WorldWideScience

Sample records for hydraulic stimulation precontract

  1. Extended geothermal potential of clastic aquifers by hydraulic stimulation

    NARCIS (Netherlands)

    Veldkamp, J.G.; Pluymaekers, M.P.D.; Wees, J.D.A.M.

    2014-01-01

    We evaluated the implications of hydraulic stimulation in a Dutch context for low permeability clastic aquifers at a depth of 2000 to 4000 m, whose transmissivity has been mapped in the framework of the Dutch subsurface information system on geothermal energy in the Netherlands. For the simulation a

  2. Hydraulic-fracture stimulation treatments at East Mesa, Well 58-30. Geothermal-reservoir well-stimulation program

    Energy Technology Data Exchange (ETDEWEB)

    1981-02-01

    East Mesa Well 58-30 was selected for two stimulation treatments: a conventional hydraulic fracture in a deep, low permeability interval, and a dendritic fracture in a shallow, high permeability interval of completion. The well selection, pre-stimulation evaluation, fracture treatment design, and post-stimulation evaluation are presented.

  3. Discrete fracture network modeling of hydraulic stimulation coupling flow and geomechanics

    CERN Document Server

    McClure, Mark

    2013-01-01

    Discrete Fracture Network Modeling of Hydraulic Stimulation describes the development and testing of a model that couples fluid-flow, deformation, friction weakening, and permeability evolution in large, complex two-dimensional discrete fracture networks.  The model can be used to explore the behavior of hydraulic stimulation in settings where matrix permeability is low and preexisting fractures play an important role, such as Enhanced Geothermal Systems and gas shale.  Used also to describe pure shear stimulation, mixed-mechanism stimulation, or pure opening-mode stimulation. A variety of nov

  4. Hydraulics.

    Science.gov (United States)

    Decker, Robert L.; Kirby, Klane

    This curriculum guide contains a course in hydraulics to train entry-level workers for automotive mechanics and other fields that utilize hydraulics. The module contains 14 instructional units that cover the following topics: (1) introduction to hydraulics; (2) fundamentals of hydraulics; (3) reservoirs; (4) lines, fittings, and couplers; (5)…

  5. Hydraulically active biopores stimulate pesticide mineralization in agricultural subsoil

    DEFF Research Database (Denmark)

    Badawi, Nora; Johnsen, Anders R.; Brandt, Kristian Koefoed

    2013-01-01

    for microbially-mediated pesticide mineralization, thereby reducing the risk of pesticide leaching. To investigate this we identified hydraulically active biopores in a test plot of an agricultural field by percolating brilliant blue through the soil. Small portions of soil (500 mg) were sampled at approx. 1-cm...

  6. Creation of an Enhanced Geothermal System through Hydraulic and Thermal Stimulation

    Energy Technology Data Exchange (ETDEWEB)

    Rose, Peter Eugene [Energy and Geoscience Institute at the Univerity of Utah

    2013-04-15

    This report describes a 10-year DOE-funded project to design, characterize and create an Engineered Geothermal System (EGS) through a combination of hydraulic, thermal and chemical stimulation techniques. Volume 1 describes a four-year Phase 1 campaign, which focused on the east compartment of the Coso geothermal field. It includes a description of the geomechanical, geophysical, hydraulic, and geochemical studies that were conducted to characterize the reservoir in anticipation of the hydraulic stimulation experiment. Phase 1 ended prematurely when the drill bit intersected a very permeable fault zone during the redrilling of target stimulation well 34-9RD2. A hydraulic stimulation was inadvertently achieved, however, since the flow of drill mud from the well into the formation created an earthquake swarm near the wellbore that was recorded, located, analyzed and interpreted by project seismologists. Upon completion of Phase 1, the project shifted focus to a new target well, which was located within the southwest compartment of the Coso geothermal field. Volume 2 describes the Phase 2 studies on the geomechanical, geophysical, hydraulic, and geochemical aspects of the reservoir in and around target-stimulation well 46A-19RD, which is the deepest and hottest well ever drilled at Coso. Its total measured depth exceeding 12,000 ft. It spite of its great depth, this well is largely impermeable below a depth of about 9,000 ft, thus providing an excellent target for stimulation. In order to prepare 46A-19RD for stimulation, however, it was necessary to pull the slotted liner. This proved to be unachievable under the budget allocated by the Coso Operating Company partners, and this aspect of the project was abandoned, ending the program at Coso. The program then shifted to the EGS project at Desert Peak, which had a goal similar to the one at Coso of creating an EGS on the periphery of an existing geothermal reservoir. Volume 3 describes the activities that the Coso team

  7. Creation of an Enhanced Geothermal System through Hydraulic and Thermal Stimulation

    Energy Technology Data Exchange (ETDEWEB)

    Rose, Peter Eugene [Energy and Geoscience Institute at the University of Utah

    2013-04-15

    This report describes a 10-year DOE-funded project to design, characterize and create an Engineered Geothermal System (EGS) through a combination of hydraulic, thermal and chemical stimulation techniques. Volume 1 describes a four-year Phase 1 campaign, which focused on the east compartment of the Coso geothermal field. It includes a description of the geomechanical, geophysical, hydraulic, and geochemical studies that were conducted to characterize the reservoir in anticipation of the hydraulic stimulation experiment. Phase 1 ended prematurely when the drill bit intersected a very permeable fault zone during the redrilling of target stimulation well 34-9RD2. A hydraulic stimulation was inadvertently achieved, however, since the flow of drill mud from the well into the formation created an earthquake swarm near the wellbore that was recorded, located, analyzed and interpreted by project seismologists. Upon completion of Phase 1, the project shifted focus to a new target well, which was located within the southwest compartment of the Coso geothermal field. Volume 2 describes the Phase 2 studies on the geomechanical, geophysical, hydraulic, and geochemical aspects of the reservoir in and around target-stimulation well 46A-19RD, which is the deepest and hottest well ever drilled at Coso. Its total measured depth exceeding 12,000 ft. It spite of its great depth, this well is largely impermeable below a depth of about 9,000 ft, thus providing an excellent target for stimulation. In order to prepare 46A-19RD for stimulation, however, it was necessary to pull the slotted liner. This proved to be unachievable under the budget allocated by the Coso Operating Company partners, and this aspect of the project was abandoned, ending the program at Coso. The program then shifted to the EGS project at Desert Peak, which had a goal similar to the one at Coso of creating an EGS on the periphery of an existing geothermal reservoir. Volume 3 describes the activities that the Coso team

  8. Modeling thermal stress propagation during hydraulic stimulation of geothermal wells

    Science.gov (United States)

    Jansen, Gunnar; Miller, Stephen A.

    2017-04-01

    A large fraction of the world's water and energy resources are located in naturally fractured reservoirs within the earth's crust. Depending on the lithology and tectonic history of a formation, fracture networks can range from dense and homogeneous highly fractured networks to single large scale fractures dominating the flow behavior. Understanding the dynamics of such reservoirs in terms of flow and transport is crucial to successful application of engineered geothermal systems (also known as enhanced geothermal systems or EGS) for geothermal energy production in the future. Fractured reservoirs are considered to consist of two distinct separate media, namely the fracture and matrix space respectively. Fractures are generally thin, highly conductive containing only small amounts of fluid, whereas the matrix rock provides high fluid storage but typically has much smaller permeability. Simulation of flow and transport through fractured porous media is challenging due to the high permeability contrast between the fractures and the surrounding rock matrix. However, accurate and efficient simulation of flow through a fracture network is crucial in order to understand, optimize and engineer reservoirs. It has been a research topic for several decades and is still under active research. Accurate fluid flow simulations through field-scale fractured reservoirs are still limited by the power of current computer processing units (CPU). We present an efficient implementation of the embedded discrete fracture model, which is a promising new technique in modeling the behavior of enhanced geothermal systems. An efficient coupling strategy is determined for numerical performance of the model. We provide new insight into the coupled modeling of fluid flow, heat transport of engineered geothermal reservoirs with focus on the thermal stress changes during the stimulation process. We further investigate the interplay of thermal and poro-elastic stress changes in the reservoir

  9. SHynergie: Development of a virtual project laboratory for monitoring hydraulic stimulations

    Science.gov (United States)

    Renner, Jörg; Friederich, Wolfgang; Meschke, Günther; Müller, Thomas; Steeb, Holger

    2016-04-01

    Hydraulic stimulations are the primary means of developing subsurface reservoirs regarding the extent of fluid transport in them. The associated creation or conditioning of a system of hydraulic conduits involves a range of hydraulic and mechanical processes but also chemical reactions, such as dissolution and precipitation, may affect the stimulation result on time scales as short as hours. In the light of the extent and complexity of these processes, the steering potential for the operator of a stimulation critically depends on the ability to integrate the maximum amount of site-specific information with profound process understanding and a large spectrum of experience. We report on the development of a virtual project laboratory for monitoring hydraulic stimulations within the project SHynergie (http://www.ruhr-uni-bochum.de/shynergie/). The concept of the laboratory envisioned product that constitutes a preparing and accompanying rather than post-processing instrument ultimately accessible to persons responsible for a project over a web-repository. The virtual laboratory consists of a data base, a toolbox, and a model-building environment. Entries in the data base are of two categories. On the one hand, selected mineral and rock properties are provided from the literature. On the other hand, project-specific entries of any format can be made that are assigned attributes regarding their use in a stimulation problem at hand. The toolbox is interactive and allows the user to perform calculations of effective properties and simulations of different types (e.g., wave propagation in a reservoir, hydraulic test). The model component is also hybrid. The laboratory provides a library of models reflecting a range of scenarios but also allows the user to develop a site-specific model constituting the basis for simulations. The laboratory offers the option to use its components following the typical workflow of a stimulation project. The toolbox incorporates simulation

  10. Numerical Study on the Permeability of the Hydraulic-Stimulated Fracture Network in Naturally-Fractured Shale Gas Reservoirs

    Directory of Open Access Journals (Sweden)

    Zhaobin Zhang

    2016-09-01

    Full Text Available As hydraulic fracturing is a fluid-rock coupling process, the permeability of the hydraulic-stimulated fracture network in the initial stage has great effects on the propagation of the hydraulic fracture network in the following stages. In this work, the permeability of the hydraulic-stimulated fracture network in shale gas reservoirs is investigated by a newly-proposed model based on the displacement discontinuity method. The permeability of the fracture network relies heavily on fracture apertures, which can be calculated with high precision by the displacement discontinuity method. The hydraulic fracturing processes are simulated based on the natural fracture networks reconstructed from the shale samples in the Longmaxi formation of China. The flow fields are simulated and the permeability is calculated based on the fracture configurations and fracture apertures after hydraulic fracturing treatment. It is found that the anisotropy of the permeability is very strong, and the permeability curves have similar shapes. Therefore, a fitting equation of the permeability curve is given for convenient use in the future. The permeability curves under different fluid pressures and crustal stress directions are obtained. The results show that the permeability anisotropy is stronger when the fluid pressure is higher. Moreover, the permeability anisotropy reaches the minimum value when the maximum principle stress direction is perpendicular to the main natural fracture direction. The investigation on the permeability is useful for answering how the reservoirs are hydraulically stimulated and is useful for predicting the propagation behaviors of the hydraulic fracture network in shale gas reservoirs.

  11. Analysis of the Thermal and Hydraulic Stimulation Program at Raft River, Idaho

    Science.gov (United States)

    Bradford, Jacob; McLennan, John; Moore, Joseph; Podgorney, Robert; Plummer, Mitchell; Nash, Greg

    2017-05-01

    The Raft River geothermal field, located in southern Idaho, roughly 100 miles northwest of Salt Lake City, is the site of a Department of Energy Enhanced Geothermal System project designed to develop new techniques for enhancing the permeability of geothermal wells. RRG-9 ST1, the target stimulation well, was drilled to a measured depth of 5962 ft. and cased to 5551 ft. The open-hole section of the well penetrates Precambrian quartzite and quartz monzonite. The well encountered a temperature of 282 °F at its base. Thermal and hydraulic stimulation was initiated in June 2013. Several injection strategies have been employed. These strategies have included the continuous injection of water at temperatures ranging from 53 to 115 °F at wellhead pressures of approximately 275 psi and three short-term hydraulic stimulations at pressures up to approximately 1150 psi. Flow rates, wellhead and line pressures and fluid temperatures are measured continuously. These data are being utilized to assess the effectiveness of the stimulation program. As of August 2014, nearly 90 million gallons have been injected. A modified Hall plot has been used to characterize the relationships between the bottom-hole flowing pressure and the cumulative injection fluid volume. The data indicate that the skin factor is decreased, and/or the permeability around the wellbore has increased since the stimulation program was initiated. The injectivity index also indicates a positive improvement with values ranging from 0.15 gal/min psi in July 2013 to 1.73 gal/min psi in February 2015. Absolute flow rates have increased from approximately 20 to 475 gpm by February 2 2015. Geologic, downhole temperature and seismic data suggest the injected fluid enters a fracture zone at 5650 ft and then travels upward to a permeable horizon at the contact between the Precambrian rocks and the overlying Tertiary sedimentary and volcanic deposits. The reservoir simulation program FALCON developed at the Idaho National

  12. Simulating the hydraulic stimulation of multiple fractures in an anisotropic stress field applying the discrete element method

    Science.gov (United States)

    Zeeb, Conny; Frühwirt, Thomas; Konietzky, Heinz

    2015-04-01

    Key to a successful exploitation of deep geothermal reservoirs in a petrothermal environment is the hydraulic stimulation of the host rock to increase permeability. The presented research investigates the fracture propagation and interaction during hydraulic stimulation of multiple fractures in a highly anisotropic stress field. The presented work was conducted within the framework of the OPTIRISS project, which is a cooperation of industry partners and universities in Thuringia and Saxony (Federal States of Germany) and was funded by the European Fond for Regional Development. One objective was the design optimization of the subsurface geothermal heat exchanger (SGHE) by means of numerical simulations. The presented simulations were conducted applying 3DEC (Itasca™), a software tool based on the discrete element method. The simulation results indicate that the main direction of fracture propagation is towards lower stresses and thus towards the biosphere. Therefore, barriers might be necessary to limit fracture propagation to the designated geological formation. Moreover, the hydraulic stimulation significantly alters the stresses in the vicinity of newly created fractures. Especially the change of the minimum stress component affects the hydraulic stimulation of subsequent fractures, which are deflected away from the previously stimulated fractures. This fracture deflection can render it impossible to connect all fractures with a second borehole for the later production. The results of continuative simulations indicate that a fracture deflection cannot be avoided completely. Therefore, the stage alignment was modified to minimize fracture deflection by varying (1) the pauses between stages, (2) the spacing's between adjacent stages, and (3) the angle between stimulation borehole and minimum stress component. An optimum SGHE design, which implies that all stimulated fractures are connected to the production borehole, can be achieved by aligning the stimulation

  13. Glucose uptake and transport in contracting, perfused rat muscle with different pre-contraction glycogen concentrations

    DEFF Research Database (Denmark)

    Hespel, P; Richter, Erik

    1990-01-01

    1. Glucose uptake and transport, muscle glycogen, free glucose and glucose-6-phosphate concentrations were studied in perfused resting and contracting rat skeletal muscle with different pre-contraction glycogen concentrations. Rats were pre-conditioned by a combination of swimming exercise and diet......, resulting in either low (glycogen-depleted rats), normal (control rats) or high (supercompensated rats) muscle glycogen concentrations at the time their hindlimbs were perfused. 2. Compared with control rats, pre-contraction muscle glycogen concentration was approximately 40% lower in glycogen-depleted rats......, whereas it was 40% higher in supercompensated rats. Muscle glycogen break-down correlated positively (r = 0.76; P less than 0.001) with pre-contraction muscle glycogen concentration. 3. Glucose uptake during contractions was approximately 50% higher in glycogen-depleted hindquarters than in control...

  14. Pore pressure migration during hydraulic stimulation due to permeability enhancement by low-pressure subcritical fracture slip

    Science.gov (United States)

    Mukuhira, Yusuke; Moriya, Hirokazu; Ito, Takatoshi; Asanuma, Hiroshi; Häring, Markus

    2017-04-01

    Understanding the details of pressure migration during hydraulic stimulation is important for the design of an energy extraction system and reservoir management, as well as for the mitigation of hazardous-induced seismicity. Based on microseismic and regional stress information, we estimated the pore pressure increase required to generate shear slip on an existing fracture during stimulation. Spatiotemporal analysis of pore pressure migration revealed that lower pore pressure migrates farther and faster and that higher pore pressure migrates more slowly. These phenomena can be explained by the relationship between fracture permeability and stress state criticality. Subcritical fractures experience shear slip following smaller increases of pore pressure and promote migration of pore pressure because of their enhanced permeability. The difference in migration rates between lower and higher pore pressures suggests that the optimum wellhead pressure is the one that can stimulate relatively permeable fractures, selectively. Its selection optimizes economic benefits and minimizes seismic risk.

  15. Geomechanics of Hydraulic Stimulation in Geothermal Systems: Designing and Implementing a Successful Enhanced Geothermal System at Desert Peak, Nevada

    Science.gov (United States)

    Hickman, S. H.; Davatzes, N. C.; Zemach, E.; Chabora, E.; Lutz, S.; Rose, P.; Majer, E. L.; Robertson-Tait, A.

    2013-12-01

    Creation of an Enhanced Geothermal System (EGS) in hot but low-permeability rocks involves hydraulic stimulation of fracture permeability to develop a complex heat exchange system with low hydraulic impedance. An integrated study of stress, fractures and rock mechanical properties was conducted to develop the geomechanical framework for a multi-stage EGS stimulation in Desert Peak well 27-15, located at the low-permeability margins of an active geothermal field. The stimulation targeted silicified tuffs and metamorphosed mudstones at depths of 0.9 to 1.8 km and temperatures ~180 to 210° C. Drilling-induced tensile fractures in image logs from well 27-15 show that the least horizontal principal stress (Shmin) is consistent with normal faulting on ESE- and WNW-dipping fractures mapped at the surface and seen in the image logs. A hydraulic fracturing stress measurement indicates that the magnitude of Shmin at ~0.93 km depth is 0.61 of the calculated vertical stress. Coulomb failure calculations using these stresses together with measurements of friction and permeability on core predict that dilatant shear failure should be induced on pre-existing conjugate normal faults once pore pressures are increased ~2.5 MPa or more above ambient values, generating a zone of enhanced permeability elongated in the direction toward active geothermal wells ~0.5 km to the SSW. Hydraulic stimulation of well 27-15 began in September 2010 by injecting water into the open-hole interval between the casing shoe at 0.9 km depth and a temporary cement plug at 1.1 km. Stimulation was monitored by combined surface and down-hole seismic monitoring, inter-well tracer testing and periodic pressure-temperature-flowmeter logging. An initial stage of low-pressure (shear) stimulation was conducted for ~100 days at a series of pressure steps Shmin and injection rates up to 2800 l/min, resulting in an additional 6-fold increase in injectivity. Numerous microearthquakes induced during this high

  16. Hydraulic Fracture Stimulation Treatments at East Mesa, Well 58-30; Geothermal Reservoir Well Stimulation Program; Experiment 3 and 4

    Energy Technology Data Exchange (ETDEWEB)

    None

    1982-02-01

    The tests reported were part of the DOE Geothermal Reservoir Well Stimulation Program. This East Mesa (Imperial Valley, CA) well was successfully stimulated with two fracture treatments, a dendritic fracture and a planar fracture. The natural flow production of the well increased 114 percent, to 197,900 lb/hr. These tests were among the few successful attempts of this program to increase flow from geothermal production wells. The general belief is that these tests worked OK primarily because the formation was sedimentary rock (similar to rock in most oil and gas wells that have been stimulated successfully. Similar tests in geothermal hard rock reservoirs did not work very well. (DJE 2005)

  17. In-situ stress and fracture characterization for planning of a hydraulic stimulation in the Desert Peak Geothermal Field, NV

    Science.gov (United States)

    Hickman, S.; Davatzes, N. C.

    2009-12-01

    A suite of geophysical logs and a hydraulic fracturing stress measurement were conducted in well 27-15 in the Desert Peak Geothermal Field, Nevada, to constrain the state of stress and the geometry and relative permeability of natural fractures in preparation for development of an Enhanced Geothermal System (EGS) through hydraulic stimulation. Advanced Logic Technologies Borehole Televiewer (BHTV) and Schlumberger Formation MicroScanner (FMS) image logs reveal extensive drilling-induced tensile fractures, showing that the current minimum horizontal principal stress, Shmin, in the vicinity of well 27-15 is oriented 114 ± 17°. This orientation is consistent with down-dip extensional slip on a set of ESE and WNW dipping normal faults mapped at the surface. Similarly, all formations imaged in the BHTV and FMS logs include significant sub-populations of fractures that are well oriented for normal faulting given this direction of Shmin. Although the bulk permeability of the well is quite low, temperature and spinner flowmeter surveys reveal several minor flowing fractures. Some of these relatively permeable fractures are well oriented for normal faulting, in addition to fluid flow that is preferentially developed at low-angle formation boundaries. A hydraulic fracturing stress measurement conducted at the top of the intended stimulation interval (931 m) indicates that the magnitude of Shmin is 13.8 MPa, which is 0.609 of the calculated vertical (overburden) stress at this depth. Given the current water table depth (122 m below ground level), this Shmin magnitude is somewhat higher than expected for frictional failure on optimally oriented normal faults given typical laboratory measurements of sliding friction (Byerlee’s Law). Coulomb failure calculations assuming cohesionless pre-existing fractures with coefficients of friction of 0.6 or higher (consistent with Byerlee’s Law and with tests on representative core samples from nearby wells) indicate that shear

  18. Influence of the nature of pre-contraction on the responses to commonly employed vasodilator agents in rat-isolated aortic rings.

    Science.gov (United States)

    Streefkerk, Jörn O; de Groot, Annemieke A; Pfaffendorf, Martin; van Zwieten, Pieter A

    2002-12-01

    The relaxing properties of vasodilator drugs in vitro may depend on the characteristics of the contractile state of the vessel investigated. Rat-isolated thoracic aortas were exposed to different types of pre-contraction. The following vasoconstrictor agents were used: phenylephrine (PhE), a selective alpha1-adrenoceptor agonist; St 587, a partial alpha1-adrenoceptor stimulant; U46619 (U-46). a thromboxane A2 agonist: and potassium ions causing receptor-independent depolarization of the membrane. After pre-contraction, various differential vasodilator drugs were investigated: methacholine (MCh, endothelium dependent), sodium nitroprusside (SNP, NO donor), forskolin (FSK, adenylyl cyclase stimulant) and nifedipine, a Ca2+-antagonist (selective L-type calcium antagonist). The vasodilator activity of these compounds was quantified by their vasodilator potency value (pD2) and efficacy (Emax) obtained from their concentration-response curves. PhE (0.1, 0.3, 3 microM) caused isometric responses of 4.8 +/- 0.3, 6.5 +/- 0.3 and 7.8 +/- 0.5 mN, respectively. An increase of the PhE concentration from 0.1 to 3 microM did not influence the response to FSK while it reduced the pD2 of SNP (8.6 +/- 0.1 to 7.35 +/- 0.1). Under these conditions, only the Emax of MCh was reduced (96.3 +/- 4.3% to 43.3 +/- 6.9%). U46 (0.18, 0.3, 1 microM) increased the contractile force by 7.4 +/- 0.4, 8.8 +/- 0.3 and 10.4 +/- 0.3 mN, respectively. Increasing the concentration of U-46 from 0.18 to 1 microM affected only the efficacy of SNP (84 +/- 4.4% to 17 +/- 8.8%) and MCh (64.5 +/- 12.3% to 0.0 +/- 9.2%) and reduced the potency of FSK (7.91 +/- 0.26 to 7.15 +/- 0.10). The concentration of K+-ions from 25 to 30 and 40 mM increased the contractile force by 4.0 +/- 0.4, 7.0 +/- 0.5 and 10.8 +/- 0.4 mN, respectively. The increase in [K+] caused a potency decrease of FSK (7.1 +/- 0.0 to 5.8 +/- 0.0) whereas both efficacy and potency were reduced for SNP (95.6 +/- 1.8% to 65.8 +/- 1.9% and 8.7 +/- 0

  19. Non-selective cation channels mediate chloroquine-induced relaxation in precontracted mouse airway smooth muscle.

    Directory of Open Access Journals (Sweden)

    Ting Zhang

    Full Text Available Bitter tastants can induce relaxation in precontracted airway smooth muscle by activating big-conductance potassium channels (BKs or by inactivating voltage-dependent L-type Ca2+ channels (VDLCCs. In this study, a new pathway for bitter tastant-induced relaxation was defined and investigated. We found nifedipine-insensitive and bitter tastant chloroquine-sensitive relaxation in epithelium-denuded mouse tracheal rings (TRs precontracted with acetylcholine (ACH. In the presence of nifedipine (10 µM, ACH induced cytosolic Ca2+ elevation and cell shortening in single airway smooth muscle cells (ASMCs, and these changes were inhibited by chloroquine. In TRs, ACH triggered a transient contraction under Ca2+-free conditions, and, following a restoration of Ca2+, a strong contraction occurred, which was inhibited by chloroquine. Moreover, the ACH-activated whole-cell and single channel currents of non-selective cation channels (NSCCs were blocked by chloroquine. Pyrazole 3 (Pyr3, an inhibitor of transient receptor potential C3 (TRPC3 channels, partially inhibited ACH-induced contraction, intracellular Ca2+ elevation, and NSCC currents. These results demonstrate that NSCCs play a role in bitter tastant-induced relaxation in precontracted airway smooth muscle.

  20. Source mechanism characterization and integrated interpretation of microseismic data monitoring two hydraulic stimulations in pouce coupe field, Alberta

    Science.gov (United States)

    Lindholm, Garrison J.

    The study of the Pouce Coupe Field is a joint effort between the Reservoir Characterization Project (RCP) and Talisman Energy Inc. My study focuses on the hydraulic stimulation of two horizontal wells within the Montney Formation located in north-western Alberta. The Montney is an example of a modern-day tight, engineering-driven play in which recent advances in drilling of horizontal wells and hydraulic fracturing have made shale gas exploitation economical. The wells were completed in December 2008 and were part of a science driven project in which a multitude of data were collected including multicomponent seismic, microseismic, and production logs. Since this time, a number of studies have been performed by students at Colorado School of Mines to better understand the effects the completions have had on the reservoir. This thesis utilizes the microseismic data that were recorded during the stimulation of the two horizontal wells in order to understand the origin of the microseismic events themselves. The data are then used to understand and correlate to the well production. To gain insight into the source of the microseismic events, amplitude ratios of recorded seismic modes (P, Sh and Sv) for the microseismic events are studied. By fitting trends of simple end member source mechanisms (strike-slip, dip-slip, and tensile) to groups of amplitude ratio data, the events are found to be of strike-slip nature. By comparing the focal mechanisms to other independent natural fracture determination techniques (shear-wave splitting analysis, FMI log), it is shown that the source of recorded microseismic events is likely to be a portion of the shear slip along existing weak planes (fractures) within a reservoir. The technique described in this work is one that is occasionally but increasingly used but offers the opportunity to draw further information from microseismic data using results that are already part of a typical processing workflow. The microseismic events are

  1. The Shear Mechanisms of Natural Fractures during the Hydraulic Stimulation of Shale Gas Reservoirs

    Directory of Open Access Journals (Sweden)

    Zhaobin Zhang

    2016-08-01

    Full Text Available The shearing of natural fractures is important in the permeability enhancement of shale gas reservoirs during hydraulic fracturing treatment. In this work, the shearing mechanisms of natural fractures are analyzed using a newly proposed numerical model based on the displacement discontinuities method. The fluid-rock coupling system of the model is carefully designed to calculate the shearing of fractures. Both a single fracture and a complex fracture network are used to investigate the shear mechanisms. The investigation based on a single fracture shows that the non-ignorable shearing length of a natural fracture could be formed before the natural fracture is filled by pressurized fluid. Therefore, for the hydraulic fracturing treatment of the naturally fractured shale gas reservoirs, the shear strength of shale is generally more important than the tensile strength. The fluid-rock coupling propagation processes of a complex fracture network are simulated under different crustal stress conditions and the results agree well with those of the single fracture. The propagation processes of complex fracture network show that a smaller crustal stress difference is unfavorable to the shearing of natural fractures, but is favorable to the formation of complex fracture network.

  2. Crack Features and Shear-Wave Splitting Associated with Fracture Extension during Hydraulic Stimulation of the Geothermal Reservoir in Soultz-sous-Forêts

    Directory of Open Access Journals (Sweden)

    Adelinet M.

    2016-05-01

    Full Text Available The recent tomography results obtained within the scope of the Enhanced Geothermal System (EGS European Soultz project led us to revisit the meso-fracturing properties of Soultz test site. In this paper, we develop a novel approach coupling effective medium modeling and shear-wave splitting to characterize the evolution of crack properties throughout the hydraulic stimulation process. The stimulation experiment performed in 2000 consisted of 3 successive injection steps spanning over 6 days. An accurate 4-D tomographic image was first carried out based upon the travel-times measured for the induced seismicity [Calò M., Dorbath C., Cornet F.H., Cuenot N. (2011 Large-scale aseismic motion identified through 4-D P-wave tomography, Geophys. J. Int. 186, 1295-1314]. The current study shows how to take advantage of the resulting compressional wave (Calò et al., 2011 and shear-wave velocity models. These are given as input data to an anisotropic effective medium model and converted into crack properties. In short, the effective medium model aims to estimate the impact of cracks on velocities. It refers to a crack-free matrix and 2 families of penny-shaped cracks with orientations in agreement with the main observed geological features: North-South strike and dip of 65°East and 65°West [Genter A., Traineau H. (1996 Analysis of macroscopic fractures in granite in the HDR geothermal well EPS-1, Soultz-sous-Forêts, France, J. Vol. Geoth. Res. 72, 121-141], respectively. The resulting output data are the spatial distributions of crack features (lengths and apertures within the 3-D geological formation. We point out that a flow rate increase results in a crack shortening in the area imaged by both compressional and shear waves, especially in the upper part of the reservoir. Conversely, the crack length, estimated during continuous injection rate phases, is higher than during the increasing injection rate phases. A possible explanation for this is that

  3. Study on the Pre-contract System in Germany%德国预约制度研究

    Institute of Scientific and Technical Information of China (English)

    汤文平

    2012-01-01

    我国司法解释及审判实务工作就预约制度之重建提出迫切要求。德国法上的预约制度为此重建提供了首要的移植母本。德国法以学说、判例广泛承认预约,坚持预约和本约的区分,强调本约的一般性和预约的特殊性;就意向书等品类繁多的实务文书与预约之关系定位,一准于当事人的约束意思;就内容确定性标准,自立法动议书至晚近判例学说,多有反复;就形式要求和批准要求,适用相近规则,即取决于具体规范目的是否关注个人法益;支持实际缔约请求,且为节约诉讼成本允许诉讼合并。%The reconstruction of the pre-contract system is urgently required by judicial interpretation and trial practice.The Vorvertrag system in German law can offer principal texts for legal transplant.Both theories and case laws in Germany recognize the pre-contract system and maintain the difference between pre-contract agreement and the final contract,stressing on the general feature of the latter and the special feature of the former.Specifically,compared with the letter of intent and other various documents,their relations with the pre-contract agreement are determined by the intentions of the parties concerned.As to the specific standard for content,there are still controversies from legislative motions and case theories.As to form and approval requirements,the similarity principle should be applied,that is,whether the purpose of specific rules concerns the individual interest.And as to the specific performance of concluding contracts,the pre-contract system permits litigation combination for the purpose of saving cost of litigation.

  4. Effect of Australian propolis from stingless bees (Tetragonula carbonaria on pre-contracted human and porcine isolated arteries.

    Directory of Open Access Journals (Sweden)

    Flavia C Massaro

    Full Text Available Bee propolis is a mixture of plant resins and bee secretions. While bioactivity of honeybee propolis has been reported previously, information is limited on propolis from Australian stingless bees (Tetragonula carbonaria. The aim of this study was to investigate possible vasomodulatory effects of propolis in KCl-precontracted porcine coronary arteries using an ex vivo tissue bath assay. Polar extracts of propolis produced a dose-dependent relaxant response (EC50=44.7±7.0 μg/ml, which was unaffected by endothelial denudation, suggesting a direct effect on smooth muscle. Propolis markedly attenuated a contractile response to Ca(2+ in vessels that were depolarised with 60 mM KCl, in Ca(2+-free Krebs solution. Propolis (160 µg/ml reduced vascular tone in KCl pre-contracted vessels to near-baseline levels over 90 min, and this effect was partially reversible with 6 h washout. Some loss in membrane integrity, but no loss in mitochondrial function was detected after 90 min exposure of human cultured umbilical vein endothelial cells to 160 µg/ml propolis. We conclude that Australian stingless bee (T. carbonaria propolis relaxes porcine coronary artery in an endothelial-independent manner that involves inhibition of voltage-gated Ca(2+ channels. This effect is partially and slowly reversible upon washout. Further studies are required to determine the therapeutic potential of Australian stingless bee propolis for conditions in which vascular supply is compromised.

  5. Effect of Australian propolis from stingless bees (Tetragonula carbonaria) on pre-contracted human and porcine isolated arteries.

    Science.gov (United States)

    Massaro, Flavia C; Brooks, Peter R; Wallace, Helen M; Nsengiyumva, Vianne; Narokai, Lorraine; Russell, Fraser D

    2013-01-01

    Bee propolis is a mixture of plant resins and bee secretions. While bioactivity of honeybee propolis has been reported previously, information is limited on propolis from Australian stingless bees (Tetragonula carbonaria). The aim of this study was to investigate possible vasomodulatory effects of propolis in KCl-precontracted porcine coronary arteries using an ex vivo tissue bath assay. Polar extracts of propolis produced a dose-dependent relaxant response (EC50=44.7±7.0 μg/ml), which was unaffected by endothelial denudation, suggesting a direct effect on smooth muscle. Propolis markedly attenuated a contractile response to Ca(2+) in vessels that were depolarised with 60 mM KCl, in Ca(2+)-free Krebs solution. Propolis (160 µg/ml) reduced vascular tone in KCl pre-contracted vessels to near-baseline levels over 90 min, and this effect was partially reversible with 6 h washout. Some loss in membrane integrity, but no loss in mitochondrial function was detected after 90 min exposure of human cultured umbilical vein endothelial cells to 160 µg/ml propolis. We conclude that Australian stingless bee (T. carbonaria) propolis relaxes porcine coronary artery in an endothelial-independent manner that involves inhibition of voltage-gated Ca(2+) channels. This effect is partially and slowly reversible upon washout. Further studies are required to determine the therapeutic potential of Australian stingless bee propolis for conditions in which vascular supply is compromised.

  6. Effect of Australian Propolis from Stingless Bees (Tetragonula carbonaria) on Pre-Contracted Human and Porcine Isolated Arteries

    Science.gov (United States)

    Massaro, Flavia C.; Brooks, Peter R.; Wallace, Helen M.; Nsengiyumva, Vianne; Narokai, Lorraine; Russell, Fraser D.

    2013-01-01

    Bee propolis is a mixture of plant resins and bee secretions. While bioactivity of honeybee propolis has been reported previously, information is limited on propolis from Australian stingless bees (Tetragonula carbonaria). The aim of this study was to investigate possible vasomodulatory effects of propolis in KCl-precontracted porcine coronary arteries using an ex vivo tissue bath assay. Polar extracts of propolis produced a dose-dependent relaxant response (EC50=44.7±7.0 μg/ml), which was unaffected by endothelial denudation, suggesting a direct effect on smooth muscle. Propolis markedly attenuated a contractile response to Ca2+ in vessels that were depolarised with 60 mM KCl, in Ca2+-free Krebs solution. Propolis (160 µg/ml) reduced vascular tone in KCl pre-contracted vessels to near-baseline levels over 90 min, and this effect was partially reversible with 6h washout. Some loss in membrane integrity, but no loss in mitochondrial function was detected after 90 min exposure of human cultured umbilical vein endothelial cells to 160 µg/ml propolis. We conclude that Australian stingless bee (T. carbonaria) propolis relaxes porcine coronary artery in an endothelial-independent manner that involves inhibition of voltage-gated Ca2+ channels. This effect is partially and slowly reversible upon washout. Further studies are required to determine the therapeutic potential of Australian stingless bee propolis for conditions in which vascular supply is compromised. PMID:24260567

  7. Capturing the complex behavior of hydraulic fracture stimulation through multi-physics modeling, field-based constraints, and model reduction

    Science.gov (United States)

    Johnson, S.; Chiaramonte, L.; Cruz, L.; Izadi, G.

    2016-12-01

    Advances in the accuracy and fidelity of numerical methods have significantly improved our understanding of coupled processes in unconventional reservoirs. However, such multi-physics models are typically characterized by many parameters and require exceptional computational resources to evaluate systems of practical importance, making these models difficult to use for field analyses or uncertainty quantification. One approach to remove these limitations is through targeted complexity reduction and field data constrained parameterization. For the latter, a variety of field data streams may be available to engineers and asset teams, including micro-seismicity from proximate sites, well logs, and 3D surveys, which can constrain possible states of the reservoir as well as the distributions of parameters. We describe one such workflow, using the Argos multi-physics code and requisite geomechanical analysis to parameterize the underlying models. We illustrate with a field study involving a constraint analysis of various field data and details of the numerical optimizations and model reduction to demonstrate how complex models can be applied to operation design in hydraulic fracturing operations, including selection of controllable completion and fluid injection design properties. The implication of this work is that numerical methods are mature and computationally tractable enough to enable complex engineering analysis and deterministic field estimates and to advance research into stochastic analyses for uncertainty quantification and value of information applications.

  8. Hydraulic structures

    CERN Document Server

    Chen, Sheng-Hong

    2015-01-01

    This book discusses in detail the planning, design, construction and management of hydraulic structures, covering dams, spillways, tunnels, cut slopes, sluices, water intake and measuring works, ship locks and lifts, as well as fish ways. Particular attention is paid to considerations concerning the environment, hydrology, geology and materials etc. in the planning and design of hydraulic projects. It also considers the type selection, profile configuration, stress/stability calibration and engineering countermeasures, flood releasing arrangements and scouring protection, operation and maintenance etc. for a variety of specific hydraulic structures. The book is primarily intended for engineers, undergraduate and graduate students in the field of civil and hydraulic engineering who are faced with the challenges of extending our understanding of hydraulic structures ranging from traditional to groundbreaking, as well as designing, constructing and managing safe, durable hydraulic structures that are economical ...

  9. HYDRAULIC SERVO

    Science.gov (United States)

    Wiegand, D.E.

    1962-05-01

    A hydraulic servo is designed in which a small pressure difference produced at two orifices by an electrically operated flapper arm in a constantly flowing hydraulic loop is hydraulically amplified by two constant flow pumps, two additional orifices, and three unconnected ball pistons. Two of the pistons are of one size and operate against the additional orifices, and the third piston is of a different size and operates between and against the first two pistons. (AEC)

  10. The vasodilator mechanisms of sodium metabisulfite on precontracted isolated aortic rings in rats: signal transduction pathways and ion channels.

    Science.gov (United States)

    Yang, Zhenhua; Zhang, Yuexia; Meng, Ziqiang

    2012-09-01

    Sodium metabisulfite (SMB) is most commonly used as a food additives, however few study was performed on the vasodilator effect of SMB. In the present paper, the vasodilator effects of SMB and roles of Ca(2+) and K(+) channels as well as the cGMP pathway on isolated rat aortic rings were studied. The results show that: (1) SMB could relax isolated aortic rings precontracted by norepinephrine in a concentration-dependent manner. The maximal endothelium-dependent vasorelaxation was approximately 20% whereas that not depending on the presence of the endothelium was more than 90%. (2) The vasorelaxant effects induced by 50 or 200 μM SMB were partially inhibited by iberiotoxin, NS-2028 or l-NNA. The vasorelaxation of 1000 μM SMB was partially inhibited by nifedipine or glibenclamide. The SMB induced vasorelaxation was partially inhibited by tetraethylammonium. These results led to the conclusions that the vasorelaxation of SMB at low concentrations (500 μM) was endothelium-independent and mediated by K(ATP) channel and L-type Ca(2+) channel. The maximal allowable concentration from China and the acceptable daily intake level from WHO of SMB as a food additive should be revised. Copyright © 2012 Elsevier Ltd. All rights reserved.

  11. FACTORS INFLUENCING THE ACCURACY OF PRE-CONTRACT STAGE ESTIMATION OF FINAL CONTRACT PRICE IN NEW ZEALAND

    Directory of Open Access Journals (Sweden)

    Cong Ji

    2014-12-01

    Full Text Available Establishing and prioritising the factors that may influence the final contract price when responding to a call for tenders is crucial for proper risk analysis and reliable forecasting; it could make or mar the ability to achieve expected profit margin in an era of lump sum fixed price contracts where clients often contest variation claims. In New Zealand, these factors have not been researched; hence estimators rely only on judgement to ‘guess-estimate’ in their price forecasting. This study aimed to fill the knowledge gap by investigating the priority factors. 150 responses from professional members of the New Zealand Institute of Quantity Surveyors were analysed using multi-attribute method. Results showed thirty-seven factors which could influence the final contract price; the three most influential being poor tender documentation, complexity of design & construction, and completeness of project information. Other factors relating to project, client and contractor characteristics, design consultants and tendering conditions, estimating practice and external factors were reported. Concordance analysis indicated high level of agreement amongst survey participants in the rank-ordering of the relative importance of the identified factors. The findings could assist quantity surveyors to prepare more reliable contract price estimates at the pre-contract stage. It would also improve construction-stage cost control.

  12. 穿层孔吞吐压裂水力强化抽采技术研究及应用%Research and application of gas drainage with hydraulic reinforcement of water stimulation fracture in borehole through strata

    Institute of Scientific and Technical Information of China (English)

    辛新平; 高建良; 马耕

    2014-01-01

    为了解决低透气性煤层高效抽采的难题,采用穿层孔吞吐压裂水力强化改善煤层透气性。分析了水力强化工艺穿层孔瓦斯运移产出过程,研究了水力强化对硬煤储层和软煤层中瓦斯渗透率的影响,分析了水力强化对煤体渗透率的作用及增透机理,并进行了现场效果应用。结果表明:穿层孔吞吐压裂技术提高了煤层透气性,形成瓦斯产出通道,在硬煤中水力强化可在顶底板形成“虚拟储层”,瓦斯以渗流为主,软煤中以扩散运移为主;吞吐压裂水力强化通过形成洞穴和裂隙,增加煤层渗透性,减少瓦斯抽采流量衰减系数,提高瓦斯抽采效率。现场实施吞吐压裂水力措施后抽采纯量由14.8 m³增加至31.9~42.8 m³;抽采体积分数由14.1%增加至73.9%~77.5%,该技术具有较高的实际推广应用价值。%In order to solve the problem of how to efficiently extract the coal seam with low permeabil-ity, the hydraulic measures of stimulation fracturing through strata borehole has been adopted to im-prove the permeability of coal seam. The gas migration process through borehole in the hydraulic en-hanced technology has been analyzed. The effect of hydraulic reinforcement measures on hard and soft coal seam permeability has been studied, and the effect and mechanism of hydraulic reinforcement on the permeability of coal mass has been analyzed, and finally, the field experiment of hydraulic fracturing has been carried out. Research results show that the hydraulic measures of stimulation fracturing through strata borehole technology can improve the permeability of coal seam and contribute to form gas flow channel. There is“virtual reservoir”in roof and floor in hard coal seam and the gas shows see-page mainly, while, in soft coal seam gas shows diffusion migration mainly. The hydraulic measures of stimulation fracturing can increase the permeability of coal seam through

  13. Basic hydraulics

    CERN Document Server

    Smith, P D

    1982-01-01

    BASIC Hydraulics aims to help students both to become proficient in the BASIC programming language by actually using the language in an important field of engineering and to use computing as a means of mastering the subject of hydraulics. The book begins with a summary of the technique of computing in BASIC together with comments and listing of the main commands and statements. Subsequent chapters introduce the fundamental concepts and appropriate governing equations. Topics covered include principles of fluid mechanics; flow in pipes, pipe networks and open channels; hydraulic machinery;

  14. Hydraulic Structures

    Data.gov (United States)

    Department of Homeland Security — This table is required whenever hydraulic structures are shown in the flood profile. It is also required if levees are shown on the FIRM, channels containing the...

  15. Involvement of large-conductance Ca2+-activated K+ channels in chloroquine-induced force alterations in pre-contracted airway smooth muscle.

    Directory of Open Access Journals (Sweden)

    Ming-Yu Wei

    Full Text Available The participation of large-conductance Ca2+ activated K+ channels (BKs in chloroquine (chloro-induced relaxation of precontracted airway smooth muscle (ASM is currently undefined. In this study we found that iberiotoxin (IbTx, a selective inhibitor of BKs and chloro both completely blocked spontaneous transient outward currents (STOCs in single mouse tracheal smooth muscle cells, which suggests that chloro might block BKs. We further found that chloro inhibited Ca2+ sparks and caffeine-induced global Ca2+ increases. Moreover, chloro can directly block single BK currents completely from the intracellular side and partially from the extracellular side. All these data indicate that the chloro-induced inhibition of STOCs is due to the blockade of chloro on both BKs and ryanodine receptors (RyRs. We also found that low concentrations of chloro resulted in additional contractions in tracheal rings that were precontracted by acetylcholine (ACH. Increases in chloro concentration reversed the contractile actions to relaxations. In the presence of IbTx or paxilline (pax, BK blockers, chloro-induced contractions were inhibited, although the high concentrations of chloro-induced relaxations were not affected. Taken together, our results indicate that chloro blocks BKs and RyRs, resulting in abolishment of STOCs and occurrence of contraction, the latter will counteract the relaxations induced by high concentrations of chloro.

  16. Pre-contraction with the thromboxane-mimetic U46619 enhances P2X receptor-mediated contractions in isolated porcine splenic artery.

    Science.gov (United States)

    Roberts, R E

    2012-06-01

    We have previously demonstrated that the thromboxane-mimetic U46619 enhances α(2)-adrenoceptor-mediated contractions through increased activation of extracellular signal-regulated kinase (ERK). In this study, we determined whether U46619 also enhances P2X-mediated contractions through the same pathway. Segments of porcine splenic artery were mounted in isolated tissue baths. Tissues were pre-contracted with U46619 to 10-20% of the response to 60 mM KCl prior to addition of α,β-methylene ATP (P2X receptor agonist). The effect of inhibition of ERK activation with the mitogen-activated protein (MAP)/ERK kinase inhibitor PD98059 (50 μM), Rho kinase inhibition with Y27632 (10 μM), p38 MAP kinase with SB203580 (10 μM) or L-type calcium channels with nifedipine (1 μM) on both the direct and enhanced contractions was then determined. U46619 enhanced the contractions to α,β-methylene ATP. Although PD98059 inhibited the direct contractions to α,β-methylene ATP, it had no effect on the U46619-enhanced contractions. Similarly, Y27632 and SB203580 inhibited the direct contractions to α,β-methylene ATP, but had no effect on the enhanced contractions. Nifedipine inhibited the responses to α,β-methylene ATP in the absence and presence of U46619. This study demonstrates that pre-contraction with U46619 enhances P2X-mediated contractions in the porcine splenic artery through a mechanism independent of ERK, Rho kinase and p38 MAP kinase. Further studies are required to determine the exact mechanism involved.

  17. Complex Fluids and Hydraulic Fracturing.

    Science.gov (United States)

    Barbati, Alexander C; Desroches, Jean; Robisson, Agathe; McKinley, Gareth H

    2016-06-07

    Nearly 70 years old, hydraulic fracturing is a core technique for stimulating hydrocarbon production in a majority of oil and gas reservoirs. Complex fluids are implemented in nearly every step of the fracturing process, most significantly to generate and sustain fractures and transport and distribute proppant particles during and following fluid injection. An extremely wide range of complex fluids are used: naturally occurring polysaccharide and synthetic polymer solutions, aqueous physical and chemical gels, organic gels, micellar surfactant solutions, emulsions, and foams. These fluids are loaded over a wide range of concentrations with particles of varying sizes and aspect ratios and are subjected to extreme mechanical and environmental conditions. We describe the settings of hydraulic fracturing (framed by geology), fracturing mechanics and physics, and the critical role that non-Newtonian fluid dynamics and complex fluids play in the hydraulic fracturing process.

  18. HYDRAULICS, LOUISA COUNTY, USA

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Hydraulic data include spatial datasets and data tables necessary for documenting the hydraulic analysis for estimating flood stages for a flood insurance study. It...

  19. Hydraulic Hybrid Vehicles

    Science.gov (United States)

    EPA and the United Parcel Service (UPS) have developed a hydraulic hybrid delivery vehicle to explore and demonstrate the environmental benefits of the hydraulic hybrid for urban pick-up and delivery fleets.

  20. Raft River well stimulation experiments: geothermal reservoir well stimulation program

    Energy Technology Data Exchange (ETDEWEB)

    1980-08-01

    The Geothermal Reservoir Well Stimulation Program (GRWSP) performed two field experiments at the Raft River KGRA in 1979. Wells RRGP-4 and RRGP-5 were selected for the hydraulic fracture stimulation treatments. The well selection process, fracture treatment design, field execution, stimulation results, and pre- and post-job evaluations are presented.

  1. Thermally Actuated Hydraulic Pumps

    Science.gov (United States)

    Jones, Jack; Ross, Ronald; Chao, Yi

    2008-01-01

    Thermally actuated hydraulic pumps have been proposed for diverse applications in which direct electrical or mechanical actuation is undesirable and the relative slowness of thermal actuation can be tolerated. The proposed pumps would not contain any sliding (wearing) parts in their compressors and, hence, could have long operational lifetimes. The basic principle of a pump according to the proposal is to utilize the thermal expansion and contraction of a wax or other phase-change material in contact with a hydraulic fluid in a rigid chamber. Heating the chamber and its contents from below to above the melting temperature of the phase-change material would cause the material to expand significantly, thus causing a substantial increase in hydraulic pressure and/or a substantial displacement of hydraulic fluid out of the chamber. Similarly, cooling the chamber and its contents from above to below the melting temperature of the phase-change material would cause the material to contract significantly, thus causing a substantial decrease in hydraulic pressure and/or a substantial displacement of hydraulic fluid into the chamber. The displacement of the hydraulic fluid could be used to drive a piston. The figure illustrates a simple example of a hydraulic jack driven by a thermally actuated hydraulic pump. The pump chamber would be a cylinder containing encapsulated wax pellets and containing radial fins to facilitate transfer of heat to and from the wax. The plastic encapsulation would serve as an oil/wax barrier and the remaining interior space could be filled with hydraulic oil. A filter would retain the encapsulated wax particles in the pump chamber while allowing the hydraulic oil to flow into and out of the chamber. In one important class of potential applications, thermally actuated hydraulic pumps, exploiting vertical ocean temperature gradients for heating and cooling as needed, would be used to vary hydraulic pressures to control buoyancy in undersea research

  2. Vibration of hydraulic machinery

    CERN Document Server

    Wu, Yulin; Liu, Shuhong; Dou, Hua-Shu; Qian, Zhongdong

    2013-01-01

    Vibration of Hydraulic Machinery deals with the vibration problem which has significant influence on the safety and reliable operation of hydraulic machinery. It provides new achievements and the latest developments in these areas, even in the basic areas of this subject. The present book covers the fundamentals of mechanical vibration and rotordynamics as well as their main numerical models and analysis methods for the vibration prediction. The mechanical and hydraulic excitations to the vibration are analyzed, and the pressure fluctuations induced by the unsteady turbulent flow is predicted in order to obtain the unsteady loads. This book also discusses the loads, constraint conditions and the elastic and damping characters of the mechanical system, the structure dynamic analysis, the rotor dynamic analysis and the system instability of hydraulic machines, including the illustration of monitoring system for the instability and the vibration in hydraulic units. All the problems are necessary for vibration pr...

  3. Handbook of hydraulic fluid technology

    CERN Document Server

    Totten, George E

    2011-01-01

    ""The Handbook of Hydraulic Fluid Technology"" serves as the foremost resource for designing hydraulic systems and for selecting hydraulic fluids used in engineering applications. Featuring new illustrations, data tables, as well as practical examples, this second edition is updated with essential information on the latest hydraulic fluids and testing methods. The detailed text facilitates unparalleled understanding of the total hydraulic system, including important hardware, fluid properties, and hydraulic lubricants. Written by worldwide experts, the book also offers a rigorous overview of h

  4. The hydraulic fracturing of geothermal formations

    Energy Technology Data Exchange (ETDEWEB)

    Naceur, K. Ben; Economides, M.J.; Schlumberger, Dowell

    1988-01-01

    Hydraulic fracturing has been attempted in geothermal formations as a means to stimulate both production and injection wells. Since most geothermal formations contain fissures and on occasion massive natural fissures, the production behavior of the man-made fractures results in certain characteristic trends. A model is offered that allows the presence of a finite or infinite conductivity fracture intercepting a fissured medium. The method is based on a numerical discretization of the formation allowing transient interporosity flow. Type curves for pressure drawdown and cumulative production are given for infinite acting and closed reservoirs. Since most of the fissured formations exhibit a degree of anisotropy, the effects of the orientation of the hydraulic fracture with respect to the fissure planes, and of the ratio between the directional permeabilities are then discussed. Guidelines are offered as to the size of appropriate stimulation treatments based on the observed fissured behavior of the reservoir.

  5. COHESIVE ZONE FINITE ELEMENT-BASED MODELING OF HYDRAULIC FRACTURES

    Institute of Scientific and Technical Information of China (English)

    Zuorong Chen; A.P. Bunger; Xi Zhang; Robert G. Jeffrey

    2009-01-01

    Hydraulic fracturing is a powerful technology used to stimulate fluid production from reservoirs. The fully 3-D numerical simulation of the hydraulic fracturing process is of great importance to the efficient application of this technology, but is also a great challenge because of the strong nonlinear coupling between the viscous flow of fluid and fracture propagation. By taking advantage of a cohesive zone method to simulate the fracture process, a finite element model based on the existing pore pressure cohesive finite elements has been established to investigate the propagation of a penny-shaped hydraulic fracture in an infinite elastic medium. The effect of cohesive material parameters and fluid viscosity on the hydraulic fracture behaviour has been investigated. Excellent agreement between the finite element results and analytical solutions for the limiting case where the fracture process is dominated by rock fracture toughness demonstrates the ability of the cohesive zone finite element model in simulating the hydraulic fracture growth for this case.

  6. FEMA DFIRM Hydraulic Structures

    Data.gov (United States)

    Minnesota Department of Natural Resources — This layer and accompanying attribute table is required whenever hydraulic structures are shown in the flood profile. It is also required if levees are shown on the...

  7. Water Hydraulic Systems

    DEFF Research Database (Denmark)

    Conrad, Finn

    2005-01-01

    The paper presents research results using IT-Tools for CAD and dynamic modelling, simulation, analysis, and design of water hydraulic actuators for motion control of machines, lifts, cranes and robots. Matlab/Simulink and CATIA are used as IT-Tools. The contributions include results from on......-going research projects on fluid power and mechatronics based on tap water hydraulic servovalves and linear servo actuators and rotary vane actuators for motion control and power transmission. Development and design a novel water hydraulic rotary vane actuator for robot manipulators. Proposed mathematical...... modelling, control and simulation of a water hydraulic rotary vane actuator applied to power and control a two-links manipulator and evaluate performance. The results include engineering design and test of the proposed simulation models compared with IHA Tampere University’s presentation of research...

  8. Constant-Pressure Hydraulic Pump

    Science.gov (United States)

    Galloway, C. W.

    1982-01-01

    Constant output pressure in gas-driven hydraulic pump would be assured in new design for gas-to-hydraulic power converter. With a force-multiplying ring attached to gas piston, expanding gas would apply constant force on hydraulic piston even though gas pressure drops. As a result, pressure of hydraulic fluid remains steady, and power output of the pump does not vary.

  9. Geothermal Reservoir Well Stimulation Program: technology transfer

    Energy Technology Data Exchange (ETDEWEB)

    1980-05-01

    Each of the following types of well stimulation techniques are summarized and explained: hydraulic fracturing; thermal; mechanical, jetting, and drainhole drilling; explosive and implosive; and injection methods. Current stimulation techniques, stimulation techniques for geothermal wells, areas of needed investigation, and engineering calculations for various techniques. (MHR)

  10. Trend of hydraulic units

    Energy Technology Data Exchange (ETDEWEB)

    Deshimaru, Jun' ichi

    1988-11-01

    The gear, vane and piston pumps occupy a more then 90% share in the hydraulic pumps. Comparatively large pumps are mainly variable delivery piston pumps. The piston pumps are comparatively high in output density (output per unit weight), indicating the hydraulic pump in performance, and tend to become higher and higher in it. Though they are mainly 210 to 350kgf/cm/sup 2/ in rated pressure, some of them come to surpass 400kgf/cm/sup 3/ in it. While the progress in computation also requires the high speed operation, high accuracy and other severe conditions for the hydraulic units, which accordingly and increasingly intensify the requirement for hydraulic oil in abrasion resistibility, oxidation stability and response characteristics. While cavitation comes to easily occur, which considerably and disadvantageously influences hydraulic oil in life through degradation, noise level and respondingness. From now on, the development of high performance oil and study of mechanical structure are important. 19 references, 9 figures, 2 tables.

  11. Cavitation in Hydraulic Machinery

    Energy Technology Data Exchange (ETDEWEB)

    Kjeldsen, M.

    1996-11-01

    The main purpose of this doctoral thesis on cavitation in hydraulic machinery is to change focus towards the coupling of non-stationary flow phenomena and cavitation. It is argued that, in addition to turbulence, superimposed sound pressure fluctuations can have a major impact on cavitation and lead to particularly severe erosion. For the design of hydraulic devices this finding may indicate how to further limit the cavitation problems. Chapter 1 reviews cavitation in general in the context of hydraulic machinery, emphasizing the initial cavitation event and the role of the water quality. Chapter 2 discusses the existence of pressure fluctuations for situations common in such machinery. Chapter 3 on cavitation dynamics presents an algorithm for calculating the nucleation of a cavity cluster. Chapter 4 describes the equipment used in this work. 53 refs., 55 figs.,10 tabs.

  12. 基于模型标准化的水利数值模拟云服务平台研究%Research on Cloud Service Platform for Hydraulic Numerical Stimulation based on Model Standardization

    Institute of Scientific and Technical Information of China (English)

    夏润亮; 冯兴凯; 何明民; 吴虎统

    2015-01-01

    Hydraulic numerical simulation can provide quantifiable decision support for water conservancy business. But there are problems such as no unified standards, inconvenient methods of use and inefficient computing resources in the current mode. Based on the existing model standardization, it proposes the integration, group coupling and dynamic computing service platform based on could-computing hydraulic numerical simulation, uses virtualized cluster to compute,Web Service,components and workflow and multi-field post-processing technology. The platform achieves the dynamic resource deployment and parallel computing of virtualized migrations in the cloud service platform of hydraulic numerical simulation, the coupling of model components and the flexible selection of the pre-processing and post-processing mode used the numerical simulation of flood evolution in the downstream river channel of the Yellow River basin as the example to achieve the multi-user and multi-type computing applications of multiple models on the cloud service platform, and compares the efficiency of cloud service computing model and traditional stand-alone computing via multiple schemes. The cloud service platform can provide a rich and convenient processing tools, improve the processing efficiency of multi-user concurrent tasks.%水利数值模拟为水利业务提供可量化的决策支持,当前的单机模式存在标准规范不统一,使用方式不便捷,计算资源不高效的问题.基于已有的模型标准化工作,利用虚拟化、计算优化调度、Web Service、工作流及多维后处理技术,研发基于云计算的水利数值仿真模型计算服务平台,实现水利数值模拟云服务平台的资源动态部署、模型耦合计算,以黄河流域下游河道洪水演进数值模拟为例,进行并发计算应用测试,比较云服务模式和传统单机计算的效率.基于模型标准化的数值模拟云服务可以提供丰富便捷的前后处理工具,提高

  13. Hydraulics and pneumatics

    CERN Document Server

    Parr, Andrew

    2006-01-01

    Nearly all industrial processes require objects to be moved, manipulated or subjected to some sort of force. This is frequently accomplished by means of electrical equipment (such as motors or solenoids), or via devices driven by air (pneumatics) or liquids (hydraulics).This book has been written by a process control engineer as a guide to the operation of hydraulic and pneumatic systems for all engineers and technicians who wish to have an insight into the components and operation of such a system.This second edition has been fully updated to include all recent developments su

  14. Popeye Project: Hydraulic umbilical

    Energy Technology Data Exchange (ETDEWEB)

    Jordan, K.G.; Williams, V.T.

    1996-12-31

    For the Popeye Project, the longest super-duplex hydraulic umbilical in the world was installed in the Gulf of Mexico. This paper reports on its selection and project implementation. Material selection addresses corrosion in seawater, water-based hydraulic fluid, and methanol. Five alternatives were considered: (1) carbon-steel with traditional coating and anodes, (2) carbon-steel coated with thermally sprayed aluminum, (3) carbon-steel sheathed in aluminum, (4) super-duplex, and (5) titanium. The merits and risks associated with each alternative are discussed. The manufacture and installation of the selected umbilical are also reported.

  15. Hydraulic Arm Modeling via Matlab SimHydraulics

    OpenAIRE

    Věchet, Stanislav; Krejsa, Jiří

    2009-01-01

    System modeling is a vital tool for cost reduction and design process speed up in most engineering fields. The paper is focused on modeling of hydraulic arm as a part of intelligent prosthesis project, in the form of 2DOF open kinematic chain. The arm model combines mechanical, hydraulic and electric subsystems and uses Matlab as modeling tool. SimMechanics Matlab extension is used for mechanical part modeling, SimHydraulics toolbox is used for modeling of hydraulic circuit used for actuating...

  16. HYDRAULICS, TUSCARAWAS COUNTY, OHIO, USA

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Hydraulic data include spatial datasets and data tables necessary for documenting the hydraulic procedures for estimating flood discharges for a flood insurance...

  17. Hydraulic hoist-press

    Energy Technology Data Exchange (ETDEWEB)

    Babayev, Z.B.; Abashev, Z.V.

    1982-01-01

    The efficiency expert of the Angrenskiy production-technological administration of the production association Sredazugol A. V. Bubnov has suggested a hydraulic hoist-press for repairing road equipment which is a device consisting of lifting mechanism, press and test stand for verifying the high pressure hoses and pumps.

  18. Modelling of Hydraulic Robot

    DEFF Research Database (Denmark)

    Madsen, Henrik; Zhou, Jianjun; Hansen, Lars Henrik

    1997-01-01

    This paper describes a case study of identifying the physical model (or the grey box model) of a hydraulic test robot. The obtained model is intended to provide a basis for model-based control of the robot. The physical model is formulated in continuous time and is derived by application...

  19. Water Treatment Technology - Hydraulics.

    Science.gov (United States)

    Ross-Harrington, Melinda; Kincaid, G. David

    One of twelve water treatment technology units, this student manual on hydraulics provides instructional materials for three competencies. (The twelve units are designed for a continuing education training course for public water supply operators.) The competencies focus on the following areas: head loss in pipes in series, function loss in…

  20. Water Hydraulic Systems

    DEFF Research Database (Denmark)

    Conrad, Finn

    2005-01-01

    The paper presents research results using IT-Tools for CAD and dynamic modelling, simulation, analysis, and design of water hydraulic actuators for motion control of machines, lifts, cranes and robots. Matlab/Simulink and CATIA are used as IT-Tools. The contributions include results from on-going...

  1. Optimisation of the Near-Wellbore Geometry of Hydraulic Fractures Propagating from Cased Perforated Completions

    NARCIS (Netherlands)

    van de Ketterij, R.G.

    2001-01-01

    Hydraulic fracturing is a technique frequently used to stimulate the production of an oil or gas well by creating a fracture in the porous rock around the wellbore. The success of a hydraulic fracture treatment depends heavily on the created fracture geometry. The optimum situation arises when a sin

  2. Hydraulic manipulator research at ORNL

    Energy Technology Data Exchange (ETDEWEB)

    Kress, R.L.; Jansen, J.F. [Oak Ridge National Lab., TN (United States); Love, L.J. [Oak Ridge Inst. for Science and Education, TN (United States)

    1997-03-01

    Recently, task requirements have dictated that manipulator payload capacity increase to accommodate greater payloads, greater manipulator length, and larger environmental interaction forces. General tasks such as waste storage tank cleanup and facility dismantlement and decommissioning require manipulator life capacities in the range of hundreds of pounds rather than tens of pounds. To meet the increased payload capacities demanded by present-day tasks, manipulator designers have turned once again to hydraulics as a means of actuation. In order to successfully design, build, and deploy a new hydraulic manipulator (or subsystem), sophisticated modeling, analysis, and control experiments are usually needed. Oak Ridge National Laboratory (ORNL) has a history of projects that incorporate hydraulics technology, including mobile robots, teleoperated manipulators, and full-scale construction equipment. In addition, to support the development and deployment of new hydraulic manipulators, ORNL has outfitted a significant experimental laboratory and has developed the software capability for research into hydraulic manipulators, hydraulic actuators, hydraulic systems, modeling of hydraulic systems, and hydraulic controls. The purpose of this article is to describe the past hydraulic manipulator developments and current hydraulic manipulator research capabilities at ORNL. Included are example experimental results from ORNL`s flexible/prismatic test stand.

  3. Remotely Adjustable Hydraulic Pump

    Science.gov (United States)

    Kouns, H. H.; Gardner, L. D.

    1987-01-01

    Outlet pressure adjusted to match varying loads. Electrohydraulic servo has positioned sleeve in leftmost position, adjusting outlet pressure to maximum value. Sleeve in equilibrium position, with control land covering control port. For lowest pressure setting, sleeve shifted toward right by increased pressure on sleeve shoulder from servovalve. Pump used in aircraft and robots, where hydraulic actuators repeatedly turned on and off, changing pump load frequently and over wide range.

  4. Undular Hydraulic Jump

    Directory of Open Access Journals (Sweden)

    Oscar Castro-Orgaz

    2015-04-01

    Full Text Available The transition from subcritical to supercritical flow when the inflow Froude number Fo is close to unity appears in the form of steady state waves called undular hydraulic jump. The characterization of the undular hydraulic jump is complex due to the existence of a non-hydrostatic pressure distribution that invalidates the gradually-varied flow theory, and supercritical shock waves. The objective of this work is to present a mathematical model for the undular hydraulic jump obtained from an approximate integration of the Reynolds equations for turbulent flow assuming that the Reynolds number R is high. Simple analytical solutions are presented to reveal the physics of the theory, and a numerical model is used to integrate the complete equations. The limit of application of the theory is discussed using a wave breaking condition for the inception of a surface roller. The validity of the mathematical predictions is critically assessed using physical data, thereby revealing aspects on which more research is needed

  5. Hydraulic System Design of Hydraulic Actuators for Large Butterfly Valves

    OpenAIRE

    HUANG, Ye; Liu, Changsheng; Shiongur Bamed

    2014-01-01

    Hydraulic control systems of butterfly valves are presently valve-controlled and pump-controlled. Valve-controlled hydraulic systems have serious power loss and generate much heat during throttling. Pump-controlled hydraulic systems have no overflow or throttling losses but are limited in the speed adjustment of the variable-displacement pump, generate much noise, pollute the environment, and have motor power that does not match load requirements, resulting in low efficiency under...

  6. Hydraulic System Design of Hydraulic Actuators for Large Butterfly Valves

    Directory of Open Access Journals (Sweden)

    Ye HUANG

    2014-09-01

    Full Text Available Hydraulic control systems of butterfly valves are presently valve-controlled and pump-controlled. Valve-controlled hydraulic systems have serious power loss and generate much heat during throttling. Pump-controlled hydraulic systems have no overflow or throttling losses but are limited in the speed adjustment of the variable-displacement pump, generate much noise, pollute the environment, and have motor power that does not match load requirements, resulting in low efficiency under light loads and wearing of the variable-displacement pump. To overcome these shortcomings, this article designs a closed hydraulic control system in which an AC servo motor drives a quantitative pump that controls a spiral swinging hydraulic cylinder, and analyzes and calculates the structure and parameters of a spiral swinging hydraulic cylinder. The hydraulic system adjusts the servo motor’s speed according to the requirements of the control system, and the motor power matches the power provided to components, thus eliminating the throttling loss of hydraulic circuits. The system is compact, produces a large output force, provides stable transmission, has a quick response, and is suitable as a hydraulic control system of a large butterfly valve.

  7. Modelling of Hydraulic Robot

    DEFF Research Database (Denmark)

    Madsen, Henrik; Zhou, Jianjun; Hansen, Lars Henrik

    1997-01-01

    This paper describes a case study of identifying the physical model (or the grey box model) of a hydraulic test robot. The obtained model is intended to provide a basis for model-based control of the robot. The physical model is formulated in continuous time and is derived by application...... of the laws of physics on the system. The unknown (or uncertain) parameters are estimated with Maximum Likelihood (ML) parameter estimation. The identified model has been evaluated by comparing the measurements with simulation of the model. The identified model was much more capable of describing the dynamics...... of the system than the deterministic model....

  8. Hydraulic mining method

    Science.gov (United States)

    Huffman, Lester H.; Knoke, Gerald S.

    1985-08-20

    A method of hydraulically mining an underground pitched mineral vein comprising drilling a vertical borehole through the earth's lithosphere into the vein and drilling a slant borehole along the footwall of the vein to intersect the vertical borehole. Material is removed from the mineral vein by directing a high pressure water jet thereagainst. The resulting slurry of mineral fragments and water flows along the slant borehole into the lower end of the vertical borehole from where it is pumped upwardly through the vertical borehole to the surface.

  9. Spinning hydraulic jump

    Science.gov (United States)

    Abderrahmane, Hamid; Kasimov, Aslan

    2013-11-01

    We report an experimental observation of a new symmetry breaking of circular hydraulic jump into a self-organized structure that consists of a spinning polygonal jump and logarithmic-spiral waves of fluid elevation downstream. The waves are strikingly similar to spiral density waves in galaxies. The fluid flow exhibits counterparts of salient morphological features of galactic flows, in particular the outflow from the center, jets, circum-nuclear rings, gas inflows toward the galactic center, and vortices. The hydrodynamic instability revealed here may have a counterpart that plays a role in the formation and sustainability of spiral arms in galaxies.

  10. Monitoring hydraulic fracturing with seismic emission volume

    Science.gov (United States)

    Niu, F.; Tang, Y.; Chen, H.; TAO, K.; Levander, A.

    2014-12-01

    Recent developments in horizontal drilling and hydraulic fracturing have made it possible to access the reservoirs that are not available for massive production in the past. Hydraulic fracturing is designed to enhance rock permeability and reservoir drainage through the creation of fracture networks. Microseismic monitoring has been proven to be an effective and valuable technology to image hydraulic fracture geometry. Based on data acquisition, seismic monitoring techniques have been divided into two categories: downhole and surface monitoring. Surface monitoring is challenging because of the extremely low signal-to-noise ratio of the raw data. We applied the techniques used in earthquake seismology and developed an integrated monitoring system for mapping hydraulic fractures. The system consists of 20 to 30 state-of-the-art broadband seismographs, which are generally about hundreds times more sensible than regular geophones. We have conducted two experiments in two basins with very different geology and formation mechanism in China. In each case, we observed clear microseismic events, which may correspond to the induced seismicity directly associated with fracturing and the triggered ones at pre-existing faults. However, the magnitude of these events is generally larger than magnitude -1, approximately one to two magnitudes larger than those detected by downhole instruments. Spectrum-frequency analysis of the continuous surface recordings indicated high seismic energy associated with injection stages. The seismic energy can be back-projected to a volume that surrounds each injection stage. Imaging seismic emission volume (SEV) appears to be an effective way to map the stimulated reservior volume, as well as natural fractures.

  11. A fast simulation tool for evaluation of novel well stimulation techniques for tight gas reservoirs

    NARCIS (Netherlands)

    Egberts, P.J.P.; Peters, E.

    2015-01-01

    For stimulation of tight fields, alternatives to hydraulic fracturing based on hydraulic jetting are becoming available. With hydraulic jetting many (10 to 20) laterals can be created in a (sub-) vertical well. The laterals are 100 to 200 m long, typically 4 laterals are applied with a small

  12. 46 CFR 28.880 - Hydraulic equipment.

    Science.gov (United States)

    2010-10-01

    ... hydraulic equipment and the adjacent work area. Protection shall be afforded to the operator of hydraulic... 46 Shipping 1 2010-10-01 2010-10-01 false Hydraulic equipment. 28.880 Section 28.880 Shipping... INDUSTRY VESSELS Aleutian Trade Act Vessels § 28.880 Hydraulic equipment. (a) Each hydraulic system must...

  13. Hydraulic fracture model comparison study: Complete results

    Energy Technology Data Exchange (ETDEWEB)

    Warpinski, N.R. [Sandia National Labs., Albuquerque, NM (United States); Abou-Sayed, I.S. [Mobil Exploration and Production Services (United States); Moschovidis, Z. [Amoco Production Co. (US); Parker, C. [CONOCO (US)

    1993-02-01

    Large quantities of natural gas exist in low permeability reservoirs throughout the US. Characteristics of these reservoirs, however, make production difficult and often economic and stimulation is required. Because of the diversity of application, hydraulic fracture design models must be able to account for widely varying rock properties, reservoir properties, in situ stresses, fracturing fluids, and proppant loads. As a result, fracture simulation has emerged as a highly complex endeavor that must be able to describe many different physical processes. The objective of this study was to develop a comparative study of hydraulic-fracture simulators in order to provide stimulation engineers with the necessary information to make rational decisions on the type of models most suited for their needs. This report compares the fracture modeling results of twelve different simulators, some of them run in different modes for eight separate design cases. Comparisons of length, width, height, net pressure, maximum width at the wellbore, average width at the wellbore, and average width in the fracture have been made, both for the final geometry and as a function of time. For the models in this study, differences in fracture length, height and width are often greater than a factor of two. In addition, several comparisons of the same model with different options show a large variability in model output depending upon the options chosen. Two comparisons were made of the same model run by different companies; in both cases the agreement was good. 41 refs., 54 figs., 83 tabs.

  14. Oscillatory Flow Testing in a Sandbox - Towards Oscillatory Hydraulic Tomography

    Science.gov (United States)

    Zhou, Y.; Lim, D.; Cupola, F.; Cardiff, M. A.

    2014-12-01

    Detailed knowledge of subsurface hydraulic properties is important for predicting groundwater flow and contaminant transport. The spatial variation of hydraulic properties in the shallow subsurface has been extensively studied in the past two decades. A recent approach to characterize subsurface properties is hydraulic tomography, in which pressure data from multiple constant-rate pumping tests is inverted using a numerical model. Many laboratory sandbox studies have explored the performance of hydraulic tomography under different controlled conditions and shown that detailed heterogeneity information can be extracted (Liu et al., 2002, Illman et al., 2007, 2008, 2010a, 2010b, Liu et al., 2007, 2008, Xiang et al., 2009, Yin and Illman, 2009, Liu and Kitanidis, 2011, Berg and Illman, 2011a). Recently, Cardiff et al. (2013) proposed a modified approach of Oscillatory Hydraulic Tomography (OHT) - in which periodic pumping signals of different frequencies are used for aquifer stimulation - to characterize aquifer properties. The potential advantages of OHT over traditional hydraulic tomography include: 1) no net injection or extraction of water; 2) little movement of existing contamination; 3) minimal impact of model boundary conditions; and 4) robust extraction of oscillatory signals from noisy data. To evaluate the premise of OHT, we built a highly-instrumented 2-D laboratory sandbox and record pressure responses to periodic pumping tests. In our setup, the laboratory sandbox is filled with sand of known hydraulic properties, and we measure aquifer responses at a variety of testing frequencies. The signals recorded are processed using Fourier-domain analysis, and compared against expected results under linear (Darcian) theory. The responses are analyzed using analytical and numerical models, which provide key insights as to: 1) how "effective" hydraulic properties estimated using homogeneous models are associated with aquifer heterogeneity; and 2) how OHT is able to

  15. Applied hydraulic transients

    CERN Document Server

    Chaudhry, M Hanif

    2014-01-01

    This book covers hydraulic transients in a comprehensive and systematic manner from introduction to advanced level and presents various methods of analysis for computer solution. The field of application of the book is very broad and diverse and covers areas such as hydroelectric projects, pumped storage schemes, water-supply systems, cooling-water systems, oil pipelines and industrial piping systems. Strong emphasis is given to practical applications, including several case studies, problems of applied nature, and design criteria. This will help design engineers and introduce students to real-life projects. This book also: ·         Presents modern methods of analysis suitable for computer analysis, such as the method of characteristics, explicit and implicit finite-difference methods and matrix methods ·         Includes case studies of actual projects ·         Provides extensive and complete treatment of governed hydraulic turbines ·         Presents design charts, desi...

  16. Hydraulic rams; a comparative investigation

    NARCIS (Netherlands)

    Tacke, J.H.P.M.

    1988-01-01

    A mathematical model describing the essential features of hydraulic ram operation is developed in order to clarify the possibilities and limitations of the ram relative to its site and its adjustments. The model distinguishes three different periods in the pumping cycle of the hydraulic ram: acceler

  17. Hydraulics. FOS: Fundamentals of Service.

    Science.gov (United States)

    John Deere Co., Moline, IL.

    This manual on hydraulics is one of a series of power mechanics texts and visual aids for training in the servicing of agricultural and industrial machinery. Focus is on oil hydraulics. Materials provide basic information and illustrations for use by vocational students and teachers as well as shop servicemen and laymen. The twelve chapters focus…

  18. Hydraulic Stability of Accropode Armour

    DEFF Research Database (Denmark)

    Jensen, T.; Burcharth, H. F.; Frigaard, Peter

    , and to assess the influence of core permeability on the hydraulic stability of Accropodes. Two structures were examined, one with a relatively permeable core and one with a relatively impermeable core. In November/December 1995, Ph.D.-student Marten Christensen carried out the model tests on the structure...... with permeable core (crushed granite with a gradation of 5-8 mm). The outcome of this study is described in "Hydraulic Stability of Single-Layer Dolos and Accropode Armour Layers" by Christensen & Burcharth (1995). In January/February 1996, Research Assistant Thomas Jensen carried out a similar study......The present report describes the hydraulic model tests of Accropode armour layers carried out at the Hydraulics Laboratory at Aalborg University from November 1995 through March 1996. The objective of the model tests was to investigate the hydraulic stability of Accropode armour layers...

  19. Hydraulic Stability of Accropode Armour

    DEFF Research Database (Denmark)

    Jensen, T.; Burcharth, H. F.; Frigaard, Peter

    , and to assess the influence of core permeability on the hydraulic stability of Accropodes. Two structures were examined, one with a relatively permeable core and one with a relatively impermeable core. In November/December 1995, Ph.D.-student Marten Christensen carried out the model tests on the structure...... with permeable core (crushed granite with a gradation of 5-8 mm). The outcome of this study is described in "Hydraulic Stability of Single-Layer Dolos and Accropode Armour Layers" by Christensen & Burcharth (1995). In January/February 1996, Research Assistant Thomas Jensen carried out a similar study......The present report describes the hydraulic model tests of Accropode armour layers carried out at the Hydraulics Laboratory at Aalborg University from November 1995 through March 1996. The objective of the model tests was to investigate the hydraulic stability of Accropode armour layers...

  20. Hydraulic Yaw System

    DEFF Research Database (Denmark)

    Stubkier, Søren; Pedersen, Henrik C.; Mørkholt, M.

    As wind turbines increase in size, combined with increased lifetime demands, new methods for load reduction needs to be examined. One method is to make the yaw system of the turbine soft/flexible and hereby dampen the loads to the system, which is the focus of the current paper. By utilizing...... the HAWC2 aeroelastic code and an extended model of the NREL 5MW turbine combined with a simplified linear model of the turbine, the parameters of the soft yaw system are optimized to reduce loading in critical components. Results shows that a significant reduction in fatigue and extreme loads to the yaw...... system and rotor shaft when utilizing the soft yaw drive concept compared to the original stiff yaw system. The physical demands of the hydraulic yaw system are furthermore examined for a life time of 20 years. Based on the extrapolated loads, the duty cycles show that it is possible to construct...

  1. Electro Hydraulic Hitch Control

    DEFF Research Database (Denmark)

    Hansen, M. R.; Andersen, T. O.; Nielsen, B.

    2003-01-01

    system for agricultural applications and driving for transportation. During tranport phases, the lack of suspension causes the vehicle to bounce and pitch, and makes it difficalt to control. Many systems have been proposed to cope with the oscillatory behavior, and different solutions exist. Common......This paper present and discusses R&D results on electro hydraulic hitch control for off-road vehicle, in particular active damping of oscillation occuring on tractors. The research deals with analysis and control of the oscillations occuring on tractors which are design without any susspection...... for most of the systems are that they operate on the hydrailc actuators generally providing the motive forces for moving the implement and/or attachment, typically a plough. The basic idea and physical working principle are to use the implement, moveable relative to the vehicle, as a damper mass. The paper...

  2. Hydraulic conductivity of compacted zeolites.

    Science.gov (United States)

    Oren, A Hakan; Ozdamar, Tuğçe

    2013-06-01

    Hydraulic conductivities of compacted zeolites were investigated as a function of compaction water content and zeolite particle size. Initially, the compaction characteristics of zeolites were determined. The compaction test results showed that maximum dry unit weight (γ(dmax)) of fine zeolite was greater than that of granular zeolites. The γ(dmax) of compacted zeolites was between 1.01 and 1.17 Mg m(-3) and optimum water content (w(opt)) was between 38% and 53%. Regardless of zeolite particle size, compacted zeolites had low γ(dmax) and high w(opt) when compared with compacted natural soils. Then, hydraulic conductivity tests were run on compacted zeolites. The hydraulic conductivity values were within the range of 2.0 × 10(-3) cm s(-1) to 1.1 × 10(-7) cm s(-1). Hydraulic conductivity of all compacted zeolites decreased almost 50 times as the water content increased. It is noteworthy that hydraulic conductivity of compacted zeolite was strongly dependent on the zeolite particle size. The hydraulic conductivity decreased almost three orders of magnitude up to 39% fine content; then, it remained almost unchanged beyond 39%. Only one report was found in the literature on the hydraulic conductivity of compacted zeolite, which is in agreement with the findings of this study.

  3. Hydraulic Actuators with Autonomous Hydraulic Supply for the Mainline Aircrafts

    Directory of Open Access Journals (Sweden)

    I. S. Shumilov

    2014-01-01

    Full Text Available Applied in the aircraft control systems, hydraulic servo actuators with autonomous hydraulic supply, so-called, hydraulic actuators of integrated configuration, i.e. combination of a source of hydraulic power and its load in the single unit, are aimed at increasing control system reliability both owing to elimination of the pipelines connecting the actuator to the hydraulic supply source, and owing to avoidance of influence of other loads failure on the actuator operability. Their purpose is also to raise control system survivability by eliminating the long pipeline communications and their replacing for the electro-conductive power supply system, thus reducing the vulnerability of systems. The main reason for a delayed application of the hydraulic actuators in the cutting-edge aircrafts was that such aircrafts require hydraulic actuators of considerably higher power with considerable heat releases, which caused an unacceptable overheat of the hydraulic actuators. Positive and negative sides of the hydraulic actuators, their alternative options of increased reliability and survivability, local hydraulic systems as an advanced alternative to independent hydraulic actuators are considered.Now to use hydraulic actuators in mainline aircrafts is inexpedient since there are the unfairly large number of the problems reducing, first and last, safety of flights, with no essential weight and operational advantages. Still works to create competitive hydraulic actuators ought to be continued.Application of local hydraulic systems (LHS will allow us to reduce length of pressure head and drain pipelines and mass of pipelines, as well as to raise their general fail-safety and survivability. Application of the LHS principle will allow us to use a majority of steering drive advantages. It is necessary to allocate especially the following:- ease of meeting requirements for the non-local spread of the engine weight;- essentially reducing length and weight of

  4. Hydraulic conductivity of organomodified soil

    Energy Technology Data Exchange (ETDEWEB)

    Wallace, R.B.; Grant, J.M.; Voice, T.C.; Rakhshandehroo, G.; Xu, S.; Boyd, S.A. [Michigan State Univ., East Lansing, MI (United States)

    1995-11-01

    The effects of organomodification on soil hydraulic conductivity were investigated. Hydraulic conductivity and porosity of treated and untreated samples of a sandy loam were measured as a function of effective stress. Batch treatment with hexadecyltrimethyl ammonium (HDTMA) and dry packing produced organomodified samples that were 79% less conducive than untreated samples prior to loading. Treated samples lost less hydraulic conductivity as a result of loading than untreated samples so that treated samples had higher conductivity at high loads. Observed differences in conductivity are explained in terms of the role of the treated and untreated clay in controlling initial effective pore size and its change during consolidation.

  5. HYDRAULICS, ATHENS COUNTY, OHIO, USA

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Hydraulic data include spatial datasets and data tables necessary for documenting the hydrologic procedures for estimating flood discharges for a flood insurance...

  6. HYDRAULICS, JACKSON COUNTY, KENTUCKY, USA

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Hydraulic data include spatial datasets and data tables necessary for documenting the hydrologic procedures for estimating flood discharges for a flood insurance...

  7. HYDRAULICS, MADISON COUNTY, ALABAMA, USA

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — This Hydraulic data was reviewed and approved by FEMA during the initial MT-2 processing. Recent developments in digital terrain and geospatial database management...

  8. HYDRAULICS, HAMPDEN COUNTY, MA, USA

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Hydraulic data in this submittal include spatial datasets and model outputs necessary for computation of the 1-percent flooding extent. The minimum requirement for...

  9. Hydraulic wind energy conversion system

    Energy Technology Data Exchange (ETDEWEB)

    1981-07-01

    The purpose of this research was to design, build and test a hydraulic wind energy system. This design used a three bladed turbine, which drove a hydraulic pump. The energy is transmitted from the pump through a long hose and into a hydraulic motor, where the energy is used. This wind system was built and tested during the winter of 1980-1981. The power train included a five meter, three bladed wind turbine, a 9.8:1 ratio gearbox, a 1.44 cubic inch displacement pump with a small supercharge gear pump attached. The hydraulic fluid was pumped through a 70', 3/4'' I-D-high pressure flexhose, then through a volume control valve and into a 1.44 cubic inch displacement motor. The fluid was returned through a 70', 1'' I-D-flexhose.

  10. 14 CFR 29.1435 - Hydraulic systems.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Hydraulic systems. 29.1435 Section 29.1435... STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Equipment Miscellaneous Equipment § 29.1435 Hydraulic systems. (a) Design. Each hydraulic system must be designed as follows: (1) Each element of the hydraulic system...

  11. 14 CFR 23.1435 - Hydraulic systems.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Hydraulic systems. 23.1435 Section 23.1435... § 23.1435 Hydraulic systems. (a) Design. Each hydraulic system must be designed as follows: (1) Each hydraulic system and its elements must withstand, without yielding, the structural loads expected...

  12. 46 CFR 28.405 - Hydraulic equipment.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 1 2010-10-01 2010-10-01 false Hydraulic equipment. 28.405 Section 28.405 Shipping... Operate With More Than 16 Individuals on Board § 28.405 Hydraulic equipment. (a) Each hydraulic system... than four times the system maximum operating pressure. (c) Each hydraulic system must be equipped...

  13. Advanced Performance Hydraulic Wind Energy

    Science.gov (United States)

    Jones, Jack A.; Bruce, Allan; Lam, Adrienne S.

    2013-01-01

    The Jet Propulsion Laboratory, California Institute of Technology, has developed a novel advanced hydraulic wind energy design, which has up to 23% performance improvement over conventional wind turbine and conventional hydraulic wind energy systems with 5 m/sec winds. It also has significant cost advantages with levelized costs equal to coal (after carbon tax rebate). The design is equally applicable to tidal energy systems and has passed preliminary laboratory proof-of-performance tests, as funded by the Department of Energy.

  14. FOREWORD: 26th IAHR Symposium on Hydraulic Machinery and Systems

    Science.gov (United States)

    Wu, Yulin; Wang, Zhengwei; Liu, Shuhong; Yuan, Shouqi; Luo, Xingqi; Wang, Fujun

    2012-11-01

    was molded into a polytechnic institute focusing on engineering in the nationwide restructuring of universities and colleges undertaken in 1952. At present, the university has 14 schools and 56 departments with faculties in science, engineering, humanities, law, medicine, history, philosophy, economics, management, education and art. The University now has over 25 900 students, including 13 100 undergraduates and 12 800 graduate students. As one of China's most renowned universities, Tsinghua has become an important institution for fostering talents and scientific research. The International Association of Hydro-Environment Engineering and Research (IAHR) particularly promotes the advancement and exchange of knowledge through working groups, specialty symposia, congresses, and publications on water resources, river and coastal hydraulics, risk analysis, energy, environment, disaster prevention, and industrial processes. The IAHR Committee on Hydraulic Machinery and Systems deals with the advancement of technology associated with the understanding of steady and unsteady flow characteristics in hydraulic machinery and conduit systems connected to the machinery. The technology elements include the fluid behaviour within machine components, hydro-elastic behaviour of machine components, cavitation and two phase flow in turbines and pumps, hydraulic machine and plant control systems, the use of hydraulic machines to improve water quality, and even considerations to improve fish survival in their passage through hydro plants. The main emphases of the IAHR Committee on Hydraulic Machinery and Systems are to stimulate research and understanding of the technologies associated with hydraulic machinery and to promote interaction between the machine designers, machine users, the academic community, and the community as a whole. Hydraulic machinery is both cost effective and environmentally friendly. The goals of the IAHR Committee on Hydraulic Machinery and Systems are to improve

  15. Technologies and Innovations for Hydraulic Pumps

    OpenAIRE

    Ivantysynova, Monika

    2016-01-01

    Positive displacement machines working as hydraulic pumps or hydraulic motors have always been, are and will be an essential part of any hydraulic system. Current trends and future demands on energy efficient systems will not only drastically increase the number of positive displacement machines needed for modern efficient hydraulic circuits but will significantly change the performance requirements of pumps and motors. Throttleless system configurations will change the landscape of hydraulic...

  16. Hydraulic fracture design and optimization of gas storage wells

    Energy Technology Data Exchange (ETDEWEB)

    Mohaghegh, S.; Ameri, S. [Petroleum and Natural Gas and Engineering Department, West Virginia University, P.O. Box 6070, Morgantown, WV (United States); Balanb, B. [Schlumberger Austin Product Center, 8311 North FM 620 Road, Austin, TX (United States); Platon, V. [Baker Atlas, 10201 Westheimer Rd., Houston, TX (United States)

    1999-10-01

    Conventional hydraulic fracture design and optimization involves the use of two- or three-dimensional hydraulic fracture simulators. These simulators need a wealth of reservoir data as input to provide users with usable results. In many cases, such data are not available or very expensive to acquire. This paper provides a new methodology that can be used in cases where detail reservoir data are not available or prohibitively expensive to acquire. Through the use of two virtual intelligence techniques, namely neural networks and genetic algorithms, hydraulic fracture treatments are designed using only the available data. The unique design optimization method presented here is a logical continuation of the study that was presented in two previous papers [McVey et al., 1996, Identification of parameters influencing the response of gas storage wells to hydraulic fracturing with the aid of a neural network, SPE Computer Applications Journal, Apr., 54-57; Mohaghegh et al., 1996b, Predicting well stimulation results in a gas storage field in the absence of reservoir data, using neural networks, SPE Reservoir Engineering Journal, Nov., 54-57]. A quick review of these papers is included here. This method will use the available data on each well, which includes basic well information, production history and results of previous frac job treatments, and provides engineer with a detail optimum hydraulic fracture design unique to each well. The expected post-hydraulic fracture deliverability for the designed treatment is also provided to assist engineers in estimating incremental increase in recovery to be used in economic calculations. There are no simulated data throughout this study and all data used for development and verification of all methods are actual field data.

  17. Earthquakes Induced by Hydraulic Fracturing in Poland Township, Ohio

    Science.gov (United States)

    Skoumal, R.; Brudzinski, M. R.; Currie, B. S.

    2014-12-01

    Felt seismicity induced by hydraulic fracturing is very rare with only a handful of reported cases worldwide. Using an optimized multi-station cross-correlation template matching routine, 77 earthquakes were identified in Poland Township, Mahoning County, Ohio that were closely related spatially and temporally to active hydraulic fracturing operations. We identified earthquakes as small as M ~1 up to M 3, one of the largest earthquakes induced by hydraulic fracturing in the United States. These events all occurred 4-12 March 2014 and the rate decayed once the Ohio Department of Natural Resources issued a shutdown of hydraulic fracturing at a nearby well on 10 March. Using a locally derived velocity model and double difference relocation, the earthquake epicenters occurred during six stimulation stages along two horizontal well legs that were located ~0.8 km away. Nearly 100 stages in nearby wells at greater distances from the earthquake source region did not coincide with detected seismicity. During the sequence, hypocenters migrated ~600 m along an azimuth of 083 degrees defining a vertically oriented plane of seismicity close to the top of the Precambrian basement. The focal mechanism determined for the M 3 event had a vertically oriented left-lateral fault plane consistent with the earthquake distribution and the regional stress field. The focal mechanism, orientation, and depth of hypocenters were similar to that of the 2011 Youngstown earthquake sequence that occurred ~20 km away, but was correlated with wastewater injection instead of hydraulic fracturing. Considering the relatively large magnitude of these events and the b-value of 0.85, it appears the hydraulic fracturing induced slip along a pre-existing fault/fracture zone optimally oriented in the regional stress field.

  18. Permeability Enhancement in Enhanced Geothermal System as a result of Hydraulic Fracturing and Jacking

    Science.gov (United States)

    Jalali, Mohammadreza; Klepikova, Maria; Fisch, Hansruedi; Amann, Florian; Loew, Simon

    2016-04-01

    A decameter-scale in-situ hydraulic stimulation and circulation (ISC) experiment has been initiated by the newly-founded Swiss Competence Centre for Energy Research - Supply of Electricity (SCCER-SoE) at Nagra's Grimsel Test Site (GTS) as a part of the work-package WP1 of the Deep Underground Laboratory (DUG-Lab) initiative. The experiment area is situated in the southern part of the GTS in a low fracture density volume of the Grimsel granodiorite. The hydraulic properties of the granitic rock mass are supposed to be similar to those expected in the crystalline basement of the alpine foreland where deep enhanced geothermal systems might be developed in future. The main objectives of the multi-disciplinary experiment are to provide a high resolution pre- and post-stimulation characterization of fracture permeability and connectivity, to investigate patterns of preferential flow paths, to describe the pressure propagation during the stimulation phases and to evaluate the efficiency of the fracture-matrix heat exchanger. A comprehensive test & monitoring layout including a fair number of boreholes instrumented with a variety of sensors (e.g. pressure, strain, displacement, temperature, and seismic sensors) is designed to collect detailed data during multiple hydraulic stimulation runs. The diffusion of fluid pressure is expected to be governed mainly by the properties and geometry of the existent fracture network. The hydraulic transmissivity of fractures are in the range of 10-7 to 10-9 m2/s whereas the matrix rock has a very low hydraulic conductivity (K ˜ 10-12 m/s). As part of the stress measurement campaign during the pre-stimulation phase of the ISC experiment, a series of hydraulic fracturing (HF) and hydraulic tests in pre-existing fractures (HTPF) were conducted. The tests were accompanied by micro-seismic monitoring within several observation boreholes to investigate the initiation and propagation of the induced fractures. Together with results from over

  19. Hydraulic properties of ladle slags

    Directory of Open Access Journals (Sweden)

    J. Vlček

    2016-07-01

    Full Text Available The article presents results of examining of hydraulic properties of ladle slags formed during production of steel. The studied ladle slags were subjected to different cooling mode from the molten state. Based on the ability of the slag react with the water was assessed their hydraulic activity. The hydraulic properties are caused by the presence of minerals dicalcium silicate, tricalcium aluminate, mayenite, brownmillerite and dicalcium ferite. The emergence of required hydrating phases in the ladle slags is conditioned by a sufficient CaO content and their cooling rate. The contact the slag with water during processing and their ageing has a negative effect. The experiment has shown that the phase transformation of the mineral dicalcium silicate which occurs during cooling of the ladle slags cause their volume instability.

  20. Hydraulic resistance of biofilms

    KAUST Repository

    Dreszer, C.

    2013-02-01

    Biofilms may interfere with membrane performance in at least three ways: (i) increase of the transmembrane pressure drop, (ii) increase of feed channel (feed-concentrate) pressure drop, and (iii) increase of transmembrane passage. Given the relevance of biofouling, it is surprising how few data exist about the hydraulic resistance of biofilms that may affect the transmembrane pressure drop and membrane passage. In this study, biofilms were generated in a lab scale cross flow microfiltration system at two fluxes (20 and 100Lm-2h-1) and constant cross flow (0.1ms-1). As a nutrient source, acetate was added (1.0mgL-1 acetate C) besides a control without nutrient supply. A microfiltration (MF) membrane was chosen because the MF membrane resistance is very low compared to the expected biofilm resistance and, thus, biofilm resistance can be determined accurately. Transmembrane pressure drop was monitored. As biofilm parameters, thickness, total cell number, TOC, and extracellular polymeric substances (EPS) were determined, it was demonstrated that no internal membrane fouling occurred and that the fouling layer actually consisted of a grown biofilm and was not a filter cake of accumulated bacterial cells. At 20Lm-2h-1 flux with a nutrient dosage of 1mgL-1 acetate C, the resistance after 4 days reached a value of 6×1012m-1. At 100Lm-2h-1 flux under the same conditions, the resistance was 5×1013m-1. No correlation of biofilm resistance to biofilm thickness was found; Biofilms with similar thickness could have different resistance depending on the applied flux. The cell number in biofilms was between 4×107 and 5×108 cellscm-2. At this number, bacterial cells make up less than a half percent of the overall biofilm volume and therefore did not hamper the water flow through the biofilm significantly. A flux of 100Lm-2h-1 with nutrient supply caused higher cell numbers, more biomass, and higher biofilm resistance than a flux of 20Lm-2h-1. However, the biofilm thickness

  1. Controls of Hydraulic Wind Turbine

    Directory of Open Access Journals (Sweden)

    Zhang Yin

    2016-01-01

    Full Text Available In this paper a hydraulic wind turbine generator system was proposed based on analysis the current wind turbines technologies. The construction and principles were introduced. The mathematical model was verified using MATLAB and AMsim. A displacement closed loop of swash plate of motor and a speed closed loop of generator were setup, a PID control is introduced to maintain a constant speed and fixed frequency at wind turbine generator. Simulation and experiment demonstrated that the system can connect grid to generate electric and enhance reliability. The control system demonstrates a high performance speed regulation and effectiveness. The results are great significant to design a new type hydraulic wind turbine system.

  2. Integrating hydraulic equivalent sections into a hydraulic geometry study

    Science.gov (United States)

    Jia, Yanhong; Yi, Yujun; Li, Zhiwei; Wang, Zhaoyin; Zheng, Xiangmin

    2017-09-01

    Hydraulic geometry (HG) is an important geomorphic concept that has played an indispensable role in hydrological analyses, physical studies of streams, ecosystem and aquatic habitat studies, and sedimentology research. More than 60 years after Leopold and Maddock (1953) first introduced the concept of HG, researchers have still not uncovered the physical principles underlying HG behavior. One impediment is the complexity of the natural river cross section. The current study presents a new way to simplify the cross section, namely, the hydraulic equivalent section, which is generalized from the cross section in the ;gradually varied flow of an alluvial river; (GVFAR) and features hydrodynamic properties and bed-building laws similar to those of the GVFAR. Energy balance was used to derive the stage Z-discharge Q relationship in the GVFAR. The GVFAR in the Songhua River and the Yangtze River were selected as examples. The data, including measured discharge, river width, water stage, water depth, wet area, and cross section, were collected from the hydrological yearbooks of typical hydrological stations on the Songhua River and the Yangtze River from 1955 to 1987. The relationships between stage Z-discharge Q and cross-sectional area A-stage Z at various stations were analyzed, and ;at-a-station hydraulic geometry; (AHG) relationships were obtained in power-law forms. Based on derived results and observational data analysis, the Z-Q and Z-A relationships of AHG were similar to rectangular weir flows, thus the cross section of the GVFAR was generalized as a compound rectangular, hydraulic equivalent cross section. As to bed-building characteristics, the bankfull discharge method and the stage-discharge-relation method were used to calculate the dominant variables of the alluvial river. This hydraulic equivalent section has the same Z-Q relation, Z-A relation, dominant discharge, dominant river width, and dominant water depth as the cross section in the GVFAR. With the

  3. CRITICALITY CURVES FOR PLUTONIUM HYDRAULIC FLUID MIXTURES

    Energy Technology Data Exchange (ETDEWEB)

    WITTEKIND WD

    2007-10-03

    This Calculation Note performs and documents MCNP criticality calculations for plutonium (100% {sup 239}Pu) hydraulic fluid mixtures. Spherical geometry was used for these generalized criticality safety calculations and three geometries of neutron reflection are: {sm_bullet}bare, {sm_bullet}1 inch of hydraulic fluid, or {sm_bullet}12 inches of hydraulic fluid. This document shows the critical volume and critical mass for various concentrations of plutonium in hydraulic fluid. Between 1 and 2 gallons of hydraulic fluid were discovered in the bottom of HA-23S. This HA-23S hydraulic fluid was reported by engineering to be Fyrquel 220. The hydraulic fluid in GLovebox HA-23S is Fyrquel 220 which contains phosphorus. Critical spherical geometry in air is calculated with 0 in., 1 in., or 12 inches hydraulic fluid reflection.

  4. DCS Hydraulics Submittal, Butler County, Alabama, USA

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Hydraulics data includes spatial datasets and data tables necessary for documenting the hydraulic procedures for computing flood elevations for a flood insurance...

  5. DCS Hydraulics Submittal, Bullock County, Alabama, USA

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Hydraulics data includes spatial datasets and data tables necessary for documenting the hydraulic procedures for computing flood elevations for a flood insurance...

  6. DCS Hydraulics Submittal, Covington County, Alabama, USA

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Hydraulics data includes spatial datasets and data tables necessary for documenting the hydraulic procedures for computing flood elevations for a flood insurance...

  7. High Pressure Hydraulic Distribution System

    Science.gov (United States)

    1991-05-20

    to 500 0 F. 5 cycles. 5000 F room temperature to 50001F; 45 ______________ Icycles The tesis planned for the distribution system demonstrator were...American Society for Testing and Materials ASTM D412 - Tension Testing of Vulcanized Rubber ASTM D571 - Testing Automotive Hydraulic Brake Hose Society of

  8. Hydraulic fracturing system and method

    Energy Technology Data Exchange (ETDEWEB)

    Ciezobka, Jordan; Salehi, Iraj

    2017-02-28

    A hydraulic fracturing system and method for enhancing effective permeability of earth formations to increase hydrocarbon production, enhance operation efficiency by reducing fluid entry friction due to tortuosity and perforation, and to open perforations that are either unopened or not effective using traditional techniques, by varying a pump rate and/or a flow rate to a wellbore.

  9. Hydraulic jumps in a channel

    DEFF Research Database (Denmark)

    Bonn, D.; Andersen, Anders Peter; Bohr, Tomas

    2009-01-01

    We present a study of hydraulic jumps with flow predominantly in one direction, created either by confining the flow to a narrow channel with parallel walls or by providing an inflow in the form of a narrow sheet. In the channel flow, we find a linear height profile upstream of the jump as expected...

  10. Hydraulic Fracture Containment in Sand

    NARCIS (Netherlands)

    Dong, Y.

    2010-01-01

    The mechanism of hydraulic fracturing in soft, high permeability material is considered fundamentally different from that in hard, low permeability rock, where a tensile fracture is created and conventional linear elastic fracture mechanics (LEFM) applies. The fracturing and associated modeling work

  11. Design of hydraulic recuperation unit

    Directory of Open Access Journals (Sweden)

    Jandourek Pavel

    2016-01-01

    Full Text Available This article deals with design and measurement of hydraulic recuperation unit. Recuperation unit consist of radial turbine and axial pump, which are coupled on the same shaft. Speed of shaft with impellers are 6000 1/min. For economic reasons, is design of recuperation unit performed using commercially manufactured propellers.

  12. Tree Hydraulics: How Sap Rises

    Science.gov (United States)

    Denny, Mark

    2012-01-01

    Trees transport water from roots to crown--a height that can exceed 100 m. The physics of tree hydraulics can be conveyed with simple fluid dynamics based upon the Hagen-Poiseuille equation and Murray's law. Here the conduit structure is modelled as conical pipes and as branching pipes. The force required to lift sap is generated mostly by…

  13. Tree Hydraulics: How Sap Rises

    Science.gov (United States)

    Denny, Mark

    2012-01-01

    Trees transport water from roots to crown--a height that can exceed 100 m. The physics of tree hydraulics can be conveyed with simple fluid dynamics based upon the Hagen-Poiseuille equation and Murray's law. Here the conduit structure is modelled as conical pipes and as branching pipes. The force required to lift sap is generated mostly by…

  14. A new linear type hydraulic motor

    Science.gov (United States)

    Jiang, Dong; Zhang, Tong; Li, Wenhua; Chen, Xinyang

    2017-08-01

    This paper proposes the design of liner type hydraulic motor on the base of inner curved radial piston hydraulic motor. The hydraulic cylinders of the new type motor are in the straight line which will improve the utilization of the axial space and different out power can be supplied by changes the number of cylinders. In this paper, the structure and working principle of the liner type hydraulic motor is introduced.

  15. Hydraulic characterization of " Furcraea andina

    Science.gov (United States)

    Rivera-Velasquez, M. F.; Fallico, C.; Molinari, A.; Santillan, P.; Salazar, M.

    2012-04-01

    The present level of pollution, increasingly involving groundwaters, constitutes a serious risk for environment and human health. Therefore the remediation of saturated and unsaturated soils, removing pollutant materials through innovative and economic bio-remediation techniques is more frequently required. Recent studies on natural fiber development have shown the effectiveness of these fibers for removal of some heavy metals, due to the lignin content in the natural fibers which plays an important role in the adsorption of metal cations (Lee et al., 2004; Troisi et al., 2008; C. Fallico, 2010). In the context of remediation techniques for unsaturated and/or saturated zone, an experimental approach for the hydraulic characterization of the "Furcraea andina" (i.e., Cabuya Blanca) fiber was carried out. This fiber is native to Andean regions and grows easily in wild or cultivated form in the valleys and hillsides of Colombia, Ecuador, and Peru. Fibers of "Furcraea andina" were characterized by experimental tests to determine their hydraulic conductivity or permeability and porosity in order to use this medium for bioremediation of contaminated aquifer exploiting the physical, chemical and microbial capacity of natural fiber in heavy metal adsorption. To evaluate empirically the hydraulic conductivity, laboratory tests were carried out at constant head specifically on the fibers manually extracted. For these tests we used a flow cell (used as permeameter), containing the "Furcraea andina" fibers to be characterized, suitably connected by a tygon pipe to a Marriott's bottle, which had a plastic tube that allow the adjustment of the hydraulic head for different tests to a constant value. By this experiment it was also possible to identify relationships that enable the estimation of permeability as a function of density, i.e. of the compaction degree of the fibers. Our study was carried out for three values of hydraulic head (H), namely 10, 18, and 25 cm and for each

  16. 14 CFR 25.1435 - Hydraulic systems.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Hydraulic systems. 25.1435 Section 25.1435... STANDARDS: TRANSPORT CATEGORY AIRPLANES Equipment Miscellaneous Equipment § 25.1435 Hydraulic systems. (a) Element design. Each element of the hydraulic system must be designed to: (1) Withstand the proof...

  17. 14 CFR 27.1435 - Hydraulic systems.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Hydraulic systems. 27.1435 Section 27.1435... STANDARDS: NORMAL CATEGORY ROTORCRAFT Equipment Safety Equipment § 27.1435 Hydraulic systems. (a) Design. Each hydraulic system and its elements must withstand, without yielding, any structural loads...

  18. Tree shoot bending generates hydraulic pressure pulses: a new long-distance signal?

    Science.gov (United States)

    Lopez, Rosana; Badel, Eric; Peraudeau, Sebastien; Leblanc-Fournier, Nathalie; Beaujard, François; Julien, Jean-Louis; Cochard, Hervé; Moulia, Bruno

    2014-05-01

    When tree stems are mechanically stimulated, a rapid long-distance signal is induced that slows down primary growth. An investigation was carried out to determine whether the signal might be borne by a mechanically induced pressure pulse in the xylem. Coupling xylem flow meters and pressure sensors with a mechanical testing device, the hydraulic effects of mechanical deformation of tree stem and branches were measured. Organs of several tree species were studied, including gymnosperms and angiosperms with different wood densities and anatomies. Bending had a negligible effect on xylem conductivity, even when deformations were sustained or were larger than would be encountered in nature. It was found that bending caused transient variation in the hydraulic pressure within the xylem of branch segments. This local transient increase in pressure in the xylem was rapidly propagated along the vascular system in planta to the upper and lower regions of the stem. It was shown that this hydraulic pulse originates from the apoplast. Water that was mobilized in the hydraulic pulses came from the saturated porous material of the conduits and their walls, suggesting that the poroelastic behaviour of xylem might be a key factor. Although likely to be a generic mechanical response, quantitative differences in the hydraulic pulse were found in different species, possibly related to differences in xylem anatomy. Importantly the hydraulic pulse was proportional to the strained volume, similar to known thigmomorphogenetic responses. It is hypothesized that the hydraulic pulse may be the signal that rapidly transmits mechanobiological information to leaves, roots, and apices.

  19. Thermal Hydraulic Performance of Tight Lattice Bundle

    Science.gov (United States)

    Yamamoto, Yasushi; Akiba, Miyuki; Morooka, Shinichi; Shirakawa, Kenetsu; Abe, Nobuaki

    Recently, the reduced moderation spectrum BWR has been studied. The fast neutron spectrum is obtained through triangular tight lattice fuel. However, there are few thermal hydraulic test data and thermal hydraulic correlation applicable to critical power prediction in such a tight lattice bundle. This study aims to enhance the database of the thermal hydraulic performance of the tight lattice bundle whose rod gap is about 1mm. Therefore, thermal hydraulic performance measurement tests of tight lattice bundles for the critical power, the pressure drop and the counter current flow limiting were performed. Moreover, the correlations to evaluate the thermal-hydraulic performance of the tight lattice bundle were developed.

  20. Design of hydraulic output Stirling engine

    Science.gov (United States)

    Toscano, W. M.; Harvey, A. C.; Lee, K.

    1983-01-01

    A hydraulic output system for the RE-1000 free piston stirling engine (FPSE) was designed. The hydraulic output system can be readily integrated with the existing hot section of RE-1000 FPSE. The system has two simply supported diaphragms which separate the engine gas from the hydraulic fluid, a dynamic balance mechanism, and a novel, null center band hydraulic pump. The diaphragms are designed to endure more than 10 billion cycles, and to withstand the differential pressure load as high as 14 MPa. The projected thermodynamic performance of the hydraulic output version of RE-1000 FPSE is 1.87 kW at 29/7 percent brake efficiency.

  1. Hydraulic fracture during epithelial stretching

    Science.gov (United States)

    Casares, Laura; Vincent, Romaric; Zalvidea, Dobryna; Campillo, Noelia; Navajas, Daniel; Arroyo, Marino; Trepat, Xavier

    2015-03-01

    The origin of fracture in epithelial cell sheets subject to stretch is commonly attributed to excess tension in the cells’ cytoskeleton, in the plasma membrane, or in cell-cell contacts. Here, we demonstrate that for a variety of synthetic and physiological hydrogel substrates the formation of epithelial cracks is caused by tissue stretching independently of epithelial tension. We show that the origin of the cracks is hydraulic; they result from a transient pressure build-up in the substrate during stretch and compression manoeuvres. After pressure equilibration, cracks heal readily through actomyosin-dependent mechanisms. The observed phenomenology is captured by the theory of poroelasticity, which predicts the size and healing dynamics of epithelial cracks as a function of the stiffness, geometry and composition of the hydrogel substrate. Our findings demonstrate that epithelial integrity is determined in a tension-independent manner by the coupling between tissue stretching and matrix hydraulics.

  2. Bio-based Hydraulic Fluids

    Science.gov (United States)

    2008-04-17

    currently formulated with vegetable oils (i.e., rapeseed , sun flower, corn, soybean, canola, coconut, etc.) and synthetic ester, such as polyol ester...2008 Vegetable Oil • Excellent lubrication • Nontoxic • Biodegradable • Derived from renewable resources such as rapeseed , sunflower, corn...Mineral Oil 100 SAE 15W-40 G Rapeseed 32 Commercial HF H Polyol ester 22 MIL-PRF-32073 Grade 2 I Canola - Cooking Oil *Hydraulic fluid 3717 April

  3. Fire Resistant Aircraft Hydraulic System.

    Science.gov (United States)

    1982-07-01

    and compounds based on new experimental elastomers as well as most commercially available elastomers were screened in seeking seals that were both...for hydraulic component testing. All of the available E6.5 stock was purchased for the screening tests. However, DuPont stated that other homologs of...with the lubricity and anti-wear additive olyvan A (molybdenum oxysulphide dithiocarbamate ) added in the quantity of less than one percent by weight

  4. Hydraulic Redistribution: A Modeling Perspective

    Science.gov (United States)

    Daly, E.; Verma, P.; Loheide, S. P., III

    2014-12-01

    Roots play a key role in the soil water balance. They extract and transport water for transpiration, which usually represents the most important soil water loss in vegetated areas, and can redistribute soil water, thereby increasing transpiration rates and enhancing root nutrient uptake. We present here a two-dimensional model capable of describing two key aspects of root water uptake: root water compensation and hydraulic redistribution. Root water compensation is the ability of root systems to respond to the reduction of water uptake from areas of the soil with low soil water potential by increasing the water uptake from the roots in soil parts with higher water potential. Hydraulic redistribution is a passive transfer of water through the root system from areas of the soil with greater water potential to areas with lower water potential. Both mechanisms are driven by gradients of water potential in the soil and the roots. The inclusion of root water compensation and hydraulic redistribution in models can be achieved by describing root water uptake as a function of the difference in water potential between soil and root xylem. We use a model comprising the Richards equation for the water flow in variably saturated soils and the Darcy's equation for the water flow in the xylem. The two equations are coupled via a sink term, which is assumed to be proportional to the difference between soil and xylem water potentials. The model is applied in two case studies to describe vertical and horizontal hydraulic redistribution and the interaction between vegetation with different root depths. In the case of horizontal redistribution, the model is used to reproduce the fluxes of water across the root system of a tree subjected to uneven irrigation. This example can be extended to situations when only part of the root system has access to water, such as vegetation near creeks, trees at the edge of forests, and street trees in urban areas. The second case is inspired by recent

  5. Genome-Centric Analysis of Microbial Populations Enriched by Hydraulic Fracture Fluid Additives in a Coal Bed Methane Production Well.

    Science.gov (United States)

    Robbins, Steven J; Evans, Paul N; Parks, Donovan H; Golding, Suzanne D; Tyson, Gene W

    2016-01-01

    Coal bed methane (CBM) is generated primarily through the microbial degradation of coal. Despite a limited understanding of the microorganisms responsible for this process, there is significant interest in developing methods to stimulate additional methane production from CBM wells. Physical techniques including hydraulic fracture stimulation are commonly applied to CBM wells, however the effects of specific additives contained in hydraulic fracture fluids on native CBM microbial communities are poorly understood. Here, metagenomic sequencing was applied to the formation waters of a hydraulically fractured and several non-fractured CBM production wells to determine the effect of this stimulation technique on the in-situ microbial community. The hydraulically fractured well was dominated by two microbial populations belonging to the class Phycisphaerae (within phylum Planctomycetes) and candidate phylum Aminicenantes. Populations from these phyla were absent or present at extremely low abundance in non-fractured CBM wells. Detailed metabolic reconstruction of near-complete genomes from these populations showed that their high relative abundance in the hydraulically fractured CBM well could be explained by the introduction of additional carbon sources, electron acceptors, and biocides contained in the hydraulic fracture fluid.

  6. Vibrations of hydraulic pump and their solution

    OpenAIRE

    Dobšáková Lenka; Nováková Naděžda; Habán Vladimír; Hudec Martin; Jandourek Pavel

    2017-01-01

    The vibrations of hydraulic pump and connected pipeline system are very problematic and often hardly soluble. The high pressure pulsations of hydraulic pump with the double suction inlet are investigated. For that reason the static pressure and accelerations are measured. The numerical simulations are carried out in order to correlate computed data with experimental ones and assess the main source of vibrations. Consequently the design optimization of the inner hydraulic part of pump is done ...

  7. Hydraulically Driven Grips For Hot Tensile Specimens

    Science.gov (United States)

    Bird, R. Keith; Johnson, George W.

    1994-01-01

    Pair of grips for tensile and compressive test specimens operate at temperatures up to 1,500 degrees F. Grips include wedges holding specimen inside furnace, where heated to uniform temperature. Hydraulic pistons drive wedges, causing them to exert clamping force. Hydraulic pistons and hydraulic fluid remain outside furnace, at room temperature. Cooling water flows through parts of grips to reduce heat transferred to external components. Advantages over older devices for gripping specimens in high-temperature tests; no need to drill holes in specimens, maintains constant gripping force on specimens, and heated to same temperature as that of specimen without risk of heating hydraulic fluid and acuator components.

  8. Induced seismicity caused by hydraulic fracturing in deep geothermal wells in Germany and adjacent areas

    Science.gov (United States)

    Plenefisch, Thomas; Brückner, Lisa; Ceranna, Lars; Gestermann, Nicolai; Houben, Georg; Tischner, Torsten; Wegler, Ulrich; Wellbrink, Matthias; Bönnemann, Christian; Bertram, Andreas; Kirschbaum, Bernd

    2016-04-01

    Recently, the BGR has worked out a study on the potential environmental impact caused by hydraulic fracturing or chemical stimulations in deep geothermal reservoirs in Germany and adjacent areas. The investigations and analyses are based on existing studies and information provided by operators. The two environmental impacts being essentially considered in the report are induced seismicity and possible contamination of the groundwater reservoirs which serve for drinking water supply. Altogether, in this study, information on 30 hydraulic frac operations and 26 chemical stimulations including information from neighboring countries were compiled and analyzed. Out of the hydraulic stimulations two thirds were carried out as waterfracs and one third as fracturing with proppants. Parameters used in the study to characterize the induced seismicity are maximum magnitude, number of seismic events, size of the seismically active volume, and the relation of this volume to fault zones and the cap rock, as well as, finally, the impacts at the Earth's surface. The response of the subsurface to hydraulic fracturing is variable: There are some activities, which cause perceptible seismic events, others, where no perceptible but instrumentally detected events occurred, and moreover activities without even any instrumentally detected events. A classification of seismic hazard with respect to tectonic region, geology, or depth of the layer is still difficult, since the number of hydraulic fracturing measures in deep geothermal wells is small making a statistically sound analysis impossible. However, there are some indications, that hydraulic fracturing in granite in tectonically active regions like the Upper Rhine Graben results in comparatively stronger, perceptible seismicity compared to hydraulic fracturing in the sedimentary rocks of the North German basin. The maximum magnitudes of induced earthquakes caused by hydraulic fracturing of deep geothermal wells in Germany are

  9. Design and Analysis of Hydraulic Chassis with Obstacle Avoidance Function

    Science.gov (United States)

    Hong, Yingjie; Zhang, Xiang

    2017-07-01

    This article mainly expounds the design of hydraulic system for the hydraulic chassis with obstacle avoidance function. Including the selection of hydraulic motor wheels, hydraulic pump, digital hydraulic cylinder and the matching of engine power. And briefly introduces the principle of obstacle avoidance.

  10. Helical coil thermal hydraulic model

    Science.gov (United States)

    Caramello, M.; Bertani, C.; De Salve, M.; Panella, B.

    2014-11-01

    A model has been developed in Matlab environment for the thermal hydraulic analysis of helical coil and shell steam generators. The model considers the internal flow inside one helix and its associated control volume of water on the external side, both characterized by their inlet thermodynamic conditions and the characteristic geometry data. The model evaluates the behaviour of the thermal-hydraulic parameters of the two fluids, such as temperature, pressure, heat transfer coefficients, flow quality, void fraction and heat flux. The evaluation of the heat transfer coefficients as well as the pressure drops has been performed by means of the most validated literature correlations. The model has been applied to one of the steam generators of the IRIS modular reactor and a comparison has been performed with the RELAP5/Mod.3.3 code applied to an inclined straight pipe that has the same length and the same elevation change between inlet and outlet of the real helix. The predictions of the developed model and RELAP5/Mod.3.3 code are in fairly good agreement before the dryout region, while the dryout front inside the helical pipes is predicted at a lower distance from inlet by the model.

  11. Joint inversion of hydraulic head and self-potential data associated with harmonic pumping tests

    Science.gov (United States)

    Soueid Ahmed, A.; Jardani, A.; Revil, A.; Dupont, J. P.

    2016-09-01

    Harmonic pumping tests consist in stimulating an aquifer by the means of hydraulic stimulations at some discrete frequencies. The inverse problem consisting in retrieving the hydraulic properties is inherently ill posed and is usually underdetermined when considering the number of well head data available in field conditions. To better constrain this inverse problem, we add self-potential data recorded at the ground surface to the head data. The self-potential method is a passive geophysical method. Its signals are generated by the groundwater flow through an electrokinetic coupling. We showed using a 3-D saturated unconfined synthetic aquifer that the self-potential method significantly improves the results of the harmonic hydraulic tomography. The hydroelectric forward problem is obtained by solving first the Richards equation, describing the groundwater flow, and then using the result in an electrical Poisson equation describing the self-potential problem. The joint inversion problem is solved using a reduction model based on the principal component geostatistical approach. In this method, the large prior covariance matrix is truncated and replaced by its low-rank approximation, allowing thus for notable computational time and storage savings. Three test cases are studied, to assess the validity of our approach. In the first test, we show that when the number of harmonic stimulations is low, combining the harmonic hydraulic and self-potential data does not improve the inversion results. In the second test where enough harmonic stimulations are performed, a significant improvement of the hydraulic parameters is observed. In the last synthetic test, we show that the electrical conductivity field required to invert the self-potential data can be determined with enough accuracy using an electrical resistivity tomography survey using the same electrodes configuration as used for the self-potential investigation.

  12. Growth Stimulants

    OpenAIRE

    Matthews, Nyle J.

    1989-01-01

    A tiny pellet inserted under the skin of a calf's ear may increase weight gains as much as 15 to 20 percent. This same result would take years to accomplish through breeding and selection. These tiny pellets are growth stimulants. They are made of hormones that are constructed to slowly release minute amounts into the blood stream that stimulate the animal to produce natural body hormones. One of these hormones is a growth hormone. It regulates the rate of growth of the animal. Increasing the...

  13. WATER ENERGY IN HYDROAMELIORATIVE SYSTEMS USING THE HYDRAULIC TRANSFORMER TYPE A. BARGLAZAN AND THE HYDRAULIC HAMMER (HYDRAULIC PUMP

    Directory of Open Access Journals (Sweden)

    Teodor Eugen Man

    2010-01-01

    Full Text Available This paper presents two examples of exploitation of water energy that can be used in the irrigation field. First of theseexamples is the hydraulic transformer type A. Barglazan used for irrigation, pumped water is taken directly from theriver’s well, using a hydraulic pump which simultaneously carried out a double transformation in this way: hydraulicenergy into mechanic energy and mechanical energy into hydraulic energy. Technology preparation and devices designwas done in record time, seeing that this constructive solution is more robust, reliable and with improved energyperformance versus the laboratory prototype. The experimental research which was made at 1:1 scale proved theirgood function over time. Another example is the hydraulic hammer (hydraulic pump that uses low-head energy topump water, with a global efficiency of about 10 - 50%. Currently, the new situation of private ownership of landprovides conditions for new pumping microstations to be made where irrigation is necessary and optimal hydrauliclocations exist.

  14. HYDRAULIC CHARACTERISTICS OF VERTICAL VORTEX AT HYDRAULIC INTAKES

    Institute of Scientific and Technical Information of China (English)

    CHEN Yun-liang; WU Chao; YE Mao; JU Xiao-ming

    2007-01-01

    The trace of vertical vortex flow at hydraulic intakes is of the shape of spiral lines, which was observed in the presented experiments with the tracer technique. It represents the fluid particles flow spirally from the water surface to the underwater and rotate around the vortex-axis multi-cycle. This process is similar to the movement of screw. To describe the multi-circle spiral characteristics under the axisymmetric condition, the vertical vortex would change not only in the radial direction but also in the axial direction. The improved formulae for three velocity components for the vertical vortex flow were deduced by using the method of separation of variables in this article. In the improved formulae, the velocity components are the functions of the radial and axial coordinates, so the multi-circle spiral flow of vertical vortex could be simulated. The calculated and measured results for the vertical vortex flow were compared and the causes of errors were analyzed.

  15. Design of Pumps for Water Hydraulic Systems

    DEFF Research Database (Denmark)

    Klit, Peder; Olsen, Stefan; Bech, Thomas Nørgaard

    1999-01-01

    This paper considers the development of two pumps for water hydraulic applications. The pumps are based on two different working principles: The Vane-type pump and the Gear-type pump. Emphasis is put on the considerations that should be made to account for water as the hydraulic fluid.......KEYWORDS: water, pump, design, vane, gear....

  16. Hydraulic fracturing with distinct element method

    NARCIS (Netherlands)

    Pruiksma, J.P.; Bezuijen, A.

    2002-01-01

    In this report, hydraulic fracturing is investigated using the distinct element code PFC2D from Itasca. Special routines were written to be able to model hydraulic fracturing. These include adding fluid flow to PFC2D and updating the fluid flow domains when fractures appear. A brief description of t

  17. Hydraulic Actuator for Ganged Control Rods

    Science.gov (United States)

    Thompson, D. C.; Robey, R. M.

    1986-01-01

    Hydraulic actuator moves several nuclear-reactor control rods in unison. Electromagnetic pump pushes liquid lithium against ends of control rods, forcing them out of or into nuclear reactor. Color arrows show lithium flow for reactor startup and operation. Flow reversed for shutdown. Conceived for use aboard spacecraft, actuator principle applied to terrestrial hydraulic machinery involving motion of ganged rods.

  18. Control arrangement for the actuation of hydraulic consumers

    Energy Technology Data Exchange (ETDEWEB)

    Kussel, W.; Dettmers, M.; Weirich, W.

    1988-11-09

    An arrangement for controlling the actuation of hydraulic consumers, by selectively connecting the consumers to hydraulic pressure and return lines; the control arrangement comprising a respective hydraulically operated directional control valve associated with each of the hydraulic consumers, a respective electro-magnetically operated pre-control valve associated with each of the hydraulic directional control valves, and further electro-magnetically operated directional control valve means associated with the pre-control valves, each of the hydraulic consumers being connectible to the hydraulic pressure or return lines via the associated hydraulically operated directional control valve which is actuatable by a hydraulic control line leading from the output of the associated pre-control valve, wherein the inputs of the pre-control valves are connected directly to the hydraulic return line and indirectly, via the further control valve means, to the hydraulic return line or to a hydraulic control pressure line.

  19. Gravity-Driven Hydraulic Fractures

    Science.gov (United States)

    Germanovich, L. N.; Garagash, D.; Murdoch, L. C.; Robinowitz, M.

    2014-12-01

    This study is motived by a new method for disposing of nuclear waste by injecting it as a dense slurry into a hydraulic fracture that grows downward to great enough depth to permanently isolate the waste. Disposing of nuclear waste using gravity-driven hydraulic fractures is mechanically similar to the upward growth of dikes filled with low density magma. A fundamental question in both applications is how the injected fluid controls the propagation dynamics and fracture geometry (depth and breadth) in three dimensions. Analog experiments in gelatin [e.g., Heimpel and Olson, 1994; Taisne and Tait, 2009] show that fracture breadth (the short horizontal dimension) remains nearly stationary when the process in the fracture "head" (where breadth is controlled) is dominated by solid toughness, whereas viscous fluid dissipation is dominant in the fracture tail. We model propagation of the resulting gravity-driven (buoyant or sinking), finger-like fracture of stationary breadth with slowly varying opening along the crack length. The elastic response to fluid loading in a horizontal cross-section is local and can be treated similar to the classical Perkins-Kern-Nordgren (PKN) model of hydraulic fracturing. The propagation condition for a finger-like crack is based on balancing the global energy release rate due to a unit crack extension with the rock fracture toughness. It allows us to relate the net fluid pressure at the tip to the fracture breadth and rock toughness. Unlike the PKN fracture, where breadth is known a priori, the final breadth of a finger-like fracture is a result of processes in the fracture head. Because the head is much more open than the tail, viscous pressure drop in the head can be neglected leading to a 3D analog of Weertman's hydrostatic pulse. This requires relaxing the local elasticity assumption of the PKN model in the fracture head. As a result, we resolve the breadth, and then match the viscosity-dominated tail with the 3-D, toughness

  20. Scaling hydraulic properties of a macroporous soil

    Science.gov (United States)

    Mohanty, Binayak P.

    1999-06-01

    Macroporous soils exhibit significant differences in their hydraulic properties for different pore domains. Multimodal hydraulic functions may be used to describe the characteristics of multiporosity media. I investigated the usefulness of scaling to describe the spatial variability of hydraulic conductivity (K(-h)) functions of a macroporous soil in Las Nutrias, New Mexico. Piecewise-continuous hydraulic conductivity functions suitable for macroporous soils in conjunction with a hybrid similar media-functional normalization scaling approach were used. Results showed that gravity-dominated flow and the related hydraulic conductivity (K(minus;h) functions of the macropore region are more readily scalable than capillary-dominated flow properties of the mesopore and micropore regions. A possible reason for this behavior is that gravity-dominated flow in the larger pores is mostly influenced by the pore diameter which remains more uniform as compared to tortuous mesopores and micropores with variable neck and body sizes along the pore length.

  1. Hydraulic conductivity of GCLs in MSW landfills

    Institute of Scientific and Technical Information of China (English)

    LI Guo-cheng; YANG Wu-chao; DAN Tang-hui

    2008-01-01

    The state of the art of the study on the hydraulic conductivity of GCLs is presented in terms of the in-fluence of the effective stress, chemical interactions, freeze - thaw cycles and temperature gradients. The chan-ges of void ratio caused by changes of effective stress have a direct linear effect on the hydraulic conductivity, regardless of the cation concentration or the thickness of the adsorbed layer. The hydraulic conductivity is relat-ed to the relative abundance of monovalent and divalent cation(RMD), and RMD has a great effect on the hy-draulic conductivity in weak solution. The long-term susceptibility of GCLs to increased hydraulic conductivity as a response to repeated freeze-thaw cycling is minimal, which has been proved after 150 freeze-thaw cycles. The potential of desiccation cracking increases with the increasing temperature gradient and is related to the ini-tial subsoil water content, the applied overburden stress, etc.

  2. Modeling and Simulation of Hydraulic Engine Mounts

    Institute of Scientific and Technical Information of China (English)

    DUAN Shanzhong; Marshall McNea

    2012-01-01

    Hydraulic engine mounts are widely used in automotive powertrains for vibration isolation.A lumped mechanical parameter model is a traditional approach to model and simulate such mounts.This paper presents a dynamical model of a passive hydraulic engine mount with a double-chamber,an inertia track,a decoupler,and a plunger.The model is developed based on analogy between electrical systems and mechanical-hydraulic systems.The model is established to capture both low and high frequency dynatmic behaviors of the hydraulic mount.The model will be further used to find the approximate pulse responses of the mounts in terms of the force transmission and top chamber pressure.The close form solution from the simplifiod linear model may provide some insight into the highly nonlinear behavior of the mounts.Based on the model,computer simulation has been carried out to study dynamic performance of the hydraulic mount.

  3. Hydraulic test for evaluation of hydrophone VSP

    Energy Technology Data Exchange (ETDEWEB)

    Yabuuchi, Satoshi; Koide, Kaoru [Power Reactor and Nuclear Fuel Development Corp., Toki, Gifu (Japan). Tono Geoscience Center

    1997-12-01

    This hydraulic test was carried out at the test site of Tono Geoscience Center, Mizunami-shi, Gifu Pref. in order to evaluate the reliability of the hydraulic conductivity estimated from hydrophone VSP experiment. From March to April 1997, we carried out measurements of pore-water pressure at five depths and permeability tests at seven depths down to G.L.-300m, within a borehole drilled in granitic rock. We compared the results of hydraulic test with hydrophone VSP experiment on condition that a single open fracture existed, and we obtained two notable results. First, for the granitic rock at which a single open fracture was found by BTV and also detected by hydrophone VSP experiment, the hydraulic conductivity was 1.54 x 10{sup -7} cm/sec, while for the same granitic rock at which another single open fracture was found by BTV but not detected by hydrophone VSP experiment, the hydraulic conductivity was less than 6 x 10{sup -10} cm/sec. Second, we converted the hydraulic conductivity of 1.54 x 10{sup -7} cm/sec which was obtained in a hydraulic test section of length 2.5 m into an equivalent value for a single open fracture of width 1 mm. The converted value (3.8 x 10{sup -4} cm/sec) was similar to the hydraulic conductivity estimated from hydrophone VSP experiment. In conclusion, the hydraulic test result shows that hydrophone VSP is useful to estimate an approximate hydraulic conductivity of a single open fracture. (author)

  4. DLC coatings for hydraulic applications

    Institute of Scientific and Technical Information of China (English)

    Luca NOBILI; Luca MAGAGNIN

    2009-01-01

    Replacement of lubricating oils with water or low-viscosity fluids is highly desirable in many industrial fields, on account of the environmental and economical advantages. Low lubricity of water might be insufficient for proper operation of hydraulic components, and diamond-like carbon(DLC) coatings are very attractive as solid lubricant films. A remote-plasma PACVD process was utilized to deposit hydrogenated DLC coatings (a-C:H) on different substrates. Microindentation measurements show that the coating hardness is around 35 GPa. Tribological behavior was evaluated by block-on-ring tests performed in water and water with alumina. The wear rate was calculated after measuring the wear volume by a laser profilemeter. Morphological and compositional analysis of the wear tracks reveal that coating failure may occur by abrasive wear or delamination, depending on the substrate properties. Hard and smooth substrates give the best results and dispersed alumina particles increase the wear rate.

  5. Aircraft Hydraulic Systems Dynamic Analysis

    Science.gov (United States)

    1978-10-01

    4400 PSIG OUTLET PRESSURE ~’f UM5 S1 l .( FIF ~0RV lR 1 .I. AP (c R (V) IFWM) APPROX C ASE !VPý :iI S ReUN N•;MRF.. r p kN i t, isI A! f IN, I:E • ’l...and 1F.GI pump modelo were assumed from data supplied by CECO. 165 _ -- --- - SECTION V HYDRAULIC MOTOR MODEL DEVELOPMENT AND VERIFICATION A fixed...3 70 P.,0 601 ~4 M24.0 3 1p ’, 4 r I 1 1 ISIS 2411 APPENDIX E (CONT.) HSFR TECHNICAL MANUAL (AFAPL-TR-76-43, VOL. IV) 4.15 VANE PU`MP SUBROUTINE 4.15A

  6. Deep Stimulation at Newberry Volcano EGS Demonstration

    Science.gov (United States)

    Grasso, K.; Cladouhos, T. T.; Petty, S.; Garrison, G. H.; Nordin, Y.; Uddenberg, M.; Swyer, M.

    2014-12-01

    The Newberry Volcano EGS Demonstration is a 5 year field project designed to demonstrate recent technological advances for engineered geothermal systems (EGS) development. Advances in reservoir stimulation, diverter, and monitoring are being tested in a hot (>300 C), dry well (NWG 55-29) drilled in 2008. These technologies could reduce the cost of electrical power generation. The project began in 2010 with two years of permitting, technical planning, and development of a project-specific Induced Seismicity Mitigation Plan (ISMP), and is funded in part by the Department of Energy. In 2012, the well was hydraulically stimulated with water at pressures below the principle stress for 7 weeks, resulting in hydroshearing. The depth of stimulation was successfully shifted by injection of two pills of Thermally-degradable Zonal Isolation Materials (TZIMs). Injectivity changes, thermal profiles and seismicity indicate that fracture permeability in well NWG 55-29 was enhanced during stimulation. This work successfully demonstrated the viability of large-volume (40,000 m3), low-pressure stimulation coupled with non-mechanical diverter technology, and microseismic monitoring for reservoir mapping. Further analysis and field testing in 2013 indicates further stimulation will be required in order to develop an economically viable reservoir, and is scheduled in 2014. The 2014 stimulation will use improved stimulation and monitoring equipment, better knowledge based on 2012 outcomes, and create a deep EGS reservoir in the hottest part of the wellbore.

  7. 3D numerical modeling of shale gas stimulation and seisimicity

    NARCIS (Netherlands)

    Shahid, A.S.; Wassing, B.B.T.; Verga, F.; Fokker, P.A.

    2013-01-01

    The economic production from shale gas reservoir depends on the success of hydraulic stimulation, which is aimed at the creation of a permeable complex fracture network. This is achieved by the reactivation of a natural fracture network; however, the reactivation may be accompanied by unwanted seism

  8. DESIGN AND CONSTRUCTION OF A HYDRAULIC PISTON

    OpenAIRE

    Santos De La Cruz, Eulogio; Universidad Nacional Mayor de San Marcos; Rojas Lazo, Oswaldo; Universidad Nacional Mayor de San Marcos; Yenque Dedios, Julio; Universidad Nacional Mayor de San Marcos; Lavado Soto, Aurelio; Universidad Nacional Mayor de San Marcos

    2014-01-01

    A hydraulic system project includes the design, materials selection and construction of the hydraulic piston, hydraulic circuit and the joint with the pump and its accesories. This equiment will be driven by the force of moving fluid, whose application is in the devices of machines, tools, printing, perforation, packing and others. El proyecto de un sistema hidráulico, comprende el diseño, selección de materiales y construcción del pistón hidráulico, circuito hidráulico y el ensamble con l...

  9. Bubble visualization in a simulated hydraulic jump

    CERN Document Server

    Witt, Adam; Shen, Lian

    2013-01-01

    This is a fluid dynamics video of two- and three-dimensional computational fluid dynamics simulations carried out at St. Anthony Falls Laboratory. A transient hydraulic jump is simulated using OpenFOAM, an open source numerical solver. A Volume of Fluid numerical method is employed with a realizable k-epsilon turbulence model. The goal of this research is to model the void fraction and bubble size in a transient hydraulic jump. This fluid dynamics video depicts the air entrainment characteristics and bubble behavior within a hydraulic jump of Froude number 4.82.

  10. Hydraulic Fracturing and the Environment

    Science.gov (United States)

    Ayatollahy Tafti, T.; Aminzadeh, F.; Jafarpour, B.; de Barros, F.

    2013-12-01

    In this presentation, we highlight two key environmental concerns of hydraulic fracturing (HF), namely induced seismicity and groundwater contamination (GC). We examine the induced seismicity (IS) associated with different subsurface fluid injection and production (SFIP) operations and the key operational parameters of SFIP impacting it. In addition we review the key potential sources for possible water contamination. Both in the case of IS and GC we propose modeling and data analysis methods to quantify the risk factors to be used for monitoring and risk reduction. SFIP include presents a risk in hydraulic fracturing, waste water injection, enhanced oil recovery as well as geothermal energy operations. Although a recent report (NRC 2012) documents that HF is not responsible for most of the induced seismicities, we primarily focus on HF here. We look into vaious operational parameters such as volume and rate of water injection, the direction of the well versus the natural fracture network, the depth of the target and the local stress field and fault system, as well as other geological features. The latter would determine the potential for triggering tectonic related events by small induced seismicity events. We provide the building blocks for IS risk assessment and monitoring. The system we propose will involve adequate layers of complexity based on mapped seismic attributes as well as results from ANN and probabilistic predictive modeling workflows. This leads to a set of guidelines which further defines 'safe operating conditions' and 'safe operating zones' which will be a valuable reference for future SFIP operations. We also illustrate how HF can lead to groundwater aquifer contamination. The source of aquifer contamination can be the hydrocarbon gas or the chemicals used in the injected liquid in the formation. We explore possible pathways of contamination within and discuss the likelihood of contamination from each source. Many of the chemical compounds used

  11. Study on Characteristics of Hydraulic Servo System for Force Control of Hydraulic Robots

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hyo-gon; Han, Changsoo [Hanyang University, Seoul (Korea, Republic of); Lee, Jong-won [Korea University of Science and Technology, Seoul (Korea, Republic of); Park, Sangdeok [Korea Institute of Industrial Technology, Seoul (Korea, Republic of)

    2015-02-15

    Because a hydraulic actuator has high power and force densities, this allows the weight of the robot's limbs to be reduced. This allows for good dynamic characteristics and high energy efficiency. Thus, hydraulic actuators are used in some exoskeleton robots and quadrupedal robots that require high torque. Force control is useful for robot compliance with a user or environment. However, force control of a hydraulic robot is difficult because a hydraulic servo system is highly nonlinear from a control perspective. In this study, a nonlinear model was used to develop a simulation program for a hydraulic servo system consisting of a servo valve, transmission lines, and a cylinder. The problems and considerations with regard to the force control performance for a hydraulic servo system were investigated. A force control method using the nonlinear model was proposed, and its effect was evaluated with the simulation program.

  12. Imaging hydraulic fractures by microseismic migration for downhole monitoring system

    Science.gov (United States)

    Lin, Ye; Zhang, Haijiang

    2016-12-01

    It has been a challenge to accurately characterize fracture zones created by hydraulic fracturing from microseismic event locations. This is because generally detected events are not complete due to the associated low signal to noise ratio and some fracturing stages may not produce microseismic events even if fractures are well developed. As a result, spatial distribution of microseismic events may not well represent fractured zones by hydraulic fracturing. Here, we propose a new way to characterize the fractured zones by reverse time migration (RTM) of microseismic waveforms from some events. This is based on the fact that fractures filled with proppants and other fluids can act as strong scatterers for seismic waves. Therefore, for multi-stage hydraulic fracturing, recorded waveforms from microseismic events induced in a more recent stage may be scattered by fractured zones from previous stages. Through RTM of microseismic waveforms in the current stage, we can determine fractured zones created in previous stages by imaging area of strong scattering. We test the feasibility of this method using synthetic models with different configurations of microseismic event locations and borehole sensor positions for a 2D downhole microseismic monitoring system. Synthetic tests show that with a few events fractured zones can be directly imaged and thus the stimulated reservoir volume (SRV) can be estimated. Compared to the conventional location-based SRV estimation method, the proposed new method does not depend on the completeness of detected events and only a limited number of detected and located events are necessary for characterizing fracture distribution. For simplicity, the 2D model is used for illustrating the concept of microseismic RTM for imaging the fracture zone but the method can be adapted to real cases in the future.

  13. Different stimulation strategies to enhance the performance of subsurface heat exchangers based on tensile fractures

    NARCIS (Netherlands)

    Pluymaekers, M.P.D.; Wees, J.D.A.M. van; Hoedeman, G.C.; Fokker, P.A.

    2013-01-01

    Tensile fraccing in non-critically stressed tectonic environments, such as occur in large parts of the Netherlands, allows stimulation with a negligible level of seismicity. In this paper we analyse the performance of two tensile hydraulic stimulation strategies, for geothermal systems at large dept

  14. Parker Hybrid Hydraulic Drivetrain Demonstration

    Energy Technology Data Exchange (ETDEWEB)

    Collett, Raymond [Parker-Hannifin Corporation, Cleveland, OH (United States); Howland, James [Parker-Hannifin Corporation, Cleveland, OH (United States); Venkiteswaran, Prasad [National Energy Technology Lab. (NETL), Morgantown, WV (United States)

    2014-03-31

    This report examines the benefits of Parker Hannifin hydraulic hybrid brake energy recovery systems used in commercial applications for vocational purposes. A detailed background on the problem statement being addressed as well as the solution set specific for parcel delivery will be provided. Objectives of the demonstration performed in high start & stop applications included opportunities in fuel usage reduction, emissions reduction, vehicle productivity, and vehicle maintenance. Completed findings during the demonstration period and parallel investigations with NREL, CALSTART, along with a literature review will be provided herein on this research area. Lastly, results identified in the study by third parties validated the savings potential in fuel reduction of on average of 19% to 52% over the baseline in terms of mpg (Lammert, 2014, p11), Parker data for parcel delivery vehicles in the field parallels this at a range of 35% - 50%, emissions reduction of 17.4% lower CO2 per mile and 30.4% lower NOx per mile (Gallo, 2014, p15), with maintenance improvement in the areas of brake and starter replacement, while leaving room for further study in the area of productivity in terms of specific metrics that can be applied and studied.

  15. Thermal hydraulics development for CASL

    Energy Technology Data Exchange (ETDEWEB)

    Lowrie, Robert B [Los Alamos National Laboratory

    2010-12-07

    This talk will describe the technical direction of the Thermal-Hydraulics (T-H) Project within the Consortium for Advanced Simulation of Light Water Reactors (CASL) Department of Energy Innovation Hub. CASL is focused on developing a 'virtual reactor', that will simulate the physical processes that occur within a light-water reactor. These simulations will address several challenge problems, defined by laboratory, university, and industrial partners that make up CASL. CASL's T-H efforts are encompassed in two sub-projects: (1) Computational Fluid Dynamics (CFD), (2) Interface Treatment Methods (ITM). The CFD subproject will develop non-proprietary, scalable, verified and validated macroscale CFD simulation tools. These tools typically require closures for their turbulence and boiling models, which will be provided by the ITM sub-project, via experiments and microscale (such as DNS) simulation results. The near-term milestones and longer term plans of these two sub-projects will be discussed.

  16. Transputer Control of Hydraulic Actuators and Robots

    DEFF Research Database (Denmark)

    Conrad, Finn

    1996-01-01

    Results from a Danish mechatronics research program entitled IMCIA - Intelligent Control and Intelligent Actuators. The objective is development of intelligent actuators for intelligent motion control. A mechatronics test facility with a transputer controlled hydraulic robot suiteable for real...

  17. Concept Evaluation for Hydraulic Yaw System

    DEFF Research Database (Denmark)

    Stubkier, Søren; Pedersen, Henrik C.; Andersen, Torben Ole

    2013-01-01

    a suspension system on a car, leading the loads away from the turbine structure. However, to realize a soft hydraulic yaw system a new design concept must be found. As a part of the development of the new concept a preliminary concept evaluation has been conducted, evaluating seven different hydraulic yaw...... concepts, ranging from a one-to-one copy of the electrical drive (electrical drives replaced by hydraulic dittos), to floating suspension systems mounted on hydraulic cylinders. Rough calculations of size and consequences of the different systems are presented ending up with the final concept for further...... investigation. Loads and yaw demands are based on the IEC 61400-1 standard for wind turbine design, and the loads for this examination are extrapolated from the HAWC2 aeroelastic design code. The concepts are based on a 5 MW off-shore turbine....

  18. HYDRAULICS, Des Moines COUNTY, IOWA, USA

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Hydraulic data include spatial datasets and data tables necessary for documenting the hydrologic procedures for estimating flood discharges for a flood insurance...

  19. ON THE THEORIES OF HYDRAULIC GEOMETRY

    Institute of Scientific and Technical Information of China (English)

    Vijay P. SINGH

    2003-01-01

    Hydraulic geometry is of fundamental importance in planning, design, and management of river engineering and training works. Although some concepts of hydraulic geometry were proposed toward the end of the nineteenth century, the real impetus toward formulating a theory of hydraulic geometry was provided by the work of Leopold and Maddock (1953). A number of theories have since been proposed.Some of the theories are interrelated but others are based on quite different principles. All theories,however, assume that the river flow is steady and uniform and the river tends to attain a state of equilibrium or quasi-equilibrium. The differences are due to the differences in hydraulic mechanisms that the theories employ to explain the attainment of equilibrium by the river.

  20. Stream restoration hydraulic design course: lecture notes

    National Research Council Canada - National Science Library

    Newbury, R

    2002-01-01

    Steam restoration encompasses a broad range of activities and disciplines. This lecture series is designed for practitioners who must fit habitat improvement works in the hydraulics of degraded channels...

  1. Drawing a pictogram operator - hydraulic stowing assembly

    Energy Technology Data Exchange (ETDEWEB)

    Bukhgol' ts, V.P.; Dinershtein, V.A.

    1984-11-01

    Hydraulic stowing is widely used during the extraction of coal from seams prone to spontaneous ignition or from seams situated under preserved structures. Experience has shown that the presence of a considerable number of controlling and measuring devices on hydraulic stowing assemblies results in erratic operations. The authors, after examining the controls of the hydraulic stowing complexes, recommend that all functions which the operator might perform badly or not at all should be controlled automatically. The operator must, however, have access to manual controls which should be included in the system in order to achieve an effective and trouble free operation. The authors propose a pictogram to explain the relationship between the human operator and the hydraulic complex, based on structural diagrams. The system developed, which was tried out at the Koksovaya mine, increased the efficiency of the complex and reduced the work load of the operator. 3 references.

  2. HYDRAULICS, Des Moines COUNTY, IOWA, USA

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Hydraulic data include spatial datasets and data tables necessary for documenting the hydrologic procedures for estimating flood discharges for a flood insurance...

  3. Hydraulic fracturing chemicals and fluids technology

    CERN Document Server

    Fink, Johannes

    2013-01-01

    When classifying fracturing fluids and their additives, it is important that production, operation, and completion engineers understand which chemical should be utilized in different well environments. A user's guide to the many chemicals and chemical additives used in hydraulic fracturing operations, Hydraulic Fracturing Chemicals and Fluids Technology provides an easy-to-use manual to create fluid formulations that will meet project-specific needs while protecting the environment and the life of the well. Fink creates a concise and comprehensive reference that enables the engineer to logically select and use the appropriate chemicals on any hydraulic fracturing job. The first book devoted entirely to hydraulic fracturing chemicals, Fink eliminates the guesswork so the engineer can select the best chemicals needed on the job while providing the best protection for the well, workers and environment. Pinpoints the specific compounds used in any given fracturing operation Provides a systematic approach to class...

  4. Transputer Control of Hydraulic Actuators and Robots

    DEFF Research Database (Denmark)

    Conrad, Finn

    1996-01-01

    Results from a Danish mechatronics research program entitled IMCIA - Intelligent Control and Intelligent Actuators. The objective is development of intelligent actuators for intelligent motion control. A mechatronics test facility with a transputer controlled hydraulic robot suiteable for real...

  5. 46 CFR 112.50-3 - Hydraulic starting.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Hydraulic starting. 112.50-3 Section 112.50-3 Shipping... POWER SYSTEMS Emergency Diesel and Gas Turbine Engine Driven Generator Sets § 112.50-3 Hydraulic starting. A hydraulic starting system must meet the following: (a) The hydraulic starting system must be...

  6. 21 CFR 870.2780 - Hydraulic, pneumatic, or photoelectric plethysmographs.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Hydraulic, pneumatic, or photoelectric... § 870.2780 Hydraulic, pneumatic, or photoelectric plethysmographs. (a) Identification. A hydraulic... using hydraulic, pneumatic, or photoelectric measurement techniques. (b) Classification. Class...

  7. Geothermal wells: the cost benefit of fracture stimulation estimated by the GEOCOM code. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Brown, G.L.

    1983-09-01

    GEOCOM, a computer code that provides life cycle cost/benefit analysis of completion technologies applied to geothermal wells, is used to study fracture stimulation techniques. it is estimated that stimulation must increase flow by roughly tons per $100,000 in order to be cost effective. Typically, hydraulic fracturing costs $100,000 to $500,000 per well, and the attempts at stimulation to date have generally not achieved the desired flow increases. The cost effectiveness of hydraulic fracturing is considered for several geothermal reservoirs.

  8. RESEARCH OF THE DYNAMIC CHARACTERISTICS ON A NEW HYDRAULIC SYSTEM OF ELECTRO-HYDRAULIC HAMMER

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    A new typed hydraulic system of electro-hydraulic hammer is researched and developed.By means of power bond graphs the modeling and simulation to the dynamic characteristics of the new hydraulic system are performed. The experimental research which is emphasized on the blowing stroke is also performed. It is proved from the result of simulation and experiment that this new hydraulic system possesses such advantages as simplification of structure,flexibleness of operation and reliability of working. Especially it possesses better dynamic characteristics.

  9. Design of a laboratory hydraulic device for testing of hydraulic pumps

    Directory of Open Access Journals (Sweden)

    Pavel Máchal

    2013-01-01

    Full Text Available The present contribution deals with solves problem of research of testing device to monitor of hydrostatic pumps durability about dynamic loading under laboratory conditions. When carrying out the design of testing device are based on load characteristics of tractor hydraulic circuit, the individual characteristics of hydraulic components and performed calculations. Load characteristics on the tractors CASE IH Magnum 310, JOHN DEERE 8100, ZETOR FORTERRA 114 41 and Fendt 926 Vario were measured. Design of a hydraulic laboratory device is based on the need for testing new types of hydraulic pumps or various types of hydraulic fluids. When creating of hydraulic device we focused on testing hydraulic pumps used in agricultural and forestry tractors. Proportional pressure control valve is an active member of the hydraulic device, which provides change of a continuous control signal into relative pressure of operating fluid. The advantage of a designed hydraulic system is possibility of simulation of dynamic operating loading, which is obtained by measurement under real conditions, and thereby creates laboratory conditions as close to real conditions as possible. The laboratory device is constructed at the Department of Transport and Handling, Faculty of Engineering, Slovak University of Agriculture in Nitra.

  10. Understanding hydraulic fracturing: a multi-scale problem.

    Science.gov (United States)

    Hyman, J D; Jiménez-Martínez, J; Viswanathan, H S; Carey, J W; Porter, M L; Rougier, E; Karra, S; Kang, Q; Frash, L; Chen, L; Lei, Z; O'Malley, D; Makedonska, N

    2016-10-13

    Despite the impact that hydraulic fracturing has had on the energy sector, the physical mechanisms that control its efficiency and environmental impacts remain poorly understood in part because the length scales involved range from nanometres to kilometres. We characterize flow and transport in shale formations across and between these scales using integrated computational, theoretical and experimental efforts/methods. At the field scale, we use discrete fracture network modelling to simulate production of a hydraulically fractured well from a fracture network that is based on the site characterization of a shale gas reservoir. At the core scale, we use triaxial fracture experiments and a finite-discrete element model to study dynamic fracture/crack propagation in low permeability shale. We use lattice Boltzmann pore-scale simulations and microfluidic experiments in both synthetic and shale rock micromodels to study pore-scale flow and transport phenomena, including multi-phase flow and fluids mixing. A mechanistic description and integration of these multiple scales is required for accurate predictions of production and the eventual optimization of hydrocarbon extraction from unconventional reservoirs. Finally, we discuss the potential of CO2 as an alternative working fluid, both in fracturing and re-stimulating activities, beyond its environmental advantages.This article is part of the themed issue 'Energy and the subsurface'.

  11. Characterization of a hydraulically induced bedrock fracture

    OpenAIRE

    2014-01-01

    Hydraulic fracturing is a controversial practice because of concerns about environmental impacts due to its widespread use in recovering unconventional petroleum and natural gas deposits. However, water-only hydraulic fracturing has been used safely and successfully for many years to increase the permeability of aquifers used for drinking and irrigation water supply. This process extends and widens existing bedrock fractures, allowing groundwater storage to increase. Researchers have studied ...

  12. FEEDBACK LINEARISATION APPLIED ON A HYDRAULIC

    DEFF Research Database (Denmark)

    Andersen, Torben Ole; Hansen, Michael Rygaard; Pedersen, Henrik C.;

    2005-01-01

    Generally most hydraulic systems are intrensically non-linear, why applying linear control techniques typically results in conservatively dimensioned controllers to obtain stable performance. Non-linear control techniques have the potential of overcoming these problems, and in this paper the focus...... is on developing and applying several different feedback linearisation (FL) controllers to the individual servo actuators in a hydraulically driven servo robot to evaluate and compare their possiblities and limitations. This is done based on both simulation and experimental results....

  13. Data Analytics of Hydraulic Fracturing Data

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Jovan Yang [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Viswanathan, Hari [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Hyman, Jeffery [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Middleton, Richard [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-08-11

    These are a set of slides on the data analytics of hydraulic fracturing data. The conclusions from this research are the following: they proposed a permeability evolution as a new mechanism to explain hydraulic fracturing trends; they created a model to include this mechanism and it showed promising results; the paper from this research is ready for submission; they devised a way to identify and sort refractures in order to study their effects, and this paper is currently being written.

  14. Hydraulic Motor Driving Variable-Pitch System for Wind Turbine

    Directory of Open Access Journals (Sweden)

    Ye HUANG

    2013-11-01

    Full Text Available The present hydraulic variable-pitch mechanism of wind turbine uses three hydraulic cylinders to drive three crank and connecting rod mechanisms respectively; the blades are moved with the cranks. The hydraulic variable-pitch mechanism has complex structure, occupies a lot of space and its maintenance is trouble. In order to make up for the shortcomings of hydraulic cylinder variable-pitch system, the present hydraulic variable-pitch mechanism should be changed as follows: hydraulic motors are used to drive gears; gears drive blades; the electro-hydraulic proportional valves are used to control hydraulic motors. The hydraulic control part and electrical control part of variable-pitch system is redesigned. The new variable-pitch system is called hydraulic motor driving variable-pitch system. The new variable-pitch system meets the control requirements of blade pitch, makes the structure simple and its application effect is perfect.    

  15. Veining Failure and Hydraulic Fracturing in Shales

    Science.gov (United States)

    Mighani, S.; Sondergeld, C. H.; Rai, C. S.

    2014-12-01

    During the hydraulic fracturing, the pressurized fluid creates new fractures and reactivates existing natural fractures forming a highly conductive Stimulated Reservoir Volume (SRV) around the borehole. We extend the previous work on Lyons sandstone and pyrophyllite to anisotropic shale from the Wolfcamp formation. We divide the rock anisotropy into two groups: a) conventional and b) unconventional (shaly) anisotropy. X-ray Computed Tomography (CT), compressional velocity anisotropy, and SEM analysis are used to identify three causes of anisotropy: bedding planes, clay lamination, and calcite veins. Calcite vein is a subsequently filled with calcite bonded weakly to the matrix. Velocity anisotropy and visual observations demonstrate the calcite filled veins to be mostly subparallel to the fabric direction. Brazilian tests are carried out to observe the fracture initiation and propagation under tension. High speed photography (frame rate 300,000 frame/sec) was used to capture the failure. Strain gauges and Acoustic Emission (AE) sensors recorded the deformation leading up to and during failure. SEM imaging and surface profilometry were employed to study the post-failure fracture system and failed surface topology. Fracture permeability was measured as a function of effective stress. Brazilian tests on small disks containing a centered single vein revealed the shear strength of the veins. We interpret the strain data and number, frequency, and amplitude of AE events which are correlated well with the observed fracture process zone, surface roughness, and permeability. The unpropped fracture has enhanced permeability by two orders of magnitude. The observed anisotropic tensile failure seems to have a universal trend with a minimum strength occurring at 15o orientation with respect to the loading axis. The veins at 15o orientation with respect to the loading axis were easily activated at 30% of the original failure load. The measured strength of the vein is as low as 6

  16. Advanced Hydraulic Fracturing Technology for Unconventional Tight Gas Reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    Stephen Holditch; A. Daniel Hill; D. Zhu

    2007-06-19

    The objectives of this project are to develop and test new techniques for creating extensive, conductive hydraulic fractures in unconventional tight gas reservoirs by statistically assessing the productivity achieved in hundreds of field treatments with a variety of current fracturing practices ranging from 'water fracs' to conventional gel fracture treatments; by laboratory measurements of the conductivity created with high rate proppant fracturing using an entirely new conductivity test - the 'dynamic fracture conductivity test'; and by developing design models to implement the optimal fracture treatments determined from the field assessment and the laboratory measurements. One of the tasks of this project is to create an 'advisor' or expert system for completion, production and stimulation of tight gas reservoirs. A central part of this study is an extensive survey of the productivity of hundreds of tight gas wells that have been hydraulically fractured. We have been doing an extensive literature search of the SPE eLibrary, DOE, Gas Technology Institute (GTI), Bureau of Economic Geology and IHS Energy, for publicly available technical reports about procedures of drilling, completion and production of the tight gas wells. We have downloaded numerous papers and read and summarized the information to build a database that will contain field treatment data, organized by geographic location, and hydraulic fracture treatment design data, organized by the treatment type. We have conducted experimental study on 'dynamic fracture conductivity' created when proppant slurries are pumped into hydraulic fractures in tight gas sands. Unlike conventional fracture conductivity tests in which proppant is loaded into the fracture artificially; we pump proppant/frac fluid slurries into a fracture cell, dynamically placing the proppant just as it occurs in the field. From such tests, we expect to gain new insights into some of the critical

  17. Hydraulic Pressure during Fluid Flow Regulates Purinergic Signaling and Cytoskeleton Organization of Osteoblasts.

    Science.gov (United States)

    Gardinier, Joseph D; Gangadharan, Vimal; Wang, Liyun; Duncan, Randall L

    2014-06-01

    During physiological activities, osteoblasts experience a variety of mechanical forces that stimulate anabolic responses at the cellular level necessary for the formation of new bone. Previous studies have primarily investigated the osteoblastic response to individual forms of mechanical stimuli. However in this study, we evaluated the response of osteoblasts to two simultaneous, but independently controlled stimuli; fluid flow-induced shear stress (FSS) and static or cyclic hydrostatic pressure (SHP or CHP, respectively). MC3T3-E1 osteoblasts-like cells were subjected to 12dyn/cm(2) FSS along with SHP or CHP of varying magnitudes to determine if pressure enhances the anabolic response of osteoblasts during FSS. For both SHP and CHP, the magnitude of hydraulic pressure that induced the greatest release of ATP during FSS was 15 mmHg. Increasing the hydraulic pressure to 50 mmHg or 100 mmHg during FSS attenuated the ATP release compared to 15 mmHg during FSS. Decreasing the magnitude of pressure during FSS to atmospheric pressure reduced ATP release to that of basal ATP release from static cells and inhibited actin reorganization into stress fibers that normally occurred during FSS with 15 mmHg of pressure. In contrast, translocation of nuclear factor kappa B (NFκB) to the nucleus was independent of the magnitude of hydraulic pressure and was found to be mediated through the activation of phospholipase-C (PLC), but not src kinase. In conclusion, hydraulic pressure during FSS was found to regulate purinergic signaling and actin cytoskeleton reorganization in the osteoblasts in a biphasic manner, while FSS alone appeared to stimulate NFκB translocation. Understanding the effects of hydraulic pressure on the anabolic responses of osteoblasts during FSS may provide much needed insights into the physiologic effects of coupled mechanical stimuli on osteogenesis.

  18. Hydraulic Conductivity Anisotropy of Heterogeneous Unsaturated Soils

    Science.gov (United States)

    Sun, Dongmin; Zhu, Jianting

    2010-05-01

    The effects of saturation degree (or capillary pressure) on hydraulic conductivity anisotropy in unsaturated soils have not been fully understood. This study developed an approach based on a conceptualization of combining the neural network based pedo-transfer function (PTF) results with the thin layer concept to explore the capillary pressure-dependent anisotropy in relation to soil texture and soil bulk density. The main objective is to examine how anisotropy characteristics are related to the relationships between hydraulic parameters and the basic soil attributes such as texture and bulk density. The hydraulic parameters are correlated with the texture and bulk density based on the pedo-transfer function (PTF) results. It is demonstrated that non-monotonic behavior of the unsaturated soil anisotropy in relation to the capillary pressure is only observed when the saturated hydraulic conductivity and the shape parameter are both related to the mean particle diameter. When only one hydraulic parameter is related to the grain diameter or when both are not related to the same attribute simultaneously, the unsaturated soil anisotropy increases monotonically with the increasing capillary pressure head. Therefore, it is suggested that this behavior is mainly due to the coupled dependence of the layer saturated hydraulic conductivities and the shape factors on the texture and bulk density. The correlation between the soil grain diameter and bulk density decreases the anisotropy effects of the unsaturated layered soils. The study illustrates that the inter-relationships of soil texture, bulk density, and hydraulic properties may cause vastly different characteristics of anisotropic unsaturated soils.

  19. Light response of hydraulic conductance in bur oak (Quercus macrocarpa) leaves.

    Science.gov (United States)

    Voicu, Mihaela C; Zwiazek, Janusz J; Tyree, Melvin T

    2008-07-01

    A four- to seven-fold enhancement of leaf hydraulic conductance by light has been reported in three temperate tree species. The enhancement occurs in the liquid-flow pathway between the petiole and the site of water evaporation. The enhancement occurs within 1 h, and dissipates in darkness over a period of 1 to 10 h depending on species. Here we report light-induced enhancement of leaf hydraulic conductance in a fourth species, bur oak (Quercus macrocarpa Michx.), the dependence of the effect on light flux and color, its absence in leaves of seedlings, and the impact on the response of leaf vein severance and several metabolic inhibitors. The light response of leaf hydraulic conductance approached saturation at a photosynthetic photon flux of 150 mumol m(-2) s(-1). Hydraulic enhancement was greater in response to blue and green light than to visible radiation of longer wavelengths, although at the same irradiance, the response to white light was greater than to light of any single color. Atrazine (a photosystem II inhibitor), fusicoccin (which stimulates plasma membrane-bound H(+)-ATPase) and HgCl(2) (an aquaporin blocker) reduced the light response of leaf lamina hydraulic conductance. When 2-mercaptoethanol was added following mercury treatment, the light response was totally suppressed. Our results are consistent with the notion that the effect of light on leaf lamina hydraulic conductance is controlled by factors acting outside the leaf veins, possibly through light-induced changes in membrane permeability of either mesophyll or bundle sheath cells, or both.

  20. Thermal-hydraulic modeling and analysis of hydraulic system by pseudo-bond graph

    Institute of Scientific and Technical Information of China (English)

    胡均平; 李科军

    2015-01-01

    To increase the efficiency and reliability of the thermodynamics analysis of the hydraulic system, the method based on pseudo-bond graph is introduced. According to the working mechanism of hydraulic components, they can be separated into two categories: capacitive components and resistive components. Then, the thermal-hydraulic pseudo-bond graphs of capacitive C element and resistance R element were developed, based on the conservation of mass and energy. Subsequently, the connection rule for the pseudo-bond graph elements and the method to construct the complete thermal-hydraulic system model were proposed. On the basis of heat transfer analysis of a typical hydraulic circuit containing a piston pump, the lumped parameter mathematical model of the system was given. The good agreement between the simulation results and experimental data demonstrates the validity of the modeling method.

  1. Effect of Natural Fractures on Hydraulic Fracturing

    Science.gov (United States)

    Ben, Y.; Wang, Y.; Shi, G.

    2012-12-01

    Hydraulic Fracturing has been used successfully in the oil and gas industry to enhance oil and gas production in the past few decades. Recent years have seen the great development of tight gas, coal bed methane and shale gas. Natural fractures are believed to play an important role in the hydraulic fracturing of such formations. Whether natural fractures can benefit the fracture propagation and enhance final production needs to be studied. Various methods have been used to study the effect of natural fractures on hydraulic fracturing. Discontinuous Deformation Analysis (DDA) is a numerical method which belongs to the family of discrete element methods. In this paper, DDA is coupled with a fluid pipe network model to simulate the pressure response in the formation during hydraulic fracturing. The focus is to study the effect of natural fractures on hydraulic fracturing. In particular, the effect of rock joint properties, joint orientations and rock properties on fracture initiation and propagation will be analyzed. The result shows that DDA is a promising tool to study such complex behavior of rocks. Finally, the advantages of disadvantages of our current model and future research directions will be discussed.

  2. Microbial effect on soil hydraulic properties

    Science.gov (United States)

    Furman, Alex; Rosenzweig, Ravid; Volk, Elazar; Rosenkranz, Hella; Iden, Sascha; Durner, Wolfgang

    2014-05-01

    Although largely ignored, the soil contains large amount of biofilms (attached microbes) that can affect many processes. While biochemical processes are studied, biophysical processes receive only little attention. Biofilms may occupy some of the pore space, and by that affect the soil hydraulic properties. This effect on unsaturated soils, however, was not intensively studied. In this research we directly measure the hydraulic properties, namely the soil's unsaturated hydraulic conductivity function and retention curve, for soils containing real biofilm. To do that we inoculate soil with biofilm-forming bacteria and incubate it with sufficient amounts of nutrient until biofilm is formed. The hydraulic properties of the incubated soil are then measured using several techniques, including multi-step outflow and evaporation method. The longer measurements (evaporation method) are conducted under refrigeration conditions to minimize microbial activity during the experiment. The results show a clear effect of the biofilm, where the biofilm-affected soil (sandy loam in our case) behaves like a much finer soil. This qualitatively makes sense as the biofilm generates an effective pore size distribution that is characterized by smaller pores. However, the effect is much more complex and needs to be studied carefully considering (for example) dual porosity models. We compare our preliminary results with other experiments, including flow-through column experiments and experiments with biofilm analogues. Clearly a better understanding of the way microbial activity alters the hydraulic properties may help designing more efficient bioremediation, irrigation, and other soil-related processes.

  3. Vibration Isolation for Parallel Hydraulic Hybrid Vehicles

    Directory of Open Access Journals (Sweden)

    The M. Nguyen

    2008-01-01

    Full Text Available In recent decades, several types of hybrid vehicles have been developed in order to improve the fuel economy and to reduce the pollution. Hybrid electric vehicles (HEV have shown a significant improvement in fuel efficiency for small and medium-sized passenger vehicles and SUVs. HEV has several limitations when applied to heavy vehicles; one is that larger vehicles demand more power, which requires significantly larger battery capacities. As an alternative solution, hydraulic hybrid technology has been found effective for heavy duty vehicle because of its high power density. The mechanical batteries used in hydraulic hybrid vehicles (HHV can be charged and discharged remarkably faster than chemical batteries. This feature is essential for heavy vehicle hybridization. One of the main problems that should be solved for the successful commercialization of HHV is the excessive noise and vibration involving with the hydraulic systems. This study focuses on using magnetorheological (MR technology to reduce the noise and vibration transmissibility from the hydraulic system to the vehicle body. In order to study the noise and vibration of HHV, a hydraulic hybrid subsystem in parallel design is analyzed. This research shows that the MR elements play an important role in reducing the transmitted noise and vibration to the vehicle body. Additionally, locations and orientations of the isolation system also affect the efficiency of the noise and vibration mitigation. In simulations, a skyhook control algorithm is used to achieve the highest possible effectiveness of the MR isolation system.

  4. A Computational Model of Hydraulic Volume Displacement Drive

    Directory of Open Access Journals (Sweden)

    V. N. Pil'gunov

    2014-01-01

    Full Text Available The paper offers a computational model of industrial-purpose hydraulic drive with two hydraulic volume adjustable working chamber machines (pump and motor. Adjustable pump equipped with the pressure control unit can be run together with several adjustable hydraulic motors on the principle of three-phase hydraulic socket-outlet with high-pressure lines, drain, and drainage system. The paper considers the pressure-controlled hydrostatic transmission with hydraulic motor as an output link. It shows a possibility to create a saving hydraulic drive using a functional tie between the adjusting parameters of the pump and hydraulic motor through the pressure difference, torque, and angular rate of the hydraulic motor shaft rotation. The programmable logic controller can implement such tie. The Coulomb and viscous frictions are taken into consideration when developing a computational model of the hydraulic volume displacement drive. Discharge balance considers external and internal leakages in equivalent clearances of hydraulic machines, as well as compression loss volume caused by hydraulic fluid compressibility and deformation of pipe walls. To correct dynamic properties of hydraulic drive, the paper offers that in discharge balance are included the additional regulated external leakages in the open circuit of hydraulic drive and regulated internal leakages in the closed-loop circuit. Generalized differential equations having functional multipliers and multilinked nature have been obtained to describe the operation of hydraulic positioning and speed drive with two hydraulic volume adjustable working chamber machines. It is shown that a proposed computational model of hydraulic drive can be taken into consideration in development of LS («Load-Sensing» drives, in which the pumping pressure is tuned to the value required for the most loaded slave motor to overcome the load. Results attained can be used both in designing the industrial-purpose heavy

  5. Measurement and evaluation of static characteristics of rotary hydraulic motor

    Directory of Open Access Journals (Sweden)

    Hružík Lumír

    2014-03-01

    Full Text Available The paper describes experimental equipment for measurement of static characteristics of rotary hydraulic motor. It is possible to measure flow, pressure, temperature, speed and torque by means of this equipment. It deals with measurement of static characteristics of a gear rotary hydraulic motor. Mineral oil is used as hydraulic liquid in this case. Flow, torque and speed characteristics are evaluated from measured parameters. Measured mechanical-hydraulic, flow and total efficiencies of the rotary hydraulic motor are adduced in the paper. It is possible to diagnose technical conditions of the hydraulic motor (eventually to recommend its exchange from the experimental measurements.

  6. Promoting water hydraulics in Malaysia: A green educational approach

    Science.gov (United States)

    Yusof, Ahmad Anas; Zaili, Zarin Syukri; Hassan, Siti Nor Habibah; Tuan, Tee Boon; Saadun, Mohd Noor Asril; Ibrahim, Mohd Qadafie

    2014-10-01

    In promoting water hydraulics in Malaysia, this paper presents research development of water hydraulics educational training system for secondary and tertiary levels in Malaysia. Water hydraulics trainer with robotic attachment has been studied in order to promote the usefulness of such educational tools in promoting sustainability and green technology in the country. The trainer is being developed in order to allow constructive curriculum development and continuous marketing research for the effectiveness and usefulness of using water in hydraulic power trainer. The research on water-based hydraulic trainer is now possible with the current development in water hydraulics technology.

  7. Hydraulic characterization of hydrothermally altered Nopal tuff

    Energy Technology Data Exchange (ETDEWEB)

    Green, R.T.; Meyer-James, K.A. [Southwest Research Institute, San Antonio, TX (United States); Rice, G. [George Rice and Associates, San Antonio, TX (United States)

    1995-07-01

    Understanding the mechanics of variably saturated flow in fractured-porous media is of fundamental importance to evaluating the isolation performance of the proposed high-level radioactive waste repository for the Yucca Mountain site. Developing that understanding must be founded on the analysis and interpretation of laboratory and field data. This report presents an analysis of the unsaturated hydraulic properties of tuff cores from the Pena Blanca natural analog site in Mexico. The basic intent of the analysis was to examine possible trends and relationships between the hydraulic properties and the degree of hydrothermal alteration exhibited by the tuff samples. These data were used in flow simulations to evaluate the significance of a particular conceptual (composite) model and of distinct hydraulic properties on the rate and nature of water flow.

  8. Simulation of a Hydraulic Pump Control Valve

    Science.gov (United States)

    Molen, G. Vander; Akers, A.

    1987-01-01

    This paper describes the mode of operation of a control valve assembly that is used with a hydraulic pump. The operating system of the valve is modelled in a simplified form, and an analogy for hydraulic resonance of the pressure sensing system is presented. For the control valve investigated, air entrainment, length and diameter of the resonator neck, and valve mass produced the greatest shift in resonant frequency. Experimental work was conducted on the hydraulic system so that the resonance levels and frequencies could be measured and the accuracy of the theory verified. The results obtained make it possible to evaluate what changes to any of the variables considered would be most effective in driving the second harmonic frequency above the operating range.

  9. Soil Structure and Saturated Hydraulic Conductivity

    Science.gov (United States)

    Houskova, B.; Nagy, V.

    The role of soil structure on saturated hydraulic conductivity changes is studied in plough layers of texturally different soils. Three localities in western part of Slovakia in Zitny ostrov (Corn Island) were under investigation: locality Kalinkovo with light Calcaric Fluvisol (FAO 1970), Macov with medium heavy Calcari-mollic Fluvisol and Jurova with heavy Calcari-mollic Fluvisol. Soil structure was determined in dry as well as wet state and in size of macro and micro aggregates. Saturated hydraulic conductivity was measured by the help of double ring method. During the period of ring filling the soil surface was protected against aggregates damage by falling water drops. Spatial and temporal variability of studied parameters was evaluated. Cultivated crops were ensilage maize at medium heavy and heavy soil and colza at light soil. Textural composition of soil and actual water content at the beginning of measurement are one of major factor affecting aggregate stability and consequently also saturated hydraulic conductivity.

  10. Universal asymptotic umbrella for hydraulic fracture modeling

    CERN Document Server

    Linkov, Aleksandr M

    2014-01-01

    The paper presents universal asymptotic solution needed for efficient modeling of hydraulic fractures. We show that when neglecting the lag, there is universal asymptotic equation for the near-front opening. It appears that apart from the mechanical properties of fluid and rock, the asymptotic opening depends merely on the local speed of fracture propagation. This implies that, on one hand, the global problem is ill-posed, when trying to solve it as a boundary value problem under a fixed position of the front. On the other hand, when properly used, the universal asymptotics drastically facilitates solving hydraulic fracture problems (both analytically and numerically). We derive simple universal asymptotics and comment on their employment for efficient numerical simulation of hydraulic fractures, in particular, by well-established Level Set and Fast Marching Methods.

  11. Self-potential observations during hydraulic fracturing

    Energy Technology Data Exchange (ETDEWEB)

    Moore, Jeffrey R.; Glaser, Steven D.

    2007-09-13

    The self-potential (SP) response during hydraulic fracturing of intact Sierra granite was investigated in the laboratory. Excellent correlation of pressure drop and SP suggests that the SP response is created primarily by electrokinetic coupling. For low pressures, the variation of SP with pressure drop is linear, indicating a constant coupling coefficient (Cc) of -200 mV/MPa. However for pressure drops >2 MPa, the magnitude of the Cc increases by 80% in an exponential trend. This increasing Cc is related to increasing permeability at high pore pressures caused by dilatancy of micro-cracks, and is explained by a decrease in the hydraulic tortuosity. Resistivity measurements reveal a decrease of 2% prior to hydraulic fracturing and a decrease of {approx}35% after fracturing. An asymmetric spatial SP response created by injectate diffusion into dilatant zones is observed prior to hydraulic fracturing, and in most cases this SP variation revealed the impending crack geometry seconds before failure. At rupture, injectate rushes into the new fracture area where the zeta potential is different than in the rock porosity, and an anomalous SP spike is observed. After fracturing, the spatial SP distribution reveals the direction of fracture propagation. Finally, during tensile cracking in a point load device with no water flow, a SP spike is observed that is caused by contact electrification. However, the time constant of this event is much less than that for transients observed during hydraulic fracturing, suggesting that SP created solely from material fracture does not contribute to the SP response during hydraulic fracturing.

  12. Measurement and modeling of unsaturated hydraulic conductivity

    Science.gov (United States)

    Perkins, Kim S.; Elango, Lakshmanan

    2011-01-01

    The unsaturated zone plays an extremely important hydrologic role that influences water quality and quantity, ecosystem function and health, the connection between atmospheric and terrestrial processes, nutrient cycling, soil development, and natural hazards such as flooding and landslides. Unsaturated hydraulic conductivity is one of the main properties considered to govern flow; however it is very difficult to measure accurately. Knowledge of the highly nonlinear relationship between unsaturated hydraulic conductivity (K) and volumetric water content is required for widely-used models of water flow and solute transport processes in the unsaturated zone. Measurement of unsaturated hydraulic conductivity of sediments is costly and time consuming, therefore use of models that estimate this property from more easily measured bulk-physical properties is common. In hydrologic studies, calculations based on property-transfer models informed by hydraulic property databases are often used in lieu of measured data from the site of interest. Reliance on database-informed predicted values with the use of neural networks has become increasingly common. Hydraulic properties predicted using databases may be adequate in some applications, but not others. This chapter will discuss, by way of examples, various techniques used to measure and model hydraulic conductivity as a function of water content, K. The parameters that describe the K curve obtained by different methods are used directly in Richards’ equation-based numerical models, which have some degree of sensitivity to those parameters. This chapter will explore the complications of using laboratory measured or estimated properties for field scale investigations to shed light on how adequately the processes are represented. Additionally, some more recent concepts for representing unsaturated-zone flow processes will be discussed.

  13. On the Hydraulics of Flowing Horizontal Wells

    Science.gov (United States)

    Bian, A.; Zhan, H.

    2003-12-01

    A flowing horizontal well is a special type of horizontal well that does not have pumping/injecting facility. The discharge rate of a flowing horizontal well is controlled by the hydraulic gradient between the aquifer and the well and it generally varies with time if the hydraulic head of the aquifer is transient. This type of well has been used in landslide control, mining dewatering, water table control, underground water transportation through a horizontal tunnel, agricultural water drainage, and other applications. Flowing horizontal wells have quite different hydrodynamic characteristics from horizontal wells with fixed pumping or injecting rates because their discharge rates are functions of the aquifer hydraulic heads (Zhan et al, 2001; Zhan and Zlotnik, 2002). Hydraulics of flowing horizontal wells have rarely been studied although the hydraulics of flowing vertical wells have been extensively investigated before. The purpose of this paper is to obtain analytical solutions of groundwater flow to a flowing horizontal-well in a confined aquifer, in a water table aquifer without precipitation, and in a water table aquifer with precipitation. The functions of the flowing horizontal well discharge rates versus time will be obtained under above mentioned different aquifer conditions. The relationships of the aquifer hydraulic heads versus the discharge rates of the well will be investigated. The rate of water table decline due to the dewatering of the well will also be computed, and this solution is particularly useful for landslide control and mining dewatering. The theoretical solutions will be compared with results of experiments that will be conducted in the hydrological laboratory at Texas A&M University. Reference: Zhan, H., Wang, L.V., and Park, E, On the horizontal well pumping tests in the anisotropic confined aquifers, J. hydrol., 252, 37-50, 2001. Zhan, H., and Zlotnik, V. A., Groundwater flow to a horizontal or slanted well in an unconfined aquifer

  14. Characterizing hydraulic fractures in shale gas reservoirs using transient pressure tests

    Directory of Open Access Journals (Sweden)

    Cong Wang

    2015-06-01

    This work presents an unconventional gas reservoir simulator and its application to quantify hydraulic fractures in shale gas reservoirs using transient pressure data. The numerical model incorporates most known physical processes for gas production from unconventional reservoirs, including two-phase flow of liquid and gas, Klinkenberg effect, non-Darcy flow, and nonlinear adsorption. In addition, the model is able to handle various types and scales of fractures or heterogeneity using continuum, discrete or hybrid modeling approaches under different well production conditions of varying rate or pressure. Our modeling studies indicate that the most sensitive parameter of hydraulic fractures to early transient gas flow through extremely low permeability rock is actually the fracture-matrix contacting area, generated by fracturing stimulation. Based on this observation, it is possible to use transient pressure testing data to estimate the area of fractures generated from fracturing operations. We will conduct a series of modeling studies and present a methodology using typical transient pressure responses, simulated by the numerical model, to estimate fracture areas created or to quantity hydraulic fractures with traditional well testing technology. The type curves of pressure transients from this study can be used to quantify hydraulic fractures in field application.

  15. Geothermal reservoir categorization and stimulation study

    Energy Technology Data Exchange (ETDEWEB)

    Overton, H.L.; Hanold, R.J.

    1977-07-01

    Analyses of the fraction of geothermal wells that are dry (dry-hole fraction) indicate that geothermal reservoirs can be fitted into four basic categories: (i) Quaternary to late Tertiary sediments (almost no dry holes); (ii) Quaternary to late Tertiary extrusives (approximately 20 percent dry holes); (iii) Mesozoic or older metamorphic rocks (approximately 25-30 percent dry holes); and (iv) Precambrian or younger rocks (data limited to Roosevelt Springs where 33 percent of the wells were dry). Failure of geothermal wells to flow economically is due mainly to low-permeability formations in unfractured regions. Generally the permeability correlates inversely with the temperature-age product and directly with the original rock porosity and pore size. However, this correlation fails whenever high-stress fields provide vertical fracturing or faulting, and it is the high-stress/low-permeability category that is most amenable to artificial stimulation by hydraulic fracturing, propellant fracturing, or chemical explosive fracturing. Category (i) geothermal fields (e.g., Cerro Prieto, Mexico; Niland, CA; East Mesa, CA) are not recommended for artificial stimulation because these younger sediments almost always produce warm or hot water. Most geothermal fields fit into category (ii) (e.g., Wairakei, New Zealand; Matsukawa, Japan; Ahuachapan, El Salvador) and in the case of Mt. Home, ID, and Chandler, AZ, possess some potential for stimulation. The Geysers is a category (iii) field, and its highly stressed brittle rocks should make this site amenable to stimulation by explosive fracturing techniques. Roosevelt Springs, UT, well 9-1 is in category (iv) and is a flow failure. It represents a prime candidate for stimulation by hydraulic fracturing because it has a measured temperature of 227/sup 0/C, is cased and available for experimentation, and is within 900 m of an excellent geothermal producing well.

  16. Thermal Hydraulic Stability in a Coaxial Thermosyphon

    Institute of Scientific and Technical Information of China (English)

    YANG Jianhui; LU Wenqiang; LI Qing; LI Qiang; ZHOU Yuan

    2005-01-01

    The heat transfer and thermal hydraulic stability in a two-phase thermosyphon with coaxial riser and down-comer has been experimentally investigated and theoretically analyzed to facilitate its application in cold neutron source. The flow in a coaxial thermosyphon was studied experimentally for a variety of heating rates, transfer tube lengths, charge capacities, and area ratios. A numerical analysis of the hydraulic balance between the driving pressure head and the resistance loss has also been performed. The results show that the presented coaxial thermosyphon has dynamic performance advantages relative to natural circulation in a boiling water reactor.

  17. Large-eddy simulation in hydraulics

    CERN Document Server

    Rodi, Wolfgang

    2013-01-01

    Complex turbulence phenomena are of great practical importance in hydraulics, including environmental flows, and require advanced methods for their successful computation. The Large Eddy Simulation (LES), in which the larger-scale turbulent motion is directly resolved and only the small-scale motion is modelled, is particularly suited for complex situations with dominant large-scale structures and unsteadiness. Due to the increasing computer power, LES is generally used more and more in Computational Fluid Dynamics. Also in hydraulics, it offers great potential, especially for near-field probl

  18. Mineral resource of the month: hydraulic cement

    Science.gov (United States)

    van Oss, Hendrik G.

    2012-01-01

    Hydraulic cements are the binders in concrete and most mortars and stuccos. Concrete, particularly the reinforced variety, is the most versatile of all construction materials, and most of the hydraulic cement produced worldwide is portland cement or similar cements that have portland cement as a basis, such as blended cements and masonry cements. Cement typically makes up less than 15 percent of the concrete mix; most of the rest is aggregates. Not counting the weight of reinforcing media, 1 ton of cement will typically yield about 8 tons of concrete.

  19. Vagus Nerve Stimulation

    Science.gov (United States)

    Vagus nerve stimulation Overview By Mayo Clinic Staff Vagus nerve stimulation is a procedure that involves implantation of a device that stimulates the vagus nerve with electrical impulses. There's one vagus nerve on ...

  20. Mechatronic Hydraulic Drive with Regulator, Based on Artificial Neural Network

    Science.gov (United States)

    Burennikov, Y.; Kozlov, L.; Pyliavets, V.; Piontkevych, O.

    2017-06-01

    Mechatronic hydraulic drives, based on variable pump, proportional hydraulics and controllers find wide application in technological machines and testing equipment. Mechatronic hydraulic drives provide necessary parameters of actuating elements motion with the possibility of their correction in case of external loads change. This enables to improve the quality of working operations, increase the capacity of machines. The scheme of mechatronic hydraulic drive, based on the pump, hydraulic cylinder, proportional valve with electrohydraulic control and programmable controller is suggested. Algorithm for the control of mechatronic hydraulic drive to provide necessary pressure change law in hydraulic cylinder is developed. For the realization of control algorithm in the controller artificial neural networks are used. Mathematical model of mechatronic hydraulic drive, enabling to create the training base for adjustment of artificial neural networks of the regulator is developed.

  1. DCS Hydraulics Submittal, Valencia County, New Mexico, USA

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Hydraulics data includes spatial datasets and data tables necessary for documenting the hydraulic procedures for computing flood elevations for a flood insurance...

  2. Chapter 12. Pure Tap Water Hydraulic Systems and Applications

    DEFF Research Database (Denmark)

    Conrad, Finn; Adelstorp, Anders

    1997-01-01

    Presentation of developed a modern pure tap water hydraulic components (Nessie), systems and industrial applications.......Presentation of developed a modern pure tap water hydraulic components (Nessie), systems and industrial applications....

  3. A tensor approach to the estimation of hydraulic conductivities in ...

    African Journals Online (AJOL)

    2006-07-03

    Jul 3, 2006 ... The HC values computed from the data measured on the weathered or ... Keywords: hydraulic conductivity tensor, roughness, combined stress, hydraulic aperture, Table Mountain ... the anisotropic nature of studied media.

  4. Hydraulic Fracturing, Wastewater Injection and Unintended Earthquakes (Invited)

    Science.gov (United States)

    Ellsworth, W. L.

    2013-12-01

    It has long been known that increasing the pore pressure within a pre-stressed fault can induce an earthquake by reducing the effective normal stress and thereby the frictional strength of the fault. Underground fluid pressures are routinely modified by a wide range of industrial activities including impoundment of reservoirs, mining, and petroleum production, all of which are known to have potential for inducing earthquakes. Recently, attention has been drawn to the earthquake hazard associated with the production of oil and gas from previously unproductive formations. Earthquakes can be induced as part of the process to stimulate the production from tight shale formations, or by disposal of wastewater associated with stimulation and production. In this talk, I review recent investigations of both activities with a focus on the emerging understanding of the development of predictive models for both seismicity and risk. By design, hydraulic fracturing induces numerous high-frequency microseismic events as part of the process of creating a connected fracture network to enhance formation permeability. During the brief time (hours) that high fluid pressure is applied to the well bore, seismic events occur as a combination tensile (hydrofracture) and shear (hydroshear) failures. The fluid volume injected in a single hydrofrac stage is commonly of the order of several thousand cubic meters. Growth of the fracture network typically follows square-root scaling with time, suggesting a diffusive growth mechanism. Magnitudes are normally below zero for events in the target formation. Larger, unintended events sometimes occur and available evidence points to shear failure of pre-existing faults as their source. Earthquakes with magnitudes as large as Mw 3.6 occurred during hydraulic fracturing operations in the Horn River Basin, B. C., Canada. Some of these occurred before the diffusive pressure front would have reached the hypocenter, suggesting rapid transmission of pore

  5. The use of asphalt in hydraulic engineering

    NARCIS (Netherlands)

    Van de Velde, P.A.; Ebbens, E.H.; Van Herpen, J.A.

    1985-01-01

    Asphalt products have been used in the Netherlands in hydraulic engineering for a long time on a large scale, especially after the great disaster in 1953 when a large part of western Holland was flooded by the sea. After the disaster a great number of dikes had to be repaired very quickly and this w

  6. Elevator and hydraulics; Elevator to yuatsu

    Energy Technology Data Exchange (ETDEWEB)

    Nakamura, I. [Hitachi, Ltd., Tokyo (Japan)

    1994-07-15

    A hydraulic type elevator is installed in relatively lower buildings as compared with a rope type elevator, but the ratio in the number of installation of the former elevator is increasing. This paper explains from its construction and features to especially various control systems for the riding comfort and safety. A direct push-up system with hydraulic jacks arranged beneath a car, and an indirect push-up system that has hydraulic jacks arranged on flank of a car and transmits the movement of a plunger via a rope are available. The latter system eliminates the need of large holes to embed hydraulic jacks. While the speed is controlled by controlling flow rates of high-pressure oil, the speed, position, acceleration and even time differential calculus of the acceleration must be controlled severely. The system uses two-step control for the through-speed and the landing speed. Different systems that have been realized may include compensation for temperatures in flow rate control valves, load pressures, and oil viscosity, from learning control to fuzzy control for psychological effects, or control of inverters in motors. 13 refs., 12 figs., 1 tab.

  7. Hydraulic adjustment of Scots pine across Europe

    NARCIS (Netherlands)

    Martínez-Vilalta, J.; Cochard, H.; Mencuccini, M.; Sterck, F.J.; Herrero, A.; Korhonen, J.F.J.; Llorens, P.; Nikinmaa, E.; Nolè, A.; Poyatos, R.; Ripullone, F.; Sass-Klaassen, U.; Zweifel, R.

    2009-01-01

    The variability of branch-level hydraulic properties was assessed across 12 Scots pine populations covering a wide range of environmental conditions, including some of the southernmost populations of the species. The aims were to relate this variability to differences in climate, and to study the po

  8. Influence of tray hydraulics on tray column

    NARCIS (Netherlands)

    Betlem, Bernardus H.L.; Rijnsdorp, J.E.; Rijnsdorp, J.E.; Azink, R.F.

    1998-01-01

    To column control, in contrast to column design, tray hold-up and dependencies of tray hold-up on the operating conditions play an important role. The essence of this article is the development of an improved model of tray hydraulics over a broad operating range and its experimental validation by

  9. Design of a hydraulic bending machine

    Science.gov (United States)

    Steven G. Hankel; Marshall Begel

    2004-01-01

    To keep pace with customer demands while phasing out old and unserviceable test equipment, the staff of the Engineering Mechanics Laboratory (EML) at the USDA Forest Service, Forest Products Laboratory, designed and assembled a hydraulic bending test machine. The EML built this machine to test dimension lumber, nominal 2 in. thick and up to 12 in. deep, at spans up to...

  10. Sustainable hydraulic engineering through building with nature

    NARCIS (Netherlands)

    Vriend, de H.J.; Koningsveld, van M.; Aarninkhof, S.G.J.; Vries, de M.B.; Baptist, M.J.

    2015-01-01

    Hydraulic engineering infrastructures are of concern to many people and are likely to interfere with the environment. Moreover, they are supposed to keep on functioning for many years. In times of rapid societal and environmental change this implies that sustainability and adaptability are important

  11. The use of asphalt in hydraulic engineering

    NARCIS (Netherlands)

    Van de Velde, P.A.; Ebbens, E.H.; Van Herpen, J.A.

    1985-01-01

    Asphalt products have been used in the Netherlands in hydraulic engineering for a long time on a large scale, especially after the great disaster in 1953 when a large part of western Holland was flooded by the sea. After the disaster a great number of dikes had to be repaired very quickly and this w

  12. International Institute for Hydraulic and Environmental Engineering

    Science.gov (United States)

    Mostertman, L. J.

    1977-01-01

    Describes the activities of the International Institute for Hydraulic and Environmental Engineering (IHE), whose primary function is the promotion of the better use of water resources as a vehicle of development by the transfer of knowledge and experience. (Author/RK)

  13. Digital hydraulic valving system. [design and development

    Science.gov (United States)

    1973-01-01

    The design and development are reported of a digital hydraulic valving system that would accept direct digital inputs. Topics include: summary of contractual accomplishments, design and function description, valve parameters and calculations, conclusions, and recommendations. The electrical control circuit operating procedure is outlined in an appendix.

  14. Sustainable hydraulic engineering through building with nature

    NARCIS (Netherlands)

    Vriend, de H.J.; Koningsveld, van M.; Aarninkhof, S.G.J.; Vries, de M.B.; Baptist, M.J.

    2015-01-01

    Hydraulic engineering infrastructures are of concern to many people and are likely to interfere with the environment. Moreover, they are supposed to keep on functioning for many years. In times of rapid societal and environmental change this implies that sustainability and adaptability are important

  15. Reactive barriers: hydraulic performance and design enhancements.

    Science.gov (United States)

    Painter, B D M

    2004-01-01

    The remediation of contaminated ground water is a multibillion-dollar global industry. Permeable reactive barriers (PRBs) are one of the leading technologies being developed in the search for alternatives to the pump-and-treat method. Improving the hydraulic performance of these PRBs is an important part of maximizing their potential to the industry. Optimization of the hydraulic performance of a PRB can be defined in terms of finding the balance between capture, residence time, and PRB longevity that produces a minimum-cost acceptable design. Three-dimensional particle tracking was used to estimate capture zone and residence time distributions. Volumetric flow analysis was used for estimation of flow distribution across a PRB and in the identification of flow regimes that may affect the permeability or reactivity of portions of the PRB over time. Capture zone measurements extended below the base of partially penetrating PRBs and were measured upgradient from the portion of aquifer influenced by PRB emplacement. Hydraulic performance analysis of standard PRB designs confirmed previously presented research that identified the potential for significant variation in residence time and capture zone. These variations can result in the need to oversize the PRB to ensure that downgradient contaminant concentrations do not exceed imposed standards. The most useful PRB design enhancements for controlling residence time and capture variation were found to be customized downgradient gate faces, velocity equalization walls, deeper emplacement of the funnel than the gate, and careful manipulation of the hydraulic conductivity ratio between the gate and the aquifer.

  16. SITMILARITY LAW FOR HYDRAULIC DISTORTED MODEL

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    Newton's general similarity criterion was applied to the distorted model. The results for the similarities of gravity force, drag force and pressure force are identical with those derived from relevant differential equations of fluid flow. And the selected limits of the distorted ratio were studied and the simulation of roughness coefficient of distorted model was conducted by means of hydraulic test.

  17. Separation and pattern formation in hydraulic jumps

    DEFF Research Database (Denmark)

    Bohr, Tomas; Ellegaard, C.; Hansen, A. Espe;

    1998-01-01

    We present theory and experiments on the circular hydraulic jump in the stationary regime. The theory can handle the situation in which the fluid flows over an edge far away from the jump. In the experiments the external height is controlled, and a series of transitions in the flow structure appe...

  18. HYDRAULIC CONDUCTIVITY OF THREE GEOSYNTHETIC CLAY LINERS

    Science.gov (United States)

    The hydraulic conductivity of three 2.9 m2 (32 sq ft) geosynthetic clay liners (GCLs) was measured. Tests were performed on individual sheets of the GCLs, on overlapped pieces of GCLs, and on composite liners consisting of a punctured geomembrane overlying a GCL. Hyd...

  19. Towards Autonomous Control of Hydraulic Actuator Systems

    DEFF Research Database (Denmark)

    Hansen, Poul Erik; Conrad, Finn

    1998-01-01

    Presentation of new developed control algorithms to increase autonomy and intelligence of hydraulic control systems. A refinement of relaytuning method is used to determine the control parameters of a lag/lead controller and a poleplacement controller. Further, a fail-safe function is developed t...

  20. Power management in hydraulically actuated mobile equipment

    DEFF Research Database (Denmark)

    Pedersen, Henrik Clemmensen; Andersen, Torben Ole; Hansen, Michael Rygaard

    2008-01-01

    The focus of the current paper is on the control of hydraulic systems when utilizing the advances that electronic control may bring with regard to power management, prioritized flow sharing and anti-stall, arising from being able to control both pump, valves and engine electronically. A simple mo...

  1. Dentin permeability: determinants of hydraulic conductance.

    Science.gov (United States)

    Reeder, O W; Walton, R E; Livingston, M J; Pashley, D H

    1978-02-01

    A technique is described which permits measurements of the ease with which fluid permeates dentin. This value, the hydraulic conductance of dentin, increased as surface area increases and/or as dentin thickness decreases. It increased 32-fold when dentin was acid etched due to removal of surface debris occluding the tubules.

  2. Analysis of Innovative Design of Energy Efficient Hydraulic Actuators

    OpenAIRE

    M Osman Abdalla

    2013-01-01

    Hydraulic cylinder actuators are used extensively in industrial, construction and agricultural works. The small sized outlet ports of the cylinders resist the flow of discharged oil; and as a result the piston motion is slowed down. This causes a lot of heat generation and energy loss within the actuators. The study investigates and analyzes the possibilities of reducing the hydraulic resistance and increasing efficiency of the hydraulic actuator. Conventional hydraulic cylinders are simulate...

  3. DISCONTINUOUS FLOW OF TURBID DENSITY CURRENTS Ⅱ. INTERNAL HYDRAULIC JUMP

    Institute of Scientific and Technical Information of China (English)

    Jiahua FAN

    2005-01-01

    Traveling and stationary internal hydraulic jumps in density currents with positive or negative entrainment coefficients were analyzed based on simple assumptions. An expression of internal hydraulic jumps with entrainment coefficients was derived. Experimental data, published in literature, of stationary internal hydraulic jumps in turbid, thermal and saline density currents including measured values of water entrainment were used to compare with theory. Comparison was also made of traveling internal hydraulic jumps between measured data and theory.

  4. OPTIMAL HYDRAULIC DESIGN AND CAD APPLICATIONS OF AXIAL FLOW HYDRAULIC TURBINE'S RUNNER

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    A method of the optimal hydraulic design and CAD application of runner blades of axial-flow hydraulic turbines are discussed on the basis of optimization principle and CAD technique in this paper. Based on the theory of fluid dynamics, the blade′s main geometrical parameter, working parameters and performances index of the blades and the relationship between them are analysed, and the mathematical model of optimal hydraulic design of axial-flow runners has been established. Through nonlinear programming, the problems can be solved. By making use of the calculation geometry and computer graphics, the distribution method of the singular points, and an CAD applied software, an optimal hydraulic design are presented.

  5. Hydraulic Bureaucracy in a Modern Hydraulic Society – Strategic Group Formation in the Mekong Delta, Vietnam

    Directory of Open Access Journals (Sweden)

    Hans-Dieter Evers

    2009-10-01

    Among these strategic groups, the hydraulic bureaucracy and hydraulic construction business are the most crucial in terms of the specific role they play in the hydraulic landscape of the Mekong delta. Both groups exert considerable influence on water resources management and strive for the same resources, namely public funds (including Overseas Development Aid that is directed to hydraulic infrastructure development. This paper illustrates how both groups have emerged due to the growing need for water resources management in the delta and how they have set up alliances for mutually sharing resources in the long run. Furthermore, it is shown how both groups have adapted their resource-oriented strategies and actions to respond to the changes in the economic and political environment in Vietnam’s recent history.

  6. Triaxial coreflood study of the hydraulic fracturing of Utica Shale

    Science.gov (United States)

    Carey, J. W.; Frash, L.; Viswanathan, H. S.

    2015-12-01

    One of the central questions in unconventional oil and gas production research is the cause of limited recovery of hydrocarbon. There are many hypotheses including: 1) inadequate penetration of fractures within the stimulated volume; 2) limited proppant delivery; 3) multiphase flow phenomena that blocks hydrocarbon migration; etc. Underlying any solution to this problem must be an understanding of the hydrologic properties of hydraulically fractured shale. In this study, we conduct triaxial coreflood experiments using a gasket sealing mechanism to characterize hydraulic fracture development and permeability of Utica Shale samples. Our approach also includes fracture propagation with proppants. The triaxial coreflood experiments were conducted with an integrated x-ray tomography system that allows direct observation of fracture development using x-ray video radiography and x-ray computed tomography at elevated pressure. A semi-circular, fracture initiation notch was cut into an end-face of the cylindrical samples (1"-diameter with lengths from 0.375 to 1"). The notch was aligned parallel with the x-ray beam to allow video radiography of fracture growth as a function of injection pressure. The proppants included tungsten powder that provided good x-ray contrast for tracing proppant delivery and distribution within the fracture system. Fractures were propagated at injection pressures in excess of the confining pressure and permeability measurements were made in samples where the fractures propagated through the length of the sample, ideally without penetrating the sample sides. Following fracture development, permeability was characterized as a function of hydrostatic pressure and injection pressure. X-ray video radioadiography was used to study changes in fracture aperture in relation to permeability and proppant embedment. X-ray tomography was collected at steady-state conditions to fully characterize fracture geometry and proppant distribution.

  7. Hydraulic fracturing model based on the discrete fracture model and the generalized J integral

    Science.gov (United States)

    Liu, Z. Q.; Liu, Z. F.; Wang, X. H.; Zeng, B.

    2016-08-01

    The hydraulic fracturing technique is an effective stimulation for low permeability reservoirs. In fracturing models, one key point is to accurately calculate the flux across the fracture surface and the stress intensity factor. To achieve high precision, the discrete fracture model is recommended to calculate the flux. Using the generalized J integral, the present work obtains an accurate simulation of the stress intensity factor. Based on the above factors, an alternative hydraulic fracturing model is presented. Examples are included to demonstrate the reliability of the proposed model and its ability to model the fracture propagation. Subsequently, the model is used to describe the relationship between the geometry of the fracture and the fracturing equipment parameters. The numerical results indicate that the working pressure and the pump power will significantly influence the fracturing process.

  8. THE PRE-CONTRACT OBLIGATIONS REGARDING THE FRANCHISING AGREEMENT

    Directory of Open Access Journals (Sweden)

    DAN-ALEXANDRU SITARU

    2013-05-01

    Full Text Available The current paper puts into context the Government Ordinance no. 52/1997 regarding franchising with the new concepts of the Civil Code. Thus, under the old Civil Code there were no specific regulations that could be applied to a pre-contractual obligation of the parties. During any negotiation, because the parties sent each other a series of offers, counter offers, and in the end decided whether to agree or not, some parts of a professional secret, know-how, or any other important information for one or both might be revealed to the other. Under international laws, such as the one in France, or by using internationally established unwritten law, such as the Franchising Model Contract by the International Chamber of Commerce and Arbitration in Paris, such a disclosure of important or secret information is protected from future unauthorized usage by any party or affiliate if the contract is not signed. In the view of the new Civil Code, this stage in the development of an agreement, not yet binding, is now regulated and protected.

  9. THE PRE-CONTRACT OBLIGATIONS REGARDING THE FRANCHISING AGREEMENT

    Directory of Open Access Journals (Sweden)

    Dan-Alexandru SITARU

    2013-12-01

    Full Text Available The current paper puts into context the Government Ordinance no. 52/1997 regarding franchising with the new concepts of the Civil Code. Thus, under the old Civil Code there were no specific regulations that could be applied to a pre-contractual obligation of the parties. During any negotiation, because the parties sent each other a series of offers, counter offers, and in the end decided whether to agree or not, some parts of a professional secret, know-how, or any other important information for one or both might be revealed to the other. Under international laws, such as the one in France, or by using internationally established unwritten law, such as the Franchising Model Contract by the International Chamber of Commerce and Arbitration in Paris, such a disclosure of important or secret information is protected from future unauthorized usage by any party or affiliate if the contract is not signed. In the view of the new Civil Code, this stage in the development of an agreement, not yet binding, is now regulated and protected.

  10. 48 CFR 931.205-32 - Pre-contract costs.

    Science.gov (United States)

    2010-10-01

    ... authorizations shall not authorize the delivery or furnishing of any goods or services from a contractor until... shall be forwarded to the Senior Procurement Executive at the time of approval. If prolonged coverage is...

  11. Hydraulic power take-off for wave energy systems

    DEFF Research Database (Denmark)

    Christensen, Georg Kronborg

    2001-01-01

    Investigation and laboratory experiments with a hydraulic power conversion system for converting forces from a 2.5m diamter float to extract energy from seawaves. The test rig consists of a hydraulic wave simulator and a hydraulic point absorber. The absorber converts the incomming forces...

  12. 21 CFR 880.5110 - Hydraulic adjustable hospital bed.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Hydraulic adjustable hospital bed. 880.5110... (CONTINUED) MEDICAL DEVICES GENERAL HOSPITAL AND PERSONAL USE DEVICES General Hospital and Personal Use Therapeutic Devices § 880.5110 Hydraulic adjustable hospital bed. (a) Identification. A hydraulic adjustable...

  13. 14 CFR 33.72 - Hydraulic actuating systems.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Hydraulic actuating systems. 33.72 Section... AIRWORTHINESS STANDARDS: AIRCRAFT ENGINES Design and Construction; Turbine Aircraft Engines § 33.72 Hydraulic actuating systems. Each hydraulic actuating system must function properly under all conditions in which...

  14. 7 CFR 2902.10 - Mobile equipment hydraulic fluids.

    Science.gov (United States)

    2010-01-01

    ... Comprehensive Procurement Guideline, 40 CFR 247.11. ... 7 Agriculture 15 2010-01-01 2010-01-01 false Mobile equipment hydraulic fluids. 2902.10 Section... PROCUREMENT Designated Items § 2902.10 Mobile equipment hydraulic fluids. (a) Definition. Hydraulic...

  15. Comparison of four methods to assess hydraulic conductivity

    Energy Technology Data Exchange (ETDEWEB)

    Benson, C.H. [Univ. of Wisconsin, Madison, WI (United States). Dept. of Civil and Environmental Engineering; Gunter, J.A. [Gunter (John A.), Round Rock, TX (United States); Boutwell, G.P. [STE, Inc., Baton Rouge, LA (United States); Trautwein, S.J. [Trautwein Soil Testing Equipment Co., Houston, TX (United States); Berzanskis, P.H. [Hoechst-Celanese, Inc., Pampa, TX (United States)

    1997-10-01

    A hydraulic conductivity assessment that was conducted on four test pads constructed to the same specifications with soil from the same source by four different contractors is described. The test pads had distinctly different field hydraulic conductivities, even though they were constructed with similar soil, to similar compaction conditions, and with similar machinery. Adequate hydration time was key in achieving low field hydraulic conductivity. More extensive processing was another factor responsible for low field hydraulic conductivity. Four different test methods were used to assess the hydraulic conductivity of each test pad: (1) sealed double-ring infiltrometers (SDRIs); (2) two-stage borehole permeameters; (3) laboratory hydraulic conductivity tests on large block specimens; and (4) laboratory hydraulic conductivity tests on small specimens collected in thin-wall sampling tubes. The tests were conducted independently by each of the writers. After the tests were completed, the results were submitted and compared. Analysis of the test results show that the three large-scale test methods generally yield similar hydraulic conductivities. For two of the test pads, however, the hydraulic conductivities of the specimens collected in sampling tubes were significantly lower than the field hydraulic conductivities. Both of these test pads had high field hydraulic conductivity. Thus, there is little value in using small specimens to assess field hydraulic conductivity.

  16. 23 CFR 650.111 - Location hydraulic studies.

    Science.gov (United States)

    2010-04-01

    ... 23 Highways 1 2010-04-01 2010-04-01 false Location hydraulic studies. 650.111 Section 650.111 Highways FEDERAL HIGHWAY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION ENGINEERING AND TRAFFIC OPERATIONS BRIDGES, STRUCTURES, AND HYDRAULICS Location and Hydraulic Design of Encroachments on Flood Plains §...

  17. Discrete modeling of hydraulic fracturing processes in a complex pre-existing fracture network

    Science.gov (United States)

    Kim, K.; Rutqvist, J.; Nakagawa, S.; Houseworth, J. E.; Birkholzer, J. T.

    2015-12-01

    Hydraulic fracturing and stimulation of fracture networks are widely used by the energy industry (e.g., shale gas extraction, enhanced geothermal systems) to increase permeability of geological formations. Numerous analytical and numerical models have been developed to help understand and predict the behavior of hydraulically induced fractures. However, many existing models assume simple fracturing scenarios with highly idealized fracture geometries (e.g., propagation of a single fracture with assumed shapes in a homogeneous medium). Modeling hydraulic fracture propagation in the presence of natural fractures and homogeneities can be very challenging because of the complex interactions between fluid, rock matrix, and rock interfaces, as well as the interactions between propagating fractures and pre-existing natural fractures. In this study, the TOUGH-RBSN code for coupled hydro-mechanical modeling is utilized to simulate hydraulic fracture propagation and its interaction with pre-existing fracture networks. The simulation tool combines TOUGH2, a simulator of subsurface multiphase flow and mass transport based on the finite volume approach, with the implementation of a lattice modeling approach for geomechanical and fracture-damage behavior, named Rigid-Body-Spring Network (RBSN). The discrete fracture network (DFN) approach is facilitated in the Voronoi discretization via a fully automated modeling procedure. The numerical program is verified through a simple simulation for single fracture propagation, in which the resulting fracture geometry is compared to an analytical solution for given fracture length and aperture. Subsequently, predictive simulations are conducted for planned laboratory experiments using rock-analogue (soda-lime glass) samples containing a designed, pre-existing fracture network. The results of a preliminary simulation demonstrate selective fracturing and fluid infiltration along the pre-existing fractures, with additional fracturing in part

  18. Numerical Analysis on the Formation of Fracture Network during the Hydraulic Fracturing of Shale with Pre-Existing Fractures

    Directory of Open Access Journals (Sweden)

    Jianming He

    2017-05-01

    Full Text Available In this paper, configurations of pre-existing fractures in cubic rock blocks were investigated and reconstructed for the modeling of experimental hydraulic fracturing. The fluid-rock coupling process of hydraulic fracturing was simulated based on the displacement discontinuities method. The numerical model was validated against the related laboratory experiments. The stimulated fracture configurations under different conditions can be clearly shown using the validated numerical model. First, a dominated fracture along the maximum principle stress direction is always formed when the stress difference is large enough. Second, there are less reopened pre-existing fractures, more newly formed fractures and less shear fractures with the increase of the cohesion value of pre-existing fractures. Third, the length of the stimulated shear fracture decreases rapidly with the increase of the friction coefficient, while the length of the tensile fracture has no correlation to the fiction coefficient. Finally, the increase of the fluid injection rate is favorable to the formation of a fracture network. The unfavorable effects of the large stress difference and the large cohesion of pre-existing fractures can be partly suppressed by an increase of the injection rate in the hydraulic fracturing treatment. The results of this paper are useful for understanding fracture propagation behaviors during the hydraulic fracturing of shale reservoirs with pre-existing fractures.

  19. Assimilation of temperature and hydraulic gradients for quantifying the spatial variability of streambed hydraulics

    Science.gov (United States)

    Huang, Xiang; Andrews, Charles B.; Liu, Jie; Yao, Yingying; Liu, Chuankun; Tyler, Scott W.; Selker, John S.; Zheng, Chunmiao

    2016-08-01

    Understanding the spatial and temporal characteristics of water flux into or out of shallow aquifers is imperative for water resources management and eco-environmental conservation. In this study, the spatial variability in the vertical specific fluxes and hydraulic conductivities in a streambed were evaluated by integrating distributed temperature sensing (DTS) data and vertical hydraulic gradients into an ensemble Kalman filter (EnKF) and smoother (EnKS) and an empirical thermal-mixing model. The formulation of the EnKF/EnKS assimilation scheme is based on a discretized 1D advection-conduction equation of heat transfer in the streambed. We first systematically tested a synthetic case and performed quantitative and statistical analyses to evaluate the performance of the assimilation schemes. Then a real-world case was evaluated to calculate assimilated specific flux. An initial estimate of the spatial distributions of the vertical hydraulic gradients was obtained from an empirical thermal-mixing model under steady-state conditions using a constant vertical hydraulic conductivity. Then, this initial estimate was updated by repeatedly dividing the assimilated specific flux by estimates of the vertical hydraulic gradients to obtain a refined spatial distribution of vertical hydraulic gradients and vertical hydraulic conductivities. Our results indicate that optimal parameters can be derived with fewer iterations but greater simulation effort using the EnKS compared with the EnKF. For the field application in a stream segment of the Heihe River Basin in northwest China, the average vertical hydraulic conductivities in the streambed varied over three orders of magnitude (5 × 10-1 to 5 × 102 m/d). The specific fluxes ranged from near zero (qz < ±0.05 m/d) to ±1.0 m/d, while the vertical hydraulic gradients were within the range of -0.2 to 0.15 m/m. The highest and most variable fluxes occurred adjacent to a debris-dam and bridge pier. This phenomenon is very likely

  20. Hydraulics and pneumatics a technician's and engineer's guide

    CERN Document Server

    Parr, Andrew

    1991-01-01

    Hydraulics and Pneumatics: A Technician's and Engineer's Guide provides an introduction to the components and operation of a hydraulic or pneumatic system. This book discusses the main advantages and disadvantages of pneumatic or hydraulic systems.Organized into eight chapters, this book begins with an overview of industrial prime movers. This text then examines the three different types of positive displacement pump used in hydraulic systems, namely, gear pumps, vane pumps, and piston pumps. Other chapters consider the pressure in a hydraulic system, which can be quickly and easily controlled

  1. A novel energy recovery system for parallel hybrid hydraulic excavator.

    Science.gov (United States)

    Li, Wei; Cao, Baoyu; Zhu, Zhencai; Chen, Guoan

    2014-01-01

    Hydraulic excavator energy saving is important to relieve source shortage and protect environment. This paper mainly discusses the energy saving for the hybrid hydraulic excavator. By analyzing the excess energy of three hydraulic cylinders in the conventional hydraulic excavator, a new boom potential energy recovery system is proposed. The mathematical models of the main components including boom cylinder, hydraulic motor, and hydraulic accumulator are built. The natural frequency of the proposed energy recovery system is calculated based on the mathematical models. Meanwhile, the simulation models of the proposed system and a conventional energy recovery system are built by AMESim software. The results show that the proposed system is more effective than the conventional energy saving system. At last, the main components of the proposed energy recovery system including accumulator and hydraulic motor are analyzed for improving the energy recovery efficiency. The measures to improve the energy recovery efficiency of the proposed system are presented.

  2. Upfront predictions of hydraulic fracturing and gas production in underexplored shale gas basins: Example of the posidonia shale formation in the Netherlands

    NARCIS (Netherlands)

    TerHeege, J.H.; Zijp, M.; DeBruin, G.; Buijze, L.

    2014-01-01

    Upfront predictions of hydraulic fracturing and gas production of potential shale gas targets in Europe are important as often large potential resources are deduced without detailed knowledge on the potential for successful stimulation. Such predictions are challenging as they need to be based on li

  3. Technology of load-sensitivity used in the hydraulic system of an all-hydraulic core rig

    Institute of Scientific and Technical Information of China (English)

    XIN De-zhong; CHEN Song-ling; WANG Qing-feng

    2009-01-01

    The existing hydraulic system always have problems of temperature rise, run-ning stability and anti-interference of the implementation components, reliability of hydrau-lic components, maintenance difficulties, and other issues. With high efficiency, energy saving, reliability, easy operating, stable running, anti-interference ability, and other ad-vantages, the load-sensitive hydraulic system is more suitable for coal mine all-hydraulic core rig. Therefore, for the technical development of the coal mine all-hydraulic core rig, the load-sensitive technology employed by the rig should be of great significance.

  4. Trends in Design of Water Hydraulics

    DEFF Research Database (Denmark)

    Conrad, Finn

    2005-01-01

    The paper presents and discusses a R&D-view on trends in development and best practise in design of both low-pressure and high-pressure tap water hydraulic components and systems for motion control as well as open-ended solutions various industrial applications. The focus is on the advantages using...... ordinary tap water and the range of application areas are illustrated with examples, in particular within the food processing industry, humidification operations, water mist systems for fire fighting, high water pressure cleaners, water moisturising systems for wood processing, lumber drying process...... operate with pure water from the tap without additives of any kind. Hence water hydraulics takes the benefit of pure water as fluid being environmentally friendly, easy to clean sanitary design, non-toxic, non-flammable, inexpensive, readily available and easily disposable. The low-pressure tap water...

  5. Plug & Play Control of Hydraulic Networks

    DEFF Research Database (Denmark)

    Jensen, Tom Nørgaard

    2012-01-01

    Process Control research program, which the work presented here is a part of. An industrial case study involving a large-scale hydraulic network with non-linear dynamics is studied. The hydraulic network underlies a district heating system, which provides heating water to a number of end-users in a city...... structure has the additional benefit that structural changes such as the addition or removal of end-users are easily implementable. In this work, the problem of controlling the pressure drop at the end-users to a constant reference value is considered. This is done by the use of pumps located both...... are considered. Some of the work considers control actions which are constrained to non-negative values only. This is due to the fact that the actuators in this type of system typically consist of centrifugal pumps which are only able to deliver non-negative actuation. Other parts of the work consider control...

  6. Mechanization of hydraulic testing of chemical equipment

    Energy Technology Data Exchange (ETDEWEB)

    Bannikov, M.T.; Fridman, R.N.; Petrovnin, A.I.

    1982-09-01

    The Institute VNIIPTKhimmash has worked out a comprehensive list of equipment for testing for strength and tightness containers and heat exchangers with jackets, with mixers, also of individual parts and subassemblies for this equipment. Points out that in the test stands developed for hydraulic testing of vessels both individual and centralized recirculating water supply can be used. Concludes that a reduction in labor consumption in hydraulic testing and in servicing of all the equipment used, an increase in the mechanization of this kind of chemical equipment, and the solution of the problem of standardization not only with regard to dimensions and parameters, but also with regard to the makes and types of the materials used, will make possible a considerable increase in labor productivity and product quality.

  7. Concept Evaluation for Hydraulic Yaw System

    DEFF Research Database (Denmark)

    Stubkier, Søren; Pedersen, Henrik C.; Andersen, Torben Ole

    2013-01-01

    a suspension system on a car, leading the loads away from the turbine structure. However, to realize a soft hydraulic yaw system a new design concept must be found. As a part of the development of the new concept a preliminary concept evaluation has been conducted, evaluating seven different hydraulic yaw......The yaw system is the subsystem on a wind turbine which ensures that the rotor plane of the turbine always is facing the wind direction. Studies from [1] show that a soft yaw system may be utilized to dampen the loads in the wind turbine structure. The soft yaw system operates much like...... investigation. Loads and yaw demands are based on the IEC 61400-1 standard for wind turbine design, and the loads for this examination are extrapolated from the HAWC2 aeroelastic design code. The concepts are based on a 5 MW off-shore turbine....

  8. New parameters influencing hydraulic runner lifetime

    Science.gov (United States)

    Sabourin, M.; Thibault, D.; Bouffard, D. A.; Lévesque, M.

    2010-08-01

    Traditionally, hydraulic runner mechanical design is based on calculation of static stresses. Today, validation of hydraulic runner design in terms of reliability requires taking into account the fatigue effect of dynamics loads. A damage tolerant approach based on fracture mechanics is the method chosen by Alstom and Hydro-Québec to study fatigue damage in runners. This requires a careful examination of all factors influencing material fatigue behavior. Such material behavior depends mainly on the chemical composition, microstructure and thermal history of the component, and on the resulting residual stresses. Measurement of fracture mechanics properties of various steels have demonstrated that runner lifetime can be significantly altered by differences in the manufacturing process, although remaining in accordance with agreed practices and standards such as ASTM. Carbon content and heat treatment are suspected to influence fatigue lifetime. This will have to be investigated by continuing the current research.

  9. Pilot testing of a hydraulic bridge exciter

    Directory of Open Access Journals (Sweden)

    Andersson Andreas

    2015-01-01

    Full Text Available This paper describes the development of a hydraulic bridge exciter and its first pilot testing on a full scale railway bridge in service. The exciter is based on a hydraulic load cylinder with a capacity of 50 kN and is intended for controlled dynamic loading up to at least 50 Hz. The load is applied from underneath the bridge, enabling testing while the railway line is in service. The system is shown to produce constant load amplitude even at resonance. The exciter is used to experimentally determine frequency response functions at all sensor locations, which serve as valuable input for model updating and verification. An FE-model of the case study bridge has been developed that is in good agreement with the experimental results.

  10. NEW HYDRAULIC ACTUATOR'S POSITION SERVOCONTROL STRATEGY

    Institute of Scientific and Technical Information of China (English)

    KE Zunrong; ZHU Yuquan; LING Xuan

    2007-01-01

    A new hydraulic actuator-hydraulic muscle (HM) is described, and the actuator's features and applications are analyzed, then a position servocontrol system in which HM is main actuator is set up. The mathematical model of the system is built up and several control strategies are discussed. Based on the mathematical model, simulation research and experimental investigation with subsection PID control, neural network self-adaptive PID control and single neuron self-adaptive PID control adopted respectively are carried out, and the results indicate that compared with PID control, neural network self-adaptive PID control and single neuron self-adaptive PID control don't need controlled system's accurate model and have fast response, high control accuracy and strong robustness, they are very suitable for HM position servo control system.

  11. Advanced Hydraulic Studies on Enhancing Particle Removal

    DEFF Research Database (Denmark)

    He, Cheng

    The removal of suspended solids and attached pollutants is one of the main treatment processes in wastewater treatment. This thesis presents studies on the hydraulic conditions of various particle removal facilities for possible ways to increase their treatment capacity and performance by utilizing...... and improving hydraulic conditions. Unlike most traditional theses which usually focus only on one particular subject of study, this thesis contains four relatively independent studies which cover the following topics: a newly proposed particle settling enhancement plate, the redesign of the inlet zone......, introduction and conclusions as well as the study results. All studies were carried out with a combination of numerical model and measurements. In the first part of the thesis a new concept of using a vortex to increase particle removal from liquid was proposed and the new particle settling enhancement plates...

  12. Thermal Hydraulic Design of PWT Accelerating Structures

    CERN Document Server

    Yu, David; Chen Ping; Lundquist, Martin; Luo, Yan

    2005-01-01

    Microwave power losses on the surfaces of accelerating structures will transform to heat which will deform the structures if it is not removed in time. Thermal hydraulic design of the disk and cooling rods of a Plane Wave Transformer (PWT) structure is presented. Experiments to measure the hydraulic (pressure vs flow rate) and cooling (heat removed vs flow rate) properties of the PWT disk are performed, and results compared with simulations using Mathcad models and the COSMOSM code. Both experimental and simulation results showed that the heat deposited on the structure could be removed effectively using specially designed water-cooling circuits and the temperature of the structure could be controlled within the range required.

  13. Hydraulic conductivity and diffusion characterization of GCLs

    Energy Technology Data Exchange (ETDEWEB)

    Mukunoki, T.; Rowe, R.K.; Li, H.M.; Sangam, H.P.; Hurst, P.; Bathurst, R.J. [Queen' s Univ., Kingston, ON (Canada)]|[Royal Military Coll. of Canada, Kingston, ON (Canada); Badv, K. [Urmia Univ. (Iran, Islamic Republic of)

    2003-07-01

    This paper reports on the characterization of the hydraulic conductivity and diffusion of a geosynthetic clay liner (GCL) installed at a site off the southeast coast of Baffin Island, in the Canadian Arctic, following different levels of freeze-thaw exposure and under low temperature conditions. The authors presented a summary of the results obtained for hydraulic conductivity tests on GCLs subjected to freeze-thaw cycles, and specimens permeated with jet fuel (Arctic diesel). They also reported on diffusion tests conducted at 22 Celsius and 5 Celsius, followed by a discussion of the effect of temperature. The results indicate that there is no significant impact on GCL performance due to freeze-thaw cycles, permeation by jet fuel or diffusion at the lower temperatures expected in the north for the short term (up to approximately four years). Additional studies are needed to confirm long term behaviour. 24 refs., 2 tabs., 4 figs.

  14. Thermal-hydraulic analysis of nuclear reactors

    CERN Document Server

    Zohuri, Bahman

    2015-01-01

    This text covers the fundamentals of thermodynamics required to understand electrical power generation systems and the application of these principles to nuclear reactor power plant systems. It is not a traditional general thermodynamics text, per se, but a practical thermodynamics volume intended to explain the fundamentals and apply them to the challenges facing actual nuclear power plants systems, where thermal hydraulics comes to play.  Written in a lucid, straight-forward style while retaining scientific rigor, the content is accessible to upper division undergraduate students and aimed at practicing engineers in nuclear power facilities and engineering scientists and technicians in industry, academic research groups, and national laboratories. The book is also a valuable resource for students and faculty in various engineering programs concerned with nuclear reactors. This book also: Provides extensive coverage of thermal hydraulics with thermodynamics in nuclear reactors, beginning with fundamental ...

  15. The Hydraulic Ram (Or Impulse) Pump

    Science.gov (United States)

    Mills, Allan

    2014-01-01

    The hydraulic impulse pump utilizes a fraction of the momentum of a flowing stream to lift a small portion of that water to a higher level. There it may be accumulated in an elevated cistern to provide sufficient water for several families, for the pump works 24 h a day with no additional source of energy. The operation of the pump is described,…

  16. Hydraulic Aspects of Vegetation Maintanence in Streams

    DEFF Research Database (Denmark)

    Larsen, Torben; Vestergaard, Kristian

    1991-01-01

    This paper describes the importance of the underwater vegetation on Danish streams and some of the consequences of vegetation maintenance. the influence of the weed on the hydraulic conditions is studied through experiments in a smaller stream and the effect of cutting channels through the weed...... is measured. A method for predicting the Manning's n as a function of the discharge conditions is suggested, and also a working hypothesis for predictions of the effect of channel cutting is presented....

  17. Rapid Hydraulic Assessment for Stream Restoration

    Science.gov (United States)

    2016-02-01

    account the hydraulic conditions of the stream being restored. This is true whether the project involves a few feet of bank stabilization or several...coefficient, α, expresses a correction for nonuniformity in the velocity distribution, and in most applications this value is assumed to be 1 or read from...a table (e.g., Chow 1959, p.28). The depth and slope angle terms can be replaced by a vertical expression of the depth, y, because in most rivers

  18. Estimation of ground water hydraulic parameters

    Energy Technology Data Exchange (ETDEWEB)

    Hvilshoej, Soeren

    1998-11-01

    The main objective was to assess field methods to determine ground water hydraulic parameters and to develop and apply new analysis methods to selected field techniques. A field site in Vejen, Denmark, which previously has been intensively investigated on the basis of a large amount of mini slug tests and tracer tests, was chosen for experimental application and evaluation. Particular interest was in analysing partially penetrating pumping tests and a recently proposed single-well dipole test. Three wells were constructed in which partially penetrating pumping tests and multi-level single-well dipole tests were performed. In addition, multi-level slug tests, flow meter tests, gamma-logs, and geologic characterisation of soil samples were carried out. In addition to the three Vejen analyses, data from previously published partially penetrating pumping tests were analysed assuming homogeneous anisotropic aquifer conditions. In the present study methods were developed to analyse partially penetrating pumping tests and multi-level single-well dipole tests based on an inverse numerical model. The obtained horizontal hydraulic conductivities from the partially penetrating pumping tests were in accordance with measurements obtained from multi-level slug tests and mini slug tests. Accordance was also achieved between the anisotropy ratios determined from partially penetrating pumping tests and multi-level single-well dipole tests. It was demonstrated that the partially penetrating pumping test analysed by and inverse numerical model is a very valuable technique that may provide hydraulic information on the storage terms and the vertical distribution of the horizontal and vertical hydraulic conductivity under both confined and unconfined aquifer conditions. (EG) 138 refs.

  19. Partially decoupled modeling of hydraulic fracturing processes

    Energy Technology Data Exchange (ETDEWEB)

    Settari, A.; Puchyr, P.J.; Bachman, R.C. (Simtech Consulting Services, Calgary (CA))

    1990-02-01

    A new method of partial decoupling of the problem of modeling a hydraulic fracture in a reservoir is described. According to the authors this approach has significant advantages over previous methods with fully coupled or completely uncoupled models. Better accuracy can be achieved in modeling the fracture propagation, and the new system is very efficient and versatile. Virtually any reservoir model can be used for predicting postfracture productivity. Examples of single- and multiphase applications for modeling fractured wells are discussed.

  20. Flow characteristics of variable hydraulic transformer

    Institute of Scientific and Technical Information of China (English)

    杨冠中; 姜继海

    2015-01-01

    A new kind of hydraulic transformer, called variable hydraulic transformer (VHT), is proposed to control its load flow rate. The hydraulic transformer evolves from a pressure transducer to a power transducer. The flow characteristics of VHT, such as its instantaneous flow rates, average flow rates, and flow pulsations in the ports, are investigated. Matlab software is used to simulate and calculate. There are five controlled angles of the port plate that can help to define the flow characteristics of VHT. The relationships between the flow characteristics and the structure in VHT are shown. Also, the plus−minus change of the average flow rates and the continuity of the instantaneous flow rates in the ports are presented. The results demonstrate the performance laws of VHT when the controlled angles of the port plate and of the swash plate change. The results also reveal that the special principle of the flow pulsation in the ports and the jump points of the instantaneous curves are the two basic causes of its loud noise, and that the control angles of the port plate and the swash plate and the pressures in the ports are the three key factors of the noise.

  1. Measuring Disturbance Impact on Soil Hydraulic Properties

    Science.gov (United States)

    Hinshaw, S.; Mirus, B. B.

    2014-12-01

    Disturbances associated with land cover change such as forest clearing and mono-cropping can have a substantial impact on soil-hydraulic properties, which in turn have a cascading impact on surface and near-surface hydrologic response. Although disturbances and vegetation change can alter soil-water retention and conductivity relations, hydrologic models relying on traditional soil-texture based pedotransfer functions would not be able to capture the disturbance impact on infiltration and soil-moisture storage. Therefore, in-situ estimates of characteristic curves of soil water retention and hydraulic conductivity relations are needed to understand and predict hydrologic impacts of land cover change. We present a method for in-situ estimates of effective characteristic curves that capture hysteretic soil-water retention properties at the plot scale. We apply this method to two different forest treatments and in urban settings to investigate the impact of land-use disturbances on soil-hydraulic properties. We compare our in-situ estimation method to results for simple pedotransfer functions to illustrate how this approach can improve understanding of disturbance impacts on hydrologic processes and function.

  2. On the Dynamic Measurements of Hydraulic Characteristics

    Science.gov (United States)

    Hasmatuchi, Vlad; Bosioc, Alin; Münch-Alligné, Cécile

    2016-11-01

    The present work introduces the implementation and validation of a faster method to measure experimentally the efficiency characteristics of hydraulic turbomachines at a model scale on a test rig. The case study is represented by a laboratory prototype of an in-line axial microturbine for water supply networks. The 2.65 kW one-stage variable speed turbine, composed by one upstream 5-blade runner followed by one counter-rotating downstream 7-blade runner, has been installed on the HES-SO Valais/Wallis universal test rig dedicated to assess performances of small hydraulic machinery following the IEC standard recommendations. In addition to the existing acquisition/control system of the test rig used to measure the 3D hill-chart of a turbine by classical static point-by-point method, a second digitizer has been added to acquire synchronized dynamic signals of the employed sensors. The optimal acceleration/deceleration ramps of the electrical drives have been previously identified in order to cope with the purpose of a reduced measurement time while avoiding errors and hysteresis on the acquired hydraulic characteristics. Finally, the comparison between the turbine efficiency hill-charts obtained by dynamic and static point-by-point methods shows a very good agreement in terms of precision and repeatability. Moreover, the applied dynamic method reduces significantly (by a factor of up to ten) the time necessary to measure the efficiency characteristics on model testing.

  3. Determining the Conditions for the Hydraulic Impacts Emergence at Hydraulic Systems

    Directory of Open Access Journals (Sweden)

    Mazurenko A.S.

    2017-08-01

    Full Text Available This research aim is to develop a method for modeling the conditions for the critical hydrau-lic impacts emergence on thermal and nuclear power plants’ pipeline systems pressure pumps depart-ing from the general provisions of the heat and hydrodynamic instability theory. On the developed method basis, the conditions giving rise to the reliability-critical hydraulic impacts emergence on pumps for the thermal and nuclear power plants’ typical pipeline system have been determined. With the flow characteristic minimum allowable (critical sensitivity, the flow velocity fluctuations ampli-tude reaches critical values at which the pumps working elements’ failure occurs. The critical hydrau-lic impacts emergence corresponds to the transition of the vibrational heat-hydrodynamic instability into an aperiodic one. As research revealed, a highly promising approach as to the preventing the criti-cal hydraulic impacts related to the foreground use of pumps having the most sensitive consumption (at supply network performance (while other technical characteristics corresponding to that parame-ter. The research novelty refers to the suggested method elaborated by the authors’ team, which, in contrast to traditional approaches, is efficient in determining the pump hydraulic impact occurrence conditions when the vibrational heat-hydrodynamic instability transition to the aperiodic instability.

  4. Rapid hydraulic recovery in Eucalyptus pauciflora after drought: linkages between stem hydraulics and leaf gas exchange.

    Science.gov (United States)

    Martorell, Sebastià; Diaz-Espejo, Antonio; Medrano, Hipólito; Ball, Marilyn C; Choat, Brendan

    2014-03-01

    In woody plants, photosynthetic capacity is closely linked to rates at which the plant hydraulic system can supply water to the leaf surface. Drought-induced embolism can cause sharp declines in xylem hydraulic conductivity that coincide with stomatal closure and reduced photosynthesis. Recovery of photosynthetic capacity after drought is dependent on restored xylem function, although few data exist to elucidate this coordination. We examined the dynamics of leaf gas exchange and xylem function in Eucalyptus pauciflora seedlings exposed to a cycle of severe water stress and recovery after re-watering. Stomatal closure and leaf turgor loss occurred at water potentials that delayed the extensive spread of embolism through the stem xylem. Stem hydraulic conductance recovered to control levels within 6 h after re-watering despite a severe drought treatment, suggesting an active mechanism embolism repair. However, stomatal conductance did not recover after 10 d of re-watering, effecting tighter control of transpiration post drought. The dynamics of recovery suggest that a combination of hydraulic and non-hydraulic factors influenced stomatal behaviour post drought.

  5. Multivariate distributions of soil hydraulic parameters

    Science.gov (United States)

    Qu, Wei; Pachepsky, Yakov; Huisman, Johan Alexander; Martinez, Gonzalo; Bogena, Heye; Vereecken, Harry

    2014-05-01

    Statistical distributions of soil hydraulic parameters have to be known when synthetic fields of soil hydraulic properties need to be generated in ensemble modeling of soil water dynamics and soil water content data assimilation. Pedotransfer functions that provide statistical distributions of water retention and hydraulic conductivity parameters for textural classes are most often used in the parameter field generation. Presence of strong correlations can substantially influence the parameter generation results. The objective of this work was to review and evaluate available data on correlations between van Genuchten-Mualem (VGM) model parameters. So far, two different approaches were developed to estimate these correlations. The first approach uses pedotransfer functions to generate VGM parameters for a large number of soil compositions within a textural class, and then computes parameter correlations for each of the textural classes. The second approach computes the VGM parameter correlations directly from parameter values obtained by fitting VGM model to measured water retention and hydraulic conductivity data for soil samples belonging to a textural class. Carsel and Parish (1988) used the Rawls et al. (1982) pedotransfer functions, and Meyer et al. (1997) used the Rosetta pedotransfer algorithms (Schaap, 2002) to develop correlations according to the first approach. We used the UNSODA database (Nemes et al. 2001), the US Southern Plains database (Timlin et al., 1999), and the Belgian database (Vereecken et al., 1989, 1990) to apply the second approach. A substantial number of considerable (>0.7) correlation coefficients were found. Large differences were encountered between parameter correlations obtained with different approaches and different databases for the same textural classes. The first of the two approaches resulted in generally higher values of correlation coefficients between VGM parameters. However, results of the first approach application depend

  6. Analysis of Innovative Design of Energy Efficient Hydraulic Actuators

    Directory of Open Access Journals (Sweden)

    M Osman Abdalla

    2013-01-01

    Full Text Available Hydraulic cylinder actuators are used extensively in industrial, construction and agricultural works. The small sized outlet ports of the cylinders resist the flow of discharged oil; and as a result the piston motion is slowed down. This causes a lot of heat generation and energy loss within the actuators. The study investigates and analyzes the possibilities of reducing the hydraulic resistance and increasing efficiency of the hydraulic actuator. Conventional hydraulic cylinders are simulated in FLUENT. Results show that the small outlet ports are the sources of energy loss in hydraulic cylinders. A new hydraulic system was proposed as a solution to relieve the hydraulic resistance in the actuators. The proposed system is a four ports hydraulic cylinder fitted with a novel flow control valve. The proposed four ports cylinder was simulated and parameters such as ports sizes, loads and pressures are varied during the simulation. The hydraulic resisting forces, piston speed and mass flow rates are computed. Results show that the hydraulic resistance is significantly reduced in the proposed four ports actuators; and the proposed cylinders run faster than the conventional cylinders and a considerable amount of energyis saved as well.

  7. Variation in reach-scale hydraulic conductivity of streambeds

    Science.gov (United States)

    Stewardson, M. J.; Datry, T.; Lamouroux, N.; Pella, H.; Thommeret, N.; Valette, L.; Grant, S. B.

    2016-04-01

    Streambed hydraulic conductivity is an important control on flow within the hyporheic zone, affecting hydrological, ecological, and biogeochemical processes essential to river ecosystem function. Despite many published field measurements, few empirical studies examine the drivers of spatial and temporal variations in streambed hydraulic conductivity. Reach-averaged hydraulic conductivity estimated for 119 surveys in 83 stream reaches across continental France, even of coarse bed streams, are shown to be characteristic of sand and finer sediments. This supports a model where processes leading to the accumulation of finer sediments within streambeds largely control hydraulic conductivity rather than the size of the coarse bed sediment fraction. After describing a conceptual model of relevant processes, we fit an empirical model relating hydraulic conductivity to candidate geomorphic and hydraulic drivers. The fitted model explains 72% of the deviance in hydraulic conductivity (and 30% using an external cross-validation). Reach hydraulic conductivity increases with the amplitude of bedforms within the reach, the bankfull channel width-depth ratio, stream power and upstream catchment erodibility but reduces with time since the last streambed disturbance. The correlation between hydraulic conductivity and time since a streambed mobilisation event is likely a consequence of clogging processes. Streams with a predominantly suspended load and less frequent streambed disturbances are expected to have a lower streambed hydraulic conductivity and reduced hyporheic fluxes. This study suggests a close link between streambed sediment transport dynamics and connectivity between surface water and the hyporheic zone.

  8. Geostatistical Estimations of Regional Hydraulic Conductivity Fields

    Science.gov (United States)

    Patriarche, D.; Castro, M. C.; Goovaerts, P.

    2004-12-01

    Direct and indirect measurements of hydraulic conductivity (K) are commonly performed, providing information on the magnitude of this parameter at the local scale (tens of centimeters to hundreds of meters) and at shallow depths. By contrast, field information on hydraulic conductivities at regional scales of tens to hundreds of kilometers and at greater depths is relatively scarce. Geostatistical methods allow for sparsely sampled observations of a variable (primary information) to be complemented by a more densely sampled secondary attribute. Geostatistical estimations of the hydraulic conductivity field in the Carrizo aquifer, a major groundwater flow system extending along Texas, are performed using available primary (e.g., transmissivity, hydraulic conductivity) and secondary (specific capacity) information, for depths up to 2.2 km, and over three regional domains of increasing extent: 1) the domain corresponding to a three-dimensional groundwater flow model previously built (model domain); 2) the area corresponding to the ten counties encompassing the model domain (County domain), and; 3) the full extension of the Carrizo aquifer within Texas (Texas domain). Two different approaches are used: 1) an indirect approach are transmissivity (T) is estimated first and (K) is retrieved through division of the T estimate by the screening length of the wells, and; 2) a direct approach where K data are kriged directly. Prediction performances of the tested geostatistical procedures (kriging combined with linear regression, kriging with known local means, kriging of residuals, and cokriging) are evaluated through cross validation for both log-transformed variables and back-transformed ones. For the indirect approach, kriging of log T residuals yields the best estimates for both log-transformed and back-transformed variables in the model domain. For larger regional scales (County and Texas domains), cokriging performs generally better than univariate kriging procedures

  9. Review of Hydraulic Fracturing for Preconditioning in Cave Mining

    Science.gov (United States)

    He, Q.; Suorineni, F. T.; Oh, J.

    2016-12-01

    Hydraulic fracturing has been used in cave mining for preconditioning the orebody following its successful application in the oil and gas industries. In this paper, the state of the art of hydraulic fracturing as a preconditioning method in cave mining is presented. Procedures are provided on how to implement prescribed hydraulic fracturing by which effective preconditioning can be realized in any in situ stress condition. Preconditioning is effective in cave mining when an additional fracture set is introduced into the rock mass. Previous studies on cave mining hydraulic fracturing focused on field applications, hydraulic fracture growth measurement and the interaction between hydraulic fractures and natural fractures. The review in this paper reveals that the orientation of the current cave mining hydraulic fractures is dictated by and is perpendicular to the minimum in situ stress orientation. In some geotechnical conditions, these orientation-uncontrollable hydraulic fractures have limited preconditioning efficiency because they do not necessarily result in reduced fragmentation sizes and a blocky orebody through the introduction of an additional fracture set. This implies that if the minimum in situ stress orientation is vertical and favors the creation of horizontal hydraulic fractures, in a rock mass that is already dominated by horizontal joints, no additional fracture set is added to that rock mass to increase its blockiness to enable it cave. Therefore, two approaches that have the potential to create orientation-controllable hydraulic fractures in cave mining with the potential to introduce additional fracture set as desired are proposed to fill this gap. These approaches take advantage of directional hydraulic fracturing and the stress shadow effect, which can re-orientate the hydraulic fracture propagation trajectory against its theoretical predicted direction. Proppants are suggested to be introduced into the cave mining industry to enhance the

  10. Hydrodynamic evaluation of a hydraulic clarifier through hydraulic behaviour indicators and simplified flow models

    Directory of Open Access Journals (Sweden)

    Paola Patiño

    2012-04-01

    Full Text Available Hydrodynamic phenomena take place within water treatment plants associated with physical, operational and environmental factors which can affect the water quality. This study evaluated a hydraulic clarifier’s hydrodynamic pattern using sludge recirculation through continuous tracer test leading to determining hydraulic behaviour indicators and simplified flow models. The clarifier had dual flow with a predominantly complete mixture during the hours in which higher temperatures were reported for affluent water compared to those reported inside the reactor, causing the formation of density currents promoting mixing in the reactor and increased turbidity in the effluent. The hydraulic indicators and the Wolf-Resnick model had higher sensitivity to the influence of temperature on reactor hydrodynamics.

  11. Power Management in Mobile Hydraulic Applications - An Approach for Designing Hydraulic Power Supply Systems

    DEFF Research Database (Denmark)

    Pedersen, Henrik Clemmensen

    2004-01-01

    in a project to develop rules and methods for designing and controlling mobile hydraulic systems in the most energy efficient way, when also considering the operational aspects of the system. The paper first describes the thoughts and ideas behind the project and then focus on an automated approach to design......Throughout the last three decades energy consumption has become one of the primary design aspects in hydraulic systems, especially for mobile hydraulic systems, as power and cooling capacity here is at limited disposal. Considering the energy usage, this is dependent on component efficiency......, but even more important is the system topology. However, there are no rules or guidelines for what system topology to choose for a given application, in order to obtain the most energy efficient system, nor for how the energy should be distributed in the system. This paper describes the approach taken...

  12. Organic compounds in hydraulic fracturing fluids and wastewaters: A review.

    Science.gov (United States)

    Luek, Jenna L; Gonsior, Michael

    2017-10-15

    High volume hydraulic fracturing (HVHF) of shale to stimulate the release of natural gas produces a large quantity of wastewater in the form of flowback fluids and produced water. These wastewaters are highly variable in their composition and contain a mixture of fracturing fluid additives, geogenic inorganic and organic substances, and transformation products. The qualitative and quantitative analyses of organic compounds identified in HVHF fluids, flowback fluids, and produced waters are reviewed here to communicate knowledge gaps that exist in the composition of HVHF wastewaters. In general, analyses of organic compounds have focused on those amenable to gas chromatography, focusing on volatile and semi-volatile oil and gas compounds. Studies of more polar and non-volatile organic compounds have been limited by a lack of knowledge of what compounds may be present as well as quantitative methods and standards available for analyzing these complex mixtures. Liquid chromatography paired with high-resolution mass spectrometry has been used to investigate a number of additives and will be a key tool to further research on transformation products that are increasingly solubilized through physical, chemical, and biological processes in situ and during environmental contamination events. Diverse treatments have been tested and applied to HVHF wastewaters but limited information has been published on the quantitative removal of individual organic compounds. This review focuses on recently published information on organic compounds identified in flowback fluids and produced waters from HVHF. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Mixed integer simulation optimization for optimal hydraulic fracturing and production of shale gas fields

    Science.gov (United States)

    Li, J. C.; Gong, B.; Wang, H. G.

    2016-08-01

    Optimal development of shale gas fields involves designing a most productive fracturing network for hydraulic stimulation processes and operating wells appropriately throughout the production time. A hydraulic fracturing network design-determining well placement, number of fracturing stages, and fracture lengths-is defined by specifying a set of integer ordered blocks to drill wells and create fractures in a discrete shale gas reservoir model. The well control variables such as bottom hole pressures or production rates for well operations are real valued. Shale gas development problems, therefore, can be mathematically formulated with mixed-integer optimization models. A shale gas reservoir simulator is used to evaluate the production performance for a hydraulic fracturing and well control plan. To find the optimal fracturing design and well operation is challenging because the problem is a mixed integer optimization problem and entails computationally expensive reservoir simulation. A dynamic simplex interpolation-based alternate subspace (DSIAS) search method is applied for mixed integer optimization problems associated with shale gas development projects. The optimization performance is demonstrated with the example case of the development of the Barnett Shale field. The optimization results of DSIAS are compared with those of a pattern search algorithm.

  14. Derivation of site-specific relationships between hydraulic parameters and p-wave velocities based on hydraulic and seismic tomography

    Energy Technology Data Exchange (ETDEWEB)

    Brauchler, R.; Doetsch, J.; Dietrich, P.; Sauter, M.

    2012-01-10

    In this study, hydraulic and seismic tomographic measurements were used to derive a site-specific relationship between the geophysical parameter p-wave velocity and the hydraulic parameters, diffusivity and specific storage. Our field study includes diffusivity tomograms derived from hydraulic travel time tomography, specific storage tomograms, derived from hydraulic attenuation tomography, and p-wave velocity tomograms, derived from seismic tomography. The tomographic inversion was performed in all three cases with the SIRT (Simultaneous Iterative Reconstruction Technique) algorithm, using a ray tracing technique with curved trajectories. The experimental set-up was designed such that the p-wave velocity tomogram overlaps the hydraulic tomograms by half. The experiments were performed at a wellcharacterized sand and gravel aquifer, located in the Leine River valley near Göttingen, Germany. Access to the shallow subsurface was provided by direct-push technology. The high spatial resolution of hydraulic and seismic tomography was exploited to derive representative site-specific relationships between the hydraulic and geophysical parameters, based on the area where geophysical and hydraulic tests were performed. The transformation of the p-wave velocities into hydraulic properties was undertaken using a k-means cluster analysis. Results demonstrate that the combination of hydraulic and geophysical tomographic data is a promising approach to improve hydrogeophysical site characterization.

  15. Brain Stimulation Therapies

    Science.gov (United States)

    ... is preferred by many doctors, patients and families. Vagus Nerve Stimulation Vagus nerve stimulation (VNS) works through a device implanted under ... skin that sends electrical pulses through the left vagus nerve, half of a prominent pair of nerves that ...

  16. Feldspar, Infrared Stimulated Luminescence

    DEFF Research Database (Denmark)

    Jain, Mayank

    2014-01-01

    This entry primarily concerns the characteristics and the origins of infrared-stimulated luminescence in feldspars.......This entry primarily concerns the characteristics and the origins of infrared-stimulated luminescence in feldspars....

  17. Soil hydraulic properties near saturation, an improved conductivity model

    DEFF Research Database (Denmark)

    Børgesen, Christen Duus; Jacobsen, Ole Hørbye; Hansen, Søren;

    2006-01-01

    The hydraulic properties near saturation can change dramatically due to the presence of macropores that are usually difficult to handle in traditional pore size models. The purpose of this study is to establish a data set on hydraulic conductivity near saturation, test the predictive capability...... of commonly used hydraulic conductivity models and give suggestions for improved models. Water retention and near saturated and saturated hydraulic conductivity were measured for a variety of 81 top and subsoils. The hydraulic conductivity models by van Genuchten [van Genuchten, 1980. A closed-form equation...... for predicting the hydraulic conductivity of unsaturated soils. Soil Sci. Soc. Am. J. 44, 892–898.] (vGM) and Brooks and Corey, modified by Jarvis [Jarvis, 1991. MACRO—A Model of Water Movement and Solute Transport in Macroporous Soils. Swedish University of Agricultural Sciences. Department of Soil Sciences...

  18. Grundwassermonitoring im Zusammenhang mit der hydraulischen Stimulation einer Erdölbohrung

    Science.gov (United States)

    Bönsch, Carola; Basan, Swantje

    2016-06-01

    The petroleum well Barth-11 in Mecklenburg-Western Pommerania (2700 m deep) is the first well in eastern Germany to use horizontal directional drilling. Hydraulic stimulation was performed in June 2014, connecting the oil reservoir and borehole. Five Pleistocene aquifers lie within the investigation area, with aquifer depths ranging between 5 and 90 m below surface. Three observation wells were installed for groundwater monitoring. Two weeks before hydraulic stimulation, reference measurements were conducted and a data logger was installed for measurements of water level, temperature and electrical conductivity. To detect any possible influence of hydraulic stimulation on groundwater quality, groundwater samples were analysed for several organic and inorganic parameters. The investigation area is located in a natural saline water discharge zone. Hence, it was necessary to develop methods to distinguish hydraulic stimulation water from Triassic and Permian formation saline water in order to uniquely identify any trace of the injected fluid in the natural groundwater. These methods and the monitoring system design are presented and discussed.

  19. An Overview of Stimulators

    OpenAIRE

    Mohd. Suhaib Kidwai; Mohd Maroof Siddiqui; Ahmad Nafees; Qazi saeed Ahmad

    2012-01-01

    This paper aims to bring forth the significance of stimulators , recent advancements in the field of stimulators and how electrical signals can be utilized for pain relief and to cure other diseases of human body ,by using stimulators. This paper aims to create awareness about stimulators and also focuses on their advantages as compared to theconventional medicine .Moreover,it also bring forth that how an electrical signal can be utilized for treating various human disorders and diseases.

  20. Dynamic Response in Transient Stress-Field Behavior Induced by Hydraulic Fracturing

    Science.gov (United States)

    Jenkins, Andrew

    Hydraulic fracturing is a technique which is used to exploit geologic features and subsurface properties in an effort to increase production in low-permeability formations. The process of hydraulic fracturing provides a greater surface contact area between the producing formation and the wellbore and thus increases the amount of recoverable hydrocarbons from within the reservoir. The use of this stimulation technique has brought on massive applause from the industry due to its widespread success and effectiveness, however the dynamic processes that take part in the development of hydraulic fractures is a relatively new area of research with respect to the massive scale operations that are seen today. The process of hydraulic fracturing relies upon understanding and exploiting the in-situ stress distribution throughout the area of study. These in-situ stress conditions are responsible for directing fracture orientation and propagation paths throughout the period of injection. The relative magnitude of these principle stresses is key in developing a successful stimulation plan. In horizontal well plan development the interpretation of stress within the reservoir is required for determining the azimuth of the horizontal well path. These horizontal laterals are typically oriented in a manner such that the well path lies parallel to the minimum horizontal stress. This allows for vertical fractures to develop transversely to the wellbore, or normal to the least principle stress without the theoretical possibility of fractures overlapping, creating the most efficient use of the fluid energy during injection. The orientation and magnitude of these in-situ stress fields however can be dynamic, controlled by the subsequent fracture propagation and redistribution of the surrounding stresses. That is, that as the fracture propagates throughout the reservoir, the relative stress fields surrounding the fractures may see a shift and deviate from their original direction or

  1. Overview of microseismic monitoring of hydraulic fracturing for unconventional oil and gas plays

    Science.gov (United States)

    Shemeta, J. E.

    2011-12-01

    The exponential growth of unconventional resources for oil and gas production has been driven by the use of horizontal drilling and hydraulic fracturing. These drilling and completion methods increase the contact area of the low permeability and porosity hydrocarbon bearing formations and allow for economic production in what was previously considered uncommercial rock. These new resource plays have sparked an enormous interest in microseismic monitoring of hydraulic fracture treatments. As a hydraulic fracture is pumped, microseismic events are emitted in a volume of rock surrounding the stimulated fracture. The goal of the monitoring is to identify and locate the microseismic events to a high degree of precision and to map the position of the induced hydraulic fracture in time and space. The microseismic events are very small, typically having a moment-magnitude range of -4 to 0. The microseismic data are collected using a variety of seismic array designs and instrumentation, including borehole, shallow borehole, near-surface and surface arrays, using either of three-component clamped 15 Hz borehole sondes to simple vertical 10 Hz geophones for surface monitoring. The collection and processing of these data is currently under rapid technical development. Each monitoring method has technical challenges which include accurate velocity modeling, correct seismic phase identification and signal to noise issues. The microseismic locations are used to guide hydrocarbon exploration and production companies in crucial reservoir development decisions such as the direction to drill the horizontal well bores and the appropriate inter-well spacing between horizontal wells to optimally drain the resource. The fracture mapping is also used to guide fracture and reservoir engineers in designing and calibrating the fluid volumes and types, injection rates and pressures for the hydraulic fracture treatments. The microseismic data can be located and mapped in near real-time during

  2. South Davis Sewer District Pump Station Hydraulic Capacity Evaluation

    OpenAIRE

    Dixon, James W

    2011-01-01

    In 2010, South Davis Sewer District (SDSD) determined that possible hydraulic problems existed in their various pump stations operating within their treatment plants. A hydraulic analysis was conducted for the pump stations to diagnose the problems and provide possible alternative solutions. This analysis was conducted by using hydraulic minor loss equations to determine the amount of flow that the pumps were capable of producing and then comparing those results to the required demands in the...

  3. Predictive Maintenance of Hydraulic Lifts through Lubricating Oil Analysis

    OpenAIRE

    Stamatios S. Kalligeros

    2013-01-01

    This article examines the possibility of measuring lift maintenance through analysis of used hydraulic oil. Hydraulic oils have proved to be a reliable indicator for the maintenance performed on elevators. It has also been proved that the end users or the maintenance personnel do not always conform to the instructions of the elevators’ hydraulic machine manufacturer. Furthermore, by examining the proportion of the metals, an estimation of the corrosion and the wear resistance of the joined mo...

  4. M1078 Hybrid Hydraulic Vehicle Fuel Economy Evaluation

    Science.gov (United States)

    2012-09-01

    PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. 1. REPORT DATE (DD-MM-YYYY) 28-09-2012 2. REPORT TYPE Interim Report 3. DATES COVERED (From...system shakedown and developmental testing. During developmental testing, a hydraulic motor failure occurred. Although not catastrophic, the motor...main hydraulic hybrid system control module to request the TCM to shift the transmission. Clutch Operation with engine- off (hydraulic-only power) or

  5. Research on hydraulic-powered roof supports test problems

    Institute of Scientific and Technical Information of China (English)

    SUN Hong-bo; JIANG Jin-qiu; MA Qiang

    2011-01-01

    The load-bearing characters of hydraulic-powered roof support with dual telescopic legs were analyzed. With a specific type hydraulic-powered roof support with dual telescopic legs for research object, the inside load test problems in factories was analyzed, and the correct test methods were given, which can enhance the test efficiency and make the factories away from the error design of hydraulic-powered roof supports and legs.

  6. Hydraulics national laboratory; Laboratoire national d`hydraulique

    Energy Technology Data Exchange (ETDEWEB)

    Chabard, J.P.

    1995-12-31

    The hydraulics national laboratory is a department of the service of applications of electric power and environment from the direction of studies and researches of Electricite de France. It has to solve the EDF problems concerning the fluids mechanics and hydraulics. Problems in PWR type reactors, fossil fuel power plants, circulating fluidized bed power plants, hydroelectric power plants relative to fluid mechanics and hydraulics studied and solved in 1995 are explained in this report. (N.C.)

  7. Rock specific hydraulic fracturing and matrix acidizing to enhance a geothermal system — Concepts and field results

    Science.gov (United States)

    Zimmermann, Günter; Blöcher, Guido; Reinicke, Andreas; Brandt, Wulf

    2011-04-01

    Enhanced geothermal systems (EGS) are engineered reservoirs developed to extract economic amounts of heat from low permeability and/or porosity geothermal resources. To enhance the productivity of reservoirs, a site specific concept is necessary to actively make reservoir conditions profitable using specially adjusted stimulation treatments, such as multi fracture concepts and site specific well path design. The results of previously performed stimulation treatments in the geothermal research well GtGrSk4/05 at Groß Schönebeck, Germany are presented. The reservoir is located at a 4100-4300 m depth within the Lower Permian of the NE German Basin with a bottom-hole temperature of 150 °C. The reservoir rock is classified by two lithological units from bottom to top: volcanic rocks (andesitic rocks) and siliciclastics ranging from conglomerates to fine-grained sandstones (fluvial sediments). The stimulation treatments included multiple hydraulic stimulations and an acid treatment. In order to initiate a cross-flow from the sandstone layer, the hydraulic stimulations were performed in different depth sections (two in the sandstone section and one in the underlying volcanic section). In low permeability volcanic rocks, a cyclic hydraulic fracturing treatment was performed over 6 days in conjunction with adding quartz in low concentrations to maintain a sustainable fracture performance. Flow rates of up to 150 l/s were realized, and a total of 13,170 m 3 of water was injected. A hydraulic connection to the sandstone layer was successfully achieved in this way. However, monitoring of the water level in the offsetting well EGrSk3/90, which is 475 m apart at the final depth, showed a very rapid water level increase due to the stimulation treatment. This can be explained by a connected fault zone within the volcanic rocks. Two gel-proppant treatments were performed in the slightly higher permeability sandstones to obtain long-term access to the reservoir rocks. During each

  8. A New Type of Hydraulic Muscle

    Directory of Open Access Journals (Sweden)

    Nitai Drimer

    2016-01-01

    Full Text Available This paper presents the invention and development of a new fundamental type of hydraulic actuator, aimed at delivering better actuation efficiency. This actuator is a flexible tube, composed of two different materials, which deflects while applying inner pressure. This concept is simple to produce, and allows adaptation of the deflected shape by the design parameters (radius, wall thickness, geometry, etc.. Among other applications, it is mostly suitable for the activation of fins of nature-like marine robots. Theoretical formulation, production of prototypes and actuation experiments are presented, as well as material hysteresis research and an application example.

  9. Hydraulic characteristics of HANARO fuel bundles

    Energy Technology Data Exchange (ETDEWEB)

    Cho, S.; Chung, H. J.; Chun, S. Y.; Yang, S. K.; Chung, M. K. [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1997-12-31

    This paper presents the hydraulic characteristics measured by using LDV (Laser Doppler Velocimetry) in subchannels of HANARO, KAERI research reactor, fuel bundle. The fuel bundle consists of 18 axially finned rods with 3 spacer grids, which are arranged in cylindrical configuration. The effects of the spacer grids on the turbulent flow were investigated by the experimental results. Pressure drops for each component of the fuel bundle were measured, and the friction factors of fuel bundle and loss coefficients for the spacer grids were estimated from the measured pressure drops. Implications regarding the turbulent thermal mixing were discussed. Vibration test results measured by using laser vibrometer were presented. 9 refs., 12 figs. (Author)

  10. Analyses of hydraulic performance of velocity caps

    DEFF Research Database (Denmark)

    Christensen, Erik Damgaard; Degn Eskesen, Mark Chr.; Buhrkall, Jeppe

    2014-01-01

    The hydraulic performance of a velocity cap has been investigated. Velocity caps are often used in connection with offshore intakes. CFD (computational fluid dynamics) examined the flow through the cap openings and further down into the intake pipes. This was combined with dimension analyses...... in order to analyse the effect of different layouts on the flow characteristics. In particular, flow configurations going all the way through the structure were revealed. A couple of suggestions to minimize the risk for flow through have been tested....

  11. Mercury Thermal Hydraulic Loop (MTHL) Summary Report

    Energy Technology Data Exchange (ETDEWEB)

    Felde, David K. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Crye, Jason Michael [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Wendel, Mark W. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Yoder, Jr, Graydon L. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Farquharson, George [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Jallouk, Philip A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); McFee, Marshall T. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Pointer, William David [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Ruggles, Art E. [Univ. of Tennessee, Knoxville, TN (United States); Carbajo, Juan J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-03-01

    The Spallation Neutron Source (SNS) is a high-power linear accelerator built at Oak Ridge National Laboratory (ORNL) which incorporates the use of a flowing liquid mercury target. The Mercury Thermal Hydraulic Loop (MTHL) was constructed to investigate and verify the heat transfer characteristics of liquid mercury in a rectangular channel. This report provides a compilation of previously reported results from the water-cooled and electrically heated straight and curved test sections that simulate the geometry of the window cooling channel in the target nose region.

  12. Hydraulic Power Plant Machine Dynamic Diagnosis

    Directory of Open Access Journals (Sweden)

    Hans Günther Poll

    2006-01-01

    Full Text Available A method how to perform an entire structural and hydraulic diagnosis of prototype Francis power machines is presented and discussed in this report. Machine diagnosis of Francis units consists on a proper evaluation of acquired mechanical, thermal and hydraulic data obtained in different operating conditions of several rotary and non rotary machine components. Many different physical quantities of a Francis machine such as pressure, strains, vibration related data, water flow, air flow, position of regulating devices and displacements are measured in a synchronized way so that a relation of cause an effect can be developed for each operating condition and help one to understand all phenomena that are involved with such kind of machine. This amount of data needs to be adequately post processed in order to allow correct interpretation of the machine dynamics and finally these data must be compared with the expected calculated data not only to fine tuning the calculation methods but also to accomplish fully understanding of the influence of the water passages on such machines. The way how the power plant owner has to operate its Francis machines, many times also determined by a central dispatcher, has a high influence on the fatigue life time of the machine components. The diagnostic method presented in this report helps one to understand the importance of adequate operation to allow a low maintenance cost for the entire power plant. The method how to acquire these quantities is discussed in details together with the importance of correct sensor balancing, calibration and adequate correlation with the physical quantities. Typical results of the dynamic machine behavior, with adequate interpretation, obtained in recent measurement campaigns of some important hydraulic turbines were presented. The paper highlights the investigation focus of the hydraulic machine behavior and how to tailor the measurement strategy to accomplish all goals. Finally some

  13. Micromechanical Aspects of Hydraulic Fracturing Processes

    Science.gov (United States)

    Galindo-torres, S. A.; Behraftar, S.; Scheuermann, A.; Li, L.; Williams, D.

    2014-12-01

    A micromechanical model is developed to simulate the hydraulic fracturing process. The model comprises two key components. Firstly, the solid matrix, assumed as a rock mass with pre-fabricated cracks, is represented by an array of bonded particles simulated by the Discrete Element Model (DEM)[1]. The interaction is ruled by the spheropolyhedra method, which was introduced by the authors previously and has been shown to realistically represent many of the features found in fracturing and communition processes. The second component is the fluid, which is modelled by the Lattice Boltzmann Method (LBM). It was recently coupled with the spheropolyhedra by the authors and validated. An advantage of this coupled LBM-DEM model is the control of many of the parameters of the fracturing fluid, such as its viscosity and the injection rate. To the best of the authors' knowledge this is the first application of such a coupled scheme for studying hydraulic fracturing[2]. In this first implementation, results are presented for a two-dimensional situation. Fig. 1 shows one snapshot of the LBM-DEM coupled simulation for the hydraulic fracturing where the elements with broken bonds can be identified and the fracture geometry quantified. The simulation involves a variation of the underground stress, particularly the difference between the two principal components of the stress tensor, to explore the effect on the fracture path. A second study focuses on the fluid viscosity to examine the effect of the time scales of different injection plans on the fracture geometry. The developed tool and the presented results have important implications for future studies of the hydraulic fracturing process and technology. references 1. Galindo-Torres, S.A., et al., Breaking processes in three-dimensional bonded granular materials with general shapes. Computer Physics Communications, 2012. 183(2): p. 266-277. 2. Galindo-Torres, S.A., A coupled Discrete Element Lattice Boltzmann Method for the

  14. Hydraulics and Stability of Five Texas Inlets.

    Science.gov (United States)

    1981-01-01

    8217~~r 0.38 .. , q . P . I Pleasure Pier 7 Morgan’s Point 2 South Jetty 8 Railroad Causeway N 1. 3 Teuas City Dike 9 Chocolate Bayou A 4 Manna Reel 10 Son...Range and Level.............15 III HYDRAULICS AND STABILITY OF SPECIFIC INLETS...................... 15 1. Brazos River-Freeport Harbor Entrance...g acceleration of gravity K Keulegan repletion coefficient k wave number L channel length Le effective channel length n Manning’s coefficient P

  15. HYDRAULIC CONCRETE COMPOSITION AND PROPERTIES CONTROL SYSTEM

    Directory of Open Access Journals (Sweden)

    O. M. Pshinko

    2015-08-01

    Full Text Available Purpose. Scientific work aims at the development and testing of information system to meet the challenges of concrete composition design and control (for railway structures and buildings based on the physico-analytical method algorithm for hydraulic concrete composition calculation. Methodology. The proposed algorithm of hydraulic concrete composition calculation is based on the physicochemical mechanics and in particular on the rheology of elastic–viscous–plastic bodies. The system of canonical equations consists of the equations for concrete strength, absolute volume, concrete mix consistency as well as the equation for optimal concrete saturation with aggregates while minimizing cement content. The joint solution of these four equations related to composition allows determining for the materials the concrete composition of required strength, concrete workability with minimum cement content. The procedure for calculation of hydraulic concrete composition according to the physico-analytical method consists of two parts: 1 physical, which is laboratory testing of concrete mix components in different concrete compositions; 2 analytical, which represents the calculation algorithm for concrete compositions equivalent in concrete strength and workability that comply with the specific conditions of concrete placing. Findings. To solve the problem of designing the concrete composition with the desired properties for railway structures and buildings it was proposed to use the information technology in the form of a developed computer program whose algorithm includes the physico-analytical method for hydraulic concrete composition determination. Originality. The developed concrete composition design method takes into account the basic properties of raw materials, concrete mix and concrete, which are pre-determined. The distinctive feature of physico-analytical method is obtaining of a set of equivalent compositions with a certain concrete mix

  16. Hydraulic Robotic Surgical Tool Changing Manipulator.

    Science.gov (United States)

    Pourghodrat, Abolfazl; Nelson, Carl A; Oleynikov, Dmitry

    2017-03-01

    Natural orifice transluminal endoscopic surgery (NOTES) is a surgical technique to perform "scarless" abdominal operations. Robotic technology has been exploited to improve NOTES and circumvent its limitations. Lack of a multitasking platform is a major limitation. Manual tool exchange can be time consuming and may lead to complications such as bleeding. Previous multifunctional manipulator designs use electric motors. These designs are bulky, slow, and expensive. This paper presents design, prototyping, and testing of a hydraulic robotic tool changing manipulator. The manipulator is small, fast, low-cost, and capable of carrying four different types of laparoscopic instruments.

  17. Tidal current turbine based on hydraulic transmission system

    Institute of Scientific and Technical Information of China (English)

    Hong-wei LIU; Wei LI; Yong-gang LIN; Shun MA

    2011-01-01

    Tidal current turbines (TCTs) are newly developed electricity generating devices.Aiming at the stabilization of the power output of TCTs,this paper introduces the hydraulic transmission technologies into TCTs.The hydrodynamics of the turbine was analyzed at first and its power output characteristics were predicted.A hydraulic power transmission system and a hydraulic pitch-controlled system were designed.Then related simulations were conducted.Finally,a TCT prototype was manufactured and tested in the workshop.The test results have confirmed the correctness of the current design and availability of installation of the hydraulic system in TCTs.

  18. Hydrological and hydraulic modelling of the Nyl River floodplain Part ...

    African Journals Online (AJOL)

    2007-01-01

    Jan 1, 2007 ... Keywords: Nyl River floodplain, Nylsvlei, Nylsvley Nature Reserve, modelling wetland hydraulics, wetland evapotranspiration ..... A review of suitable methods for estimating evapotranspira- ..... ingum routing. J. Hydrol.

  19. Strategies for Creating Prescribed Hydraulic Fractures in Cave Mining

    Science.gov (United States)

    He, Q.; Suorineni, F. T.; Oh, J.

    2017-04-01

    The cave mining method was traditionally applied to massive low-grade, weak orebodies at shallow depths (less than 500 m) that favour cave propagation under gravity. Currently, this method is being applied to stronger orebodies and is taking place at depths of up to 2000 m below the surface. To ensure continuous cave propagation, preconditioning of the orebody is essential in this latter caving environment to improve rock mass caveability and to decrease fragmentation sizes. Hydraulic fracturing was initiated in the oil industry and is now being used in the cave mining industry as a preconditioning method and for stalled caves reactivation. A limitation of conventional hydraulic fracturing in the cave mining industry is that the hydraulic fracture orientation is uncontrollable and is dictated by the minimum in situ stress orientation. The preconditioning effectiveness of orientation-uncontrollable hydraulic fractures is limited in some geotechnical conditions, and the concept of creating orientation-controllable hydraulic fractures, here termed prescribed hydraulic fractures, is proposed to fill this gap. In this paper, the feasibility of the proposed approaches to creating prescribed hydraulic fractures is presented based on previous studies and numerical modelling. The numerical modelling code reliability in simulating the hydraulic fracture propagation and reorientation process was validated by comparing with laboratory results in the reported literature. In addition, the sensitivity of the prescribed hydraulic fracturing to the in situ stress condition and rock mass properties is examined.

  20. VIRTUAL DESIGN OF A NEW TYPE OF HYDRAULIC SUPPORT

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Using virtual reality to design a new type of hydraulic support is discussed. That is how to make use of the virtual design to develop coal mining machine in practice. The advantages of virtual design are studied and the simple virtual reality system is built. The 3D parts and elements of hydraulic support are modeled with parametric design in CAD software, then exported to VR environment, in which the virtual hydraulic support is assembled, operated and tested. With the method, the errors and faults of design can be fined easily, many improvements are made and the new hydraulic support is developed successfully.

  1. Predictive Maintenance of Hydraulic Lifts through Lubricating Oil Analysis

    Directory of Open Access Journals (Sweden)

    Stamatios S. Kalligeros

    2013-12-01

    Full Text Available This article examines the possibility of measuring lift maintenance through analysis of used hydraulic oil. Hydraulic oils have proved to be a reliable indicator for the maintenance performed on elevators. It has also been proved that the end users or the maintenance personnel do not always conform to the instructions of the elevators’ hydraulic machine manufacturer. Furthermore, by examining the proportion of the metals, an estimation of the corrosion and the wear resistance of the joined moving parts can be observed. Additionally, the presence of chlorine and calcium in hydraulic oils demonstrates their function in a highly corrosive environment.

  2. Quantifying the Efficiency Advantages of High Viscosity Index Hydraulic Fluids

    Institute of Scientific and Technical Information of China (English)

    Christian D. Neveu; Michael D. Zink; Alex Tsay

    2006-01-01

    By providing higher in- use viscosity at elevated operating temperatures, hydraulic fluids with high viscosity index improve the efficiency of the hydraulic system. For mobile hydraulic equipment this efficiency can be quantified as an increase in fuel economy. This paper reviews the research that demonstrates these efficiency advantages in gear, vane and piston pumps and presents a method for predicting the overall fuel economy for a fleet of hydraulic equipment in opquipment operator to easily improve the performance of the system and reduce fuel consumption.

  3. Singular perturbation approach for control of hydraulically driven flexible manipulator

    Institute of Scientific and Technical Information of China (English)

    LI Guang; WU Min

    2005-01-01

    The hydraulic flexible manipulator system is divided into two parts: flexible arm dynamics and hydraulic servomechanism, a driving Jacobian is derived to connect these two parts. Taking hydraulic actuator force as virtual input, a singular perturbed composite model is formulated and used to design composite controllers for the flexible link, in which the slow subsystem controller dominates the trajectory tracking, and then a fast controller is designed to damp out the vibration of the flexible structure. Moreover, the backstepping technique is applied to regulate the spool position of a hydraulic valve to provide the required force. Simulation results are provided to show the effectiveness of the presented approach.

  4. Hydraulic Fracturing and Drinking Water Resources: Update on EPA Hydraulic Fracturing Study

    Science.gov (United States)

    Natural gas plays a key role in our nation's energy future and the process known as hydraulic fracturing (HF) is one way of accessing that resource. Over the past few years, several key technical, economic, and energy developments have spurred increased use of HF for gas extracti...

  5. Development of A Hydraulic Drive for a novel Diesel-Hydraulic system for Large commercial Vehicles

    DEFF Research Database (Denmark)

    Stecki, J. S.; Conrad, Finn; Matheson, P.;

    2002-01-01

    The objectives and results of the research project Hybrid Diesel-Hydraulic System for Large commercial vehicles, e.g. urban freight delivery, buses or garbage trucks. The paper presents and discusses the research and development of the system, modelling approach and results from preliminary...

  6. Development of A Hydraulic Drive for a novel Diesel-Hydraulic system for Large commercial Vehicles

    DEFF Research Database (Denmark)

    Stecki, J. S.; Conrad, Finn; Matheson, P.

    2002-01-01

    The objectives and results of the research project Hybrid Diesel-Hydraulic System for Large commercial vehicles, e.g. urban freight delivery, buses or garbage trucks. The paper presents and discusses the research and development of the system, modelling approach and results from preliminary...... performance tests on a 10 ton vehicle....

  7. Feasibility of a Hydraulic Power Assist System for Use in Hybrid Neuroprostheses

    Directory of Open Access Journals (Sweden)

    Kevin M. Foglyano

    2015-01-01

    Full Text Available Feasibility of using pressurized hydraulic fluid as a source of on-demand assistive power for hybrid neuroprosthesis combining exoskeleton with functional neuromuscular stimulation was explored. Hydraulic systems were selected as an alternative to electric motors for their high torque/mass ratio and ability to be located proximally on the exoskeleton and distribute power distally to assist in moving the joints. The power assist system (PAS was designed and constructed using off-the-shelf components to test the feasibility of using high pressure fluid from an accumulator to provide assistive torque to an exoskeletal hip joint. The PAS was able to provide 21 Nm of assistive torque at an input pressure of 3171 kPa with a response time of 93 ms resulting in 32° of hip flexion in an able-bodied test. The torque output was independent of initial position of the joint and was linearly related to pressure. Thus, accumulator pressure can be specified to provide assistive torque as needed in exoskeletal devices for walking or stair climbing beyond those possible either volitionally or with electrical stimulation alone.

  8. Stimuli Responsive/Rheoreversible Hydraulic Fracturing Fluids for Enhanced Geothermal Energy Production (Part II)

    Energy Technology Data Exchange (ETDEWEB)

    Bonneville, Alain; Jung, Hun Bok; Shao, Hongbo; Kabilan, Senthil; Um, Wooyong; Carroll, Kenneth C.; Varga, Tamas; Suresh, Niraj; Stephens, Sean A.; Fernandez, Carlos A.

    2014-12-14

    We have used an environmentally friendly and recyclable hydraulic fracturing fluid - diluted aqueous solutions of polyallylamine or PAA – for reservoir stimulation in Enhanced Geothermal System (EGS). This fluid undergoes a controlled and large volume expansion with a simultaneous increase in viscosity triggered by CO2 at EGS temperatures. We are presenting here the results of laboratory-scale hydraulic fracturing experiment using the fluid on small cylindrical rock cores (1.59 cm in diameter and 5.08 cm in length) from the Coso geothermal field in California. Rock samples consisted of Mesozoic diorite metamorphosed to greenschist facies. The experiments were conducted on 5 samples for realistic ranges of pressures (up to 275 bar) and temperatures (up to 210 °C) for both the rock samples and the injected fluid. After fracturing, cores were subjected to a CO2 leakage test, injection of KI solution, and X-ray microtomography (XMT) scanning to examine the formation and distribution of fractures. The design and conduct of these experiments will be presented and discussed in details. Based on the obtained XMT images, Computational Fluid Dynamics (CFD) simulations were then performed to visualize hydraulic fractures and compute the bulk permeability. OpenFOAM (OpenCFD Ltd., Reading, UK), was used to solve the steady state simulation. The flow predictions, based upon the laminar, 3-D, incompressible Navier-Stokes equations for fluid mass and momentum, show the remarkable stimulation of the permeability in the core samples and demonstrate the efficiency of such a CO2 triggered fluid in EGS.

  9. [Hydraulic fracturing - a hazard for drinking water?].

    Science.gov (United States)

    Ewers, U; Gordalla, B; Frimmel, F

    2013-11-01

    Hydraulic fracturing (fracking) is a technique used to release and promote the extraction of natural gas (including shale gas, tight gas, and coal bed methane) from deep natural gas deposits. Among the German public there is great concern with regard to the potential environmental impacts of fracking including the contamination of ground water, the most important source of drinking water in Germany. In the present article the risks of ground water contamination through fracking are discussed. Due to the present safety requirements and the obligatory geological and hydrogeological scrutiny of the underground, which has to be performed prior to fracking, the risk of ground water contamination by fracking can be regarded as very low. The toxicity of chemical additives of fracking fluids is discussed. It is recommended that in the future environmental impact assessment and approval of fracs should be performed by the mining authorities in close cooperation with the water authorities. Furthermore, it is recommended that hydraulic fracturing in the future should be accompanied by obligatory ground water monitoring.

  10. Thermal Hydraulic Tests for Reactor Core Safety

    Energy Technology Data Exchange (ETDEWEB)

    Moon, S. K.; Baek, W. P.; Chun, S. Y. (and others)

    2007-06-15

    The main objectives of the present project are to resolve the current issues of reactor core thermal hydraulics, to develop an advanced measurement and analytical techniques, and to perform reactor core safety verification tests. 6x6 reflood experiments, various heat transfer experiments using Freon, and experiments on the spacer grids effects on the post-dryout are carried out using spacer grids developed in Korea in order to resolve the current issues of the reactor core thermal hydraulics. In order to develop a reflood heat transfer model, the detailed reflood phenomena are visualized and measured using round tube and 2x2 rod bundle. A detailed turbulent mixing phenomenon for subchannels is measured using advanced measurement techniques such as LDV and PIV. MARS and MATRA codes developed in Korea are assessed, verified and improved using the obtained experimental data. Finally, a systematic quality assurance program and experimental data generation system has been constructed in order to increase the reliability of the experimental data.

  11. Smart magnetic markers use in hydraulic fracturing.

    Science.gov (United States)

    Zawadzki, Jarosław; Bogacki, Jan

    2016-11-01

    One of the main challenges and unknowns during shale gas exploration is to assess the range and efficiency of hydraulic fracturing. It is also essential to assess the distribution of proppant, which keeps the fracture pathways open. Solving these problems may considerably increase the efficiency of the shale gas extraction. Because of that, the idea of smart magnetic marker, which can be detected when added to fracturing fluid, has been considered for a long time. This study provides overview of the possibilities of magnetic marker application for shale gas extraction. The imaging methods using electromagnetic markers, are considered or developed in two directions. The first possibility is the markers' electromagnetic activity throughout the whole volume of the fracturing fluid. Thus, it can be assumed that the whole fracturing fluid is the marker. Among these type of hydraulic fracturing solutions, ferrofluid could be considered. The second possibility is marker, which is just one of many components of the fracturing fluid. In this case feedstock magnetic materials, ferrites and nanomaterials could be considered. Magnetic properties of magnetite could be too low and ferrofluids' or nanomaterials' price is unacceptably high. Because of that, ferrites, especially ZnMn ferrites seems to be the best material for magnetic marker. Because of the numerous applications in electronics, it is cheap and easily available, although the price is higher, then that of magnetite. The disadvantage of using ferrite, could be too small mechanical strength. It creates an essential need for combining magnetic marker with proppant into magnetic-ceramic composite.

  12. USE OF GEOSYNTHETIC CASINGS IN HYDRAULIC ENGINEERING

    Directory of Open Access Journals (Sweden)

    Piyavskiy Semen Avraamovich

    2012-10-01

    Full Text Available The article covers the use of geosynthetic casings in hydraulic engineering. The authors describe the structure of earth dams that have geosynthetic casings used as the reinforcement of downstream slopes. Results of stability calculations are provided. The authors consider several examples of effective application of advanced geosynthetic materials used in combination with local building materials as structural elements of hydraulic engineering facilities. Their analysis has demonstrated a strong potential and expediency of application of geosynthetic casings in the course of construction and renovation of low-pressure earth dams. The authors have also developed a new structure of an earth dam. The new earth dam has geosynthetic casings used as structural reinforcing elements of the crown and the downstream slope. The dam structure contemplates the overflow of high water. The structural strengths of the proposed solution include a smaller material consumption rate, lower labour intensiveness and cost of the slope reinforcement due to the application of local building materials used to fill the casings, fast and easy depositing of slope reinforcing elements, and high workability of its dismantling for repair purposes. The authors have also completed the analysis of stability of geosynthetic casings of downstream slopes of an earth dam. The analysis has proven high efficiency of a small slope ratio in combination with its anchorage and reinforcement of the downstream toe with the help of high-strength geogrids.

  13. Laminar circular hydraulic jumps without separation

    Science.gov (United States)

    Dasgupta, Ratul; Tomar, Gaurav; Govindarajan, Rama

    2009-11-01

    The traditional inviscid criterion for the occurrence of a planar, standing hydraulic jump is to have the Froude number decrease downstream and go through a value of 1 at some location. Here, upstream propagating, small-amplitude, long, non-dispersive gravity waves are trapped, and non-linear steepening is said to result in a near-discontinuous height profile, but it is not clear how. Such a condition on the Froude number is shown in the present axisymmetric Navier-Stokes computations to hold for a circular jump as well. The relevance of non-linear steepening to a circular jump is therefore a question we wish to answer. In circular jumps, moreover, a region of recirculation is usually observed underneath the jump, underlining the importance of viscosity in this process. This led Tani (J. Phys. Soc. Japan, 1949) to hypothesise that boundary-layer separation was the cause of the circular jump. This hypothesis has been debated extensively and the possibility of circular jumps without separation hinted at. In our simulations, we are able to obtain circular hydraulic jumps without any flow separation. This, and the necessity or otherwise of viscosity in jump formation will be discussed.

  14. Drainage hydraulics of permeable friction courses

    Science.gov (United States)

    Charbeneau, Randall J.; Barrett, Michael E.

    2008-04-01

    This paper describes solutions to the hydraulic equations that govern flow in permeable friction courses (PFC). PFC is a layer of porous asphalt approximately 50 mm thick that is placed as an overlay on top of an existing conventional concrete or asphalt road surface to help control splash and hydroplaning, reduce noise, and enhance quality of storm water runoff. The primary objective of this manuscript is to present an analytical system of equations that can be used in design and analysis of PFC systems. The primary assumptions used in this analysis are that the flow can be modeled as one-dimensional, steady state Darcy-type flow and that slopes are sufficiently small so that the Dupuit-Forchheimer assumptions apply. Solutions are derived for cases where storm water drainage is confined to the PFC bed and for conditions where the PFC drainage capacity is exceeded and ponded sheet flow occurs across the pavement surface. The mathematical solutions provide the drainage characteristics (depth and residence time) as a function of rainfall intensity, PFC hydraulic conductivity, pavement slope, and maximum drainage path length.

  15. Formed Core Sampler Hydraulic Conductivity Testing

    Energy Technology Data Exchange (ETDEWEB)

    Miller, D. H.; Reigel, M. M.

    2012-09-25

    A full-scale formed core sampler was designed and functionally tested for use in the Saltstone Disposal Facility (SDF). Savannah River National Laboratory (SRNL) was requested to compare properties of the formed core samples and core drilled samples taken from adjacent areas in the full-scale sampler. While several physical properties were evaluated, the primary property of interest was hydraulic conductivity. Differences in hydraulic conductivity between the samples from the formed core sampler and those representing the bulk material were noted with respect to the initial handling and storage of the samples. Due to testing conditions, the site port samples were exposed to uncontrolled temperature and humidity conditions prior to testing whereas the formed core samples were kept in sealed containers with minimal exposure to an uncontrolled environment prior to testing. Based on the results of the testing, no significant differences in porosity or density were found between the formed core samples and those representing the bulk material in the test stand.

  16. Characteristics and management of flowback/produced water from hydraulically fractured wells in California - findings from the California SB 4 assessment

    Science.gov (United States)

    Varadharajan, C.; Cooley, H.; Heberger, M. G.; Stringfellow, W. T.; Domen, J. K.; Sandelin, W.; Camarillo, M. K.; Jordan, P. D.; Reagan, M. T.; Donnelly, K.; Birkholzer, J. T.; Long, J. C. S.

    2015-12-01

    As part of a recent assessment of well stimulation in California, we analyzed the hazards and potential impacts of hydraulic fracturing (the primary form of well stimulation in California) on water resources, which included an analysis of the quantity and quality of flowback/produced water generated, current management and disposal practices, associated potential release mechanisms and transport pathways that can lead to contaminants being released into the environment, and practices to mitigate or avoid impacts from produced water on water resources. The wastewater returned after stimulation includes "recovered fluids" (flowback fluids collected into tanks following stimulation, but before the start of production) and "produced water" (water extracted with oil and gas during production). In contrast to hydraulic fracturing in regions with primarily gas production, the quantities of recovered fluids from hydraulically fractured wells in California are small in comparison to the fluids injected (typically fracturing fluids is likely present in produced water from wells that have been hydraulically fractured. Chemical measurements of recovered fluids show that some samples can contain high levels of some contaminants, including total carbohydrates (indicating the presence of guar, a component of fracturing fluid), total dissolved solids (TDS), trace elements and naturally occurring radioactive material (NORM). Data on produced water chemistry are more limited. In California, produced water is typically managed via pipelines and disposed or reused in many ways. A majority of produced water from hydraulically fractured wells in California is disposed in percolation pits, many of which may lie in areas with good groundwater quality. Some of the remaining produced water is injected into Class II wells; although a few of the wells are under review or have been shut down since they were injecting into aquifers. Other methods of management of produced water include reuse

  17. HT2DINV: A 2D forward and inverse code for steady-state and transient hydraulic tomography problems

    Science.gov (United States)

    Soueid Ahmed, A.; Jardani, A.; Revil, A.; Dupont, J. P.

    2015-12-01

    Hydraulic tomography is a technique used to characterize the spatial heterogeneities of storativity and transmissivity fields. The responses of an aquifer to a source of hydraulic stimulations are used to recover the features of the estimated fields using inverse techniques. We developed a 2D free source Matlab package for performing hydraulic tomography analysis in steady state and transient regimes. The package uses the finite elements method to solve the ground water flow equation for simple or complex geometries accounting for the anisotropy of the material properties. The inverse problem is based on implementing the geostatistical quasi-linear approach of Kitanidis combined with the adjoint-state method to compute the required sensitivity matrices. For undetermined inverse problems, the adjoint-state method provides a faster and more accurate approach for the evaluation of sensitivity matrices compared with the finite differences method. Our methodology is organized in a way that permits the end-user to activate parallel computing in order to reduce the computational burden. Three case studies are investigated demonstrating the robustness and efficiency of our approach for inverting hydraulic parameters.

  18. Numerical Evaluation and Optimization of Multiple Hydraulically Fractured Parameters Using a Flow-Stress-Damage Coupled Approach

    Directory of Open Access Journals (Sweden)

    Yu Wang

    2016-04-01

    Full Text Available Multiple-factor analysis and optimization play a critical role in the the ability to maximizethe stimulated reservoir volume (SRV and the success of economic shale gas production. In this paper, taking the typical continental naturally fractured silty laminae shale in China as anexample, response surface methodology (RSM was employed to optimize multiple hydraulic fracturing parameters to maximize the stimulated area in combination with numerical modeling based on the coupled flow-stress-damage (FSD approach. This paper demonstrates hydraulic fracturing effectiveness by defining two indicesnamelythe stimulated reservoir area (SRA and stimulated silty laminae area (SLA. Seven uncertain parameters, such as laminae thickness, spacing, dip angle, cohesion, internal friction angle (IFA, in situ stress difference (SD, and an operational parameter-injection rate (IR with a reasonable range based on silty Laminae Shale, Southeastern Ordos Basin, are used to fit a response of SRA and SLA as the objective function, and finally identity the optimum design under the parameters based on simultaneously maximizingSRA and SLA. In addition, asensitivity analysis of the influential factors is conducted for SRA and SLA. The aim of the study is to improve the artificial ability to control the fracturing network by means of multi-parameteroptimization. This work promises to provide insights into the effective exploitation of unconventional shale gas reservoirs via optimization of the fracturing design for continental shale, Southeastern Ordos Basin, China.

  19. Maintaining Optimum Pump Performance with Specially- Formulated Hydraulic Fluids

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    This paper describes a battery of tests, and related results, that were performed under normal and severe conditions designed to demonstrate that hydraulic fluids formulated with Lubrizol' s high quality anti - wear hydraulic fluid technology can stand up to today's increasing demands for longer life and provide excellent performance under higher operating temperatures and pressures.

  20. THE THEORETICAL MODEL FOR PREDICTING CIRCULATION VELOCITY OF HYDRAULIC BRAKE

    Institute of Scientific and Technical Information of China (English)

    刘英林; 侯春生

    1997-01-01

    By rational hypothesis of fluid flow pattern, applied the law of conservation of energy and integrated the laboratory test results, finished the prediction by the theoretical model of circulation velocity of hydraulic brake which is important parameter. Thus provide the theoritical basis for hydraulic brake of belt conveyor whose research has just been started.

  1. 49 CFR 570.55 - Hydraulic brake system.

    Science.gov (United States)

    2010-10-01

    ... parking brake and turn the ignition to start to verify that the brake system failure indicator lamp is... 49 Transportation 6 2010-10-01 2010-10-01 false Hydraulic brake system. 570.55 Section 570.55... 10,000 Pounds § 570.55 Hydraulic brake system. The following requirements apply to vehicles...

  2. Design of Transputer Controllers for Hydraulic Actuator Systems

    DEFF Research Database (Denmark)

    Conrad, Finn

    1996-01-01

    The paper deals with how transputers can be applied for fast controllers for hydraulic actuator systems. A general transputer-based control systems including a data acquisition transputer subsystem is presented. An application case: development of a mechatronic test facility with a fast hydraulic...

  3. Hydraulic Systems with Tap Water versus Bio-oils

    DEFF Research Database (Denmark)

    Conrad, Finn

    1997-01-01

    Deals with the advantages of using pure tap water hydraulics versus bio-oils for suiteable applications. Focus is in particular on food processing industry.......Deals with the advantages of using pure tap water hydraulics versus bio-oils for suiteable applications. Focus is in particular on food processing industry....

  4. 46 CFR 58.30-10 - Hydraulic fluid.

    Science.gov (United States)

    2010-10-01

    ... manufacturers and ANSI B93.5 (incorporated by reference; see 46 CFR 58.03-1) shall be considered in the... 46 Shipping 2 2010-10-01 2010-10-01 false Hydraulic fluid. 58.30-10 Section 58.30-10 Shipping... AND RELATED SYSTEMS Fluid Power and Control Systems § 58.30-10 Hydraulic fluid. (a) The...

  5. Hydraulic analysis of cell-network treatment wetlands

    Science.gov (United States)

    Wang, Huaguo; Jawitz, James W.

    2006-11-01

    SummaryWhen individual cells of a multiple-cell treatment wetland are hydraulically connected, the wetland has a cell-network structure. The hydraulic performance of treatment wetlands is often characterized using tracer residence time distributions (RTDs) measured between the wetland inlet and outlet, such that the wetland is considered as a single hydraulic unit, regardless of the extent of networking between individual internal cells. This work extends the single hydraulic unit approach to enable the specification of moments and RTD parameters for individual cells, or clusters of cells, within the cell-network based on inert tracer tests with injection only at the network inlet. Hydraulic performance is quantified in terms of hydraulic efficiency and travel time dimensionless variance using both the method of moments and RTD modeling. Cell-network analysis was applied to a case study from the Orlando Easterly Wetland (OEW), demonstrating the improvement in hydraulic performance of individual wetland cells following wetland restoration activities. Furthermore, cell-network analysis indicated that the location of water quality sampling station locations within the cell network can significantly affect the accuracy of pollutant removal effectiveness estimation when the individual sample station RTD does not represent the hydraulic unit RTD. At the OEW, it was determined that historical nutrient removal effectiveness estimation may be underestimated for one area and overestimated for another, and recommendations were provided for sample station locations to minimize future performance estimation errors.

  6. Modeling and parameter estimation for hydraulic system of excavator's arm

    Institute of Scientific and Technical Information of China (English)

    HE Qing-hua; HAO Peng; ZHANG Da-qing

    2008-01-01

    A retrofitted electro-bydraulic proportional system for hydraulic excavator was introduced firstly. According to the principle and characteristic of load independent flow distribution(LUDV)system, taking boom hydraulic system as an example and ignoring the leakage of hydraulic cylinder and the mass of oil in it,a force equilibrium equation and a continuous equation of hydraulic cylinder were set up.Based On the flow equation of electro-hydraulic proportional valve, the pressure passing through the valve and the difference of pressure were tested and analyzed.The results show that the difference of pressure does not change with load, and it approximates to 2.0 MPa. And then, assume the flow across the valve is directly proportional to spool displacement andis not influenced by load, a simplified model of electro-hydraulic system was put forward. At the same time, by analyzing the structure and load-bearing of boom instrument, and combining moment equivalent equation of manipulator with rotating law, the estimation methods and equations for such parameters as equivalent mass and bearing force of hydraulic cylinder were set up. Finally, the step response of flow of boom cylinder was tested when the electro-hydraulic proportional valve was controlled by the stepcurrent. Based on the experiment curve, the flow gain coefficient of valve is identified as 2.825×10-4m3/(s·A)and the model is verified.

  7. Application of Ferrography to Fault Diagnosis of Hydraulic Systems

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    This paper deals with research on the successful use of ferrography as a wear measurement method for condition monitoring and fault diagnosis of hydraulic systems.The analysis program and progression is discussed, and a case study for condition monitoring and fault diagnosis of hydraulic systems by means of ferrography is also reviewed.

  8. Hydraulic drive and control system of the cone collecting robot

    Institute of Scientific and Technical Information of China (English)

    Kong Qinghua; Liu Jinhao; Lu Huaimin

    1999-01-01

    This paper describes the basic structure and design and operation principle of the hydraulic drive and control system with two pumps and two circuits. The manipulator of the cone collecting robot designed is full driven by hydraulic, which has five freedoms. The computer and electrohydraulic proportion velocity regulating valve were installed to realize open loop serve control for reducing cost and easy application.

  9. Performances of a balanced hydraulic motor with planetary gear train

    Science.gov (United States)

    Yu, Hongying; Luo, Changjie; Wang, Huimin

    2012-07-01

    The current research of a balanced hydraulic motor focuses on the characteristics of the motor with three planet gears. References of a balanced hydraulic motor with more than three planet gears are hardly found. In order to study the characteristics of a balanced hydraulic motor with planetary gear train that includes more than three planet gears, on the basis of analysis of the structure and working principle of a balanced hydraulic motor with planetary gear train, formulas are deduced for calculating the hydraulic motor's primary performance indexes such as displacement, unit volume displacement, flowrate fluctuation ratio, etc. Influences of the gears' tooth number on displacement and flowrate characteristics are analyzed. In order to guarantee the reliability of sealing capability, the necessary conditions that tooth number of the sun gear and the planet gears should satisfy are discussed. Selecting large unit volume displacement and small displacement fluctuation ratio as designing objectives, a balanced hydraulic motor with three planet gears and a common gear motor are designed under the conditions of same displacement, tooth addendum coefficien and clearance coefficient. By comparing the unit volume displacement and fluctuation ratio of the two motors, it can be seen that the balanced hydraulic motor with planetary gear train has the advantages of smaller fluctuation ratio and larger unit volume displacement. The results provide theoretical basis for choosing gear tooth-number of this kind of hydraulic motor.

  10. Tap Water Hydraulic Systems for Medium Power Applications

    DEFF Research Database (Denmark)

    Conrad, Finn; Adelstorp, Anders

    1998-01-01

    Presentation of new range of developed tap water hydraulic componets and applications for medium power up to 4 kW and 50 bar.......Presentation of new range of developed tap water hydraulic componets and applications for medium power up to 4 kW and 50 bar....

  11. FEASIBILITY OF HYDRAULIC FRACTURING OF SOILS TO IMPROVE REMEDIAL ACTIONS

    Science.gov (United States)

    Hydraulic fracturing, a technique commonly used to increase the yields of oil wells, could improve the effectiveness of several methods of in situ remediation. This project consisted of laboratory and field tests in which hydraulic fractures were created in soil. Laboratory te...

  12. 14 CFR 35.43 - Propeller hydraulic components.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Propeller hydraulic components. 35.43 Section 35.43 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: PROPELLERS Tests and Inspections § 35.43 Propeller hydraulic components....

  13. Efficiency limit factor analysis for the Francis-99 hydraulic turbine

    Science.gov (United States)

    Zeng, Y.; Zhang, L. X.; Guo, J. P.; Guo, Y. K.; Pan, Q. L.; Qian, J.

    2017-01-01

    The energy loss in hydraulic turbine is the most direct factor that affects the efficiency of the hydraulic turbine. Based on the analysis theory of inner energy loss of hydraulic turbine, combining the measurement data of the Francis-99, this paper calculates characteristic parameters of inner energy loss of the hydraulic turbine, and establishes the calculation model of the hydraulic turbine power. Taken the start-up test conditions given by Francis-99 as case, characteristics of the inner energy of the hydraulic turbine in transient and transformation law are researched. Further, analyzing mechanical friction in hydraulic turbine, we think that main ingredients of mechanical friction loss is the rotation friction loss between rotating runner and water body, and defined as the inner mechanical friction loss. The calculation method of the inner mechanical friction loss is given roughly. Our purpose is that explore and research the method and way increasing transformation efficiency of water flow by means of analysis energy losses in hydraulic turbine.

  14. Geomorphic Segmentation, Hydraulic Geometry, and Hydraulic Microhabitats of the Niobrara River, Nebraska - Methods and Initial Results

    Science.gov (United States)

    Alexander, Jason S.; Zelt, Ronald B.; Schaepe, Nathaniel J.

    2009-01-01

    The Niobrara River of Nebraska is a geologically, ecologically, and economically significant resource. The State of Nebraska has recognized the need to better manage the surface- and ground-water resources of the Niobrara River so they are sustainable in the long term. In cooperation with the Nebraska Game and Parks Commission, the U.S. Geological Survey is investigating the hydrogeomorphic settings and hydraulic geometry of the Niobrara River to assist in characterizing the types of broad-scale physical habitat attributes that may be of importance to the ecological resources of the river system. This report includes an inventory of surface-water and ground-water hydrology data, surface water-quality data, a longitudinal geomorphic segmentation and characterization of the main channel and its valley, and hydraulic geometry relations for the 330-mile section of the Niobrara River from Dunlap Diversion Dam in western Nebraska to the Missouri River confluence. Hydraulic microhabitats also were analyzed using available data from discharge measurements to demonstrate the potential application of these data and analysis methods. The main channel of the Niobrara was partitioned into three distinct fluvial geomorphic provinces: an upper province characterized by open valleys and a sinuous, equiwidth channel; a central province characterized by mixed valley and channel settings, including several entrenched canyon reaches; and a lower province where the valley is wide, yet restricted, but the river also is wide and persistently braided. Within the three fluvial geomorphic provinces, 36 geomorphic segments were identified using a customized, process-orientated classification scheme, which described the basic physical characteristics of the Niobrara River and its valley. Analysis of the longitudinal slope characteristics indicated that the Niobrara River longitudinal profile may be largely bedrock-controlled, with slope inflections co-located at changes in bedrock type at

  15. ANALYSIS AND ESTIMATION OF HYDRAULIC STABILITY OF FRANCIS HYDRO TURBINE

    Institute of Scientific and Technical Information of China (English)

    LAI Xi-de

    2004-01-01

    With the development of large-capacity hydro turbines, the hydraulic instability of bydro turbines has become one of the most important problems that affect the stable operation of the hydro-electric units. The hydraulic vibration and unstable operation of Francis hydro turbines are primarily caused by the unsteady pressure pulsations inside draft tubes.The forced rotating vortex core at the runner exit and the channel vortices inside Francis turbine runners are origins of the unsteady pressure pulsations when operating at partial load. This paper briefly analyzes the hydraulic instability of operation caused by the vortex core and channel vortices at partial load, then, presents a way to estimate the hydraulic stability by calculation of the flow behavior at the runner exit.The validity of estimation is examined by comparison with experimental data. This will be helpful to evaluate the alternative design and predict the hydraulic stability for both the prototype and model hydro turbines.

  16. Determining the Porosity and Saturated Hydraulic Conductivity of Binary Mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Z. F.; Ward, Anderson L.; Keller, Jason M.

    2009-09-27

    Gravels and coarse sands make up significant portions of some environmentally important sediments, while the hydraulic properties of the sediments are typically obtained in the laboratory using only the fine fraction (e.g., <2 mm or 4.75 mm). Researchers have found that the content of gravel has significant impacts on the hydraulic properties of the bulk soils. Laboratory experiments were conducted to measure the porosity and the saturated hydraulic conductivity of binary mixtures with different fractions of coarse and fine components. We proposed a mixing-coefficient model to estimate the porosity and a power-averaging method to determine the effective particle diameter and further to predict the saturated hydraulic conductivity of binary mixtures. The proposed methods could well estimate the porosity and saturated hydraulic conductivity of the binary mixtures for the full range of gravel contents and was successfully applied to two data sets in the literature.

  17. Microfluidic parallel circuit for measurement of hydraulic resistance.

    Science.gov (United States)

    Choi, Sungyoung; Lee, Myung Gwon; Park, Je-Kyun

    2010-08-31

    We present a microfluidic parallel circuit that directly compares the test channel of an unknown hydraulic resistance with the reference channel with a known resistance, thereby measuring the unknown resistance without any measurement setup, such as standard pressure gauges. Many of microfluidic applications require the precise transport of fluid along a channel network with complex patterns. Therefore, it is important to accurately characterize and measure the hydraulic resistance of each channel segment, and determines whether the device principle works well. However, there is no fluidic device that includes features, such as the ability to diagnose microfluidic problems by measuring the hydraulic resistance of a microfluidic component in microscales. To address the above need, we demonstrate a simple strategy to measure an unknown hydraulic resistance, by characterizing the hydraulic resistance of microchannels with different widths and defining an equivalent linear channel of a microchannel with repeated patterns of a sudden contraction and expansion.

  18. A review on hydraulic fracturing of unconventional reservoir

    Directory of Open Access Journals (Sweden)

    Quanshu Li

    2015-03-01

    Full Text Available Hydraulic fracturing is widely accepted and applied to improve the gas recovery in unconventional reservoirs. Unconventional reservoirs to be addressed here are with very low permeability, complicated geological settings and in-situ stress field etc. All of these make the hydraulic fracturing process a challenging task. In order to effectively and economically recover gas from such reservoirs, the initiation and propagation of hydraulic fracturing in the heterogeneous fractured/porous media under such complicated conditions should be mastered. In this paper, some issues related to hydraulic fracturing have been reviewed, including the experimental study, field study and numerical simulation. Finally the existing problems that need to be solved on the subject of hydraulic fracturing have been proposed.

  19. Investigation of Valve Plate in Water Hydraulic Axial Piston Motor

    Institute of Scientific and Technical Information of China (English)

    聂松林; 李壮云; 等

    2002-01-01

    This paper has introduced the developments of water hydraulic axial piston equipments.According to the effects of physicochemical properties of water on water hydraulic components,a novel valve plate for water hydraulic axial motor has been put forward,whose moment exerted by the fluid field between valve plate and bearing plate is balanced entirely.The material screening experiment of valve plate is done on the test rig.Through numerical simulation the effects of some geometry parameters on the performance of water hydraulic motor have been studied.The silencing grooves on the valve plate in water hydraulic motor can reduce the pressure shock and the occurrence of cavitation effectively.It is evident that the appropriate structure should change the wear status between matching paris and reduces the wear and specific pressure of the matching pairs.The specimen with the new type valve plate is used in a tool system.

  20. Effect of cavitation bubble collapse on hydraulic oil temperature

    Institute of Scientific and Technical Information of China (English)

    沈伟; 张健; 孙毅; 张迪嘉; 姜继海

    2016-01-01

    Cavitation bubble collapse has a great influence on the temperature of hydraulic oil. Herein, cone-type throttle valve experiments are carried out to study the thermodynamic processes of cavitation. First, the processes of growth and collapse are analysed, and the relationships between the hydraulic oil temperature and bubble growth and collapse are deduced. The effect of temperature is then considered on the hydraulic oil viscosity and saturated vapour pressure. Additionally, an improved form of the Rayleigh–Plesset equation is developed. The effect of cavitation on the hydraulic oil temperature is experimentally studied and the effects of cavitation bubble collapse in the hydraulic system are summarised. Using the cone-type throttle valve as an example, a method to suppress cavitation is proposed.

  1. Pedotransfer functions estimating soil hydraulic properties using different soil parameters

    DEFF Research Database (Denmark)

    Børgesen, Christen Duus; Iversen, Bo Vangsø; Jacobsen, Ole Hørbye;

    2008-01-01

    Estimates of soil hydraulic properties using pedotransfer functions (PTF) are useful in many studies such as hydrochemical modelling and soil mapping. The objective of this study was to calibrate and test parametric PTFs that predict soil water retention and unsaturated hydraulic conductivity...... parameters. The PTFs are based on neural networks and the Bootstrap method using different sets of predictors and predict the van Genuchten/Mualem parameters. A Danish soil data set (152 horizons) dominated by sandy and sandy loamy soils was used in the development of PTFs to predict the Mualem hydraulic...... of the hydraulic properties of the studied soils. We found that introducing measured water content as a predictor generally gave lower errors for water retention predictions and higher errors for conductivity predictions. The best of the developed PTFs for predicting hydraulic conductivity was tested against PTFs...

  2. Lubrication and tribology in seawater hydraulic piston pump

    Institute of Scientific and Technical Information of China (English)

    WANG Dong; LI Zhuang-yun; ZHU Yu-quan

    2003-01-01

    Water hydraulic systems have provoked major interest because of the human friendly and environmental safety aspects. Piston pump is one of the most frequently used hydraulic units in recent engineering technique. In water hydraulic piston pump, poor lubrication is more likely to happen than in oil hydraulic one because of difference in properties between water and oil. So there are some key problems such as corrosive wear and erosion, which are investigated briefly. Many new materials have been developed, which give longer life expectancies with water without corrosion and erosion. A new type of seawater hydraulic piston pumps with better suction characteristics had been developed at HUST. Much of this research has concentrated on new materials, structure and experiments, which are also specially introduced.

  3. Disclosure of hydraulic fracturing fluid chemical additives: analysis of regulations.

    Science.gov (United States)

    Maule, Alexis L; Makey, Colleen M; Benson, Eugene B; Burrows, Isaac J; Scammell, Madeleine K

    2013-01-01

    Hydraulic fracturing is used to extract natural gas from shale formations. The process involves injecting into the ground fracturing fluids that contain thousands of gallons of chemical additives. Companies are not mandated by federal regulations to disclose the identities or quantities of chemicals used during hydraulic fracturing operations on private or public lands. States have begun to regulate hydraulic fracturing fluids by mandating chemical disclosure. These laws have shortcomings including nondisclosure of proprietary or "trade secret" mixtures, insufficient penalties for reporting inaccurate or incomplete information, and timelines that allow for after-the-fact reporting. These limitations leave lawmakers, regulators, public safety officers, and the public uninformed and ill-prepared to anticipate and respond to possible environmental and human health hazards associated with hydraulic fracturing fluids. We explore hydraulic fracturing exemptions from federal regulations, as well as current and future efforts to mandate chemical disclosure at the federal and state level.

  4. COMPUTATIONAL FLOW RATE FEEDBACK AND CONTROL METHOD IN HYDRAULIC ELEVATORS

    Institute of Scientific and Technical Information of China (English)

    Xu Bing; Ma Jien; Lin Jianjie

    2005-01-01

    The computational flow rate feedback and control method, which can be used in proportional valve controlled hydraulic elevators, is discussed and analyzed. In a hydraulic elevator with this method, microprocessor receives pressure information from the pressure transducers and computes the flow rate through the proportional valve based on pressure-flow conversion real time algorithm. This hydraulic elevator is of lower cost and energy consumption than the conventional closed loop control hydraulic elevator whose flow rate is measured by a flow meter. Experiments are carried out on a test rig which could simulate the load of hydraulic elevator. According to the experiment results, the means to modify the pressure-flow conversion algorithm are pointed out.

  5. Issues Related To Troubleshooting Of Avionic Hydraulic Units

    Directory of Open Access Journals (Sweden)

    Jastrzębski Grzegorz

    2014-12-01

    Full Text Available The paper outlines workflows associated with troubleshooting of avionic hydraulic systems with detailed description of the troubleshooting algorithm and classification of diagnostic signals provided by avionic hydraulic systems and their subassemblies. Attention is paid to measurement sequences for diagnostic signals from hydraulic systems, circuits and units. Detailed description is dedicated to an innovative design of a troubleshooting device intended for direct measurements of internal leaks from avionic hydraulic units. Advantages of the proposed measurement method are summarized with benefits from use of the presented device and compared against the methods that are currently in use. Subsequent phases of the troubleshooting process are described with examples of measurement results that have been acquired from subassemblies of hydraulic systems of SU-22 aircrafts currently in service at Polish Air Forces with consideration given to cases when the permissible threshold of diagnostic signals were exceeded. Finally, all results from investigations are subjected to thorough analysis.

  6. Parameter Designing for Heave Compensation Hydraulic System Installed in Deepwater

    Directory of Open Access Journals (Sweden)

    Zhao Teng

    2013-01-01

    Full Text Available The function diagram of active heave compensation hydraulic system has been given, besides, the mathematics model for the principal hydraulic components of the compensation system has been built, and the input-output relation between components has been made clear. Aimed at compensating work capacity for the system, design and research on parameters as the bearing pressure, the initial state and the maximum flow of hydraulic cylinder, accumulator and other principal components have been made separately, and standardized design has been accomplished in accordance with relevant standards. Furthermore, calculus and verification for the capacity of the hydraulic system in different working stages have been made in order to calculate the pressure lose of the system and provide objective data for the hardware system design of the hydraulic components of the heave compensation system.

  7. 77 FR 27691 - Oil and Gas; Well Stimulation, Including Hydraulic Fracturing, on Federal and Indian Lands

    Science.gov (United States)

    2012-05-11

    ... Bismarck, North Dakota on April 20, 2011; Little Rock, Arkansas on April 22, 2011; and Golden, Colorado on... use and sustained yield. FLPMA declares multiple use to mean, among other things, a combination of...: Annulus means the space around a pipe in a wellbore, the outer wall of which may be the wall of either the...

  8. Energy Efficiency Comparison between Hydraulic Hybrid and Hybrid Electric Vehicles

    Directory of Open Access Journals (Sweden)

    Jia-Shiun Chen

    2015-05-01

    Full Text Available Conventional vehicles tend to consume considerable amounts of fuel, which generates exhaust gases and environmental pollution during intermittent driving cycles. Therefore, prospective vehicle designs favor improved exhaust emissions and energy consumption without compromising vehicle performance. Although pure electric vehicles feature high performance and low pollution characteristics, their limitations are their short driving range and high battery costs. Hybrid electric vehicles (HEVs are comparatively environmentally friendly and energy efficient, but cost substantially more compared with conventional vehicles. Hydraulic hybrid vehicles (HHVs are mainly operated using engines, or using alternate combinations of engine and hydraulic power sources while vehicles accelerate. When the hydraulic system accumulator is depleted, the conventional engine reengages; concurrently, brake-regenerated power is recycled and reused by employing hydraulic motor–pump modules in circulation patterns to conserve fuel and recycle brake energy. This study adopted MATLAB Simulink to construct complete HHV and HEV models for backward simulations. New European Driving Cycles were used to determine the changes in fuel economy. The output of power components and the state-of-charge of energy could be retrieved. Varying power component models, energy storage component models, and series or parallel configurations were combined into seven different vehicle configurations: the conventional manual transmission vehicle, series hybrid electric vehicle, series hydraulic hybrid vehicle, parallel hybrid electric vehicle, parallel hydraulic hybrid vehicle, purely electric vehicle, and hydraulic-electric hybrid vehicle. The simulation results show that fuel consumption was 21.80% lower in the series hydraulic hybrid vehicle compared to the series hybrid electric vehicle; additionally, fuel consumption was 3.80% lower in the parallel hybrid electric vehicle compared to the

  9. Estimation of the fluid excess pressure of hydraulic fractures in paleo geothermal reservoirs; Abschaetzung des Fluidueberdrucks von hydraulischen Bruechen in palaeogeothermischen Reservoiren

    Energy Technology Data Exchange (ETDEWEB)

    Philipp, Sonja L. [Goettingen Univ. (Germany). Geowissenschaftliches Zentrum

    2011-10-24

    In many geothermal reservoirs to low natural permeabilities have to be enhanced by opening or shearing the existing fractures or by generating artificial hydraulic fractures (reservoir stimulation). Such hydraulic fractures can also occur naturally and will remain in paleo geothermal reservoirs. Using the example of calcite passages in a Jurassic limestone-marl alternations in southwest England the author of the contribution under consideration shows that the fault zones (mainly normal faults) were used as fluid transport pathways for calcium carbonate containing water which was injected as hydraulic fractures in the host rock. Overall, in consensus with isotopic studies it was shown that geothermal waters with relatively local origin were within the sedimentary basin and did not come from great depths. The pore fluid pressure within the limestone beds is not sufficient as a reason for the formation of calcite passages.

  10. Concrete decontamination by electro-hydraulic scabbling

    Energy Technology Data Exchange (ETDEWEB)

    Goldfarb, V.; Gannon, R. [Textron Defense System, Everett, MA (United States)

    1995-10-01

    Textron Defense Systems (TDS) is developing an electro-hydraulic device that has the potential for faster, safer, and less expensive scabbling of contaminated concrete surfaces. In the device, shock waves and cavitating bubbles are produced in water by the electric pulses, and the direct and reflected shock waves impinging on the concrete surface result in the crushing and cracking of the concrete. Pulse energy, frequency, and traverse speed control the depth of the scabbling action. Performance thus far has demonstrated the capability of a prototype unit to process a swath 24 inches wide, up to 3/4 inch deep at a linear velocity of up to 6 feet per hour, i.e., at a scabbling rate of 12 sq. ft. per hour.

  11. Pressure Characteristic Analysis of a Hydraulic System

    Science.gov (United States)

    Cho, H. Y.; Yang, H. J.

    2017-02-01

    EPPR(ElectroProportional Pressure Reducing) valve control the MCV(Main Control Valve) built on the mobile heavy machine. The EPPR valve was tested in the experimental setup and the performance of the valve was compared with that of the existing EPPR valve. On thisstudy, electromagnetic properties analysis using AMESim program was performed to optimize the designing of EPPR Valve (Electric Proportional Pressure Reducing Valve) and by applying its results to the hydraulic system analytical model, performance of the valve could be predicted. Also by comparing the results of the actual experiment and the simulation, The results of thisstudy is that the 3 factor(cone angle, tip width, clearance between sleeve and plunger) have much effectiveness than other components in the EPPR valve.

  12. Adaptive Sliding Mode Control for Hydraulic Drives

    DEFF Research Database (Denmark)

    Schmidt, Lasse; Andersen, Torben Ole; Pedersen, Henrik C.

    2013-01-01

    This paper presents a new adaptive sliding mode controller generally applicable for position tracking control of electro-hydraulic valve-cylinder drives (VCD’s). The proposed control scheme requires limited knowledge on system parameters, and employs only piston- and valve spool position feedback....... The main target is to overcome problems with linear controllers deteriorating performance due to the inherent nonlinear nature of such systems, without requiring extensive knowledge on system parameters nor advanced control theory. In order to accomplish this task, an integral sliding mode controller...... employing parameter adaption through a recursive algorithm is presented. This is based on a reduced order model approximation of a VCD with unmatched valve flow- and cylinder asymmetries. Bounds on parameters are obtained despite lack of parameter knowledge, and the proposed controller demonstrates improved...

  13. Nonlinear regimes on polygonal hydraulic jumps

    Science.gov (United States)

    Rojas, Nicolas

    2016-11-01

    This work extends previous leading and higher order results on the polygonal hydraulic jump in the framework of inertial lubrication theory. The rotation of steady polygonal jumps is observed in the transition from one wavenumber to the next one, induced by a change in height of an external obstacle near the outer edge. In a previous publication, the study of stationary polygons is considered under the assumption that the reference frame rotates with the polygons when the number of corners change, in order to preserve their orientation. In this research work I provide a Hamiltonian approach and the stability analysis of the nonlinear oscillator that describe the polygonal structures at the jump interface, in addition to a perturbation method that enables to explain, for instance, the diversity of patterns found in experiments. GRASP, Institute of Physics, University of Liege, Belgium.

  14. Neutron Imaging Reveals Internal Plant Hydraulic Dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Warren, Jeffrey [ORNL; Bilheux, Hassina Z [ORNL; Kang, Misun [ORNL; Voisin, Sophie [ORNL; Cheng, Chu-Lin [ORNL; Horita, Jusuke [ORNL; Perfect, Edmund [ORNL

    2013-01-01

    Many terrestrial ecosystem processes are constrained by water availability and transport within the soil. Knowledge of plant water fluxes is thus critical for assessing mechanistic processes linked to biogeochemical cycles, yet resolution of root structure and xylem water transport dynamics has been a particularly daunting task for the ecologist. Through neutron imaging, we demonstrate the ability to non-invasively monitor individual root functionality and water fluxes within Zea mays L. (maize) and Panicum virgatum L. (switchgrass) seedlings growing in a sandy medium. Root structure and growth were readily imaged by neutron radiography and neutron computed tomography. Seedlings were irrigated with water or deuterium oxide and imaged through time as a growth lamp was cycled on to alter leaf demand for water. Sub-millimeter scale resolution reveals timing and magnitudes of root water uptake, redistribution within the roots, and root-shoot hydraulic linkages, relationships not well characterized by other techniques.

  15. Control Reconfigurability of Bilinear Hydraulic Drive Systems

    DEFF Research Database (Denmark)

    Shaker, Hamid Reza; Tahavori, Maryamsadat

    2011-01-01

    be effective if sufficient redundancy does not exist in the process. A measure for control reconfigurability which reveals the level of redundancy in connection with feedback control is proposed in this paper for bilinear systems. The proposed control reconfigurability measure is the extension of its gramian......The objective of the methods within the framework of the plug and play process control and particularly fault tolerant control is to establish control techniques which guarantee a certain performance through control reconfiguration at the occurrence of the faults or changes. These methods cannot......-based analogous counterpart, which has been previously proposed for the linear processes. The control reconfigurability is calculated for the bilinear models of an electro-hydraulic drive to show its relevance to redundant actuating capabilities in the models....

  16. Hydraulic hammer drilling technology: Developments and capabilities

    Energy Technology Data Exchange (ETDEWEB)

    Melamed, Y.; Kiselev, A. [SKB Geotechnika, Moscow (Russian Federation); Gelfgat, M. [Aquatic Co., Moscow (Russian Federation); Dreesen, D.; Blacic, J. [Los Alamos National Lab., NM (United States). GeoEngineering Group

    1996-12-31

    Percussion drilling technology was considered many years ago as one of the best approaches for hard rock drilling. Unfortunately the efficiency of most hydraulic hammer (HH) designs was very low (8% maximum), so they were successfully used in shallow boreholes only. Thirty years of research and field drilling experience with HH application in Former Soviet Union (FSU) countries led to the development of a new generation of HH designs with a proven efficiency of 40%. That advance achieved good operational results in hard rock at depths up to 2,000 m and more. The most recent research has shown that there are opportunities to increase HH efficiency up to 70%. This paper presents HH basic design principles and operational features. The advantages of HH technology for coiled-tubing drilling is shown on the basis of test results recently conducted in the US.

  17. Valorization of phosphogypsum as hydraulic binder.

    Science.gov (United States)

    Kuryatnyk, T; Angulski da Luz, C; Ambroise, J; Pera, J

    2008-12-30

    Phosphogypsum (calcium sulfate) is a naturally occurring part of the process of creating phosphoric acid (H(3)PO(4)), an essential component of many modern fertilizers. For every tonne of phosphoric acid made, from the reaction of phosphate rock with acid, commonly sulfuric acid, about 3t of phosphogypsum are created. There are three options for managing phosphogypsum: (i) disposal or dumping, (ii) stacking, (iii) use-in, for example, agriculture, construction, or landfill. This paper presents the valorization of two Tunisian phosphogypsums (referred as G and S) in calcium sulfoaluminate cement in the following proportions: 70% phosphogypsum-30% calcium sulfoaluminate clinker. The use of sample G leads to the production of a hydraulic binder which means that it is not destroyed when immersed in water. The binder including sample S performs very well when cured in air but is not resistant in water. Formation of massive ettringite in a rigid body leads to cracking and strength loss.

  18. Development of a hydraulic turbine design method

    Science.gov (United States)

    Kassanos, Ioannis; Anagnostopoulos, John; Papantonis, Dimitris

    2013-10-01

    In this paper a hydraulic turbine parametric design method is presented which is based on the combination of traditional methods and parametric surface modeling techniques. The blade of the turbine runner is described using Bezier surfaces for the definition of the meridional plane as well as the blade angle distribution, and a thickness distribution applied normal to the mean blade surface. In this way, it is possible to define parametrically the whole runner using a relatively small number of design parameters, compared to conventional methods. The above definition is then combined with a commercial CFD software and a stochastic optimization algorithm towards the development of an automated design optimization procedure. The process is demonstrated with the design of a Francis turbine runner.

  19. Multiphase Flow Dynamics 5 Nuclear Thermal Hydraulics

    CERN Document Server

    Kolev, Nikolay Ivanov

    2012-01-01

    The present Volume 5 of the successful book package "Multiphase Flow Dynamics" is devoted to nuclear thermal hydraulics which is a substantial part of nuclear reactor safety. It provides knowledge and mathematical tools for adequate description of the process of transferring the fission heat released in materials due to nuclear reactions into its environment. It step by step introduces into the heat release inside the fuel, temperature fields in the fuels, the "simple" boiling flow in a pipe described using ideas of different complexity like equilibrium, non equilibrium, homogeneity, non homogeneity. Then the "simple" three-fluid boiling flow in a pipe is described by gradually involving the mechanisms like entrainment and deposition, dynamic fragmentation, collisions, coalescence, turbulence. All heat transfer mechanisms are introduced gradually discussing their uncertainty. Different techniques are introduced like boundary layer treatments or integral methods. Comparisons with experimental data at each step...

  20. Multiphase flow dynamics 5 nuclear thermal hydraulics

    CERN Document Server

    Kolev, Nikolay Ivanov

    2015-01-01

    This Volume 5 of the successful book package "Multiphase Flow Dynamics" is devoted to nuclear thermal hydraulics which is a substantial part of nuclear reactor safety. It provides knowledge and mathematical tools for adequate description of the process of transferring the fission heat released in materials due to nuclear reactions into its environment. It step by step introduces into the heat release inside the fuel, temperature fields in the fuels, the "simple" boiling flow in a pipe described using ideas of different complexity like equilibrium, non equilibrium, homogeneity, non homogeneity. Then the "simple" three-fluid boiling flow in a pipe is described by gradually involving the mechanisms like entrainment and deposition, dynamic fragmentation, collisions, coalescence, turbulence. All heat transfer mechanisms are introduced gradually discussing their uncertainty. Different techniques are introduced like boundary layer treatments or integral methods. Comparisons with experimental data at each step demons...

  1. Hydraulic Lifting Mechanisms for the Erection Equipment

    Directory of Open Access Journals (Sweden)

    B. M. Novozhilov

    2016-01-01

    Full Text Available In erection equipment of space launch complexes the hydraulic lifting mechanisms (HLM are solely and exclusively used to accomplish changing the space-mission vehicle (SMV position from horizontal to the vertical one. Existing designs of lifting mechanisms are diverse, but all of them basically contain a basic mechanism comprising one hydro-cylinder. With increasing SMV size and weight a task to design the more complicated lifting mechanisms, comprising more kinematic links and using several hydro-cylinders becomes urgent.The article conducts a detailed analysis of the basic HLM schemes and defines the features of their arrangement in erection equipment. Gives basic calculation relationships, allowing us to determine design parameters of mechanisms for stationary and transport units. Via examples of available erection equipment shows the embodiment of lifting mechanisms using basic schemes.The ways for development of HLM schemes to erect a SMV of the large size and weight are shown. Two options of the double-cylinder HLM are described. Both schemes are based on dividing a lift cycle into two parts, in each of which only one of the cylinders is in operation. The first option contains an additional, intermediate boom, with respect to which the main boom is erected. In such a mechanism the cylinders start running sequentially: at first, one of the cylinders erects the intermediate boom, then the other cylinder does the main one. The second HLM embodiment comprises a single carrier boom with the swing arm, which allows to swing the boom at a certain angle of less than 90 ° using one of the cylinders, also sequentially operating. The second cylinder allows the boom to fall into vertical position. Such schemes can reduce a stroke length of used hydraulic cylinders, which are the most expensive devices of the lifting mechanism.The analysis results are of interest to designers of erection equipment for the space launch complexes.

  2. Gas Test Loop Booster Fuel Hydraulic Testing

    Energy Technology Data Exchange (ETDEWEB)

    Gas Test Loop Hydraulic Testing Staff

    2006-09-01

    The Gas Test Loop (GTL) project is for the design of an adaptation to the Advanced Test Reactor (ATR) to create a fast-flux test space where fuels and materials for advanced reactor concepts can undergo irradiation testing. Incident to that design, it was found necessary to make use of special booster fuel to enhance the neutron flux in the reactor lobe in which the Gas Test Loop will be installed. Because the booster fuel is of a different composition and configuration from standard ATR fuel, it is necessary to qualify the booster fuel for use in the ATR. Part of that qualification is the determination that required thermal hydraulic criteria will be met under routine operation and under selected accident scenarios. The Hydraulic Testing task in the GTL project facilitates that determination by measuring flow coefficients (pressure drops) over various regions of the booster fuel over a range of primary coolant flow rates. A high-fidelity model of the NW lobe of the ATR with associated flow baffle, in-pile-tube, and below-core flow channels was designed, constructed and located in the Idaho State University Thermal Fluids Laboratory. A circulation loop was designed and constructed by the university to provide reactor-relevant water flow rates to the test system. Models of the four booster fuel elements required for GTL operation were fabricated from aluminum (no uranium or means of heating) and placed in the flow channel. One of these was instrumented with Pitot tubes to measure flow velocities in the channels between the three booster fuel plates and between the innermost and outermost plates and the side walls of the flow annulus. Flow coefficients in the range of 4 to 6.5 were determined from the measurements made for the upper and middle parts of the booster fuel elements. The flow coefficient for the lower end of the booster fuel and the sub-core flow channel was lower at 2.3.

  3. Horizontal roof gap of backfill hydraulic support

    Institute of Scientific and Technical Information of China (English)

    张强; 张吉雄; 邰阳; 方坤; 殷伟

    2015-01-01

    For the backfill hydraulic support as the key equipment for achieving integration of backfilling and coal mining simultaneously in the practical process, its characteristics will directly influence the backfill body’s compression ratio. Horizontal roof gap, as a key parameter of backfilling characteristics, may impact the backfilling effect from the aspects of control of roof subsidence in advance, support stress, backfilling process and the support design. Firstly, the reason why horizontal roof gap exists was analyzed and its definition, causes and connotation were introduced, then adopting the Pro/E 3D simulation software, three typical 3D entity models of backfill hydraulic supports were built, based on the influence of horizontal roof gap on backfilling effect, and influence rules of four factors, i.e. support height, suspension height, suspension angle and tamping angle, were emphatically analyzed on horizontal roof gap. The results indicate that, the four factors all have significant impacts on horizontal roof gap, but show differences in influence trend and degree, showing negative linear correlation, positive linear correlation, positive semi-parabolic correlation and negative semi-parabolic correlation, respectively. Four legs type is the most adaptive to the four factors, while six legs (II) type has the poorest adaptability, and the horizontal roof gap is small under large support height, small suspension height, small suspension angle and large tamping angle situation. By means of optimizing structure components and their positional relation and suspension height of backfill scrape conveyor in the process of support design and through controlling working face deployment, roof subsidence in advance, mining height and backfilling during engineering application, the horizontal roof gap is optimized. The research results can be served as theoretical basis for support design and guidance for backfill support to have better performance in backfilling.

  4. Hydraulic Tomography and High-Resolution Slug Testing to Determine Hydraulic Conductivity Distributions - Year 1

    Science.gov (United States)

    2005-12-01

    the addition into a well of a known volume of water or a physical slug. More recently, pneumatic methods have become popular ( Zemansky and McElwee...and Zemansky , 2000), (Sellwood, 2001) and (Ross, 2004)]. The aquifer material at GEMS exhibits linear and non-linear responses to slug testing...1976; Zurbuchen et al., 2002; and Zemansky and McElwee, 2005). Slug tests have been a common method for obtaining information about the hydraulic

  5. Rapid shoot‐to‐root signalling regulates root hydraulic conductance via aquaporins

    National Research Council Canada - National Science Library

    VANDELEUR, REBECCA K; SULLIVAN, WENDY; ATHMAN, ASMINI; JORDANS, CHARLOTTE; GILLIHAM, MATTHEW; KAISER, BRENT N; TYERMAN, STEPHEN D

    2014-01-01

    Investigating the relationship between transpiration and root hydraulic conductance Vandeleur et al report that leaf area reduction reduces root hydraulic conductance in grapevine, soybean and maize...

  6. Hydraulic Bureaucracies and the Hydraulic Mission: Flows of Water, Flows of Power

    Directory of Open Access Journals (Sweden)

    François Molle

    2009-10-01

    Full Text Available Anchored in 19th century scientism and an ideology of the domination of nature, inspired by colonial hydraulic feats, and fuelled by technological improvements in high dam constructions and power generation and transmission, large-scale water resources development has been a defining feature of the 20th century. Whether out of a need to increase food production, raise rural incomes, or strengthen state building and the legitimacy of the state, governments – North and South, East and West – embraced the 'hydraulic mission' and entrusted it to powerful state water bureaucracies (hydrocracies. Engaged in the pursuit of iconic and symbolic projects, the massive damming of river systems, and the expansion of large-scale public irrigation these hydrocracies have long remained out of reach. While they have enormously contributed to actual welfare, including energy and food generation, flood protection and water supply to urban areas, infrastructural development has often become an end in itself, rather than a means to an end, fuelling rent-seeking and symbolising state power. In many places projects have been challenged on the basis of their economic, social or environmental impacts. Water bureaucracies have been challenged internally (within the state bureaucracies or through political changes and externally (by critiques from civil society and academia, or by reduced funding. They have endeavoured to respond to these challenges by reinventing themselves or deflecting reforms. This paper analyses these transformations, from the emergence of the hydraulic mission and associated water bureaucracies to their adjustment and responses to changing conditions.

  7. Hydraulic response and nitrogen retention in bioretention mesocosms with regulated outlets: part I--hydraulic response.

    Science.gov (United States)

    Lucas, William C; Greenway, Margaret

    2011-08-01

    In bioretention systems used for stormwater treatment, runoff interception improves with increased infiltration rates. However, nitrogen retention improves with increased retention time or decreasing infiltration rates. These contrasting responses were analyzed in 240-L experimental mesocosms using a variety of media treatments. The mesocosms were vegetated, except for one barren control. Dual-stage outlets were installed to extend retention time and equalize hydraulic responses. One unregulated treatment was free-draining. This part 1 paper presents the media properties and hydraulic responses. The highly aggregated media had saturated hydraulic conductivities ranging from 20.7 to 59.6 cm/h in August 2008 (austral winter), which increased to 42.8 to 110.6 cm/h in March 2009 (austral summer). The outlet regulated mesocosms provided retention over 8 times longer than the free-draining mesocosms, while still being able to capture large events. The outlets provide adaptive management for bioretention design to improve both runoff capture and nitrogen retention.

  8. Improving hydraulic excavator performance through in line hydraulic oil contamination monitoring

    Science.gov (United States)

    Ng, Felix; Harding, Jennifer A.; Glass, Jacqueline

    2017-01-01

    It is common for original equipment manufacturers (OEMs) of high value products to provide maintenance or service packages to customers to ensure their products are maintained at peak efficiency throughout their life. To quickly and efficiently plan for maintenance requirements, OEMs require accurate information about the use and wear of their products. In recent decades, the aerospace industry in particular has become expert in using real time data for the purpose of product monitoring and maintenance scheduling. Significant quantities of real time usage data from product monitoring are commonly generated and transmitted back to the OEMs, where diagnostic and prognostic analysis will be carried out. More recently, other industries such as construction and automotive, are also starting to develop capabilities in these areas and condition based maintenance (CBM) is increasing in popularity as a means of satisfying customers' demands. CBM requires constant monitoring of real time product data by the OEMs, however the biggest challenge for these industries, in particular construction, is the lack of accurate and real time understanding of how their products are being used possibly because of the complex supply chains which exist in construction projects. This research focuses on current dynamic data acquisition techniques for mobile hydraulic systems, in this case the use of a mobile inline particle contamination sensor; the aim was to assess suitability to achieve both diagnostic and prognostic requirements of Condition Based Maintenance. It concludes that hydraulic oil contamination analysis, namely detection of metallic particulates, offers a reliable way to measure real time wear of hydraulic components.

  9. An Integrated View of Whole-Tree Hydraulic Architecture. Does Stomatal or Hydraulic Conductance Determine Whole Tree Transpiration?

    Directory of Open Access Journals (Sweden)

    Juan Rodríguez-Gamir

    Full Text Available Hydraulic conductance exerts a strong influence on many aspects of plant physiology, namely: transpiration, CO2 assimilation, growth, productivity or stress response. However we lack full understanding of the contribution of root or shoot water transport capacity to the total water balance, something which is difficult to study in trees. Here we tested the hypothesis that whole plant hydraulic conductance modulates plant transpiration using two different seedlings of citrus rootstocks, Poncirus trifoliata (L. Raf. and Cleopatra mandarin (Citrus reshni Hort ex Tan.. The two genotypes presented important differences in their root or shoot hydraulic conductance contribution to whole plant hydraulic conductance but, even so, water balance proved highly dependent on whole plant conductance. Further, we propose there is a possible equilibrium between root and shoot hydraulic conductance, similar to that between shoot and root biomass production, which could be related with xylem anatomy.

  10. An Integrated View of Whole-Tree Hydraulic Architecture. Does Stomatal or Hydraulic Conductance Determine Whole Tree Transpiration?

    Science.gov (United States)

    Rodríguez-Gamir, Juan; Primo-Millo, Eduardo; Forner-Giner, María Ángeles

    2016-01-01

    Hydraulic conductance exerts a strong influence on many aspects of plant physiology, namely: transpiration, CO2 assimilation, growth, productivity or stress response. However we lack full understanding of the contribution of root or shoot water transport capacity to the total water balance, something which is difficult to study in trees. Here we tested the hypothesis that whole plant hydraulic conductance modulates plant transpiration using two different seedlings of citrus rootstocks, Poncirus trifoliata (L.) Raf. and Cleopatra mandarin (Citrus reshni Hort ex Tan.). The two genotypes presented important differences in their root or shoot hydraulic conductance contribution to whole plant hydraulic conductance but, even so, water balance proved highly dependent on whole plant conductance. Further, we propose there is a possible equilibrium between root and shoot hydraulic conductance, similar to that between shoot and root biomass production, which could be related with xylem anatomy.

  11. Pioneer hydraulic fracturing intervention on Brazilian Amazon Forest; Operacao pioneira de fraturamento hidraulico na selva Amazonica brasileira

    Energy Technology Data Exchange (ETDEWEB)

    Ferreira, Cledeilson; Silva, Luis A.; Duque, Luis H.; Steffan, Rodolfo H.P.; Guimaraes, Zacarias [Baker Hughes, Houston, TX (United States); Sabino, Afonso H. dos S.; Corregio, Fabio; Ferreira, Jose Carlos da Silva; Melo, Marcelo Moura; Ludovice, Roberto C. [Petroleo Brasileiro S.A (PETROBRAS), Rio de Janeiro, RJ (Brazil)

    2012-07-01

    Hydraulic fracturing is a stimulation technique where fluid is pumped with enough energy to create a fracture in the reservoir and to propagate it filling the broken zone with proppant agent. To the end of the treatment the proppant agent will support the fracture creating a production flow path, once it will have permeability higher than the original formation. Since a long time it was desired to use that technique to explore tight reservoirs in the Solimoes basin. However the lack of information on the interest zones, the great amount of equipment and fluids volumes involved hindered the application in an area that withholds a environmental certification. In November 10th of 2011 these challenges were surpassed. This article describes the technique, job details and results of the pioneering hydraulic fracturing intervention in the heart of the Amazon forest that became economically viable the gas production in tight reservoirs of the Solimoes basin with minimum environmental impact. (author)

  12. INFORMATION-MEASURING TEST SYSTEM OF DIESEL LOCOMOTIVE HYDRAULIC TRANSMISSIONS

    Directory of Open Access Journals (Sweden)

    I. V. Zhukovytskyy

    2015-08-01

    Full Text Available Purpose. The article describes the process of developing the information-measuring test system of diesel locomotives hydraulic transmission, which gives the possibility to obtain baseline data to conduct further studies for the determination of the technical condition of diesel locomotives hydraulic transmission. The improvement of factory technology of post-repair tests of hydraulic transmissions by automating the existing hydraulic transmission test stands according to the specifications of the diesel locomotive repair enterprises was analyzed. It is achieved based on a detailed review of existing foreign information-measuring test systems for hydraulic transmission of diesel locomotives, BelAZ earthmover, aircraft tug, slag car, truck, BelAZ wheel dozer, some brands of tractors, etc. The problem for creation the information-measuring test systems for diesel locomotive hydraulic transmission is being solved, starting in the first place from the possibility of automation of the existing test stand of diesel locomotives hydraulic transmission at Dnipropetrovsk Diesel Locomotive Repair Plant "Promteplovoz". Methodology. In the work the researchers proposed the method to create a microprocessor automated system of diesel locomotives hydraulic transmission stand testing in the locomotive plant conditions. It acts by justifying the selection of the necessary sensors, as well as the application of the necessary hardware and software for information-measuring systems. Findings. Based on the conducted analysis there was grounded the necessity of improvement the plant hydraulic transmission stand testing by creating a microprocessor testing system, supported by the experience of developing such systems abroad. Further research should be aimed to improve the accuracy and frequency of data collection by adopting the more modern and reliable sensors in tandem with the use of filtering software for electromagnetic and other interference. Originality. The

  13. Hydraulic forces contribute to left ventricular diastolic filling

    Science.gov (United States)

    Maksuti, Elira; Carlsson, Marcus; Arheden, Håkan; Kovács, Sándor J.; Broomé, Michael; Ugander, Martin

    2017-03-01

    Myocardial active relaxation and restoring forces are known determinants of left ventricular (LV) diastolic function. We hypothesize the existence of an additional mechanism involved in LV filling, namely, a hydraulic force contributing to the longitudinal motion of the atrioventricular (AV) plane. A prerequisite for the presence of a net hydraulic force during diastole is that the atrial short-axis area (ASA) is smaller than the ventricular short-axis area (VSA). We aimed (a) to illustrate this mechanism in an analogous physical model, (b) to measure the ASA and VSA throughout the cardiac cycle in healthy volunteers using cardiovascular magnetic resonance imaging, and (c) to calculate the magnitude of the hydraulic force. The physical model illustrated that the anatomical difference between ASA and VSA provides the basis for generating a hydraulic force during diastole. In volunteers, VSA was greater than ASA during 75-100% of diastole. The hydraulic force was estimated to be 10-60% of the peak driving force of LV filling (1-3 N vs 5-10 N). Hydraulic forces are a consequence of left heart anatomy and aid LV diastolic filling. These findings suggest that the relationship between ASA and VSA, and the associated hydraulic force, should be considered when characterizing diastolic function and dysfunction.

  14. Pulsating hydraulic fracturing technology in low permeability coal seams

    Institute of Scientific and Technical Information of China (English)

    Wang Wenchao; Li Xianzhong; Lin Baiquan; Zhai Cheng

    2015-01-01

    Based on the difficult situation of gas drainage in a single coal bed of high gas content and low perme-ability, we investigate the technology of pulsating hydraulic pressure relief, the process of crank plunger movement and the mechanism of pulsating pressure formation using theoretical research, mathematical modeling and field testing. We analyze the effect of pulsating pressure on the formation and growth of fractures in coal by using the pulsating hydraulic theory in hydraulics. The research results show that the amplitude of fluctuating pressure tends to increase in the case where the exit is blocked, caused by pulsating pressure reflection and frictional resistance superposition, and it contributes to the growth of fractures in coal. The crack initiation pressure of pulsating hydraulic fracturing is 8 MPa, which is half than that of normal hydraulic fracturing;the pulsating hydraulic fracturing influence radius reaches 8 m. The total amount of gas extraction is increased by 3.6 times, and reaches 50 L/min at the highest point. The extraction flow increases greatly, and is 4 times larger than that of drilling without fracturing and 1.2 times larger than that of normal hydraulic fracturing. The technology provides a technical measure for gas drainage of high gas content and low permeability in the single coal bed.

  15. Motion Planning Based Coordinated Control for Hydraulic Excavators

    Institute of Scientific and Technical Information of China (English)

    GAO Yingjie; JIN Yanchao; ZHANG Qin

    2009-01-01

    Hydraulic excavator is one type of the most widely applied construction equipment for various applications mainly because of its versatility and mobility. Among the tasks performed by a hydraulic excavator, repeatable level digging or flat surface finishing may take a large percentage. Using automated functions to perform such repeatable and tedious jobs will not only greatly increase the overall productivity but more importantly also improve the operation safety. For the purpose of investigating the technology without loss of generality, this research is conducted to create a coordinate control method for the boom, arm and bucket cylinders on a hydraulic excavator to perform accurate and effective works. On the basis of the kinematic analysis of the excavator linkage system, the tip trajectory of the end-effector can be determined in terms of three hydraulic cylinders coordinated motion with a visualized method. The coordination of those hydraulic cylinders is realized by controlling three electro-hydranlic proportional valves coordinately. Therefore,the complex control algorithm of a hydraulic excavator can be simplified into coordinated motion control of three individual systems.This coordinate control algorithm was validated on a wheeled hydraulic excavator, and the validation results indicated that this developed control method could satisfaetorily accomplish the auto-digging function for level digging or flat surface finishing.

  16. Nonlinear Control of Hydraulic Manipulator for Decommissioning Nuclear Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Myoung-Ho; Lee, Sung-Uk; Kim, Chang-Hoi; Choi, Byung-Seon; Moon, Jei-Kwon [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-10-15

    Robot technique is need to decommission nuclear reactor because of high radiation environment. Especially, Manipulator systems are useful for dismantling complex structure in a nuclear facility. In addition, Hydraulic system is applied to handle heavy duty object. Since hydraulic system can demonstrate high power. The manipulator with hydraulic power is already developed. To solve this problem, various nonlinear control method includes acceleration control. But, it is difficult because acceleration value is highly noisy. In this paper, the nonlinear control algorithm without acceleration control is studied. To verify, the hydraulic manipulator model had been developed. Furthermore, the numerical simulation is carried out. The nonlinear control without acceleration parameter method is developed for hydraulic manipulator. To verify control algorithm, the manipulator is modeled by MBD and the hydraulic servo system is also derived. In addition, the numerical simulation is also carried out. Especially, PID gain is determined though TDC algorithm. In the result of numerical simulation, tracking performance is good without acceleration control. Thus, the PID though TDC with SMC is good for hydraulic manipulator control.

  17. Hydraulic Jump and Energy Dissipation with Sluice Gate

    Directory of Open Access Journals (Sweden)

    Youngkyu Kim

    2015-09-01

    Full Text Available Movable weirs have been developed to address the weaknesses of conventional fixed weirs. However, the structures for riverbed protection downstream of movable weirs are designed using the criteria of fixed weirs in most cases, and these applications cause problems, such as scour and deformation of structures, due to misunderstanding the difference between different types of structures. In this study, a hydraulic experiment was conducted to examine weir type-specific hydraulic phenomena, compare hydraulic jumps and downstream flow characteristics according to different weir types, and analyze hydraulic characteristics, such as changes in water levels, velocities and energy. Additionally, to control the flow generated by a sluice gate, energy dissipators were examined herein for their effectiveness in relation to different installation locations and heights. As a result, it was found that although sluice gates generated hydraulic jumps similar to those of fixed weirs, their downstream supercritical flow increased to eventually elongate the overall hydraulic jumps. In energy dissipator installation, installation heights were found to be sensitive to energy dissipation. The most effective energy dissipator height was 10% of the downstream free surface water depth in this experiment. Based on these findings, it seems desirable to use energy dissipators to reduce energy, as such dissipators were found to be effective in reducing hydraulic jumps and protecting the riverbed under sluice gates.

  18. Hydraulic elements in reduction of vibrations in mechanical systems

    Science.gov (United States)

    Białas, K.; Buchacz, A.

    2017-08-01

    This work presents non-classical method of design of mechanic systems with subsystem reducing vibrations. The purpose of this paper is also introduces synthesis of mechanic system with reducing vibrations understand as design of this type of systems. The synthesis may be applied to modify the already existing systems in order to achieve a desired result. Elements which reduce vibrations can be constructed with passive, semi-active or active components. These considerations systems have selected active items. A hallmark of active elements it is possible to change the parameters on time of these elements and their power from an external source. The implementation of active elements is very broad. These elements can be implemented through the use of components of electrical, pneumatic, hydraulic, etc. The system was consisted from mechanical and hydraulic elements. Hydraulic elements were used as subsystem reducing unwanted vibration of mechanical system. Hydraulic elements can be realized in the form of hydraulic cylinder. In the case of an active vibration reduction in the form of hydraulic cylinder it is very important to find the corresponding values of hydraulic components. The values of these elements affect the frequency of vibrations of this sub-system which is related to the effective vibration reduction [7,11].

  19. Physico-empirical approach for mapping soil hydraulic behaviour

    Directory of Open Access Journals (Sweden)

    G. D'Urso

    1997-01-01

    Full Text Available Abstract: Pedo-transfer functions are largely used in soil hydraulic characterisation of large areas. The use of physico-empirical approaches for the derivation of soil hydraulic parameters from disturbed samples data can be greatly enhanced if a characterisation performed on undisturbed cores of the same type of soil is available. In this study, an experimental procedure for deriving maps of soil hydraulic behaviour is discussed with reference to its application in an irrigation district (30 km2 in southern Italy. The main steps of the proposed procedure are: i the precise identification of soil hydraulic functions from undisturbed sampling of main horizons in representative profiles for each soil map unit; ii the determination of pore-size distribution curves from larger disturbed sampling data sets within the same soil map unit. iii the calibration of physical-empirical methods for retrieving soil hydraulic parameters from particle-size data and undisturbed soil sample analysis; iv the definition of functional hydraulic properties from water balance output; and v the delimitation of soil hydraulic map units based on functional properties.

  20. Hydraulic Conductivity of Compacted Laterite Treated with Iron Ore Tailings

    Directory of Open Access Journals (Sweden)

    Umar Sa’eed Yusuf

    2016-01-01

    Full Text Available The objective of this study was to investigate the effect of iron ore tailings (IOT on hydraulic conductivity of compacted laterite. The IOT conforms to ASTM C 618-15 Type F designations. In the present study, soil was admixed with 0–20% IOT and compacted at moulding water content ranging from 10 to 25% using four types of compactive efforts. Hydraulic conductivities of the compacted soil-IOT mixtures were determined using deionized water and municipal solid waste leachate as the permeant fluids, respectively. Deionized water was the reference permeant fluid. Results of this study showed that hydraulic conductivity decreased with increase in IOT content as a result of improvement in mechanical properties of the soil. Permeation of the soil-IOT mixtures with leachate caused the hydraulic conductivity to drop to less than 1 × 10−9 m/s especially at higher compactive efforts. Also, bioclogging of the soil pores due to accumulation of biomass from bacteria and yeast present in the leachate tends to significantly reduce the hydraulic conductivity. From an economic point of view, it has been found from the results of this study that soil specimens treated with up to 20% IOT and compacted at the British Standard Light (BSL compactive effort met the maximum regulatory hydraulic conductivity of less than or equal to 1 × 10−9 m/s for hydraulic barrier system.

  1. Hydraulic conductivity of a firn aquifer system in southeast Greenland

    Science.gov (United States)

    Miller, Olivia L.; Solomon, D. Kip; Miège, Clément; Koenig, Lora S.; Forster, Richard R.; Montgomery, Lynn N.; Schmerr, Nicholas; Ligtenberg, Stefan R. M.; Legchenko, Anatoly; Brucker, Ludovic

    2017-05-01

    Some regions of the Greenland ice sheet, where snow accumulation and melt rates are high, currently retain substantial volumes of liquid water within the firn pore space throughout the year. These firn aquifers, found between 10-30 m below the snow surface, may significantly affect sea level rise by storing or draining surface meltwater. The hydraulic gradient and the hydraulic conductivity control flow of meltwater through the firn. Here we describe the hydraulic conductivity of the firn aquifer estimated from slug tests and aquifer tests at six sites located upstream of Helheim Glacier in southeastern Greenland. We conducted slug tests using a novel instrument, a piezometer with a heated tip that melts itself into the ice sheet. Hydraulic conductivity ranges between 2.5x10-5 and 1.1x10-3 m/s. The geometric mean of hydraulic conductivity of the aquifer is 2.7x10-4 m/s with a geometric standard deviation of 1.4 from both depth specific slug tests (analyzed using the Hvorslev method) and aquifer tests during the recovery period. Hydraulic conductivity is relatively consistent between boreholes and only decreases slightly with depth. The hydraulic conductivity of the firn aquifer is crucial for determining flow rates and patterns within the aquifer, which inform hydrologic models of the aquifer, its relation to the broader glacial hydrologic system, and its effect on sea level rise.

  2. Hydraulic Conductivity of a Firn Aquifer in Southeast Greenland

    Directory of Open Access Journals (Sweden)

    Olivia L. Miller

    2017-05-01

    Full Text Available Some regions of the Greenland ice sheet, where snow accumulation and melt rates are high, currently retain substantial volumes of liquid water within the firn pore space throughout the year. These firn aquifers, found between ~10 and 30 m below the snow surface, may significantly affect sea level rise by storing or draining surface meltwater. The hydraulic gradient and the hydraulic conductivity control flow of meltwater through the firn. Here we describe the hydraulic conductivity of the firn aquifer estimated from slug tests and aquifer tests at six sites located upstream of Helheim Glacier in southeastern Greenland. We conducted slug tests using a novel instrument, a piezometer with a heated tip that melts itself into the ice sheet. Hydraulic conductivity ranges between 2.5 × 10−5 and 1.1 × 10−3 m/s. The geometric mean of hydraulic conductivity of the aquifer is 2.7 × 10−4 m/s with a geometric standard deviation of 1.4 from both depth specific slug tests (analyzed using the Hvorslev method and aquifer tests during the recovery period. Hydraulic conductivity is relatively consistent between boreholes and only decreases slightly with depth. The hydraulic conductivity of the firn aquifer is crucial for determining flow rates and patterns within the aquifer, which inform hydrologic models of the aquifer, its relation to the broader glacial hydrologic system, and its effect on sea level rise.

  3. Hydraulic Hybrid Parcel Delivery Truck Deployment, Testing & Demonstration

    Energy Technology Data Exchange (ETDEWEB)

    Gallo, Jean-Baptiste [Calstart Incorporated, Pasadena, CA (United States)

    2014-03-07

    Although hydraulic hybrid systems have shown promise over the last few years, commercial deployment of these systems has primarily been limited to Class 8 refuse trucks. In 2005, the Hybrid Truck Users Forum initiated the Parcel Delivery Working Group including the largest parcel delivery fleets in North America. The goal of the working group was to evaluate and accelerate commercialization of hydraulic hybrid technology for parcel delivery vehicles. FedEx Ground, Purolator and United Parcel Service (UPS) took delivery of the world’s first commercially available hydraulic hybrid parcel delivery trucks in early 2012. The vehicle chassis includes a Parker Hannifin hydraulic hybrid drive system, integrated and assembled by Freightliner Custom Chassis Corp., with a body installed by Morgan Olson. With funding from the U.S. Department of Energy, CALSTART and its project partners assessed the performance, reliability, maintainability and fleet acceptance of three pre-production Class 6 hydraulic hybrid parcel delivery vehicles using information and data from in-use data collection and on-road testing. This document reports on the deployment of these vehicles operated by FedEx Ground, Purolator and UPS. The results presented provide a comprehensive overview of the performance of commercial hydraulic hybrid vehicles in parcel delivery applications. This project also informs fleets and manufacturers on the overall performance of hydraulic hybrid vehicles, provides insights on how the technology can be both improved and more effectively used. The key findings and recommendations of this project fall into four major categories: -Performance, -Fleet deployment, -Maintenance, -Business case. Hydraulic hybrid technology is relatively new to the market, as commercial vehicles have been introduced only in the past few years in refuse and parcel delivery applications. Successful demonstration could pave the way for additional purchases of hydraulic hybrid vehicles throughout the

  4. Non-stationary flow of hydraulic oil in long pipe

    Directory of Open Access Journals (Sweden)

    Hružík Lumír

    2014-03-01

    Full Text Available The paper deals with experimental evaluation and numerical simulation of non-stationary flow of hydraulic oil in a long hydraulic line. Non-stationary flow is caused by a quick closing of valves at the beginning and the end of the pipe. Time dependence of pressure is measured by means of pressure sensors at the beginning and the end of the pipe. A mathematical model of a given circuit is created using Matlab SimHydraulics software. The long line is simulated by means of segmented pipe. The simulation is verified by experiment.

  5. Robust control of a hydraulically driven flexible arm

    Institute of Scientific and Technical Information of China (English)

    Guang LI; Khajepour AMIR

    2004-01-01

    A new robust controller is proposed to regulate both flexural vibrations and rigid body motion of a hydraulically driven flexible arm. The controller combines backstepping control and sliding mode to arrive at a controller capable of dealing with a nonlinear system with uncertainties. The sliding mode technique is used to achieve an asymptotic joint angle and vibration regulation in the presence of payload uncertainty by providing a virtual torque input at the joint while the backstepping technique is used to regulate the spool position of a hydraulic valve to provide the required torque. It is shown that there is no chatter in the hydraulic valve, which results in smoother operation of the system.

  6. Hydraulics and pneumatics a technician's and engineer's guide

    CERN Document Server

    Parr, Andrew

    2011-01-01

    Nearly all industrial processes require objects to be moved, manipulated or subjected to some sort of force. Such movements and manipulations are frequently accomplished by means of devices driven by liquids (hydraulics) or air (pneumatics), the subject of this book. Hydraulics and Pneumatics is written by a practicing process control engineer as a guide to the successful operation of hydraulic and pneumatic systems for all engineers and technicians working with them. Keeping mathematics and theory to a minimum, this practical guide is thorough but accessible to technicians without a

  7. Representing plant hydraulics in a global Earth system model.

    Science.gov (United States)

    Kennedy, D.; Gentine, P.

    2015-12-01

    Earth system models need improvement to reproduce observed seasonal and diurnal cycles of photosynthesis and respiration. Model water stress parameterizations lag behind the plant physiology literature. A plant hydraulics model is developed and deployed in a global Earth system model (NCAR CESM 1.2.2 with CLM 4.5). Assimilation and transpiration are attenuated according to literature cavitation curves. Water stress is evaluated based on plant functional type hydraulic parameters forced by soil moisture and atmospheric conditions. Resolving the plant water status allows for modelling divergent strategies for water stress. The case of isohydric versus anisohydric species is presented, showing that including plant hydraulic traits alter modelled photosynthesis and transpiration.

  8. Problems associated with the use of rapid yielding hydraulic props.

    CSIR Research Space (South Africa)

    Glisson, FJ

    1998-08-01

    Full Text Available required to constantly move consumable support elements from surface to the stope face. This latter operation does not cease with the introduction of RYHP’s as pack timber or elongates are still transported. The effect is as such seldom quantified. Each... ton hydraulic props.10 Figure 1.2 Flow chart of the life of a hydraulic prop; from assembly to usage and repair when damaged. . . . . . . . . . . . . . . . . . 11 Figure 3.1 Performance of 10 hydraulic props that were batch tested prior...

  9. KJRR-FAI Hydraulic Flow Testing Input Package

    Energy Technology Data Exchange (ETDEWEB)

    N.E. Woolstenhulme; R.B. Nielson; D.B. Chapman

    2013-12-01

    The INL, in cooperation with the KAERI via Cooperative Research And Development Agreement (CRADA), undertook an effort in the latter half of calendar year 2013 to produce a conceptual design for the KJRR-FAI campaign. The outcomes of this effort are documented in further detail elsewhere [5]. The KJRR-FAI was designed to be cooled by the ATR’s Primary Coolant System (PCS) with no provision for in-pile measurement or control of the hydraulic conditions in the irradiation assembly. The irradiation assembly was designed to achieve the target hydraulic conditions via engineered hydraulic losses in a throttling orifice at the outlet of the irradiation vehicle.

  10. Considerations for Stationary Ice Covered Flows in Adaptive Hydraulics (ADH)

    Science.gov (United States)

    2009-05-01

    Flows in Adaptive Hydraulics (ADH) by Gary L. Brown, Gaurav Savant , Charlie Berger, and David S. Smith Report Documentation Page Form ApprovedOMB No...Road, Vicksburg, MS 39180 at 601-634-3628, e-mail: Gary.L.Brown@usace.army.mil, or Dr. Gaurav Savant , P.E., Coastal and Hydraulics Laboratory, U.S...L., G. Savant , C.; Berger, and D. S. Smith. 2009. Considerations for stationary ice covered flows in ADaptive Hydraulics (ADH) ERDC TN-SWWRP- 09-4

  11. Aired-time and chamotte hydraulic mortars

    Directory of Open Access Journals (Sweden)

    González Cortina, M.

    2002-06-01

    Full Text Available The aim of this research project has been to obtain aired-li me based hydraulic mortars with the addition of chamotte or burnt clay powder obtained from the ceramic industry waste. By doing this, hydraulic properties have been included into lime and hydraulic mortars with a great improvement in mechanical properties. In order to achieve this, different types of chamotte obtained from clay burnt at different temperatures have been tested, changing, at the same time, the proportions of lime, sand, chamotte and water. All the tests have been performed preparing a double set of test pieces to be kept at room temperature or to be immersed in water, determining the Shore C hardness and the mechanical compressive and tensile strengths. Further on, X-ray diffraction analysis have been developed to determine the qualitative composition of the crystalline structure, as well as micro structural analysis, using stereomicroscope and electric microscope scanning, with X-ray microanalysis have been used. As a conclusion, several types of mortars have been created with different proportions, which can be used, due to its characteristics, as keying mortars in brickwork, for restoration works as well as for new constructions.

    El objetivo de éste trabajo es el conseguir morteros hidráulicos, a partir de la cal aérea, con adición de chamota o polvo de arcilla cocida, obtenida de los residuos-desechos de la industria cerámica. De este modo se pretende infundir propiedades hidráulicas a la cal y obtener morteros hidráulicos, con una mejora sustancial de sus propiedades mecánicas. Para ello, se ha experimentado con diversos tipos de chamotas, obtenidas a partir de arcillas cocidas a diferentes temperaturas, y con diversas granulometrías, y se han realizado morteros con distintas dosificaciones, variando las proporciones de cal, arena, chamota y agua. En todos los casos se ha preparado una doble serie de probetas, para conservarlas al aire o

  12. Intermediate-Scale Hydraulic Fracturing in a Deep Mine - kISMET Project Summary 2016

    Energy Technology Data Exchange (ETDEWEB)

    Oldenburg, C. M. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Dobson, P. F. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Wu, Y. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Cook, P. J. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Kneafsey, T. J. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Nakagawa, S. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Ulrich, C. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Siler, D. L. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Guglielmi, Y. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Ajo-Franklin, J. B. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Rutqvist, J. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Daley, T. M. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Birkholzer, J. T. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Wang, H. F. [Univ. of Wisconsin, Madison, WI (United States); Lord, N. E. [Univ. of Wisconsin, Madison, WI (United States); Haimson, B. C. [Univ. of Wisconsin, Madison, WI (United States); Sone, H. [Univ. of Wisconsin, Madison, WI (United States); Vigilante, P. [Univ. of Wisconsin, Madison, WI (United States); Roggenthen, W. M. [South Dakota School of Mines and Technology, Rapid City, SD (United States); Doe, T. W. [Golder Associates Inc., Toronto, ON (Canada); Lee, M. Y. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Ingraham, M. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Huang, H. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Mattson, E. D. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Zhou, J. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Johnson, T. J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Morris, J. P. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); White, J. A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Johnson, P. A. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Coblentz, D. D. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Heise, J. [Stanford Underground Research Facility, Lead, SD (United States); Zoback, M. D. [Stanford Univ., CA (United States)

    2016-11-04

    negligible microseismicity. Field measurements of the stress field by hydraulic fracturing showed that the minimum horizontal stress at the kISMET site averages 21.7 MPa (3146 psi) pointing approximately N-S (356 degrees azimuth) and plunging slightly NNW at 12°. The vertical and horizontal maximum stress are similar in magnitude at 42-44 MPa (6090-6380 psi) for the depths of testing which averaged approximately 1530 m (5030 ft). Hydraulic fractures were remarkably uniform suggesting core-scale and larger rock fabric did not play a role in controlling fracture orientation. Monitoring using ERT and CASSM in the four monitoring boreholes, and passive seismic accelerometer-based measurements in the West Access Drift, was carried out during the generation of a larger fracture (so-called stimulation test) at a depth of 40 m below the invert. ERT was not able to detect the fracture created, nor were the accelerometers in the drift, but microseismicity was detected for first (deepest) hydraulic-fracturing stress measurement. The CASSM data have not yet been analyzed. Analytical solutions suggest fracture radius of the large fracture (stimulation test) was more than 6 m, depending on the unknown amount of leak-off. The kISMET results for stress state are consistent with large-scale mid-continent estimates of stress. Currently we are using the orientation of the stress field we determined to interpret a large number of borehole breakouts recorded in nearby boreholes at SURF to generate a more complete picture of the stress field and its variations at SURF. The efforts on the project have prompted a host of additional follow-on studies that we recommend be carried out at the kISMET site.

  13. An Approach to automatically optimize the Hydraulic performance of Blade System for Hydraulic Machines using Multi-objective Genetic Algorithm

    Science.gov (United States)

    Lai, Xide; Chen, Xiaoming; Zhang, Xiang; Lei, Mingchuan

    2016-11-01

    This paper presents an approach to automatic hydraulic optimization of hydraulic machine's blade system combining a blade geometric modeller and parametric generator with automatic CFD solution procedure and multi-objective genetic algorithm. In order to evaluate a plurality of design options and quickly estimate the blade system's hydraulic performance, the approximate model which is able to substitute for the original inside optimization loop has been employed in the hydraulic optimization of blade by using function approximation. As the approximate model is constructed through the database samples containing a set of blade geometries and their resulted hydraulic performances, it can ensure to correctly imitate the real blade's performances predicted by the original model. As hydraulic machine designers are accustomed to do design with 2D blade profiles on stream surface that are then stacked to 3D blade geometric model in the form of NURBS surfaces, geometric variables to be optimized were defined by a series profiles on stream surfaces. The approach depends on the cooperation between a genetic algorithm, a database and user defined objective functions and constraints which comprises hydraulic performances, structural and geometric constraint functions. Example covering optimization design of a mixed-flow pump impeller is presented.

  14. Subcritical growth of natural hydraulic fractures

    Science.gov (United States)

    Garagash, D.

    2014-12-01

    Joints are the most common example of brittle tensile failure in the crust. Their genesis at depth is linked to the natural hydraulic fracturing, which requires pore fluid pressure in excess of the minimum in situ stress [Pollard and Aidyn, JSG1988]. Depending on the geological setting, high pore pressure can result form burial compaction of interbedded strata, diagenesis, or tectonics. Common to these loading scenarios is slow build-up of pore pressure over a geological timescale, until conditions for initiation of crack growth are met on favorably oriented/sized flaws. The flaws can vary in size from grain-size cracks in igneous rocks to a fossil-size flaws in clastic rock, and once activated, are inferred to propagate mostly subcritically [Segall JGR 1984; Olson JGR 1993]. Despite many observational studies of natural hydraulic fractures, the modeling attempts appear to be few [Renshaw and Harvey JGR 1994]. Here, we use boundary integral formulation for the pore fluid inflow from the permeable rock into a propagating joint [Berchenko et al. IJRMMS 1997] coupled with the criteria for subcritical propagation assisted by the environmental effects of pore fluid at the crack tip to solve for the evolution of a penny-shape joint, which, in interbedded rock, may eventually evolve to short-blade geometry (propagation confined to a bed). Initial growth is exceedingly slow, paced by the stress corrosion reaction kinetics at the crack tip. During this stage the crack is fully-drained (i.e. the fluid pressure in the crack is equilibrated with the ambient pore pressure). This "slow" stage is followed by a rapid acceleration, driven by the increase of the mechanical stress intensity factor with the crack length, towards the terminal joint velocity. We provide an analytical expression for the latter as a function of the rock diffusivity, net pressure loading at the initiation (or flaw lengthscale), and parameters describing resistance to fracture growth. Due to a much slower

  15. Effects of PDE5 Inhibitors and sGC Stimulators in a Rat Model of Artificial Ureteral Calculosis.

    Directory of Open Access Journals (Sweden)

    Peter Sandner

    Full Text Available Urinary colics from calculosis are frequent and intense forms of pain whose current pharmacological treatment remains unsatisfactory. New and more effective drugs are needed to control symptoms and improve stone expulsion. Recent evidence suggested that the Nitric Oxide (NO / cyclic guanosine monophosphate (cGMP/phosphodiesterase type 5 (PDE5 system may contribute to ureteral motility influencing stone expulsion. We investigated if PDE5 inhibitors and sGC stimulators influence ureteral contractility, pain behaviour and stone expulsion in a rat model of ureteral calculosis. We investigated: a the sex-specific PDE5 distribution in the rat ureter; b the functional in vitro effects of vardenafil and sildenafil (PDE5 inhibitors and BAY41-2272 (sGC stimulator on induced ureteral contractility in rats and c the in vivo effectiveness of vardenafil and BAY41-2272, alone and combined with ketoprofen, vs hyoscine-N-butylbromide alone or combined with ketoprofen, on behavioural pain indicators and stone expulsion in rats with artificial calculosis in one ureter. PDE5 was abundantly expressed in male and female rats' ureter. In vitro, both vardenafil and BAY41-2272 significantly relaxed pre-contracted ureteral strips. In vivo, all compounds significantly reduced number and global duration of "ureteral crises" and post-stone lumbar muscle hyperalgesia in calculosis rats. The highest level of reduction of the pain behaviour was observed with BAY41-2272 among all spasmolytics administered alone, and with the combination of ketoprofen with BAY41-2272. The percentage of stone expulsion was maximal in the ketoprofen+BAY41-2272 group. The NO/cGMP/PDE5 pathway is involved in the regulation of ureteral contractility and pain behaviour in urinary calculosis. PDE5 inhibitors and sGC stimulators could become a potent new option for treatment of urinary colic pain.

  16. Stimulate your creativity

    Energy Technology Data Exchange (ETDEWEB)

    Raudsepp, E.

    1983-02-01

    Aids in idea stimulation and problem solving are presented. The forced relation technique forces random words together to stimulate thought. This can be done by the catalog method or by listing characteristics and alternatives until a novel idea occurs. A checklist designed for mathematical problem solving is given. The forms of questioning it provides include understanding the unknown and finding a connection between the data and the unknown. A vice-versa checklist, where consideration of the opposite encourages new ideas, is suggested. A self-questioning attitude is necessary for problem-solving. A word stimulation by checklist is also suggested.

  17. Characterization of hydraulic fractures and reservoir properties of shale using natural tracers

    Science.gov (United States)

    Heath, J. E.; Gardner, P.; Kuhlman, K. L.; Malama, B.

    2013-12-01

    Hydraulic fracturing plays a major role in the economic production of hydrocarbon from shale. Current fracture characterization techniques are limited in diagnosing the transport properties of the fractures on the near wellbore scale to that of the entire stimulated reservoir volume. Microseismic reveals information on fracture geometries, but not transport properties. Production analysis (e.g., rate transient analysis using produced fluids) estimates fracture and reservoir flow characteristics, but often relies on simplified models in terms of fracture geometries and fluid storage and transport. We present the approach and potential benefits of incorporating natural tracers with production data analysis for fracture and reservoir characterization. Hydraulic fracturing releases omnipresent natural tracers that accumulate in low permeability rocks over geologic time (e.g., radiogenic 4He and 40Ar). Key reservoir characteristics govern the tracer release, which include: the number, connectivity, and geometry of fractures; the distribution of fracture-surface-area to matrix-block-volume; and the nature of hydrocarbon phases within the reservoir (e.g., methane dissolved in groundwater or present as a separate gas phase). We explore natural tracer systematics using numerical techniques under relevant shale-reservoir conditions. We evaluate the impact on natural tracer transport due to a variety of conceptual models of reservoir-transport properties and boundary conditions. Favorable attributes for analysis of natural tracers include the following: tracer concentrations start with a well-defined initial condition (i.e., equilibrium between matrix and any natural fractures); there is a large suite of tracers that cover a range of at least 7x in diffusion coefficients; and diffusive mass-transfer out of the matrix into hydraulic fractures will cause elemental and isotopic fractionation. Sandia National Laboratories is a multi-program laboratory managed and operated by

  18. A potential-based inversion of unconfined steady-state hydraulic tomography.

    Science.gov (United States)

    Cardiff, M; Barrash, W; Kitanidis, P K; Malama, B; Revil, A; Straface, S; Rizzo, E

    2009-01-01

    The importance of estimating spatially variable aquifer parameters such as transmissivity is widely recognized for studies in resource evaluation and contaminant transport. A useful approach for mapping such parameters is inverse modeling of data from series of pumping tests, that is, via hydraulic tomography. This inversion of field hydraulic tomographic data requires development of numerical forward models that can accurately represent test conditions while maintaining computational efficiency. One issue this presents is specification of boundary and initial conditions, whose location, type, and value may be poorly constrained. To circumvent this issue when modeling unconfined steady-state pumping tests, we present a strategy that analyzes field data using a potential difference method and that uses dipole pumping tests as the aquifer stimulation. By using our potential difference approach, which is similar to modeling drawdown in confined settings, we remove the need for specifying poorly known boundary condition values and natural source/sink terms within the problem domain. Dipole pumping tests are complementary to this strategy in that they can be more realistically modeled than single-well tests due to their conservative nature, quick achievement of steady state, and the insensitivity of near-field response to far-field boundary conditions. After developing the mathematical theory, our approach is first validated through a synthetic example. We then apply our method to the inversion of data from a field campaign at the Boise Hydrogeophysical Research Site. Results from inversion of nine pumping tests show expected geologic features, and uncertainty bounds indicate that hydraulic conductivity is well constrained within the central site area.

  19. Numerical Investigation into the Effect of Natural Fracture Density on Hydraulic Fracture Network Propagation

    Directory of Open Access Journals (Sweden)

    Zhaohui Chong

    2017-07-01

    Full Text Available Hydraulic fracturing is an important method to enhance permeability in oil and gas exploitation projects and weaken hard roofs of coal seams to reduce dynamic disasters, for example, rock burst. It is necessary to fully understand the mechanism of the initiation, propagation, and coalescence of hydraulic fracture network (HFN caused by fluid flow in rock formations. In this study, a coupled hydro-mechanical model was built based on synthetic rock mass (SRM method to investigate the effects of natural fracture (NF density on HFN propagation. Firstly, the geometrical structures of NF obtained from borehole images at the field scale were applied to the model. Secondly, the micro-parameters of the proposed model were validated against the interaction between NF and hydraulic fracture (HF in physical experiments. Finally, a series of numerical simulations were performed to study the mechanism of HFN propagation. In addition, confining pressure ratio (CPR and injection rate were also taken into consideration. The results suggested that the increase of NF density drives the growth of stimulated reservoir volume (SRV, concentration area of injection pressure (CAIP, and the number of cracks caused by NF. The number of tensile cracks caused by rock matrix decrease gradually with the increase of NF density, and the number of shear cracks caused by rock matrix are almost immune to the change of NF density. The propagation orientation of HFN and the breakdown pressure in rock formations are mainly controlled by CPR. Different injection rates would result in a relatively big difference in the gradient of injection pressure, but this difference would be gradually narrowed with the increase of NF density. Natural fracture density is the key factor that influences the percentages of different crack types in HFN, regardless of the value of CPR and injection rate. The proposed model may help predict HFN propagation and optimize fracturing treatment designs in

  20. Sensors for hydraulic-induced fracturing characterization

    Science.gov (United States)

    Mireles, Jose, Jr.; Estrada, Horacio; Ambrosio, Roberto C.

    2011-06-01

    Hydraulic induced fracturing (HIF) in oil wells is used to increase oil productivity by making the subterranean terrain more deep and permeable. In some cases HIF connects multiple oil pockets to the main well. Currently there is a need to understand and control with a high degree of precision the geometry, direction, and the physical properties of fractures. By knowing these characteristics (the specifications of fractures), other drill well locations and set-ups of wells can be designed to increase the probability of connection of the oil pockets to main well(s), thus, increasing productivity. The current state of the art of HIF characterization does not meet the requirements of the oil industry. In Mexico, the SENER-CONACyT funding program recently supported a three party collaborative effort between the Mexican Petroleum Institute, Schlumberger Dowell Mexico, and the Autonomous University of Juarez to develop a sensing scheme to measure physical parameters of a HIF like, but not limited to pressure, temperature, density and viscosity. We present in this paper a review of HIF process, its challenges and the progress of sensing development for down hole measurement parameters of wells for the Chicontepec region of Mexico.

  1. Underwater hydraulic shock shovel control system

    Institute of Scientific and Technical Information of China (English)

    LIU He-ping; LUO A-ni; XIAO Hai-yan

    2008-01-01

    The control system determines the effectiveness of an underwater hydraulic shock shovel.This paper begins by analyzing the working principles of these shovels and explains the importance of their control systems.A new type of control system's mathematical model was built and analyzed according to those principles.Since the initial control system's response time could not fulfill the design requirements,a PID controller was added to the control system.System response time was still slower than required,so a neural network was added to nonlinearly regulate the proportional element,integral element and derivative element coefficients of the PID controller.After these improvements to the control system,system parameters fulfilled the design requirements.The working performance of electrically-controlled parts such as the rapidly moving high speed switch valve is largely determined by the control system. Normal control methods generally can't satisfy a shovel's requirements,so advanced and normal control methods were combined to improve the control system,bringing good results.

  2. Investigation of hydraulic transmission noise sources

    Science.gov (United States)

    Klop, Richard J.

    Advanced hydrostatic transmissions and hydraulic hybrids show potential in new market segments such as commercial vehicles and passenger cars. Such new applications regard low noise generation as a high priority, thus, demanding new quiet hydrostatic transmission designs. In this thesis, the aim is to investigate noise sources of hydrostatic transmissions to discover strategies for designing compact and quiet solutions. A model has been developed to capture the interaction of a pump and motor working in a hydrostatic transmission and to predict overall noise sources. This model allows a designer to compare noise sources for various configurations and to design compact and inherently quiet solutions. The model describes dynamics of the system by coupling lumped parameter pump and motor models with a one-dimensional unsteady compressible transmission line model. The model has been verified with dynamic pressure measurements in the line over a wide operating range for several system structures. Simulation studies were performed illustrating sensitivities of several design variables and the potential of the model to design transmissions with minimal noise sources. A semi-anechoic chamber has been designed and constructed suitable for sound intensity measurements that can be used to derive sound power. Measurements proved the potential to reduce audible noise by predicting and reducing both noise sources. Sound power measurements were conducted on a series hybrid transmission test bench to validate the model and compare predicted noise sources with sound power.

  3. Neutron Dosimetry of the HFIR Hydraulic Facility

    CERN Document Server

    Mahmood, S T

    1995-01-01

    The total, fast, and thermal neutron fluxes at five axial positions in the High Flux Isotope Reactor (HFIR) hydraulic tube have been measured using bare and/or cadmium-covered activation, fission, and helium accumulation flux monitors. The spectrum-averaged, one-group cross sections over selected energy ranges for the reactions used in the measurements were obtained using cross sections from the ENDF/B-V file, and the target region volume-integrated spectrum was calculated with DORT, a two-dimensional discrete ordinates radiation transport code. The fluxes obtained from various monitors are in good agreement. The total and fast (>1 MeV) neutron fluxes vary from 1.6 x 10 sup 1 sup 9 n/m sup 2 centre dot s and 1.6 x 10 sup 1 sup 8 n/m sup 2 centre dot s, respectively, at the ends (HT-1 and -9) of the facility to 4.0 x 10 sup 1 sup 9 n/m sup 2 centre dot s and 4.6 x 10 sup 1 sup 8 n/m sup 2 centre dot s, respectively, at the center (HT-5) of the facility. The thermal-to-fast (> 1 MeV) flux ratio varies from abou...

  4. Hydraulic fracturing - an attempt of DEM simulation

    Science.gov (United States)

    Kosmala, Alicja; Foltyn, Natalia; Klejment, Piotr; Dębski, Wojciech

    2017-04-01

    Hydraulic fracturing is a technique widely used in oil, gas and unconventional reservoirs exploitation in order to enable the oil/gas to flow more easily and enhance the production. It relays on pumping into a rock a special fluid under a high pressure which creates a set of microcracks which enhance porosity of the reservoir rock. In this research, attempt of simulation of such hydrofracturing process using the Discrete Element Method approach is presented. The basic assumption of this approach is that the rock can be represented as an assembly of discrete particles cemented into a rigid sample (Potyondy 2004). An existence of voids among particles simulates then a pore system which can be filled out by fracturing fluid, numerically represented by much smaller particles. Following this microscopic point of view and its numerical representation by DEM method we present primary results of numerical analysis of hydrofracturing phenomena, using the ESyS-Particle Software. In particular, we consider what is happening in distinct vicinity of the border between rock sample and fracking particles, how cracks are creating and evolving by breaking bonds between particles, how acoustic/seismic energy is releasing and so on. D.O. Potyondy, P.A. Cundall. A bonded-particle model for rock. International Journal of Rock Mechanics and Mining Sciences, 41 (2004), pp. 1329-1364.

  5. Studies investigate effects of hydraulic fracturing

    Science.gov (United States)

    Balcerak, Ernie

    2012-11-01

    The use of hydraulic fracturing, also known as fracking, to enhance the retrieval of natural gas from shale has been increasing dramatically—the number of natural gas wells rose about 50% since 2000. Shale gas has been hailed as a relatively low-cost, abundant energy source that is cleaner than coal. However, fracking involves injecting large volumes of water, sand, and chemicals into deep shale gas reservoirs under high pressure to open fractures through which the gas can travel, and the process has generated much controversy. The popular press, advocacy organizations, and the documentary film Gasland by Josh Fox have helped bring this issue to a broad audience. Many have suggested that fracking has resulted in contaminated drinking water supplies, enhanced seismic activity, demands for large quantities of water that compete with other uses, and challenges in managing large volumes of resulting wastewater. As demand for expanded domestic energy production intensifies, there is potential for substantially increased use of fracking together with other recovery techniques for "unconventional gas resources," like extended horizontal drilling.

  6. Internal hydraulic jumps with large upstream shear

    Science.gov (United States)

    Ogden, Kelly; Helfrich, Karl

    2015-11-01

    Internal hydraulic jumps in approximately two-layered flows with large upstream shear are investigated using numerical simulations. The simulations allow continuous density and velocity profiles, and a jump is forced to develop by downstream topography, similar to the experiments conducted by Wilkinson and Wood (1971). High shear jumps are found to exhibit significantly more entrainment than low shear jumps. Furthermore, the downstream structure of the flow has an important effect on the jump properties. Jumps with a slow upper (inactive) layer exhibit a velocity minimum downstream of the jump, resulting in a sub-critical downstream state, while flows with the same upstream vertical shear and a larger barotropic velocity remain super-critical downstream of the jump. A two-layer theory is modified to account for the vertical structure of the downstream density and velocity profiles and entrainment is allowed through a modification of the approach of Holland et al. (2002). The resulting theory can be matched reasonably well with the numerical simulations. However, the results are very sensitive to how the downstream vertical profiles of velocity and density are incorporated into the layered model, highlighting the difficulty of the two layer approximation when the shear is large.

  7. Hydraulic fracturing in granite under geothermal conditions

    Science.gov (United States)

    Solberg, P.; Lockner, D.; Byerlee, J.D.

    1980-01-01

    The experimental hydraulic fracturing of granite under geothermal conditions produces tensile fracture at rapid fluid injection rates and shear fracture at slow injection rates and elevated differential stress levels. A sudden burst of acoustic emission activity accompanies tensile fracture formation whereas the acoustic emission rate increases exponentially prior to shear fracture. Temperature does not significantly affect the failure mechanism, and the experimental results have not demonstrated the occurrence of thermal fracturing. A critical result of these experiments is that fluid injection at intermediate rates and elevated differential stress levels increases permeability by more than an order of magnitude without producing macroscopic fractures, and low-level acoustic emission activity occurs simultaneously near the borehole and propagates outward into the specimen with time. Permeability measurements conducted at atmospheric pressure both before and after these experiments show that increased permeability is produced by permanent structural changes in the rock. Although results of this study have not demonstrated the occurrence of thermal fracturing, they suggest that fluid injection at certain rates in situ may markedly increase local permeability. This could prove critical to increasing the efficiency of heat exchange for geothermal energy extraction from hot dry rock. ?? 1980.

  8. ELECTRO-HYDRAULIC SERVO SYSTEM IN THE CENTRIFUGE FIELD

    Institute of Scientific and Technical Information of China (English)

    Dong Longlei; Yan Guirong; Li Ronglin

    2004-01-01

    The mechanical characteristics of the electro-hydraulic servo system in the centrifuge field are analyzed.The hydraulic pressure law in the centrifuge field indicates the existence of the centrifuge hydraulic pressure.The mechanical characteristics of the slide-valve and the dual nozzle flapper valve are studied,and it is found that the centrifuge field can not only increase the driving force or moment of the function units,but also decrease the stability of the components.Finally by applying Gauss minimum constraint principle,the dynamic model of the electro-hydraulic vibrator in the centrifuge field is established,and the mechanical restriction of the system is also presented.The study will be helpful for the realization of the combined vibration and centrifuge test system.

  9. Anti-rebound Cushion Device for Hydraulic Breaker

    Institute of Scientific and Technical Information of China (English)

    Zhao Hongqiang

    2005-01-01

    This paper analyzes the phenomenon of rebound impact and its negative influence on the present hydraulic breaker. To get over its shortcomings, a new anti-rebound cushion device has been designed to prevent the phenomenon of rebound impact. A hydraulic cushion is used to absorb the rebound impact energy, which can be released for the next stroke of the hydraulic breaker. Thus, there is little loss of energy, and the efficiency of the impact system can be increased by 5 %. The absorption effect of the hydraulic anti-rebound cushion increases the service life of breaker components by up to twice as long as in the current breaker. A dynamic model and a motion equation of the anti-rebound cushion device are presented, and the optimum frequency and damping ratio are obtained, providing optimum design parameters for the anti-rebound cushion device.

  10. HYDRAULIC CHARACTERISTICS OF SLIT-TYPE ENERGY DISSIPATERS

    Institute of Scientific and Technical Information of China (English)

    WU Jian-hua; MA Fei; YAO Li

    2012-01-01

    Slit-Type Energy Dissipater (STED) has been a kind of important devices for energy dissipation.The flow through the STED is longitudinally extended and the velocity is decreased by means of the cross-section increase of the flow,which is closely related to geometric and hydraulic parameters of the STED.Therefore,it is necessary to investigate and control the hydraulic conditions through the STED,including the nappe section form,the conversion condition,and the effect of energy dissipation with the geometric and hydraulic parameters.In the present work,"I-type" and "T-type" nappe forms were experimentally classified,the conversion conditions of the nappe forms were empirically provided,and the effects of geometric parameters of the STED on energy dissipation were roughly analyzed.It is concluded that the contraction angle of the STED is a key factor influencing the hydraulic characteristics of the STED.

  11. Hydraulic loading, stability and water quality of Nakivubo wetland ...

    African Journals Online (AJOL)

    Hydraulic loading, stability and water quality of Nakivubo wetland, Uganda. ... African Journal of Aquatic Science ... compared to ammonium-N which ranged from –66.1% to 33.1% indicating limitations with the nitrification process.

  12. A low order adaptive control scheme for hydraulic servo systems

    DEFF Research Database (Denmark)

    Andersen, Torben Ole; Pedersen, Henrik Clemmensen; Bech, Michael Møller;

    2015-01-01

    This paper deals with high-performance position control of hydraulics servo systems in general. The hydraulic servo system used is a two link robotic manipulator actuated by two hydraulic servo cylinders. A non-linear model of the hydraulic system and a Newton-Euler based model of the mechanical...... system were constructed and linearized. Controllers are implemented and tested on the manipulator. Pressure feedback was found to greatly improve system stability margins. Passive gain feedforward shows improved tracking performance for small changes in load pressure. For large changes in load pressure......, active gain feedforward shows a slightly improved performance. Computed-Torque Control shows better performance, but requires a well described system for best performance. A novel Adaptive Inverse Dynamics Controller was tested and the performance was found to be similar to that of Computed...

  13. Virtual prototype simulation on underwater hydraulic impingement shovel

    Institute of Scientific and Technical Information of China (English)

    LIU He-ping; LUO A-ni; MENG Qing-xin

    2007-01-01

    The virtual prototype technology is applied to the design of the hydraulic impingement shovel,which is to increase the reliability of the design. The work principle of hydraulic impingement shovel is expatiated, and its dynamic equations are established. The 3D model of virtual prototype is built by PRO/E. Then the couple between the mechanical body of prototype and the hydraulic system is completed by virtue of ADAMS. Finally, the simulation is made on the virtual prototype. The simulation results show that the design of underwater hydraulic impingement shovel is rational. The virtual prototype technology could lay sound foundation of successful manufacturing of physical prototype for the first time and offer highly effective and feasible means for the design and production of underwater equipments.

  14. The Potential Impacts of Hydraulic Fracturing on Agriculture

    National Research Council Canada - National Science Library

    Beng Ong

    2014-01-01

    Hydraulic fracturing (or “fracking”) is a method of extracting oil and natural gas trapped in deep rock layers underground by pumping water, sand, and other chemicals/additives at high pressures into a well drilled vertically...

  15. Grinding efficiency improvement of hydraulic cylinders parts for mining equipment

    National Research Council Canada - National Science Library

    Aleksandr Korotkov; Vitaliy Korotkov; Leonid Mametyev; Lidia Korotkova; Tatiana Terjaeva

    2017-01-01

    The aim of the article is to find out ways to improve parts treatment and components of mining equipment on the example of hydraulic cylinders parts, used as pillars for mine roof supports, and other actuator mechanisms...

  16. Hydraulic modelling of drinking water treatment plant operations

    Directory of Open Access Journals (Sweden)

    K. J. Borger

    2008-10-01

    Full Text Available For a drinking water treatment plant simulation, water quality models, a hydraulic model, a process-control model, an object model, data management, training and decision-support features and a graphic user interface have been integrated. The integration of a hydraulic model in the simulator is necessary to correctly determine the division of flows over the plant's lanes and, thus, the flow through the individual treatment units, based on valve positions and pump speeds. The flow through a unit is one of the most important parameters in terms of a unit's effectiveness. In the present paper, a new EPAnet library is presented with the typical hydraulic elements for drinking water treatment processes. Using this library, a hydraulic model was set up and validated for the drinking water treatment plant Harderbroek.

  17. Investigation of possible wellbore cement failures during hydraulic fracturing operations

    Science.gov (United States)

    Researchers used the peer-reviewed TOUGH+ geomechanics computational software and simulation system to investigate the possibility of fractures and shear failure along vertical wells during hydraulic fracturing operations.

  18. HYBRID CONTROL OF HYDRAULIC PRESS MACHINE BASED ON ROBUST CONTROL

    Institute of Scientific and Technical Information of China (English)

    FANG Yu; YANG Jian; CHAI Xiaodong

    2008-01-01

    A robust control algorithm is proposed to focus on the non-linearity and variables of the hydraulic press machine with the proportional valve. The proposed robust controller does not need to design stable compensator in advance, which is simple in design and has large scope of uncertainty applications. The feedback gains of the proposed robust controller are small, so it is easily implemented in engineering applications. The theoretical and experimental research on the position and speed control of the hydraulic press machine is carried out. The control requirements of the hydraulic press machine during the working process are met in the position and speed at the same time. Experimental results show that the proposed controller has better robustness subject to load variables and adaptability of parameter variations of the hydraulic press machine with the proportional valve.

  19. Xylem hydraulic conductivity related to conduit dimensions along chrysanthemum stems.

    NARCIS (Netherlands)

    Nijsse, J.; Heijden, van der G.W.A.M.; Ieperen, van W.; Keijzer, C.J.; Meeteren, van U.

    2001-01-01

    The stem xylem conduit dimensions and hydraulic conductivity of chrysanthemum plants (Dendranthemaxgrandiflorum Tzvelev cv. Cassa) were analysed and quantified. Simple exponential relations describe conduit length distribution, height dependency of conduit length distribution, and height dependency

  20. Automated Hydraulic System Design and Power Management in Mobile Applications

    DEFF Research Database (Denmark)

    Pedersen, Henrik Clemmensen

    a presentation of the used graph theory representation that is developed to represent a hydraulic open-circuit system and which is based on a numerical formulation that uniquely describe the system in terms of five set of design variables that describe respectively the topology, the components and the operating...... are found on most medium and high-end mobile hydraulic machinery. Despite the energy saving potentials that these systems posses, compared to the other open-circuit hydraulic system topologies, LS-system may still be subject to very low system efficiencies if not designed correctly. This is typically...... machines if operated in the intended and optimal work area, but due to an inappropriate system layout. Most of the power lost in open circuit hydraulic system systems is in this regard in the transmission part, i.e. hoses and fittings, and the valves used to control the system. A large part of the design...

  1. Reliability modeling of hydraulic system of drum shearer machine

    Institute of Scientific and Technical Information of China (English)

    SEYED HADI Hoseinie; MOHAMMAD Ataie; REZA Khalookakaei; UDAY Kumar

    2011-01-01

    The hydraulic system plays an important role in supplying power and its transition to other working parts of a coal shearer machine.In this paper,the reliability of the hydraulic system of a drum shearer was analyzed.A case study was done in the Tabas Coal Mine in Iran for failure data collection.The results of the statistical analysis show that the time between failures (TBF)data of this system followed the 3-parameters Weibull distribution.There is about a 54% chance that the hydraulic system of the drum shearer will not fail for the first 50 h of operation.The developed model shows that the reliability of the hydraulic system reduces to a zero value after approximately 1 650 hours of operation.The failure rate of this system decreases when time increases.Therefore,corrective maintenance(run-to-failure)was selected as the best maintenance strategy for it.

  2. Spontaneous azimuthal breakout and instability at the circular hydraulic jump

    CERN Document Server

    Ray, Arnab K; Basu, Abhik; Bhattacharjee, Jayanta K

    2015-01-01

    We consider a shallow, two-dimensional flow of a liquid in which the radial and the azimuthal dynamics are coupled to each other. The steady and radial background flow of this system creates an axially symmetric circular hydraulic jump. On this background we apply time-dependent perturbations of the matter flow rate and the azimuthal flow velocity, with the latter strongly localized at the hydraulic jump. The perturbed variables depend spatially on both the radial and azimuthal coordinates. Linearization of the perturbations gives a coupled system of wave equations. The characteristic equations extracted from these wave equations show that under a marginally stable condition a spontaneous breaking of axial symmetry occurs at the position of the hydraulic jump. Departure from the marginal stability shows further that a linear instability develops in the azimuthal direction, resulting in an azimuthal transport of liquid at the hydraulic jump. The time for the growth of azimuthal instability is scaled by viscosi...

  3. Spatial variability in streambed hydraulic conductivity of contrasting stream morphologies

    DEFF Research Database (Denmark)

    Sebök, Éva; Calvache, Carlos Duque; Engesgaard, Peter Knudegaard;

    2015-01-01

    Streambed hydraulic conductivity is one of the main factors controlling variability in surface water-groundwater interactions, but only few studies aim at quantifying its spatial and temporal variability in different stream morphologies. Streambed horizontal hydraulic conductivities (Kh) were...... therefore determined from in-stream slug tests, vertical hydraulic conductivities (Kv) were calculated with in-stream permeameter tests and hydraulic heads were measured to obtain vertical head gradients at eight transects, each comprising five test locations, in a groundwater-dominated stream. Seasonal...... small-scale measurements were taken in December 2011 and August 2012, both in a straight stream channel with homogeneous elevation and downstream of a channel meander with heterogeneous elevation. All streambed attributes showed large spatial variability. Kh values were the highest at the depositional...

  4. Determination of Material Strengths by Hydraulic Bulge Test

    Directory of Open Access Journals (Sweden)

    Hankui Wang

    2016-12-01

    Full Text Available The hydraulic bulge test (HBT method is proposed to determine material tensile strengths. The basic idea of HBT is similar to the small punch test (SPT, but inspired by the manufacturing process of rupture discs—high-pressure hydraulic oil is used instead of punch to cause specimen deformation. Compared with SPT method, the HBT method can avoid some of influence factors, such as punch dimension, punch material, and the friction between punch and specimen. A calculation procedure that is entirely based on theoretical derivation is proposed for estimate yield strength and ultimate tensile strength. Both conventional tensile tests and hydraulic bulge tests were carried out for several ferrous alloys, and the results showed that hydraulic bulge test results are reliable and accurate.

  5. Determination of Material Strengths by Hydraulic Bulge Test.

    Science.gov (United States)

    Wang, Hankui; Xu, Tong; Shou, Binan

    2016-12-30

    The hydraulic bulge test (HBT) method is proposed to determine material tensile strengths. The basic idea of HBT is similar to the small punch test (SPT), but inspired by the manufacturing process of rupture discs-high-pressure hydraulic oil is used instead of punch to cause specimen deformation. Compared with SPT method, the HBT method can avoid some of influence factors, such as punch dimension, punch material, and the friction between punch and specimen. A calculation procedure that is entirely based on theoretical derivation is proposed for estimate yield strength and ultimate tensile strength. Both conventional tensile tests and hydraulic bulge tests were carried out for several ferrous alloys, and the results showed that hydraulic bulge test results are reliable and accurate.

  6. 7 CFR 2902.28 - Stationary equipment hydraulic fluids.

    Science.gov (United States)

    2010-01-01

    ... formulated for use in stationary hydraulic equipment systems that have various mechanical parts, such as cylinders, pumps, valves, pistons, and gears, that are used for the transmission of power (and also...

  7. Deep brain stimulation

    Science.gov (United States)

    ... a device called a neurostimulator to deliver electrical signals to the areas of the brain that control ... neurostimulator, which puts out the electric current. The stimulator is similar to a heart ...

  8. Geothermal Well Stimulation

    Energy Technology Data Exchange (ETDEWEB)

    Campbell, D. A.; Morris, C. W.; Sinclair, A. R.; Hanold, R. J.; Vetter, O. J.

    1981-03-01

    The stimulation of geothermal wells presents some new and challenging problems. Formation temperatures in the 300-600 F range can be expected. The behavior of stimulation fluids, frac proppants, and equipment at these temperatures in a hostile brine environment must be carefully evaluated before performance expectations can be determined. In order to avoid possible damage to the producing horizon of the formation, high temperature chemical compatibility between the in situ materials and the stimulation materials must be verified. Perhaps most significant of all, in geothermal wells the required techniques must be capable of bringing about the production of very large amounts of fluid. This necessity for high flow rates represents a significant departure from conventional petroleum well stimulation and demands the creation of very high near-wellbore permeability and/or fractures with very high flow conductivity.

  9. Numerical Investigation into the Influence of Bedding Plane on Hydraulic Fracture Network Propagation in Shale Formations

    Science.gov (United States)

    Yushi, Zou; Xinfang, Ma; Shicheng, Zhang; Tong, Zhou; Han, Li

    2016-09-01

    Shale formations are often characterized by low matrix permeability and contain numerous bedding planes (BPs) and natural fractures (NFs). Massive hydraulic fracturing is an important technology for the economic development of shale formations in which a large-scale hydraulic fracture network (HFN) is generated for hydrocarbon flow. In this study, HFN propagation is numerically investigated in a horizontally layered and naturally fractured shale formation by using a newly developed complex fracturing model based on the 3D discrete element method. In this model, a succession of continuous horizontal BP interfaces and vertical NFs is explicitly represented and a shale matrix block is considered impermeable, transversely isotropic, and linearly elastic. A series of simulations is performed to illustrate the influence of anisotropy, associated with the presence of BPs, on the HFN propagation geometry in shale formations. Modeling results reveal that the presence of BP interfaces increases the injection pressure during fracturing. HF deflection into a BP interface tends to occur under high strength and elastic anisotropy as well as in low vertical stress anisotropy conditions, which generate a T-shaped or horizontal fracture. Opened BP interfaces may limit the growth of the fracture upward and downward, resulting in a very low stimulated thickness. However, the opened BP interfaces favor fracture complexity because of the improved connection between HFs and NFs horizontally under moderate vertical stress anisotropy. This study may help predict the HF growth geometry and optimize the fracturing treatment designs in shale formations with complex depositional heterogeneity.

  10. Correlating laboratory observations of fracture mechanical properties to hydraulically-induced microseismicity in geothermal reservoirs.

    Energy Technology Data Exchange (ETDEWEB)

    Stephen L. Karner, Ph.D

    2006-02-01

    To date, microseismicity has provided an invaluable tool for delineating the fracture network produced by hydraulic stimulation of geothermal reservoirs. While the locations of microseismic events are of fundamental importance, there is a wealth of information that can be gleaned from the induced seismicity (e.g. fault plane solutions, seismic moment tensors, source characteristics). Closer scrutiny of the spatial and temporal evolution of seismic moment tensors can shed light on systematic characteristics of fractures in the geothermal reservoir. When related to observations from laboratory experiments, these systematic trends can be interpreted in terms of mechanical processes that most likely operate in the fracture network. This paper reports on mechanical properties that can be inferred from observations of microseismicity in geothermal systems. These properties lead to interpretations about fracture initiation, seismicity induced after hydraulic shut-in, spatial evolution of linked fractures, and temporal evolution of fracture strength. The correlations highlight the fact that a combination of temperature, stressing rate, time, and fluid-rock interactions can alter the mechanical and fluid transport properties of fractures in geothermal systems.

  11. Correlating laboratory observations of fracture mechanical properties to hydraulically-induced microseismicity in geothermal reservoirs.

    Energy Technology Data Exchange (ETDEWEB)

    Stephen L. Karner, Ph.D

    2006-02-01

    To date, microseismicity has provided an invaluable tool for delineating the fracture network produced by hydraulic stimulation of geothermal reservoirs. While the locations of microseismic events are of fundamental importance, there is a wealth of information that can be gleaned from the induced seismicity (e.g. fault plane solutions, seismic moment tensors, source characteristics). Closer scrutiny of the spatial and temporal evolution of seismic moment tensors can shed light on systematic characteristics of fractures in the geothermal reservoir. When related to observations from laboratory experiments, these systematic trends can be interpreted in terms of mechanical processes that most likely operate in the fracture network. This paper reports on mechanical properties that can be inferred from observations of microseismicity in geothermal systems. These properties lead to interpretations about fracture initiation, seismicity induced after hydraulic shut-in, spatial evolution of linked fractures, and temporal evolution of fracture strength. The correlations highlight the fact that a combination of temperature, stressing rate, time, and fluid-rock interactions can alter the mechanical and fluid transport properties of fractures in geothermal systems.

  12. Impact of hydraulic perforation on fracture initiation and propagation in shale rocks

    Institute of Scientific and Technical Information of China (English)

    ZHAO Xi; JU Yang; YANG Yong; SU Sun; GONG WenBo

    2016-01-01

    To enhance the oil and gas recovery rate,hydraulic fracturing techniques have been widely adopted for stimulation of low-permeability reservoirs.Pioneering work indicates that hydraulic perforation and layout could significantly affect fracture initiation and propagation in low-permeability reservoir rocks subjected to complex in-situ stresses.This paper reports on a novel numerical method that incorporates fracture mechanics principles and the numerical tools FRANC3D and ANSYS to investigate the three-dimensional initiation and propagation behavior of hydro-fracturing cracks in shale rock.Considering the transverse isotropic property of shale rocks,the mechanical parameters of reservoir rocks attained from laboratory tests were adopted in the simulation.The influence of perforation layouts on the 3D initiation of hydro-fracturing fractures in reservoir rocks under geo-stresses was quantitatively illuminated.The propagation and growth of fractures in three dimensions in different perforating azimuth values were illustrated.The results indicate that:1) the optimal perforation direction should be parallel to the maximum horizontal principal stress,2) the crack plane gradually turns toward the direction of the maximum horizontal principal stress when they are not in parallel,3) compared with the linear and symmetric pattern,the staggered perforation is the optimal one,4) the proper perforation density is four to six holes per meter,5) the optimal perforation diameter in this model is 30 mm,and 6) the influence of the perforation depth on the fracture initiation pressure is low.

  13. Hydraulic fracking sustainability assesment : case of study Luena (Cantabria, Spain)

    OpenAIRE

    Fernández Ferreras, Jose Antonio

    2014-01-01

    ABSTRACT: The opposition to Hydraulic fracturing in Cantabria, has led the Regional Government to enact a law that prohibits their use in the region, which has been suspended by the Central Government. The objective of this work is to Identify impacts on the environment, and the main economic and social factors (sustainability) in a case of study Luena research permit (with an estimated shale gas reserves of 10.34*109 Nm3), establishing a guide for assessing the activity of hydraulic fracturi...

  14. Hydraulic modelling of drinking water treatment plant operations

    OpenAIRE

    L. C. Rietveld; Borger, K.J.; Van Schagen, K.M.; Mesman, G.A.M.; G. I. M. Worm

    2008-01-01

    For a drinking water treatment plant simulation, water quality models, a hydraulic model, a process-control model, an object model, data management, training and decision-support features and a graphic user interface have been integrated. The integration of a hydraulic model in the simulator is necessary to correctly determine the division of flows over the plant's lanes and, thus, the flow through the individual treatment units, based on valve positions and pump speeds. The flow through a un...

  15. Gravity-free hydraulic jumps and metal femtocups

    OpenAIRE

    Govindarajan, Rama; Mathur, Manikandan; DasGupta, Ratul; Selvi, N. R.; John, Neena Susan; Kulkarni, G. U.

    2006-01-01

    Hydraulic jumps created by gravity are seen every day in the kitchen sink. We show that at small scales a circular hydraulic jump can be created in the absence of gravity, by surface tension. The theory is motivated by our experimental finding of a height discontinuity in spreading submicron molten metal droplets created by pulsed-laser ablation. By careful control of initial conditions, we show that this leads to solid femtolitre cups of gold, silver, copper, niobium and tin.

  16. Smoothed Particle Hydrodynamic of Hydraulic Jumps in Spillways

    OpenAIRE

    Jonsson, Patrick

    2015-01-01

    This thesis focus on the complex natural phenomena of hydraulic jumps using the numerical method Smoothed Particle Hydrodynamics (SPH). A hydraulic jump is highly turbulent and associated with turbulent energy dissipation, air entrainment, surface waves and spray and strong dissipative processes. It can be found not only in natural streams and in engineered open channels, but also in your kitchen sink at home. The dissipative features are utilized in hydropower spillways and stilling basins t...

  17. Suspended Decoupler: A New Design of Hydraulic Engine Mount

    OpenAIRE

    J. Christopherson; Mahinfalah, M.; Jazar, Reza N.

    2012-01-01

    Because of the density mismatch between the decoupler and surrounding fluid, the decoupler of all hydraulic engine mounts (HEM) might float, sink, or stick to the cage bounds, assuming static conditions. The problem appears in the transient response of a bottomed-up floating decoupler hydraulic engine mount. To overcome the bottomed-up problem, a suspended decoupler design for improved decoupler control is introduced. The new design does not noticeably affect the mechanism's steady-state beha...

  18. Gravity-free hydraulic jumps and metal femtoliter cups.

    Science.gov (United States)

    Mathur, Manikandan; DasGupta, Ratul; Selvi, N R; John, Neena Susan; Kulkarni, G U; Govindarajan, Rama

    2007-04-20

    Hydraulic jumps created by gravity are seen everyday in the kitchen sink. We show that at small scales a circular hydraulic jump can be created in the absence of gravity by surface tension. The theory is motivated by our experimental finding of a height discontinuity in spreading submicron molten metal droplets created by pulsed-laser ablation. By careful control of initial conditions, this leads to solid femtoliter cups of gold, silver, copper, niobium, and tin.

  19. Stability of Hydraulic Systems with Focus on Cavitating Pumps

    OpenAIRE

    Brennen, C. E.; Braisted, D. M.

    1980-01-01

    Increasing use is being made of transmission matrices to characterize unsteady flows in hydraulic system components and to analyze the stability of such systems. This paper presents some general characteristics which should be examined in any experimentally measured transmission matrices and a methodology for the analysis of the stability of transmission matrices in hydraulic systems of order 2. These characteristics are then examined for cavitating pumps and the predicted instabilities (kn...

  20. Prediction of potential failures in hydraulic gear pumps

    OpenAIRE

    E. Lisowski(Cracow Tech. U); J. Fabiś

    2010-01-01

    Hydraulic gear pumps are used in many machines and devices. In hydraulic systems of machines gear pumps are main component ofsupply unit or perform auxiliary function. Gear pumps opposite to vane pumps are less complicated. They consists of such components as:housing, gear wheels, bearings, shaft, seal for rotation motion which are not very sensitive for damage and that is why they are using veryoften. However, gear pumps are break down from time to time. Usually damage of pump cause shutting...

  1. Adaptive Non-linear Control of Hydraulic Actuator Systems

    DEFF Research Database (Denmark)

    Hansen, Poul Erik; Conrad, Finn

    1998-01-01

    Presentation of two new developed adaptive non-liner controllers for hydraulic actuator systems to give stable operation and improved performance.Results from the IMCIA project supported by the Danish Technical Research Council (STVF).......Presentation of two new developed adaptive non-liner controllers for hydraulic actuator systems to give stable operation and improved performance.Results from the IMCIA project supported by the Danish Technical Research Council (STVF)....

  2. Integrated hydraulic cooler and return rail in camless cylinder head

    Energy Technology Data Exchange (ETDEWEB)

    Marriott, Craig D [Clawson, MI; Neal, Timothy L [Ortonville, MI; Swain, Jeff L [Flushing, MI; Raimao, Miguel A [Colorado Springs, CO

    2011-12-13

    An engine assembly may include a cylinder head defining an engine coolant reservoir, a pressurized fluid supply, a valve actuation assembly, and a hydraulic fluid reservoir. The valve actuation assembly may be in fluid communication with the pressurized fluid supply and may include a valve member displaceable by a force applied by the pressurized fluid supply. The hydraulic fluid reservoir may be in fluid communication with the valve actuation assembly and in a heat exchange relation to the engine coolant reservoir.

  3. A 6-DOF vibration isolation system for hydraulic hybrid vehicles

    Science.gov (United States)

    Nguyen, The; Elahinia, Mohammad; Olson, Walter W.; Fontaine, Paul

    2006-03-01

    This paper presents the results of vibration isolation analysis for the pump/motor component of hydraulic hybrid vehicles (HHVs). The HHVs are designed to combine gasoline/diesel engine and hydraulic power in order to improve the fuel efficiency and reduce the pollution. Electric hybrid technology is being applied to passenger cars with small and medium engines to improve the fuel economy. However, for heavy duty vehicles such as large SUVs, trucks, and buses, which require more power, the hydraulic hybridization is a more efficient choice. In function, the hydraulic hybrid subsystem improves the fuel efficiency of the vehicle by recovering some of the energy that is otherwise wasted in friction brakes. Since the operation of the main component of HHVs involves with rotating parts and moving fluid, noise and vibration are an issue that affects both passengers (ride comfort) as well as surrounding people (drive-by noise). This study looks into the possibility of reducing the transmitted noise and vibration from the hydraulic subsystem to the vehicle's chassis by using magnetorheological (MR) fluid mounts. To this end, the hydraulic subsystem is modeled as a six degree of freedom (6-DOF) rigid body. A 6-DOF isolation system, consisting of five mounts connected to the pump/motor at five different locations, is modeled and simulated. The mounts are designed by combining regular elastomer components with MR fluids. In the simulation, the real loading and working conditions of the hydraulic subsystem are considered and the effects of both shock and vibration are analyzed. The transmissibility of the isolation system is monitored in a wide range of frequencies. The geometry of the isolation system is considered in order to sustain the weight of the hydraulic system without affecting the design of the chassis and the effectiveness of the vibration isolating ability. The simulation results shows reduction in the transmitted vibration force for different working cycles of

  4. HYDRAULIC CONDUCTIVITY OF GCL WITH BENTONITE – SILICA FUME MATRIX

    OpenAIRE

    M. Andal; Chandrasekhar, M.; G. K. Viswanadh

    2012-01-01

    This paper presents the influence of partial replacement of bentonite by silica fume which is used in the manufacture of Geosynthetic Clay Liner (GCL). Geosynthetic Clay Liners consist bentonite (Sodium Based) sandwiched between two geotextile. Benotinite, having low permeability imparts better hydraulic performance to the GCL to act as liner. In this investigation, an attempt has been made to study the hydraulic conductivity of GCL with modified Bentonite. The bentonite is partially replaced...

  5. Hydraulic Fracturing: Paving the Way for a Sustainable Future?

    OpenAIRE

    Jiangang Chen; Al-Wadei, Mohammed H.; Kennedy, Rebekah C. M.; Terry, Paul D.

    2014-01-01

    With the introduction of hydraulic fracturing technology, the United States has become the largest natural gas producer in the world with a substantial portion of the production coming from shale plays. In this review, we examined current hydraulic fracturing literature including associated wastewater management on quantity and quality of groundwater. We conclude that proper documentation/reporting systems for wastewater discharge and spills need to be enforced at the federal, state, and indu...

  6. Performance of nano-hydraulic turbine utilizing waterfalls

    OpenAIRE

    Ikeda, Toshihiko; Iio, Shouichiro; Tatsuno, Kenji

    2010-01-01

    The aim of this investigation was to develop an environmentally friendly nano-hydraulic turbine utilizing waterfalls. A model of an impulse type hydraulic turbine constructed and tested with an indoor type waterfall to arrive at an optimum installation condition. Effects of an installation parameter, namely distance between the rotor and the waterfall on the power performance were studied. The flow field around the rotor was examined visually to clarify influences of installation conditions o...

  7. A hydraulic distribution device of a powered support section

    Energy Technology Data Exchange (ETDEWEB)

    Zhuravlev, R.P.; Barinov, V.S.; Demidovich, Z.A.; Fedorov, L.I.; Kozhukhov, L.F.; Mosunov, Yu.Ya.

    1981-01-30

    The goal of this invention is to reduce the working time for manual control in the process of bracing a hydraulic prop and complete use of the working pressure of the support's hydraulic system to perform initial bracing of the hydraulic prop. To achieve this goal, the device has a reflux valve with a locking element and a choke, the latter situated between the piston and rod chambers; the floating piston is made with a stop which interacts with the motion limiter, while the rod of the floating piston has a pusher which interacts with the locking element of the reflux valve. Use of the hydraulic device of this design in powered supports during their operation under various mining conditions significantly raises the operating life of hydraulic supports and hydraulic distributors, while lowering the total complex's down time. Automatic positioning of the predetermined amount of initial spacing shortens the time in which the operator handles the support sections. The operator uses the time available to perform succeeding operations (transition to the next control panel, unloading, and transfer).

  8. The numerical simulation based on CFD of hydraulic turbine pump

    Science.gov (United States)

    Duan, X. H.; Kong, F. Y.; Liu, Y. Y.; Zhao, R. J.; Hu, Q. L.

    2016-05-01

    As the functions of hydraulic turbine pump including self-adjusting and compensation with each other, it is far-reaching to analyze its internal flow by the numerical simulation based on CFD, mainly including the pressure field and the velocity field in hydraulic turbine and pump.The three-dimensional models of hydraulic turbine pump are made by Pro/Engineer software;the internal flow fields in hydraulic turbine and pump are simulated numerically by CFX ANSYS software. According to the results of the numerical simulation in design condition, the pressure field and the velocity field in hydraulic turbine and pump are analyzed respectively .The findings show that the static pressure decreases systematically and the pressure gradient is obvious in flow area of hydraulic turbine; the static pressure increases gradually in pump. The flow trace is regular in suction chamber and flume without spiral trace. However, there are irregular traces in the turbine runner channels which contrary to that in flow area of impeller. Most of traces in the flow area of draft tube are spiral.

  9. Hydraulic Fracturing: Paving the Way for a Sustainable Future?

    Directory of Open Access Journals (Sweden)

    Jiangang Chen

    2014-01-01

    Full Text Available With the introduction of hydraulic fracturing technology, the United States has become the largest natural gas producer in the world with a substantial portion of the production coming from shale plays. In this review, we examined current hydraulic fracturing literature including associated wastewater management on quantity and quality of groundwater. We conclude that proper documentation/reporting systems for wastewater discharge and spills need to be enforced at the federal, state, and industrial level. Furthermore, Underground Injection Control (UIC requirements under SDWA should be extended to hydraulic fracturing operations regardless if diesel fuel is used as a fracturing fluid or not. One of the biggest barriers that hinder the advancement of our knowledge on the hydraulic fracturing process is the lack of transparency of chemicals used in the practice. Federal laws mandating hydraulic companies to disclose fracturing fluid composition and concentration not only to federal and state regulatory agencies but also to health care professionals would encourage this practice. The full disclosure of fracturing chemicals will allow future research to fill knowledge gaps for a better understanding of the impacts of hydraulic fracturing on human health and the environment.

  10. Periodic Hydraulic Testing for Discerning Fracture Network Connections

    Science.gov (United States)

    Becker, M.; Le Borgne, T.; Bour, O.; Guihéneuf, N.; Cole, M.

    2015-12-01

    Discrete fracture network (DFN) models often predict highly variable hydraulic connections between injection and pumping wells used for enhanced oil recovery, geothermal energy extraction, and groundwater remediation. Such connections can be difficult to verify in fractured rock systems because standard pumping or pulse interference tests interrogate too large a volume to pinpoint specific connections. Three field examples are presented in which periodic hydraulic tests were used to obtain information about hydraulic connectivity in fractured bedrock. The first site, a sandstone in New York State, involves only a single fracture at a scale of about 10 m. The second site, a granite in Brittany, France, involves a fracture network at about the same scale. The third site, a granite/schist in the U.S. State of New Hampshire, involves a complex network at scale of 30-60 m. In each case periodic testing provided an enhanced view of hydraulic connectivity over previous constant rate tests. Periodic testing is particularly adept at measuring hydraulic diffusivity, which is a more effective parameter than permeability for identify the complexity of flow pathways between measurement locations. Periodic tests were also conducted at multiple frequencies which provides a range in the radius of hydraulic penetration away from the oscillating well. By varying the radius of penetration, we attempt to interrogate the structure of the fracture network. Periodic tests, therefore, may be uniquely suited for verifying and/or calibrating DFN models.

  11. Variation of hydraulic gradient in nonlinear finite strain consolidation

    Institute of Scientific and Technical Information of China (English)

    谢新宇; 黄杰卿; 王文军; 李金柱

    2014-01-01

    In the research field of ground water, hydraulic gradient is studied for decades. In the consolidation field, hydraulic gradient is yet to be investigated as an important hydraulic variable. So, the variation of hydraulic gradient in nonlinear finite strain consolidation was focused on in this work. Based on lab tests, the nonlinear compressibility and nonlinear permeability of Ningbo soft clay were obtained. Then, a strongly nonlinear governing equation was derived and it was solved with the finite element method. Afterwards, the numerical analysis was performed and it was verified with the existing experiment for Hong Kong marine clay. It can be found that the variation of hydraulic gradient is closely related to the magnitude of external load and the depth in soils. It is interesting that the absolute value of hydraulic gradient (AVHG) increases rapidly first and then decreases gradually after reaching the maximum at different depths of soils. Furthermore, the changing curves of AVHG can be roughly divided into five phases. This five-phase model can be employed to study the migration of pore water during consolidation.

  12. Anisotropy of Soil Hydraulic Properties Along Arable Slopes

    Institute of Scientific and Technical Information of China (English)

    JING Yuan-Shu; ZHANG Bin; A.THIMM; H.ZEPP

    2008-01-01

    The spatial variations of the soil hydraulic properties were mainly considered in vertical direction.The objectives of this study were to measure water-retention curves,θ(ψ),and unsaturated hydraulic conductivity functions,K(ψ),of the soils sampled at different slope positions in three directions,namely,in vertical direction,along the slope and along the contour,and to determine the effects of sampling direction and slope position of two soil catenas.At the upper slope positions,the surface soils (0-10 cm) sampled in the vertical direction had a lower soil water content,θ,at a certain soil water potential (-1500 kPa <ψ<-10 kPa) and had the greatest unsaturated hydraulic conductivity,K,at ψ> -10kPa.At the lower slope positions,K at ψ>-10 kPa was smaller in the vertical direction than in the direction along the slope.The deep soils (100-110 cm) had similar soil hydraulic properties in all the three directions.The anisotropic variations of the hydraulic properties of the surface soils were ascribed to the effects of natural wetting and drying cycles on the structural heterogeneity.These results suggested that the anisotropy of soil hydraulic properties might be significant in influencing soil water movement along the slope and need to be considered in modeling.

  13. Hydraulic fracturing: paving the way for a sustainable future?

    Science.gov (United States)

    Chen, Jiangang; Al-Wadei, Mohammed H; Kennedy, Rebekah C M; Terry, Paul D

    2014-01-01

    With the introduction of hydraulic fracturing technology, the United States has become the largest natural gas producer in the world with a substantial portion of the production coming from shale plays. In this review, we examined current hydraulic fracturing literature including associated wastewater management on quantity and quality of groundwater. We conclude that proper documentation/reporting systems for wastewater discharge and spills need to be enforced at the federal, state, and industrial level. Furthermore, Underground Injection Control (UIC) requirements under SDWA should be extended to hydraulic fracturing operations regardless if diesel fuel is used as a fracturing fluid or not. One of the biggest barriers that hinder the advancement of our knowledge on the hydraulic fracturing process is the lack of transparency of chemicals used in the practice. Federal laws mandating hydraulic companies to disclose fracturing fluid composition and concentration not only to federal and state regulatory agencies but also to health care professionals would encourage this practice. The full disclosure of fracturing chemicals will allow future research to fill knowledge gaps for a better understanding of the impacts of hydraulic fracturing on human health and the environment.

  14. Hydraulic fracturing research in east Texas; Third GRI staged field experiment

    Energy Technology Data Exchange (ETDEWEB)

    Robinson, B.M. (S.A. Holditch and Associates, Inc. (US))

    1992-01-01

    This paper presents results from results from research conducted on the third Gas Research inst. (GRI) staged field experiment (SFE) well. Research well SFE No. 3 was drilled as part of a field-based research program conducted in east Texas during the past 7 years. Most of the work before SFE No. 3 involved the Travis Peak formation; however, the Cotton Valley sandstone was the primary research target for this well. SFE no. 3 is the last in a series of research wells planned for east Texas. A fourth SFE is being conducted in the Frontier formation of southwestern Wyoming. Data on SFE wells are collected from whole cores, openhole geophysical logs, in-situ stress measurements, production and pressure-transient tests, fracture stimulation treatments, fracture-diagnostic measurements, and postfracture performance tests. Test data then are analyzed by research scientists, geologists, and engineers to describe the reservoir and hydraulic fracture fully.

  15. EXPERIMENTAL INVESTIGATION OF CHARACTERISTIC FREQUENCY IN UNSTEADY HYDRAULIC BEHAVIOUR OF A LARGE HYDRAULIC TURBINE

    Institute of Scientific and Technical Information of China (English)

    WANG Fu-jun; LI Xiao-qin; MA Jia-mei; YANG Min; ZHU Yu-liang

    2009-01-01

    The features of unsteady flow such as pressure variation and fluctuation in a large hydraulic turbine usually lead to the instability of operation.This article reports the recent in site investigation concerning the characteristic frequencies in pressure fluctuation,shaft torsional oscillation and structural vibration of a prototype 700 MW Francis turbine unit.The investigation was carried out for a wide load range of 200 MW-700 MW in the condition of water head 57 m-90 m.An extensive analysis of both time-history and frequency data of these unsteady hydraulic behaviours was conducted.It was observed that the pressure fluctuation in a draft tube is stronger than that in upstream flow passage.The low frequency with about one third of rotation frequency is dominative for the pressure fluctuation in part load range.Also the unsteady features of vibration of head cover and torsional oscillation of shaft exhibited the similar features.Numerical analysis showed that the vibration and oscillation are caused by vortex rope in the draft tube.In addition,a strong vibration with special characteristic frequency was observed for the head cover in middle load range.The pressure fluctuation in the draft tube with the same frequency was also recorded.Because this special vibration has appeared in the designed normal running condition,it should be avoided by carefully allocating power load in the future operation.

  16. Hydraulic Fracturing for Oil and Gas: Impacts from the Hydraulic Fracturing Water Cycle on Drinking Water Resources in the United States (Final Report)

    Science.gov (United States)

    This final report provides a review and synthesis of available scientific information concerning the relationship between hydraulic fracturing activities and drinking water resources in the United States. The report is organized around activities in the hydraulic...

  17. Development of a hydraulic borehole seismic source

    Energy Technology Data Exchange (ETDEWEB)

    Cutler, R.P.

    1998-04-01

    This report describes a 5 year, $10 million Sandia/Industry project to develop an advanced borehole seismic source for use in oil and gas exploration and production. The development Team included Sandia, Chevron, Amoco, Conoco, Exxon, Raytheon, Pelton, and GRI. The seismic source that was developed is a vertically oriented, axial point force, swept frequency, clamped, reaction-mass vibrator design. It was based on an early Chevron prototype, but the new tool incorporates a number of improvements which make it far superior to the original prototype. The system consists of surface control electronics, a special heavy duty fiber optic wireline and draw works, a cablehead, hydraulic motor/pump module, electronics module, clamp, and axial vibrator module. The tool has a peak output of 7,000 lbs force and a useful frequency range of 5 to 800 Hz. It can operate in fluid filled wells with 5.5-inch or larger casing to depths of 20,000 ft and operating temperatures of 170 C. The tool includes fiber optic telemetry, force and phase control, provisions to add seismic receiver arrays below the source for single well imaging, and provisions for adding other vibrator modules to the tool in the future. The project yielded four important deliverables: a complete advanced borehole seismic source system with all associated field equipment; field demonstration surveys funded by industry showing the utility of the system; industrial sources for all of the hardware; and a new service company set up by their industrial partner to provide commercial surveys.

  18. Controlled Source Electromagnetic Monitoring of Hydraulic Fracturing

    Science.gov (United States)

    Couchman, M. J.; Everett, M. E.

    2016-12-01

    Controlled Source Electromagnetics (CSEM) have been used as a direct hydrocarbon indicator since the 1960s, with a resurgence in marine conventional settings in the new millennium, with many studies revolving around detecting a thin resistive layer such as a reservoir at 1m-3km depth. The presence of the resistive layer is characterized by a jump in electric field amplitude recorded at the boundary between the layer and the host sediments. Here the lessons learned from these studies are applied to terrestrial unconventional settings. However, unlike in marine settings where resistive hydrocarbon-charged fluids comprise a conventional reservoir, on land we are interested in electrically conductive injected fluids. The work shown here is a means to develop further methods to enable more reliable terrestrial CSEM monitoring of the flow of injected fluids associated with hydraulic fracturing of unconventional reservoirs and to detect subsurface fluids based on their CSEM signature and in turn, to infer the subsurface flow of electrically conductive injected fluids. Overall this project attempts to create more efficient fracturing, by determining fluid pathways, hence making projects more cost effective by reducing the cost of extraction. The predictive model developed focuses on the mapping of fluid flow in from a horizontal pipe in a uniform halfspace using a long in-line Horizontal Electric Dipole (HED) with electric field amplitude recorded by an array of electric field sensors. The code provided has been edited to include a long-dipole source in addition to the half dipole source originally in place in order to align with current CSEM field practices. The well casing has also been included due to its large effect on CSEM response.

  19. A method for reducing the hydraulic resistance

    Energy Technology Data Exchange (ETDEWEB)

    Belyaninov, P.P.; Gavrilyuk, Ye.D.; Mats' kiv, T.S.; Porayko, I.N.; Pristay, L.V.

    1984-01-01

    To increase the resistance to destruction of oil and oil products during transport through dispensing aqueous polyacrylamide gels which damp turbulent vortexes in a stream, macromolecules of aldehyde are added to the aqueous solution of polyacrylamide as a cross linking agent and it is mixed with destruction inhibitors. Bisulfate in a volume of 0.01 to 1.2 percent is added as the cross linking agent to the initial flowing 0.6 to 2.8 percent aqueous polyacrylamide solution and 0.6 to 1.6 percent CH20 is added as the destruction inhibitor. The method is performed in the following manner: a dissolved industrial amide bearing polymer, for instance, 8 percent polyacrylamide, in normal water to a viscosity of 0.01 to 0.50 pascals times seconds is mixed for 2 to 3 minutes with the distruction inhibitor and the cross linking agent in a weight ratio of 1 to 2 to 90 to 99 to 0.1 to 0.8 to 0.6 to 1.2 (for the basic substances) and the acquired aqueous solution is introduced into any point of the liquid pipeline stream. Without changing the hydraulic conditions, the acquired aqueous solution of the modified polymer is continuously or periodically dispensed through a method of sequential pumping along the entire line of the oil conduit. The advantage of the method is the extracting, carry away and inhibiting effect of the polymers on the particles of the intrapipe sediments with a preservation of reduced friction of the oil and the polymers after completion of the dispensing.

  20. LLL Gas Stimulation Program. Quarterly progress report, July--September 1978

    Energy Technology Data Exchange (ETDEWEB)

    Hanson, M.E.; Anderson, G.D.; Shaffer, R.J.; Emerson, D.O.; Swift, R.P.; O' Banion, K.; Cleary, M.P.; Haimson, B.; Knutson, C.F.; Boardman, C.R.

    1978-11-06

    The research and accomplishments of the LLL Gas Stimulation program during the fourth quarter of Fiscal Year 1978 is summarized. Two-dimensional theoretical models were applied to analyze the changes in the elastic stress field resulting from the presence of lenses in a surrounding medium. Here the lenses had different elastic moduli than the surrounding medium, and the emplaced load was assumed to be caused by the overburden. In these calculations, it is noted that the growth of a vertical fracture toward a lens with elastic moduli larger than the surrounding medium would be impeded. Other two-dimensional calculations indicate some effects of material parameter changes across an interface on fracture mechanics. These calculations confirm that when a fracture in a lower modulus material aproaches a well-bonded interface in a higher modulus material, the stress intensity factor decreases. Experimental results show that water saturation can significantly effect hydraulic fracture propagation. An example is a hydraulic fracture across a normally loaded interface from an unsaturated limestone block into a saturated block but not conversely for the same hydraulic pressure and normal load. Some preliminary experiments were conducted to determine how rock behaves when subjected to loads at rates higher than hydraulic fracturing but lower than explosive charges. Results indicate more than the two fracture wings common to normal hydraulic fracturing. A survey of several operators and logging companies operating in the western tight gas sands shows that log measurements do not define pertinent reservoir parameters accurately enough to exploit these reservoirs.

  1. Coordination of stem and leaf hydraulic conductance in southern California shrubs: a test of the hydraulic segmentation hypothesis.

    Science.gov (United States)

    Pivovaroff, Alexandria L; Sack, Lawren; Santiago, Louis S

    2014-08-01

    Coordination of water movement among plant organs is important for understanding plant water use strategies. The hydraulic segmentation hypothesis (HSH) proposes that hydraulic conductance in shorter lived, 'expendable' organs such as leaves and longer lived, more 'expensive' organs such as stems may be decoupled, with resistance in leaves acting as a bottleneck or 'safety valve'. We tested the HSH in woody species from a Mediterranean-type ecosystem by measuring leaf hydraulic conductance (Kleaf) and stem hydraulic conductivity (KS). We also investigated whether leaves function as safety valves by relating Kleaf and the hydraulic safety margin (stem water potential minus the water potential at which 50% of conductivity is lost (Ψstem-Ψ50)). We also examined related plant traits including the operating range of water potentials, wood density, leaf mass per area, and leaf area to sapwood area ratio to provide insight into whole-plant water use strategies. For hydrated shoots, Kleaf was negatively correlated with KS , supporting the HSH. Additionally, Kleaf was positively correlated with the hydraulic safety margin and negatively correlated with the leaf area to sapwood area ratio. Consistent with the HSH, our data indicate that leaves may act as control valves for species with high KS , or a low safety margin. This critical role of leaves appears to contribute importantly to plant ecological specialization in a drought-prone environment.

  2. Microseismicity and Stimulated Hydrogeologic Structures in HDR/HWR Reservoirs

    Science.gov (United States)

    Niitsuma, H.

    2006-12-01

    set obtained during the hydraulic stimulation at Soultz-sous-Forêts HDR field, France, in 1993 and 2000. A seismic structure, which was growing linearly at the early stage of the stimulation, has been detected and analysed. It is estimated that this structure is enhanced permeable paths and consist of sub parallel microstructures, which are oriented to the directions most easy to slip by the stimulation. The analyses of the data set during the fluid injection at Cooper basin HDR field, Australia, in 2003, also suggest the existence of substructures in the seismic cloud.

  3. Electrical and Magnetic Imaging of Proppants in Shallow Hydraulic Fractures

    Science.gov (United States)

    Denison, J. L. S.; Murdoch, L. C.; LaBrecque, D. J.; Slack, W. W.

    2015-12-01

    Hydraulic fracturing is an important tool to increase the productivity of wells used for oil and gas production, water resources, and environmental remediation. Currently there are relatively few tools available to monitor the distribution of proppants within a hydraulic fracture, or the propagation of the fracture itself. We have been developing techniques for monitoring hydraulic fractures by injecting electrically conductive, dielectric, or magnetically permeable proppants. We then use the resulting contrast with the enveloping rock to image the proppants using geophysical methods. Based on coupled laboratory and numerical modeling studies, three types of proppants were selected for field evaluation. Eight hydraulic fractures were created near Clemson, SC in May of 2015 by injecting specialized proppants at a depth of 1.5 m. The injections created shallow sub-horizontal fractures extending several meters from the injection point.Each cell had a dense array of electrodes and magnetic sensors on the surface and four shallow vertical electrode arrays that were used to obtain data before and after hydraulic fracturing. Net vertical displacement and transient tilts were also measured. Cores from 130 boreholes were used to characterize the general geometries, and trenching was used to characterize the forms of two of the fractures in detail. Hydraulic fracture geometries were estimated by inverting pre- and post-injection geophysical data. Data from cores and trenching show that the hydraulic fractures were saucer-shaped with a preferred propagation direction. The geophysical inversions generated images that were remarkably similar in form, size, and location to the ground truth from direct observation. Displacement and tilt data appear promising as a constraint on fracture geometry.

  4. Method to Estimate the Dissolved Air Content in Hydraulic Fluid

    Science.gov (United States)

    Hauser, Daniel M.

    2011-01-01

    In order to verify the air content in hydraulic fluid, an instrument was needed to measure the dissolved air content before the fluid was loaded into the system. The instrument also needed to measure the dissolved air content in situ and in real time during the de-aeration process. The current methods used to measure the dissolved air content require the fluid to be drawn from the hydraulic system, and additional offline laboratory processing time is involved. During laboratory processing, there is a potential for contamination to occur, especially when subsaturated fluid is to be analyzed. A new method measures the amount of dissolved air in hydraulic fluid through the use of a dissolved oxygen meter. The device measures the dissolved air content through an in situ, real-time process that requires no additional offline laboratory processing time. The method utilizes an instrument that measures the partial pressure of oxygen in the hydraulic fluid. By using a standardized calculation procedure that relates the oxygen partial pressure to the volume of dissolved air in solution, the dissolved air content is estimated. The technique employs luminescent quenching technology to determine the partial pressure of oxygen in the hydraulic fluid. An estimated Henry s law coefficient for oxygen and nitrogen in hydraulic fluid is calculated using a standard method to estimate the solubility of gases in lubricants. The amount of dissolved oxygen in the hydraulic fluid is estimated using the Henry s solubility coefficient and the measured partial pressure of oxygen in solution. The amount of dissolved nitrogen that is in solution is estimated by assuming that the ratio of dissolved nitrogen to dissolved oxygen is equal to the ratio of the gas solubility of nitrogen to oxygen at atmospheric pressure and temperature. The technique was performed at atmospheric pressure and room temperature. The technique could be theoretically carried out at higher pressures and elevated

  5. Hydraulic Conductivity of Residual Soil-Cement Mix

    Science.gov (United States)

    Govindasamy, P.; Taha, M. R.

    2016-07-01

    In Malaysia, although there are several researches on engineering properties of residual soils, however study on the hydraulic conductivity properties of metasedimentary residual soils is still lacking. Construction of containment walls like slurry wall techniques can be achieved with hydraulic conductivity of approximately 5 x 10-7cm/sec. The objectives of the study were to determine the physical properties of metasedimentary residual soils and to determine the influence of 1%, 3%, 5% and 10% of cement on hydraulic conductivity parameters. The coefficient of hydraulic conductivity of the soil naturally and soil-cement mixtures were determined by using the falling head test. According to the test, the hydraulic conductivity of the original soil was 4.16 x 10-8 m/s. The value decreases to 3.89 x 10-8 m/s, 2.78 x 10-8 m/s then 6.83 x 10-9 m/s with the addition of 1%, 3% and 5% of cement additives, respectively. During the hydration process, cement hydrates is formed followed by the increase in pH value and Ca(OH)2 which will alter the modification of pores size and distribution. When the quantity of cement increases, the pores size decrease. But, the addition of 10% cement gives an increased hydraulic conductivity value to 2.78 x 10-8 m/s. With 10%, the pore size increase might due to flocculation and agglomeration reaction. The generated hydraulic conductivity values will indirectly become a guide in the preliminary soil cement stabilization to modify the properties of the soil to become more like the properties of a soft rock.1. Introduction

  6. New York Canyon Stimulation

    Energy Technology Data Exchange (ETDEWEB)

    Raemy, Bernard

    2012-06-21

    The New York Canyon Stimulation Project was to demonstrate the commercial application of Enhanced Geothermal System techniques in Buena Vista Valley area of Pershing County, Nevada. From October 2009 to early 2012, TGP Development Company aggressively implemented Phase I of Pre-Stimulation and Site/Wellbore readiness. This included: geological studies; water studies and analyses and procurement of initial permits for drilling. Oversubscription of water rights and lack of water needed for implementation of EGS were identified and remained primary obstacles. Despite extended efforts to find alternative solutions, the water supply circumstances could not be overcome and led TGP to determine a "No Go" decision and initiate project termination in April 2012.

  7. Spatial Risk Analysis of Hydraulic Fracturing near Abandoned and Converted Oil and Gas Wells.

    Science.gov (United States)

    Brownlow, Joshua W; Yelderman, Joe C; James, Scott C

    2017-03-01

    Interaction between hydraulically generated fractures and existing wells (frac hits) could represent a potential risk to groundwater. In particular, frac hits on abandoned oil and gas wells could lead to upward leakage into overlying aquifers, provided migration pathways are present along the abandoned well. However, potential risk to groundwater is relatively unknown because few studies have investigated the probability of frac hits on abandoned wells. In this study, actual numbers of frac hits were not determined. Rather, the probability for abandoned wells to intersect hypothetical stimulated reservoir sizes of horizontal wells was investigated. Well data were compiled and analyzed for location and reservoir information, and sensitivity analyses were conducted by varying assumed sizes of stimulated reservoirs. This study used public and industry data for the Eagle Ford Shale play in south Texas, with specific attention paid to abandoned oil and gas wells converted into water wells (converted wells). In counties with Eagle Ford Shale activity, well-data analysis identified 55,720 abandoned wells with a median age of 1983, and 2400 converted wells with a median age of 1954. The most aggressive scenario resulted in 823 abandoned wells and 184 converted wells intersecting the largest assumed stimulated reservoir size. Analysis showed abandoned wells have the potential to be intersected by multiple stimulated reservoirs, and risks for intersection would increase if currently permitted horizontal wells in the Eagle Ford Shale are actually completed. Results underscore the need to evaluate historical oil and gas activities in areas with modern unconventional oil and gas activities. © 2016, National Ground Water Association.

  8. VARIABILITY OF HYDRAULIC CONDUCTIVITY DUE TO MULTIPLE FACTORS

    Directory of Open Access Journals (Sweden)

    Sanjit K. Deb

    2012-01-01

    Full Text Available Soil properties are greatly influenced by intrinsic factors of soil formation as well as extrinsic factors associated with land use and management and vary both in time and space. Intrinsic variability is caused by the pedogenesis and usually takes place at large time scales. The variability caused by extrinsic factors could take effect relatively quickly and could not be treated as regionalized. Saturated hydraulic conductivity is one of the most important soil properties for soil-water-plant interactions, water and contaminant movement and retention through the soil profile. It is a critically important parameter for estimation of various other soil hydrological parameters necessary for modeling flow through the naturally unsaturated vadose zone. Among different soil hydrological properties, saturated hydraulic conductivity is reported to have the greatest statistical variability, which is associated with soil types, land uses, positions on landscape, depths, instruments and methods of measurement and experimental errors. The variability of saturated hydraulic conductivity has a profound influence on the overall hydrology of the soil system. Therefore, focus of this review is centered on the variability of saturated/unsaturated hydraulic conductivity due to a large number of factors. This study reviews recent experimental and field studies addressing the measurements and variability of hydraulic conductivity. A synthesis of a large amount of data available in literature is presented and the possible sources of the variability and its implications are discussed. The variability of a soil hydraulic conductivity can be expressed by range, interquartile range, variance and standard deviation, coefficient of variation, skewness and kurtosis. The spatial and temporal variability of hydraulic conductivity and the influences of sample support, measurement devices/methods, soils, land uses and agricultural management on hydraulic conductivity are

  9. River channel morphology and hydraulics properties due to introduction of plant basket hydraulic structures for river channel management

    Science.gov (United States)

    Kałuża, Tomasz; Radecki-Pawlik, Artur; Plesiński, Karol; Walczak, Natalia; Szoszkiewicz, Krzysztof; Radecki-Pawlik, Bartosz

    2016-04-01

    In the present time integrated water management is directly connected with management and direct works in river channels themselves which are taking into account morphological processes in rivers and improve flow conditions. Our work focused on the hydraulic and hydrodynamic consequences upon the introduction of the concept of the improvement of the hydromorphological conditions of the Flinta River in a given reach following river channel management concept. Based on a comprehensive study of the hydromorphological state of the river, four sections were selected where restoration measures can efficiently improve river habitat conditions in the river. For each section a set of technical and biological measures were proposed and implemented in practice. One of the proposed solutions was to construct plant basket hydraulic structures (PBHS) within the river channel, which are essentially plant barriers working as sediment traps, changing river channel morphology and are in line with concepts of Water Framework Directive. These relatively small structures work as crested weirs and unquestionably change the channel morphology. Along our work we show the results of three-year long (2013-2015) systematic measurements that provided information on the morphological consequences of introducing such structures into a river channel. Our main conclusions are as follows: 1. Plant basket hydraulic structures cause changes in hydrodynamic conditions and result in sediment accumulation and the formation of river backwaters upstream and downstream the obstacle; 2. The introduced plant basket hydraulic structures cause plant debris accumulation which influences the hydrodynamic flow conditions; 3. The installation of plant basket hydraulic structures on the river bed changes flow pattern as well as flow hydrodynamic conditions causing river braiding process; 4. The erosion rate below the plant basket hydraulic structures is due to the hydraulic work conditions of the PBHS and its

  10. Hydraulic evaluation of the hypogenic karst area in Budapest (Hungary)

    Science.gov (United States)

    Erhardt, Ildikó; Ötvös, Viktória; Erőss, Anita; Czauner, Brigitta; Simon, Szilvia; Mádl-Szőnyi, Judit

    2017-04-01

    The Buda Thermal Karst area, in central Hungary, is in the focus of research interest because of its thermal water resources and the on-going hypogenic karstification processes at the boundary of unconfined and confined carbonates. Understanding of the discharge phenomena and the karstification processes requires clarification of the groundwater flow conditions in the area. Accordingly, the aim of the present study was to present a hydraulic evaluation of the flow systems based on analyses of the archival measured hydraulic data of wells. Pressure vs. elevation profiles, tomographic fluid-potential maps and hydraulic cross sections were constructed, based on the data distribution. As a result, gravitational flow systems, hydraulic continuity, and the modifying effects of aquitard units and faults were identified in the karst area. The location of natural discharge areas could be explained and the hydraulic behavior of the Northeastern Margin Fault of the Buda Hills could be determined. The flow pattern determines the differences in the discharge distribution (one- and two-component) and related cave-forming processes between the Central System (Rózsadomb area) and Southern System (Gellért Hill area) natural discharge areas. Among the premises of hypogenic karstification, regional upward flow conditions were confirmed along the main discharge zone of the River Danube.

  11. Effects of model layer simplification using composite hydraulic properties

    Science.gov (United States)

    Sepulveda, Nicasio; Kuniansky, Eve L.

    2010-01-01

    The effects of simplifying hydraulic property layering within an unconfined aquifer and the underlying confining unit were assessed. The hydraulic properties of lithologic units within the unconfined aquifer and confining unit were computed by analyzing the aquifer-test data using radial, axisymmetric two-dimensional (2D) flow. Time-varying recharge to the unconfined aquifer and pumping from the confined Upper Floridan aquifer (USA) were simulated using 3D flow. Conceptual flow models were developed by gradually reducing the number of lithologic units in the unconfined aquifer and confining unit by calculating composite hydraulic properties for the simplified lithologic units. Composite hydraulic properties were calculated using either thickness-weighted averages or inverse modeling using regression-based parameter estimation. No significant residuals were simulated when all lithologic units comprising the unconfined aquifer were simulated as one layer. The largest residuals occurred when the unconfined aquifer and confining unit were aggregated into a single layer (quasi-3D), with residuals over 100% for the leakage rates to the confined aquifer and the heads in the confining unit. Residuals increased with contrasts in vertical hydraulic conductivity between the unconfined aquifer and confining unit. Residuals increased when the constant-head boundary at the bottom of the Upper Floridan aquifer was replaced with a no-flow boundary.

  12. Measurement and modeling of unsaturated hydraulic conductivity: Chapter 21

    Science.gov (United States)

    Perkins, Kim S.; Elango, Lakshmanan

    2011-01-01

    The unsaturated zone plays an extremely important hydrologic role that influences water quality and quantity, ecosystem function and health, the connection between atmospheric and terrestrial processes, nutrient cycling, soil development, and natural hazards such as flooding and landslides. Unsaturated hydraulic conductivity is one of the main properties considered to govern flow; however it is very difficult to measure accurately. Knowledge of the highly nonlinear relationship between unsaturated hydraulic conductivity (K) and volumetric water content () is required for widely-used models of water flow and solute transport processes in the unsaturated zone. Measurement of unsaturated hydraulic conductivity of sediments is costly and time consuming, therefore use of models that estimate this property from more easily measured bulk-physical properties is common. In hydrologic studies, calculations based on property-transfer models informed by hydraulic property databases are often used in lieu of measured data from the site of interest. Reliance on database-informed predicted values with the use of neural networks has become increasingly common. Hydraulic properties predicted using databases may be adequate in some applications, but not others.

  13. Improving energy efficiency in robot limbs through hydraulic dangle

    Science.gov (United States)

    Whitman, Julian S.; Meller, Mike; Garcia, Ephrahim

    2015-03-01

    Animals often allow their limbs to swing passively under their own inertia. For example, about 40% of a human walking gait consists of the primarily passive swing phase. Current hydraulic robots employ traditional actuation methods in which fluid power is expended for all limb movements, even when passive dynamics could be utilized. "Dangle" is the ability to allow a hydraulic actuator to freely sway in response to external loads, in which both sides of the actuator are disconnected from pressure and connected to the tank. Dangle offers the opportunity for efficiency gains by enabling the use of momentum, gravity, and external loads to move a limb without expending fluid power. To demonstrate these efficiency gains, this paper presents an experiment that compares the fluid power consumed to actuate a two degree of freedom hydraulic leg following a human walking gait cycle trajectory in both a traditional manner and utilizing dangle. It was shown that the use of dangle can decrease fluid power consumption by 20% by utilizing pendular dynamics during the swing phase. At speeds higher than the free dangling rate, more power must be used to maintain the desired trajectory due to damping inherent in the configuration. The use of dangle as a power saving method when driving hydraulic limbs could increase operation time for untethered hydraulic walking robots.

  14. Interaction of hydraulic and buckling mechanisms in blowout fractures.

    Science.gov (United States)

    Nagasao, Tomohisa; Miyamoto, Junpei; Jiang, Hua; Tamaki, Tamotsu; Kaneko, Tsuyoshi

    2010-04-01

    The etiology of blowout fractures is generally attributed to 2 mechanisms--increase in the pressure of the orbital contents (the hydraulic mechanism) and direct transmission of impacts on the orbital walls (the buckling mechanism). The present study aims to elucidate whether or not an interaction exists between these 2 mechanisms. We performed a simulation experiment using 10 Computer-Aided-Design skull models. We applied destructive energy to the orbits of the 10 models in 3 different ways. First, to simulate pure hydraulic mechanism, energy was applied solely on the internal walls of the orbit. Second, to simulate pure buckling mechanism, energy was applied solely on the inferior rim of the orbit. Third, to simulate the combined effect of the hydraulic and buckling mechanisms, energy was applied both on the internal wall of the orbit and inferior rim of the orbit. After applying the energy, we calculated the areas of the regions where fracture occurred in the models. Thereafter, we compared the areas among the 3 energy application patterns. When the hydraulic and buckling mechanisms work simultaneously, fracture occurs on wider areas of the orbital walls than when each of these mechanisms works separately. The hydraulic and buckling mechanisms interact, enhancing each other's effect. This information should be taken into consideration when we examine patients in whom blowout fracture is suspected.

  15. Hydraulic and acoustic investigation of sintered glass beads

    Science.gov (United States)

    Gueven, Ibrahim; Luding, Stefan; Steeb, Holger

    2013-06-01

    In the present contribution, we are focussing on the hydraulical and acoustical charcterization of sintered glass beads. For the experiments sintered mono-and weakly polydisperse glass bead samples were applied. Depending on the particle size, degree of particle dispersion and sample treatment during the sintering process, the produced cylindircal samples exhibit different hydraulic and acoustic properties. The more general focus of our research lies on the physical behaviour of oil-water emulsions in porous media by means of combined electromagnetic and acoustic wave propagation. For this purpose, a hydraulic multi-task measuring cell was developed. This cell allows carrying out simple hydraulic permeability and challenging ultrasound experiments in porous materials saturated with Pickering emulsions. In the first phase of our experiments, hydraulical and acoustical measurements of cylindrical sintered glass bead samples were performed in order to determine their intrinsic permeabilities and effective ultrasound velocities. The intrinsic permeability ks, a coupling parameter between the solid matrix and the pore fluid, has a huge influence on wave propagation in fluid-saturated porous media. For the assessment of permeabilities, particle size distributions and porosities of the investigated glass beads were determined.

  16. Hydraulic evaluation of the hypogenic karst area in Budapest (Hungary)

    Science.gov (United States)

    Erhardt, Ildikó; Ötvös, Viktória; Erőss, Anita; Czauner, Brigitta; Simon, Szilvia; Mádl-Szőnyi, Judit

    2017-09-01

    The Buda Thermal Karst area, in central Hungary, is in the focus of research interest because of its thermal water resources and the on-going hypogenic karstification processes at the boundary of unconfined and confined carbonates. Understanding of the discharge phenomena and the karstification processes requires clarification of the groundwater flow conditions in the area. Accordingly, the aim of the present study was to present a hydraulic evaluation of the flow systems based on analyses of the archival measured hydraulic data of wells. Pressure vs. elevation profiles, tomographic fluid-potential maps and hydraulic cross sections were constructed, based on the data distribution. As a result, gravitational flow systems, hydraulic continuity, and the modifying effects of aquitard units and faults were identified in the karst area. The location of natural discharge areas could be explained and the hydraulic behavior of the Northeastern Margin Fault of the Buda Hills could be determined. The flow pattern determines the differences in the discharge distribution (one- and two-component) and related cave-forming processes between the Central System (Rózsadomb area) and Southern System (Gellért Hill area) natural discharge areas. Among the premises of hypogenic karstification, regional upward flow conditions were confirmed along the main discharge zone of the River Danube.

  17. Analysis of CMX hydraulic data for the Mark 22

    Energy Technology Data Exchange (ETDEWEB)

    Koffman, L.D.

    1988-12-16

    The original CMX hydraulic data for the Mark 22 assembly, obtained by L.W. Ridenhour in 1972, is analyzed and documented. Comparisons are made to Ridenhour's working notebooks and summary document, and to the Mark 22 hydraulics manual. Several errors in these documents are corrected. Correlations are given in a form suitable for revisions to the hydraulics manual. The experimental setup and measurements are briefly described, and the original data is compiled in the appendix to this report. An error in the recorded length between channel pressure taps was found in Ridenhour's notebook. This error impacts the channel pressure drop correlations obtained by Ridenhour and used in the hydraulics manual. The hydraulics of the two purge channels are analyzed based on the geometry of the orifices and on the limited data available. The limited data is shown to be in reasonable agreement with accepted orifice correlations. Purge channel correlations are given, and the purge channel flow splits are shown to be about 1.5% of the total flow.

  18. Sugarcane Tandem Mills Operation at Two Hydraulic Pressure Levels

    Directory of Open Access Journals (Sweden)

    Jorge Michel Corrales-Suárez

    2015-01-01

    Full Text Available Among the areas with more energy consumption in a sugar factory is the tandem of mills. The applied hydraulic pressure on the superior mace is one of the variables that have influence on this energy consumption. Hydraulic pressures were decreased in a value that did not affect the extraction process efficiency to determine the possibilities of decreasing this energy consumption. The research was carried out in two sugar cane tandems of six mills. The pressures were only varied in the extraction mills in humid according to a statistical design of experiments in random blocks. The results were analyzed by means of the analysis of variance of double classification. The independent variables were the hydraulic pressures in the intermediate mills while the dependent variables were the % pol and % humidity of the final bagasse. The hydraulic pressures of the intermediate mills were reduced 3.45 MPa in the Tandem 1 and 2.07 MPa in the Tandem 2. It was demonstrated that under the conditions of the experiment, the employment of working hydraulic pressures smaller than the usually established ones for each tandem did not affect the extraction process of the sugar cane sucrose significantly, but decreased 11.75% the power demand on tandem 1 and 8.17% on tandem 2.

  19. Transport efficiency and dynamics of hydraulic fracture networks

    Science.gov (United States)

    Sachau, Till; Bons, Paul; Gomez-Rivas, Enrique

    2015-08-01

    Intermittent fluid pulses in the Earth's crust can explain a variety of geological phenomena, for instance the occurrence of hydraulic breccia. Fluid transport in the crust is usually modeled as continuous darcian flow, ignoring that sufficient fluid overpressure can cause hydraulic fractures as fluid pathways with very dynamic behavior. Resulting hydraulic fracture networks are largely self-organized: opening and healing of hydraulic fractures depends on local fluid pressure, which is, in turn, largely controlled by the fracture network. We develop a crustal-scale 2D computer model designed to simulate this process. To focus on the dynamics of the process we chose a setup as simple as possible. Control factors are constant overpressure at a basal fluid source and a constant 'viscous' parameter controlling fracture-healing. Our results indicate that at large healing rates hydraulic fractures are mobile, transporting fluid in intermittent pulses to the surface and displaying a 1/fα behavior. Low healing rates result in stable networks and constant flow. The efficiency of the fluid transport is independent from the closure dynamics of veins or fractures. More important than preexisting fracture networks is the distribution of fluid pressure. A key requirement for dynamic fracture networks is the presence of a fluid pressure gradient.

  20. Transport efficiency and dynamics of hydraulic fracture networks

    Directory of Open Access Journals (Sweden)

    Till eSachau

    2015-08-01

    Full Text Available Intermittent fluid pulses in the Earth's crust can explain a variety of geological phenomena, for instance the occurrence of hydraulic breccia. Fluid transport in the crust is usually modeled as continuous darcian flow, ignoring that sufficient fluid overpressure can cause hydraulic fractures as fluid pathways with very dynamic behavior. Resulting hydraulic fracture networks are largely self-organized: opening and healing of hydraulic fractures depends on local fluid pressure, which is, in turn, largely controlled by the fracture network. We develop a crustal-scale 2D computer model designed to simulate this process. To focus on the dynamics of the process we chose a setup as simple as possible. Control factors are constant overpressure at a basal fluid source and a constant 'viscous' parameter controlling fracture-healing. Our results indicate that at large healing rates hydraulic fractures are mobile, transporting fluid in intermittent pulses to the surface and displaying a 1/fα behavior. Low healing rates result in stable networks and constant flow. The efficiency of the fluid transport is independent from the closure dynamics of veins or fractures. More important than preexisting fracture networks is the distribution of fluid pressure. A key requirement for dynamic fracture networks is the presence of a fluid pressure gradient.

  1. Precision Force Control for an Electro-Hydraulic Press Machine

    Directory of Open Access Journals (Sweden)

    Hong-Ming Chen

    2014-08-01

    Full Text Available This thesis is primarily intended to design a PC-based control system to control the force of an electro-hydraulic servo press system for implementing precision force control. The main feature is to develop a composite control by using the relief valve and the flow servo valve. Using feedback from a force sensor, a fuzzy controller was designed with LabVIEW software as the system control core for achieving a precision force control for the hydraulic cylinder on its travel and output. The weakness of hydraulic systems is that hydraulic oil is compressible and prone to leaking, and its characteristics can vary with oil temperature, thus making it difficult for a general linear controller to achieve accurate control. Therefore, a fuzzy controller was designed with LabVIEW along with a NI-PCI_6221 interface card and a load cell to control the servo valve flow and the relief valve to control the pressure source. The testing results indicate that accurate force control output of an electro-hydraulic servo press system can be obtained.

  2. INVESTIGATION OF HYDRAULIC CONSTRUCTION BUILDINGS ON FOREST ROAD

    Directory of Open Access Journals (Sweden)

    Erhan Çalışkan

    2003-04-01

    Full Text Available In Turkey, a large part of forest is scattered on the mountainous land. Whole forestry activity and particulary, producing of woody raw material in forest and its transportation to the consumption centres by constructed forest roads regularly and steadily can only be possible thanks to adequately firm forest roads and establishing of hydraulic construction buildings. As a study field, 35 km forest road within the Yesiltepe Forest District boundary was selected. On this forest road, totaly 31 existent hydraulic construction buildings, consisting of 16 pipes, 7 culverts, 3 bridges and 5 hamps were found and its was determined that only 40% of hydraulic construction buildings can fulfil the their functions. Hydraulic construction buildings technique viewpoint, in spite of the fact that dimentions of hydraulic construction buildings were found appropirate they had same problems. It was become apperent that especially constructed concrete pipes and culverts had lack of cement. Furthermore, their maintanances were inadequate and some of them were almost losing their functions.

  3. Changes in Root Hydraulic Conductivity During Wheat Evolution

    Institute of Scientific and Technical Information of China (English)

    Chang-Xing ZHAO; Xi-Ping DENG; Lun SHAN; Ernst STEUDLE; Sui-Qi ZHANG; Qing YE

    2005-01-01

    A better understanding of the mechanisms of water uptake by plant roots should be vital for improving drought resistance and water use efficiency (WUE). In the present study, we have demonstrated correlations between root system hydraulic conductivity and root characteristics during evolution using six wheat evolution genotypes (solution culture) with different ploidy chromosome sets (Triticum boeoticum Bioss., T. monococcum L.: 2n = 2x = 14; T. dicoccides Koern., T. dicoccon (Schrank) Schuebl.: 2n = 4x = 28;T. vulgare Vill., T. aestivum L. cv. Xiaoyan No. 6: 2n = 6x = 42). The experimental results showed that significant correlations were found between root system hydraulic conductivity and root characteristics of the materials with the increase in ploidy chromosomes (2x→6x) during wheat evolution. Hydraulic conductivity of the wheat root system at the whole-plant level was increased with chromosome ploidy during evolution, which was positively correlated with hydraulic conductivity of single roots, whole plant biomass,root average diameter, and root growth (length, area), whereas the root/shoot ratio had an inverse correlation with the hydraulic conductivity of root system with increasing chromosome ploidy during wheat evolution. Therefore, it is concluded that that the water uptake ability of wheat roots was strengthened from wild to modern cultivated species during evolution, which will provide scientific evidence for genetic breeding to improve the WUE of wheat by genetic engineering.

  4. Thermal Hydraulic Integral Effect Tests for Pressurized Water Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Baek, W. P.; Song, C. H.; Kim, Y. S. and others

    2005-02-15

    The objectives of the project are to construct a thermal-hydraulic integral effect test facility and to perform various integral effect tests for design, operation, and safety regulation of pressurized water reactors. During the first phase of this project (1997.8{approx}2002.3), the basic technology for thermal-hydraulic integral effect tests was established and the basic design of the test facility was accomplished: a full-height, 1/300-volume-scaled full pressure facility for APR1400, an evolutionary pressurized water reactor that was developed by Korean industry. Main objectives of the present phase (2002.4{approx}2005.2), was to optimize the facility design and to construct the experimental facility. We have performed following researches: 1) Optimization of the basic design of the thermal-hydraulic integral effect test facility for PWRs - ATLAS (Advanced Thermal-hydraulic Test Loop for Accident Simulation) - Reduced height design for APR1400 (+ specific design features of KSNP safety injection systems) - Thermal-hydraulic scaling based on three-level scaling methodology by Ishii et al. 2) Construction of the ATLAS facility - Detailed design of the test facility - Manufacturing and procurement of components - Installation of the facility 3) Development of supporting technology for integral effect tests - Development and application of advanced instrumentation technology - Preliminary analysis of test scenarios - Development of experimental procedures - Establishment and implementation of QA system/procedure.

  5. Current and anticipated uses of thermal hydraulic codes in Korea

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Kyung-Doo; Chang, Won-Pyo [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1997-07-01

    In Korea, the current uses of thermal hydraulic codes are categorized into 3 areas. The first application is in designing both nuclear fuel and NSSS. The codes have usually been introduced based on the technology transfer programs agreed between KAERI and the foreign vendors. Another area is in the supporting of the plant operations and licensing by the utility. The third category is research purposes. In this area assessments and some applications to the safety issue resolutions are major activities using the best estimate thermal hydraulic codes such as RELAP5/MOD3 and CATHARE2. Recently KEPCO plans to couple thermal hydraulic codes with a neutronics code for the design of the evolutionary type reactor by 2004. KAERI also plans to develop its own best estimate thermal hydraulic code, however, application range is different from KEPCO developing code. Considering these activities, it is anticipated that use of the best estimate hydraulic analysis code developed in Korea may be possible in the area of safety evaluation within 10 years.

  6. Magnetic Stimulation and Epilepsy

    Science.gov (United States)

    2013-10-14

    investigated using behavioral recording and electroencephalographic (EEG) recording. The results (Figures 1~7) obtained have been submitted to Epilepsia ...Magnetic Stimulation on Penicillin-Induced Seizures in Rats. Epilepsia (submitted). * corresponding author. IV. OTHER CHANGES N/A V. FUTURE PLANS

  7. Trends in hydraulic fracturing distributions and treatment fluids, additives, proppants, and water volumes applied to wells drilled in the United States from 1947 through 2010: data analysis and comparison to the literature

    Science.gov (United States)

    Gallegos, Tanya J.; Varela, Brian A.

    2015-01-01

    Hydraulic fracturing is presently the primary stimulation technique for oil and gas production in low-permeability, unconventional reservoirs. Comprehensive, published, and publicly available information regarding the extent, location, and character of hydraulic fracturing in the United States is scarce. This national spatial and temporal analysis of data on nearly 1 million hydraulically fractured wells and 1.8 million fracturing treatment records from 1947 through 2010 (aggregated in Data Series 868) is used to identify hydraulic fracturing trends in drilling methods and use of proppants, treatment fluids, additives, and water in the United States. These trends are compared to the literature in an effort to establish a common understanding of the differences in drilling methods, treatment fluids, and chemical additives and of how the newer technology has affected the water use volumes and areal distribution of hydraulic fracturing. Historically, Texas has had the highest number of records of hydraulic fracturing treatments and associated wells in the United States documented in the datasets described herein. Water-intensive horizontal/directional drilling has also increased from 6 percent of new hydraulically fractured wells drilled in the United States in 2000 to 42 percent of new wells drilled in 2010. Increases in horizontal drilling also coincided with the emergence of water-based “slick water” fracturing fluids. As such, the most current hydraulic fracturing materials and methods are notably different from those used in previous decades and have contributed to the development of previously inaccessible unconventional oil and gas production target areas, namely in shale and tight-sand reservoirs. Publicly available derivative datasets and locations developed from these analyses are described.

  8. Modeling and controlling of a flexible hydraulic manipulator

    Institute of Scientific and Technical Information of China (English)

    LI Guang; WU Min

    2005-01-01

    A mathematical model was developed combining the dynamics of an Euler-Bernoulli beam, described by the assumed-mode method and hydraulic circuit dynamics. Only one matrix, termed drive Jacobian, was needed in the modeling of interaction between hydraulic circuit and flexible manipulator mechanism. Furthermore, a new robust controller based on mentioned above dynamic model was also considered to regulate both flexural vibrations and rigid body motion. The proposed controller combined sliding mode and backstepping techniques to deal with the nonlinear system with uncertainties. The sliding mode control was used to achieve an asymptotic joint angle and vibration regulation by providing a virtual force while the backstepping technique was used to regulate the spool position of a hydraulic valve to provide the required control force. Simulation results are presented to show the stabilizing effect and robustness of this control strategy.

  9. Horizontal steam generator PGV-1000 thermal-hydraulic analysis

    Energy Technology Data Exchange (ETDEWEB)

    Ubra, O. [Skoda Company, Prague (Switzerland); Doubek, M. [Czech Technical Univ., Prague (Switzerland)

    1995-12-31

    A computer program for the steady state thermal-hydraulic analysis of horizontal steam generator PGV-1000 is presented. The program provides the capability to analyze steam generator PGV-1000 primary side flow and temperature distribution, primary side pressure drops, heat transfer between the primary and secondary sides and multidimensional heat flux distribution. A special attention is paid to the thermal-hydraulics of the secondary side. The code predicts 3-D distribution of the void fraction at the secondary side, mass redistribution under the submerged perforated sheet and the steam generator level profile. By means of developed computer program a detailed thermal-hydraulic study of the PGV-1000 has been carried out. A wide range of calculations has been performed and a set of important steam generator characteristics has been obtained. Some of them are presented in the paper. (orig.). 5 refs.

  10. Nonlinear control for a class of hydraulic servo system

    Institute of Scientific and Technical Information of China (English)

    余宏; 冯正进; 王旭永

    2004-01-01

    The dynamics of hydraulic systems are highly nonlinear and the system may be subjected to non-smooth and discontinuous nonlinearities due to directional change of valve opening, friction, etc. Aside from the nonlinear nature of hydraulic dynamics, hydraulic servo systems also have large extent of model uncertainties. To address these challenging issues, a robust state-feedback controller is designed by employing backstepping design technique such that the system output tracks a given signal arbitrarily well, and all signals in the closed-loop system remain bounded. Moreover, a relevant disturbance attenuation inequality is satisfied by the closed-loop signals. Compared with previously proposed robust controllers, this paper's robust controller based on backstepping recursive design method is easier to design, and is more suitable for implementation.

  11. Nonlinear control for a class of hydraulic servo system

    Institute of Scientific and Technical Information of China (English)

    余宏; 冯正进; 王旭永

    2004-01-01

    The dynamics of hydraulic systems are highly nonlinear and the system may be subjected to non-smooth and discontinuous nonlinearities due to directional change of valve opening,friction,etc. Aside from the nonlinear nature of hydraulic dynamics,hydraulic servo systems also have large extent of model uncertainties. To address these challenging issues,a robust state-feedback controller is designed by employing backstepping design technique such that the system output tracks a given signal arbitrarily well,and all signals in the closed-loop system remain bounded. Moreover,a relevant disturbance attenuation inequality is satisfied by the closed-loop signals. Compared with previously proposed robust controllers,this paper's robust controller based on backstepping recursive design method is easier to design,and is more suitable for implementation.

  12. Hydraulic conductivities of fractures and matrix in Slovenian carbonate aquifers

    Directory of Open Access Journals (Sweden)

    Timotej Verbovšek

    2008-12-01

    Full Text Available Hydraulic conductivities and specific storage coefficients of fractures and matrix in Slovenian carbonate aquifers were determined by Barker’s method for pumping test analysis, based on fractional flow dimension. Values are presented for limestones and mainly for dolomites, and additionally for separate aquifers, divided by age andlithology in several groups. Data was obtained from hydrogeological reports for 397 water wells, and among these, 79 pumping tests were reinterpreted. Hydraulic conductivities of fractures are higher than the hydraulic conductivities of matrix, and the differences are highly statistically significant. Likewise, differences are significant for specific storage, and the values of these coefficients are higher in the matrix. Values of all coefficients vary in separate aquifers, and the differences can be explained by diagenetic effects, crystal size, degree of fracturing, andcarbonate purity. Comparison of the methods, used in the reports, and the Barker’s method (being more suitable for karstic and fractured aquifers, shows that the latter fits real data better.

  13. Automated Hydraulic System Design and Power Management in Mobile Applications

    DEFF Research Database (Denmark)

    Pedersen, Henrik Clemmensen

    machines if operated in the intended and optimal work area, but due to an inappropriate system layout. Most of the power lost in open circuit hydraulic system systems is in this regard in the transmission part, i.e. hoses and fittings, and the valves used to control the system. A large part of the design...... are working under the most optimal operating conditions. The above in this way constitute the background for the work that is the basis of this report, which deals with how to design and control open-circuit hydraulic systems with multiple consumers to obtain the largest energy utilization, when also...... a presentation of the used graph theory representation that is developed to represent a hydraulic open-circuit system and which is based on a numerical formulation that uniquely describe the system in terms of five set of design variables that describe respectively the topology, the components and the operating...

  14. Application study of magnetic fluid seal in hydraulic turbine

    Science.gov (United States)

    Yu, Z. Y.; Zhang, W.

    2012-11-01

    The waterpower resources of our country are abundant, and the hydroelectric power is developed, but at present the main shaft sealing device of hydraulic turbine is easy to wear and tear and the leakage is great. The magnetic fluid seal has the advantages of no contact, no wear, self-healing, long life and so on. In this paper, the magnetic fluid seal would be used in the main shaft of hydraulic turbine, the sealing structure was built the model, meshed the geometry, applied loads and solved by using MULTIPHYSICS in ANSYS software, the influence of the various sealing structural parameters such as tooth width, height, slot width, sealing gap on the sealing property were analyzed, the magnetic fluid sealing device suitable for large-diameter shaft and sealing water was designed, the sealing problem of the hydraulic turbine main shaft was solved effectively which will bring huge economic benefits.

  15. Hydraulic spinal cord and cauda equina nerve injuries

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    @@Hydraulic spinal cord and cauda equina nerve injuries are very uncommon. Since 19 96, we have received and treated 4 patients with hydraulic spinal cord and cauda equina injuries. This report gives a detail description. Four patients with hydraulic spinal cord and cauda equina nerve injuries, male: 3, female: 1, aging 13-56 years have been treated in our hospital since 1996. E xtradural blocking injury was in 1 patient, extradural anaesthesia injury in 1 p atient and intraspinal canal myelography injury in 2 patients; the segments of i ntraspinal canal were L2-3 and L3-4. One patient was accompanied b y femoral fracture, 2 patients by intraspinal tumor and 1 patient had operat ion because of prolapse of lumbar intervertebral disc.

  16. Theoretical Modeling of Internal Hydraulic Jump in Density Currents

    CERN Document Server

    Firoozabadi, Bahar; Aryanfar, Asghar; Afshin, Hossein

    2013-01-01

    In this paper, we propose an analytical framework for internal hydraulic jumps. Density jumps or internal hydraulic jumps occur when a supper critical flow of water discharges into a stagnant layer of water with slightly different density. The approach used here is control volume method which is also used to analyze ordinary hydraulic jumps. The important difference here is that entrainment is taken into account. Using conservation equations with the aid of some simplifying assumptions we come to an equation that gives jump downstream height as function of jump upstream characteristics and the entrainment. To determine the magnitude of downstream height we use an experimental equation for calculating the entrainment. Finally we verify our framework by comparing the height that we gain from the derived equation with some experimental data.

  17. Optimization of Classical Hydraulic Engine Mounts Based on RMS Method

    Directory of Open Access Journals (Sweden)

    J. Christopherson

    2005-01-01

    Full Text Available Based on RMS averaging of the frequency response functions of the absolute acceleration and relative displacement transmissibility, optimal parameters describing the hydraulic engine mount are determined to explain the internal mount geometry. More specifically, it is shown that a line of minima exists to define a relationship between the absolute acceleration and relative displacement transmissibility of a sprung mass using a hydraulic mount as a means of suspension. This line of minima is used to determine several optimal systems developed on the basis of different clearance requirements, hence different relative displacement requirements, and compare them by means of their respective acceleration and displacement transmissibility functions. In addition, the transient response of the mount to a step input is also investigated to show the effects of the optimization upon the time domain response of the hydraulic mount.

  18. Dynamic Analysis & Characterization of Conventional Hydraulic Power Supply Units

    DEFF Research Database (Denmark)

    Schmidt, Lasse; Liedhegener, Michael; Bech, Michael Møller

    2016-01-01

    Hydraulic power units operated as constant supply pres-sure systems remain to be widely used in the industry, to supply valve controlled hydraulic drives etc., where the hydraulic power units are constituted by variable pumps with mechanical outlet pressure control, driven by induction motors...... and drives will reduce the flow-to-pressure gain of the supply system, and hence increase the time constant of the sup-ply pressure dynamics. A consequence of this may be large vari-ations in the supply pressure, hence large variations in the pump shaft torque, and thereby the induction motor load torque......, with possible excitation of the induction motor dynamics as a result. In such cases, the coupled dynamics of the pressure controlled pump and induction motor may influence the supply pressure sig-nificantly, possibly affecting the dynamics of the supplied drives, especially in cases where pilot operated valves...

  19. RESEARCH ON THE ENERGY ECONOMIZATION OF ELECTRO-HYDRAULIC HAMMER

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The research on the driving principle and economization of energy of electro-hydraulic hammer is discussed. By means of the Balance chart of energy, the method and formulas to calculate every level efficiency and the total efficiency of steam drived hammer are formed. With the aid of actual data of plants, the actual efficiency of steam drived hammer is got. The working principle and the driving system of electro-hydraulic hammer are introduced. The procedure of energy transfer of this hammer is analyzed. The utilization ratio of energy of this type of hammer is got. It is shown that the efficiency of electro-hydraulic hammer is 7 times as much as that of steam drived hammer.

  20. Intelligent Control of a Novel Hydraulic Forging Manipulator

    Directory of Open Access Journals (Sweden)

    J. Wang

    2011-01-01

    Full Text Available The increased demand for large-size forgings has led to developments and innovations of heavy-duty forging manipulators. Besides the huge carrying capacity, some robot features such as force perception, delicacy and flexibility, forging manipulators should also possess. The aim of the work is to develop a heavy-duty forging manipulator with robot features by means of combination of methods in mechanical, hydraulic, and control field. In this paper, through kinematic analysis of a novel forging manipulator, control strategy of the manipulator is proposed considering the function and motion of forging manipulators. Hybrid pressure/position control of hydraulic actuators in forging manipulator is realized. The feasibility of the control method has been verified by the experiments on a real prototype of the novel hydraulic forging manipulator in our institute. The intelligent control of the forging manipulator is performed with programmable logic controller which is suitable for industrial applications.