis turbine runner with splitter bladesin sandy water

    Directory of Open Access Journals (Sweden)

    Hua Hong

    2015-03-01

    Full Text Available As the key component of a hydroelectric power generation system, hydraulic turbine plays a decisive role in the overall performance of the system. There are many sandy rivers in the world, and turbines working in these rivers are seriously damaged. Therefore, the research of flow in sandy water has great theoretical significance and practical value. Based on the specific hydrological conditions of a hydropower station, the solid–liquid two-phase flow in the whole flow passage of a Francis turbine with splitter blades in sandy water was numerically studied. A geometric model of the whole flow passage of the Francis turbine was established on the basis of given design parameters. The solid–liquid two-phase turbulent flows in Francis turbine runner under three different loads were numerically analyzed by using this model. The three different loads are as follows: Condition 1: single unit with 1/4 load, Condition 2: single unit with 1/2 load, and Condition 3: single unit with full load. The distributions of pressure and sand concentration on the leading side and the suction side of the runner blades, as well as the velocity vector distribution of water and sand on the horizontal section of the runner, were obtained under different load conditions. Therefore, the damages to various flow passage components by sand can be qualitatively predicated under various conditions. To guarantee the safety and stability of the unit, the adverse conditions shall be avoided, which can provide certain reference for plant operation.

  13. Prediction of rotating stall and cavitation inception in pump turbines

    Energy Technology Data Exchange (ETDEWEB)

    Anciger, D; Jung, A; Aschenbrenner, T, E-mail: Danijel.Anciger@voith.co [Voith Hydro Holding GmbH and Co. KG Alexanderstr. 11, 89522 Heidenheim (Germany)

    2010-08-15

    The current development of modern pump storage plants aims towards a higher flexibility in operation, an extended operation range of the hydraulic machine, especially in the pumping mode, and a higher reliability. A major design target for state-of-the-art reversible Francis-type pump turbines is to find an optimal balance between pumping and generating performance. The pumping requirements are the crucial design drivers, since, even if the turbine mode performance is world class, the success of a project depends on the pump turbine delivering the required maximum pump head and starting reliably in pump mode. The proposed paper describes how advanced computational fluid dynamic (CFD) simulations can help the designer to evaluate his design with respect to hydraulic performance and dynamic phenomena occurring in pump turbines. A standard procedure today is to compute the flow by applying the Reynolds-averaged Navier-Stokes equations (RANS) on the steady-state flow in individual components or in multiple components which are coupled by mixing-plane interfaces (sometimes also called stage-interface). This standard approach gives fast turnaround times and is a good engineering tool. However, accuracy is limited due to necessary simplifications. Therefore methods are developed and evaluated which allow a more reliable prediction of the onset of rotating stall which is the operation limit of the pump under high heads and low flow rates. The behaviour a modern pump turbine design in this instability region is investigated in detail. Another important task in the design process is the proper prediction of cavitation phenomena in the runner. Predicting cavitating flows with multi-phase CFD computations is still a very challenging task. Some results of ongoing work in this field are presented and compared to single phase computations and results from model tests. The relevance and applicability of such computations is discussed. All the information gained from these kinds of

  14. Hydraulically Driven Grips For Hot Tensile Specimens

    Science.gov (United States)

    Bird, R. Keith; Johnson, George W.

    1994-01-01

    Pair of grips for tensile and compressive test specimens operate at temperatures up to 1,500 degrees F. Grips include wedges holding specimen inside furnace, where heated to uniform temperature. Hydraulic pistons drive wedges, causing them to exert clamping force. Hydraulic pistons and hydraulic fluid remain outside furnace, at room temperature. Cooling water flows through parts of grips to reduce heat transferred to external components. Advantages over older devices for gripping specimens in high-temperature tests; no need to drill holes in specimens, maintains constant gripping force on specimens, and heated to same temperature as that of specimen without risk of heating hydraulic fluid and acuator components.

  15. Turbine system

    Energy Technology Data Exchange (ETDEWEB)

    McMahan, Kevin Weston; Dillard, Daniel Jackson

    2016-05-03

    A turbine system is disclosed. The turbine system includes a transition duct having an inlet, an outlet, and a passage extending between the inlet and the outlet and defining a longitudinal axis, a radial axis, and a tangential axis. The outlet of the transition duct is offset from the inlet along the longitudinal axis and the tangential axis. The turbine system further includes a turbine section connected to the transition duct. The turbine section includes a plurality of shroud blocks at least partially defining a hot gas path, a plurality of buckets at least partially disposed in the hot gas path, and a plurality of nozzles at least partially disposed in the hot gas path. At least one of a shroud block, a bucket, or a nozzle includes means for withstanding high temperatures.

  16. A new computer method to optimize turbine design and runner replacement

    Energy Technology Data Exchange (ETDEWEB)

    Goede, E.; Cuenod, R.; Grunder, R.; Pestalozzi, J. (Sulzer Escher Wyss, Zurich (Switzerland))

    1991-02-01

    When a designer's ideas for the design or rehabilitation of a hydraulic turbine are tested before the actual machine is manufactured, operating characteristics can be improved. A variety of techniques exist to perform this preliminary design testing. In recent years, great progress has been made in the area of numerical simulation of physical phenomena. Sulzer Escher Wyss has been successfully using the computer method of numerical flow simulation to test designers' ideas. The method calculates the fluid flow in a hydraulic turbomachine, effectively simulating the hydraulic performance of a turbine before it is manufactured. The authors have used flow analysis as a theoretical tool -- a numerical test stand -- to aid in the first cut of turbomachinery design and rehabilitation. This way, only the fine tuning must be made in physical tests. This approach provides a fast and cost-effective layout procedure for machine components. However, the reliability of such a numerical test greatly depends on the quality of the method used, as well as on its proper use in terms of correct boundary conditions and accurate interpretation of the results. To aid in interpretation of the data from the flow analysis, the authors have developed a procedure to compress data from the flow calculations and present them in the form of sophisticated computer graphics. In this way, the design engineer can visualize the main relationships, which will aid him or her in making sound decisions regarding the turbine layout procedure. Ultimately, the method has helped optimize the design and rehabilitation of hydraulic machines, while reducing overall time and expense.

  17. Next Generation Wind Turbine

    Energy Technology Data Exchange (ETDEWEB)

    Cheraghi, S. Hossein [Western New England Univ., Springfield, MA (United States); Madden, Frank [FloDesign Wind Turbine Corp., Waltham, MA (United States)

    2012-09-01

    The goal of this collaborative effort between Western New England University's College of Engineering and FloDesign Wind Turbine (FDWT) Corporation to wok on a novel areodynamic concept that could potentially lead to the next generation of wind turbines. Analytical studies and early scale model tests of FDWT's Mixer/Ejector Wind Turbine (MEWT) concept, which exploits jet-age advanced fluid dynamics, indicate that the concept has the potential to significantly reduce the cost of electricity over conventional Horizontal Axis Wind Turbines while reducing land usage. This project involved the design, fabrication, and wind tunnel testing of components of MEWT to provide the research and engineering data necessary to validate the design iterations and optimize system performance. Based on these tests, a scale model prototype called Briza was designed, fabricated, installed and tested on a portable tower to investigate and improve the design system in real world conditions. The results of these scale prototype efforts were very promising and have contributed significantly to FDWT's ongoing development of a product scale wind turbine for deployment in multiple locations around the U.S. This research was mutually beneficial to Western New England University, FDWT, and the DOE by utilizing over 30 student interns and a number of faculty in all efforts. It brought real-world wind turbine experience into the classroom to further enhance the Green Engineering Program at WNEU. It also provided on-the-job training to many students, improving their future employment opportunities, while also providing valuable information to further advance FDWT's mixer-ejector wind turbine technology, creating opportunities for future project innovation and job creation.

  18. Next Generation Wind Turbine

    Energy Technology Data Exchange (ETDEWEB)

    Cheraghi, S. Hossein [Western New England University; Madden, Frank [FloDesign Wind Turbine Corp

    2012-09-01

    The goal of this collaborative effort between Western New England University's College of Engineering and FloDesign Wind Turbine (FDWT) Corporation to wok on a novel areodynamic concept that could potentially lead to the next generation of wind turbines. Analytical studies and early scale model tests of FDWT's Mixer/Ejector Wind Turbine (MEWT) concept, which exploits jet-age advanced fluid dynamics, indicate that the concept has the potential to significantly reduce the cost of electricity over conventional Horizontal Axis Wind Turbines while reducing land usage. This project involved the design, fabrication, and wind tunnel testing of components of MEWT to provide the research and engineering data necessary to validate the design iterations and optimize system performance. Based on these tests, a scale model prototype called Briza was designed, fabricated, installed and tested on a portable tower to investigate and improve the design system in real world conditions. The results of these scale prototype efforts were very promising and have contributed significantly to FDWT's ongoing development of a product scale wind turbine for deployment in multiple locations around the U.S. This research was mutually benficial to Western New England University, FDWT, and the DOE by utilizing over 30 student interns and a number of faculty in all efforts. It brought real-world wind turbine experience into the classroom to further enhance the Green Engineering Program at WNEU. It also provided on-the-job training to many students, improving their future employment opportunities, while also providing valuable information to further advance FDWT'w mixer-ejector wind turbine technology, creating opportunities for future project innovation and job creation.

  19. For each head differences the corresponding turbine. Energy generating water wheels were already known by Greeks and Romans in the ancient world; Fuer jede Fallhoehe die richtige Turbine. Wasserraeder mit dem Vorteil, damit Energie zu erzeugen, kannten in der Antike schon Griechen und Roemer

    Energy Technology Data Exchange (ETDEWEB)

    Krause, W.

    2006-07-01

    From simple water wheels, working in the Ancient World, to modern hydraulic turbines like Francis, Pelton and Kaplan turbine, the contribution shows the development of this engines generating clean power. Operating with small heads and high flow rates and velocities a new generation like the tube turbine and in special fields the flow rate turbine are able to generate power still more efficiently. (GL)

  20. Floating wind turbine system

    Science.gov (United States)

    Viterna, Larry A. (Inventor)

    2009-01-01

    A floating wind turbine system with a tower structure that includes at least one stability arm extending therefrom and that is anchored to the sea floor with a rotatable position retention device that facilitates deep water installations. Variable buoyancy for the wind turbine system is provided by buoyancy chambers that are integral to the tower itself as well as the stability arm. Pumps are included for adjusting the buoyancy as an aid in system transport, installation, repair and removal. The wind turbine rotor is located downwind of the tower structure to allow the wind turbine to follow the wind direction without an active yaw drive system. The support tower and stability arm structure is designed to balance tension in the tether with buoyancy, gravity and wind forces in such a way that the top of the support tower leans downwind, providing a large clearance between the support tower and the rotor blade tips. This large clearance facilitates the use of articulated rotor hubs to reduced damaging structural dynamic loads. Major components of the turbine can be assembled at the shore and transported to an offshore installation site.

  1. Blades and disks in gas turbines. Material and component behaviour. Project department D. Final report; Schaufeln und Scheiben in Gasturbinen. Werkstoff- und Bauteilverhalten. Projektbereich D. Abschlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-04-01

    The Special Research Department No. 339, ``Disks and Blades in Gas Turbines - Material and Component Characteristics`` received financial support from 1988 through 1996. This final report discusses activities of the years 1994, 1995, and 1996. Project group D, ``Production and Quality Assurance``, investigated rotors and blades. Grinding techniques were developed and optimized for nickel base materials, and the effects of grinding on the marginal zones was investigated, including an analysis of intrinsic stresses induced by machining. In the field of ceramics, separation and production of reinforced ceramics was investigated, and techniques for vacuum soldering of ceramic/ceramic and ceramic/metal compounds for high-temperature applications were developed. In the framework of a part-project carried out at HMI, neutron diffraction was used for nondestructive analysis of volume intrinsic stresses near the joint both on model geometries and on the joint between metal shaft and ceramic rotor. The development and application of computerized tomography for testing of ceramic rotors and joints was an important contribution to quality assurance. (orig./MM) [Deutsch] Der Sonderforschungsbereich 339 `Schaufeln und Scheiben in Gasturbinen - Werkstoff- und Bauteilverhalten` wurde von 1988 bis Ende 1996 gefoerdert. Der vorliegende Abschlussbericht behandelt vor allem die Arbeiten der Jahre 1994, 1995 und 1996. Am Bauteil Rotor und Schaufel orientierten sich die Arbeiten des Projektbereichs D `Fertigung und Qualitaetssicherung`. Zum einen wurden hier Schleifverfahren fuer Nickelbasis-Werkstoffe entwickelt und optimiert und der Einfluss der Schleifbearbeitung auf die Randzoneneigenschaften studiert. Zur Randzonencharakterisierung gehoerte insbesondere auch die Analyse bearbeitungsinduzierter Eigenspannungen. Auf der Seite der Keramiken wurde zum einen die trennende Fertigung verstaerkter Keramiken untersucht. Zum anderen wurden Techniken fuer das Hochvakuumloeten von Keramik

  2. On the Fatigue Analysis of Wind Turbines

    Energy Technology Data Exchange (ETDEWEB)

    Sutherland, Herbert J.

    1999-06-01

    Modern wind turbines are fatigue critical machines that are typically used to produce electrical power from the wind. Operational experiences with these large rotating machines indicated that their components (primarily blades and blade joints) were failing at unexpectedly high rates, which led the wind turbine community to develop fatigue analysis capabilities for wind turbines. Our ability to analyze the fatigue behavior of wind turbine components has matured to the point that the prediction of service lifetime is becoming an essential part of the design process. In this review paper, I summarize the technology and describe the ''best practices'' for the fatigue analysis of a wind turbine component. The paper focuses on U.S. technology, but cites European references that provide important insights into the fatigue analysis of wind turbines.

  3. Gas turbines

    Energy Technology Data Exchange (ETDEWEB)

    Farahan, E.; Eudaly, J.P.

    1978-10-01

    This evaluation provides performance and cost data for commercially available simple- and regenerative-cycle gas turbines. Intercooled, reheat, and compound cycles are discussed from theoretical basis only, because actual units are not currently available, except on a special-order basis. Performance characteristics investigated include unit efficiency at full-load and off-design conditions, and at rated capacity. Costs are tabulated for both simple- and regenerative-cycle gas turbines. The output capacity of the gas turbines investigated ranges from 80 to 134,000 hp for simple units and from 12,000 to 50,000 hp for regenerative units.

  4. Flow characteristics on the blade channel vortex in the Francis turbine

    Science.gov (United States)

    Guo, P. C.; Wang, Z. N.; Luo, X. Q.; Wang, Y. L.; Zuo, J. L.

    2016-05-01

    Depending on the long-term hydraulic development of Francis turbine, the blade channel vortex phenomenon was investigated systematically from hydraulic design, experimental and numerical computation in this paper. The blade channel vortex difference between the high water head and low water head turbine was also analyzed. Meanwhile, the relationship between the blade channel vortex and the operating stability of hydraulic turbine was also investigated. The results show that the phenomenon of blade channel vortex is an intrinsic property for Francis turbine under small flow rate condition, the turning-point of the blade channel vortex inception curve appears at low unit speed region, and the variation trend of the blade channel vortex inception curve is closely related to the blade inlet edge profile. In addition to, the vortex of the high water head turbine can generally be excluded from the stable operation region, while which is more different for the one of the low water head turbine.

  5. Innovation in wind turbine design

    CERN Document Server

    Jamieson, Peter

    2011-01-01

    Innovation in Wind Turbine Design addresses the fundamentals of design, the reasons behind design choices, and describes the methodology for evaluating innovative systems and components. Always referencing a state of the art system for comparison, Jamieson discusses the basics of wind turbine theory and design, as well as how to apply existing engineering knowledge to further advance the technology, enabling the reader to gain a thorough understanding of current technology before assessing where it can go in the future. Innovation in Wind Turbine Design is divided into four mai

  6. 基于有效年龄的风力机多部件维修优化%Maintenance optimization for multi-component of wind turbine based on effective age

    Institute of Scientific and Technical Information of China (English)

    苏春; 周小荃

    2012-01-01

    以风力机为对象,研究多部件系统的维修决策与优化问题,提出基于有效年龄的多部件维修优化模型.采用等周期检测方式,采取“继续工作”、“预防性维修”和“更换”3种维修策略,分析在各检测点处部件有效年龄的变化规律.考虑风力机部件之间的经济相关性,构造涵盖维修成本、更换成本、停机损失成本以及固定维护成本的维护成本函数,建立风力机维修成本优化数学模型;采用分支定界算法求解检测点处系统的最优维修策略.以风力机系统5个核心部件为对象,完成案例研究.结果表明:该模型能够有效描述风力机的维修过程,实现维护成本优化.%Targeted at wind turbines, the maintenance decision and its optimization for a multi-component system is studied, and the corresponding maintenance optimization model is proposed based on effective age. The components' effective ages at each inspection point changing with maintenance policies including "continuing to work", "preventive maintenance", and "replacement" are analyzed by the periodical inspection method. By considering economic dependence among the components of wind turbine, the mathematical model of maintenance optimization is established. In the maintenance cost function, the repair cost, replacement cost, breakdown loss and fixed maintenance cost are included. The branch and bound algorithm is used to solve the model, and optimal policies at each inspection point are obtained for the system. A case study of a five-component wind turbine is provided. The result shows that the presented model can effectively describe the maintenance process of a wind turbine, and the maintenance cost can be optimized.

  7. Wind Turbine Contingency Control Through Generator De-Rating

    Science.gov (United States)

    Frost, Susan; Goebel, Kai; Balas, Mark

    2013-01-01

    Maximizing turbine up-time and reducing maintenance costs are key technology drivers for wind turbine operators. Components within wind turbines are subject to considerable stresses due to unpredictable environmental conditions resulting from rapidly changing local dynamics. In that context, systems health management has the aim to assess the state-of-health of components within a wind turbine, to estimate remaining life, and to aid in autonomous decision-making to minimize damage to the turbine. Advanced contingency control is one way to enable autonomous decision-making by providing the mechanism to enable safe and efficient turbine operation. The work reported herein explores the integration of condition monitoring of wind turbines with contingency control to balance the trade-offs between maintaining system health and energy capture. The contingency control involves de-rating the generator operating point to achieve reduced loads on the wind turbine. Results are demonstrated using a high fidelity simulator of a utility-scale wind turbine.

  8. Draft tube flow phenomena across the bulb turbine hill chart

    Science.gov (United States)

    Duquesne, P.; Fraser, R.; Maciel, Y.; Aeschlimann, V.; Deschênes, C.

    2014-03-01

    In the framework of the BulbT project launched by the Consortium on Hydraulic Machines and the LAMH (Hydraulic Machine Laboratory of Laval University) in 2011, an intensive campaign to identify flow phenomena in the draft tube of a model bulb turbine has been done. A special focus was put on the draft tube component since it has a particular importance for recuperation in low head turbines. Particular operating points were chosen to analyse flow phenomena in this component. For each of these operating points, power, efficiency and pressure were measured following the IEC 60193 standard. Visualizations, unsteady wall pressure and efficiency measurements were performed in this component. The unsteady wall pressure was monitored at seven locations in the draft tube. The frequency content of each pressure signal was analyzed in order to characterize the flow phenomena across the efficiency hill chart. Visualizations were recorded with a high speed camera using tufts and cavitation bubbles as markers. The predominant detected phenomena were mapped and categorized in relation to the efficiency hill charts obtained for three runner blade openings. At partial load, the vortex rope was detected and characterized. An inflection in the partial load efficiency curves was found to be related to complex vortex rope instabilities. For overload conditions, the efficiency curves present a sharp drop after the best efficiency point, corresponding to an inflection on the power curves. This break off is more severe towards the highest blade openings. It is correlated to a flow separation at the wall of the draft tube. Also, due to the separation occurring in these conditions, a hysteresis effect was observed on the efficiency curves.

  9. On the Dynamic Measurements of Hydraulic Characteristics

    Science.gov (United States)

    Hasmatuchi, Vlad; Bosioc, Alin; Münch-Alligné, Cécile

    2016-11-01

    The present work introduces the implementation and validation of a faster method to measure experimentally the efficiency characteristics of hydraulic turbomachines at a model scale on a test rig. The case study is represented by a laboratory prototype of an in-line axial microturbine for water supply networks. The 2.65 kW one-stage variable speed turbine, composed by one upstream 5-blade runner followed by one counter-rotating downstream 7-blade runner, has been installed on the HES-SO Valais/Wallis universal test rig dedicated to assess performances of small hydraulic machinery following the IEC standard recommendations. In addition to the existing acquisition/control system of the test rig used to measure the 3D hill-chart of a turbine by classical static point-by-point method, a second digitizer has been added to acquire synchronized dynamic signals of the employed sensors. The optimal acceleration/deceleration ramps of the electrical drives have been previously identified in order to cope with the purpose of a reduced measurement time while avoiding errors and hysteresis on the acquired hydraulic characteristics. Finally, the comparison between the turbine efficiency hill-charts obtained by dynamic and static point-by-point methods shows a very good agreement in terms of precision and repeatability. Moreover, the applied dynamic method reduces significantly (by a factor of up to ten) the time necessary to measure the efficiency characteristics on model testing.

  10. Numerical simulation of turbulence flow in a Kaplan turbine -Evaluation on turbine performance prediction accuracy-

    Science.gov (United States)

    Ko, P.; Kurosawa, S.

    2014-03-01

    The understanding and accurate prediction of the flow behaviour related to cavitation and pressure fluctuation in a Kaplan turbine are important to the design work enhancing the turbine performance including the elongation of the operation life span and the improvement of turbine efficiency. In this paper, high accuracy turbine and cavitation performance prediction method based on entire flow passage for a Kaplan turbine is presented and evaluated. Two-phase flow field is predicted by solving Reynolds-Averaged Navier-Stokes equations expressed by volume of fluid method tracking the free surface and combined with Reynolds Stress model. The growth and collapse of cavitation bubbles are modelled by the modified Rayleigh-Plesset equation. The prediction accuracy is evaluated by comparing with the model test results of Ns 400 Kaplan model turbine. As a result that the experimentally measured data including turbine efficiency, cavitation performance, and pressure fluctuation are accurately predicted. Furthermore, the cavitation occurrence on the runner blade surface and the influence to the hydraulic loss of the flow passage are discussed. Evaluated prediction method for the turbine flow and performance is introduced to facilitate the future design and research works on Kaplan type turbine.

  11. Turbulence in vertical axis wind turbine canopies

    Science.gov (United States)

    Kinzel, Matthias; Araya, Daniel B.; Dabiri, John O.

    2015-11-01

    Experimental results from three different full scale arrays of vertical-axis wind turbines (VAWTs) under natural wind conditions are presented. The wind velocities throughout the turbine arrays are measured using a portable meteorological tower with seven, vertically staggered, three-component ultrasonic anemometers. The power output of each turbine is recorded simultaneously. The comparison between the horizontal and vertical energy transport for the different turbine array sizes shows the importance of vertical transport for large array configurations. Quadrant-hole analysis is employed to gain a better understanding of the vertical energy transport at the top of the VAWT arrays. The results show a striking similarity between the flows in the VAWT arrays and the adjustment region of canopies. Namely, an increase in ejections and sweeps and decrease in inward and outward interactions occur inside the turbine array. Ejections are the strongest contributor, which is in agreement with the literature on evolving and sparse canopy flows. The influence of the turbine array size on the power output of the downstream turbines is examined by comparing a streamwise row of four single turbines with square arrays of nine turbine pairs. The results suggest that a new boundary layer forms on top of the larger turbine arrays as the flow adjusts to the new roughness length. This increases the turbulent energy transport over the whole planform area of the turbine array. By contrast, for the four single turbines, the vertical energy transport due to turbulent fluctuations is only increased in the near wake of the turbines. These findings add to the knowledge of energy transport in turbine arrays and therefore the optimization of the turbine spacing in wind farms.

  12. Study on maximum power control of turbines in a tidal current power generation system based on hydraulic transmission%液压型潮流能发电系统叶轮最大功率控制

    Institute of Scientific and Technical Information of China (English)

    林躜; 李磊; 陈俊华; 郑堤; 唐辰; 李浩

    2014-01-01

    In order to solve the problem of low energy capturing efficiency of the horizontal axis turbine in tidal current power generation system at low current speed, a variable pump counter torque reference value model was established. In this study, based on the maximum power tracking theory and the torque equilibrium equation of turbine versus variable pump, a control system with indirect speed control, pressure feedback, and torque control was designed to achieve the maximum power capture of the turbine by regulating the output of the variable pump in a small range. The performance of the designed control system was simulated by means of the Automation Studio software, and corresponding sea test was conducted. Test results showed that the control system ran steadily, the captured power coefficient of the turbine fluctuated near 0.35 and 0.33, respectively, in the simulation and sea trials; compared with the uncontrolled, these numbers increased by 0.03 and 0.05, respectively. The capture efficiency of the turbine was enhanced, and the effectiveness of the control system was verified.%文章为解决水平轴潮流能发电系统在低于设计流速下叶轮能量捕获效率低的问题,运用最大功率跟踪控制理论及叶轮与变量泵传动轴力矩平衡方程,建立了变量泵反力矩参考值模型,设计了间接速度控制的压力反馈加转矩控制系统,通过小范围内调节变量泵排量,实现叶轮最大功率捕获。整个系统的性能在自动化工作室(automation studio)中进行了仿真测试,实验样机也进行了海上试验。仿真测试和海试结果显示,该控制系统工作稳定性好,仿真和海试时叶轮的捕获功率系数分别在0.35和0.33附近波动,相比不加控制,分别增加了约0.03和0.05,提高了叶轮的捕获效率,验证了控制系统的有效性。

  13. Reliability Assessment of Wind Turbines

    DEFF Research Database (Denmark)

    Sørensen, John Dalsgaard

    2015-01-01

    (and safe). In probabilistic design the single components are designed to a level of reliability, which accounts for an optimal balance between failure consequences, cost of operation & maintenance, material costs and the probability of failure. Furthermore, using a probabilistic design basis...... but manufactured in series production based on many component tests, some prototype tests and zeroseries wind turbines. These characteristics influence the reliability assessment where focus in this paper is on the structural components. Levelized Cost Of Energy is very important for wind energy, especially when...... comparing to other energy sources. Therefore much focus is on cost reductions and improved reliability both for offshore and onshore wind turbines. The wind turbine components should be designed to have sufficient reliability level with respect to both extreme and fatigue loads but also not be too costly...

  14. Hydraulic Actuators with Autonomous Hydraulic Supply for the Mainline Aircrafts

    Directory of Open Access Journals (Sweden)

    I. S. Shumilov

    2014-01-01

    pipelines, as well as their increasing reliability. It is also possible, in addition, in addition to increase reliability of the remained pipelines, having applied the last developments, e.g. introduction of one-piece connections (thermo-mechanical ones, high-strength steels for pipelines with σв˃85 кг/мм 2 σ to increase control of residual assembly tension, and so on;- to eliminate essentially all the shortcomings of hydraulic actuators, which constrain their introduction in aircraft industry;- to simplify essentially steering drive structures and designs, which allow to apply the tried and tested components and principles;- to simplify essentially a solution for cooling of working liquid;- to simplify essentially a solution for the steering drive configuration in a zone of control vanes;- to simplify essentially a solution for meeting requirements for dynamic rigidity and dynamic sensitivity of hydraulic actuators;- to simplify essentially a solution for the aircraft fire safety, etc.

  15. The calculation of fluid-structure interaction and fatigue analysis for Francis turbine runner

    Science.gov (United States)

    Wang, X. F.; Li, H. L.; Zhu, F. W.

    2012-11-01

    Francis turbine, as a widely used hydro turbine, is especially suited for the hydropower station with high hydraulic head and higher hydraulic head. For such turbine generator units all around the world, the crack streaks usually come out after a long time use and the resulted accidents may cause huge losses. Hence, it is meaningful to refine the design assuring the stability and safety of the Francis turbine. In this paper, the stiffness and strength as well as the fatigue life of the Francis turbine are studied. Concerning on the turbine of one certain hydropower station, the flow field inside the turbine are first simulated and the pressure distribution around the blades are derived. Meanwhile, the stress distributions of the blades are also obtained. Based on these, the fatigue analyses are applied on the turbine. According to the results of fatigue analyses, some optimal designs on the turbine are verified. The results show that with the optimal designs, the hydraulic performances of the turbine do not change too much while the maximum stress on the turbine decrease and the fatigue life increase as well.

  16. Ni-based superalloys for turbine discs

    Science.gov (United States)

    Furrer, David; Fecht, Hans

    1999-01-01

    Superalloys have been developed for specific, specialized properties and applications. One of the main applications for nickel-based superalloys is gas-turbine-engine disc components for land-based power generation and aircraft propulsion. Turbine engines create harsh environments for materials due to the high operating temperatures and stress levels. Hence, as described in this article, many alloys used in the high-temperature turbine sections of these engines are very complex and highly optimized.

  17. Lightning protection system for a wind turbine

    Science.gov (United States)

    Costin, Daniel P [Chelsea, VT; Petter, Jeffrey K [Williston, VT

    2008-05-27

    In a wind turbine (104, 500, 704) having a plurality of blades (132, 404, 516, 744) and a blade rotor hub (120, 712), a lightning protection system (100, 504, 700) for conducting lightning strikes to any one of the blades and the region surrounding the blade hub along a path around the blade hub and critical components of the wind turbine, such as the generator (112, 716), gearbox (708) and main turbine bearings (176, 724).

  18. ADVANCED TURBINE SYSTEMS PROGRAM

    Energy Technology Data Exchange (ETDEWEB)

    Gregory Gaul

    2004-04-21

    , combustion, cooling, materials, coatings and casting development. The market potential for the ATS gas turbine in the 2000-2014 timeframe was assessed for combined cycle, simple cycle and integrated gasification combined cycle, for three engine sizes. The total ATS market potential was forecasted to exceed 93 GW. Phase 3 and Phase 3 Extension involved further technology development, component testing and W501ATS engine detail design. The technology development efforts consisted of ultra low NO{sub x} combustion, catalytic combustion, sealing, heat transfer, advanced coating systems, advanced alloys, single crystal casting development and determining the effect of steam on turbine alloys. Included in this phase was full-load testing of the W501G engine at the McIntosh No. 5 site in Lakeland, Florida.

  19. 风电叶片用双组分水性聚氨酯涂料的研制%Development of Two-Component Waterborne Polyurethane Coatings for Wind Turbine Blades

    Institute of Scientific and Technical Information of China (English)

    刘成楼; 隗功祥

    2011-01-01

    详细介绍了风电叶片用双组分水性聚氨酯涂料的原材料组成、基本配方、制备工艺、性能检测结果。重点讨论了成膜物、颜填料及助剂等的选择及其作用。研制的双组分水性聚氨酯涂料集高性能与环保性于一身,代表了风电叶片涂料的发展方向。%The raw material, basic formulation, preparation technology, and the performance index of two- component waterborne polyurethane coatings for wind turbine blades were introduced in detail. The selection and action of film-forming material, pigment and filler, and additive were discussed. The two-component waterborne polyurethane coatings combined high performance with environmental protection in one, and represented the development direction of wind turbine blades coatings.

  20. Radial gas turbine design

    Energy Technology Data Exchange (ETDEWEB)

    Krausche, S.; Ohlsson, Johan

    1998-04-01

    The objective of this work was to develop a program dealing with design point calculations of radial turbine machinery, including both compressor and turbine, with as few input data as possible. Some simple stress calculations and turbine metal blade temperatures were also included. This program was then implanted in a German thermodynamics program, Gasturb, a program calculating design and off-design performance of gas turbines. The calculations proceed with a lot of assumptions, necessary to finish the task, concerning pressure losses, velocity distribution, blockage, etc., and have been correlated with empirical data from VAT. Most of these values could have been input data, but to prevent the user of the program from drowning in input values, they are set as default values in the program code. The output data consist of geometry, Mach numbers, predicted component efficiency etc., and a number of graphical plots of geometry and velocity triangles. For the cases examined, the error in predicted efficiency level was within {+-} 1-2% points, and quite satisfactory errors in geometrical and thermodynamic conditions were obtained Examination paper. 18 refs, 36 figs

  1. Micro Gas Turbine – A Review

    Directory of Open Access Journals (Sweden)

    Tushar Shukla

    2013-10-01

    Full Text Available Turbomachines is a class of machines which comprise of turbines and compressors. These machines are widely used for power generation, aircraft propulsion and in a wide range of heavy and medium industries. When we scale down these large turbines, we get micro turbines, which are compact and miniaturized form of these large turbines. The process of scaling down a turbine is not as simple as it looks like, it is a very tedious job and researches are going on in this area. These micro gas turbines are usually found with a power generating capacity of 250kW. They use any gas like natural gas, biogas, etc. as its input. The advantages of a micro gas turbine are that it has high expansion ratio and less moving components. The drawbacks of these turbines are that it requires high angular velocity as well as advanced electronics which can convert electricity of high frequency which gets produced into useful frequency of 50/60 Hz. This turbine is a very viable solution for distributed power generation which can be used for stationary energy applications. Also, micro gas turbine has found great use as cogeneration systems. These micro gas turbines can produce power between less than a kilowatt to hundreds of watts, which can be used for various purposes like electricity generation or head creation. These turbines are cost-effective, eco-friendly and pollution free as they can work by burning any gas like natural gas, land fill gas, etc. The manuscript presented gives an outlook on the past, present and future of these micro gas turbines. This paper will discuss the advantages and its uses. It will also discuss the drawbacks and the limitations of these turbines. This manuscript will prove to be a reference to all the researchers who want work in this field

  2. Very Low Head Turbine Deployment in Canada

    Science.gov (United States)

    Kemp, P.; Williams, C.; Sasseville, Remi; Anderson, N.

    2014-03-01

    The Very Low Head (VLH) turbine is a recent turbine technology developed in Europe for low head sites in the 1.4 - 4.2 m range. The VLH turbine is primarily targeted for installation at existing hydraulic structures to provide a low impact, low cost, yet highly efficient solution. Over 35 VLH turbines have been successfully installed in Europe and the first VLH deployment for North America is underway at Wasdell Falls in Ontario, Canada. Deployment opportunities abound in Canada with an estimated 80,000 existing structures within North America for possible low-head hydro development. There are several new considerations and challenges for the deployment of the VLH turbine technology in Canada in adapting to the hydraulic, environmental, electrical and social requirements. Several studies were completed to determine suitable approaches and design modifications to mitigate risk and confirm turbine performance. Diverse types of existing weirs and spillways pose certain hydraulic design challenges. Physical and numerical modelling of the VLH deployment alternatives provided for performance optimization. For this application, studies characterizing the influence of upstream obstacles using water tunnel model testing as well as full-scale prototype flow dynamics testing were completed. A Cold Climate Adaptation Package (CCA) was developed to allow year-round turbine operation in ice covered rivers. The CCA package facilitates turbine extraction and accommodates ice forces, frazil ice, ad-freezing and cold temperatures that are not present at the European sites. The Permanent Magnet Generator (PMG) presents some unique challenges in meeting Canadian utility interconnection requirements. Specific attention to the frequency driver control and protection requirements resulted in a driver design with greater over-voltage capability for the PMG as well as other key attributes. Environmental studies in Europe included fish friendliness testing comprised of multiple in

  3. SMART POWER TURBINE

    Energy Technology Data Exchange (ETDEWEB)

    Nirm V. Nirmalan

    2003-11-01

    Gas turbines are the choice technology for high-performance power generation and are employed in both simple and combined cycle configurations around the world. The Smart Power Turbine (SPT) program has developed new technologies that are needed to further extend the performance and economic attractiveness of gas turbines for power generation. Today's power generation gas turbines control firing temperatures indirectly, by measuring the exhaust gas temperature and then mathematically calculating the peak combustor temperatures. But temperatures in the turbine hot gas path vary a great deal, making it difficult to control firing temperatures precisely enough to achieve optimal performance. Similarly, there is no current way to assess deterioration of turbine hot-gas-path components without shutting down the turbine. Consequently, maintenance and component replacements are often scheduled according to conservative design practices based on historical fleet-averaged data. Since fuel heating values vary with the prevalent natural gas fuel, the inability to measure heating value directly, with sufficient accuracy and timeliness, can lead to maintenance and operational decisions that are less than optimal. GE Global Research Center, under this Smart Power Turbine program, has developed a suite of novel sensors that would measure combustor flame temperature, online fuel lower heating value (LHV), and hot-gas-path component life directly. The feasibility of using the ratio of the integrated intensities of portions of the OH emission band to determine the specific average temperature of a premixed methane or natural-gas-fueled combustion flame was demonstrated. The temperature determined is the temperature of the plasma included in the field of view of the sensor. Two sensor types were investigated: the first used a low-resolution fiber optic spectrometer; the second was a SiC dual photodiode chip. Both methods worked. Sensitivity to flame temperature changes was

  4. Land-based turbine casting initiative

    Energy Technology Data Exchange (ETDEWEB)

    Mueller, B.A.; Spicer, R.A. [Howmet Corp., Whitehall, MI (United States)

    1995-10-01

    The Advanced Turbine Systems (ATS) program has set goals which include a large-scale utility turbine efficiency that exceeds 60 percent (LHV) on natural gas and an industrial turbine system heat rate improvement of 15 percent. To meet these goals, technological advances developed for aircraft gas turbine engines need to be applied to land based gas turbines. These technological advances include: directionally solidified and single crystal castings, alloys tailored to exploit these microstructures, complex internal cooling schemes, and coatings. Equiaxed and directionally solidified castings are employed in current land based power generation equipment. These castings do not possess the ability to meet the efficiency targets as outlined above. The production use of premium single crystal components with complex internal cooling schemes in the latest generation of alloys is necessary to meet the ATS goals. However, at present, the use of single crystal components with complex internal cooling schemes is restricted to industrial sized or aeroderivative engines, and prototype utility sized components.

  5. Integrating Structural Health Management with Contingency Control for Wind Turbines

    Directory of Open Access Journals (Sweden)

    Kai Goebel

    2013-01-01

    Full Text Available Maximizing turbine up-time and reducing maintenance costs are key technology drivers for wind turbine operators. Components within wind turbines are subject to considerable stresses due to unpredictable environmental conditions resulting from rapidly changing local dynamics. In that context, systems health management has the aim to assess the state-of-health of components within a wind turbine, to estimate remaining life, and to aid in autonomous decision-making to minimize damage to the turbine. Advanced contingency control is one way to enable autonomous decision-making by providing the mechanism to enable safe and efficient turbine operation. The work reported herein explores the integration of condition monitoring of wind turbine blades with contingency control to balance the trade-offs between maintaining system health and energy capture. Results are demonstrated using a high fidelity simulator of a utility-scale wind turbine.

  6. Enhanced Droplet Erosion Resistance of Laser Treated Nano Structured TWAS and Plasma Ion Nitro-Carburized Coatings for High Rating Steam Turbine Components

    Science.gov (United States)

    Pant, B. K.; Arya, Vivek; Mann, B. S.

    2010-09-01

    This article deals with surface modification of twin wire arc sprayed (TWAS) and plasma ion nitro-carburized X10CrNiMoV1222 steel using high power diode laser (HPDL) to overcome water droplet erosion occurring in low pressure steam turbine (LPST) bypass valves and LPST moving blades used in high rating conventional, critical, and super critical thermal power plants. The materials commonly used for high rating steam turbines blading are X10CrNiMoV1222 steel and Ti6Al4V titanium alloy. The HPDL surface treatment on TWAS coated X10CrNiMoV1222 steel as well as on plasma ion nitro-carburized steel has improved water droplet resistance manifolds. This may be due to combination of increased hardness and toughness as well as the formation of fine grained structure due to rapid heating and cooling rates associated with the laser surface treatment. The water droplet erosion test results along with their damage mechanism are reported in this article.

  7. Expected load spectra of prototype Francis turbines in low-load operation using numerical simulations and site measurements

    Science.gov (United States)

    Eichhorn, M.; Taruffi, A.; Bauer, C.

    2017-04-01

    The operators of hydropower plants are forced to extend the existing operating ranges of their hydraulic machines to remain competitive on the energy market due to the rising amount of wind and solar power. Faster response times and a higher flexibility towards part- and low-load conditions enable a better electric grid control and assure therefore an economic operation of the power plant. The occurring disadvantage is a higher dynamic excitation of affected machine components, especially Francis turbine runners, due to pressure pulsations induced by unsteady flow phenomena (e.g. draft tube vortex ropes). Therefore, fatigue analysis becomes more important even in the design phase of the hydraulic machines to evaluate the static and dynamic load in different operating conditions and to reduce maintenance costs. An approach including a one-way coupled fluid-structure interaction has been already developed using unsteady CFD simulations and transient FEM computations. This is now applied on two Francis turbines with different specific speeds and power ranges, to obtain the load spectra of both machines. The results are compared to strain gauge measurements on the according Francis turbines to validate the overall procedure.

  8. Diffuser Augmented Horizontal Axis Tidal Current Turbines

    Directory of Open Access Journals (Sweden)

    Nasir Mehmood

    2012-09-01

    Full Text Available The renewal energy technologies are increasingly popular to ensure future energy sustenance and address environmental issues. The tides are enormous and consistent untapped resource of renewable energy. The growing interest in exploring tidal energy has compelling reasons such as security and diversity of supply, intermittent but predictable and limited social and environmental impacts. The tidal energy industry is undergoing an increasing shift towards diffuser augmented turbines. The reason is the higher power output of diffuser augmented turbines compared to conventional open turbines. The purpose of this study is to present a comprehensive review of diffuser augmented horizontal axis tidal current turbines. The components, relative advantages, limitations and design parameters of diffuser augmented horizontal axis tidal current turbines are presented in detail. CFD simulation of NACA 0016 airfoil is carried out to explore its potential for designing a diffuser. The core issues associated with diffuser augmented horizontal axis tidal current turbines are also discussed.

  9. Technology of load-sensitivity used in the hydraulic system of an all-hydraulic core rig

    Institute of Scientific and Technical Information of China (English)

    XIN De-zhong; CHEN Song-ling; WANG Qing-feng

    2009-01-01

    The existing hydraulic system always have problems of temperature rise, run-ning stability and anti-interference of the implementation components, reliability of hydrau-lic components, maintenance difficulties, and other issues. With high efficiency, energy saving, reliability, easy operating, stable running, anti-interference ability, and other ad-vantages, the load-sensitive hydraulic system is more suitable for coal mine all-hydraulic core rig. Therefore, for the technical development of the coal mine all-hydraulic core rig, the load-sensitive technology employed by the rig should be of great significance.

  10. Valve exploiting the principle of a side channel turbine

    Science.gov (United States)

    Jandourek, Pavel; Pochylý, František; Haban, Vladimír

    2017-04-01

    The presented article deals with a side channel turbine, which can be used as a suitable substitute for a pressure reducing valve. Pressure reducing valves are a source of high hydraulic losses. The aim is to replace them by a side channel turbine. With that in mind, hydraulic losses can be replaced by a production of electrical energy at comparable characteristics of the reducing valve and the side channel turbine. The basis for the design is the loss characteristics of the pressure reducing valve. Thereby create a new kind of turbine valve with speed-controlled flow in dependence of the runner revolution. It is technical innovation and new renewable source of energy, which can be in future used in rehabilitation or projecting of pumped-storage power plants. It also increases the power of the power plant.

  11. Experiments on optimization and standardising of turbines for small-scale hydro-power plants

    Energy Technology Data Exchange (ETDEWEB)

    Strohmer, F.

    1983-01-01

    The importance of small scale hydropower plants in the field of power generation increases worldwide. For an economic power generation a standard program for small scale turbines has been developed. Exhaustive test results were the basis for optimizing those turbines hydraulically. Simple, mature and well proven designs ensure troublefree and maintenancefree operation. The advantages of standardization in connection with available hydraulic test results and experience in design make the use of small and even smallest hydropower plants economically efficient.

  12. Thermal-hydraulic modeling and analysis of hydraulic system by pseudo-bond graph

    Institute of Scientific and Technical Information of China (English)

    胡均平; 李科军

    2015-01-01

    To increase the efficiency and reliability of the thermodynamics analysis of the hydraulic system, the method based on pseudo-bond graph is introduced. According to the working mechanism of hydraulic components, they can be separated into two categories: capacitive components and resistive components. Then, the thermal-hydraulic pseudo-bond graphs of capacitive C element and resistance R element were developed, based on the conservation of mass and energy. Subsequently, the connection rule for the pseudo-bond graph elements and the method to construct the complete thermal-hydraulic system model were proposed. On the basis of heat transfer analysis of a typical hydraulic circuit containing a piston pump, the lumped parameter mathematical model of the system was given. The good agreement between the simulation results and experimental data demonstrates the validity of the modeling method.

  13. Future Materials for Wind Turbine Blades - A Critical Review

    DEFF Research Database (Denmark)

    Raghavalu Thirumalai, Durai Prabhakaran

    2012-01-01

    Wind turbine industry is continuously evaluating material systems to replace the current thermoset composite technologies. Since turbine blades are the key component in the wind turbines and the size of the blade is increasing in today’s wind design, the material selection has become crucial...... higher performance under severe environmental conditions. The current article reviews various material alternatives and demonstrates the advantageous and disadvantageous for future wind turbine blade developments....

  14. A Critical Review of Future Materials for Wind Turbine Blades

    DEFF Research Database (Denmark)

    Raghavalu Thirumalai, Durai Prabhakaran

    2014-01-01

    Wind turbine industry is continuously evaluating materials systems to replace the current thermoset composite technologies. Since turbine blades are the key component in the wind turbines and the size of the blade is increasing in todays wind design, the materials selection has become crucial...... higher performance under severe environmental conditions. The current article reviews various materials alternatives and demonstrates the advantages and disadvantages for future wind turbine blade developments....

  15. Integrated Turbine Tip Clearance and Gas Turbine Engine Simulation

    Science.gov (United States)

    Chapman, Jeffryes W.; Kratz, Jonathan; Guo, Ten-Huei; Litt, Jonathan

    2016-01-01

    Gas turbine compressor and turbine blade tip clearance (i.e., the radial distance between the blade tip of an axial compressor or turbine and the containment structure) is a major contributing factor to gas path sealing, and can significantly affect engine efficiency and operational temperature. This paper details the creation of a generic but realistic high pressure turbine tip clearance model that may be used to facilitate active tip clearance control system research. This model uses a first principles approach to approximate thermal and mechanical deformations of the turbine system, taking into account the rotor, shroud, and blade tip components. Validation of the tip clearance model shows that the results are realistic and reflect values found in literature. In addition, this model has been integrated with a gas turbine engine simulation, creating a platform to explore engine performance as tip clearance is adjusted. Results from the integrated model explore the effects of tip clearance on engine operation and highlight advantages of tip clearance management.

  16. HYDRAULICS, LOUISA COUNTY, USA

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Hydraulic data include spatial datasets and data tables necessary for documenting the hydraulic analysis for estimating flood stages for a flood insurance study. It...

  17. Hydraulic Hybrid Vehicles

    Science.gov (United States)

    EPA and the United Parcel Service (UPS) have developed a hydraulic hybrid delivery vehicle to explore and demonstrate the environmental benefits of the hydraulic hybrid for urban pick-up and delivery fleets.

  18. Biological assessment of the advanced turbine design at Wanapum Dam, 2005

    Energy Technology Data Exchange (ETDEWEB)

    Dauble, D. D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Deng, Z. D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Richmond, M. C. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Moursund, R. A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Carlson, T. J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Rakowski, C. L. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Duncan, J. P. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2007-08-01

    Three studies were conducted to evaluate the biological performance of an advanced design turbine installed at Unit 8 of Wanapum Dam on the Columbia River in 2005 versus a conventional Kaplan turbine, Unit 9. The studies included an evaluation of blade-strike using deterministic and probabilistic models, integrated analysis of the response of the Sensor Fish to sever hydraulic events within the turbine system, and a novel dye technique to measure injury to juvenile salmonids in the field.

  19. Experiments on Component Effects for Performance of SMART PRHRS using the High Temperature/High Pressure Thermal-Hydraulic Test Facility (VISTA)

    Energy Technology Data Exchange (ETDEWEB)

    Park, Hyun Sik; Choi, Ki Yong; Cho, Seok; Lee, Sung Jae; Choi, Nam Hyun; Min, Kyong Ho; Song, Chul Hwa; Park, Chun Kyong; Chung, Moon Ki

    2005-07-15

    The VISTA (Experimental Verification by Integral Simulation of Transients and Accidents) is an experimental facility to verify the performance and safety issues of the SMART-P (Pilot plant of the System-integrated Modular Advanced Reactor). The basic design of the SMART-P has been completed by KAERI. The present report describes the experimental results on the effects of several components for the performance of SMART PRHRS. Four experiments are performed separately without gas cylinder system, without PRHRS compensation tank, without initial filling of PRHRS loop, and without heat loss compensation of primary system. For all four cases a stable flow occurs in a natural circulation loop which is composed of a steam generator secondary side, a secondary system, and a PRHRS, which shows the similar trend of the reference case. Especially for cases without gas cylinder system and without initial filling of PRHRS loop the unsteady flow instability, which is occurred during the reference test, does not occur. The experimental results show that the overall performance of PRHRS is enhanced without PRHRS compensation tank, without initial filling of PRHRS loop, and without heat loss compensation.

  20. Wind turbines

    OpenAIRE

    Jorge, Clàudia; Stuer, Joris; Mahy, Philip; Hawksley, Will

    2013-01-01

    The European Project Semester is about much more than a period of study, it is an opportunity to explore new surroundings and embrace new cultures, all while studying in a unique environment with a blend of people from diff erent disciplines. Our project, put together with the help of our supervisor Gunther Steenackers fi nds three product developers and one ICT engineer coming together to work on a project for an urban wind turbine. Our Aim is as follows: “We wi...

  1. A novel energy recovery system for parallel hybrid hydraulic excavator.

    Science.gov (United States)

    Li, Wei; Cao, Baoyu; Zhu, Zhencai; Chen, Guoan

    2014-01-01

    Hydraulic excavator energy saving is important to relieve source shortage and protect environment. This paper mainly discusses the energy saving for the hybrid hydraulic excavator. By analyzing the excess energy of three hydraulic cylinders in the conventional hydraulic excavator, a new boom potential energy recovery system is proposed. The mathematical models of the main components including boom cylinder, hydraulic motor, and hydraulic accumulator are built. The natural frequency of the proposed energy recovery system is calculated based on the mathematical models. Meanwhile, the simulation models of the proposed system and a conventional energy recovery system are built by AMESim software. The results show that the proposed system is more effective than the conventional energy saving system. At last, the main components of the proposed energy recovery system including accumulator and hydraulic motor are analyzed for improving the energy recovery efficiency. The measures to improve the energy recovery efficiency of the proposed system are presented.

  2. Flow calculation in a bulb turbine

    Energy Technology Data Exchange (ETDEWEB)

    Goede, E.; Pestalozzi, J.

    1987-02-01

    In recent years remarkable progress has been made in the field of computational fluid dynamics. Sometimes the impression may arise when reading the relevant literature that most of the problems in this field have already been solved. Upon studying the matter more deeply, however, it is apparent that some questions still remain unanswered. The use of the quasi-3D (Q3D) computational method for calculating the flow in a fuel hydraulic turbine is described.

  3. Foundations for offshore wind turbines.

    Science.gov (United States)

    Byrne, B W; Houlsby, G T

    2003-12-15

    An important engineering challenge of today, and a vital one for the future, is to develop and harvest alternative sources of energy. This is a firm priority in the UK, with the government setting a target of 10% of electricity from renewable sources by 2010. A component central to this commitment will be to harvest electrical power from the vast energy reserves offshore, through wind turbines or current or wave power generators. The most mature of these technologies is that of wind, as much technology transfer can be gained from onshore experience. Onshore wind farms, although supplying 'green energy', tend to provoke some objections on aesthetic grounds. These objections can be countered by locating the turbines offshore, where it will also be possible to install larger capacity turbines, thus maximizing the potential of each wind farm location. This paper explores some civil-engineering problems encountered for offshore wind turbines. A critical component is the connection of the structure to the ground, and in particular how the load applied to the structure is transferred safely to the surrounding soil. We review previous work on the design of offshore foundations, and then present some simple design calculations for sizing foundations and structures appropriate to the wind-turbine problem. We examine the deficiencies in the current design approaches, and the research currently under way to overcome these deficiencies. Designs must be improved so that these alternative energy sources can compete economically with traditional energy suppliers.

  4. Transient CFD simulation of a Francis turbine startup

    Science.gov (United States)

    Nicolle, J.; Morissette, J. F.; Giroux, A. M.

    2012-11-01

    To assess the life expectancy of hydraulic turbines, it is essential to obtain the loading on the blades, especially during transient operations known to be the most damaging. This paper presents a simplified CFD setup to model the startup phase of a Francis turbine while it goes from rest to speed no-load condition. The fluid domain included one distributor sector coupled with one runner passage. The guide vane motion and change in the angular velocity were included in a commercial code with user functions. Comparisons between numerical results and measurements acquired on a full-size turbine showed that most of the flow physics occurring during startup were captured.

  5. Advanced Hydrogen Turbine Development

    Energy Technology Data Exchange (ETDEWEB)

    Joesph Fadok

    2008-01-01

    Siemens has developed a roadmap to achieve the DOE goals for efficiency, cost reduction, and emissions through innovative approaches and novel technologies which build upon worldwide IGCC operational experience, platform technology, and extensive experience in G-class operating conditions. In Phase 1, the technologies and concepts necessary to achieve the program goals were identified for the gas turbine components and supporting technology areas and testing plans were developed to mitigate identified risks. Multiple studies were conducted to evaluate the impact in plant performance of different gas turbine and plant technologies. 2015 gas turbine technologies showed a significant improvement in IGCC plant efficiency, however, a severe performance penalty was calculated for high carbon capture cases. Thermodynamic calculations showed that the DOE 2010 and 2015 efficiency targets can be met with a two step approach. A risk management process was instituted in Phase 1 to identify risk and develop mitigation plans. For the risks identified, testing and development programs are in place and the risks will be revisited periodically to determine if changes to the plan are necessary. A compressor performance prediction has shown that the design of the compressor for the engine can be achieved with additional stages added to the rear of the compressor. Tip clearance effects were studied as well as a range of flow and pressure ratios to evaluate the impacts to both performance and stability. Considerable data was obtained on the four candidate combustion systems: diffusion, catalytic, premix, and distributed combustion. Based on the results of Phase 1, the premixed combustion system and the distributed combustion system were chosen as having the most potential and will be the focus of Phase 2 of the program. Significant progress was also made in obtaining combustion kinetics data for high hydrogen fuels. The Phase 1 turbine studies indicate initial feasibility of the

  6. Advanced Hydrogen Turbine Development

    Energy Technology Data Exchange (ETDEWEB)

    Joesph Fadok

    2008-01-01

    Siemens has developed a roadmap to achieve the DOE goals for efficiency, cost reduction, and emissions through innovative approaches and novel technologies which build upon worldwide IGCC operational experience, platform technology, and extensive experience in G-class operating conditions. In Phase 1, the technologies and concepts necessary to achieve the program goals were identified for the gas turbine components and supporting technology areas and testing plans were developed to mitigate identified risks. Multiple studies were conducted to evaluate the impact in plant performance of different gas turbine and plant technologies. 2015 gas turbine technologies showed a significant improvement in IGCC plant efficiency, however, a severe performance penalty was calculated for high carbon capture cases. Thermodynamic calculations showed that the DOE 2010 and 2015 efficiency targets can be met with a two step approach. A risk management process was instituted in Phase 1 to identify risk and develop mitigation plans. For the risks identified, testing and development programs are in place and the risks will be revisited periodically to determine if changes to the plan are necessary. A compressor performance prediction has shown that the design of the compressor for the engine can be achieved with additional stages added to the rear of the compressor. Tip clearance effects were studied as well as a range of flow and pressure ratios to evaluate the impacts to both performance and stability. Considerable data was obtained on the four candidate combustion systems: diffusion, catalytic, premix, and distributed combustion. Based on the results of Phase 1, the premixed combustion system and the distributed combustion system were chosen as having the most potential and will be the focus of Phase 2 of the program. Significant progress was also made in obtaining combustion kinetics data for high hydrogen fuels. The Phase 1 turbine studies indicate initial feasibility of the

  7. Hydraulics and pneumatics a technician's and engineer's guide

    CERN Document Server

    Parr, Andrew

    1991-01-01

    Hydraulics and Pneumatics: A Technician's and Engineer's Guide provides an introduction to the components and operation of a hydraulic or pneumatic system. This book discusses the main advantages and disadvantages of pneumatic or hydraulic systems.Organized into eight chapters, this book begins with an overview of industrial prime movers. This text then examines the three different types of positive displacement pump used in hydraulic systems, namely, gear pumps, vane pumps, and piston pumps. Other chapters consider the pressure in a hydraulic system, which can be quickly and easily controlled

  8. Fire Resistant Aircraft Hydraulic System.

    Science.gov (United States)

    1982-07-01

    and compounds based on new experimental elastomers as well as most commercially available elastomers were screened in seeking seals that were both...for hydraulic component testing. All of the available E6.5 stock was purchased for the screening tests. However, DuPont stated that other homologs of...with the lubricity and anti-wear additive olyvan A (molybdenum oxysulphide dithiocarbamate ) added in the quantity of less than one percent by weight

  9. Component testing of a ground based gas turbine steam cooled rich-burn primary zone combustor for emissions control of nitrogeneous fuels

    Science.gov (United States)

    Schultz, D. F.

    1986-01-01

    This effort summarizes the work performed on a steam cooled, rich-burn primary zone, variable geometry combustor designed for combustion of nitrogeneous fuels such as heavy oils or synthetic crude oils. The steam cooling was employed to determine its feasibility and assess its usefulness as part of a ground based gas turbine bottoming cycle. Variable combustor geometry was employed to demonstrate its ability to control primary and secondary zone equivalence ratios and overall pressure drop. Both concepts proved to be highly successful in achieving their desired objectives. The steam cooling reduced peak liner temperatures to less than 800 K. This low temperature offers the potential of both long life and reduced use of strategic materials for liner fabrication. These degrees of variable geometry were successfully employed to control air flow distribution within the combustor. A variable blade angle axial flow air swirler was used to control primary zone air flow, while the secondary and tertiary zone air flows were controlled by rotating bands which regulated air flow to the secondary zone quench holes and the dilutions holes respectively.

  10. Analysis of Hydraulic Conductance Components in Field Grown, Mature Sweet Cherry Trees Análisis de los Componentes de Conductancia Hidráulica en Árboles Maduros de Cerezo Dulce en Condiciones de Campo

    Directory of Open Access Journals (Sweden)

    Ricardo Oyarzún

    2010-03-01

    Full Text Available As a necessary step towards understanding soil water extraction and plant water relationships, the components of hydraulic conductance (K of mature sweet cherry (Prunus avium L. trees were evaluated in situ based on a Ohm´s law analog method. In June 2004, K was determined for 10-yr-old ‘Bing’/‘Gisela® 5’ trees, from simultaneous measurements of whole canopy gas exchange and leaf (sunlit and shaded and stem water potentials (Ψ. Leaf water potential of sunlit leaves was lower than shaded leaves, reaching minimum values of ca. -2.3 MPa around 14:00 h (solar time. Average total hydraulic conductance was 60 ± 6 mmol s-1 MPa-1, presenting a slight decreasing trend as the season progressed. The analysis of tree K components showed that it was higher on the stem-leaf pathway (150 ± 50 mmol s-1 MPa-1, compared to the root-stem component (100 ± 20 mmol s-1 MPa-1, which is in agreement with literature reports for other fruit trees. A weak hysteresis pattern in the daily relationship between whole-canopy transpiration (weighted sunlit and shaded leaves vs. Ψ was observed, suggesting that water storage within the tree is not a significant component of sweet cherry water balance.Como un paso necesario para la comprensión de la extracción de agua desde el suelo y las relaciones suelo-agua-planta, los componentes de la conductancia hidráulica (K en árboles adultos de cerezo (Prunus avium L. fue evaluada in situ con un método basado en una analogía de la Ley de Ohm. En Junio de 2004, K fue determinada para árboles ‘Bing’/‘Gisela® 5’ de 10 años de edad, a partir de mediciones simultáneas de intercambio gaseoso del follaje en forma integrada y potenciales hídricos (Ψ de hojas individuales (soleadas y sombreadas y del xilema. Los potenciales hídricos de las hojas soleadas fueron menores que los de las hojas sombreadas, alcanzando valores mínimos de ca. -2.3 MPa alrededor de 14:00 h (hora solar. La conductancia hidr

  11. Composite wind turbine blades

    Science.gov (United States)

    Ong, Cheng-Huat

    Researchers in wind energy industry are constantly moving forward to develop higher efficiency wind turbine. One major component for wind turbine design is to have cost effective wind turbine blades. In addition to correct aerodynamic shape and blade geometry, blade performance can be enhanced further through aero-elastic tailoring design and material selections. An analytical tool for blade design has been improved and validated. This analytical tool is utilized to resolve issues related to elastic tailoring design. The investigation looks into two major issues related to the design and fabrication of a bend-twist-coupled blade. Various design parameters for a blade such as materials, laminate lay-up, skin thickness, ply orientation, internal spar, etc. have been examined for designing a bend-twist-coupled blade. The parametric study indicates that the critical design parameters are the ply material, the ply orientation, and the volume fraction ratio between the anisotropic layers and orthotropic layers. To produce a blade having the bend-twist coupling characteristics, the fiber lay-ups at the top and bottom skins of the blade must have a "mirror" lay-up in relation to the middle plane of the blade. Such lay-up causes fiber discontinuation at the seam. The joint design at the seam is one major consideration in fabricating a truly anisotropic blade. A new joint design was proposed and tensile failure tests were carried out for both the old and new joint designs. The tests investigated the effects of different types of joint designs, the laminate lay-up at the joints, and the stacking sequence of the joint retention strength. A major component of a wind turbine blade, D-spar, was designed to maximum coupling. Two D-spars were then fabricated using the new joint design; one of them was subjected to both static and modal testings. Traditionally, wind turbine blades are made of low cost glass material; however, carbon fibers are proposed as alternative material. Our

  12. Cogeneration turbine unit with a new T-295/335-23.5 steam turbine

    Science.gov (United States)

    Valamin, A. E.; Kultyshev, A. Yu.; Shibaev, T. L.; Gol'dberg, A. A.; Sakhnin, Yu. A.; Stepanov, M. Yu.; Shekhter, M. V.; Bilan, V. N.; Polyaeva, E. N.

    2016-11-01

    The design, schematics, and arrangement of a T-295/335-23.5 turbine and the basic features of a steam-turbine unit (STU) intended for replacement of STUs with a T-250/300-23.5 turbine with the expired service life and installed in large cities, such as Moscow, St. Petersburg, Kiev, Minsk, and Kharkov, for heat and power generation are considered. The basic solutions for an automatic electrohydraulic control and protection system using high-pressure (HP) technology are described. As the turbine operates in a power unit together with a supercritical boiler and the design turbine service life of 250000 hours must be attained, turbine component construction materials complying with these requirements are listed.

  13. Alternative aviation turbine fuels

    Science.gov (United States)

    Grobman, J.

    1977-01-01

    The efficient utilization of fossil fuels by future jet aircraft may necessitate the broadening of current aviation turbine fuel specifications. The most significant changes in specifications would be an increased aromatics content and a higher final boiling point in order to minimize refinery energy consumption and costs. These changes would increase the freezing point and might lower the thermal stability of the fuel and could cause increased pollutant emissions, increased smoke and carbon formation, increased combustor liner temperatures, and poorer ignition characteristics. This paper discusses the effects that broadened specification fuels may have on present-day jet aircraft and engine components and the technology required to use fuels with broadened specifications.

  14. Design of a laboratory hydraulic device for testing of hydraulic pumps

    Directory of Open Access Journals (Sweden)

    Pavel Máchal

    2013-01-01

    Full Text Available The present contribution deals with solves problem of research of testing device to monitor of hydrostatic pumps durability about dynamic loading under laboratory conditions. When carrying out the design of testing device are based on load characteristics of tractor hydraulic circuit, the individual characteristics of hydraulic components and performed calculations. Load characteristics on the tractors CASE IH Magnum 310, JOHN DEERE 8100, ZETOR FORTERRA 114 41 and Fendt 926 Vario were measured. Design of a hydraulic laboratory device is based on the need for testing new types of hydraulic pumps or various types of hydraulic fluids. When creating of hydraulic device we focused on testing hydraulic pumps used in agricultural and forestry tractors. Proportional pressure control valve is an active member of the hydraulic device, which provides change of a continuous control signal into relative pressure of operating fluid. The advantage of a designed hydraulic system is possibility of simulation of dynamic operating loading, which is obtained by measurement under real conditions, and thereby creates laboratory conditions as close to real conditions as possible. The laboratory device is constructed at the Department of Transport and Handling, Faculty of Engineering, Slovak University of Agriculture in Nitra.

  15. Turbine main engines

    CERN Document Server

    Main, John B; Herbert, C W; Bennett, A J S

    1965-01-01

    Turbine Main Engines deals with the principle of operation of turbine main engines. Topics covered include practical considerations that affect turbine design and efficiency; steam turbine rotors, blades, nozzles, and diaphragms; lubricating oil systems; and gas turbines for use with nuclear reactors. Gas turbines for naval boost propulsion, merchant ship propulsion, and naval main propulsion are also considered. This book is divided into three parts and begins with an overview of the basic mode of operation of the steam turbine engine and how it converts the pressure energy of the ingoing ste

  16. Dynamic behaviour of pump-turbine runner: From disk to prototype runner

    Science.gov (United States)

    Huang, X. X.; Egusquiza, E.; Valero, C.; Presas, A.

    2013-12-01

    In recent decades, in order to increase output power of hydroelectric turbomachinery, the design head and the flow rate of the hydraulic turbines have been increased greatly. This has led to serious vibratory problems. The pump-turbines have to work at various operation conditions to satisfy the requirements of the power grid. However, larger hydraulic forces will result in high vibration levels on the turbines, especially, when the machines operate at off-design conditions. Due to the economic considerations, the pump-turbines are built as light as possible, which will change the dynamic response of the structures. According to industrial cases, the fatigue damage of the pump-turbine runner induced by hydraulic dynamic forces usually happens on the outer edge of the crown, which is near the leading edges of blades. To better understand the reasons for this kind of fatigue, it is extremely important to investigate the dynamic response behaviour of the hydraulic turbine, especially the runner, by experimental measurement and numerical simulation. The pump-turbine runner has a similar dynamic response behaviour of the circular disk. Therefore, in this paper the dynamic response analyses for circular disks with different dimensions and disk-blades-disk structures were carried out to better understand the fundamental dynamic behaviour for the complex turbomachinery. The influences of the pattern and number of blades were discussed in detail.

  17. Ultimate loading of wind turbines

    DEFF Research Database (Denmark)

    Larsen, Gunner Chr.; Ronold, K.; Ejsing Jørgensen, Hans

    1999-01-01

    An extreme loading study has been conducted comprising a general wind climate analysis as well as a wind turbine reliability study. In the wind climate analysis, the distribution of the (horizontal) turbulence standard deviation, conditioned on the meanwind speed, has been approximated by fitting......, a design turbulence intensity for off-shore application is proposed which, in the IEC code framework, is applicable for extreme as well as for fatigue loaddetermination. In order to establish a rational method to analyse wind turbine components with respect to failure in ultimate loading, and in addition...... to the event of failure in ultimate loading in flapwise bending in the normal operating condition of a site-specific turbine....

  18. Simulating Collisions for Hydrokinetic Turbines

    Energy Technology Data Exchange (ETDEWEB)

    Richmond, Marshall C.; Romero Gomez, Pedro DJ; Rakowski, Cynthia L.

    2013-10-01

    Evaluations of blade-strike on an axial-flow Marine Hydrokinetic turbine were conducted using a conventional methodology as well as an alternative modeling approach proposed in the present document. The proposed methodology integrates the following components into a Computa- tional Fluid Dynamics (CFD) model: (i) advanced eddy-resolving flow simulations, (ii) ambient turbulence based on field data, (iii) moving turbine blades in highly transient flows, and (iv) Lagrangian particles to mimic the potential fish pathways. The sensitivity of blade-strike prob- ability to the following conditions was also evaluated: (i) to the turbulent environment, (ii) to fish size and (iii) to mean stream flow velocity. The proposed methodology provided fraction of collisions and offered the capability of analyzing the causal relationships between the flow envi- ronment and resulting strikes on rotating blades. Overall, the conventional methodology largely overestimates the probability of strike, and lacks the ability to produce potential fish and aquatic biota trajectories as they interact with the rotating turbine. By using a set of experimental corre- lations of exposure-response of living fish colliding on moving blades, the occurrence, frequency and intensity of the particle collisions was next used to calculate the survival rate of fish crossing the MHK turbine. This step indicated survival rates always greater than 98%. Although the proposed CFD framework is computationally more expensive, it provides the advantage of evaluating multiple mechanisms of stress and injury of hydrokinetic turbine devices on fish.

  19. K-65-12.8 condensing steam turbine

    Science.gov (United States)

    Valamin, A. E.; Kultyshev, A. Yu.; Gol'dberg, A. A.; Sakhnin, Yu. A.; Bilan, V. N.; Stepanov, M. Yu.; Polyaeva, E. N.; Shekhter, M. V.; Shibaev, T. L.

    2016-11-01

    A new condensing steam turbine K-65-12.8 is considered, which is the continuation of the development of the steam turbine family of 50-70 MW and the fresh steam pressure of 12.8 MPa, such as twocylinder T-50-12.8 and T-60/65-12.8 turbines. The turbine was developed using the modular design. The design and the main distinctive features of the turbine are described, such as a single two-housing cylinder with the steam flow loop; the extraction from the blading section for the regeneration, the inner needs, and heating; and the unification of some assemblies of serial turbines with shorter time of manufacture. The turbine uses the throttling steam distribution; steam from a boiler is supplied to a turbine through a separate valve block consisting of a central shut-off valve and two side control valves. The blading section of a turbine consists of 23 stages: the left flow contains ten stages installed in the inner housing and the right flow contains 13 stages with diaphragm placed in holders installed in the outer housing. The disks of the first 16 stages are forged together with a rotor, and the disks of the rest stages are mounted. Before the two last stages, the uncontrolled steam extraction is performed for the heating of a plant with the heat output of 38-75 GJ/h. Also, a turbine has five regenerative extraction points for feed water heating and the additional steam extraction to a collector for the inner needs with the consumption of up to 10 t/h. The feasibility parameters of a turbine plant are given. The main solutions for the heat flow diagram and the layout of a turbine plant are presented. The main principles and features of the microprocessor electro hydraulic control and protection system are formulated.

  20. Advanced coal-fueled gas turbine systems

    Energy Technology Data Exchange (ETDEWEB)

    Wenglarz, R.A.

    1994-08-01

    Several technology advances since the early coal-fueled turbine programs that address technical issues of coal as a turbine fuel have been developed in the early 1980s: Coal-water suspensions as fuel form, improved methods for removing ash and contaminants from coal, staged combustion for reducing NO{sub x} emissions from fuel-bound nitrogen, and greater understanding of deposition/erosion/corrosion and their control. Several Advanced Coal-Fueled Gas Turbine Systems programs were awarded to gas turbine manufacturers for for components development and proof of concept tests; one of these was Allison. Tests were conducted in a subscale coal combustion facility and a full-scale facility operating a coal combustor sized to the Allison Model 501-K industrial turbine. A rich-quench-lean (RQL), low nitrogen oxide combustor design incorporating hot gas cleanup was developed for coal fuels; this should also be applicable to biomass, etc. The combustor tests showed NO{sub x} and CO emissions {le} levels for turbines operating with natural gas. Water washing of vanes from the turbine removed the deposits. Systems and economic evaluations identified two possible applications for RQL turbines: Cogeneration plants based on Allison 501-K turbine (output 3.7 MW(e), 23,000 lbs/hr steam) and combined cycle power plants based on 50 MW or larger gas turbines. Coal-fueled cogeneration plant configurations were defined and evaluated for site specific factors. A coal-fueled turbine combined cycle plant design was identified which is simple, compact, and results in lower capital cost, with comparable efficiency and low emissions relative to other coal technologies (gasification, advanced PFBC).

  1. Hydraulic resistance and convective heat transfer within independent power generation micro sources (IPM) channels

    Science.gov (United States)

    V, Sudarev A.; V, Sudarev B.; A, Suryaninov A.

    2012-05-01

    The introduction of new structural materials and technologies contributes to the efficiency increase for the compact IPMs used in various branches of engineering. Use of a driving high-temperature (TIT600K), regenerative (the regeneration ratio is E>85%) micro gas turbine engine μGTE, major components which are made of structural ceramics, allows not only to maintain the effective efficiency at ηe=26-30%, but, also, sharply reduce the material consumption rate for the micro source as a whole. Application of the laser prototyping technique to manufacture the air heater, which is a part of μGTE, increases the IPM compactness. Miniaturization of the air heater, manufactured by the structural ceramics laser fusion, can significantly reduce the hydraulic diameter (dh<=1.0 mm) of the channels, designed to transport the working media inside it. Reducing dh leads to a significant increase in the hydraulic resistance of the micro channels. The associated increase in the energy consumption for μGTE's own needs is compensated by increasing the TIT, E, and heat transfer coefficients in micro channels, and by eliminating the need in cooling for high temperature IPM components.

  2. Rotating housing turbine

    Energy Technology Data Exchange (ETDEWEB)

    Allouche, Erez; Jaganathan, Arun P.

    2016-10-11

    The invention is a new turbine structure having a housing that rotates. The housing has a sidewall, and turbine blades are attached to a sidewall portion. The turbine may be completely open in the center, allowing space for solids and debris to be directed out of the turbine without jamming the spinning blades/sidewall. The turbine may be placed in a generator for generation of electrical current.

  3. Potentials of manufacture and repair of nickel base turbine components used in aero engines and power plants by laser metal deposition and laser drilling

    Institute of Scientific and Technical Information of China (English)

    I.Kelbassa; K.Walther; L.Trippe; W.Meiners; C.Over

    2007-01-01

    High pressure turbine (HPT) parts like blades and vanes with integrated cooling channels are challenging concerning overhaul and repair.So far damaged parts have to be replaced by the operator.The aim is to design and implement a refurbishment process chain to avoid scrapping of used parts.This process chain implies three different laser applications 1.Direct Laser Forming (DLF),2.Laser Metal Deposition (LMD) and 3.Laser Drilling (LD).The laser processing was extended in the last years towards application near materials like Nickel and Titanium base alloys.Concerning LMD and DLF the achieved results are investigated regarding macro and micro structure,hardness,defects (e.g.cracks,bonding defects,porosity) and contamination with atmospheric elements (e.g.O, N,C and H) are presented for Titanium alloys like Ti-6Al-4V,Ti-6246 and Ti-17 as well as for Nickel base alloys like Inconel 718 and Rene 80.Suitable process parameters are presented with the achieved static (tensile) and dynamic mechanical properties (HCF) and compared to those of heat treated raw materials.One innovative solution (manufacturing case) is to fabricate the small and complex shaped geometrical elements by LMD and/or DLF.By LMD these elements are built-up directly.With DLF the elements are manufactured separately in the DLF machine and connected by a subsequent joining technique with the large parts.With DLF small complex shaped parts like combustor swirlers,HPT blades and vanes with internal cooling channels are manufactured completely.LMD and DLF can be used in combination with subsequent LD.Depending on the application two different drilling techniques by dominant melt ejection-percussion drilling and trepanning-are classified and characterised.The drilling techniques are exemplarily presented for stainless steel and nickel base alloys (diameter 0.2~0.6 mm,aspect ratio<30,inclination up to 60°) using pulsed laser radiation (Nd:YAG,1064 nm,0.5~1 ms).The experimental results of coaxial

  4. HVOF Thermal Spray TiC/TiB2 Coatings for AUSC Boiler/Turbine Components for Enhanced Corrosion Protection

    Energy Technology Data Exchange (ETDEWEB)

    Mondal, Kanchan [Southern Illinois Univ., Carbondale, IL (United States). Dept. of Mechanical Engineering and Energy Processes; Koc, Rasit [Southern Illinois Univ., Carbondale, IL (United States). Dept. of Mechanical Engineering and Energy Processes; Fan, Chinbay [Gas Technology Inst., Des Plaines, IL (United States)

    2016-12-07

    The high temperatures of operations still pose significant risk of degradation and fatigue from oxidizing, corroding and eroding environment. In addition to unused O2, water from combustion and SOx from the coal sulfur oxidation that result in highly corrosive environment, acid gases such as HCl and other sulfur compounds may also be present. These adverse effects are further accelerated due to the elevated temperatures. In addition, ash particulates and unburnt carbon and pyritic sulfur can cause erosion of the surface and thus loss of material. Unburnt carbon and pyritic sulfur may also cause localized reduction sites. Thus, fireside corrosion protection and steam oxidation protection alternatives to currently used Ni-Cr overlays need to be identified and evaluated. Titanium carbide (TiC) is a suitable alternative on account of the material features such as the high hardness, the high melting point, the high strength and the low density for the substitution or to be used in conjunction with NiCr for enhancing the fireside corrosion and erosion of the materials. Another alternative is the use of titanium boride as a coating for chemical stability required for long-term service and high erosion resistance over the state-of-the-art, high fracture toughness (K1C ~12 MPam1/2) and excellent corrosion resistance (kp~1.9X10-11 g2/cm4/s at 800°C in air). The overarching aim of the research endeavor was to synthesize oxidation, corrosion and wear resistant TiC and TiB2 coating powders, apply thermal spray coating on existing boiler materials and characterize the coated substrates for corrosion resistance for applications at high temperatures (500 -750 °C) and high pressures (~350 bars) using the HVOF process and to demonstrate the feasibility of these coating to be used in AUSC boilers and turbines.

  5. Parameter Designing for Heave Compensation Hydraulic System Installed in Deepwater

    Directory of Open Access Journals (Sweden)

    Zhao Teng

    2013-01-01

    Full Text Available The function diagram of active heave compensation hydraulic system has been given, besides, the mathematics model for the principal hydraulic components of the compensation system has been built, and the input-output relation between components has been made clear. Aimed at compensating work capacity for the system, design and research on parameters as the bearing pressure, the initial state and the maximum flow of hydraulic cylinder, accumulator and other principal components have been made separately, and standardized design has been accomplished in accordance with relevant standards. Furthermore, calculus and verification for the capacity of the hydraulic system in different working stages have been made in order to calculate the pressure lose of the system and provide objective data for the hardware system design of the hydraulic components of the heave compensation system.

  6. Rotating transformers in wind turbine applications

    Energy Technology Data Exchange (ETDEWEB)

    Hylander, J. [Chalmers Univ. of Technology, Goeteborg (Sweden); Engstroem, S. [Aegir konsult AB, Lidingoe (Sweden)

    1996-12-01

    The power consumption of rotating electrical components is often supplied via slip-rings in wind turbines. Slip-ring equipment is expensive and need maintenance and are prone to malfunction. If the slip-rings could be replaced with contact-less equipment better turbines could be designed. This paper presents the design, some FE calculations and some measurements on a prototype rotating transformer. The proposed transformer consists of a secondary rotating winding and a stationary exciting primary winding. The results indicate that this transformer could be used to replace slip-rings in wind turbines. 4 refs, 3 figs

  7. Aircraft gas turbine materials and processes.

    Science.gov (United States)

    Kear, B H; Thompson, E R

    1980-05-23

    Materials and processing innovations that have been incorporated into the manufacture of critical components for high-performance aircraft gas turbine engines are described. The materials of interest are the nickel- and cobalt-base superalloys for turbine and burner sections of the engine, and titanium alloys and composites for compressor and fan sections of the engine. Advanced processing methods considered include directional solidification, hot isostatic pressing, superplastic foring, directional recrystallization, and diffusion brazing. Future trends in gas turbine technology are discussed in terms of materials availability, substitution, and further advances in air-cooled hardware.

  8. Thermally Actuated Hydraulic Pumps

    Science.gov (United States)

    Jones, Jack; Ross, Ronald; Chao, Yi

    2008-01-01

    Thermally actuated hydraulic pumps have been proposed for diverse applications in which direct electrical or mechanical actuation is undesirable and the relative slowness of thermal actuation can be tolerated. The proposed pumps would not contain any sliding (wearing) parts in their compressors and, hence, could have long operational lifetimes. The basic principle of a pump according to the proposal is to utilize the thermal expansion and contraction of a wax or other phase-change material in contact with a hydraulic fluid in a rigid chamber. Heating the chamber and its contents from below to above the melting temperature of the phase-change material would cause the material to expand significantly, thus causing a substantial increase in hydraulic pressure and/or a substantial displacement of hydraulic fluid out of the chamber. Similarly, cooling the chamber and its contents from above to below the melting temperature of the phase-change material would cause the material to contract significantly, thus causing a substantial decrease in hydraulic pressure and/or a substantial displacement of hydraulic fluid into the chamber. The displacement of the hydraulic fluid could be used to drive a piston. The figure illustrates a simple example of a hydraulic jack driven by a thermally actuated hydraulic pump. The pump chamber would be a cylinder containing encapsulated wax pellets and containing radial fins to facilitate transfer of heat to and from the wax. The plastic encapsulation would serve as an oil/wax barrier and the remaining interior space could be filled with hydraulic oil. A filter would retain the encapsulated wax particles in the pump chamber while allowing the hydraulic oil to flow into and out of the chamber. In one important class of potential applications, thermally actuated hydraulic pumps, exploiting vertical ocean temperature gradients for heating and cooling as needed, would be used to vary hydraulic pressures to control buoyancy in undersea research

  9. RELIABILITY OF MACHINE ELEMENTS IN WIND TURBINES

    Directory of Open Access Journals (Sweden)

    Willi GRUENDER

    2010-06-01

    Full Text Available Worldwide electrical energy production generated by wind turbines grows at a rate of 30 percent. This doubles the total production every three years. At the same time the power of individual stations goes up by 20 percent annually. Whereas today the towers, rotors and drive trains have to handle 5 MW, in about six to eight years they might produce up to fifteen MW. As a consequence, enormous pressure is put on the wind turbine manufacturers, the component suppliers and the operators. And because prototype and field testing is limited by its expense, the design of new turbines demands thorough analysis and simulation. Looking at the critical components of a wind turbine this paper describes advanced design tools which help to anticipate failures, but also assists in optimizing reliability and service life. Development of the software tools has been supported by research activities in many universities.

  10. Component-specific modeling. [jet engine hot section components

    Science.gov (United States)

    Mcknight, R. L.; Maffeo, R. J.; Tipton, M. T.; Weber, G.

    1992-01-01

    Accomplishments are described for a 3 year program to develop methodology for component-specific modeling of aircraft hot section components (turbine blades, turbine vanes, and burner liners). These accomplishments include: (1) engine thermodynamic and mission models, (2) geometry model generators, (3) remeshing, (4) specialty three-dimensional inelastic structural analysis, (5) computationally efficient solvers, (6) adaptive solution strategies, (7) engine performance parameters/component response variables decomposition and synthesis, (8) integrated software architecture and development, and (9) validation cases for software developed.

  11. Nonlinear Multibody Dynamics of Wind Turbines

    DEFF Research Database (Denmark)

    Holm-Jørgensen, Kristian

    The continuing development of wind turbines aim at higher effect production and reducing the purchase and maintenance costs for the customers. This demands that the components in the wind turbine are optimized closer to the limit than previously. In order to determine the design loads it is neces...... of straight elements of uniform thickness to discretize the cross section, where a mean value of the material layers over the thickness direction is used. Good correspondence is demonstrated between the used discretization methods....

  12. Photoacoustic microscopy of ceramic turbine blades

    Science.gov (United States)

    Khandelwal, P. K.; Kinnick, R. R.; Heitman, P. W.

    1985-01-01

    Scanning photoacoustic microscopy (SPAM) is evaluated as a nondestructive technique for the detection of both surface and subsurface flaws in polycrystalline ceramics, such as those currently under consideration for the high temperature components of small vehicular and industrial gas turbine engines; the fracture strength of these brittle materials is controlled by small, 25-200 micron flaws. Attention is given to the correlation of SPAM-detected flaws with actual, fracture-controlling flaws in ceramic turbine blades.

  13. Thermodynamic study of air-cycle and mercury-vapor-cycle systems for refrigerating cooling air for turbines or other components

    Science.gov (United States)

    Nachtigall, Alfred J; Freche, John C; Esgar, Jack B

    1956-01-01

    An analysis of air refrigeration systems indicated that air cycles are generally less satisfactory than simple heat exchangers unless high component efficiencies and high values of heat-exchanger effectiveness can be obtained. A system employing a mercury-vapor cycle appears to be feasible for refrigerating air that must enter the system at temperature levels of approximately 1500 degrees R, and this cycle is more efficient than the air cycle. Weight of the systems was not considered. The analysis of the systems is presented in a generalized dimensionless form.

  14. Advanced Turbine Technology (ATTAP) Applications Project. 1992 Annual report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1993-12-01

    ATTAP activities during the past year included reference powertrain design (RPD) updates, test-bed engine design and development, ceramic component design, materials and component characterization, ceramic component development and fabrication, ceramic component rig testing, and test-bed engine fabrication and testing. RPD revisions included updating the baseline vehicle as well as the turbine RPD. Comparison of major performance parameters shows that the turbine engine installation exceeds critical fuel economy, emissions, and performance goals, and meets overall ATTAP objectives.

  15. Vibration of hydraulic machinery

    CERN Document Server

    Wu, Yulin; Liu, Shuhong; Dou, Hua-Shu; Qian, Zhongdong

    2013-01-01

    Vibration of Hydraulic Machinery deals with the vibration problem which has significant influence on the safety and reliable operation of hydraulic machinery. It provides new achievements and the latest developments in these areas, even in the basic areas of this subject. The present book covers the fundamentals of mechanical vibration and rotordynamics as well as their main numerical models and analysis methods for the vibration prediction. The mechanical and hydraulic excitations to the vibration are analyzed, and the pressure fluctuations induced by the unsteady turbulent flow is predicted in order to obtain the unsteady loads. This book also discusses the loads, constraint conditions and the elastic and damping characters of the mechanical system, the structure dynamic analysis, the rotor dynamic analysis and the system instability of hydraulic machines, including the illustration of monitoring system for the instability and the vibration in hydraulic units. All the problems are necessary for vibration pr...

  16. 基于非线性主元分析的水轮机调节系统传感器故障诊断%Fault Diagnosis for Sensors of Hydro Turbine Regulation System Based on Nonlinear Component Analysis

    Institute of Scientific and Technical Information of China (English)

    刘明华; 南海鹏; 余向阳

    2012-01-01

    利用现场的运行数据,将基于输入训练神经网络的非线性主元分析(PCA)方法应用到水轮机调节系统传感器故障诊断中,讨论了基于输入训练神经网络的非线性主元分析实现方法,建立了输入训练神经网络和反向传播网络,实现了对实测数据的重构,讨论了利用平方预测误差(SPE)进行故障检测和识别的方法,并用现场实测数据对该方法进行了仿真.仿真结果表明,该方法有效且实用.%A nonlinear principal component analysis methodology based on input-training neural network is proposed and applied to sensors diagnosis of hydro turbine regulating process, which is completed by establishing an input-training neural network and a backpropagation network to reconstruct sensors value. The scheme of fault detection and fault identification is discussed via the application of the squared prediction error (SPE). Simulating results prove that this method is practically feasible with high fault recognizing rate and application value.

  17. Handbook of hydraulic fluid technology

    CERN Document Server

    Totten, George E

    2011-01-01

    ""The Handbook of Hydraulic Fluid Technology"" serves as the foremost resource for designing hydraulic systems and for selecting hydraulic fluids used in engineering applications. Featuring new illustrations, data tables, as well as practical examples, this second edition is updated with essential information on the latest hydraulic fluids and testing methods. The detailed text facilitates unparalleled understanding of the total hydraulic system, including important hardware, fluid properties, and hydraulic lubricants. Written by worldwide experts, the book also offers a rigorous overview of h

  18. Engineering diagnostics for vortex-induced stay vanes cracks in a Francis turbine

    Science.gov (United States)

    D'Agostini Neto, Alexandre; Gissoni, Humberto, Dr.; Gonçalves, Manuel, Dr.; Cardoso, Rogério; Jung, Alexander, Dr.; Meneghini, Julio, Prof.

    2016-11-01

    Despite the fact that vortex-induced vibration (VIV) in hydraulic turbines components (especially in stay vanes) is a well-known phenomenon, it still remains challenging for operation and maintenance teams in several power plants around the world. Since the first publication of a similar problem in 1967, literature shows that at least 27 other turbines witnessed strong stay vane vibrations associated with vortex shedding. Recurrent stay vane cracks in a 250 MW Francis turbine in Brazil motivated an engineering study involving prototype measurements, structural and Computational Fluid Dynamics (CFD) analysis in order to determine a proper geometry modification that could eliminate the periodic vortex wake generated at the stay vanes trailing edge. First cracks appeared in 1978 just after the machine was put into operation. A study published in 1982 associated these cracks with dynamic excitations caused by the water flow at high flow conditions. New stay vane profiles were proposed and executed as well as improved welding recommendations. Cracks however, continued to appear requiring welding repairs roughly every two years. Although Voith Hydro was not the original equipment manufacturer for these units, the necessary information was available to study the issue and propose and execute new stay vane profiles. This paper details the approach taken for the study. First, indirect vibration measurements were used to determine vibration frequencies to help to characterize the affected mode shapes. These results were compared to finite element (FE) calculations. Strain gage measurements performed afterwards confirmed the conclusions of this analysis. Next, transient CFD calculations were run to reproduce the measured phenomenon and to serve as a basis for a new stay vane geometry. This modification was then implemented in the actual turbine stay vanes. A new set of indirect vibration measurements indicated the effectiveness of the proposed solution. Final confirmation

  19. Turbulence Resolving Flow Simulations of a Francis Turbine in Part Load using Highly Parallel CFD Simulations

    Science.gov (United States)

    Krappel, Timo; Riedelbauch, Stefan; Jester-Zuerker, Roland; Jung, Alexander; Flurl, Benedikt; Unger, Friedeman; Galpin, Paul

    2016-11-01

    The operation of Francis turbines in part load conditions causes high fluctuations and dynamic loads in the turbine and especially in the draft tube. At the hub of the runner outlet a rotating vortex rope within a low pressure zone arises and propagates into the draft tube cone. The investigated part load operating point is at about 72% discharge of best efficiency. To reduce the possible influence of boundary conditions on the solution, a flow simulation of a complete Francis turbine is conducted consisting of spiral case, stay and guide vanes, runner and draft tube. As the flow has a strong swirling component for the chosen operating point, it is very challenging to accurately predict the flow and in particular the flow losses in the diffusor. The goal of this study is to reach significantly better numerical prediction of this flow type. This is achieved by an improved resolution of small turbulent structures. Therefore, the Scale Adaptive Simulation SAS-SST turbulence model - a scale resolving turbulence model - is applied and compared to the widely used RANS-SST turbulence model. The largest mesh contains 300 million elements, which achieves LES-like resolution throughout much of the computational domain. The simulations are evaluated in terms of the hydraulic losses in the machine, evaluation of the velocity field, pressure oscillations in the draft tube and visual comparisons of turbulent flow structures. A pre-release version of ANSYS CFX 17.0 is used in this paper, as this CFD solver has a parallel performance up to several thousands of cores for this application which includes a transient rotor-stator interface to support the relative motion between the runner and the stationary portions of the water turbine.

  20. Experimental vibration level analysis of a Francis turbine

    Science.gov (United States)

    Bucur, D. M.; Dunca, G.; Cǎlinoiu, C.

    2012-11-01

    In this study the vibration level of a Francis turbine is investigated by experimental work in site. Measurements are carried out for different power output values, in order to highlight the influence of the operation regimes on the turbine behavior. The study focuses on the turbine shaft to identify the mechanical vibration sources and on the draft tube in order to identify the hydraulic vibration sources. Analyzing the vibration results, recommendations regarding the operation of the turbine, at partial load close to minimum values, in the middle of the operating domain or close to maximum values of electric power, can be made in order to keep relatively low levels of vibration. Finally, conclusions are drawn in order to present the real sources of the vibrations.

  1. Progress in advanced high temperature turbine materials, coatings, and technology

    Science.gov (United States)

    Freche, J. C.; Ault, G. M.

    1978-01-01

    Advanced materials, coatings, and cooling technology is assessed in terms of improved aircraft turbine engine performance. High cycle operating temperatures, lighter structural components, and adequate resistance to the various environmental factors associated with aircraft gas turbine engines are among the factors considered. Emphasis is placed on progress in development of high temperature materials for coating protection against oxidation, hot corrosion and erosion, and in turbine cooling technology. Specific topics discussed include metal matrix composites, superalloys, directionally solidified eutectics, and ceramics.

  2. Frequency based Wind Turbine Gearbox Fault Detection applied to a 750 kW Wind Turbine

    DEFF Research Database (Denmark)

    Odgaard, Peter Fogh; Nejad, Amir R.

    2014-01-01

    Reliability and availability of modern wind turbines are of increasing importance, for two reasons. The first is due to the fact that power grids around in the world depends at a higher and higher degree on wind energy, and the second is the importance of lowering Cost of Energy of the wind...... turbines. One of the critical components in modern wind turbines is the gearbox. Failures in the gearbox are costly both due to the cost of the gearbox itself, but also due to lost power generation during repair of it. Wind turbine gearboxes are consequently monitored by condition monitoring systems...... operating in parallel with the control system, and also uses additional sensors measuring different accelerations and noises, etc. In this paper gearbox data from high fidelity gearbox model of a 750 kW wind turbine gearbox, simulated with and without faults are used to shown the potential of frequency...

  3. NEXT GENERATION TURBINE PROGRAM

    Energy Technology Data Exchange (ETDEWEB)

    William H. Day

    2002-05-03

    The Next Generation Turbine (NGT) Program's technological development focused on a study of the feasibility of turbine systems greater than 30 MW that offer improvement over the 1999 state-of-the-art systems. This program targeted goals of 50 percent turndown ratios, 15 percent reduction in generation cost/kW hour, improved service life, reduced emissions, 400 starts/year with 10 minutes to full load, and multiple fuel usage. Improvement in reliability, availability, and maintainability (RAM), while reducing operations, maintenance, and capital costs by 15 percent, was pursued. This program builds on the extensive low emissions stationary gas turbine work being carried out by Pratt & Whitney (P&W) for P&W Power Systems (PWPS), which is a company under the auspices of the United Technologies Corporation (UTC). This study was part of the overall Department of Energy (DOE) NGT Program that extends out to the year 2008. A follow-on plan for further full-scale component hardware testing is conceptualized for years 2002 through 2008 to insure a smooth and efficient transition to the marketplace for advanced turbine design and cycle technology. This program teamed the National Energy Technology Laboratory (NETL), P&W, United Technologies Research Center (UTRC), kraftWork Systems Inc., a subcontractor on-site at UTRC, and Multiphase Power and Processing Technologies (MPPT), an off-site subcontractor. Under the auspices of the NGT Program, a series of analyses were performed to identify the NGT engine system's ability to serve multiple uses. The majority were in conjunction with a coal-fired plant, or used coal as the system fuel. Identified also was the ability of the NGT system to serve as the basis of an advanced performance cycle: the humid air turbine (HAT) cycle. The HAT cycle is also used with coal gasification in an integrated cycle HAT (IGHAT). The NGT systems identified were: (1) Feedwater heating retrofit to an existing coal-fired steam plant, which

  4. Turbulence and wind turbines

    DEFF Research Database (Denmark)

    Brand, Arno J.; Peinke, Joachim; Mann, Jakob

    2011-01-01

    The nature of turbulent flow towards, near and behind a wind turbine, the effect of turbulence on the electricity production and the mechanical loading of individual and clustered wind turbines, and some future issues are discussed.......The nature of turbulent flow towards, near and behind a wind turbine, the effect of turbulence on the electricity production and the mechanical loading of individual and clustered wind turbines, and some future issues are discussed....

  5. Turbine Aerothermal Research

    Science.gov (United States)

    2012-05-01

    SONDERGAARD CHARLES W. STEVENS Project Engineer Branch Chief Turbomachinery Branch Turbomachinery Branch Turbine Engine Division Turbine Engine...distribution unlimited. APPENDIX: LIST OF PUBLICATIONS "Pulsed Film Cooling on a Turbine Blade Leading Edge," Captain James L. Rutledge , PhD...Turbine Blade Leading Edge," Rutledge , King & Rivir, AIAA-2009-5104, Proceedings of the 45th IAA/ASME/SAE/ASEE Joint Propulsion Conference

  6. Large-scale wind turbine structures

    Science.gov (United States)

    Spera, David A.

    1988-01-01

    The purpose of this presentation is to show how structural technology was applied in the design of modern wind turbines, which were recently brought to an advanced stage of development as sources of renewable power. Wind turbine structures present many difficult problems because they are relatively slender and flexible; subject to vibration and aeroelastic instabilities; acted upon by loads which are often nondeterministic; operated continuously with little maintenance in all weather; and dominated by life-cycle cost considerations. Progress in horizontal-axis wind turbines (HAWT) development was paced by progress in the understanding of structural loads, modeling of structural dynamic response, and designing of innovative structural response. During the past 15 years a series of large HAWTs was developed. This has culminated in the recent completion of the world's largest operating wind turbine, the 3.2 MW Mod-5B power plane installed on the island of Oahu, Hawaii. Some of the applications of structures technology to wind turbine will be illustrated by referring to the Mod-5B design. First, a video overview will be presented to provide familiarization with the Mod-5B project and the important components of the wind turbine system. Next, the structural requirements for large-scale wind turbines will be discussed, emphasizing the difficult fatigue-life requirements. Finally, the procedures used to design the structure will be presented, including the use of the fracture mechanics approach for determining allowable fatigue stresses.

  7. Chapter 15: Reliability of Wind Turbines

    Energy Technology Data Exchange (ETDEWEB)

    Sheng, Shuangwen; O' Connor, Ryan

    2017-05-19

    The global wind industry has witnessed exciting developments in recent years. The future will be even brighter with further reductions in capital and operation and maintenance costs, which can be accomplished with improved turbine reliability, especially when turbines are installed offshore. One opportunity for the industry to improve wind turbine reliability is through the exploration of reliability engineering life data analysis based on readily available data or maintenance records collected at typical wind plants. If adopted and conducted appropriately, these analyses can quickly save operation and maintenance costs in a potentially impactful manner. This chapter discusses wind turbine reliability by highlighting the methodology of reliability engineering life data analysis. It first briefly discusses fundamentals for wind turbine reliability and the current industry status. Then, the reliability engineering method for life analysis, including data collection, model development, and forecasting, is presented in detail and illustrated through two case studies. The chapter concludes with some remarks on potential opportunities to improve wind turbine reliability. An owner and operator's perspective is taken and mechanical components are used to exemplify the potential benefits of reliability engineering analysis to improve wind turbine reliability and availability.

  8. Turbine Blade Cooling System Optimization

    OpenAIRE

    GIRARDEAU, Julian; PAILHES, Jérôme; SEBASTIAN, Patrick; PARDO, Frédéric; Nadeau, Jean-Pierre

    2013-01-01

    The authors wish to thank turbine designers from TURBOMECA SAFRAN Group.; International audience; Designing high performance cooling systems suitable for preserving the service lifetime of nozzle guide vanes of turboshaft engines leads to significant aerodynamic losses. These losses jeopardize the performance of the whole engine. In the same time, a low efficiency cooling system may affect the costs of maintenance repair and overhaul of the engine as component life decreases. Consequently, de...

  9. Sliding vane geometry turbines

    Science.gov (United States)

    Sun, Harold Huimin; Zhang, Jizhong; Hu, Liangjun; Hanna, Dave R

    2014-12-30

    Various systems and methods are described for a variable geometry turbine. In one example, a turbine nozzle comprises a central axis and a nozzle vane. The nozzle vane includes a stationary vane and a sliding vane. The sliding vane is positioned to slide in a direction substantially tangent to an inner circumference of the turbine nozzle and in contact with the stationary vane.

  10. Advanced IGCC/Hydrogen Gas Turbine Development

    Energy Technology Data Exchange (ETDEWEB)

    York, William [General Electric Company, Schenectady, NY (United States); Hughes, Michael [General Electric Company, Schenectady, NY (United States); Berry, Jonathan [General Electric Company, Schenectady, NY (United States); Russell, Tamara [General Electric Company, Schenectady, NY (United States); Lau, Y. C. [General Electric Company, Schenectady, NY (United States); Liu, Shan [General Electric Company, Schenectady, NY (United States); Arnett, Michael [General Electric Company, Schenectady, NY (United States); Peck, Arthur [General Electric Company, Schenectady, NY (United States); Tralshawala, Nilesh [General Electric Company, Schenectady, NY (United States); Weber, Joseph [General Electric Company, Schenectady, NY (United States); Benjamin, Marc [General Electric Company, Schenectady, NY (United States); Iduate, Michelle [General Electric Company, Schenectady, NY (United States); Kittleson, Jacob [General Electric Company, Schenectady, NY (United States); Garcia-Crespo, Andres [General Electric Company, Schenectady, NY (United States); Delvaux, John [General Electric Company, Schenectady, NY (United States); Casanova, Fernando [General Electric Company, Schenectady, NY (United States); Lacy, Ben [General Electric Company, Schenectady, NY (United States); Brzek, Brian [General Electric Company, Schenectady, NY (United States); Wolfe, Chris [General Electric Company, Schenectady, NY (United States); Palafox, Pepe [General Electric Company, Schenectady, NY (United States); Ding, Ben [General Electric Company, Schenectady, NY (United States); Badding, Bruce [General Electric Company, Schenectady, NY (United States); McDuffie, Dwayne [General Electric Company, Schenectady, NY (United States); Zemsky, Christine [General Electric Company, Schenectady, NY (United States)

    2015-07-30

    stage hot gas path components, and systems analyses to determine benefits of all previously mentioned technologies to a gas turbine system in an IGCC configuration. This project built on existing gas turbine technology and product developments, and developed and validated the necessary turbine related technologies and sub-systems needed to meet the DOE turbine program goals. The scope of the program did not cover the design and validation of a full-scale prototype machine with the technology advances from this program incorporated. In summary, the DOE goals were met with this program. While the commercial landscape has not resulted in a demand for IGCC gas turbines many of the technologies that were developed over the course of the program are benefiting the US by being applied to new higher efficiency natural gas fueled gas turbines.

  11. Method and apparatus for monitoring aircraft components

    Science.gov (United States)

    Dickens, Larry M.; Haynes, Howard D.; Ayers, Curtis W.

    1996-01-01

    Operability of aircraft mechanical components is monitored by analyzing the voltage output of an electrical generator of the aircraft. Alternative generators, for a turbine-driven rotor aircraft, include the gas producer turbine tachometer generator, the power turbine tachometer generator, and the aircraft systems power producing starter/generator. Changes in the peak amplitudes of the fundamental frequency and its harmonics are correlated to changes in condition of the mechanical components.

  12. Experimental and Numerical Studies of a High-Head Francis Turbine: A Review of the Francis-99 Test Case

    Directory of Open Access Journals (Sweden)

    Chirag Trivedi

    2016-01-01

    Full Text Available Hydraulic turbines are widely used to meet real-time electricity demands. Computational fluid dynamic (CFD techniques have played an important role in the design and development of such turbines. The simulation of a complete turbine requires substantial computational resources. A specific approach that is applied to investigate the flow field of one turbine may not work for another turbine. A series of Francis-99 workshops have been planned to discuss and explore the CFD techniques applied within the field of hydropower with application to high-head Francis turbines. The first workshop was held in December 2014 at the Norwegian University of Science and Technology, Norway. The steady-state measurements were conducted on a model Francis turbine. Three operating points, part load, best efficiency point, and high load, were investigated. The complete geometry, meshing, and experimental data concerning the hydraulic efficiency, pressure, and velocity were provided to the academic and industrial research groups. Various researchers have conducted extensive numerical studies on the high-head Francis turbine, and the obtained results were presented during the workshop. This paper discusses the presented numerical results and the important outcome of the extensive numerical studies on the Francis turbine. The use of a wall function assuming equilibrium between the production and dissipation of turbulence is widely used in the simulation of hydraulic turbines. The boundary layer of hydraulic turbines is not fully developed because of the continuously-changing geometry and large pressure gradients. There is a need to develop wall functions that enable the estimation of viscous losses under boundary development for accurate simulations. Improved simulations and results enable reliable estimation of the blade loading. Numerical investigations on leakage flow through the labyrinth seals were conducted. The volumetric efficiency and losses in the seals were

  13. Experiences and results from Elkraft 1 MW wind turbine

    Energy Technology Data Exchange (ETDEWEB)

    Raben, N.; Jensen, F.V. [SEAS Distribution A.m.b.A., Wind Power Dept., Haslev (Denmark); Oeye, S. [DTU, Inst. for Energiteknik, Lyngby (Denmark); Markkilde Petersen, S.; Antoniou, I. [Risoe National Lab., Wind Energy and Atmospheric Physics Dept., Roskilde (Denmark)

    1999-03-01

    The Elkraft 1 MW Demonstration wind turbine was at the time of installation in 1993 the largest stall controlled wind turbine in the world. It was constructed to allow accurate comparison of two different forms of operation: pitch control and stall control. A comprehensive programme for the investigation of the two operation modes was established. This paper presents the main experiences from five years of operation and measurements. For a three-year period the wind turbine was in operation in stall controlled mode. During this period the turbine faced problems of various significance. Especially lightning strikes and unusually poor wind conditions caused delays of the project. In early 1997, the wind turbine was modified to enable pitch controlled operation. The gearbox ratio was changed in order to allow higher rotor speed, the hydraulic system was altered and new control software was installed. Tests were carried out successfully during the spring of 1997 and the wind turbine has since been operating as a pitch controlled wind turbine. The most significant events and problems are presented and commented in this paper along with results from the measurement programme. The results cover both stall and pitch controlled operation and include power curves, annual energy production, structural loads, fatigue loads etc. (au) 10 refs.

  14. A wind turbine hybrid simulation framework considering aeroelastic effects

    Science.gov (United States)

    Song, Wei; Su, Weihua

    2015-04-01

    In performing an effective structural analysis for wind turbine, the simulation of turbine aerodynamic loads is of great importance. The interaction between the wake flow and the blades may impact turbine blades loading condition, energy yield and operational behavior. Direct experimental measurement of wind flow field and wind profiles around wind turbines is very helpful to support the wind turbine design. However, with the growth of the size of wind turbines for higher energy output, it is not convenient to obtain all the desired data in wind-tunnel and field tests. In this paper, firstly the modeling of dynamic responses of large-span wind turbine blades will consider nonlinear aeroelastic effects. A strain-based geometrically nonlinear beam formulation will be used for the basic structural dynamic modeling, which will be coupled with unsteady aerodynamic equations and rigid-body rotations of the rotor. Full wind turbines can be modeled by using the multi-connected beams. Then, a hybrid simulation experimental framework is proposed to potentially address this issue. The aerodynamic-dominant components, such as the turbine blades and rotor, are simulated as numerical components using the nonlinear aeroelastic model; while the turbine tower, where the collapse of failure may occur under high level of wind load, is simulated separately as the physical component. With the proposed framework, dynamic behavior of NREL's 5MW wind turbine blades will be studied and correlated with available numerical data. The current work will be the basis of the authors' further studies on flow control and hazard mitigation on wind turbine blades and towers.

  15. FEMA DFIRM Hydraulic Structures

    Data.gov (United States)

    Minnesota Department of Natural Resources — This layer and accompanying attribute table is required whenever hydraulic structures are shown in the flood profile. It is also required if levees are shown on the...

  16. Water Hydraulic Systems

    DEFF Research Database (Denmark)

    Conrad, Finn

    2005-01-01

    The paper presents research results using IT-Tools for CAD and dynamic modelling, simulation, analysis, and design of water hydraulic actuators for motion control of machines, lifts, cranes and robots. Matlab/Simulink and CATIA are used as IT-Tools. The contributions include results from on......-going research projects on fluid power and mechatronics based on tap water hydraulic servovalves and linear servo actuators and rotary vane actuators for motion control and power transmission. Development and design a novel water hydraulic rotary vane actuator for robot manipulators. Proposed mathematical...... modelling, control and simulation of a water hydraulic rotary vane actuator applied to power and control a two-links manipulator and evaluate performance. The results include engineering design and test of the proposed simulation models compared with IHA Tampere University’s presentation of research...

  17. Constant-Pressure Hydraulic Pump

    Science.gov (United States)

    Galloway, C. W.

    1982-01-01

    Constant output pressure in gas-driven hydraulic pump would be assured in new design for gas-to-hydraulic power converter. With a force-multiplying ring attached to gas piston, expanding gas would apply constant force on hydraulic piston even though gas pressure drops. As a result, pressure of hydraulic fluid remains steady, and power output of the pump does not vary.

  18. Turbine Imaging Technology Assessment

    Energy Technology Data Exchange (ETDEWEB)

    Moursund, Russell A.; Carlson, Thomas J.

    2004-12-31

    The goal of this project was to identify and evaluate imaging alternatives for observing the behavior of juvenile fish within an operating Kaplan turbine unit with a focus on methods to quantify fish injury mechanisms inside an operating turbine unit. Imaging methods are particularly needed to observe the approach and interaction of fish with turbine structural elements. This evaluation documents both the opportunities and constraints for observing juvenile fish at specific locations during turbine passage. The information may be used to acquire the scientific knowledge to make structural improvements and create opportunities for industry to modify turbines and improve fish passage conditions.

  19. Energy production with a tubular propeller turbine

    Science.gov (United States)

    Samora, I.; Hasmatuchi, V.; Münch-Alligné, C.; Franca, M. J.; Schleiss, A. J.; Ramos, H. M.

    2016-11-01

    Micro-hydropower is a way of improving the energetic efficiency of existent water systems. In the particular case of drinking water systems, several studies have showed that pressure reducing valves can be by-passed with turbines in order to recover the dissipated hydraulic energy to produce electricity. As conventional turbines are not always cost-effective for power under 20 kW, a new energy converter is studied. A five blade tubular propeller (5BTP), assessed through laboratorial tests on a reduced model with a diameter of 85 mm diameter and a maximal output power of 300 W, is addressed in this work. Having showed promising potential for further development, since global efficiencies of around 60% were observed, the turbine has been further used to estimate the potential for energy production in a real case study. A sub-grid of the drinking water system of the city of Lausanne, Switzerland, has been used to obtain an annual energy production through hourly simulations with several turbines.

  20. Failure analysis of a Francis turbine runner

    Energy Technology Data Exchange (ETDEWEB)

    Frunzaverde, D; Campian, V [Research Center in Hydraulics, Automation and Heat Transfer, ' Eftimie Murgu' University of Resita P-ta Traian Vuia 1-4, RO-320085, Resita (Romania); Muntean, S [Centre of Advanced Research in Engineering Sciences, Romanian Academy - Timisoara Branch Bv. Mihai Viteazu 24, RO-300223, Timisoara (Romania); Marginean, G [University of Applied Sciences Gelsenkirchen, Neidenburger Str. 10, 45877 Gelsenkirchen (Germany); Marsavina, L [Department of Strength, ' Politehnica' University of Timisoara, Bv. Mihai Viteazu 1, RO-300222, Timisoara (Romania); Terzi, R; Serban, V, E-mail: gabriela.marginean@fh-gelsenkirchen.d, E-mail: d.frunzaverde@uem.r [Ramnicu Valcea Subsidiary, S.C. Hidroelectrica S.A., Str. Decebal 11, RO-240255, Ramnicu Valcea (Romania)

    2010-08-15

    The variable demand on the energy market requires great flexibility in operating hydraulic turbines. Therefore, turbines are frequently operated over an extended range of regimes. Francis turbines operating at partial load present pressure fluctuations due to the vortex rope in the draft tube cone. This phenomenon generates strong vibrations and noise that may produce failures on the mechanical elements of the machine. This paper presents the failure analysis of a broken Francis turbine runner blade. The failure appeared some months after the welding repair work realized in situ on fatigue cracks initiated near to the trailing edge at the junction with the crown, where stress concentration occurs. In order to determine the causes that led to the fracture of the runner blade, the metallographic investigations on a sample obtained from the blade is carried out. The metallographic investigations included macroscopic and microscopic examinations, both performed with light and scanning electron microscopy, as well as EDX - analyses. These investigations led to the conclusion, that the cracking of the blade was caused by fatigue, initiated by the surface unevenness of the welding seam. The failure was accelerated by the hydrogen embrittlement of the filling material, which appeared as a consequence of improper welding conditions. In addition to the metallographic investigations, numerical computations with finite element analysis are performed in order to evaluate the deformation and stress distribution on blade.

  1. Severe environment turbine powered steerable motors

    Energy Technology Data Exchange (ETDEWEB)

    Gaynor, T.M. [Neyrfor-Weir Ltd., Aberdeen (United Kingdom). Dept. of Operations

    1995-12-31

    Turbine powered downhole motors have advantages for high temperature, high pressure, sour gas or hard formation drilling which stem from turbodrill construction rather than metallurgy, and from their power characteristics. The first part of the paper will discuss this, and compare turbine and Moineau powered motors in this context. The introduction in the last three years of new bearing materials, hydraulic thrust balancing devices and high performance flexible couplings have extended turbodrill performance and reliability margins in severe environment drilling. It is perfecting feasible to build steerable motors capable of drilling for 250 hours in 6-in. hole at 200 degrees Celsius (392 degrees Fahrenheit) in a deviated high pressure well since the individual problems in this ``Well from Hell`` have successfully been overcome. The second part of the paper will illustrate this through field examples.

  2. Optimization Design and Performance Analysis of a Pit Turbine with Ultralow Head

    Directory of Open Access Journals (Sweden)

    Chunxia Yang

    2014-04-01

    Full Text Available A developed pit turbine with ultralow head was optimization designed under the design head of about 2 meters to achieve the goal of improving the turbine unit's efficiency. At the same time, the turbine's synthetic characteristic curve was drawn to predict the turbine's overall performance. Navier-Stokes equations and SIMPLEC algorithm were used for pit turbine's whole flow passage numerical simulation of the 3D, steady, incompressible, turbulent flow field. Through the CFD numerical simulation, the influence to ultralow head turbine's performance was analyzed by runner blade's different setting angles and guide vane's different axes. Considering the hydraulic performance of various methods, the best blade's setting angle and guide vane's axis were chosen. The results show that, the turbine unit has the best performance on efficiency, hydraulic loss, and so forth, with the blade's setting angle 23° and the angle 72° between the guide vane and the centerline of unit, meeting the power station's design requirements. The development pit turbine with ultralow head shows the highest efficiency of 87.6% under condition of design head of 2.1 meters and design discharge of 10 m3/s. The energy performance of pit turbine with ultralow head was researched by the model test of GD-WS-35 turbine. The model turbine's characteristic curve was drawn. The model turbine's high efficiency area is wide and the efficiency changes mildly. The numerical simulation results are essentially consistent with the model test results, while the former one is slightly higher than the latter one. The error range is ±3%.

  3. Investigation of the fluid-structure interaction of a high head Francis turbine using OpenFOAM and Code_Aster

    Science.gov (United States)

    Eichhorn, M.; Doujak, E.; Waldner, L.

    2016-11-01

    The increasing energy consumption and highly stressed power grids influence the operating conditions of turbines and pump turbines in the present situation. To provide or use energy as quick as possible, hydraulic turbines are operated more frequent and over longer periods of time in lower part load at off-design conditions. This leads to a more turbulent behavior and to higher requirements of the strength of stressed components (e.g. runner, guide or stay vanes). The modern advantages of computational capabilities regarding numerical investigations allow a precise prediction of appearing flow conditions and thereby induced strains in hydraulic machines. This paper focuses on the calculation of the unsteady pressure field of a high head Francis turbine with a specific speed of nq ≈ 24 min-1 and its impact on the structure at different operating conditions. In the first step, unsteady numerical flow simulations are performed with the open-source CFD software OpenFOAM. To obtain the appearing dynamic flow phenomena, the entire machine, consisting of the spiral casing, the stay vanes, the wicket gate, the runner and the draft tube, is taken into account. Additionally, a reduced model without the spiral casing and with a simplified inlet boundary is used. To evaluate the accuracy of the CFD simulations, operating parameters such as head and torque are compared with the results of site measurements carried out on the corresponding prototype machine. In the second part, the obtained pressure fields are used for a fluid-structure analysis with the open-source Finite Element software Code_Aster, to predict the static loads on the runner.

  4. Analysis of Kaplan Turbine Unit Performance Test%轴流转桨式水轮机机组性能测试分析

    Institute of Scientific and Technical Information of China (English)

    杜娟; 石晶辉; 包金

    2015-01-01

    轴流转桨式水轮机的轮叶是将水的动能和势能转换为机械能的重要部件。当更换水轮机轮叶时,机组的整体性能会发生改变,因此需要对其出力和振动情况进行测试。对更换新轮叶后的水轮机组各部位的振动、摆动进行了稳定性试验,检验了机组运行的动平衡质量以及水轮机动态特性,校验了最大负荷能力。测试结果表明,在试验水头下,机组能够在额定功率下安全稳定运行。%The wheel leaves of Kaplan turbine are important components that convert the kinetic and potential energy of water into mechanical energy.The overall performance of the unit was changed when water turbine blade was replaced.The test must be performed on the output and vibration.In order to test the operation of the set of dynamic balance quality,dynamic characteristics of hydraulic turbine,and the maximum load capacity verification,the stability of hydraulic turbines was tested. The test results show that the unit could operate safely and stably in the water head under the rated power.

  5. Combined Structural Optimization and Aeroelastic Analysis of a Vertical Axis Wind Turbine

    DEFF Research Database (Denmark)

    Roscher, Björn; Ferreira, Carlos Simao; Bernhammer, Lars O.;

    2015-01-01

    Floating offshore wind energy poses challenges on the turbine design. A possible solution is vertical axis wind turbines, which are possibly easier to scale-up and require less components (lower maintenance) and a smaller floating structure than horizontal axis wind turbines. This paper presents...

  6. Feature Extraction Using Discrete Wavelet Transform for Gear Fault Diagnosis of Wind Turbine Gearbox

    DEFF Research Database (Denmark)

    Bajric, Rusmir; Zuber, Ninoslav; Skrimpas, Georgios Alexandros

    2016-01-01

    Vibration diagnosis is one of the most common techniques in condition evaluation of wind turbine equipped with gearbox. On the other side, gearbox is one of the key components of wind turbine drivetrain. Due to the stochastic operation of wind turbines, the gearbox shaft rotating speed changes wi...

  7. HYDRAULIC CHARACTERISTICS OF VERTICAL VORTEX AT HYDRAULIC INTAKES

    Institute of Scientific and Technical Information of China (English)

    CHEN Yun-liang; WU Chao; YE Mao; JU Xiao-ming

    2007-01-01

    The trace of vertical vortex flow at hydraulic intakes is of the shape of spiral lines, which was observed in the presented experiments with the tracer technique. It represents the fluid particles flow spirally from the water surface to the underwater and rotate around the vortex-axis multi-cycle. This process is similar to the movement of screw. To describe the multi-circle spiral characteristics under the axisymmetric condition, the vertical vortex would change not only in the radial direction but also in the axial direction. The improved formulae for three velocity components for the vertical vortex flow were deduced by using the method of separation of variables in this article. In the improved formulae, the velocity components are the functions of the radial and axial coordinates, so the multi-circle spiral flow of vertical vortex could be simulated. The calculated and measured results for the vertical vortex flow were compared and the causes of errors were analyzed.

  8. Bilateral inferior turbinate osteoma

    Science.gov (United States)

    Sahemey, R.; Warfield, A.T.; Ahmed, S.

    2016-01-01

    Osteomas are the most common benign osteoclastic tumours of the paranasal sinuses. However, nasal cavity and turbinate osteomas are extremely rare. Only nine middle turbinate, three inferior turbinate and one inferior turbinate osteoma cases have been reported to date. The present case report describes the management and follow-up of symptomatic bilateral inferior turbinate osteoma. A 60-year-old female presented with symptoms of bilateral nasal obstruction and right-sided epiphora. Radiological investigation found hypertrophic bony changes involving both inferior turbinates. The patient was managed successfully by endoscopic inferior turbinectomies in order to achieve a patent airway, with no further recurrence of tumour after 3 months postoperatively. To the best of our knowledge, this is the first reported case of bilateral inferior turbinate osteoma. We describe a safe and minimally invasive method of tumour resection, which has a better cosmetic outcome compared with other approaches. PMID:27534890

  9. Ceramic stationary gas turbine development. Final report, Phase 1

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-09-01

    This report summarizes work performed by Solar Turbines Inc. and its subcontractors during the period September 25, 1992 through April 30, 1993. The objective of the work is to improve the performance of stationary gas turbines in cogeneration through implementation of selected ceramic components.

  10. Control of Permanent Magnet Synchronous Generator for large wind turbines

    DEFF Research Database (Denmark)

    Busca, Cristian; Stan, Ana-Irina; Stanciu, Tiberiu

    2010-01-01

    converter topology was chosen for design. Parameters from a 2 MW wind turbine were used for system modeling. All the components of the wind turbine system (WTS), except the DC-link and the grid site converter were implemented in MATLAB/Simulink. The pitch controller was used to limit the output power...

  11. Actuator Control of Edgewise Vibrations in Wind Turbine Blades

    DEFF Research Database (Denmark)

    Staino, A.; Basu, B.; Nielsen, Søren R.K.

    2012-01-01

    Edgewise vibrations with low aerodynamic damping are of particular concern in modern multi-megawatt wind turbines, as large amplitude cyclic oscillations may significantly shorten the life-time of wind turbine components, and even lead to structural damages or failures. In this paper, a new blade ...

  12. 46 CFR 128.240 - Hydraulic or pneumatic power and control-materials and pressure design.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Hydraulic or pneumatic power and control-materials and... Hydraulic or pneumatic power and control—materials and pressure design. (a) Each standard piping component (such as pipe runs, fittings, flanges, and standard valves) for hydraulic or pneumatic power and...

  13. Vibration-Based Damage Identification in Wind Turbine Blades

    DEFF Research Database (Denmark)

    Ulriksen, Martin Dalgaard; Tcherniak, Dmitri; Damkilde, Lars

    Due to the existing trend of placing wind turbines in impassable terrain, for example, offshore, these structures constitute prime candidates for being subjected to structural health monitoring (SHM). The wind turbine blades have in particular been paid research attention [1] as these compose one...... of the most common and critical components to fail in the turbines [2]. The standard structural integrity assessment of blades is based on visual inspection, which requires the turbine in question to be stopped while inspections are conducted. This procedure is extremely costly and tedious, hence emphasizing...

  14. Update on DOE Advanced IGCC/H2 Gas Turbine

    Science.gov (United States)

    Chupp, Ray

    2009-01-01

    Cooling Flow Reduction: a) Focus on improving turbine hot gas path part cooling efficiency. b) Applicable to current metallic turbine components and synergistic with advanced materials. c) Address challenges of IGCC/hydrogen fuel environment (for example, possible cooling hole plugging). Leakage Flow Reduction: a) Focus on decreasing turbine parasitic leakages, i.e. between static-to-static, static-to-rotating turbine parts. b) Develop improved seal designs in a variety of important areas. Purge Flow Reduction: a) Focus on decreasing required flows to keep rotor disk cavities within temperature limits. b) Develop improved sealing at the cavity rims and modified flow geometries to minimize hot gas ingestion and aerodynamic impact.

  15. Grinding efficiency improvement of hydraulic cylinders parts for mining equipment

    National Research Council Canada - National Science Library

    Aleksandr Korotkov; Vitaliy Korotkov; Leonid Mametyev; Lidia Korotkova; Tatiana Terjaeva

    2017-01-01

    The aim of the article is to find out ways to improve parts treatment and components of mining equipment on the example of hydraulic cylinders parts, used as pillars for mine roof supports, and other actuator mechanisms...

  16. Dan jiang kou hydropower station turbine refurbishment

    Science.gov (United States)

    Zhang, R. Y.; Nie, S. Q.; Bazin, D.; Cheng, J. H.

    2012-11-01

    Dan jiangkou hydropower station refurbished project, isan important project of Chinese refurbishment market. Tianjin Alstom Hydro Co., ltd won this contract by right of good performance and design technology,Its design took into account all the constraints linked to the existing frame. It results in a specific and highly advanced shape.The objective of this paper is to introduce the successful turbine hydraulic design, model test and mechanical design of Dan jiangkou project; and also analyze the cavitation phenomena occurred on runner band surface of Unit 4 after putting into commercial operation. These technology and feedback shall be a good reference and experience for other similar projects

  17. Turbine rehabilitation: CFD analysis of distributors

    Energy Technology Data Exchange (ETDEWEB)

    De Henau, V. [GEC ALSTHOM Electromechanical, Quebec (Canada)

    1995-12-31

    A methodology adopted to analyze the three-dimensional flow in turbine distributors is described. The particularity of this work lies in the approach used to account for the interaction casing/distributor in the specification of the boundary conditions for flow simulations on selected stay vane/wicket gate passages. The flexibility of the method is illustrated through its application to various problems. Preliminary comparisons between predictions and available experimental data for head losses and hydraulic torque on wicket gates demonstrate the validity of the procedure.

  18. Determination and generalization of the effects of design parameters on Francis turbine runner performance

    Directory of Open Access Journals (Sweden)

    Ece Ayli

    2016-01-01

    Full Text Available The runner design is the most challenging part of the turbine design process. Several parameters determine the performance and cavitation characteristics of the runner: the metal angle (flow beta angle, the alpha angle, the blade beta angle, the runner inlet and outlet diameters, and the blade height. All of these geometrical parameters need to be optimized to ensure that the head, flow rate and power requirements of the system are met. A hydraulic designer has to allocate time to optimize these parameters and should be experienced in carrying out the iterative design process. In this article, the turbine runner parameters that affect the performance and cavitation characteristics of designed turbines are examined in detail. Furthermore, turbines are custom designed according to the properties of hydroelectric power plants; this makes the design process even more challenging, as the rotational speed, runner geometry, system head and flow rate vary for each turbine. The effects of the design parameters are examined for four different turbine runners specifically designed and used in actual power plants in order to obtain general results and generalizations applicable to turbine design aided by computational fluid dynamics (CFD. The flow behavior, flow angles, head losses, pressure distribution, and cavitation characteristics are computed, analyzed, and compared. To assist hydraulic designers, the general influences of these parameters on the performance of turbines are summarized and empirical formulations are derived for runner performance characterization.

  19. Concurrent Aeroservoelastic Design and Optimization of Wind Turbines

    DEFF Research Database (Denmark)

    Tibaldi, Carlo

    simulations, allows the selection of any controller parameter. The methods to evaluate loads and the pole-placement technique are then employed to carry out wind turbine optimization design from an aeroservoelastic prospective. Several analysis of the NREL 5 MW Reference Wind Turbine and the DTU 10 MW......This work develops and investigates methods to integrate controllers in the wind turbine design process and to perform wind turbine optimization. These techniques can exploit the synergy between wind turbine components and generate new design solutions. Two frameworks to perform wind turbine...... regulation under normal operation, therefore no controller for load reduction is considered. The approaches presented are based on a pole-placement technique and loads minimization. Two methods allow the tuning of the proportional integral gains of the pitch controller. A third approach, based on time domain...

  20. A superelement-based method for computing unsteady three-dimensional potential flows in hydraulic turbomachines

    NARCIS (Netherlands)

    Kruyt, N.P.; Esch, van B.P.M.; Jonker, J.B.

    1999-01-01

    A numerical method is presented for the computation of unsteady, three-dimensional potential flows in hydraulic pumps and turbines. The superelement method has been extended in order to eliminate slave degrees of freedom not only from the governing Laplace equation, but also from the Kutta condition

  1. Prediction of potential failures in hydraulic gear pumps

    OpenAIRE

    E. Lisowski(Cracow Tech. U); J. Fabiś

    2010-01-01

    Hydraulic gear pumps are used in many machines and devices. In hydraulic systems of machines gear pumps are main component ofsupply unit or perform auxiliary function. Gear pumps opposite to vane pumps are less complicated. They consists of such components as:housing, gear wheels, bearings, shaft, seal for rotation motion which are not very sensitive for damage and that is why they are using veryoften. However, gear pumps are break down from time to time. Usually damage of pump cause shutting...

  2. Variable geometry gas turbines for improving the part-load performance of marine combined cycles - Gas turbine performance

    DEFF Research Database (Denmark)

    Haglind, Fredrik

    2010-01-01

    -load performance. Subsequently, in another paper, the effects of variable geometry on the part-load performance for combined cycles used for ship propulsion will be presented. Moreover, this paper is aimed at developing methodologies and deriving models for part-load simulations suitable for energy system analysis......The part-load performance of gas and steam turbine combined cycles intended for naval use is of great importance, and it is influenced by the gas turbine configuration and load control strategy. This paper is aimed at quantifying the effects of variable geometry on the gas turbine part...... of various components within gas turbines. Two different gas turbine configurations are studied, a two-shaft aero-derivative configuration and a single-shaft industrial configuration. When both gas turbine configurations are running in part-load using fuel flow control, the results indicate better part...

  3. Blades and discs in gas turbines. Behaviour of material and components. Project department A-C. Final report; Schaufeln und Scheiben in Gasturbinen. Werkstoff- und Bauteilverhalten. Projektbereiche A bis C. Abschlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-04-01

    The special research area 339 `Blades and discs in gas turbines, behaviour of material and components` was carried on from 1988 to the end of 1196. This final report deals with the work in the years 1994, 1995 and 1996. In the project area A `Development of material` manufacturing processes both for metallic and ceramic high temperature materials were developed, tested and optimised. In the area of optimising casting structure, it was shown that the making grains finer up to the medium temperature range can be a suitable means for significantly raising the resistance to LCF loading with nearly unchanged heat and creep strength properties. Another main point was the characterisation and optimisation of sprayed ceramic layers on metallic substrates (heat insulating layers) and compound ceramic materials. In project area B `Material behaviour` the mechanisms were studied, which, particularly in metallic high temperature materials such as nickel-based superalloys, lead to failure of the material under thermo-mechanical stresses. In project area C `Component design`, on the one hand models for estimating service life for metallic high temperature materials under different thermo-mechanical stresses were developed. [Deutsch] Der Sonderforschungsbereich 339, `Schaufeln und Scheiben in Gasturbinen - Werkstoff- und Bauteilverhalten` wurde von 1988 bis Ende 1996 gefoerdert. Dieser Abschlussbericht behandelt die Arbeiten der Jahre 1994, 1995 und 1996. Im Projektbereich A `Werkstoffentwicklung` wurden Herstellungsverfahren sowohl fuer metallische als auch fuer keramische Hochtemperaturwerkstoffe entwickelt, erprobt und optimiert. Auf dem Gebiet der Gussgefuegeoptimierung konnte gezeigt werden, dass die Kornfeinung bis in den mittleren Temperaturbereich ein geeignetes Mittel sein kann, um den Widerstand gegen LCF-Belastung bei annaehernd unveraenderten Warm- und Kriechfestigkeitseigenschaften signifikant zu erhoehen. Einen weiteren Schwerpunkt bildete die Charakterisierung und

  4. Simulation of Somatotype of Hydraulic Turbine Draft-Tube

    Institute of Scientific and Technical Information of China (English)

    DU Ting-na; HUI Yuan

    2011-01-01

    Elbow draft-tubes are widely used in large- and medium-sized hydropower stations in many countries. During the application, handling the somatotype of elbow tubes has been found challenging: in order to maintain the designed shape of draft tube and to meet the requirement of construction lofting, the configuration of reinforcing bars and the fabrication of templates, the geometry of elbow tubes has to be accurately calculated to draw engineering graphics. Based on the derived equations in this paper, the motion of elbow tube curve envelope is simulated by using computers, which shows directly the smoothness of the curve and provides dynamic simulation for the study and optimization of the design and construction of elbow draft tubes, along with the front view and bottom view.

  5. Design and Optimization of Fast Switching Valves for Large Scale Digital Hydraulic Motors

    DEFF Research Database (Denmark)

    Roemer, Daniel Beck

    of seat valves suitable for large scale digital hydraulic motors and detailed analysis methods for the pressure chambers of such machines. In addition, modeling methods of seat valves within this field have been developed, and a design method utilizing these models including optimization of subdomains has......The present thesis is on the design, analysis and optimization of fast switching valves for digital hydraulic motors with high power ratings. The need for such high power motors origins in the potential use of hydrostatic transmissions in wind turbine drive trains, as digital hydraulic machines...... have been shown to improve the overall efficiency and efficient operation range compared to traditional hydraulic machines. Digital hydraulic motors uses electronically controlled independent seat valves connected to the pressure chambers, which must be fast acting and exhibit low pressure losses...

  6. Coalescing Wind Turbine Wakes

    Science.gov (United States)

    Lee, S.; Churchfield, M.; Sirnivas, S.; Moriarty, P.; Nielsen, F. G.; Skaare, B.; Byklum, E.

    2015-06-01

    A team of researchers from the National Renewable Energy Laboratory and Statoil used large-eddy simulations to numerically investigate the merging wakes from upstream offshore wind turbines. Merging wakes are typical phenomena in wind farm flows in which neighboring turbine wakes consolidate to form complex flow patterns that are as yet not well understood. In the present study, three 6-MW turbines in a row were subjected to a neutrally stable atmospheric boundary layer flow. As a result, the wake from the farthest upstream turbine conjoined the downstream wake, which significantly altered the subsequent velocity deficit structures, turbulence intensity, and the global meandering behavior. The complexity increased even more when the combined wakes from the two upstream turbines mixed with the wake generated by the last turbine, thereby forming a “triplet” structure. Although the influence of the wake generated by the first turbine decayed with downstream distance, the mutated wakes from the second turbine continued to influence the downstream wake. Two mirror-image angles of wind directions that yielded partial wakes impinging on the downstream turbines yielded asymmetric wake profiles that could be attributed to the changing flow directions in the rotor plane induced by the Coriolis force. The turbine wakes persisted for extended distances in the present study, which is a result of low aerodynamic surface roughness typically found in offshore conditions.

  7. Gas Turbine Design & Analysis Tool: Turbomachinery Components.

    OpenAIRE

    Garcia Soto, David

    2012-01-01

    Este proyecto se centra en la creación de un programa el cual ha de ser una herramienta de ayuda en el diseño y simulación de aplicaciones de motores de turbina de gas, permitiendo al usuario realizar los cálculos necesarios para poder implementar posteriormente los resultados en sus diseños. Por ello, dicha herramienta debe ser versátil y permitir trabajar tanto con un solo módulo como con diversos acoplados según las necesidades del usuario. Además el hecho de modularizar permite acotar y r...

  8. Trend of hydraulic units

    Energy Technology Data Exchange (ETDEWEB)

    Deshimaru, Jun' ichi

    1988-11-01

    The gear, vane and piston pumps occupy a more then 90% share in the hydraulic pumps. Comparatively large pumps are mainly variable delivery piston pumps. The piston pumps are comparatively high in output density (output per unit weight), indicating the hydraulic pump in performance, and tend to become higher and higher in it. Though they are mainly 210 to 350kgf/cm/sup 2/ in rated pressure, some of them come to surpass 400kgf/cm/sup 3/ in it. While the progress in computation also requires the high speed operation, high accuracy and other severe conditions for the hydraulic units, which accordingly and increasingly intensify the requirement for hydraulic oil in abrasion resistibility, oxidation stability and response characteristics. While cavitation comes to easily occur, which considerably and disadvantageously influences hydraulic oil in life through degradation, noise level and respondingness. From now on, the development of high performance oil and study of mechanical structure are important. 19 references, 9 figures, 2 tables.

  9. Site-optimization of wind turbine generators

    Energy Technology Data Exchange (ETDEWEB)

    Wolff, T.J. de; Thillerup, J. [Nordtank Energy Group, Richmond, VA (United States)

    1997-12-31

    The Danish Company Nordtank is one of the pioneers within the wind turbine industry. Since 1981 Nordtank has installed worldwide more than 2500 wind turbine generators with a total name plate capacity that is exceeding 450 MW. The opening up of new and widely divergent markets has demanded an extremely flexible approach towards wind turbine construction. The Nordtank product range has expanded considerable in recent years, with the main objective to develop wind energy conversion machines that can run profitable in any given case. This paper will describe site optimization of Nordtank wind turbines. Nordtank has developed a flexible design concept for its WTGs in the 500/750 kW range, in order to offer the optimal WTG solution for any given site and wind regime. Through this flexible design, the 500/750 turbine line can adjust the rotor diameter, tower height and many other components to optimally fit the turbine to each specific project. This design philosophy will be illustrated with some case histories of recently completed projects.

  10. Additive Manufacturing of Aerospace Propulsion Components

    Science.gov (United States)

    Misra, Ajay K.; Grady, Joseph E.; Carter, Robert

    2015-01-01

    The presentation will provide an overview of ongoing activities on additive manufacturing of aerospace propulsion components, which included rocket propulsion and gas turbine engines. Future opportunities on additive manufacturing of hybrid electric propulsion components will be discussed.

  11. Advanced Ni base superalloys for small gas turbines

    Energy Technology Data Exchange (ETDEWEB)

    Wahl, J.B.; Harris, K.

    2011-07-15

    Nickel base superalloy materials have extensive applications in the hot turbine section of aero and industrial gas turbine engines. They provide a unique combination of characteristics suitable for higher temperature strength and durability requirements and are also applicable to small turbine and missile engines. Specific considerations pertinent to selection of superalloys for small gas turbine engines include not only overall mechanical properties, but also the changes in properties over time due to operation, reduction in properties for thin wall applications compared to thick section database values, alloy density and the effect on disc and shaft alloy selection, and always, material/component costs. Nickel base superalloys were first introduced into military gas turbine engines during the Second World War and the technology has advanced dramatically since that time, including conventionally cast equiax (EQ) alloys, directionally solidified (DS) and single crystal (SX) cast components. This paper discusses the characteristics and applications of each casting technology.

  12. AGT 101 - Advanced Gas Turbine technology update

    Energy Technology Data Exchange (ETDEWEB)

    Kidwell, J.R.; Kreiner, D.M.

    1985-03-01

    The Advanced Gas Turbine (AGT) 101 program has made significant progress during 1984 in ceramic component and engine test bed development, including initial ceramic engine testing. All ceramic components for the AGT 101 (1644 K) engine are now undergoing development. Ceramic structures have been undergoing extensive analysis, design modification, and rig testing. AGT 101 (1644 K) start capability has been demonstrated in rig tests. Also, 1644 K steady-state testing has been initiated in the test rigs to obtain a better understanding of ceramics in that environment. The ceramic turbine rotor has progressed through cold spin test 12,040 rad/sec and hot turbine rig test, and is currently in initial phases of engine test. Over 400 hours of engine testing is expected by March 1985, including approximately 150 hours of operation and 50 starts on the 1422 K engine. All activities are progressing toward 1644 K engine testing in mid-1985.

  13. Wind Turbines Wake Aerodynamics

    DEFF Research Database (Denmark)

    Vermeer, L.; Sørensen, Jens Nørkær; Crespo, A.

    2003-01-01

    The aerodynamics of horizontal axis wind turbine wakes is studied. The contents is directed towards the physics of power extraction by wind turbines and reviews both the near and the far wake region. For the near wake, the survey is restricted to uniform, steady and parallel flow conditions......, thereby excluding wind shear, wind speed and rotor setting changes and yawed conditions. The emphasis is put on measurements in controlled conditions.For the far wake, the survey focusses on both single turbines and wind farm effects, and the experimental and numerical work are reviewed; the main interest...... is to study how the far wake decays downstream, in order to estimate the effect produced in downstream turbines.The article is further restricted to horizontal axis wind turbines and excludes all other types of turbines....

  14. Aerodynamics of wind turbines

    DEFF Research Database (Denmark)

    Hansen, Martin Otto Laver

    Aerodynamics of Wind Turbines is the established essential text for the fundamental solutions to efficient wind turbine design. Now in its third edition, it has been substantially updated with respect to structural dynamics and control. The new control chapter now includes details on how to design...... a classical pitch and torque regulator to control rotational speed and power, while the section on structural dynamics has been extended with a simplified mechanical system explaining the phenomena of forward and backward whirling modes. Readers will also benefit from a new chapter on Vertical Axis Wind...... Turbines (VAWT). Topics covered include increasing mass flow through the turbine, performance at low and high wind speeds, assessment of the extreme conditions under which the turbine will perform and the theory for calculating the lifetime of the turbine. The classical Blade Element Momentum method...

  15. Wind Turbines Wake Aerodynamics

    DEFF Research Database (Denmark)

    Vermeer, L.; Sørensen, Jens Nørkær; Crespo, A.

    2003-01-01

    The aerodynamics of horizontal axis wind turbine wakes is studied. The contents is directed towards the physics of power extraction by wind turbines and reviews both the near and the far wake region. For the near wake, the survey is restricted to uniform, steady and parallel flow conditions......, thereby excluding wind shear, wind speed and rotor setting changes and yawed conditions. The emphasis is put on measurements in controlled conditions.For the far wake, the survey focusses on both single turbines and wind farm effects, and the experimental and numerical work are reviewed; the main interest...... is to study how the far wake decays downstream, in order to estimate the effect produced in downstream turbines.The article is further restricted to horizontal axis wind turbines and excludes all other types of turbines....

  16. Energy Efficiency Comparison between Hydraulic Hybrid and Hybrid Electric Vehicles

    Directory of Open Access Journals (Sweden)

    Jia-Shiun Chen

    2015-05-01

    Full Text Available Conventional vehicles tend to consume considerable amounts of fuel, which generates exhaust gases and environmental pollution during intermittent driving cycles. Therefore, prospective vehicle designs favor improved exhaust emissions and energy consumption without compromising vehicle performance. Although pure electric vehicles feature high performance and low pollution characteristics, their limitations are their short driving range and high battery costs. Hybrid electric vehicles (HEVs are comparatively environmentally friendly and energy efficient, but cost substantially more compared with conventional vehicles. Hydraulic hybrid vehicles (HHVs are mainly operated using engines, or using alternate combinations of engine and hydraulic power sources while vehicles accelerate. When the hydraulic system accumulator is depleted, the conventional engine reengages; concurrently, brake-regenerated power is recycled and reused by employing hydraulic motor–pump modules in circulation patterns to conserve fuel and recycle brake energy. This study adopted MATLAB Simulink to construct complete HHV and HEV models for backward simulations. New European Driving Cycles were used to determine the changes in fuel economy. The output of power components and the state-of-charge of energy could be retrieved. Varying power component models, energy storage component models, and series or parallel configurations were combined into seven different vehicle configurations: the conventional manual transmission vehicle, series hybrid electric vehicle, series hydraulic hybrid vehicle, parallel hybrid electric vehicle, parallel hydraulic hybrid vehicle, purely electric vehicle, and hydraulic-electric hybrid vehicle. The simulation results show that fuel consumption was 21.80% lower in the series hydraulic hybrid vehicle compared to the series hybrid electric vehicle; additionally, fuel consumption was 3.80% lower in the parallel hybrid electric vehicle compared to the

  17. Cavitation in Hydraulic Machinery

    Energy Technology Data Exchange (ETDEWEB)

    Kjeldsen, M.

    1996-11-01

    The main purpose of this doctoral thesis on cavitation in hydraulic machinery is to change focus towards the coupling of non-stationary flow phenomena and cavitation. It is argued that, in addition to turbulence, superimposed sound pressure fluctuations can have a major impact on cavitation and lead to particularly severe erosion. For the design of hydraulic devices this finding may indicate how to further limit the cavitation problems. Chapter 1 reviews cavitation in general in the context of hydraulic machinery, emphasizing the initial cavitation event and the role of the water quality. Chapter 2 discusses the existence of pressure fluctuations for situations common in such machinery. Chapter 3 on cavitation dynamics presents an algorithm for calculating the nucleation of a cavity cluster. Chapter 4 describes the equipment used in this work. 53 refs., 55 figs.,10 tabs.

  18. ATTAP: Advanced Turbine Technology Applications Project. Annual report, 1991

    Energy Technology Data Exchange (ETDEWEB)

    1992-12-01

    Purpose of ATTAP is to bring the automotive gas turbine engine to a technology state at which industry can make commercialization decisions. Activities during the past year included test-bed engine design and development, ceramic component design, materials and component characterization, ceramic component process development and fabrication, ceramic component rig testing, and test-bed engine fabrication and testing.

  19. Hydrodynamic damping and stiffness prediction in Francis turbine runners using CFD

    Science.gov (United States)

    Nennemann, Bernd; Monette, Christine; Chamberland-Lauzon, Joël

    2016-11-01

    Fluid-structure interaction (FSI) has a major impact on the dynamic response of the structural components of hydroelectric turbines. On mid- to high-head Francis runners, the rotor-stator interaction (RSI) phenomenon has to be considered carefully during the design phase to avoid operational issues on the prototype machine. The RSI dynamic response amplitudes of the runner are driven by three main factors: (1) pressure forcing amplitudes, (2) excitation frequencies in relation to natural frequencies and (3) damping. All three of the above factors are significantly influenced by both mechanical and hydraulic parameters. The prediction of the first two factors has been largely documented in the literature. However, the prediction of hydro-dynamic damping has only recently and only partially been treated. Two mode-based approaches (modal work and coupled single degree of freedom) for the prediction of flow-added dynamic parameters using separate finite element analyses (FEA) in still water and unsteady computational fluid dynamic (CFD) analyses are presented. The modal motion is connected to the time resolved CFD calculation by means of dynamic mesh deformation. This approach has partially been presented in a previous paper applied to a simplified hydrofoil. The present work extends the approach to Francis runners under RSI loading. In particular the travelling wave mode shapes of turbine runners are considered. Reasonable agreement with experimental results is obtained in parts of the operating range.

  20. Popeye Project: Hydraulic umbilical

    Energy Technology Data Exchange (ETDEWEB)

    Jordan, K.G.; Williams, V.T.

    1996-12-31

    For the Popeye Project, the longest super-duplex hydraulic umbilical in the world was installed in the Gulf of Mexico. This paper reports on its selection and project implementation. Material selection addresses corrosion in seawater, water-based hydraulic fluid, and methanol. Five alternatives were considered: (1) carbon-steel with traditional coating and anodes, (2) carbon-steel coated with thermally sprayed aluminum, (3) carbon-steel sheathed in aluminum, (4) super-duplex, and (5) titanium. The merits and risks associated with each alternative are discussed. The manufacture and installation of the selected umbilical are also reported.