WorldWideScience

Sample records for hydraulic transfer pump

  1. Thermally Actuated Hydraulic Pumps

    Science.gov (United States)

    Jones, Jack; Ross, Ronald; Chao, Yi

    2008-01-01

    Thermally actuated hydraulic pumps have been proposed for diverse applications in which direct electrical or mechanical actuation is undesirable and the relative slowness of thermal actuation can be tolerated. The proposed pumps would not contain any sliding (wearing) parts in their compressors and, hence, could have long operational lifetimes. The basic principle of a pump according to the proposal is to utilize the thermal expansion and contraction of a wax or other phase-change material in contact with a hydraulic fluid in a rigid chamber. Heating the chamber and its contents from below to above the melting temperature of the phase-change material would cause the material to expand significantly, thus causing a substantial increase in hydraulic pressure and/or a substantial displacement of hydraulic fluid out of the chamber. Similarly, cooling the chamber and its contents from above to below the melting temperature of the phase-change material would cause the material to contract significantly, thus causing a substantial decrease in hydraulic pressure and/or a substantial displacement of hydraulic fluid into the chamber. The displacement of the hydraulic fluid could be used to drive a piston. The figure illustrates a simple example of a hydraulic jack driven by a thermally actuated hydraulic pump. The pump chamber would be a cylinder containing encapsulated wax pellets and containing radial fins to facilitate transfer of heat to and from the wax. The plastic encapsulation would serve as an oil/wax barrier and the remaining interior space could be filled with hydraulic oil. A filter would retain the encapsulated wax particles in the pump chamber while allowing the hydraulic oil to flow into and out of the chamber. In one important class of potential applications, thermally actuated hydraulic pumps, exploiting vertical ocean temperature gradients for heating and cooling as needed, would be used to vary hydraulic pressures to control buoyancy in undersea research

  2. Design of Pumps for Water Hydraulic Systems

    DEFF Research Database (Denmark)

    Klit, Peder; Olsen, Stefan; Bech, Thomas Nørgaard

    1999-01-01

    This paper considers the development of two pumps for water hydraulic applications. The pumps are based on two different working principles: The Vane-type pump and the Gear-type pump. Emphasis is put on the considerations that should be made to account for water as the hydraulic fluid.......KEYWORDS: water, pump, design, vane, gear....

  3. Pump Application as Hydraulic Turbine – Pump as Turbine (PaT)

    OpenAIRE

    Rusovs, D

    2009-01-01

    The paper considers pump operation as hydraulic turbine with purpose to produce mechanical power from liquid flow. The Francis hydraulic turbine was selected for comparison with centrifugal pump in reverse operation. Turbine and centrifugal pump velocity triangles were considered with purpose to evaluate PaT efficiency. Shape of impeller blades for turbine and pumps was analysed. Specific speed calculation is carried out with purpose to obtain similarity in pump and turbine description. For ...

  4. Free-piston engine-and-hydraulic pump for railway vehicles

    Directory of Open Access Journals (Sweden)

    A. F. Golovchuk

    2013-04-01

    Full Text Available Purpose. The development of the free-piston diesel engine-and-hydraulic pump for the continuously variable hydrostatical transmission of mobile power vehicles. Methodology. For a long time engine builders have been interesting in the problem of developing free piston engines, which have much bigger coefficient of efficiency (40…80%. Such engines don’t have the conversion of reciprocating motion for inner combustion engine piston into rotating motion of crankshaft, from which the engine torque is transferred to the power machine transmission. Free-piston engines of inner combustion don’t have the crank mechanism (CM that significantly reduces mechanical losses for friction. Such engines can be used as compressors. Free-piston engine compressor (FPEC – is a free-piston machine in which energy received from engine’s cylinder is being transferred direct to compressor’s pistons connected with operational pistons of engine without crank mechanism. Part of the pressed air is being consumed for engine cylinder drain and the other part is going to the consumer. Findings. The use of free-piston engines-and-hydraulic pumps as power-transmission plants of power vehicles (diesel locomotives, combine harvester, tractors, cars and other mobile and stationary power installations with the continuously variable transmissions allows cost effectiveness improvement and metal consumption reduction of these vehicles, since the cost effectiveness of FPE is higher by 25-30%, and the metal consumption is lower by 40-50%. Originality. One of the important advantages of the free-piston engines is their simplicity and engine balance. As a result of the crank mechanism absence their construction is much simplified and the vibrations, peculiar to the ordinary engines are eliminated. In such installation the engine pistons are directly connected through the rod to compressor pistons and therefore there are no losses in the bearing bushes. Practical value. The free

  5. Experimental Waterflow Determination of the Dynamic Hydraulic Transfer Function for the J-2X Oxidizer Turbopump. Part Two; Results and Interpretation

    Science.gov (United States)

    Zoladz, Tom; Patel, Sandeep; Lee, Erik; Karon, Dave

    2011-01-01

    Experimental results describing the hydraulic dynamic pump transfer matrix (Yp) for a cavitating J-2X oxidizer turbopump inducer+impeller tested in subscale waterflow are presented. The transfer function is required for integrated vehicle pogo stability analysis as well as optimization of local inducer pumping stability. Dynamic transfer functions across widely varying pump hydrodynamic inlet conditions are extracted from measured data in conjunction with 1D-model based corrections. Derived Dynamic transfer functions are initially interpreted relative to traditional Pogo pump equations. Water-to-liquid oxygen scaling of measured cavitation characteristics are discussed. Comparison of key dynamic transfer matrix terms derived from waterflow testing are made with those implemented in preliminary Ares Upper Stage Pogo stability modeling. Alternate cavitating pump hydraulic dynamic equations are suggested which better reflect frequency dependencies of measured transfer matrices.

  6. Role of system characteristics in evolution of pump hydraulic design

    International Nuclear Information System (INIS)

    Walia, Mohinder; Misri, Vijay; Sharma, A.K.; Bapat, C.N.

    1994-01-01

    Primary heat transport (PHT) main circuit provides the means for transferring the heat produced in the fuel by circulating heavy water in the main circuit loop by primary coolant pumps (PCPs). The procurement specification of PCPs for 500 MWe pressurised heavy water reactor (PHWR) was prepared based upon the first order hydraulic analysis of the primary heat transport system and accordingly duty point was fixed. With this specification the manufacturer carried out model testing to arrive at optimum size of the impeller followed by determination of pump characteristics curves using full scale impeller during type testing. The duty point thus obtained was higher than specified necessitating the trimming of impeller. However, in order to make use of available higher duty point from system considerations, the duty point was redefined for production of subsequent pumps within specified tolerances governed by manufacturing limitations. PHT main system sizing (piping and feeders) was carried out based upon pump (delivering maximum flow) characteristics curve. Pressure profiles of PHT system at various operating modes were drawn and corresponding power drawn by motor was calculated. The interfacing of reactor coolant main system with hydraulic characteristics of PCP plays a significant role in establishing the requisite capability and capacity of PHT system in performing its intended functions. Therefore the paper traces the evolution of design parameters for PCP and subsequent generation of pressure profiles commensurate with the changes made in power profile including their impact on feeder sizing. The paper also highlights the scope of interaction between process designer and pump manufacturer in formulating a mutually acceptable and efficient hydraulic performance for PCP. (author). 3 refs., 8 figs., 3 tabs

  7. Hydraulic design and optimization of a modular pump-turbine runner

    International Nuclear Information System (INIS)

    Schleicher, W.C.; Oztekin, A.

    2015-01-01

    Highlights: • A modular pumped-storage scheme using elevated water storage towers is investigated. • The pumped-storage scheme also aides in the wastewater treatment process. • A preliminary hydraulic pump-turbine runner design is created based on existing literature. • The preliminary design is optimized using a response surface optimization methodology. • The performance and flow fields between preliminary and optimized designs are compared. - Abstract: A novel modular pumped-storage scheme is investigated that uses elevated water storage towers and cement pools as the upper and lower reservoirs. The scheme serves a second purpose as part of the wastewater treatment process, providing multiple benefits besides energy storage. A small pumped-storage scheme has been shown to be a competitive energy storage solution for micro renewable energy grids; however, pumped-storage schemes have not been implemented on scales smaller than megawatts. Off-the-shelf runner designs are not available for modular pumped-storage schemes, so a custom runner design is sought. A preliminary hydraulic design for a pump-turbine runner is examined and optimized for increased pumping hydraulic efficiency using a response surface optimization methodology. The hydraulic pumping efficiency was found to have improved by 1.06% at the best efficiency point, while turbine hydraulic efficiency decreased by 0.70% at the turbine best efficiency point. The round-trip efficiency for the system was estimated to be about 78%, which is comparable to larger pumped-storage schemes currently in operation

  8. Prediction of potential failures in hydraulic gear pumps

    Directory of Open Access Journals (Sweden)

    E. Lisowski

    2010-07-01

    Full Text Available Hydraulic gear pumps are used in many machines and devices. In hydraulic systems of machines gear pumps are main component ofsupply unit or perform auxiliary function. Gear pumps opposite to vane pumps are less complicated. They consists of such components as:housing, gear wheels, bearings, shaft, seal for rotation motion which are not very sensitive for damage and that is why they are using veryoften. However, gear pumps are break down from time to time. Usually damage of pump cause shutting down of machines and devices.One of the way for identifying potential failures and foreseeing their effects is a quality method. On the basis of these methods apreventing action might be undertaken before failure appear. In this paper potential failures and damages of a gear pump were presented bythe usage of matrix FMEA analysis.

  9. Verification Test of Hydraulic Performance for Reactor Coolant Pump

    Energy Technology Data Exchange (ETDEWEB)

    Park, Sang Jun; Kim, Jae Shin; Ryu, In Wan; Ko, Bok Seong; Song, Keun Myung [Samjin Ind. Co., Seoul (Korea, Republic of)

    2010-01-15

    According to this project, basic design for prototype pump and model pump of reactor coolant pump and test facilities has been completed. Basic design for prototype pump to establish structure, dimension and hydraulic performance has been completed and through primary flow analysis by computational fluid dynamics(CFD), flow characteristics and hydraulic performance have been established. This pump was designed with mixed flow pump having the following design requirements; specific velocity(Ns); 1080.9(rpm{center_dot}m{sup 3}/m{center_dot}m), capacity; 3115m{sup 3}/h, total head ; 26.3m, pump speed; 1710rpm, pump efficiency; 77.0%, Impeller out-diameter; 349mm, motor output; 360kw, design pressure; 17MPaG. The features of the pump are leakage free due to no mechanical seal on the pump shaft which insures reactor's safety and law noise level and low vibration due to no cooling fan on the motor which makes eco-friendly product. Model pump size was reduced to 44% of prototype pump for the verification test for hydraulic performance of reactor coolant pump and was designed with mixed flow pump and canned motor having the following design requirements; specific speed(NS); 1060.9(rpm{center_dot}m{sup 3}/m{center_dot}m), capacity; 539.4m{sup 3}/h, total head; 21.0m, pump speed; 3476rpm, pump efficiency; 72.9%, Impeller out-diameter; 154mm, motor output; 55kw, design pressure; 1.0MPaG. The test facilities were designed for verification test of hydraulic performance suitable for pump performance test, homologous test, NPSH test(cavitation), cost down test and pressure pulsation test of inlet and outlet ports. Test tank was designed with testing capacity enabling up to 2000m{sup 3}/h and design pressure 1.0MPaG. Auxiliary pump was designed with centrifugal pump having capacity; 1100m{sup 3}/h, total head; 42.0m, motor output; 190kw

  10. Submersible canned motor transfer pump

    International Nuclear Information System (INIS)

    Guardiani, R.F.; Pollick, R.D.; Nyilas, C.P.; Denmeade, T.J.

    1997-01-01

    A transfer pump is described which is used in a waste tank for transferring high-level radioactive liquid waste from a waste tank and having a column assembly, a canned electric motor means, and an impeller assembly with an upper impeller and a lower impeller connected to a shaft of a rotor assembly. The column assembly locates a motor housing with the electric motor means adjacent to the impeller assembly which creates an hydraulic head, and which forces the liquid waste, into the motor housing to cool the electric motor means and to cool and/or lubricate the radial and thrust bearing assemblies. Hard-on-hard bearing surfaces of the bearing assemblies and a ring assembly between the upper impeller and electric motor means grind large particles in the liquid waste flow. Slots in the static bearing member of the radial bearing assemblies further grind down the solid waste particles so that only particles smaller than the clearances in the system can pass there through, thereby resisting damage to and the interruption of the operation of the transfer pump. The column assembly is modular so that sections can be easily assembled, disassembled and/or removed. A second embodiment employs a stator jacket which provides an alternate means for cooling the electric motor means and lubricating and/or cooling the bearing assemblies, and a third embodiment employs a variable level suction device which allows liquid waste to be drawn into the transfer pump from varying and discrete levels in the waste tank. 17 figs

  11. Hydraulic optimization of 'S' characteristics of the pump-turbine for Xianju pumped storage plant

    International Nuclear Information System (INIS)

    Liu, W C; Zheng, J S; Cheng, J; Shi, Q H

    2012-01-01

    The pump-turbine with a rated power capacity of 375MW each at Xianju pumped storage plant is the most powerful one under construction in China. In order to avoid the instability near no-load conditions, the hydraulic design of the pump-turbine has been optimized to improving the 'S' characteristic in the development of the model pump-turbine. This paper presents the cause of 'S' characteristic of a pump-turbine by CFD simulation of the internal flow. Based on the CFD analysis, the hydraulic design optimization of the pump-turbine was carried out to eliminate the 'S' characteristics of the machine at Xianju pumped storage plant and a big step for removing the 'S' characteristic of a pump-turbine has been obtained. The model test results demonstrate that the pump-turbine designed for Xianju pumped storage plant can smoothly operate near no-load conditions without an addition of misaligned guide vanes.

  12. Development of model pump for establishing hydraulic design of primary sodium pumps in PFBR

    International Nuclear Information System (INIS)

    Chougule, R.J.; Sahasrabudhe, H.G.; Rao, A.S.L.K.; Balchander, K.; Kale, R.D.

    1994-01-01

    Indira Gandhi Centre for Atomic Research, Kalpakkam indicated requirement of indigenous development of primary sodium pump, handling liquid sodium as coolant in Fast Breeder Reactor. The primary sodium pump concept selected in its preliminary design is a vertical, single stage, with single suction impeller, suction facing downwards. The pump is having diffuser, discharge casing and discharge collector. The 1/3 rd size model pump is developed to establish the hydraulic performance of the prototype primary sodium pump. The main objectives were to verify the hydraulic design to operate on low net positive suction head available (NPSHA), no evidence of visible cavitation at available NPSHA, the pump should be designed with a diffuser etc. The model pump PSP 250/40 was designed and successfully developed by Research and Development Division of M/s Kirloskar Brothers Ltd., Kirloskarvadi. The performance testing using model pump was successfully carried out on a closed circuit test rig. The performance of a model pump at three different speeds 1900 rpm, 1456 rpm and 975 rpm was established. The values of hydraulic axial thrust with and without balancing holes on impeller at 1900 rpm was measured. Visual cavitation study at 1900 rpm was carried out to establish the NPSH at bubble free operation of the pump. The tested performance of the model pump is converted to the full scale prototype pump. The predicted performance of prototype pump at 700 rpm was found to be meeting fully with the expected duties. (author). 6 figs., 3 tabs

  13. Endurance Pump Tests With Fresh and Purified MIL-PRF-83282 Hydraulic Fluid

    National Research Council Canada - National Science Library

    Sharma, Shashi

    1999-01-01

    .... Two endurance pump tests were conducted with F-16 aircraft hydraulic pumps, using both fresh and purified MIL-PRF-83282 hydraulic fluid, to determine if fluid purification had any adverse effect on pump life...

  14. Design and analysis of hydraulic ram water pumping system

    Science.gov (United States)

    Hussin, N. S. M.; Gamil, S. A.; Amin, N. A. M.; Safar, M. J. A.; Majid, M. S. A.; Kazim, M. N. F. M.; Nasir, N. F. M.

    2017-10-01

    The current pumping system (DC water pump) for agriculture is powered by household electricity, therefore, the cost of electricity will be increased due to the higher electricity consumption. In addition, the water needs to be supplied at different height of trees and different places that are far from the water source. The existing DC water pump can pump the water to 1.5 m height but it cost money for electrical source. The hydraulic ram is a mechanical water pump that suitable used for agriculture purpose. It can be a good substitute for DC water pump in agriculture use. The hydraulic ram water pumping system has ability to pump water using gravitational energy or the kinetic energy through flowing source of water. This project aims to analyze and develop the water ram pump in order to meet the desired delivery head up to 3 meter height with less operation cost. The hydraulic ram is designed using CATIA software. Simulation work has been done using ANSYS CFX software to validate the working concept. There are three design were tested in the experiment study. The best design reached target head of 3 m with 15% efficiency and flow rate of 11.82l/min. The results from this study show that the less diameter of pressure chamber and higher supply head will create higher pressure.

  15. Pressure variation characteristics at trapping region in oil hydraulic piston pumps

    International Nuclear Information System (INIS)

    Kim, Jong Ki; Jung, Jae Youn; Rho, Byung Joon; Song, Kyu Keun; Oh, Seok Hyung

    2003-01-01

    Pressure variation is one of the major sources on noise emission in the oil hydraulic piston pumps. Therefore, it is necessary to clarify about pressure variation characteristics of the oil hydraulic piston pumps to reduce noise. Pressure variations in a cylinder at trapping region were measured during pump working period with discharge pressures, rotational speeds. The effect of pre-compression of the discharge port with three types valve plates also investigated. It was found that the pressure variation characteristics of oil hydraulic piston pumps deeply related with pre-compression design of the discharge port. Also, it was found that the pressure overshoot at trapping region can reduce by use of pre-compression at the end of the discharge port in valve plate

  16. Analysis of hydraulic bearing effect for vertical-shaft pump

    International Nuclear Information System (INIS)

    Narabayashi, Tadashi; Mawatari, Katsuhiko; Uchida, Ken; Iikura, Takahiko; Hayakawa, Kiyoshi

    1999-01-01

    In inner-rotating non coaxial cylinders, axial flow causes a hydraulic being effect by which the inner cylinder is put at the center of the axis of the outer cylinder, because of the pressure distribution along the surface of the inner cylinder. When the rotating speed becomes higher, whirl force is generated by the pressure distribution in the narrow gap side. Therefore, pocket-type hydraulic being was added between the rotor and the wearing, based on an experiment and flow analysis. The pockets suck a part of discharged water of a pump and pressurize a water along the rotational direction in the pocket. The pressurized water enhance the hydraulic being effect. The analysis results showed good agreement with the experiments, and the analysis method for the hydraulic being for vertical-shaft pump was established. (author)

  17. Intelligent Hydraulic Actuator and Exp-based Modelling of Losses in Pumps and .

    DEFF Research Database (Denmark)

    Zhang, Muzhi

    A intelligent fuzzy logic self-organising PD+I controller for a gearrotor hydraulic motor was developed and evaluated. Furthermore, a experimental-based modelling methods with a new software tool 'Dynamodata' for modelling of losses in hydraulic motors and pumps was developed.......A intelligent fuzzy logic self-organising PD+I controller for a gearrotor hydraulic motor was developed and evaluated. Furthermore, a experimental-based modelling methods with a new software tool 'Dynamodata' for modelling of losses in hydraulic motors and pumps was developed....

  18. Layered clustering multi-fault diagnosis for hydraulic piston pump

    Science.gov (United States)

    Du, Jun; Wang, Shaoping; Zhang, Haiyan

    2013-04-01

    Efficient diagnosis is very important for improving reliability and performance of aircraft hydraulic piston pump, and it is one of the key technologies in prognostic and health management system. In practice, due to harsh working environment and heavy working loads, multiple faults of an aircraft hydraulic pump may occur simultaneously after long time operations. However, most existing diagnosis methods can only distinguish pump faults that occur individually. Therefore, new method needs to be developed to realize effective diagnosis of simultaneous multiple faults on aircraft hydraulic pump. In this paper, a new method based on the layered clustering algorithm is proposed to diagnose multiple faults of an aircraft hydraulic pump that occur simultaneously. The intensive failure mechanism analyses of the five main types of faults are carried out, and based on these analyses the optimal combination and layout of diagnostic sensors is attained. The three layered diagnosis reasoning engine is designed according to the faults' risk priority number and the characteristics of different fault feature extraction methods. The most serious failures are first distinguished with the individual signal processing. To the desultory faults, i.e., swash plate eccentricity and incremental clearance increases between piston and slipper, the clustering diagnosis algorithm based on the statistical average relative power difference (ARPD) is proposed. By effectively enhancing the fault features of these two faults, the ARPDs calculated from vibration signals are employed to complete the hypothesis testing. The ARPDs of the different faults follow different probability distributions. Compared with the classical fast Fourier transform-based spectrum diagnosis method, the experimental results demonstrate that the proposed algorithm can diagnose the multiple faults, which occur synchronously, with higher precision and reliability.

  19. Hydraulic performance numerical simulation of high specific speed mixed-flow pump based on quasi three-dimensional hydraulic design method

    International Nuclear Information System (INIS)

    Zhang, Y X; Su, M; Hou, H C; Song, P F

    2013-01-01

    This research adopts the quasi three-dimensional hydraulic design method for the impeller of high specific speed mixed-flow pump to achieve the purpose of verifying the hydraulic design method and improving hydraulic performance. Based on the two families of stream surface theory, the direct problem is completed when the meridional flow field of impeller is obtained by employing iterative calculation to settle the continuity and momentum equation of fluid. The inverse problem is completed by using the meridional flow field calculated in the direct problem. After several iterations of the direct and inverse problem, the shape of impeller and flow field information can be obtained finally when the result of iteration satisfies the convergent criteria. Subsequently the internal flow field of the designed pump are simulated by using RANS equations with RNG k-ε two-equation turbulence model. The static pressure and streamline distributions at the symmetrical cross-section, the vector velocity distribution around blades and the reflux phenomenon are analyzed. The numerical results show that the quasi three-dimensional hydraulic design method for high specific speed mixed-flow pump improves the hydraulic performance and reveal main characteristics of the internal flow of mixed-flow pump as well as provide basis for judging the rationality of the hydraulic design, improvement and optimization of hydraulic model

  20. Study of a new hydraulic pumping unit based on the offshore platform

    OpenAIRE

    Yu, Yanqun; Chang, Zongyu; Qi, Yaoguang; Xue, Xin; Zhao, Jiannan

    2017-01-01

    This article introduces a new technology about a rod pumping in the offshore platform according to the demand of offshore heavy oil thermal recovery and the production of stripper well, analyzes the research status of hydraulic pumping unit at home and abroad, and designs a new kind of miniature hydraulic pumping unit with long-stroke, low pumping speed and compact structure to resolve the problem of space limitation. The article also describes the whole structure and the working principle of...

  1. Acceptance Test Report for 241-SY Pump Cradle Hydraulic System

    International Nuclear Information System (INIS)

    Koons, B.M.

    1995-01-01

    The purpose of this ATP is to verify that hydraulic system/cylinder procured to replace the cable/winch system on the 101-SY Mitigation Pump cradle assembly fulfills its functional requirements for raising and lowering the cradle assembly between 70 and 90 degrees, both with and without pump. A system design review was performed on the 101-SY Cradle Hydraulic System by the vendor before shipping (See WHC-SD-WM-DRR-045, 241-SY-101 Cradle Hydraulic System Design Review). The scope of this plan focuses on verification of the systems ability to rotate the cradle assembly and any load through the required range of motion

  2. A new hydraulic regulation method on district heating system with distributed variable-speed pumps

    International Nuclear Information System (INIS)

    Wang, Hai; Wang, Haiying; Zhu, Tong

    2017-01-01

    Highlights: • A hydraulic regulation method was presented for district heating with distributed variable speed pumps. • Information and automation technologies were utilized to support the proposed method. • A new hydraulic model was developed for distributed variable speed pumps. • A new optimization model was developed based on genetic algorithm. • Two scenarios of a multi-source looped system was illustrated to validate the method. - Abstract: Compared with the hydraulic configuration based on the conventional central circulating pump, a district heating system with distributed variable-speed-pumps configuration can often save 30–50% power consumption on circulating pumps with frequency inverters. However, the hydraulic regulations on distributed variable-speed-pumps configuration could be more complicated than ever while all distributed pumps need to be adjusted to their designated flow rates. Especially in a multi-source looped structure heating network where the distributed pumps have strongly coupled and severe non-linear hydraulic connections with each other, it would be rather difficult to maintain the hydraulic balance during the regulations. In this paper, with the help of the advanced automation and information technologies, a new hydraulic regulation method was proposed to achieve on-site hydraulic balance for the district heating systems with distributed variable-speed-pumps configuration. The proposed method was comprised of a new hydraulic model, which was developed to adapt the distributed variable-speed-pumps configuration, and a calibration model with genetic algorithm. By carrying out the proposed method step by step, the flow rates of all distributed pumps can be progressively adjusted to their designated values. A hypothetic district heating system with 2 heat sources and 10 substations was taken as a case study to illustrate the feasibility of the proposed method. Two scenarios were investigated respectively. In Scenario I, the

  3. Reducing the environmental impact of hydraulic fracturing through design optimisation of positive displacement pumps

    International Nuclear Information System (INIS)

    Josifovic, Aleksandar; Roberts, Jennifer J.; Corney, Jonathan; Davies, Bruce; Shipton, Zoe K.

    2016-01-01

    The current approach to hydraulic fracturing requires large amounts of industrial hardware to be transported, installed and operated in temporary locations. A significant proportion of this equipment is comprised of the fleet of pumps required to provide the high pressures and flows necessary for well stimulation. Studies have shown that over 90% of the emissions of CO_2 and other pollutants that occur during a hydraulic fracturing operation are associated with these pumps. Pollution and transport concerns are of paramount importance for the emerging hydraulic fracturing industry in Europe, and so it is timely to consider these factors when assessing the design of high pressure pumps for the European resources. This paper gives an overview of the industrial plant required to carry out a hydraulic fracturing operation. This is followed by an analysis of the pump's design space that could result in improved pump efficiency. We find that reducing the plunger diameter and running the pump at higher speeds can increase the overall pump efficiency by up to 4.6%. Such changes to the pump's parameters would results in several environmental benefits beyond the obvious economic gains of lower fuel consumption. The paper concludes with a case study that quantifies these benefits. - Highlights: • We develop a parameterized model of hydraulic fracturing pumps. • We explore performance variation to optimise pump efficiency and performance. • New design could increase pump energy efficiency up to 4.6% and improve reliability. • The new design could also reduce environmental and social impacts of pumping. • This illustrates how optimised mechanical design can lower impacts and cost.

  4. Capillary-Condenser-Pumped Heat-Transfer Loop

    Science.gov (United States)

    Silverstein, Calvin C.

    1989-01-01

    Heat being transferred supplies operating power. Capillary-condenser-pumped heat-transfer loop similar to heat pipe and to capillary-evaporator-pumped heat-transfer loop in that heat-transfer fluid pumped by evaporation and condensation of fluid at heat source and sink, respectively. Capillary condenser pump combined with capillary evaporator pump to form heat exchanger circulating heat-transfer fluids in both loops. Transport of heat more nearly isothermal. Thermal stress in loop reduced, and less external surface area needed in condenser section for rejection of heat to heat sink.

  5. Effects of radial diffuser hydraulic design on a double-suction centrifugal pump

    Science.gov (United States)

    Hou, H. C.; Zhang, Y. X.; Xu, C.; Zhang, J. Y.; Li, Z. L.

    2016-05-01

    In order to study effects of radial diffuser on hydraulic performance of crude oil pump, the steady CFD numerical method is applied and one large double-suction oil pump running in long-distance pipeline is considered. The research focuses on analysing the influence of its diffuser vane profile on hydraulic performance of oil pump. The four different types of cylindrical vane have been designed by in-house codes mainly including double arcs (DA), triple arcs (TA), equiangular spiral line (ES) and linear variable angle spiral line (LVS). During design process diffuser vane angles at inlet and outlet are tentatively given within a certain range and then the wrapping angle of the four types of diffuser vanes can be calculated automatically. Under the given inlet and outlet angles, the linear variable angle spiral line profile has the biggest wrapping angle and profile length which is good to delay channel diffusion but bring more friction hydraulic loss. Finally the vane camber line is thickened at the certain uniform thickness distribution and the 3D diffuser models are generated. The whole flow passage of oil pump with different types of diffusers under various flow rate conditions are numerically simulated based on RNG k-ɛ turbulent model and SIMPLEC algorithm. The numerical results show that different types of diffusers can bring about great difference on the hydraulic performance of oil pump, of which the ES profile diffuser with its proper setting angle shows the best hydraulic performance and its inner flow field is improved obviously. Compared with the head data from model sample, all designed diffusers can make a certain improvement on head characteristic. At the large flow rate conditions the hydraulic efficiency increases obviously and the best efficiency point shift to the large flow rate range. The ES profile diffuser embodies the better advantages on pump performance which can be explained theoretically that the diffuser actually acts as a diffusion

  6. Optimal hydraulic design of new-type shaft tubular pumping system

    International Nuclear Information System (INIS)

    Zhu, H G; Zhang, R T; Zhou, J R

    2012-01-01

    Based on the characteristics of large flow rate, low-head, short annual operation time and high reliability of city flood-control pumping stations, a new-type shaft tubular pumping system featuring shaft suction box, siphon-type discharge passage with vacuum breaker as cutoff device was put forward, which possesses such advantages as simpler structure, reliable cutoff and higher energy performance. According to the design parameters of a city flood control pumping station, a numerical computation model was set up including shaft-type suction box, siphon-type discharge passage, pump impeller and guide vanes. By using commercial CFD software Fluent, RNG κ-ε turbulence model was adopted to close the three-dimensional time-averaged incompressible N-S equations. After completing optimal hydraulic design of shaft-type suction box, and keeping the parameters of total length, maximum width and outlet section unchanged, siphon-type discharge passages of three hump locations and three hump heights were designed and numerical analysis on the 9 hydraulic design schemes of pumping system were proceeded. The computational results show that the changing of hump locations and hump heights directly affects the internal flow patterns of discharge passages and hydraulic performances of the system, and when hump is located 3.66D from the inlet section and hump height is about 0.65D (D is the diameter of pump impeller), the new-type shaft tubular pumping system achieves better energy performances. A pumping system model test of the optimal designed scheme was carried out. The result shows that the highest pumping system efficiency reaches 75.96%, and when at design head of 1.15m the flow rate and system efficiency were 0.304m 3 /s and 63.10%, respectively. Thus, the validity of optimal design method was verified by the model test, and a solid foundation was laid for the application and extension of the new-type shaft tubular pumping system.

  7. Slip flow coefficient analysis in water hydraulics gear pump for environmental friendly application

    International Nuclear Information System (INIS)

    Yusof, A A; Wasbari, F; Zakaria, M S; Ibrahim, M Q

    2013-01-01

    Water hydraulics is the sustainable option in developing fluid power systems with environmental friendly approach. Therefore, an investigation on water-based external gear pump application is being conducted, as a low cost solution in the shifting effort of using water, instead of traditional oil hydraulics in fluid power application. As the gear pump is affected by fluid viscosity, an evaluation has been conducted on the slip flow coefficient, in order to understand to what extent the spur gear pump can be used with water-based hydraulic fluid. In this paper, the results of a simulated study of variable-speed fixed displacement gear pump are presented. The slip flow coefficient varies from rotational speed of 250 RPM to 3500 RPM, and provides volumetric efficiency ranges from 9 % to 97% accordingly

  8. Fault diagnosis of an intelligent hydraulic pump based on a nonlinear unknown input observer

    Directory of Open Access Journals (Sweden)

    Zhonghai MA

    2018-02-01

    Full Text Available Hydraulic piston pumps are commonly used in aircraft. In order to improve the viability of aircraft and energy efficiency, intelligent variable pressure pump systems have been used in aircraft hydraulic systems more and more widely. Efficient fault diagnosis plays an important role in improving the reliability and performance of hydraulic systems. In this paper, a fault diagnosis method of an intelligent hydraulic pump system (IHPS based on a nonlinear unknown input observer (NUIO is proposed. Different from factors of a full-order Luenberger-type unknown input observer, nonlinear factors of the IHPS are considered in the NUIO. Firstly, a new type of intelligent pump is presented, the mathematical model of which is established to describe the IHPS. Taking into account the real-time requirements of the IHPS and the special structure of the pump, the mechanism of the intelligent pump and failure modes are analyzed and two typical failure modes are obtained. Furthermore, a NUIO of the IHPS is performed based on the output pressure and swashplate angle signals. With the residual error signals produced by the NUIO, online intelligent pump failure occurring in real-time can be detected. Lastly, through analysis and simulation, it is confirmed that this diagnostic method could accurately diagnose and isolate those typical failure modes of the nonlinear IHPS. The method proposed in this paper is of great significance in improving the reliability of the IHPS. Keywords: Fault diagnosis, Hydraulic piston pump, Model-based, Nonlinear unknown input observer (NUIO, Residual error

  9. An evaluation of a hubless inducer and a full flow hydraulic turbine driven inducer boost pump

    Science.gov (United States)

    Lindley, B. K.; Martinson, A. R.

    1971-01-01

    The purpose of the study was to compare the performance of several configurations of hubless inducers with a hydrodynamically similar conventional inducer and to demonstrate the performance of a full flow hydraulic turbine driven inducer boost pump using these inducers. A boost pump of this type consists of an inducer connected to a hydraulic turbine with a high speed rotor located in between. All the flow passes through the inducer, rotor, and hydraulic turbine, then into the main pump. The rotor, which is attached to the main pump shaft, provides the input power to drive the hydraulic turbine which, in turn, drives the inducer. The inducer, rotating at a lower speed, develops the necessary head to prevent rotor cavitation. The rotor speed is consistent with present main engine liquid hydrogen pump designs and the overall boost pump head rise is sufficient to provide adequate main pump suction head. This system would have the potential for operating at lower liquid hydrogen tank pressures.

  10. Hydraulic Pump Fault Diagnosis Control Research Based on PARD-BP Algorithm

    Directory of Open Access Journals (Sweden)

    LV Dongmei

    2014-12-01

    Full Text Available Combining working principle and failure mechanism of RZU2000HM hydraulic press, with its present fault cases being collected, the working principle of the oil pressure and faults phenomenon of the hydraulic power unit –swash-plate axial piston pump were studied with some emphasis, whose faults will directly affect the dynamic performance of the oil pressure and flow. In order to make hydraulic power unit work reliably, PARD-BP (Pruning Algorithm based Random Degree neural network fault algorithm was introduced, with swash-plate axial piston pump’s vibration fault sample data regarded as input, and fault mode matrix regarded as target output, so that PARD-BP algorithm could be trained. In the end, the vibration results were verified by the vibration modal test, and it was shown that the biggest upward peaks of vacuum pump in X-direction, Y-direction and Z- direction have fallen by 30.49 %, 21.13 % and 18.73 % respectively, so that the reliability of the fact that PARD-BP algorithm could be used for the online fault detection and diagnosis of the hydraulic pump was verified.

  11. Operating problem of low specific speed pumps operating in closed hydraulic loop

    International Nuclear Information System (INIS)

    Rajput, A.K.

    1979-01-01

    Results of the studies of pressure pulsations caused by the centrifugal pump driving a typical sodium test loop are presented. The method of characteristics has been used for solving the equations of unsteady fluid flow in closed hydraulic loops with various boundary points, important of which are pump, control valve and heater tank (acting hydraulically as surge tank). Mathematical and computational models used for calculations are described. (M.G.B.)

  12. Endurance Pump Test with MIL-PRF-83282 Hydraulic Fluid, Purified with Malabar Purifier

    National Research Council Canada - National Science Library

    Sharma, Shashi

    2004-01-01

    .... Endurance aircraft hydraulic pump tests under carefully controlled conditions were previously conducted using hydraulic fluid purified with a rotating-disk and vacuum type purifier, the portable...

  13. Effect of Non-linear Velocity Loss Changes in Pumping Stage of Hydraulic Ram Pumps on Pumping Discharge Rate

    Directory of Open Access Journals (Sweden)

    Reza Fatahialkouhi

    2018-03-01

    Full Text Available The ram pump is a device which pumps a portion of input discharge to the pumping system in a significant height by using renewable energy of water hammer. The complexities of flow hydraulic on one hand and on the other hand the use of simplifying assumptions in ram pumps have caused errors in submitted analytical models for analyzing running cycle of these pumps. In this study it has been tried to modify the governing analytical model on hydraulic performance of these pumps in pumping stage. In this study by creating a logical division, the cycle of the ram pump was divided into three stages of acceleration, pumping and recoil and the governing equations on each stage of cycling are presented by using method of characteristics. Since the closing of impulse valve is nonlinear, velocity loss in pumping stage is considered nonlinearly. Also the governing equations in pumping stage were modified by considering disc elasticity of impulse valve and changing volume of the pump body when the water hammer phenomenon is occurred. In order to evaluate results and determine empirical factors of the proposed analytical model, a physical model of the ram pump is made with internal diameter of 51 mm. Results of this study are divided into several parts. In the first part, loss coefficients of the impulse valve were measured experimentally and empirical equations of drag coefficient and friction coefficient of the impulse valve were submitted by using nonlinear regression. In the second part, results were evaluated by using experimental data taken from this study. Evaluation of statistical error functions showed that the proposed model has good accuracy for predicting experimental observations. In the third part, in order to validate the results in pumping stage, the analytical models of Lansford and Dugan (1941 and Tacke (1988 were used and the error functions resulted from prediction of experimental observations were investigated through analytical models of

  14. Piezoelectric-hydraulic pump based band brake actuation system for automotive transmission control

    Science.gov (United States)

    Kim, Gi-Woo; Wang, K. W.

    2007-04-01

    The actuation system of friction elements (such as band brakes) is essential for high quality operations in modern automotive automatic transmissions (in short, ATs). The current band brake actuation system consists of several hydraulic components, including the oil pump, the regulating valve and the control valves. In general, it has been recognized that the current AT band brake actuation system has many limitations. For example, the oil pump and valve body are relatively heavy and complex. Also, the oil pumps induce inherently large drag torque, which affects fuel economy. This research is to overcome these problems of the current system by exploring the utilization of a hybrid type piezo-hydraulic pump device for AT band brake control. This new actuating system integrates a piezo-hydraulic pump to the input of the band brake. Compared with the current systems, this new actuator features much simpler structure, smaller size, and lower weight. This paper describes the development, design and fabrication of the new stand-alone prototype actuator for AT band brake control. An analytical model is developed and validated using experimental data. Performance tests on the hardware and system simulations utilizing the validated model are performed to characterize the new prototype actuator. It is predicted that with increasing of accumulator pressure and driving frequency, the proposed prototype actuating system will satisfy the band brake requirement for AT shift control.

  15. Compressed air piping, 241-SY-101 hydraulic pump retrieval trailer

    International Nuclear Information System (INIS)

    Wilson, T.R.

    1994-01-01

    The following Design Analysis was prepared by the Westinghouse Hanford Company to determine pressure losses in the compressed air piping installed on the hydraulic trailer for the 241-SY-101 pump retrieval mission

  16. Experimental Determination of the Dynamic Hydraulic Transfer Function for the J-2X Oxidizer Turbopump. Part One; Methodology

    Science.gov (United States)

    Zoladz, Tom; Patel, Sandeep; Lee, Erik; Karon, Dave

    2011-01-01

    An advanced methodology for extracting the hydraulic dynamic pump transfer matrix (Yp) for a cavitating liquid rocket engine turbopump inducer+impeller has been developed. The transfer function is required for integrated vehicle pogo stability analysis as well as optimization of local inducer pumping stability. Laboratory pulsed subscale waterflow test of the J-2X oxygen turbo pump is introduced and our new extraction method applied to the data collected. From accurate measures of pump inlet and discharge perturbational mass flows and pressures, and one-dimensional flow models that represents complete waterflow loop physics, we are able to derive Yp and hence extract the characteristic pump parameters: compliance, pump gain, impedance, mass flow gain. Detailed modeling is necessary to accurately translate instrument plane measurements to the pump inlet and discharge and extract Yp. We present the MSFC Dynamic Lump Parameter Fluid Model Framework and describe critical dynamic component details. We report on fit minimization techniques, cost (fitness) function derivation, and resulting model fits to our experimental data are presented. Comparisons are made to alternate techniques for spatially translating measurement stations to actual pump inlet and discharge.

  17. Simulation of three-demensional unsteady flow in hydraulic pumps

    NARCIS (Netherlands)

    van Esch, B.P.M.; van Esch, Bartholomeus Petrus Maria

    1997-01-01

    In this thesis it is shown that the flow in hydraulic pumps of the radial and mixedflow type, operating at conditions not too far from design point, can be considered as an incompressible potential flow, where the influence of viscosity is restricted to thin boundary layers, wakes and mixing areas.

  18. Identification of static characteristics of a hydraulic elevator with an airlift pump

    Energy Technology Data Exchange (ETDEWEB)

    Geier, V.G.; Gruba, V.I.; Dekanenko, V.N.

    1982-09-01

    Control parameters of an airlift pump as used in hydraulic mining of coal are found with the object of establishing its optimal control regime for maintaining constant hydro-mixture level in the sump of the hydraulic elevator. Copious measurement data were interpreted by statistical methods to obtain control coefficients which were used in the design of the automatic controller. (9 refs.)

  19. Alternative method of inservice hydraulic testing of difficult to test pumps

    International Nuclear Information System (INIS)

    Stockton, N.B.; Shangari, S.

    1994-01-01

    The pump test codes require that system resistance be varied until the independent variable (either the pump flow rate or differential pressure) equals its reference value. Variance from this fixed reference value is not specifically allowed. However, the design of many systems makes it impractical to set the independent variable to an exact value. Over a limited range of pump operation about the fixed reference value, linear interpolation between two points of pump operation can be used to accurately determine degradation at the reference value without repeating reference test conditions. This paper presents an overview of possible alternatives for hydraulic testing of pumps and a detailed discussion of the linear interpolation method. The approximation error associated with linear interpolation is analyzed. Methods to quantify and minimize approximation error are presented

  20. Hydraulic properties from pumping tests data of aquifers in Azare ...

    African Journals Online (AJOL)

    Pumping test data from twelve boreholes in Azare area were analysed to determine the hydraulic properties of the aquifers, and the availability of water to meet the conjugate demands of the increasing population. The values of the aquifer constants obtained from the Cooper-Jacob's non-equilibrium graphical method were ...

  1. Profile constructing and elevation design of soil reclaimed by hydraulic dredge pump in mining areas

    Energy Technology Data Exchange (ETDEWEB)

    Longqian, C.; Aiqin, S.; Tianjian, Z. [China Univ. of Mining and Technology, Xuzhou, Jiangsu (China). School of Environmental Science and Spatial Informatics; Mei, L. [China Univ. of Mining and Technology, Xuzhou, Jiangsu (China)

    2007-07-01

    Underground coal mining is the main method of coal mining in China. The hydraulic dredge pump reclamation method is the basic method used for repairing hydraulic erosion. This paper reviewed land reclamation by hydraulic dredge pump in the Yi'an coal mine of Xuzhou mining area in the east of China, and analyzed the constructing theory of soil profiling. It examined factors such as the height of the ground-water table; the thickness of plough horizon; the length of crops root and the state of soil erosion; and the methods of profile construction and elevation design of soil reclaimed by hydraulic dredge pump. A relevant mathematical model was also developed. The paper discussed the general situation of the study site as well as the basic theory of profile constructing and the profile constructing method. The paper also discussed the elevation design of the reclaimed land. It was concluded that the practice has proved that the methods can make the reclaimed soil keep a similar characteristics to that of original cropped soil, and meet the requirements for elevation of reclaimed land. 8 refs., 1 tab., 2 figs.

  2. Helmholtz resonance in a piezoelectric–hydraulic pump-based hybrid actuator

    International Nuclear Information System (INIS)

    Kim, Gi-Woo; Wang, K W

    2011-01-01

    This paper demonstrates that a hydraulically acting Helmholtz resonator can exist in a piezoelectric–hydraulic pump (PHP) based hybrid actuator, which in turn affects the volumetric efficiency of the PHP. The simulation and experimental results illustrate the effect of Helmholtz resonance on the flow rate performance of the PHP. The study also shows how to shift the Helmholtz resonant frequency to a higher value through changing parameters such as the cylinder diameter and the effective bulk modulus of the working fluid, which will improve the volumetric efficiency and broaden the operating frequency range of the PHP actuator

  3. Prediction of Hydraulic Performance of a Scaled-Down Model of SMART Reactor Coolant Pump

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Sun Guk; Park, Jin Seok; Yu, Je Yong; Lee, Won Jae [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2010-08-15

    An analysis was conducted to predict the hydraulic performance of a reactor coolant pump (RCP) of SMART at the off-design as well as design points. In order to reduce the analysis time efficiently, a single passage containing an impeller and a diffuser was considered as the computational domain. A stage scheme was used to perform a circumferential averaging of the flux on the impeller-diffuser interface. The pressure difference between the inlet and outlet of the pump was determined and was used to compute the head, efficiency, and break horse power (BHP) of a scaled-down model under conditions of steady-state incompressible flow. The predicted curves of the hydraulic performance of an RCP were similar to the typical characteristic curves of a conventional mixed-flow pump. The complex internal fluid flow of a pump, including the internal recirculation loss due to reverse flow, was observed at a low flow rate.

  4. Fluid Temperature of Aero Hydraulic Systems

    Directory of Open Access Journals (Sweden)

    I. S. Shumilov

    2016-01-01

    Full Text Available In modern supersonic aircrafts due to aerodynamic skin heating a temperature of hydraulics environment significantly exceeds that of permissible for fluids used. The same problem exists for subsonic passenger aircrafts, especially for Airbuses, which have hydraulics of high power where convective heat transfer with the environment is insufficient and there is no required temperature control of fluid. The most significant in terms of heat flow is the flow caused by the loss of power to the pump and when designing the hydraulic system (HS it is necessary to pay very serious attention to it. To use a constant capacity pump is absolutely unacceptable, since HS efficiency in this case is extremely low, and the most appropriate are variable-capacity pumps, cut-off pumps, dual-mode pumps. The HS fluid cooling system should provide high reliability, lightweight, simple design, and a specified heat transfer in all flight modes.A system cooling the fluid by the fuel of feeding lines of the aircraft engines is the most effective, and it is widely used in supersonic aircrafts, where power of cooling system is essential. Subsonic aircrafts widely use convective heat exchangers. In thermal design of the aircraft hydraulics, the focus is generally given to the maximum and minimum temperatures of the HS fluid, the choice of the type of heat exchanger (convective or flow-through, the place of its installation. In calculating the operating temperature of a hydraulic system and its cooling systems it is necessary to determine an increase of the working fluid temperature when throttling it. There are three possible formulas to calculate the fluid temperature in throttling, with the error of a calculated temperature drop from 30% to 4%.The article considers the HS stationary and noon-stationary operating conditions and their calculation, defines temperatures of fluid and methods to control its specified temperature. It also discusses various heat exchanger schemes

  5. Exploratory use of periodic pumping tests for hydraulic characterization of faults

    Science.gov (United States)

    Cheng, Yan; Renner, Joerg

    2018-01-01

    Periodic pumping tests were conducted using a double-packer probe placed at four different depth levels in borehole GDP-1 at Grimselpass, Central Swiss Alps, penetrating a hydrothermally active fault. The tests had the general objective to explore the potential of periodic testing for hydraulic characterization of faults, representing inherently complex heterogeneous hydraulic features that pose problems for conventional approaches. Site selection reflects the specific question regarding the value of this test type for quality control of hydraulic stimulations of potential geothermal reservoirs. The performed evaluation of amplitude ratio and phase shift between pressure and flow rate in the pumping interval employed analytical solutions for various flow regimes. In addition to the previously presented 1-D and radial-flow models, we extended the one for radial flow in a system of concentric shells with varying hydraulic properties and newly developed one for bilinear flow. In addition to these injectivity analyses, we pursued a vertical-interference analysis resting on observed amplitude ratio and phase shift between the periodic pressure signals above or below packers and in the interval by numerical modeling of the non-radial-flow situation. When relying on the same model the order of magnitude of transmissivity values derived from the analyses of periodic tests agrees with that gained from conventional hydraulic tests. The field campaign confirmed several advantages of the periodic testing, for example, reduced constraints on testing time relative to conventional tests since a periodic signal can easily be separated from changing background pressure by detrending and Fourier transformation. The discrepancies between aspects of the results from the periodic tests and the predictions of the considered simplified models indicate a hydraulically complex subsurface at the drill site that exhibits also hydromechanical features in accord with structural information

  6. Computer aided hydraulic design of axial flow pump impeller

    International Nuclear Information System (INIS)

    Sreedhar, B.K.; Rao, A.S.L.K.; Kumaraswamy, S.

    1994-01-01

    Pumps are the heart of any power plant and hence their design requires great attention. Computers with their potential for rapid computation can be successfully employed in the design and manufacture of these machines. The paper discusses a program developed for the hydraulic design of axial flow pump impeller. The program, written in FORTRAN 77, is interactive and performs the functions of design calculation, drafting and generation of numerical data for blade manufacture. The drafting function, which makes use of the software ACAD, is carried out automatically by means of suitable interface programs. In addition data for blade manufacture is also generated in either the x-y-z or r-θ-z system. (author). 4 refs., 3 figs

  7. Magnetohydrodynamic generator and pump system

    International Nuclear Information System (INIS)

    Birzvalk, Yu.A.; Karasev, B.G.; Lavrentyev, I.V.; Semikov, G.T.

    1983-01-01

    The MHD generator-pump system, or MHD coupling, is designed to pump liquid-metal coolant in the primary circuit of a fast reactor. It contains a number of generator and pump channels placed one after another and forming a single electrical circuit, but hydraulically connected parallel to the second and first circuits of the reactor. All the generator and pump channels are located in a magnetic field created by the magnetic system with an excitation winding that is fed by a regulated direct current. In 500 to 2000 MW reactors, the flow rate of the coolant in each loop of the primary circuit is 3 to 6 m 3 /s and the hydraulic power is 2 to 4 MW. This paper examines the primary characteristics of an MHD generator-pump system with various dimensions and number of channels, wall thicknesses, coolant flow rates, and magnetic fields. It is shown that its efficiency may reach 60 to 70%. The operating principle of the MHD generator-pump system is explained in the referenced patent and involves the transfer of hydraulic power from generator channels to pump channels using a magnetic field and electrical circuit common to both channels. Variations of this system may be analyzed using an equivalent circuit. 7 refs., 5 figs

  8. Hydraulic System Design of Hydraulic Actuators for Large Butterfly Valves

    Directory of Open Access Journals (Sweden)

    Ye HUANG

    2014-09-01

    Full Text Available Hydraulic control systems of butterfly valves are presently valve-controlled and pump-controlled. Valve-controlled hydraulic systems have serious power loss and generate much heat during throttling. Pump-controlled hydraulic systems have no overflow or throttling losses but are limited in the speed adjustment of the variable-displacement pump, generate much noise, pollute the environment, and have motor power that does not match load requirements, resulting in low efficiency under light loads and wearing of the variable-displacement pump. To overcome these shortcomings, this article designs a closed hydraulic control system in which an AC servo motor drives a quantitative pump that controls a spiral swinging hydraulic cylinder, and analyzes and calculates the structure and parameters of a spiral swinging hydraulic cylinder. The hydraulic system adjusts the servo motor’s speed according to the requirements of the control system, and the motor power matches the power provided to components, thus eliminating the throttling loss of hydraulic circuits. The system is compact, produces a large output force, provides stable transmission, has a quick response, and is suitable as a hydraulic control system of a large butterfly valve.

  9. Remote process cell mercury transfer pumps for DWPF

    International Nuclear Information System (INIS)

    Nielsen, M.G.; Vaughn, V.G.

    1986-01-01

    Final design and the results of the testing performed thus far show that the water displacement of mercury to a height of 40 feet is feasible with just 6 gallons of motive water. Control of the transfer is achieved by monitoring the pump discharge pressure. An air actuated plug valve configuration successfully contained the required discharge pressure of 260 psi. The requirements of low flow and maximum separation of mercury from particulates are achieved due to the configuration of the pressure canister. The pump is capable of transferring a discrete amount of mercury with little additional slurry particulates. The success of this new pumping configuration is highlighted by the fact that it was the inspiration for other remote transfer applications tested at SRP. These application include the dual canister sample pump shown in Figure 7, as well as a successful prototype pump designed at Pacific Northwest Laboratories (PNL). The PNL pump was designed for the purpose of metering waste slurries to an electric melter. Upon completion of final pump fabrication, the Defense Waste Processing facility (DWPF) facility will have a simple and highly reliable method of remotely transferring small discrete batches of mercury as required from radioactive process vessels. 3 refs., 7 figs., 1 tab

  10. Pumped energy transfer stations (STEP)

    International Nuclear Information System (INIS)

    Tournery, Jean-Francois

    2015-12-01

    As objectives of development are high for renewable energies (they are supposed to cover 50 per cent of new energy needs by 2035), pumped energy transfer stations are to play an important role in this respect. The author first discusses the consequences of the development of renewable energies on the exploitation of electric grids: issue of intermittency for some of them, envisaged solutions. Then, he addresses one of the solutions: the storage of electric power. He notices that increasing the potential energy of a volume of water is presently the most mature solution to face massive needs of the power system. Dams and pumped energy transfer stations represent now almost the whole installed storage power in the world. The author then presents these pumped energy transfer stations: principle, brief history (the first appeared in Italy and Switzerland at the end of the 1890's). He indicates the various parameters of assessment of such stations: maximum stored energy, installed power in pumping mode and turbine mode, time constant, efficiency, level of flexibility. He discusses economic issues. He describes and comments the operation of turbine-pump groups: ternary groups, reversible binary groups. He discusses barriers to be overcome and technical advances to be made for varying speed groups and for marine stations. He finally gives an overview (table with number of stations belonging to different power ranges, remarkable installations) of existing stations in China, USA, Japan, Germany, Austria, Spain, Portugal, Italy, Switzerland, France and UK, and indicate predictions regarding storage needs at the world level. Some data are finally indicated for the six existing French installations

  11. Thermo-hydraulic characterization of a self-pumping corrugated wall heat exchanger

    International Nuclear Information System (INIS)

    Schmidmayer, Kevin; Kumar, Prashant; Lavieille, Pascal; Miscevic, Marc; Topin, Frédéric

    2017-01-01

    Compactness, efficiency and thermal control of the heat exchanger are of critical significance for many electronic industry applications. In this view, a new concept of heat exchanger at millimeter scale is proposed and numerically studied. It consists in dynamically deforming at least one of its walls by a progressive wave in order to create an active corrugated channel. Systematic studies were performed in single-phase flow on the different deformation parameters that allow obtaining the thermo-hydraulic characteristics of the system. It has been observed the dynamic wall deformation induces a significant pumping effect. Intensification of heat transfer remains very important even for highly degraded waveforms although the pumping efficiency is reduced in this case. The mechanical power applied on the upper wall to deform it dynamically is linked to the wave shape, amplitude, frequency and outlet-inlet pressure difference. The overall performance of the proposed system has been evaluated and compared to existing static channels. The performance of the proposed heat exchanger evolved in two steps for a given wall deformation. It declines slightly up to a critical value of mechanical power applied on the wall. When this critical value is exceeded, it deteriorates significantly, reaching the performance of existing conventional systems. - Highlights: • A new concept of heat exchanger within channel at millimeter scale is proposed. • Upper wall is deformed dynamically by applying external mechanical power. • Pumping effect is observed and is linked to the wave shape, amplitude and frequency. • Efficient proposed system in low Reynolds number range. • Overall performance is significantly high compared to static corrugated and straight channels.

  12. Hydraulic development of high specific-speed pump-turbines by means of an inverse design method, numerical flow-simulation (CFD) and model testing

    International Nuclear Information System (INIS)

    Kerschberger, P; Gehrer, A

    2010-01-01

    In recent years an increased interest in pump-turbines has been recognized in the market. The rapid availability of pumped storage schemes and the benefits to the power system by peak lopping, providing reserve and rapid response for frequency control are becoming of growing advantage. In that context it is requested to develop pump-turbines that reliably stand dynamic operation modes, fast changes of the discharge rate by adjusting the variable diffuser vanes as well as fast changes from pump to turbine operation. Within the present study various flow patterns linked to the operation of a pump-turbine system are discussed. In that context pump and turbine mode are presented separately and different load cases at both operation modes are shown. In order to achieve modern, competitive pump-turbine designs it is further explained which design challenges should be considered during the geometry definition of a pump-turbine impeller. Within the present study a runner-blade profile for a low head pump-turbine has been developed. For the initial hydraulic runner-blade design, an inverse design method has been applied. Within this design procedure, a first blade geometry is generated by imposing the pressure loading-distribution and by means of an inverse 3D potential-flow-solution. The hydraulic behavior of both, pump-mode and turbine-mode is then evaluated by solving the full 3D Navier-Stokes equations in combination with a robust turbulence model. Based on this initial design the blade profile has been further optimized and redesigned considering various hydraulic pump-turbine requirements. Finally, the progress in hydraulic design is demonstrated by model test results which show a significant improvement in hydraulic performance compared to an existing reference design.

  13. Hydraulic development of high specific-speed pump-turbines by means of an inverse design method, numerical flow-simulation (CFD) and model testing

    Science.gov (United States)

    Kerschberger, P.; Gehrer, A.

    2010-08-01

    In recent years an increased interest in pump-turbines has been recognized in the market. The rapid availability of pumped storage schemes and the benefits to the power system by peak lopping, providing reserve and rapid response for frequency control are becoming of growing advantage. In that context it is requested to develop pump-turbines that reliably stand dynamic operation modes, fast changes of the discharge rate by adjusting the variable diffuser vanes as well as fast changes from pump to turbine operation. Within the present study various flow patterns linked to the operation of a pump-turbine system are discussed. In that context pump and turbine mode are presented separately and different load cases at both operation modes are shown. In order to achieve modern, competitive pump-turbine designs it is further explained which design challenges should be considered during the geometry definition of a pump-turbine impeller. Within the present study a runner-blade profile for a low head pump-turbine has been developed. For the initial hydraulic runner-blade design, an inverse design method has been applied. Within this design procedure, a first blade geometry is generated by imposing the pressure loading-distribution and by means of an inverse 3D potential-flow-solution. The hydraulic behavior of both, pump-mode and turbine-mode is then evaluated by solving the full 3D Navier-Stokes equations in combination with a robust turbulence model. Based on this initial design the blade profile has been further optimized and redesigned considering various hydraulic pump-turbine requirements. Finally, the progress in hydraulic design is demonstrated by model test results which show a significant improvement in hydraulic performance compared to an existing reference design.

  14. Hydraulic performance of a low specific speed centrifugal pump with Spanwise-Slotted Blades

    International Nuclear Information System (INIS)

    Ye, D X; Li, H; Wang, Y

    2013-01-01

    The hydraulic efficiency of a low specific speed centrifugal pump is low because of the long and narrow meridian flow passage, and the severe disk friction. Spanwise slotted blade flow control technology has been applied to the low specific speed centrifugal pump. This paper concluded that spanwise slotted blades can improve the pump performance in both experiments and simulations. In order to study the influence to the impeller and volute by spanwise slotted blade, impeller efficiency and volute efficiency were defined. The minimum volute efficiency and the maximum pump efficiency appear at the same time in the design flow condition in the unsteady simulation. The mechanism of spanwise slotted blade flow control technology should be researched furthermore

  15. Manufacturing Hydraulic Components for the Primary Double Entry S-Pump Model

    Directory of Open Access Journals (Sweden)

    S. Iu. Kuptsov

    2015-01-01

    Full Text Available The article describes a new design of the primary pump to run in powerful units (more than 1 GW of power plants. The new construction has some advantages such as compactness, theoretical lack of radial and axial forces, and high efficiency in a wide range of flow. The abovementioned advantages can be possible owing to applying an innovative shape of the pump flow path. An impeller with the guide vanes forms the three-row single stage in the each row axial double entry blade system. The inlet and outlet parts have a shape of the involute that can ensure (according to calculated data the efficiency and stability in a wide range of flow because of a lack of the spiral parts. The results of numerical calculations of the pump working flow theoretically confirm that demanding parameters of the pump (H=286 m; Q=1,15 m3 /s can be obtained with competitive efficiency. To verify the proposed advantages of the construction, there was decision made to conduct the real physical experiment. For this purpose the small model of a real pump was designed with parameters H=14 m, Q=13 l/s. Construction of the pump model has a cartridge conception. In addition, there is a possibility for quick replacement of the some parts of the blade system in case of operational development of the pump. In order to obtain hydraulic characteristics of the pump to say nothing of the electromotor the torque gauge coupling is used. Numerical calculations for the pump model were also performed which confirm the operability. For manufacturing of the blade system the new perspective technology is applied. The main hydraulic components (impellers and guide vanes are made of ABS plastic by using 3D-printer. According to this technology parts are made layer by layer by means of welded plastic filament. Using this method the satisfactory tolerance (approximately ±0,3 mm of the parts was obtained. At that moment, it is possible to create the parts with the maximum size no higher than 150 mm

  16. Double Shell Tank (DST) Transfer Pump Subsystem Specification

    International Nuclear Information System (INIS)

    LESHIKAR, G.A.

    2000-01-01

    This specification establishes the performance requirements and provides references to the requisite codes and standards to be applied to the Double-Shell Tank (DST) Transfer Pump Subsystem which supports the first phase of Waste Feed Delivery (WFD). This specification establishes the performance requirements and provides the references to the requisite codes and standards to be applied during the design of the DST Transfer Pump Subsystem that supports the first phase of (WFD). The DST Transfer Pump Subsystem consists of a pump for supernatant and or slurry transfer for the DSTs that will be retrieved during the Phase 1 WFD operations. This system is used to transfer low-activity waste (LAW) and high-level waste (HLW) to designated DST staging tanks. It also will deliver blended LAW and HLW feed from these staging tanks to the River Protection Project (RPP) Privatization Contractor facility where it will be processed into an immobilized waste form. This specification is intended to be the basis for new projects/installations (W-521, etc.). This specification is not intended to retroactively affect previously established project design criteria without specific direction by the program

  17. Superconducting bearings for a LHe transfer pump

    Science.gov (United States)

    Kloeppel, S.; Muehsig, C.; Funke, T.; Haberstroh, C.; Hesse, U.; Lindackers, D.; Zielke, S.; Sass, P.; Schoendube, R.

    2017-12-01

    Superconducting bearings are used in a number of applications for high speed, low loss suspension. Most of these applications suspend a warm shaft and thus require continuous cooling, which leads to additional power consumption. Therefore, it seems advantageous to use these bearings in systems that are inherently cold. One respective application is a submerged pump for the transfer of liquid helium into mobile dewars. Centrifugal pumps require tight sealing clearances, especially for low viscosity fluids and small sizes. This paper covers the design and qualification of superconducting YBCO bearings for a laboratory sized liquid helium transfer pump. Emphasis is given to the axial positioning, which strongly influences the achievable volumetric efficiency.

  18. Pump to signal noise transfer in parametric fiber amplifiers

    DEFF Research Database (Denmark)

    Lund-Hansen, Toke; Rottwitt, Karsten; Peucheret, Christophe

    2010-01-01

    Fiber optic parametric amplifiers have been suggested due to their potential low spontaneous emission. However, by nature the parametric amplifier only work in a forward pumped configuration, which result in transfer of relative intensity noise in the pump to the signal.......Fiber optic parametric amplifiers have been suggested due to their potential low spontaneous emission. However, by nature the parametric amplifier only work in a forward pumped configuration, which result in transfer of relative intensity noise in the pump to the signal....

  19. Functional check of telescoping transfer pumps

    International Nuclear Information System (INIS)

    Sharpe, C.L.

    1994-01-01

    Activities are defined which constitute a functional check of a telescoping transfer pump (TTP). This report is written to the Procedures group of HLW and particularly applies to those TTP's which are the sole means of emergency transfer from a HLW waste tank

  20. On the Potential of Hydrogen-Powered Hydraulic Pumps for Soft Robotics.

    Science.gov (United States)

    Desbiens, Alexandre B; Bigué, Jean-Philippe Lucking; Véronneau, Catherine; Masson, Patrice; Iagnemma, Karl; Plante, Jean-Sébastien

    2017-12-01

    To perform untethered operations, soft robots require mesoscale power units (10-1000 W) with high energy densities. In this perspective, air-breathing combustion offers an interesting alternative to battery-powered systems, provided sufficient overall energy conversion efficiency can be reached. Implementing efficient air-breathing combustion in mesoscale soft robots is notoriously difficult, however, as it requires optimization of very small combustion actuators and simultaneous minimization of fluidic (e.g., hydraulic) losses, which are both inversely impacted by actuations speeds. To overcome such challenges, this article proposes and evaluates the potential of hydrogen-powered, hydraulic free-piston pump architecture. Experimental data, taken from two combustion-driven prototypes, reveal (1) the fundamental role of using hydrogen as the source of fuel to reduce heat losses, (2) the significant impact of compression ratio, equivalence ratio, and surface-to-volume ratio on energy conversion efficiency, and (3) the importance of load matching between combustion and fluidic transmission. In this work, a small-bore combustion actuator demonstrated a 20% efficiency and a net mean output power of 26 W, while a big-bore combustion actuator reached a substantially higher efficiency of 35% and a net mean output power of 197 W. Using the small-bore combustion actuator, the hydrogen-powered, hydraulic free-piston pump provided a 4.6% overall efficiency for a 2.34 W net mean output power, thus underlying the potential of the approach for mesoscale soft robotic applications.

  1. High-efficiency pump for space helium transfer. Final Technical Report

    International Nuclear Information System (INIS)

    Hasenbein, R.; Izenson, M.G.; Swift, W.L.; Sixsmith, H.

    1991-12-01

    A centrifugal pump was developed for the efficient and reliable transfer of liquid helium in space. The pump can be used to refill cryostats on orbiting satellites which use liquid helium for refrigeration at extremely low temperatures. The pump meets the head and flow requirements of on-orbit helium transfer: a flow rate of 800 L/hr at a head of 128 J/kg. The overall pump efficiency at the design point is 0.45. The design head and flow requirements are met with zero net positive suction head, which is the condition in an orbiting helium supply Dewar. The mass transfer efficiency calculated for a space transfer operation is 0.99. Steel ball bearings are used with gas fiber-reinforced teflon retainers to provide solid lubrication. These bearings have demonstrated the longest life in liquid helium endurance tests under simulated pumping conditions. Technology developed in the project also has application for liquid helium circulation in terrestrial facilities and for transfer of cryogenic rocket propellants in space

  2. Hydraulic nuts (hydranuts) for critical bolted joints

    International Nuclear Information System (INIS)

    Greenwell, S.

    2008-01-01

    HydraNuts replace the original nut and torquing equipment, combining the two functions into one system. Designed for simple installation and operation, HydraNuts are fitted to the stud bolts. Once all HydraNuts are fitted to the application, flexible hydraulic hoses are connected, forming a closed loop hydraulic harness, allowing simultaneous pressurization of all HydraNuts. Hydraulic pressure is obtained by the use of a pumping unit and the resultant load generated is transferred to the studs and flange closure is obtained. Locking rings are rotated into place, supporting the tensioned load mechanically after hydraulic pressure is released. The hose harness is removed. (author)

  3. Performance optimization of grooved slippers for aero hydraulic pumps

    Directory of Open Access Journals (Sweden)

    Juan Chen

    2016-06-01

    Full Text Available A computational fluid dynamics (CFD simulation method based on 3-D Navier–Stokes equation and Arbitrary Lagrangian–Eulerian (ALE method is presented to analyze the grooved slipper performance of piston pump. The moving domain of grooved slipper is transformed into a fixed reference domain by the ALE method, which makes it convenient to take the effects of rotate speed, body force, temperature, and oil viscosity into account. A geometric model to express the complex structure, which covers the orifice of piston and slipper, vented groove and the oil film, is constructed. Corresponding to different oil film thicknesses calculated in light of hydrostatic equilibrium theory and boundary conditions, a set of simulations is conducted in COMSOL to analyze the pump characteristics and effects of geometry (groove width and radius, orifice size on these characteristics. Furthermore, the mechanics and hydraulics analyses are employed to validate the CFD model, and there is an excellent agreement between simulation and analytical results. The simulation results show that the sealing land radius, orifice size and groove width all dramatically affect the slipper behavior, and an optimum tradeoff among these factors is conducive to optimizing the pump design.

  4. Centrifugal pumps

    CERN Document Server

    Gülich, Johann Friedrich

    2014-01-01

    This book gives an unparalleled, up-to-date, in-depth treatment of all kinds of flow phenomena encountered in centrifugal pumps including the complex interactions of fluid flow with vibrations and wear of materials. The scope includes all aspects of hydraulic design, 3D-flow phenomena and partload operation, cavitation, numerical flow calculations, hydraulic forces, pressure pulsations, noise, pump vibrations (notably bearing housing vibration diagnostics and remedies), pipe vibrations, pump characteristics and pump operation, design of intake structures, the effects of highly viscous flows, pumping of gas-liquid mixtures, hydraulic transport of solids, fatigue damage to impellers or diffusers, material selection under the aspects of fatigue, corrosion, erosion-corrosion or hydro-abrasive wear, pump selection, and hydraulic quality criteria. As a novelty, the 3rd ed. brings a fully analytical design method for radial impellers, which eliminates the arbitrary choices inherent to former design procedures. The d...

  5. Double Shell Tank (DST) Transfer Pump Subsystem Specification

    International Nuclear Information System (INIS)

    GRAVES, C.E.

    2001-01-01

    This specification establishes the performance requirements and provides the references to the requisite codes and standards to be applied during the design of the Double-Shell Tank (DST) Transfer Pump Subsystem that supports the first phase of waste feed delivery (WFD). The DST Transfer Pump Subsystem consists of a pump for supernatant and/or slurry transfer for the DSTs that will be retrieved during the Phase 1 WFD operations. This system is used to transfer low-activity waste (LAW) and high-level waste (HLW) to designated DST staging tanks. It also will deliver blended LAW and HLW feed from these staging tanks to the River Protection Project (RPP) Waste Treatment Plant where it will be processed into an immobilized waste form. This specification is intended to be the basis for new projects/installations (W-521, etc.). This specification is not intended to retroactively affect previously established project design criteria without specific direction by the program

  6. Estimation of changes in dynamic hydraulic force in a magnetically suspended centrifugal blood pump with transient computational fluid dynamics analysis.

    Science.gov (United States)

    Masuzawa, Toru; Ohta, Akiko; Tanaka, Nobuatu; Qian, Yi; Tsukiya, Tomonori

    2009-01-01

    The effect of the hydraulic force on magnetically levitated (maglev) pumps should be studied carefully to improve the suspension performance and the reliability of the pumps. A maglev centrifugal pump, developed at Ibaraki University, was modeled with 926 376 hexahedral elements for computational fluid dynamics (CFD) analyses. The pump has a fully open six-vane impeller with a diameter of 72.5 mm. A self-bearing motor suspends the impeller in the radial direction. The maximum pressure head and flow rate were 250 mmHg and 14 l/min, respectively. First, a steady-state analysis was performed using commercial code STAR-CD to confirm the model's suitability by comparing the results with the real pump performance. Second, transient analysis was performed to estimate the hydraulic force on the levitated impeller. The impeller was rotated in steps of 1 degrees using a sliding mesh. The force around the impeller was integrated at every step. The transient analysis revealed that the direction of the radial force changed dynamically as the vane's position changed relative to the outlet port during one circulation, and the magnitude of this force was about 1 N. The current maglev pump has sufficient performance to counteract this hydraulic force. Transient CFD analysis is not only useful for observing dynamic flow conditions in a centrifugal pump but is also effective for obtaining information about the levitation dynamics of a maglev pump.

  7. Causes and proposed resolutions of high vibration in NWTF transfer pumps

    International Nuclear Information System (INIS)

    Trawinski, B.J.

    1993-01-01

    This Technical Report is intended to communicate the findings from the latest phase of New Waste Transfer Facility (NWTF) transfer pump testing. These tests have identified causes for the high pump vibrations that have been observed during previous phases of transfer pump startup testing, and have led to recommendations for resolving the vibration problem. The paper describes the problem, the test methodology, observations, and recommend actions to correct the vibration problem

  8. An Energy Efficient Hydraulic Winch Drive Concept Based on a Speed-variable Switched Differential Pump

    DEFF Research Database (Denmark)

    Schmidt, Lasse; Andersen, Torben O.; Pedersen, Henrik Clemmensen

    2017-01-01

    controls. Such solutions are typically constituted by many and rather expensive components, and are furthermore often suffering from low frequency dynamics. In this paper an alternative solution is proposed for winch drive operation, which is based on the so-called speed-variable switched differential pump......, originally designed for direct drive of hydraulic differential cylinders. This concept utilizes three pumps, driven by a single electric servo drive. The concept is redesigned for usage in winch drives, driven by flow symmetric hydraulic motors and single directional loads as commonly seen in e.g. active...... heave compensation applications. A general drive configuration approach is presented, along with a proper control strategy and design. The resulting concept is evaluated when applied for active heave compensation. Results demonstrate control performance on level with conventional valve solutions...

  9. Pumped two-phase heat transfer loop

    Science.gov (United States)

    Edelstein, Fred

    1988-01-01

    A pumped loop two-phase heat transfer system, operating at a nearly constant temperature throughout, includes several independently operating grooved capillary heat exchanger plates supplied with working fluid through independent flow modulation valves connected to a liquid supply line, a vapor line for collecting vapor from the heat exchangers, a condenser between the vapor and the liquid lines, and a fluid circulating pump between the condenser and the heat exchangers.

  10. Optical fiber grating vibration sensor for vibration monitoring of hydraulic pump

    Science.gov (United States)

    Zhang, Zhengyi; Liu, Chuntong; Li, Hongcai; He, Zhenxin; Zhao, Xiaofeng

    2017-06-01

    In view of the existing electrical vibration monitoring traditional hydraulic pump vibration sensor, the high false alarm rate is susceptible to electromagnetic interference and is not easy to achieve long-term reliable monitoring, based on the design of a beam of the uniform strength structure of the fiber Bragg grating (FBG) vibration sensor. In this paper, based on the analysis of the vibration theory of the equal strength beam, the principle of FBG vibration tuning based on the equal intensity beam is derived. According to the practical application of the project, the structural dimensions of the equal strength beam are determined, and the optimization design of the vibrator is carried out. The finite element analysis of the sensor is carried out by ANSYS, and the first order resonant frequency is 94.739 Hz. The vibration test of the sensor is carried out by using the vibration frequency of 35 Hz and the vibration source of 50 Hz. The time domain and frequency domain analysis results of test data show that the sensor has good dynamic response characteristics, which can realize the accurate monitoring of the vibration frequency and meet the special requirements of vibration monitoring of hydraulic pump under specific environment.

  11. Complementary factors of nuclear and hydraulic energy in western Europe: the role of pumping stations

    Energy Technology Data Exchange (ETDEWEB)

    Chabert, L [Universite Lyon II (FR)

    1981-12-01

    The nuclear choice results from the determination to be politically independent and a calculation of competitivity, which in France's case are emphasized by the chronological concord between the 1973-74 oil crisis and the Messmer Plan. Hydraulic equipment is not the result of an authentic choice, it is linked to the existence of the availability of water power. Our article deals with the role of pumping stations, the evolution of the role of pumping and its geography.

  12. Improvement of the low-speed friction characteristics of a hydraulic piston pump by PVD-coating of TiN

    International Nuclear Information System (INIS)

    Hong, Yeh Sun; Lee, Sang Yul; Kim, Sung Hun; Lim, Hyun Sik

    2006-01-01

    The hydraulic pump of an Electro-hydrostatic Actuator should be able to quickly feed large volume of oil into hydraulic cylinder in order to reduce the response time. On the other hand, it should be also able to precisely dispense small amount of oil through low-speed operation so that the steady state position control error of the actuator can be accurately compensated. Within the scope of axial piston type hydraulic pumps, this paper is focused on the investigation how the surface treatment of their cylinder barrel with TiN plasma coating can contribute to the reduction of the friction and wear rate of valve plate in the low-speed range with mixed lubrication. The results showed that the friction torque of the valve plate mated with a TiN-coated cylinder barrel could be reduced to 22% of that with an uncoated original one when load pressure was 300 bar and rotational speed 100 rpm. It means that the torque efficiency of the test pump was expected to increase more than 1.3% under the same working condition. At the same time, the wear rate of the valve plate could be reduced to 40∼50%

  13. Determining the Conditions for the Hydraulic Impacts Emergence at Hydraulic Systems

    Directory of Open Access Journals (Sweden)

    Mazurenko A.S.

    2017-08-01

    Full Text Available This research aim is to develop a method for modeling the conditions for the critical hydrau-lic impacts emergence on thermal and nuclear power plants’ pipeline systems pressure pumps depart-ing from the general provisions of the heat and hydrodynamic instability theory. On the developed method basis, the conditions giving rise to the reliability-critical hydraulic impacts emergence on pumps for the thermal and nuclear power plants’ typical pipeline system have been determined. With the flow characteristic minimum allowable (critical sensitivity, the flow velocity fluctuations ampli-tude reaches critical values at which the pumps working elements’ failure occurs. The critical hydrau-lic impacts emergence corresponds to the transition of the vibrational heat-hydrodynamic instability into an aperiodic one. As research revealed, a highly promising approach as to the preventing the criti-cal hydraulic impacts related to the foreground use of pumps having the most sensitive consumption (at supply network performance (while other technical characteristics corresponding to that parame-ter. The research novelty refers to the suggested method elaborated by the authors’ team, which, in contrast to traditional approaches, is efficient in determining the pump hydraulic impact occurrence conditions when the vibrational heat-hydrodynamic instability transition to the aperiodic instability.

  14. A two-stage procedure for determining unsaturated hydraulic characteristics using a syringe pump and outflow observations

    DEFF Research Database (Denmark)

    Wildenschild, Dorthe; Jensen, Karsten Høgh; Hollenbeck, Karl-Josef

    1997-01-01

    A fast two-stage methodology for determining unsaturated flow characteristics is presented. The procedure builds on direct measurement of the retention characteristic using a syringe pump technique, combined with inverse estimation of the hydraulic conductivity characteristic based on one......-step outflow experiments. The direct measurements are obtained with a commercial syringe pump, which continuously withdraws fluid from a soil sample at a very low and accurate how rate, thus providing the water content in the soil sample. The retention curve is then established by simultaneously monitoring......-step outflow data and the independently measured retention data are included in the objective function of a traditional least-squares minimization routine, providing unique estimates of the unsaturated hydraulic characteristics by means of numerical inversion of Richards equation. As opposed to what is often...

  15. Comparisons of Hydraulic Performance in Permanent Maglev Pump for Water-Jet Propulsion

    Directory of Open Access Journals (Sweden)

    Puyu Cao

    2014-08-01

    Full Text Available The operation of water-jet propulsion can generate nonuniform inflow that may be detrimental to the performance of the water-jets. To reduce disadvantages of the nonuniform inflow, a rim-driven water-jet propulsion was designed depending on the technology of passive magnetic levitation. Insufficient understanding of large performance deviations between the normal water-jets (shaft and permanent maglev water-jets (shaftless is a major problem in this paper. CFD was directly adopted in the feasibility and superiority of permanent maglev water-jets. Comparison and discussion of the hydraulic performance were carried out. The shaftless duct firstly has a drop in hydraulic losses (K1, since it effectively avoids the formation and evolution of the instability secondary vortex by the normalized helicity analysis. Then, the shaftless intake duct improves the inflow field of the water-jet pump, with consequencing the drop in the backflow and blocking on the blade shroud. So that the shaftless water-jet pump delivers higher flow rate and head to the propulsion than the shaft. Eventually, not only can the shaftless model increase the thrust and efficiency, but it has the ability to extend the working range and broaden the high efficiency region as well.

  16. Research and development on the hydraulic design system of the guide vanes of multistage centrifugal pumps

    International Nuclear Information System (INIS)

    Zhang, Q H; Xu, Y; Shi, W D; Lu, W G

    2012-01-01

    To improve the hydraulic design accuracy and efficiency of the guide vanes of the multistage centrifugal pumps, four different-structured guide vanes are investigated, and the design processes of those systems are established. The secondary development platforms of the ObjectArx2000 and the UG/NX OPEN are utilized to develop the hydraulic design systems of the guide vanes. The error triangle method is adopted to calculate the coordinates of the vanes, the profiles of the vanes are constructed by Bezier curves, and then the curves of the flow areas along the flow-path are calculated. Two-dimensional and three-dimensional hydraulic models can be developed by this system.

  17. Hydraulics and pneumatics a technician's and engineer's guide

    CERN Document Server

    Parr, Andrew

    1991-01-01

    Hydraulics and Pneumatics: A Technician's and Engineer's Guide provides an introduction to the components and operation of a hydraulic or pneumatic system. This book discusses the main advantages and disadvantages of pneumatic or hydraulic systems.Organized into eight chapters, this book begins with an overview of industrial prime movers. This text then examines the three different types of positive displacement pump used in hydraulic systems, namely, gear pumps, vane pumps, and piston pumps. Other chapters consider the pressure in a hydraulic system, which can be quickly and easily controlled

  18. Condensation heat transfer coefficient with noncondensible gases for heat transfer in thermal hydraulic codes

    International Nuclear Information System (INIS)

    Banerjee, S.; Hassan, Y.A.

    1995-01-01

    Condensation in the presence of noncondensible gases plays an important role in the nuclear industry. The RELAP5/MOD3 thermal hydraulic code was used to study the ability of the code to predict this phenomenon. Two separate effects experiments were simulated using this code. These were the Massachusetts Institute of Technology's (MIT) Pressurizer Experiment, the MIT Single Tube Experiment. A new iterative approach to calculate the interface temperature and the degraded heat transfer coefficient was developed and implemented in the RELAP5/MOD3 thermal hydraulic code. This model employs the heat transfer simultaneously. This model was found to perform much better than the reduction factor approach. The calculations using the new model were found to be in much better agreement with the experimental values

  19. Condensation heat transfer coefficient with noncondensible gases for heat transfer in thermal hydraulic codes

    Energy Technology Data Exchange (ETDEWEB)

    Banerjee, S.; Hassan, Y.A. [Texas A& M Univ., College Station, TX (United States)

    1995-09-01

    Condensation in the presence of noncondensible gases plays an important role in the nuclear industry. The RELAP5/MOD3 thermal hydraulic code was used to study the ability of the code to predict this phenomenon. Two separate effects experiments were simulated using this code. These were the Massachusetts Institute of Technology`s (MIT) Pressurizer Experiment, the MIT Single Tube Experiment. A new iterative approach to calculate the interface temperature and the degraded heat transfer coefficient was developed and implemented in the RELAP5/MOD3 thermal hydraulic code. This model employs the heat transfer simultaneously. This model was found to perform much better than the reduction factor approach. The calculations using the new model were found to be in much better agreement with the experimental values.

  20. A method of applying two-pump system in automatic transmissions for energy conservation

    Directory of Open Access Journals (Sweden)

    Peng Dong

    2015-06-01

    Full Text Available In order to improve the hydraulic efficiency, modern automatic transmissions tend to apply electric oil pump in their hydraulic system. The electric oil pump can support the mechanical oil pump for cooling, lubrication, and maintaining the line pressure at low engine speeds. In addition, the start–stop function can be realized by means of the electric oil pump; thus, the fuel consumption can be further reduced. This article proposes a method of applying two-pump system (one electric oil pump and one mechanical oil pump in automatic transmissions based on the forward driving simulation. A mathematical model for calculating the transmission power loss is developed. The power loss transfers to heat which requires oil flow for cooling and lubrication. A leakage model is developed to calculate the leakage of the hydraulic system. In order to satisfy the flow requirement, a flow-based control strategy for the electric oil pump is developed. Simulation results of different driving cycles show that there is a best combination of the size of electric oil pump and the size of mechanical oil pump with respect to the optimal energy conservation. Besides, the two-pump system can also satisfy the requirement of the start–stop function. This research is extremely valuable for the forward design of a two-pump system in automatic transmissions with respect to energy conservation and start–stop function.

  1. Quasi-open loop hydraulic ram incremental actuator with power conserving properties

    International Nuclear Information System (INIS)

    Raymond, E.T.; Robinson, C.W.

    1982-01-01

    An electric stepping motor, operated by command signals from a computer or a microprocessor, rotates a rotary control member of a distributor valve, for sequencing hydraulic pressure and hence flow to the cylinders of an axial piston hydraulic machine. A group of the cylinders are subjected to pressure and flow and the remaining cylinders are vented to a return line. Rotation of the rotary control valve member sequences pressurization by progressively adding a cylinder to the forward edge to the pressurized group and removing a cylinder from the trailing edge of the pressurized group. The double ended pistons of each new pressurized group function to drive a wobble plate into a new position of equilibrium and then hold it in such position until another change in the makeup of the pressurized group. These pistons also displace hydraulic fluid from the opposite cylinder head which serves as the output of a pumping element. An increment of displacement of the wobble plate occurs in direct response to each command pulse that is received by the stepping motor. Wobble plate displacement drives the rotary valve of the hydraulic power transfer unit, causing it to transfer hydraulic fluid from a first expansible chamber on one side of a piston in a hydraulic ram to a second expansible chamber on the opposite side of the piston. Reverse drive of the hydraulic power transfer unit reverses the direction of transfer of hydraulic fluid between the two expansible chambers

  2. Pump characteristics and applications

    CERN Document Server

    Volk, Michael

    2013-01-01

    Providing a wealth of information on pumps and pump systems, Pump Characteristics and Applications, Third Edition details how pump equipment is selected, sized, operated, maintained, and repaired. The book identifies the key components of pumps and pump accessories, introduces the basics of pump and system hydraulics as well as more advanced hydraulic topics, and details various pump types, as well as special materials on seals, motors, variable frequency drives, and other pump-related subjects. It uses example problems throughout the text, reinforcing the practical application of the formulae

  3. Stirling/hydraulic artificial heart power source

    International Nuclear Information System (INIS)

    Johnston, R.P.; Bennett, A.; Emigh, S.G.; Griffith, W.R.; Noble, J.E.; Perrone, R.E.; White, M.A.; Martini, W.R.; Alexander, J.E.

    1977-01-01

    The REL power source combines the high efficiency of Stirling engines with the reliability, efficiency, and flexibility of hydraulic power transfer and control to ensure long system life and physiological effectiveness. Extended life testing has been achieved with an engine (2.6 years) and hydraulic actuator/controller (1.6 years). Peak power source efficiency is 15.5 percent on 5 to 10 watts delivered to the blood pump push plate with 33 watts steady thermal input. Planned incorporation of power source output control is expected to reduce daily average thermal input to 18 watts. Animal in-vivo tests with an assist heart have consistently demonstrated required performance by biological synchronization and effective ventricle relief. Volume and weight are 0.93 liter and 2.4 kg (excluding blood pump) with an additional 0.4 liter of low temperature foam insulation required to preclude tissue thermal damage. Carefully planned development of System 7 is expected to produce major reductions in size

  4. Dependence of the mean time to failure of a hydraulic balancing machine unit on different factors for sectional pumps of the Alrosa JSC

    Science.gov (United States)

    Ovchinnikov, N. P.; Portnyagina, V. V.; Sobakina, M. P.

    2017-12-01

    This paper presents factors that have a greater impact on the mean time to failure of a hydraulic balancing machine unit working in underground kimberlite mines of the Alrosa JSC, the hydraulic balancing machine unit being the least reliable structural elements in terms of error-free operation. In addition, a multifactor linear dependence of mean time to failure of a hydraulic balancing machine unit is shown regarding it being parts of stage sectional pumps in the underground kimberlite mines of the Alrosa JSC. In prospect, this diagram can allow us to predict the durability of the least reliable structural element of a sectional pump.

  5. Performance Degradation Analysis of Aviation Hydraulic Piston Pump Based on Mixed Wear Theory

    Directory of Open Access Journals (Sweden)

    C. Zhang

    2017-06-01

    Full Text Available This paper focuses on the mathematical modeling of axial piston pump through dividing the failure development of friction pair into lubrication, mixed lubrication and abrasion. Directing to the wedge-shaped oil film between cylinder block and valve plate, the support force distribution under the temperature variance was obtained. Considering the rough peak of valve plate, the contact load model is built under plastic deformation and elastic deformation and the corresponding wear volume is calculated. Computing the wear and tear along the counter-clockwise, the total amount of friction and wear can be calculated. Simulation and preliminary wear particle monitoring test indicates that proposed modeling and analysis can effectively reflect the real abrasion process of hydraulic piston pump.

  6. Switching sliding mode force tracking control of piezoelectric-hydraulic pump-based friction element actuation systems for automotive transmissions

    Science.gov (United States)

    Kim, Gi-Woo; Wang, K. W.

    2009-08-01

    In this study, a nonlinear sliding-mode controller is designed for force tracking of a piezoelectric-hydraulic pump (PHP)-based actuation system, which is developed to replace the current electro-hydraulic actuation systems for automatic transmission (AT) friction elements, such as band brakes or clutches. By utilizing the PHP, one can eliminate the various hydraulic components (oil pump, regulating valve and control valve) in current ATs and achieve a simpler configuration with more efficient operation. With the derived governing equation of motion of the PHP-based actuation system integrated with the friction element (band brake), a switching control law is synthesized based on the sliding-mode theory. To evaluate the effectiveness of the proposed control law, its force tracking performance for the engagement of a friction element during an AT 1\\to 2 up-shift is examined experimentally. It is shown that one can successfully track the desired force trajectory for AT shift control with small tracking error. This study demonstrates the potential of the PHP as a new controllable actuation system for AT friction elements.

  7. Switching sliding mode force tracking control of piezoelectric-hydraulic pump-based friction element actuation systems for automotive transmissions

    International Nuclear Information System (INIS)

    Kim, Gi-Woo; Wang, K W

    2009-01-01

    In this study, a nonlinear sliding-mode controller is designed for force tracking of a piezoelectric-hydraulic pump (PHP)-based actuation system, which is developed to replace the current electro-hydraulic actuation systems for automatic transmission (AT) friction elements, such as band brakes or clutches. By utilizing the PHP, one can eliminate the various hydraulic components (oil pump, regulating valve and control valve) in current ATs and achieve a simpler configuration with more efficient operation. With the derived governing equation of motion of the PHP-based actuation system integrated with the friction element (band brake), a switching control law is synthesized based on the sliding-mode theory. To evaluate the effectiveness of the proposed control law, its force tracking performance for the engagement of a friction element during an AT 1→2 up-shift is examined experimentally. It is shown that one can successfully track the desired force trajectory for AT shift control with small tracking error. This study demonstrates the potential of the PHP as a new controllable actuation system for AT friction elements

  8. Cradle modification for hydraulic ram

    International Nuclear Information System (INIS)

    Koons, B.M.

    1995-01-01

    The analysis of the cradle hydraulic system considers stress, weld strength, and hydraulic forces required to lift and support the cradle/pump assembly. The stress and weld strength of the cradle modifications is evaluated to ensure that they meet the requirements of the American Institute for Steel Construction (AISC 1989). The hydraulic forces are evaluated to ensure that the hydraulic system is capable of rotating the cradle and pump assembly to the vertical position (between 70 degrees and 90 degrees)

  9. Smart Markets for Transferable Pumping Rights

    Science.gov (United States)

    Brozovic, N.; Young, R.

    2016-12-01

    While no national policy on groundwater use exists in the United States, local groundwater management is emerging across the country in response to concerns and conflicts over declining well yields, land subsidence, and the depletion of hydrologically connected surface waters. Management strategies include well drilling moratoria, pumping restrictions, and restrictions on the expansion of irrigated land. To provide flexibility to groundwater users, local regulatory authorities increasingly have begun to allow the transfer of groundwater rights as a cost-effective management tool. Markets can be a versatile risk management tool, helping communities to cope with scarcity, to meet goals for sustainability, and to grow resilient local economies. For example, active groundwater rights transfers exist in the High Plains region of the United States. Yet, several barriers to trade exist: high search costs for interested parties, complicated requirements for regulatory compliance, and reluctance to share sensitive financial information. Additionally, groundwater pumping leads to several kinds of spatial and intertemporal externalities such as stream depletion. Indeed, groundwater management schemes that reallocate water between alternate pumping locations are often explicitly designed to change the distribution and magnitude of pumping externalities. Reallocation may be designed to minimize unwanted impacts on third parties or to encourage trades that reduce the magnitude of externalities. We discuss how smart markets can deal with complex biophysical constraints while also encouraging active trading, therefore ensuring local goals for aquifer sustainability while growing local economies. Smart markets address these issues by providing a centralized hub for trading, automating the process of regulatory compliance by only matching buyers and sellers eligible to trade as specified in the regulations, and maintaining anonymous, confidential bidding.

  10. Three dimensional neutronic/thermal-hydraulic coupled simulation of MSR in transient state condition

    International Nuclear Information System (INIS)

    Zhou, Jianjun; Zhang, Daling; Qiu, Suizheng; Su, Guanghui; Tian, Wenxi; Wu, Yingwei

    2015-01-01

    Highlights: • Developed a three dimensional neutronic/thermal-hydraulic coupled transient analysis code for MSR. • Investigated the neutron distribution and thermal-hydraulic characters of the core under transient condition. • Analyzed three different transient conditions of inlet temperature drop, reactivity jump and pump coastdown. - Abstract: MSR (molten salt reactor) use liquid molten salt as coolant and fuel solvent, which was the only one liquid reactor of six Generation IV reactor types. As a liquid reactor the physical property of reactor was significantly influenced by fuel salt flow and the conventional analysis methods applied in solid fuel reactors are not applicable for this type of reactors. The present work developed a three dimensional neutronic/thermal-hydraulic coupled code investigated the neutronics and thermo-hydraulics characteristics of the core in transient condition based on neutron diffusion theory and numerical heat transfer. The code consists of two group neutron diffusion equations for fast and thermal neutron fluxes and six group balance equations for delayed neutron precursors. The code was separately validated by neutron benchmark and flow and heat transfer benchmark. Three different transient conditions was analyzed with inlet temperature drop, reactivity jump and pump coastdown. The results provide some valuable information in design and research this kind of reactor

  11. Three dimensional neutronic/thermal-hydraulic coupled simulation of MSR in transient state condition

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Jianjun [School of Nuclear Science and Technology, Xi’an Jiaotong University, Xianning Road, 28, Xi’an 710049, Shaanxi (China); College of Mechanical and Power Engineering, China Three Gorges University, No 8, Daxue road, Yichang, Hubei 443002 (China); Zhang, Daling, E-mail: dlzhang@mail.xjtu.edu.cn [School of Nuclear Science and Technology, Xi’an Jiaotong University, Xianning Road, 28, Xi’an 710049, Shaanxi (China); Qiu, Suizheng; Su, Guanghui; Tian, Wenxi; Wu, Yingwei [School of Nuclear Science and Technology, Xi’an Jiaotong University, Xianning Road, 28, Xi’an 710049, Shaanxi (China)

    2015-02-15

    Highlights: • Developed a three dimensional neutronic/thermal-hydraulic coupled transient analysis code for MSR. • Investigated the neutron distribution and thermal-hydraulic characters of the core under transient condition. • Analyzed three different transient conditions of inlet temperature drop, reactivity jump and pump coastdown. - Abstract: MSR (molten salt reactor) use liquid molten salt as coolant and fuel solvent, which was the only one liquid reactor of six Generation IV reactor types. As a liquid reactor the physical property of reactor was significantly influenced by fuel salt flow and the conventional analysis methods applied in solid fuel reactors are not applicable for this type of reactors. The present work developed a three dimensional neutronic/thermal-hydraulic coupled code investigated the neutronics and thermo-hydraulics characteristics of the core in transient condition based on neutron diffusion theory and numerical heat transfer. The code consists of two group neutron diffusion equations for fast and thermal neutron fluxes and six group balance equations for delayed neutron precursors. The code was separately validated by neutron benchmark and flow and heat transfer benchmark. Three different transient conditions was analyzed with inlet temperature drop, reactivity jump and pump coastdown. The results provide some valuable information in design and research this kind of reactor.

  12. Dynamic response characteristics evaluation of hydrostatic bearing in hydraulic piston pump/motor

    International Nuclear Information System (INIS)

    Ham, Young Bog; Yun, So Nam; Kim, Dong Soo; Choi, Byoung Oh; Kim, Sung Dong

    2001-01-01

    In swash plate type axial piston hydraulic pump and motor, the piston shoe is periodically pressurized with square function shape by supply pressure load as rotation of cylinder barrel. Therefore the recess pressure ono bottom part of piston shoe is suddenly increase through orifice in the piston shoe. In this study, we simulated that the frequency response of the recess pressure against with change of supply pressure with analysis tool. Also, we evaluate the dynamic response characteristics of overbalanced hydrostatic bearing with change of the orifice diameter

  13. Experimental investigation of saturation effect on pump-to-signal intensity modulation transfer in single-pump phase-insensitive fiber optic parametric amplifiers

    DEFF Research Database (Denmark)

    Cristofori, Valentina; Lali-Dastjerdi, Zohreh; Lund-Hansen, Toke

    2013-01-01

    We present an experimental characterization of how signal gain saturation affects the transfer of intensity modulation from the pump to the signal in single-pump, phase-insensitive fiber optic parametric amplifiers (FOPAs). In this work, we demonstrate experimentally for the first time, to our...... knowledge, how gain saturation of a FOPA reduces the noise contribution due to the transfer of pump power fluctuations to the signal. In a particular example, it is shown that the transferred noise is significantly reduced by a factor of 3, while the FOPA gain remains above 10 dB....

  14. Problems of heat transfer and hydraulics of two-phase media

    CERN Document Server

    Kutateladze, S S

    1969-01-01

    Problems of Heat Transfer and Hydraulics of Two-Phase Media presents the theory of heat transfer and hydrodynamics. This book discusses the various aspects of heat transfer and the flow of two-phase systems. Organized into two parts encompassing 22 chapters, this book starts with an overview of the laws of similarity for heat transfer to or from a flowing liquid with various physical properties and allowed for variation in viscosity and thermal conductivity. This book then explores the general functional relationship that exists between viscosity and thermal conductivity for thermodynamically

  15. METHOD FOR OPTIMIZING THE ENERGY OF PUMPS

    NARCIS (Netherlands)

    Skovmose Kallesøe, Carsten; De Persis, Claudio

    2013-01-01

    The device for energy-optimization on operation of several centrifugal pumps controlled in rotational speed, in a hydraulic installation, begins firstly with determining which pumps as pilot pumps are assigned directly to a consumer and which pumps are hydraulically connected in series upstream of

  16. Frequency dependence of the pump-to-signal RIN transfer in fiber optical parametric amplifiers

    DEFF Research Database (Denmark)

    Pakarzadeh Dezfuli Nezhad, Hassan; Rottwitt, Karsten; Zakery, A.

    2009-01-01

    Using a numerical model, the frequency dependence of the pump-to-signal RIN transfer in FOPAs has been investigated. The model includes fiber loss, pump depletion as well as difference in group velocity among interacting beams.......Using a numerical model, the frequency dependence of the pump-to-signal RIN transfer in FOPAs has been investigated. The model includes fiber loss, pump depletion as well as difference in group velocity among interacting beams....

  17. Design acceptance summary report for the new generation transfer pump (NGTP)

    International Nuclear Information System (INIS)

    IRONS, J.

    1999-01-01

    This report documents design review of the New Generation Transfer Pump versus the functions and requirements of the SY-101 Rapid Mitigation Project. Previously unpublished documentation for the pump is included in support of the design

  18. Design acceptance summary report for the new generation transfer pump (NGTP)

    Energy Technology Data Exchange (ETDEWEB)

    IRONS, J.

    1999-10-27

    This report documents design review of the New Generation Transfer Pump versus the functions and requirements of the SY-101 Rapid Mitigation Project. Previously unpublished documentation for the pump is included in support of the design.

  19. Development and Optimized Design of Propeller Pump System & Structure with VFD in Low-head Pumping Station

    Science.gov (United States)

    Rentian, Zhang; Honggeng, Zhu; Arnold, Jaap; Linbi, Yao

    2010-06-01

    Compared with vertical-installed pumps, the propeller (bulb tubular) pump systems can achieve higher hydraulic efficiencies, which are particularly suitable for low-head pumping stations. More than four propeller pumping stations are being, or will be built in the first stage of the S-to-N Water Diversion Project in China, diverting water from Yangtze River to the northern part of China to alleviate water-shortage problems and develop the economy. New structures of propeller pump have been developed for specified pumping stations in Jiangsu and Shandong Provinces respectively and Variable Frequency Drives (VFDs) are used in those pumping stations to regulate operating conditions. Based on the Navier-Stokes equations and the standard k-e turbulent model, numerical simulations of the flow field and performance prediction in the propeller pump system were conducted on the platform of commercial software CFX by using the SIMPLEC algorithm. Through optimal design of bulb dimensions and diffuser channel shape, the hydraulic system efficiency has improved evidently. Furthermore, the structures of propeller pumps have been optimized to for the introduction of conventional as well as permanent magnet motors. In order to improve the hydraulic efficiency of pumping systems, both the pump discharge and the motor diameter were optimized respectively. If a conventional motor is used, the diameter of the pump casing has to be increased to accommodate the motor installed inside. If using a permanent magnet motor, the diameter of motor casing can be decreased effectively without decreasing its output power, thus the cross-sectional area is enlarged and the velocity of flowing water decreased favorably to reduce hydraulic loss of discharge channel and thereby raising the pumping system efficiency. Witness model tests were conducted after numerical optimization on specific propeller pump systems, indicating that the model system hydraulic efficiencies can be improved by 0.5%˜3.7% in

  20. TRSM-a thermal-hydraulic real-time simulation model for PWR

    International Nuclear Information System (INIS)

    Zhou Weichang

    1997-01-01

    TRSM (a Thermal-hydraulic Real-time Simulation Model) has been developed for PWR real-time simulation and best-estimate prediction of normal operating and abnormal accident conditions. It is a non-equilibrium two phase flow thermal-hydraulic model based on five basic conservation equations. A drift flux model is used to account for the unequal velocities of liquid and gaseous mixture, with or without the presence of the noncondensibles. Critical flow models are applied for break flow and valve flow calculations. A 5-regime two phase heat convection model is applied for clad-to-coolant as well as fluid-to-tubing heat transfer. A rigorous reactor coolant pump model is used to calculate the pressure drop and rise for the suction and discharge ends with complete pump characteristics curves included. The TRSM model has been adapted in the full-scale training simulator of Qinshan Nuclear Power Plant 300 MW unit to simulate the thermal-hydraulic performance of the NSSS. The simulation results of a cold leg LOCA and a steam generator tube rupture (SGTR) accident are presented

  1. Development of heat transfer package for core thermal-hydraulic design and analysis of upgraded JRR-3

    International Nuclear Information System (INIS)

    Sudo, Yukio; Ikawa, Hiromasa; Kaminaga, Masanori

    1985-01-01

    A heat transfer package was developed for the core thermal-hydraulic design and analysis of the Japan Research Reactor-3 (JRR-3) which is to be remodeled to a 20 MWt pool-type, light water-cooled reactor with 20 % low enriched uranium (LEU) plate-type fuel. This paper presents the constitution of the developed heat transfer package and the applicability of the heat transfer correlations adopted in it, based on the heat transfer experiments in which thermal-hydraulic features of the new JRR-3 core were properly reflected. (author)

  2. Inservice testing of vertical pumps

    International Nuclear Information System (INIS)

    Cornman, R.E. Jr.; Schumann, K.E.

    1994-01-01

    This paper focuses on the problems that may occur with vertical pumps while inservice tests are conducted in accordance with existing American Society of Mechanical Engineers Code, Section XI, standards. The vertical pump types discussed include single stage, multistage, free surface, and canned mixed flow pumps. Primary emphasis is placed on the hydraulic performance of the pump and the internal and external factors to the pump that impact hydraulic performance. In addition, the paper considers the mechanical design features that can affect the mechanical performance of vertical pumps. The conclusion shows how two recommended changes in the Code standards may increase the quality of the pump's operational readiness assessment during its service life

  3. Packaging design criteria, transfer and disposal of 102-AP mixer pump

    International Nuclear Information System (INIS)

    Carlstrom, R.F.

    1994-01-01

    A mixer pump installed in storage tank 241-AP-102 (102-AP) has failed. This pump is referred to as the 102-AP mixer pump (APMP). The APMP will be removed from 102-AP 1 and a new pump will be installed. The main purpose of the Packaging Design Criteria (PDC) is to establish criteria necessary to design and fabricate a shipping container for the transfer and storage of the APMP from 102-AP. The PDC will be used as a guide to develop a Safety Evaluation for Packaging (SEP)

  4. Operation of a hydraulic elevator system

    Energy Technology Data Exchange (ETDEWEB)

    Lazarev, G.A.; Li, Yu.V.; Bezuglov, N.N.

    1983-03-01

    The paper describes the hydraulic elevator system in the im. 50-letiya Oktyabr'skoi Revolutsii mine in the Karaganda basin. The system removes water and coal from the sump of a skip mine shaft. Water influx rate per day to the sump does not exceed 120 m/sup 3/, weight of coal falling from the skip is about 5,000 kg per day. The sump, 85 m deep, is closed by a screen. The elevator system consists of two pumps (one is used as a reserve pump) with a capacity of 300 m/sup 3/h. When water level exceeds the maximum permissive limit the pump is activated by an automatic control system. The coal and water mixture pumped from the sump bottom is directed to a screen which separates coal from water. Coal is fed to a coal hopper and water is pumped to a water tank. The hydraulic elevator has a capacity of 80 m/sup 3/ of mixture per hour. The slurry is tranported by a pipe of 175 mm diameter. Specifications of the pumps and pipelines are given. A scheme of the hydraulic elevator system is also shown. Economic aspects of hydraulic elevator use for removal of water and coal from deep sumps of skip shafts in the Karaganda basin also are discussed.

  5. Momentum, heat, and mass transfer analogy for vertical hydraulic transport of inert particles

    Directory of Open Access Journals (Sweden)

    Jaćimovski Darko R.

    2014-01-01

    Full Text Available Wall-to-bed momentum, heat and mass transfer in vertical liquid-solids flow, as well as in single phase flow, were studied. The aim of this investigation was to establish the analogy among those phenomena. Also, effect of particles concentration on momentum, heat and mass transfer was studied. The experiments in hydraulic transport were performed in a 25.4 mm I.D. cooper tube equipped with a steam jacket, using spherical glass particles of 1.94 mm in diameter and water as a transport fluid. The segment of the transport tube used for mass transfer measurements was inside coated with benzoic acid. In the hydraulic transport two characteristic flow regimes were observed: turbulent and parallel particle flow regime. The transition between two characteristic regimes (γ*=0, occurs at a critical voidage ε≈0.85. The vertical two-phase flow was considered as the pseudofluid, and modified mixture-wall friction coefficient (fw and modified mixture Reynolds number (Rem were introduced for explanation of this system. Experimental data show that the wall-to-bed momentum, heat and mass transfer coefficients, in vertical flow of pseudofluid, for the turbulent regime are significantly higher than in parallel regime. Wall-to-bed, mass and heat transfer coefficients in hydraulic transport of particles were much higher then in single-phase flow for lower Reynolds numbers (Re15000, there was not significant difference. The experimental data for wall-to-bed momentum, heat and mass transfer in vertical flow of pseudofluid in parallel particle flow regime, show existing analogy among these three phenomena. [Projekat Ministarstva nauke Republike Srbije, br. 172022

  6. A Computational Model of Hydraulic Volume Displacement Drive

    Directory of Open Access Journals (Sweden)

    V. N. Pil'gunov

    2014-01-01

    Full Text Available The paper offers a computational model of industrial-purpose hydraulic drive with two hydraulic volume adjustable working chamber machines (pump and motor. Adjustable pump equipped with the pressure control unit can be run together with several adjustable hydraulic motors on the principle of three-phase hydraulic socket-outlet with high-pressure lines, drain, and drainage system. The paper considers the pressure-controlled hydrostatic transmission with hydraulic motor as an output link. It shows a possibility to create a saving hydraulic drive using a functional tie between the adjusting parameters of the pump and hydraulic motor through the pressure difference, torque, and angular rate of the hydraulic motor shaft rotation. The programmable logic controller can implement such tie. The Coulomb and viscous frictions are taken into consideration when developing a computational model of the hydraulic volume displacement drive. Discharge balance considers external and internal leakages in equivalent clearances of hydraulic machines, as well as compression loss volume caused by hydraulic fluid compressibility and deformation of pipe walls. To correct dynamic properties of hydraulic drive, the paper offers that in discharge balance are included the additional regulated external leakages in the open circuit of hydraulic drive and regulated internal leakages in the closed-loop circuit. Generalized differential equations having functional multipliers and multilinked nature have been obtained to describe the operation of hydraulic positioning and speed drive with two hydraulic volume adjustable working chamber machines. It is shown that a proposed computational model of hydraulic drive can be taken into consideration in development of LS («Load-Sensing» drives, in which the pumping pressure is tuned to the value required for the most loaded slave motor to overcome the load. Results attained can be used both in designing the industrial-purpose heavy

  7. Estimation of ground water hydraulic parameters

    Energy Technology Data Exchange (ETDEWEB)

    Hvilshoej, Soeren

    1998-11-01

    The main objective was to assess field methods to determine ground water hydraulic parameters and to develop and apply new analysis methods to selected field techniques. A field site in Vejen, Denmark, which previously has been intensively investigated on the basis of a large amount of mini slug tests and tracer tests, was chosen for experimental application and evaluation. Particular interest was in analysing partially penetrating pumping tests and a recently proposed single-well dipole test. Three wells were constructed in which partially penetrating pumping tests and multi-level single-well dipole tests were performed. In addition, multi-level slug tests, flow meter tests, gamma-logs, and geologic characterisation of soil samples were carried out. In addition to the three Vejen analyses, data from previously published partially penetrating pumping tests were analysed assuming homogeneous anisotropic aquifer conditions. In the present study methods were developed to analyse partially penetrating pumping tests and multi-level single-well dipole tests based on an inverse numerical model. The obtained horizontal hydraulic conductivities from the partially penetrating pumping tests were in accordance with measurements obtained from multi-level slug tests and mini slug tests. Accordance was also achieved between the anisotropy ratios determined from partially penetrating pumping tests and multi-level single-well dipole tests. It was demonstrated that the partially penetrating pumping test analysed by and inverse numerical model is a very valuable technique that may provide hydraulic information on the storage terms and the vertical distribution of the horizontal and vertical hydraulic conductivity under both confined and unconfined aquifer conditions. (EG) 138 refs.

  8. Numerical comparisons of the performance of a hydraulic coupling with different pump rotational speeds

    International Nuclear Information System (INIS)

    Luo, Y; Feng, L H; Liu, S H; Chen, T J; Fan, H G

    2013-01-01

    A hydraulic coupling is a hydrodynamic device for transmitting rotating mechanical power. It is widely used in the machinery industry because of its advantages of high energy transmission efficiency, shock absorption and good adaptability, etc. In this paper, SIMPLEC algorithm and SST k-ω turbulence model were employed to simulate the steady state flows at operating conditions of two different rotational speeds (3000r/min and 7500 r/min) of the pump of a specified hydraulic coupling model. The results indicate the existence of similarity in the distributions of the flow fields between the two speeds, but the efficiency at the optimum condition is larger with higher rotational speed. It is concluded that the similarity principle of the efficiency of the hydraulic couplings does not apply in this case due to the relatively high rotating speed and small geometric specifications. It is also shown that the radially stratified pressure distribution on the torus section becomes more obvious with larger speed ratios, since the centrifugal movement plays more dominant roles over the circulating movement in these situations. When the speed ratio is small, with the completion of the circulating flow, the pressure distribution presents in a more circular pattern around the neutral zone of the torus section

  9. Output characteristics of a series three-port axial piston pump

    Science.gov (United States)

    Zhang, Xiaogang; Quan, Long; Yang, Yang; Wang, Chengbin; Yao, Liwei

    2012-05-01

    Driving a hydraulic cylinder directly by a closed-loop hydraulic pump is currently a key research area in the field of electro-hydraulic control technology, and it is the most direct means to improve the energy efficiency of an electro-hydraulic control system. So far, this technology has been well applied to the pump-controlled symmetric hydraulic cylinder. However, for the differential cylinder that is widely used in hydraulic technology, satisfactory results have not yet been achieved, due to the asymmetric flow constraint. Therefore, based on the principle of the asymmetric valve controlled asymmetric cylinder in valve controlled cylinder technology, an innovative idea for an asymmetric pump controlled asymmetric cylinder is put forward to address this problem. The scheme proposes to transform the oil suction window of the existing axial piston pump into two series windows. When in use, one window is connected to the rod chamber of the hydraulic cylinder and the other is linked with a low-pressure oil tank. This allows the differential cylinders to be directly controlled by changing the displacement or rotation speed of the pumps. Compared with the loop principle of offsetting the area difference of the differential cylinder through hydraulic valve using existing technology, this method may simplify the circuits and increase the energy efficiency of the system. With the software SimulationX, a hydraulic pump simulation model is set up, which examines the movement characteristics of an individual piston and the compressibility of oil, as well as the flow distribution area as it changes with the rotation angle. The pump structure parameters, especially the size of the unloading groove of the valve plate, are determined through digital simulation. All of the components of the series arranged three distribution-window axial piston pump are designed, based on the simulation analysis of the flow pulse characteristics of the pump, and then the prototype pump is made

  10. Joint inversion of hydraulic head and self-potential data associated with harmonic pumping tests

    Science.gov (United States)

    Soueid Ahmed, A.; Jardani, A.; Revil, A.; Dupont, J. P.

    2016-09-01

    Harmonic pumping tests consist in stimulating an aquifer by the means of hydraulic stimulations at some discrete frequencies. The inverse problem consisting in retrieving the hydraulic properties is inherently ill posed and is usually underdetermined when considering the number of well head data available in field conditions. To better constrain this inverse problem, we add self-potential data recorded at the ground surface to the head data. The self-potential method is a passive geophysical method. Its signals are generated by the groundwater flow through an electrokinetic coupling. We showed using a 3-D saturated unconfined synthetic aquifer that the self-potential method significantly improves the results of the harmonic hydraulic tomography. The hydroelectric forward problem is obtained by solving first the Richards equation, describing the groundwater flow, and then using the result in an electrical Poisson equation describing the self-potential problem. The joint inversion problem is solved using a reduction model based on the principal component geostatistical approach. In this method, the large prior covariance matrix is truncated and replaced by its low-rank approximation, allowing thus for notable computational time and storage savings. Three test cases are studied, to assess the validity of our approach. In the first test, we show that when the number of harmonic stimulations is low, combining the harmonic hydraulic and self-potential data does not improve the inversion results. In the second test where enough harmonic stimulations are performed, a significant improvement of the hydraulic parameters is observed. In the last synthetic test, we show that the electrical conductivity field required to invert the self-potential data can be determined with enough accuracy using an electrical resistivity tomography survey using the same electrodes configuration as used for the self-potential investigation.

  11. Assessment of hydraulic performance and biocompatibility of a MagLev centrifugal pump system designed for pediatric cardiac or cardiopulmonary support.

    Science.gov (United States)

    Dasse, Kurt A; Gellman, Barry; Kameneva, Marina V; Woolley, Joshua R; Johnson, Carl A; Gempp, Thomas; Marks, John D; Kent, Stella; Koert, Andrew; Richardson, J Scott; Franklin, Steve; Snyder, Trevor A; Wearden, Peter; Wagner, William R; Gilbert, Richard J; Borovetz, Harvey S

    2007-01-01

    The treatment of children with life-threatening cardiac and cardiopulmonary failure is a large and underappreciated public health concern. We have previously shown that the CentriMag is a magnetically levitated centrifugal pump system, having the utility for treating adults and large children (1,500 utilized worldwide). We present here the PediVAS, a pump system whose design was modified from the CentriMag to meet the physiological requirements of young pediatric and neonatal patients. The PediVAS is comprised of a single-use centrifugal blood pump, reusable motor, and console, and is suitable for right ventricular assist device (RVAD), left ventricular assist device (LVAD), biventricular assist device (BVAD), or extracorporeal membrane oxygenator (ECMO) applications. It is designed to operate without bearings, seals and valves, and without regions of blood stasis, friction, or wear. The PediVAS pump is compatible with the CentriMag hardware, although the priming volume was reduced from 31 to 14 ml, and the port size reduced from 3/8 to (1/4) in. For the expected range of pediatric flow (0.3-3.0 L/min), the PediVAS exhibited superior hydraulic efficiency compared with the CentriMag. The PediVAS was evaluated in 14 pediatric animals for up to 30 days, demonstrating acceptable hydraulic function and hemocompatibility. The current results substantiate the performance and biocompatibility of the PediVAS cardiac assist system and are likely to support initiation of a US clinical trial in the future.

  12. Simulation of thermal-hydraulic process in reactor of HTR-PM based on flow and heat transfer network

    International Nuclear Information System (INIS)

    Zhou Kefeng; Zhou Yangping; Sui Zhe; Ma Yuanle

    2012-01-01

    The development of HTR-PM full scale simulator (FSS) is an important part in the project. The simulation of thermal-hydraulic process in reactor is one of the key technologies in the development of FSS. The simulation of thermal-hydraulic process in reactor was studied. According to the geometry structures and the characteristics of thermal-hydraulic process in reactor, the model was setup in components construction way. Based on the established simulation method of flow and heat transfer network, a Fortran code was developed and the simulation of thermal-hydraulic process was achieved. The simulation results of 50% FP steady state, 100% FP steady state and control rod mistakenly ascension accidents were given. The verification of simulation results was carried out by comparing with the design and analysis code THERMIX. The results show that the method and model based on flow and heat transfer network can meet the requirements of FSS and reflect the features of thermal-hydraulic process in HTR-PM. (authors)

  13. Design concept of a pump stage with replaceable hydraulic components and prediction of its performance curves

    International Nuclear Information System (INIS)

    Lugova, S O; Knyazeva, E G; Tverdokhleb, I B; Kochevsky, A N

    2010-01-01

    In many cases, centrifugal pump units are expected to deliver the required performance under varying operating conditions. In particular, the pumps for oil extraction and transportation should deliver a constant head, although their capacity often changes during the life cycle. In order to keep the efficiency at a high level and not to replace a whole pump, the authors suggest to replace in such cases only hydraulic components of the pump (impellers and stationary sections of diffuser channels) that are to be installed in the same casing. The paper describes an approach for designing of radial-flow impellers and sections of diffuser channels to be used as replaceable. It allows for delivering a required head and providing a high efficiency in a wide range of capacities. The components intended for smaller capacities are featured with narrower flow passages. However, the dimensions of replaceable components are the same. The paper describes also a numerical simulation of fluid flow in a pump stage with two sets of replaceable radial-flow impellers and sections of diffuser channels. The CFD software used in this research is ANSYS CFX 11. Good correspondence of results is observed. Difference in flow pattern at various capacities and its influence on the performance curves delivered with replaceable components is demonstrated. Basing on the obtained results, the analysis of energy losses is presented.

  14. Transient behaviour of main coolant pump in nuclear power plants

    International Nuclear Information System (INIS)

    Delja, A.

    1986-01-01

    A basic concept of PWR reactor coolant pump thermo-hydraulic modelling in transient and accident operational condition is presented. The reactor coolant pump is a component of the nuclear steam supply system which forces the coolant through the reactor and steam generator, maintaining design heat transfer condition. The pump operating conditions have strong influence on the flow and thermal behaviour of NSSS, both in the stationary and nonstationary conditions. A mathematical model of the reactor coolant pump is formed by using dimensionless homologous relations in the four-quadrant regimes: normal pump, turbine, dissipation and reversed flow. Since in some operational regimes flow of mixture, liquid and steam may occur, the model has additional correction members for two-phase homologous relations. Modular concept has been used in developing computer program. The verification is performed on the simulation loss of offsite power transient and obtained results are presented. (author)

  15. A multi-phase ferrofluid flow model with equation of state for thermomagnetic pumping and heat transfer

    Energy Technology Data Exchange (ETDEWEB)

    Aursand, Eskil, E-mail: eskil.aursand@sintef.no; Gjennestad, Magnus Aa.; Yngve Lervåg, Karl; Lund, Halvor

    2016-03-15

    A one-dimensional multi-phase flow model for thermomagnetically pumped ferrofluid with heat transfer is proposed. The thermodynamic model is a combination of a simplified particle model and thermodynamic equations of state for the base fluid. The magnetization model is based on statistical mechanics, taking into account non-uniform particle size distributions. An implementation of the proposed model is validated against experiments from the literature, and found to give good predictions for the thermomagnetic pumping performance. However, the results reveal a very large sensitivity to uncertainties in heat transfer coefficient predictions. - Highlights: • A multi-phase flow model for thermomagnetically pumped ferrofluid is proposed. • An implementation is validated against experiments from the literature. • Predicted thermomagnetic pumping effect agrees with experiments. • However, a very large sensitivity to heat transfer coefficient is revealed.

  16. PUMP: analog-hybrid reactor coolant hydraulic transient model

    International Nuclear Information System (INIS)

    Grandia, M.R.

    1976-03-01

    The PUMP hybrid computer code simulates flow and pressure distribution; it is used to determine real time response to starting and tripping all combinations of PWR reactor coolant pumps in a closed, pressurized, four-pump, two-loop primary system. The simulation includes the description of flow, pressure, speed, and torque relationships derived through pump affinity laws and from vendor-supplied pump zone maps to describe pump dynamic characteristics. The program affords great flexibility in the type of transients that can be simulated

  17. Radial loads and axial thrusts on centrifugal pumps

    International Nuclear Information System (INIS)

    Anon.

    1986-01-01

    The proceedings of a seminar organised by the Power Industries Division of the IMechE are presented in this text. Complete contents: Review of parameters influencing hydraulic forces on centrifugal impellers; The effect of fluid forces at various operation conditions on the vibrations of vertical turbine pumps; A review of the pump rotor axial equilibrium problem - some case studies; Dynamic hydraulic loading on a centrifugal pump impeller; Experimental research on axial thrust loads of double suction centrifugal pumps; A comparison of pressure distribution and radial loads on centrifugal pumps; A theoretical and experimental investigation of axial thrusts within a multi-stage centrifugal pump

  18. Analytical analysis of heat transfer and pumping power of laminar nanofluid developing flow in microchannels

    International Nuclear Information System (INIS)

    Mital, Manu

    2013-01-01

    Thermal management issues are limiting barriers to high density electronics packaging and miniaturization. Liquid cooling using micro and mini channels is an attractive alternative to large and bulky aluminum or copper heat sinks. These channels can be integrated directly into a chip or a heat spreader, and cooling can be further enhanced using nanofluids (liquid solutions with dispersed nanometer-sized particles) due to their enhanced heat transfer effects reported in literature. The goals of this study are to evaluate heat transfer improvement of a nanofluid heat sink with developing laminar flow forced convection, taking into account the pumping power penalty. The phrase heat transfer enhancement ratio (HTR) is used to denote the ratio of average heat transfer coefficient of nanofluid to water at the same pumping power. The proposed model uses semi-empirical correlations to calculate nanofluid thermophysical properties. The predictions of the model are found to be in good agreement with experimental studies. The validated model is used to identify important design variables (Reynolds number, volume fraction and particle size) related to thermal and flow characteristics of the microchannel heat sink with nanofluids. Statistical analysis of the model showed that the volume fraction is the most significant factor impacting the HTR, followed by the particle diameter. The impact of the Reynolds number and other interaction terms is relatively weak. The HTR is maximized at smallest possible particle diameter (since smaller particles improve heat transfer but do not impact pumping power). Then, for a given Reynolds number, an optimal value of volume fraction can be obtained to maximize HTR. The overall aim is to present results that would be useful for understanding and optimal design of microchannel heat sinks with nanofluid flow. - Highlights: ► Validated model is used to investigate heat transfer and pumping power in nanofluids. ► Particles improve heat transfer

  19. Pump-to-Signal Intensity Modulation Transfer in Saturated- Gain Fiber Optical Parametric Amplifiers

    DEFF Research Database (Denmark)

    Lali-Dastjerdi, Zohreh; Lund-Hansen, Toke; Rottwitt, Karsten

    2011-01-01

    The pump-to-signal intensity modulation transfer in saturated degenerate FOPAs is numerically investigated over the whole gain bandwidth. The intensity modulation transfer decreases and the OSNR improves when the amplifier operates in the saturation regime....

  20. Hydraulic concentration of magnetic fields in the solar photosphere. I - Turbulent pumping

    Science.gov (United States)

    Parker, E. N.

    1974-01-01

    Observations suggest that most of the magnetic flux through the solar photosphere is concentrated in vertical filaments in the supergranule boundaries. Each filament appears to contain about 3 times 10 to the 18-th power maxwells, in the form of a field of 500 gauss or more, over a diameter of 700 km or less. The magnetic energy density in the filaments is 100 times the observed kinetic energy density of the observed supergranule motions, but comparable to the kinetic energy density of the granules. Force-free field configurations cannot duplicate the observational numbers, nor can such cooling effects as are believed responsible for the intense fields in sunspot umbrae. We point out a simple hydraulic mechanism (turbulent pumping) that appears to account for the observed concentration of fields.

  1. Cavitation performance improvement of high specific speed mixed-flow pump

    International Nuclear Information System (INIS)

    Chen, T; Sun, Y B; Wu, D Z; Wang, L Q

    2012-01-01

    Cavitation performance improvement of large hydraulic machinery such as pump and turbine has been a hot topic for decades. During the design process of the pumps, in order to minimize size, weight and cost centrifugal and mixed-flow pump impellers are required to operate at the highest possible rotational speed. The rotational speed is limited by the phenomenon of cavitation. The hydraulic model of high-speed mixed-flow pump with large flow rate and high pumping head, which was designed based on the traditional method, always involves poor cavitation performance. In this paper, on the basis of the same hydraulic design parameters, two hydraulic models of high-speed mixed-flow pump were designed by using different methods, in order to investigate the cavitation and hydraulic performance of the two models, the method of computational fluid dynamics (CFD) was adopted for internal flow simulation of the high specific speed mixed-flow pump. Based on the results of numerical simulation, the influences of impeller parameters and three-dimensional configuration on pressure distribution of the blades' suction surfaces were analyzed. The numerical simulation results shows a better pressure distribution and lower pressure drop around the leading edge of the improved model. The research results could provide references to the design and optimization of the anti-cavitation blade.

  2. Thermal hydraulic conditions inducing incipient cracking in the 900 MWe unit 93 D reactor coolant pump shafts

    International Nuclear Information System (INIS)

    Bore, C.

    1995-01-01

    From 1987, 900 MWe plant operating feedback revealed cracking in the lower part of the reactor coolant pump shafts, beneath the thermal ring. Metallurgical examinations established that this was due to a thermal fatigue phenomenon known as thermal crazing, occurring after a large number of cycles. Analysis of thermal hydraulic conditions initiating the cracks does not allow exact quantification of the thermal load inducing cracking. Only qualitative analyses are thus possible, the first of which, undertaken by the pump manufacturer, Jeumont Industrie, showed that the cracks could not be due to the major transients (stop-start, injection cut-off), which were too few in number. Another explanation was then put forward: the thermal ring, shrunk onto the shaft it is required to protect against thermal shocks, loosens to allow an alternating downflow of cold water from the shaft seals and an upflow of hot water from the primary system. However, approximate calculations showed that the flow involved would be too slight to initiate the cracking observed. A more stringent analysis undertaken with the 2D flow analysis code MELODIE subsequently refuted the possibility of alternating flows beneath the ring establishing that only a hot water upflow occurred due to a 'viscosity pump' phenomenon. Crack initiation was finally considered to be due to flowrate variations beneath the ring, with the associated temperature fluctuations. This flowrate fluctuation could be due to an unidentified transient phenomenon or to a variation in pump operating conditions. This analysis of the hydraulic conditions initiating the cracks disregards shaft surface residual stresses. These are tensile stresses and show that loads less penalizing than those initially retained could cause incipient cracking. Thermal ring modifications to reduce these risks were proposed and implemented. In addition, final metallurgical treatment of the shafts was altered and implemented. In addition, final metallurgical

  3. 85,000-GPM, single-stage, single-suction LMFBR intermediate centrifugal pump

    International Nuclear Information System (INIS)

    Fair, C.E.; Cook, M.E.; Huber, K.A.; Rohde, R.

    1983-01-01

    The mechanical and hydraulic design features of the 85,000-gpm, single-stage, single-suction pump test article, which is designed to circulate liquid-sodium coolant in the intermediate heat-transport system of a Large-Scale Liquid Metal Fast Breeder Reactor (LS-LMFBR), are described. The design and analytical considerations used to satisfy the pump performance and operability requirements are presented. The validation of pump hydraulic performance using a hydraulic scale-model pump is discussed, as is the featute test for the mechanical-shaft seal system

  4. Study on heat transfer and hydraulic model of spiral-fin fuel rods based on equivalent annulus method

    International Nuclear Information System (INIS)

    Zhang Dan; Liu Changwen; Lu Jianchao

    2011-01-01

    Tight lattice fuel assembly usually adopts spiral-fin fuel elements. Compared with the traditional PWR fuel rods, the closely packed and spiral fin spacers make the heat transfer and hydraulic phenomena in sub-channels very complicated, and: there was no suitable model and correlation to study it. This paper studied the effect of spiral spacers on the channel geometry in the equivalent annulus and physical performance based on the Rehme equivalent annulus methods, and the heat transfer of the spiral fin fuel rods and hydraulic model were obtained. The new model was verified with the traditional one, and the verification showed that two new models agreed well, which could provide certain theoretical explanation to the effect of the spiral spacer on the thermal hydraulics. (authors)

  5. Optimum Design of a Moving Coil Actuator for Fast-Switching Valves in Digital Hydraulic Pumps and Motors

    DEFF Research Database (Denmark)

    Roemer, Daniel Beck; Bech, Michael Møller; Johansen, Per

    2015-01-01

    Fast-switching seat valves suitable for digital hydraulic pumps and motors utilize direct electromagnetic actuators, which must exhibit superior transient performance to allow efficient operation of the fluid power pump/motor. A moving coil actuator resulting in a minimum valve switching time...... is designed for such valves using transient finite-element analysis of the electromagnetic circuit. The valve dynamics are coupled to the fluid restrictive forces, which significantly influence the effective actuator force. Fluid forces are modeled based on transient computational fluid dynamics models....... The electromagnetic finite-element model is verified against experimental measurement, and used to design an optimum moving coil actuator for the application considering different voltage-current ratios of the power supply. Results show that the optimum design depends on the supply voltage-current ratio, however...

  6. Nuclear power/water pumping-up composite power plant

    International Nuclear Information System (INIS)

    Okamura, Kiyoshi.

    1995-01-01

    In a nuclear power/water pumping-up composite power plant, a reversible pump for pumping-up power generation connected to a steam turbine is connected to an upper water reservoir and a lower water reservoir. A pumping-up steam turbine for driving the turbine power generator, a hydraulic pump for driving water power generator by water flowing from the upper water reservoir and a steam turbine for driving the pumping-up pump by steams from a nuclear reactor are disposed. When power demand is small during night, the steam turbine is rotated by steams of the reactor, to pump up the water in the lower water reservoir to the upper water reservoir by the reversible pump. Upon peak of power demand during day time, power is generated by the steams of the reactor, as well as the reversible pump is rotated by the flowing water from the upper water reservoir to conduct hydraulic power generation. Alternatively, hydraulic power generation is conducted by flowing water from the upper reservoir. Since the number of energy conversion steps in the combination of nuclear power generation and pumping-up power generation is reduced, energy loss is reduced and utilization efficiency can be improved. (N.H.)

  7. Measurement of fluid film thickness on the valve plate in oil hydraulic axial piston pumps (I): bearing pad effects

    International Nuclear Information System (INIS)

    Kim, Jong Ki; Jung, Jae Youn

    2003-01-01

    The tribological mechanism between the valve plate and the cylinder block in oil hydraulic axial piston pumps plays an important role on high power density. In this study, the fluid film thickness between the valve plate and the cylinder block was measured with discharge pressure and rotational speed by use of a gap sensor, and a slip ring system in the operating period. To investigate the effect of the valve plate shapes, we designed two valve plates with different shapes: the first valve plate was without a bearing pad, while the second valve plate had a bearing pad. It was found that both valve plates behaved differently with respect to the fluid film thickness characteristics. The leakage flow rates and the shaft torque were also experimented in order to clarify the performance difference between the valve plate without a bearing pad and the valve plate with a bearing pad. From the results of this study, we found out that in the oil hydraulic axial piston pumps, the valve plate with a bearing pad showed better film thickness contours than the valve plate without a bearing pad

  8. Investigation of noise sources and propagation in external gear pumps

    Science.gov (United States)

    Opperwall, Timothy J.

    Oil hydraulics is widely accepted as the best technology for transmitting power in many engineering applications due to its advantages in power density, control, layout flexibility, and efficiency. Due to these advantages, hydraulic systems are present in many different applications including construction, agriculture, aerospace, automotive, forestry, medical, and manufacturing, just to identify a few. Many of these applications involve the systems in close proximity to human operators and passengers where noise is one of the main constraints to the acceptance and spread of this technology. As a key component in power transfer, displacement machines can be major sources of noise in hydraulic systems. Thus, investigation into the sources of noise and discovering strategies to reduce noise is a key part of applying fluid power systems to a wider range of applications, as well as improving the performance of current hydraulic systems. The present research aims to leverage previous efforts and develop new models and experimental techniques in the topic of noise generation caused by hydrostatic units. This requires challenging and surpassing current accepted methods in the understanding of noise in fluid power systems. This research seeks to expand on the previous experimental and modeling efforts by directly considering the effect that system and component design changes apply on the total sound power and the sound frequency components emitted from displacement machines and the attached lines. The case of external gear pumps is taken as reference for a new model to understand the generation and transmission of noise from the sources out to the environment. The lumped parameter model HYGESim (HYdraulic GEar machine Simulator) was expanded to investigate the dynamic forces on the solid bodies caused by the pump operation and to predict interactions with the attached system. Vibration and sound radiation were then predicted using a combined finite element and boundary

  9. Human Aorta Is a Passive Pump

    Science.gov (United States)

    Pahlevan, Niema; Gharib, Morteza

    2012-11-01

    Impedance pump is a simple valveless pumping mechanism that operates based on the principles of wave propagation and reflection. It has been shown in a zebrafish that a similar mechanism is responsible for the pumping action in the embryonic heart during early stages before valve formation. Recent studies suggest that the cardiovascular system is designed to take advantage of wave propagation and reflection phenomena in the arterial network. Our aim in this study was to examine if the human aorta is a passive pump working like an impedance pump. A hydraulic model with different compliant models of artificial aorta was used for series of in-vitro experiments. The hydraulic model includes a piston pump that generates the waves. Our result indicates that wave propagation and reflection can create pumping mechanism in a compliant aorta. Similar to an impedance pump, the net flow and the flow direction depends on the frequency of the waves, compliance of the aorta, and the piston stroke.

  10. Modeling Noise Sources and Propagation in External Gear Pumps

    Directory of Open Access Journals (Sweden)

    Sangbeom Woo

    2017-07-01

    Full Text Available As a key component in power transfer, positive displacement machines often represent the major source of noise in hydraulic systems. Thus, investigation into the sources of noise and discovering strategies to reduce noise is a key part of improving the performance of current hydraulic systems, as well as applying fluid power systems to a wider range of applications. The present work aims at developing modeling techniques on the topic of noise generation caused by external gear pumps for high pressure applications, which can be useful and effective in investigating the interaction between noise sources and radiated noise and establishing the design guide for a quiet pump. In particular, this study classifies the internal noise sources into four types of effective load functions and, in the proposed model, these load functions are applied to the corresponding areas of the pump case in a realistic way. Vibration and sound radiation can then be predicted using a combined finite element and boundary element vibro-acoustic model. The radiated sound power and sound pressure for the different operating conditions are presented as the main outcomes of the acoustic model. The noise prediction was validated through comparison with the experimentally measured sound power levels.

  11. Analysis and selection of a system for hydraulic transport of slags in the Mironovskii power plant

    Energy Technology Data Exchange (ETDEWEB)

    Mirgorodskii, V.G.; Mova, M.E.; Korenev, V.E.; Grechikhin, Yu.A. (Donetskii Politekhnicheskii Institut (USSR))

    1991-01-01

    Discusses systems for hydraulic transport of ashes and slags from combustion of black coal (with an ash content of 40.5%) in the Mironovskii power plant. Three systems are comparatively evaluated: hydraulic transport under influence of gravity, hydraulic transport with a system of dredging pumps, or an airlift pump system. Design of each system, its operation and types of pumps or airlift systems are discussed. The evaluation concentrates on the hydraulic transport system with 1 to 3 airlift pumps each with a capacity ranging from 110 to 890 m{sup 3}/h. Optimum design of the airlift hydraulic system for slag and ash transport is described.

  12. Fundamental test results of a hydraulic free piston internal combustion engine

    Energy Technology Data Exchange (ETDEWEB)

    Hibi, A.; Ito, T. [Toyohashi University of Technology (Japan). Dept. of Mechanical Engineering

    2004-10-01

    The hydraulic free piston internal combustion engine pump that has been constructed and tested in this work is the opposed piston, two-stroke cycle, uniflow scavenging, direct fuel injection, and compression ignition type. The opposed engine pistons reciprocate the hydraulic pump pistons directly and the hydraulic power to be used in the hydraulic motors is generated. The hydraulic pressure generated is substantially constant. The opposed free pistons rest after every gas cycle and hydraulic power is continuously supplied by a hydraulic accumulator during the free pistons' rest. The smaller the hydraulic flow output, the longer the duration of the rest. Every gas cycle is performed under a fixed working condition independent of hydraulic power output. The test results in this work indicate that the number of gas cycles per second of the free piston engine pump is directly proportional to hydraulic flow output. The opposed free pistons operate every 53.2 s when hydraulic flow output is 1.02 cm{sup 3}/s; at that time hydraulic power output is 0.0124 kW. Hydraulic thermal efficiency, the ratio of hydraulic energy produced to fuel energy consumed, has been measured in the range 0.0124 kW to 4.88 kW of hydraulic power output and it has become clear that hydraulic thermal efficiency in this range is constant. The measured value of hydraulic thermal efficiency is 31 per cent. It has been demonstrated that hydraulic thermal efficiency is kept constant even if hydraulic power output is very small. (author)

  13. PWR blowdown heat transfer separate-effects program: thermal-hydraulic test facility experimental data report for test 104

    International Nuclear Information System (INIS)

    Leon, D.M.; White, M.D.; Moore, P.A.; Hedrick, R.A.

    1978-01-01

    Reduced instrument responses are presented for Thermal-Hydraulic Test Facility (THTF) test 104, which is part of the ORNL Pressurized-Water Reactor (PWR) Blowdown Heat Transfer Separate-Effects Program. The objective of the program is to investigate the thermal-hydraulic phenomenon governing the energy transfer and transport processes that occur during a loss-of-coolant accident in the PWR system. Test 104 was conducted to obtain CHF in bundle 1 under blowdown conditions. The primary purpose of this report is to make the reduced instrument responses during test 104 available

  14. Fault detection for hydraulic pump based on chaotic parallel RBF network

    Directory of Open Access Journals (Sweden)

    Ma Ning

    2011-01-01

    Full Text Available Abstract In this article, a parallel radial basis function network in conjunction with chaos theory (CPRBF network is presented, and applied to practical fault detection for hydraulic pump, which is a critical component in aircraft. The CPRBF network consists of a number of radial basis function (RBF subnets connected in parallel. The number of input nodes for each RBF subnet is determined by different embedding dimension based on chaotic phase-space reconstruction. The output of CPRBF is a weighted sum of all RBF subnets. It was first trained using the dataset from normal state without fault, and then a residual error generator was designed to detect failures based on the trained CPRBF network. Then, failure detection can be achieved by the analysis of the residual error. Finally, two case studies are introduced to compare the proposed CPRBF network with traditional RBF networks, in terms of prediction and detection accuracy.

  15. PWR Blowdown Heat Transfer Separate-Effects Program. Thermal-Hydraulic Test Facility experimental data report for test 166S

    International Nuclear Information System (INIS)

    Clemons, V.D.; White, M.D.; Hedrick, R.A.

    1978-01-01

    Reduced instrument responses are presented for Thermal-Hydraulic Test Facility (THTF) test 166S, which is part of the ORNL Pressurized-Water Reactor (PWR) Blowdown Heat Transfer Separate-Effects Program. The objective of the program is to investigate the thermal-hydraulic phenomenon governing the energy transfer and transport processes that occur during a loss-of-coolant accident in a PWR system. Test 166S was conducted to obtain thermal-hydraulic and CHF information in THTF bundle 1 with an intact hot leg. The primary purpose of this report is to make the reduced instrument responses during tests 166S available. These are presented in graphical form in engineering units and have been analyzed only to the extent necessary to ensure reasonableness and consistency

  16. 3D Hydraulic tomography from joint inversion of the hydraulic heads and self-potential data. (Invited)

    Science.gov (United States)

    Jardani, A.; Soueid Ahmed, A.; Revil, A.; Dupont, J.

    2013-12-01

    Pumping tests are usually employed to predict the hydraulic conductivity filed from the inversion of the head measurements. Nevertheless, the inverse problem is strongly underdetermined and a reliable imaging requires a considerable number of wells. We propose to add more information to the inversion of the heads by adding (non-intrusive) streaming potentials (SP) data. The SP corresponds to perturbations in the local electrical field caused directly by the fow of the ground water. These SP are obtained with a set of the non-polarising electrodes installed at the ground surface. We developed a geostatistical method for the estimation of the hydraulic conductivity field from measurements of hydraulic heads and SP during pumping and injection experiments. We use the adjoint state method and a recent petrophysical formulation of the streaming potential problem in which the streaming coupling coefficient is derived from the hydraulic conductivity allowed reducing of the unknown parameters. The geostatistical inverse framework is applied to three synthetic case studies with different number of the wells and electrodes used to measure the hydraulic heads and the streaming potentials. To evaluate the benefits of the incorporating of the streaming potential to the hydraulic data, we compared the cases in which the data are coupled or not to map the hydraulic conductivity. The results of the inversion revealed that a dense distribution of electrodes can be used to infer the heterogeneities in the hydraulic conductivity field. Incorporating the streaming potential information to the hydraulic head data improves the estimate of hydraulic conductivity field especially when the number of piezometers is limited.

  17. Process management using component thermal-hydraulic function classes

    Science.gov (United States)

    Morman, J.A.; Wei, T.Y.C.; Reifman, J.

    1999-07-27

    A process management expert system where following malfunctioning of a component, such as a pump, for determining system realignment procedures such as for by-passing the malfunctioning component with on-line speeds to maintain operation of the process at full or partial capacity or to provide safe shut down of the system while isolating the malfunctioning component. The expert system uses thermal-hydraulic function classes at the component level for analyzing unanticipated as well as anticipated component malfunctions to provide recommended sequences of operator actions. Each component is classified according to its thermal-hydraulic function, and the generic and component-specific characteristics for that function. Using the diagnosis of the malfunctioning component and its thermal hydraulic class, the expert system analysis is carried out using generic thermal-hydraulic first principles. One aspect of the invention employs a qualitative physics-based forward search directed primarily downstream from the malfunctioning component in combination with a subsequent backward search directed primarily upstream from the serviced component. Generic classes of components are defined in the knowledge base according to the three thermal-hydraulic functions of mass, momentum and energy transfer and are used to determine possible realignment of component configurations in response to thermal-hydraulic function imbalance caused by the malfunctioning component. Each realignment to a new configuration produces the accompanying sequence of recommended operator actions. All possible new configurations are examined and a prioritized list of acceptable solutions is produced. 5 figs.

  18. Process management using component thermal-hydraulic function classes

    Science.gov (United States)

    Morman, James A.; Wei, Thomas Y. C.; Reifman, Jaques

    1999-01-01

    A process management expert system where following malfunctioning of a component, such as a pump, for determining system realignment procedures such as for by-passing the malfunctioning component with on-line speeds to maintain operation of the process at full or partial capacity or to provide safe shut down of the system while isolating the malfunctioning component. The expert system uses thermal-hydraulic function classes at the component level for analyzing unanticipated as well as anticipated component malfunctions to provide recommended sequences of operator actions. Each component is classified according to its thermal-hydraulic function, and the generic and component-specific characteristics for that function. Using the diagnosis of the malfunctioning component and its thermal hydraulic class, the expert system analysis is carried out using generic thermal-hydraulic first principles. One aspect of the invention employs a qualitative physics-based forward search directed primarily downstream from the malfunctioning component in combination with a subsequent backward search directed primarily upstream from the serviced component. Generic classes of components are defined in the knowledge base according to the three thermal-hydraulic functions of mass, momentum and energy transfer and are used to determine possible realignment of component configurations in response to thermal-hydraulic function imbalance caused by the malfunctioning component. Each realignment to a new configuration produces the accompanying sequence of recommended operator actions. All possible new configurations are examined and a prioritized list of acceptable solutions is produced.

  19. Optimization of a Centrifugal Boiler Circulating Pump's Casing Based on CFD and FEM Analyses

    OpenAIRE

    Zhigang Zuo; Shuhong Liu; Yizhang Fan; Yulin Wu

    2014-01-01

    It is important to evaluate the economic efficiency of boiler circulating pumps in manufacturing process from the manufacturers' point of view. The possibility of optimizing the pump casing with respect to structural pressure integrity and hydraulic performance was discussed. CFD analyses of pump models with different pump casing sizes were firstly carried out for the hydraulic performance evaluation. The effects of the working temperature and the sealing ring on the hydraulic efficiency were...

  20. Design of a hydraulic ash transport system

    Energy Technology Data Exchange (ETDEWEB)

    Mirgorodskii, V.G.; Mova, M.E.; Korenev, V.E.; Grechikhin, Yu.A. (Donetskii Politekhnicheskii Institut (USSR))

    1990-04-01

    Discusses general design of a hydraulic ash removal system to be employed at the reconstructed six 225 MW blocks of the Mironov State Regional Power Plant in the USSR. The blocks burn low-grade solid fuel with an ash content of up to 40.5%. Large quantities of ash have to be moved from the plant (total ash production 60 t/h, using 570 t/h of water for cooling and moistening). An optimum hydraulic ash transportation system would include a two-section airlift pumping system, shown in a diagram. Technological advantages of using this airlift system are enumerated, including short pipes, reduction in required water quantity and the possibility of siting hydraulic pumps at zero level.

  1. Detecting Output Pressure Change of Positive-Displacement Pump by Phase Trajectory Method

    Directory of Open Access Journals (Sweden)

    Jerzy Stojek

    2010-06-01

    Full Text Available The monitoring of hydraulic system condition change during its exploitation ran its complex problem. The main task is to identifyearly phase damage of hydraulic system elements (pumps, valves, ect. in order to take decision which can avoid hydraulic system breakdown. This paper presents the possibility of phase trajectories use in detecting output pressure change of hydraulic system causedby positive-displacement pump wear.

  2. HYDRAULIC UNITS FOR DRIVING SYSTEMS OF RUNNING EQUIPMENT IN ROAD CONSTRUCTION MACHINERY

    Directory of Open Access Journals (Sweden)

    A. Ja. Kotlobai

    2016-01-01

    Full Text Available Operational efficiency of multi-functional road construction machines depends on number of working bodies which are simultaneously performing technological operations. Systems for propulsion pto to the running equipment drive and active working bodies of road construction machines are developing in the way of using three-axis hydraulic drives. When designing a hydraulic system for road construction machinery dividing of power flow from propulsion to the running equipment drive and active working bodies is considered as rather essential problem. Leading companies do not pay attention to the development of flow divider designs, preferring to produce more expensive multi-flow pumps. One of the ways to increase efficiency of multi-functional road construction machinery is an implementation of running equipment hydraulic driving system based on a mono-aggregate pump unit which consists of a pump and a volumetric divider of power fluid flow. A principle of volumetric division and summing-up of power fluid flows, technical realization and methodology for calculation of key parameters of discrete flow distributors has been developed on the basis of discrete hydraulics regulations. The paper presents results of mathematical modeling of hydraulic systems equipped with the discrete flow distributor. Analysis of a dual-motor hydraulic drive operation has shown the following results: a discrete flow distributor ensures independent load mode of the current consumer circuit operation from the load mode of the second consumer circuit within a wide range of loads; rational value of working fluid flow discretization parameter is the following value interval k = 4–6, maximum value of parameter efficiency is reached when an angular velocity of a distributor rotor coincides with the angular velocity of a pump shaft; discrete flow distributor provides a possibility to change parameters of hydraulic flow feeding in consumers’ pressure lines within a wide range

  3. Pump-To-Signal Intensity Modulation Transfer Characteristics in FOPAs: Modulation Frequency and Saturation Effect

    DEFF Research Database (Denmark)

    Lali-Dastjerdi, Zohreh; Cristofori, Valentina; Lund-Hansen, Toke

    2012-01-01

    This paper reports a comprehensive study of pump- to-signal intensity modulation transfer (IMT) in single-pump fiber optic parametric amplifiers (FOPAs). In particular, the IMT is studied for the first time for high-frequency fluctuations of the pump as well as in the saturated gain regime. The IMT...... cut-off frequency in typical single-pump FOPAs is around 100–200 GHz. The possibilities to shift this frequency based on dispersion and nonlinearities involved in the parametric gain are discussed. The severe IMT to the signal at low modulation frequencies can be suppressed by more than 50...

  4. Parametric representation of centrifugal pump homologous curves

    International Nuclear Information System (INIS)

    Veloso, Marcelo A.; Mattos, Joao R.L. de

    2015-01-01

    Essential for any mathematical model designed to simulate flow transient events caused by pump operations is the pump performance data. The performance of a centrifugal pump is characterized by four basic quantities: the rotational speed, the volumetric flow rate, the dynamic head, and the hydraulic torque. The curves showing the relationships between these four variables are called the pump characteristic curves. The characteristic curves are empirically developed by the pump manufacturer and uniquely describe head and torque as functions of volumetric flow rate and rotation speed. Because of comprising a large amount of points, this configuration is not suitable for computational purposes. However, it can be converted to a simpler form by the development of the homologous curves, in which dynamic head and hydraulic torque ratios are expressed as functions of volumetric flow and rotation speed ratios. The numerical use of the complete set of homologous curves requires specification of sixteen partial curves, being eight for the dynamic head and eight for the hydraulic torque. As a consequence, the handling of homologous curves is still somewhat complicated. In solving flow transient problems that require the pump characteristic data for all the operation zones, the parametric form appears as the simplest way to deal with the homologous curves. In this approach, the complete characteristics of a pump can be described by only two closed curves, one for the dynamic head and other for the hydraulic torque, both in function of a single angular coordinate defined adequately in terms of the quotient between volumetric flow ratio and rotation speed ratio. The usefulness and advantages of this alternative method are demonstrated through a practical example in which the homologous curves for a pump of the type used in the main coolant loops of a pressurized water reactor (PWR) are transformed to the parametric form. (author)

  5. Present situation and the future task of pumps and motors for mobile application; Kensetsu kikai sharyoyo pump/motor no genjo to kadai

    Energy Technology Data Exchange (ETDEWEB)

    Ishii, S.

    1994-09-15

    The current technologies of hydraulic pumps and motors for construction machinery and vehicles are discussed. A bent axis type axial double piston pump for negative feedback control systems and a cam plate type double piston pump superior in responsibility for load sensing control systems are usually used for hydraulic shovels. A split flow type double piston pump is on the increase for mini-shovels, having an unsolved problem as pressure fluctuation. The use of piston pumps is increasing rapidly for cranes, and a cam plate type axial piston pump is mainly used for large cranes. A traveling motor integrated with a transmission gear is usually used for hydraulic shovels, and a swing motor with valves and a brake in its casing is also used. A bent axis type variable displacement motor combined with a transmission is on the increase for winches, and a reliable preventing system from drop of suspended loading is expected to be developed rapidly. HST for traveling is also diffusing into small construction machinery. 12 figs.

  6. FOREWORD: 26th IAHR Symposium on Hydraulic Machinery and Systems

    Science.gov (United States)

    Wu, Yulin; Wang, Zhengwei; Liu, Shuhong; Yuan, Shouqi; Luo, Xingqi; Wang, Fujun

    2012-11-01

    The 26th IAHR Symposium on Hydraulic Machinery and Systems, will be held in Beijing, China, 19-23 August 2012. It is jointly organized by Tsinghua University, State Key Laboratory of Hydro Science and Hydraulic Engineering, China, Jiangsu University, Xi'an University of Technology, China Agricultural University, National Engineering Research Center of Hydropower Equipment and Dongfang Electric Machinery Co., Ltd. It is the second time that China hosts such a symposium. By the end of 2011, the China electrical power system had a total of 1 050 GW installed power, out of which 220 GW was in hydropower plants. The energy produced in hydropower facilities was 662.6 TWh from a total of 4,720 TWh electrical energy production in 2011. Moreover, in 2020, new hydropower capacities are going to be developed, with a total of 180 GW installed power and an estimated 708 TWh/year energy production. And in 2011, the installed power of pumped storage stations was about 25GW. In 2020, the data will be 70GW. At the same time, the number of pumps used in China is increasing rapidly. China produces about 29,000,000 pumps with more than 220 series per year. By the end of 2011, the Chinese pumping system has a total of 950 GW installed power. The energy consumed in pumping facilities was 530 TWh in 2011. The pump energy consumption accounted for about 12% of the national electrical energy production. Therefore, there is a large market in the field of hydraulic machinery including water turbines, pump turbines and a variety of pumps in China. There are also many research projects in this field. For example, we have conducted National Key Research Projects on 1000 MW hydraulic turbine, and on the pump turbines with high head, as well as on the large capacity pumps for water supply. Tsinghua University of Beijing is proud to host the 26th IAHR Symposium on Hydraulic Machinery and Systems. Tsinghua University was established in 1911, after the founding of the People's Republic of China. It

  7. Method for optimising the energy of pumps

    NARCIS (Netherlands)

    Skovmose Kallesøe, Carsten; De Persis, Claudio

    2011-01-01

    The method involves determining whether pumps (pu1, pu5) are directly assigned to loads (v1, v3) as pilot pumps (pu2, pu3) and hydraulically connected upstream of the pilot pumps. The upstream pumps are controlled with variable speed for energy optimization. Energy optimization circuits are selected

  8. Flow-Induced Instabilities in Pump-Turbines in China

    Directory of Open Access Journals (Sweden)

    Zhigang Zuo

    2017-08-01

    Full Text Available The stability of pump-turbines is of great importance to the operation of pumped storage power (PSP stations. Both hydraulic instabilities and operational instabilities have been reported in PSP stations in China. In order to provide a reference to the engineers and scientists working on pump-turbines, this paper summarizes the hydraulic instabilities and performance characteristics that promote the operational instabilities encountered in pump-turbine operations in China. Definitions, analytical methods, numerical and experimental studies, and main results are clarified. Precautions and countermeasures are also provided based on a literature review. The gaps between present studies and the need for engineering practice are pointed out.

  9. Overall conductance and heat transfer area minimization of refrigerators and heat pumps with finite heat reservoirs

    International Nuclear Information System (INIS)

    Sarkar, J.; Bhattacharyya, Souvik

    2007-01-01

    In the present study, the overall conductance and the overall heat transfer area per unit capacity of refrigeration and heat pump systems have been minimized analytically considering both internal and external irreversibilities with variable temperature (finite capacity) heat reservoirs. Hot and cold side refrigerant temperatures, conductance and heat transfer area ratios have been optimized to attain this goal. The results have been verified with the more elaborate numerical optimization results obtained for ammonia based vapour compression refrigeration and heat pump systems working with variable temperature reservoirs. It is observed that the analytical results for optimum refrigerant temperatures, minimum overall conductance and heat transfer area deviate marginally from the numerically optimized results (within 1%), if one assumes a constant heat rejection temperature. The deviation of minimum overall conductance and heat transfer area is more (about 20%), if one considers both the desuperheating and condensation regions separately. However, in the absence of complex and elaborate numerical models, the simple analytical results obtained here can be used as reasonably accurate preliminary guidelines for optimization of refrigeration and heat pump systems

  10. ENERGY SUPPLY OF COMMERTIAL GREENHOUSE WITH THE GAS DRIVEN HEAT PUMP part II

    Directory of Open Access Journals (Sweden)

    Sit M.L.

    2013-12-01

    Full Text Available In this article a scheme of connection of heat exchanger for utilization of heat of flue gases to evaporator is proposed. In proposed scheme is ensured the minimum power of ventilator for air’s feeding to the evaporator of heat pump and compensation of pulsations of temperature of flue gases and pressure of ventilator. It is shown how to optimize parameters of heat exchanger in conditions of minimum of dissipation of energy with utilization of value of entransy. It is elaborated a scheme of coordinated control system of hydraulic transmissions, that transfers power on compressor of heat pump and electrical generator.

  11. Demonstration of the reliability of the safety pumps

    International Nuclear Information System (INIS)

    Durand, J.M.

    1989-01-01

    POMPES GUINARD is supplying about 60% of the Nuclear pumps for the French Program. To become the specialist of Safety Related Pumps POMPES GUINARD made a lot of efforts and investments to acquire knowledge and experience. This was possible mainly with test on special loops as it is the only way for a pump manufacturer to progress by controlling hydraulics, components, bearings, mechanical seals, inducer, mechanical and hydraulic behaviour of the units in process of time. We will describe hereafter some of the typical tests which were performed during the last fifteen years

  12. Real-time dynamic hydraulic model for water distribution networks: steady state modelling

    CSIR Research Space (South Africa)

    Osman, Mohammad S

    2016-09-01

    Full Text Available equipment (pipes, reservoirs, pumps, valves, etc.) was used as a pilot WDN. Further information of the various other DHM components has been published [1]. The steady-state hydraulic model calculates the network hydraulic variables at a particular... from the abstraction point to the two low-level concrete reservoirs. On this pipeline there is a 2” tie-off to an alternate consumer as well as another 2” tie-off (5 m length) to the pump station sump. Water from the pump station is pumped to two...

  13. Detection of pump degradation

    International Nuclear Information System (INIS)

    Casada, D.A.

    1994-01-01

    There are a variety of stressors that can affect the operation of centrifugal pumps. These can generally be classified as: Mechanical; Hydraulic; Tribological; Chemical; and Other (including those associated with the pump driver). Although these general stressors are active in essentially all centrifugal pumps, the stressor level and the extent of wear and degradation can vary greatly. Parameters that affect the extent of stressor activity are manifold. In order to assure the long-term operational readiness of a pump, it is important to both understand the nature and magnitude of the specific degradation mechanisms and to monitor the performance of the pump

  14. Heat transfer enhancement and pumping power optimization using CuO-water nanofluid through rectangular corrugated pipe

    Science.gov (United States)

    Salehin, Musfequs; Ehsan, Mohammad Monjurul; Islam, A. K. M. Sadrul

    2017-06-01

    Heat transfer enhancement by corrugation in fluid domain is a popular method. The rate of improvement is more when it is used highly thermal conductive fluid as heating or cooling medium. In this present study, heat transfer augmentation was investigated numerically by implementing corrugation in the fluid domain and nanofluid as the base fluid in the turbulent forced convection regime. Finite volume method (FVM) was applied to solve the continuity, momentum and energy equations. All the numerical simulations were considered for single phase flow. A rectangle corrugated pipe with 5000 W/m2 constant heat flux subjected to the corrugated wall was considered as the fluid domain. In the range of Reynolds number 15000 to 40000, thermo-physical and hydrodynamic behavior was investigated by using CuO-water nanofluid from 1% to 5% volume fraction as the base fluid through the corrugated fluid domain. Corrugation justification was performed by changing the amplitude of the corrugation and the corrugation wave length for obtaining the increased heat transfer rate with minimum pumping power. For using CuO-water nanofluid, augmentation was also found more in the rectangle corrugated pipe both in heat transfer and pumping power requirement with the increase of Reynolds number and the volume fraction of nanofluid. For the increased pumping power, optimization of pumping power by using nanofluid was also performed for economic finding.

  15. Lead-free, bronze-based surface layers for wear resistance in axial piston hydraulic pumps

    Energy Technology Data Exchange (ETDEWEB)

    Vetterick, Gregory Alan [Iowa State Univ., Ames, IA (United States)

    2010-01-01

    Concerns regarding the safety of lead have provided sufficient motivation to develop substitute materials for the surface layer on a thrust bearing type component known as a valve plate in axial piston hydraulic pumps that consists of 10% tin, 10% lead, and remainder cooper (in wt. %). A recently developed replacement material, a Cu-10Sn-3Bi (wt.%) P/M bronze, was found to be unsuitable as valve plate surface layer, requiring the development of a new alloy. A comparison of the Cu-1-Sn-10Pb and Cu-10Sn-3Bi powder metal valve plates showed that the differences in wear behavior between the two alloys arose due to the soft phase bismuth in the alloy that is known to cause both solid and liquid metal embrittlement of copper alloys.

  16. Numerical Research on Hydraulically Generated Vibration and Noise of a Centrifugal Pump Volute with Impeller Outlet Width Variation

    Directory of Open Access Journals (Sweden)

    Houlin Liu

    2014-01-01

    Full Text Available The impeller outlet width of centrifugal pumps is of significant importance for numbers of effects. In the paper, these effects including the performance, pressure pulsations, hydraulically generated vibration, and noise level are investigated. For the purpose, two approaches were used to predict the vibration and sound radiation of the volute under fluid excitation force. One approach is the combined CFD/FEM analysis for structure vibration, and then the structure response obtained from the FEM analysis is treated as the boundary condition for BEM analysis for sound radiation. The other is the combined CFD/FEM/BEM coupling method. Before the numerical methods were used, the simulation results were validated by the vibration acceleration of the monitoring points on the volute. The vibration and noise were analyzed and compared at three flow conditions. The analysis of the results shows that the influences of the sound pressure of centrifugal pumps on the structure appear insignificant. The relative outlet width b2* at nq(SI = 26.7 in this paper should be less than 0.06, based on an overall consideration of the pump characteristics, pressure pulsations, vibration and noise level.

  17. A Distributed Algorithm for Energy Optimization in Hydraulic Networks

    DEFF Research Database (Denmark)

    Kallesøe, Carsten; Wisniewski, Rafal; Jensen, Tom Nørgaard

    2014-01-01

    An industrial case study in the form of a large-scale hydraulic network underlying a district heating system is considered. A distributed control is developed that minimizes the aggregated electrical energy consumption of the pumps in the network without violating the control demands. The algorithm...... a Plug & Play control system as most commissioning can be done during the manufacture of the pumps. Only information on the graph-structure of the hydraulic network is needed during installation....

  18. Detection of pump degradation

    International Nuclear Information System (INIS)

    Greene, R.H.; Casada, D.A.; Ayers, C.W.

    1995-08-01

    This Phase II Nuclear Plant Aging Research study examines the methods of detecting pump degradation that are currently employed in domestic and overseas nuclear facilities. This report evaluates the criteria mandated by required pump testing at U.S. nuclear power plants and compares them to those features characteristic of state-of-the-art diagnostic programs and practices currently implemented by other major industries. Since the working condition of the pump driver is crucial to pump operability, a brief review of new applications of motor diagnostics is provided that highlights recent developments in this technology. The routine collection and analysis of spectral data is superior to all other technologies in its ability to accurately detect numerous types and causes of pump degradation. Existing ASME Code testing criteria do not require the evaluation of pump vibration spectra but instead overall vibration amplitude. The mechanical information discernible from vibration amplitude analysis is limited, and several cases of pump failure were not detected in their early stages by vibration monitoring. Since spectral analysis can provide a wealth of pertinent information concerning the mechanical condition of rotating machinery, its incorporation into ASME testing criteria could merit a relaxation in the monthly-to-quarterly testing schedules that seek to verify and assure pump operability. Pump drivers are not included in the current battery of testing. Operational problems thought to be caused by pump degradation were found to be the result of motor degradation. Recent advances in nonintrusive monitoring techniques have made motor diagnostics a viable technology for assessing motor operability. Motor current/power analysis can detect rotor bar degradation and ascertain ranges of hydraulically unstable operation for a particular pump and motor set. The concept of using motor current or power fluctuations as an indicator of pump hydraulic load stability is presented

  19. Detection of pump degradation

    Energy Technology Data Exchange (ETDEWEB)

    Greene, R.H.; Casada, D.A.; Ayers, C.W. [and others

    1995-08-01

    This Phase II Nuclear Plant Aging Research study examines the methods of detecting pump degradation that are currently employed in domestic and overseas nuclear facilities. This report evaluates the criteria mandated by required pump testing at U.S. nuclear power plants and compares them to those features characteristic of state-of-the-art diagnostic programs and practices currently implemented by other major industries. Since the working condition of the pump driver is crucial to pump operability, a brief review of new applications of motor diagnostics is provided that highlights recent developments in this technology. The routine collection and analysis of spectral data is superior to all other technologies in its ability to accurately detect numerous types and causes of pump degradation. Existing ASME Code testing criteria do not require the evaluation of pump vibration spectra but instead overall vibration amplitude. The mechanical information discernible from vibration amplitude analysis is limited, and several cases of pump failure were not detected in their early stages by vibration monitoring. Since spectral analysis can provide a wealth of pertinent information concerning the mechanical condition of rotating machinery, its incorporation into ASME testing criteria could merit a relaxation in the monthly-to-quarterly testing schedules that seek to verify and assure pump operability. Pump drivers are not included in the current battery of testing. Operational problems thought to be caused by pump degradation were found to be the result of motor degradation. Recent advances in nonintrusive monitoring techniques have made motor diagnostics a viable technology for assessing motor operability. Motor current/power analysis can detect rotor bar degradation and ascertain ranges of hydraulically unstable operation for a particular pump and motor set. The concept of using motor current or power fluctuations as an indicator of pump hydraulic load stability is presented.

  20. Analysis of an controller design for an electro-hydraulic servo pressure regulator

    DEFF Research Database (Denmark)

    Pedersen, Henrik C.; Andersen, Torben Ole; Madsen, A. M.

    2009-01-01

    Mobile hydraulics is in a transition phase, where electronic sensors and digital signal processors are starting to become standard on a high number of machines, hereby replacing hydraulic pilot lines and oering new possibilities with regard to both control and feasibility. For controlling some...... of the existing hydraulic components there are, however, still a need for being able to generate a hydraulic pilot pressure, as e.g. almost all open-circuit pumps are hydraulically controlled. The focus of the current paper is therefore on the analysis and controller design an electro-hydraulic servo pressure...... regulator, which generates a hydraulic LS-pressure based on an electrical reference, hereby synergistically integrating knowledge from all parts of the mechatronics area. The servo pressure regulator is used to generate the LS-signal for a variable displacement pump, and the paper rst presents...

  1. Polar representation of centrifugal pump homologous curves

    International Nuclear Information System (INIS)

    Veloso, Marcelo Antonio; Mattos, Joao Roberto Loureiro de

    2008-01-01

    Essential for any mathematical model designed to simulate flow transient events caused by pump operations is the pump performance data. The performance of a centrifugal pump is characterized by four basic parameters: the rotational speed, the volumetric flow rate, the dynamic head, and the hydraulic torque. Any one of these quantities can be expressed as a function of any two others. The curves showing the relationships between these four variables are called the pump characteristic curves, also referred to as four-quadrant curves. The characteristic curves are empirically developed by the pump manufacturer and uniquely describe head and torque as functions of volumetric flow rate and rotation speed. Because of comprising a large amount of points, the four-quadrant configuration is not suitable for computational purposes. However, it can be converted to a simpler form by the development of the homologous curves, in which dynamic head and hydraulic torque ratios are expressed as functions of volumetric flow and rotation speed ratios. The numerical use of the complete set of homologous curves requires specification of sixteen partial curves, being eight for the dynamic head and eight for the hydraulic torque. As a consequence, the handling of homologous curves is still somewhat complicated. In solving flow transient problems that require the pump characteristic data for all the operation zones, the polar form appears as the simplest way to represent the homologous curves. In the polar method, the complete characteristics of a pump can be described by only two closed curves, one for the dynamic head and other for the hydraulic torque, both in function of a single angular coordinate defined adequately in terms of the quotient between volumetric flow ratio and rotation speed ratio. The usefulness and advantages of this alternative method are demonstrated through a practical example in which the homologous curves for a pump of the type used in the main coolant loops of a

  2. Design optimization of flow channel and performance analysis for a new-type centrifugal blood pump

    Science.gov (United States)

    Ji, J. J.; Luo, X. W.; Y Wu, Q.

    2013-12-01

    In this paper, a new-type centrifugal blood pump, whose impeller is suspended inside a pump chamber with hydraulic bearings, is presented. In order to improve the hydraulic performance of the pump, an internal flow simulation is conducted to compare the effects of different geometrical parameters of pump flow passage. Based on the numerical results, the pumps can satisfy the operation parameters and be free of hemolysis. It is noted that for the pump with a column-type supporter at its inlet, the pump head and hydraulic efficiency decreases compared to the pump with a step-type support structure. The performance drop is caused by the disturbed flow upstream impeller inlet. Further, the unfavorable flow features such as reverse flow and low velocity in the pump may increases the possibility of thrombus. It is also confirmed that the casing shape can little influence pump performance. Those results are helpful for design optimization in blood pump development.

  3. Simulation model for the dynamic behavior of the hydraUlic circuito of PWR reactors

    International Nuclear Information System (INIS)

    Hirdes, V.R.T.R.

    1987-01-01

    The present work consist of the development of a computer code for the simulations of hydraulic transients caused by stoppages of the primary coolant pumps of nuclear reactors and it applied to the hydraulic circuits typical of PWR reactor. The code calculates the time-histories of the mass flux, rotation speed, electric and hydraulic torque and dynamic head of the pumps. It can be used for any combination of active and inactive pumps. Several transients were analysed and the results were compared with comparared with data from the Angra-I nuclear power plant. The results were considered satisfactory. (author) [pt

  4. Heat transfer enhancement of NBI vacuum pump cryopanels

    International Nuclear Information System (INIS)

    Ochoa Guaman, Santiago; Hanke, Stefan; Day, Christian

    2013-01-01

    Highlights: ► Cryopanel is optimized minimizing its maximal temperature rise and heat capacity. ► Copper coating on the cryopanels is necessary to reach a high thermal efficiency. ► The copper coating is achieved using an electroplating technique. ► A thermal shield for the cryopump 4 K manifold would reduce heat leaks down to 10%. ► The manufacturability and operation of the thermal shield is discussed. -- Abstract: Huge cryogenic pumps are installed inside neutral beam injectors in order to manage the typically very large gas flows. This paper deals with the aspect of passive cooling in NBI cryopump design development and discusses design considerations in two example areas. One is the design of cryopanels consisting of a pipe, centrally supplied with cryogenic helium, and a welded fin, passively cooled, to provide the necessary pumping surface below a given maximum temperature. The results of several parametric simulations in ANSYS are presented using different copper thicknesses and cryopanel geometries to discuss the thermal capability (heat transfer characteristics and heat capacities) of a number of design variants. The optimum design solution is based on copper-coated fins, using an electroplating technique, and thereby improving the heat transfer of the cryopanels while attaining an overall reduction in weight. The other area is the sound design of the manifold shielding system with a weld contact between copper and stainless steel. Weld samples were manufactured and investigated to raise awareness of the demands and risks during manufacturing and to demonstrate that readily applicable weld procedures exist

  5. Liquid sodium pumps

    International Nuclear Information System (INIS)

    Allen, H.G.

    1985-01-01

    The pump for use in a nuclear reactor cooling system comprises a booster stage impeller for drawing the liquid through the inlet. A diffuser is affixedly disposed within the pump housing to convert the kinetic pressure imparted to the liquid into increased static pressure. A main stage impeller is rotatively driven by a pump motor at a relatively high speed to impart a relatively high static pressure to the liquid and for discharging the liquid at a relatively high static pressure. A hydraulic coupling is disposed remotely from the liquid path for hydraulically coupling the main stage impeller and the booster stage impeller to rotate the booster stage impeller at a relatively low speed to maintain the low net positive suction pressure applied to the liquid at the inlet greater than the vapor pressure of the liquid and to ensure that the low net positive suction heat, as established by the main stage impeller exceeds the vapor pressure. The coupling comprises a grooved drum which rotates between inner and outer drag coupling members. In a modification the coupling comprises a torque converter. (author)

  6. Building 65 Hydraulic Systems Handbook: Components, Systems, and Applications

    Science.gov (United States)

    2016-04-01

    Dump Buttons OVERVIEW Pump Dump Buttons...hydraulic system? There are different types of dump buttons that control a hierarchy of flow paths. Some dump buttons are used to shut down a pump ...that branch. The use of this dump button is preferred over the Pump Dump Button when possible. Test Site Dump

  7. Small hydraulic turbine drives

    Science.gov (United States)

    Rostafinski, W. A.

    1970-01-01

    Turbine, driven by the fluid being pumped, requires no external controls, is completely integrated into the flow system, and has bearings which utilize the main fluid for lubrication and cooling. Torque capabilities compare favorably with those developed by positive displacement hydraulic motors.

  8. A phenomenological model for collisional coherence transfer in an optically pumped atomic system

    Energy Technology Data Exchange (ETDEWEB)

    Khanbekyan, K; Bevilaqua, G; Mariotti, E; Moi, L [Universita degli Studi di Siena, Siena, 53100 (Italy); Khanbekyan, A; Papoyan, A, E-mail: karen.khanbekyan@gmail.com [Institute for Physical Research, National Academy of Sciences, Ashtarak 2 (Armenia)

    2011-03-14

    We consider a dual {Lambda}-system under double laser excitation to investigate the possibility of indirect coherence transfer between atomic ground states through an excited state. The atomic system is excited by a frequency modulated pump laser and probed by a low-power cw laser. All the decoherence mechanisms are discussed and taken into account. Adjustment of parameters of the two radiations aimed at maximization of coherence transfer is addressed. The study can help to understand the phenomena as collisional transfer of coherence and can find application in the experimental realization of atomic sensors.

  9. Optimization of the pumping ring in a mechanical seal with an integrated cooler for feed-water pumps

    International Nuclear Information System (INIS)

    Buchdahl, D.; Martin, R.; Gueret, G.; Blanc, M.

    1994-07-01

    To simplify maintenance, E.D.F. along with its collaborators undertook the study of mechanical seal with integrated cooler used in feed-water pumps in the nuclear power plants. The cooler, integrated to the pump acts as a thermal barrier as well as a cooler of the mechanical seal. The water circulation in the cooler is assumed by an integrated pumping ring in the rotary part of the mechanical seal, with a matching screw thread in the pumping case. This assembly of mechanical seal/integrated cooler is tested in a test loop at the EDF/DER Laboratory. All working conditions are similar to that at site. Tests with different configurations of the rotor/stator profiles are performed, i.e.; different lengths and types of threading. Hydraulic performances and the global thermal balance of this assembly are studied. Our basic aim during these tests is to optimize the hydraulic performance of the pumping ring so as to best cool the mechanical seal faces. The different results obtained and the conclusions drawn during these tests are presented. (authors). 7 figs., 3 refs

  10. 3D Blade Hydraulic Design Method of the Rotodynamic Multiphase Pump Impeller and Performance Research

    Directory of Open Access Journals (Sweden)

    Yongxue Zhang

    2014-02-01

    Full Text Available A hydraulic design method of three-dimensional blade was presented to design the blades of the rotodynamic multiphase pump. Numerical simulations and bench test were conducted to investigate the performance of the example impeller designed by the presented method. The results obtained from the bench test were in good agreement with the simulation results, which indicated the reasonability of the simulation. The distributions of pressure and gas volume fraction were analyzed and the results showed that the designed impeller was good for the transportation of mixture composed of gas and liquid. In addition, the advantage of the impeller designed by the presented method was suitable for using in large volume rate conditions, which were reflected by the comparison of the head performance between this three-dimensional design method and another one.

  11. Advantages of Oscillatory Hydraulic Tomography

    Science.gov (United States)

    Kitanidis, P. K.; Bakhos, T.; Cardiff, M. A.; Barrash, W.

    2012-12-01

    Characterizing the subsurface is significant for most hydrogeologic studies, such as those involving site remediation and groundwater resource explo¬ration. A variety of hydraulic and geophysical methods have been developed to estimate hydraulic conductivity and specific storage. Hydraulic methods based on the analysis of conventional pumping tests allow the estimation of conductivity and storage without need for approximate petrophysical relations, which is an advantage over most geophysical methods that first estimate other properties and then infer values of hydraulic parameters. However, hydraulic methods have the disadvantage that the head-change signal decays with distance from the pumping well and thus becomes difficult to separate from noise except in close proximity to the source. Oscillatory hydraulic tomography (OHT) is an emerging technology to im¬age the subsurface. This method utilizes the idea of imposing sinusoidally varying pressure or discharge signals at several points, collecting head observations at several other points, and then processing these data in a tomographic fashion to estimate conductivity and storage coefficients. After an overview of the methodology, including a description of the most important potential advantages and challenges associated with this approach, two key promising features of the approach will be discussed. First, the signal at an observation point is orthogonal to and thus can be separated from nuisance inputs like head fluctuation from production wells, evapotranspiration, irrigation, and changes in the level of adjacent streams. Second, although the signal amplitude may be weak, one can extract the phase and amplitude of the os¬cillatory signal by collecting measurements over a longer time, thus compensating for the effect of large distance through longer sampling period.

  12. The Process of Hydraulic Fracturing

    Science.gov (United States)

    Hydraulic fracturing, know as fracking or hydrofracking, produces fractures in a rock formation by pumping fluids (water, proppant, and chemical additives) at high pressure down a wellbore. These fractures stimulate the flow of natural gas or oil.

  13. Considerations for reference pump curves

    International Nuclear Information System (INIS)

    Stockton, N.B.

    1992-01-01

    This paper examines problems associated with inservice testing (IST) of pumps to assess their hydraulic performance using reference pump curves to establish acceptance criteria. Safety-related pumps at nuclear power plants are tested under the American Society of Mechanical Engineers (ASME) Boiler and Pressure Vessel Code (the Code), Section 11. The Code requires testing pumps at specific reference points of differential pressure or flow rate that can be readily duplicated during subsequent tests. There are many cases where test conditions cannot be duplicated. For some pumps, such as service water or component cooling pumps, the flow rate at any time depends on plant conditions and the arrangement of multiple independent and constantly changing loads. System conditions cannot be controlled to duplicate a specific reference value. In these cases, utilities frequently request to use pump curves for comparison of test data for acceptance. There is no prescribed method for developing a pump reference curve. The methods vary and may yield substantially different results. Some results are conservative when compared to the Code requirements; some are not. The errors associated with different curve testing techniques should be understood and controlled within reasonable bounds. Manufacturer's pump curves, in general, are not sufficiently accurate to use as reference pump curves for IST. Testing using reference curves generated with polynomial least squares fits over limited ranges of pump operation, cubic spline interpolation, or cubic spline least squares fits can provide a measure of pump hydraulic performance that is at least as accurate as the Code required method. Regardless of the test method, error can be reduced by using more accurate instruments, by correcting for systematic errors, by increasing the number of data points, and by taking repetitive measurements at each data point

  14. Single-phase sodium pump model for LMFBR thermal-hydraulic analysis

    International Nuclear Information System (INIS)

    Madni, I.K.; Cazzoli, E.G.; Agrawal, A.K.

    1979-01-01

    A single-phase, homologous pump model has been developed for simulation of safety-related transients in LMFBR systems. Pump characteristics are modeled by homologous head and torque relations encompassing all regimes of operation. These relations were derived from independent model test results with a centrifugal pump of specific speed equal to 35 (SI units) or 1800 (gpm units), and are used to analyze the steady-state and transient behavior of sodium pumps in a number of LMFBR plants. Characteristic coefficients for the polynomials in all operational regimes are provided in a tabular form. The speed and flow dependence of head is included through solutions of the impeller and coolant dynamic equations. Results show the model to yield excellent agreement with experimental data in sodium for the FFTF prototype pump, and with vendor calculations for the CRBR pump. A sample pipe rupture calculation is also performed to demonstrate the necessity for modeling the complete pump characteristics

  15. Nonlinear force feedback control of piezoelectric-hydraulic pump actuator for automotive transmission shift control

    Science.gov (United States)

    Kim, Gi-Woo; Wang, K. W.

    2008-03-01

    In recent years, researchers have investigated the feasibility of utilizing piezoelectric-hydraulic pump based actuation systems for automotive transmission controls. This new concept could eventually reduce the complexity, weight, and fuel consumption of the current transmissions. In this research, we focus on how to utilize this new approach on the shift control of automatic transmissions (AT), which generally requires pressure profiling for friction elements during the operation. To illustrate the concept, we will consider the 1--> 2 up shift control using band brake friction elements. In order to perform the actuation force tracking for AT shift control, nonlinear force feedback control laws are designed based on the sliding mode theory for the given nonlinear system. This paper will describe the modeling of the band brake actuation system, the design of the nonlinear force feedback controller, and simulation and experimental results for demonstration of the new concept.

  16. Ion-atom charge-transfer system for a heavy-ion-beam pumped laser

    International Nuclear Information System (INIS)

    Ulrich, A.; Gernhaeuser, R.; Kroetz, W.; Wieser, J.; Murnick, D.E.

    1994-01-01

    An Ar target to which Cs vapor could be added, excited by a pulsed beam of 100-MeV 32 S ions, was studied as a prototype ion-atom charge-transfer system for pumping short-wavelength lasers. Low-velocity Ar 2+ ions were efficiently produced; a huge increase in the intensity of the Ar II 4d-4p spectral lines was observed when Cs vapor was added to the argon. This observation is explained by a selective charge transfer of the Cs 6s electron into the upper levels of the observed transitions. A rate constant of (1.4±0.2)x10 -9 cm 3 /s for the transfer process was determined

  17. Características construtivas de um carneiro hidraúlico com materiais alternativos Hydraulic ram pump manufacturer features using alternative materials

    Directory of Open Access Journals (Sweden)

    Denis C. Cararo

    2007-08-01

    Full Text Available O objetivo deste trabalho foi avaliar um carneiro hidráulico construído com conexões roscáveis de PVC roscáveis e metálicas e garrafa de polietileno tereftálico (PET. O estudo foi realizado no Laboratório de Hidráulica da Universidade Federal de Lavras, MG. Testaram-se tamanhos de câmaras de ar (0,6 e 2,5L, diâmetros de furos da tampa da garrafa (5, 15 e 25mm, tipos de garrafa plástica (descartável de guaraná e descartável e retornável de refrigerante de cola, e posições da válvula de escape (vertical e horizontal, a diferentes pressões de recalque (48,39 a 483,92kPa, a cada 48,39 kPa. O desnível do reservatório de alimentação ao carneiro hidráulico foi mantido constante a 4,36m. Os resultados indicaram que a combinação de características construtivas que possibilitam melhor rendimento, maior vazão recalcada, menor vazão de alimentação e menor desperdício, foi o uso de garrafa PET descartável ou retornável com capacidade de 0,6L, válvula de escape na horizontal e tamanho de furo de 25mm na tampa da garrafa.Tests were conducted at the Hydraulics Laboratory of Universidade Federal de Lavras - UFLA, Lavras, to evaluate a hydraulic ram pump built with PVC and metallic threadable connections, and a bottle made with polyethylene tereftalic, known as PET. The manufacturer features tested were: bottle size (0.6 and 2.5L, hole size of the bottle top (5, 15 and 25mm, bottle models (disposable and returnable and valve positions (horizontal and vertical. The operational hydraulic head was 4.36m and the simulated pump elevation pressures were 48.39 to 483.92kPa and 48.39 to 48.39kPa. The best efficiency, the highest pumped water flow, the lowest operational water flow and the lowest waste water flow were obtained using the 0.6L PET disposable or returnable bottle with horizontal valve position and top size of 25mm.

  18. PWR blowdown heat transfer separate-effects program: Thermal-Hydraulic Test Facility experimental data report for test 100

    International Nuclear Information System (INIS)

    White, M.D.; Hedrick, R.A.

    1977-01-01

    Reduced instrument responses are presented for Thermal-Hydraulic Test Facility (THTF) test 100, which is part of the ORNL Pressurized-Water-Reactor (PWR) Blowdown Heat Transfer Separate-Effects Program. The objective of the program is to investigate the thermal-hydraulic phenomenon governing the energy transfer and transport processes that occur during a loss-of-coolant accident in a PWR system. Test 100 was conducted to investigate the response of heater rod bundle 1 and instrumented spool pieces with flow homogenizing screens to a double-ended rupture with equal break areas at the test section inlet and outlet. The primary purpose of this report is to make the reduced instrument responses during test 100 available. The responses are presented in graphical form in engineering units and have been analyzed only to the extent necessary to assure reasonableness and consistency

  19. An axial heat transfer analytical model for capillary-pumped loop vapor line temperature distributions

    International Nuclear Information System (INIS)

    Lin, H.-W.; Lin, W.-K.

    2007-01-01

    This paper aims to study the capillary-pumped loop (CPL) vapor line temperature distributions. A simple axial heat transfer method is developed to predict the vapor line temperature from evaporator outlet to condenser inlet. CPL is a high efficiency two-phase heat transfer device. Since it does not need any other mechanical force such as pump, furthermore, it might be used to do the thermal management of high power electronic component such as spacecraft, notebook and computer servers. It is a cyclic circulation pumped by capillary force, and this force is generated from the fine porous structure in evaporator. A novel semi-arc porous evaporator to CPL in 1U server is designed on the ground with a horizontal position and scale down the whole device to the miniature size. From the experimental results, the CPL could remove heat 90 W in steady-state and keep the heat source temperature about 70 deg. C. Finally, a good agreement between the simulation and experimental values has been achieved. Comparing with experiment and simulation results, the deviation values of the distributions of the condenser inlet temperature are less than 8%

  20. Entropy production analysis of hysteresis characteristic of a pump-turbine model

    International Nuclear Information System (INIS)

    Li, Deyou; Wang, Hongjie; Qin, Yonglin; Han, Lei; Wei, Xianzhu; Qin, Daqing

    2017-01-01

    Highlights: • An interesting hysteresis phenomenon was analyzed using entropy production theory. • A function was used to calculate the entropy production in the wall region. • Generation mechanism of the hump and hysteresis characteristics was obtained. - Abstract: The hydraulic loss due to friction and unstable flow patterns in hydro-turbines causes a drop in their efficiency. The traditional method for analyzing the hydraulic loss is by evaluating the pressure drop, which has certain limitations and cannot determine the exact locations at which the high hydraulic loss occurs. In this study, entropy production theory was adopted to obtain a detailed distribution of the hydraulic loss in a pump-turbine in the pump mode. In the past, the wall effects of entropy production were not considered, which caused larger errors as compared with the method of pressure difference. First, a wall equation was proposed to calculate the hydraulic loss in the wall region. The comparison of hydraulic loss calculated by entropy production and pressure difference revealed a better result. Then, through the use of the entropy production theory, the performance characteristics were determined for a pump-turbine with 19 mm guide vane opening, and the variation in the entropy production was obtained. Recently, an interesting phenomenon, i.e., a hysteresis characteristic, was observed in the hump region in pump-turbines. Research shows that the hysteresis characteristic is a result of the Euler momentum and hydraulic loss; the hydraulic loss accounts for a major portion of the hysteresis characteristic. Finally, the hysteresis characteristic in the hump region was analyzed in detail through the entropy production. The results showed that the hump characteristic and the accompanying hysteresis phenomenon are caused by backflow at the runner inlet and the presence of separation vortices close to the hub and the shroud in the stay/guide vanes, which is dependent on the direction of

  1. Hydraulic testing of intravascular axial flow blood pump designs with a protective cage of filaments for mechanical cavopulmonary assist.

    Science.gov (United States)

    Kapadia, Jugal Y; Pierce, Kathryn C; Poupore, Amy K; Throckmorton, Amy L

    2010-01-01

    To provide hemodynamic support to patients with a failing single ventricle, we are developing a percutaneously inserted, magnetically levitated axial flow blood pump designed to augment pressure in the cavopulmonary circulation. The device is designed to serve as a bridge-to-transplant, bridge-to-recovery, bridge-to-hemodynamic stability, or bridge-to-surgical reconstruction. This study evaluated the hydraulic performance of three blood pump prototypes (a four-bladed impeller, a three-bladed impeller, and a three-bladed impeller with a four-bladed diffuser) whose designs evolved from previous design optimization phases. Each prototype included the same geometric protective cage of filaments, which stabilize the rotor within the housing and protect the housing wall from the rotating blades. All prototypes delivered pressure rises over a range of flow rates and rotational speeds that would be sufficient to augment hemodynamic conditions in the cavopulmonary circulation. The four-bladed impeller outperformed the two remaining prototypes by >40%; this design was able to generate a pressure rise of 4-28 mm Hg for flow rates of 0.5-10 L/min at rotational speeds of 4,000-7,000 RPM. Successful development of this blood pump will provide clinicians with a feasible therapeutic option for mechanically supporting the failing Fontan.

  2. DESIGN AND CONSTRUCTION OF A HYDRAULIC PISTON

    OpenAIRE

    Santos De la Cruz, Eulogio; Rojas Lazo, Oswaldo; Yenque Dedios, Julio; Lavado Soto, Aurelio

    2014-01-01

    A hydraulic system project includes the design, materials selection and construction of the hydraulic piston, hydraulic circuit and the joint with the pump and its accesories. This equiment will be driven by the force of moving fluid, whose application is in the devices of machines, tools, printing, perforation, packing and others. El proyecto de un sistema hidráulico, comprende el diseño, selección de materiales y construcción del pistón hidráulico, circuito hidráulico y el ensamble con l...

  3. Improvement of centrifugal pump performance through addition of splitter blades on impeller pump

    Science.gov (United States)

    Kurniawan, Krisna Eka; Santoso, Budi; Tjahjana, Dominicus Danardono Dwi Prija

    2018-02-01

    The workable way to improve pump performance is to redesign or modify the impellers of centrifugal pump. The purpose of impeller pump modification is to improve pump efficiency, reduce cross flow, reduce secondary incidence flows, and decrease backflow areas at impeller outlets. Number blades and splitter blades in the impeller are three. The outlet blade angle is 20°, and the rotating speed of impeller is 2400 rpm. The added splitter blades variations are 0.25, 0.375, and 0.5 of the original blade length. The splitter blade placements are on the outer side of the impeller. The addition of splitter blades on the outer side of the impeller with 0.5L increases the pump head until 22% and the pump has 38.66% hydraulic efficiency. The best efficiency point of water flow rate pump (Qbep) was 3.02 × 10-3 m3/s.

  4. Static Analysis of High-Performance Fixed Fluid Power Drive with a Single Positive-Displacement Hydraulic Motor

    Directory of Open Access Journals (Sweden)

    O. F. Nikitin

    2015-01-01

    Full Text Available The article deals with the static calculations in designing a high-performance fixed fluid power drive with a single positive-displacement hydraulic motor. Designing is aimed at using a drive that is under development and yet unavailable to find and record the minimum of calculations and maximum of existing hydraulic units that enable clear and unambiguous performance, taking into consideration an available assortment of hydraulic units of hydraulic drives, to have the best efficiency.The specified power (power, moment and kinematics (linear velocity or angular velocity of rotation parameters of the output element of hydraulic motor determine the main output parameters of the hydraulic drive and the useful power of the hydraulic drive under development. The value of the overall efficiency of the hydraulic drive enables us to judge the efficiency of high-performance fixed fluid power drive.The energy analysis of a diagram of the high-performance fixed fluid power drive shows that its high efficiency is achieved when the flow rate of fluid flowing into each cylinder and the magnitude of the feed pump unit (pump are as nearly as possible.The paper considers the ways of determining the geometric parameters of working hydromotors (effective working area or working volume, which allow a selection of the pumping unit parameters. It discusses the ways to improve hydraulic drive efficiency. Using the principle of holding constant conductivity allows us to specify the values of the pressure losses in the hydraulic units used in noncatalog modes. In case of no exact matching between the parameters of existing hydraulic power modes and a proposed characteristics of the pump unit, the nearest to the expected characteristics is taken as a working version.All of the steps allow us to create the high-performance fixed fluid power drive capable of operating at the required power and kinematic parameters with high efficiency.

  5. Containment wells to form hydraulic barriers along site boundaries

    International Nuclear Information System (INIS)

    Vo, D.; Ramamurthy, A.S.; Qu, J.; Zhao, X.P.

    2008-01-01

    In the field, aquifer remediation methods include pump and treat procedures based on hydraulic control systems. They are used to reduce the level of residual contamination present in the soil and soil pores of aquifers. Often, physical barriers are erected along the boundaries of the target (aquifer) site to reduce the leakage of the released soil contaminant to the surrounding regions. Physical barriers are expensive to build and dismantle. Alternatively, based on simple hydraulic principles, containment wells or image wells injecting clear water can be designed and built to provide hydraulic barriers along the contaminated site boundaries. For brevity, only one pattern of containment well system that is very effective is presented in detail. The study briefly reports about the method of erecting a hydraulic barrier around a contaminated region based on the simple hydraulic principle of images. During the clean-up period, hydraulic barriers can considerably reduce the leakage of the released contaminant from the target site to surrounding pristine regions. Containment wells facilitate the formation of hydraulic barriers. Hence, they control the movement of contaminants away from the site that is being remedied. However, these wells come into play, only when the pumping operation for cleaning up the site is active. After operation, they can be filled with soil to permit the natural ground water movement. They can also be used as monitoring wells

  6. Using Genetic Algorithm to Estimate Hydraulic Parameters of Unconfined Aquifers

    Directory of Open Access Journals (Sweden)

    Asghar Asghari Moghaddam

    2009-03-01

    Full Text Available Nowadays, optimization techniques such as Genetic Algorithms (GA have attracted wide attention among scientists for solving complicated engineering problems. In this article, pumping test data are used to assess the efficiency of GA in estimating unconfined aquifer parameters and a sensitivity analysis is carried out to propose an optimal arrangement of GA. For this purpose, hydraulic parameters of three sets of pumping test data are calculated by GA and they are compared with the results of graphical methods. The results indicate that the GA technique is an efficient, reliable, and powerful method for estimating the hydraulic parameters of unconfined aquifer and, further, that in cases of deficiency in pumping test data, it has a better performance than graphical methods.

  7. Low-flow operation and testing of pumps in nuclear plants

    International Nuclear Information System (INIS)

    Greenstreet, W.L.

    1989-01-01

    Low-flow operation of centrifugal pumps introduces hydraulic instability and other factors that can cause damage to these machines. The resulting degradation has been studied and recorded for pumps in electric power plants. The objectives of this paper are to (1) describe the damage-producing phenomena, including their sources and consequences; (2) relate these observations to expectations for damage caused by low-flow operation of pumps in nuclear power plants; and (3) assess the utility of low-flow testing. Hydraulic behavior during low-flow operation is reviewed for a typical centrifugal pump stage, and the damage-producing mechanisms are described. Pump monitoring practices, in conjunction with pump performance characteristics, are considered; experience data are reviewed; and the effectiveness of low-flow surveillance monitoring is examined. Degradation caused by low-flow operation is shown to be an important factor, and low-flow surveillance testing is shown to be inadequate. 18 refs., 5 figs., 4 tabs

  8. Applicability estimation of flowmeter logging for detecting hydraulic pass

    International Nuclear Information System (INIS)

    Miyakawa, Kimio; Tanaka, Yasuji; Tanaka, Kazuhiro

    1997-01-01

    Estimation of the hydraulic pass governing hydrogeological structure contributes significantly to the siting HLW repository. Flowmeter logging can detect hydraulic passes by measuring vertical flow velocity of groundwater in the borehole. We reviewed application of this logging in situ. The hydraulic pass was detected with combination of ambient flow logging, with pumping and/or injecting induced flow logging. This application showed that the flowmeter logging detected hydraulic passes conveniently and accurately compared with other hydraulic tests. Hydraulic conductivity by using flowmeter logging was assessed above 10 -6 m/sec and within one order from comparison with injection packer tests. We suggest that appropriate application of the flowmeter logging for the siting is conducted before hydraulic tests because test sections and monitoring sections are decided rationally for procurement of quantitative hydraulic data. (author)

  9. The Performance test of Mechanical Sodium Pump with Water Environment

    International Nuclear Information System (INIS)

    Cho, Chungho; Kim, Jong-Man; Ko, Yung Joo; Jeong, Ji-Young; Kim, Jong-Bum; Ko, Bock Seong; Park, Sang Jun; Lee, Yoon Sang

    2015-01-01

    As contrasted with PWR(Pressurized light Water Reactor) using water as a coolant, sodium is used as a coolant in SFR because of its low melting temperature, high thermal conductivity, the high boiling temperature allowing the reactors to operate at ambient pressure, and low neutron absorption cross section which is required to achieve a high neutron flux. But, sodium is violently reactive with water or oxygen like the other alkali metal. So Very strict requirements are demanded to design and fabricate of sodium experimental facilities. Furthermore, performance testing in high temperature sodium environments is more expensive and time consuming and need an extra precautions because operating and maintaining of sodium experimental facilities are very difficult. The present paper describes performance test results of mechanical sodium pump with water which has been performed with some design changes using water test facility in SAM JIN Industrial Co. To compare the hydraulic characteristic of model pump with water and sodium, the performance test of model pump were performed using vender's experimental facility for mechanical sodium pump. To accommodate non-uniform thermal expansion and to secure the operability and the safety, the gap size of some parts of original model pump was modified. Performance tests of modified mechanical sodium pump with water were successfully performed. Water is therefore often selected as a surrogate test fluid because it is not only cheap, easily available and easy to handle but also its important hydraulic properties (density and kinematic viscosity) are very similar to that of the sodium. Normal practice to thoroughly test a design or component before applied or installed in reactor is important to ensure the safety and operability in the sodium-cooled fast reactor (SFR). So, in order to estimate the hydraulic behavior of the PHTS pump of DSFR (600 MWe Demonstraion SFR), the performance tests of the model pump such as performance

  10. Hydraulic nuts (HydraNuts) for reactor vessel tensioning

    International Nuclear Information System (INIS)

    Greenwell, Steve

    2008-01-01

    The paper will present how the introduction of hydraulic nuts - HydraNuts, has reduced critical path times, dose exposure for workers and improved working safety conditions around the reactor vessel during tensioning or de-tensioning operations. It will focus upon detailing the advantages realized by utilities that have introduced the technology and providing examples of the improvements made to the process as well as discussing the engineering design change packages required to make the conversion to the new system. HydraNuts replace the traditional mechanical nut/stud tensioning equipment, combining the two functions into a single system, designed for easy installation and operation by one individual. The primary components of the HydraNut can be assembled without the need for external crane or hoist support and are designed so that each sub assembly can be fitted separately. Once all HydraNuts are fitted to the Rx vessel studs and are sitting on the main Rx vessel head flange, then a system of flexible hydraulic hoses is connected to them, forming a closed loop hydraulic harness, which will allow for simultaneous pressurization of all HydraNuts. Hydraulic pressure is obtained by the use of a hydraulic pumping unit and the resultant load generated in each HydraNut is transferred to the stud and main flange closure is obtained. While maintaining hydraulic pressure, a locking ring is rotated into place on the HydraNut assembly that will support the tensioned load mechanically when the hydraulic pressure is released from the hose harness assembly. The hose harness is removed and the HydraNut is now functioning as a mechanical nut retaining the tensioned load. The HydraNut system for Rx vessel applications was first introduced into a plant in the U.S. in October 2006 and based upon the benefits realized subsequent projects are under way within the Asian and U.S. operating fleet. (author)

  11. Hydration induced material transfer in membranes of osmotic pump tablets measured by synchrotron radiation based FTIR.

    Science.gov (United States)

    Wu, Li; Yin, Xianzhen; Guo, Zhen; Tong, Yajun; Feng, Jing; York, Peter; Xiao, Tiqiao; Chen, Min; Gu, Jingkai; Zhang, Jiwen

    2016-03-10

    Osmotic pump tablets are reliable oral controlled drug delivery systems based on their semipermeable membrane coating. This research used synchrotron radiation-based Fourier transform infrared (SR-FTIR) microspectroscopy and imaging to investigate the hydration induced material transfer in the membranes of osmotic pump tablets. SR-FTIR was applied to record and map the chemical information of a micro-region of the membranes, composed of cellulose acetate (CA, as the water insoluble matrix) and polyethylene glycol (PEG, as the soluble pore forming agent and plasticizing agent). The microstructure and chemical change of membranes hydrated for 0, 5, 10 and 30min were measured using SR-FTIR, combined with scanning electronic microscopy and atom force microscopy. The SR-FTIR microspectroscopy results indicated that there was a major change at the absorption range of 2700-3100cm(-1) in the membranes after different periods of hydration time. The absorption bands at 2870-2880cm(-1) and 2950-2960cm(-1) were assigned to represent CA and PEG, respectively. The chemical group signal distribution illustrated by the ratio of PEG to CA demonstrated that the trigger of drug release in the preliminary stage was due to the rapid transfer of PEG into liquid medium with a sharp decrease of PEG in the membranes. The SR-FTIR mapping results have demonstrated the hydration induced material transfer in the membranes of osmotic pump tablets and enabled reassessment of the drug release mechanism of membrane controlled osmotic pump systems. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Study on the application of energy storage system in offshore wind turbine with hydraulic transmission

    International Nuclear Information System (INIS)

    Fan, Yajun; Mu, Anle; Ma, Tao

    2016-01-01

    Highlights: • Hydraulic offshore wind turbine is capable of outputting near constant power. • Open loop hydraulic transmission uses seawater as the working fluid. • Linear control strategy distributes total flow according to demand and supply. • Constant pressure hydraulic accumulator stores/releases the surplus energy. • Simulations show the dynamic performance of the hybrid system. - Abstract: A novel offshore wind turbine comprising fluid power transmission and energy storage system is proposed. In this wind turbine, the conventional mechanical transmission is replaced by an open-loop hydraulic system, in which seawater is sucked through a variable displacement pump in nacelle connected directly with the rotor and utilized to drive a Pelton turbine installed on the floating platform. Aiming to smooth and stabilize the output power, an energy storage system with the capability of flexible charging and discharging is applied. The related mathematical model is developed, which contains some sub-models that are categorized as the wind turbine rotor, hydraulic pump, transmission pipeline, proportional valve, accumulator and hydraulic turbine. A linear control strategy is adopted to distribute the flow out of the proportional valve through comparing the demand power with captured wind energy by hydraulic pump. Ultimately, two time domain simulations demonstrate the operation of the hybrid system when the hydraulic accumulator is utilized and show how this system can be used for load leveling and stabilizing the output power.

  13. Energy transfer in isolated LHC II studied by femtosecond pump-probe technique

    CERN Document Server

    Yang Yi; Liu Yuan; Liu Wei Min; Zhu Rong Yi; Qian Shi Xiong; Xu Chun He

    2003-01-01

    Excitation energy transfer in the isolated light-harvesting chlorophyll (Chl)-a/b protein complex of photosystem II (LHC II) was studied by the one-colour pump-probe technique with femtosecond time resolution. After exciting Chl-b by 638nm beam, the dynamic behaviour shows that the ultrafast energy transfer from Chl-b at positions of B2, B3, and B5 to the corresponding Chl-a molecules in monomeric subunit of LHC II is in the time scale of 230fs. While with the excitation of Chl-a at 678nm, the energy transfer between excitons of Chl-a molecules has the lifetime of about 370 fs, and two other slow decay components are due to the energy transfer between different Chl-a molecules in a monomeric subunit of LHC II or in different subunits, or due to change of molecular conformation. (20 refs).

  14. Design of Intelligent Hydraulic Excavator Control System Based on PID Method

    Science.gov (United States)

    Zhang, Jun; Jiao, Shengjie; Liao, Xiaoming; Yin, Penglong; Wang, Yulin; Si, Kuimao; Zhang, Yi; Gu, Hairong

    Most of the domestic designed hydraulic excavators adopt the constant power design method and set 85%~90% of engine power as the hydraulic system adoption power, it causes high energy loss due to mismatching of power between the engine and the pump. While the variation of the rotational speed of engine could sense the power shift of the load, it provides a new method to adjust the power matching between engine and pump through engine speed. Based on negative flux hydraulic system, an intelligent hydraulic excavator control system was designed based on rotational speed sensing method to improve energy efficiency. The control system was consisted of engine control module, pump power adjusted module, engine idle module and system fault diagnosis module. Special PLC with CAN bus was used to acquired the sensors and adjusts the pump absorption power according to load variation. Four energy saving control strategies with constant power method were employed to improve the fuel utilization. Three power modes (H, S and L mode) were designed to meet different working status; Auto idle function was employed to save energy through two work status detected pressure switches, 1300rpm was setting as the idle speed according to the engine consumption fuel curve. Transient overload function was designed for deep digging within short time without spending extra fuel. An increasing PID method was employed to realize power matching between engine and pump, the rotational speed's variation was taken as the PID algorithm's input; the current of proportional valve of variable displacement pump was the PID's output. The result indicated that the auto idle could decrease fuel consumption by 33.33% compared to work in maximum speed of H mode, the PID control method could take full use of maximum engine power at each power mode and keep the engine speed at stable range. Application of rotational speed sensing method provides a reliable method to improve the excavator's energy efficiency and

  15. Design, test and model of a hybrid magnetostrictive hydraulic actuator

    International Nuclear Information System (INIS)

    Chaudhuri, Anirban; Yoo, Jin-Hyeong; Wereley, Norman M

    2009-01-01

    The basic operation of hybrid hydraulic actuators involves high frequency bi-directional operation of an active material that is converted to uni-directional motion of hydraulic fluid using valves. A hybrid actuator was developed using magnetostrictive material Terfenol-D as the driving element and hydraulic oil as the working fluid. Two different lengths of Terfenol-D rod, 51 and 102 mm, with the same diameter, 12.7 mm, were used. Tests with no load and with load were carried out to measure the performance for uni-directional motion of the output piston at different pumping frequencies. The maximum no-load flow rates were 24.8 cm 3 s −1 and 22.7 cm 3 s −1 with the 51 mm and 102 mm long rods respectively, and the peaks were noted around 325 Hz pumping frequency. The blocked force of the actuator was close to 89 N in both cases. A key observation was that, at these high pumping frequencies, the inertial effects of the fluid mass dominate over the viscous effects and the problem becomes unsteady in nature. In this study, we also develop a mathematical model of the hydraulic hybrid actuator in the time domain to show the basic operational principle under varying conditions and to capture phenomena affecting system performance. Governing equations for the pumping piston and output shaft were obtained from force equilibrium considerations, while compressibility of the working fluid was taken into account by incorporating the bulk modulus. Fluid inertia was represented by a lumped parameter approach to the transmission line model, giving rise to strongly coupled ordinary differential equations. The model was then used to calculate the no-load velocities of the actuator at different pumping frequencies and simulation results were compared with experimental data for model validation

  16. Modeling and control of a hybrid wind-tidal turbine with hydraulic accumulator

    International Nuclear Information System (INIS)

    Fan, YaJun; Mu, AnLe; Ma, Tao

    2016-01-01

    This paper presents the modeling and control of a hybrid wind-tidal turbine with hydraulic accumulator. The hybrid turbine captures the offshore wind energy and tidal current energy simultaneously and stores the excess energy in hydraulic accumulator prior to electricity generation. Two hydraulic pumps installed respectively in wind and tidal turbine nacelles are used to transform the captured mechanical energy into hydraulic energy. To extract the maximal power from wind and tidal current, standard torque controls are achieved by regulating the displacements of the hydraulic pumps. To meet the output power demand, a Proportion Integration Differentiation (PID) controller is designed to distribute the hydraulic energy between the accumulator and the Pelton turbine. A simulation case study based on combining a 5 MW offshore wind turbine and a 1 MW tidal current turbine is undertaken. Case study demonstrates that the hybrid generation system not only captures all the available wind and tidal energy and also delivers the desired generator power precisely through the accumulator damping out all the power fluctuations from the wind and tidal speed disturbances. Energy and exergy analyses show that the energy efficiency can exceed 100% as the small input speeds are considered, and the exergy efficiency has the consistent change trends with demand power. Further more parametric sensitivity study on hydraulic accumulator shows that there is an inversely proportional relationship between accumulator and hydraulic equipments including the pump and nozzle in terms of dimensions. - Highlights: • A hybrid wind-tidal turbine is presented. • Hydraulic accumulator stores/releases the surplus energy. • Standard torque controls extract the maximal power from wind and tidal. • Generator outputs meet the electricity demand precisely. • Parametric sensitivity study on accumulator is implemented.

  17. Selection of Rational Heat Transfer Intensifiers in the Heat Exchanger

    Directory of Open Access Journals (Sweden)

    S. A. Burtsev

    2016-01-01

    Full Text Available The paper considers the applicability of different types of heat transfer intensifiers in the heat exchange equipment. A review of the experimental and numerical works devoted to the intensification of the dimpled surface, surfaces with pins and internally ribbed surface were presented and data on the thermal-hydraulic characteristics of these surfaces were given. We obtained variation of thermal-hydraulic efficiency criteria for 4 different objective functions and 15 options for the intensification of heat transfer. This makes it possible to evaluate the advantages of the various heat transfer intensifiers. These equations show influence of thermal and hydraulic characteristics of the heat transfer intensifiers (the values of the relative heat transfer and drag coefficients on the basic parameters of the shell-and-tube heat exchanger: the number and length of the tubes, the volume of the heat exchanger matrix, the coolant velocity in the heat exchanger matrix, coolant flow rate, power to pump coolant (or pressure drop, the amount of heat transferred, as well as the average logarithmic temperature difference. The paper gives an example to compare two promising heat transfer intensifiers in the tubes and shows that choosing the required efficiency criterion to search for optimal heat exchanger geometry is of importance. Analysis is performed to show that a dimpled surface will improve the effectiveness of the heat exchanger despite the relatively small value of the heat transfer intensification, while a significant increase in drag of other heat transfer enhancers negatively affects their thermalhydraulic efficiency. For example, when comparing the target functions of reducing the heat exchanger volume, the data suggest that application of dimpled surfaces in various fields of technology is possible. But there are also certain surfaces that can reduce the parameters of a heat exchanger. It is shown that further work development should be aimed at

  18. Analysis of and H∞ Controller Design For An Electro-Hydraulic Servo Pressure Regulator

    DEFF Research Database (Denmark)

    Stubkier, Søren; Pedersen, Henrik C.; Andersen, Torben Ole

    2011-01-01

    -circuit pumps are still hydraulically controlled, there is however still a need for being able to generate a hydraulic pilot pressure. The focus of the current paper is on the analysis and controller design of an electrohydraulic servo pressure regulator, which generates a hydraulic LS-pressure for a variable...

  19. Pumping station design for a pumped-storage wind-hydro power plant

    International Nuclear Information System (INIS)

    Anagnostopoulos, John S.; Papantonis, Dimitris E.

    2007-01-01

    This work presents a numerical study of the optimum sizing and design of a pumping station unit in a hybrid wind-hydro plant. The standard design that consists of a number of identical pumps operating in parallel is examined in comparison with two other configurations, using one variable-speed pump or an additional set of smaller jockey pumps. The aim is to reduce the amount of the wind generated energy that cannot be transformed to hydraulic energy due to power operation limits of the pumps and the resulting step-wise operation of the pumping station. The plant operation for a period of one year is simulated by a comprehensive evaluation algorithm, which also performs a detailed economic analysis of the plant using dynamic evaluation methods. A preliminary study of the entire plant sizing is carried out at first using an optimization tool based on evolutionary algorithms. The performance of the three examined pumping station units is then computed and analyzed in a comparative study. The results reveal that the use of a variable-speed pump constitutes the most effective and profitable solution, and its superiority is more pronounced for less dispersed wind power potential

  20. ALARM, Thermohydraulics of BWR with Jet Pumps During LOCA

    International Nuclear Information System (INIS)

    Araya, F.; Akimoto, M.

    1985-01-01

    1 - Nature of physical problem solved: ALARM-B2 which is an improved version of ALARM-B1 is a computer program to analyze thermo-hydraulic phenomena of BWR during a blowdown period under a large-break loss-of-coolant accident condition with special emphasis on the heat transfer phenomena in the core region. 2 - Method of solution: A so called volume-junction method is used to present fluid conservations. The primary system is divided into a number of special elements called 'control-volumes'. The system of partial differential equations describing fluid conservations for a stream-tube are integrated over a number of control volumes. The resulting set of simultaneous differential equations that is based on the assumptions of one-dimensional, homogeneous and thermal- equilibrium flow is linearized and solved for a small time increment by a simple explicit numerical technique. The one-dimensional heat conduction equations describing temperature profiles within solid material are written in finite difference forms which are linearized and solved by the Crank-Nicholson implicit method. In order to simulate the blowdown heat transfer phenomena, the code has correlation packages for heat transfer coefficient and critical heat flux. The heat generation in the core is given by a point reactor kinetics model with six groups of delayed neutrons and decay of eleven groups of fission products and actinides. The solution technique of the reactor kinetics is based on the Runge-Kutta method. ALARM-B2 has the models to simulate various components incorporated in BWRs such as jet pumps, recirculation pumps, steam separators, valves, and so on. The discharge and injection systems are modeled by leak and fill systems, respectively. 3 - Restrictions on the complexity of the problem: As this has been developed to simulate a blowdown thermo-hydraulic transient during a large break LOCA, users must pay attention when applying the code to any medium or small break LOCAs or to later phases

  1. HYDRAULIC ELEVATOR INSTALLATION ESTIMATION FOR THE WATER SOURCE WELL SAND-PACK CLEANING UP

    Directory of Open Access Journals (Sweden)

    V. V. Ivashechkin

    2016-01-01

    Full Text Available The article offers design of a hydraulic elevator installation for cleaning up water-source wells of sand packs. It considerers the installation hydraulic circuit according to which the normal pump feeds the high-level tank water into the borehole through two parallel water lines. The water-jet line with washing nozzle for destroying the sand-pack and the supply pipe-line coupled with the operational nozzle of the hydraulic elevator containing the inlet and the supply pipelines for respectively intaking the hydromixture and removing it from the well. The paper adduces equations for fluid motion in the supply and the water-jet pipelines and offers expressions for evaluating the required heads in them. For determining water flow in the supply and the water-jet pipe lines the author proposes to employ graphical approach allowing finding the regime point in Q–H chart by means of building characteristics of the pump and the pipe-lines. For calculating the useful vertical head, supply and dimensions of the hydraulic elevator the article employs the equation of motion quantity with consistency admission of the motion quantity before and after mixing the flows in the hydraulic elevator. The suggested correlations for evaluating the hydraulic elevator efficiency determine the sand pack removal duration as function of its sizes and the ejected fluid flow rate. A hydraulic-elevator installation parameters estimation example illustrates removing a sand pack from a water-source borehole of 41 m deep and 150 mm diameter bored in the village of Uzla of Myadelsk region, of Minsk oblast. The working efficiency of a manufactured and laboratory tested engineering prototype of the hydraulic elevator installation was acknowledged in actual tests at the indicated borehole site. With application of graphical approach, the suggested for the hydraulic elevator installation parameters calculation procedure allows selecting, with given depth and the borehole diameter

  2. Periodic Hydraulic Testing for Discerning Fracture Network Connections

    Science.gov (United States)

    Becker, M.; Le Borgne, T.; Bour, O.; Guihéneuf, N.; Cole, M.

    2015-12-01

    Discrete fracture network (DFN) models often predict highly variable hydraulic connections between injection and pumping wells used for enhanced oil recovery, geothermal energy extraction, and groundwater remediation. Such connections can be difficult to verify in fractured rock systems because standard pumping or pulse interference tests interrogate too large a volume to pinpoint specific connections. Three field examples are presented in which periodic hydraulic tests were used to obtain information about hydraulic connectivity in fractured bedrock. The first site, a sandstone in New York State, involves only a single fracture at a scale of about 10 m. The second site, a granite in Brittany, France, involves a fracture network at about the same scale. The third site, a granite/schist in the U.S. State of New Hampshire, involves a complex network at scale of 30-60 m. In each case periodic testing provided an enhanced view of hydraulic connectivity over previous constant rate tests. Periodic testing is particularly adept at measuring hydraulic diffusivity, which is a more effective parameter than permeability for identify the complexity of flow pathways between measurement locations. Periodic tests were also conducted at multiple frequencies which provides a range in the radius of hydraulic penetration away from the oscillating well. By varying the radius of penetration, we attempt to interrogate the structure of the fracture network. Periodic tests, therefore, may be uniquely suited for verifying and/or calibrating DFN models.

  3. Estimation of Hydraulic Parameters and Aquifer Properties for a Managed Aquifer Recharge Pilot Study in The Lower Mississippi River Basin

    Science.gov (United States)

    Ozeren, Y.; Rigby, J.; Holt, R. M.

    2017-12-01

    Mississippi River Valley Alluvial Aquifer (MRVAA) is the major irrigation water resource in the in the lower Mississippi River basin. MRVAA has been significantly depleted in the last two decades due to excessive pumping. A wide range of measures to ensure sustainable groundwater supply in the region is currently under investigation. One of the possible solution under consideration is to use Managed Aquifer Recharge (MAR) by artificial recharge. The proposed artificial recharge technique in this study is to collect water through bank filtration, transfer water via pipeline to the critically low groundwater areas by a set of injection wells. A pilot study in the area is underway to investigate the possibility of artificial recharge in the area. As part of this study, a pumping test was carried out on an existing irrigation well along banks of Tallahatchie River near Money, MS. Geophysical surveys were also carried out in the pilot study area. Hydraulic response of the observation wells was used to determine stream bed conductance and aquifer parameters. The collected hydraulic parameters and aquifer properties will provide inputs for small-scale, high-resolution engineering model for abstraction-injection hydraulics along river. Here, preliminary results of the pilot study is presented.

  4. Motion simulation of hydraulic driven safety rod using FSI method

    International Nuclear Information System (INIS)

    Jung, Jaeho; Kim, Sanghaun; Yoo, Yeonsik; Cho, Yeonggarp; Kim, Jong In

    2013-01-01

    Hydraulic driven safety rod which is one of them is being developed by Division for Reactor Mechanical Engineering, KAERI. In this paper the motion of this rod is simulated by fluid structure interaction (FSI) method before manufacturing for design verification and pump sizing. A newly designed hydraulic driven safety rod which is one of reactivity control mechanism is simulated using FSI method for design verification and pump sizing. The simulation is done in CFD domain with UDF. The pressure drop is changed slightly by flow rates. It means that the pressure drop is mainly determined by weight of moving part. The simulated velocity of piston is linearly proportional to flow rates so the pump can be sized easily according to the rising and drop time requirement of the safety rod using the simulation results

  5. Pump Jet Mixing and Pipeline Transfer Assessment for High-Activity Radioactive Wastes in Hanford Tank 241-AZ-102

    Energy Technology Data Exchange (ETDEWEB)

    Y Onishi; KP Recknagle; BE Wells

    2000-08-09

    The authors evaluated how well two 300-hp mixer pumps would mix solid and liquid radioactive wastes stored in Hanford double-shell Tank 241-AZ-102 (AZ-102) and confirmed the adequacy of a three-inch (7.6-cm) pipeline system to transfer the resulting mixed waste slurry to the AP Tank Farm and a planned waste treatment (vitrification) plant on the Hanford Site. Tank AZ-102 contains 854,000 gallons (3,230 m{sup 3}) of supernatant liquid and 95,000 gallons (360 m{sup 3}) of sludge made up of aging waste (or neutralized current acid waste). The study comprises three assessments: waste chemistry, pump jet mixing, and pipeline transfer. The waste chemical modeling assessment indicates that the sludge, consisting of the solids and interstitial solution, and the supernatant liquid are basically in an equilibrium condition. Thus, pump jet mixing would not cause much solids precipitation and dissolution, only 1.5% or less of the total AZ-102 sludge. The pump jet mixing modeling indicates that two 300-hp mixer pumps would mobilize up to about 23 ft (7.0 m) of the sludge nearest the pump but would not erode the waste within seven inches (0.18 m) of the tank bottom. This results in about half of the sludge being uniformly mixed in the tank and the other half being unmixed (not eroded) at the tank bottom.

  6. Pump Jet Mixing and Pipeline Transfer Assessment for High-Activity Radioactive Wastes in Hanford Tank 241-AZ-102

    International Nuclear Information System (INIS)

    Onishi, Y.; Recknagle, K.P.; Wells, B.E.

    2000-01-01

    The authors evaluated how well two 300-hp mixer pumps would mix solid and liquid radioactive wastes stored in Hanford double-shell Tank 241-AZ-102 (AZ-102) and confirmed the adequacy of a three-inch (7.6-cm) pipeline system to transfer the resulting mixed waste slurry to the AP Tank Farm and a planned waste treatment (vitrification) plant on the Hanford Site. Tank AZ-102 contains 854,000 gallons (3,230 m 3 ) of supernatant liquid and 95,000 gallons (360 m 3 ) of sludge made up of aging waste (or neutralized current acid waste). The study comprises three assessments: waste chemistry, pump jet mixing, and pipeline transfer. The waste chemical modeling assessment indicates that the sludge, consisting of the solids and interstitial solution, and the supernatant liquid are basically in an equilibrium condition. Thus, pump jet mixing would not cause much solids precipitation and dissolution, only 1.5% or less of the total AZ-102 sludge. The pump jet mixing modeling indicates that two 300-hp mixer pumps would mobilize up to about 23 ft (7.0 m) of the sludge nearest the pump but would not erode the waste within seven inches (0.18 m) of the tank bottom. This results in about half of the sludge being uniformly mixed in the tank and the other half being unmixed (not eroded) at the tank bottom

  7. Dynamic Analysis & Characterization of Conventional Hydraulic Power Supply Units

    DEFF Research Database (Denmark)

    Schmidt, Lasse; Liedhegener, Michael; Bech, Michael Møller

    2016-01-01

    Hydraulic power units operated as constant supply pres-sure systems remain to be widely used in the industry, to supply valve controlled hydraulic drives etc., where the hydraulic power units are constituted by variable pumps with mechanical outlet pressure control, driven by induction motors....... In the analysis of supplied drives, both linear and rotary, emphasis is commonly placed on the drives themselves and the related loads, and the supply system dynamics is often given only little attention, and usually neglected or taken into account in a simplified fashion. The simplified supply system dynamics...... and drives will reduce the flow-to-pressure gain of the supply system, and hence increase the time constant of the sup-ply pressure dynamics. A consequence of this may be large vari-ations in the supply pressure, hence large variations in the pump shaft torque, and thereby the induction motor load torque...

  8. Optimization of a Centrifugal Boiler Circulating Pump's Casing Based on CFD and FEM Analyses

    Directory of Open Access Journals (Sweden)

    Zhigang Zuo

    2014-04-01

    Full Text Available It is important to evaluate the economic efficiency of boiler circulating pumps in manufacturing process from the manufacturers' point of view. The possibility of optimizing the pump casing with respect to structural pressure integrity and hydraulic performance was discussed. CFD analyses of pump models with different pump casing sizes were firstly carried out for the hydraulic performance evaluation. The effects of the working temperature and the sealing ring on the hydraulic efficiency were discussed. A model with casing diameter of 0.875D40 was selected for further analyses. FEM analyses were then carried out on different combinations of casing sizes, casing wall thickness, and materials, to evaluate its safety related to pressure integrity, with respect to both static and fatigue strength analyses. Two models with forging and cast materials were selected as final results.

  9. Analysis of pumping tests of partially penetrating wells in an unconfined aquifer using inverse numerical optimization

    Science.gov (United States)

    Hvilshøj, S.; Jensen, K. H.; Barlebo, H. C.; Madsen, B.

    1999-08-01

    Inverse numerical modeling was applied to analyze pumping tests of partially penetrating wells carried out in three wells established in an unconfined aquifer in Vejen, Denmark, where extensive field investigations had previously been carried out, including tracer tests, mini-slug tests, and other hydraulic tests. Drawdown data from multiple piezometers located at various horizontal and vertical distances from the pumping well were included in the optimization. Horizontal and vertical hydraulic conductivities, specific storage, and specific yield were estimated, assuming that the aquifer was either a homogeneous system with vertical anisotropy or composed of two or three layers of different hydraulic properties. In two out of three cases, a more accurate interpretation was obtained for a multi-layer model defined on the basis of lithostratigraphic information obtained from geological descriptions of sediment samples, gammalogs, and flow-meter tests. Analysis of the pumping tests resulted in values for horizontal hydraulic conductivities that are in good accordance with those obtained from slug tests and mini-slug tests. Besides the horizontal hydraulic conductivity, it is possible to determine the vertical hydraulic conductivity, specific yield, and specific storage based on a pumping test of a partially penetrating well. The study demonstrates that pumping tests of partially penetrating wells can be analyzed using inverse numerical models. The model used in the study was a finite-element flow model combined with a non-linear regression model. Such a model can accommodate more geological information and complex boundary conditions, and the parameter-estimation procedure can be formalized to obtain optimum estimates of hydraulic parameters and their standard deviations.

  10. Wind tunnel experiments to prove a hydraulic passive rotor speed control concept for variable speed wind turbines (poster)

    NARCIS (Netherlands)

    Diepeveen, N.F.B.; Jarquin Laguna, A.

    2012-01-01

    As alternative to geared and direct drive solutions, fluid power drive trains are being developed by several institutions around the world. The common configuration is where the wind turbine rotor is coupled to a hydraulic pump. The pump is connected through a high pressure line to a hydraulic motor

  11. Study of Anti-Vortex Baffle Effect in Suppressing Swirling Flow in LOX Tank

    Science.gov (United States)

    Yang, H. Q.; Peugeot, John

    2011-01-01

    Experimental results describing the hydraulic dynamic pump transfer matrix (Yp) for a cavitating J-2X oxidizer turbopump inducer+impeller tested in subscale waterflow are presented. The transfer function is required for integrated vehicle pogo stability analysis as well as optimization of local inducer pumping stability. Dynamic transfer functions across widely varying pump hydrodynamic inlet conditions are extracted from measured data in conjunction with 1D-model based corrections. Derived Dynamic transfer functions are initially interpreted relative to traditional Pogo pump equations. Water-to-liquid oxygen scaling of measured cavitation characteristics are discussed. Comparison of key dynamic transfer matrix terms derived from waterflow testing are made with those implemented in preliminary Ares Upper Stage Pogo stability modeling. Alternate cavitating pump hydraulic dynamic equations are suggested which better reflect frequency dependencies of measured transfer matrices.

  12. Intensity Noise Transfer Through a Diode-pumped Titanium Sapphire Laser System

    DEFF Research Database (Denmark)

    Tawfieq, Mahmoud; Hansen, Anders Kragh; Jensen, Ole Bjarlin

    2017-01-01

    higher RIN than a setup with only a single nonlinear crystal. The Ti:S is shown to have a cut-off frequency around 500 kHz, which means that noise structures of the pump laser above this frequency are strongly suppressed. Finally, the majority of the Ti:S noise seems to originate from the laser itself......In this paper, we investigate the noise performance and transfer in a titanium sapphire (Ti:S) laser system. This system consists of a DBR tapered diode laser, which is frequency doubled in two cascaded nonlinear crystals and used to pump the Ti:S laser oscillator. This investigation includes...... electrical noise characterizations of the utilized power supplies, the optical noise of the fundamental light, the second harmonic light, and finally the optical noise of the femtosecond pulses emitted by the Ti:S laser. Noise features originating from the electric power supply are evident throughout...

  13. Overview of ground coupled heat pump research and technology transfer activities

    Science.gov (United States)

    Baxter, V. D.; Mei, V. C.

    Highlights of DOE-sponsored ground coupled heat pump (GCHP) research at Oak Ridge National Laboratory (ORNL) are presented. ORNL, in cooperation with Niagara Mohawk Power Company, Climate Master, Inc., and Brookhaven National Laboratory developed and demonstrated an advanced GCHP design concept with shorter ground coils that can reduce installed costs for northern climates. In these areas it can also enhance the competitiveness of GCHP systems versus air-source heat pumps by lowering their payback from 6 to 7 years to 3 to 5 years. Ground coil heat exchanger models (based primarily on first principles) have been developed and used by others to generate less conservative ground coil sizing methods. An aggressive technology transfer initiative was undertaken to publicize results of this research and make it available to the industry. Included in this effort were an international workshop, trade press releases and articles, and participation in a live teleconference on GCHP technology.

  14. Pump instability phenomena generated by fluid forces

    Science.gov (United States)

    Gopalakrishnan, S.

    1985-01-01

    Rotor dynamic behavior of high energy centrifugal pumps is significantly affected by two types of fluid forces; one due to the hydraulic interaction of the impeller with the surrounding volute or diffuser and the other due to the effect of the wear rings. The available data on these forces is first reviewed. A simple one degree-of-freedom system containing these forces is analytically solved to exhibit the rotor dynamic effects. To illustrate the relative magnitude of these phenomena, an example of a multistage boiler feed pump is worked out. It is shown that the wear ring effects tend to suppress critical speed and postpone instability onset. But the volute-impeller forces tend to lower the critical speed and the instability onset speed. However, for typical boiler feed pumps under normal running clearances, the wear ring effects are much more significant than the destabilizing hydraulic interaction effects.

  15. Hydraulic modelling of drinking water treatment plant operations

    Directory of Open Access Journals (Sweden)

    L. C. Rietveld

    2009-06-01

    Full Text Available The flow through a unit of a drinking water treatment plant is one of the most important parameters in terms of a unit's effectiveness. In the present paper, a new EPAnet library is presented with the typical hydraulic elements for drinking water treatment processes well abstraction, rapid sand filtration and cascade and tower aeration. Using this treatment step library, a hydraulic model was set up, calibrated and validated for the drinking water treatment plant Harderbroek. With the actual valve position and pump speeds, the flows were calculated through the several treatment steps. A case shows the use of the model to calculate the new setpoints for the current frequency converters of the effluent pumps during a filter backwash.

  16. Analysis of pumping tests: Significance of well diameter, partial penetration, and noise

    Science.gov (United States)

    Heidari, M.; Ghiassi, K.; Mehnert, E.

    1999-01-01

    The nonlinear least squares (NLS) method was applied to pumping and recovery aquifer test data in confined and unconfined aquifers with finite diameter and partially penetrating pumping wells, and with partially penetrating piezometers or observation wells. It was demonstrated that noiseless and moderately noisy drawdown data from observation points located less than two saturated thicknesses of the aquifer from the pumping well produced an exact or acceptable set of parameters when the diameter of the pumping well was included in the analysis. The accuracy of the estimated parameters, particularly that of specific storage, decreased with increases in the noise level in the observed drawdown data. With consideration of the well radii, the noiseless drawdown data from the pumping well in an unconfined aquifer produced good estimates of horizontal and vertical hydraulic conductivities and specific yield, but the estimated specific storage was unacceptable. When noisy data from the pumping well were used, an acceptable set of parameters was not obtained. Further experiments with noisy drawdown data in an unconfined aquifer revealed that when the well diameter was included in the analysis, hydraulic conductivity, specific yield and vertical hydraulic conductivity may be estimated rather effectively from piezometers located over a range of distances from the pumping well. Estimation of specific storage became less reliable for piezemeters located at distances greater than the initial saturated thickness of the aquifer. Application of the NLS to field pumping and recovery data from a confined aquifer showed that the estimated parameters from the two tests were in good agreement only when the well diameter was included in the analysis. Without consideration of well radii, the estimated values of hydraulic conductivity from the pumping and recovery tests were off by a factor of four.The nonlinear least squares method was applied to pumping and recovery aquifer test data in

  17. Dynamic behaviour of pump-turbine runner: From disk to prototype runner

    International Nuclear Information System (INIS)

    Huang, X X; Egusquiza, E; Valero, C; Presas, A

    2013-01-01

    In recent decades, in order to increase output power of hydroelectric turbomachinery, the design head and the flow rate of the hydraulic turbines have been increased greatly. This has led to serious vibratory problems. The pump-turbines have to work at various operation conditions to satisfy the requirements of the power grid. However, larger hydraulic forces will result in high vibration levels on the turbines, especially, when the machines operate at off-design conditions. Due to the economic considerations, the pump-turbines are built as light as possible, which will change the dynamic response of the structures. According to industrial cases, the fatigue damage of the pump-turbine runner induced by hydraulic dynamic forces usually happens on the outer edge of the crown, which is near the leading edges of blades. To better understand the reasons for this kind of fatigue, it is extremely important to investigate the dynamic response behaviour of the hydraulic turbine, especially the runner, by experimental measurement and numerical simulation. The pump-turbine runner has a similar dynamic response behaviour of the circular disk. Therefore, in this paper the dynamic response analyses for circular disks with different dimensions and disk-blades-disk structures were carried out to better understand the fundamental dynamic behaviour for the complex turbomachinery. The influences of the pattern and number of blades were discussed in detail

  18. Selected technological problems of repair of hydraulic drive systems for shearer loaders with the example of A2V-107 pumps and SHT-630W motors

    Energy Technology Data Exchange (ETDEWEB)

    Kusak, E.; Paluch, J.

    1983-07-01

    Major elements of hydraulic drive systems as well as their wear and repair characteristics are described. Types of wear and standardized repair methods are comparatively evaluated. The evaluations are aimed at development of standardized procedures for use in large repair shops. The following stages of repair operations of A2V-107 pumps and SHT-630W motors are analyzed: disassembling hydraulic systems, washing and cleaning, classification of equipment elements (elements for scrapping and for regeneration), regeneration, assembling and final tests. The following regeneration methods are discussed: cutting, burnishing, bushing (e.g. the Heli Coil method), regeneration using copper, tin or zinc dusts and a temperature from 950 to 1,000 K under inert atmosphere, heat treatments. Methods are reviewed for comparative evaluations of repair efficiency and repair quality as well as documents used for recording repair in the shops. Economic aspects of using standardized procedures for repair of hydraulic equipment for shearer loaders are discussed and recommendations are made. (6 refs.)

  19. Performance Analysis of a Wind Turbine Driven Swash Plate Pump for Large Scale Offshore Applications

    International Nuclear Information System (INIS)

    Buhagiar, D; Sant, T

    2014-01-01

    This paper deals with the performance modelling and analysis of offshore wind turbine-driven hydraulic pumps. The concept consists of an open loop hydraulic system with the rotor main shaft directly coupled to a swash plate pump to supply pressurised sea water. A mathematical model is derived to cater for the steady state behaviour of entire system. A simplified model for the pump is implemented together with different control scheme options for regulating the rotor shaft power. A new control scheme is investigated, based on the combined use of hydraulic pressure and pitch control. Using a steady-state analysis, the study shows how the adoption of alternative control schemes in a the wind turbine-hydraulic pump system may result in higher energy yields than those from a conventional system with an electrical generator and standard pitch control for power regulation. This is in particular the case with the new control scheme investigated in this study that is based on the combined use of pressure and rotor blade pitch control

  20. Design of hydraulic recuperation unit

    Directory of Open Access Journals (Sweden)

    Jandourek Pavel

    2016-01-01

    Full Text Available This article deals with design and measurement of hydraulic recuperation unit. Recuperation unit consist of radial turbine and axial pump, which are coupled on the same shaft. Speed of shaft with impellers are 6000 1/min. For economic reasons, is design of recuperation unit performed using commercially manufactured propellers.

  1. A Linear Electromagnetic Piston Pump

    Science.gov (United States)

    Hogan, Paul H.

    Advancements in mobile hydraulics for human-scale applications have increased demand for a compact hydraulic power supply. Conventional designs couple a rotating electric motor to a hydraulic pump, which increases the package volume and requires several energy conversions. This thesis investigates the use of a free piston as the moving element in a linear motor to eliminate multiple energy conversions and decrease the overall package volume. A coupled model used a quasi-static magnetic equivalent circuit to calculate the motor inductance and the electromagnetic force acting on the piston. The force was an input to a time domain model to evaluate the mechanical and pressure dynamics. The magnetic circuit model was validated with finite element analysis and an experimental prototype linear motor. The coupled model was optimized using a multi-objective genetic algorithm to explore the parameter space and maximize power density and efficiency. An experimental prototype linear pump coupled pistons to an off-the-shelf linear motor to validate the mechanical and pressure dynamics models. The magnetic circuit force calculation agreed within 3% of finite element analysis, and within 8% of experimental data from the unoptimized prototype linear motor. The optimized motor geometry also had good agreement with FEA; at zero piston displacement, the magnetic circuit calculates optimized motor force within 10% of FEA in less than 1/1000 the computational time. This makes it well suited to genetic optimization algorithms. The mechanical model agrees very well with the experimental piston pump position data when tuned for additional unmodeled mechanical friction. Optimized results suggest that an improvement of 400% of the state of the art power density is attainable with as high as 85% net efficiency. This demonstrates that a linear electromagnetic piston pump has potential to serve as a more compact and efficient supply of fluid power for the human scale.

  2. Numerical modeling of solute transport in a sand tank physical model under varying hydraulic gradient and hydrological stresses

    Science.gov (United States)

    Atlabachew, Abunu; Shu, Longcang; Wu, Peipeng; Zhang, Yongjie; Xu, Yang

    2018-03-01

    This laboratory study improves the understanding of the impacts of horizontal hydraulic gradient, artificial recharge, and groundwater pumping on solute transport through aquifers. Nine experiments and numerical simulations were carried out using a sand tank. The variable-density groundwater flow and sodium chloride transport were simulated using the three-dimensional numerical model SEAWAT. Numerical modelling results successfully reproduced heads and concentrations observed in the sand tank. A higher horizontal hydraulic gradient enhanced the migration of sodium chloride, particularly in the groundwater flow direction. The application of constant artificial recharge increased the spread of the sodium chloride plume in both the longitudinal and lateral directions. In addition, groundwater pumping accelerated spreading of the sodium chloride plume towards the pumping well. Both higher hydraulic gradient and pumping rate generated oval-shaped plumes in the horizontal plane. However, the artificial recharge process produced stretched plumes. These effects of artificial recharge and groundwater pumping were greater under higher hydraulic gradient. The concentration breakthrough curves indicated that emerging solutions never attained the concentration of the originally injected solution. This is probably because of sorption of sodium chloride onto the silica sand and/or the exchange of sodium chloride between the mobile and immobile liquid domains. The fingering and protruding plume shapes in the numerical models constitute instability zones produced by buoyancy-driven flow. Overall, the results have substantiated the influences of hydraulic gradient, boundary condition, artificial recharge, pumping rate and density differences on solute transport through a homogeneous unconfined aquifer. The implications of these findings are important for managing liquid wastes.

  3. Proposal for probing energy transfer pathway by single-molecule pump-dump experiment

    OpenAIRE

    Tao, Ming-Jie; Ai, Qing; Deng, Fu-Guo; Cheng, Yuan-Chung

    2016-01-01

    The structure of Fenna-Matthews-Olson (FMO) light-harvesting complex has long been recognized as containing seven bacteriochlorophyll (BChl) molecules. Recently, an additional BChl molecule was discovered in the crystal structure of the FMO complex, which may serve as a link between baseplate and the remaining seven molecules. Here, we investigate excitation energy transfer (EET) process by simulating single-molecule pump-dump experiment in the eight-molecules complex. We adopt the coherent m...

  4. Reactor coolant purification system circulation pumps (CUW pumps)

    International Nuclear Information System (INIS)

    Tsutsui, Toshiaki

    1979-01-01

    Coolant purification equipments for BWRs have been improved, and the high pressure purifying system has become the main type. The quantity of purifying treatment also changed to 2% of the flow rate of reactor feed water. As for the circulation pumps, canned motor pumps are adopted recently, and the improvements of reliability and safety are attempted. The impurities carried in by reactor feed water and the corrosion products generated in reactors and auxiliary equipments are activated by neutron irradiation or affect heat transfer adversely, adhering to fuel claddings are core structures. Therefore, a part of reactor coolant is led to the purification equipments, and returned to reactors after the impurities are eliminated perfectly. At the time of starting and stopping reactors, excess reactor water and the contaminated water from reactors are transferred to main condenser hot wells or waste treatment systems. Thus the prescribed water quality is maintained. The operational modes of and the requirements for the CUW pumps, the construction and the features of the canned motor type CUW pumps are explained. Recently, a pump operated for 11 months without any maintenance has been disassembled and inspected, but the wear of bearings has not been observed, and the high reliability of the pump has been proved. (Kako, I.)

  5. The effect of pump cavitation on the design of the primary pumps for C.F.R

    International Nuclear Information System (INIS)

    Worster, R.C.

    1976-01-01

    In the design appraisal of the sodium pumps for the primary circuit of the proposed 1300 MW(e) CFR it has been recognised that cavitation, its effects and its control, is the outstanding hydraulic design problem. Careful consideration of this problem and of the possible effects of pump cavitation on the performance of other reactor systems has led to the conclusion that it is more prudent at present to specify pumps with zero cavitation at normal full speed operating conditions. Under abnormal operation it may be necessary to reduce the pumps' speed to prevent cavitation in the pumps or associated equipment. The principal reasons for this decision were uncertainties concerning the possibility of erosion due to limited cavitation in sodium and the possibility of pump cavitation noise interfering with acoustic detection of malfunctioning of reactor components or of boiling in the reactor core

  6. Performance Tests of a Mechanical Pump in Sodium Environment

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Chungho; Kim, Jong-Man; Ko, Yung Joo; Kim, Byeongyeon; Cho, Youngil; Jung, Min-Hwan; Gam, Da-Young; Lee, Yong Bum; Jeong, Ji-Young; Kim, Jong-Bum [KAERI, Daejeon (Korea, Republic of)

    2016-05-15

    Water is often selected as a surrogate test fluid because it is not only cheap, easily available and easy to handle but also its important hydraulic properties (density and kinematic viscosity) are very similar to that of the sodium. Nevertheless, to ensure the performance, safety, and operability of major components before its installation in the SFR, a series of demonstration experiments of some components in sodium environment should be positively necessary. So, SFR NSSS System Design Division of Korea Atomic Energy Research Institute (KAERI) built various sodium experimental facilities, especially STELLA-1 in 2012. STELLA-1 (Sodium inTegral Effect test Loop for safety simuLation and Assessment) is a large-scale separated effect test facility for demonstrating the thermal-hydraulic performances of major components such as a Sodium-to-Sodium heat exchanger (DHX), Sodium-to-Air heat exchanger (AHX) of the decay heat removal system, and mechanical sodium pump of the primary heat transport system (PHTS). The mechanical pump in-sodium performance test was successfully performed with good reproducibility of the experiment and data to compare hydraulic characteristic of a mechanical pump in-water was collected. In effect of temperature variation on the pump pressure head, reduction of pump pressure head at 250℃ by 0.57% of that of 300℃ maybe the result of an increase in sodium viscosity by 13.6% according to operating temperature decrease by 50℃. Also, we confirmed that the more flywheel weight, the longer halving time and the more initial flow rate when the pump seized, the shorter halving time. The results of the mechanical pump performance test data in sodium environment will be used to compare with that of the in water environment after the evaluation of measurement uncertainty for tests.

  7. Monitoring the ground water level change during the pump test by using the Electric resistivity tomography

    Science.gov (United States)

    Hsu, H.; Chang, P. Y.; Yao, H. J.

    2017-12-01

    For hydrodynamics study of the unconfined aquifer in gravel formation, a pumping test was established to estimate the hydraulic conductivity in the midstream of Zhoushui River in Taiwan. The hydraulic parameters and the cone of depression could be estimated by monitoring the groundwater drawdown in an observation well which was in a short distance far from the pumping well. In this study we carried out the electric resistivity image monitoring during the whole pumping test. The electric resistivity data was measured with the surface and downhole electrodes which would produce a clear subsurface image of groundwater level through a larger distance than the distance between pumping and observation wells. The 2D electric image could also describe how a cone of depression truly created at subsurface. The continuous records could also show the change of groundwater level during the whole pumping test which could give a larger scale of the hydraulic parameters.

  8. Nonlinear dynamic modeling for smart material electro-hydraulic actuator development

    Science.gov (United States)

    Larson, John P.; Dapino, Marcelo J.

    2013-03-01

    Smart material electro-hydraulic actuators use hydraulic rectification by one-way check valves to amplify the motion of smart materials, such as magnetostrictives and piezoelectrics, in order to create compact, lightweight actuators. A piston pump driven by a smart material is combined with a hydraulic cylinder to form a self-contained, power-by-wire actuator that can be used in place of a conventional hydraulic system without the need for hydraulic lines and a centralized pump. The performance of an experimental actuator driven by a 12.7 mm diameter, 114 mm length Terfenol-D rod is evaluated over a range of applied input frequencies, loads, and currents. The peak performance achieved is 37 W, moving a 220 N load at a rate of 17 cm/s and producing a blocked pressure of 12.5 MPa. Additional tests are conducted to quantify the dynamic behavior of the one-way reed valves using a scanning laser vibrometer to identify the frequency response of the reeds and the effect of the valve seat and fluid mass loading. A lumped-parameter model is developed for the system that includes valve inertia and fluid response nonlinearities, and the model results are compared with the experimental data.

  9. Spiral groove seal. [for hydraulic rotating shaft

    Science.gov (United States)

    Ludwig, L. P. (Inventor)

    1973-01-01

    Mating flat surfaces inhibit leakage of a fluid around a stationary shaft. A spiral groove pattern produces a pumping action toward the fluid when the shaft rotates which prevents leakage while a generated hydraulic lifting force separates the mating surfaces to minimize wear.

  10. Reactor coolant pumps for nuclear reactors

    International Nuclear Information System (INIS)

    Harand, E.; Richter, G.; Tschoepel, G.

    1975-01-01

    A brake for the pump rotor of a main coolant pump or a shutoff member on the pump are provided in order to prevent excess speeds of the pump rotor. Such excess speeds may occur in PWR type reactors with water at a pressure below, e.g., 150 bars if there is leakage from a coolant line associated with the main coolant pump. As a brake, a centrifugal brake depending upon the pump speed or a brake ring arranged on the pump housing and acting on the pump rotor, which ring would be activated by pressure differentials in the pump, may be used. If the pressure differences between suction and pressure sockets are very small, a controlled hydraulic increase of the pressure force on the brake may also be provided. Furthermore, a turbine brake may be provided. A slide which is automatically movable in closing position along the pump rotor axis is used as a shutoff element. It is of cylindrical configuration and is arranged concentrically with the rotor axis. (DG) [de

  11. Implications of the "observer effect" on modelling a long-term pumping test with hydraulically conductive boreholes in a discrete fracture network system.

    Science.gov (United States)

    Holton, D.; Frampton, A.; Cvetkovic, V.

    2006-12-01

    The Onkalo underground research facility for rock characterisation for nuclear waste disposal is located at Olkiluoto island, just off the Finnish coast in the Baltic Sea. Prior to the start of the excavation of the Onkalo facility, an extensive amount of hydraulic data has been collected during various pumping experiments from a large number of boreholes placed throughout an area of approximately 10 km2, reaching depths of 1000 meters below sea level. In particular, the hydraulic borehole data includes classical measurements of pressure, but also new measurements of flow rate and flow direction in boreholes (so called flow-logging). These measurements indicate large variations in heterogeneity and are a clear reflection of the discrete nature of the system. Here we present results from an ongoing project which aims to explore and asses the implications of these new flow-logging measurements to site descriptive modelling and modelling at performance assessment scales. The main challange of the first phase of this project is to obtain a greater understanding of a strongly heterogenious and anisotropic groundwater system in which open boreholes are located; that is, a system in which the observation boreholes themselves create new hydraulic conductive features of the groundwater system. The results presented are from recent hydraulic flow modelling simulations with a combined continuous porous media and discrete fracture network approach using a commercial finite-element software. An advantage of this approach is we may adapt a continuum mesh on the regional scale, were only a few conductive features are known, together with a local scale discrete fracture network approach, where detailed site-investigation has revealed a large amount of conductive features. Current findings indicate the system is sensitive to certain combinations of hydraulic features, and we quantify the significance of including these variations in terms of their implications for reduction of

  12. Numerical simulation on dimension decrease for annular casing of one centrifugal boiler circulation pump

    International Nuclear Information System (INIS)

    Fan, Y Z; Zuo, Z G; Liu, S H; Wu, Y L; Sha, Y J

    2012-01-01

    Primary formulation derivation indicates that the dimension of one existing centrifugal boiler circulation pump casing is too large. As great manufacture cost can be saved by dimension decrease, a numerical simulation research is developed in this paper on dimension decrease for annular casing of this pump with a specific speed equaling to 189, which aims at finding an appropriately smaller dimension of the casing while hydraulic performance and strength performance will hardly be changed according to the requirements of the cooperative company. The research object is one existing centrifugal pump with a diffuser and a semi-spherical annular casing, working as the boiler circulation pump for (ultra) supercritical units in power plants. Dimension decrease, the modification method, is achieved by decreasing the existing casing's internal radius (marked as R i0 ) while keeping the wall thickness. The research analysis is based on primary formulation derivation, CFD (Computational Fluid Dynamics) simulation and FEM (Finite Element Method) simulation. Primary formulation derivation estimates that a design casing's internal radius should be less than 0.75 R i0 . CFD analysis indicates that smaller casing with 0.75 R i0 has a worse hydraulic performance when working at large flow rates and a better hydraulic performance when working at small flow rates. In consideration of hydraulic performance and dimension decrease, an appropriate casing's internal radius is determined, which equals to 0.875 R i0 . FEM analysis then confirms that modified pump casing has nearly the same strength performance as the existing pump casing. It is concluded that dimension decrease can be an economical method as well as a practical method for large pumps in engineering fields.

  13. Numerical simulation on dimension decrease for annular casing of one centrifugal boiler circulation pump

    Science.gov (United States)

    Fan, Y. Z.; Zuo, Z. G.; Liu, S. H.; Wu, Y. L.; Sha, Y. J.

    2012-11-01

    Primary formulation derivation indicates that the dimension of one existing centrifugal boiler circulation pump casing is too large. As great manufacture cost can be saved by dimension decrease, a numerical simulation research is developed in this paper on dimension decrease for annular casing of this pump with a specific speed equaling to 189, which aims at finding an appropriately smaller dimension of the casing while hydraulic performance and strength performance will hardly be changed according to the requirements of the cooperative company. The research object is one existing centrifugal pump with a diffuser and a semi-spherical annular casing, working as the boiler circulation pump for (ultra) supercritical units in power plants. Dimension decrease, the modification method, is achieved by decreasing the existing casing's internal radius (marked as "Ri0") while keeping the wall thickness. The research analysis is based on primary formulation derivation, CFD (Computational Fluid Dynamics) simulation and FEM (Finite Element Method) simulation. Primary formulation derivation estimates that a design casing's internal radius should be less than 0.75 Ri0. CFD analysis indicates that smaller casing with 0.75 Ri0 has a worse hydraulic performance when working at large flow rates and a better hydraulic performance when working at small flow rates. In consideration of hydraulic performance and dimension decrease, an appropriate casing's internal radius is determined, which equals to 0.875 Ri0. FEM analysis then confirms that modified pump casing has nearly the same strength performance as the existing pump casing. It is concluded that dimension decrease can be an economical method as well as a practical method for large pumps in engineering fields.

  14. Pumping and recovery test analysis of groundwater Well in Martajasah, Bangkalan, Madura

    International Nuclear Information System (INIS)

    Adi Gunawan Muhammad

    2010-01-01

    Martajasah is one of the villages in Bangkalan Region, Madura, which have difficulty of fresh water. This area has a lot of potential that can be developed, particularly the potential of religious tourism. To increase the utilization potential of the region and support the public healthy, in 2007 PPGN - BATAN cooperated with the Government of Bangkalan has made one (I) exploration/production groundwater - wells with the expectation it can meet a demand of fresh water in the Martajasah Village area. To determine the capacity of the wells, the maximum discharge pumping and the optimum discharge pumping from the wells pumping test it is necessary should be conducted, which includes step draw down pumping test, constant rate pumping test and recovery test. The purpose of this activity is to determine amount of well loss, loss of aquifer, well hydraulics equations and the value of the efficiency of wells to determine the optimum and maximum discharge wells and calculate the value of transmissivity / transmissivity (T) from the aquifer. The scope of these activities include the preparation of working equipment, testing of all equipment, measurement of static groundwater table, pumping test, and analysis of pumping test. Based on the result from step draw down test, well hydraulics equations obtained Sw = 0.0079 Q + 0.000003 Q 2 , so that according to the well hydraulics equations are than obtained a maximum pumping discharge (Q max ) = 3.9 liters / second (336.7 m 3 ) / days) with the well efficiency (E) = 89%, so the optimum pumping discharge (Q opt )=3.455 liters / second = 298.52 m 3 /day. Based on the result from constant rate pumping test and recovery test showed adequate transmissivity of wells, i e T = 136.5 m 2 / day = 5.6875 m 2 / hour = 0.094 m 2 /minute. (author)

  15. Multidisciplinary Design Optimization of a Swash-Plate Axial Piston Pump

    Directory of Open Access Journals (Sweden)

    Guangjun Liu

    2016-12-01

    Full Text Available This work proposes an MDO (multidisciplinary design optimization procedure for a swash-plate axial piston pump based on co-simulation and integrated optimization. The integrated hydraulic-mechanical model of the pump is built to reflect its actual performance, and a hydraulic-mechanical co-simulation is conducted through data exchange between different domains. The flow ripple of the pump is optimized by using a MDO procedure. A CFD (Computational Fluid Dynamics simulation of the pump’s flow field is done, which shows that the hydrodynamic shock of the pump is improved after optimization. To verify the MDO effect, an experimental system is established to test the optimized piston pump. Experimental results show that the simulated and experimental curves are similar. The flow ripple is improved by the MDO procedure. The peak of the pressure curve is lower than before optimization, and the pressure pulsation is reduced by 0.21 MPa, which shows that the pressure pulsation is improved with the decreasing of the flow ripple. Comparing the experimental and simulation results shows that MDO method is effective and feasible in the optimization design of the pump.

  16. Heat Transfer Computations of Internal Duct Flows With Combined Hydraulic and Thermal Developing Length

    Science.gov (United States)

    Wang, C. R.; Towne, C. E.; Hippensteele, S. A.; Poinsatte, P. E.

    1997-01-01

    This study investigated the Navier-Stokes computations of the surface heat transfer coefficients of a transition duct flow. A transition duct from an axisymmetric cross section to a non-axisymmetric cross section, is usually used to connect the turbine exit to the nozzle. As the gas turbine inlet temperature increases, the transition duct is subjected to the high temperature at the gas turbine exit. The transition duct flow has combined development of hydraulic and thermal entry length. The design of the transition duct required accurate surface heat transfer coefficients. The Navier-Stokes computational method could be used to predict the surface heat transfer coefficients of a transition duct flow. The Proteus three-dimensional Navier-Stokes numerical computational code was used in this study. The code was first studied for the computations of the turbulent developing flow properties within a circular duct and a square duct. The code was then used to compute the turbulent flow properties of a transition duct flow. The computational results of the surface pressure, the skin friction factor, and the surface heat transfer coefficient were described and compared with their values obtained from theoretical analyses or experiments. The comparison showed that the Navier-Stokes computation could predict approximately the surface heat transfer coefficients of a transition duct flow.

  17. Researches regarding primary control in hydraulic systems

    Directory of Open Access Journals (Sweden)

    Tița Irina

    2017-01-01

    Full Text Available The technology in wind turbines has developed very rapidly but there are still a lot that can be improved also regarding new technologies. One example is wind turbine with hydraulic transmission. At the beginning low power wind turbines are in view. First of all the wind energy is meant to be used by isolated users for household and garden equipment or pumping water. Later, if results will be as expected, and wind potential satisfactory, such systems could be connected to electric grid. In our research laboratory we must build an experimental setup. The simulation for wind turbine and fixed displacement pump coupled to it will be realized using a variable displacement piston pump. As the variable wind speed has as a result variations of the pump flow, the variable displacement pump from the test rig may reproduce a similar variation law. In this paper some aspects regarding the variable displacement pump are detailed. This study is necessary for the future development of the research.

  18. Hydraulic conductivities of fractures and matrix in Slovenian carbonate aquifers

    Directory of Open Access Journals (Sweden)

    Timotej Verbovšek

    2008-12-01

    Full Text Available Hydraulic conductivities and specific storage coefficients of fractures and matrix in Slovenian carbonate aquifers were determined by Barker’s method for pumping test analysis, based on fractional flow dimension. Values are presented for limestones and mainly for dolomites, and additionally for separate aquifers, divided by age andlithology in several groups. Data was obtained from hydrogeological reports for 397 water wells, and among these, 79 pumping tests were reinterpreted. Hydraulic conductivities of fractures are higher than the hydraulic conductivities of matrix, and the differences are highly statistically significant. Likewise, differences are significant for specific storage, and the values of these coefficients are higher in the matrix. Values of all coefficients vary in separate aquifers, and the differences can be explained by diagenetic effects, crystal size, degree of fracturing, andcarbonate purity. Comparison of the methods, used in the reports, and the Barker’s method (being more suitable for karstic and fractured aquifers, shows that the latter fits real data better.

  19. Experimental Investigation of Crack Extension Patterns in Hydraulic Fracturing with Shale, Sandstone and Granite Cores

    Directory of Open Access Journals (Sweden)

    Jianming He

    2016-12-01

    Full Text Available Hydraulic fracturing is an important method of reservoir stimulation in the exploitation of geothermal resources, and conventional and unconventional oil and gas resources. In this article, hydraulic fracturing experiments with shale, sandstone cores (from southern Sichuan Basin, and granite cores (from Inner Mongolia were conducted to investigate the different hydraulic fracture extension patterns in these three reservoir rocks. The different reactions between reservoir lithology and pump pressure can be reflected by the pump pressure monitoring curves of hydraulic fracture experiments. An X-ray computer tomography (CT scanner was employed to obtain the spatial distribution of hydraulic fractures in fractured shale, sandstone, and granite cores. From the microscopic and macroscopic observation of hydraulic fractures, different extension patterns of the hydraulic fracture can be analyzed. In fractured sandstone, symmetrical hydraulic fracture morphology could be formed, while some micro cracks were also induced near the injection hole. Although the macroscopic cracks in fractured granite cores are barely observed by naked eye, the results of X-ray CT scanning obviously show the morphology of hydraulic fractures. It is indicated that the typical bedding planes well developed in shale formation play an important role in the propagation of hydraulic fractures in shale cores. The results also demonstrated that heterogeneity influenced the pathway of the hydraulic fracture in granite cores.

  20. Pumps for nuclear industry

    International Nuclear Information System (INIS)

    Tanguy, L.

    1978-01-01

    In order to meet the requirements of nuclear industry for the transfer of corrosive, toxic, humidity sensitive or very pure gases, different types of pumps were developped and commercialized. Their main characteristics are to prevent pollution of the transfered fluid by avoiding any contact between this fluid and the lubricated parts of the machine, and to prevent a contamination of the atmosphere or of the fluid by a total tightness. Patellar pumps have been particularly developped because the metallic bellows are quite reliable and resistant in this configuration. Two types are described: patellar pumps without friction and barrel pumps whose pistons are provided with rings sliding in the cylinders without lubrication [fr

  1. TRADING-OFF CONSTRAINTS IN THE PUMP SCHEDULING OPTIMIZATION OF WATER DISTRIBUTION NETWORKS

    Directory of Open Access Journals (Sweden)

    Gencer Genço\\u011Flu

    2016-01-01

    Full Text Available Pumps are one of the essential components of water supply systems. Depending of the topography, a water supply system may completely rely on pumping. They may consume non-negligible amount of water authorities' budgets during operation. Besides their energy costs, maintaining the healthiness of pumping systems is another concern for authorities. This study represents a multi-objective optimization method for pump scheduling problem. The optimization objective contains hydraulic and operational constraints. Switching of pumps and usage of electricity tariff are assumed to be key factors for operational reliability and energy consumption and costs of pumping systems. The local optimals for systems operational reliability, energy consumptions and energy costs are investigated resulting from trading-off pump switch and electricity tariff constraints within given set of boundary conditions. In the study, a custom made program is employed that combines genetic algorithm based optimization module with hydraulic network simulation software -EPANET. Developed method is applied on the case study network; N8-3 pressure zone of the Northern Supply of Ankara (Turkey Water Distribution Network. This work offers an efficient method for water authorities aiming to optimize pumping schedules considering expenditures and operational reliability mutually.

  2. Impeller inlet geometry effect on performance improvement for centrifugal pumps

    International Nuclear Information System (INIS)

    Luo, Xianwu; Zhang, Yao; Peng, Junqi; Xu, Hongyuan; Yu, Weiping

    2008-01-01

    This research treats the effect of impeller inlet geometry on performance improvement for a boiler feed pump, who is a centrifugal pump having specific speed of 183 m.m 3 min -1 .min -1 and close type impeller with exit diameter of 450 mm. The hydraulic performance and cavitation performance of the pump have been tested experimentally. In order to improve the pump, five impellers have been considered by extending the blade leading edge or applying much larger blade angle at impeller inlet compared with the original impeller. The 3-D turbulent flow inside those pumps has been analyzed basing on RNG k-ε turbulence model and VOF cavitation model. It is noted that the numerical results are fairly good compared with the experiments. Based on the experimental test and numerical simulation, the following conclusions can be drawn: (1) Impeller inlet geometry has important influence on performance improvement in the case of centrifugal pump. Favorite effects on performance improvement have been achieved by both extending the blade leading edge and applying much larger blade angle at impeller inlet: (2) It is suspected that the extended leading edge have favorite effect for improving hydraulic performance, and the much larger blade angle at impeller inlet have favorite effect for improving cavitation performance for the test pump: (3) Uniform flow upstream of impeller inlet is helpful for improving cavitation performance of the pump

  3. Software for dimensioning of hydraulic ram; Software para dimensionamento de carneiro hidraulico

    Energy Technology Data Exchange (ETDEWEB)

    Borges Neto, Manuel Rangel [Centro Federal de Educacao Tecnologica de Petrolina, CE (Brazil); Borges, Grace Anne Pontes [Faculdade de Tecnologia de Sao Paulo (FATEC), Sao Paulo, SP (Brazil). Dept. de Processamento de Dados; Borges, Everton Pontes [Centro Federal de Educacao Tecnologica do Rio Grande do Norte, Natal, RN (Brazil). Curso Tecnologia em Automacao Industrial

    2004-07-01

    The search for new renewable energy sources sometimes takes us always from existing solutions applications. The hydraulic ram is equipment developed in 1796, used to water pumping, without using electricity energy and can be used for small rural producer in places where the conventional electricity grid access is limited. The objective of this work is Software introducing, developed to help a commercial hydraulic ram dimensioning, which isn't necessary previous hydraulic knowledge, and can also be used as a didactic resource at technicians and technologists courses in subjects as hydraulics or irrigation. (author)

  4. Model based analysis of the time scales associated to pump start-ups

    Energy Technology Data Exchange (ETDEWEB)

    Dazin, Antoine, E-mail: antoine.dazin@lille.ensam.fr [Arts et métiers ParisTech/LML Laboratory UMR CNRS 8107, 8 bld Louis XIV, 59046 Lille cedex (France); Caignaert, Guy [Arts et métiers ParisTech/LML Laboratory UMR CNRS 8107, 8 bld Louis XIV, 59046 Lille cedex (France); Dauphin-Tanguy, Geneviève, E-mail: genevieve.dauphin-tanguy@ec-lille.fr [Univ Lille Nord de France, Ecole Centrale de Lille/CRISTAL UMR CNRS 9189, BP 48, 59651, Villeneuve d’Ascq cedex F 59000 (France)

    2015-11-15

    Highlights: • A dynamic model of a hydraulic system has been built. • Three periods in a pump start-up have been identified. • The time scales of each period have been estimated. • The parameters affecting the rapidity of a pump start-up have been explored. - Abstract: The paper refers to a non dimensional analysis of the behaviour of a hydraulic system during pump fast start-ups. The system is composed of a radial flow pump and its suction and delivery pipes. It is modelled using the bond graph methodology. The prediction of the model is validated by comparison to experimental results. An analysis of the time evolution of the terms acting on the total pump pressure is proposed. It allows for a decomposition of the start-up into three consecutive periods. The time scales associated with these periods are estimated. The effects of parameters (angular acceleration, final rotation speed, pipe length and resistance) affecting the start-up rapidity are then explored.

  5. A method for gear fatigue life prediction considering the internal flow field of the gear pump

    Science.gov (United States)

    Shen, Haidong; Li, Zhiqiang; Qi, Lele; Qiao, Liang

    2018-01-01

    Gear pump is the most widely used volume type hydraulic pump, and it is the main power source of the hydraulic system. Its performance is influenced by many factors, such as working environment, maintenance, fluid pressure and so on. It is different from the gear transmission system, the internal flow field of gear pump has a greater impact on the gear life, therefore it needs to consider the internal hydraulic system when predicting the gear fatigue life. In this paper, a certain aircraft gear pump as the research object, aim at the typical failure forms, gear contact fatigue, of gear pump, proposing the prediction method based on the virtual simulation. The method use CFD (Computational fluid dynamics) software to analyze pressure distribution of internal flow field of the gear pump, and constructed the unidirectional flow-solid coupling model of gear to acquire the contact stress of tooth surface on Ansys workbench software. Finally, employing nominal stress method and Miner cumulative damage theory to calculated the gear contact fatigue life based on modified material P-S-N curve. Engineering practice show that the method is feasible and efficient.

  6. COSTING MODELS FOR WATER SUPPLY DISTRIBUTION: PART III- PUMPS, TANKS, AND RESERVOIRS

    Science.gov (United States)

    Distribution systems are generally designed to ensure hydraulic reliability. Storage tanks, reservoirs and pumps are critical in maintaining this reliability. Although storage tanks, reservoirs and pumps are necessary for maintaining adequate pressure, they may also have a negati...

  7. Femtosecond pump probe spectroscopy for the study of energy transfer of light-harvesting complexes from extractions of spinach leaves

    Directory of Open Access Journals (Sweden)

    L. van Rensburg

    2010-01-01

    Full Text Available Measurements of ultrafast transient processes, of temporal durations in the picosecond and femtosecond regime, are made possible by femtosecond pump probe transient absorption spectroscopy. Such an ultrafast pump probe transient absorption setup has been implemented at the CSIR National Laser Centre and has been applied to investigate energy transfer processes in different parts of photosynthetic systems. In this paper we report on our first results obtained with Malachite green as a benchmark. Malachite green was chosen because the lifetime of its excited state is well known. We also present experimental results of the ultrafast energy transfer of light-harvesting complexes in samples prepared from spinach leaves. Various pump wavelengths in the range 600–680 nm were used; the probe was a white light continuum spanning 420–700 nm. The experimental setup is described in detail in this paper. Results obtained with these samples are consistent with those expected and achieved by other researchers in this field.

  8. Hierarchical high-pressure hydraulic system for a continuously variable transmission; Mudan hensokuki no kaisoshiki koyuatsu system no kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    Tominaga, M; Wakahara, T; Hiraoka, Y; Ishimori, Y [Nissan Motor Co. Ltd., Tokyo (Japan)

    1997-10-01

    A belt CVT system requires a large oil flow during shifts compared with a conventional automatic transmission. And the hydraulic pressure is higher for high-powered engines. As a result the oil pump is bigger and efficiency is lower(fuel consumption is higher). This system develops high pressure in three stages first reducing the hydraulic control system so that a small oil pump is attained. 8 figs.

  9. 5l/h pump for dosing corrosion radioactive liquids

    International Nuclear Information System (INIS)

    Przybylovich, S.; Shraer, V.; Chermak, R.

    1977-01-01

    The technical requirements, design and main technical characteristics of the pump for dosing corrosion and radioactive liquids with capacity up to 5 l/h are described. The design is based on the popular sixvertical split casing pump. The pump has four separate pump membrane type blocks with nonstraight hydraulic membrane control. The membranes are made of the cold worked CrNi(18/10)type stainless steel with thickness up to 0.1 mm and have the lifetime up to 3000 hours. The remote pump heads are used for pumping radioactive fluids when the pumping goes behind the safe wall, separating the pump from a hot lab. The tests showed that the pump secures the satisfactory accuracy of dozing and uniformity of pumping and that it is really possible to achieve the required life time of 10000 hours by this pump

  10. Combined solar photovoltaic and hydroelectric pumped storage power plant

    International Nuclear Information System (INIS)

    Gzraryan, R.V.

    2009-01-01

    Combined model of solar photovoltaic and pumped storage stations aimed at power supply for 40 rural houses are considered. The electric circuits of station and their acting regularities are developed and submitted. The both generation curve of photovoltaic station and load curve of electrical customer are considered. The power of hydraulic unit, pumping unit and photovoltaic station are calculated

  11. Characteristic Length Scales in Fracture Networks: Hydraulic Connectivity through Periodic Hydraulic Tests

    Science.gov (United States)

    Becker, M.; Bour, O.; Le Borgne, T.; Longuevergne, L.; Lavenant, N.; Cole, M. C.; Guiheneuf, N.

    2017-12-01

    Determining hydraulic and transport connectivity in fractured bedrock has long been an important objective in contaminant hydrogeology, petroleum engineering, and geothermal operations. A persistent obstacle to making this determination is that the characteristic length scale is nearly impossible to determine in sparsely fractured networks. Both flow and transport occur through an unknown structure of interconnected fracture and/or fracture zones making the actual length that water or solutes travel undetermined. This poses difficulties for flow and transport models. For, example, hydraulic equations require a separation distance between pumping and observation well to determine hydraulic parameters. When wells pairs are close, the structure of the network can influence the interpretation of well separation and the flow dimension of the tested system. This issue is explored using hydraulic tests conducted in a shallow fractured crystalline rock. Periodic (oscillatory) slug tests were performed at the Ploemeur fractured rock test site located in Brittany, France. Hydraulic connectivity was examined between three zones in one well and four zones in another, located 6 m apart in map view. The wells are sufficiently close, however, that the tangential distance between the tested zones ranges between 6 and 30 m. Using standard periodic formulations of radial flow, estimates of storativity scale inversely with the square of the separation distance and hydraulic diffusivity directly with the square of the separation distance. Uncertainty in the connection paths between the two wells leads to an order of magnitude uncertainty in estimates of storativity and hydraulic diffusivity, although estimates of transmissivity are unaffected. The assumed flow dimension results in alternative estimates of hydraulic parameters. In general, one is faced with the prospect of assuming the hydraulic parameter and inverting the separation distance, or vice versa. Similar uncertainties exist

  12. Resonance sensitivity of hydropower and pumping stations

    Energy Technology Data Exchange (ETDEWEB)

    Popescu, M.; Halanay, A.

    1984-09-01

    Comparative analysis of resonance diagrams for several hydropower and pumping stations with surge tanks and air chambers shows large differences in the maximum resonance pressures. A strategy is advocated which consists of hydraulic resonance computations coupled with practical surveillance measures during the operation of resonance sensitive hydraulic systems. A fundamental hydraulic scheme is considered consisting of a reservoir, a pressure tunnel, a surge tank, a penstock and a turbine combined into a hydropower station. It is suggested that for each hydraulic surge system it is necessary to carry out special resonance analyses following the normal procedure to obtain the resonance sensitivity. For hydraulic systems which are resonance sensitive, mechanical electronic equipment should be used to measure non-stationary pressures of the water in the conduit as a way of continuous surveillance during functioning. 6 references, 6 figures.

  13. Parameter Design for the Energy Regeneration System of Series Hydraulic Hybrid Bus

    Directory of Open Access Journals (Sweden)

    Song Yunpu

    2014-02-01

    Full Text Available This paper simplifies the energy recovery process in the series hydraulic hybrid bus’ energy regeneration system into a process in which the main axle’s moment of inertia drives the secondary element variable delivery pump/motor and brings hydraulic oil from the oil tank to the accumulator. This process enables braking of the vehicle and also allows recovery of energy to the accumulator. Based on the flow equation for the secondary element variable delivery pump/motor and the torque equilibrium equation for its axle, the force equilibrium equation for vehicle braking and the pressure variation and flow continuity equations for the accumulator, simulation studies are conducted to analyze the effects of various system parameters, such as accumulator capacity, displacement of the secondary element variable delivery pump/motor, initial operating pressure of the system, etc. on system performance during regenerative braking.

  14. Blade design loads on the flow exciting force in centrifugal pump

    International Nuclear Information System (INIS)

    Xu, Y; Yang, A L; Langand, D P; Dai, R

    2012-01-01

    The three-dimensional viscous flow field of two centrifugal pumps, which have the same volute, design head, design flow rate and rotational speed but the blade design load, are analyzed based on large eddy simulation. The comparisons are implemented including the hydraulic efficiencies, flow field characteristics, pressure pulsations and unsteady forces applied on the impellers to investigate the effect of the design blade load on hydraulic performance and flow exciting force. The numerical results show that the efficiency of the pump, the impeller blade of which has larger design load, is improved by 1.1%∼2.9% compared to the centrifugal pump with lower blade design load. The pressure fluctuation of the pump with high design load is more remarkable. Its maximum amplitude of coefficient of static pressure is higher by 43% than the latter. At the same time the amplitude of unsteady radial force is increased by 11.6% in the time domain. The results also imply that the blade design load is an important factor on the excitation force in centrifugal pumps.

  15. Thermal-hydraulic analysis of the semiscale Mod-1 blowdown heat transfer test series

    International Nuclear Information System (INIS)

    Cozzuol, J.M.

    1976-06-01

    Selected experimental thermal-hydraulic data from the recent Semiscale Mod-1 blowdown heat transfer test series are analyzed from an experimental viewpoint with emphasis on explaining those phenomena which influence core fluid behavior. Comparisons are made between the trends measured by the system instrumentation and the trends predicted by the RELAP4 computer code to aid in obtaining an understanding of the interactions between phenomena occurring in different parts of the system. The analyses presented in this report are valuable for evaluating the adequacy and improving the predictive capability of analytical models developed to predict the system response of a pressurized water reactor during a postulated loss-of-coolant accident

  16. MODELING OF THE HEAT PUMP STATION ADJUSTABLE LOOP OF AN INTERMEDIATE HEAT-TRANSFER AGENT (Part I

    Directory of Open Access Journals (Sweden)

    Sit B.

    2009-08-01

    Full Text Available There are examined equations of dynamics and statics of an adjustable intermediate loop of heat pump carbon dioxide station in this paper. Heat pump station is a part of the combined heat supply system. Control of transferred thermal capacity from the source of low potential heat source is realized by means of changing the speed of circulation of a liquid in the loop and changing the area of a heat-transmitting surface, both in the evaporator, and in the intermediate heat exchanger depending on the operating parameter, for example, external air temperature and wind speed.

  17. Transient two-phase performance of LOFT reactor coolant pumps

    International Nuclear Information System (INIS)

    Chen, T.H.; Modro, S.M.

    1983-01-01

    Performance characteristics of Loss-of-Fluid Test (LOFT) reactor coolant pumps under transient two-phase flow conditions were obtained based on the analysis of two large and small break loss-of-coolant experiments conducted at the LOFT facility. Emphasis is placed on the evaluation of the transient two-phase flow effects on the LOFT reactor coolant pump performance during the first quadrant operation. The measured pump characteristics are presented as functions of pump void fraction which was determined based on the measured density. The calculated pump characteristics such as pump head, torque (or hydraulic torque), and efficiency are also determined as functions of pump void fractions. The importance of accurate modeling of the reactor coolant pump performance under two-phase conditions is addressed. The analytical pump model, currently used in most reactor analysis codes to predict transient two-phase pump behavior, is assessed

  18. Experimental study on the simple water hammer pump; Kan`igata water hammer pump ni kansuru kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    Muto, M; Ushiyama, I [Ashikaga Institute of Technology, Tochigi (Japan)

    1997-11-25

    Outlined herein are experimental results with a water hammer pump. It is a unique pump in that it depends only on potential energy of water to pump-up water. Water flows downwards from a reservoir at a high position into the pump , and is released from the exhaust valve. When velocity of water flowing in the pipe reaches a certain level, hydraulic force exceeds gravity of the exhaust valve to rapidly closes it, which is accompanied by rapid increase in pressure in the pump. High-pressure water flows into the air chamber, after pushing up the lifting valve, to compress air in the chamber. The lifting valve is closed, when pressure in the air chamber exceeds that in the pump, to pump up water in the chamber through the lifting pipe. Closure of the lifting valve produces a negative pressure within the pump, which, together with gravity of the exhaust valve, opens the valve again. The pump lifts water at 1.64l/min under the conditions of head: 3m and lift: 6m at an efficiency of 48.1%. 1 ref., 4 fig., 2 tab.

  19. Specific storage and hydraulic conductivity tomography through the joint inversion of hydraulic heads and self-potential data

    Science.gov (United States)

    Ahmed, A. Soueid; Jardani, A.; Revil, A.; Dupont, J. P.

    2016-03-01

    Transient hydraulic tomography is used to image the heterogeneous hydraulic conductivity and specific storage fields of shallow aquifers using time series of hydraulic head data. Such ill-posed and non-unique inverse problem can be regularized using some spatial geostatistical characteristic of the two fields. In addition to hydraulic heads changes, the flow of water, during pumping tests, generates an electrical field of electrokinetic nature. These electrical field fluctuations can be passively recorded at the ground surface using a network of non-polarizing electrodes connected to a high impedance (> 10 MOhm) and sensitive (0.1 mV) voltmeter, a method known in geophysics as the self-potential method. We perform a joint inversion of the self-potential and hydraulic head data to image the hydraulic conductivity and specific storage fields. We work on a 3D synthetic confined aquifer and we use the adjoint state method to compute the sensitivities of the hydraulic parameters to the hydraulic head and self-potential data in both steady-state and transient conditions. The inverse problem is solved using the geostatistical quasi-linear algorithm framework of Kitanidis. When the number of piezometers is small, the record of the transient self-potential signals provides useful information to characterize the hydraulic conductivity and specific storage fields. These results show that the self-potential method reveals the heterogeneities of some areas of the aquifer, which could not been captured by the tomography based on the hydraulic heads alone. In our analysis, the improvement on the hydraulic conductivity and specific storage estimations were based on perfect knowledge of electrical resistivity field. This implies that electrical resistivity will need to be jointly inverted with the hydraulic parameters in future studies and the impact of its uncertainty assessed with respect to the final tomograms of the hydraulic parameters.

  20. Power management in hydraulically actuated mobile equipment

    DEFF Research Database (Denmark)

    Pedersen, Henrik Clemmensen; Andersen, Torben Ole; Hansen, Michael Rygaard

    2008-01-01

    The focus of the current paper is on the control of hydraulic systems when utilizing the advances that electronic control may bring with regard to power management, prioritized flow sharing and anti-stall, arising from being able to control both pump, valves and engine electronically. A simple mo...

  1. Entransy analysis of irreversible heat pump using Newton and Dulong–Petit heat transfer laws and relations with its performance

    International Nuclear Information System (INIS)

    Açıkkalp, Emin

    2014-01-01

    Highlights: • Entransy analysis was made for irreversible heat pump. • Newton and Dulong–Petit heat transfer laws were used. • Entransy dissipations were defined and determined. • Relations between entransy and other thermodynamic parameters were determined. - Abstract: An irreversible heat pump was investigated via entransy analysis and performance criteria. In the analyses, two different convective heat transfer laws were applied to the considered system: the Newton and Dulong–Petit heat transfer laws. The irreversibilities in the system are the result of a finite heat transfer rate, a heat leak and internal irreversibilities, including friction, turbulence etc. In this study, a thermodynamic analysis was performed in detail, and the numerical solutions were used for the conducted analysis. The maximum entransy dissipation (critical points) ranges from 18436.7 kW K to 18855.3 kW K according to y for Newton’s law; however, there is no maximum point for the Dulon–Petit law. It can be concluded from this study that entransy should be used among the basic thermodynamic criteria

  2. Performance of a hydraulic air compressor for use in compressed air energy storage power systems

    Energy Technology Data Exchange (ETDEWEB)

    Berghmans, J. A.; Ahrens, F. W.

    1978-01-01

    A fluid mechanical analysis of a hydraulic air compression system for Compressed Air Energy Storage (CAES) application is presented. With this compression concept, air is charged into an underground reservoir, for later use in power generation, by entraining bubbles into a downward flow of water from a surface reservoir. Upon releasing the air in the underground reservoir, the water is pumped back to the surface. The analytical model delineated is used to predict the hydraulic compressor performance characteristics (pumping power, pump head, compression efficiency) as a function of water flow rate and system geometrical parameters. The results indicate that, although large water pumps are needed, efficiencies as high as 90% (relative to ideal isothermal compression) can be expected. This should result in lower compression power than for conventional compressor systems, while eliminating the need for the usual intercoolers and aftercooler.

  3. Hysteresis phenomena in hydraulic measurement

    International Nuclear Information System (INIS)

    Ran, H J; Farhat, M; Luo, X W; Chen, Y L; Xu, H Y

    2012-01-01

    Hysteresis phenomena demonstrate the lag between the generation and the removal of some physical phenomena. This paper studies the hysteresis phenomena of the head-drop in a scaled model pump turbine using experiment test and CFD methods. These lag is induced by complicated flow patterns, which influenced the reliability of rotating machine. Keeping the same measurement procedure is concluded for the hydraulic machine measurement.

  4. Experimental study on hydraulic characteristic around trash rack of a pumping station

    Science.gov (United States)

    Zhou, MinZhe; Li, TongChun; Lin, XiangYang; Liu, XiaoQing; Ding, Yuan; Liu, GuangYuan

    2017-11-01

    This paper focuses on flow pattern around trash rack of intake of a pumping station project. This pumping station undertake the task of supplying up to 3,500,000 m3 water per day for a megacity. Considering the large flow rate, high lift, multi-pipe supply and long-time operation in this water conveyance pumping station, we built a physical model test to measure the flow velocity and observe the flow pattern to verify the reasonability of preliminary design. In this test, we set 3 layers of current meters around each trash rack of intake in reservoir to collect the flow velocity. Furthermore, we design 2 operating conditions of 9 pumps to observe the change of flow pattern. Finally, we found the velocity data were in a normal range under 2 different operating conditions of the 9 pump units.

  5. Numerical identification of blade exit angle effect on the performance for a multistage centrifugal pump impeller

    Directory of Open Access Journals (Sweden)

    Babayigit Osman

    2015-01-01

    Full Text Available Nowadays, single and multistage centrifugal pumps are widely used in industrial and mining enterprises. One of the most important components of a centrifugal pump is the impeller. The performance characteristics are related to the pump comprising the head and the overall efficiency rely a great deal on the impeller geometry. In this work, effects of blade exit angle change on hydraulic efficiency of a multi stage pump impeller are investigated via Ansys-Fluent computational fluid dynamics software for constant width impeller entrance and exit gates, blade numbers and blade thickness. Firstly, the flow volume of a centrifugal pump impeller is generated and then mesh structure is formed for the full impeller flow volume. Secondly, rotational periodic flow model are adopted in order to examine the effect of periodic flow assumption on the performance predictions. Corresponding to the available experimental data, inlet mass flow rate, outlet static pressure and rotation of impeller are taken as 0.02m3s-1, 450 kPa and 2950 rpm, respectively for the water fluid. No slip boundary condition is exposed to all solid of surface in the flow volume. The continuity and Navier-Stokes equations with the k-ε turbulence model and the standard wall functions are used. During the study, numerical analyses are conducted for the blade exit angle values of 18°, 20°, 25°, 30° and 35°. In consequence of the performed analyses, it is determined that hydraulic efficiency of the pump impeller value is changed between 81.0-84.6%. The most convenient blade exit angle that yields 84.6% hydraulic efficiency at is 18°. The obtained results show that the blade exit angle range has an impact on the centrifugal pump performance describing the pump head and the hydraulic efficiency.

  6. Analysis of the energy consumed in the oil pumping and its products; Analise da energia consumida no bombeamento de petroleo e seus derivados

    Energy Technology Data Exchange (ETDEWEB)

    Araujo, Fabio Arbex [PETROBRAS S.A., Rio de Janeiro, RJ (Brazil); Santiago, Adilson da Silva [TRANSPETRO - PETROBRAS Transporte S.A., Rio de Janeiro, RJ (Brazil)

    2003-07-01

    This work describes a computer application for monitoring the operation of a set of motor-pumps of a pipeline. It provides information for the analysis of the electrical and hydraulic variables of these equipment allowing a better control of the transference of fluids through the pipeline. It also makes possible knowing the consumption of energy and the power level used. It helps establishing optimal operation conditions and to generate efficiency indices for the control of the equipment. (author)

  7. EQUILIBRIO HIDRÁULICO EN SISTEMAS DE BOMBEO MINERO: ESTUDIO DE CASO HYDRAULIC BALANCE ON MINE PUMPING SYSTEMS: A CASE STUDY

    Directory of Open Access Journals (Sweden)

    Luis Enrique Ortiz Vidal

    2010-12-01

    Full Text Available Fue evaluada la influencia del uso de los métodos de Hazen-Williams y Darcy-Weisbach en el establecimiento del equilibrio hidráulico para un sistema de bombeo minero. Empresas mineras con actividad subterránea hacen uso de estaciones de bombeo para evacuar el agua, producto de la profundización de sus labores. Proyectistas y vendedores de equipos de bombeo usan diferentes expresiones para la estimación de la pérdida de carga total del sistema, parámetro importante para la determinación del equilibrio hidráulico. El presente estudio tiene como objetivo analizar y validar la aplicación de algunas de estas expresiones para un sistema de bombeo minero. Las principales características del estudio de caso son: caudal de agua de 1.350 l/s; tuberías de acero y HDPE de 16 in y 18 in de diámetro, respectivamente; longitud total de la tubería de 2.900 m; y una altura geodésica de 230 m. Los cálculos fueron realizados con los métodos ya mencionados teniendo las expresiones de Haaland, Swamee-Jain y Churchill como factores de fricción. Los resultados obtenidos fueron comparados con los medidos en campo, teniéndose una desviación máxima del sistema de 28,6% y 3,1% para la pérdida de carga y Hman total, respectivamente.This study evaluates the influence of the Hazen-Williams and Darcy-Weisbach methods on the hydraulic balance of a mine pumping system. Underground mining sompanies use pumping stations for evacuate the produced water. Designers and equipment sellers use different expressions to estimate the head loss. This study analyzes and validates the implementation of some of these expressions to a mine pumping system. The features of the case study are: water flow rate of 1350 l/s, steel and HDPE diameter pipes of 16in. and 18in., respectively. The total pipe length is 2900m, and the hydraulic height difference is 230 m. The calculations were performed by the above-mention methods, taking the expressions of Haaland, Swamee-Jain and

  8. Investigation of the Hydrodynamics of Sweep Blade in Hi-Speed Axial Fuel Pump Impeller

    Directory of Open Access Journals (Sweden)

    Ran Tao

    2013-01-01

    Full Text Available Fuel pump is a crucial component in aircraft engine ignition system. For the hi-speed axial fuel pumps, rotating stall triggers vortex and affects the operation stability and security. Sweep blade is widely used to solve the stability problems in aerodynamics field. Investigation on the hydrodynamics was conducted in this study. Based on the typical straight blade pump, positive and negative sweep blade pumps were modeled. With the large eddy simulation method, CFD simulations were conducted to calculate and analyze the flow characteristics in the pump models. To verify the simulation, experiments were also launched on the hydraulic test rig. Results show that the vortex occurs at the suction surface of blade and gathers near the blade tip region. Positive sweep blade is effective to reduce the hydraulic losses by driving the stalled fluid into the mid-part of blade. By applying the positive sweep blade on the axial fuel pump, the instability operating region will be diminished. Adopting sweep blade provides an effective means for stability and security of axial fuel pumps.

  9. Impeller inlet geometry effect on performance improvement for centrifugal pumps

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Xianwu; Zhang, Yao; Peng, Junqi; Xu, Hongyuan [Tsinghua University, Beijing (China); Yu, Weiping [Zhejiang Pump Works, Zhejiang (China)

    2008-10-15

    This research treats the effect of impeller inlet geometry on performance improvement for a boiler feed pump, who is a centrifugal pump having specific speed of 183 m.m{sup 3}min{sup -1}.min{sup -1} and close type impeller with exit diameter of 450 mm. The hydraulic performance and cavitation performance of the pump have been tested experimentally. In order to improve the pump, five impellers have been considered by extending the blade leading edge or applying much larger blade angle at impeller inlet compared with the original impeller. The 3-D turbulent flow inside those pumps has been analyzed basing on RNG k-{epsilon} turbulence model and VOF cavitation model. It is noted that the numerical results are fairly good compared with the experiments. Based on the experimental test and numerical simulation, the following conclusions can be drawn: (1) Impeller inlet geometry has important influence on performance improvement in the case of centrifugal pump. Favorite effects on performance improvement have been achieved by both extending the blade leading edge and applying much larger blade angle at impeller inlet: (2) It is suspected that the extended leading edge have favorite effect for improving hydraulic performance, and the much larger blade angle at impeller inlet have favorite effect for improving cavitation performance for the test pump: (3) Uniform flow upstream of impeller inlet is helpful for improving cavitation performance of the pump

  10. An evaluation of calculation procedures affecting the constituent factors of equivalent circulating density for drilling hydraulics

    Energy Technology Data Exchange (ETDEWEB)

    Bailey, William J.

    1996-12-31

    This Dr. ing. thesis covers a study of drilling hydraulics offshore. The purpose of drilling hydraulics is to provide information about downhole pressure, suitable surface pump rates, the quality of hole cleaning and optimum tripping speeds during drilling operations. Main fields covered are drilling hydraulics, fluid characterisation, pressure losses, and equivalent circulating density. 197 refs., 23 figs., 22 tabs.

  11. An evaluation of calculation procedures affecting the constituent factors of equivalent circulating density for drilling hydraulics

    Energy Technology Data Exchange (ETDEWEB)

    Bailey, William J

    1997-12-31

    This Dr. ing. thesis covers a study of drilling hydraulics offshore. The purpose of drilling hydraulics is to provide information about downhole pressure, suitable surface pump rates, the quality of hole cleaning and optimum tripping speeds during drilling operations. Main fields covered are drilling hydraulics, fluid characterisation, pressure losses, and equivalent circulating density. 197 refs., 23 figs., 22 tabs.

  12. Thermal-Hydraulic Analysis of a Once-Through Steam Generator Considering Performance Degradation

    International Nuclear Information System (INIS)

    Han, Hun Sik; Kang, Han Ok; Yoon, Ju Hyeon; Kim, Young In; Song, Jae Seung; Kim, Keung Koo

    2016-01-01

    Several countries have entered into a global race for the commercialization of SMRs, and considerable research and development have been implemented. Among the various reactor designs, many SMRs have adopted an integral type pressurized water reactor (PWR) to enhance the nuclear safety and system reliability. In the integral reactor design, a single reactor pressure vessel contains primary system components such as fuel and core, steam generators, pumps, and a pressurizer. For the component integration into a reactor vessel, it is important to design each component as small as possible. Thus, it is a common practice to employ a once-through steam generator in the integral reactor design due to its advantages in compactness. In general, gradual degradation in thermal-hydraulic performance of the steam generator occurs with time, and it changes slowly the operating point of the steam generator during plant lifetime. Numerical solutions are acquired to evaluate the thermal-hydraulic performance of the steam generator at various AUFs. The design results obtained show that the average tube length of the steam generator is augmented with the increase of design margin to compensate for the design uncertainties and heat transfer area reduction by plugging, fouling, etc. A helically coiled tube once-through steam generator with 30% design margin is considered for comparison of thermal-hydraulic performances according to the degradation rate

  13. Thermal-Hydraulic Analysis of a Once-Through Steam Generator Considering Performance Degradation

    Energy Technology Data Exchange (ETDEWEB)

    Han, Hun Sik; Kang, Han Ok; Yoon, Ju Hyeon; Kim, Young In; Song, Jae Seung; Kim, Keung Koo [KAERI, Daejeon (Korea, Republic of)

    2016-05-15

    Several countries have entered into a global race for the commercialization of SMRs, and considerable research and development have been implemented. Among the various reactor designs, many SMRs have adopted an integral type pressurized water reactor (PWR) to enhance the nuclear safety and system reliability. In the integral reactor design, a single reactor pressure vessel contains primary system components such as fuel and core, steam generators, pumps, and a pressurizer. For the component integration into a reactor vessel, it is important to design each component as small as possible. Thus, it is a common practice to employ a once-through steam generator in the integral reactor design due to its advantages in compactness. In general, gradual degradation in thermal-hydraulic performance of the steam generator occurs with time, and it changes slowly the operating point of the steam generator during plant lifetime. Numerical solutions are acquired to evaluate the thermal-hydraulic performance of the steam generator at various AUFs. The design results obtained show that the average tube length of the steam generator is augmented with the increase of design margin to compensate for the design uncertainties and heat transfer area reduction by plugging, fouling, etc. A helically coiled tube once-through steam generator with 30% design margin is considered for comparison of thermal-hydraulic performances according to the degradation rate.

  14. Research and Development (R&D) on Advanced Nonstructural Materials. Delivery Order 0001: Study of Hydraulic System Component Storage With Operational and Rust-Inhibited Hydraulic Fluids

    National Research Council Canada - National Science Library

    Gschwender, Lois J; Snyder Jr, Carl E; Sharma, Shashi K; Jenney, Tim; Campo, Angela

    2004-01-01

    .... Jars, containing bearings and pistons, as well as hydraulic pumps were stored for up to 3 years in a laboratory environment to determine if operational fluids would protect them from rusting during storage...

  15. Computer aided design and development of mixed-propeller pumps

    International Nuclear Information System (INIS)

    Bhaoyal, B.C.

    1994-01-01

    This paper deals with the design principle of mixed propeller hydraulic aided by CADD software developed by author for generation of the hydraulic profile of the mixed propeller and diffuser geometry. The design methodology for plotting the vane profile of mixed propeller pump has been discussed in detail with special reference to conformal transformation in cylindrical as well as conical plane. (author). 10 refs., 11 figs

  16. System Topology Optimization - An Approach to System Design of Electro-Hydraulic-Mechanical Systems

    DEFF Research Database (Denmark)

    Andersen, T. O.; Hansen, M. R.; Conrad, Finn

    2003-01-01

    The current paper presents an approach to system design of combined electro-hydraulic-mechanical systems. The approach is based on the concurrent handling of the topology as well as the design parameters of the mechanical, hydraulic and controller sub- systems, respectively. Based on an initial...... design the procedure attempts to find the optimal topology and the related parameters. The topology considerations comprise the type of hydraulic pump, the employment of knee linkages or not as well as the type of hydraulic actuators. The design variables also include the signals to the proportional...... valve in a number of predefined load cases as well as the hydraulic and mechanical parameters....

  17. A study of unsteady physiological magneto-fluid flow and heat transfer through a finite length channel by peristaltic pumping.

    Science.gov (United States)

    Tripathi, Dharmendra; Bég, O Anwar

    2012-08-01

    Magnetohydrodynamic peristaltic flows arise in controlled magnetic drug targeting, hybrid haemodynamic pumps and biomagnetic phenomena interacting with the human digestive system. Motivated by the objective of improving an understanding of the complex fluid dynamics in such flows, we consider in the present article the transient magneto-fluid flow and heat transfer through a finite length channel by peristaltic pumping. Reynolds number is small enough and the wavelength to diameter ratio is large enough to negate inertial effects. Analytical solutions for temperature field, axial velocity, transverse velocity, pressure gradient, local wall shear stress, volume flowrate and averaged volume flowrate are obtained. The effects of the transverse magnetic field, Grashof number and thermal conductivity on the flow patterns induced by peristaltic waves (sinusoidal propagation along the length of channel) are studied using graphical plots. The present study identifies that greater pressure is required to propel the magneto-fluid by peristaltic pumping in comparison to a non-conducting Newtonian fluid, whereas, a lower pressure is required if heat transfer is effective. The analytical solutions further provide an important benchmark for future numerical simulations.

  18. MATHEMATICAL MODELING OF WORKING PROCESS IN HYDRAULIC DRIVE OF SPECIFICALLY HEAVY-DUTY TRUCK STEERING

    Directory of Open Access Journals (Sweden)

    E. M. Zabolotsky

    2006-01-01

    Full Text Available The paper provides an analysis that shows application of pump-controlled steering hydraulic drives. Dynamic model of steering hydraulic drive of open-cast BelAZ-75131 dump truck developed at BNTU and also mathematical models for circuit consisting of a metering pump and a turning cylinder and a flow amplifier and a turning cylinder with due account of compressibility and resistance of service drain line. It is noted that on the basis of the given methodology a multi-variant dynamic calculation has been carried out, drive dynamics has been analyzed at various design and component parameters of a metering pump and a flow amplifier, rational values of these parameters has been selected for design development. The paper also gives an algorithm scheme for the solution of the derived equation systems.

  19. Stress analyses of pump gears produced by powder metallurgy

    Energy Technology Data Exchange (ETDEWEB)

    Cetinel, Hakan [Celal Bayar Univ., Mechanical Engineering Dept. (Turkey); Yilmaz, Burak

    2013-06-01

    In this study, trochoidal type (gerotor) hydraulic pump gears were produced by powder metallurgy (P/M) technique. Several gears with different mechanical properties have been obtained by changing process variables. The tooth contact stresses were calculated analytically under particular operation conditions of the hydraulic pump. The 3D models have been obtained from real gears by using Capability Maturity Model (CMM, 3D scanning) operation and SOLIDWORKS software. Stress analyses were conducted on these 3D models by using ANSYS WORKBENCH software. It was found that the density increases by the increase of sintering duration and mechanical properties were positively affected by the increase of density. Maximum deformation takes place in the region of the outer gear where failure generally occurs with the minimum cross-section area.

  20. Generator-absorber-heat exchange heat transfer apparatus and method and use thereof in a heat pump

    Science.gov (United States)

    Phillips, B.A.; Zawacki, T.S.

    1998-07-21

    Numerous embodiments and related methods for generator-absorber heat exchange (GAX) are disclosed, particularly for absorption heat pump systems. Such embodiments and related methods use, as the heat transfer medium, the working fluid of the absorption system taken from the generator at a location where the working fluid has a rich liquor concentration. 5 figs.

  1. Problems of the Starting and Operating of Hydraulic Components and Systems in Low Ambient Temperature (Part IV

    Directory of Open Access Journals (Sweden)

    Jasiński Ryszard

    2017-09-01

    Full Text Available Designers of hydraulically driven machines and devices are obliged to ensure during design process their high service life with taking into account their operational conditions. Some of the machines may be started in low ambient temperature and even in thermal shock conditions (due to delivering hot working medium to cold components. In order to put such devices into operation appropriate investigations, including experimental ones - usually very expensive and time-consuming, are carried out. For this reason numerical calculations can be used to determine serviceability of a hydraulic component or system operating in thermal shock conditions. Application of numerical calculation methods is much less expensive in comparison to experimental ones. This paper presents a numerical calculation method which makes it possible to solve issues of heat exchange in elements of investigated hydraulic components by using finite elements method. For performing the simulations the following data are necessary: ambient temperature, oil temperature, heat transfer coefficient between oil and surfaces of elements, as well as areas of surfaces being in contact with oil. By means of computer simulation method values of clearance between cooperating elements as well as ranges of parameters of correct and incorrect operation of hydraulic components have been determined. In this paper results of computer simulation of some experimentally tested hydraulic components such as axial piston pump and proportional spool valve, are presented. The computer simulation results were compared with the experimental ones and high conformity was obtained.

  2. A field assessment of the value of steady shape hydraulic tomography for characterization of aquifer heterogeneities

    Science.gov (United States)

    Bohling, Geoffrey C.; Butler, James J.; Zhan, Xiaoyong; Knoll, Michael D.

    2007-01-01

    Hydraulic tomography is a promising approach for obtaining information on variations in hydraulic conductivity on the scale of relevance for contaminant transport investigations. This approach involves performing a series of pumping tests in a format similar to tomography. We present a field‐scale assessment of hydraulic tomography in a porous aquifer, with an emphasis on the steady shape analysis methodology. The hydraulic conductivity (K) estimates from steady shape and transient analyses of the tomographic data compare well with those from a tracer test and direct‐push permeameter tests, providing a field validation of the method. Zonations based on equal‐thickness layers and cross‐hole radar surveys are used to regularize the inverse problem. The results indicate that the radar surveys provide some useful information regarding the geometry of the K field. The steady shape analysis provides results similar to the transient analysis at a fraction of the computational burden. This study clearly demonstrates the advantages of hydraulic tomography over conventional pumping tests, which provide only large‐scale averages, and small‐scale hydraulic tests (e.g., slug tests), which cannot assess strata connectivity and may fail to sample the most important pathways or barriers to flow.

  3. Evaluation of advanced turbomachinery for underground pumped hydroelectric storage. Part 3. Multistage unregulated pump/turbines for operating heads of 1000 to 1500 m

    Energy Technology Data Exchange (ETDEWEB)

    Frigo, A.A.; Pistner, C.

    1980-08-01

    This is the final report in a series of three on studies of advanced hydraulic turbomachinery for underground pumped hydroelectric storage. All three reports address Francis-type, reversible pump/turbines. The first report covered single-stage regulated units; the second report covered two-stage regulated units; the present report covers multistage unregulated units. Multistage unregulated pump/turbines offer an economically attractive option for heads of 1000 to 1500 m. The feasibility of developing such machines for capacities up to 500 MW and operating heads up to 1500 m has been evaluated. Preliminary designs have been generated for six multistage pump/turbines. The designs are for nominal capacities of 350 and 500 MW and for operating heads of 1000, 1250, and 1500 m. Mechanical, hydraulic, and economic analyses indicate that these machines will behave according to the criteria used to design them and that they can be built at a reasonable cost with no unsolvable problems. Efficiencies of 85.8% and 88.5% in the generating and pumping modes, respectively, can be expected for the 500-MW, 1500-m unit. Performances of the other five machines are at least comparable, and usually better. Over a 1000 to 1500-m head range, specific $/kW costs of the pump/turbines in mid-1978 US dollars vary from 19.0 to 23.1 for the 500-MW machines, and from 21.0 to 24.1 for the 350-MW machines.

  4. Servo-hydraulic actuator in controllable canonical form: Identification and experimental validation

    Science.gov (United States)

    Maghareh, Amin; Silva, Christian E.; Dyke, Shirley J.

    2018-02-01

    Hydraulic actuators have been widely used to experimentally examine structural behavior at multiple scales. Real-time hybrid simulation (RTHS) is one innovative testing method that largely relies on such servo-hydraulic actuators. In RTHS, interface conditions must be enforced in real time, and controllers are often used to achieve tracking of the desired displacements. Thus, neglecting the dynamics of hydraulic transfer system may result either in system instability or sub-optimal performance. Herein, we propose a nonlinear dynamical model for a servo-hydraulic actuator (a.k.a. hydraulic transfer system) coupled with a nonlinear physical specimen. The nonlinear dynamical model is transformed into controllable canonical form for further tracking control design purposes. Through a number of experiments, the controllable canonical model is validated.

  5. Fast Flux Test Facility sodium pump operating experience - mechanical

    International Nuclear Information System (INIS)

    Buonamici, R.

    1987-11-01

    The Heat Transport System (HTS) pumps were designed, fabricated, tested, and installed in the Fast Flux Test Facility (FFTF) Plant during the period from September 1970 through July 1977. Since completion of the installation and sodium fill in December 1978, the FFTF Plant pumps have undergone extensive testing and operation with HTS testing and reactor operation. Steady-state hydraulic and mechanical performances have been and are excellent. In all, FFTF primary and secondary pumps have operated in sodium for approximately 75,000 hours and 79,000 hours, respectively, to August 24, 1987

  6. MODELING OF THE HEAT PUMP STATION CONTROLABLE LOOP OF AN INTERMEDIATE HEAT-TRANSFER AGENT (Part II

    Directory of Open Access Journals (Sweden)

    Sit M.L.

    2011-08-01

    Full Text Available It is studied the model of the heat pump station controllable loop of an intermediate heat-transfer agent for the use in wineries. There are demonstrated transients after the disturbing action of the temperature on the input of cooling jacket of the fermentation stirred tank. There are compared different control laws of the object.

  7. Mathematical modelling of flow in disc friction LVAD pump

    Science.gov (United States)

    Medvedev, A. E.; Fomin, V. M.; Prikhodko, Yu. M.; Cherniavskiy, A. M.; Fomichev, V. P.; Fomichev, A. V.; Chekhov, V. P.; Ruzmatov, T. M.

    2017-10-01

    The need for blood circulation support systems in the treatment of chronic heart failure is constantly increasing as 20% of patients on the waiting list die every year. Despite the great need for mechanical heart support systems the use of available systems is limited by the high cost. Therefore, further research in the field of circulatory support systems is appropriate taking into account medical and technical requirements. One of the new research areas is viscous friction disk pumps for transporting liquids based on the Tesla pump principle. The experimental model of LVAD disk pump is developed. Analytical dependencies are obtained to optimize the hydraulic parameters of the pump. On their basis, the experimental model of LVAD disk pump was designed and created. The results of analytical and experimental studies of such a pump are presented.

  8. Charge-pump voltage converter

    Science.gov (United States)

    Brainard, John P [Albuquerque, NM; Christenson, Todd R [Albuquerque, NM

    2009-11-03

    A charge-pump voltage converter for converting a low voltage provided by a low-voltage source to a higher voltage. Charge is inductively generated on a transfer rotor electrode during its transit past an inductor stator electrode and subsequently transferred by the rotating rotor to a collector stator electrode for storage or use. Repetition of the charge transfer process leads to a build-up of voltage on a charge-receiving device. Connection of multiple charge-pump voltage converters in series can generate higher voltages, and connection of multiple charge-pump voltage converters in parallel can generate higher currents. Microelectromechanical (MEMS) embodiments of this invention provide a small and compact high-voltage (several hundred V) voltage source starting with a few-V initial voltage source. The microscale size of many embodiments of this invention make it ideally suited for MEMS- and other micro-applications where integration of the voltage or charge source in a small package is highly desirable.

  9. Thermal-hydraulics of helium cooled First Wall channels and scoping investigations on performance improvement by application of ribs and mixing devices

    Energy Technology Data Exchange (ETDEWEB)

    Arbeiter, Frederik, E-mail: frederik.arbeiter@kit.edu [Karlsruhe Institute of Technology, Institute of Neutron Physics and Reactor Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); Bachmann, Christian [EUROfusion – Programme Management Unit, Garching (Germany); Chen, Yuming; Ilić, Milica; Schwab, Florian [Karlsruhe Institute of Technology, Institute of Neutron Physics and Reactor Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); Sieglin, Bernhard [Max-Planck-Institut für Plasmaphysik, Garching (Germany); Wenninger, Ronald [EUROfusion – Programme Management Unit, Garching (Germany)

    2016-11-01

    Highlights: • Existing first wall designs and expected plasma heat loads are reviewed. • Heat transfer enhancement methods are investigated by CFD. • The results for heat transfer and friction are given, compared and explained. • Relations for needed pumping power and gained thermal heat are shown. • A range for the maximum permissible heat loads from the plasma is estimated. - Abstract: The first wall (FW) of DEMO is a component with high thermal loads. The cooling of the FW has to comply with the material's upper and lower temperature limits and requirements from stress assessment, like low temperature gradients. Also, the cooling has to be integrated into the balance-of-plant, in a sense to deliver exergy to the power cycle and require a limited pumping power for coolant circulation. This paper deals with the basics of FW cooling and proposes optimization approaches. The effectiveness of several heat transfer enhancement techniques is investigated for the use in helium cooled FW designs for DEMO. Among these are wall-mounted ribs, large scale mixing devices and modified hydraulic diameter. Their performance is assessed by computational fluid dynamics (CFD), and heat transfer coefficients and pressure drop are compared. Based on the results, an extrapolation to high heat fluxes is tried to estimate the higher limits of cooling capabilities.

  10. Performance and efficiency of a hydraulic hybrid powertrain

    Energy Technology Data Exchange (ETDEWEB)

    Karbaschian, Mohammad Ali [Duisburg-Essen Univ. (Germany). Faculty of Engineering

    2012-11-01

    Hydraulic hybrid powertrains are considered to be a promising technology to save energy and reduce emission in specific automotive fields because of their high power density, components lifetime, and long lasting experience in industries compared to electric hybrid powertrains. Within the first part of the paper, a very brief literature survey on hydraulic hybrid vehicle systems (HHVS) and the related dynamical behaviour is given. No specific activities to improve the efficiency of these systems were detected. Related literature with respect to optimization mainly deals with the management of the system's energy flows trying to control the engine operation point and the high pressure in the system. In the second part, a small simulation study is presented. Therefore, hybrid systems are generally assumed as a Multi-Input-Multi-Output (MIMO) system. The effect of key variables (i.e. accumulator size and pressure, pump/motor displacement and efficiency, valve dynamics) on the system is discussed. The results show that the volume displacement of pump and motor, the performance of the engine, and the state of charge of the accumulator are the most important parameters to specify the efficiency and performance of the hydraulic hybrid powertrain. Additionally, a hybrid hydraulic powertrain with an adjustable state of charge accumulator is compared with one whose state of charge is constant. The result shows the improvement of braking performance and fuel savings. The goal is to optimize the parameters of the system based on the simultaneous consideration of the three (or more) variables for a given load profile with respect to given objectives. (orig.)

  11. A 6-DOF vibration isolation system for hydraulic hybrid vehicles

    Science.gov (United States)

    Nguyen, The; Elahinia, Mohammad; Olson, Walter W.; Fontaine, Paul

    2006-03-01

    This paper presents the results of vibration isolation analysis for the pump/motor component of hydraulic hybrid vehicles (HHVs). The HHVs are designed to combine gasoline/diesel engine and hydraulic power in order to improve the fuel efficiency and reduce the pollution. Electric hybrid technology is being applied to passenger cars with small and medium engines to improve the fuel economy. However, for heavy duty vehicles such as large SUVs, trucks, and buses, which require more power, the hydraulic hybridization is a more efficient choice. In function, the hydraulic hybrid subsystem improves the fuel efficiency of the vehicle by recovering some of the energy that is otherwise wasted in friction brakes. Since the operation of the main component of HHVs involves with rotating parts and moving fluid, noise and vibration are an issue that affects both passengers (ride comfort) as well as surrounding people (drive-by noise). This study looks into the possibility of reducing the transmitted noise and vibration from the hydraulic subsystem to the vehicle's chassis by using magnetorheological (MR) fluid mounts. To this end, the hydraulic subsystem is modeled as a six degree of freedom (6-DOF) rigid body. A 6-DOF isolation system, consisting of five mounts connected to the pump/motor at five different locations, is modeled and simulated. The mounts are designed by combining regular elastomer components with MR fluids. In the simulation, the real loading and working conditions of the hydraulic subsystem are considered and the effects of both shock and vibration are analyzed. The transmissibility of the isolation system is monitored in a wide range of frequencies. The geometry of the isolation system is considered in order to sustain the weight of the hydraulic system without affecting the design of the chassis and the effectiveness of the vibration isolating ability. The simulation results shows reduction in the transmitted vibration force for different working cycles of

  12. Dynamic characteristics of a pump-turbine during hydraulic transients of a model pumped-storage system: 3D CFD simulation

    International Nuclear Information System (INIS)

    Zhang, X X; Cheng, Y G; Xia, L S; Yang, J D

    2014-01-01

    The runaway process in a model pumped-storage system was simulated for analyzing the dynamic characteristics of a pump-turbine. The simulation was adopted by coupling 1D (One Dimensional) pipeline MOC (Method of Characteristics) equations with a 3D (Three Dimensional) pump-turbine CFD (Computational Fluid Dynamics) model, in which the water hammer wave in the 3D zone was defined by giving a pressure dependent density. We found from the results that the dynamic performances of the pump-turbine do not coincide with the static operating points, especially in the S-shaped characteristics region, where the dynamic trajectories follow ring-shaped curves. Specifically, the transient operating points with the same Q 11 and M 11 in different moving directions of the dynamic trajectories give different n 11 . The main reason of this phenomenon is that the transient flow patterns inside the pump-turbine are influenced by the ones in the previous time step, which leads to different flow patterns between the points with the same Q 11 and M 11 in different moving directions of the dynamic trajectories

  13. Dynamic characteristics of a pump-turbine during hydraulic transients of a model pumped-storage system: 3D CFD simulation

    Science.gov (United States)

    Zhang, X. X.; Cheng, Y. G.; Xia, L. S.; Yang, J. D.

    2014-03-01

    The runaway process in a model pumped-storage system was simulated for analyzing the dynamic characteristics of a pump-turbine. The simulation was adopted by coupling 1D (One Dimensional) pipeline MOC (Method of Characteristics) equations with a 3D (Three Dimensional) pump-turbine CFD (Computational Fluid Dynamics) model, in which the water hammer wave in the 3D zone was defined by giving a pressure dependent density. We found from the results that the dynamic performances of the pump-turbine do not coincide with the static operating points, especially in the S-shaped characteristics region, where the dynamic trajectories follow ring-shaped curves. Specifically, the transient operating points with the same Q11 and M11 in different moving directions of the dynamic trajectories give different n11. The main reason of this phenomenon is that the transient flow patterns inside the pump-turbine are influenced by the ones in the previous time step, which leads to different flow patterns between the points with the same Q11 and M11 in different moving directions of the dynamic trajectories.

  14. Pump selection and application in a pressurized water reactor electric generating plant

    International Nuclear Information System (INIS)

    Kitch, D.M.

    1985-01-01

    Various pump applications utilized in a nuclear pressurized water reactor electric generating plant are described. Emphasis is on pumps installed in the auxiliary systems of the primary nuclear steam supply system. Hydraulic and mechanical details, the ASME Code (Nuclear Design), materials, mechanical seals, shaft design, seismic qualification, and testing are addressed

  15. Thermal-hydraulic process for cooling, heating and power production with low-grade heat sources in residential sector

    International Nuclear Information System (INIS)

    Borgogno, R.; Mauran, S.; Stitou, D.; Marck, G.

    2017-01-01

    Highlights: • Assessment of solar thermal-hydraulic process for tri-generation application. • Choice of the most suitable working fluid pair (R1234yf/R1233zd). • Evaluation of the global annual performance in Mediterranean climate. • Global annual COP and heat amplification achieving 0.24 and 1.2 respectively. • Global annual performance achieving an electric efficiency of 3.7%. - Abstract: A new process based on thermal-hydraulic conversion actuated by low-grade thermal energy is investigated. Input thermal energy can be provided by the means of solar collectors, as well as other low temperature energy sources. In the following article, “thermo-hydraulic” term refers to a process involving an incompressible fluid used as an intermediate medium to transfer work hydraulically between different thermal operated components or sub-systems. The system aims at providing trigeneration energy features for the residential sector, that is providing heating, cooling and electrical power for meeting the energy needs of domestic houses. This innovative system is made of two dithermal processes (working at two different levels of temperatures) and featuring two different working fluids. The first process is able to directly supply either electrical energy generated by an hydraulic turbine or drives the second process thanks to the incompressible fluid, which is similar to a heat pump effect for heating or cooling purposes. The innovative aspect of this process relies on the use of an hydraulic transfer fluid to transfer the work between each sub-system and therefore simplifying the conversion chain. A model, assuming steady-state operation, is developed to assess the energy performances of different variants of this thermo-hydraulic process with various heat source temperatures (80–110 °C) or heat sinks (0–30 °C), as well as various pairs of working fluids. For instance, in the frame of a single-family home, located in the Mediterranean region, the working

  16. Control rod driving hydraulic pressure device

    International Nuclear Information System (INIS)

    Ogawa, Masahide.

    1993-01-01

    The present invention concerns a control rod driving hydraulic device of a BWR type reactor, and provides an improvement for a means for supplying mechanical seal flashing water of a pump. That is, a mechanical seal flashing pipeline is branched at the downstream of a pressure-reducing orifice and connected to a minimum flow pipeline. With such a constitution, the minimum flow pipeline is connected to a minimum flow pipeline of an auxiliary pump at the downstream of the pressure-reducing orifice and returned to a suction pipeline of the pump. Pressure at the downstream of the pressure-reducing orifice is set, in the orifice, to a pressure required for mechanical seal flashing. Accordingly, the mechanical seal flashing pipeline is connected and a part of minimum flow rate is utilized, thereby enabling to cool mechanical seals. As a result, flow rate of the mechanical flashing water which has been flown out can be saved. The exhaustion amount from the pump can be reduced, to decrease the shaft power and reduce the capacity of the motor. (I.S.)

  17. Concrete volute pumps: technology review and improvement

    Science.gov (United States)

    Prunières, R.; Longatte, F.; Catelan, F. X.; Philippot, J. M.

    2012-11-01

    When pumps need to deliver large water flow rates (typically more than 5 m3.s-1), concrete volute pumps (CVP) offer an interesting alternative to standard vertical wet-pit pumps. One of the major advantages of CVP is its simplicity in terms of design, manufacturability and maintainability. In addition, CVP geometrical arrangement allows to reach high performances in terms of hydraulic and mechanical behaviour. These advantages can be specifically appreciated when such pumps are used in the energy field for Power Plants which need high flow rate and reliability, and can lead to important financial savings over the Plant lifetime compared to vertical wet-pit pumps. Finally, as CVP was for a long time limited to total head rise lower than 30 mWC, it was established through CFD analysis that the addition of guide vanes between the impeller and the volute allows to achieve higher head rise without risk.

  18. Variable Displacement Control of the Concrete Pumping System Based on Dynamic Programming

    Directory of Open Access Journals (Sweden)

    Ye Min

    2017-01-01

    Full Text Available To solve the problems of cylinder piston striking cylinder and the hydraulic shocking of the main pump, and causing energy waste problem, the method of variable displacement control of piston stroke was proposed. In order to achieve effective control of the piston stroke, variable displacement control model was established under the physical constraint condition of non-collision between piston and cylinder. And the control process was realized by Dynamic Programming(DP, the simulation and test results show that piston of concrete pumping system don’t strike cylinder and reduce the hydraulic shock of the main pump outlet, meanwhile improve the response speed of the cylinder and achieve energy-saving purposes under varying loads. This control model built in the integration design space of structure variable and control variable is of guiding significance for solving open-loop system’s engineering problems.

  19. Adaptive sliding mode back-stepping pitch angle control of a variable-displacement pump controlled pitch system for wind turbines.

    Science.gov (United States)

    Yin, Xiu-xing; Lin, Yong-gang; Li, Wei; Liu, Hong-wei; Gu, Ya-jing

    2015-09-01

    A variable-displacement pump controlled pitch system is proposed to mitigate generator power and flap-wise load fluctuations for wind turbines. The pitch system mainly consists of a variable-displacement hydraulic pump, a fixed-displacement hydraulic motor and a gear set. The hydraulic motor can be accurately regulated by controlling the pump displacement and fluid flows to change the pitch angle through the gear set. The detailed mathematical representation and dynamic characteristics of the proposed pitch system are thoroughly analyzed. An adaptive sliding mode pump displacement controller and a back-stepping stroke piston controller are designed for the proposed pitch system such that the resulting pitch angle tracks its desired value regardless of external disturbances and uncertainties. The effectiveness and control efficiency of the proposed pitch system and controllers have been verified by using realistic dataset of a 750 kW research wind turbine. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.

  20. FEASIBILITY OF HYDRAULIC FRACTURING OF SOILS TO IMPROVE REMEDIAL ACTIONS

    Science.gov (United States)

    Hydraulic fracturing, a method of increasing fluid flow within the subsurface, should improve the effectiveness of several remedial techniques, including pump and treat, vapor extraction, bio-remediation, and soil-flushing. he technique is widely used to increase the yields of oi...

  1. Hydraulic design of a boiler feed pump to ensure stable operation at reduced flows

    International Nuclear Information System (INIS)

    Singal, R.K.

    1991-01-01

    The boiler feed pumps for industrial and power station boilers have to operate often at reduced capacities to meet the changing demand of steam and electricity. The operation of centrifugal pumps at reduced capacities lead to a number of unfavourable results seriously affecting the pump reliability. Some of these, such as internal recirculation of flow inside the pump have been recently studied. The paper discusses these unfavourable results and analyses various design factors which can control unstable operation of the pumps at reduced flows. The commissioning problems of boiler feed pumps faced at Rajasthan Atomic Power Plant at Kota and modifications carried out in the light of the above studies are described in the paper. (author). 2 tabs

  2. Carneiro hidráulico com tubulação de alimentação em aço galvanizado e em PVC Hydraulic ram pump perfomance with PVC and steel pipes

    Directory of Open Access Journals (Sweden)

    Caroline Abate

    2002-03-01

    Full Text Available A recente crise da energia convencional tem ocasionado a exploração de fontes alternativas de energia. O bombeamento de água utilizando carneiro hidráulico é amplamente empregado em propriedades onde a energia elétrica é escassa ou inexistente. Procurando dar subsídios técnicos para a utilização do PVC nos sistemas de alimentação de um carneiro hidráulico, foi desenvolvido um experimento com objetivo de avaliar o desempenho de um carneiro hidráulico quando alimentado por uma tubulação de PVC e outra de aço galvanizado, sob três alturas de queda (2,1, 3,8 e 4,7 m. Foi utilizada a equação de D'Aubussion's para a avaliação do rendimento, calculado a partir de leituras de altura de recalque, vazão de escape, vazão de recalque e altura de alimentação. Pode-se conseguir o máximo rendimento com o carneiro hidráulico utilizando-se de tubulação de PVC com até 4,2 m de desnível; além desse valor a tubulação de aço galvanizado é mais eficiente.The recent conventional energy crisis is leading to the exploration of alternative energy sources. The pumping of water using ram pumps is widely used in farms where electric energy is scarce or inexistent. This experiment was carried out to evaluate the performance of an hydraulic ram pump utilizing two kinds of supply pipes (PVC and steel using three different supply heads (2.1, 3.8 and 4.7. Delivery head, delivery discharge, waste discharge and supply head were utilized to calculate the yield of the hydraulic ram by the equation of D'Aubussion. The maximum yield of the hydraulic ram was obtained for the PVC pipe for the 4.2 m head; for heads higher than 4.2 m the steel pipe was more efficient.

  3. Designing an Electro-Hydraulic Control Module for an Open-Circuit Variable Displacement Pump

    DEFF Research Database (Denmark)

    Pedersen, Henrik Clemmensen; Andersen, Torben Ole; Hansen, Michael Rygaard

    2005-01-01

    , in the form of an electric control signal, under varying working conditions, when having access to engine speed and actual pump pressure. The paper presents a model of both the pump and the control module, along with design considerations on which linear controllers are developed for a worst point......This paper deals with the problem of designing an electric control module for a Sauer-Danfoss Series 45 H-frame open circuit axial piston pump. The purpose of the electric control module is to replace the existing hydro-mechanical (LS) regulator, and enable the pump to follow a reference pressure...

  4. Energy transfer efficiency from Cr(3+) to Nd(3+) in solar-pumped laser using transparent Nd/Cr:Y(3)Al(5)O(12) ceramics.

    Science.gov (United States)

    Hasegawa, Kazuo; Ichikawa, Tadashi; Mizuno, Shintaro; Takeda, Yasuhiko; Ito, Hiroshi; Ikesue, Akio; Motohiro, Tomoyoshi; Yamaga, Mitsuo

    2015-06-01

    We report energy transfer efficiency from Cr3+ to Nd3+ in Nd (1.0 at.%)/Cr (0.4 at.%) co-doped Y3Al5O12 (YAG) transparent ceramics in the laser oscillation states. The laser oscillation has performed using two pumping lasers operating at 808 nm and 561 nm; the former pumps Nd3+ directly to create the 1064 nm laser oscillation, whereas the latter assists the performance via Cr3+ absorption and sequential energy transfer to Nd3+. From the laser output power properties and laser mode analysis, the energy transfer efficiency was determined to be around 65%, which is close to that obtained from the spontaneous Nd3+ emission.

  5. Advanced Design Mixer Pump Tank 18 Design Modifications Summary Report

    International Nuclear Information System (INIS)

    Adkins, B.J.

    2002-01-01

    The Westinghouse Savannah River Company (WSRC) is preparing to retrieve high level waste (HLW) from Tank 18 in early FY03 to provide feed for the Defense Waste Processing Facility (DWPF) and to support tank closure in FY04. As part of the Tank 18 project, WSRC will install a single Advanced Design Mixer Pump (ADMP) in the center riser of Tank 18 to mobilize, suspend, and mix radioactive sludge in preparation for transfer to Tank 7. The use of a single ADMP is a change to the current baseline of four (4) standard slurry pumps used during previous waste retrieval campaigns. The ADMP was originally conceived by Hanford and supported by SRS to provide a more reliable and maintainable mixer pump for use throughout the DOE complex. The ADMP underwent an extensive test program at SRS between 1998 and 2002 to assess reliability and hydraulic performance. The ADMP ran for approximately 4,200 hours over the four-year period. A detailed tear down and inspection of the pump following the 4,2 00-hour run revealed that the gas mechanical seals and anti-friction bearings would need to be refurbished/replaced prior to deployment in Tank 18. Design modifications were also needed to meet current Authorization Basis safety requirements. This report documents the modifications made to the ADMP in support of Tank 18 deployment. This report meets the requirements of Tanks Focus Area (TFA) Milestone 3591.4-1, ''Issue Report on Modifications Made to the ADMP,'' contained in Technical Task Plan (TTP) SR16WT51, ''WSRC Retrieval and Closure.''

  6. Electromagnetic linear pump for liquid-metal service

    International Nuclear Information System (INIS)

    Meisner, J.

    Electromagnetic pumps are not noted for their efficiency - values on the order of 15% are not unusual. However, the Energy Systems Group of Rockwell International, under contract to the Department of Energy, has recently designed, built, and tested for the Clinch River Breeder Reactor Program (CRBRP) a pump that has a peak efficiency of 40%. This outstanding efficiency was obtained by optimizing the hydraulic and electrical properties of the pumping section early in the design phase. These performance features were proven in a highly successful series of tests at flow rates up to 800 gal/min and temperatures up to 1130 0 F. This article discusses the design in detail and presents some of the test results

  7. Literature survey of heat transfer and hydraulic resistance of water, carbon dioxide, helium and other fluids at supercritical and near-critical pressures

    Energy Technology Data Exchange (ETDEWEB)

    Pioro, I.L.; Duffey, R.B

    2003-04-01

    This survey consists of 430 references, including 269 Russian publications and 161 Western publications devoted to the problems of heat transfer and hydraulic resistance of a fluid at near-critical and supercritical pressures. The objective of the literature survey is to compile and summarize findings in the area of heat transfer and hydraulic resistance at supercritical pressures for various fluids for the last fifty years published in the open Russian and Western literature. The analysis of the publications showed that the majority of the papers were devoted to the heat transfer of fluids at near-critical and supercritical pressures flowing inside a circular tube. Three major working fluids are involved: water, carbon dioxide, and helium. The main objective of these studies was the development and design of supercritical steam generators for power stations (utilizing water as a working fluid) in the 1950s, 1960s, and 1970s. Carbon dioxide was usually used as the modeling fluid due to lower values of the critical parameters. Helium, and sometimes carbon dioxide, were considered as possible working fluids in some special designs of nuclear reactors. (author)

  8. CFD Modelling of a Pump as Turbine (PAT with Rounded Leading Edge Impellers for Micro Hydro Systems

    Directory of Open Access Journals (Sweden)

    Ismail Mohd Azlan

    2017-01-01

    Full Text Available A Pump as Turbine (PAT is one of micro hydro system components that is used to substitute a commercially available turbine due to its wide availability and low acquisition cost. However, PAT have high hydraulic losses due to differences in pump-turbine operation and hydraulic design. The fluid flowing inside the PAT is subjected to hydraulic losses due to the longer flow passage and unmatched fluid flow within the wall boundaries. This paper presents the effect of rounding the impeller leading edges of the pump on turbine performance. A CFD model of a PAT was designed to simulate virtual performance for the analysis. The aim of this study is to observe the internal hydraulic performance resulting from the changes in the performance characteristics. Highest efficiency was recorded at 17.0 l/s, an increase of 0.18%. The simulation results reveal that there is an improvement in hydraulic performance at overflow operation. The velocity vector visualization shows that there is a reduction in wake and consequently less flow separation along impeller flow passages. However, adjusting the sensitive impeller inlet geometry will also alter the velocity inlet vector and consequently change the velocity triangles for the turbo machinery system.

  9. ASSEMBLY DESIGN OPTIMIZATION FOR GEAR PUMP HYDRAULIC UNITS

    Directory of Open Access Journals (Sweden)

    ŞCHEAUA Fanel

    2012-09-01

    Full Text Available This paper presents a model for gear pump assembly design realized in Solid Edge V20. The aim is to highlight modelling aspects for solid part components and how to achieve an assembly from several component parts. Can be noted that computer aided design (CAD software can provide multiple options of representing various designed components, assemblies containing up to hundreds of items and part component motion simulation.

  10. Thermal-hydraulic calculation and water hammer analysis on CEFR loop system

    International Nuclear Information System (INIS)

    Hao Pengfei; Zhang Xiwen; Cai Weidong; Wang Xuefang

    1997-01-01

    China Experimental Fast Reactor (CEFR) is one of the '863' High-technical Projects. It is necessary to study the hydraulic and thermal Characteristic of CEFR loop system in order to guarantee the safety of operation. The results of the thermal-hydraulic calculation have been given. The main points are as follows: 1. The simplified model is built according to the loop system of CEFR, and the calculation method which is called 'NODE'-'BRANCH' is applied. This method includes two aspects, one is the theoretical analysis that is based on fluid mechanics and heat transfer theory. The other is the engineering calculation. These two aspects are connected in the computation. On the basis of the work mentioned above, the stable state computation is presented. In order to prevent serious damage caused by power failure accident, the courses of surplus reactor heat removing through two different systems have been simulated in the computation. 2. By using the fluid dynamics theory, the simplified model and the equipment boundary conditions of loop system are given. The water hammer computation is processed during the valve closing and pump stopping accidents. Some pictures of water hammer wave are presented, and the most dangerous state in the accident is also given

  11. Pumping Test Determination of Unsaturated Aquifer Properties

    Science.gov (United States)

    Mishra, P. K.; Neuman, S. P.

    2008-12-01

    Tartakovsky and Neuman [2007] presented a new analytical solution for flow to a partially penetrating well pumping at a constant rate from a compressible unconfined aquifer considering the unsaturated zone. In their solution three-dimensional, axially symmetric unsaturated flow is described by a linearized version of Richards' equation in which both hydraulic conductivity and water content vary exponentially with incremental capillary pressure head relative to its air entry value, the latter defining the interface between the saturated and unsaturated zones. Both exponential functions are characterized by a common exponent k having the dimension of inverse length, or equivalently a dimensionless exponent kd=kb where b is initial saturated thickness. The authors used their solution to analyze drawdown data from a pumping test conducted by Moench et al. [2001] in a Glacial Outwash Deposit at Cape Cod, Massachusetts. Their analysis yielded estimates of horizontal and vertical saturated hydraulic conductivities, specific storage, specific yield and k . Recognizing that hydraulic conductivity and water content seldom vary identically with incremental capillary pressure head, as assumed by Tartakovsky and Neuman [2007], we note that k is at best an effective rather than a directly measurable soil parameter. We therefore ask to what extent does interpretation of a pumping test based on the Tartakovsky-Neuman solution allow estimating aquifer unsaturated parameters as described by more common constitutive water retention and relative hydraulic conductivity models such as those of Brooks and Corey [1964] or van Genuchten [1980] and Mualem [1976a]? We address this question by showing how may be used to estimate the capillary air entry pressure head k and the parameters of such constitutive models directly, without a need for inverse unsaturated numerical simulations of the kind described by Moench [2003]. To assess the validity of such direct estimates we use maximum

  12. Study on the performance of the hydraulic and mass-transfer with miniature centrifugal contactor

    International Nuclear Information System (INIS)

    Wang Jianchen; Tang Wencheng; Fan Shilei; Lian Jun

    1997-01-01

    The hydraulic performance and the mass-transfer properties of HNO 3 , Fe 3+ , Nd 3+ are studied in H 2 O-30% TRPO-kerosene system at different conditions with single-stage φ = 10 mm miniature centrifugal contactor. The rotor's speed varies from 4000 r/min to 4500 r/min. The total throughput is less than 600 mL/h. the phase ratio(o/a) changes from 1/10 to 10/1. Under the above experimental conditions, the single contactor operates very well and gives good performance. The stage efficiencies of HNO 3 and Nd 3+ are about 90%. The Fe 3+ extraction is very slow kinetically and the stage efficiency of Fe 3+ is low

  13. Estimating Aquifer Properties Using Sinusoidal Pumping Tests

    Science.gov (United States)

    Rasmussen, T. C.; Haborak, K. G.; Young, M. H.

    2001-12-01

    We develop the theoretical and applied framework for using sinusoidal pumping tests to estimate aquifer properties for confined, leaky, and partially penetrating conditions. The framework 1) derives analytical solutions for three boundary conditions suitable for many practical applications, 2) validates the analytical solutions against a finite element model, 3) establishes a protocol for conducting sinusoidal pumping tests, and 4) estimates aquifer hydraulic parameters based on the analytical solutions. The analytical solutions to sinusoidal stimuli in radial coordinates are derived for boundary value problems that are analogous to the Theis (1935) confined aquifer solution, the Hantush and Jacob (1955) leaky aquifer solution, and the Hantush (1964) partially penetrated confined aquifer solution. The analytical solutions compare favorably to a finite-element solution of a simulated flow domain, except in the region immediately adjacent to the pumping well where the implicit assumption of zero borehole radius is violated. The procedure is demonstrated in one unconfined and two confined aquifer units near the General Separations Area at the Savannah River Site, a federal nuclear facility located in South Carolina. Aquifer hydraulic parameters estimated using this framework provide independent confirmation of parameters obtained from conventional aquifer tests. The sinusoidal approach also resulted in the elimination of investigation-derived wastes.

  14. The Performance Estimation of PHTS Pump of DSFR

    International Nuclear Information System (INIS)

    Cho, Chungho; Han, Ji-Woong; Kim, Jong-Man; Cho, Youngil; Jung, Min-Hwan; Gam, Da-Young; Lee, Yong-bum; Jeong, Ji-Young

    2015-01-01

    In order to estimate the hydraulic behavior of the PHTS pump in sodium environment, model tests were conducted in water experimental facility by SAMJIN Industrial Co. before model tests using the STELLA-1 with sodium environment in 2015. STELLA-1 (Sodium inTegral Effect test Loop for safety simuLation and Assessment) is a large-scale separate effect test facility for demonstrating the thermal-hydraulic performances of major components such as a Sodium-to-Sodium heat exchanger (DHX), Sodium-to-Air heat exchanger (AHX) of the decay heat removal system, and mechanical sodium pump of the primary heat transport system (PHTS), which are important to ensure the safety of the sodium-cooled fast reactor (SFR). When the model and the prototype have the same the flow coefficient, to maintaining the dynamic similarity both model and prototype the non-dimensional coefficients to be simulated are head coefficient and power coefficient

  15. Synthetical optimization of hydraulic radius and acoustic field for thermoacoustic cooler

    International Nuclear Information System (INIS)

    Kang Huifang; Li Qing; Zhou Gang

    2009-01-01

    It is well known that the acoustic field and the hydraulic radius of the regenerator play key roles in thermoacoustic processes. The optimization of hydraulic radius strongly depends on the acoustic field in the regenerator. This paper investigates the synthetical optimization of hydraulic radius and acoustic field which is characterized by the ratio of the traveling wave component to the standing wave component. In this paper, we discussed the heat flux, cooling power, temperature gradient and coefficient of performance of thermoacoustic cooler with different combinations of hydraulic radiuses and acoustic fields. The calculation results show that, in the cooler's regenerator, due to the acoustic wave, the heat is transferred towards the pressure antinodes in the pure standing wave, while the heat is transferred in the opposite direction of the wave propagation in the pure traveling wave. The better working condition for the regenerator appears in the traveling wave phase region of the like-standing wave, where the directions of the heat transfer by traveling wave component and standing wave component are the same. Otherwise, the small hydraulic radius is not a good choice for acoustic field with excessively high ratio of traveling wave, and the small hydraulic radius is only needed by the traveling wave phase region of like-standing wave.

  16. Design and control of a point absorber wave energy converter with an open loop hydraulic transmission

    International Nuclear Information System (INIS)

    Fan, YaJun; Mu, AnLe; Ma, Tao

    2016-01-01

    Highlights: • Point absorber wave energy converter is presented. • Piston pump module captures and converts wave energy. • Hydraulic accumulator stores/releases the surplus energy. • Fuzzy controller adjusts the displacement of hydraulic motor. • Generator outputs meet the electricity demand precisely. - Abstract: In this paper, a point absorber wave energy converter combined with offshore wind turbine is proposed. In the system, the wave energy is captured and converted into hydraulic energy by a piston pump module, which is combined with a wind turbine floating platform, and then the hydraulic energy is converted into electricity energy by a variable displacement hydraulic motor and induction generator. In order to smooth and stabilize the captured wave energy, a hydraulic accumulator is applied to store and release the excess energy. In order to meet the demand power a fuzzy controller is designed to adjust the displacement of hydraulic motor and controlled the output power. Simulation under irregular wave condition has been carried out to verify the validity of the mathematical model and the effectiveness of the controller strategy. The results show that the wave energy converter system could deliver the required electricity power precisely as the motor output torque is controlled. The accumulator could damp out all the fluctuations in output power, so the wave energy would become a dispatchable power source.

  17. 11. international topical meeting on nuclear reactor thermal-hydraulics (NURETH-11)

    International Nuclear Information System (INIS)

    Lemonnier, H.

    2005-01-01

    The main topics covered by the NURETH 11 meeting are the thermal-hydraulics of existing and future nuclear power plants as foreseen by the Generation IV worldwide initiative. Normal operation and accidental situations are also relevant topics of the Conference. The topics cover modeling, experiments, instrumentation and numerical simulations related to flow and heat transfer in nuclear reactors with a special emphasis on the advances of multiphase CFD methods. The first part of this Book of Abstracts enumerates the Organizing Scientific Societies, the Sponsors of the Conference, the Conference Chairs, and the members of the Steering Committee and of the Technical Program Committee. The second part of this Book of Abstracts contains the list of the titles of the contributed papers. Each item includes the log number of the paper, the abstract of which can therefore be easily located in the next section of this book. The titles of the papers have been sorted out by topics to provide a synthetic view of the contributions in a selected domain. The last section of this Book includes an index of authors and co-authors with a reference to the log number(s) of their contributed paper(s). Finally, the CD-Rom of the Conference Proceedings containing the full-length papers is inserted at the inside back cover. Sessions content: A - two-phase flow and heat transfer fundamentals: computational and mathematical techniques (numerical schemes, LBM, BEM, mesh-less, etc.); contact angle and wettability phenomena; experiments and data bases for the assessment and the verification of 3D models; flow regime identification and modelling; heat transfer near critical pressure and supercritical water reactors; interfacial area (data base, modeling, measurement techniques); instrumentation techniques; micro-scale basic phenomena, fluid flow and heat transfer; scaling methods; counter current flow; B - code developments: containment analysis; core thermal-hydraulics and subchannel analysis

  18. Studies of thermal hydraulics and heat transfer in cascade subcritical molten salt reactor

    International Nuclear Information System (INIS)

    Aysen, E.M.; Sedov, A.A.; Subbotin, A.S.

    2005-01-01

    Full text of publication follows: Cascade Subcritical Molten Salt Reactor (CSMSR) consists of three main parts: accelerator-driven proton-bombarded target, central and peripheral zones. External neutrons generated in the result of interaction of protons with the target nuclei are multiplied then in the central zone and leak farther into the peripheral reactor zone, where an efficient burning of Minor Actinides dissolved in a molten salt fluoride composition is produced. The bunch of target and two zones is designed so that preset subcriticality of reactor would not be less than 1% of k eff . A characteristic feature of the reactor is a high density of neutron flux (2.10 15 n/cm 2 s) in the central zone and target and very high volumetric power rate (2000 - 6000 W/cm 3 ) in all the parts of CSMSR. To provide a workability of the core structures under condition of so big level of power rate it is necessary to impose strict limitations on the temperatures and temperature gradients developed in the coolants and constructions. In this reason it has been arranged a calculational-designing study to reveal the problems of heat transfer in the coolant and core structures and to find more appropriate variant of the core and target design, which is a compromise of contradictory requirements: provision of high neutron flux and coolability of the core structures. In this paper the results of studies of thermal hydraulics and heat transfer in the core zones and proton-beam target are presented. Different variants of the target and central zone design as well as application of different kind of coolants in them are discussed and the main problems of heat removal in their structures are analyzed. Multidimensional fields of velocity and temperature got in thermal hydraulics calculations for free flow of fuelled molten salt in cylindrical-cave peripheral CSMSR zone without structures inside are demonstrated. The role of turbulent exchange of momentum and heat for free flow in the

  19. Operating pumps on minimum flow

    International Nuclear Information System (INIS)

    Casada, D.A.; Li, Y.C.

    1992-01-01

    The Nuclear Regulatory Commission (NRC) staff issued Information Notice (IN) 87-59 to alert all licensees to two miniflow design concerns identified by Westinghouse. The first potential problem discussed in this IN involves parallel pump operation. If the head/capacity curve of one of the parallel pumps is greater than the other, the weaker pump may be dead-headed when the pumps are operating at low-flow conditions. The other problem related to potential pump damage as a result of hydraulic instability during low-flow operation. In NRC Bulletin 88-04, dated May 5, 1988, the staff requested all licensees to investigate and correct, as applicable, the two miniflow design concerns. The staff also developed a Temporary Instruction, Tl 2515/105, dated January 29, 1990 to inspect for the adequacy of licensee response and follow-up actions to NRC Bulletin 88-04. Oak Ridge National Laboratory has reviewed utility responses to Bulletin 88-04 under auspices of the NRC's Nuclear Plant Aging Research Program, and participated in several NRC inspections. Examples of actions that have been taken, an assessment of the overall industry response, and resultant conclusions and recommendations are presented

  20. Pump station for radioactive waste water

    Science.gov (United States)

    Whitton, John P.; Klos, Dean M.; Carrara, Danny T.; Minno, John J.

    2003-11-18

    A pump station for transferring radioactive particle containing waste water, includes: (a.) an enclosed sump having a vertically elongated right frusto conical wall surface and a bottom surface and (b.) a submersible volute centrifugal pump having a horizontally rotating impeller and a volute exterior surface. The sump interior surface, the bottom surface and the volute exterior surface are made of stainless steel having a 30 Ra or finer surface finish. A 15 Ra finish has been found to be most cost effective. The pump station is used for transferring waste water, without accumulation of radioactive fines.

  1. Mixer pump test plan for double-shell tank AZ-101. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    Symons, G.A.

    1996-02-01

    Westinghouse Hanford Company has undertaken the task to develop and demonstrate a method of retrieval for double-shell tank waste. Mixer pumps were chosen as the planned method of retrieval for DSTs, based on engineering technology studies, past experience with hydraulic sluicing at the Hanford Site, and experience with mixer pumps at the Westinghouse Savannah River Site.

  2. Mixer pump test plan for double-shell tank AZ-101. Revision 1

    International Nuclear Information System (INIS)

    Symons, G.A.

    1996-02-01

    Westinghouse Hanford Company has undertaken the task to develop and demonstrate a method of retrieval for double-shell tank waste. Mixer pumps were chosen as the planned method of retrieval for DSTs, based on engineering technology studies, past experience with hydraulic sluicing at the Hanford Site, and experience with mixer pumps at the Westinghouse Savannah River Site

  3. Device for covering a string of pump-compressor pipes

    Energy Technology Data Exchange (ETDEWEB)

    Sharafutdinov, I.G.; Prokopov, O.I.; Rastorgyev, M.A.

    1982-01-01

    The invention refers to oil field equipment, and more specifically to devices for automatic coverage of the flow of gusher oil and gas wells during the development of a fire near the well. A device is described for covering the string of pump-compressor pipes which includes a housing with piston connected to the string of pump-compressor pipes, shoe, seat and assembly for fixing the piston in the upper position with heat-sensitive substance. It is distinguished by the fact that in order to improve reliability of its triggering when a fire develops, the assembly for fixing the piston is equipped with hydraulic cylinders whose rods are connected to the piston, and the heat sensitive substance is placed in the vessels whose cavities are connected to the above-piston cavities of the hydraulic cylinders and are connected by a common collector.

  4. Vertical pump turbine oil environmental evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Culver, G.

    1991-04-01

    In Oregon low-temperature geothermal injection well construction, siting and receiving formations requires approval by the Water Resources Department (OWRD). In addition, the Oregon Department of Environmental Quality (ODEQ) has regulations concerning injection. Conversations with the OWRD and ODEQ representatives indicated they were very concerned about the potential for contamination of the geothermal (and cooler but hydraulically connected) aquifers by oils and grease. Their primary concern was over the practice of putting paraffin, motor oils and other hydrocarbons in downhole heat exchanger (DHE) wells to prevent corrosion. They also expressed considerable concern about the use of oil in production well pumps since the fluids pumped would be injected. Oregon (and Idaho) prohibit the use of oil-lubricated pumps for public water supplies except in certain situations where non-toxic food-grade lubricants are used. Since enclosed-lineshaft oil-lubricated pumps are the mainstay of direct-use pumping equipment, the potential for restricting their use became a concern to the Geo-Heat Center staff. An investigation into alternative pump lubrication schemes and development of rebuttals to potential restrictions was proposed and approved as a contract task. (SM)

  5. Applied hydraulic transients

    CERN Document Server

    Chaudhry, M Hanif

    2014-01-01

    This book covers hydraulic transients in a comprehensive and systematic manner from introduction to advanced level and presents various methods of analysis for computer solution. The field of application of the book is very broad and diverse and covers areas such as hydroelectric projects, pumped storage schemes, water-supply systems, cooling-water systems, oil pipelines and industrial piping systems. Strong emphasis is given to practical applications, including several case studies, problems of applied nature, and design criteria. This will help design engineers and introduce students to real-life projects. This book also: ·         Presents modern methods of analysis suitable for computer analysis, such as the method of characteristics, explicit and implicit finite-difference methods and matrix methods ·         Includes case studies of actual projects ·         Provides extensive and complete treatment of governed hydraulic turbines ·         Presents design charts, desi...

  6. Capillary Pumped Heat Transfer (CHT) Experiment

    Science.gov (United States)

    Hallinan, Kevin P.; Allen, J. S.

    1998-01-01

    The operation of Capillary Pumped Loops (CPL's) in low gravity has generally been unable to match ground-based performance. The reason for this poorer performance has been elusive. In order to investigate the behavior of a CPL in low-gravity, an idealized, glass CPL experiment was constructed. This experiment, known as the Capillary-driven Heat Transfer (CHT) experiment, was flown on board the Space Shuttle Columbia in July 1997 during the Microgravity Science Laboratory mission. During the conduct of the CHT experiment an unexpected failure mode was observed. This failure mode was a result of liquid collecting and then eventually bridging the vapor return line. With the vapor return line blocked, the condensate was unable to return to the evaporator and dry-out subsequently followed. The mechanism for this collection and bridging has been associated with long wavelength instabilities of the liquid film forming in the vapor return line. Analysis has shown that vapor line blockage in present generation CPL devices is inevitable. Additionally, previous low-gravity CPL tests have reported the presence of relatively low frequency pressure oscillations during erratic system performance. Analysis reveals that these pressure oscillations are in part a result of long wavelength instabilities present in the evaporator pores, which likewise lead to liquid bridging and vapor entrapment in the porous media. Subsequent evaporation to the trapped vapor increases the vapor pressure. Eventually the vapor pressure causes ejection of the bridged liquid. Recoil stresses depress the meniscus, the vapor pressure rapidly increases, and the heated surface cools. The process then repeats with regularity.

  7. Factory Acceptance Test Procedure Westinghouse 100 ton Hydraulic Trailer

    International Nuclear Information System (INIS)

    Aftanas, B.L.

    1994-01-01

    This Factory Acceptance Test Procedure (FAT) is for the Westinghouse 100 Ton Hydraulic Trailer. The trailer will be used for the removal of the 101-SY pump. This procedure includes: safety check and safety procedures; pre-operation check out; startup; leveling trailer; functional/proofload test; proofload testing; and rolling load test

  8. Effects of model layer simplification using composite hydraulic properties

    Science.gov (United States)

    Kuniansky, Eve L.; Sepulveda, Nicasio; Elango, Lakshmanan

    2011-01-01

    Groundwater provides much of the fresh drinking water to more than 1.5 billion people in the world (Clarke et al., 1996) and in the United States more that 50 percent of citizens rely on groundwater for drinking water (Solley et al., 1998). As aquifer systems are developed for water supply, the hydrologic system is changed. Water pumped from the aquifer system initially can come from some combination of inducing more recharge, water permanently removed from storage, and decreased groundwater discharge. Once a new equilibrium is achieved, all of the pumpage must come from induced recharge and decreased discharge (Alley et al., 1999). Further development of groundwater resources may result in reductions of surface water runoff and base flows. Competing demands for groundwater resources require good management. Adequate data to characterize the aquifers and confining units of the system, like hydrologic boundaries, groundwater levels, streamflow, and groundwater pumping and climatic data for recharge estimation are to be collected in order to quantify the effects of groundwater withdrawals on wetlands, streams, and lakes. Once collected, three-dimensional (3D) groundwater flow models can be developed and calibrated and used as a tool for groundwater management. The main hydraulic parameters that comprise a regional or subregional model of an aquifer system are the hydraulic conductivity and storage properties of the aquifers and confining units (hydrogeologic units) that confine the system. Many 3D groundwater flow models used to help assess groundwater/surface-water interactions require calculating ?effective? or composite hydraulic properties of multilayered lithologic units within a hydrogeologic unit. The calculation of composite hydraulic properties stems from the need to characterize groundwater flow using coarse model layering in order to reduce simulation times while still representing the flow through the system accurately. The accuracy of flow models with

  9. Two-phase coolant pump model of pressurized light water nuclear reactors

    International Nuclear Information System (INIS)

    Santos, G.A. dos; Freitas, R.L.

    1990-01-01

    The two-phase coolant pump model of pressurized light water nuclear reactors is an important point for the loss of primary coolant accident analysis. The homologous curves set up the complete performance of the pump and are input for accidents analysis thermal-hydraulic codes. This work propose a mathematical model able to predict the two-phase homologous curves where it was incorporated geometric and operational pump condition. The results were compared with the experimental tests data from literature and it has showed a good agreement. (author)

  10. A quantum chemical study of the mechanism for proton-coupled electron transfer leading to proton pumping in cytochrome c oxidase

    Science.gov (United States)

    Blomberg, Margareta R. A.; Siegbahn, Per E. M.

    2010-10-01

    The proton pumping mechanism in cytochrome c oxidase, the terminal enzyme in the respiratory chain, has been investigated using hybrid DFT with large chemical models. In previous studies, a gating mechanism was suggested based on electrostatic interpretations of kinetic experiments. The predictions from that analysis are tested here. The main result is that the suggestion of a positively charged transition state for proton transfer is confirmed, while some other suggestions for the gating are not supported. It is shown that a few critical relative energy values from the earlier studies are reproduced with quite high accuracy using the present model calculations. Examples are the forward barrier for proton transfer from the N-side of the membrane to the pump-loading site when the heme a cofactor is reduced, and the corresponding back leakage barrier when heme a is oxidised. An interesting new finding is an unexpected double-well potential for proton transfer from the N-side to the pump-loading site. In the intermediate between the two transition states found, the proton is bound to PropD on heme a. A possible purpose of this type of potential surface is suggested here. The accuracy of the present values are discussed in terms of their sensitivity to the choice of dielectric constant. Only one energy value, which is not critical for the present mechanism, varies significantly with this choice and is therefore less certain.

  11. Hydraulic testing plan for the Bear Creek Valley Treatability Study, Oak Ridge Y-12 Plant, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1997-09-01

    The Bear Creek Valley (BCV) Treatability Study is intended to provide site-specific data defining potential treatability technologies applicable to contaminated groundwater and surface water. The ultimate goal of this effort is to install a treatment system that will remove uranium, technetium, nitrate, and several metals from groundwater before it reaches Bear Creek. This project directly supports the BCV Feasibility Study. Part of the Treatability Study, Phase II Hydraulic Performance Testing, will produce hydraulic and treatment performance data required to design a long-term treatment system. This effort consists of the installation and testing of two groundwater collection systems: a trench in the vicinity of GW-835 and an angled pumping well adjacent to NT-1. Pumping tests and evaluations of gradients under ambient conditions will provide data for full-scale design of treatment systems. In addition to hydraulic performance, in situ treatment chemistry data will be obtained from monitoring wells installed in the reactive media section of the trench. The in situ treatment work is not part of this test plan. This Hydraulic Testing Plan describes the location and installation of the trench and NT-1 wells, the locations and purpose of the monitoring wells, and the procedures for the pumping tests of the trench and NT-1 wells

  12. 46 CFR 98.30-11 - Cargo pumps.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Cargo pumps. 98.30-11 Section 98.30-11 Shipping COAST..., ARRANGEMENT, AND OTHER PROVISIONS FOR CERTAIN DANGEROUS CARGOES IN BULK Portable Tanks § 98.30-11 Cargo pumps. No person may operate a cargo pump to transfer a product to or from a portable tank unless the pump...

  13. Effects of the reactor coolant pumps following a small break in a Westinghouse PWR

    International Nuclear Information System (INIS)

    Koenig, J.E.

    1983-10-01

    Numerical simulations of the thermal-hydraulic events following a small cold-leg break in a Westinghouse pressurized water reactor were performed to address the pumps-on/off issue. The mode of pump operation was varied in each calculation to ascertain the optimum mode. It was found that pump operation was not critical for this break size and location because the fuel rods remained cool in all accidents analyzed. In terms of system mass, however, it was preferable to leave the pumps in operation

  14. Design and Optimization of Fast Switching Valves for Large Scale Digital Hydraulic Motors

    DEFF Research Database (Denmark)

    Roemer, Daniel Beck

    The present thesis is on the design, analysis and optimization of fast switching valves for digital hydraulic motors with high power ratings. The need for such high power motors origins in the potential use of hydrostatic transmissions in wind turbine drive trains, as digital hydraulic machines...... have been shown to improve the overall efficiency and efficient operation range compared to traditional hydraulic machines. Digital hydraulic motors uses electronically controlled independent seat valves connected to the pressure chambers, which must be fast acting and exhibit low pressure losses...... to enable efficient operation. These valves are complex components to design, as multiple design aspects are present in these integrated valve units, with conflicting objectives and interdependencies. A preliminary study on a small scale single-cylinder digital hydraulic pump has initially been conducted...

  15. K-Basin sludge treatment facility pump test report

    International Nuclear Information System (INIS)

    SQUIER, D.M.

    1999-01-01

    Tests of a disc pump and a dual diaphragm pump are stymied by pumping a metal laden fluid. Auxiliary systems added to a diaphragm pump might enable the transfer of such fluids, but the additional system complexity is not desirable for remotely operated and maintained systems

  16. Nanocoatings for High-Efficiency Industrial Hydraulic and Tooling Systems

    Energy Technology Data Exchange (ETDEWEB)

    Clifton B. Higdon III

    2011-01-07

    Industrial manufacturing in the U.S. accounts for roughly one third of the 98 quadrillion Btu total energy consumption. Motor system losses amount to 1.3 quadrillion Btu, which represents the largest proportional loss of any end-use category, while pumps alone represent over 574 trillion BTU (TBTU) of energy loss each year. The efficiency of machines with moving components is a function of the amount of energy lost to heat because of friction between contacting surfaces. The friction between these interfaces also contributes to downtime and the loss of productivity through component wear and subsequent repair. The production of new replacement parts requires additional energy. Among efforts to reduce energy losses, wear-resistant, low-friction coatings on rotating and sliding components offer a promising approach that is fully compatible with existing equipment and processes. In addition to lubrication, one of the most desirable solutions is to apply a protective coating or surface treatment to rotating or sliding components to reduce their friction coefficients, thereby leading to reduced wear. Historically, a number of materials such as diamond-like carbon (DLC), titanium nitride (TiN), titanium aluminum nitride (TiAlN), and tungsten carbide (WC) have been examined as tribological coatings. The primary objective of this project was the development of a variety of thin film nanocoatings, derived from the AlMgB14 system, with a focus on reducing wear and friction in both industrial hydraulics and cutting tool applications. Proof-of-concept studies leading up to this project had shown that the constituent phases, AlMgB14 and TiB2, were capable of producing low-friction coatings by pulsed laser deposition. These coatings combine high hardness with a low friction coefficient, and were shown to substantially reduce wear in laboratory tribology tests. Selection of the two applications was based largely on the concept of improved mechanical interface efficiencies for

  17. Control rod driving hydraulic device

    International Nuclear Information System (INIS)

    Sugano, Hiroshi.

    1993-01-01

    In a control rod driving hydraulic device for an improved BWR type reactor, a bypass pipeline is disposed being branched from a scram pipeline, and a control orifice and a throttle valve are interposed to the bypass pipeline for restricting pressure. Upon occurrence of scram, about 1/2 of water quantity flowing from an accumulator of a hydraulic control unit to the lower surface of a piston of control rod drives by way of a scram pipeline is controlled by the restricting orifice and the throttle valve, by which the water is discharged to a pump suction pipeline or other pipelines by way of the bypass pipeline. With such procedures, a function capable of simultaneously conducting scram for two control rod drives can be attained by one hydraulic control unit. Further, an excessive peak pressure generated by a water hammer phenomenon in the scram pipeline or the control rod drives upon occurrence of scram can be reduced. Deformation and failure due to the excessive peak pressure can be prevented, as well as vibrations and degradation of performance of relevant portions can be prevented. (N.H.)

  18. Determination of hydraulic characteristics of an aquifer capacity from ...

    African Journals Online (AJOL)

    Constant rate, single well pumping tests were conducted using boreholes located in four communities in the study area with the aim of determining the aquifer hydraulic properties using the Cooper Jacob method. Fractured shales yielded groundwater into the wells whose depths ranged from 26 to 35m while the static water ...

  19. Prediction Method for the Complete Characteristic Curves of a Francis Pump-Turbine

    Directory of Open Access Journals (Sweden)

    Wei Huang

    2018-02-01

    Full Text Available Complete characteristic curves of a pump-turbine are essential for simulating the hydraulic transients and designing pumped storage power plants but are often unavailable in the preliminary design stage. To solve this issue, a prediction method for the complete characteristics of a Francis pump-turbine was proposed. First, based on Euler equations and the velocity triangles at the runners, a mathematical model describing the complete characteristics of a Francis pump-turbine was derived. According to multiple sets of measured complete characteristic curves, explicit expressions for the characteristic parameters of characteristic operating point sets (COPs, as functions of a specific speed and guide vane opening, were then developed to determine the undetermined coefficients in the mathematical model. Ultimately, by combining the mathematical model with the regression analysis of COPs, the complete characteristic curves for an arbitrary specific speed were predicted. Moreover, a case study shows that the predicted characteristic curves are in good agreement with the measured data. The results obtained by 1D numerical simulation of the hydraulic transient process using the predicted characteristics deviate little from the measured characteristics. This method is effective and sufficient for a priori simulations before obtaining the measured characteristics and provides important support for the preliminary design of pumped storage power plants.

  20. Monitoring and modelling of pumping-induced self-potentials for transmissivity estimation within a heterogeneous confined aquifer

    Science.gov (United States)

    DesRoches, Aaron J.; Butler, Karl E.

    2016-12-01

    Variations in self-potentials (SP) measured at surface during pumping of a heterogeneous confined fractured rock aquifer have been monitored and modelled in order to investigate capabilities and limitations of SP methods in estimating aquifer hydraulic properties. SP variations were recorded around a pumping well using an irregular grid of 31 non-polarizing Pb-PbCl2 that were referenced to a remote electrode and connected to a commercial multiplexer and digitizer/data logger through a passive lowpass filter on each channel. The lowpass filter reduced noise by a factor of 10 compared to levels obtained using the data logger's integration-based sampling method for powerline noise suppression alone. SP signals showed a linear relationship with water levels observed in the pumping and monitoring wells over the pumping period, with an apparent electrokinetic coupling coefficient of -3.4 mV · m-1. Following recent developments in SP methodology, variability of the SP response between different electrodes is taken as a proxy for lateral variations in hydraulic head within the aquifer and used to infer lateral variations in the aquifer's apparent transmissivity. In order to demonstrate the viability of this approach, SP is modelled numerically to determine its sensitivity to (i) lateral variations in the hydraulic conductivity of the confined aquifer and (ii) the electrical conductivity of the confining layer and conductive well casing. In all cases, SP simulated on the surface still varies linearly with hydraulic head modelled at the base on the confining layer although the apparent coupling coefficient changes to varying degrees. Using the linear relationship observed in the field, drawdown curves were inferred for each electrode location using SP variations observed over the duration of the pumping period. Transmissivity estimates, obtained by fitting the Theis model to inferred drawdown curves at all 31 electrodes, fell within a narrow range of (2.0-4.2) × 10-3 m2

  1. Resonance investigation of pump-turbine during startup process

    International Nuclear Information System (INIS)

    He, L Y; Wang, Z W; Kurosawa, S; Nakahara, Y

    2014-01-01

    The causes of resonance of a certain model pump-turbine unit during startup process were investigated in this article. A three-dimensional full flow path analysis model which contains spiral case, stay vanes, guide vanes, runner, gaps outside the runner crown and band, and draft tube was constructed. The transient hydraulic excitation force of full flow path was analyzed under five conditions near the resonance region. Based on one-way fluid- structure interaction (FSI) analysis model, the dynamic stress characteristics of the pump-turbine runner was investigated. The results of pressure pulsation, vibration mode and dynamic stress obtained from simulation were consistent with the test results. The study indicated that the hydraulic excitation frequency (Z g *f n ) Hz due to rotor-stator interference corresponding to the natural frequency of 2ND+4ND runner mode is the main cause of resonance. The relationship among pressure pulsation, vibration mode and dynamic stress was discussed in this paper. The results revealed the underlying causes of the resonance phenomenon

  2. Proposal for probing energy transfer pathway by single-molecule pump-dump experiment

    Science.gov (United States)

    Tao, Ming-Jie; Ai, Qing; Deng, Fu-Guo; Cheng, Yuan-Chung

    2016-06-01

    The structure of Fenna-Matthews-Olson (FMO) light-harvesting complex had long been recognized as containing seven bacteriochlorophyll (BChl) molecules. Recently, an additional BChl molecule was discovered in the crystal structure of the FMO complex, which may serve as a link between baseplate and the remaining seven molecules. Here, we investigate excitation energy transfer (EET) process by simulating single-molecule pump-dump experiment in the eight-molecules complex. We adopt the coherent modified Redfield theory and non-Markovian quantum jump method to simulate EET dynamics. This scheme provides a practical approach of detecting the realistic EET pathway in BChl complexes with currently available experimental technology. And it may assist optimizing design of artificial light-harvesting devices.

  3. Coupled neutronic-thermal-hydraulics analysis in a coolant subchannel of a PWR using CFD techniques

    Energy Technology Data Exchange (ETDEWEB)

    Ribeiro, Felipe P.; Su, Jian, E-mail: sujian@nuclear.ufrj.br [Coordenacao de Pos-Graduacao e Pesquisa de Engenharia (COPPE/UFRJ), Rio de Janeiro, RJ (Brazil). Programa de Engenharia Nuclear

    2017-07-01

    The high capacity of Computational Fluid Dynamics code to predict multi-dimensional thermal-hydraulics behaviour and the increased availability of capable computer systems are making that method a good tool to simulate phenomena of thermal-hydraulics nature in nuclear reactors. However, since there are no neutron kinetics models available in commercial CFD codes to the present day, the application of CFD in the nuclear reactor safety analyses is still limited. The present work proposes the implementation of the point kinetics model (PKM) in ANSYS - Fluent to predict the neutronic behaviour in a Westinghouse Sequoyah nuclear reactor, coupling with the phenomena of heat conduction in the rod and thermal-hydraulics in the cooling fluid, via the reactivity feedback. Firstly, a mesh convergence and turbulence model study was performed, using the Reynolds-Average Navier-Stokes method, with square arrayed rod bundle featuring pitch to diameter ratio of 1:32. Secondly, simulations using the k-! SST turbulence model were performed with an axial distribution of the power generation in the fuel to analyse the heat transfer through the gap and cladding, and its in fluence on the thermal-hydraulics behaviour of the cooling fluid. The wall shear stress distribution for the centre-line rods and the dimensionless velocity were evaluated to validate the model, as well as the in fluence of the mass flow rate variation on the friction factor. The coupled model enabled to perform a dynamic analysis of the nuclear reactor during events of insertion of reactivity and shutdown of primary coolant pumps. (author)

  4. Developing Sensitivity Indicators for Hydraulic Perturbation

    Directory of Open Access Journals (Sweden)

    M.M. Heidari

    2016-02-01

    Full Text Available Introduction: Determination the hydraulic performance of an irrigation network requires adequate knowledge about the sensitivities of the network structures. Hydraulic sensitivity concept of structures and channel reaches aid network operators in identifying structures with higher sensitivities which will attract more attention both during network operation and maintenance program. Sluice gates are frequently used as regulator and delivery structures in irrigation networks. Usually discharge coefficient of sluice gate is considered constant in the design and operation stage. Investigation of sensitivity of offtakes and cross-regulators has carried out by various researchers and some hydraulic sensitivity indicators have been developed. In the previous researches, these indexes were developed based on constant coefficient of discharge for free flow sluice gates. However, the coefficient of discharge for free flow sluice gates depend on gate opening and the upstream water depth. So, in this research, some hydraulic sensitivity indicators at structure based on variable coefficient of discharge for free flow sluice gates were developed and they were validated by using observed data. Materials and Methods: An experimental setup was constructed to analyses the performance of the some hydraulic sensitivity. The flume was provided with storage reservoir, pumps, electromagnetic flowmeter, entrance tank, feeder canal, delivery canals, offtakes, cross-regulators, collector reservoir, piezometric boards. The flume is 60.5 m long and the depth of that is 0.25 m, of which only a small part close to offtake and Cross-regulators was needed for these tests. Offtakes and Cross-regulators are free-flowing sluice gates type. Offtakes were located at distances 20 m and 42.5 m downstream from the entrance tank, respectively. and, Cross-regulators were located 2 m downstream from each offtakes. The offtakes are 0.21 m and Cross-regulators are 0.29 m wide. The upstream

  5. An experimental and theoretical investigation on the effects of adding hybrid nanoparticles on heat transfer efficiency and pumping power of an oil-based nanofluid as a coolant fluid

    DEFF Research Database (Denmark)

    Asadi, Meisam; Asadi, Amin; Aberoumand, Sadegh

    2018-01-01

    The present work aims to study heat transfer performance and pumping power of MgO-MWCNT/ thermal oil hybrid nanofluid. Using a KD2 Pro thermal analyzer, the thermal conductivity of the samples have been measured. The results showed an increasing trend for the thermal conductivity of the nanofluid...... nanofluid is highly efficient in heat transfer applications as a coolant fluid in both the laminar and turbulent flow regimes, although it causes a certain penalty in the pumping power....... efficiency and pumping power in all the studied range of solid concentrations and temperatures have been theoretically investigated, based on the experimental data of dynamic viscosity and thermal conductivity, for both the internal laminar and turbulent flow regimes. It was observed that the studied......The present work aims to study heat transfer performance and pumping power of MgO-MWCNT/ thermal oil hybrid nanofluid. Using a KD2 Pro thermal analyzer, the thermal conductivity of the samples have been measured. The results showed an increasing trend for the thermal conductivity of the nanofluid...

  6. Using the motor to monitor pump conditions

    International Nuclear Information System (INIS)

    Casada, D.

    1996-01-01

    When the load of a mechanical device being driven by a motor changes, whether in response to changes in the overall process or changes in the performance of the driven device, the motor inherently responds. For induction motors, the current amplitude and phase angle change as the shaft load changes. By examining the details of these changes in amplitude and phase, load fluctuations of the driven device can be observed. The usefulness of the motor as a transducer to improve the understanding of devices with high torque fluctuations, such as positive displacement compressors and motor-operated valves, has been recognized and demonstrated for a number of years. On such devices as these, the spectrum of the motor current amplitude, phase, or power normally has certain characteristic peaks associated with various load components, such as the piston stroke or gear tooth meshing frequencies. Comparison and trending of the amplitudes of these peaks has been shown to provide some indication of their mechanical condition. For most centrifugal pumps, the load fluctuations are normally low in torque amplitude, and as a result, the motor experiences a correspondingly lower level of load fluctuation. However, both laboratory and field test data have demonstrated that the motor does provide insight into some important pump performance conditions, such as hydraulic stability and pump-to-motor alignment. Comparisons of other dynamic signals, such as vibration and pressure pulsation, to motor data for centrifugal pumps are provided. The effects of inadequate suction head, misalignment, mechanical and hydraulic unbalance on these signals are presented

  7. Using the motor to monitor pump conditions

    Energy Technology Data Exchange (ETDEWEB)

    Casada, D. [Oak Ridge National Lab., TN (United States)

    1996-12-01

    When the load of a mechanical device being driven by a motor changes, whether in response to changes in the overall process or changes in the performance of the driven device, the motor inherently responds. For induction motors, the current amplitude and phase angle change as the shaft load changes. By examining the details of these changes in amplitude and phase, load fluctuations of the driven device can be observed. The usefulness of the motor as a transducer to improve the understanding of devices with high torque fluctuations, such as positive displacement compressors and motor-operated valves, has been recognized and demonstrated for a number of years. On such devices as these, the spectrum of the motor current amplitude, phase, or power normally has certain characteristic peaks associated with various load components, such as the piston stroke or gear tooth meshing frequencies. Comparison and trending of the amplitudes of these peaks has been shown to provide some indication of their mechanical condition. For most centrifugal pumps, the load fluctuations are normally low in torque amplitude, and as a result, the motor experiences a correspondingly lower level of load fluctuation. However, both laboratory and field test data have demonstrated that the motor does provide insight into some important pump performance conditions, such as hydraulic stability and pump-to-motor alignment. Comparisons of other dynamic signals, such as vibration and pressure pulsation, to motor data for centrifugal pumps are provided. The effects of inadequate suction head, misalignment, mechanical and hydraulic unbalance on these signals are presented.

  8. Selected hydraulic test analysis techniques for constant-rate discharge tests

    International Nuclear Information System (INIS)

    Spane, F.A. Jr.

    1993-03-01

    The constant-rate discharge test is the principal field method used in hydrogeologic investigations for characterizing the hydraulic properties of aquifers. To implement this test, the aquifer is stressed by withdrawing ground water from a well, by using a downhole pump. Discharge during the withdrawal period is regulated and maintained at a constant rate. Water-level response within the well is monitored during the active pumping phase (i.e., drawdown) and during the subsequent recovery phase following termination of pumping. The analysis of drawdown and recovery response within the stress well (and any monitored, nearby observation wells) provides a means for estimating the hydraulic properties of the tested aquifer, as well as discerning formational and nonformational flow conditions (e.g., wellbore storage, wellbore damage, presence of boundaries, etc.). Standard analytical methods that are used for constant-rate pumping tests include both log-log type-curve matching and semi-log straight-line methods. This report presents a current ''state of the art'' review of selected transient analysis procedures for constant-rate discharge tests. Specific topics examined include: analytical methods for constant-rate discharge tests conducted within confined and unconfined aquifers; effects of various nonideal formation factors (e.g., anisotropy, hydrologic boundaries) and well construction conditions (e.g., partial penetration, wellbore storage) on constant-rate test response; and the use of pressure derivatives in diagnostic analysis for the identification of specific formation, well construction, and boundary conditions

  9. Energy Production by Means of Pumps As Turbines in Water Distribution Networks

    Directory of Open Access Journals (Sweden)

    Mauro Venturini

    2017-10-01

    Full Text Available This paper deals with the estimation of the energy production by means of pumps used as turbines to exploit residual hydraulic energy, as in the case of available head and flow rate in water distribution networks. To this aim, four pumps with different characteristics are investigated to estimate the producible yearly electric energy. The performance curves of Pumps As Turbines (PATs, which relate head, power, and efficiency to the volume flow rate over the entire PAT operation range, were derived by using published experimental data. The four considered water distribution networks, for which experimental data taken during one year were available, are characterized by significantly different hydraulic features (average flow rate in the range 10–116 L/s; average pressure reduction in the range 12–53 m. Therefore, energy production accounts for actual flow rate and head variability over the year. The conversion efficiency is also estimated, for both the whole water distribution network and the PAT alone.

  10. Solar and wind potentialities in Mauritania. Presentation of pumping

    International Nuclear Information System (INIS)

    Adell, A.; Fagel, L.

    1996-01-01

    The programs of rural hydraulics based upon the use of renewable energies, either solar or wind, have gained in importance in Africa during the last decade; particularly in Mauritania, a Sahelian country, which is extending widely beyond the western edge of Sahara. This country has been hardly affected by the prolonged droughts which have recently struck this region. Water is a major problem here. Important projects appeared concerning the pumping of water with the help of solar photovoltaic systems and wind mechanical pumps; other processes are being studied: pumping with aero-generators, sea water desalinating... Today Mauritania is at the top of countries of the subregion concerning the number of installations of wind mechanical pumps. The meteorological conditions are in fact favourable to such realizations. A technical and economic comparative study of the results of functioning obtained on the field with a photovoltaic pumping installation and a wind pumping installation, is presented: better technical performances and greater reliability for the photovoltaic pump, lower cost and technological mastery for the wind pump. (author). 9 refs., 8 figs

  11. The effect of balance holes to centrifugal pump performance

    Science.gov (United States)

    Babayigit, O.; Ozgoren, M.; Aksoy, M. H.; Kocaaslan, O.

    2017-07-01

    The aim of this study is to analyze of a centrifugal pump with and without balance holes by using ANSYS-Fluent software. The pump used in the study is a commercial centrifugal pump consisting of two stages that is a model of Sempa Pump Company. Firstly, models of impeller, diffuser, suction and discharge sections of the centrifugal pump were separately drawn using Ansys and Solidworks software. Later, grid structures were generated on the flow volume of the pump. Turbulent flow volume was numerically solved by realizable k-є turbulence model. The flow analyses were focused on the centrifugal pump performance and the flow characteristics under different operational conditions with/without balance holes. Distributions of flow characteristics such as velocity and pressure distributions in the flow volume were also determined, numerically. The results of Computational Fluid Dynamics (CFD) with/without balance holes for the pump head and hydraulic efficiency on the design flow rate of 80 m3/h were found to be 81.5/91.3 m and 51.9/65.3%, respectively.

  12. Fluid dynamic interaction between water hammer and centrifugal pumps

    International Nuclear Information System (INIS)

    Ismaier, A.; Schluecker, E.

    2009-01-01

    Centrifugal pumps generate in piping systems noticeable pressure pulsations. In this paper the dynamic interaction between water hammer and pressure pulsations is presented. The experimental investigations were performed at a piping system with nominal diameter DN 100 (respectively NPS 4) and 75 m total length, built at the Institute for Process Technology and Machinery. Different measurements at this testing facility show that pulsating centrifugal pumps can damp pressure surges generated by fast valve closing. It is also shown that 1-dimensional fluid codes can be used to calculate this phenomenon. Furthermore it is presented that pressure surges pass centrifugal pumps almost unhindered, because they are hydraulic open.

  13. Thermally induced diffraction losses for a Gaussian pump beam and optimization of the mode-to-pump ratio in an end-pumped Nd:GdVO4 laser

    International Nuclear Information System (INIS)

    Wang, Y T; Li, W J; Pan, L L; Yu, J T; Zhang, R H

    2013-01-01

    The analytical model of thermally induced diffraction losses for a Gaussian pump beam are derived as functions of the mode-to-pump ratio and pump power in end-pumped Nd-doped lasers considering the energy transfer upconversion effects. The mode-to-pump ratio is optimized based on it. The results show that the optimum mode-to-pump ratio with the thermally induced diffraction losses is less than 0.65, and it is less than the results in which the thermally induced diffraction losses are neglected. The theoretical model is applied to a diode-end-pumped Nd:GdVO 4 laser operating at 1342 nm, and the theoretical calculations are in good agreement with the experimental results. (paper)

  14. Position Control of an Over‐Actuated Direct Hydraulic Cylinder Drive

    DEFF Research Database (Denmark)

    Schmidt, Lasse; Grønkjær, Morten; Pedersen, Henrik Clemmensen

    2017-01-01

    , and various approaches have been proposed by research communities as well as the industry. Recently, a so-called Speed-variable Switched Differential Pump was proposed for direct drive of hydraulic differential cylinders. The main idea with this drive is to utilize an electric rotary drive with the shaft...

  15. Primary system hydraulic characteristics after modification of reactor coolant pumps' impeller wheels at Bohunice NPP executed in 2012 and 2013

    International Nuclear Information System (INIS)

    Hermansky, Jozef; Zavodsky, Martin

    2014-01-01

    A coolant flow through the reactor is usually determined after annual outages at Slovak NPP (VVER 440) in two distinct ways. First method is determination on the basis of the secondary system parameters - measurement of thermal balances. The value achieved by this method is used as the input parameter in the Table of allowed reactor operation modes. The second method draws from the primary system parameters - measurement of primary system hydraulic characteristics. Flow nozzles used for the measurement of feed water flow behind high pressure heaters were replaced at both Bohunice Units during outages in 2008. The feed water flow behind high pressure heaters is one of the main parameters used for the determination of coolant flow through the reactor by the first method. Compared to the measurement executed during previous fuel cycles, the calculated coolant flow through the reactor decreased considerably after the change of flow nozzles. The imaginary change of coolant flow through the reactor at Unit 3 was -1,6 %; and at Unit 4 -2,6 %. This change was not proved by the parallel measurement of primary system hydraulic characteristics. Later it was found out that the original flow nozzles used for 25 years were substantially deposited (original inner diameter of the nozzles was reduced by about 0,6-0,9 mm). Therefore feed water flow measurement was untrustworthy within the recent years. On the findings stated above, Bohunice NPP has decided to increase coolant flow through the reactor by changing the reactor coolant pumps impeller wheels. The modification of impellers wheels is planned within years 2012 to 2014. During the outages in 2013 two impeller wheels were replaced at both units. Nowadays Unit 4 is operated with all 6 new impeller wheels and Unit 3 with four new impeller wheels. Modification of last two impeller wheels at Unit 3 will be performed during the outage in 2014. On account of impeller wheels modification, non-standard measurement of PS hydraulic

  16. Controlling a Conventional LS-pump based on Electrically Measured LS-pressure

    DEFF Research Database (Denmark)

    Pedersen, Henrik Clemmensen; Andersen, Torben Ole; Hansen, Michael Rygaard

    2008-01-01

    As a result of the increasing use of sensors in mobile hydraulic equipment, the need for hydraulic pilot lines is decreasing, being replaced by electrical wiring and electrically controllable components. For controlling some of the existing hydraulic components there are, however, still a need...... this system, by either generating a copy of the LS-pressure, the LS-pressure being the output, or letting the output be the pump pressure. The focus of the current paper is on the controller design based on the first approach. Specifically a controlled leakage flow is used to avoid the need for a switching...

  17. Multi technical analysis of wear mechanisms in axial piston pumps

    Science.gov (United States)

    Schuhler, G.; Jourani, A.; Bouvier, S.; Perrochat, J.-M.

    2017-05-01

    Axial piston pumps convert a motor rotation motion into hydraulic or pneumatic power. Their compactness and efficiency of approximately 0.9 make them suitable for actuation applications especially in aeronautics. However, they suffer a limited life due to the wear of their components. In the literature, studies of axial piston pumps deal with contact between its different elements under lubrication conditions. Nevertheless, they are more focused on analytic or numerical approaches. This study consists in an experimental analysis of worn pump components to highlight and understand wear mechanisms. Piston shoes are central components in the axial piston pump since they are involved in three tribological contacts. These three contacts are thereby studied: piston shoes/swashplate, piston shoes/pistons and piston shoes/shoes hold down plate (SHDP). To perform this analysis, helicopter hydraulic pumps after different operating times have been studied. The wear damage mechanisms and wear debris are analysed using SEM observations. 3D surface roughness measurements are then used to characterize worn surfaces. The observations reveal that in the contact between shoes and swashplate, the main wear mechanism is three-body abrasive wear due to coarse carbides removal. Between shoes and pistons, wear occurs in a less severe way and is mainly due to the debris generated in the first contact and conveyed by the lubricating fluid. In the third contact, the debris are also the prime cause of the abrasive wear and the generation of deep craters in the piston shoes.

  18. Pump--probe measurements of state-to-state rotational energy transfer rates in N2 (v=1)

    International Nuclear Information System (INIS)

    Sitz, G.O.; Farrow, R.L.

    1990-01-01

    We report direct measurements of the state-to-state rotational energy transfer rates for N 2 (υ=1) at 298 K. Stimulated Raman pumping of Q-branch (υ=1 left-arrow 0) transitions is used to prepare a selected rotational state of N 2 in the υ=1 state. After allowing an appropriate time interval for collisions to occur, 2+2 resonance-enhanced multiphoton ionization is used (through the a 1 Π g left-arrow X 1 Σ + g transition) to detect the relative population of the pumped level and other levels to which rotational energy transfer has occurred. We have performed a series of measurements in which a single even rotational level (J i =0--14) is excited and the time-dependent level populations are recorded at three or more delay times. This data set is then globally fit to determine the best set of state-to-state rate constants. The fitting procedure does not place any constraints (such as an exponential gap law) on the J or energy dependence of the rates. We compare our measurements and best-fit rates with results predicted from phenomenological rate models and from a semiclassical scattering calculation of Koszykowski et al. [J. Phys. Chem. 91, 41 (1987)]. Excellent agreement is obtained with two of the models and with the scattering calculation. We also test the validity of the energy-corrected sudden (ECS) scaling theory for N 2 by using our experimental transfer rates as basis rates (J=L→0), finding that the ECS scaling expressions accurately predict the remaining rates

  19. Dual Pump Recovery (DPR System to Extract Freshwater in Coastal Aquifers

    Directory of Open Access Journals (Sweden)

    C. Otto

    2002-06-01

    Full Text Available The paper describes the hydraulic theory of recovering a dense plume using a newly devised dual pump recover system (DPR and its feasibility to half the remediation time of a contaminated unconfined aquifer in a coastal urban environment. Although the DPR system was successfully applied to clean up the polluted aquifer, the hydraulic principles and techniques are also applicable to extract fresh groundwater from coastal aquifers without the risk of saltwater incursion.

  20. Evaluation of Failed Crane Chempumps Used During Salt Well Pumping

    International Nuclear Information System (INIS)

    ELSEN, J.J.

    2000-01-01

    The Interim Stabilization Project is responsible for removing pumpable interstitial liquid from remaining single shelled tanks and transferring the waste to safer double-shelled tanks. This waste transfer is conducted by installing a saltwell pumping system within the designated single shell tank, and transferring the waste to double shelled tank using approved transfer lines. The saltwell pumping system is placed within a saltwell screen installed into the tank waste, the screen is designed to allow gravity flow of liquid into the screen and prevent solids from entering the pumping system. A foot valve consisting of a venturi jet and nozzle creates a suction, picking up waste at an equal rate as the out flow transfer rate of the saltwell system. A centrifugal pump is used to create the motive force across the eductor and drive the waste through the associated system piping and transfer lines leading to the double shelled tanks. The centrifugal pump that has typically been used in the saltwell pumping system installations is the Crane Chempump, model GA-1 1/2 K with 4 3/4 inch impeller. The following evaluation is not intended to be an all inclusive analysis of the operation of a saltwell system and associated pump. This evaluation will detail some of the noted failures in specific saltwell systems and document those findings. Due to the large number of saltwell systems installed over the duration of the Stabilization Project, only those saltwell systems installed over the last two years within S, SX, U, A and AX tank farms, shall be included in this evaluation. After identification of the pump failures mechanism, recommendations shall be identified to address potential means of improving overall operational efficiency and reducing overall equipment failures

  1. Thermal Stress Analysis of a Continuous and Pulsed End-Pumped Nd:YAG Rod Crystal Using Non-Classic Conduction Heat Transfer Theory

    Science.gov (United States)

    Mojahedi, Mahdi; Shekoohinejad, Hamidreza

    2018-02-01

    In this paper, temperature distribution in the continuous and pulsed end-pumped Nd:YAG rod crystal is determined using nonclassical and classical heat conduction theories. In order to find the temperature distribution in crystal, heat transfer differential equations of crystal with consideration of boundary conditions are derived based on non-Fourier's model and temperature distribution of the crystal is achieved by an analytical method. Then, by transferring non-Fourier differential equations to matrix equations, using finite element method, temperature and stress of every point of crystal are calculated in the time domain. According to the results, a comparison between classical and nonclassical theories is represented to investigate rupture power values. In continuous end pumping with equal input powers, non-Fourier theory predicts greater temperature and stress compared to Fourier theory. It also shows that with an increase in relaxation time, crystal rupture power decreases. Despite of these results, in single rectangular pulsed end-pumping condition, with an equal input power, Fourier theory indicates higher temperature and stress rather than non-Fourier theory. It is also observed that, when the relaxation time increases, maximum amounts of temperature and stress decrease.

  2. TNX/HLW Long Shaft Pumps 1995-2000

    International Nuclear Information System (INIS)

    VanPelt, B.

    2002-01-01

    Problems with long shaft pumps are becoming clearer due to increased use, better instrumentation, more analysis, and increased testing activity. The problems are with reliability and not with hydraulic performance. The root cause of reliability problems is usually excessive vibration caused by design. The outlook for satisfactory pumps is improved as understanding of problems increases. Promising developments are emerging such as the tilt pad bearing. Alternative configurations, such as gas filled columns and submerged motor pumps, will require development. Continued development, in general, should be expected due to changing technology and industry changes. This report describes thirteen distinct pump programs starting with leakage of original mixer pumps in the 1980s and ending with the testing of tilt pad bearings now in progress. Eight of the programs occurred from 1996 to 2000. All involve long shaft pumps; all involve testing at TNX; and all involve a problem of some kind. The co mmon technical issue among the activities is vibration and shaft (or rotor) instability due to journal bearings. In every case, excessive shaft vibration is a reasonable and probable explanation for some or all of the problems

  3. Study of radionuclides migration in hydraulic binders. Influence of binder alteration on transfer mechanisms and kinetic

    International Nuclear Information System (INIS)

    Richet, C.

    1992-01-01

    In the framework of low and medium activity wastes surface storage, hydraulic binders materials are usually used as containment barrier. The safety analysis of this storage mode involves the knowledge of their behaviour and of their retention capacity towards radionuclides, at short and long-term. The knowledge of diffusional processes inside their liquid phase and those of the interactions existing between the diffusing element and the cement matrix, as well as their kinetics, are essential elements for the study of their durability on 300 years. An experimental methodology has been defined, allowing the characterization of the transfer of an element j in a porous material by the determination of the diffusion coefficient of j in the pores of the material x and the determination of the local equilibrium constant characterizing the interaction of j with the material x. This can be made from the analytical expressions coming from the Fick laws. These parameters have been studied from diffusion and leaching experiments of radionuclides in pure cement pastes. A modelling of the leaching processes is proposed here. The decomposition of the hydraulic binders, by their leaching in a demineralized solution at 'aggressive' pH, leads essentially to their decalcification - whose kinetics answers to a pure diffusion law in √t - and an increase of their porosity. In these attack conditions, it seems that it exists a decalcification limit condition, from which a lattice of interconnected microcracks is developed in all the material. In consequence, the retention capacity of these degraded materials towards radionuclides decreases. The cesium transfer appears more sensitive to the degradation of the material than of those of the tritium. (O.M.)

  4. Hydraulic characterization of volcanic rocks in Pahute Mesa using an integrated analysis of 16 multiple-well aquifer tests, Nevada National Security Site, 2009–14

    Science.gov (United States)

    Garcia, C. Amanda; Jackson, Tracie R.; Halford, Keith J.; Sweetkind, Donald S.; Damar, Nancy A.; Fenelon, Joseph M.; Reiner, Steven R.

    2017-01-20

    An improved understanding of groundwater flow and radionuclide migration downgradient from underground nuclear-testing areas at Pahute Mesa, Nevada National Security Site, requires accurate subsurface hydraulic characterization. To improve conceptual models of flow and transport in the complex hydrogeologic system beneath Pahute Mesa, the U.S. Geological Survey characterized bulk hydraulic properties of volcanic rocks using an integrated analysis of 16 multiple-well aquifer tests. Single-well aquifer-test analyses provided transmissivity estimates at pumped wells. Transmissivity estimates ranged from less than 1 to about 100,000 square feet per day in Pahute Mesa and the vicinity. Drawdown from multiple-well aquifer testing was estimated and distinguished from natural fluctuations in more than 200 pumping and observation wells using analytical water-level models. Drawdown was detected at distances greater than 3 miles from pumping wells and propagated across hydrostratigraphic units and major structures, indicating that neither faults nor structural blocks noticeably impede or divert groundwater flow in the study area.Consistent hydraulic properties were estimated by simultaneously interpreting drawdown from the 16 multiple-well aquifer tests with an integrated groundwater-flow model composed of 11 well-site models—1 for each aquifer test site. Hydraulic properties were distributed across volcanic rocks with the Phase II Pahute Mesa-Oasis Valley Hydrostratigraphic Framework Model. Estimated hydraulic-conductivity distributions spanned more than two orders of magnitude in hydrostratigraphic units. Overlapping hydraulic conductivity ranges among units indicated that most Phase II Hydrostratigraphic Framework Model units were not hydraulically distinct. Simulated total transmissivity ranged from 1,600 to 68,000 square feet per day for all pumping wells analyzed. High-transmissivity zones exceeding 10,000 square feet per day exist near caldera margins and extend

  5. Heat pumping in nanomechanical systems

    OpenAIRE

    Chamon, Claudio; Mucciolo, Eduardo R.; Arrachea, Liliana; Capaz, Rodrigo B.

    2010-01-01

    We propose using a phonon pumping mechanism to transfer heat from a cold to a hot body using a propagating modulation of the medium connecting the two bodies. This phonon pump can cool nanomechanical systems without the need for active feedback. We compute the lowest temperature that this refrigerator can achieve.

  6. Effect of parameter variation of reactor coolant pump on loss of coolant accident consequence

    International Nuclear Information System (INIS)

    Dang Gaojian; Huang Daishun; Gao Yingxian; He Xiaoqiang

    2015-01-01

    In this paper, the analyses were carried out on Ling'ao nuclear power station phase II to study the consequence of the loss of coolant accident when the homologous characteristic curves and free volumes of the reactor coolant pump changed. Two different pumps used in the analysis were 100D (employed on Ling'ao nuclear power station phase II) and ANDRITZ. The thermal characteristics in the large break LOCA accident were analyzed using CATHRE GB and CONPATE4, and the reactor coolant system hydraulics load during blow-clown phase of LOCA accident was analyzed using ATHIS and FORCET. The calculated results show that the homologous characteristic curves have great effect on the thermal characteristics of reactor core during the reflood phase of the large break LOCA accident. The maximum cladding surface temperatures are quite different when the pump's homologous characteristic curves change. On the other hand, the pump's free volume changing results in the variation of the LOCA rarefaction wave propagation, and therefore, the reactor coolant system hydraulic load in LOCA accident would be different. (authors)

  7. Development of NTD Hydraulic Rotation System for Kijang Research Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Hanok; Park, Kijung; Park, Yongsoo; Kim, Seong Hoon; Park, Cheol [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-05-15

    The KJRR will be mainly utilized for isotope production, NTD (Neutron Transmutation Doping) production, and related research activities. During irradiation for the NTD process, the irradiation rigs containing the silicon ingot rotate at a constant speed to ensure precisely defined homogeneity of the irradiation. The NTDHRS requires only hydraulic piping conveniently routed to the rotating devices inside the reactor pool. The resulting layout leaves the pool area clear of obstructions which might obscure vision and hinder target handling for operators. Pump banks and control valves are located remotely in a dedicated plant room allowing easy access and online maintenance. The necessities and major characteristic of NTD hydraulic rotation system are described in this study. A new NTD hydraulic rotation system are being developed to rotate the irradiation rigs at a constant speed and supply cooling flow for the irradiation rigs and reflector assembly. The configuration of the NTD hydraulic rotation device is discussed and practical methods to improve the rotational performance are suggested.

  8. Development of NTD Hydraulic Rotation System for Kijang Research Reactor

    International Nuclear Information System (INIS)

    Kang, Hanok; Park, Kijung; Park, Yongsoo; Kim, Seong Hoon; Park, Cheol

    2014-01-01

    The KJRR will be mainly utilized for isotope production, NTD (Neutron Transmutation Doping) production, and related research activities. During irradiation for the NTD process, the irradiation rigs containing the silicon ingot rotate at a constant speed to ensure precisely defined homogeneity of the irradiation. The NTDHRS requires only hydraulic piping conveniently routed to the rotating devices inside the reactor pool. The resulting layout leaves the pool area clear of obstructions which might obscure vision and hinder target handling for operators. Pump banks and control valves are located remotely in a dedicated plant room allowing easy access and online maintenance. The necessities and major characteristic of NTD hydraulic rotation system are described in this study. A new NTD hydraulic rotation system are being developed to rotate the irradiation rigs at a constant speed and supply cooling flow for the irradiation rigs and reflector assembly. The configuration of the NTD hydraulic rotation device is discussed and practical methods to improve the rotational performance are suggested

  9. Gear-shaft linkage, especially for nuclear reactor coolant pumps

    International Nuclear Information System (INIS)

    Delaunois, T.; Lefevre, R.

    1990-01-01

    The pump comprises: - inlet and outlet channels for the pumped fluid - a rotating shaft - a gear wheel mounted on the shaft by an axial locking nut which can support the axial hydraulic force - a thermal barrier above the gear wheel. A hydrostatic bearing fitted to the exterior surround of the gear wheel, the gear shaft linkage is made by at least a centering and locating device having a cylindrical span and an axial stop and another independent device which can take up the torque [fr

  10. Solar system design for water pumping

    Science.gov (United States)

    Abdelkader, Hadidi; Mohammed, Yaichi

    2018-05-01

    In our days, it seems to us that nobody can suspect it on the importance of water and energy for the human needs. With technological advances, the energy need does not cease increasing. This problem of energy is even more sensitive in the isolated sites where the use of the traditional resources proves often very expensive. Indeed, several constraints, like the transport of fuel and the routine maintenances of the diesel engines, return the search for an essential alternative energy source for this type of sites. It summer necessary to seek other resources of energy of replacement. Renewable energies, like photovoltaic energy, wind or hydraulic, represent a replacement solution par excellence and they are used more and more in our days more especially as the national territory has one of the solar layers highest with the world. The duration of insolation can reach the 3900 hours/year on the Sahara. The energy acquired daily on a horizontal surface of 1m2 is about 5kWh, that is to say meadows of 2263kWh/m2/year in the south of the country. The photovoltaic energy utilization for pumping of water is well adapted for more the share of the arid and semi-arid areas because of the existence in these areas of an underground hydraulic potential not very major. Another very important coincidence supports the use of this type of energy for the water pumping is that the demand for water, especially in agriculture, reached its maximum in hot weather and dryness where it is precisely the moment when one has access to the maximum of solar energy. The goal to see an outline on the general composition of a photovoltaic system of pumping, as well as the theoretical elements making it possible to dimension the current pumping stations.

  11. Solar system design for water pumping

    Directory of Open Access Journals (Sweden)

    Abdelkader Hadidi

    2018-01-01

    Full Text Available In our days, it seems to us that nobody can suspect it on the importance of water and energy for the human needs. With technological advances, the energy need does not cease increasing. This problem of energy is even more sensitive in the isolated sites where the use of the traditional resources proves often very expensive. Indeed, several constraints, like the transport of fuel and the routine maintenances of the diesel engines, return the search for an essential alternative energy source for this type of sites. It summer necessary to seek other resources of energy of replacement. Renewable energies, like photovoltaic energy, wind or hydraulic, represent a replacement solution par excellence and they are used more and more in our days more especially as the national territory has one of the solar layers highest with the world. The duration of insolation can reach the 3900 hours/year on the Sahara. The energy acquired daily on a horizontal surface of 1m2 is about 5kWh, that is to say meadows of 2263kWh/m2/year in the south of the country. The photovoltaic energy utilization for pumping of water is well adapted for more the share of the arid and semi-arid areas because of the existence in these areas of an underground hydraulic potential not very major. Another very important coincidence supports the use of this type of energy for the water pumping is that the demand for water, especially in agriculture, reached its maximum in hot weather and dryness where it is precisely the moment when one has access to the maximum of solar energy. The goal to see an outline on the general composition of a photovoltaic system of pumping, as well as the theoretical elements making it possible to dimension the current pumping stations.

  12. Oil supply on demand: Oil pumps in serial application; Bedarfsgerechte Oelversorgung: Regeloelpumpen im Serieneinsatz

    Energy Technology Data Exchange (ETDEWEB)

    Lamparski, C. [S H W Automotive GmbH und Co. KG, Bad Schussenried (Germany)

    2007-07-01

    Usually, constant displacement oil pumps are used for the oil supply of combustion engines. Gerotor, helical or spur gear pumps or vane pumps are the most common solutions. The disadvantage of the mentioned design is the oil delivery as function of pump speed, independent from the engine needs. Variability of oil delivery for reduction of hydraulic losses is the logical consequence. The first variable displacement oil pump which has fulfilled this requirement is the Internal Regulated Oil Pump (IRP). The mass production of this oil pump started in 2002. The solution for outer gear pumps and vane cells followed shortly. The following contribution gives a summary of different technical concepts for adjusting of oil delivery, beginning with pump pressure as a leading value till map regulation and its transformation in mass production products. (orig.)

  13. Underground Pumped Hydroelectric Storage (UPHS). Program report, April 1-September 30, 1979. ANL Activity No. 49964

    Energy Technology Data Exchange (ETDEWEB)

    Blomquist, C.A.; Frigo, A.A.; Tam, S.W.; Clinch, J.M.

    1979-10-01

    The Argonne National Laboratory Underground Pumped Hydroelectric Storage activities for the second half of FY 1979 are described. Activities include program management and support, subcontract work, and systems studies. Information is given on the preliminary design, hydraulic performance, and cost of high-head, 350-MW capacity, single- and two-stage reversible, Francis-type pump turbines. Similar information is also presented on 350- and 500-MW capacity, multistage, unregulated, reversible, pump turbines. An assessment of the application potential of controlled-flow rate pumps and pump turbines is included. The effects of the charge/discharge ratio of a pumped stoage plant is also discussed.

  14. Forced convection heat transfer in He II

    International Nuclear Information System (INIS)

    Kashani, A.

    1986-01-01

    An investigation of forced convection heat transfer in He II is conducted. The study includes both experimental and theoretical treatments of the problem. The experiment consists of a hydraulic pump and a copper flow tube, 3 mm in ID and 2m long. The system allows measurements of one-dimensional heat and mass transfer in He II. The heat transfer experiments are performed by applying heat at the midpoint along the length of the flow tube. Two modes of heat input are employed, i.e., step function heat input and square pulse heat input. The heat transfer results are discussed in terms of temperature distribution in the tube. The experimental temperature profiles are compared with numerical solutions of an analytical model developed from the He II energy equation. The bath temperature is set at three different values of 1.65, 1.80, and 1.95 K. The He II flow velocity is varied up to 90 cm/s. Pressure is monitored at each end of the flow tube, and the He II pressure drop is obtained for different flow velocities. Results indicate that He II heat transfer by forced convention is considerably higher than that by internal convection. The theoretical model is in close agreement with the experiment. He II pressure drop and friction factor are very similar to those of an ordinary fluid

  15. Long-term pumping test in borehole KR24 flow measurements

    Energy Technology Data Exchange (ETDEWEB)

    Rouhiainen, P.; Poellaenen, J. [PRG-Tec Oy, Espoo (Finland)

    2005-09-15

    The Difference Flow method can be used for the relatively fast determination of transmissivity and hydraulic head in fractures or fractured zones in cored boreholes. In this study, the Difference Flow method was used for hydraulic crosshole interference tests. The tests were performed in boreholes KR24 (pumped borehole) KR4, KR7, KR8, KRlO, KR14, KR22, KR22B, KR26, KR27, KR27B, KR28 and KR28B at Olkiluoto during the first and second quarters of 2004. The distance between the boreholes varies from approximately tens of meters to hundreds of meters. All the measurements were carried out in open boreholes, i.e. no packers were used. For interpretation, a normal single hole test was first performed in each borehole. Flow rates and drawdown were first measured both without pumping and with pumping the borehole under test. For practical reasons, the data set is neither complete nor similar in all tested boreholes. Connected flow to borehole KR24 was detected in all these boreholes. These flow responses were concentrated on a few zones. (orig.)

  16. Reflection Phenomena in Underground Pumped Storage Reservoirs

    Directory of Open Access Journals (Sweden)

    Elena Pummer

    2018-04-01

    Full Text Available Energy storage through hydropower leads to free surface water waves in the connected reservoirs. The reason for this is the movement of water between reservoirs at different elevations, which is necessary for electrical energy storage. Currently, the expansion of renewable energies requires the development of fast and flexible energy storage systems, of which classical pumped storage plants are the only technically proven and cost-effective technology and are the most used. Instead of classical pumped storage plants, where reservoirs are located on the surface, underground pumped storage plants with subsurface reservoirs could be an alternative. They are independent of topography and have a low surface area requirement. This can be a great advantage for energy storage expansion in case of environmental issues, residents’ concerns and an unusable terrain surface. However, the reservoirs of underground pumped storage plants differ in design from classical ones for stability and space reasons. The hydraulic design is essential to ensure their satisfactory hydraulic performance. The paper presents a hybrid model study, which is defined here as a combination of physical and numerical modelling to use the advantages and to compensate for the disadvantages of the respective methods. It shows the analysis of waves in ventilated underground reservoir systems with a great length to height ratio, considering new operational aspects from energy supply systems with a great percentage of renewable energies. The multifaceted and narrow design of the reservoirs leads to complex free surface flows; for example, undular and breaking bores arise. The results show excessive wave heights through wave reflections, caused by the impermeable reservoir boundaries. Hence, their knowledge is essential for a successful operational and constructive design of the reservoirs.

  17. Effect of non-condensable gas on heat transfer in steam turbine condenser and modelling of ejector pump system by controlling the gas extraction rate through extraction tubes

    International Nuclear Information System (INIS)

    Strušnik, Dušan; Golob, Marjan; Avsec, Jurij

    2016-01-01

    Graphical abstract: Control of the amount of the pumped gases through extraction tubes. The connecting locations interconnect the extraction tubes for STC gas pumping. The extraction tubes are fitted with 3 control valves to control the amount of the pumped gas depending on the temperature of the pumped gas. The amount of the pumped gas increases through the extraction tubes, where the pumped gases are cooler and decreases, at the same time, through the extraction tubes, where the pumped gases are warmer. As a result, pumping of a larger amount of NCG is ensured and of a smaller amount of CG, given that the NCG concentration is the highest on the colder places. This way, the total amount of the pumped gases from the STC can be reduced, the SEPS operates more efficiently and consumes less energy for its operation. - Highlights: • Impact of non-condensable gas on heat transfer in a steam turbine condenser. • The ejector system is optimised by selecting a Laval nozzle diameter. • Simulation model of the control of the amount of pumped gases through extraction tubes. • Neural network and fuzzy logic systems used to control gas extraction rate. • Simulation model was designed by using real process data from the thermal power plant. - Abstract: The paper describes the impact of non-condensable gas (NCG) on heat transfer in a steam turbine condenser (STC) and modelling of the steam ejector pump system (SEPS) by controlling the gas extraction rate through extraction tubes. The ideal connection points for the NCG extraction from the STC are identified by analysing the impact of the NCG on the heat transfer and measuring the existing system at a thermal power plant in Slovenia. A simulation model is designed using the Matlab software and Simulink, Neural Net Work, Fuzzy Logic and Curve Fitting Toolboxes, to control gas extraction rate through extraction tubes of the gas pumped from the STC, thus optimising the operation of the steam ejector pump system (SEPS). The

  18. Energy harvesting from hydraulic pressure fluctuations

    International Nuclear Information System (INIS)

    Cunefare, K A; Skow, E A; Erturk, A; Savor, J; Verma, N; Cacan, M R

    2013-01-01

    State-of-the-art hydraulic hose and piping systems employ integral sensor nodes for structural health monitoring to avoid catastrophic failures. Energy harvesting in hydraulic systems could enable self-powered wireless sensor nodes for applications such as energy-autonomous structural health monitoring and prognosis. Hydraulic systems inherently have a high energy intensity associated with the mean pressure and flow. Accompanying the mean pressure is the dynamic pressure ripple, which is caused by the action of pumps and actuators. Pressure ripple is a deterministic source with a periodic time-domain behavior conducive to energy harvesting. An energy harvester prototype was designed for generating low-power electricity from pressure ripples. The prototype employed an axially-poled off-the-shelf piezoelectric stack. A housing isolated the stack from the hydraulic fluid while maintaining a mechanical coupling allowing for dynamic-pressure-induced deflection of the stack. The prototype exhibited an off-resonance energy harvesting problem since the fundamental resonance of the piezoelectric stack was much higher than the frequency content of the pressure ripple. The prototype was designed to provide a suitable power output for powering sensors with a maximum output of 1.2 mW. This work also presents electromechanical model simulations and experimental characterization of the piezoelectric power output from the pressure ripple in terms of the force transmitted into the harvester. (paper)

  19. Flow and heat transfer behaviour of nanofluids in microchannels

    Directory of Open Access Journals (Sweden)

    James Bowers

    2018-04-01

    Full Text Available Flow and heat transfer of aqueous based silica and alumina nanofluids in microchannels were experimentally investigated. The measured friction factors were higher than conventional model predictions at low Reynolds numbers particularly with high nanoparticle concentrations. A decrease in the friction factor was observed with increasing Reynolds number, possibly due to the augmentation of nanoparticle aggregate shape arising from fluid shear and alteration of local nanoparticle concentration and nanofluid viscosity. Augmentation of the silica nanoparticle morphology by fluid shear may also have affected the friction factor due to possible formation of a core/shell structure of the particles. Measured thermal conductivities of the silica nanofluids were in approximate agreement with the Maxwell-Crosser model, whereas the alumina nanofluids only showed slight enhancements. Enhanced convective heat transfer was observed for both nanofluids, relative to their base fluids (water, at low particle concentrations. Heat transfer enhancement increased with increasing Reynolds number and microchannel hydraulic diameter. However, the majority of experiments showed a larger increase in pumping power requirements relative to heat transfer enhancements, which may hinder the industrial uptake of the nanofluids, particularly in confined environments, such as Micro Electro-Mechanical Systems (MEMS. Keywords: Nanofluid, Microchannel, Heat transfer, Pressure drop, Friction factor, Thermal conductivity, Viscosity

  20. Study on transient hydrodynamic performance and cavitation characteristic of high-speed mixed-flow pump

    International Nuclear Information System (INIS)

    Chen, T; Liu, Y L; Sun, Y B; Wang, L Q; Wu, D Z

    2013-01-01

    In order to analyse the hydrodynamic performance and cavitation characteristic of a high-speed mixed-flow pump during transient operations, experimental studies were carried out. The transient hydrodynamic performance and cavitation characteristics of the mixed-flow pump with guide vane during start-up operation processes were tested on the pump performance test-bed. Performance tests of the pump were carried out under various inlet pressures and speed-changing operations. The real-time instantaneous external characteristics such as rotational speed, hydraulic head, flow rate, suction pressure and discharge pressure of the pump were measured. Based on the experimental results, the effect of fluid acceleration on the hydrodynamic performances and cavitation characteristics of the mixed-flow pump were analysed and evaluated

  1. Thermal hydraulic conditions inducing incipient cracking in the 900 MWe unit 93 D reactor coolant pump shafts; Pompes primaires 93 D des tranches de 900 MW. Conditions thermo-hydrauliques d`amorcage des fissures d`arbres

    Energy Technology Data Exchange (ETDEWEB)

    Bore, C.

    1995-12-31

    From 1987, 900 MWe plant operating feedback revealed cracking in the lower part of the reactor coolant pump shafts, beneath the thermal ring. Metallurgical examinations established that this was due to a thermal fatigue phenomenon known as thermal crazing, occurring after a large number of cycles. Analysis of thermal hydraulic conditions initiating the cracks does not allow exact quantification of the thermal load inducing cracking. Only qualitative analyses are thus possible, the first of which, undertaken by the pump manufacturer, Jeumont Industrie, showed that the cracks could not be due to the major transients (stop-start, injection cut-off), which were too few in number. Another explanation was then put forward: the thermal ring, shrunk onto the shaft it is required to protect against thermal shocks, loosens to allow an alternating downflow of cold water from the shaft seals and an upflow of hot water from the primary system. However, approximate calculations showed that the flow involved would be too slight to initiate the cracking observed. A more stringent analysis undertaken with the 2D flow analysis code MELODIE subsequently refuted the possibility of alternating flows beneath the ring establishing that only a hot water upflow occurred due to a `viscosity pump` phenomenon. Crack initiation was finally considered to be due to flowrate variations beneath the ring, with the associated temperature fluctuations. This flowrate fluctuation could be due to an unidentified transient phenomenon or to a variation in pump operating conditions. This analysis of the hydraulic conditions initiating the cracks disregards shaft surface residual stresses. These are tensile stresses and show that loads less penalizing than those initially retained could cause incipient cracking. Thermal ring modifications to reduce these risks were proposed and implemented. In addition, final metallurgical treatment of the shafts was altered and implemented. (Abstract Truncated)

  2. Results of Hydraulic Tests in Miocene Tuffaceous Rocks at the C-Hole Complex, 1995 to 1997, Yucca Mountain, Nye County, Nevada

    Science.gov (United States)

    Geldon, Arthur L.; Umari, Amjad M.A.; Fahy, Michael F.; Earle, John D.; Gemmell, James M.; Darnell, Jon

    2002-01-01

    Four hydraulic tests were conducted by the U.S. Geological Survey at the C-hole complex at Yucca Mountain, Nevada, between May 1995 and November 1997. These tests were conducted as part of ongoing investigations to determine the hydrologic and geologic suitability of Yucca Mountain as a potential site for permanent underground storage of high-level nuclear waste. The C-hole complex consists of three 900-meter-deep boreholes that are 30.4 to 76.6 meters apart. The C-holes are completed in fractured, variably welded tuffaceous rocks of Miocene age. Six hydrogeologic intervals occur within the saturated zone in these boreholes - the Calico Hills, Prow Pass, Upper Bullfrog, Lower Bullfrog, Upper Tram, and Lower Tram intervals. The Lower Bullfrog and Upper Tram intervals contributed about 90 percent of the flow during hydraulic tests. The four hydraulic tests conducted from 1995 to 1997 lasted 4 to 553 days. Discharge from the pumping well, UE-25 c #3, ranged from 8.49 to 22.5 liters per second in different tests. Two to seven observation wells, 30 to 3,526 meters from the pumping well, were used in different tests. Observation wells included UE-25 c #1, UE-25 c #2, UE-25 ONC-1, USW H-4, UE-25 WT #14, and UE-25 WT #3 in the tuffaceous rocks and UE-25 p #1 in Paleozoic carbonate rocks. In all hydraulic tests, drawdown in the pumping well was rapid and large (2.9-11 meters). Attributable mostly to frictional head loss and borehole-skin effects, this drawdown could not be used to analyze hydraulic properties. Drawdown and recovery in intervals of UE-25 c #1 and UE-25 c #2 and in other observation wells typically was less than 51 centimeters. These data were analyzed. Hydrogeologic intervals in the C-holes have layered heterogeneity related to faults and fracture zones. Transmissivity, hydraulic conductivity, and storativity generally increase downhole. Transmissivity ranges from 4 to 1,600 meters squared per day; hydraulic conductivity ranges from 0.1 to 50 meters per day

  3. The impact of inlet angle and outlet angle of guide vane on pump in reversal based hydraulic turbine performance

    International Nuclear Information System (INIS)

    Shi, F X; Yang, J H; Wang, X H; Zhang, R H; Li, C E

    2012-01-01

    In this paper, in order to research the impact of inlet angle and outlet angle of guide vane on hydraulic turbine performance, a centrifugal pump in reversal is adopted as turbine. A numerical simulation method is adopted for researching outer performance and flow field of turbine. The results show: inlet angle has a crucial role to turbine, to the same flow, there is a noticeable decline for the efficiency and head of turbine with the inlet angle increases. At the best efficiency point(EFP),to a same inlet angle, when the inlet angle greater than inlet angle, velocity circulation in guide vane outlet decreases, which lead the efficiency of turbine to reduce, Contrarily, the efficiency rises. With the increase of inlet angle and outlet angle, the EFP moves to the big flow area and the uniformity of pressure distribution becomes worse. The paper indicates that the inlet angle and outlet angle have great impact on the turbine performance, and the best combination exists for the inlet angle and outlet angle of the guide vane.

  4. Summary and evaluation of available hydraulic property data for the Hanford Site unconfined aquifer system

    International Nuclear Information System (INIS)

    Thorne, P.D.; Newcomer, D.R.

    1992-11-01

    Improving the hydrologic characterization of the Hanford Site unconfined aquifer system is one of the objectives of the Hanford Site Ground-Water Surveillance Project. To help meet this objective, hydraulic property data available for the aquifer have been compiled, mainly from reports published over the past 40 years. Most of the available hydraulic property estimates are based on constant-rate pumping tests of wells. Slug tests have also been conducted at some wells and analyzed to determine hydraulic properties. Other methods that have been used to estimate hydraulic properties of the unconfined aquifer are observations of water-level changes in response to river stage, analysis of ground-water mound formation, tracer tests, and inverse groundwater flow models

  5. Cross-cutting european thermal-hydraulics research for innovative nuclear systems

    International Nuclear Information System (INIS)

    Roelofs, F.; Class, A.; Cheng, X.; Meloni, P.; Van Tichelen, K.; Boudier, P.; Prasser, M.

    2010-01-01

    Thermal-hydraulics is recognized as a key scientific subject in the development of different innovative nuclear reactor systems. From the thermal-hydraulic point of view, different innovative reactors are mainly characterized by their coolants (gas, water, liquid metals and molten salt). This results in different micro- and macroscopic behavior of flow and heat transfer and requires specific models and advanced analysis tools. However, many common thermal-hydraulic issues are identified among various innovative nuclear systems. In Europe, such cross-cutting thermal-hydraulic issues are the subject of the 7. framework programme THINS (Thermal-Hydraulics of Innovative Nuclear Systems) project which runs from 2010 until 2014. This paper will describe the activities in this project which address the main identified thermal hydraulics issues for innovative nuclear systems. (authors)

  6. Evaluation of thermal-hydraulic parameter uncertainties in a TRIGA research reactor

    International Nuclear Information System (INIS)

    Mesquita, Amir Z.; Costa, Antonio C.L.; Ladeira, Luiz C.D.; Rezende, Hugo C.; Palma, Daniel A.P.

    2015-01-01

    Experimental studies had been performed in the TRIGA Research Nuclear Reactor of CDTN/CNEN to find out the its thermal hydraulic parameters. Fuel to coolant heat transfer patterns must be evaluated as function of the reactor power in order to assess the thermal hydraulic performance of the core. The heat generated by nuclear fission in the reactor core is transferred from fuel elements to the cooling system through the fuel-cladding (gap) and the cladding to coolant interfaces. As the reactor core power increases the heat transfer regime from the fuel cladding to the coolant changes from single-phase natural convection to subcooled nucleate boiling. This paper presents the uncertainty analysis in the results of the thermal hydraulics experiments performed. The methodology used to evaluate the propagation of uncertainty in the results was done based on the pioneering article of Kline and McClintock, with the propagation of uncertainties based on the specification of uncertainties in various primary measurements. The uncertainty analysis on thermal hydraulics parameters of the CDTN TRIGA fuel element is determined, basically, by the uncertainty of the reactor's thermal power. (author)

  7. Research of performance prediction to energy on hydraulic turbine

    International Nuclear Information System (INIS)

    Quan, H; Li, R N; Li, Q F; Han, W; Su, Q M

    2012-01-01

    Refer to the low specific speed Francis turbine blade design principle and double-suction pump structure. Then, design a horizontal double-channel hydraulic turbine Francis. Through adding different guide vane airfoil and and no guide vane airfoil on the hydraulic conductivity components to predict hydraulic turbine energy and using Fluent software to numerical simulation that the operating conditions and point. The results show that the blade pressure surface and suction surface pressure is low when the hydraulic turbine installation is added standard positive curvature of the guide vane and modified positive curvature of guide vane. Therefore, the efficiency of energy recovery is low. However, the pressure of negative curvature guide vane and symmetric guide vane added on hydraulic turbine installations is larger than that of the former ones, and it is conducive to working of runner. With the decreasing of guide vane opening, increasing of inlet angle, flow state gets significantly worse. Then, others obvious phenomena are that the reflux and horizontal flow appeared in blade pressure surface. At the same time, the vortex was formed in Leaf Road, leading to the loss of energy. Through analyzing the distribution of pressure, velocity, flow lines of over-current flow in the the back hydraulic conductivity components in above programs we can known that the hydraulic turbine installation added guide vane is more reasonable than without guide vanes, it is conducive to improve efficiency of energy conversion.

  8. On-Shore Central Hydraulic Power Generation for Wind and Tidal Energy

    Science.gov (United States)

    Jones, Jack A.; Bruce, Allan; Lim, Steven; Murray, Luke; Armstrong, Richard; Kimbrall, Richard; Cook-Chenault, Kimberly; DeGennaro, Sean

    2012-01-01

    Tidal energy, offshore wind energy, and onshore wind energy can be converted to electricity at a central ground location by means of converting their respective energies into high-pressure hydraulic flows that are transmitted to a system of generators by high-pressure pipelines. The high-pressure flows are then efficiently converted to electricity by a central power plant, and the low-pressure outlet flow is returned. The Department of Energy (DOE) is presently supporting a project led by Sunlight Photonics to demonstrate a 15 kW tidal hydraulic power generation system in the laboratory and possibly later submerged in the ocean. All gears and submerged electronics are completely eliminated. A second portion of this DOE project involves sizing and costing a 15 MW tidal energy system for a commercial tidal energy plant. For this task, Atlantis Resources Corporation s 18-m diameter demonstrated tidal blades are rated to operate in a nominal 2.6 m/sec tidal flow to produce approximately one MW per set of tidal blades. Fifteen units would be submerged in a deep tidal area, such as in Maine s Western Passage. All would be connected to a high-pressure (20 MPa, 2900 psi) line that is 35 cm ID. The high-pressure HEPG fluid flow is transported 500-m to on-shore hydraulic generators. HEPG is an environmentally-friendly, biodegradable, watermiscible fluid. Hydraulic adaptations to ORPC s cross-flow turbines are also discussed. For 15 MW of wind energy that is onshore or offshore, a gearless, high efficiency, radial piston pump can replace each set of top-mounted gear-generators. The fluid is then pumped to a central, easily serviceable generator location. Total hydraulic/electrical efficiency is 0.81 at full rated wind or tidal velocities and increases to 0.86 at 1/3 rated velocities.

  9. Physico-empirical approach for mapping soil hydraulic behaviour

    Directory of Open Access Journals (Sweden)

    G. D'Urso

    1997-01-01

    Full Text Available Abstract: Pedo-transfer functions are largely used in soil hydraulic characterisation of large areas. The use of physico-empirical approaches for the derivation of soil hydraulic parameters from disturbed samples data can be greatly enhanced if a characterisation performed on undisturbed cores of the same type of soil is available. In this study, an experimental procedure for deriving maps of soil hydraulic behaviour is discussed with reference to its application in an irrigation district (30 km2 in southern Italy. The main steps of the proposed procedure are: i the precise identification of soil hydraulic functions from undisturbed sampling of main horizons in representative profiles for each soil map unit; ii the determination of pore-size distribution curves from larger disturbed sampling data sets within the same soil map unit. iii the calibration of physical-empirical methods for retrieving soil hydraulic parameters from particle-size data and undisturbed soil sample analysis; iv the definition of functional hydraulic properties from water balance output; and v the delimitation of soil hydraulic map units based on functional properties.

  10. Heat pumping in nanomechanical systems.

    Science.gov (United States)

    Chamon, Claudio; Mucciolo, Eduardo R; Arrachea, Liliana; Capaz, Rodrigo B

    2011-04-01

    We propose using a phonon pumping mechanism to transfer heat from a cold to a hot body using a propagating modulation of the medium connecting the two bodies. This phonon pump can cool nanomechanical systems without the need for active feedback. We compute the lowest temperature that this refrigerator can achieve. © 2011 American Physical Society

  11. A path to practical Solar Pumped Lasers via Radiative Energy Transfer.

    Science.gov (United States)

    Reusswig, Philip D; Nechayev, Sergey; Scherer, Jennifer M; Hwang, Gyu Weon; Bawendi, Moungi G; Baldo, Marc A; Rotschild, Carmel

    2015-10-05

    The optical conversion of incoherent solar radiation into a bright, coherent laser beam enables the application of nonlinear optics to solar energy conversion and storage. Here, we present an architecture for solar pumped lasers that uses a luminescent solar concentrator to decouple the conventional trade-off between solar absorption efficiency and the mode volume of the optical gain material. We report a 750-μm-thick Nd(3+)-doped YAG planar waveguide sensitized by a luminescent CdSe/CdZnS (core/shell) colloidal nanocrystal, yielding a peak cascade energy transfer of 14%, a broad spectral response in the visible portion of the solar spectrum, and an equivalent quasi-CW solar lasing threshold of 23 W-cm(-2), or approximately 230 suns. The efficient coupling of incoherent, spectrally broad sunlight in small gain volumes should allow the generation of coherent laser light from intensities of less than 100 suns.

  12. Ultrashort-pulse-train pump and dump excitation of a diatomic molecule

    Science.gov (United States)

    de Araujo, Luís E. E.

    2010-09-01

    An excitation scheme is proposed for transferring population between ground-vibrational levels of a molecule. The transfer is accomplished by pumping and dumping population with a pair of coherent ultrashort-pulse trains via a stationary state. By mismatching the teeth of the frequency combs associated with the pulse trains to the vibrational levels, high selectivity in the excitation, along with high transfer efficiency, is predicted. The pump-dump scheme does not suffer from spontaneous emission losses, it is insensitive to the pump-dump-train delay, and it requires only basic pulse shaping.

  13. A Numerical Study on the Improvement of Suction Performance and Hydraulic Efficiency for a Mixed-Flow Pump Impeller

    Directory of Open Access Journals (Sweden)

    Sung Kim

    2014-01-01

    Full Text Available This paper describes a numerical study on the improvement of suction performance and hydraulic efficiency of a mixed-flow pump by impellers. The design of these impellers was optimized using a commercial CFD (computational fluid dynamics code and DOE (design of experiments. The design variables of meridional plane and vane plane development were defined for impeller design. In DOE, variables of inlet part were selected as main design variables in meridional plane, and incidence angle was selected in vane plane development. The verification of the experiment sets that were generated by 2k factorial was done by numerical analysis. The objective functions were defined as the NPSHre (net positive suction head required, total efficiency, and total head of the impellers. The importance of the geometric design variables was analyzed using 2k factorial designs. The interaction between the NPSHre and total efficiency, according to the meridional plane and incidence angle, was discussed by analyzing the 2k factorial design results. The performance of optimally designed model was verified by experiments and numerical analysis and the reliability of the model was retained by comparison of numerical analysis and comparative analysis with the reference model.

  14. Development and test of a plastic deep-well pump

    International Nuclear Information System (INIS)

    Zhang, Q H; Gao, X F; Xu, Y; Shi, W D; Lu, W G; Liu, W

    2013-01-01

    To develop a plastic deep-well pump, three methods are proposed on structural and forming technique. First, the major hydraulic components are constructed by plastics, and the connection component is constructed by steel. Thus the pump structure is more concise and slim, greatly reducing its weight and easing its transportation, installation, and maintenance. Second, the impeller is designed by maximum diameter method. Using same pump casing, the stage head is greatly increased. Third, a sealing is formed by impeller front end face and steel end face, and two slots are designed on the impeller front end face, thus when the two end faces approach, a lubricating pair is formed, leading to an effective sealing. With above methods, the pump's axial length is greatly reduced, and its stage head is larger and more efficient. Especially, the pump's axial force is effectively balanced. To examine the above proposals, a prototype pump is constructed, and its testing results show that the pump efficiency exceeds the national standard by 6%, and the stage head is improved by 41%, meanwhile, its structure is more concise and ease of transportation. Development of this pump would provide useful experiences for further popularity of plastic deep-well pumps

  15. Reactor coolant pump type RUV for Westinghouse Electric Company LLC reactor AP1000 TM

    International Nuclear Information System (INIS)

    Baumgarten, S.; Brecht, B.; Bruhns, U.; Fehring, P.

    2010-01-01

    The RUV is a reactor coolant pump, specially designed for the Westinghouse Electric Company LLC AP1000 TM reactor. It is a hermetically sealed, wet winding motor pump. The RUV is a very compact, vertical pump/motor unit, designed to fit into the compartment next to the reactor pressure vessel. Each of the two steam generators has two pump casings welded to the channel head by the suction nozzle. The pump/motor unit consists of a pump part, where a semi-axial impeller/diffuser combination is mounted in a one-piece pump casing. Computational Fluid Dynamics methods combined with various hydraulic tests in a 1:2 scale hydraulic test assure full compliance with the specific customer requirements. A short and rigid shaft, supported by a radial bearing, connects the impeller with the high inertia flywheel. This flywheel consists of a one-piece forged stainless steel cylinder, with an option for several smaller heavy metal cylinders inside. The flywheel is located inside the thermal barrier, which forms part of the pressure boundary. A specific arrangement of cooling water circuits guarantees a homogeneous temperature distribution in and around the flywheel, minimizes the friction losses of the flywheel and protects the motor from hot coolant. The driving torque is transmitted by the motor shaft, which itself is supported by two radial bearings. A three-phase, high-voltage squirrel-cage induction motor generates the driving torque. Due to the wet winding concept it is possible to achieve positive effects regarding motor lifetime. The cooling water is forced through the stator windings and the gap between rotor and stator by an auxiliary impeller. Furthermore, this wet winding motor concept has higher efficiency as compared to a canned motor since there are no eddy current losses. As part of the design process and in addition to the hydraulic scale model, a complete half scale model pump was built. It was used to verify the calculations performed like coast

  16. Nonazeotropic Heat Pump

    Science.gov (United States)

    Ealker, David H.; Deming, Glenn

    1991-01-01

    Heat pump collects heat from water circulating in heat-rejection loop, raises temperature of collected heat, and transfers collected heat to water in separate pipe. Includes sealed motor/compressor with cooling coils, evaporator, and condenser, all mounted in outer housing. Gradients of temperature in evaporator and condenser increase heat-transfer efficiency of vapor-compression cycle. Intended to recover relatively-low-temperature waste heat and use it to make hot water.

  17. A conceptual redesign of an Inter-Building Fuel Transfer Cask

    International Nuclear Information System (INIS)

    Klann, R.T.; Picker, B.A. Jr.

    1993-01-01

    The Inter-Building Fuel Transfer Cask, referred to as the IBC, is a lead shielded cask for transporting subassemblies between buildings on the Argonne National Laboratory-West site near Idaho Falls, Idaho. The cask transports both newly fabricated and spent reactor subassemblies between the Experimental Breeder Reactor-II (EBR-II), the Fuel Cycle Facility (FCF) and the Hot Fuel Examination Facility (HFEF). The IBC will play a key role in the Integral Fast Reactor (IFR) fuel recycling demonstration project. This report discusses a conceptual redesign of the IBC which has been performed. The objective of the conceptual design was to increase the passive heat removal capabilities, reduce the personnel radiation exposure and incorporate enhanced safety features into the design. The heat transfer, radiation and thermal-hydraulic properties of the IBC were analytically modelled to determine the principal factors controlling the desip. The scoping studies that were performed determined the vital physical characteristics (i.e., size, shielding, pumps, etc.) of the MC conceptual design

  18. FIX-II. Loca-blowdown heat transfer and pump trip experiments. Summary report of phase 1: Design of experiments

    International Nuclear Information System (INIS)

    Waaranperae, Y.; Nilsson, L.; Gustafsson, P.Aa.; Jonsson, N.O.

    1979-06-01

    FIX-II is a loss of coolant blowdown heat transfer experiment, performed under contract for The Swedish Nuclear Power Inspectorate, SKI. The purpose of the experiments is to provide measurements from simulations of a pipe rupture on an external recirculation line in a Swedish BWR. Pump trips in BWRs with internal recirculation pumps will also be simulated. The existing FIX-loop at the Thermal Engineering Laboratory of Studsvik Energiteknik AB will be modified and used for the experiments. Components are included to simulate the steam dome, downcomer, two recirculation lines with one pump each, lower plenum, core (36-rod full length bundle), control rod guide tubes, core bypass, upper plenum and steam separators. The results of the first phase of the project are reported here. The following tasks are included in Phase 1: reactor reference analysis, scaling calculations of the FIX loop, development of fuel rod simulators, design of test section and test loop layout and proposal for test program. Further details of the work and results obtained for the different sub-projects are published in a number ofdetailed reports. (author)

  19. A study on the pressure ripple characteristics in a bent-axis type oil hydraulic piston pump

    International Nuclear Information System (INIS)

    Cho, Ihn Sung; Jung, Jae Youn

    2013-01-01

    To improve the performance of a bent-axis type axial piston pump driven by tapered pistons, it is necessary to know the pressure ripple characteristics. The purpose of this paper is to understand the effect on the pressure ripple characteristics, and to predict by comparing experimental and theoretical analysis results. The simulation model of a bent-axis type axial piston pump is developed in the AMESim environment using the geometrical dimension, and the driving mechanism of the piston pump, such as the stroke of pump, the velocity of piston, the instantaneous volumetric flow, the overlap area of valve plate opening to cylinder bore, the angle of notch, and so on. The results show that theoretical analysis results of the bent-axis type axial piston pump by using the AMESim approximate the pressure ripple characteristic of the test pump, and through this, simulations can be obtained that predict the performance characteristics of a bentaxis type axial piston pump.

  20. Experiments on the Heat Transfer and Natural Circulation Characteristics of the Passive Residual Heat Removal System for the Advanced Integral Type Reactor

    International Nuclear Information System (INIS)

    Park, Hyun-Sik; Choi, Ki-Yong; Cho, Seok; Park, Choon-Kyung; Lee, Sung-Jae; Song, Chul-Hwa; Chung, Moon-Ki; Lee, Un-Chul

    2004-01-01

    Experiments on the heat transfer characteristics and natural circulation performance of the passive residual heat removal system (PRHRS) for the SMART-P have been performed using the high temperature/high pressure thermal-hydraulic test facility (VISTA). The VISTA facility consists of the primary loop, the secondary loop, the PRHRS loop, and auxiliary systems to simulate the SMART-P, a pilot plant of the SMART. The primary loop is composed of the steam generator (SG) primary side, a simulated core, a main coolant pump, and loop piping, and the PRHRS loop consists of the SG secondary side, a PRHRS heat exchanger, and loop piping. The natural circulation performance of the PRHRS, the heat transfer characteristics of the PRHRS heat exchangers and the emergency cooldown tank (ECT), and the thermal-hydraulic behavior of the primary loop are intensively investigated. The experimental results show that the coolant flows steadily in the PRHRS loop and the heat transfers through the PRHRS heat exchanger and the emergency cooldown tank are sufficient enough to enable the natural circulation of the coolant. The results also show that the core decay heat can be sufficiently removed from the primary loop with the operation of the PRHRS. (authors)

  1. Pumping power of nanofluids in a flowing system

    International Nuclear Information System (INIS)

    Routbort, Jules L.; Singh, Dileep; Timofeeva, Elena V.; Yu, Wenhua; France, David M.

    2011-01-01

    Nanofluids have the potential to increase thermal conductivities and heat transfer coefficients compared to their base fluids. However, the addition of nanoparticles to a fluid also increases the viscosity and therefore increases the power required to pump the fluid through the system. When the benefit of the increased heat transfer is larger than the penalty of the increased pumping power, the nanofluid has the potential for commercial viability. The pumping power for nanofluids has been considered previously for flow in straight tubes. In this study, the pumping power was measured for nanofluids flowing in a complete system including straight tubing, elbows, and expansions. The objective was to determine the significance of two-phase flow effects on system performance. Two types of nanofluids were used in this study: a water-based nanofluid containing 2.0–8.0 vol% of 40-nm alumina nanoparticles, and a 50/50 ethylene glycol/water mixture-based nanofluid containing 2.2 vol% of 29-nm SiC nanoparticles. All experiments were performed in the turbulent flow region in the entire test system simulating features typically found in heat exchanger systems. Experimental results were compared to the pumping power calculated from a mathematical model of the system to evaluate the system effects. The pumping power results were also combined with the heat transfer enhancement to evaluate the viability of the two nanofluids.

  2. Capillary pumped loop body heat exchanger

    Science.gov (United States)

    Swanson, Theodore D. (Inventor); Wren, deceased, Paul (Inventor)

    1998-01-01

    A capillary pumped loop for transferring heat from one body part to another body part, the capillary pumped loop comprising a capillary evaporator for vaporizing a liquid refrigerant by absorbing heat from a warm body part, a condenser for turning a vaporized refrigerant into a liquid by transferring heat from the vaporized liquid to a cool body part, a first tube section connecting an output port of the capillary evaporator to an input of the condenser, and a second tube section connecting an output of the condenser to an input port of the capillary evaporator. A wick may be provided within the condenser. A pump may be provided between the second tube section and the input port of the capillary evaporator. Additionally, an esternal heat source or heat sink may be utilized.

  3. Double-shell tank emergency pumping guide

    International Nuclear Information System (INIS)

    BROWN, M.H.

    1999-01-01

    This Double-Shell Tank Emergency Pumping Guide provides the preplanning necessary to expeditiously remove any waste that may leak from the primary tank to the secondary tank for Hanfords 28 DSTs. The strategy is described, applicable emergency procedures are referenced, and transfer routes and pumping equipment for each tank are identified

  4. Double-shell tank emergency pumping guide

    International Nuclear Information System (INIS)

    BROWN, M.H.

    1999-01-01

    This Double-Shell Tank Emergency Pumping Guide provides the preplanning necessary to expeditiously remove any waste that may leak from the primary tank to the secondary tank for Hanford's 28 DSTS. The strategy is described, applicable emergency procedures are referenced, and transfer routes and pumping equipment for each tank are identified

  5. Aquifer test to determine hydraulic properties of the Elm aquifer near Aberdeen, South Dakota

    Science.gov (United States)

    Schaap, Bryan D.

    2000-01-01

    The Elm aquifer, which consists of sandy and gravelly glacial-outwash deposits, is present in several counties in northeastern South Dakota. An aquifer test was conducted northeast of Aberdeen during the fall of 1999 to determine the hydraulic properties of the Elm aquifer in that area. An improved understanding of the properties of the aquifer will be useful in the possible development of the aquifer as a water resource. Historical water-level data indicate that the saturated thickness of the Elm aquifer can change considerably over time. From September 1977 through November 1985, water levels at three wells completed in the Elm aquifer near the aquifer test site varied by 5.1 ft, 9.50 ft, and 11.1 ft. From June 1982 through October 1999, water levels at five wells completed in the Elm aquifer near the aquifer test site varied by 8.7 ft, 11.4 ft, 13.2 ft, 13.8 ft, and 19.7 ft. The water levels during the fall of 1999 were among the highest on record, so the aquifer test was affected by portions of the aquifer being saturated that might not be saturated during drier times. The aquifer test was conducted using five existing wells that had been installed prior to this study. Well A, the pumped well, has an operating irrigation pump and is centrally located among the wells. Wells B, C, D, and E are about 70 ft, 1,390 ft, 2,200 ft, and 3,100 ft, respectively, in different directions from Well A. Using vented pressure transducers and programmable data loggers, water-level data were collected at the five wells prior to, during, and after the pumping, which started on November 19, 1999, and continued a little over 72 hours. Based on available drilling logs, the Elm aquifer near the test area was assumed to be unconfined. The Neuman (1974) method theoretical response curves that most closely match the observed water-level changes at Wells A and B were calculated using software (AQTESOLV for Windows Version 2.13-Professional) developed by Glenn M. Duffield of Hydro

  6. Evaluation of Regression and Neuro_Fuzzy Models in Estimating Saturated Hydraulic Conductivity

    Directory of Open Access Journals (Sweden)

    J. Behmanesh

    2015-06-01

    Full Text Available Study of soil hydraulic properties such as saturated and unsaturated hydraulic conductivity is required in the environmental investigations. Despite numerous research, measuring saturated hydraulic conductivity using by direct methods are still costly, time consuming and professional. Therefore estimating saturated hydraulic conductivity using rapid and low cost methods such as pedo-transfer functions with acceptable accuracy was developed. The purpose of this research was to compare and evaluate 11 pedo-transfer functions and Adaptive Neuro-Fuzzy Inference System (ANFIS to estimate saturated hydraulic conductivity of soil. In this direct, saturated hydraulic conductivity and physical properties in 40 points of Urmia were calculated. The soil excavated was used in the lab to determine its easily accessible parameters. The results showed that among existing models, Aimrun et al model had the best estimation for soil saturated hydraulic conductivity. For mentioned model, the Root Mean Square Error and Mean Absolute Error parameters were 0.174 and 0.028 m/day respectively. The results of the present research, emphasises the importance of effective porosity application as an important accessible parameter in accuracy of pedo-transfer functions. sand and silt percent, bulk density and soil particle density were selected to apply in 561 ANFIS models. In training phase of best ANFIS model, the R2 and RMSE were calculated 1 and 1.2×10-7 respectively. These amounts in the test phase were 0.98 and 0.0006 respectively. Comparison of regression and ANFIS models showed that the ANFIS model had better results than regression functions. Also Nuro-Fuzzy Inference System had capability to estimatae with high accuracy in various soil textures.

  7. Environmental conditions using thermal-hydraulics computer code GOTHIC for beyond design basis external events

    International Nuclear Information System (INIS)

    Pleskunas, R.J.

    2015-01-01

    In response to the Fukushima Dai-ichi beyond design basis accident in March 2011, the Nuclear Regulatory Commission (NRC) issued Order EA-12-049, 'Issuance of Order to Modify Licenses with Regard to Requirements for Mitigation Strategies Beyond-Design-Basis-External-Events'. To outline the process to be used by individual licensees to define and implement site-specific diverse and flexible mitigation strategies (FLEX) that reduce the risks associated with beyond design basis conditions, Nuclear Energy Institute document NEI 12-06, 'Diverse and Flexible Coping Strategies (FLEX) Implementation Guide', was issued. A beyond design basis external event (BDBEE) is postulated to cause an Extended Loss of AC Power (ELAP), which will result in a loss of ventilation which has the potential to impact room habitability and equipment operability. During the ELAP, portable FLEX equipment will be used to achieve and maintain safe shutdown, and only a minimal set of instruments and controls will be available. Given these circumstances, analysis is required to determine the environmental conditions in several vital areas of the Nuclear Power Plant. The BDBEE mitigating strategies require certain room environments to be maintained such that they can support the occupancy of personnel and the functionality of equipment located therein, which is required to support the strategies associated with compliance to NRC Order EA-12-049. Three thermal-hydraulic analyses of vital areas during an extended loss of AC power using the GOTHIC computer code will be presented: 1) Safety-related pump and instrument room transient analysis; 2) Control Room transient analysis; and 3) Auxiliary/Control Building transient analysis. GOTHIC (Generation of Thermal-Hydraulic Information for Containment) is a general purpose thermal-hydraulics software package for the analysis of nuclear power plant containments, confinement buildings, and system components. It is a volume/path/heat sink

  8. Matter, energy, and heat transfer in a classical ballistic atom pump.

    Science.gov (United States)

    Byrd, Tommy A; Das, Kunal K; Mitchell, Kevin A; Aubin, Seth; Delos, John B

    2014-11-01

    A ballistic atom pump is a system containing two reservoirs of neutral atoms or molecules and a junction connecting them containing a localized time-varying potential. Atoms move through the pump as independent particles. Under certain conditions, these pumps can create net transport of atoms from one reservoir to the other. While such systems are sometimes called "quantum pumps," they are also models of classical chaotic transport, and their quantum behavior cannot be understood without study of the corresponding classical behavior. Here we examine classically such a pump's effect on energy and temperature in the reservoirs, in addition to net particle transport. We show that the changes in particle number, of energy in each reservoir, and of temperature in each reservoir vary in unexpected ways as the incident particle energy is varied.

  9. Assessing hydraulic connections across a complex sequence of volcanic rocks - Analysis of U-20 WW multiple-well aquifer test, Pahute Mesa, Nevada National Security Site, Nevada

    Science.gov (United States)

    Garcia, C. Amanda; Fenelon, Joseph M.; Halford, Keith J.; Reiner, Steven R.; Laczniak, Randell J.

    2011-01-01

    Groundwater beneath Pahute Mesa flows through a complexly layered sequence of volcanic rock aquifers and confining units that have been faulted into distinct structural blocks. Hydraulic property estimates of rocks and structures in this flow system are necessary to assess radionuclide migration near underground nuclear testing areas. The U.S. Geological Survey (USGS) used a 12 month (October 1, 2008— October 1, 2009) intermittent pumping schedule of well U-20 WW and continuously monitored water levels in observation wells ER-20-6 #3, UE-20bh 1, and U-20bg as a multi-well aquifer test to evaluate hydraulic connections across structural blocks, bulk hydraulic properties of volcanic rocks, and the hydraulic significance of a major fault. Measured water levels were approximated using synthetic water levels generated from an analytical model. Synthetic water levels are a summation of environmental water-level fluctuations and a Theis (1935) transform of the pumping signal from flow rate to water-level change. Drawdown was estimated by summing residual differences between measured and synthetic water levels and the Theis-transformed pumping signal from April to September 2009. Drawdown estimates were used in a three‑dimensional numerical model to estimate hydraulic properties of distinct aquifers, confining units, and a major fault.

  10. Pumps for nuclear power stations

    International Nuclear Information System (INIS)

    Ogura, Shiro

    1979-01-01

    16 nuclear power plants are in commercial operation in Japan, and nuclear power generation holds the most important position among various substitute energies. Hereafter also, it is expected that the construction of nuclear power stations will continue because other advantageous energy sources are not found. In this paper, the outline of the pumps used for BWR plants is described. Nuclear power stations tend to be large scale to reduce the construction cost per unit power output, therefore the pumps used are those of large capacity. The conditions to be taken in consideration are high temperature, high pressure, radioactive fluids, high reliability, hydrodynamic performances, aseismatic design, relevant laws and regulations, and quality assurance. Pumps are used for reactor recirculation system, control rod driving hydraulic system, boric acid solution injecting system, reactor coolant purifying system, fuel pool cooling and purifying system, residual heat removing system, low pressure and high pressure core spraying systems, and reactor isolation cooling system, for condensate, feed water, drain and circulating water systems of turbines, for fresh water, sea water, make-up water and fire fighting services, and for radioactive waste treating system. The problems of the pumps used for nuclear power stations are described, for example, the requirement of high reliability, the measures to radioactivity and the aseismatic design. (Kako, I.)

  11. Performance characteristics of a continuous-flow fluidic pump

    International Nuclear Information System (INIS)

    Robinson, S.M.; Counce, R.M.; Smith, G.V.

    1987-01-01

    The fluidic pump is a type of positive-displacement pump in which basic fluid mechanics phenomena are utilized to eliminate valves and other moving parts that are exposed to the fluid being transferred. The version described in this article is powered by gas pressure serving as gas pistons and is virtually maintenance-free. It utilizes two displacement vessels and is designed to produce a steady and continuous liquid flow. This type of pump may be very useful for the transfer of radioactive or hazardous liquids where mechanical maintenance may be difficult or exposure of personnel to the fluid is undesirable. This paper presents experimental and model-predicted characteristics of such systems. The effects of several geometric parameters and operating conditions on the performance of the pump are briefly discussed

  12. Primary pump vibration under accident conditions

    International Nuclear Information System (INIS)

    Guthrie, B.M.; Currie, T.C.

    1984-06-01

    This report presents the results of an international survey on the subject of vibration in nuclear primary coolant pumps due to two-phase flow, accident conditions. The literature search also revealed few Canadian references other than those of Ontario Hydro. Ontario Hydro's work has been extensive. Confidence in the mechanical integrity of the pumpsets is good, given the extent of the testing. However, conclusions with respect to piping integrity and thermal-hydraulic performance are difficult to determine due to the inexact geometry of the piping and the difficulties in estimating fluid conditions at the pump. The tests help to understand the phenomena and provide background information for analysis, but should be applied with caution to plant analyses. Much of the discussion in the report relates to pump head instability. This is perceived to be the most important flow regime causing vibration, as attested by the emphasis of the reviewed literature. A method for quantitative assessment of the forcing functions acting on the pump-piping system due to void generation and collapse is recommended. A relatively fundamental analytical approach is proposed, supplemented by reduced scale testing in the latter stages. 151 refs

  13. Heat transfer: Pittsburgh 1987

    International Nuclear Information System (INIS)

    Lyczkowski, R.W.

    1987-01-01

    This book contains papers divided among the following sections: Process Heat Transfer; Thermal Hydraulics and Phase Change Phenomena; Analysis of Multicomponent Multiphase Flow and Heat Transfer; Heat Transfer in Advanced Reactors; General Heat Transfer in Solar Energy; Numerical Simulation of Multiphase Flow and Heat Transfer; High Temperature Heat Transfer; Heat Transfer Aspects of Severe Reactor Accidents; Hazardous Waste On-Site Disposal; and General Papers

  14. A simplified transfer function for estimating saturated hydraulic conductivity of porous drainage filters

    DEFF Research Database (Denmark)

    Canga, Eriona; Iversen, Bo Vangsø; Kjærgaard, Charlotte

    2013-01-01

    Knowledge of the saturated hydraulic conductivity (Ksat) of porous filters used in water treatment technologies is important for optimizing the retention of nutrients and pollutants. This parameter determines the hydraulic capacity, which together with the Chemical properties of the filter media...

  15. Discussion on Stochastic Analysis of Hydraulic Vibration in Pressurized Water Diversion and Hydropower Systems

    Directory of Open Access Journals (Sweden)

    Jianxu Zhou

    2018-03-01

    Full Text Available Hydraulic vibration exists in various water conveyance projects and has resulted in different operating problems, but its obvious effects on system’s pressure head and stable operation have not been definitively addressed in the issued codes for engineering design, especially considering the uncertainties of hydraulic vibration. After detailed analysis of the randomness in hydraulic vibration and the commonly used stochastic approaches, in the basic equations for hydraulic vibration analysis, the random parameters and the formed stochastic equations were discussed for further probabilistic characteristic analysis of the random variables. Furthermore, preliminary investigation of the stochastic analysis of hydraulic vibration in pressurized pipelines and possible self-excited vibration in pumped-storage systems was presented for further consideration. The detailed discussion indicates that it is necessary to conduct further and systematic stochastic analysis of hydraulic vibration. Further, with the obtained frequencies and amplitudes in the form of a probability statement, the stochastic characteristics of various hydraulic vibrations can be investigated in detail and these solutions will be more reasonable for practical applications. Eventually, the stochastic analysis of hydraulic vibration will provide a basic premise to introduce its effect into the engineering design of water diversion and hydropower systems.

  16. Ground source energy in crystalline bedrock - increased energy extraction by using hydraulic fracturing in boreholes

    Energy Technology Data Exchange (ETDEWEB)

    Ramstad, Randi Kalstad

    2004-11-01

    The use of improved equipment and methodology can result in considerable reductions in the drilling costs for medium- to large sized ground source heat pump system in crystalline bedrock. The main point has been to use special techniques within hydraulic fracturing to create a larger heat exchange area in the bedrock, and thus a greater energy extraction per borehole. The energy extraction is based on circulating groundwater. Stimulation with hydraulic fracturing is a well known technique in order to improve borehole yields for drinking water-, oil-, and geothermal purposes. A procedure for injection of propping agents in selected borehole sections, and custom-made equipment for hydraulic fracturing in crystalline bedrock, a double packer, have been developed in this study. The propping agents are likely to ensure a permanent improvement of the hydraulic conductivity in a long-run perspective. In addition to a pre-test, a comprehensive test programme has been performed at each of the two pilot plants at Bryn and at the former property of Energiselskapet Asker og Baerum (EAB) in Baerum municipality outside Oslo, Norway. A total of 125 stimulations with hydraulic fracturing using water-only and hydraulic fracturing with injection of sand have been performed in 9 boreholes. Test pumping and geophysical logging (temperature, electrical conductivity, gamma radiation, optical televiewer and flow measurements) have been carried out in order to document the effect of the hydraulic fracturing. The pilot plants at Bryn and EAB, where the ground source heat pump systems are based on circulating groundwater, have demonstrated the short-period energy extraction, limitations and opportunities of the concept for hydraulic fracturing and increased energy extraction in different geological and hydrogeological areas. The bedrock at Bryn and EAB is characterized as a low-metamorphic sandstone and a nodular limestone, respectively. At Bryn, the five boreholes were organised with a

  17. A path to practical Solar Pumped Lasers via Radiative Energy Transfer

    Science.gov (United States)

    Reusswig, Philip D.; Nechayev, Sergey; Scherer, Jennifer M.; Hwang, Gyu Weon; Bawendi, Moungi G.; Baldo, Marc. A.; Rotschild, Carmel

    2015-01-01

    The optical conversion of incoherent solar radiation into a bright, coherent laser beam enables the application of nonlinear optics to solar energy conversion and storage. Here, we present an architecture for solar pumped lasers that uses a luminescent solar concentrator to decouple the conventional trade-off between solar absorption efficiency and the mode volume of the optical gain material. We report a 750-μm-thick Nd3+-doped YAG planar waveguide sensitized by a luminescent CdSe/CdZnS (core/shell) colloidal nanocrystal, yielding a peak cascade energy transfer of 14%, a broad spectral response in the visible portion of the solar spectrum, and an equivalent quasi-CW solar lasing threshold of 23 W-cm−2, or approximately 230 suns. The efficient coupling of incoherent, spectrally broad sunlight in small gain volumes should allow the generation of coherent laser light from intensities of less than 100 suns. PMID:26434400

  18. A Hydraulic Motor-Alternator System for Ocean-Submersible Vehicles

    Science.gov (United States)

    Aintablian, Harry O.; Valdez, Thomas I.; Jones, Jack A.

    2012-01-01

    An ocean-submersible vehicle has been developed at JPL that moves back and forth between sea level and a depth of a few hundred meters. A liquid volumetric change at a pressure of 70 bars is created by means of thermal phase change. During vehicle ascent, the phase-change material (PCM) is melted by the circulation of warm water and thus pressure is increased. During vehicle descent, the PCM is cooled resulting in reduced pressure. This pressure change is used to generate electric power by means of a hydraulic pump that drives a permanent magnet (PM) alternator. The output energy of the alternator is stored in a rechargeable battery that powers an on-board computer, instrumentation and other peripherals.The focus of this paper is the performance evaluation of a specific hydraulic motor-alternator system. Experimental and theoretical efficiency data of the hydraulic motor and the alternator are presented. The results are used to evaluate the optimization of the hydraulic motor-alternator system. The integrated submersible vehicle was successfully operated in the Pacific Ocean near Hawaii. A brief overview of the actual test results is presented.

  19. The Performance Evaluation of Overall Heat Transfer and Pumping Power of γ-Al2O3/water Nanofluid as Coolant in Automotive Diesel Engine Radiator

    Directory of Open Access Journals (Sweden)

    Navid Bozorgan

    2013-05-01

    Full Text Available The efficiency of γ-Al2O3/water nanofluid as coolant is investigated in the present study. γ-Al2O3 nanoparticles with diameters of 20 nm dispersed in water with volume concentrations up 2% are selected and their performance in a radiator of Chevrolet Suburban diesel engine under turbulent flow conditions are numerically studied. The performance of an automobile radiator is a function of overall heat transfer coefficient and total heat transfer area. The heat transfer relations between nanofluid and airflow have been investigated to evaluate the overall heat transfer and the pumping power of γ-Al2O3/water nanofluid in the radiator with a given heat exchange capacity. In the present paper, the effects of the automotive speed and Reynolds number of the nanofluid in the different volume concentrations on the radiator performance are also investigated. As an example, the results show that for 2% γ-Al2O3 nanoparticles in water with Renf=6000 in the radiator while the automotive speed is 50 mph, the overall heat transfer coefficient and pumping power are approximately 11.11% and 29.17% more than that of water for given conditions, respectively. These results confirm that γ-Al2O3/water nanofluid offers higher overall heat transfer performance than water and can be reduced the total heat transfer area of the radiator.

  20. An experimental and theoretical investigation on the effects of adding hybrid nanoparticles on heat transfer efficiency and pumping power of an oil-based nanofluid as a coolant fluid

    DEFF Research Database (Denmark)

    Asadi, Meisam; Asadi, Amin; Aberoumand, Sadegh

    2018-01-01

    The present work aims to study heat transfer performance and pumping power of MgO-MWCNT/ thermal oil hybrid nanofluid. Using a KD2 Pro thermal analyzer, the thermal conductivity of the samples have been measured. The results showed an increasing trend for the thermal conductivity of the nanofluid...... by increasing the mass concentration and temperature, in which the maximum enhancement of thermal conductivity was approximately 65%. Predicting the thermal conductivity of the nanofluid, a highly accurate correlation in terms of solid concentration and temperature has been proposed. Moreover, the heat transfer...... nanofluid is highly efficient in heat transfer applications as a coolant fluid in both the laminar and turbulent flow regimes, although it causes a certain penalty in the pumping power....

  1. Engineering: Liquid metal pumped at a record temperature

    Science.gov (United States)

    Lambrinou, Konstantina

    2017-10-01

    Although liquid metals are effective fluids for heat transfer, pumping them at high temperatures is limited by their corrosiveness to solid metals. A clever pump design addresses this challenge using only ceramics. See Article p.199

  2. Geothermal heat from solid rock - increased energy extraction through hydraulic pressurizing of drill wells

    International Nuclear Information System (INIS)

    Ramstad, Randi Kalskin; Hilmo, Bernt Olav; Skarphagen, Helge

    2005-01-01

    New equipment for hydraulic pressurizing, a double collar of the type FrakPak - AIP 410-550, is developed by the Broennteknologi AS. The equipment is tested in the laboratory and in the field at Lade in Trondheim. By the construction of two pilot plants for geothermal heat at Bryn and on the previous grounds of the energy company in Asker and Baerum (EAB) extensive studies connected to hydraulic pressurizing are carried out both with water and sand injection. The geothermal heat plants at Bryn and AEB were supposed to be based on pumped ground water from rock wells where increased effect was obtained through pumping up, returning and circulating the water. The aim of the study was to test and develop the methods for hydraulic pressurizing both with water and sand injection, document the effect of the various types of pressurizing as well as mapping the hydro- and rock geological conditions for this type of geothermal heat plants. In addition to stimulating 10 drill holes with hydraulic pressurizing with water and sand injection, the studies have carried out test pumping, water sampling, geophysical logging, measurements of alterations in the terrain, current and rock strain measurements and geothermal response tests. Furthermore an efficacy test and a theoretical model of the energy potential of the plants are carried out. The results from the pilot plant at Bryn show that the drill hole capacities are significantly increased both through hydraulic pressurizing with water and sand injection. There seems to be a greater need for sand as ''prepping agent'' or distance maker in cracks with high pressure resistance than in cracks with lower resistance. The grain size of the sand should be adapted to the resistance pressure and injection of coarser sand is recommended in cracks with lower resistance pressure. The rock strength and strain conditions determine the successes of hydraulic pressurizing at the reopening of existing or opening of new faults. Test pumping was

  3. Modeling the Performance of Water-Zeolite 13X Adsorption Heat Pump

    Science.gov (United States)

    Kowalska, Kinga; Ambrożek, Bogdan

    2017-12-01

    The dynamic performance of cylindrical double-tube adsorption heat pump is numerically analysed using a non-equilibrium model, which takes into account both heat and mass transfer processes. The model includes conservation equations for: heat transfer in heating/cooling fluids, heat transfer in the metal tube, and heat and mass transfer in the adsorbent. The mathematical model is numerically solved using the method of lines. Numerical simulations are performed for the system water-zeolite 13X, chosen as the working pair. The effect of the evaporator and condenser temperatures on the adsorption and desorption kinetics is examined. The results of the numerical investigation show that both of these parameters have a significant effect on the adsorption heat pump performance. Based on computer simulation results, the values of the coefficients of performance for heating and cooling are calculated. The results show that adsorption heat pumps have relatively low efficiency compared to other heat pumps. The value of the coefficient of performance for heating is higher than for cooling

  4. Gyro-effect stabilizes unstable permanent maglev centrifugal pump.

    Science.gov (United States)

    Qian, Kun-Xi

    2007-03-01

    According to Earnshaw's Theorem (1839), the passive maglev cannot achieve stable equilibrium and thus an extra coil is needed to make the rotor electrically levitated in a heart pump. The author had developed a permanent maglev centrifugal pump utilizing only passive magnetic bearings, to keep the advantages but to avoid the disadvantages of the electric maglev pumps. The equilibrium stability was achieved by use of so-called "gyro-effect": a rotating body with certain high speed can maintain its rotation stably. This pump consisted of a rotor (driven magnets and an impeller), and a stator with motor coil and pump housing. Two passive magnetic bearings between rotor and stator were devised to counteract the attractive force between the motor coil iron core and the rotor driven magnets. Bench testing with saline demonstrated a levitated rotor under preconditions of higher than 3,250 rpm rotation and more than 1 l/min pumping flow. Rotor levitation was demonstrated by 4 Hall sensors on the stator, with evidence of reduced maximal eccentric distance from 0.15 mm to 0.07 mm. The maximal rotor vibration amplitude was 0.06 mm in a gap of 0.15 mm between rotor and stator. It concluded that Gyro-effect can help passive maglev bearings to achieve stabilization of permanent maglev pump; and that high flow rate indicates good hydraulic property of the pump, which helps also the stability of passive maglev pump.

  5. Research and development on process components for hydrogen production. (1) Test-fabrication of sulfuric acid transfer pump

    International Nuclear Information System (INIS)

    Iwatsuki, Jin; Terada, Atsuhiko; Hino, Ryutaro; Kubo, Shinji; Onuki, Kaoru; Watanabe, Yutaka

    2009-01-01

    Japan Atomic Energy Agency has been conducting a research and development on hydrogen production system using High Temperature Gas-Cooled Reactor. As a part of this effort, thermochemical water-splitting cycle featuring iodine- and sulfur-compounds (IS process) is under development considering its potential of large-scale economical hydrogen production. The IS process constitutes very severe environments to the materials of construction because of the corrosive nature of process chemicals, especially of the high temperature acidic solutions of sulfuric acid and hydriodic acid dissolving iodine. Therefore, selection of the corrosion-resistant materials and development of the components have been the crucial subjects of process development. This paper concerns the sulfuric acid transfer pump. The development has been implemented of a pump for transporting concentrated sulfuric acid at temperatures of higher than 300degC and at elevated pressure. Recent progress of these activities will be reported. (author)

  6. Experimental Assessment of the Hydraulics of a Miniature Axial-Flow Left Ventricular Assist Device

    Science.gov (United States)

    Smith, P. Alex; Cohn, William; Metcalfe, Ralph

    2017-11-01

    A minimally invasive partial-support left ventricular assist device (LVAD) has been proposed with a flow path from the left atrium to the arterial system to reduce left ventricular stroke work. In LVAD design, peak and average efficiency must be balanced over the operating range to reduce blood trauma. Axial flow pumps have many geometric parameters. Until recently, testing all these parameters was impractical, but modern 3D printing technology enables multi-parameter studies. Following theoretical design, experimental hydraulic evaluation in steady state conditions examines pressure, flow, pressure-flow gradient, efficiency, torque, and axial force as output parameters. Preliminary results suggest that impeller blades and stator vanes with higher inlet angles than recommended by mean line theory (MLT) produce flatter gradients and broader efficiency curves, increasing compatibility with heart physiology. These blades also produce less axial force, which reduces bearing load. However, they require slightly higher torque, which is more demanding of the motor. MLT is a low order, empirical model developed on large pumps. It does not account for the significant viscous losses in small pumps like LVADs. This emphasizes the importance of experimental testing for hydraulic design. Roderick D MacDonald Research Fund.

  7. Experimental study of the influence of flow passage subtle variation on mixed-flow pump performance

    Science.gov (United States)

    Bing, Hao; Cao, Shuliang

    2014-05-01

    In the mixed-flow pump design, the shape of the flow passage can directly affect the flow capacity and the internal flow, thus influencing hydraulic performance, cavitation performance and operation stability of the mixed-flow pump. However, there is currently a lack of experimental research on the influence mechanism. Therefore, in order to analyze the effects of subtle variations of the flow passage on the mixed-flow pump performance, the frustum cone surface of the end part of inlet contraction flow passage of the mixed-flow pump is processed into a cylindrical surface and a test rig is built to carry out the hydraulic performance experiment. In this experiment, parameters, such as the head, the efficiency, and the shaft power, are measured, and the pressure fluctuation and the noise signal are also collected. The research results suggest that after processing the inlet flow passage, the head of the mixed-flow pump significantly goes down; the best efficiency of the mixed-flow pump drops by approximately 1.5%, the efficiency decreases more significantly under the large flow rate; the shaft power slightly increases under the large flow rate, slightly decreases under the small flow rate. In addition, the pressure fluctuation amplitudes on both the impeller inlet and the diffuser outlet increase significantly with more drastic pressure fluctuations and significantly lower stability of the internal flow of the mixed-flow pump. At the same time, the noise dramatically increases. Overall speaking, the subtle variation of the inlet flow passage leads to a significant change of the mixed-flow pump performance, thus suggesting a special attention to the optimization of flow passage. This paper investigates the influence of the flow passage variation on the mixed-flow pump performance by experiment, which will benefit the optimal design of the flow passage of the mixed-flow pump.

  8. Assimilation of temperature and hydraulic gradients for quantifying the spatial variability of streambed hydraulics

    Science.gov (United States)

    Huang, Xiang; Andrews, Charles B.; Liu, Jie; Yao, Yingying; Liu, Chuankun; Tyler, Scott W.; Selker, John S.; Zheng, Chunmiao

    2016-08-01

    Understanding the spatial and temporal characteristics of water flux into or out of shallow aquifers is imperative for water resources management and eco-environmental conservation. In this study, the spatial variability in the vertical specific fluxes and hydraulic conductivities in a streambed were evaluated by integrating distributed temperature sensing (DTS) data and vertical hydraulic gradients into an ensemble Kalman filter (EnKF) and smoother (EnKS) and an empirical thermal-mixing model. The formulation of the EnKF/EnKS assimilation scheme is based on a discretized 1D advection-conduction equation of heat transfer in the streambed. We first systematically tested a synthetic case and performed quantitative and statistical analyses to evaluate the performance of the assimilation schemes. Then a real-world case was evaluated to calculate assimilated specific flux. An initial estimate of the spatial distributions of the vertical hydraulic gradients was obtained from an empirical thermal-mixing model under steady-state conditions using a constant vertical hydraulic conductivity. Then, this initial estimate was updated by repeatedly dividing the assimilated specific flux by estimates of the vertical hydraulic gradients to obtain a refined spatial distribution of vertical hydraulic gradients and vertical hydraulic conductivities. Our results indicate that optimal parameters can be derived with fewer iterations but greater simulation effort using the EnKS compared with the EnKF. For the field application in a stream segment of the Heihe River Basin in northwest China, the average vertical hydraulic conductivities in the streambed varied over three orders of magnitude (5 × 10-1 to 5 × 102 m/d). The specific fluxes ranged from near zero (qz < ±0.05 m/d) to ±1.0 m/d, while the vertical hydraulic gradients were within the range of -0.2 to 0.15 m/m. The highest and most variable fluxes occurred adjacent to a debris-dam and bridge pier. This phenomenon is very likely

  9. Thermal hydraulic model descrition of TASS/SMR

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Han Young; Kim, H. C.; Chung, Y. J.; Lim, H. S.; Yang, S. H

    2001-04-01

    The TASS/SMR code has been developed for the safety analysis of SMART. The governing equations were applied only to the primary coolant system in TASS which had been developed at KAERI. In TASS/SMR, the solution method is improved so that the primary and secondary coolant systems are solved simultaneously. Besides the solution method, thermal-hydraulic models are incorporated, in TASS/SMR, such as non-condensible gas model, helical steam generator heat transfer model, and passive residual heat removal system (PRHRS) heat transfer model for the application to SMART. The governing equtions of TASS/SMR are based on the drift-flux model so that the accidents and transients accompaning with two-phase flow can be analized. This report describes the governing equations and solution methods used in TASS/SMR and also includes the description for the thermal hydraulic models for SMART design.

  10. Energy Efficiency Comparison between Hydraulic Hybrid and Hybrid Electric Vehicles

    Directory of Open Access Journals (Sweden)

    Jia-Shiun Chen

    2015-05-01

    Full Text Available Conventional vehicles tend to consume considerable amounts of fuel, which generates exhaust gases and environmental pollution during intermittent driving cycles. Therefore, prospective vehicle designs favor improved exhaust emissions and energy consumption without compromising vehicle performance. Although pure electric vehicles feature high performance and low pollution characteristics, their limitations are their short driving range and high battery costs. Hybrid electric vehicles (HEVs are comparatively environmentally friendly and energy efficient, but cost substantially more compared with conventional vehicles. Hydraulic hybrid vehicles (HHVs are mainly operated using engines, or using alternate combinations of engine and hydraulic power sources while vehicles accelerate. When the hydraulic system accumulator is depleted, the conventional engine reengages; concurrently, brake-regenerated power is recycled and reused by employing hydraulic motor–pump modules in circulation patterns to conserve fuel and recycle brake energy. This study adopted MATLAB Simulink to construct complete HHV and HEV models for backward simulations. New European Driving Cycles were used to determine the changes in fuel economy. The output of power components and the state-of-charge of energy could be retrieved. Varying power component models, energy storage component models, and series or parallel configurations were combined into seven different vehicle configurations: the conventional manual transmission vehicle, series hybrid electric vehicle, series hydraulic hybrid vehicle, parallel hybrid electric vehicle, parallel hydraulic hybrid vehicle, purely electric vehicle, and hydraulic-electric hybrid vehicle. The simulation results show that fuel consumption was 21.80% lower in the series hydraulic hybrid vehicle compared to the series hybrid electric vehicle; additionally, fuel consumption was 3.80% lower in the parallel hybrid electric vehicle compared to the

  11. Evaluation of the Hydraulic Performance and Mass Transfer Efficiency of the CSSX Process with the Optimized Solvent in a Single Stage of 5.5-Cm Diameter Centrifugal Contactor

    International Nuclear Information System (INIS)

    Law, J.D.; Tillotson, R.D.; Todd, T.A.

    2002-01-01

    The Caustic-Side Solvent Extraction (CSSX) process has been selected for the separation of cesium from Savannah River Site high-level waste. The solvent composition used in the CSSX process was recently optimized so that the solvent is no longer supersaturated with respect to the calixarene crown ether extractant. Hydraulic performance and mass transfer efficiency testing of a single stage of 5.5-cm ORNL-designed centrifugal contactor has been performed for the CSSX process with the optimized solvent. Maximum throughputs of the 5.5-cm centrifugal contactor, as a function of contactor rotor speed, have been measured for the extraction, scrub, strip, and wash sections of the CSSX flowsheet at the baseline organic/aqueous flow ratios (O/A) of the process, as well as at O/A's 20% higher and 20% lower than the baseline. Maximum throughputs are comparable to the design throughput of the contactor, as well as with throughputs obtained previously in a 5-cm centrifugal contactor with the non-optimized CSSX solvent formulation. The 20% variation in O/A had minimal effect on contactor throughput. Additionally, mass transfer efficiencies have been determined for the extraction and strip sections of the flowsheet. Efficiencies were lower than the process goal of greater than or equal to 80%, ranging from 72 to 75% for the extraction section and from 36 to 60% in the strip section. Increasing the mixing intensity and/or the solution level in the mixing zone of the centrifugal contactor (residence time) could potentially increase efficiencies. Several methods are available to accomplish this including (1) increasing the size of the opening in the bottom of the rotor, resulting in a contactor which is partially pumping instead of fully pumping, (2) decreasing the number of vanes in the contactor, (3) increasing the vane height, or (4) adding vanes on the rotor and baffles on the housing of the contactor. The low efficiency results obtained stress the importance of proper design of

  12. [Response of Algae to Nitrogen and Phosphorus Concentration and Quantity of Pumping Water in Pumped Storage Reservoir].

    Science.gov (United States)

    Wan, You-peng; Yin, Kui-hao; Peng, Sheng-hua

    2015-06-01

    Taking a pumped storage reservoir located in southern China as the research object, the paper established a three-dimensional hydrodynamic and eutrophication model of the reservoir employing EFDC (environmental fluid dynamics code) model, calibrated and verified the model using long-term hydraulic and water quality data. Based on the model results, the effects of nitrogen and phosphorus concentrations on the algae growth were analyzed, and the response of algae to nitrogen and phosphorus concentration and quantity of pumping water was also calculated. The results showed that the nitrogen and phosphorus concentrations had little limit on algae growth rate in the reservoir. In the nutrients reduction scenarios, reducing phosphorus would gain greater algae biomass reduction than reducing nitrogen. When reducing 60 percent of nitrogen, the algae biomass did not decrease, while 12.4 percent of algae biomass reduction could be gained with the same reduction ratio of phosphorus. When the reduction ratio went to 90 percent, the algae biomass decreased by 17.9 percent and 35.1 percent for nitrogen and phosphorus reduction, respectively. In the pumping water quantity regulation scenarios, the algae biomass decreased with the increasing pumping water quantity when the pumping water quantity was greater than 20 percent of the current value; when it was less than 20 percent, the algae biomass increased with the increasing pumping water quantity. The algae biomass decreased by 25.7 percent when the pumping water quantity was doubled, and increased by 38.8 percent when it decreased to 20 percent. The study could play an important role in supporting eutrophication controlling in water source area.

  13. Measurement of unsaturated hydraulic properties and evaluation of property-transfer models for deep sedimentary interbeds, Idaho National Laboratory, Idaho

    Science.gov (United States)

    Perkins, Kimberlie; Johnson, Brittany D.; Mirus, Benjamin B.

    2014-01-01

    Operations at the Idaho National Laboratory (INL) have the potential to contaminate the underlying Eastern Snake River Plain (ESRP) aquifer. Methods to quantitatively characterize unsaturated flow and recharge to the ESRP aquifer are needed to inform water-resources management decisions at INL. In particular, hydraulic properties are needed to parameterize distributed hydrologic models of unsaturated flow and transport at INL, but these properties are often difficult and costly to obtain for large areas. The unsaturated zone overlying the ESRP aquifer consists of alternating sequences of thick fractured volcanic rocks that can rapidly transmit water flow and thinner sedimentary interbeds that transmit water much more slowly. Consequently, the sedimentary interbeds are of considerable interest because they primarily restrict the vertical movement of water through the unsaturated zone. Previous efforts by the U.S. Geological Survey (USGS) have included extensive laboratory characterization of the sedimentary interbeds and regression analyses to develop property-transfer models, which relate readily available physical properties of the sedimentary interbeds (bulk density, median particle diameter, and uniformity coefficient) to water retention and unsaturated hydraulic conductivity curves.

  14. Functional and biocompatibility performances of an integrated Maglev pump-oxygenator.

    Science.gov (United States)

    Zhang, Tao; Cheng, Guangming; Koert, Andrew; Zhang, Juntao; Gellman, Barry; Yankey, G Kwame; Satpute, Aditee; Dasse, Kurt A; Gilbert, Richard J; Griffith, Bartley P; Wu, Zhongjun J

    2009-01-01

    To provide respiratory support for patients with lung failure, a novel compact integrated pump-oxygenator is being developed. The functional and biocompatibility performances of this device are presented. The pump-oxygenator is designed by combining a magnetically levitated pump/rotor with a uniquely configured hollow fiber membrane bundle to create an assembly free, ultracompact, all-in-one system. The hemodynamics, gas transfer and biocompatibility performances of this novel device were investigated both in vitro in a circulatory flow loop and in vivo in an ovine animal model. The in vitro results showed that the device was able to pump blood flow from 2 to 8 L/min against a wide range of pressures and to deliver an oxygen transfer rate more than 300 mL/min at a blood flow of 6 L/min. Blood damage tests demonstrated low hemolysis (normalized index of hemolysis [NIH] approximately 0.04) at a flow rate of 5 L/min against a 100-mm Hg afterload. The data from five animal experiments (4 h to 7 days) demonstrated that the device could bring the venous blood to near fully oxygen-saturated condition (98.6% +/- 1.3%). The highest oxygen transfer rate reached 386 mL/min. The gas transfer performance was stable over the study duration for three 7-day animals. There was no indication of blood damage. The plasma free hemoglobin and platelet count were within the normal ranges. No gross thrombus is found on the explanted pump components and fiber surfaces. Both in vitro and in vivo results demonstrated that the newly developed pump-oxygenator can achieve sufficient blood flow and oxygen transfer with excellent biocompatibility.

  15. Numerical simulation of flow in centrifugal pump under cavitation and sediment condition

    International Nuclear Information System (INIS)

    Lu, J L; Guo, P C; Zheng, X B; Zhao, Q; Luo, X Q

    2012-01-01

    The sediment concentration is very high in many rivers in the world, especially in China. The pumps that designed for the clear water are usually seriously abraded. The probability of pump cavitation is greatly enhanced due to the existence of sand. Under the joint action and mutual promotion of sand erosion and cavitation, serious abrasion could occurred, and the hydraulic performance of the pump may be greatly descended, meanwhile the safety and stability of the whole pump are greatly threatened. Therefore, it is significant to investigate the cavitation characteristic of pump under sediment flow condition. In this paper, the flow in a single stage centrifugal pump under cleat water and sediment flow conditions was numerically simulated. The cavitation performance under clear water was firstly analyzed. Then, The pressure, velocity and solid particle distribution in centrifugal pump under different particle diameter and different particle concentration was investigated by using the two-fluid model; The area and extent of erosion was illustrated by using the particle track model. Finally, the influence of mixed sand on centrifugal pump performance was investigated.

  16. Feed-pump hydraulic performance and design improvement, Phase I: research program design. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Brown, W.H.; Gopalakrishnan, S.; Fehlau, R.; Thompson, W.E.; Wilson, D.G.

    1982-03-01

    As a result of prior EPRI-sponsored studies, it was concluded that a research program should be designed and implemented to provide an improved basis for the design, procurement, testing, and operation of large feed pumps with increased reliability and stability over the full range of operating conditions. This two-volume report contains a research plan which is based on a review of the present state of the art and which defines the necessary R and D program and estimates the benefits and costs of the program. The recommended research program consists of 30 interrelated tasks. It is designed to perform the needed research; to verify the results; to develop improved components; and to publish computer-aided design methods, pump specification guidelines, and a troubleshooting manual. Most of the technology proposed in the research plan is applicable to nuclear power plants as well as to fossil-fired plants. This volume discusses the design, performance and failures of feed pumps, and recommendations for research on pump dynamics, design, and specifications.

  17. Development of a pump-turbine runner based on multiobjective optimization

    International Nuclear Information System (INIS)

    Xuhe, W; Baoshan, Z; Lei, T; Jie, Z; Shuliang, C

    2014-01-01

    As a key component of reversible pump-turbine unit, pump-turbine runner rotates at pump or turbine direction according to the demand of power grid, so higher efficiencies under both operating modes have great importance for energy saving. In the present paper, a multiobjective optimization design strategy, which includes 3D inverse design method, CFD calculations, response surface method (RSM) and multiobjective genetic algorithm (MOGA), is introduced to develop a model pump-turbine runner for middle-high head pumped storage plant. Parameters that controlling blade shape, such as blade loading and blade lean angle at high pressure side are chosen as input parameters, while runner efficiencies under both pump and turbine modes are selected as objective functions. In order to validate the availability of the optimization design system, one runner configuration from Pareto front is manufactured for experimental research. Test results show that the highest unit efficiency is 91.0% under turbine mode and 90.8% under pump mode for the designed runner, of which prototype efficiencies are 93.88% and 93.27% respectively. Viscous CFD calculations for full passage model are also conducted, which aim at finding out the hydraulic improvement from internal flow analyses

  18. The Potential Impacts of Hydraulic Fracturing on Agriculture

    OpenAIRE

    Beng Ong

    2014-01-01

    Hydraulic fracturing (or “fracking”) is a method of extracting oil and natural gas trapped in deep rock layers underground by pumping water, sand, and other chemicals/additives at high pressures into a well drilled vertically, and then horizontally into the rocks.Advocates of fracking in U.S. have skillfully positioned domestic natural gas as a sensible alternative energy to the country’s goals of reducing carbon emissions and dependence on foreign oil, while simultaneously creating jobs loca...

  19. Theoretical aspects concerning working fluids in hydraulic systems

    Directory of Open Access Journals (Sweden)

    Tița Irina

    2017-01-01

    Full Text Available Among the properties of working fluid, viscosity is the most important as it regards especially to pumps. In order to study the behavior of hydrostatic transmission it is important to create a reliable research instrument for dynamic simulation. Our research expertise being in SimHydraulics consequently this instrument is the suitable block diagram. The purpose of this paper is to present the possible ways to customize the properties of the working fluid in the block diagram.

  20. Researches regarding primary control in hydraulic systems

    OpenAIRE

    Tița Irina; Mardare Irina

    2017-01-01

    The technology in wind turbines has developed very rapidly but there are still a lot that can be improved also regarding new technologies. One example is wind turbine with hydraulic transmission. At the beginning low power wind turbines are in view. First of all the wind energy is meant to be used by isolated users for household and garden equipment or pumping water. Later, if results will be as expected, and wind potential satisfactory, such systems could be connected to electric grid. In ou...

  1. Education for hydraulics and pneumatics in Nihon University; Nihon Daigaku ni okeru yukuatsu kyoiku

    Energy Technology Data Exchange (ETDEWEB)

    Ouchi, M. [Nihon Univ., Chiba (Japan). Coll. of Industrial Technology

    2000-03-15

    Described herein is education of hydraulics and pneumatics in Nihon University. Department of Mechanical Engineering of Faculty of Production Engineering has been holding up the educational aims of bringing up engineers and researchers who have ability and intelligence to cope with internationalization and contribute to society, and of bringing about creativity, among others. Control equipment is an optional subject for the sophomore class in the second semester, and is centered by mechatronics, including hydraulic and pneumatic control systems and equipment. The related subjects include fluid dynamics, control engineering, system controlling, hydraulic machines, robotics and automobile engineering. The drill course includes disassembling and assembling gear pumps, drills on pneumatic devices, system behavior and mechatronics, experiments on fan and hydraulic control circuits and on servo mechanisms, and machinery designs and drawings. Seminars are led by full-time or part-time lecturers for the themes related to hydraulic power. Many students are interested in hydraulic and pneumatic themes for their graduation theses, because of their relations with control, environments, energy saving and so on. We are now in the age of composite technologies, and hydraulic power basics are prerequisite for engineers, and important for education of students. (NEDO)

  2. Fundamentals of hydraulic piston pump applications in chemical engineering; Verfahrenstechnische Grundsaetze beim Einsatz von hydraulischen Kolbenpumpen

    Energy Technology Data Exchange (ETDEWEB)

    Haubold, H.J. [Putzmeister AG, Putzmeister Industrial Technology (PIT), Aichtal (Germany)

    2007-07-01

    This paper describes design features as well as criteria for the selection of the required piston pump under the circumstance of high viscose sludge. These kind of sludges are mostly contaminated with foreign bodies. Life cycle costs and professional service management are influencing factors of a successful pump operation. This paper will show in detail criteria's for the pipe transportation. For example the influence of the calculation for the pressure loss against the necessary pump pressure. In focus are all structural measures to reduce pressure peaks, as well as the reduction of pressure variation and their elimination in the delivery flow. This under the circumstance of a high pulsating pump delivery. This paper will be concluded with a reference of examples of applications and show new developments of piston pump design. (orig.)

  3. Project description: ORNL PWR blowdown heat transfer separate-effects program, Thermal-Hydraulic Test Facility (THTF)

    International Nuclear Information System (INIS)

    1976-02-01

    The ORNL Pressurized-Water Reactor Blowdown Heat Transfer (PWR-BDHT) Program is an experimental separate-effects study of the relations among the principal variables that can alter the rate of blowdown, the presence of flow reversal and rereversal, time delay to critical heat flux, the rate at which dryout progresses, and similar time-related functions that are important to LOCA analysis. Primary test results will be obtained from the Thermal-Hydraulic Test Facility (THTF), a large nonnuclear pressurized-water loop that incorporates a 49-rod electrically heated bundle. Supporting experiments will be carried out in two additional test loops - the Forced Convection Test Facility (FCTF), a small high-pressure facility in which single heater rods can be tested in annular geometry; and an air-water loop which is used to evaluate two-phase flow-measuring instrumentation

  4. Development and application of MASKA-LM code for calculation of thermal hydraulics and mass transfer of lead cooled fast reactors

    International Nuclear Information System (INIS)

    Vladimir Ya Kumaev; Andrei A Lebezov; Victor V Alexeev

    2005-01-01

    Full text of publication follows: The report is devoted to the development and application of the two-dimensional MASKA-LM computer code intended for numerical calculations of lead coolant flows, temperatures and transport of impurities in BREST-type reactors of the integral design. The description of heat and mass transfer in liquid metal systems, proceeding in the coolant and at the interface 'coolant - structural materials', is a complex problem involving the joint simulation of thermal-hydraulic, physical and chemical processes in view of the real configuration of the reactor circuit. The report presents the state-of-the-art in the development of the two-dimensional code MASKA-LM and the results of trial calculations of heat and mass transfer in the primary circuit of the lead cooled reactor. The set of governing equations to be solved is based on the porous body model and describes the thermal-hydraulic processes in the reactor as a whole. The numerical method for solution of the governing equations is discussed. To check the code workability and study the technique by the way of solution of a particular task, calculations were performed in reference to the chosen version of the lead cooled BREST reactor under design. The examined domain of the reactor was simulated by a porous body with the parameters corresponding to those of the real reactor medium in terms of heat generation, resistance and the geometry of the hydraulic path of coolant. Analysis of the calculated two-dimensional fields of velocities, pressure and temperatures shows the existence of a complex coolant flow with stagnant and vortex zones. A nonuniform distribution of the coolant flow rate along the core radius was obtained. The results of calculations of the impurity transport of iron, oxygen and magnetite in the primary reactor circuit are discussed as well. The developed code MASKA-LM allows one to evaluate the issue of components of structural materials into coolant as impurities, their

  5. Ultrashort-pulse-train pump and dump excitation of a diatomic molecule

    OpenAIRE

    de Araujo, LEE

    2010-01-01

    An excitation scheme is proposed for transferring population between ground-vibrational levels of a molecule. The transfer is accomplished by pumping and dumping population with a pair of coherent ultrashort-pulse trains via a stationary state. By mismatching the teeth of the frequency combs associated with the pulse trains to the vibrational levels, high selectivity in the excitation, along with high transfer efficiency, is predicted. The pump-dump scheme does not suffer from spontaneous emi...

  6. High-efficiency design optimization of a centrifugal pump

    Energy Technology Data Exchange (ETDEWEB)

    Heo, Man Woong; Ma, Sang Bum; Shim, Hyeon Seok; Kim, Kwang Yong [Dept. of Mechanical Engineering, Inha University, Incheon (Korea, Republic of)

    2016-09-15

    Design optimization of a backward-curved blades centrifugal pump with specific speed of 150 has been performed to improve hydraulic performance of the pump using surrogate modeling and three-dimensional steady Reynolds-averaged Navier-Stokes analysis. The shear stress transport model was used for the analysis of turbulence. Four geometric variables defining the blade hub inlet angle, hub contours, blade outlet angle, and blade angle profile of impeller were selected as design variables, and total efficiency of the pump at design flow rate was set as the objective function for the optimization. Thirty-six design points were chosen using the Latin hypercube sampling, and three different surrogate models were constructed using the objective function values calculated at these design points. The optimal point was searched from the constructed surrogate model by using sequential quadratic programming. The optimum designs of the centrifugal pump predicted by the surrogate models show considerable increases in efficiency compared to a reference design. Performance of the best optimum design was validated compared to experimental data for total efficiency and head.

  7. The mechanism of electron gating in proton pumping cytochrome c oxidase: the effect of pH and temperature on internal electron transfer.

    Science.gov (United States)

    Brzezinski, P; Malmström, B G

    1987-10-29

    Electron-transfer reactions following flash photolysis of the mixed-valence cytochrome oxidase-CO complex have been measured at 445, 598 and 830 nm between pH 5.2 and 9.0 in the temperature range of 0-25 degrees C. There is a rapid electron transfer from the cytochrome a3-CuB pair to CuA (time constant: 14200 s-1), which is followed by a slower electron transfer to cytochrome a. Both the rate and the amplitude of the rapid phase are independent of pH, and the rate in the direction from CuA to cytochrome a3-CuB is practically independent of temperature. The second phase depends strongly on pH due to the titration of an acid-base group with pKa = 7.6. The equilibrium at pH 7.4 corresponds to reduction potentials of 225 and 345 mV for cytochrome a and a3, respectively, from which it is concluded that the enzyme is in a different conformation compared to the fully oxidized form. The results have been used to suggest a series of reaction steps in a cycle of the oxidase as a proton pump. Application of the electron-transfer theory to the temperature-dependence data suggests a mechanism for electron gating in the pump. Reduction of both cytochrome a and CuA leads to a conformational change, which changes the structure of cytochrome a3-CuB in such a way that the reorganizational barrier for electron transfer is removed and the driving force is increased.

  8. High and ultra-high vacuum pumping techniques: applications in accelerators and storage rings

    International Nuclear Information System (INIS)

    Schaefer, G.

    1988-01-01

    A survey is given on gas transfer pumps, especially Turbomolecular pumps, and entrapment pumps (cryopumps and getter pumps) mainly with regard to their application in evacuating particle accelerators and storage rings. (A.C.A.S.) [pt

  9. Efficient numerical method for district heating system hydraulics

    International Nuclear Information System (INIS)

    Stevanovic, Vladimir D.; Prica, Sanja; Maslovaric, Blazenka; Zivkovic, Branislav; Nikodijevic, Srdjan

    2007-01-01

    An efficient method for numerical simulation and analyses of the steady state hydraulics of complex pipeline networks is presented. It is based on the loop model of the network and the method of square roots for solving the system of linear equations. The procedure is presented in the comprehensive mathematical form that could be straightforwardly programmed into a computer code. An application of the method to energy efficiency analyses of a real complex district heating system is demonstrated. The obtained results show a potential for electricity savings in pumps operation. It is shown that the method is considerably more effective than the standard Hardy Cross method still widely used in engineering practice. Because of the ease of implementation and high efficiency, the method presented in this paper is recommended for hydraulic steady state calculations of complex networks

  10. Model predictive control-based dynamic coordinate strategy for hydraulic hub-motor auxiliary system of a heavy commercial vehicle

    Science.gov (United States)

    Zeng, Xiaohua; Li, Guanghan; Yin, Guodong; Song, Dafeng; Li, Sheng; Yang, Nannan

    2018-02-01

    Equipping a hydraulic hub-motor auxiliary system (HHMAS), which mainly consists of a hydraulic variable pump, a hydraulic hub-motor, a hydraulic valve block and hydraulic accumulators, with part-time all-wheel-drive functions improves the power performance and fuel economy of heavy commercial vehicles. The coordinated control problem that occurs when HHMAS operates in the auxiliary drive mode is addressed in this paper; the solution to this problem is the key to the maximization of HHMAS. To achieve a reasonable distribution of the engine power between mechanical and hydraulic paths, a nonlinear control scheme based on model predictive control (MPC) is investigated. First, a nonlinear model of HHMAS with vehicle dynamics and tire slip characteristics is built, and a controller-design-oriented model is simplified. Then, a steady-state feedforward + dynamic MPC feedback controller (FMPC) is designed to calculate the control input sequence of engine torque and hydraulic variable pump displacement. Finally, the controller is tested in the MATLAB/Simulink and AMESim co-simulation platform and the hardware-in-the-loop experiment platform, and its performance is compared with that of the existing proportional-integral-derivative controller and the feedforward controller under the same conditions. Simulation results show that the designed FMPC has the best performance, and control performance can be guaranteed in a real-time environment. Compared with the tracking control error of the feedforward controller, that of the designed FMPC is decreased by 85% and the traction efficiency performance is improved by 23% under a low-friction-surface condition. Moreover, under common road conditions for heavy commercial vehicles, the traction force can increase up to 13.4-15.6%.

  11. Pump cavitation and inducer design

    International Nuclear Information System (INIS)

    Heslenfeld, M.W.; Hes, M. de

    2002-01-01

    Details of past work on sodium pump development and cavitation studies executed mainly for SNR 300 were reported earlier. Among the requirements for large sodium pumps are long life (200000 hours up to 300000 hours) and small size of impeller and pump, fully meeting the process and design criteria. These criteria are the required 'Q, H, r characteristics' in combination with a low NPSH value and the avoidance of cavitation damage to the pump. The pump designer has to develop a sound hydraulic combination consisting of suction arrangement, impeller design and diffuser. On the other hand the designer is free to choose an optimal pump speed. The pump speed in its turn influences the rotor dynamic pump design and the pump drive. The introduction of the inducer as an integral part of the pump design is based on following advantages: no tip cavitation; (possible) cavitation bubbles move to the open centre due to centrifugal forces on the fluid; the head of the inducer improves the inlet conditions of the impeller. The aim of an inducer is the increase in the suction specific speed (SA value) of a pump whereby the inducer functions as a pressure source improving the impeller inlet conditions. With inducer-impeller combinations values up to SA=15000 are realistic. With the use of an inducer the overall pump sizes can be reduced with Ca. 30%. Pumps commonly available have SA values up to a maximum of ca. 10000. A development programme was executed for SNR 300 in order to reach an increase of the suction specific speed of the impeller from SA 8200 to SA 11000. Further studies to optimize pumps design for the follow up line introduced the 'inducer acting as a pre-impeller' development. This programme was executed in the period 1979-1981. At the FDO premises a scale 1 2.8 inducer impeller combination with a suction specific speed SA=15000 was developed, constructed and tested at the water test rig. This water test rig is equipped with a perspex pipe allowing also visualisation

  12. Studies of the impact of prerotation problem of the secondary impeller on performance of multi-stage centrifugal pumps

    International Nuclear Information System (INIS)

    Zhai, L L; Wu, P; Jiang, Q L; Wang, L Q

    2012-01-01

    In engineering practice, part of the multi-stage centrifugal pumps is designed without space guide vanes due to the size restrictions and the volute is distorted much in shape. In these pumps, tangential velocity of the fluid at the outlet of the first-stage impeller is so great that it has caused a prerotation problem which will affect the inlet flow conditions of the secondary impeller leading to serious efficiency and head decline of the secondary impeller. The head problem of the second stage in multi-stage centrifugal pumps caused by prerotation at the entrance of the second stage was analyzed and the internal hydraulic performance was optimized by setting clapboards in the volute in this paper. CFD numerical simulation method combined with experiment was applied to predict the effect of internal clapboards on the performance of the centrifugal pump. The original prototype was transformed according to the simulation result and tested to verify the optimization work. The experiment result shows that hydraulic performance is remarkably improved compared with the original one and the prerotation problem is basically solved.

  13. High-Temperature Salt Pump Review and Guidelines - Phase I Report

    Energy Technology Data Exchange (ETDEWEB)

    Robb, Kevin R. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Jain, Prashant K. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Hazelwood, Thomas J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2016-05-01

    Fluoride salt cooled high-temperature reactor (FHR) concepts include pumps for forced circulation of the primary and secondary coolants. As part of a cooperative research and development agreement between the Shanghai Institute of Applied Physics and the Oak Ridge National Laboratory (ORNL), a research project was initiated to aid in the development of pumps for high-temperature salts. The objectives of the task included characterization of the behavior of an existing ORNL LSTL pump; design and test a modified impeller and volute for improved pump characteristics; and finally, provide lessons learned, recommendations, and guidelines for salt pump development and design. The pump included on the liquid salt test loop (LSTL) at ORNL served as a case study. This report summarizes the progress to date. The report is organized as follows. First, there is a review, focused on pumps, of the significant amount of work on salts at ORNL during the 1950s 1970s. The existing pump on the LSTL is then described. Plans for hot and cold testing of the pump are then discussed, including the design for a cold shakedown test stand and the required LSTL modifications for hot testing. Initial hydraulic and vibration modeling of the LSTL pump is documented. Later, test data from the LSTL will be used to validate the modeling approaches, which could then be used for future pump design efforts. Some initial insights and test data from the pump are then provided. Finally, some preliminary design goals and requirements for a future LSTL pump are provided as examples of salt pump design considerations.

  14. High-Temperature Salt Pump Review and Guidelines - Phase I Report

    International Nuclear Information System (INIS)

    Robb, Kevin R.; Jain, Prashant K.; Hazelwood, Thomas J.

    2016-01-01

    Fluoride salt cooled high-temperature reactor (FHR) concepts include pumps for forced circulation of the primary and secondary coolants. As part of a cooperative research and development agreement between the Shanghai Institute of Applied Physics and the Oak Ridge National Laboratory (ORNL), a research project was initiated to aid in the development of pumps for high-temperature salts. The objectives of the task included characterization of the behavior of an existing ORNL LSTL pump; design and test a modified impeller and volute for improved pump characteristics; and finally, provide lessons learned, recommendations, and guidelines for salt pump development and design. The pump included on the liquid salt test loop (LSTL) at ORNL served as a case study. This report summarizes the progress to date. The report is organized as follows. First, there is a review, focused on pumps, of the significant amount of work on salts at ORNL during the 1950s 1970s. The existing pump on the LSTL is then described. Plans for hot and cold testing of the pump are then discussed, including the design for a cold shakedown test stand and the required LSTL modifications for hot testing. Initial hydraulic and vibration modeling of the LSTL pump is documented. Later, test data from the LSTL will be used to validate the modeling approaches, which could then be used for future pump design efforts. Some initial insights and test data from the pump are then provided. Finally, some preliminary design goals and requirements for a future LSTL pump are provided as examples of salt pump design considerations.

  15. Modeling the Performance of Water-Zeolite 13X Adsorption Heat Pump

    Directory of Open Access Journals (Sweden)

    Kowalska Kinga

    2017-12-01

    Full Text Available The dynamic performance of cylindrical double-tube adsorption heat pump is numerically analysed using a non-equilibrium model, which takes into account both heat and mass transfer processes. The model includes conservation equations for: heat transfer in heating/cooling fluids, heat transfer in the metal tube, and heat and mass transfer in the adsorbent. The mathematical model is numerically solved using the method of lines. Numerical simulations are performed for the system water-zeolite 13X, chosen as the working pair. The effect of the evaporator and condenser temperatures on the adsorption and desorption kinetics is examined. The results of the numerical investigation show that both of these parameters have a significant effect on the adsorption heat pump performance. Based on computer simulation results, the values of the coefficients of performance for heating and cooling are calculated. The results show that adsorption heat pumps have relatively low efficiency compared to other heat pumps. The value of the coefficient of performance for heating is higher than for cooling

  16. Pumped-limiter study for Alcator DCT

    International Nuclear Information System (INIS)

    Brooks, J.N.; Mattas, R.F.; Cha, Y.S.; Hassanein, A.M.; Majumdar, S.

    1983-06-01

    A study was performed for a pumped-limiter design for the proposed Alcator DCT device. The study focused on reactor-relevant issues. The main issues examined were configuration, surface erosion, thermal hydraulics, and the choice of structural and surface materials. A bottom, flat limiter, with a copper-alloy substrate, seems to be a reasonable design and should provide an opportunity to test high power and particle loadings. Carbon is recommended as a surface material if acceptable redeposition properties can be demonstrated

  17. Pumped-limiter study for Alcator DCT

    Energy Technology Data Exchange (ETDEWEB)

    Brooks, J.N.; Mattas, R.F.; Cha, Y.S.; Hassanein, A.M.; Majumdar, S.

    1983-06-01

    A study was performed for a pumped-limiter design for the proposed Alcator DCT device. The study focused on reactor-relevant issues. The main issues examined were configuration, surface erosion, thermal hydraulics, and the choice of structural and surface materials. A bottom, flat limiter, with a copper-alloy substrate, seems to be a reasonable design and should provide an opportunity to test high power and particle loadings. Carbon is recommended as a surface material if acceptable redeposition properties can be demonstrated.

  18. Thermal-Hydraulic Tests for Reactor Core Safety

    International Nuclear Information System (INIS)

    Chun, Se Young; Chung, Moon Ki; Baek, Won Pil and others

    2005-04-01

    The reflood experiments for single rod annulus geometry have been performed to investigate the effect of spacer grid on thermal-hydraulics under reflood conditions. The reflood experimental loop for 6x6 rod bundle with a spacer grid developed in Korea has been provided. About 8000 data points for Post-CHF heat transfer have been obtained from the experiments About 1400 CHF data points for 3x3 Water and 5x5 Freon rod bundles have been obtained. The existing evaluation methodology for core safety under return-to-power conditions has been investigated using KAERI low flow CHF database. The hydraulic tests for turbulence mixing characteristics in subchannel of 5x5 rod bundle have been carried out using advanced measurement technique, LVD and the database for various spacer grids have been provided. In order to measure the turbulence mixing characteristics in details, the hydraulic loop with a magnified 5x5 rod bundle has been prepared. The database which was constructed through a systematic thermal hydraulic tests for the reflood phenomenon, CHF, Post-CHF is surely to be useful to the industry field, the regulation body and the development of thermal-hydraulic analysis code

  19. Internal fluid flow management analysis for Clinch River Breeder Reactor Plant sodium pumps

    International Nuclear Information System (INIS)

    Cho, S.M.; Zury, H.L.; Cook, M.E.; Fair, C.E.

    1978-12-01

    The Clinch River Breeder Reactor Plant (CRBRP) sodium pumps are currently being designed and the prototype unit is being fabricated. In the design of these large-scale pumps for elevated temperature Liquid Metal Fast Breeder Reactor (LMFBR) service, one major design consideration is the response of the critical parts to severe thermal transients. A detailed internal fluid flow distribution analysis has been performed using a computer code HAFMAT, which solves a network of fluid flow paths. The results of the analytical approach are then compared to the test data obtained on a half-scale pump model which was tested in water. The details are presented of pump internal hydraulic analysis, and test and evaluation of the half-scale model test results

  20. Waste Feed Delivery Transfer System Analysis

    Energy Technology Data Exchange (ETDEWEB)

    JULYK, L.J.

    2000-05-05

    This document provides a documented basis for the required design pressure rating and pump pressure capacity of the Hanford Site waste-transfer system in support of the waste feed delivery to the privatization contractor for vitrification. The scope of the analysis includes the 200 East Area double-shell tank waste transfer pipeline system and the associated transfer system pumps for a11 Phase 1B and Phase 2 waste transfers from AN, AP, AW, AY, and A2 Tank Farms.

  1. Waste Feed Delivery Transfer System Analysis

    International Nuclear Information System (INIS)

    JULYK, L.J.

    2000-01-01

    This document provides a documented basis for the required design pressure rating and pump pressure capacity of the Hanford Site waste-transfer system in support of the waste feed delivery to the privatization contractor for vitrification. The scope of the analysis includes the 200 East Area double-shell tank waste transfer pipeline system and the associated transfer system pumps for a11 Phase 1B and Phase 2 waste transfers from AN, AP, AW, AY, and A2 Tank Farms

  2. The impacts of groundwater heat pumps on urban shallow ...

    African Journals Online (AJOL)

    DR TONUKARI NYEROVWO

    2011-07-25

    Jul 25, 2011 ... In order to assess the impacts of groundwater heat pumps on urban shallow groundwater ... thermal transfer systems that use the ground water as a ... Abbreviations: GWHPs, Groundwater heat pumps; GHGs, ... Areas (Mm2).

  3. Field study comparing the effect of hydraulic mixing on septic tank performance and sludge accumulation.

    Science.gov (United States)

    Almomani, Fares

    2016-01-01

    This study investigates the effect of hydraulic mixing on anaerobic digestion and sludge accumulation in a septic tank. The performance of a septic tank equipped with a hydraulic mixer was compared with that of a similar standard septic tank over a period of 10 months. The study was conducted in two phases: Phase-I--from May to November 2013 (6 months); Phase-II--from January to May 2014 (4 months). Hydraulic mixing effectively reduced the effluent biological oxygen demand (BOD) and total suspended solids, and reduced the sludge accumulation rate in the septic tank. The BOD removal efficiencies during Phase-II were 65% and 75% in the standard septic tank and a septic tank equipped with hydraulic mixer (Smart Digester™), respectively. The effect of hydraulic mixing reduced the rate of sludge accumulation from 0.64 cm/day to 0.27 cm/day, and increased the pump-out interval by a factor of 3.

  4. The Optimal Hydraulic Design of Centrifugal Impeller Using Genetic Algorithm with BVF

    Directory of Open Access Journals (Sweden)

    Xin Zhou

    2014-01-01

    Full Text Available Derived from idea of combining the advantages of two-dimensional hydraulic design theory, genetic algorithm, and boundary vorticity flux diagnosis, an optimal hydraulic design method of centrifugal pump impeller was developed. Given design parameters, the desired optimal centrifugal impeller can be obtained after several iterations by this method. Another 5 impellers with the same parameters were also designed by using single arc, double arcs, triple arcs, logarithmic spiral, and linear-variable angle spiral as blade profiles to make comparisons. Using Reynolds averaged N-S equations with a RNG k-ε two-equation turbulence model and log-law wall function to solve 3D turbulent flow field in the flow channel between blades of 6 designed impellers by CFD code FLUENT, the investigation on velocity distributions, pressure distributions, boundary vorticity flux distributions on blade surfaces, and hydraulic performance of impellers was presented and the comparisons of impellers by different design methods were demonstrated. The results showed that the hydraulic performance of impeller designed by this method is much better than the other 5 impellers under design operation condition with almost the same head, higher efficiency, and lower rotating torque, which implied less hydraulic loss and energy consumption.

  5. Tritium evacuataion performance of a large oil-free reciprocating pump

    International Nuclear Information System (INIS)

    Hayashi, T.; Yamada, M.; Konishi, S.

    1994-01-01

    In fusion reactors large dry vacuum and transfer pumps are needed for various applications such as backing and roughing for torus evacuation, gas transfer and processing in the fuel cycle, and facility vacuum for safety systems. There are some commercial use oil-free pumps, however, most of all these pumps have low pumping function for hydrogen gases and also at high discharge pressure. A large oil-free reciprocating pump has been developed for high tritium services at the Tritium Process Laboratory (TPL) in the Japan Atomic Energy Research Institute (JAERI). This pump is mainly composed four-stage compression vertical cylinders, a single acting piston with piston rings made by carbon polyimide composite and two buffer tanks. Each stage in the cylinder has 16 special check valves. The process line is isolated completely to crank-case oil by dynamic metal bellows. Design pumping speed is 54 m 3 /hr for hydrogen gas at 5 Torr of discharge pressures. After cold testing in TPL, this pump was shipped and installed in the Tritium Systems Test Assembly (TSTA) loop of the Los Alamos National Laboratory under the US-Japan Collaboration program on fusion technology

  6. Thermally conductive cementitious grouts for geothermal heat pumps. Progress report FY 1998

    Energy Technology Data Exchange (ETDEWEB)

    Allan, M.L.; Philippacopoulos, A.J.

    1998-11-01

    Research commenced in FY 97 to determine the suitability of superplasticized cement-sand grouts for backfilling vertical boreholes used with geothermal heat pump (GHP) systems. The overall objectives were to develop, evaluate and demonstrate cementitious grouts that could reduce the required bore length and improve the performance of GHPs. This report summarizes the accomplishments in FY 98. The developed thermally conductive grout consists of cement, water, a particular grade of silica sand, superplasticizer and a small amount of bentonite. While the primary function of the grout is to facilitate heat transfer between the U-loop and surrounding formation, it is also essential that the grout act as an effective borehole sealant. Two types of permeability (hydraulic conductivity) tests was conducted to evaluate the sealing performance of the cement-sand grout. Additional properties of the proposed grout that were investigated include bleeding, shrinkage, bond strength, freeze-thaw durability, compressive, flexural and tensile strengths, elastic modulus, Poisson`s ratio and ultrasonic pulse velocity.

  7. Adiabatic quantum pumping and charge quantization

    International Nuclear Information System (INIS)

    Kashcheyevs, V; Aharony, A.; Entin-Wohlmanl, O.

    2004-01-01

    Full Text:Modern techniques for coherent manipulation of electrons at the nano scale (electrostatic gating, surface acoustic waves) allow for studies of the adiabatic quantum pumping effect - a directed current induced by a slowly varying external perturbation. Scattering theory of pumping predicts transfer of an almost integer number of electrons per cycle if instantaneous transmission is determined by a sequence of resonances. We show that this quantization can be explained in terms of loading/unloading quasi-bound virtual states, and derive a tool for analyzing quantized pumping induced by a general potential. This theory is applied to a simple model of pumping due to surface acoustic waves. The results reproduce all the qualitative features observed in actual experiments

  8. Effect of the collector tube profile on Pitot pump performances

    Science.gov (United States)

    Komaki, K.; Kanemoto, T.; Sagara, K.; Umekage, T.

    2013-12-01

    The pitot pump is composed of the rotating casing with the impeller channel and the pitot tube type collector as the discharge line. The radial impeller feeds water to the rotating casing. The water rotating together with the casing is caught by the stationary pitot tube type collector, and then discharges to the outside. This type pump, as the extra high head pump, is provided mainly for boiler feed systems, and has been designed by trial and error. To optimize the pump profiles, it is desirable to investigate not only performances but also internal flow conditions. This paper discusses experimentally and numerically the relation between the pump performances and the flow conditions in the rotating casing. The moderately larger dimensions of the collector make the pump head and the discharge high with the higher hydraulic efficiency. The flow in the casing is almost the forced vortex type whose velocity is in proportion to the radius but the core velocity is affected with the drag force of the stationary collector. Based upon the above results, the profile of the pitot tube type collector was optimized with the numerical simulation.

  9. Effect of the collector tube profile on Pitot pump performances

    International Nuclear Information System (INIS)

    Komaki, K; Sagara, K; Kanemoto, T; Umekage, T

    2013-01-01

    The pitot pump is composed of the rotating casing with the impeller channel and the pitot tube type collector as the discharge line. The radial impeller feeds water to the rotating casing. The water rotating together with the casing is caught by the stationary pitot tube type collector, and then discharges to the outside. This type pump, as the extra high head pump, is provided mainly for boiler feed systems, and has been designed by trial and error. To optimize the pump profiles, it is desirable to investigate not only performances but also internal flow conditions. This paper discusses experimentally and numerically the relation between the pump performances and the flow conditions in the rotating casing. The moderately larger dimensions of the collector make the pump head and the discharge high with the higher hydraulic efficiency. The flow in the casing is almost the forced vortex type whose velocity is in proportion to the radius but the core velocity is affected with the drag force of the stationary collector. Based upon the above results, the profile of the pitot tube type collector was optimized with the numerical simulation

  10. Real time thermal hydraulic model for high temperature gas-cooled reactor core

    International Nuclear Information System (INIS)

    Sui Zhe; Sun Jun; Ma Yuanle; Zhang Ruipeng

    2013-01-01

    A real-time thermal hydraulic model of the reactor core was described and integrated into the simulation system for the high temperature gas-cooled pebble bed reactor nuclear power plant, which was developed in the vPower platform, a new simulation environment for nuclear and fossil power plants. In the thermal hydraulic model, the helium flow paths were established by the flow network tools in order to obtain the flow rates and pressure distributions. Meanwhile, the heat structures, representing all the solid heat transfer elements in the pebble bed, graphite reflectors and carbon bricks, were connected by the heat transfer network in order to solve the temperature distributions in the reactor core. The flow network and heat transfer network were coupled and calculated in real time. Two steady states (100% and 50% full power) and two transients (inlet temperature step and flow step) were tested that the quantitative comparisons of the steady results with design data and qualitative analysis of the transients showed the good applicability of the present thermal hydraulic model. (authors)

  11. Computer simulation of thermal-hydraulic transient events in multi-circuits with multipumps

    International Nuclear Information System (INIS)

    Veloso, Marcelo Antonio

    2003-01-01

    PANTERA-2 (from Programa para Analise Termo-hidraulica de Reatores a Agua - Program for Thermal-hydraulic Analysis of Water Reactors, Version 2), whose fundamentals are described in this work, is intended to carry out rod bundle subchannel analysis in conjunction with multiloop simulation. It solves simultaneously the conservation equations of mass, axial and lateral momentum, and energy for subchannel geometry coupled with the balance equations that describe the fluid flows in any number of coolant loops connected to a pressure vessel containing the rod bundle. As far as subchannel analysis is concerned, the basic computational strategy of PANTERA-2 comes from COBRA codes, but an alternative implicit solution method oriented to the pressure field has been used to solve the finite difference approximations for the balance laws. The results provided by the subchannel model comprise the fluid density, enthalpy, flow rate, and pressure fields in the subchannels. The loop model predicts the individual loop flows, total flow through the pressure vessel, and pump rotational speeds as a function of time subsequent to the failure of any number of the coolant pumps. The flow transients in the loops may initiated by partial, total or sequential loss of electric power to the operating pumps. Transient events caused by either shaft break or rotor locking may also be simulated. The changes in rotational speed of the pumps as a function of rime are determined from a torque balance. Pump dynamic head and hydraulic torque are calculated as a function of rotational speed and volumetric flow from two polar homologous curves supplied to the code in the tabular form. In order to illustrate the analytical capability of PANTERA-2, three sample problems are presented and discussed. Comparisons between calculated and measured results indicate that the program reproduces with a good accuracy experimental data for subchannel exit temperatures and critical heat fluxes in 5x5 rod bundles. It

  12. COOLOD, Steady-State Thermal Hydraulics of Research Reactors

    International Nuclear Information System (INIS)

    Kaminaga, Masanori

    1997-01-01

    1 - Description of program or function: The COOLOD-N2 code provides a capability for the analyses of the steady-state thermal-hydraulics of research reactors. This code is a revised version of the COOLOD-N code, and is applicable not only for research reactors in which plate-type fuel is adopted, but also for research reactors in which rod-type fuel is adopted. In the code, subroutines to calculate temperature distribution in rod-type fuel have been newly added to the COOLOD-N code. The COOLOD-N2 code can calculate fuel temperatures under both forced convection cooling mode and natural convection cooling mode. A 'Heat Transfer package' is used for calculating heat transfer coefficient, DNB heat flux etc. The 'Heat Transfer package' is a subroutine program and is especially developed for research reactors in which plate-type fuel is adopted. In case of rod-type fuel, DNB heat flux is calculated by both the 'Heat Transfer package' and Lund DNB heat flux correlation which is popular for TRIGA reactor. The COOLOD-N2 code also has a capability of calculating ONB temperature, the heat flux at onset of flow instability as well as DNB heat flux. 2 - Method of solution: The 'Heat Transfer Package' is a subprogram for calculating heat transfer coefficients, ONB temperature, heat flux at onset of flow instability and DNB heat flux. The 'Heat transfer package' was especially developed for research reactors which are operated under low pressure and low temperature conditions using plate-type fuel, just like the JRR-3M. Heat transfer correlations adopted in the 'Heat Transfer Package' were obtained or estimated based on the heat transfer experiments in which thermal-hydraulic features of the upgraded JRR-3 core were properly reflected. The 'Heat Transfer Package' is applicable to upward and downward flow

  13. Hydraulics characteristics of a diaphragm pump; Caracteristicas hidraulicas de uma moto-bomba de diafragma

    Energy Technology Data Exchange (ETDEWEB)

    Kolling, Evandro M. [Uniao Pan-Americana de Ensino (UNIPAN) Cascavel, PR (Brazil); Sampaio, Silvio C.; Coldebella, Anderson [Universidade Estadual do Oeste do Parana (UNIOESTE), Cascavel, PR (Brazil); Schoenwald, Celso

    2006-07-01

    The selection of a pump model that is not the most appropriate, carts consequences as: excessive consumption of energy, overload in the motor and cavity flow occurrence with consequent decrease in the revenue and in the useful life of the pump.The work extends in the study and evaluation of a diaphragm pump, it marks SHURFLO model 2088, that now has few available data for its knowledge and employment. The measured parameters were: the height (Hm), tension (v) and the current (A), and discharge (Q). The results of the they showed that the maximum values obtained for H m, revenue (h), potency (Pot), and Q was of 19 mca, 36%, 50 W, and 0,68 m3/h, respectively. The behavior observed in the characteristic curves was exponential, lineal, and polynomial for Hm x Q, Pot x Q, h x Q, respectively. (author)

  14. Solar pumped laser technology options for space power transmission

    Science.gov (United States)

    Conway, E. J.

    1986-01-01

    An overview of long-range options for in-space laser power transmission is presented. The focus is on the new technology and research status of solar-pumped lasers and their solar concentration needs. The laser options include gas photodissociation lasers, optically-pumped solid-state lasers, and blackbody-pumped transfer lasers. The paper concludes with a summary of current research thrusts.

  15. Multiphase pumping: indoor performance test and oilfield application

    Science.gov (United States)

    Kong, Xiangling; Zhu, Hongwu; Zhang, Shousen; Li, Jifeng

    2010-03-01

    Multiphase pumping is essentially a means of adding energy to the unprocessed effluent which enables the liquid and gas mixture to be transported over a long distances without prior separation. A reduction, consolidation, or elimination of the production infrastructure, such as separation equipments and offshore platforms can be developed more economically. Also it successfully lowed the backpressure of wells, revived dead wells and improved the production and efficiency of oilfield. This paper reviews the issues related to indoor performance test and an oilfield application of the helico-axial multiphase pump designed by China University of Petroleum (Beijing). Pump specification and its hydraulic design are given. Results of performance testing under different condition, such as operational speed and gas volume fraction (GVF) etc are presented. Experimental studies on combination of theoretical analysis showed the multiphase pump satisfies the similitude rule, which can be used in the development of new MPP design and performance prediction. Test results showed that rising the rotation speed and suction pressure could better its performance, pressure boost improved, high efficiency zone expanding and the flow rate related to the optimum working condition increased. The pump worked unstable as GVF increased to a certain extent and slip occurred between two phases in the pump, creating surging and gas lock at a high GVF. A case of application in Nanyang oilfield is also studied.

  16. Impact of Spatial Pumping Patterns on Groundwater Management

    Science.gov (United States)

    Yin, J.; Tsai, F. T. C.

    2017-12-01

    Challenges exist to manage groundwater resources while maintaining a balance between groundwater quantity and quality because of anthropogenic pumping activities as well as complex subsurface environment. In this study, to address the impact of spatial pumping pattern on groundwater management, a mixed integer nonlinear multi-objective model is formulated by integrating three objectives within a management framework to: (i) maximize total groundwater withdrawal from potential wells; (ii) minimize total electricity cost for well pumps; and (iii) attain groundwater level at selected monitoring locations as close as possible to the target level. Binary variables are used in the groundwater management model to control the operative status of pumping wells. The NSGA-II is linked with MODFLOW to solve the multi-objective problem. The proposed method is applied to a groundwater management problem in the complex Baton Rouge aquifer system, southeastern Louisiana. Results show that (a) non-dominated trade-off solutions under various spatial distributions of active pumping wells can be achieved. Each solution is optimal with regard to its corresponding objectives; (b) operative status, locations and pumping rates of pumping wells are significant to influence the distribution of hydraulic head, which in turn influence the optimization results; (c) A wide range of optimal solutions is obtained such that decision makers can select the most appropriate solution through negotiation with different stakeholders. This technique is beneficial to finding out the optimal extent to which three objectives including water supply concern, energy concern and subsidence concern can be balanced.

  17. Monitoring hydraulic stimulation using telluric sounding

    Science.gov (United States)

    Rees, Nigel; Heinson, Graham; Conway, Dennis

    2018-01-01

    The telluric sounding (TS) method is introduced as a potential tool for monitoring hydraulic fracturing at depth. The advantage of this technique is that it requires only the measurement of electric fields, which are cheap and easy when compared with magnetotelluric measurements. Additionally, the transfer function between electric fields from two locations is essentially the identity matrix for a 1D Earth no matter what the vertical structure. Therefore, changes in the earth resulting from the introduction of conductive bodies underneath one of these sites can be associated with deviations away from the identity matrix, with static shift appearing as a galvanic multiplier at all periods. Singular value decomposition and eigenvalue analysis can reduce the complexity of the resulting telluric distortion matrix to simpler parameters that can be visualised in the form of Mohr circles. This technique would be useful in constraining the lateral extent of resistivity changes. We test the viability of utilising the TS method for monitoring on both a synthetic dataset and for a hydraulic stimulation of an enhanced geothermal system case study conducted in Paralana, South Australia. The synthetic data example shows small but consistent changes in the transfer functions associated with hydraulic stimulation, with grids of Mohr circles introduced as a useful diagnostic tool for visualising the extent of fluid movement. The Paralana electric field data were relatively noisy and affected by the dead band making the analysis of transfer functions difficult. However, changes in the order of 5% were observed from 5 s to longer periods. We conclude that deep monitoring using the TS method is marginal at depths in the order of 4 km and that in order to have meaningful interpretations, electric field data need to be of a high quality with low levels of site noise.[Figure not available: see fulltext.

  18. Design of a hydraulic loop for characterization of nuclear fuels for the Rech-1

    International Nuclear Information System (INIS)

    Munoz Reveco, David Hernan

    2016-01-01

    The Chilean Nuclear Energy Commission (CCHEN), in particular the Fuels Elements Plant (PEC), wants to increase its capacity of design of nuclear fuel elements (ECN). The International Atomic Energy Agency (IAEA) stipulates that in order to develop new ECN designs must be met with neutron, structural, thermal and hydraulics. The CCHEN in the first instance, wishes to implement the hydraulic tests with a test bench which is called 'Hydraulic Loop (LH)'. The general objective of the project is to design a LH at the level of detailed engineering, with the purpose to characterize ECN hydraulically of the RECH-1 reactor. The specific objectives are: (i) Carry out the conceptual design and control philosophy applicable to the LH, ii) Develop the design LH baseline including layout, equipment, instrumentation and assembly; and iii) Carry out the detailed design for LH construction and assembly including technical specifications for the acquisition, construction and assembly of LH, and estimated investments to materialize the project. To carry out the conceptual design of the LH proceed to review piping projects provided by specialists, fluid pressure drop analysis is carried out in pipelines and papers are reviewed on existing LHs (Petten and IPEN). The basic design is developed by setting the conditions system, taking as a design criterion the operating the RECH-2 reactor. For the design of the test zone, the ASME code VIII division 1 section 13-7. The pond develops according to the capacity of fluid contained in the system. The pump is selected by system losses, overestimating the load of the pump. In addition, the characteristic curves of the pump are compared with the curve feature of the system. Detail planes are generated with Autodesk Inventor software Professional 2014-student version. The instrumentation selection is carried out with the advice of a company dedicated to the measurement and control of industrial activities (VETO). The main results of the project

  19. Model of a thermal driven volumetric pump for energy harvesting in an underwater glider

    International Nuclear Information System (INIS)

    Falcão Carneiro, J.; Gomes de Almeida, F.

    2016-01-01

    Underwater gliders are one of the most promising approaches to achieve an increase of human presence in the oceans. Among existing solutions, thermal driven gliders present long range and endurance capabilities, offering the possibility of remaining years beneath water collecting and transmitting data to shore. A key component in thermal gliders lies in the process used to collect ocean's thermal energy. In this paper a new quasi-static model of a thermal driven volumetric pump, for use in underwater gliders, is presented. The study also encompasses an analysis of the influence different hydraulic system parameters have on the thermodynamic cycle efficiency. Finally, the paper proposes a simple dynamic model of a heat exchanger that uses commercially available materials for the Phase Change Material (PCM) container. Simulation results validate the models developed. - Highlights: • A new model of a thermal driven volumetric pump for underwater gliders is proposed. • The effect hydraulic system parameters have on the cycle efficiency is analyzed. • The energy efficiency may be increased tenfold using adequate hydraulic parameters. • It's shown that the PCM PVT transition surface may not alter the cycle efficiency.

  20. Thermal Hydraulic Tests for Reactor Core Safety

    Energy Technology Data Exchange (ETDEWEB)

    Moon, S. K.; Baek, W. P.; Chun, S. Y. (and others)

    2007-06-15

    The main objectives of the present project are to resolve the current issues of reactor core thermal hydraulics, to develop an advanced measurement and analytical techniques, and to perform reactor core safety verification tests. 6x6 reflood experiments, various heat transfer experiments using Freon, and experiments on the spacer grids effects on the post-dryout are carried out using spacer grids developed in Korea in order to resolve the current issues of the reactor core thermal hydraulics. In order to develop a reflood heat transfer model, the detailed reflood phenomena are visualized and measured using round tube and 2x2 rod bundle. A detailed turbulent mixing phenomenon for subchannels is measured using advanced measurement techniques such as LDV and PIV. MARS and MATRA codes developed in Korea are assessed, verified and improved using the obtained experimental data. Finally, a systematic quality assurance program and experimental data generation system has been constructed in order to increase the reliability of the experimental data.

  1. Intrinsic uncoupling of mitochondrial proton pumps. 2. Modeling studies.

    Science.gov (United States)

    Pietrobon, D; Zoratti, M; Azzone, G F; Caplan, S R

    1986-02-25

    The thermodynamic and kinetic properties associated with intrinsic uncoupling in a six-state model of a redox proton pump have been studied by computing the flow-force relations for different degrees of coupling. Analysis of these relations shows the regulatory influence of the thermodynamic forces on the extent and relative contributions of redox slip and proton slip. Inhibition has been introduced into the model in two different ways, corresponding to possible modes of action of experimental inhibitors. Experiments relating the rate of electron transfer to delta microH at static head upon progressive inhibition of the pumps have been simulated considering (1) the limiting case that the nonzero rate of electron transfer at static head is only due to intrinsic uncoupling (no leaks) and (2) the experimentally observed case that about 30% of the nonzero rate of electron transfer at static head is due to a constant proton leakage conductance in parallel with the pumps, the rest being due to intrinsic uncoupling. The same simulations have been performed for experiments in which the rate of electron transfer is varied by varying the substrate concentration rather than by using an inhibitor. The corresponding experimental results obtained by measuring delta microH and the rate of electron transfer at different succinate concentrations in rat liver mitochondria are presented. Comparison between simulated behavior and experimental results leads to the general conclusion that the typical relationship between rate of electron transfer and delta microH found in mitochondria at static head could certainly be a manifestation of some degree of intrinsic uncoupling in the redox proton pumps.(ABSTRACT TRUNCATED AT 250 WORDS)

  2. Dynamic simulation of periodic adsorption heat pumps. Dynamische Simulation periodischer Adsorptionswaermepumpen

    Energy Technology Data Exchange (ETDEWEB)

    Foellinger, T.

    1989-01-01

    Periodic asorption heat pumps with water as working fluid and two types of zeolites as adsorption agents were studied theoretically by a dynamic simulation analysis in order to find out whether they are suited as high-temperature heat pumps for heat recovery. Variants with one and two pairs of containers were investigated. Internal heat transfer is possible between the containers of each pair, and shifting temperature and load profiles (zoned sorption) are generated inside the containers in order to raise the heat ratio (efficience). The heat ratios are clearly higher than in ammonia/water heat pumps of the same size. The external heat transfer is kept constant by means of control elements and buffer systems, so that the periodic heat pump can be integrated in a continuous process. A pilot plant was developed on the basis of the results, with particular interest taken in the design of the liquid/solid heat transfer media. (orig.) With 47 figs., 3 tabs.

  3. One-phase and two-phase homologous curves for coolant pumps of the pressurized light water nuclear reactors

    International Nuclear Information System (INIS)

    Santos, G.A. dos.

    1990-01-01

    The two-phase coolant pump model of pressurized light water nuclear reactors is an important point for the loss of primary coolant accident analysis. The single-phase pump characteristics are an essential feature for operational transients studies, for example, the shut-down and start-up of pump. These parameters, in terms of the homologous curves, set up the complete performance of the pump and are input for transients and accidents analysis thermal-hydraulic codes. This work propose a mathematical model able to predict the single-phase and two-phase homologous curves where it was incorporated geometric and operational pump condition. The results were compared with the experimental tests data from literature and it has showed a good agreement. (author)

  4. Imaging the Flow Networks from a Harmonic Pumping in a Karstic Field with an Inversion Algorithm

    Science.gov (United States)

    Fischer, P.; Lecoq, N.; Jardani, A.; Jourde, H.; Wang, X.; Chedeville, S.; Cardiff, M. A.

    2017-12-01

    Identifying flow paths within karstic fields remains a complex task because of the high dependency of the hydraulic responses to the relative locations between the observation boreholes and the karstic conduits and interconnected fractures that control the main flows of the hydrosystem. In this context, harmonic pumping is a new investigation tool that permits to inform on the flow paths connectivity between the boreholes. We have shown that the amplitude and phase offset values in the periodic responses of a hydrosystem to a harmonic pumping test characterize three different type of flow behavior between the measurement boreholes and the pumping borehole: a direct connectivity response (conduit flow), an indirect connectivity (conduit and short matrix flows), and an absence of connectivity (matrix). When the hydraulic responses to study are numerous and complex, the interpretation of the flow paths requires an inverse modeling. Therefore, we have recently developed a Cellular Automata-based Deterministic Inversion (CADI) approach that permits to infer the spatial distribution of field hydraulic conductivities in a structurally constrained model. This method distributes hydraulic conductivities along linear structures (i.e. karst conduits) and iteratively modifies the structural geometry of this conduits network to progressively match the observed responses to the modeled ones. As a result, this method produces a conductivity model that is composed of a discrete conduit network embedded in the background matrix, capable of producing the same flow behavior as the investigated hydrologic system. We applied the CADI approach in order to reproduce, in a model, the amplitude and phase offset values of a set of periodic responses generated from harmonic pumping tests conducted in different boreholes at the Terrieu karstic field site (Southern France). This association of oscillatory responses with the CADI method provides an interpretation of the flow paths within the

  5. LOOP-3, Hydraulic Stability in Heated Parallel Channels

    Energy Technology Data Exchange (ETDEWEB)

    Davies, A L [AEEW, Dorset (United Kingdom)

    1968-02-01

    1 - Nature of physical problem solved: Hydraulic stability in parallel channels. 2 - Method of solution: Calculation of transfer functions developed in reference (10 below). 3 - Restrictions on the complexity of the problem: Only due to assumptions in analysis (see ref.)

  6. LOX/LH2 vane pump for auxiliary propulsion systems

    Science.gov (United States)

    Hemminger, J. A.; Ulbricht, T. E.

    1985-01-01

    Positive displacement pumps offer potential efficiency advantages over centrifugal pumps for future low thrust space missions. Low flow rate applications, such as space station auxiliary propulsion or dedicated low thrust orbiter transfer vehicles, are typical of missions where low flow and high head rise challenge centrifugal pumps. The positive displacement vane pump for pumping of LOX and LH2 is investigated. This effort has included: (1) a testing program in which pump performance was investigated for differing pump clearances and for differing pump materials while pumping LN2, LOX, and LH2; and (2) an analysis effort, in which a comprehensive pump performance analysis computer code was developed and exercised. An overview of the theoretical framework of the performance analysis computer code is presented, along with a summary of analysis results. Experimental results are presented for pump operating in liquid nitrogen. Included are data on the effects on pump performance of pump clearance, speed, and pressure rise. Pump suction performance is also presented.

  7. Simulation of heat-pump systems in Polysun 4 - Final report; Simulation von Waermepumpen-Systemen in Polysun 4 - Schlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Marti, J.; Witzig, A. [Vela Solaris AG, Winterthur (Switzerland); Huber, A.; Ochs, M. [Huber Energietechnik AG, Zuerich (Switzerland)

    2009-01-15

    Polysun 4 is a software program for the simulation of heating systems. The simulation kernel applies a time stepping algorithm and dynamically calculates all relevant system parameters over a one year period, based on statistical weather data. On the one hand, Polysun draws out by physics-based simulation scheme and its modularity, which allows any arrangement of the system components. On the other hand, Polysun offers a unique set of component catalogues which cover a large number of commercially available system components. In this project, three kinds of heat pumps have been integrated in Polysun, namely the air/water, water/water and brine/water heat pumps. Furthermore, the relevant heat sources have been implemented, namely ambient air, soil and groundwater. In consequence, Polysun now covers a large, and almost complete, range of renewable energy systems. Simulation parameters are the measured heat pump COP values (in accordance with EN 255 and EN 14511). A linear interpolation scheme has been developed in this project in order to simulate systems for arbitrary source and heat pump temperatures and to interpolate the power consumption. For the dynamic simulation of the ground source heat pump, the numerical algorithm from the Program EWS (calculation module developed in 1997) has been integrated into Polysun. Groundwater probes are calculated with respect to the soil temperatures. Heat pumps and probes were implemented as independent components in Polysun. In the graphical user interface, they can be arbitrarily placed and connected with other hydraulic components. The timestepping simulation calculates inlet temperature, electric power consumption and heat transfer in the entire system. The Polysun catalogs have been extended accordingly with total over 300 component entries and a number of relevant system templates. (authors)

  8. Detection of cavitation inception by acoustic technique in centrifugal pumps for nuclear application

    International Nuclear Information System (INIS)

    Prakash, V.; Prabhakar, R.; Rao, A.S.L.K.; Kale, R.D.

    1994-01-01

    The primary centrifugal pumps in a pool type reactor like the proposed Prototype Fast Breeder Reactor (PFBR) are required to operate at low values of available net positive suction head due to the limited submergence available in the pool. Pump hydraulics are designed to ensure that there is no cavitation or only minimum cavitation in the pump impeller in order to minimise long term erosion damage. Rigorous cavitation tests are usually carried out during development and final testing phase and a promising cavitation detection technique lies in acoustic noise measurements on the pump. As part of PFBR pump development programme, cavitation noise measurements were initially carried out on an experimental sodium pump in a water rig to establish detection procedures. Recently cavitation noise measurements were carried out on a 1/3 scale model impeller of PFBR pump along with visual observation of impeller passages to establish a correlation between visual and acoustic technique. Accelerometer responding to structure borne noise seems to give the best result. (author). 4 refs., 6 figs

  9. A liquid helium piston pump with a superconducting drive

    International Nuclear Information System (INIS)

    Schmidt, C.

    1984-01-01

    This chapter describes a bellows pump where the driving force is achieved by an arrangement of three superconducting coils. The pump was designed for use in the supercritical helium flow circuit of the LCT-conductor test facility. The main advantage of the superconducting drive, compared to conventional pumps with external drive, is the compact design. Force transferring parts between 4.2 K and room temperature are not necessary. The pump was tested in a closed loop arrangement. The superconducting drive for a piston pump consists of a moving coil in a constant background field. Other coil configurations and the upscaling of the pump design are discussed

  10. Numerical simulation of the two-phase flows in a hydraulic coupling by solving VOF model

    International Nuclear Information System (INIS)

    Luo, Y; Zuo, Z G; Liu, S H; Fan, H G; Zhuge, W L

    2013-01-01

    The flow in a partially filled hydraulic coupling is essentially a gas-liquid two-phase flow, in which the distribution of two phases has significant influence on its characteristics. The interfaces between the air and the liquid, and the circulating flows inside the hydraulic coupling can be simulated by solving the VOF two-phase model. In this paper, PISO algorithm and RNG k–ε turbulence model were employed to simulate the phase distribution and the flow field in a hydraulic coupling with 80% liquid fill. The results indicate that the flow forms a circulating movement on the torus section with decreasing speed ratio. In the pump impeller, the air phase mostly accumulates on the suction side of the blades, while liquid on the pressure side; in turbine runner, air locates in the middle of the flow passage. Flow separations appear near the blades and the enclosing boundaries of the hydraulic coupling

  11. Multiphase flow models for hydraulic fracturing technology

    Science.gov (United States)

    Osiptsov, Andrei A.

    2017-10-01

    The technology of hydraulic fracturing of a hydrocarbon-bearing formation is based on pumping a fluid with particles into a well to create fractures in porous medium. After the end of pumping, the fractures filled with closely packed proppant particles create highly conductive channels for hydrocarbon flow from far-field reservoir to the well to surface. The design of the hydraulic fracturing treatment is carried out with a simulator. Those simulators are based on mathematical models, which need to be accurate and close to physical reality. The entire process of fracture placement and flowback/cleanup can be conventionally split into the following four stages: (i) quasi-steady state effectively single-phase suspension flow down the wellbore, (ii) particle transport in an open vertical fracture, (iii) displacement of fracturing fluid by hydrocarbons from the closed fracture filled with a random close pack of proppant particles, and, finally, (iv) highly transient gas-liquid flow in a well during cleanup. The stage (i) is relatively well described by the existing hydralics models, while the models for the other three stages of the process need revisiting and considerable improvement, which was the focus of the author’s research presented in this review paper. For stage (ii), we consider the derivation of a multi-fluid model for suspension flow in a narrow vertical hydraulic fracture at moderate Re on the scale of fracture height and length and also the migration of particles across the flow on the scale of fracture width. At the stage of fracture cleanaup (iii), a novel multi-continua model for suspension filtration is developed. To provide closure relationships for permeability of proppant packings to be used in this model, a 3D direct numerical simulation of single phase flow is carried out using the lattice-Boltzmann method. For wellbore cleanup (iv), we present a combined 1D model for highly-transient gas-liquid flow based on the combination of multi-fluid and

  12. Numerical modelling of the pump-to-signal relative intensity noise ...

    Indian Academy of Sciences (India)

    An accurate numerical model to investigate the pump-to-signal relative intensity noise (RIN) transfer in two-pump fibre optical parametric amplifiers (2-P FOPAs) for low modulation frequencies is presented. Compared to other models in the field, this model takes into account the fibre loss, pump depletion as well as the gain ...

  13. Thermodynamic and energy saving benefits of hydraulic free-piston engines

    International Nuclear Information System (INIS)

    Zhao, Zhenfeng; Wang, Shan; Zhang, Shuanlu; Zhang, Fujun

    2016-01-01

    The hydraulic free-piston engine integrates the internal combustion engine with a hydraulic pump. The piston of an HFPE is not connected to the crankshaft and the piston movement is determined by the forces that act upon it. These features optimize combustion and make higher power density and efficiency increase. In this paper, a detailed thermodynamic and energy saving analysis is performed to demonstrate the fundamental efficiency advantage of an HFPE. The thermodynamic results show that the combustion process can be optimized to an ideal engine cycle. The experimental results show that the HFPE combustion process is a nearly constant-volume process; the efficiency is approximately 50%; the piston displacement and velocity curves for a cycle are the same at any frequency, even at a 1.25 Hz. The maximum velocities are of the same value at high or low frequencies. Similarly, pump output flow is not influenced by frequency. The independent cyclic characteristics of HFPE determine that it should work in higher frequencies when the vehicle runs in Japanese 10–15 road conditions. It indicates that a higher working frequency will lead to the starting frequency of HFPE, and a lower frequency will decrease the pressurized pressure of the hydraulic accumulator. - Highlights: • The thermodynamic and energy saving benefits of the HFPEs was investigated. • The approach of combustion optimization was obtained by adjusting the injection timing and compression ratio. • The high efficiency area of HFPE was given as a function of injection timing and compression pressure. • The maximum efficiency of HFPE of 50% was obtained from the prototype. • The method of energy saving with adjusting the piston frequency was examined.

  14. Ground source heat pump performance in case of high humidity soil and yearly balanced heat transfer

    International Nuclear Information System (INIS)

    Schibuola, Luigi; Tambani, Chiara; Zarrella, Angelo; Scarpa, Massimiliano

    2013-01-01

    Highlights: • GSHPs are simulated in case of humid soil and yearly balanced heat transfer. • Humid soil and yearly balanced heat transfer imply higher compactness of GSHPs. • Resulting GSHPs are compared with other traditional and innovative HVAC systems. • GSHPs score best, especially in case of inverter-driven compressors. - Abstract: Ground source heat pump (GSHP) systems are spreading also in Southern Europe, due to their high energy efficiency both in heating and in cooling mode. Moreover, they are particularly suitable in historical cities because of difficulties in the integration of heating/cooling systems into buildings subjected to historical preservation regulations. In these cases, GSHP systems, especially the ones provided with borehole heat exchangers, are a suitable solution instead of gas boilers, air-cooled chillers or cooling towers. In humid soils, GSHP systems are even more interesting because of their enhanced performance due to higher values of soil thermal conductivity and capacity. In this paper, GSHP systems operating under these boundary conditions are analyzed through a specific case study set in Venice and related to the restoration of an historical building. With this analysis the relevant influences of soil thermal conductivity and yearly balanced heat transfer in the design of the borehole field are shown. In particular, the paper shows the possibility to achieve higher compactness of the borehole field footprint area when yearly balanced heat transfer in the borehole field is expected. Then, the second set of results contained in the paper shows how GSHP systems designed for high humidity soils and yearly balanced heat loads at the ground side, even if characterized by a compact footprint area, may still ensure better performance than other available and more common technologies such as boilers, air-cooled chillers, chillers coupled with cooling towers and heat pumps and chillers coupled with lagoon water. As a consequence

  15. Centrifugal Pump Monitoring and Determination of Pump Characteristic Curves Using Experimental and Analytical Solutions

    Directory of Open Access Journals (Sweden)

    Marius Stan

    2018-02-01

    Full Text Available Centrifugal pumps are widely used in the industry, especially in the oil and gas sector for fluids transport. Classically, these are designed to transfer single phase fluids (e.g., water at high flow rates and relatively low pressures when compared with other pump types. As part of their constructive feature, centrifugal pumps rely on seals to prevent air entrapment into the rotor during its normal operation. Although this is a constructive feature, water should pass through the pump inlet even when the inlet manifold is damaged. Modern pumps are integrated in pumping units which consist of a drive (normally electric motor, a transmission (when needed, an electronic package (for monitoring and control, and the pump itself. The unit also has intake and outlet manifolds equipped with valves. Modern systems also include electronic components to measure and monitor pump working parameters such as pressure, temperature, etc. Equipment monitoring devices (vibration sensors, microphones are installed on modern pumping units to help users evaluate the state of the machinery and detect deviations from the normal working condition. This paper addresses the influence of air-water two-phase mixture on the characteristic curve of a centrifugal pump; pump vibration in operation at various flow rates under these conditions; the possibilities of using the results of experimental investigations in the numerical simulations for design and training purposes, and the possibility of using vibration and sound analysis to detect changes in the equipment working condition. Conclusions show that vibration analysis provides accurate information about the pump’s functional state and the pumping process. Moreover, the acoustic emission also enables the evaluation of the pump status, but needs further improvements to better capture and isolate the usable sounds from the environment.

  16. Numerical Simulation of Tubular Pumping Systems with Different Regulation Methods

    Science.gov (United States)

    Zhu, Honggeng; Zhang, Rentian; Deng, Dongsheng; Feng, Xusong; Yao, Linbi

    2010-06-01

    Since the flow in tubular pumping systems is basically along axial direction and passes symmetrically through the impeller, most satisfying the basic hypotheses in the design of impeller and having higher pumping system efficiency in comparison with vertical pumping system, they are being widely applied to low-head pumping engineering. In a pumping station, the fluctuation of water levels in the sump and discharge pool is most common and at most time the pumping system runs under off-design conditions. Hence, the operation of pump has to be flexibly regulated to meet the needs of flow rates, and the selection of regulation method is as important as that of pump to reduce operation cost and achieve economic operation. In this paper, the three dimensional time-averaged Navier-Stokes equations are closed by RNG κ-ɛ turbulent model, and two tubular pumping systems with different regulation methods, equipped with the same pump model but with different designed system structures, are numerically simulated respectively to predict the pumping system performances and analyze the influence of regulation device and help designers make final decision in the selection of design schemes. The computed results indicate that the pumping system with blade-adjusting device needs longer suction box, and the increased hydraulic loss will lower the pumping system efficiency in the order of 1.5%. The pumping system with permanent magnet motor, by means of variable speed regulation, obtains higher system efficiency partly for shorter suction box and partly for different structure design. Nowadays, the varied speed regulation is realized by varied frequency device, the energy consumption of which is about 3˜4% of output power of the motor. Hence, when the efficiency of variable frequency device is considered, the total pumping system efficiency will probably be lower.

  17. Numerical simulations of heat transfer considering hydraulic discontinuity for an enhanced geothermal system development in Seokmo Island, Korea

    Science.gov (United States)

    Shin, J.; Kim, K.; Hyun, Y.; Lee, K.; Lee, T.

    2011-12-01

    The construction of the first geothermal plant in Korea is under planning in Seokmo Island, where a few artesian wells showing relatively high water temperature of around 70 degrees were discovered lately. Geologic structure in this region is characterized by the fractured granite. Numerical simulations for the temperature evolution in a fractured geothermal reservoir in Seokmo Island under the supposed injection-extraction operating conditions were carried out using TOUGH2. A MINC model including a hydraulic discontinuity in Seokmo Island region, which reflected the analysis from several geophysical explorations and drilled rock core, was generated. Supposing the N05°E, NW83° fracture zone containing the pumping range, the numerical simulation results show that temperature of the extracted geothermal water decreases after 15 years of operation, which decreases the overall efficiency of the expected geothermal plant. This is because the colder water from the injection well, which is 400 m apart, begins to flow into the more permeable fracture zone from the 15th year, resulting in a decrease in temperature near the pumping well. Temperature distribution calculated from the simulation also shows a rise of relatively hot geothermal water along the fracture plane. All of the results are different from the non-fracture MINC model, which shows a low temperature contour in concentric circle shape around the injection well and relatively consistent extracting temperature. This demonstrates that the distribution and the structure of fracture system influence the major mass and heat flow mechanisms in geologic medium. Therefore, an intensive geologic investigation for the fractures including their structure, permeability and connecting relation is important. Acknowledgement This study was financially supported by KIGAM, KETEP and BK21.

  18. Experimental studies on thermal hydraulic responses for transient operations of the SMART-P

    International Nuclear Information System (INIS)

    Choi, K.Y.; Park, H.S.; Cho, S.; Park, C.K.; Lee, S.J.; Song, C.H.; Chung, M.K.

    2005-01-01

    Full text of publication follows: Thermal hydraulic responses for transient operations of the SMART-P are experimentally investigated by using a integral effect test facility. This test facility (VISTA) has been constructed to simulate the SMART-P, which is a pilot plant of the SMART. The SMART-P is an advanced modular integral type pressurized water reactor (65 MWt) whose major RCS components, such as main coolant pumps, helical-coiled tube bundle steam generators and pressurizers, are contained in a reactor vessel. This integral design approach eliminates the large coolant loop piping, thus eliminates the occurrence of a large break LOCA. Passive Residual Heat Removal System (PRHRS) is installed to prevent overheating and over-pressurization of the primary system during accidental conditions. The PRHRS of the SMART-P removes the core decay heat by natural circulation of the two-phase fluid. The VISTA facility is a full height and 1/96 volume scaled test facility with respect to the SMART-P and will be used to understand the thermal-hydraulic responses following transients and finally to verify the system design of the SMART-P. The experimental data from the VISTA facility will be essential to system designers to resolve open issues relevant to the design of the SMART-P. The full functional control logics are implanted into the VISTA facility to cope with abnormal transients. The core of the facility can be selectively controlled by either a T-control or a T+N control method. The T-control method is a control method to adjust the core power according to the core exit coolant temperature and is designed to be used for high primary coolant flow conditions. On the other hand, the T+N control method is for low primary coolant flow conditions and it uses core exit temperature as well as core power itself as control inputs. The thermal hydraulic responses are carefully investigated according to different core control methods. Several experiments have been performed to

  19. Numerical analysis on pump turbine runaway points

    International Nuclear Information System (INIS)

    Guo, L; Liu, J T; Wang, L Q; Jiao, L; Li, Z F

    2012-01-01

    To research the character of pump turbine runaway points with different guide vane opening, a hydraulic model was established based on a pumped storage power station. The RNG k-ε model and SMPLEC algorithms was used to simulate the internal flow fields. The result of the simulation was compared with the test data and good correspondence was got between experimental data and CFD result. Based on this model, internal flow analysis was carried out. The result show that when the pump turbine ran at the runway speed, lots of vortexes appeared in the flow passage of the runner. These vortexes could always be observed even if the guide vane opening changes. That is an important way of energy loss in the runaway condition. Pressure on two sides of the runner blades were almost the same. So the runner power is very low. High speed induced large centrifugal force and the small guide vane opening gave the water velocity a large tangential component, then an obvious water ring could be observed between the runner blades and guide vanes in small guide vane opening condition. That ring disappeared when the opening bigger than 20°. These conclusions can provide a theory basis for the analysis and simulation of the pump turbine runaway points.

  20. Modern methods of high-pressure fuel pump common rail power system diagnostics

    Directory of Open Access Journals (Sweden)

    Kyshchun В.

    2016-08-01

    Full Text Available We've considered high pressure fuel pumps design features and equipment for their diagnosis. It was noted that the reliability of the fuel elements Common Rail system primarily provide precision parts of the fuel equipment. As a consequence, the aim of study was comparative analysis and laborious of modern methods of the high pressure fuel pump diagnosing. In particular, the definition of a technical condition of the fuel pump was carried out using a special stand and by measuring the fuel pressure and duty cycle of the pressure regulator signal. As an object of our research we've chosen Bosch № 0445010008 fuel pump (from Mercedes Benz E320cdi in which the plunger pairs were changed alternately with different technical conditions. Preliminary fuel pump parameters were determined by hydraulic testing. Based on conducted experiments we've found out that fuel pressure measurement change method and the duty cycle of the pressure regulator signal at the starting and full load modes less laborious compared to the definition of a technical condition of the pump on the stand. The results of both methods of diagnosing confirmed identity of the fuel pumps.