WorldWideScience

Sample records for hydraulic pump system

  1. Design of Pumps for Water Hydraulic Systems

    DEFF Research Database (Denmark)

    Klit, Peder; Olsen, Stefan; Bech, Thomas Nørgaard

    1999-01-01

    This paper considers the development of two pumps for water hydraulic applications. The pumps are based on two different working principles: The Vane-type pump and the Gear-type pump. Emphasis is put on the considerations that should be made to account for water as the hydraulic fluid.......KEYWORDS: water, pump, design, vane, gear....

  2. Stability of Hydraulic Systems with Focus on Cavitating Pumps

    OpenAIRE

    Brennen, C. E.; Braisted, D. M.

    1980-01-01

    Increasing use is being made of transmission matrices to characterize unsteady flows in hydraulic system components and to analyze the stability of such systems. This paper presents some general characteristics which should be examined in any experimentally measured transmission matrices and a methodology for the analysis of the stability of transmission matrices in hydraulic systems of order 2. These characteristics are then examined for cavitating pumps and the predicted instabilities (kn...

  3. WATER ENERGY IN HYDROAMELIORATIVE SYSTEMS USING THE HYDRAULIC TRANSFORMER TYPE A. BARGLAZAN AND THE HYDRAULIC HAMMER (HYDRAULIC PUMP

    Directory of Open Access Journals (Sweden)

    Teodor Eugen Man

    2010-01-01

    Full Text Available This paper presents two examples of exploitation of water energy that can be used in the irrigation field. First of theseexamples is the hydraulic transformer type A. Barglazan used for irrigation, pumped water is taken directly from theriver’s well, using a hydraulic pump which simultaneously carried out a double transformation in this way: hydraulicenergy into mechanic energy and mechanical energy into hydraulic energy. Technology preparation and devices designwas done in record time, seeing that this constructive solution is more robust, reliable and with improved energyperformance versus the laboratory prototype. The experimental research which was made at 1:1 scale proved theirgood function over time. Another example is the hydraulic hammer (hydraulic pump that uses low-head energy topump water, with a global efficiency of about 10 - 50%. Currently, the new situation of private ownership of landprovides conditions for new pumping microstations to be made where irrigation is necessary and optimal hydrauliclocations exist.

  4. PRESSURE OSCILLATIONS IN TRANSIENT PROCESSES OF HYDRAULIC SYSTEMS WITH VARIABLE DISPLACEMENT PUMPS

    Directory of Open Access Journals (Sweden)

    Hennadii Zaionchkovskyi

    2015-12-01

    Full Text Available In aviation hydraulic drive of high power as a power supply the axial-piston variable displacement pumps became wide spreaded. The pump operational modes with air isolation and cavitation are accompanied by increased noise, delivery reduction and intensive pressure oscillations. The negative results of such phenomena are hydraulic elements erosion, pipeline fatigue failure, working fluid viscosity reduction and its contamination by wear products. The mechanism of cavitation rising in axial-piston pumps is considered, and factors which influence the cavitation rising and working fluid aeration are specified. The features of transient processes in aircraft hydraulic systems with variable displacement pumps are considered. It has been showed that as the pump delivery changes from its minimum to maximum great pressure oscillations in the aircraft pressure pipeline of the hydraulic system takes place, and have a negative influence on the pump service life. The recommendations concerning such pressure oscillation reduction are given.

  5. Thermally Actuated Hydraulic Pumps

    Science.gov (United States)

    Jones, Jack; Ross, Ronald; Chao, Yi

    2008-01-01

    Thermally actuated hydraulic pumps have been proposed for diverse applications in which direct electrical or mechanical actuation is undesirable and the relative slowness of thermal actuation can be tolerated. The proposed pumps would not contain any sliding (wearing) parts in their compressors and, hence, could have long operational lifetimes. The basic principle of a pump according to the proposal is to utilize the thermal expansion and contraction of a wax or other phase-change material in contact with a hydraulic fluid in a rigid chamber. Heating the chamber and its contents from below to above the melting temperature of the phase-change material would cause the material to expand significantly, thus causing a substantial increase in hydraulic pressure and/or a substantial displacement of hydraulic fluid out of the chamber. Similarly, cooling the chamber and its contents from above to below the melting temperature of the phase-change material would cause the material to contract significantly, thus causing a substantial decrease in hydraulic pressure and/or a substantial displacement of hydraulic fluid into the chamber. The displacement of the hydraulic fluid could be used to drive a piston. The figure illustrates a simple example of a hydraulic jack driven by a thermally actuated hydraulic pump. The pump chamber would be a cylinder containing encapsulated wax pellets and containing radial fins to facilitate transfer of heat to and from the wax. The plastic encapsulation would serve as an oil/wax barrier and the remaining interior space could be filled with hydraulic oil. A filter would retain the encapsulated wax particles in the pump chamber while allowing the hydraulic oil to flow into and out of the chamber. In one important class of potential applications, thermally actuated hydraulic pumps, exploiting vertical ocean temperature gradients for heating and cooling as needed, would be used to vary hydraulic pressures to control buoyancy in undersea research

  6. Technologies and Innovations for Hydraulic Pumps

    OpenAIRE

    Ivantysynova, Monika

    2016-01-01

    Positive displacement machines working as hydraulic pumps or hydraulic motors have always been, are and will be an essential part of any hydraulic system. Current trends and future demands on energy efficient systems will not only drastically increase the number of positive displacement machines needed for modern efficient hydraulic circuits but will significantly change the performance requirements of pumps and motors. Throttleless system configurations will change the landscape of hydraulic...

  7. Remotely Adjustable Hydraulic Pump

    Science.gov (United States)

    Kouns, H. H.; Gardner, L. D.

    1987-01-01

    Outlet pressure adjusted to match varying loads. Electrohydraulic servo has positioned sleeve in leftmost position, adjusting outlet pressure to maximum value. Sleeve in equilibrium position, with control land covering control port. For lowest pressure setting, sleeve shifted toward right by increased pressure on sleeve shoulder from servovalve. Pump used in aircraft and robots, where hydraulic actuators repeatedly turned on and off, changing pump load frequently and over wide range.

  8. Constant-Pressure Hydraulic Pump

    Science.gov (United States)

    Galloway, C. W.

    1982-01-01

    Constant output pressure in gas-driven hydraulic pump would be assured in new design for gas-to-hydraulic power converter. With a force-multiplying ring attached to gas piston, expanding gas would apply constant force on hydraulic piston even though gas pressure drops. As a result, pressure of hydraulic fluid remains steady, and power output of the pump does not vary.

  9. Speed-variable Switched Differential Pump System for Direct Operation of Hydraulic Cylinders

    DEFF Research Database (Denmark)

    Schmidt, Lasse; Roemer, Daniel Beck; Pedersen, Henrik Clemmensen;

    2015-01-01

    Efforts to overcome the inherent loss of energy due to throttling in valve driven hydraulic systems are many, and various approaches have been proposed by research communities as well as the industry. Recently, a so-called speed-variable differential pump was proposed for direct drive of hydraulic...... differential cylinders. The main idea was here to utilize an electric rotary drive, with the shaft interconnected to two antiparallel fixed displacement gear pumps, to actuate a differential cylinder. With the design carried out such that the area ratio of the cylinder matches the displacement ratio of the two...... gear pumps, the throttling losses are confined to cross port leakage in the cylinder and leakage of the pumps. However, it turns out that the volumetric pump losses and the pressure dynamics of the cylinder and connecting pipes may cause pressure increase- or decrease in the cylinder chambers, which...

  10. Vibrations of hydraulic pump and their solution

    OpenAIRE

    Dobšáková Lenka; Nováková Naděžda; Habán Vladimír; Hudec Martin; Jandourek Pavel

    2017-01-01

    The vibrations of hydraulic pump and connected pipeline system are very problematic and often hardly soluble. The high pressure pulsations of hydraulic pump with the double suction inlet are investigated. For that reason the static pressure and accelerations are measured. The numerical simulations are carried out in order to correlate computed data with experimental ones and assess the main source of vibrations. Consequently the design optimization of the inner hydraulic part of pump is done ...

  11. Model predictive control of servo motor driven constant pump hydraulic system in injection molding process based on neurodynamic optimization

    Institute of Scientific and Technical Information of China (English)

    Yong-gang PENG; Jun WANG; Wei WEI

    2014-01-01

    In view of the high energy consumption and low response speed of the traditional hydraulic system for an injection molding machine, a servo motor driven constant pump hydraulic system is designed for a precision injection molding process, which uses a servo motor, a constant pump, and a pressure sensor, instead of a common motor, a constant pump, a pressure pro-portion valve, and a flow proportion valve. A model predictive control strategy based on neurodynamic optimization is proposed to control this new hydraulic system in the injection molding process. Simulation results showed that this control method has good control precision and quick response.

  12. Virtual Training System for Hydraulic Pump Cart Based on Virtual Reality

    Directory of Open Access Journals (Sweden)

    Wusha Huang

    2013-08-01

    Full Text Available This paper dissertates the application of Virtual Reality Technology in the training process. Virtual training system has more advantages than traditional training system. The design of virtual training system based on PTC DIVISION Mockup software, position tracker and 3-D mouse is proposed. The system is divided into two parts: directing part and operating part. Collision detection is discussed to improve the sense of reality in the virtual environment .This system is applied to the training process of hydraulic pump cart’s assembly and disassembly. More immersive training effect is obtained in this system. The goal of reducing training costs and improving the efficiency of training can be achieved in the virtual training system.  

  13. Prediction of potential failures in hydraulic gear pumps

    OpenAIRE

    E. Lisowski(Cracow Tech. U); J. Fabiś

    2010-01-01

    Hydraulic gear pumps are used in many machines and devices. In hydraulic systems of machines gear pumps are main component ofsupply unit or perform auxiliary function. Gear pumps opposite to vane pumps are less complicated. They consists of such components as:housing, gear wheels, bearings, shaft, seal for rotation motion which are not very sensitive for damage and that is why they are using veryoften. However, gear pumps are break down from time to time. Usually damage of pump cause shutting...

  14. Speed-variable Switched Differential Pump System for Direct Operation of Hydraulic Cylinders

    DEFF Research Database (Denmark)

    Schmidt, Lasse; Roemer, Daniel Beck; Pedersen, Henrik Clemmensen

    2015-01-01

    proportional valves, this design allows to control the lower chamber pressure levels, throttling excess compression flow to tank. The resulting design introduces additional losses due to throttling of excess compression flow, but also improves the dynamic properties of the system significantly. The proposed...... differential cylinders. The main idea was here to utilize an electric rotary drive, with the shaft interconnected to two antiparallel fixed displacement gear pumps, to actuate a differential cylinder. With the design carried out such that the area ratio of the cylinder matches the displacement ratio of the two...... may seriously influence the dynamics and hence the performance during operation. This paper presents an analysis of these properties, and a redesign of the hydraulic system concept is proposed. Here the area- and displacement ratios are deliberately mismatched, causing inherent pressure build...

  15. Stability analysis of the governor-turbine-hydraulic system of pumped storage plant during small load variation

    Science.gov (United States)

    Yu, X. D.; Zhang, J.; Chen, S.; Liu, J. C.

    2016-11-01

    Governor-turbine-hydraulic (GTH) system is complex because of strong couplings of hydraulic, mechanical and electrical system. This paper presents a convenient mathematical model of the GTH system of a pumped storage plant (PSP) during small load variation. By using state space method and eigenvalue method, the stability of the GTH system is analyzed and the stable regions of the system can be given as well, which would help to optimize system design or the turning of governors. The proposed method is used to analyze the stability of a practical pumped storage plant during small load variation, which is also simulated in time domain on the basis of characteristics method. The theoretical analysis is in good agreement with numerical simulations. Based on the proposed method, the effect of the system parameters and operating conditions on the stable regions is investigated. These results are useful for the design of the GTH system of pumped storage plants.

  16. 液压泵试验台系统设计%Research of Test System of Hydraulic Pump

    Institute of Scientific and Technical Information of China (English)

    阳宝元; 黄志坚; 何曼

    2015-01-01

    One test system of hydraulic pump which includes hydraulic system, electronic control system and computer control system is de-signed, and some critical types of components are selected. The whole system is simple, practical which can reliably and quickly test perfor-mance parameters of hydraulic pump.%设计了一种液压泵试验台系统,包括液压系统、电控系统和计算机测控系统,对系统的相关元件进行了选型,整个系统简单实用,能可靠、快捷地对液压泵的性能参数进行测试。

  17. Simulation of a Hydraulic Pump Control Valve

    Science.gov (United States)

    Molen, G. Vander; Akers, A.

    1987-01-01

    This paper describes the mode of operation of a control valve assembly that is used with a hydraulic pump. The operating system of the valve is modelled in a simplified form, and an analogy for hydraulic resonance of the pressure sensing system is presented. For the control valve investigated, air entrainment, length and diameter of the resonator neck, and valve mass produced the greatest shift in resonant frequency. Experimental work was conducted on the hydraulic system so that the resonance levels and frequencies could be measured and the accuracy of the theory verified. The results obtained make it possible to evaluate what changes to any of the variables considered would be most effective in driving the second harmonic frequency above the operating range.

  18. Hydraulic System Design of Hydraulic Actuators for Large Butterfly Valves

    OpenAIRE

    HUANG, Ye; Liu, Changsheng; Shiongur Bamed

    2014-01-01

    Hydraulic control systems of butterfly valves are presently valve-controlled and pump-controlled. Valve-controlled hydraulic systems have serious power loss and generate much heat during throttling. Pump-controlled hydraulic systems have no overflow or throttling losses but are limited in the speed adjustment of the variable-displacement pump, generate much noise, pollute the environment, and have motor power that does not match load requirements, resulting in low efficiency under...

  19. Hydraulic Calculation Method for the Fluid Delivery System of Centrifugal Pump%离心泵流体输送系统水力计算方法

    Institute of Scientific and Technical Information of China (English)

    徐宏斌

    2001-01-01

    简述离心泵和管路的特性,介绍离心泵流体输送管路系统的水力计算方法,以及如何确定泵的安装高度。%The characteristics of centrifugal pump and pipeline are brieflyelaborated. The hydraulic calculation method for fluid delivery pipeline system of centrifugal pump and the method of determining the pump installation height are introduced.

  20. Hydraulic wind energy conversion system

    Energy Technology Data Exchange (ETDEWEB)

    1981-07-01

    The purpose of this research was to design, build and test a hydraulic wind energy system. This design used a three bladed turbine, which drove a hydraulic pump. The energy is transmitted from the pump through a long hose and into a hydraulic motor, where the energy is used. This wind system was built and tested during the winter of 1980-1981. The power train included a five meter, three bladed wind turbine, a 9.8:1 ratio gearbox, a 1.44 cubic inch displacement pump with a small supercharge gear pump attached. The hydraulic fluid was pumped through a 70', 3/4'' I-D-high pressure flexhose, then through a volume control valve and into a 1.44 cubic inch displacement motor. The fluid was returned through a 70', 1'' I-D-flexhose.

  1. Lubrication and tribology in seawater hydraulic piston pump

    Institute of Scientific and Technical Information of China (English)

    WANG Dong; LI Zhuang-yun; ZHU Yu-quan

    2003-01-01

    Water hydraulic systems have provoked major interest because of the human friendly and environmental safety aspects. Piston pump is one of the most frequently used hydraulic units in recent engineering technique. In water hydraulic piston pump, poor lubrication is more likely to happen than in oil hydraulic one because of difference in properties between water and oil. So there are some key problems such as corrosive wear and erosion, which are investigated briefly. Many new materials have been developed, which give longer life expectancies with water without corrosion and erosion. A new type of seawater hydraulic piston pumps with better suction characteristics had been developed at HUST. Much of this research has concentrated on new materials, structure and experiments, which are also specially introduced.

  2. Prediction of potential failures in hydraulic gear pumps

    Directory of Open Access Journals (Sweden)

    E. Lisowski

    2010-07-01

    Full Text Available Hydraulic gear pumps are used in many machines and devices. In hydraulic systems of machines gear pumps are main component ofsupply unit or perform auxiliary function. Gear pumps opposite to vane pumps are less complicated. They consists of such components as:housing, gear wheels, bearings, shaft, seal for rotation motion which are not very sensitive for damage and that is why they are using veryoften. However, gear pumps are break down from time to time. Usually damage of pump cause shutting down of machines and devices.One of the way for identifying potential failures and foreseeing their effects is a quality method. On the basis of these methods apreventing action might be undertaken before failure appear. In this paper potential failures and damages of a gear pump were presented bythe usage of matrix FMEA analysis.

  3. The Hydraulic Ram (Or Impulse) Pump

    Science.gov (United States)

    Mills, Allan

    2014-01-01

    The hydraulic impulse pump utilizes a fraction of the momentum of a flowing stream to lift a small portion of that water to a higher level. There it may be accumulated in an elevated cistern to provide sufficient water for several families, for the pump works 24 h a day with no additional source of energy. The operation of the pump is described,…

  4. Hydraulic System Design of Hydraulic Actuators for Large Butterfly Valves

    Directory of Open Access Journals (Sweden)

    Ye HUANG

    2014-09-01

    Full Text Available Hydraulic control systems of butterfly valves are presently valve-controlled and pump-controlled. Valve-controlled hydraulic systems have serious power loss and generate much heat during throttling. Pump-controlled hydraulic systems have no overflow or throttling losses but are limited in the speed adjustment of the variable-displacement pump, generate much noise, pollute the environment, and have motor power that does not match load requirements, resulting in low efficiency under light loads and wearing of the variable-displacement pump. To overcome these shortcomings, this article designs a closed hydraulic control system in which an AC servo motor drives a quantitative pump that controls a spiral swinging hydraulic cylinder, and analyzes and calculates the structure and parameters of a spiral swinging hydraulic cylinder. The hydraulic system adjusts the servo motor’s speed according to the requirements of the control system, and the motor power matches the power provided to components, thus eliminating the throttling loss of hydraulic circuits. The system is compact, produces a large output force, provides stable transmission, has a quick response, and is suitable as a hydraulic control system of a large butterfly valve.

  5. Design of a laboratory hydraulic device for testing of hydraulic pumps

    Directory of Open Access Journals (Sweden)

    Pavel Máchal

    2013-01-01

    Full Text Available The present contribution deals with solves problem of research of testing device to monitor of hydrostatic pumps durability about dynamic loading under laboratory conditions. When carrying out the design of testing device are based on load characteristics of tractor hydraulic circuit, the individual characteristics of hydraulic components and performed calculations. Load characteristics on the tractors CASE IH Magnum 310, JOHN DEERE 8100, ZETOR FORTERRA 114 41 and Fendt 926 Vario were measured. Design of a hydraulic laboratory device is based on the need for testing new types of hydraulic pumps or various types of hydraulic fluids. When creating of hydraulic device we focused on testing hydraulic pumps used in agricultural and forestry tractors. Proportional pressure control valve is an active member of the hydraulic device, which provides change of a continuous control signal into relative pressure of operating fluid. The advantage of a designed hydraulic system is possibility of simulation of dynamic operating loading, which is obtained by measurement under real conditions, and thereby creates laboratory conditions as close to real conditions as possible. The laboratory device is constructed at the Department of Transport and Handling, Faculty of Engineering, Slovak University of Agriculture in Nitra.

  6. REPAIR OF GEAR-TYPE PUMPS FOR HYDRAULIC SYSTEMS OF CONSTRUCTION MACHINES

    OpenAIRE

    Posviatenko, Ye; Kropivniy, V.; Posviatenko, N.; Rousskykh, V.

    2007-01-01

    Investigation into resource-saving technology of repair of gear-type pumps by contact welding -on some wear-resistant composite sintered powders on the top of teeth with further thermal-cycle treatment has been described.

  7. Vibration Modes and the Dynamic Behaviour of a Hydraulic Plunger Pump

    Directory of Open Access Journals (Sweden)

    Tianxiao Zhang

    2016-01-01

    Full Text Available Mechanical vibrations and flow fluctuation give rise to complex interactive vibration mechanisms in hydraulic pumps. The working conditions for a hydraulic pump are therefore required to be improved in the design stage or as early as possible. Considering the structural features, parameters, and operating environment of a hydraulic plunger pump, the vibration modes for two-degree-of-freedom system were established by using vibration theory and hydraulic technology. Afterwards, the analytical form of the natural frequency and the numerical solution of the steady-state response were deduced for a hydraulic plunger pump. Then, a method for the vibration analysis of a hydraulic pump was proposed. Finally, the dynamic responses of a hydraulic plunger pump are obtained through numerical simulation.

  8. Use a Log Splitter to Demonstrate Two-Stage Hydraulic Pump

    Science.gov (United States)

    Dell, Timothy W.

    2012-01-01

    The two-stage hydraulic pump is commonly used in many high school and college courses to demonstrate hydraulic systems. Unfortunately, many textbooks do not provide a good explanation of how the technology works. Another challenge that instructors run into with teaching hydraulic systems is the cost of procuring an expensive real-world machine…

  9. Hydraulic fracturing system and method

    Energy Technology Data Exchange (ETDEWEB)

    Ciezobka, Jordan; Salehi, Iraj

    2017-02-28

    A hydraulic fracturing system and method for enhancing effective permeability of earth formations to increase hydrocarbon production, enhance operation efficiency by reducing fluid entry friction due to tortuosity and perforation, and to open perforations that are either unopened or not effective using traditional techniques, by varying a pump rate and/or a flow rate to a wellbore.

  10. South Davis Sewer District Pump Station Hydraulic Capacity Evaluation

    OpenAIRE

    Dixon, James W

    2011-01-01

    In 2010, South Davis Sewer District (SDSD) determined that possible hydraulic problems existed in their various pump stations operating within their treatment plants. A hydraulic analysis was conducted for the pump stations to diagnose the problems and provide possible alternative solutions. This analysis was conducted by using hydraulic minor loss equations to determine the amount of flow that the pumps were capable of producing and then comparing those results to the required demands in the...

  11. 液压泵性能检测实验台设计及检测分析%Design of Performance Test System for Hydraulic Pump

    Institute of Scientific and Technical Information of China (English)

    武金良; 赵坚; 于浩

    2016-01-01

    液压泵是液压系统中的动力元件,其性能的优劣直接影响到液压系统的工作。因此,对其进行性能检测十分必要。引入绿色设计理念,设计了液压泵性能检测系统,并进行了实测验证,保证了系统检测数据的精度,提高了检测效率。%The hydraulic pump is the drive component of the hydraulic system, its performance will directly affect the normal work of hydraulic system. Therefore, it is very necessary to test its performance. The concept of green design was introduced, the hy⁃draulic pump performance test system was designed, and the verification was completed. So the accuracy of the system is guaranteed, and its detecting efficiency is improved obviously.

  12. An evaluation of a hubless inducer and a full flow hydraulic turbine driven inducer boost pump

    Science.gov (United States)

    Lindley, B. K.; Martinson, A. R.

    1971-01-01

    The purpose of the study was to compare the performance of several configurations of hubless inducers with a hydrodynamically similar conventional inducer and to demonstrate the performance of a full flow hydraulic turbine driven inducer boost pump using these inducers. A boost pump of this type consists of an inducer connected to a hydraulic turbine with a high speed rotor located in between. All the flow passes through the inducer, rotor, and hydraulic turbine, then into the main pump. The rotor, which is attached to the main pump shaft, provides the input power to drive the hydraulic turbine which, in turn, drives the inducer. The inducer, rotating at a lower speed, develops the necessary head to prevent rotor cavitation. The rotor speed is consistent with present main engine liquid hydrogen pump designs and the overall boost pump head rise is sufficient to provide adequate main pump suction head. This system would have the potential for operating at lower liquid hydrogen tank pressures.

  13. Position Sensorless Drive o SRM Mounted on Hydraulic Pump Unit

    Science.gov (United States)

    Kosaka, Takashi; Nabeya, Yoshinari; Ohyama, Kazunobu; Matsui, Nobuyuki

    Recently, Switched Reluctance Motors (SRM)have been applied to several industrial products such as fans, blowers, pumps and so forth because of their simple construction and relatively high e ciency.As one of the examples, Daikin Industries Ltd.has been successful in manufacturing hydraulic pump unit using 2.2kW three-phase SRM with shaft mounted position sensor for its control. This paper presents the position sensorless drive o the SRM for the purposes of reducing cost and down sizing of the hydraulic pump unit system.The controller, intentionally designed for this special application, realizes the following characteristics;the maximum and minimum speeds are 5000 and 300rpm, the speed response between the maximum and minimum speeds is within 100msec and the starting torque is less than 20% of the rated torque.The experimental studies using the hydraulic pump unit show that the proposed sensorless control scheme satis es the requirements for this application.

  14. Layered clustering multi-fault diagnosis for hydraulic piston pump

    Science.gov (United States)

    Du, Jun; Wang, Shaoping; Zhang, Haiyan

    2013-04-01

    Efficient diagnosis is very important for improving reliability and performance of aircraft hydraulic piston pump, and it is one of the key technologies in prognostic and health management system. In practice, due to harsh working environment and heavy working loads, multiple faults of an aircraft hydraulic pump may occur simultaneously after long time operations. However, most existing diagnosis methods can only distinguish pump faults that occur individually. Therefore, new method needs to be developed to realize effective diagnosis of simultaneous multiple faults on aircraft hydraulic pump. In this paper, a new method based on the layered clustering algorithm is proposed to diagnose multiple faults of an aircraft hydraulic pump that occur simultaneously. The intensive failure mechanism analyses of the five main types of faults are carried out, and based on these analyses the optimal combination and layout of diagnostic sensors is attained. The three layered diagnosis reasoning engine is designed according to the faults' risk priority number and the characteristics of different fault feature extraction methods. The most serious failures are first distinguished with the individual signal processing. To the desultory faults, i.e., swash plate eccentricity and incremental clearance increases between piston and slipper, the clustering diagnosis algorithm based on the statistical average relative power difference (ARPD) is proposed. By effectively enhancing the fault features of these two faults, the ARPDs calculated from vibration signals are employed to complete the hypothesis testing. The ARPDs of the different faults follow different probability distributions. Compared with the classical fast Fourier transform-based spectrum diagnosis method, the experimental results demonstrate that the proposed algorithm can diagnose the multiple faults, which occur synchronously, with higher precision and reliability.

  15. Pump Application as Hydraulic Turbine – Pump as Turbine (PaT)

    OpenAIRE

    Rusovs, D

    2009-01-01

    The paper considers pump operation as hydraulic turbine with purpose to produce mechanical power from liquid flow. The Francis hydraulic turbine was selected for comparison with centrifugal pump in reverse operation. Turbine and centrifugal pump velocity triangles were considered with purpose to evaluate PaT efficiency. Shape of impeller blades for turbine and pumps was analysed. Specific speed calculation is carried out with purpose to obtain similarity in pump and turbine description. For ...

  16. Low-power microfluidic electro-hydraulic pump (EHP).

    Science.gov (United States)

    Lui, Clarissa; Stelick, Scott; Cady, Nathaniel; Batt, Carl

    2010-01-07

    Low-power electrolysis-based microfluidic pumps utilizing the principle of hydraulics, integrated with microfluidic channels in polydimethylsiloxane (PDMS) substrates, are presented. The electro-hydraulic pumps (EHPs), consisting of electrolytic, hydraulic and fluidic chambers, were investigated using two types of electrodes: stainless steel for larger volumes and annealed gold electrodes for smaller-scale devices. Using a hydraulic fluid chamber and a thin flexible PDMS membrane, this novel prototype successfully separates the reagent fluid from the electrolytic fluid, which is particularly important for biological and chemical applications. The hydraulic advantage of the EHP device arises from the precise control of flow rate by changing the electrolytic pressure generated, independent of the volume of the reagent chamber, mimicking the function of a hydraulic press. Since the reservoirs are pre-filled with reagents and sealed prior to testing, external fluid coupling is minimized. The stainless steel electrode EHPs were manufactured with varying chamber volume ratios (1 : 1 to 1 : 3) as a proof-of-concept, and exhibited flow rates of 1.25 to 30 microl/min with electrolysis-based actuation at 2.5 to 10 V(DC). The miniaturized gold electrode EHPs were manufactured with 3 mm diameters and 1 : 1 chamber volume ratios, and produced flow rates of 1.24 to 7.00 microl/min at 2.5 to 10 V(AC), with a higher maximum sustained pressure of 343 KPa, suggesting greater device robustness using methods compatible with microfabrication. The proposed technology is low-cost, low-power and disposable, with a high level of reproducibility, allowing for ease of fabrication and integration into existing microfluidic lab-on-a-chip and analysis systems.

  17. Solid Rocket Booster Hydraulic Pump Port Cap Joint Load Testing

    Science.gov (United States)

    Gamwell, W. R.; Murphy, N. C.

    2004-01-01

    The solid rocket booster uses hydraulic pumps fabricated from cast C355 aluminum alloy, with 17-4 PH stainless steel pump port caps. Corrosion-resistant steel, MS51830 CA204L self-locking screw thread inserts are installed into C355 pump housings, with A286 stainless steel fasteners installed into the insert to secure the pump port cap to the housing. In the past, pump port cap fasteners were installed to a torque of 33 Nm (300 in-lb). However, the structural analyses used a significantly higher nut factor than indicated during tests conducted by Boeing Space Systems. When the torque values were reassessed using Boeing's nut factor, the fastener preload had a factor of safety of less than 1, with potential for overloading the joint. This paper describes how behavior was determined for a preloaded joint with a steel bolt threaded into steel inserts in aluminum parts. Finite element models were compared with test results. For all initial bolt preloads, bolt loads increased as external applied loads increased. For higher initial bolt preloads, less load was transferred into the bolt, due to external applied loading. Lower torque limits were established for pump port cap fasteners and additional limits were placed on insert axial deformation under operating conditions after seating the insert with an initial preload.

  18. 挖掘机正流量泵控液压系统的特性分析%Analysis on positive flow pump control system of hydraulic excavator

    Institute of Scientific and Technical Information of China (English)

    贾文华; 殷晨波; 曹东辉; 陈克雷

    2011-01-01

    采用泵控挖掘机液压系统特性分析方法,在分析泵的输出特性的基础上,给出确定先导压力信号和控制泵排量的方法,并对泵的输出特性进行了仿真和实验研究.结果表明:正流量控制下,泵的排量由执行器流量需求和油泵的p-Q曲线动态实时调节,系统具有良好的负载流量适应性和负载敏感性,其液压系统中不存在负压,只有约0.5 MPa的背压,回油功率损失几乎为0.%Some problems were studied for the positive flow control of pump system of hydraulic excavator. Based on the analysis of pump output characteristics, the control method for pilot pressure and the pump displacement was given. The pump output characteristics were investigated by simulation and experiment. Results showed that flow was adjusted by flow required by actuator and the p - Q curve of main pump. For the positive system, the excavator had good load flow adaptability and load sensitivity. The power loss of returning oil path was almost zero. In the returning path, the negative pressure was only 0.5 Mpa for the positive system.

  19. Hydraulic refinement of an intraarterial microaxial blood pump.

    Science.gov (United States)

    Siess, T; Reul, H; Rau, G

    1995-05-01

    Intravascularly operating microaxial pumps have been introduced clinically proving to be useful tools for cardiac assist. However, a number of complications have been reported in literature associated with the extra-corporeal motor and the flexible drive shaft cable. In this paper, a new pump concept is presented which has been mechanically and hydraulically refined during the developing process. The drive shaft cable has been replaced by a proximally integrated micro electric motor and an extra-corporeal power supply. The conduit between pump and power supply consists of only an electrical power cable within the catheter resulting in a device which is indifferent to kinking and small curvature radii. Anticipated insertion difficulties, as a result of a large outer pump diameter, led to a two-step approach with an initial 6,4mm pump version and a secondary 5,4mm version. Both pumps meet the hydraulic requirement of at least 2.5l/min at a differential pressure of 80-100 mmHg. The hydraulic refinements necessary to achieve the anticipated goal are based on ongoing hydrodynamic studies of the flow inside the pumps. Flow visualization on a 10:1 scale model as well as on 1:1 scale pumps have yielded significant improvements in the overall hydraulic performance of the pumps. One example of this iterative developing process by means of geometrical changes on the basis of flow visualization is illustrated for the 6.4mm pump.

  20. The numerical simulation based on CFD of hydraulic turbine pump

    Science.gov (United States)

    Duan, X. H.; Kong, F. Y.; Liu, Y. Y.; Zhao, R. J.; Hu, Q. L.

    2016-05-01

    As the functions of hydraulic turbine pump including self-adjusting and compensation with each other, it is far-reaching to analyze its internal flow by the numerical simulation based on CFD, mainly including the pressure field and the velocity field in hydraulic turbine and pump.The three-dimensional models of hydraulic turbine pump are made by Pro/Engineer software;the internal flow fields in hydraulic turbine and pump are simulated numerically by CFX ANSYS software. According to the results of the numerical simulation in design condition, the pressure field and the velocity field in hydraulic turbine and pump are analyzed respectively .The findings show that the static pressure decreases systematically and the pressure gradient is obvious in flow area of hydraulic turbine; the static pressure increases gradually in pump. The flow trace is regular in suction chamber and flume without spiral trace. However, there are irregular traces in the turbine runner channels which contrary to that in flow area of impeller. Most of traces in the flow area of draft tube are spiral.

  1. EQUILIBRIO HIDRÁULICO EN SISTEMAS DE BOMBEO MINERO: ESTUDIO DE CASO HYDRAULIC BALANCE ON MINE PUMPING SYSTEMS: A CASE STUDY

    Directory of Open Access Journals (Sweden)

    Luis Enrique Ortiz Vidal

    2010-12-01

    Full Text Available Fue evaluada la influencia del uso de los métodos de Hazen-Williams y Darcy-Weisbach en el establecimiento del equilibrio hidráulico para un sistema de bombeo minero. Empresas mineras con actividad subterránea hacen uso de estaciones de bombeo para evacuar el agua, producto de la profundización de sus labores. Proyectistas y vendedores de equipos de bombeo usan diferentes expresiones para la estimación de la pérdida de carga total del sistema, parámetro importante para la determinación del equilibrio hidráulico. El presente estudio tiene como objetivo analizar y validar la aplicación de algunas de estas expresiones para un sistema de bombeo minero. Las principales características del estudio de caso son: caudal de agua de 1.350 l/s; tuberías de acero y HDPE de 16 in y 18 in de diámetro, respectivamente; longitud total de la tubería de 2.900 m; y una altura geodésica de 230 m. Los cálculos fueron realizados con los métodos ya mencionados teniendo las expresiones de Haaland, Swamee-Jain y Churchill como factores de fricción. Los resultados obtenidos fueron comparados con los medidos en campo, teniéndose una desviación máxima del sistema de 28,6% y 3,1% para la pérdida de carga y Hman total, respectivamente.This study evaluates the influence of the Hazen-Williams and Darcy-Weisbach methods on the hydraulic balance of a mine pumping system. Underground mining sompanies use pumping stations for evacuate the produced water. Designers and equipment sellers use different expressions to estimate the head loss. This study analyzes and validates the implementation of some of these expressions to a mine pumping system. The features of the case study are: water flow rate of 1350 l/s, steel and HDPE diameter pipes of 16in. and 18in., respectively. The total pipe length is 2900m, and the hydraulic height difference is 230 m. The calculations were performed by the above-mention methods, taking the expressions of Haaland, Swamee-Jain and

  2. 竖井贯流泵装置流道水力性能分析%Hydraulic Performance Analysis on the Flow Passage of Shaft Tubular Pump System

    Institute of Scientific and Technical Information of China (English)

    杨雪林; 黄毅; 陈国标

    2012-01-01

    针对竖井贯流泵装置中,进、出水流道水力损失所占比重较大的问题,通过分析泵装置流道的三维数值模拟结果,对流道型线进行了优化设计,获得了水力性能较好的型线方案。结合模型试验结果,表明流道型线优化后的水泵装置效率较高,具有较好的水力性能。%According to the facts that the hydraulic losses of inlet and outlet passage takes a large proportion in shaft tubular pump sets, 3D numerical simulation of pump sets'passage is analyzed, the passage shape is optimally designed and the passage shape with better hydraulic performance is obtained. Comparing with pump model device experiment, the pump sets with optimal passage shape is of high efficiency and good hydraulic performance.

  3. A study of the key problem of optimum hydraulic design for a pump system with low head%低扬程泵装置优化水力设计的关键问题

    Institute of Scientific and Technical Information of China (English)

    徐磊; 陆林广; 梁金栋; 王刚; 董雷

    2012-01-01

    An in-depth study on the problem of optimum hydraulic design for a pump system with low head has been made in this paper. The efficiency of a pump system with low head is divided into two aspects: one is pump efficiency and the other is conduit efficiency. Some problems about the definition of pump segment in the pump system, efficiency modification for the pump segment and flow pattern of inlet conduit in the pump system are discussed. The influence of conduit hydraulic loss on the conduit efficiency and pump system efficiency is analyzed and the influence of both flow velocity and flow pattern on the conduit hydraulic loss is illustrated by calculation samples, from which the conclusions are drawn as follows: under the condition of low head, the key problem of how to increase the pump system efficiency is to reduce the conduit hydraulic loss as much as possible; The essential way to reduce the conduit hydraulic loss may be to lower the flow velocity and improve the flow pattern in the conduit. The approaches to reduce the conduit hydraulic loss mainly include: to choose the type of pump system and conduit with the optimal hydraulic performance, to suitably lower pump nD value, to choose better pump model, to suitably relax the restrictions for conduit control size, and to sufficiently optimize hydraulic design for conduit shape.%对低扬程泵装置的优化水力设计问题进行了较为深入的研究.将低扬程泵装置效率分解为水泵效率和流道效率两个方面,讨论了泵装置中泵段的概念和泵段效率的修正等问题,分析了流道水力损失对流道效率及泵装置效率的影响,通过实例说明了流道内的流速和流态对流道水力损失的影响,得到以下结论:在低扬程条件下,尽可能减小流道水力损失是提高泵装置效率的关键;减小流道水力损失的关键是降低流道内的流速和改善流道内的流态,其途径主要包括选择水力性能最优的泵装置型式和流道

  4. Servo Controlled Variable Pressure Modification to Space Shuttle Hydraulic Pump

    Science.gov (United States)

    Kouns, H. H.

    1983-01-01

    Engineering drawings show modifications made to the constant pressure control of the model AP27V-7 hydraulic pump to an electrically controlled variable pressure setting compensator. A hanger position indicator was included for continuously monitoring hanger angle. A simplex servo driver was furnished for controlling the pressure setting servovalve. Calibration of the rotary variable displacement transducer is described as well as pump performance and response characteristics.

  5. Simulation of three-demensional unsteady flow in hydraulic pumps

    NARCIS (Netherlands)

    Esch, van Bartholomeus Petrus Maria

    1997-01-01

    In this thesis it is shown that the flow in hydraulic pumps of the radial and mixedflow type, operating at conditions not too far from design point, can be considered as an incompressible potential flow, where the influence of viscosity is restricted to thin boundary layers, wakes and mixing areas.

  6. Design and Construction of a Hydraulic Ram Pump

    Directory of Open Access Journals (Sweden)

    Shuaibu Ndache MOHAMMED

    2007-09-01

    Full Text Available The Design and Fabrication of a Hydraulic Ram Pump (Hydram is undertaken. It is meant to lift water from a depth of 2m below the surface with no other external energy source required. Based on the design the volume flow rate in the derived pipe was 4.5238 × 10-5 m3/s (2.7 l/min, Power was 1.273 kW which results in an efficiency of 57.3%. The overall cost of fabrication of this hydram shows that the pump is relatively cheaper than the existing pumps.

  7. 工程机械液压系统性能试验台中的液压泵动态性能试验研究%Experimental Study on Dynamic Performance of Hydraulic Pump of Construction Machinery Hydraulic System Performance Testing Platform

    Institute of Scientific and Technical Information of China (English)

    朱发新; 林少芬; 龚雅萍; 王伟军; 张志斌

    2011-01-01

    Taking the steering system of the construction machinery hydraulic system performance testing platform as physical model, the dynamic performances of the hydraulic pump were studied by local experiments. According to the test results, the influences of motor speed, fuel tank position, load voltage on the hydraulic pump performance as well as the effect of hydraulic pump pressure and flow change to the hydraulic system were obtained.%以工程机械液压系统性能试验台的转向系统为物理模型,通过试验研究液压泵的动态性能.根据试验结果,得出油箱位置、变频电机转速、加载电压等系统工况对液压泵动态性能的影响,同时得出液压泵压力、流量的动态变化对液压系统的影响.

  8. Analysis and Reform on Reliability of Circulating Water Pump and Hydraulic-control Butterfly Valve Control System%循环水泵及液控蝶阀控制系统可靠性分析及改造

    Institute of Scientific and Technical Information of China (English)

    郭凌云

    2014-01-01

    This paper introduces and analyzes existing problems of circulating water pump and hydraulic-control butterfly valve control system in Guangdong Datang Chaozhu power plant and proposes optimization measures for improving reliabili-ty.Referred measures are feasible to greatly improve reliability of circulating water pump and hydraulic-control butterfly valve control system and safety of the unit.%对广东大唐潮州电厂循环水泵、液控蝶阀控制系统存在的问题进行了介绍和分析,并提出提高可靠性改造的优化措施。这些措施大大提高了循环水泵及液控蝶阀控制系统的可靠性及机组的安全性。

  9. Little pump that could : hydraulic submersible pump tackles low pressure, low fluid volume gas wells

    Energy Technology Data Exchange (ETDEWEB)

    Ross, E.

    2008-03-15

    A new pump designed by Global Energy Services was described. The pump was designed to address problems associated with downhole pumps in coalbed methane (CBM) wells. The hydraulic submersible pump (HSP) was designed to address issues related to artificial lift gas lock and solids. The pump has been installed at 35 CBM wells in western Canada as well as at natural gas wells with low pressures and low rates of water. The HSP technology was designed for use with wells between 0.01 cubic metres and 24 cubic metres per day of water. A single joystick in the surface unit is used to determine the amount of hydraulic oil delivered to the bottomhole pump when then determines the amounts of fluid produced. A 10-slot self-flushing sand screen is used to filter out particles of sand, coal, and cement. The pump also includes a hydraulic flow control valve to control water volumes. The HSP's positive displacement design makes it suitable for use in horizontal and deviated wells. The pump technology is currently being re-designed to handle larger volumes at deeper depths. 2 figs.

  10. Hydraulic Yaw System

    DEFF Research Database (Denmark)

    Stubkier, Søren; Pedersen, Henrik C.; Mørkholt, M.

    As wind turbines increase in size, combined with increased lifetime demands, new methods for load reduction needs to be examined. One method is to make the yaw system of the turbine soft/flexible and hereby dampen the loads to the system, which is the focus of the current paper. By utilizing...... the HAWC2 aeroelastic code and an extended model of the NREL 5MW turbine combined with a simplified linear model of the turbine, the parameters of the soft yaw system are optimized to reduce loading in critical components. Results shows that a significant reduction in fatigue and extreme loads to the yaw...... system and rotor shaft when utilizing the soft yaw drive concept compared to the original stiff yaw system. The physical demands of the hydraulic yaw system are furthermore examined for a life time of 20 years. Based on the extrapolated loads, the duty cycles show that it is possible to construct...

  11. A teaspoon pump for pumping blood with high hydraulic efficiency and low hemolysis potential.

    Science.gov (United States)

    Dame, D

    1996-06-01

    Virtually all blood pumps contain some kind of rubbing, sliding, closely moving machinery surfaces that are exposed to the blood being pumped. These valves, internal bearings, magnetic bearing position sensors, and shaft seals cause most of the problems with blood pumps. The original teaspoon pump design prevented the rubbing, sliding machinery surfaces from contacting the blood. However, the hydraulic efficiency was low because the blood was able to "slip around" the rotating impeller so that the blood itself never rotated fast enough to develop adequate pressure. An improved teaspoon blood pump has been designed and tested and has shown acceptable hydraulic performance and low hemolysis potential. The new pump uses a nonrotating "swinging" hose as the pump impeller. The fluid enters the pump through the center of the swinging hose; therefore, there can be no fluid slip between the revolving blood and the revolving impeller. The new pump uses an impeller that is comparable to a flexible garden hose. If the free end of the hose were swung around in a circle like half of a jump rope, the fluid inside the hose would rotate and develop pressure even though the hose impeller itself did not "rotate"; therefore, no rotating shaft seal or internal bearings are required.

  12. Hydraulic drive and control system of the cone collecting robot

    Institute of Scientific and Technical Information of China (English)

    Kong Qinghua; Liu Jinhao; Lu Huaimin

    1999-01-01

    This paper describes the basic structure and design and operation principle of the hydraulic drive and control system with two pumps and two circuits. The manipulator of the cone collecting robot designed is full driven by hydraulic, which has five freedoms. The computer and electrohydraulic proportion velocity regulating valve were installed to realize open loop serve control for reducing cost and easy application.

  13. FOUR WHEELS DRIVEN INDEPENDENTLY BY ONE PUMP DRIVING FOUR HYDRAULIC MOTORS

    Institute of Scientific and Technical Information of China (English)

    Wu Baolin; Qiu Lihua; Wang Zhanlin

    2005-01-01

    An improved Narendra model reference adaptive control (MRAC) scheme is proposed to research one variable displacement pump driving four hydraulic variable displacement motors. This approach not only ensures the underdamped and unstable system be global uniform asymptotic stability, but also has good robustness in these aspects of modeling uncertainty, pressure fluctuation of constant pressure network, and disturbance from external load, which also upgrades the rapidity of system response so as to make controlled system with nicer dynamic quality. The scheme of one pump driving four motors can meet the demand on off-road mobility of engineering vehicles and armored cars. A proof of stability about improved Narendra MRAC scheme is also given.

  14. Determining the Conditions for the Hydraulic Impacts Emergence at Hydraulic Systems

    Directory of Open Access Journals (Sweden)

    Mazurenko A.S.

    2017-08-01

    Full Text Available This research aim is to develop a method for modeling the conditions for the critical hydrau-lic impacts emergence on thermal and nuclear power plants’ pipeline systems pressure pumps depart-ing from the general provisions of the heat and hydrodynamic instability theory. On the developed method basis, the conditions giving rise to the reliability-critical hydraulic impacts emergence on pumps for the thermal and nuclear power plants’ typical pipeline system have been determined. With the flow characteristic minimum allowable (critical sensitivity, the flow velocity fluctuations ampli-tude reaches critical values at which the pumps working elements’ failure occurs. The critical hydrau-lic impacts emergence corresponds to the transition of the vibrational heat-hydrodynamic instability into an aperiodic one. As research revealed, a highly promising approach as to the preventing the criti-cal hydraulic impacts related to the foreground use of pumps having the most sensitive consumption (at supply network performance (while other technical characteristics corresponding to that parame-ter. The research novelty refers to the suggested method elaborated by the authors’ team, which, in contrast to traditional approaches, is efficient in determining the pump hydraulic impact occurrence conditions when the vibrational heat-hydrodynamic instability transition to the aperiodic instability.

  15. Water Hydraulic Systems

    DEFF Research Database (Denmark)

    Conrad, Finn

    2005-01-01

    The paper presents research results using IT-Tools for CAD and dynamic modelling, simulation, analysis, and design of water hydraulic actuators for motion control of machines, lifts, cranes and robots. Matlab/Simulink and CATIA are used as IT-Tools. The contributions include results from on......-going research projects on fluid power and mechatronics based on tap water hydraulic servovalves and linear servo actuators and rotary vane actuators for motion control and power transmission. Development and design a novel water hydraulic rotary vane actuator for robot manipulators. Proposed mathematical...... modelling, control and simulation of a water hydraulic rotary vane actuator applied to power and control a two-links manipulator and evaluate performance. The results include engineering design and test of the proposed simulation models compared with IHA Tampere University’s presentation of research...

  16. Mobile hydraulic power supply. Liquid piston Stirling engine pump

    Energy Technology Data Exchange (ETDEWEB)

    Ven, James D. van de [100 Institute Road, Department of Mechanical Engineering, Worcester Polytechnic Institute, Worcester, MA 01609 (United States)

    2009-11-15

    Conventional mobile hydraulic power supplies involve numerous kinematic connections and are limited by the efficiency, noise, and emissions of internal combustion engines. The Stirling cycle possesses numerous benefits such as the ability to operate from any heat source, quiet operation, and high theoretical efficiency. The Stirling engine has seen limited success due to poor heat transfer in the working chambers, difficulty sealing low-molecular weight gases at high pressure, and non-ideal piston displacement profiles. As a solution to these limitations, a liquid piston Stirling engine pump is proposed. The liquid pistons conform to irregular volumes, allowing increased heat transfer through geometry features on the interior of the working chambers. Creating near-isothermal operation eliminates the costly external heat exchangers and increases the engine efficiency through decreasing the engine dead space. The liquid pistons provide a positive gas seal and thermal transport to the working chambers. Controlling the flow of the liquid pistons with valves enables matching the ideal Stirling cycle and creates a direct hydraulic power supply. Using liquid hydrogen as a fuel source allows cooling the compression side of the engine before expanded the fuel into a gas and combusting it to heat the expansion side of the engine. Cooling the compression side not only increases the engine power, but also significantly increases the potential thermal efficiency of the engine. A high efficiency Stirling engine makes energy regeneration through reversing the Stirling cycle practical. When used for regeneration, the captured energy can be stored in thermal batteries, such as a molten salt. The liquid piston Stirling engine pump requires further research in numerous areas such as understanding the behavior of the liquid pistons, modeling and optimization of a full engine pump, and careful selection of materials for the extreme operating temperatures. Addressing these obtainable

  17. System Topology Optimization - An Approach to System Design of Electro-Hydraulic-Mechanical Systems

    DEFF Research Database (Denmark)

    Andersen, T. O.; Hansen, M. R.; Conrad, Finn

    2003-01-01

    design the procedure attempts to find the optimal topology and the related parameters. The topology considerations comprise the type of hydraulic pump, the employment of knee linkages or not as well as the type of hydraulic actuators. The design variables also include the signals to the proportional......The current paper presents an approach to system design of combined electro-hydraulic-mechanical systems. The approach is based on the concurrent handling of the topology as well as the design parameters of the mechanical, hydraulic and controller sub- systems, respectively. Based on an initial...... valve in a number of predefined load cases as well as the hydraulic and mechanical parameters....

  18. Thermal-hydraulic modeling and analysis of hydraulic system by pseudo-bond graph

    Institute of Scientific and Technical Information of China (English)

    胡均平; 李科军

    2015-01-01

    To increase the efficiency and reliability of the thermodynamics analysis of the hydraulic system, the method based on pseudo-bond graph is introduced. According to the working mechanism of hydraulic components, they can be separated into two categories: capacitive components and resistive components. Then, the thermal-hydraulic pseudo-bond graphs of capacitive C element and resistance R element were developed, based on the conservation of mass and energy. Subsequently, the connection rule for the pseudo-bond graph elements and the method to construct the complete thermal-hydraulic system model were proposed. On the basis of heat transfer analysis of a typical hydraulic circuit containing a piston pump, the lumped parameter mathematical model of the system was given. The good agreement between the simulation results and experimental data demonstrates the validity of the modeling method.

  19. Water Hydraulic Systems

    DEFF Research Database (Denmark)

    Conrad, Finn

    2005-01-01

    The paper presents research results using IT-Tools for CAD and dynamic modelling, simulation, analysis, and design of water hydraulic actuators for motion control of machines, lifts, cranes and robots. Matlab/Simulink and CATIA are used as IT-Tools. The contributions include results from on-going...

  20. Absorption heat pump system

    Science.gov (United States)

    Grossman, G.

    1982-06-16

    The efficiency of an absorption heat pump system is improved by conducting liquid from a second stage evaporator thereof to an auxiliary heat exchanger positioned downstream of a primary heat exchanger in the desorber of the system.

  1. Performance optimization of grooved slippers for aero hydraulic pumps

    Institute of Scientific and Technical Information of China (English)

    Chen Juan; Ma Jiming; Li Jia; Fu Yongling

    2016-01-01

    A computational fluid dynamics (CFD) simulation method based on 3-D Navier–Stokes equation and Arbitrary Lagrangian–Eulerian (ALE) method is presented to analyze the grooved slip-per performance of piston pump. The moving domain of grooved slipper is transformed into a fixed reference domain by the ALE method, which makes it convenient to take the effects of rotate speed, body force, temperature, and oil viscosity into account. A geometric model to express the complex structure, which covers the orifice of piston and slipper, vented groove and the oil film, is constructed. Corresponding to different oil film thicknesses calculated in light of hydrostatic equilibrium theory and boundary conditions, a set of simulations is conducted in COMSOL to analyze the pump characteristics and effects of geometry (groove width and radius, orifice size) on these characteristics. Furthermore, the mechanics and hydraulics analyses are employed to validate the CFD model, and there is an excellent agreement between simulation and analytical results. The simulation results show that the sealing land radius, orifice size and groove width all dramatically affect the slipper behavior, and an optimum tradeoff among these factors is conducive to optimizing the pump design.

  2. Performance optimization of grooved slippers for aero hydraulic pumps

    Directory of Open Access Journals (Sweden)

    Juan Chen

    2016-06-01

    Full Text Available A computational fluid dynamics (CFD simulation method based on 3-D Navier–Stokes equation and Arbitrary Lagrangian–Eulerian (ALE method is presented to analyze the grooved slipper performance of piston pump. The moving domain of grooved slipper is transformed into a fixed reference domain by the ALE method, which makes it convenient to take the effects of rotate speed, body force, temperature, and oil viscosity into account. A geometric model to express the complex structure, which covers the orifice of piston and slipper, vented groove and the oil film, is constructed. Corresponding to different oil film thicknesses calculated in light of hydrostatic equilibrium theory and boundary conditions, a set of simulations is conducted in COMSOL to analyze the pump characteristics and effects of geometry (groove width and radius, orifice size on these characteristics. Furthermore, the mechanics and hydraulics analyses are employed to validate the CFD model, and there is an excellent agreement between simulation and analytical results. The simulation results show that the sealing land radius, orifice size and groove width all dramatically affect the slipper behavior, and an optimum tradeoff among these factors is conducive to optimizing the pump design.

  3. 14 CFR 29.1435 - Hydraulic systems.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Hydraulic systems. 29.1435 Section 29.1435... STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Equipment Miscellaneous Equipment § 29.1435 Hydraulic systems. (a) Design. Each hydraulic system must be designed as follows: (1) Each element of the hydraulic system...

  4. 14 CFR 23.1435 - Hydraulic systems.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Hydraulic systems. 23.1435 Section 23.1435... § 23.1435 Hydraulic systems. (a) Design. Each hydraulic system must be designed as follows: (1) Each hydraulic system and its elements must withstand, without yielding, the structural loads expected...

  5. Joint Estimation of Hydraulic and Poroelastic Parameters from a Pumping Test.

    Science.gov (United States)

    Berg, Steven J; Illman, Walter A; Mok, Chin Man W

    2015-01-01

    The coupling of hydraulic and poroelastic processes is critical in predicting processes involving the deformation of the geologic medium in response to fluid extraction or injection. Numerical models that consider the coupling of hydraulic and poroelastic processes require the knowledge of relevant parameters for both aquifer and aquitard units. In this study, we jointly estimated hydraulic and poroelastic parameters from pumping test data exhibiting "reverse water level fluctuations," known as the Noordbergum effect, in aquitards adjacent to a pumped aquifer. The joint estimation was performed by coupling BIOT2, a finite element, two-dimensional, axisymmetric, groundwater model that considers poroelastic effects with the parameter estimation code PEST. We first tested our approach using a synthetic data set with known parameters. Results of the synthetic case showed that for a simple layered system, it was possible to reproduce accurately both the hydraulic and poroelastic properties for each layer. We next applied the approach to pumping test data collected at the North Campus Research Site (NCRS) on the University of Waterloo (UW) campus. Based on the detailed knowledge of stratigraphy, a five-layer system was modeled. Parameter estimation was performed by: (1) matching drawdown data individually from each observation port and (2) matching drawdown data from all ports at a single well simultaneously. The estimated hydraulic parameters were compared to those obtained by other means at the site yielding good agreement. However, the estimated shear modulus was higher than the static shear modulus, but was within the range of dynamic shear modulus reported in the literature, potentially suggesting a loading rate effect.

  6. Design of Hydraulic Pump Detector Based on ARM%基于ARM的液压泵检测仪设计

    Institute of Scientific and Technical Information of China (English)

    高立龙; 王新晴; 蒋文峰; 张红涛

    2013-01-01

    Aim at the conditions that engineering machine has big fluidity, engineering machine hydraulic system is complex and hydraulic pump detection is difficult on the spot. This paper introduces a design of the portable hydraulic pump detector based on ARM embedded system. This detector has S3C6410A based on ARM11 as the core processor, designing signal regulate circuit, photoelectric isolating circuit and friendly data acquisition software, introducing the installation and test methods of hydraulic pump detection, realizing the collection of pump meters and the hydraulic pump performance test on the spot.%针对工程机械流动性大、液压系统复杂、液压泵现场检测困难等情况.该文设计了一种基于ARM嵌入式系统的便携式液压泵检测仪,该检测仪以ARM 11类型处理器S3C6410A为核心,设计了相应的信号整流电路、光电隔离电路和友好的数据采集软件,介绍了液压泵现场检测的安装和检测方法,实现了液压泵参数的现场快速采集和性能曲线的现场绘制.

  7. Ground-water system, estimation of aquifer hydraulic properties, and effects of pumping on ground-water flow in Triassic sedimentary rocks in and near Lansdale, Pennsylvania

    Science.gov (United States)

    Senior, Lisa A.; Goode, Daniel J.

    1999-01-01

    Ground water in Triassic-age sedimentary fractured-rock aquifers in the area of Lansdale, Pa., is used as drinking water and for industrial supply. In 1979, ground water in the Lansdale area was found to be contaminated with trichloroethylene, tetrachloroethylene, and other man-made organic compounds, and in 1989, the area was placed on the U.S. Environmental Protection Agency's (USEPA) National Priority List as the North Penn Area 6 site. To assist the USEPA in the hydrogeological assessment of the site, the U.S. Geological Survey began a study in 1995 to describe the ground-water system and to determine the effects of changes in the well pumping patterns on the direction of ground-water flow in the Lansdale area. This determination is based on hydrologic and geophysical data collected from 1995-98 and on results of the simulation of the regional ground-water-flow system by use of a numerical model.Correlation of natural-gamma logs indicate that the sedimentary rock beds strike generally northeast and dip at angles less than 30 degrees to the northwest. The ground-water system is confined or semi-confined, even at shallow depths; depth to bedrock commonly is less than 20 feet (6 meters); and depth to water commonly is about 15 to 60 feet (5 to 18 meters) below land surface. Single-well, aquifer-interval-isolation (packer) tests indicate that vertical permeability of the sedimentary rocks is low. Multiple-well aquifer tests indicate that the system is heterogeneous and that flow appears primarily in discrete zones parallel to bedding. Preferred horizontal flow along strike was not observed in the aquifer tests for wells open to the pumped interval. Water levels in wells that are open to the pumped interval, as projected along the dipping stratigraphy, are drawn down more than water levels in wells that do not intersect the pumped interval. A regional potentiometric map based on measured water levels indicates that ground water flows from Lansdale towards discharge

  8. Aircraft Hydraulic Systems Dynamic Analysis

    Science.gov (United States)

    1978-10-01

    4400 PSIG OUTLET PRESSURE ~’f UM5 S1 l .( FIF ~0RV lR 1 .I. AP (c R (V) IFWM) APPROX C ASE !VPý :iI S ReUN N•;MRF.. r p kN i t, isI A! f IN, I:E • ’l...and 1F.GI pump modelo were assumed from data supplied by CECO. 165 _ -- --- - SECTION V HYDRAULIC MOTOR MODEL DEVELOPMENT AND VERIFICATION A fixed...3 70 P.,0 601 ~4 M24.0 3 1p ’, 4 r I 1 1 ISIS 2411 APPENDIX E (CONT.) HSFR TECHNICAL MANUAL (AFAPL-TR-76-43, VOL. IV) 4.15 VANE PU`MP SUBROUTINE 4.15A

  9. Numerical Flow Analysis of a Hydraulic Gear Pump

    Science.gov (United States)

    Panta, Yogendra M.; Kim, Hyun W.; Pierson, Hazel M.

    2007-11-01

    The pressure that exists at the outlet port of a gear pump is a result of system load that was created by a resistance to the fluid flow. However, the flow pattern created inside an external gear pump by the motion of two oppositely rotating gears is deceptively complex, despite the simple geometry of the gear pump. The flow cannot be analyzed, based on a steady-state assumption that is usually employed to analyze turbo-machinery although the flow is essentially steady. Only the time-dependent, transient analysis with moving dynamic meshing technique can predict the motion of the fluid flow against the very high adverse pressure distribution. Although the complexity of analysis is inherent in all positive displacement pumps, gear pumps pose an exceptional challenge in modeling due to the fact that there are two rotating components that are housed within a stationary casing and the gears must be in contact with each other all the time. Fluent, commercially available computational fluid dynamics (CFD) software was used to analyze the flow of the gear pump. The investigation done by CFD produced significant information on flow patterns, velocity and pressure fields, and flow rates.

  10. 泵控电液混合驱动系统在板料折弯机上的应用研发%The application and exploration of pump-control electro-hydraulic driving system in press brake for sheet metal

    Institute of Scientific and Technical Information of China (English)

    李振光; 汪立新; 温峰虎; 雷斌华; 茅问宇

    2013-01-01

    The electric and hydraulic principles of the pump-control electro-hydraulic driving system have been introduced in the text, as well as the advantages of pump-control press brake comparing with the conventional one. It is pointed out that the application of pump-control electro-hydraulic driving system is more widely, which has a broad marketing prospect.%介绍了泵控电液混合驱动系统的电气原理、液压原理,以及与传统折弯机相比泵控折弯机的诸多优点,指出泵控电液混合驱动系统的应用将越来越广泛,具有广阔的市场前景.

  11. FOREWORD: 26th IAHR Symposium on Hydraulic Machinery and Systems

    Science.gov (United States)

    Wu, Yulin; Wang, Zhengwei; Liu, Shuhong; Yuan, Shouqi; Luo, Xingqi; Wang, Fujun

    2012-11-01

    The 26th IAHR Symposium on Hydraulic Machinery and Systems, will be held in Beijing, China, 19-23 August 2012. It is jointly organized by Tsinghua University, State Key Laboratory of Hydro Science and Hydraulic Engineering, China, Jiangsu University, Xi'an University of Technology, China Agricultural University, National Engineering Research Center of Hydropower Equipment and Dongfang Electric Machinery Co., Ltd. It is the second time that China hosts such a symposium. By the end of 2011, the China electrical power system had a total of 1 050 GW installed power, out of which 220 GW was in hydropower plants. The energy produced in hydropower facilities was 662.6 TWh from a total of 4,720 TWh electrical energy production in 2011. Moreover, in 2020, new hydropower capacities are going to be developed, with a total of 180 GW installed power and an estimated 708 TWh/year energy production. And in 2011, the installed power of pumped storage stations was about 25GW. In 2020, the data will be 70GW. At the same time, the number of pumps used in China is increasing rapidly. China produces about 29,000,000 pumps with more than 220 series per year. By the end of 2011, the Chinese pumping system has a total of 950 GW installed power. The energy consumed in pumping facilities was 530 TWh in 2011. The pump energy consumption accounted for about 12% of the national electrical energy production. Therefore, there is a large market in the field of hydraulic machinery including water turbines, pump turbines and a variety of pumps in China. There are also many research projects in this field. For example, we have conducted National Key Research Projects on 1000 MW hydraulic turbine, and on the pump turbines with high head, as well as on the large capacity pumps for water supply. Tsinghua University of Beijing is proud to host the 26th IAHR Symposium on Hydraulic Machinery and Systems. Tsinghua University was established in 1911, after the founding of the People's Republic of China. It

  12. NOISE IDENTIFICATION FOR HYDRAULIC AXIAL PISTON PUMP BASED ON ARTIFICIAL NEURAL NETWORKS

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    The noise identification model of the neural networks is established for the 63SCY14-1B hydraulic axial piston pump. Taking four kinds of different port plates as instances, the noise identification is successfully carried out for hydraulic axial piston pump based on experiments with the MATLAB and the toolbox of neural networks. The operating pressure, the flow rate of hydraulic axial piston pump, the temperature of hydraulic oil, and bulk modulus of hydraulic oil are the main parameters having influences on the noise of hydraulic axial piston pump. These four parameters are used as inputs of neural networks, and experimental data of the noise are used as outputs of neural networks. Error of noise identification is less than 1% after the neural networks have been trained. The results show that the noise identification of hydraulic axial piston pump is feasible and reliable by using artificial neural networks. The method of noise identification with neural networks is also creative one of noise theoretical research for hydraulic axial piston pump.

  13. Analysis on Discharge Characteristics of the Variable Frequency Electric Motor Pump in Aircraft Hydraulic System%飞机液压系统变频电动泵输出特性分析

    Institute of Scientific and Technical Information of China (English)

    高锋; 夏鹤鸣

    2015-01-01

    Focusing on the discharge pressure and flow control problem of hydraulic pump powered by variable frequency electric power system in aircraft, the pressure control structure with the unload function was modeled and analyzed. Discharge characteristics of the pump under variable frequency were obtained and the feasibility of the variable frequency electric pump was validated.%针对某型飞机采用变频供电系统后液压系统电动泵在大频率范围内工作造成的压力流量控制问题,提出了包含卸荷功能的电动泵压力控制结构,建模并分析了该电动泵输出特性,得到典型供电频率下该电动泵的工作特性,验证了这种变频电动泵调压结构的可行性。

  14. Intelligent Hydraulic Actuator and Exp-based Modelling of Losses in Pumps and .

    DEFF Research Database (Denmark)

    Zhang, Muzhi

    A intelligent fuzzy logic self-organising PD+I controller for a gearrotor hydraulic motor was developed and evaluated. Furthermore, a experimental-based modelling methods with a new software tool 'Dynamodata' for modelling of losses in hydraulic motors and pumps was developed.......A intelligent fuzzy logic self-organising PD+I controller for a gearrotor hydraulic motor was developed and evaluated. Furthermore, a experimental-based modelling methods with a new software tool 'Dynamodata' for modelling of losses in hydraulic motors and pumps was developed....

  15. High Pressure Hydraulic Distribution System

    Science.gov (United States)

    1991-05-20

    to 500 0 F. 5 cycles. 5000 F room temperature to 50001F; 45 ______________ Icycles The tesis planned for the distribution system demonstrator were...American Society for Testing and Materials ASTM D412 - Tension Testing of Vulcanized Rubber ASTM D571 - Testing Automotive Hydraulic Brake Hose Society of

  16. Hydraulic pump common fault analysis and elimination method%液压泵常见故障分析及排除方法

    Institute of Scientific and Technical Information of China (English)

    杨秀荣

    2013-01-01

      液压泵是液压系统中动力元件,相当于人的“心脏”,当液压泵出现故障后液压系统油液系统将无法正常工作。本文分别就三种液压泵对其常见的故障及排除方法进行了探讨。%The hydraulic pump is a hydraulic dynamic component in the system,the equivalent of a man’s\\“heart\\”,when the hydraulic system of hydraulic pump fault occurs after the oil system will not work properly.This paper has three kinds of hydraulic pump for the common failures and troubleshooting methods are discussed in this paper.

  17. A novel high-temperature and high-pressure hydraulic pump based on mononeuron control

    Institute of Scientific and Technical Information of China (English)

    Linhui ZHAO; Xin FANG

    2009-01-01

    Based on structures and characteristics of traditional hydraulic pumps, this paper proposes a novel high-temperature and high-pressure hydraulic pump (HHHP) that can work under 150℃ and 28MPa to overcome problems of traditional high-temperature plun-ger pumps. The HHHP is designed with the structure of mechanical division and double cylinder parallel. The control signals of two cylinders are two separate triangle waveforms with 90℃ phase difference. Because the output waveforms of two cylinders have the same characteristics as the control signals, the HHHP can obtain a stable output after two separate waveforms are superposed. A mono-neuron self-adaptive PID control algorithm is also improved by modifying parameters K and η. Two improved controllers are used to control the two cylinders,respectively, making two displacements of plungers match each other. Therefore, reduced fluctuations and stable pressure output is obtained. Besides simulation, tests on the built prototype test system are carried out to verify the performance of HHHP. Results show that the improved control approach can limit fluctuations to a lower level and the HHHP system attains good outputs under different signal periods and different pressures.

  18. Test investigation on hydraulic losses in the discharge passage of an axial-flow pump

    Institute of Scientific and Technical Information of China (English)

    QIU Baoyun; CAO Haihong; JIANG Wei; GAO Zhaohui; WANG Fei

    2007-01-01

    In a discharge passage with a guide blade dis- charge circulation and secondary flow because of bend pipe, the flow in a 1-channel discharge passage of an axial flow pump is a complicated spiral flow. For a 2-channel passage, the discharge in the left channel is bigger than that in the fight, and the passage hydraulic losses are abnormal. In this study, the section current energy of the passage is accurately mea- sured and determined with a 5-hole probe. The hydraulic loss characteristics are determined and analyzed. The methods deducing the hydraulic losses are investigated. The results indicate that the passage hydraulic losses are not proportional to the flow discharge. Compared with a circular pipe, the hydraulic losses of a divergent discharge passage are smaller and the pump assembly efficiency is 10%-30% higher. As for the 1-channel passage, the axial-flow pump outlet circulation is usually too big; the passage hydraulic losses are also big, but a small circulation can slightly reduce hydraulic losses. As for the 2-channel passage, discharges in the two channels are not equal and the hydraulic losses increase. The outlet guide blade with a small discharge circulation or without circulation could reduce discharge passage hydraulic losses and increase pump assembly efficiency by 6%-11%.

  19. Pulsed differential pumping system

    Energy Technology Data Exchange (ETDEWEB)

    Antipov, G.N.; Bagautdinov, F.A.; Rybalov, S.V.

    1985-06-01

    A pulsed differential pumping system is described for extracting an electron beam from a shaping region at a pressure of 10/sup -5/ torr into a volume with a pressure of 10-100 torr. A fast valve is used with appropriate geometrical parameters to reduce the length of the outlet channel considerable while increasing its diameter. Test results are given. The pumping system has two sections which communicate one with the other and with the volume at the elevated pressure which is produced by gasdynamic nozzles.

  20. Design and Analysis of Dumbbell-shaped Seal Ring of Hydraulic Oil Pumping System%液压抽油系统哑铃型密封圈设计与分析

    Institute of Scientific and Technical Information of China (English)

    朱拾东; 张建军; 刘猛; 师峻峰; 赵瑞东

    2013-01-01

    In the hydraulic oil pumping system with water as power fluid,the conventional O-ring and other sealing rings cannot meet the sealing requirements of not collusion for high and low pressure fluid. A new type of dumbbell-shaped seal ring was designed and its sealing mechanism was analyzed. The contact deformation and the contact stress distribution on the contact sealing interface under the action of the liquid pressure were analyzed by finite element analysis software. The results show that the designed dumbbell-shaped sealing structure can meet the sealing requirements of 16 MPa differential pressure of the hydraulic oil pumping system.%  在以水作为动力液介质的液压抽油系统中,常规的O型密封圈及其他密封圈都不能满足高、低压流体之间不串通的密封要求。设计了一种新型的哑铃型密封结构,并分析其密封机制;利用有限元软件分析在液体压力作用下密封圈的接触变形、接触密封界面上的接触应力分布。结果表明,设计的哑铃型密封结构可以满足要求液压抽油系统16 MPa压差的密封要求。

  1. Fault Diagnosis for Hydraulic Oil Pump Vehicle Based on Fuzzy Theory%基于模糊理论的液压油泵车故障诊断

    Institute of Scientific and Technical Information of China (English)

    张来丰; 朱张青

    2013-01-01

      针对YYBC-2型液压油泵车的故障诊断需求和现有诊断方法存在的问题,本文基于模糊理论,设计了对油泵车液压系统的故障诊断系统,给出了具体实现方法。最后,通过诊断实例证明了本文方法的有效性。%According to the requirement of fault diagnosis for YYBC-2 hydraulic oil pump vehicle and the existing problems, fault diagnosis for hydraulic system of hydraulic oil pump vehicle is presented based on fuzzy theory, and the method to accomplish fault detection is discussed. Final y hydraulic system of YYBC-2 hydraulic oil pump vehicle is studied to explain that the fault diagnosis based on fuzzy theory is effective.

  2. Variable stiffness actuator based on fluidic flexible matrix composites and piezoelectric-hydraulic pump

    Science.gov (United States)

    Kim, Gi-Woo; Li, Suyi; Wang, K. W.

    2010-04-01

    Recently, a new biological-inspired fluidic flexible matrix composite (in short, F2MC) concept has been developed for linear/torsional actuation and structural stiffness tailoring. Although the actuation and the variable stiffness features of the F2MC have been successfully demonstrated individually, their combined functions and full potentials were not yet manifested. In addition, the current hydraulic pressurization systems are bulky and heavy, limiting the potential of the F2MC actuator. To address these issues, we synthesize a new variable stiffness actuator concept that can provide both effective actuation and tunable stiffness (dual-mode), incorporating the F2MC with a compact piezoelectric-hydraulic pump (in short, PHP). This dual-mode mechanism will significantly enhance the potential of the F2MC adaptive structures.

  3. 14 CFR 25.1435 - Hydraulic systems.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Hydraulic systems. 25.1435 Section 25.1435... STANDARDS: TRANSPORT CATEGORY AIRPLANES Equipment Miscellaneous Equipment § 25.1435 Hydraulic systems. (a) Element design. Each element of the hydraulic system must be designed to: (1) Withstand the proof...

  4. 14 CFR 27.1435 - Hydraulic systems.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Hydraulic systems. 27.1435 Section 27.1435... STANDARDS: NORMAL CATEGORY ROTORCRAFT Equipment Safety Equipment § 27.1435 Hydraulic systems. (a) Design. Each hydraulic system and its elements must withstand, without yielding, any structural loads...

  5. Mathematic Modeling of Complex Hydraulic Machinery Systems When Evaluating Reliability Using Graph Theory

    Science.gov (United States)

    Zemenkova, M. Yu; Shipovalov, A. N.; Zemenkov, Yu D.

    2016-04-01

    The main technological equipment of pipeline transport of hydrocarbons are hydraulic machines. During transportation of oil mainly used of centrifugal pumps, designed to work in the “pumping station-pipeline” system. Composition of a standard pumping station consists of several pumps, complex hydraulic piping. The authors have developed a set of models and algorithms for calculating system reliability of pumps. It is based on the theory of reliability. As an example, considered one of the estimation methods with the application of graph theory.

  6. Intelligent Hydraulic Actuator and Exp-based Modelling of Losses in Pumps and .

    DEFF Research Database (Denmark)

    Zhang, Muzhi

    A intelligent fuzzy logic self-organising PD+I controller for a gearrotor hydraulic motor was developed and evaluated. Furthermore, a experimental-based modelling methods with a new software tool 'Dynamodata' for modelling of losses in hydraulic motors and pumps was developed....

  7. Optimum Design of a Moving Coil Actuator for Fast-Switching Valves in Digital Hydraulic Pumps and Motors

    DEFF Research Database (Denmark)

    Roemer, Daniel Beck; Bech, Michael Møller; Johansen, Per

    2015-01-01

    Fast-switching seat valves suitable for digital hydraulic pumps and motors utilize direct electromagnetic actuators, which must exhibit superior transient performance to allow efficient operation of the fluid power pump/motor. A moving coil actuator resulting in a minimum valve switching time.......5 bar at 600 L/min flow rate, enabling efficient operation of digital hydraulic pumps and motors....

  8. A 6-DOF vibration isolation system for hydraulic hybrid vehicles

    Science.gov (United States)

    Nguyen, The; Elahinia, Mohammad; Olson, Walter W.; Fontaine, Paul

    2006-03-01

    This paper presents the results of vibration isolation analysis for the pump/motor component of hydraulic hybrid vehicles (HHVs). The HHVs are designed to combine gasoline/diesel engine and hydraulic power in order to improve the fuel efficiency and reduce the pollution. Electric hybrid technology is being applied to passenger cars with small and medium engines to improve the fuel economy. However, for heavy duty vehicles such as large SUVs, trucks, and buses, which require more power, the hydraulic hybridization is a more efficient choice. In function, the hydraulic hybrid subsystem improves the fuel efficiency of the vehicle by recovering some of the energy that is otherwise wasted in friction brakes. Since the operation of the main component of HHVs involves with rotating parts and moving fluid, noise and vibration are an issue that affects both passengers (ride comfort) as well as surrounding people (drive-by noise). This study looks into the possibility of reducing the transmitted noise and vibration from the hydraulic subsystem to the vehicle's chassis by using magnetorheological (MR) fluid mounts. To this end, the hydraulic subsystem is modeled as a six degree of freedom (6-DOF) rigid body. A 6-DOF isolation system, consisting of five mounts connected to the pump/motor at five different locations, is modeled and simulated. The mounts are designed by combining regular elastomer components with MR fluids. In the simulation, the real loading and working conditions of the hydraulic subsystem are considered and the effects of both shock and vibration are analyzed. The transmissibility of the isolation system is monitored in a wide range of frequencies. The geometry of the isolation system is considered in order to sustain the weight of the hydraulic system without affecting the design of the chassis and the effectiveness of the vibration isolating ability. The simulation results shows reduction in the transmitted vibration force for different working cycles of

  9. Maintaining Optimum Pump Performance with Specially- Formulated Hydraulic Fluids

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    This paper describes a battery of tests, and related results, that were performed under normal and severe conditions designed to demonstrate that hydraulic fluids formulated with Lubrizol' s high quality anti - wear hydraulic fluid technology can stand up to today's increasing demands for longer life and provide excellent performance under higher operating temperatures and pressures.

  10. Evaluation of hydraulic radial forces on the impeller by the volute in a centrifugal rotary blood pump.

    Science.gov (United States)

    Boehning, Fiete; Timms, Daniel L; Amaral, Felipe; Oliveira, Leonardo; Graefe, Roland; Hsu, Po-Lin; Schmitz-Rode, Thomas; Steinseifer, Ulrich

    2011-08-01

    In many state-of-the-art rotary blood pumps for long-term ventricular assistance, the impeller is suspended within the casing by magnetic or hydrodynamic means. For the design of such suspension systems, profound knowledge of the acting forces on the impeller is crucial. Hydrodynamic bearings running at low clearance gaps can yield increased blood damage and magnetic bearings counteracting high forces consume excessive power. Most current rotary blood pump devices with contactless bearings are centrifugal pumps that incorporate a radial diffuser volute where hydraulic forces on the impeller develop. The yielding radial forces are highly dependent on impeller design, operating point and volute design. There are three basic types of volute design--singular, circular, and double volute. In this study, the hydraulic radial forces on the impeller created by the volute in an investigational centrifugal blood pump are evaluated and discussed with regard to the choice of contactless suspension systems. Each volute type was tested experimentally in a centrifugal pump test setup at various rotational speeds and flow rates. For the pump's design point at 5 L/min and 2500 rpm, the single volute had the lowest radial force (∼0 N), the circular volute yielded the highest force (∼2 N), and the double volute possessed a force of approx. 0.5 N. Results of radial force magnitude and direction were obtained and compared with a previously performed computational fluid dynamics (CFD) study.

  11. Hydraulic development of high specific-speed pump-turbines by means of an inverse design method, numerical flow-simulation (CFD) and model testing

    Science.gov (United States)

    Kerschberger, P.; Gehrer, A.

    2010-08-01

    In recent years an increased interest in pump-turbines has been recognized in the market. The rapid availability of pumped storage schemes and the benefits to the power system by peak lopping, providing reserve and rapid response for frequency control are becoming of growing advantage. In that context it is requested to develop pump-turbines that reliably stand dynamic operation modes, fast changes of the discharge rate by adjusting the variable diffuser vanes as well as fast changes from pump to turbine operation. Within the present study various flow patterns linked to the operation of a pump-turbine system are discussed. In that context pump and turbine mode are presented separately and different load cases at both operation modes are shown. In order to achieve modern, competitive pump-turbine designs it is further explained which design challenges should be considered during the geometry definition of a pump-turbine impeller. Within the present study a runner-blade profile for a low head pump-turbine has been developed. For the initial hydraulic runner-blade design, an inverse design method has been applied. Within this design procedure, a first blade geometry is generated by imposing the pressure loading-distribution and by means of an inverse 3D potential-flow-solution. The hydraulic behavior of both, pump-mode and turbine-mode is then evaluated by solving the full 3D Navier-Stokes equations in combination with a robust turbulence model. Based on this initial design the blade profile has been further optimized and redesigned considering various hydraulic pump-turbine requirements. Finally, the progress in hydraulic design is demonstrated by model test results which show a significant improvement in hydraulic performance compared to an existing reference design.

  12. Hydraulic development of high specific-speed pump-turbines by means of an inverse design method, numerical flow-simulation (CFD) and model testing

    Energy Technology Data Exchange (ETDEWEB)

    Kerschberger, P; Gehrer, A, E-mail: peter.kerschberger@andritz.co [Andritz Hydro Graz A-8045 Graz, Reichsstrasse 68B (Austria)

    2010-08-15

    In recent years an increased interest in pump-turbines has been recognized in the market. The rapid availability of pumped storage schemes and the benefits to the power system by peak lopping, providing reserve and rapid response for frequency control are becoming of growing advantage. In that context it is requested to develop pump-turbines that reliably stand dynamic operation modes, fast changes of the discharge rate by adjusting the variable diffuser vanes as well as fast changes from pump to turbine operation. Within the present study various flow patterns linked to the operation of a pump-turbine system are discussed. In that context pump and turbine mode are presented separately and different load cases at both operation modes are shown. In order to achieve modern, competitive pump-turbine designs it is further explained which design challenges should be considered during the geometry definition of a pump-turbine impeller. Within the present study a runner-blade profile for a low head pump-turbine has been developed. For the initial hydraulic runner-blade design, an inverse design method has been applied. Within this design procedure, a first blade geometry is generated by imposing the pressure loading-distribution and by means of an inverse 3D potential-flow-solution. The hydraulic behavior of both, pump-mode and turbine-mode is then evaluated by solving the full 3D Navier-Stokes equations in combination with a robust turbulence model. Based on this initial design the blade profile has been further optimized and redesigned considering various hydraulic pump-turbine requirements. Finally, the progress in hydraulic design is demonstrated by model test results which show a significant improvement in hydraulic performance compared to an existing reference design.

  13. Internal hydraulic loss in a seal-less centrifugal Gyro pump.

    Science.gov (United States)

    Makinouchi, K; Ohara, Y; Sakuma, I; Damm, G; Mizuguchi, K; Jikuya, T; Takatani, S; Noon, G P; Nosé, Y

    1994-01-01

    A new index "loss factor Z" defined by Eq. 1 was introduced as the absolute expression of the mock loop resistance for testing a nonpulsatile pump. [formula: see text] where gamma is specific gravity of the fluid, g is the acceleration of gravity, delta P is total pressure head, and Q is flow. Z is expected to be constant, regardless of the pumping parameters. Z values obtained in the same mock loop but with different rotary blood pumps were almost identical and were defined as Z0. New methods of analysis of the flow-restrictive conditions of various rotary blood pumps are proposed in this paper: namely, differential loss factor delta Z, and loss factor sensitivity delta Z/delta A. The proposed Z-Q curves demonstrated better performance mapping than the conventional delta P-Q curves. Delta Z is the difference between the Z-Q curves of two different pumps. A is a design parameter of the pump; therefore delta Z/delta A is a quantitative expression of the effect of the design change on the hydraulic performance. These various indices were used to analyze the internal hydraulic loss of a centrifugal pump (Gyro pump). The relationship between its gap size (rotor casing) and hydraulic performance was assessed quantitatively by these indices. In this paper, the derivation processes and above-mentioned indices are described.

  14. 液压泵性能测试实验台设计%Design of Performance Test Bench for Hydraulic Pump

    Institute of Scientific and Technical Information of China (English)

    郑明辉; 江吉彬; 郭熛

    2011-01-01

    Hydraulic pump as hydraulic system's power part, is one of important parts of engineering machinery product. The hydraulic pump performance test bench is the necessary device for hydraulic pump product quality examination which is the main safe guard of pump product quality. A hydraulic pump performance test bench was designed. The composition, working principle and char acteristics of the hydraulic system were introduced. Data test and analysis were carried on.%液压泵作为液压系统的动力元件,是工程机械产品的重要部件之一.液压泵性能测试实验台是进行液压泵产品质量检测的必要设备,是泵产品质量监控的主要保障.设计了液压泵性能测试实验台,介绍液压系统组成、工作原理和特点,并进行了数据测试及分析.

  15. Fault Diagnosis of a Hydraulic Pump Based on the CEEMD-STFT Time-Frequency Entropy Method and Multiclass SVM Classifier

    Directory of Open Access Journals (Sweden)

    Wanlin Zhao

    2016-01-01

    Full Text Available The fault diagnosis of hydraulic pumps is currently important and significant to ensure the normal operation of the entire hydraulic system. Considering the nonlinear characteristics of hydraulic-pump vibration signals and the mode mixing problem of the original Empirical Mode Decomposition (EMD method, first, we use the Complete Ensemble EMD (CEEMD method to decompose the signals. Second, the time-frequency analysis methods, which include the Short-Time Fourier Transform (STFT and time-frequency entropy calculation, are applied to realize the robust feature extraction. Third, the multiclass Support Vector Machine (SVM classifier is introduced to automatically classify the fault mode in this paper. An actual hydraulic-pump experiment demonstrates the procedure with a complete feature extraction and accurate mode classification.

  16. Economic Viability of Pumped-Storage Power Plants Equipped with Ternary Units and Considering Hydraulic Short-Circuit Operation

    Science.gov (United States)

    Chazarra, Manuel; Pérez-Díaz, Juan I.; García-González, Javier

    2017-04-01

    This paper analyses the economic viability of pumped-storage hydropower plants equipped with ternary units and considering hydraulic short-circuit operation. The analysed plant is assumed to participate in the day-ahead energy market and in the secondary regulation service of the Spanish power system. A deterministic day-ahead energy and reserve scheduling model is used to estimate the maximum theoretical income of the plant assuming perfect information of the next day prices and the residual demand curves of the secondary regulation reserve market. Results show that the pay-back periods with and without the hydraulic short-circuit operation are significantly lower than their expected lifetime and that the pay-back periods can be reduced with the inclusion of the hydraulic short-circuit operation.

  17. Improving pumping system efficiency at coal plants

    Energy Technology Data Exchange (ETDEWEB)

    Livoti, W.C.; McCandless, S.; Poltorak, R. [Baldor Electric Co. (United States)

    2009-03-15

    The industry must employ ultramodern technologies when building or upgrading power plant pumping systems thereby using fuels more efficiently. The article discusses the uses and efficiencies of positive displacement pumps, centrifugal pumps and multiple screw pumps. 1 ref., 4 figs.

  18. Analysis on Hydraulic Performance of Reversible Vertical Pumping System Based on CFX%基于CFX的双向立式轴流泵装置水力性能分析

    Institute of Scientific and Technical Information of China (English)

    杨帆; 刘超; 汤方平

    2012-01-01

    The investigation of the three-dimensional fluid flow inside a reversible pumping system was made based on the Reynolds time-averaged Navier-Stokes equations, the RNG k-e turbulent flow model and the law of the wall. The performance calculations were made at 9 operation points within flow rates range 240-460L/s under the rated rotating speed. The effects of flow guide cone on the hydraulic performance of inlet passage and the effects of guide vane on the performance of pumping system were analyzed. To verify the accuracy and reliability of the calculation results,a model test was conducted. The singular point which caused the submerse vortex under pump suction were eliminated by flow guide cone. With the flow guide cone, the axial velocity distribution uniformity at the exit section of suction passage was improved by 0.5-0.8 percentage points,and velocity-weighted average swirl angle increased by 0. 3°-1. 28°. Flow guide cone has little effect on water flow by gravity. Diffuse shape guide vane can better recover circulation out from impeller at large flow rate, therefore the efficiency of pumping system increased obviously.%为分析双向立式轴流泵装置的内部流动结构并进行性能预测,应用三维紊流Navier-Stokes、RNG κ-ε湍流模型和壁面定律对泵装置进行全流场数值模拟研究,共计算了额定转速下240—460L/s流量范围内的9个工况点.分析了导水锥对迸水流道水力性能的影响及导叶体对装置性能的影响,并通过泵装置模型试验对预测的外特性结果进行验证.研究表明,加设导水锥可消除喇叭口下的奇点,避免附底涡的产生,加设导水锥后进水流道出口断面轴向速度分布均匀度提高0.5-0.8个百分点,速度加权平均角提高了0.3°-1.28°.导水锥对自流工况的影响很小.大流量工况时扩散导叶对叶轮出口环量的回收效果优于常规导叶,泵装置效率明显提高.

  19. Hydraulic forces caused by annular pressure seals in centrifugal pumps

    Science.gov (United States)

    Iino, T.; Kaneko, H.

    1980-01-01

    The hydraulic forces caused by annular pressure seals were investigated. The measured inlet and exit loss coefficients of the flow through the seals were much smaller than the conventional values. The results indicate that the damping coefficient and the inertia coefficient of the fluid film in the seal are not affected much by the rotational speed or the eccentricity of the rotor, though the stiffness coefficient seemed to be influenced by the eccentricity.

  20. Período de recuperação do investimento em bomba hidráulica de melhor rendimento em sistemas de bombeamento na tarifa horossazonal verde Investment recovery period in hydraulic pump of better efficiency in pumping systems in the green hourly seasonal tariff for irrigation

    Directory of Open Access Journals (Sweden)

    João L. Zocoler

    2011-04-01

    Full Text Available Neste trabalho, ajustou-se um modelo matemático para quantificar o efeito da variação do rendimento da bomba hidráulica na variação dos custos de um sistema de bombeamento, na estrutura tarifária horossazonal verde (subgrupo A4 e o tempo de recuperação do capital investido no equipamento de maior rendimento. Em seguida, o mesmo foi aplicado a um sistema de bombeamento para suprimento de um sistema de irrigação do tipo pivô central. As opções de rendimento da bomba hidráulica foram: 69,5% (bomba 1, 73% (bomba 2 e 78% (bomba 3, cujos custos de aquisição foram, respectivamente, R$ 6.176,00, R$ 8.479,00 e R$ 15.509,00. Os resultados da aplicação do modelo mostraram que: i a substituição da bomba 1 pela bomba 2 foi viável, sendo o período de recuperação de capital 3,4 anos; ii a substituição da bomba 1 pela bomba 3 foi viável, sendo o período de recuperação de capital 9,2 anos; iii a substituição da bomba 2 pela bomba 3 foi inviável, sendo o período de recuperação de capital 21,1 anos superior ao período de amortização do investimento na avaliação econômica, considerado 15 anos.In this study a mathematical model was adjusted to quantify the effect of the pump efficiency on cost variation of the pumping system in the green hourly seasonal tariff (subgroup A4 - irrigation and the investment recovery period by a more efficient pumping station. Afterwards, the same model was applied in a pumping system supplying a center pivot irrigation machine. The hydraulics pump efficiency options were: 69.5% (pump 1, 73% (pump 2 and 78% (pump 3, with acquisition costs of R$ 6,176.00, R$ 8,479.00 and R$ 15,509.00, respectively. The results of the model applied showed that: i the substitution of pump 1 for 2 was feasible, being the investment recovery period of 3.4 years; ii the substitution of bomb 1 for 3 was feasible, being the investment recovery period of 9.2 years; and iii the substitution of bomb 2 for 3 was unfeasible

  1. International Space Station power module thermal control system hydraulic performance

    Energy Technology Data Exchange (ETDEWEB)

    Goldberg, V. [Boeing North American, Inc., Canoga Park, CA (United States). Rocketdyne Div.

    1997-12-31

    The International Space Station (ISS) uses four photovoltaic power modules (PVMs) to provide electric power for the US On-Orbit Segment. The PVMs consist of photovoltaic arrays (PVAs), orbit replaceable units (ORUs), photovoltaic radiators (PVRs), and a thermal control system (TCS). The PVM TCS function is to maintain selected PVM components within their specified operating ranges. The TCS consists of the pump flow control subassembly (PFCS), piping system, including serpentine tubing for individual component heat exchangers, headers/manifolds, fluid disconnect couplings (FQDCs), and radiator (PVR). This paper describes the major design requirements for the TCS and the results of the system hydraulic performance predictions in regard to these requirements and system component sizing. The system performance assessments were conducted using the PVM TCS fluid network hydraulic model developed for predicting system/component pressure losses and flow distribution. Hardy-Cross method of iteration was used to model the fluid network configuration. Assessments of the system hydraulic performance were conducted based on an evaluation of uncertainties associated with the manufacturing and design tolerances. Based on results of the analysis, it was concluded that all design requirements regarding system performance could be met. The hydraulic performance range, enveloping possible system operating parameter variations was determined.

  2. Emergency remediation measures of a hydroxyisobutyronitrile spill using hydraulic and hydrochemical barriers and pump and treat system (Rho area-Milan, Italy)

    Energy Technology Data Exchange (ETDEWEB)

    Avanzini, M.; Nespoli, M.; Pagotto, A. [EG Engenireeing Geology, Milano (Italy); Peretta, G.P. [Torino Univ. (Italy). Dipt. di Scienze della Terra

    1998-12-31

    The paper deals about emergency clean-up measures after an accidental contamination by hydroxyisobutyronitrile (acetone cyanohydrin) occurred in a aquifer in the industrial area of ELF-ATOCHEM in Rho (province of Milan). Site investigations and tests carried out for planning barrier wells lay-out, injection wells of hydrogen peroxide and in situ treatment of contaminated soil are illustrated. This combined measures system allowed to obtain a high efficacy in pollutant removal in accordance to the Authority`s requests. The final goal of the remediation system activity was reached fifteen months later: concentrations measured at monitoring wells showed values compatible with standards for drinking water quality.

  3. Profile constructing and elevation design of soil reclaimed by hydraulic dredge pump in mining areas

    Energy Technology Data Exchange (ETDEWEB)

    Longqian, C.; Aiqin, S.; Tianjian, Z. [China Univ. of Mining and Technology, Xuzhou, Jiangsu (China). School of Environmental Science and Spatial Informatics; Mei, L. [China Univ. of Mining and Technology, Xuzhou, Jiangsu (China)

    2007-07-01

    Underground coal mining is the main method of coal mining in China. The hydraulic dredge pump reclamation method is the basic method used for repairing hydraulic erosion. This paper reviewed land reclamation by hydraulic dredge pump in the Yi'an coal mine of Xuzhou mining area in the east of China, and analyzed the constructing theory of soil profiling. It examined factors such as the height of the ground-water table; the thickness of plough horizon; the length of crops root and the state of soil erosion; and the methods of profile construction and elevation design of soil reclaimed by hydraulic dredge pump. A relevant mathematical model was also developed. The paper discussed the general situation of the study site as well as the basic theory of profile constructing and the profile constructing method. The paper also discussed the elevation design of the reclaimed land. It was concluded that the practice has proved that the methods can make the reclaimed soil keep a similar characteristics to that of original cropped soil, and meet the requirements for elevation of reclaimed land. 8 refs., 1 tab., 2 figs.

  4. Induced hydraulic pumping via integrated submicrometer cylindrical glass capillaries.

    Science.gov (United States)

    Cao, Zhen; Yobas, Levent

    2014-08-01

    Here, we report on a micropump that generates hydraulic pressure owing to a mismatch in EOF rates of microchannels and submicrometer cylindrical glass capillaries integrated on silicon. The electrical conductance of such capillaries in the dilute limit departs from bulk linear behavior as well as from the surface-charge-governed saturation in nanoslits that is well described by the assumption of a constant surface charge density. The capillaries show rather a gradual decrease in conduction at low salt concentrations, which can be explained more aptly by a variable surface charge density that accounts for chemical equilibrium of the surface. The micropump uses a traditional cross-junction structure with ten identical capillaries integrated in parallel on a side arm and each with a 750 nm diameter and 3 mm length. For an applied voltage of 700 V, a hydraulic pressure up to 5 kPa is generated with a corresponding flow velocity nearly 3 mm/s in a straight field-free branch 20 μm wide, 10 μm deep, and 10 mm long. The micropump utility has been demonstrated in an open tubular LC of three fluorescently labeled amino acids in just less than 20 s with minimal plate height values between 3 and 7 μm. The submicrometer capillaries are self-enclosed and produced through a unique process that does not require high-resolution advanced lithography or wafer-bonding techniques to define their highly controlled precise structures. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Concept Evaluation for Hydraulic Yaw System

    DEFF Research Database (Denmark)

    Stubkier, Søren; Pedersen, Henrik C.; Andersen, Torben Ole

    2013-01-01

    a suspension system on a car, leading the loads away from the turbine structure. However, to realize a soft hydraulic yaw system a new design concept must be found. As a part of the development of the new concept a preliminary concept evaluation has been conducted, evaluating seven different hydraulic yaw...... concepts, ranging from a one-to-one copy of the electrical drive (electrical drives replaced by hydraulic dittos), to floating suspension systems mounted on hydraulic cylinders. Rough calculations of size and consequences of the different systems are presented ending up with the final concept for further...... investigation. Loads and yaw demands are based on the IEC 61400-1 standard for wind turbine design, and the loads for this examination are extrapolated from the HAWC2 aeroelastic design code. The concepts are based on a 5 MW off-shore turbine....

  6. An Approach to automatically optimize the Hydraulic performance of Blade System for Hydraulic Machines using Multi-objective Genetic Algorithm

    Science.gov (United States)

    Lai, Xide; Chen, Xiaoming; Zhang, Xiang; Lei, Mingchuan

    2016-11-01

    This paper presents an approach to automatic hydraulic optimization of hydraulic machine's blade system combining a blade geometric modeller and parametric generator with automatic CFD solution procedure and multi-objective genetic algorithm. In order to evaluate a plurality of design options and quickly estimate the blade system's hydraulic performance, the approximate model which is able to substitute for the original inside optimization loop has been employed in the hydraulic optimization of blade by using function approximation. As the approximate model is constructed through the database samples containing a set of blade geometries and their resulted hydraulic performances, it can ensure to correctly imitate the real blade's performances predicted by the original model. As hydraulic machine designers are accustomed to do design with 2D blade profiles on stream surface that are then stacked to 3D blade geometric model in the form of NURBS surfaces, geometric variables to be optimized were defined by a series profiles on stream surfaces. The approach depends on the cooperation between a genetic algorithm, a database and user defined objective functions and constraints which comprises hydraulic performances, structural and geometric constraint functions. Example covering optimization design of a mixed-flow pump impeller is presented.

  7. Mathematical Model Defining Volumetric Losses of Hydraulic Oil Compression in a Variable Capacity Displacement Pump

    Directory of Open Access Journals (Sweden)

    Paszota Zygmunt

    2015-01-01

    Full Text Available The objective of the work is to develop the capability of evaluating the volumetric losses of hydraulic oil compression in the working chambers of high pressure variable capacity displacement pump. Volumetric losses of oil compression must be determined as functions of the same parameters, which the volumetric losses due to leakage, resulting from the quality of design solution of the pump, are evaluated as dependent on and also as function of the oil aeration coefficient Ɛ. A mathematical model has been developed describing the hydraulic oil compressibility coefficient klc|Δppi;Ɛ;v as a relation to the ratio ΔpPi/pn of indicated increase ΔpPi of pressure in the working chambers and the nominal pressure pn, to the pump capacity coefficient bP, to the oil aeration coefficient  and to the ratio v/vnof oil viscosity v and reference viscosity vn. A mathematical model is presented of volumetric losses qpvc|ΔpPi;bp;;vof hydraulic oil compression in the pump working chambers in the form allowing to use it in the model of power of losses and energy efficiency

  8. Pump characteristics and applications

    CERN Document Server

    Volk, Michael

    2013-01-01

    Providing a wealth of information on pumps and pump systems, Pump Characteristics and Applications, Third Edition details how pump equipment is selected, sized, operated, maintained, and repaired. The book identifies the key components of pumps and pump accessories, introduces the basics of pump and system hydraulics as well as more advanced hydraulic topics, and details various pump types, as well as special materials on seals, motors, variable frequency drives, and other pump-related subjects. It uses example problems throughout the text, reinforcing the practical application of the formulae

  9. Effects of radial diffuser hydraulic design on a double-suction centrifugal pump

    Science.gov (United States)

    Hou, H. C.; Zhang, Y. X.; Xu, C.; Zhang, J. Y.; Li, Z. L.

    2016-05-01

    In order to study effects of radial diffuser on hydraulic performance of crude oil pump, the steady CFD numerical method is applied and one large double-suction oil pump running in long-distance pipeline is considered. The research focuses on analysing the influence of its diffuser vane profile on hydraulic performance of oil pump. The four different types of cylindrical vane have been designed by in-house codes mainly including double arcs (DA), triple arcs (TA), equiangular spiral line (ES) and linear variable angle spiral line (LVS). During design process diffuser vane angles at inlet and outlet are tentatively given within a certain range and then the wrapping angle of the four types of diffuser vanes can be calculated automatically. Under the given inlet and outlet angles, the linear variable angle spiral line profile has the biggest wrapping angle and profile length which is good to delay channel diffusion but bring more friction hydraulic loss. Finally the vane camber line is thickened at the certain uniform thickness distribution and the 3D diffuser models are generated. The whole flow passage of oil pump with different types of diffusers under various flow rate conditions are numerically simulated based on RNG k-ɛ turbulent model and SIMPLEC algorithm. The numerical results show that different types of diffusers can bring about great difference on the hydraulic performance of oil pump, of which the ES profile diffuser with its proper setting angle shows the best hydraulic performance and its inner flow field is improved obviously. Compared with the head data from model sample, all designed diffusers can make a certain improvement on head characteristic. At the large flow rate conditions the hydraulic efficiency increases obviously and the best efficiency point shift to the large flow rate range. The ES profile diffuser embodies the better advantages on pump performance which can be explained theoretically that the diffuser actually acts as a diffusion

  10. Design Rules for High Damping in Mobile Hydraulic Systems

    OpenAIRE

    Axin, Mikael; Krus, Petter

    2013-01-01

    This paper analyses the damping in pressure compensated closed centre mobile working hydraulic systems. Both rotational and linear loads are covered and the analysis applies to any type of pump controller. Only the outlet orifice in the directional valve will provide damping to a pressure compensated system. Design rules are proposed for how the system should be dimensioned in order to obtain a high damping. The volumes on each side of the load have a high impact on the damping. In case of a ...

  11. A Design for Wind Lubrication of Hydraulic Lubrication Pump%一种用于风电润滑的液动润滑泵设计

    Institute of Scientific and Technical Information of China (English)

    周益; 臧铁钢; 高志朋; 雷晓光

    2012-01-01

    The design for a wind turbine hydraulic lubrication pump, this paper expounds the working principle, features and related function, this pump adopts hydraulic drive way, improve the lubrication pump outlet pressure, pumping performance and reliability. Finally, the control system design, realization sensing monitoring, automatic alarm, historical records and inquires the related functions.%设计了一种用于风力发电设备的液动润滑泵,阐述了其工作原理、主要特点以及相关功能.该泵采用液压方式驱动,提高了润滑泵的出口压力、泵送性能及可靠性.设计了控制系统,实现传感检测、自动报警、历史记录与查询等相关功能.

  12. Effects of staggered blades on the hydraulic characteristics of a 1400-MW canned nuclear coolant pump

    Directory of Open Access Journals (Sweden)

    Fang-Ming Zhou

    2016-08-01

    Full Text Available A canned nuclear coolant pump is used in an advanced third-generation pressurized water reactor. Impeller is a key component of a canned nuclear coolant pump. Usually, the blade is installed between the hub and the shroud as an entire part. The blade is divided into two parts and is staggered in the circumferential direction is an approach of blade design. To understand the effects of staggered blades on a canned nuclear coolant pump, this article numerically investigated different types of staggering. The validity of the numerical simulation was confirmed by comparing the numerical and experimental results. The performance change of a canned nuclear coolant pump with staggered blades was acquired. Hydraulic performance curves, axial force curves, static pressure distributions at the impeller outlet, and static pressure pulsations were performed to investigate the performance changes caused by the staggered blades. The results show that the staggered blade has an important influence on the performance of canned nuclear coolant pumps. A staggered blade does not improve hydraulic performance but does improve the axial force and pressure pulsation. Specifically, the staggered blades can significantly reduce the pressure pulsation amplitude on the impeller pass frequency.

  13. Hydraulic losses in the spiral case of low specific speed pumps

    Directory of Open Access Journals (Sweden)

    Klas Roman

    2014-03-01

    Full Text Available This contribution is focused on analysis of pressure losses in spiral case of centrifugal pump with thick trailing edges and with recirculation channels. Recirculation channels have different geometrical configuration and influence the size of available specific energy as well as hydraulic efficiency. Subsequently, the contribution analyses the flow in spiral case itself with respect to its function and its filling with liquid. Studied phenomena affect the research of pumps with low specific speed, the stability of specific energy characteristic curves and also the configuration of recirculation channels.

  14. Fire Resistant Aircraft Hydraulic System.

    Science.gov (United States)

    1982-07-01

    and compounds based on new experimental elastomers as well as most commercially available elastomers were screened in seeking seals that were both...for hydraulic component testing. All of the available E6.5 stock was purchased for the screening tests. However, DuPont stated that other homologs of...with the lubricity and anti-wear additive olyvan A (molybdenum oxysulphide dithiocarbamate ) added in the quantity of less than one percent by weight

  15. Fault Analysis and Improvement of Hydraulic-controlled Butterfly-valve Control System of Main Pump Outlet of Wanjiazhai YRDP(Yellow River Diversion Project)%万家寨引黄工程主泵出口液控蝶阀控制系统故障分析与改进

    Institute of Scientific and Technical Information of China (English)

    李珍珍

    2014-01-01

    山西省万家寨引黄工程一期泵站泵组出水侧液控蝶阀控制系统采用传统的接触式机械行程开关,由于蝶阀设备运行在大振动、高潮湿环境下,接触式行程开关损坏频度较高,经常导致液控蝶阀行程控制失效或错误,致使泵组非正常停运。在分析液控蝶阀行程开关故障原因的基础上,提出采用非接触式磁控开关进行技术改造的方案,工程实践证明改造工作较好地解决了液控蝶阀的行程控制问题。%The hydraulic-controlled butterfly-valve control system mounted on pump outlet side in the pumping station of Shanxi Wanjiazhai YRDP phase 1 is controlled by the traditional mechanical contact travel switch. The butterfly-valve operates in large vibration and high humidity environment, the contact travel switch is damaged frequently, often leading to the failures and mistakes of the travel control of hydraulic-controlled butterfly-valve, and causing the the abnormal shutdown of the pump unit. Based on analyzing the reasons of the faults of the travel switch of hydraulic-controlled valve, this paper puts forward a technical transformation scheme of adopting the non-contact magnetic-controlled switch. The engineering practice proves that the technical transformation has better solved the problem of the travel control of hydraulic-control butterfly-valve.

  16. Use of an oil-hydraulic microinjection pump for subretinal infusions.

    Science.gov (United States)

    Weichel, Judith; Valtink, Monika; Engelmann, Katrin; Richard, Gisbert

    2002-01-01

    The injection of cell suspensions or drugs into the subretinal space is a new promising option of vitreoretinal surgery for the treatment of degenerative retinal disorders. We used a manual oil-hydraulic microinjection pump to subretinally inject suspensions of retinal pigment epithelial cells in Royal College of Surgeons rats and in patients suffering from age-related macular degeneration with geographic atrophy. The histological examination of the treated rat eyes showed that cell suspensions could be placed precisely in the subretinal space. Intra- and postoperative outcome of the patients in the clinical trial revealed no retinal complications during 6 months of follow up. We suggest the oil-hydraulic microinjection pump to be a valuable instrument for controlled and precisely dosed atraumatic infusion or aspiration of small volumes of cell suspensions, fluids or drugs in vitreoretinal surgery.

  17. Prognostic for hydraulic pump based upon DCT-composite spectrum and the modified echo state network.

    Science.gov (United States)

    Sun, Jian; Li, Hongru; Xu, Baohua

    2016-01-01

    Prognostic is a key step of the condition-based maintenance (CBM). In order to improve the predicting performance, a novel method for prognostic for the hydraulic pump is proposed in this paper. Based on the improvement of the traditional composite spectrum, the DCT-composite spectrum (DCS) fusion algorithm is initially presented to make fusion of multi-channel vibration signals. The DCS composite spectrum entropy is extracted as the feature. Furthermore, the modified echo state networks (ESN) model is established for prognostic using the extracted feature. The reservoir is updated and the elements of the neighboring matrix are redefined for improving predicting accuracy. Analysis of the application in the hydraulic pump degradation experiment demonstrates that the proposed algorithm is feasible and is meaningful for CBM.

  18. Simultaneous transient operation of a high head hydro power plant and a storage pumping station in the same hydraulic scheme

    Science.gov (United States)

    Bucur, D. M.; Dunca, G.; Cervantes, M. J.; Cǎlinoiu, C.; Isbǎşoiu, E. C.

    2014-03-01

    This paper presents an on-site experimental analysis of a high head hydro power plant and a storage pumping station, in an interconnected complex hydraulic scheme during simultaneous transient operation. The investigated hydropower site has a unique structure as the pumping station discharges the water into the hydropower plant penstock. The operation regimes were chosen for critical scenarios such as sudden load rejections of the turbines as well as start-ups and stops with different combinations of the hydraulic turbines and pumps operation. Several parameters were simultaneously measured such as the pumped water discharge, the pressure at the inlet pump section, at the outlet of the pumps and at the vane house of the hydraulic power plant surge tank. The results showed the dependence of the turbines and the pumps operation. Simultaneous operation of the turbines and the pumps is possible in safe conditions, without endangering the machines or the structures. Furthermore, simultaneous operation of the pumping station together with the hydropower plant increases the overall hydraulic efficiency of the site since shortening the discharge circuit of the pumps.

  19. A method of applying two-pump system in automatic transmissions for energy conservation

    Directory of Open Access Journals (Sweden)

    Peng Dong

    2015-06-01

    Full Text Available In order to improve the hydraulic efficiency, modern automatic transmissions tend to apply electric oil pump in their hydraulic system. The electric oil pump can support the mechanical oil pump for cooling, lubrication, and maintaining the line pressure at low engine speeds. In addition, the start–stop function can be realized by means of the electric oil pump; thus, the fuel consumption can be further reduced. This article proposes a method of applying two-pump system (one electric oil pump and one mechanical oil pump in automatic transmissions based on the forward driving simulation. A mathematical model for calculating the transmission power loss is developed. The power loss transfers to heat which requires oil flow for cooling and lubrication. A leakage model is developed to calculate the leakage of the hydraulic system. In order to satisfy the flow requirement, a flow-based control strategy for the electric oil pump is developed. Simulation results of different driving cycles show that there is a best combination of the size of electric oil pump and the size of mechanical oil pump with respect to the optimal energy conservation. Besides, the two-pump system can also satisfy the requirement of the start–stop function. This research is extremely valuable for the forward design of a two-pump system in automatic transmissions with respect to energy conservation and start–stop function.

  20. Spring 1961 hydraulic head in the lower pumped zone of California's Central Valley (from Williamson and others, 1989)

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This digital dataset defines the spring 1961 hydraulic head in the lower pumped zone of California's Central Valley. It was used to initiate the water-level...

  1. Pump control system for windmills

    Science.gov (United States)

    Avery, Don E.

    1983-01-01

    A windmill control system having lever means, for varying length of stroke of the pump piston, and a control means, responsive to the velocity of the wind to operate the lever means to vary the length of stroke and hence the effective displacement of the pump in accordance with available wind energy, with the control means having a sensing member separate from the windmill disposed in the wind and displaceable thereby in accordance with wind velocity.

  2. Nanocoatings for High-Efficiency Industrial Hydraulic and Tooling Systems

    Energy Technology Data Exchange (ETDEWEB)

    Clifton B. Higdon III

    2011-01-07

    Industrial manufacturing in the U.S. accounts for roughly one third of the 98 quadrillion Btu total energy consumption. Motor system losses amount to 1.3 quadrillion Btu, which represents the largest proportional loss of any end-use category, while pumps alone represent over 574 trillion BTU (TBTU) of energy loss each year. The efficiency of machines with moving components is a function of the amount of energy lost to heat because of friction between contacting surfaces. The friction between these interfaces also contributes to downtime and the loss of productivity through component wear and subsequent repair. The production of new replacement parts requires additional energy. Among efforts to reduce energy losses, wear-resistant, low-friction coatings on rotating and sliding components offer a promising approach that is fully compatible with existing equipment and processes. In addition to lubrication, one of the most desirable solutions is to apply a protective coating or surface treatment to rotating or sliding components to reduce their friction coefficients, thereby leading to reduced wear. Historically, a number of materials such as diamond-like carbon (DLC), titanium nitride (TiN), titanium aluminum nitride (TiAlN), and tungsten carbide (WC) have been examined as tribological coatings. The primary objective of this project was the development of a variety of thin film nanocoatings, derived from the AlMgB14 system, with a focus on reducing wear and friction in both industrial hydraulics and cutting tool applications. Proof-of-concept studies leading up to this project had shown that the constituent phases, AlMgB14 and TiB2, were capable of producing low-friction coatings by pulsed laser deposition. These coatings combine high hardness with a low friction coefficient, and were shown to substantially reduce wear in laboratory tribology tests. Selection of the two applications was based largely on the concept of improved mechanical interface efficiencies for

  3. Hydraulic design and pre-whirl regulation law of inlet guide vane for centrifugal pump

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    A new hydraulic design method of three-dimensional guide vane for centrifugal pump is proposed on the assumption that the fluid at the outlet of guide vane satisfies the uniform velocity moment condition.The geometry of blade is controlled by the distributed rule of blade angles along the meridional streamline which is described by a fourth-order polynomial.Experiment results demonstrate that the designed guide vane can overcome the drawback of two-dimensional guide vane,enlarge the high efficiency scope and improve the hydraulic performance of centrifugal pump on the off-design operation conditions.In comparison with the performance of the centrifugal pump without inlet guide vane,the peak value of efficiency can be enhanced by 2.13% after the three-dimensional guide vane was being installed.The three-dimensional entire flow field of the centrifugal pump with inlet guide vane is simulated,and the basic principle and mechanism of inlet guide vane pre-whirl regulation are analyzed.The validity of design method has been proved.

  4. Investigation and Parameter Optimization of a Hydraulic Ram Pump Using Taguchi Method

    Science.gov (United States)

    Sarma, Dhrupad; Das, Monotosh; Brahma, Bipul; Pandwar, Deepak; Rongphar, Sermirlong; Rahman, Mafidur

    2016-10-01

    The main objective of this research work is to investigate the effect of Waste Valve height and Pressure Chamber height on the output flow rate of a Hydraulic ram pump. Also the second objective of this work is to optimize them for a hydraulic ram pump delivering water up to a height of 3.81 m (12.5 feet ) from the ground with a drive head (inlet head) of 1.86 m (6.11 feet). Two one-factor-at-a-time experiments have been conducted to decide the levels of the selected input parameters. After deciding the input parameters, an experiment has been designed using Taguchi's L9 Orthogonal Array with three repetitions. Analysis of Variance (ANOVA) is carried out to verify the significance of effect of the factors on the output flow rate of the pump. Results show that the height of the Waste Valve and height of the Pressure Chamber have significant effect on the outlet flow of the pump. For a pump of drive pipe diameter (inlet pipe) 31.75 mm (1.25 in.) and delivery pipe diameter of 12.7 mm (0.5 in.) the optimum setting was found out to be at a height of 114.3 mm (4.5 in.) of the Waste Valve and 406.4 mm (16 in.) of the Pressure vessel providing a delivery flow rate of 93.14 l per hour. For the same pump estimated range of output flow rate is, 90.65-94.97 l/h.

  5. Investigation and Parameter Optimization of a Hydraulic Ram Pump Using Taguchi Method

    Science.gov (United States)

    Sarma, Dhrupad; Das, Monotosh; Brahma, Bipul; Pandwar, Deepak; Rongphar, Sermirlong; Rahman, Mafidur

    2016-06-01

    The main objective of this research work is to investigate the effect of Waste Valve height and Pressure Chamber height on the output flow rate of a Hydraulic ram pump. Also the second objective of this work is to optimize them for a hydraulic ram pump delivering water up to a height of 3.81 m (12.5 feet ) from the ground with a drive head (inlet head) of 1.86 m (6.11 feet). Two one-factor-at-a-time experiments have been conducted to decide the levels of the selected input parameters. After deciding the input parameters, an experiment has been designed using Taguchi's L9 Orthogonal Array with three repetitions. Analysis of Variance (ANOVA) is carried out to verify the significance of effect of the factors on the output flow rate of the pump. Results show that the height of the Waste Valve and height of the Pressure Chamber have significant effect on the outlet flow of the pump. For a pump of drive pipe diameter (inlet pipe) 31.75 mm (1.25 in.) and delivery pipe diameter of 12.7 mm (0.5 in.) the optimum setting was found out to be at a height of 114.3 mm (4.5 in.) of the Waste Valve and 406.4 mm (16 in.) of the Pressure vessel providing a delivery flow rate of 93.14 l per hour. For the same pump estimated range of output flow rate is, 90.65-94.97 l/h.

  6. HYDRAULIC UNITS FOR DRIVING SYSTEMS OF RUNNING EQUIPMENT IN ROAD CONSTRUCTION MACHINERY

    Directory of Open Access Journals (Sweden)

    A. Ja. Kotlobai

    2016-01-01

    Full Text Available Operational efficiency of multi-functional road construction machines depends on number of working bodies which are simultaneously performing technological operations. Systems for propulsion pto to the running equipment drive and active working bodies of road construction machines are developing in the way of using three-axis hydraulic drives. When designing a hydraulic system for road construction machinery dividing of power flow from propulsion to the running equipment drive and active working bodies is considered as rather essential problem. Leading companies do not pay attention to the development of flow divider designs, preferring to produce more expensive multi-flow pumps. One of the ways to increase efficiency of multi-functional road construction machinery is an implementation of running equipment hydraulic driving system based on a mono-aggregate pump unit which consists of a pump and a volumetric divider of power fluid flow. A principle of volumetric division and summing-up of power fluid flows, technical realization and methodology for calculation of key parameters of discrete flow distributors has been developed on the basis of discrete hydraulics regulations. The paper presents results of mathematical modeling of hydraulic systems equipped with the discrete flow distributor. Analysis of a dual-motor hydraulic drive operation has shown the following results: a discrete flow distributor ensures independent load mode of the current consumer circuit operation from the load mode of the second consumer circuit within a wide range of loads; rational value of working fluid flow discretization parameter is the following value interval k = 4–6, maximum value of parameter efficiency is reached when an angular velocity of a distributor rotor coincides with the angular velocity of a pump shaft; discrete flow distributor provides a possibility to change parameters of hydraulic flow feeding in consumers’ pressure lines within a wide range

  7. Hydraulic Motor Driving Variable-Pitch System for Wind Turbine

    Directory of Open Access Journals (Sweden)

    Ye HUANG

    2013-11-01

    Full Text Available The present hydraulic variable-pitch mechanism of wind turbine uses three hydraulic cylinders to drive three crank and connecting rod mechanisms respectively; the blades are moved with the cranks. The hydraulic variable-pitch mechanism has complex structure, occupies a lot of space and its maintenance is trouble. In order to make up for the shortcomings of hydraulic cylinder variable-pitch system, the present hydraulic variable-pitch mechanism should be changed as follows: hydraulic motors are used to drive gears; gears drive blades; the electro-hydraulic proportional valves are used to control hydraulic motors. The hydraulic control part and electrical control part of variable-pitch system is redesigned. The new variable-pitch system is called hydraulic motor driving variable-pitch system. The new variable-pitch system meets the control requirements of blade pitch, makes the structure simple and its application effect is perfect.    

  8. Variables Form and Use of Hydraulic Pump%液压泵的变量形式及使用

    Institute of Scientific and Technical Information of China (English)

    马卫宏

    2013-01-01

    This paper introduces several common hydraulic variable displacement form of analysis of several variable displace-ment hydraulic pump to adapt their working conditions, elaborated variable displacement hydraulic pump selection and use should pay attention to the problems of actual use for different working conditions in the form of variable displacement hy-draulic pump used to provide a reference.%介绍液压泵的几种常用的变排量形式,分析了几种变排量液压泵各自适应的工况,阐述了选择及使用变排量液压泵应注意的问题,为实际使用中针对不同的工况而选用液压泵的变排量形式提供了参考。

  9. Hydraulics.

    Science.gov (United States)

    Decker, Robert L.; Kirby, Klane

    This curriculum guide contains a course in hydraulics to train entry-level workers for automotive mechanics and other fields that utilize hydraulics. The module contains 14 instructional units that cover the following topics: (1) introduction to hydraulics; (2) fundamentals of hydraulics; (3) reservoirs; (4) lines, fittings, and couplers; (5)…

  10. Quasi-three dimensional hydraulic design and performance calculation of high specific speed mixed-flow pump

    Science.gov (United States)

    Su, M.; Zhang, Y. X.; Zhang, J. Y.; Hou, H. C.

    2016-05-01

    According to the basic parameters of 211-80 high specific speed mixed-flow pump, based on the quasi-three dimensional flow theory, the hydraulic design of impeller and its matching spaced guide vanes for high specific speed mixed flow pump was completed, in which the iterative calculation of S 1, S 2 stream surfaces was employed to obtain meridional flow fields and the point-by-point integration method was employed to draw blade camber lines. Blades are thickened as well as blade leading edges are smoothed in the conformal mapping surface. Subsequently the internal fields of the whole flow passage of the designed pump were simulated by using RANS equations with RNG k-ε two-equation turbulent model. The results show that, compared with the 211-80 model, the hydraulic efficiency of the designed pump at the optimal flow rate increases 9.1%. The hydraulic efficiency of designed pump in low flow rate condition (78% designed flow rate) increases 6.46%. The hydraulic efficiency in high flow rate areas increases obviously and there is no bad phenomenon of suddenly decrease of hydraulic efficiency in model pump. From the distributions of velocity and pressure fields, it can be seen that the flow in impeller is uniform and the increase of pressure is gentle. There are no obvious impact phenomenon on impeller inlet and obvious wake shedding vortex phenomenon from impeller outlet to guide vanes inlet.

  11. Digital hydraulic valving system. [design and development

    Science.gov (United States)

    1973-01-01

    The design and development are reported of a digital hydraulic valving system that would accept direct digital inputs. Topics include: summary of contractual accomplishments, design and function description, valve parameters and calculations, conclusions, and recommendations. The electrical control circuit operating procedure is outlined in an appendix.

  12. Towards Autonomous Control of Hydraulic Actuator Systems

    DEFF Research Database (Denmark)

    Hansen, Poul Erik; Conrad, Finn

    1998-01-01

    Presentation of new developed control algorithms to increase autonomy and intelligence of hydraulic control systems. A refinement of relaytuning method is used to determine the control parameters of a lag/lead controller and a poleplacement controller. Further, a fail-safe function is developed t...

  13. Concept Evaluation for Hydraulic Yaw System

    DEFF Research Database (Denmark)

    Stubkier, Søren; Pedersen, Henrik C.; Andersen, Torben Ole

    2013-01-01

    a suspension system on a car, leading the loads away from the turbine structure. However, to realize a soft hydraulic yaw system a new design concept must be found. As a part of the development of the new concept a preliminary concept evaluation has been conducted, evaluating seven different hydraulic yaw......The yaw system is the subsystem on a wind turbine which ensures that the rotor plane of the turbine always is facing the wind direction. Studies from [1] show that a soft yaw system may be utilized to dampen the loads in the wind turbine structure. The soft yaw system operates much like...... investigation. Loads and yaw demands are based on the IEC 61400-1 standard for wind turbine design, and the loads for this examination are extrapolated from the HAWC2 aeroelastic design code. The concepts are based on a 5 MW off-shore turbine....

  14. A Hydraulic Stress Measurement System for Deep Borehole Investigations

    Science.gov (United States)

    Ask, Maria; Ask, Daniel; Cornet, Francois; Nilsson, Tommy

    2017-04-01

    Luleå University of Technology (LTU) is developing and building a wire-line system for hydraulic rock stress measurements, with funding from the Swedish Research Council and Luleå University of Technology. In this project, LTU is collaborating with University of Strasbourg and Geosigma AB. The stress state influences drilling and drillability, as well as rock mass stability and permeability. Therefore, knowledge about the state of in-situ stress (stress magnitudes, and orientations) and its spatial variation with depth is essential for many underground rock engineering projects, for example for underground storage of hazardous material (e.g. nuclear waste, carbon dioxide), deep geothermal exploration, and underground infrastructure (e.g. tunneling, hydropower dams). The system is designed to conduct hydraulic stress testing in slim boreholes. There are three types of test methods: (1) hydraulic fracturing, (2) sleeve fracturing and (3) hydraulic testing of pre-existing fractures. These are robust methods for determining in situ stresses from boreholes. Integration of the three methods allows determination of the three-dimensional stress tensor and its spatial variation with depth in a scientific unambiguously way. The stress system is composed of a downhole and a surface unit. The downhole unit consists of hydraulic fracturing equipment (straddle packers and downhole imaging tool) and their associated data acquisition systems. The testing system is state of the art in several aspects including: (1) Large depth range (3 km), (2) Ability to test three borehole dimensions (N=76 mm, H=96 mm, and P=122 mm), (3) Resistivity imager maps the orientation of tested fracture; (4) Highly stiff and resistive to corrosion downhole testing equipment; and (5) Very detailed control on the injection flow rate and cumulative volume is obtained by a hydraulic injection pump with variable piston rate, and a highly sensitive flow-meter. At EGU General Assembly 2017, we would like to

  15. Chapter 12. Pure Tap Water Hydraulic Systems and Applications

    DEFF Research Database (Denmark)

    Conrad, Finn; Adelstorp, Anders

    1997-01-01

    Presentation of developed a modern pure tap water hydraulic components (Nessie), systems and industrial applications.......Presentation of developed a modern pure tap water hydraulic components (Nessie), systems and industrial applications....

  16. Estimation of changes in dynamic hydraulic force in a magnetically suspended centrifugal blood pump with transient computational fluid dynamics analysis.

    Science.gov (United States)

    Masuzawa, Toru; Ohta, Akiko; Tanaka, Nobuatu; Qian, Yi; Tsukiya, Tomonori

    2009-01-01

    The effect of the hydraulic force on magnetically levitated (maglev) pumps should be studied carefully to improve the suspension performance and the reliability of the pumps. A maglev centrifugal pump, developed at Ibaraki University, was modeled with 926 376 hexahedral elements for computational fluid dynamics (CFD) analyses. The pump has a fully open six-vane impeller with a diameter of 72.5 mm. A self-bearing motor suspends the impeller in the radial direction. The maximum pressure head and flow rate were 250 mmHg and 14 l/min, respectively. First, a steady-state analysis was performed using commercial code STAR-CD to confirm the model's suitability by comparing the results with the real pump performance. Second, transient analysis was performed to estimate the hydraulic force on the levitated impeller. The impeller was rotated in steps of 1 degrees using a sliding mesh. The force around the impeller was integrated at every step. The transient analysis revealed that the direction of the radial force changed dynamically as the vane's position changed relative to the outlet port during one circulation, and the magnitude of this force was about 1 N. The current maglev pump has sufficient performance to counteract this hydraulic force. Transient CFD analysis is not only useful for observing dynamic flow conditions in a centrifugal pump but is also effective for obtaining information about the levitation dynamics of a maglev pump.

  17. Joint inversion of hydraulic head and self-potential data associated with harmonic pumping tests

    Science.gov (United States)

    Soueid Ahmed, A.; Jardani, A.; Revil, A.; Dupont, J. P.

    2016-09-01

    Harmonic pumping tests consist in stimulating an aquifer by the means of hydraulic stimulations at some discrete frequencies. The inverse problem consisting in retrieving the hydraulic properties is inherently ill posed and is usually underdetermined when considering the number of well head data available in field conditions. To better constrain this inverse problem, we add self-potential data recorded at the ground surface to the head data. The self-potential method is a passive geophysical method. Its signals are generated by the groundwater flow through an electrokinetic coupling. We showed using a 3-D saturated unconfined synthetic aquifer that the self-potential method significantly improves the results of the harmonic hydraulic tomography. The hydroelectric forward problem is obtained by solving first the Richards equation, describing the groundwater flow, and then using the result in an electrical Poisson equation describing the self-potential problem. The joint inversion problem is solved using a reduction model based on the principal component geostatistical approach. In this method, the large prior covariance matrix is truncated and replaced by its low-rank approximation, allowing thus for notable computational time and storage savings. Three test cases are studied, to assess the validity of our approach. In the first test, we show that when the number of harmonic stimulations is low, combining the harmonic hydraulic and self-potential data does not improve the inversion results. In the second test where enough harmonic stimulations are performed, a significant improvement of the hydraulic parameters is observed. In the last synthetic test, we show that the electrical conductivity field required to invert the self-potential data can be determined with enough accuracy using an electrical resistivity tomography survey using the same electrodes configuration as used for the self-potential investigation.

  18. Numerical analysis on the cavitation and unsteady flow in a scroll hydraulic pump

    Science.gov (United States)

    Sun, S. H.; Guo, P. C.; Huang, Y.; Zuo, J. L.; Luo, X. Q.

    2016-05-01

    This paper presents numerical analysis of unsteady flow in a scroll hydraulic pump to discover its flow mechanism. The dynamic mesh model has to be used to simulate the flow field unsteadily. The unsteady flow patterns and pressure distributions in the suction, squeezing and discharge chamber are analysed. The suction process continues until the crank angle reaches the 320 degree. Then the pressure in the chamber rises instantaneously, and the fluid begins to flow out from the chamber. Because of the high pressure difference at the clearance, the jet flow and the vortex appear, and the large flow losses generates with them. In addition, the velocity and static pressure distribution in the two symmetry crescent suction chamber is different remarkably. One reason is that the location of suction port cannot be set symmetrically for the simplification of the pump structure. Another reason for that is the fluid is impelled by different part of the orbiting scroll. The asymmetric pressure distribution will result in the extra force on the scroll. The cavitation generates at the negative pressure region. Therefore, the unsteady simulation shows some important phenomena. The structure of the scroll pump need to be optimized to reduce the maximum pressure, weaken the jet flow, vortex and the uneven pressure distribution to ensure the pump working safely and efficiently.

  19. Optimization on the impeller of a low-specific-speed centrifugal pump for hydraulic performance improvement

    Science.gov (United States)

    Pei, Ji; Wang, Wenjie; Yuan, Shouqi; Zhang, Jinfeng

    2016-09-01

    In order to widen the high-efficiency operating range of a low-specific-speed centrifugal pump, an optimization process for considering efficiencies under 1.0 Q d and 1.4 Q d is proposed. Three parameters, namely, the blade outlet width b 2, blade outlet angle β 2, and blade wrap angle φ, are selected as design variables. Impellers are generated using the optimal Latin hypercube sampling method. The pump efficiencies are calculated using the software CFX 14.5 at two operating points selected as objectives. Surrogate models are also constructed to analyze the relationship between the objectives and the design variables. Finally, the particle swarm optimization algorithm is applied to calculate the surrogate model to determine the best combination of the impeller parameters. The results show that the performance curve predicted by numerical simulation has a good agreement with the experimental results. Compared with the efficiencies of the original impeller, the hydraulic efficiencies of the optimized impeller are increased by 4.18% and 0.62% under 1.0 Q d and 1.4Qd, respectively. The comparison of inner flow between the original pump and optimized one illustrates the improvement of performance. The optimization process can provide a useful reference on performance improvement of other pumps, even on reduction of pressure fluctuations.

  20. Feed-pump hydraulic performance and design improvement, Phase I: research program design. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Brown, W.H.; Gopalakrishnan, S.; Fehlau, R.; Thompson, W.E.; Wilson, D.G.

    1982-03-01

    As a result of prior EPRI-sponsored studies, it was concluded that a research program should be designed and implemented to provide an improved basis for the design, procurement, testing, and operation of large feed pumps with increased reliability and stability over the full range of operating conditions. This two-volume report contains a research plan which is based on a review of the present state of the art and which defines the necessary R and D program and estimates the benefits and costs of the program. The recommended research program consists of 30 interrelated tasks. It is designed to perform the needed research; to verify the results; to develop improved components; and to publish computer-aided design methods, pump specification guidelines, and a troubleshooting manual. Most of the technology proposed in the research plan is applicable to nuclear power plants as well as to fossil-fired plants. This volume contains appendixes on pump design, cavitation damage, performance testing, hydraulics, two-phase flow in pumps, flow stability, and rotor dynamics.

  1. Hydraulics of sprinkler and microirrigation systems

    Science.gov (United States)

    The fluid dynamics of sprinkler and microirrigation systems are complex. Water moves dynamically from the water source through the pump into the pipe network. Water often goes through a series of screens and filters depending on the source and type of irrigation system. From the pipe network, water ...

  2. Parameter Design for the Energy-Regeneration System of Series Hydraulic-Hybrid Bus

    Directory of Open Access Journals (Sweden)

    SONG Yunpu

    2012-10-01

    Full Text Available This paper simplifies the energy recovery process in the series hydraulic hybrid bus’ energy regeneration system into a process in which the main axle’s moment of inertia drives the secondary element variable delivery pump/motor and brings hydraulic oil from the oil tank to the accumulator. This process enables braking of the vehicle and also allows recovery of energy to the accumulator. Based on the flow equation for the secondary element variable delivery pump/motor and the torque equilibrium equation for its axle, the force equilibrium equation for vehicle braking and the pressure variation and flow continuity equations for the accumulator, simulation studies are conducted to analyze the effects of various system parameters, such as accumulator capacity, displacement of the secondary element variable delivery pump/motor, initial operating pressure of the system, etc. on system performance during regenerative braking.  

  3. 14 CFR 33.72 - Hydraulic actuating systems.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Hydraulic actuating systems. 33.72 Section... AIRWORTHINESS STANDARDS: AIRCRAFT ENGINES Design and Construction; Turbine Aircraft Engines § 33.72 Hydraulic actuating systems. Each hydraulic actuating system must function properly under all conditions in which...

  4. Comparisons of Hydraulic Performance in Permanent Maglev Pump for Water-Jet Propulsion

    Directory of Open Access Journals (Sweden)

    Puyu Cao

    2014-08-01

    Full Text Available The operation of water-jet propulsion can generate nonuniform inflow that may be detrimental to the performance of the water-jets. To reduce disadvantages of the nonuniform inflow, a rim-driven water-jet propulsion was designed depending on the technology of passive magnetic levitation. Insufficient understanding of large performance deviations between the normal water-jets (shaft and permanent maglev water-jets (shaftless is a major problem in this paper. CFD was directly adopted in the feasibility and superiority of permanent maglev water-jets. Comparison and discussion of the hydraulic performance were carried out. The shaftless duct firstly has a drop in hydraulic losses (K1, since it effectively avoids the formation and evolution of the instability secondary vortex by the normalized helicity analysis. Then, the shaftless intake duct improves the inflow field of the water-jet pump, with consequencing the drop in the backflow and blocking on the blade shroud. So that the shaftless water-jet pump delivers higher flow rate and head to the propulsion than the shaft. Eventually, not only can the shaftless model increase the thrust and efficiency, but it has the ability to extend the working range and broaden the high efficiency region as well.

  5. Optical fiber grating vibration sensor for vibration monitoring of hydraulic pump

    Science.gov (United States)

    Zhang, Zhengyi; Liu, Chuntong; Li, Hongcai; He, Zhenxin; Zhao, Xiaofeng

    2017-06-01

    In view of the existing electrical vibration monitoring traditional hydraulic pump vibration sensor, the high false alarm rate is susceptible to electromagnetic interference and is not easy to achieve long-term reliable monitoring, based on the design of a beam of the uniform strength structure of the fiber Bragg grating (FBG) vibration sensor. In this paper, based on the analysis of the vibration theory of the equal strength beam, the principle of FBG vibration tuning based on the equal intensity beam is derived. According to the practical application of the project, the structural dimensions of the equal strength beam are determined, and the optimization design of the vibrator is carried out. The finite element analysis of the sensor is carried out by ANSYS, and the first order resonant frequency is 94.739 Hz. The vibration test of the sensor is carried out by using the vibration frequency of 35 Hz and the vibration source of 50 Hz. The time domain and frequency domain analysis results of test data show that the sensor has good dynamic response characteristics, which can realize the accurate monitoring of the vibration frequency and meet the special requirements of vibration monitoring of hydraulic pump under specific environment.

  6. Failure Analysis of a Water Supply Pumping Pipeline System

    Directory of Open Access Journals (Sweden)

    Oscar Pozos-Estrada

    2016-09-01

    Full Text Available This paper describes the most important results of a theoretical, experimental and in situ investigation developed in connection with a water supply pumping pipeline failure. This incident occurred after power failure of the pumping system that caused the burst of a prestressed concrete cylinder pipe (PCCP. Subsequently, numerous hydraulic transient simulations for different scenarios and various air pockets combinations were carried out in order to fully validate the diagnostic. As a result, it was determined that small air pocket volumes located along the pipeline profile were recognized as the direct cause of the PCCP rupture. Further, a detail survey of the pipeline was performed using a combination of non-destructive technologies in order to determine if immediate intervention was required to replace PCC pipes. In addition, a hydraulic model was employed to analyze the behavior of air pockets located at high points of the pipeline.

  7. Free-piston engine-and-hydraulic pump for railway vehicles

    Directory of Open Access Journals (Sweden)

    A. F. Golovchuk

    2013-04-01

    Full Text Available Purpose. The development of the free-piston diesel engine-and-hydraulic pump for the continuously variable hydrostatical transmission of mobile power vehicles. Methodology. For a long time engine builders have been interesting in the problem of developing free piston engines, which have much bigger coefficient of efficiency (40…80%. Such engines don’t have the conversion of reciprocating motion for inner combustion engine piston into rotating motion of crankshaft, from which the engine torque is transferred to the power machine transmission. Free-piston engines of inner combustion don’t have the crank mechanism (CM that significantly reduces mechanical losses for friction. Such engines can be used as compressors. Free-piston engine compressor (FPEC – is a free-piston machine in which energy received from engine’s cylinder is being transferred direct to compressor’s pistons connected with operational pistons of engine without crank mechanism. Part of the pressed air is being consumed for engine cylinder drain and the other part is going to the consumer. Findings. The use of free-piston engines-and-hydraulic pumps as power-transmission plants of power vehicles (diesel locomotives, combine harvester, tractors, cars and other mobile and stationary power installations with the continuously variable transmissions allows cost effectiveness improvement and metal consumption reduction of these vehicles, since the cost effectiveness of FPE is higher by 25-30%, and the metal consumption is lower by 40-50%. Originality. One of the important advantages of the free-piston engines is their simplicity and engine balance. As a result of the crank mechanism absence their construction is much simplified and the vibrations, peculiar to the ordinary engines are eliminated. In such installation the engine pistons are directly connected through the rod to compressor pistons and therefore there are no losses in the bearing bushes. Practical value. The free

  8. Dynamic damper pressure fluctuation in the pumping systems

    Directory of Open Access Journals (Sweden)

    O.V. Korolyov

    2016-05-01

    Full Text Available Inertial part of any devices and equipment (e.g., pumps, hung or mounted on the resilient frame and being under the influence of the disturbing force that works at a constant frequency, may be subject to fluctuations, especially near of the resonance area. For elimination these fluctuations, you can resort to the use of a dynamic damper. Aim: The aim of the work is an analytical study of various dynamic dampers to reduce pressure fluctuation problems in pumping systems. Materials and Methods: A comparative analysis of efficiency of functioning was carried out for two types of dynamic dampers - hydraulic and mechanical. Results: The technique for calculating of dynamic damper of fluid pressure fluctuations in the hydraulic and mechanical pumps is presented. Algorithms of calculations are reported to engineering applications and implemented in the production process. The calculations show that the use of dynamic mechanical dampers is expedient at high frequency pumps, and, with increasing frequency of the pump by 6 times, winning in the dimensions of the damper in 3.5 times.

  9. RESEARCH OF THE DYNAMIC CHARACTERISTICS ON A NEW HYDRAULIC SYSTEM OF ELECTRO-HYDRAULIC HAMMER

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    A new typed hydraulic system of electro-hydraulic hammer is researched and developed.By means of power bond graphs the modeling and simulation to the dynamic characteristics of the new hydraulic system are performed. The experimental research which is emphasized on the blowing stroke is also performed. It is proved from the result of simulation and experiment that this new hydraulic system possesses such advantages as simplification of structure,flexibleness of operation and reliability of working. Especially it possesses better dynamic characteristics.

  10. Study on Characteristics of Hydraulic Servo System for Force Control of Hydraulic Robots

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hyo-gon; Han, Changsoo [Hanyang University, Seoul (Korea, Republic of); Lee, Jong-won [Korea University of Science and Technology, Seoul (Korea, Republic of); Park, Sangdeok [Korea Institute of Industrial Technology, Seoul (Korea, Republic of)

    2015-02-15

    Because a hydraulic actuator has high power and force densities, this allows the weight of the robot's limbs to be reduced. This allows for good dynamic characteristics and high energy efficiency. Thus, hydraulic actuators are used in some exoskeleton robots and quadrupedal robots that require high torque. Force control is useful for robot compliance with a user or environment. However, force control of a hydraulic robot is difficult because a hydraulic servo system is highly nonlinear from a control perspective. In this study, a nonlinear model was used to develop a simulation program for a hydraulic servo system consisting of a servo valve, transmission lines, and a cylinder. The problems and considerations with regard to the force control performance for a hydraulic servo system were investigated. A force control method using the nonlinear model was proposed, and its effect was evaluated with the simulation program.

  11. 振动压路机液压系统研究%On the Hydraulic Driving System Based on Full Hydraulic Vibratory Roller

    Institute of Scientific and Technical Information of China (English)

    杨平; 许炳照

    2011-01-01

    According to the application of hydraulic control technology of full hydraulic vibratory roller,the paper presents a design scheme of how to select hydraulic driving pumps and the rotators for the hydraulic component parts.Before selecting the methods of the hydraulic driving pumps and the rotators,the design scheme of the hydraulic system power and the engine should be mated properly,so as to determine the data of full hydraulic vibratory roller.%对全液压振动压路机的液压系统进行配置设计,在确定液压泵及液压马达型号规格后,计算液压系统功率与整机的功率合理匹配,从而确定全液压振动压路机各液压系统的参数,完成整机液压系统的合理配置。

  12. Absorption-heat-pump system

    Science.gov (United States)

    Grossman, G.; Perez-Blanco, H.

    1983-06-16

    An improvement in an absorption heat pump cycle is obtained by adding adiabatic absorption and desorption steps to the absorber and desorber of the system. The adiabatic processes make it possible to obtain the highest temperature in the absorber before any heat is removed from it and the lowest temperature in the desorber before heat is added to it, allowing for efficient utilization of the thermodynamic availability of the heat supply stream. The improved system can operate with a larger difference between high and low working fluid concentrations, less circulation losses, and more efficient heat exchange than a conventional system.

  13. The Development of Water Hydraulic Transmission and Water Hydraulic Axial Piston Pump (Motor)%水压传动及柱塞泵(马达)的现状和发展

    Institute of Scientific and Technical Information of China (English)

    聂松林; 张铁华; 李壮云

    2000-01-01

    介绍了国内外水压传动技术及其水压轴向柱塞泵(马达)的设计制造和发展。%Introduces the developments of Water Hydraulic transmission and Water Hydraulic Axial Piston Pump (Motor). The challenges for designing water hydraulic components and analyzed.

  14. In vitro evaluation of hydraulic characteristics of prototype implantable intrathecal infusion pump.

    Science.gov (United States)

    Nam, Kyoung Won; Sung, Mun Hyun; Kim, Hyun Ho; Kim, Kwang Gi; Kim, Dae Hyun; Lee, Byeong Han; Jo, Yung Ho

    2010-12-01

    The use of the intrathecal infusion pump for therapeutic treatment and pain management is increasing. For example, one such application is the pain treatment of cancer patients suffering from severe chronic pain, where all other treatment methods have failed. This method is gaining popularity because of its high cure effect with low dosage. In this study, we developed a prototype implantable intrathecal infusion pump and evaluated its mechanical and hydraulic characteristics in vitro to determine how its performance varied under different environmental conditions. The data are reported as means (standard deviations). In the experiments, the prototype pump could control the micro-scale infusion amount, and its performance was affected by ambient temperature and pressure conditions. In a temperature change test, at a constant pressure of 1.0 atm, the minimal amounts of a bolus were 4.44 (1.07), 5.06 (1.17), and 5.54 (0.90) uL for the temperature of 27.5, 36.5, and 42°C, respectively. In a pressure change test, at a constant temperature of 36.5°C, the minimal amounts of a bolus were 5.06 (1.17), 5.94 (0.67), and 6.13 (0.39) uL for pressures of 1.0, 0.9 and 0.8 atm, respectively. These experimental results demonstrate the possibility of using the prototype pump as an implantable microvolumetric infusion device. However, this prototype pump will have to undergo further design enhancement before being clinically feasible for such an application.

  15. The depth and pitch control of submarines based on the pump-hydraulic servo

    Directory of Open Access Journals (Sweden)

    XU Chao

    2017-03-01

    Full Text Available This study aims to research submarine motion control features in different conditions and com-plex environments in order to solve the problem of actual submarine control and apply it to building an actu-al hydraulic control platform. The paper focuses on the vertical motion of submarines, designs a fast termi-nal sliding mode control algorithm and analyzes the data using the combined simulation and experiment method to study the robustness and reliability of a submarine's vertical motion control system for hydraulic and control. At the same time, the simulation and experiment results analyze the hysteresis and oscillation of the hydraulic steering gear, and effectively reduce the chattering that may be caused by sliding mode variable structure control. This system can be used in simulations to solve the problems of new submarine control characteristics.

  16. A novel energy recovery system for parallel hybrid hydraulic excavator.

    Science.gov (United States)

    Li, Wei; Cao, Baoyu; Zhu, Zhencai; Chen, Guoan

    2014-01-01

    Hydraulic excavator energy saving is important to relieve source shortage and protect environment. This paper mainly discusses the energy saving for the hybrid hydraulic excavator. By analyzing the excess energy of three hydraulic cylinders in the conventional hydraulic excavator, a new boom potential energy recovery system is proposed. The mathematical models of the main components including boom cylinder, hydraulic motor, and hydraulic accumulator are built. The natural frequency of the proposed energy recovery system is calculated based on the mathematical models. Meanwhile, the simulation models of the proposed system and a conventional energy recovery system are built by AMESim software. The results show that the proposed system is more effective than the conventional energy saving system. At last, the main components of the proposed energy recovery system including accumulator and hydraulic motor are analyzed for improving the energy recovery efficiency. The measures to improve the energy recovery efficiency of the proposed system are presented.

  17. An economic evaluation comparison of solar water pumping system with engine pumping system for rice cultivation

    Science.gov (United States)

    Treephak, Kasem; Thongpron, Jutturit; Somsak, Dhirasak; Saelao, Jeerawan; Patcharaprakiti, Nopporn

    2015-08-01

    In this paper we propose the design and economic evaluation of the water pumping systems for rice cultivation using solar energy, gasoline fuel and compare both systems. The design of the water and gasoline engine pumping system were evaluated. The gasoline fuel cost used in rice cultivation in an area of 1.6 acres. Under same conditions of water pumping system is replaced by the photovoltaic system which is composed of a solar panel, a converter and an electric motor pump which is compose of a direct current (DC) motor or an alternating current (AC) motor with an inverter. In addition, the battery is installed to increase the efficiency and productivity of rice cultivation. In order to verify, the simulation and economic evaluation of the storage energy battery system with batteries and without batteries are carried out. Finally the cost of four solar pumping systems was evaluated and compared with that of the gasoline pump. The results showed that the solar pumping system can be used to replace the gasoline water pumping system and DC solar pump has a payback less than 10 years. The systems that can payback the fastest is the DC solar pumping system without batteries storage system. The system the can payback the slowest is AC solar pumping system with batteries storage system. However, VAC motor pump of 220 V can be more easily maintained than the motor pump of 24 VDC and batteries back up system can supply a more stable power to the pump system.

  18. Design and Analysis of Hydraulic Chassis with Obstacle Avoidance Function

    Science.gov (United States)

    Hong, Yingjie; Zhang, Xiang

    2017-07-01

    This article mainly expounds the design of hydraulic system for the hydraulic chassis with obstacle avoidance function. Including the selection of hydraulic motor wheels, hydraulic pump, digital hydraulic cylinder and the matching of engine power. And briefly introduces the principle of obstacle avoidance.

  19. Dynamic Analysis of Hydraulic Pumping Units%液压抽油机动态特性分析

    Institute of Scientific and Technical Information of China (English)

    李桂喜; 许建中

    2001-01-01

    应用机械振动理论,对液压抽油机的动态特性进行了分析。结果表明,液压抽油机在准匀速悬点运动条件下,抽油泵的运动由两部分组成:一是随悬点一起的刚体运动,二是由于悬点支撑位移激发的振动响应,其振动频率为系统的固有频率。适当调整系统参数,抽油泵将出现超冲程现象,这对于提高采油效率将是有益的。在准匀速悬点位移作用下,将引起抽油杆柱的振动,导致杆柱中的动应力。杆柱中的最大振动位移随深度增加量值逐渐增大,最大动应力随深度增加而逐渐减小。最大动应力随深度不是线性变化的,而是为二次函数关系。%The dynamic analysis of hydraulic pumping units was carried out in this paper by using the theory of mechanical vibrations. The house-head movement of the pumping unit is mainly uniform,except the alternation period of upper-and down-strokes.Under the action of the house-head movement,the vibration of the system,the sucker-rod and,furthermore,the dynamic stress will be induced.The results indicate that the movement of the downhole pump includes two parts. One is the movement following the horse-head.The other is the dynamic response excited by the support movement.When the parameters of the system are selected reasonably,over-stroke of the pump will appear.This is because the movement of the hydraulic piston obeys a particular law.The maximum displacement increases,and the maximum dynamic stress decreases with depth.The changing of maximum dynamic stress with depth obeys quadratic law.

  20. Hydraulic power take-off for wave energy systems

    DEFF Research Database (Denmark)

    Christensen, Georg Kronborg

    2001-01-01

    Investigation and laboratory experiments with a hydraulic power conversion system for converting forces from a 2.5m diamter float to extract energy from seawaves. The test rig consists of a hydraulic wave simulator and a hydraulic point absorber. The absorber converts the incomming forces...

  1. Effects of volute geometry and impeller orbit on the hydraulic performance of a centrifugal pump

    Science.gov (United States)

    Flack, R. D.; Lanes, R. F.

    1983-01-01

    Overall performance data was taken for a Plexiglas water pump with a logarithmic spiral volute and rectangular cross sectioned flow channels. Parametric studies were made in which the center of the impeller was offset from the design center of the volute. The rig was also designed such that the impeller was allowed to synchronously orbit by a fixed amount about any center. The studies indicate that decreasing the tongue clearance decreases the head at low flowrates and increases the head at high flowrates. Also, decreasing the volute area in the first half of the volute and holding the tongue clearance the same, resulted in a decreased head for low flowrates but performance at high flowrates was not affected. Finally, the overall hydraulic performance was not affected by the impeller orbitting about the volute center.

  2. 3D Blade Hydraulic Design Method of the Rotodynamic Multiphase Pump Impeller and Performance Research

    Directory of Open Access Journals (Sweden)

    Yongxue Zhang

    2014-02-01

    Full Text Available A hydraulic design method of three-dimensional blade was presented to design the blades of the rotodynamic multiphase pump. Numerical simulations and bench test were conducted to investigate the performance of the example impeller designed by the presented method. The results obtained from the bench test were in good agreement with the simulation results, which indicated the reasonability of the simulation. The distributions of pressure and gas volume fraction were analyzed and the results showed that the designed impeller was good for the transportation of mixture composed of gas and liquid. In addition, the advantage of the impeller designed by the presented method was suitable for using in large volume rate conditions, which were reflected by the comparison of the head performance between this three-dimensional design method and another one.

  3. Lead-free, bronze-based surface layers for wear resistance in axial piston hydraulic pumps

    Energy Technology Data Exchange (ETDEWEB)

    Vetterick, Gregory Alan [Iowa State Univ., Ames, IA (United States)

    2010-01-01

    Concerns regarding the safety of lead have provided sufficient motivation to develop substitute materials for the surface layer on a thrust bearing type component known as a valve plate in axial piston hydraulic pumps that consists of 10% tin, 10% lead, and remainder cooper (in wt. %). A recently developed replacement material, a Cu-10Sn-3Bi (wt.%) P/M bronze, was found to be unsuitable as valve plate surface layer, requiring the development of a new alloy. A comparison of the Cu-1-Sn-10Pb and Cu-10Sn-3Bi powder metal valve plates showed that the differences in wear behavior between the two alloys arose due to the soft phase bismuth in the alloy that is known to cause both solid and liquid metal embrittlement of copper alloys.

  4. Hydraulic concentration of magnetic fields in the solar photosphere. I - Turbulent pumping

    Science.gov (United States)

    Parker, E. N.

    1974-01-01

    Observations suggest that most of the magnetic flux through the solar photosphere is concentrated in vertical filaments in the supergranule boundaries. Each filament appears to contain about 3 times 10 to the 18-th power maxwells, in the form of a field of 500 gauss or more, over a diameter of 700 km or less. The magnetic energy density in the filaments is 100 times the observed kinetic energy density of the observed supergranule motions, but comparable to the kinetic energy density of the granules. Force-free field configurations cannot duplicate the observational numbers, nor can such cooling effects as are believed responsible for the intense fields in sunspot umbrae. We point out a simple hydraulic mechanism (turbulent pumping) that appears to account for the observed concentration of fields.

  5. Fundamental characteristics of oil hydraulic servo system; Yuatsu servo kei no kihonteki tokusei

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, K. [Musashi Instsitute of Technology, Tokyo (Japan)

    1999-05-15

    Since a hydraulic servo generates a great force very quickly upon receiving a small force or electric power, it is widely used in machine tools, construction machinery, and vehicles. The basics are that a high pressure fluid generated by a hydraulic pump is controlled by a valve and forwarded to a hydraulic cylinder or rotary hydraulic motor for the generation of a parallel motion or rotation. For the control of the valve, there are the mechanical-hydraulic servo mechanism in which the valve is operated by mechanical linkage and the electrical-hydraulic servo system in which the valve is driven by electric signals. It is difficult to perform sophisticated control such as optimum control by use of the mechanical method while the electrical method may be applied to such sophisticated control. In the former, a hydraulic servo system is constructed using mechanical feedback. It is simpler and more reliable than the other, and is used for the control of aircraft wings and for the steering of ships and vehicles. Using the latter, electric signals low in power are amplified in a servo amplifier before being sent to the servo valve. For the driving of the spool in a servo valve, the nozzle and flapper system is widely in use. (NEDO)

  6. Centrifugal slurry pump wear and hydraulic studies. Quarterly technical progress report, January 1, 1987--March 31, 1987

    Energy Technology Data Exchange (ETDEWEB)

    Bonney, G.E. [Ingersoll-Rand Co., Phillipsburg, NJ (United States)

    1987-01-01

    The following report marks the third quarter of the third phase of the centrifugal slurry pump improvement program. The program was begun in 1982 for the purpose of improving the operating life of centrifugal slurry pumps for coal liquefaction service. This phase of work will verify the design of a pump at higher speed operation. Eventual scale-up of the prototype slurry pumps to full-scale synthetic fuel generation plants could require ten times the flow. The higher speed will allow pumps to be smaller with respectable efficiencies. Conversely, without increasing the specific speed of the pump design, the eventual size would be more than triple that of the prototype slurry pump. The prototype slurry pump during this phase of the program incorporated all the features proven in the earlier phases of the program. This new, higher specific speed pump will be tested for the ability of the hydraulic design to inhibit wear. It will be tested and compared to the previous optimum prototype slurry pump of this program.

  7. Dynamic simulation and efficiency analysis of beam pumping system

    Institute of Scientific and Technical Information of China (English)

    邢明明; 董世民; 童志雄; 田然凤; 陈慧玲

    2015-01-01

    An improved whole model of beam pumping system was built. In the detail, for surface transmission system (STS), a new mathematical model was established considering the influence of some factors on the STS’s torsional vibration, such as the time variation characteristic of equivalent stiffness of belt and equivalent rotational inertia of crank. For the sucker rod string (SRS), an improved mathematical model was built considering the influence of some parameters on the SRS’s longitudinal vibration, such as the nonlinear friction of plunger, hydraulic loss of pump and clearance leakage. The dynamic response and system efficiency of whole system were analyzed. The results show that there is a jumping phenomenon in the amplitude frequency curve, and the system.

  8. Hydraulics and pneumatics a technician's and engineer's guide

    CERN Document Server

    Parr, Andrew

    1991-01-01

    Hydraulics and Pneumatics: A Technician's and Engineer's Guide provides an introduction to the components and operation of a hydraulic or pneumatic system. This book discusses the main advantages and disadvantages of pneumatic or hydraulic systems.Organized into eight chapters, this book begins with an overview of industrial prime movers. This text then examines the three different types of positive displacement pump used in hydraulic systems, namely, gear pumps, vane pumps, and piston pumps. Other chapters consider the pressure in a hydraulic system, which can be quickly and easily controlled

  9. A quantitative analysis of hydraulic interaction processes in stream-aquifer systems.

    Science.gov (United States)

    Wang, Wenke; Dai, Zhenxue; Zhao, Yaqian; Li, Junting; Duan, Lei; Wang, Zhoufeng; Zhu, Lin

    2016-01-28

    The hydraulic relationship between the stream and aquifer can be altered from hydraulic connection to disconnection when the pumping rate exceeds the maximum seepage flux of the streambed. This study proposes to quantitatively analyze the physical processes of stream-aquifer systems from connection to disconnection. A free water table equation is adopted to clarify under what conditions a stream starts to separate hydraulically from an aquifer. Both the theoretical analysis and laboratory tests have demonstrated that the hydraulic connectedness of the stream-aquifer system can reach a critical disconnection state when the horizontal hydraulic gradient at the free water surface is equal to zero and the vertical is equal to 1. A boundary-value problem for movement of the critical point of disconnection is established for an analytical solution of the inverted water table movement beneath the stream. The result indicates that the maximum distance or thickness of the inverted water table is equal to the water depth in the stream, and at a steady state of disconnection, the maximum hydraulic gradient at the streambed center is 2. This study helps us to understand the hydraulic phenomena of water flow near streams and accurately assess surface water and groundwater resources.

  10. The Maintenance of Heading Machine Hydraulic System%掘进机液压系统的维护

    Institute of Scientific and Technical Information of China (English)

    卞丽霞

    2011-01-01

    The paper mainly discussed the rotation of hydraulic tank, oil return filter system and the axial piston pump of heading machine's hydraulic system, the adjustment of axial piston pump, relief valve pressure and one-way throttle valve and the maintenance of hydraulic system and the using of hydraulic components.%本文主要阐述了掘进机液压系统的液压油箱、液压系统的回油过滤器、轴向柱塞泵的旋转、轴向柱塞泵、溢流阀压力的调整、单向节流阀的调整、液压系统维护、液压元件的使用等维护.

  11. HYDRAULIC CONCRETE COMPOSITION AND PROPERTIES CONTROL SYSTEM

    Directory of Open Access Journals (Sweden)

    O. M. Pshinko

    2015-08-01

    Full Text Available Purpose. Scientific work aims at the development and testing of information system to meet the challenges of concrete composition design and control (for railway structures and buildings based on the physico-analytical method algorithm for hydraulic concrete composition calculation. Methodology. The proposed algorithm of hydraulic concrete composition calculation is based on the physicochemical mechanics and in particular on the rheology of elastic–viscous–plastic bodies. The system of canonical equations consists of the equations for concrete strength, absolute volume, concrete mix consistency as well as the equation for optimal concrete saturation with aggregates while minimizing cement content. The joint solution of these four equations related to composition allows determining for the materials the concrete composition of required strength, concrete workability with minimum cement content. The procedure for calculation of hydraulic concrete composition according to the physico-analytical method consists of two parts: 1 physical, which is laboratory testing of concrete mix components in different concrete compositions; 2 analytical, which represents the calculation algorithm for concrete compositions equivalent in concrete strength and workability that comply with the specific conditions of concrete placing. Findings. To solve the problem of designing the concrete composition with the desired properties for railway structures and buildings it was proposed to use the information technology in the form of a developed computer program whose algorithm includes the physico-analytical method for hydraulic concrete composition determination. Originality. The developed concrete composition design method takes into account the basic properties of raw materials, concrete mix and concrete, which are pre-determined. The distinctive feature of physico-analytical method is obtaining of a set of equivalent compositions with a certain concrete mix

  12. TFCX pumped limiter and vacuum pumping system design and analysis

    Energy Technology Data Exchange (ETDEWEB)

    Haines, J.R.

    1985-04-01

    Impurity control system design and performance studies were performed in support of the Tokamak Fusion Core Experiment (TFCX) pre-conceptual design. Efforts concentrated on pumped limiter and vacuum pumping system design configuration, thermal/mechanical and erosion lifetime performance of the limiter protective surface, and helium ash removal performance. The reference limiter design forms a continuous toroidal belt at the bottom of the device and features a flat surface with a single leading edge. The vacuum pumping system features large vacuum ducts (diameter approximately 1 m) and high-speed, compound cryopumps. Analysis results indicate that the limiter/vacuum pumping system design provides adequate helium ash removal. Erosion, primarily by disruption-induced vaporization and/or melting, limits the protective surface lifetime to about one calendar year or only about 60 full-power hours of operation. In addition to evaluating impurity control system performance for nominal TFCX conditions, these studies attempt to focus on the key plasma physics and engineering design issues that should be addressed in future research and development programs.

  13. Reciprocating Pump Systems for Space Propulsion

    Energy Technology Data Exchange (ETDEWEB)

    Whitehead, J C

    2004-06-10

    Small propellant pumps can reduce rocket hardware mass, while increasing chamber pressure to improve specific impulse. The maneuvering requirements for planetary ascent require an emphasis on mass, while those of orbiting spacecraft indicate that I{sub SP} should be prioritized during pump system development. Experimental efforts include initial testing with prototype lightweight components while raising pump efficiency to improve system I{sub SP}.

  14. Hydraulics of Fuel-Injection Pumps for Compression-ignition Engines

    Science.gov (United States)

    Rothrock, A M

    1932-01-01

    Formulas are derived for computing the instantaneous pressures delivered by a fuel pump. The first derivation considers the compressibility of the fuel and the second, the compressibility, elasticity, and inertia of the fuel. The second derivation follows that given by Sass; it is shown to be the more accurate of the two. Additional formulas are given for determining the resistance losses in the injection tube. Experimental data are presented in support of the analyses. The report is concluded with an application of the theory to the design of fuel pump injection systems for which sample calculations are included.

  15. Breadboard development of a hydraulically coupled free piston engine heat pump compressor

    Science.gov (United States)

    Marusak, T. J.

    1984-11-01

    The free piston Stirling engine (FPSE) was considered as a candidate for a thermally activated heat pump because of its potential for high efficiency coupled with long life and high reliability. The distinguishing features of the FPSE, one moving part and hermatic separation of the power cycle and refrigeration cycle working fluids, makes it ideally suited for a heat pump application. However, two major designs challenges have kept the FPSE in the realm of laboratory rather than product development. These challenges involve: effective control of a tuned resonant system over a wide range of loads and hermatic coupling of the driver and driven mechanical members.

  16. Underwater hydraulic shock shovel control system

    Institute of Scientific and Technical Information of China (English)

    LIU He-ping; LUO A-ni; XIAO Hai-yan

    2008-01-01

    The control system determines the effectiveness of an underwater hydraulic shock shovel.This paper begins by analyzing the working principles of these shovels and explains the importance of their control systems.A new type of control system's mathematical model was built and analyzed according to those principles.Since the initial control system's response time could not fulfill the design requirements,a PID controller was added to the control system.System response time was still slower than required,so a neural network was added to nonlinearly regulate the proportional element,integral element and derivative element coefficients of the PID controller.After these improvements to the control system,system parameters fulfilled the design requirements.The working performance of electrically-controlled parts such as the rapidly moving high speed switch valve is largely determined by the control system. Normal control methods generally can't satisfy a shovel's requirements,so advanced and normal control methods were combined to improve the control system,bringing good results.

  17. Research Progress of Hydraulic Pumping Unit%液压抽油机的研究进展

    Institute of Scientific and Technical Information of China (English)

    梁宏宝; 王晓宇; 石镇铭; 刘旭

    2015-01-01

    Hydraulic pumping oil unit can take the maximize advantage of the productivity of oil wells in oil exploitation, full of energy conservation, and has been attached great importance to domestic and foreign oilfield engineering technical personnel. Along with the hydraulic technology improved, the hydraulic pumping unit was developed rapidly, and was applied in oilfield production with certain amount. The development of hydraulic pumping unit was studied systematically with comprehension in aspects of structure, con⁃trol and matched weight at home and abroad in recent 5 years. It is discussed of existing problems and the required direction of further study of the hydraulic pumping unit.%液压抽油机在石油开采中能最大限度地发挥油井产能,充分节约能源,得到了国内外油田工程技术人员的高度重视。随着液压技术的提高,使液压抽油机得到迅速地发展,并在油田生产中得到了一定的应用。针对近五年国内外液压抽油机的结构、控制、配重等方面系统综述了液压抽油机的研究进展,讨论了目前存在的问题和需要进一步研究的方向。

  18. 远洋船用伸缩折叠起重机液压系统设计%Marine telescopic folding crane hydraulic system design

    Institute of Scientific and Technical Information of China (English)

    卢志珍; 倪学虎; 舒希勇; 王成龙

    2012-01-01

    在分析伸缩折叠起重机对液压系统要求的基础上,针对起重机技术参数及客户要求提出了液压系统设计的思路.对关键液压元件——液压泵、液压马达、液压缸进行了计算选型,设计了液压原理图,并阐述了起重机液压回路的工作原理.%Based on the analysis of telescopic folding crane hydraulic system requirements,put forward the hydraulic system design thinking according to crane technical parameters and requirements of customers. Calculation and type selection of the key hydraulic components------hydraulic pump and hydraulic motor, hydraulic cylinder, design hydraulic principle diagram and expoundscrane hydraulic loop principle of work.

  19. Tidal current turbine based on hydraulic transmission system

    Institute of Scientific and Technical Information of China (English)

    Hong-wei LIU; Wei LI; Yong-gang LIN; Shun MA

    2011-01-01

    Tidal current turbines (TCTs) are newly developed electricity generating devices.Aiming at the stabilization of the power output of TCTs,this paper introduces the hydraulic transmission technologies into TCTs.The hydrodynamics of the turbine was analyzed at first and its power output characteristics were predicted.A hydraulic power transmission system and a hydraulic pitch-controlled system were designed.Then related simulations were conducted.Finally,a TCT prototype was manufactured and tested in the workshop.The test results have confirmed the correctness of the current design and availability of installation of the hydraulic system in TCTs.

  20. Investigations of hydraulic operating conditions of air lift pump with three types of air-water mixers

    Directory of Open Access Journals (Sweden)

    Kalenik Marek

    2015-03-01

    Full Text Available Investigations of hydraulic operating conditions of air lift pump with three types of air-water mixers. The paper presents the analysis of results of the investigations concerning the influence of various constructive solutions of the air-water mixers on hydraulic operating conditions of the air lift pump. The scope of the investigations encompassed the determination of characteristics of delivery head and delivery rate for three types of air-water mixers applied in the constructed air lift pump. Using the obtained results, the efficiency of the three types of air-water mixers applied in this air lift pump was determined. The analysis was carried out and there was checked whether the improved analytical Stenning-Martin model can be used to design air lift pumps with the air-water mixers of these types. The highest capacity in the water transport was reached by the air lift pump with the 1st type air-water mixer, the lowest one – with the 3rd type air-water mixer. The water flow in the air lift pump increases along with the rise in the air flow. The lower are the hydraulic losses generated during flow of the air flux by the air-water mixer, the higher is the air lift pump capacity. Along with the rise in the water delivery head, the capacity of the air lift pump decreases. The highest efficiency is reached by the air lift pump with the 1st type air-water mixer, the lowest – with the 3st type air-water mixer. The efficiency of the air lift pump for the three investigated types of air-water mixers decreases along with the rise in air flow rate and water delivery head. The values of submergence ratio (h/L of the delivery pipe, calculated with the use of the improved analytical Stenning-Martin model, coincide quite well with the values of h/L determined from the measurements.

  1. 49 CFR 570.55 - Hydraulic brake system.

    Science.gov (United States)

    2010-10-01

    ... parking brake and turn the ignition to start to verify that the brake system failure indicator lamp is... 49 Transportation 6 2010-10-01 2010-10-01 false Hydraulic brake system. 570.55 Section 570.55... 10,000 Pounds § 570.55 Hydraulic brake system. The following requirements apply to vehicles...

  2. Pumps for medium sized solar systems

    DEFF Research Database (Denmark)

    Furbo, Simon

    1996-01-01

    The suitability of the electronically controlled circulation pump type UPE 2000 from Grundfos for large solar heating systems was elucidated.......The suitability of the electronically controlled circulation pump type UPE 2000 from Grundfos for large solar heating systems was elucidated....

  3. Pressure Characteristic Analysis of a Hydraulic System

    Science.gov (United States)

    Cho, H. Y.; Yang, H. J.

    2017-02-01

    EPPR(ElectroProportional Pressure Reducing) valve control the MCV(Main Control Valve) built on the mobile heavy machine. The EPPR valve was tested in the experimental setup and the performance of the valve was compared with that of the existing EPPR valve. On thisstudy, electromagnetic properties analysis using AMESim program was performed to optimize the designing of EPPR Valve (Electric Proportional Pressure Reducing Valve) and by applying its results to the hydraulic system analytical model, performance of the valve could be predicted. Also by comparing the results of the actual experiment and the simulation, The results of thisstudy is that the 3 factor(cone angle, tip width, clearance between sleeve and plunger) have much effectiveness than other components in the EPPR valve.

  4. Control Reconfigurability of Bilinear Hydraulic Drive Systems

    DEFF Research Database (Denmark)

    Shaker, Hamid Reza; Tahavori, Maryamsadat

    2011-01-01

    be effective if sufficient redundancy does not exist in the process. A measure for control reconfigurability which reveals the level of redundancy in connection with feedback control is proposed in this paper for bilinear systems. The proposed control reconfigurability measure is the extension of its gramian......The objective of the methods within the framework of the plug and play process control and particularly fault tolerant control is to establish control techniques which guarantee a certain performance through control reconfiguration at the occurrence of the faults or changes. These methods cannot......-based analogous counterpart, which has been previously proposed for the linear processes. The control reconfigurability is calculated for the bilinear models of an electro-hydraulic drive to show its relevance to redundant actuating capabilities in the models....

  5. Parameter Designing for Heave Compensation Hydraulic System Installed in Deepwater

    Directory of Open Access Journals (Sweden)

    Zhao Teng

    2013-01-01

    Full Text Available The function diagram of active heave compensation hydraulic system has been given, besides, the mathematics model for the principal hydraulic components of the compensation system has been built, and the input-output relation between components has been made clear. Aimed at compensating work capacity for the system, design and research on parameters as the bearing pressure, the initial state and the maximum flow of hydraulic cylinder, accumulator and other principal components have been made separately, and standardized design has been accomplished in accordance with relevant standards. Furthermore, calculus and verification for the capacity of the hydraulic system in different working stages have been made in order to calculate the pressure lose of the system and provide objective data for the hardware system design of the hydraulic components of the heave compensation system.

  6. Theoretical Analysis and Bench Tests of a Control-Surface Booster Employing a Variable Displacement Hydraulic Pump

    Science.gov (United States)

    Mathews, Charles W.; Kleckner, Harold F.

    1947-01-01

    The NACA is conducting a general investigation of servo-mechanisms for use in powering aircraft control surfaces. This paper presents a theoretical analysis and the results of bench tests of a control-booster system which employs a variable displacement hydraulic pump. The booster is intended for use in a flight investigation to determine the effects of various booster parameters on the handling qualities of airplanes. Such a flight investigation would aid in formulating specific requirements concerning the design of control boosters in general. Results of the theoretical analysis and the bench tests indicate that the subject booster is representative of types which show promise of satisfactory performance. The bench tests showed that the following desirable features were inherent in this booster system: (1) No lost motion or play in any part of the system; (2) no detectable lag between motion of the contra1 stick and control surface; and (3) Good agreement between control displacements and stick-force variations with no hysteresis in the stick-force characteristics. The final design configuration of this booster system showed no tendency to oscillate, overshoot, or have other undesirable transient characteristics common to boosters.

  7. Power Management in Mobile Hydraulic Applications - An Approach for Designing Hydraulic Power Supply Systems

    DEFF Research Database (Denmark)

    Pedersen, Henrik Clemmensen

    2004-01-01

    in a project to develop rules and methods for designing and controlling mobile hydraulic systems in the most energy efficient way, when also considering the operational aspects of the system. The paper first describes the thoughts and ideas behind the project and then focus on an automated approach to design......Throughout the last three decades energy consumption has become one of the primary design aspects in hydraulic systems, especially for mobile hydraulic systems, as power and cooling capacity here is at limited disposal. Considering the energy usage, this is dependent on component efficiency......, but even more important is the system topology. However, there are no rules or guidelines for what system topology to choose for a given application, in order to obtain the most energy efficient system, nor for how the energy should be distributed in the system. This paper describes the approach taken...

  8. Design of Transputer Controllers for Hydraulic Actuator Systems

    DEFF Research Database (Denmark)

    Conrad, Finn

    1996-01-01

    The paper deals with how transputers can be applied for fast controllers for hydraulic actuator systems. A general transputer-based control systems including a data acquisition transputer subsystem is presented. An application case: development of a mechatronic test facility with a fast hydraulic...

  9. Application of Ferrography to Fault Diagnosis of Hydraulic Systems

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    This paper deals with research on the successful use of ferrography as a wear measurement method for condition monitoring and fault diagnosis of hydraulic systems.The analysis program and progression is discussed, and a case study for condition monitoring and fault diagnosis of hydraulic systems by means of ferrography is also reviewed.

  10. The design of hyperthermia hydraulic pump station%高温型液压泵站的设计

    Institute of Scientific and Technical Information of China (English)

    王华安; 武光玉

    2013-01-01

    the article refer to key point of design of hyperthermia hydraulic pump station.This kind of pump station can supply hydraulic oil whose pressure is up to 21 MPa 、quantity of flow is up to 30 L/min when its temperature is120℃ ,and it also can be used as a formal station.%本文介绍了高温型泵站的设计要点。该泵站能够提供温度至120℃、压力至21MPa、流量至30L/min的压力油,亦可作为常规泵站使用。

  11. A two-stage procedure for determining unsaturated hydraulic characteristics using a syringe pump and outflow observations

    DEFF Research Database (Denmark)

    Wildenschild, Dorthe; Jensen, Karsten Høgh; Hollenbeck, Karl-Josef;

    1997-01-01

    A fast two-stage methodology for determining unsaturated flow characteristics is presented. The procedure builds on direct measurement of the retention characteristic using a syringe pump technique, combined with inverse estimation of the hydraulic conductivity characteristic based on one......-step outflow experiments. The direct measurements are obtained with a commercial syringe pump, which continuously withdraws fluid from a soil sample at a very low and accurate how rate, thus providing the water content in the soil sample. The retention curve is then established by simultaneously monitoring......-step outflow data and the independently measured retention data are included in the objective function of a traditional least-squares minimization routine, providing unique estimates of the unsaturated hydraulic characteristics by means of numerical inversion of Richards equation. As opposed to what is often...

  12. Evaluation of advanced hydraulic turbomachinery for underground pumped hydroelectric storage. Part 1. Single-stage regulated pump turbines for operating heads of 500 to 1000 m

    Energy Technology Data Exchange (ETDEWEB)

    Frigo, A.A.; Blomquist, C.A.; Degnan, J.R.

    1979-10-01

    High-head, large-capacity turbomachinery is needed for the concept of underground pumped hydroelectric storage to be technically and economically attractive. Single-stage, reversible, Francis-type pump turbines with adjustable wicket gates appear to offer the most economically attractive option for heads between about 500 and 1000 m. The feasibility of developing these types of machines for capacities up to 500 MW and operating heads up to 1000 m has been evaluated. Preliminary designs have been generated for six single-stage pump turbines. The designs are for capacities of 350 and 500 MW and for operating heads of 500, 750, and 1000 m. The report contains drawings of the machines along with material specifications and hydraulic performance data. Mechanical, hydraulic, and economic analyses indicate that these machines will behave according to the criteria used to design them and that they can be built at a reasonable cost. The stress and deflection responses of the 500-MW, 100-m-head pump turbine, determined by detailed finite element analysis techniques, give solid evidence of the integrity of the conceptual designs of the six units and indicate no unsolvable problems. Results of a life expectancy analysis of the wicket gates indicate that a near infinite life can be expected for these components when they are subjected to normal design loads. Efficiencies of 90.7 and 91.4% in the generating and pumping modes, respectively, can be expected for the 500-MW, 1000-m-head unit. Performances of the other five machines are comparable. The specific costs of the pump turbines in mid-1978 US dollars per kW vary from 19.2 to 11.8 over a head range of from 500 to 1000 m for the 500-MW machines and from 20.0 to 12.3 for the 350-MW machines.

  13. Modeling and Optimal Design of 3 Degrees of Freedom Helmholtz Resonator in Hydraulic System

    Institute of Scientific and Technical Information of China (English)

    GUAN Changbin; JIAO Zongxia

    2012-01-01

    Three degrees of freedom (3-DOF) Helmholtz resonator which consists of three cylindrical necks and cavities connected in series (neck-cavity-ncck-cavity-neck-cavity) is suitable to reduce flow pulsation in hydraulic system.A novel lumped parameter model (LPM) of 3-DOF Helmholtz resonator in hydraulic system is developed which considers the viscous friction loss of hydraulic fluid in the necks.Applying the Newton's second law of motion to the equivalent mechanical model of the resonator,closed-form expression of transmission loss and resonance frequency is presented.Based on the LPM,an optimal design method which employs rotate vector optimization method (RVOM) is proposed.The purpose of the optimal design is to search the resonator's unknown parameters so that its resonance frequencies can coincide with the pump-induced flow pulsation harmonics respectively.The optimal design method is realized to design 3-DOF Helmholtz resonator for a certain type of aviation piston pump hydraulic system.The optimization result shows the feasibility of this method,and the simulation under optimum parameters reveals that the LPM can get the same precision as transfer matrix method (TMM).

  14. Investigation on the influence of leakage clearance on the flow field and performance of scroll hydraulic pump

    Science.gov (United States)

    Sun, Shuaihui; Huang, Yi; Guo, Pengcheng; Zuo, Juanli; Luo, Xingqi

    2016-11-01

    In the present paper, the computer fluid dynamics(CFD) with dynamic mesh model had been applied in scroll hydraulic pump to obtain its flow field at different leakage clearance. The fluid force on the orbiting scroll, the mass flow rate and the hydraulic efficiency at different leakage clearance were calculated based on the flow field data. The results indicated that when the leakage clearance increased from 0.5mm to 1.5mm, the average pressure, maximum of pressure fluctuation, leakage jet flow velocity, shaft power, cavitation degree decreased and the leakage flow rate increased. If the leakage clearance was 2.0mm, the high pressure discharge fluid flowed through the clearance and led to the increase of the average pressure and fluid force. When the leakage clearance is 1.0mm, the average pressure is far lower than that at the 0.5mm clearance, and the hydraulic efficiency is the highest.

  15. Force Balance Analysis Calculation of Downhole Hydraulic Piston Pump%井下水力活塞泵力平衡分析计算

    Institute of Scientific and Technical Information of China (English)

    刘乾义; 郭庆平

    2012-01-01

    The structure and working principle of hydraulic piston pumps is introduced* analysis and calculation of its effective displacement pump and hydraulic motor displacement, and the actual displacement and rated discharge capacity were made. The force balance equation for hydraulic piston pump was established. The P/E values were computed to obtain friction losses, which provided a basis for design and application of hydraulic piston pumps.%介绍了水力活塞泵的结构及工作原理,分析计算了其液马达排量和泵的有效排量、实际排量及额定排量,建立了水力活塞泵力平衡方程,计算得到摩阻损失和P/E值,为水力活塞泵的设计应用提供依据.

  16. 泵直接传动式锻造液压机计算机控制%Computer control of forging hydraulic press with pump-direct-drive

    Institute of Scientific and Technical Information of China (English)

    陈柏金; 钟绍辉; 靳龙; 黄树槐

    2001-01-01

    This paper introduces the principle of forging hydraulic pre ss with pump-direct-drive, and presents the architecture of field control networ k and the CNC system. The control method is also discussed in detail.%介绍了泵直接传动的锻造液压机工作原理,对其采用现场控制网络的体系结构和计算机控制系统进行了描述,并对其控制原理、控制策略进行了研究。

  17. Automated Hydraulic System Design and Power Management in Mobile Applications

    DEFF Research Database (Denmark)

    Pedersen, Henrik Clemmensen

    a presentation of the used graph theory representation that is developed to represent a hydraulic open-circuit system and which is based on a numerical formulation that uniquely describe the system in terms of five set of design variables that describe respectively the topology, the components and the operating...... are found on most medium and high-end mobile hydraulic machinery. Despite the energy saving potentials that these systems posses, compared to the other open-circuit hydraulic system topologies, LS-system may still be subject to very low system efficiencies if not designed correctly. This is typically...... machines if operated in the intended and optimal work area, but due to an inappropriate system layout. Most of the power lost in open circuit hydraulic system systems is in this regard in the transmission part, i.e. hoses and fittings, and the valves used to control the system. A large part of the design...

  18. 基于AMESim的某混凝土泵液压回油管路分析%Analysis of Hydraulic Oil Return Pipeline of One Concrete Pump Based on AMESim

    Institute of Scientific and Technical Information of China (English)

    杨鑫

    2011-01-01

    介绍了某混凝土泵液压系统回油管路的设计,分析了减小该液压系统振荡、保护关键液压元件的方法.采用AMESim软件对该液压系统进行建模与仿真,得出了该回油路优化设计的参数.%The design of hydraulic oil return pipeline of one concrete pump was introduced.How to decrease the vibration of hydraulic system and defend the key hydraulic components of the system were analyzed.Modeling and simulation of the hydraulic system were done on AMEsim, and the optimized parameters were gained.

  19. Theoretical aspects concerning working fluids in hydraulic systems

    Directory of Open Access Journals (Sweden)

    Tița Irina

    2017-01-01

    Full Text Available Among the properties of working fluid, viscosity is the most important as it regards especially to pumps. In order to study the behavior of hydrostatic transmission it is important to create a reliable research instrument for dynamic simulation. Our research expertise being in SimHydraulics consequently this instrument is the suitable block diagram. The purpose of this paper is to present the possible ways to customize the properties of the working fluid in the block diagram.

  20. Modeling and parameter estimation for hydraulic system of excavator's arm

    Institute of Scientific and Technical Information of China (English)

    HE Qing-hua; HAO Peng; ZHANG Da-qing

    2008-01-01

    A retrofitted electro-bydraulic proportional system for hydraulic excavator was introduced firstly. According to the principle and characteristic of load independent flow distribution(LUDV)system, taking boom hydraulic system as an example and ignoring the leakage of hydraulic cylinder and the mass of oil in it,a force equilibrium equation and a continuous equation of hydraulic cylinder were set up.Based On the flow equation of electro-hydraulic proportional valve, the pressure passing through the valve and the difference of pressure were tested and analyzed.The results show that the difference of pressure does not change with load, and it approximates to 2.0 MPa. And then, assume the flow across the valve is directly proportional to spool displacement andis not influenced by load, a simplified model of electro-hydraulic system was put forward. At the same time, by analyzing the structure and load-bearing of boom instrument, and combining moment equivalent equation of manipulator with rotating law, the estimation methods and equations for such parameters as equivalent mass and bearing force of hydraulic cylinder were set up. Finally, the step response of flow of boom cylinder was tested when the electro-hydraulic proportional valve was controlled by the stepcurrent. Based on the experiment curve, the flow gain coefficient of valve is identified as 2.825×10-4m3/(s·A)and the model is verified.

  1. Research on Power Recycling Test Method of Integrative Hydraulic Pump and Motor%联体泵马达功率回收试验方法研究

    Institute of Scientific and Technical Information of China (English)

    郭刘洋; 刘俊; 唐守生; 郭杨浏

    2013-01-01

    The experimental method for the integrative hydraulic pump and motor was researched. The power recycling theory of hydraulic pump was analyzed. According to character of the integrative hydraulic pump and motor,the test method for the integrative hydraulic pump and motor power recycling was defined. The formula to calculate volumetric efficiency was deduced. The power recycling test result is assist to analyze volumetric efficiency,meanwhile,to verify the fundamental performance of the integrative hydraulic pump and motor. Additionally,the test result proves that the integrative hydraulic pump and motor power recycling test method is feasible.%  针对联体泵马达的试验方法进行研究,分析液压泵的功率回收试验原理,根据联体泵马达的结构特点,确定了联体泵马达功率回收试验方法,并推导出容积效率计算公式;通过功率回收试验,对联体泵马达的容积效率进行了测试,验证了泵马达的基本性能,也证实了功率回收方法的有效性和可行性。

  2. Computational fluid dynamics-based hydraulic and hemolytic analyses of a novel left ventricular assist blood pump.

    Science.gov (United States)

    Yang, Xiao-Chen; Zhang, Yan; Gui, Xing-Min; Hu, Sheng-Shou

    2011-10-01

    The advent of various technologies has allowed mechanical blood pumps to become more reliable and versatile in recent decades. In our study group, a novel structure of axial flow blood pump was developed for assisting the left ventricle. The design point of the left ventricular assist blood pump 25 (LAP-25) was chosen at 4 Lpm with 100 mm Hg according to our clinical practice. Computational fluid dynamics was used to design and analyze the performance of the LAP-25. In order to obtain a required hydraulic performance and a satisfactory hemolytic property in the LAP-25 of a smaller size, a novel structure was developed including an integrated shroud impeller, a streamlined impeller hub, and main impeller blades with splitter blades; furthermore, tandem cascades were introduced in designing the diffuser. The results of numerical simulation show the LAP-25 can generate flow rates of 3-5 Lpm at rotational speeds of 8500-10,500 rpm, producing pressure rises of 27.5-148.3 mm Hg with hydraulic efficiency points ranging from 13.4 to 27.5%. Moreover, the fluid field and the hemolytic property of the LAP-25 were estimated, and the mean hemolysis index of the pump was 0.0895% with Heuser's estimated model. In conclusion, the design of the LAP-25 shows an acceptable result.

  3. Hydraulic elements in reduction of vibrations in mechanical systems

    Science.gov (United States)

    Białas, K.; Buchacz, A.

    2017-08-01

    This work presents non-classical method of design of mechanic systems with subsystem reducing vibrations. The purpose of this paper is also introduces synthesis of mechanic system with reducing vibrations understand as design of this type of systems. The synthesis may be applied to modify the already existing systems in order to achieve a desired result. Elements which reduce vibrations can be constructed with passive, semi-active or active components. These considerations systems have selected active items. A hallmark of active elements it is possible to change the parameters on time of these elements and their power from an external source. The implementation of active elements is very broad. These elements can be implemented through the use of components of electrical, pneumatic, hydraulic, etc. The system was consisted from mechanical and hydraulic elements. Hydraulic elements were used as subsystem reducing unwanted vibration of mechanical system. Hydraulic elements can be realized in the form of hydraulic cylinder. In the case of an active vibration reduction in the form of hydraulic cylinder it is very important to find the corresponding values of hydraulic components. The values of these elements affect the frequency of vibrations of this sub-system which is related to the effective vibration reduction [7,11].

  4. Engine room cooling system using jet pump

    Energy Technology Data Exchange (ETDEWEB)

    Lim, J.W.; Lee, S.H. [Daewoo Heavy Industries Ltd. (Korea)

    2000-04-01

    Construction machinery includes an engine enclosure separated from a cooling system enclosure by a wall to reduce noise and advance cooling system performance. For this structure, however, the axial fan cannot be of benefit to the engine room, and so the temperature rise in the engine room makes several bad conditions. This paper proposes that hot air in engine room is evacuated by secondary pipe using jet pump. This paper demonstrates the structure and the effect of jet pump and useful guideline on design of area, length, and shape of secondary pipe to maximize the effect of jet pump. (author). 4 refs., 7 figs., 5 tabs.

  5. INFORMATION-MEASURING TEST SYSTEM OF DIESEL LOCOMOTIVE HYDRAULIC TRANSMISSIONS

    Directory of Open Access Journals (Sweden)

    I. V. Zhukovytskyy

    2015-08-01

    Full Text Available Purpose. The article describes the process of developing the information-measuring test system of diesel locomotives hydraulic transmission, which gives the possibility to obtain baseline data to conduct further studies for the determination of the technical condition of diesel locomotives hydraulic transmission. The improvement of factory technology of post-repair tests of hydraulic transmissions by automating the existing hydraulic transmission test stands according to the specifications of the diesel locomotive repair enterprises was analyzed. It is achieved based on a detailed review of existing foreign information-measuring test systems for hydraulic transmission of diesel locomotives, BelAZ earthmover, aircraft tug, slag car, truck, BelAZ wheel dozer, some brands of tractors, etc. The problem for creation the information-measuring test systems for diesel locomotive hydraulic transmission is being solved, starting in the first place from the possibility of automation of the existing test stand of diesel locomotives hydraulic transmission at Dnipropetrovsk Diesel Locomotive Repair Plant "Promteplovoz". Methodology. In the work the researchers proposed the method to create a microprocessor automated system of diesel locomotives hydraulic transmission stand testing in the locomotive plant conditions. It acts by justifying the selection of the necessary sensors, as well as the application of the necessary hardware and software for information-measuring systems. Findings. Based on the conducted analysis there was grounded the necessity of improvement the plant hydraulic transmission stand testing by creating a microprocessor testing system, supported by the experience of developing such systems abroad. Further research should be aimed to improve the accuracy and frequency of data collection by adopting the more modern and reliable sensors in tandem with the use of filtering software for electromagnetic and other interference. Originality. The

  6. A simplified heat pump model for use in solar plus heat pump system simulation studies

    OpenAIRE

    Perers, Bengt; Anderssen, Elsa; Nordman, Roger; Kovacs, Peter

    2012-01-01

    Solar plus heat pump systems are often very complex in design, with sometimes special heat pump arrangements and control. Therefore detailed heat pump models can give very slow system simulations and still not so accurate results compared to real heat pump performance in a system. The idea here is to start from a standard measured performance map of test points for a heat pump according to EN 14825 and then determine characteristic parameters for a simplified correlation based model of the he...

  7. Development of A Hydraulic Drive for a novel Diesel-Hydraulic system for Large commercial Vehicles

    DEFF Research Database (Denmark)

    Stecki, J. S.; Conrad, Finn; Matheson, P.;

    2002-01-01

    The objectives and results of the research project Hybrid Diesel-Hydraulic System for Large commercial vehicles, e.g. urban freight delivery, buses or garbage trucks. The paper presents and discusses the research and development of the system, modelling approach and results from preliminary...

  8. Development of A Hydraulic Drive for a novel Diesel-Hydraulic system for Large commercial Vehicles

    DEFF Research Database (Denmark)

    Stecki, J. S.; Conrad, Finn; Matheson, P.

    2002-01-01

    The objectives and results of the research project Hybrid Diesel-Hydraulic System for Large commercial vehicles, e.g. urban freight delivery, buses or garbage trucks. The paper presents and discusses the research and development of the system, modelling approach and results from preliminary...... performance tests on a 10 ton vehicle....

  9. A low order adaptive control scheme for hydraulic servo systems

    DEFF Research Database (Denmark)

    Andersen, Torben Ole; Pedersen, Henrik Clemmensen; Bech, Michael Møller;

    2015-01-01

    This paper deals with high-performance position control of hydraulics servo systems in general. The hydraulic servo system used is a two link robotic manipulator actuated by two hydraulic servo cylinders. A non-linear model of the hydraulic system and a Newton-Euler based model of the mechanical...... system were constructed and linearized. Controllers are implemented and tested on the manipulator. Pressure feedback was found to greatly improve system stability margins. Passive gain feedforward shows improved tracking performance for small changes in load pressure. For large changes in load pressure......, active gain feedforward shows a slightly improved performance. Computed-Torque Control shows better performance, but requires a well described system for best performance. A novel Adaptive Inverse Dynamics Controller was tested and the performance was found to be similar to that of Computed...

  10. Reliability modeling of hydraulic system of drum shearer machine

    Institute of Scientific and Technical Information of China (English)

    SEYED HADI Hoseinie; MOHAMMAD Ataie; REZA Khalookakaei; UDAY Kumar

    2011-01-01

    The hydraulic system plays an important role in supplying power and its transition to other working parts of a coal shearer machine.In this paper,the reliability of the hydraulic system of a drum shearer was analyzed.A case study was done in the Tabas Coal Mine in Iran for failure data collection.The results of the statistical analysis show that the time between failures (TBF)data of this system followed the 3-parameters Weibull distribution.There is about a 54% chance that the hydraulic system of the drum shearer will not fail for the first 50 h of operation.The developed model shows that the reliability of the hydraulic system reduces to a zero value after approximately 1 650 hours of operation.The failure rate of this system decreases when time increases.Therefore,corrective maintenance(run-to-failure)was selected as the best maintenance strategy for it.

  11. Technology of load-sensitivity used in the hydraulic system of an all-hydraulic core rig

    Institute of Scientific and Technical Information of China (English)

    XIN De-zhong; CHEN Song-ling; WANG Qing-feng

    2009-01-01

    The existing hydraulic system always have problems of temperature rise, run-ning stability and anti-interference of the implementation components, reliability of hydrau-lic components, maintenance difficulties, and other issues. With high efficiency, energy saving, reliability, easy operating, stable running, anti-interference ability, and other ad-vantages, the load-sensitive hydraulic system is more suitable for coal mine all-hydraulic core rig. Therefore, for the technical development of the coal mine all-hydraulic core rig, the load-sensitive technology employed by the rig should be of great significance.

  12. 径向柱塞式变量液压泵的结构及工作原理%Structure and Operating Principle of Radial Piston Variable Hydraulic Pump

    Institute of Scientific and Technical Information of China (English)

    王霜; 王明章

    2014-01-01

    采用径向柱塞式变量液压泵作为主泵的闭心恒压式液压系统,其最大优点是能根据实际作业需要自动改变流量输出。就径向柱塞式变量液压泵的基本结构和工作原理进行了详细分析,以供实际使用中参考。%Using radial piston variable hydraulic pump as closed center constant hydraulic system of the main pump,its biggest advantage was based on the actual needs of the job,it could automatically change the flow output. The radial piston pump variable basic structure and operating principle was conducted,so as to provide the reference for actual use.

  13. Representing plant hydraulics in a global Earth system model.

    Science.gov (United States)

    Kennedy, D.; Gentine, P.

    2015-12-01

    Earth system models need improvement to reproduce observed seasonal and diurnal cycles of photosynthesis and respiration. Model water stress parameterizations lag behind the plant physiology literature. A plant hydraulics model is developed and deployed in a global Earth system model (NCAR CESM 1.2.2 with CLM 4.5). Assimilation and transpiration are attenuated according to literature cavitation curves. Water stress is evaluated based on plant functional type hydraulic parameters forced by soil moisture and atmospheric conditions. Resolving the plant water status allows for modelling divergent strategies for water stress. The case of isohydric versus anisohydric species is presented, showing that including plant hydraulic traits alter modelled photosynthesis and transpiration.

  14. An Analytical Solution of Hydraulic Head due to an Oscillatory Pumping Test in a Confined, Unconfined or Leaky Aquifer

    Science.gov (United States)

    Huang, C. S.; Yeh, H. D.

    2014-12-01

    This study builds a mathematical model for three-dimensional (3D) transient hydraulic head induced by an oscillatory pumping test in a confined, unconfined or leaky aquifer. The aquifers are of a rectangular shape where the four sides are under the Robin conditions. The 3D flow governing equation with a line sink term representing a vertical well is employed. The sink term has a cosine function for the oscillatory pumping. A general equation describing the head on the top of the three kinds of aquifers is considered. The analytical head solution of the model is derived by the direct Fourier method and the double-integral transform and in terms of a double series with fast convergence. With the aid of the solution, we have found that the vertical component of flow vanishes when Kv d2/(KhD2) > 1 where Kh and Kv are aquifer's hydraulic conductivities, respectively, D is aquifer's thickness, and d is a distance measured from the pumping well. Under the condition, temporal head distributions predicted by the present solution agree with those predicted by solutions developed based on two-dimensional flow by most previous researches.

  15. Comparison of hydraulic and hemolytic properties of different impeller designs of an implantable rotary blood pump by computational fluid dynamics.

    Science.gov (United States)

    Arvand, Arash; Hahn, Nicole; Hormes, Marcus; Akdis, Mustafa; Martin, Michael; Reul, Helmut

    2004-10-01

    A mixed-flow blood pump for long-term applications has been developed at the Helmholtz-Institute in Aachen, Germany. Central features of this implantable pump are a centrally integrated motor, a blood-immersed mechanical bearing, magnetic coupling of the impeller, and a shrouded impeller, which allows a relatively wide clearance. The aim of the study was a numerical analysis of hydraulic and hemolytic properties of different impeller design configurations. In vitro testing and numerical simulation techniques (computational fluid dynamics [CFD]) were applied to achieve a comprehensive overview. Pressure-flow charts were experimentally measured in a mock loop in order to validate the CFD data. In vitro hemolysis tests were performed at the main operating point of each impeller design. General flow patterns, pressure-flow charts, secondary flow rates, torque, and axial forces on the impeller were calculated by means of CFD. Furthermore, based on streak line techniques, shear stress (stress loading), exposure times, and volume percentage with critical stress loading have been determined. Comparison of CFD data with pressure head measurements showed excel-lent agreement. Also, impressive trend conformity was observed between in-vitro hemolysis results and numerical data. Comparison of design variations yielded clear trends and results. Design C revealed the best hydraulic and hemolytic properties and was chosen as the final design for the mixed-flow rotary blood pump.

  16. Pumping Optimization Model for Pump and Treat Systems - 15091

    Energy Technology Data Exchange (ETDEWEB)

    Baker, S.; Ivarson, Kristine A.; Karanovic, M.; Miller, Charles W.; Tonkin, M.

    2015-01-15

    Pump and Treat systems are being utilized to remediate contaminated groundwater in the Hanford 100 Areas adjacent to the Columbia River in Eastern Washington. Design of the systems was supported by a three-dimensional (3D) fate and transport model. This model provided sophisticated simulation capabilities but requires many hours to calculate results for each simulation considered. Many simulations are required to optimize system performance, so a two-dimensional (2D) model was created to reduce run time. The 2D model was developed as a equivalent-property version of the 3D model that derives boundary conditions and aquifer properties from the 3D model. It produces predictions that are very close to the 3D model predictions, allowing it to be used for comparative remedy analyses. Any potential system modifications identified by using the 2D version are verified for use by running the 3D model to confirm performance. The 2D model was incorporated into a comprehensive analysis system (the Pumping Optimization Model, POM) to simplify analysis of multiple simulations. It allows rapid turnaround by utilizing a graphical user interface that: 1 allows operators to create hypothetical scenarios for system operation, 2 feeds the input to the 2D fate and transport model, and 3 displays the scenario results to evaluate performance improvement. All of the above is accomplished within the user interface. Complex analyses can be completed within a few hours and multiple simulations can be compared side-by-side. The POM utilizes standard office computing equipment and established groundwater modeling software.

  17. Adaptive Non-linear Control of Hydraulic Actuator Systems

    DEFF Research Database (Denmark)

    Hansen, Poul Erik; Conrad, Finn

    1998-01-01

    Presentation of two new developed adaptive non-liner controllers for hydraulic actuator systems to give stable operation and improved performance.Results from the IMCIA project supported by the Danish Technical Research Council (STVF).......Presentation of two new developed adaptive non-liner controllers for hydraulic actuator systems to give stable operation and improved performance.Results from the IMCIA project supported by the Danish Technical Research Council (STVF)....

  18. Damages on pumps and systems the handbook for the operation of centrifugal pumps

    CERN Document Server

    Merkle, Thomas

    2014-01-01

    Damage on Pumps and Systems. The Handbook for the Operation of Centrifugal Pumps offers a combination of the theoretical basics and practical experience for the operation of circulation pumps in the engineering industry. Centrifugal pumps and systems are extremely vulnerable to damage from a variety of causes, but the resulting breakdown can be prevented by ensuring that these pumps and systems are operated properly. This book provides a total overview of operating centrifugal pumps, including condition monitoring, preventive maintenance, life cycle costs, energy savings and economic aspects. Extra emphasis is given to the potential damage to these pumps and systems, and what can be done to prevent breakdown. Addresses specific issues about pumping of metal chips, sand, abrasive dust and other solids in fluidsEmphasis on economic and efficiency aspects of predictive maintenance and condition monitoring Uses life cycle costs (LCC) to evaluate and calculate the costs of pumping systems

  19. EXPERIMENTAL RESEARCH FOCUSED ON YIELDS OF LINEARE HYDRAULIC MOTORS USED TO DRIVE THE BOTTOM PUMPS

    Directory of Open Access Journals (Sweden)

    Petre SĂVULESCU

    2011-07-01

    Full Text Available This paper presents the authors’s concerns for determining the functional parameters and its yieldsfor a linear hydraulic engine with double effect. Functional parameters are determined both at unloadedrunning and loaded running of the linear hydraulic motor. The yields was determined on loaded running.

  20. EXPERIMENTAL RESEARCH FOCUSED ON YIELDS OF LINEARE HYDRAULIC MOTORS USED TO DRIVE THE BOTTOM PUMPS

    OpenAIRE

    Petre SĂVULESCU

    2011-01-01

    This paper presents the authors’s concerns for determining the functional parameters and its yieldsfor a linear hydraulic engine with double effect. Functional parameters are determined both at unloadedrunning and loaded running of the linear hydraulic motor. The yields was determined on loaded running.

  1. ELECTRO-HYDRAULIC SERVO SYSTEM IN THE CENTRIFUGE FIELD

    Institute of Scientific and Technical Information of China (English)

    Dong Longlei; Yan Guirong; Li Ronglin

    2004-01-01

    The mechanical characteristics of the electro-hydraulic servo system in the centrifuge field are analyzed.The hydraulic pressure law in the centrifuge field indicates the existence of the centrifuge hydraulic pressure.The mechanical characteristics of the slide-valve and the dual nozzle flapper valve are studied,and it is found that the centrifuge field can not only increase the driving force or moment of the function units,but also decrease the stability of the components.Finally by applying Gauss minimum constraint principle,the dynamic model of the electro-hydraulic vibrator in the centrifuge field is established,and the mechanical restriction of the system is also presented.The study will be helpful for the realization of the combined vibration and centrifuge test system.

  2. Integrated solar pump design incorporating a brushless DC motor for use in a solar heating system

    Energy Technology Data Exchange (ETDEWEB)

    Swan, Lukas G.; Allen, Peter L. [Department of Mechanical Engineering, Dalhousie University, 1360 Barrington Street, Halifax, Nova Scotia B3J 1Z1 (Canada)

    2010-09-15

    Most solar thermal hot water heating systems utilize a pump for circulation of the working fluid. An elegant approach to powering the pump is via solar energy. A ''solar pump'' employs a photovoltaic module, electric motor, and pump to collect and convert solar energy to circulate the working fluid. This article presents an experimental investigation of a new integrated solar pump design that employs the stator of a brushless DC motor and a magnetically coupled pump that has no dynamic seal. This design significantly reduces total volume and mass, and eliminates redundant components. The integrated design meets a hydraulic load of 1.7 bar and 1.4 litres per minute, equal to 4.0 watts, at a rotational speed of 500 revolutions per minute. The brushless DC motor and positive displacement pump achieve efficiencies of 62% and 52%, respectively, resulting in an electric to hydraulic efficiency of 32%. Thus, a readily available photovoltaic module rated 15 watts output is suitable to power the system. A variety of design variations were tested to determine the impact of the armature winding, pump size, pulse width modulation frequency, seal can material, etcetera. The physical and magnetic design was found to dominate efficiency. The efficiency characteristics of a photovoltaic module are such that over-sizing is wasteful. The integrated design presents a robust, efficient package for use as a solar pump. Although focus has been placed on application to a solar thermal collector system, variations of the design are suitable for a wide variety of applications such as remote location water pumping. (author)

  3. Variable Displacement Control of the Concrete Pumping System Based on Dynamic Programming

    Directory of Open Access Journals (Sweden)

    Ye Min

    2017-01-01

    Full Text Available To solve the problems of cylinder piston striking cylinder and the hydraulic shocking of the main pump, and causing energy waste problem, the method of variable displacement control of piston stroke was proposed. In order to achieve effective control of the piston stroke, variable displacement control model was established under the physical constraint condition of non-collision between piston and cylinder. And the control process was realized by Dynamic Programming(DP, the simulation and test results show that piston of concrete pumping system don’t strike cylinder and reduce the hydraulic shock of the main pump outlet, meanwhile improve the response speed of the cylinder and achieve energy-saving purposes under varying loads. This control model built in the integration design space of structure variable and control variable is of guiding significance for solving open-loop system’s engineering problems.

  4. Hydraulic conductivity of a firn aquifer system in southeast Greenland

    Science.gov (United States)

    Miller, Olivia L.; Solomon, D. Kip; Miège, Clément; Koenig, Lora S.; Forster, Richard R.; Montgomery, Lynn N.; Schmerr, Nicholas; Ligtenberg, Stefan R. M.; Legchenko, Anatoly; Brucker, Ludovic

    2017-05-01

    Some regions of the Greenland ice sheet, where snow accumulation and melt rates are high, currently retain substantial volumes of liquid water within the firn pore space throughout the year. These firn aquifers, found between 10-30 m below the snow surface, may significantly affect sea level rise by storing or draining surface meltwater. The hydraulic gradient and the hydraulic conductivity control flow of meltwater through the firn. Here we describe the hydraulic conductivity of the firn aquifer estimated from slug tests and aquifer tests at six sites located upstream of Helheim Glacier in southeastern Greenland. We conducted slug tests using a novel instrument, a piezometer with a heated tip that melts itself into the ice sheet. Hydraulic conductivity ranges between 2.5x10-5 and 1.1x10-3 m/s. The geometric mean of hydraulic conductivity of the aquifer is 2.7x10-4 m/s with a geometric standard deviation of 1.4 from both depth specific slug tests (analyzed using the Hvorslev method) and aquifer tests during the recovery period. Hydraulic conductivity is relatively consistent between boreholes and only decreases slightly with depth. The hydraulic conductivity of the firn aquifer is crucial for determining flow rates and patterns within the aquifer, which inform hydrologic models of the aquifer, its relation to the broader glacial hydrologic system, and its effect on sea level rise.

  5. Multiobjective optimization of water distribution systems accounting for economic cost, hydraulic reliability, and greenhouse gas emissions

    Science.gov (United States)

    Wu, Wenyan; Maier, Holger R.; Simpson, Angus R.

    2013-03-01

    In this paper, three objectives are considered for the optimization of water distribution systems (WDSs): the traditional objectives of minimizing economic cost and maximizing hydraulic reliability and the recently proposed objective of minimizing greenhouse gas (GHG) emissions. It is particularly important to include the GHG minimization objective for WDSs involving pumping into storages or water transmission systems (WTSs), as these systems are the main contributors of GHG emissions in the water industry. In order to better understand the nature of tradeoffs among these three objectives, the shape of the solution space and the location of the Pareto-optimal front in the solution space are investigated for WTSs and WDSs that include pumping into storages, and the implications of the interaction between the three objectives are explored from a practical design perspective. Through three case studies, it is found that the solution space is a U-shaped curve rather than a surface, as the tradeoffs among the three objectives are dominated by the hydraulic reliability objective. The Pareto-optimal front of real-world systems is often located at the "elbow" section and lower "arm" of the solution space (i.e., the U-shaped curve), indicating that it is more economic to increase the hydraulic reliability of these systems by increasing pipe capacity (i.e., pipe diameter) compared to increasing pumping power. Solutions having the same GHG emission level but different cost-reliability tradeoffs often exist. Therefore, the final decision needs to be made in conjunction with expert knowledge and the specific budget and reliability requirements of the system.

  6. Research on synchronous gear pump

    Institute of Scientific and Technical Information of China (English)

    LUAN Zhen-hui

    2010-01-01

    Based on a comprehensive analysis of the structure and existing problems of the gear pump, provided a structure principle of a synchronous gear pump. The discussions focused on the working principle, construction features and finite element analysis of the hydraulic gear. The research indicates that the new pump has such advantages as lower noise, better distributed flow and a high work pressure, and it can be widely used in hydraulic systems.

  7. BASIC FLOW PATTERNS AND OPTIMUM HYDRAULIC DESIGN OF A SUCTION BOX OF PUMPING STATION

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    A numerical method based on 3-D turbulence flow was applied to simulate the flow pattern in suction boxes of six different types.In light of the computational results, the basic flow patterns in the boxes were revealed and a theoretical method to optimize hydraulically design of the suction box is developed.The box geometrical parameters, which influence the flow pattern in the box, could be optimized.The optimum criteria for the hydraulic design of the suction boxes of six types established, respectively.Furthermore, a summarization is given here based on the classification of the basic flow patterns in order to systematically understand the hydraulic design of suction boxes.

  8. Automated Hydraulic System Design and Power Management in Mobile Applications

    DEFF Research Database (Denmark)

    Pedersen, Henrik Clemmensen

    machines if operated in the intended and optimal work area, but due to an inappropriate system layout. Most of the power lost in open circuit hydraulic system systems is in this regard in the transmission part, i.e. hoses and fittings, and the valves used to control the system. A large part of the design...... are working under the most optimal operating conditions. The above in this way constitute the background for the work that is the basis of this report, which deals with how to design and control open-circuit hydraulic systems with multiple consumers to obtain the largest energy utilization, when also...... a presentation of the used graph theory representation that is developed to represent a hydraulic open-circuit system and which is based on a numerical formulation that uniquely describe the system in terms of five set of design variables that describe respectively the topology, the components and the operating...

  9. Borehole Heat Exchanger Systems: Hydraulic Conductivity and Frost-Resistance of Backfill Materials

    Science.gov (United States)

    Anbergen, Hauke; Sass, Ingo

    2016-04-01

    Ground source heat pump (GSHP) systems are economic solutions for both, domestic heating energy supply, as well as underground thermal energy storage (UTES). Over the past decades the technology developed to complex, advanced and highly efficient systems. For an efficient operation of the most common type of UTES, borehole heat exchanger (BHE) systems, it is necessary to design the system for a wide range of carrier fluid temperatures. During heat extraction, a cooled carrier fluid is heated up by geothermal energy. This collected thermal energy is energetically used by the heat pump. Thereby the carrier fluid temperature must have a lower temperature than the surrounding underground in order to collect heat energy. The steeper the thermal gradient, the more energy is transferred to the carrier fluid. The heat injection case works vice versa. For fast and sufficient heat extraction, even over long periods of heating (winter), it might become necessary to run the BHE with fluid temperatures below 0°C. As the heat pump runs periodically, a cyclic freezing of the pore water and corresponding ice-lens growth in the nearfield of the BHE pipes becomes possible. These so called freeze-thaw-cycles (FTC) are a critical state for the backfill material, as the sealing effect eventually decreases. From a hydrogeological point of view the vertical sealing of the BHE needs to be secured at any time (e.g. VDI 4640-2, Draft 2015). The vertical hydraulic conductivity of the BHE is influenced not only by the permeability of the grouting material itself, but by the contact area between BHE pipes and grout. In order to assess the sealing capacity of grouting materials a laboratory testing procedure was developed that measures the vertical hydraulic conductivity of the system BHE pipe and grout. The key features of the procedure are: • assessment of the systeḿs hydraulic conductivity • assessment of the systeḿs hydraulic conductivity after simulation of freeze-thaw-cycle

  10. Field investigation on consumer behavior and hydraulic performance of a district heating system in Tianjin, China

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Baoping; Fu, Lin; Di, Hongfa [Department of Building Science, Tsinghua University, Beijing 100084 (China)

    2009-02-15

    With the implementation of heat reforms in China, the application of thermostatic radiator valves (TRVs) has been gaining popularity in the new-style district heating systems (DHSs). The objective of this study was to investigate consumer behavior (including regulation of TRVs and opening of windows) and its influences on the hydraulic performance and energy consumption of individuals and the whole system. The concurrence rate of individual behaviors and hydraulic interactions between individuals were analyzed. This study should be helpful to gain a comprehensive understanding of the new DHSs in China and consider a proper design/control strategy for these systems. Questionnaires and field observations of consumer behavior, tests of hydraulic performance, and surveys of energy consumption were carried out in a DHS in Tianjin, which was one of the heat metering and billing demonstration projects in China. The main results of the tests were as follows: water flow performance in apartment-level heating systems were diverse because consumers' behavior was varied and unpredictable, and the hydraulic interaction between consumers living along the line of a vertical pipe was obvious, and was stronger for terminal consumers with their TRVs set to higher values; however, flow variations in the whole DHS, which included 910 households, were relatively constant. A probability analysis was carried out to explain this phenomenon, and the conclusion was drawn that when there were more than 200 consumers, the stochastic consumer regulation behavior would bring less than 10% of total flow variations. Finally, the power consumption of the circulation pump, heat consumption and energy-saving potential of this type of DHS were discussed and some suggestions for TRV regulation and pump operation were made. (author)

  11. A new method of providing pulsatile flow in a centrifugal pump: assessment of pulsatility using a mock circulatory system.

    Science.gov (United States)

    Herreros, Jesús; Berjano, Enrique J; Sales-Nebot, Laura; Más, Pedro; Calvo, Irene; Mastrobuoni, Stefano; Mercé, Salvador

    2008-06-01

    Previous studies have demonstrated the potential advantages of pulsatile flow as compared with continuous flow. However, to date, physiologic pumps have been technically complex and their application has therefore remained in the experimental field. We have developed a new type of centrifugal pump, which can provide pulsatile as well as continuous flow. The inner wall of a centrifugal pump is pulsed by means of a flexible membrane, which can be accurately controlled by means of either a hydraulic or pneumatic driver. The aim of this study was to assess the hydraulic behavior of the new pump in terms of surplus hemodynamic energy (SHE). We conducted experiments using a mock circulatory system including a membrane oxygenator. No differences were found in the pressure-flow characteristics between the new pump and a conventional centrifugal pump, suggesting that the inclusion of the flexible membrane does not alter hydraulic performance. The value of SHE rose when systolic volume was increased. However, SHE dropped when the percentage of ejection time was reduced and also when the continuous flow (programmed by the centrifugal console) increased. Mean flow matched well with the continuous flow set by the centrifugal console, that is, the pulsatile component of the flow was exclusively controlled by the pulsatile console, and was therefore independent of the continuous flow programmed by the centrifugal console. The pulsatility of the new pump was approximately 25% of that created with a truly pulsatile pump.

  12. Diode-pumped laser with improved pumping system

    Science.gov (United States)

    Chang, Jim J.

    2004-03-09

    A laser wherein pump radiation from laser diodes is delivered to a pump chamber and into the lasing medium by quasi-three-dimensional compound parabolic concentrator light channels. The light channels have reflective side walls with a curved surface and reflective end walls with a curved surface. A flow tube between the lasing medium and the light channel has a roughened surface.

  13. A Hydraulic Motor-Alternator System for Ocean-Submersible Vehicles

    Science.gov (United States)

    Aintablian, Harry O.; Valdez, Thomas I.; Jones, Jack A.

    2012-01-01

    An ocean-submersible vehicle has been developed at JPL that moves back and forth between sea level and a depth of a few hundred meters. A liquid volumetric change at a pressure of 70 bars is created by means of thermal phase change. During vehicle ascent, the phase-change material (PCM) is melted by the circulation of warm water and thus pressure is increased. During vehicle descent, the PCM is cooled resulting in reduced pressure. This pressure change is used to generate electric power by means of a hydraulic pump that drives a permanent magnet (PM) alternator. The output energy of the alternator is stored in a rechargeable battery that powers an on-board computer, instrumentation and other peripherals.The focus of this paper is the performance evaluation of a specific hydraulic motor-alternator system. Experimental and theoretical efficiency data of the hydraulic motor and the alternator are presented. The results are used to evaluate the optimization of the hydraulic motor-alternator system. The integrated submersible vehicle was successfully operated in the Pacific Ocean near Hawaii. A brief overview of the actual test results is presented.

  14. Root cause analysis of pump valve failures of three membrane pump systems

    NARCIS (Netherlands)

    Buijs, L.J.; Eijk, A.; Hooft, L. van

    2014-01-01

    This paper will present the root cause analysis and the solution of fatigue failures of the pump valves of three membrane pump systems installed on a chemical plant of Momentive in Pernis, the Netherlands. The membrane pumps were installed approximately 30 years ago. Each system has encountered fati

  15. Nonlinear control for a class of hydraulic servo system

    Institute of Scientific and Technical Information of China (English)

    余宏; 冯正进; 王旭永

    2004-01-01

    The dynamics of hydraulic systems are highly nonlinear and the system may be subjected to non-smooth and discontinuous nonlinearities due to directional change of valve opening, friction, etc. Aside from the nonlinear nature of hydraulic dynamics, hydraulic servo systems also have large extent of model uncertainties. To address these challenging issues, a robust state-feedback controller is designed by employing backstepping design technique such that the system output tracks a given signal arbitrarily well, and all signals in the closed-loop system remain bounded. Moreover, a relevant disturbance attenuation inequality is satisfied by the closed-loop signals. Compared with previously proposed robust controllers, this paper's robust controller based on backstepping recursive design method is easier to design, and is more suitable for implementation.

  16. Nonlinear control for a class of hydraulic servo system

    Institute of Scientific and Technical Information of China (English)

    余宏; 冯正进; 王旭永

    2004-01-01

    The dynamics of hydraulic systems are highly nonlinear and the system may be subjected to non-smooth and discontinuous nonlinearities due to directional change of valve opening,friction,etc. Aside from the nonlinear nature of hydraulic dynamics,hydraulic servo systems also have large extent of model uncertainties. To address these challenging issues,a robust state-feedback controller is designed by employing backstepping design technique such that the system output tracks a given signal arbitrarily well,and all signals in the closed-loop system remain bounded. Moreover,a relevant disturbance attenuation inequality is satisfied by the closed-loop signals. Compared with previously proposed robust controllers,this paper's robust controller based on backstepping recursive design method is easier to design,and is more suitable for implementation.

  17. Hydraulic Soft Yaw System Load Reduction and Prototype Results

    DEFF Research Database (Denmark)

    Stubkier, Søren; Pedersen, Henrik C.; Markussen, Kristian

    2013-01-01

    Introducing a hydraulic soft yaw concept for wind turbines leads to significant load reductions in the wind turbine structure. The soft yaw system operates as a shock absorption system on a car, hence absorbing the loading from turbulent wind conditions instead of leading them into the stiff wind...... operates. Further it is analyzed how the soft yaw system influence the power production of the turbine. It is shown that the influence is minimal, but at larger yaw errors the effect is possitive. Due to the implemeted functions in the hydraulic soft yaw system such as even load distribution on the pinions...

  18. Designing an Electro-Hydraulic Control Module for an Open-Circuit Variable Displacement Pump

    DEFF Research Database (Denmark)

    Pedersen, Henrik Clemmensen; Andersen, Torben Ole; Hansen, Michael Rygaard

    2005-01-01

    , in the form of an electric control signal, under varying working conditions, when having access to engine speed and actual pump pressure. The paper presents a model of both the pump and the control module, along with design considerations on which linear controllers are developed for a worst point...

  19. Design and optimization of a large flow rate booster pump in SWRO energy recovery system

    Science.gov (United States)

    Lai, Z. N.; Wu, P.; Wu, D. Z.; Wang, L. Q.

    2013-12-01

    Seawater reverse osmosis (SWRO) is a high energy-consumption industry, so energy efficiency is an important issue. Energy recovery systems, which contain a pressure exchanger and a booster pump, are widely used in SWRO plants. As a key part of energy recovery system, the difficulty of designing booster pumps lies in high inlet pressure, high medium causticity and large flow rate. High inlet pressure adds difficulties to seal design, and large flow rate and high efficiency requirement bring high demand for hydraulic design. In this paper, a 625 m3/h booster pump is designed and optimized according to the CFD (Computational Fluid Dynamics) simulation results. The impeller and volute is well designed, a new type of high pressure mechanical seal is applied and axial force is well balanced. After optimization based on blade redesign, the efficiency of the pump was improved. The best efficiency reaches more than 85% at design point according to the CFD simulation result.

  20. A simplified heat pump model for use in solar plus heat pump system simulation studies

    DEFF Research Database (Denmark)

    Perers, Bengt; Andersen, Elsa; Nordman, Roger

    2012-01-01

    Solar plus heat pump systems are often very complex in design, with sometimes special heat pump arrangements and control. Therefore detailed heat pump models can give very slow system simulations and still not so accurate results compared to real heat pump performance in a system. The idea here...... is to start from a standard measured performance map of test points for a heat pump according to EN 14825 and then determine characteristic parameters for a simplified correlation based model of the heat pump. By plotting heat pump test data in different ways including power input and output form and not only...... as COP, a simplified relation could be seen. By using the same methodology as in the EN 12975 QDT part in the collector test standard it could be shown that a very simple model could describe the heat pump test data very accurately, by identifying 4 parameters in the correlation equation found....

  1. A simplified heat pump model for use in solar plus heat pump system simulation studies

    DEFF Research Database (Denmark)

    Perers, Bengt; Andersen, Elsa; Nordman, Roger

    2012-01-01

    Solar plus heat pump systems are often very complex in design, with sometimes special heat pump arrangements and control. Therefore detailed heat pump models can give very slow system simulations and still not so accurate results compared to real heat pump performance in a system. The idea here...... is to start from a standard measured performance map of test points for a heat pump according to EN 14825 and then determine characteristic parameters for a simplified correlation based model of the heat pump. By plotting heat pump test data in different ways including power input and output form and not only...... as COP, a simplified relation could be seen. By using the same methodology as in the EN 12975 QDT part in the collector test standard it could be shown that a very simple model could describe the heat pump test data very accurately, by identifying 4 parameters in the correlation equation found....

  2. 46 CFR 111.97-5 - Electric and hydraulic power supply.

    Science.gov (United States)

    2010-10-01

    ... by one or more motor-driven hydraulic pumps that can operate from the final source of the emergency lighting and power system. (d) The motor-driven hydraulic pumps must automatically maintain the accumulator... 46 Shipping 4 2010-10-01 2010-10-01 false Electric and hydraulic power supply. 111.97-5...

  3. Adaptive sliding mode back-stepping pitch angle control of a variable-displacement pump controlled pitch system for wind turbines.

    Science.gov (United States)

    Yin, Xiu-xing; Lin, Yong-gang; Li, Wei; Liu, Hong-wei; Gu, Ya-jing

    2015-09-01

    A variable-displacement pump controlled pitch system is proposed to mitigate generator power and flap-wise load fluctuations for wind turbines. The pitch system mainly consists of a variable-displacement hydraulic pump, a fixed-displacement hydraulic motor and a gear set. The hydraulic motor can be accurately regulated by controlling the pump displacement and fluid flows to change the pitch angle through the gear set. The detailed mathematical representation and dynamic characteristics of the proposed pitch system are thoroughly analyzed. An adaptive sliding mode pump displacement controller and a back-stepping stroke piston controller are designed for the proposed pitch system such that the resulting pitch angle tracks its desired value regardless of external disturbances and uncertainties. The effectiveness and control efficiency of the proposed pitch system and controllers have been verified by using realistic dataset of a 750 kW research wind turbine.

  4. Primary system thermal hydraulics of future Indian fast reactors

    Energy Technology Data Exchange (ETDEWEB)

    Velusamy, K., E-mail: kvelu@igcar.gov.in [Thermal Hydraulics Section, Indira Gandhi Centre for Atomic Research, Kalpakkam 603102 (India); Natesan, K.; Maity, Ram Kumar; Asokkumar, M.; Baskar, R. Arul; Rajendrakumar, M.; Sarathy, U. Partha; Selvaraj, P.; Chellapandi, P. [Thermal Hydraulics Section, Indira Gandhi Centre for Atomic Research, Kalpakkam 603102 (India); Kumar, G. Senthil; Jebaraj, C. [AU-FRG Centre for CAD/CAM, Anna University, Chennai 600 025 (India)

    2015-12-01

    Highlights: • We present innovative design options proposed for future Indian fast reactor. • These options have been validated by extensive CFD simulations. • Hotspot factors in fuel subassembly are predicted by parallel CFD simulations. • Significant safety improvement in the thermal hydraulic design is quantified. - Abstract: As a follow-up to PFBR (Indian prototype fast breeder reactor), many FBRs of 500 MWe capacity are planned. The focus of these future FBRs is improved economy and enhanced safety. They are envisaged to have a twin-unit concept. Design and construction experiences gained from PFBR project have provided motivation to achieve an optimized design for future FBRs with significant design changes for many critical components. Some of the design changes include, (i) provision of four primary pipes per primary sodium pump, (ii) inner vessel with single torus lower part, (iii) dome shape roof slab supported on reactor vault, (iv) machined thick plate rotating plugs, (v) reduced main vessel diameter with narrow-gap cooling baffles and (vi) safety vessel integrated with reactor vault. This paper covers thermal hydraulic design validation of the chosen options with respect to hot and cold pool thermal hydraulics, flow requirement for main vessel cooling, inner vessel temperature distribution, safety analysis of primary pipe rupture event, adequacy of decay heat removal capacity by natural convection cooling, cold pool transient thermal loads and thermal management of top shield and reactor vault.

  5. Hydraulic System Design of Hydraulic-Driven Load Exoskeleton Robot%液压驱动型负重外骨骼机器人液压系统设计

    Institute of Scientific and Technical Information of China (English)

    周加永; 张昂; 莫新民; 赵浩; 纪平鑫

    2016-01-01

    Started from human motion characteristics, the hydraulic drive overall load exoskeleton robot skeleton structure was an-alyzed. According to the characteristics of the load exoskeleton robot, a complete hydraulic drive system was designed, and the main el-ements of the selection calculation were carried out as hydraulic system, hydraulic pumps, servo valves and hydraulic cylinders, and etc. Simhydraulics software was used to establish the simulation schematics for hydraulic system of load exoskeleton robot, study and simulation analysis were carried out for the hydraulic system, and simulation results were proved of the rational design of the hydraulic system. In the last, technology challenges faced by the hydraulic drive load exoskeleton robot are analyzed, which provide reference for further design of the hydraulic system.%从人体运动特征出发,分析了液压驱动负重外骨骼机器人的整体骨架结构。根据负重外骨骼机器人的特点要求设计了一套完整的液压传动系统,对液压系统中液压泵、伺服阀和液压缸等主要元件进行了选型计算。利用Simhydraulics软件建立了负重外骨骼机器人液压系统仿真原理图,并对液压系统进行了仿真分析研究,由仿真结果证明了所设计液压系统的合理性。最后对液压驱动型负重外骨骼机器人技术面临的挑战进行了分析,为该液压系统的深化设计提供了参考。

  6. Numerical Research on Hydraulically Generated Vibration and Noise of a Centrifugal Pump Volute with Impeller Outlet Width Variation

    Directory of Open Access Journals (Sweden)

    Houlin Liu

    2014-01-01

    Full Text Available The impeller outlet width of centrifugal pumps is of significant importance for numbers of effects. In the paper, these effects including the performance, pressure pulsations, hydraulically generated vibration, and noise level are investigated. For the purpose, two approaches were used to predict the vibration and sound radiation of the volute under fluid excitation force. One approach is the combined CFD/FEM analysis for structure vibration, and then the structure response obtained from the FEM analysis is treated as the boundary condition for BEM analysis for sound radiation. The other is the combined CFD/FEM/BEM coupling method. Before the numerical methods were used, the simulation results were validated by the vibration acceleration of the monitoring points on the volute. The vibration and noise were analyzed and compared at three flow conditions. The analysis of the results shows that the influences of the sound pressure of centrifugal pumps on the structure appear insignificant. The relative outlet width b2* at nq(SI = 26.7 in this paper should be less than 0.06, based on an overall consideration of the pump characteristics, pressure pulsations, vibration and noise level.

  7. New JSME standard S008 “Performance Conversion Method for Hydraulic Turbines and Pump-Turbines”

    Science.gov (United States)

    Nakanishi, Y.; Kitahora, T.; Suzuki, S.; Suzuki, T.; Sugishita, K.; Suzuki, R.; Tani, K.

    2016-11-01

    JSME Standard S008 “Performance Conversion Method for Hydraulic Turbines and Pump-Turbines” is now being revised and will be published in 2016. This new revision follows the main theory of previous version S008-1999. It enables us to convert the performance of each flow passage component of spiral case, stay vane, guide vane, runner and draft tube of model turbines and pump-turbines to that of prototypes with one-step calculation. The relevant values needed for the performance conversion, e.g. dimension factor, flow velocity factor, relative scalable loss of components δ ECO , etc. are newly organized as functions of specific speeds of turbines and pump-turbines using polynomial expressions. Additional data for high specific speed turbines are included. The resultant factors for conversion of the specific energy efficiency scale factor F E , the discharge efficiency scale factor F Q and the power efficiency scale factor F T are determined by considering friction coefficient ratio for prototype to the model.

  8. Hydraulic testing of intravascular axial flow blood pump designs with a protective cage of filaments for mechanical cavopulmonary assist.

    Science.gov (United States)

    Kapadia, Jugal Y; Pierce, Kathryn C; Poupore, Amy K; Throckmorton, Amy L

    2010-01-01

    To provide hemodynamic support to patients with a failing single ventricle, we are developing a percutaneously inserted, magnetically levitated axial flow blood pump designed to augment pressure in the cavopulmonary circulation. The device is designed to serve as a bridge-to-transplant, bridge-to-recovery, bridge-to-hemodynamic stability, or bridge-to-surgical reconstruction. This study evaluated the hydraulic performance of three blood pump prototypes (a four-bladed impeller, a three-bladed impeller, and a three-bladed impeller with a four-bladed diffuser) whose designs evolved from previous design optimization phases. Each prototype included the same geometric protective cage of filaments, which stabilize the rotor within the housing and protect the housing wall from the rotating blades. All prototypes delivered pressure rises over a range of flow rates and rotational speeds that would be sufficient to augment hemodynamic conditions in the cavopulmonary circulation. The four-bladed impeller outperformed the two remaining prototypes by >40%; this design was able to generate a pressure rise of 4-28 mm Hg for flow rates of 0.5-10 L/min at rotational speeds of 4,000-7,000 RPM. Successful development of this blood pump will provide clinicians with a feasible therapeutic option for mechanically supporting the failing Fontan.

  9. McMillan Pumping Station, Washington, D.C.; Hydraulic Model Investigation.

    Science.gov (United States)

    1980-09-01

    from the pump intake, dissipated some of the excessive kinetic energy of inflow, and essentially eliminated adverse effects of secondary crossflow...inside the prototype channel. A headbox in the model simulated the prototype channel and received water from each of the three pumps. The water was...baffled as it entered the headbox , then it was allowed to flow back into the sump through the four h8-in. (prototype) inflow pipes (simulated). Flow

  10. Hydraulic Soft Yaw System Load Reduction and Prototype Results

    DEFF Research Database (Denmark)

    Stubkier, Søren; Pedersen, Henrik C.; Markussen, Kristian

    2013-01-01

    Introducing a hydraulic soft yaw concept for wind turbines leads to significant load reductions in the wind turbine structure. The soft yaw system operates as a shock absorption system on a car, hence absorbing the loading from turbulent wind conditions instead of leading them into the stiff wind...

  11. Heat Pumps in CHP Systems

    DEFF Research Database (Denmark)

    Ommen, Torben Schmidt

    in Danish conditions. The limitations are highly dependent on the integration of heat source and sink streams. An evaluation of feasible operating conditions was carried out considering the constraints of available refrigeration equipment and a requirement of a positive net present value of the investment...... goals. The presented study investigates the possible introduction of HPs from both a thermodynamic and a system/operation management perspective, in order to find optimal integration schemes in both current and future energy scenarios. Five generic configurations of HPs in district heating (DH) systems...... that three configurations are particular advantageous, whereas the two remaining configurations result in system performance close to or below what may be expected from an electric heater. One of the three advantageous configurations is required to be positioned at the location of the heat demand, whereas...

  12. Design of hydraulic output Stirling engine

    Science.gov (United States)

    Toscano, W. M.; Harvey, A. C.; Lee, K.

    1983-01-01

    A hydraulic output system for the RE-1000 free piston stirling engine (FPSE) was designed. The hydraulic output system can be readily integrated with the existing hot section of RE-1000 FPSE. The system has two simply supported diaphragms which separate the engine gas from the hydraulic fluid, a dynamic balance mechanism, and a novel, null center band hydraulic pump. The diaphragms are designed to endure more than 10 billion cycles, and to withstand the differential pressure load as high as 14 MPa. The projected thermodynamic performance of the hydraulic output version of RE-1000 FPSE is 1.87 kW at 29/7 percent brake efficiency.

  13. Operation history of hydraulic jet pump on teh Chengbei oil field, China. Chengbei yuden ni okeru haidororikku jet pump no shiyo jisseki

    Energy Technology Data Exchange (ETDEWEB)

    Terao, Yoshihiro; Takagi, Sunao

    1989-11-01

    Changbei oil field in China uses hydraulic jet pump(HJP) to cope with the increase of oil production and increase of water content in the oil field. This paper described the practical result. This pump makes high speed jet by driving fluid, and converts the dynamic energy to pressure energy by decelerating with a diffuser to push up oil. Wellheads damaged by sand friction or near the gas cap were removed. The production from March, 1988 to October increased at the rate of 114kl/day at total 8 wellheads. Heavy oil of API specific gravity of 16 degree could be proved. Since the separation of oil and water was inferior, so that the countermeasures were studied but the cause was not known. Troubles or failures of main body, nozzle and throat of HJP were not occurred. Any effect could not be found at a wellhead of water content exceeding 50 to 60% because only water production increased. Consequently, this process could result the increase of oil production with lower cost and without mechanical failures. 2 refs., 7 figs., 7 tabs.

  14. Pump/Control System Minimum Operating Cost Testing

    Science.gov (United States)

    1977-01-01

    A preliminary evaluation of pump performance was initiated to determine the efficiencies of an arbitrary group of small pumps. Trends in factors affecting energy usage in typical prime movers which might be used in liquid transport solar systems were assessed. Comparisons of centrifugal pump efficiencies were made from one manufacturer to another. Tests were also made on two positive-displacement pumps and comparisons with centrifugal pumps were observed.

  15. Tap Water Hydraulic Control Systems - Design and Industrial Applications. Chapter 7 in Advances in Hydraulic Control Systems

    DEFF Research Database (Denmark)

    Conrad, Finn

    Deals with development and design of modern tap water hydraulic components and systems, in particalar the Danfoss Nessie-family of components and systems working with pure tap water without any kind of additives. Typical industrial applications are presented and the perspectives of new industrial...

  16. Pumped storage system model and experimental investigations on S-induced issues during transients

    Science.gov (United States)

    Zeng, Wei; Yang, Jiandong; Hu, Jinhong

    2017-06-01

    Because of the important role of pumped storage stations in the peak regulation and frequency control of a power grid, pump turbines must rapidly switch between different operating modes, such as fast startup and load rejection. However, pump turbines go through the unstable S region in these transition processes, threatening the security and stability of the pumped storage station. This issue has mainly been investigated through numerical simulations, while field experiments generally involve high risks and are difficult to perform. Therefore, in this work, the model test method was employed to study S-induced security and stability issues for a pumped storage station in transition processes. First, a pumped storage system model was set up, including the piping system, model units, electrical control systems and measurement system. In this model, two pump turbines with different S-shaped characteristics were installed to determine the influence of S-shaped characteristics on transition processes. The model platform can be applied to simulate any hydraulic transition process that occurs in real power stations, such as load rejection, startup, and grid connection. On the experimental platform, the S-shaped characteristic curves were measured to be the basis of other experiments. Runaway experiments were performed to verify the impact of the S-shaped characteristics on the pump turbine runaway stability. Full load rejection tests were performed to validate the effect of the S-shaped characteristics on the water-hammer pressure. The condition of one pump turbine rejecting its load after another defined as one-after-another (OAA) load rejection was performed to validate the possibility of S-induced extreme draft tube pressure. Load rejection experiments with different guide vane closing schemes were performed to determine a suitable scheme to adapt the S-shaped characteristics. Through these experiments, the threats existing in the station were verified, the

  17. A Hydraulic Blowdown Servo System For Launch Vehicle

    Science.gov (United States)

    Chen, Anping; Deng, Tao

    2016-07-01

    This paper introduced a hydraulic blowdown servo system developed for a solid launch vehicle of the family of Chinese Long March Vehicles. It's the thrust vector control (TVC) system for the first stage. This system is a cold gas blowdown hydraulic servo system and consist of gas vessel, hydraulic reservoir, servo actuator, digital control unit (DCU), electric explosion valve, and pressure regulator etc. A brief description of the main assemblies and characteristics follows. a) Gas vessel is a resin/carbon fiber composite over wrapped pressure vessel with a titanium liner, The volume of the vessel is about 30 liters. b) Hydraulic reservoir is a titanium alloy piston type reservoir with a magnetostrictive sensor as the fluid level indicator. The volume of the reservoir is about 30 liters. c) Servo actuator is a equal area linear piston actuator with a 2-stage low null leakage servo valve and a linear variable differential transducer (LVDT) feedback the piston position, Its stall force is about 120kN. d) Digital control unit (DCU) is a compact digital controller based on digital signal processor (DSP), and deployed dual redundant 1553B digital busses to communicate with the on board computer. e) Electric explosion valve is a normally closed valve to confine the high pressure helium gas. f) Pressure regulator is a spring-loaded poppet pressure valve, and regulates the gas pressure from about 60MPa to about 24MPa. g) The whole system is mounted in the aft skirt of the vehicle. h) This system delivers approximately 40kW hydraulic power, by contrast, the total mass is less than 190kg. the power mass ratio is about 0.21. Have finished the development and the system test. Bench and motor static firing tests verified that all of the performances have met the design requirements. This servo system is complaint to use of the solid launch vehicle.

  18. Charging valve of the full hydraulic braking system

    Directory of Open Access Journals (Sweden)

    Jinshi Chen

    2016-03-01

    Full Text Available It is known that the full hydraulic braking system has excellent braking performance. As the key component of the full hydraulic braking system, the parameters of the accumulator charging valve have a significant effect on the braking performance. In this article, the key parameters of the charging valve are analyzed through the static theoretical and an Advanced Modeling Environment for performing Simulation of engineering systems (AMESim simulation model of the dual-circuit accumulator charging valve is established based on the real structure parameters first. Second, according to the results of the dynamic simulation, the dynamic characteristics of the charging pressure, the flow rate, and the frequency of the charging valve are studied. The key parameters affecting the serial production are proposed and some technical advices for improving the performance of the full hydraulic system are provided. Finally, the theoretical analysis is validated by the simulation results. The comparison between the simulation results and the experimental results indicates that the simulated AMESim model of the charging valve is accurate and credible with the error rate inside 0.5% compared with the experimental result. Hence, the performance of the charging valve meets the request of the full hydraulic braking system exactly.

  19. Aircraft Hydraulic System Leakage Detection and Servicing Recommendations Method

    Science.gov (United States)

    2014-10-02

    accumulators, filters, and consumers, that include all the actuators connected to the hydraulic power such as flight controls , brake and landing...Conference, October 4-8 Calgary, Alberta, Canada. Merrit, H. E., (1967), Hydraulic Control Systems. New York: John Willey & Sons. Vianna, W. O. L...2008), Modelagem e Análise do Sistema Hidráulico de uma Aeronave Comercial Regional. M.Sc. Thesis. Instituto Tecnológico de Aeronáutica, São José

  20. Efficiency assessment of a wind pumping system

    Energy Technology Data Exchange (ETDEWEB)

    Lara, David D.; Merino, Gabriel G. [Department of Mechanization and Energy, University of Concepcion, Avenida Vicente Mendez 595, Chillan (Chile); Pavez, Boris J. [Department of Electrical Engineering, University of La Frontera, Casilla 54-D, Temuco (Chile); Tapia, Juan A. [Department of Electrical Engineering, University of Concepcion, Casilla 160-C, Concepcion (Chile)

    2011-02-15

    The combined efficiency of the components determines overall system performance in electric wind pumping systems. We evaluated a system composed of a 3 kW wind generator feeding a battery bank of 48 V/880 Ah by means of a non-controlled 6-pulse rectifier. Connected to this battery bank was a 1.5 kW inverter that generated 220 V at 50 Hz, which powers a 1.1 kW single-phase electric pump. At the University of Concepcion, Chile, energy losses in each electrical component was determined using a data collection system configured to measure electrical variables in real time. The electrical power generated by the wind generator for different wind speeds averaged 38% lower than the power curve provided by the manufacturer. Electromechanical tests performed in a lab showed the operation efficiency of the electric generator of the wind turbine averaged 80%. This information, along with the electrical power output, and the wind velocity measured during field operation allowed us to determine the rotor's power coefficient C{sub p}, which had a maximum value of 35%. For the stored energy components measured data indicated that the rectifier, the battery bank, and the inverter operated with average efficiencies of 95%, 78% and 86% respectively. The combined component efficiencies showed a maximum of 17% of the wind energy would be available for water pumping. Since a large amount of wind energy was dissipated during the energy conversion process, new configurations should be analyzed that could avoid such losses in wind pumping systems. (author)

  1. HYDRAULIC SERVO

    Science.gov (United States)

    Wiegand, D.E.

    1962-05-01

    A hydraulic servo is designed in which a small pressure difference produced at two orifices by an electrically operated flapper arm in a constantly flowing hydraulic loop is hydraulically amplified by two constant flow pumps, two additional orifices, and three unconnected ball pistons. Two of the pistons are of one size and operate against the additional orifices, and the third piston is of a different size and operates between and against the first two pistons. (AEC)

  2. Pump as Turbine (PAT Design in Water Distribution Network by System Effectiveness

    Directory of Open Access Journals (Sweden)

    Oreste Fecarotta

    2013-08-01

    Full Text Available Water distribution networks face several problems related to leakages, where the pressure control strategy is a common practice for water loss management. Small-scale hydropower schemes, where pumps as turbines replace pressure reducing valves, can be considered an interesting technical solution, which ensures both economic convenience and system flexibility. Due to the water networks’ variable operating conditions, a new methodology to model the effectiveness of pumps as turbines was developed based on the efficiency and the mechanical reliability of the hydropower device and the flexibility of the plant. System effectiveness is proposed as the objective function in the optimization procedure and applied to a real system, enabling one to emphasize that the hydraulic regulation mode of the plant is better than the electric regulation mode for American Petroleum Industry (API manufacturing standards of pumps.

  3. Numerical and experimental studies of hydraulic noise induced by surface dipole sources in a centrifugal pump

    Institute of Scientific and Technical Information of China (English)

    刘厚林; 戴菡葳; 丁剑; 谈明高; 王勇; 黄浩钦

    2016-01-01

    The influences of the four different surface dipole sources in a centrifugal pump on the acoustic calculating accuracy are studied in this paper, by using the CFD combined with the Lighthill acoustic analogy methods. Firstly, the unsteady flow in the pump is solved based on the large eddy simulation method and the pressure pulsations on the four different surfaces are obtained. The four surfaces include the volute surface, the discharge pipe surface, the inner surface of the pump cavity, and the interfaces between the impeller and the stationary parts as well as the outer surface of the impeller. Then, the software Sysnoise is employed to interpolate the pressure fluctuations onto the corresponding surfaces of the acoustic model. The Fast Fourier Transform with a Hanning window is used to analyze the pressure fluctuations and transform them into the surface dipole sources. The direct boundary element method is applied to calculate the noise radiated from the dipole sources. And the predicted sound pressure level is compared with the experi- mental data. The results show that the pressure fluctuations on the discharge pipe surface and the outer surface of the impeller have little effect on the acoustic simulation results. The pressure pulsations on the inner surface of the pump cavity play an important role in the internal flow and the acoustic simulation. The acoustic calculating error can be reduced by about 7% through considering the effect of the pump cavity. The sound pressure distributions show that the sound pressure level increases with the growing flow rate, with the largest magnitude at the tongue zone.

  4. TRANSIENT RESPONSE OF A VALVE CONTROL HYDRAULIC SYSTEM WITHLONG PIPES

    Institute of Scientific and Technical Information of China (English)

    Wei Jianhua; Kong Xiaowu; Qiu Minxiu; Wu Genmao

    2004-01-01

    The simulation model of a valve control hydraulic system with long pipe is established in Simulink4.0, and then the step responses of the systems with difference pipe parameters are investigated by simulation.Simulation results show that the long pipes will slow down the step response of system and make it fluctuate periodically.The results of simulation conform to the results of experiment on the whole, which proves the mathematic model is correct.

  5. Analysis of nonlinearities and effects in direct drive electro-hydraulic position servo system

    Institute of Scientific and Technical Information of China (English)

    WANG Hong-jie; JI Tian-jing; MAO Xin-tao; LIU Quan-zhong

    2005-01-01

    The direct drive electro-hydraulic servo system is a new approach hydraulic system. It is much smaller and easier controlled than traditional systems and is a perfect energy saver. This paper will briefly introduce the popular nonlinearities in the electro-hydraulic system and analyse the effect of nonlinearities in direct drive electro-hydraulic position servo system by means of simulation research. Some valuable conclusions are given.

  6. Energy Efficient Pump Control for an Offshore Oil Processing System

    DEFF Research Database (Denmark)

    Yang, Zhenyu; Soleiman, Kian; Løhndorf, Bo

    2012-01-01

    The energy efficient control of a pump system for an offshore oil processing system is investigated. The seawater is lifted up by a pump system which consists of three identical centrifugal pumps in parallel, and the lifted seawater is used to cool down the crude oil flowing out of a threephase...... separator on one of the Danish north-sea platform. A hierarchical pump-speed control strategy is developed for the considered system by minimizing the pump power consumption subject to keeping a satisfactory system performance. The proposed control strategy consists of online estimation of some system...... operating parameters, optimization of pump configurations, and a real-time feedback control. Comparing with the current control strategy at the considered system, where the pump system is on/off controlled, and the seawater flows are controlled by a number of control valves, the proposed control strategy...

  7. Operation of the counter-rotating type pump-turbine unit installed in the power stabilizing system

    Science.gov (United States)

    Kanemoto, T.; Honda, H.; Kasahara, R.; Miyaji, T.

    2014-03-01

    This serial research intends to put a unique power stabilization system with a pumped storage into practical use. The pumped storage is equipped with a counter-rotating type pump-turbine unit whose operating mode can be shifted instantaneously in response to the fluctuation of power from renewable resources. This paper verifies that the system is reasonably effective to stabilize the fluctuating power. It is necessary to quickly increase the rotational speed when the operation is shifted from the turbine to the pumping modes, because the unit cannot pump-up water from a lower reservoir at a slow rotational speed while keeping gross/geodetic head constant. The maximum hydraulic efficiency at the turbine mode is close to the efficiency of the counter-rotating type hydroelectric unit designed exclusively for the turbine mode. The system is also provided for a pilot plant to be operated in the field.

  8. Application of flow network models of SINDA/FLUINT{sup TM} to a nuclear power plant system thermal hydraulic code

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Ji Bum [Institute for Advanced Engineering, Yongin (Korea, Republic of); Park, Jong Woon [Korea Electric Power Research Institute, Taejon (Korea, Republic of)

    1998-12-31

    In order to enhance the dynamic and interactive simulation capability of a system thermal hydraulic code for nuclear power plant, applicability of flow network models in SINDA/FLUINT{sup TM} has been tested by modeling feedwater system and coupling to DSNP which is one of a system thermal hydraulic simulation code for a pressurized heavy water reactor. The feedwater system is selected since it is one of the most important balance of plant systems with a potential to greatly affect the behavior of nuclear steam supply system. The flow network model of this feedwater system consists of condenser, condensate pumps, low and high pressure heaters, deaerator, feedwater pumps, and control valves. This complicated flow network is modeled and coupled to DSNP and it is tested for several normal and abnormal transient conditions such turbine load maneuvering, turbine trip, and loss of class IV power. The results show reasonable behavior of the coupled code and also gives a good dynamic and interactive simulation capabilities for the several mild transient conditions. It has been found that coupling system thermal hydraulic code with a flow network code is a proper way of upgrading simulation capability of DSNP to mature nuclear plant analyzer (NPA). 5 refs., 10 figs. (Author)

  9. Energy-saving Study of Excavator Based on Hydraulic Pump Efficiency%基于液压泵效率的挖掘机节能研究

    Institute of Scientific and Technical Information of China (English)

    吴文海; 杨宇澜; 刘桓龙; 王国志

    2014-01-01

    For the work characteristics of the volume adjustable hydraulic pump,its control and working principle in the hydrau-lic excavator were analyzed. And as a basis,the simulation model of a volume adjustable pump and a hydraulic excavator machine was established. The simulation results show that the discharge ratio of the volume adjustable pump is an important control parameter which can achieve a greater impact on the efficiency of a hydraulic pump. When the excavator is in the fine operation phase,a reducer is used to adjust the pump speed,and the increase of the discharge ratio can improve the efficiency of the pump,so the fuel consumption is decreased by 16.5% which improves the overall fuel efficiency.%针对变量液压泵的工作特点,分析了其在液压挖掘机中控制和工作原理,并以此为基础建立了变量泵以及液压挖掘机整机的仿真模型。仿真结果表明:变量泵的排量比是对挖掘机中液压泵效率影响较大且可实现控制的一个重要参数,在挖掘机精细作业时采用减速机调节泵的转速,适当增大泵的排量比能提高泵的效率,使油耗量下降了16.5%,提高了整机的燃油效率。

  10. Research on the performance of low-lift diving tubular pumping system by CFD and Test

    Science.gov (United States)

    Xia, Chenzhi; Cheng, Li; Liu, Chao; Zhou, Jiren; Tang, Fangping; Jin, Yan

    2016-11-01

    Post-diving tubular pump is always used in large-discharge & low-head irrigation or storm drainage pumping station, its impeller and motor share the same shaft. Considering diving tubular pump system's excellent hydraulic performance, compact structure, good noise resistance and low operating cost, it is used in Chinese pump stations. To study the hydraulic performance and pressure fluctuation of inlet and outlet passage in diving tubular pump system, both of steady and unsteady full flow fields are numerically simulated at three flow rate conditions by using CFD commercial software. The asymmetry of the longitudinal structure of inlet passage affects the flow pattern on outlet. Especially at small flow rate condition, structural asymmetry will result in the uneven velocity distribution on the outlet of passage inlet. The axial velocity distribution uniformity increases as the flow rate increases on the inlet of passage inlet, and there is a positive correlation between hydraulic loss in the passage inlet and flow rate's quadratic. The axial velocity distribution uniformity on the outlet of passage inlet is 90% at design flow rate condition. The predicted result shows the same trend with test result, and the range of high efficiency area between predicted result and test result is almost identical. The dominant frequency of pressure pulsation is low frequency in inlet passage at design condition. The dominant frequency is high frequency in inlet passage at small and large flow rate condition. At large flow rate condition, the flow pattern is significantly affected by the rotation of impeller in inlet passage. At off-design condition, the pressure pulsation is strong at outlet passage. At design condition, the dominant frequency is 35.57Hz, which is double rotation frequency.

  11. OPTIMUM DESIGN AND NON-LINEAR MODEL OF POWERPLANT HYDRAULIC MOUNT SYSTEM

    Institute of Scientific and Technical Information of China (English)

    Shi Wenku; Min Haitao; Dang Zhaolong

    2003-01-01

    6-DOF non-linear mechanics model of powerplant hydraulic mount system is established. Optimum design of the powerplant hydraulic mount system is made with the hydraulic mount parameters as variables and with uncoupling of energy, rational disposition of nature frequency and minimum of reactive force at mount's location as objective functions. And based on the optimum design, software named ODPHMS (optimum design of powerplant hydraulic mount system) used in powerplant mount system optimum design is developed.

  12. Research on the rationality of transmission system for fast forging hydraulic press%快锻液压机传动系统合理性的探讨

    Institute of Scientific and Technical Information of China (English)

    陈超; 范淑琴; 赵升吨; 崔敏超; 韩晓兰

    2016-01-01

    The research status of fast forging hydraulic press at home and abroad was introduced, and deficiencies of the fast forging press in the domestic development were pointed out. The structures and principles of valve controlled hydraulic transmission system, pump con-trolled hydraulic transmission system and servo hydraulic transmission system were analyzed, and the advantages and disadvantages of these three kinds of hydraulic transmission system were pointed out on the above basis. Compared with valve controlled hydraulic transmis-sion system and pump controlled hydraulic transmission system, servo hydraulic transmission system has the advantages of good servo per-formance, low cost, high processing quality and precision. Servo hydraulic transmission system is very suitable for fast forging hydraulic press. Finally, the characteristics of three different hydraulic transmission systems were summarized, and servo hydraulic transmission sys-tem was regarded as the main trend of development in fast forging hydraulic drive system.%首先介绍了快锻液压机的国内外研究现状,指出了国内快锻液压机发展的不足。又分别分析了阀控液压传动系统、泵控液压传动系统和伺服液压传动系统的结构和原理,并以此为基础指出了3种液压传动系统的优缺点。相比于阀控液压传动系统和泵控液压传动系统,伺服液压传动系统具有伺服性能好、成本低、加工质量和精度高等优点。伺服液压系统非常适合应用于快锻液压机。最后总结了3种不同的液压传动系统的特点,指出伺服液压传动系统将成为快锻液压机传动系统的主要发展趋势。

  13. Evaluation of advanced hydraulic turbomachinery for underground pumped hydroelectric storage. Part 2. Two-stage regulated pump/turbines for operating heads of 1000 to 1500 m

    Energy Technology Data Exchange (ETDEWEB)

    Blomquist, C.A.; Frigo, A.A.; Degnan, J.R.

    1979-10-01

    This UPHS report applies to Francis-type, reversible pump/turbines regulated with gating systems. The first report, however, covered single-stage regulations; this report covers two-stage regulations. Development of a two-stage regulated pump/turbine appears to be attractive because the proposed single-drop UPHS concept requires turbomachinery with a head range of 1000 to 2000 m. With turbomachinery of this range available, the single-drop scheme offers a simple and economic UPHS option. Six different two-stage, top-gated pump/turbines have been analyzed: three that generate 500 MW and three that generate 350 MW. In each capacity, one machine has an operating head of 1000 m, another has a head of 1250 m, and the third has a head of 1500 m. The rated efficiencies of the machines vary from about 90% (1000-m head) to about 88% (1500-m head). Costs in 1978 $/kW for the three 500-MW units are: 20.5 (1000 m), 16.5 (1250 m), and 13.5 (1500 m). Corresponding costs for the three 350-MW units are 23, 18, and 14 $/kW. No major turbomachinery obstacles are foreseen that could hamper development of these pump/turbines. Further model testing and development are needed before building them.

  14. Economics of heat pump systems for simultaneous heating and cooling

    Energy Technology Data Exchange (ETDEWEB)

    Ghosh, S.; Devotta, S.; Patwardhan, V.S.

    1987-01-01

    Heat pumps can be incorporated advantageously into processes which require simultaneously both cooling and heating. The economics of heat pumps in India for simultaneous heat and cooling is assessed with respect to process, design and economic parameters. For the typical conditions of various parameters in India, a heat pump system for simultaneous heating and cooling is very attractive.

  15. Contamination of successive samples in portable pumping systems

    Science.gov (United States)

    Robert B. Thomas; Rand E. Eads

    1983-01-01

    Automatic discrete sample pumping systems used to monitor water quality should deliver to storage all materials pumped in a given cycle. If they do not, successive samples will be contaminated, a severe problem with highly variable suspended sediment concentrations in small streams. The cross-contamination characteristics of two small commonly used portable pumping...

  16. Control Reconfigurability of Bilinear Hydraulic Drive Systems

    DEFF Research Database (Denmark)

    Shaker, Hamid Reza; Tahavori, Maryamsadat

    2011-01-01

    be effective if sufficient redundancy does not exist in the process. A measure for control reconfigurability which reveals the level of redundancy in connection with feedback control is proposed in this paper for bilinear systems. The proposed control reconfigurability measure is the extension of its gramian...

  17. Improving the Hydraulic Efficiency of Centrifugal Pumps through Computational Fluid Dynamics Based Design optimization

    Directory of Open Access Journals (Sweden)

    Abdellah Ait moussa

    2014-08-01

    Full Text Available The design and optimization of turbo machine impellers such as those in pumps and turbines is a highly complicated task due to the complex three-dimensional shape of the impeller blades and surrounding devices. Small differences in geometry can lead to significant changes in the performance of these machines. We report here an efficient numerical technique that automatically optimizes the geometry of these blades for maximum performance. The technique combines, mathematical modeling of the impeller blades using non-uniform rational B-spline (NURBS, Computational fluid dynamics (CFD with Geometry Parameterizations in turbulent flow simulation and the Globalized and bounded Nelder-Mead (GBNM algorithm in geometry optimization.

  18. Thermo-hydraulic modeling of flow in flare systems

    OpenAIRE

    Meindinyo, Remi-Erempagamo T.

    2012-01-01

    Flare systems play a major role in the safety of Oil and Gas installations by serving as outlets for emergency pressure relief in case of process upsets. Accurate and reliable estimation of system thermo-hydraulic parameters, especially system back-pressure is critical to the integrity of a flare design. FlareNet (Aspen Flare System Analyzer Version 7) is a steady state simulation tool tailored for flare system design and has found common use today. But design based on steady state modelin...

  19. A Numerical Study on System Performance of Groundwater Heat Pumps

    Directory of Open Access Journals (Sweden)

    Jin Sang Kim

    2015-12-01

    Full Text Available Groundwater heat pumps have energy saving potential where the groundwater resources are sufficient. System Coefficients of Performance (COPs are measurements of performance of groundwater heat pump systems. In this study, the head and power of submersible pumps, heat pump units, piping, and heat exchangers are expressed as polynomial equations, and these equations are solved numerically to determine the system performance. Regression analysis is used to find the coefficients of the polynomial equations from a catalog of performance data. The cooling and heating capacities of water-to-water heat pumps are determined using Energy Plus. Results show that system performance drops as the water level drops, and the lowest flow rates generally achieve the highest system performance. The system COPs are used to compare the system performance of various system configurations. The groundwater pumping level and temperature provide the greatest effects on the system performance of groundwater heat pumps along with the submersible pumps and heat exchangers. The effects of groundwater pumping levels, groundwater temperatures, and the heat transfer coefficient in heat exchanger on the system performance are given and compared. This analysis needs to be included in the design process of groundwater heat pump systems, possibly with analysis tools that include a wide range of performance data.

  20. A Computational Model of Hydraulic Volume Displacement Drive

    Directory of Open Access Journals (Sweden)

    V. N. Pil'gunov

    2014-01-01

    Full Text Available The paper offers a computational model of industrial-purpose hydraulic drive with two hydraulic volume adjustable working chamber machines (pump and motor. Adjustable pump equipped with the pressure control unit can be run together with several adjustable hydraulic motors on the principle of three-phase hydraulic socket-outlet with high-pressure lines, drain, and drainage system. The paper considers the pressure-controlled hydrostatic transmission with hydraulic motor as an output link. It shows a possibility to create a saving hydraulic drive using a functional tie between the adjusting parameters of the pump and hydraulic motor through the pressure difference, torque, and angular rate of the hydraulic motor shaft rotation. The programmable logic controller can implement such tie. The Coulomb and viscous frictions are taken into consideration when developing a computational model of the hydraulic volume displacement drive. Discharge balance considers external and internal leakages in equivalent clearances of hydraulic machines, as well as compression loss volume caused by hydraulic fluid compressibility and deformation of pipe walls. To correct dynamic properties of hydraulic drive, the paper offers that in discharge balance are included the additional regulated external leakages in the open circuit of hydraulic drive and regulated internal leakages in the closed-loop circuit. Generalized differential equations having functional multipliers and multilinked nature have been obtained to describe the operation of hydraulic positioning and speed drive with two hydraulic volume adjustable working chamber machines. It is shown that a proposed computational model of hydraulic drive can be taken into consideration in development of LS («Load-Sensing» drives, in which the pumping pressure is tuned to the value required for the most loaded slave motor to overcome the load. Results attained can be used both in designing the industrial-purpose heavy

  1. Research on intelligent algorithm of electro - hydraulic servo control system

    Science.gov (United States)

    Wang, Yannian; Zhao, Yuhui; Liu, Chengtao

    2017-09-01

    In order to adapt the nonlinear characteristics of the electro-hydraulic servo control system and the influence of complex interference in the industrial field, using a fuzzy PID switching learning algorithm is proposed and a fuzzy PID switching learning controller is designed and applied in the electro-hydraulic servo controller. The designed controller not only combines the advantages of the fuzzy control and PID control, but also introduces the learning algorithm into the switching function, which makes the learning of the three parameters in the switching function can avoid the instability of the system during the switching between the fuzzy control and PID control algorithms. It also makes the switch between these two control algorithm more smoother than that of the conventional fuzzy PID.

  2. Dynamically balanced, hydraulically driven compressor/pump apparatus for resonant free piston Stirling engines

    Science.gov (United States)

    Corey, John A.

    1984-05-29

    A compressor, pump, or alternator apparatus is designed for use with a resonant free piston Stirling engine so as to isolate apparatus fluid from the periodically pressurized working fluid of the Stirling engine. The apparatus housing has a first side closed by a power coupling flexible diaphragm (the engine working member) and a second side closed by a flexible diaphragm gas spring. A reciprocally movable piston is disposed in a transverse cylinder in the housing and moves substantially at right angles relative to the flexible diaphragms. An incompressible fluid fills the housing which is divided into two separate chambers by suitable ports. One chamber provides fluid coupling between the power diaphragm of the RFPSE and the piston and the second chamber provides fluid coupling between the gas spring diaphragm and the opposite side of the piston. The working members of a gas compressor, pump, or alternator are driven by the piston. Sealing and wearing parts of the apparatus are mounted at the external ends of the transverse cylinder in a double acting arrangement for accessibility. An annular counterweight is mounted externally of the reciprocally movable piston and is driven by incompressible fluid coupling in a direction opposite to the piston so as to damp out transverse vibrations.

  3. Audel water well pumps and systems mini-ref

    CERN Document Server

    Woodson, Roger D

    2011-01-01

    Introducing an Audel ""Mini-Ref"" for tradespeople working on water well pumps and pumping systems Water well pumps are used everywhere, with installations numbering in the millions. It's hard to believe that no one has written a small field book that covers these pieces of equipment. Finally, here's a great handy guide is for anyone who needs to know how these pumps work, how to troubleshoot problems unique to this type of piping system, and how to make common repairs for both above ground and submersible pumps. It contains vital and specific references applicable to a wide range of

  4. Ground Source Heat Pump in Heating System with Electronics Monitoring

    Directory of Open Access Journals (Sweden)

    NEAMŢU Ovidiu

    2013-10-01

    Full Text Available The monitoring system is implemented for a ground coupled heat pump in heating/ system. The borehole heat exchangers – which are 150 m long - are filled with a mixture of water and ethilene glycol calledbrine. Metering and monitoring energy consumption is achieved for: heat pump, circulation pumps, additional electrical heating, hot air ventilation systems, control systems with sensors: analog and smart sensors. Instantaneous values are stored in a local computer.

  5. Design of Hydraulic System for Embedded Double Pipes Amphibious Crane%内嵌双输油管两用起重机液压系统设计

    Institute of Scientific and Technical Information of China (English)

    卢志珍; 倪学虎; 舒希勇; 王成龙

    2012-01-01

    Based on analyzing requirements of embedded double pipes amphibious crane to hydraulic system, the hydraulic system design thinking was put forward according to crane technical parameters and customers requirements. Calculations and type selections of the key hydraulic components; hydraulic pump and hydraulic motor, hydraulic cylinder, were completed. The hydraulic principle diagram was designed and the work principle of the hydraulic loop was expounded.%在分析内嵌双输油管两用起重机对液压系统要求的基础上,针对起重机技术参数及客户要求提出了液压系统设计的思路,对关键液压元件——液压泵、液压马达、液压缸进行了计算选型,给出了液压原理图,并阐述了起重机液压回路的工作原理.

  6. Mixed Lubrication Simulation of Hydrostatic Spherical Bearings for Hydraulic Piston Pumps and Motors

    Science.gov (United States)

    Kazama, Toshiharu

    Mixed and fluid film lubrication characteristics of hydrostatic spherical bearings for swash-plate-type axial piston pumps and motors are studied theoretically under non-steady-state conditions. The basic equations incorporating interference and contact of surface roughness are derived fundamentally through combination of the GW and PC models. Furthermore, a programming code that is applicable to the caulked-socket-type and open-socket-type bearings is developed. Effects of caulking, operating conditions, and the bearing dimension on the motion of the sphere and tribological performance of the bearings are examined. Salient conclusions are the following: The sphere's eccentricity increases in the low supply pressure period. The time-lag of the load change engenders greater motion of the sphere. Caulking of the bearing socket suppresses the sphere's motion. The bearing stiffness increases and power loss decreases for smaller recess angles. Minimum power loss is given under the condition that the bearing socket radius nearly equals the equivalent load radius.

  7. Hydraulic performance improvement of the bidirectional pit pump installation based on CFD

    Science.gov (United States)

    Chen, H. X.; Zhou, D. Q.

    2013-12-01

    At present, the efficiency of bidirectional pit pump installation with lift under 2m is still low because of lack of research on it in the past. In the paper, the CFD numerical method and experimental test were applied to study flow characteristic of bidirectional pit pump installation under positive and reverse condition. Through changing airfoil type and position of blade and stay vane, the comprehensive performance of improved model were obtained by calculating many different models. The results showed that when improved model is obtained with type A runner with 4 blades that is 0.7D away from pit exit and unsymmetrical guide vane 0.25dh which away from the impeller outlet, and the flow pattern of the improved solution is steady with high efficiency. Compared with the original scheme, the efficiency of positive and reverse design condition reach to 67.23% and 58.32% respectively, which is increased 6% more than original model on the design condition and 5% on the optimum operating condition, and it achieved the purpose of improvement. According to the runner blade angle of the optimization solution, model synthetic characteristic curve was drawn and internal flow field characteristics was analyzed under optimal positive and reverse conditions. The numerical calculation shows that owing to the lack of stay vane to recycle the energy in outlet runner chamber, the water flow regime is not steady enough in the outlet passage, and that is the main reason for lower efficiency at reverse condition than that at positive condition.

  8. Systematic Method for Evaluating Extraction and Injection Flow Rates for 100-KR-4 and 100-HR-3 Groundwater Operable Unit Pump-and-Treat Interim Actions for Hydraulic Containment

    Energy Technology Data Exchange (ETDEWEB)

    Spiliotopoulos, Alexandros A.

    2013-03-20

    This document describes a systematic method to develop flow rate recommendations for Pump-and-Treat (P&T) extraction and injection wells in 100-KR-4 and 100-HR-3 Groundwater Operable Units (OU) of the Hanford Site. Flow rate recommendations are developed as part of ongoing performance monitoring and remedy optimization of the P&T interim actions to develop hydraulic contairnnent of the dissolved chromium plume in groundwater and protect the Columbia River from further discharges of groundwater from inland. This document details the methodology and data required to infer the influence of individual wells near the shoreline on hydraulic containment and river protection and develop flow rate recommendations to improve system performance and mitigate potential shortcomings of the system configuration in place.

  9. Test bench for operational investigation of photovoltaic pumping systems; Bancada de ensaio para averiguacao operacional de sistemas fotovoltaicos de bombeamento

    Energy Technology Data Exchange (ETDEWEB)

    Brito, Alaan Ubaiara; Fedrizzi, Maria Cristina; Zilles, Roberto [Universidade de Sao Paulo (IEE/USP), SP (Brazil). Inst. de Eletrotecnica e Energia], Emails: alaan@iee.usp.br, fedrizzi@iee.usp.br, zilles@iee.usp.br

    2006-07-01

    From the daily water demand, total head and the daily average irradiation, is possible to determine the size of the PV generator for pumping systems. However, once the equipment is acquired some tests are recommended, specially to verify its performance. One of the most relevant parameters to qualify a pumping system is the daily water delivered (m{sup 3}/day) as a function of daily solar irradiation (Wh/m{sup 2}). Facilities that fit different boundaries conditions, as for example constant total head (m) are not easily available, and just few laboratories have this capability. In this way a simple instrumentation with the capability to determine the daily performance of PV pumping systems is presented. The proposed test tools use a hydraulic circuit with two pumps, one connected to the PV system and the other to the electric grid. The total head is maintained constant by the variable speed drive connected to the grid. (author)

  10. Process fluids of aero-hydraulic systems and their properties

    Directory of Open Access Journals (Sweden)

    I. S. Shumilov

    2014-01-01

    Full Text Available The article considers process fluids, which are presently applied to aviation hydraulic systems in domestic and world practice. Aviation practice deals with rather wide list of fluids. Based on the technical specification a designer makes the choice of specific fluid for the specific aircraft. Process fluids have to possess the specified properties presented in the article, namely: lubricating properties; stability of physical and chemical characteristics at operation and storage; lowtemperature properties; acceptable congelation temperature; compatibility with materials of units and components of hydraulic systems; heat conductivity; high rigidity; minimum low coefficient of volume expansion; fire-explosion safety; low density. They should also have good dielectric properties, be good to resist to destruction of molecules, have good anticorrosion and antierosion properties, as well as not create conditions for emerging electro-kinetic erosion of spooltype and other precision devices, and a number of other properties.The article presents materials on the oil-based process fluids with + (200-320 °C boiling temperature, gelled by a polymer of vinyl butyl ether, with aging inhibitor and dye for hydraulic systems of the subsonic and transonic aircraft which are combustible, with a temperature interval of use from — 60oС до +125oС. It also describes materials on process fluids, which are based on the mix of polydialkylsiloxane oligomers with organic diester aging inhibitors, and wear-resistant additive to be applied to the hydraulic systems of supersonic aircrafts using a fluid within the temperature interval from - 6О oС to +175oС for a long duration. The fire-explosion safety process fluids representing a mix of phosphoric esters with additives to improve viscous, anti-oxidizing, anticorrosive and anti-erosive properties are considered as well. They are used within the temperature range from - 60оС to +125оС with overheats up to +150

  11. Study of Dynamic Characteristics for Hydraulic System on 300MN Die-forging Press

    Science.gov (United States)

    Chen, Guoqiang; Tan, Jianping

    2017-06-01

    The faults such as seal breakdown and pressure sensor damage occur in 300MN Die-forging press frequently. First, the fault phenomenon and harm of the hydraulic system was compiled statistics, the theoretical analysis of the hydraulic impact of hydraulic system are carried out based on the momentum theorem; Then, the co-simulation model of hydraulic system was established by AMESim and Simulink software and the correctness was verified. Finally, the dynamic characteristics of hydraulic system for the key working condition “forging stroke changing to mold collision” was analyzed, the influences rules of system parameters such as the leak gap of valve, diameter of water way pipeline, emulsion temperature and air contain act on hydraulic system are obtained. This conclusions have a theoretical guiding significance to the improvement and maintains of high pressure and large flow hydraulic system.

  12. Hydraulic Soft Yaw System for Multi MW Wind Turbines

    DEFF Research Database (Denmark)

    Stubkier, Søren

    Horizontal axis wind turbines utilize a yaw system to keep the rotor plane of the wind turbine perpendicular to the main wind direction. If the wind direction changes, the wind turbine follows the direction change by yawing. If the wind turbine does not yaw, there will be a reduction in produced...... of nine concepts for hydraulic yaw systems and shown that the loading of the turbine structure may be damped if the yaw system is allowed to deflect under loading. An extensions of the open source wind turbine code FAST of a state of the art wind turbine including the yaw degree of freedom and friction...

  13. Application research on hydraulic coke cutting monitoring system based on optical fiber sensing technology

    Science.gov (United States)

    Zhong, Dong; Tong, Xinglin

    2014-06-01

    With the development of the optical fiber sensing technology, the acoustic emission sensor has become one of the focal research topics. On the basis of studying the traditional hydraulic coke cutting monitoring system, the optical fiber acoustic emission sensor has been applied in the hydraulic coke cutting monitoring system for the first time, researching the monitoring signal of the optical fiber acoustic emission sensor in the system. The actual test results show that using the acoustic emission sensor in the hydraulic coke cutting monitoring system can get the real-time and accurate hydraulic coke cutting state and the effective realization of hydraulic coke cutting automatic monitoring in the Wuhan Branch of Sinopec.

  14. Assessing variable speed pump efficiency in water distribution systems

    Directory of Open Access Journals (Sweden)

    A. Marchi

    2012-07-01

    Full Text Available Energy savings and greenhouse gas emission reductions are increasingly becoming important design targets in many industrial systems where fossil fuel based electrical energy is heavily utilised. In water distribution systems (WDSs a significant portion of operational cost is related to pumping. Recent studies have considered variable speed pumps (VSPs which aim to vary the operating point of the pump to match demand to pumping rate. Depending on the system characteristics, this approach can lead to considerable savings in operational costs. In particular, cost reductions can take advantage of the demand variability and can decrease energy consumption significantly. One of the issues in using variable speed pumping systems, however, is the total efficiency of the electric motor/pump arrangement under a given operating condition. This paper aims to provide a comprehensive discussion about the components of WDS that incorporate variable speed pumps (including electric motors, variable frequency drives and the pumps themselves to provide an insight of ways of increasing the system efficiency and hence to reduce energy consumption. In addition, specific attention is given to selection of motor types, sizing, duty cycle of pump (ratio of on-time and time period, losses due to installation and motor faults. All these factors affect the efficiency of motor drive/pump system.

  15. Assessing variable speed pump efficiency in water distribution systems

    Directory of Open Access Journals (Sweden)

    A. Marchi

    2012-03-01

    Full Text Available Energy savings and greenhouse gas emission reductions are increasingly becoming important design targets in many industrial systems where fossil fuel based electrical energy is heavily utilised. In water distribution systems (WDSs a significant portion of operational cost is related to pumping. Recent studies have considered variable speed pumps (VSPs which aim to vary the operating point of the pump to match demand to pumping rate. Depending on the system characteristics, this approach can lead to considerable savings in operational costs. In particular, cost reductions can take advantage of the demand variability and can decrease energy consumption significantly. One of the issues in using variable speed pumping systems, however, is the total efficiency of the electric motor/pump arrangement under a given operating condition. This paper aims to provide a comprehensive discussion about the components of WDS that incorporate variable speed pumps (including electric motors, inverters and the pumps themselves to provide an insight of ways of increasing the system efficiency and hence to reduce energy consumption. In addition, specific attention is given to selection of motor types, sizing, duty cycle of pump (ratio of on-time and time period, losses due to installation and motor faults. All these factors affect the efficiency of motor drive/pump system.

  16. Jet pump-drive system for heat removal

    Science.gov (United States)

    French, James R. (Inventor)

    1987-01-01

    The invention does away with the necessity of moving parts such as a check valve in a nuclear reactor cooling system. Instead, a jet pump, in combination with a TEMP, is employed to assure safe cooling of a nuclear reactor after shutdown. A main flow exists for a reactor coolant. A point of withdrawal is provided for a secondary flow. A TEMP, responsive to the heat from said coolant in the secondary flow path, automatically pumps said withdrawn coolant to a higher pressure and thus higher velocity compared to the main flow. The high velocity coolant is applied as a driver flow for the jet pump which has a main flow chamber located in the main flow circulation pump. Upon nuclear shutdown and loss of power for the main reactor pumping system, the TEMP/jet pump combination continues to boost the coolant flow in the direction it is already circulating. During the decay time for the nuclear reactor, the jet pump keeps running until the coolant temperature drops to a lower and safe temperature where the heat is no longer a problem. At this lower temperature, the TEMP/jet pump combination ceases its circulation boosting operation. When the nuclear reactor is restarted and the coolant again exceeds the lower temperature setting, the TEMP/jet pump automatically resumes operation. The TEMP/jet pump combination is thus automatic, self-regulating and provides an emergency pumping system free of moving parts.

  17. Molecular system generation with strong resonance optical pumping

    Energy Technology Data Exchange (ETDEWEB)

    Kuntsevich, B.F.; Churakov, V.V.

    1977-03-01

    A study was made of molecular system generation modulated by three oscillating levels with a rotating structure with strong resonance optical pumping. Molecular behavior of the active medium is described by equations for the density matrix. The relationship between the amplification coefficient and pressure at various pumping intensities was examined. In approaching the assigned pumping field, an examination was made of how the generation field is affected by the volumetric density of the pumping energy, partial pressure of the buffer gas and frequency difference in the pumping channel.

  18. A Numerical Study on the Improvement of Suction Performance and Hydraulic Efficiency for a Mixed-Flow Pump Impeller

    Directory of Open Access Journals (Sweden)

    Sung Kim

    2014-01-01

    Full Text Available This paper describes a numerical study on the improvement of suction performance and hydraulic efficiency of a mixed-flow pump by impellers. The design of these impellers was optimized using a commercial CFD (computational fluid dynamics code and DOE (design of experiments. The design variables of meridional plane and vane plane development were defined for impeller design. In DOE, variables of inlet part were selected as main design variables in meridional plane, and incidence angle was selected in vane plane development. The verification of the experiment sets that were generated by 2k factorial was done by numerical analysis. The objective functions were defined as the NPSHre (net positive suction head required, total efficiency, and total head of the impellers. The importance of the geometric design variables was analyzed using 2k factorial designs. The interaction between the NPSHre and total efficiency, according to the meridional plane and incidence angle, was discussed by analyzing the 2k factorial design results. The performance of optimally designed model was verified by experiments and numerical analysis and the reliability of the model was retained by comparison of numerical analysis and comparative analysis with the reference model.

  19. Development of a hydraulic model of the human systemic circulation

    Science.gov (United States)

    Sharp, M. K.; Dharmalingham, R. K.

    1999-01-01

    Physical and numeric models of the human circulation are constructed for a number of objectives, including studies and training in physiologic control, interpretation of clinical observations, and testing of prosthetic cardiovascular devices. For many of these purposes it is important to quantitatively validate the dynamic response of the models in terms of the input impedance (Z = oscillatory pressure/oscillatory flow). To address this need, the authors developed an improved physical model. Using a computer study, the authors first identified the configuration of lumped parameter elements in a model of the systemic circulation; the result was a good match with human aortic input impedance with a minimum number of elements. Design, construction, and testing of a hydraulic model analogous to the computer model followed. Numeric results showed that a three element model with two resistors and one compliance produced reasonable matching without undue complication. The subsequent analogous hydraulic model included adjustable resistors incorporating a sliding plate to vary the flow area through a porous material and an adjustable compliance consisting of a variable-volume air chamber. The response of the hydraulic model compared favorably with other circulation models.

  20. Experimental Study of a Small Scale Hydraulic System for Mechanical Wind Energy Conversion into Heat

    Directory of Open Access Journals (Sweden)

    Tadas Zdankus

    2016-07-01

    Full Text Available Significant potential for reducing thermal energy consumption in buildings of moderate and cold climate countries lies within wind energy utilisation. Unlike solar irradiation, character of wind speeds in Central and Northern Europe correspond to the actual thermal energy demand in buildings. However, mechanical wind energy undergoes transformation into electrical energy before being actually used as thermal energy in most wind energy applications. The study presented in this paper deals with hydraulic systems, designed for small-scale applications to eliminate the intermediate energy transformation as it converts mechanical wind energy into heat directly. The prototype unit containing a pump, flow control valve, oil tank and piping was developed and tested under laboratory conditions. Results of the experiments showed that the prototype system is highly efficient and adjustable to a broad wind velocity range by modifying the definite hydraulic system resistance. Development of such small-scale replicable units has the potential to promote “bottom-up” solutions for the transition to a zero carbon society.

  1. Sealing Mechanism and Use of O-ring for Hydraulic Gear Pump%液压齿轮泵中O形圈密封机理和选用

    Institute of Scientific and Technical Information of China (English)

    周亚东

    2015-01-01

    该文对液压齿轮泵中的O形圈的密封机理进行了简要分析,并给出O形圈选用时的一些注意事项。%This article simple analysis sealing mechanism of O-ring which used in Hydraulic Gear Pump, and gives some notes of how to choose O-ring.

  2. A THERMAL-HYDRAULIC SYSTEM FOR THE CONVERSION AND THE STORAGE OF ENERGY

    Directory of Open Access Journals (Sweden)

    MITRAN Tudor

    2016-05-01

    Full Text Available The paper proposes the concept design of a thermal-hydraulic system that converts the thermal energy (from the geothermal water, from the cooling water of power equipment, from exhaust gasses, and so. in hydrostatic energy, that is stored in a hydraulic accumulator. The hydraulic energy can be converted into electrical energy when needed.

  3. Estimation of hydraulic parameters in a complex porous aquifer system using geoelectrical methods.

    Science.gov (United States)

    Kazakis, N; Vargemezis, G; Voudouris, K S

    2016-04-15

    Geoelectrical methods have been widely used for the estimation of aquifer hydraulic properties. In this study, geoelectrical methods were applied in a lithologically and hydrochemically complex porous aquifer to estimate its porosity, hydraulic conductivity and transmissivity. For this purpose, the electrical resistivity of the aquifer as well as the electrical conductivity of the groundwater was measured in 37 sites and wells. Initially, the Archie's law was used to generate sets of cementation factor (m) and alpha (α) parameter from which the mode values of α=0.98 and m=1.75 are representative of the studied aquifer. The transmissivity of the aquifer varies from 5.1×10(-3) to 3.1×10(-5)m(2)/s, whereas the mean value of its porosity is 0.45. The hydraulic conductivity of the aquifer which was calculated according to Archie's law varies from 2.08×10(-6) to 6.84×10(-5)m/s and is strongly correlated with the pumping test's hydraulic conductivity. In contrast, the hydraulic conductivity which was calculated using Dar-Zarrouk parameters presents lower correlation with the pumping test's hydraulic conductivity. Furthermore, a relation between aquifer resistivity and hydraulic conductivity was established for the studied aquifer to enable the estimation of these parameters in sites lacking data.

  4. Degradation feature extraction of the hydraulic pump based on high-frequency harmonic local characteristic-scale decomposition sub-signal separation and discrete cosine transform high-order singular entropy

    Directory of Open Access Journals (Sweden)

    Jian Sun

    2016-07-01

    Full Text Available Hydraulic pump degradation feature extraction is a key step of condition-based maintenance. In this article, a novel method based on high-frequency harmonic local characteristic-scale decomposition sub-signal separation and discrete cosine transform high-order singular entropy is proposed. In order to reduce noises and other disturbances, the vibration signal is processed by the local characteristic-scale decomposition modified by the high-frequency harmonic. Sub-signal with sensitive information is obtained by blind source separation of the selected intrinsic scale components. Furthermore, the discrete cosine transform high-order spectral analysis algorithm is proposed to extract singular entropies of Shannon and Tsallis to be the degradation features of the hydraulic pump. Analysis of the hydraulic pump experiment demonstrates that the proposed method is feasible and effective in indicating the performance degradation of the hydraulic pump.

  5. Design of a Magnetostrictive-Hydraulic Actuator Considering Nonlinear System Dynamics and Fluid-Structure Coupling

    Science.gov (United States)

    Larson, John Philip

    Smart material electro-hydraulic actuators (EHAs) utilize fluid rectification via one-way check valves to amplify the small, high-frequency vibrations of certain smart materials into large motions of a hydraulic cylinder. Although the concept has been demonstrated in previously, the operating frequency of smart material EHA systems has been limited to a small fraction of the available bandwidth of the driver materials. The focus of this work is to characterize and model the mechanical performance of a magnetostrictive EHA considering key system components: rectification valves, smart material driver, and fluid-system components, leading to an improved actuator design relative to prior work. The one-way valves were modeled using 3-D finite element analysis, and their behavior was characterized experimentally by static and dynamic experimental measurement. Taking into account the effect of the fluid and mechanical conditions applied to the valves within the pump, the dynamic response of the valve was quantified and applied to determine rectification bandwidth of different valve configurations. A novel miniature reed valve, designed for a frequency response above 10~kHz, was fabricated and tested within a magnetostrictive EHA. The nonlinear response of the magnetostrictive driver, including saturation and hysteresis effects, was modeled using the Jiles-Atherton approach to calculate the magnetization and the resulting magnetostriction based on the applied field calculated within the rod from Maxwell's equations. The dynamic pressure response of the fluid system components (pumping chamber, hydraulic cylinder, and connecting passages) was measured over a range of input frequencies. For the magnetostrictive EHA tested, the peak performance frequency was found to be limited by the fluid resonances within the system. A lumped-parameter modeling approach was applied to model the overall behavior of a magnetostrictive EHA, incorporating models for the reed valve response

  6. Savings potential of pump control systems; Sparpotenzial geregelter Pumpensysteme

    Energy Technology Data Exchange (ETDEWEB)

    Gontermann, D.

    2008-07-01

    This article takes a look at the potential for saving energy available if speed-control systems are used to regulate the speed and, as a result, the energy consumption of industrial pumps. The author quotes that around one third of power consumption in commercial buildings is used for powering pumps. Life-cycle costs of pumps, in which operation, maintenance and repair are also taken into account, are discussed. Methods of dimensioning pumps and the difficulties that can be encountered in doing this are discussed. The planning necessary to choose the correct pump power is discussed, as is the use of multi-stage pump installations and their control. Monitoring of the operation of pump installations is also examined.

  7. Expert system for online surveillance of nuclear reactor coolant pumps

    Energy Technology Data Exchange (ETDEWEB)

    Gross, K.C.; Singer, R.M.; Humenik, K.E.

    1992-12-31

    This report describes an expert system for online surveillance of nuclear reactor coolant pumps. This system provides a means for early detection of pump or sensor degradation. Degradation is determined through the use of a statistical analysis technique, sequential probability ratio test, applied to information from several sensors which are responsive to differing physical parameters. The results of sequential testing of the data provide the operator with an early warning of possible sensor or pump failure.

  8. AUTOMATION OF THE RESIDENTIAL BUILDING WATER SUPPLY SYSTEM PUMPING STATION

    OpenAIRE

    A. M. Kulia

    2016-01-01

    Essence of process of water-supply of apartment dwelling house is considered. The existent state over of automation of the pumping stations is brought. The task of development of the effective system of automatic control is put by them. Possibility of decision of task is shown by the use in the system of frequency transformer that feeds the electrodrives of pumps, and also due to perfection of algorithms of the pumps rotation frequency adjusting and logical management of their switching a seq...

  9. 在水力除焦中采用变转速除焦水泵的探讨%Study on variable speed decoking pump in hydraulic decoking

    Institute of Scientific and Technical Information of China (English)

    张欣

    2011-01-01

    Fixed-speed decoking jet pumps are widely used in present hydraulic decoking process. Frequent start up, shutdown and fixed discharge pressure of the pumps often result in problems of impacting, vibration and excessive coke powder production. A hydraulic decoking technology in which variable speed decoking jet pumps are used is introduced. In the technology, variable speed equipment such as hydraulic coupling or variable frequency device is applied to unload the start-up of decoking jet pump, smoothly adjust the speed and control the decoking water pressure as required and perform decoking operation more conveniently and efficiently. The application of the technology has improved the flexibility of the decoking jet pumps and reliability of related decoking equipment, etc and reduced the coke powder production. The economics of the unit operation is improved.%在目前的水力除焦技术中普遍采用定转速除焦水泵,泵需要频繁启停且出口压力恒定不变,因而带来冲击、振动以及产生焦粉过多等问题.为解决此问题,介绍了一种采用变转速除焦水泵的技术,即通过液力偶合器或变频器等调速装置驱动,实现除焦水泵的无负荷启动、平滑调速,进而按需调节除焦水压力.结果表明:该技术使操作更灵活优化,并提高相关设备长周期运行的可靠性、减少焦粉的产生;可逐步升速,实现“回流-预充-钻孔”的操作程序,更经济节能.

  10. Preliminary Feasibility Study of a Hybrid Solar and Modular Pumped Storage Hydro System at Biosphere 2

    Energy Technology Data Exchange (ETDEWEB)

    Lansey, Kevin [Univ. of Arizona, Tucson, AZ (United States); Hortsman, Chris [Univ. of Arizona, Tucson, AZ (United States)

    2016-10-01

    In this study, the preliminary feasibility of a hybrid solar and modular pumped storage system designed for high energy independence at Biosphere 2 is assessed. The system consists of an array of solar PV panels that generate electricity during the day to power both Biosphere 2 and a pump that sends water through a pipe to a tank at a high elevation. When solar power is not available, the water is released back down the pipe towards a tank at a lower elevation, where it passes through a hydraulic water turbine to generate hydroelectricity to power Biosphere 2. The hybrid system is sized to generate and store enough energy to enable Biosphere 2 to operate without a grid interconnection on an average day.

  11. Optimising root system hydraulic architectures for water uptake

    Science.gov (United States)

    Meunier, Félicien; Couvreur, Valentin; Draye, Xavier; Javaux, Mathieu

    2015-04-01

    In this study we started from local hydraulic analysis of idealized root systems to develop a mathematical framework necessary for the understanding of global root systems behaviors. The underlying assumption of this study was that the plant is naturally optimised for the water uptake. The root system is thus a pipe network dedicated to the capture and transport of water. The main objective of the present research is to explain the fitness of major types of root architectures to their environment. In a first step, we developed links between local hydraulic properties and macroscopic parameters of (un)branched roots. The outcome of such an approach were functions of apparent conductance of entire root system and uptake distribution along the roots. We compared our development with some allometric scaling laws for the root water uptake: under the same simplifying assumptions we were able to obtain the same results and even to expand them to more physiological cases. Using empirical data of measured root conductance, we were also able to fit extremely well the data-set with this model. In a second stage we used generic architecture parameters and an existent root growth model to generate various types of root systems (from fibrous to tap). We combined both sides (hydraulic and architecture) then to maximize under a volume constraint either apparent conductance of root systems or the soil volume explored by active roots during the plant growth period. This approach has led to the sensitive parameters of the macroscopic parameters (conductance and location of the water uptake) of each single plant selected for this study. Scientific questions such as: "What is the optimal sowing density of a given hydraulic architecture ?" or "Which plant traits can we change to better explore the soil domain ?" can be also addressed with this approach: some potential applications are illustrated. The next (and ultimate phase) will be to validate our conclusions with real architectures

  12. Validation of the thermal-hydraulic system code ATHLET based on selected pressure drop and void fraction BFBT tests

    Energy Technology Data Exchange (ETDEWEB)

    Di Marcello, Valentino, E-mail: valentino.marcello@kit.edu; Escalante, Javier Jimenez; Espinoza, Victor Sanchez

    2015-07-15

    Highlights: • Simulation of BFBT-BWR steady-state and transient tests with ATHLET. • Validation of thermal-hydraulic models based on pressure drops and void fraction measurements. • TRACE system code is used for the comparative study. • Predictions result in a good agreement with the experiments. • Discrepancies are smaller or comparable with respect to the measurements uncertainty. - Abstract: Validation and qualification of thermal-hydraulic system codes based on separate effect tests are essential for the reliability of numerical tools when applied to nuclear power plant analyses. To this purpose, the Institute for Neutron Physics and Reactor Technology (INR) at the Karlsruhe Institute of Technology (KIT) is involved in various validation and qualification activities of different CFD, sub-channel and system codes. In this paper, the capabilities of the thermal-hydraulic code ATHLET are assessed based on the experimental results provided within the NUPEC BFBT benchmark related to key Boiling Water Reactors (BWR) phenomena. Void fraction and pressure drops measurements in the BFBT bundle performed under steady-state and transient conditions which are representative for e.g. turbine trip and recirculation pump trip events, are compared with the numerical results of ATHLET. The comparison of code predictions with the BFBT data has shown good agreement given the experimental uncertainty and the results are consistent with the trends obtained with similar thermal-hydraulic codes.

  13. Origin of Possible Contamination Introduced by a Turbomolecular Pumping System

    CERN Document Server

    Bojon, J P; Weiss, K P

    1999-01-01

    Turbomolecular pumping groups are widely used in accelerators for the pre-evacuation and during the bake-out of the vacuum system. A major requirement for these groups, apart from pumping speed considerations, is the cleanliness of the vacuum produced. In an attempt to clarify this question, a bakeable low-pressure vacuum system has been constructed to allow the direct comparison of the contamination introduced by a turbomolecular pump and by an ideally clean cryopump. This contamination has been checked by the quantitative analysis of the residual gas as well as of the gases desorbed from surfaces under electron bombardment. Contamination by the rotary pump oil is only apparent below 40% of the turbomolecular pump nominal rotation speed. When the pump is stopped, the system is contaminated by heavy hydrocarbons which can be eliminated by a 300°C vacuum bake out.

  14. STUDY OF A FAULT DIAGNOSIS EXPERT SYSTEM FOR SYNTHETIC MINING SYSTEM HYDRAULIC SUPPORT

    Institute of Scientific and Technical Information of China (English)

    Han Yilun

    2000-01-01

    Fault diagnosis expert system for hydraulic support is studied.The system is achieved by Turbo-prolong Language, it summaries the experience of the domain expert and sets up a fault tree, knowledge base is developed by a productive rule.According to the feature of diagnosis, the system selects forward non-determination inferring and limited depth-first search strategy.It can accomplish expert diagnosis of more than 50 kinds faults in hydraulic support.

  15. Flow patterns and boundary conditions for inlet and outlet conduits of large pump system with low head

    Institute of Scientific and Technical Information of China (English)

    徐磊; 陆伟刚; 陆林广; 董雷; 王兆飞

    2014-01-01

    The flow patterns in the inlet and outlet conduits have a decisive effect on the safe, stable, and highly efficient operation of the pump in a large pumping station with low head. The numerical simulation of three-dimensional (3D) turbulence flow in conduits is an important method to study the hydraulic performance and conduct an optimum hydraulic design for the conduits. With the analyses of the flow patterns in the inlet and outlet conduits, the boundary conditions of the numerical simulation for them can be determined. The main obtained conclusions are as follows: (i) Under normal operation conditions, there is essentially no pre-swirl flow at the impeller chamber inlet of an axial-flow pump system, based on which the boundary condition at the inlet conduit may be defined. (ii) The circulation at the guide vane outlet of an axial-flow pump system has a great effect on the hydraulic performance of the outlet conduit, and there is optimum circulation for the performance. Therefore, it is strongly suggested to design the guide vane according to the optimum circulation. (iii) The residual circulation at the guide vane outlet needs to be considered for the inlet boundary condition of the outlet conduit, and the value of the circulation may be measured in a specially designed test model.

  16. Centrifugal pumps

    CERN Document Server

    Gülich, Johann Friedrich

    2014-01-01

    This book gives an unparalleled, up-to-date, in-depth treatment of all kinds of flow phenomena encountered in centrifugal pumps including the complex interactions of fluid flow with vibrations and wear of materials. The scope includes all aspects of hydraulic design, 3D-flow phenomena and partload operation, cavitation, numerical flow calculations, hydraulic forces, pressure pulsations, noise, pump vibrations (notably bearing housing vibration diagnostics and remedies), pipe vibrations, pump characteristics and pump operation, design of intake structures, the effects of highly viscous flows, pumping of gas-liquid mixtures, hydraulic transport of solids, fatigue damage to impellers or diffusers, material selection under the aspects of fatigue, corrosion, erosion-corrosion or hydro-abrasive wear, pump selection, and hydraulic quality criteria. As a novelty, the 3rd ed. brings a fully analytical design method for radial impellers, which eliminates the arbitrary choices inherent to former design procedures. The d...

  17. A comparative study of Cr-X-N (X=Zr, Si) coatings for the improvement of the low-speed torque efficiency of a hydraulic piston pump

    Science.gov (United States)

    Hong, Yeh-Sun; Lee, Sang-Yul

    2008-02-01

    The internal parts of hydraulic pumps operating at variable speed should be protected from insufficient lubrication. The axial piston type pumps employ a steel-base cylinder barrel rotating on a soft bronze valves plate with a slide contact, where the insufficient lubrication of these components can cause rapid wear of the valve plate and increase the friction loss. In this study, the cylinder barrel surface was deposited with CrZrN coatings, which were expected to improve the tribological contact with a valve plate under low-speed mixed lubrication conditions. Its effect on the improvement of the low-speed torque efficiency of a hydraulic piston pump was investigated and compared with that from the CrSiN coating. The coated cylinder barrels showed much lower friction coefficients and wear rates of the valve plates than the uncoated plasma-nitride one. In particular, the CrZrN coatings revealed better performance than the CrSiN coatings. By representing the improvement in the torque efficiency of the whole pump based upon the degree of the friction coefficient reduction, the CrZrN coatings exhibited approximately a 0.35% higher improvement at 300 bar and 100 rpm than CrSiN coatings. The possible failure modes of the coatings coated on the barrel were sugested and the microstructures of the coatings seemed to have a strong effect on the film failure mode.

  18. Thermal and hydraulic analyses of the System 81 cold traps

    Energy Technology Data Exchange (ETDEWEB)

    Kim, K.

    1977-06-15

    Thermal and hydraulic analyses of the System 81 Type I and II cold traps were completed except for thermal transients analysis. Results are evaluated, discussed, and reported. Analytical models were developed to determine the physical dimensions of the cold traps and to predict the performance. The FFTF cold trap crystallizer performances were simulated using the thermal model. This simulation shows that the analytical model developed predicts reasonably conservative temperatures. Pressure drop and sodium residence time calculations indicate that the present design will meet the requirements specified in the E-Specification. Steady state temperature data for the critical regions were generated to assess the magnitude of the thermal stress.

  19. Hydraulic external pre-isolator system for LIGO

    OpenAIRE

    Wen, S.; Mittleman, R.; Mason, K.; Giaime, J.; Abbott, R.; Kern, J; O'Reilly, B.; Bork, R.; Hammond, M.; Hardham, C.; Lantz, B.; W. Hua; Coyne, D.; Traylor, G.; Overmier, H.

    2014-01-01

    The hydraulic external pre-isolator (HEPI) is the first six degrees of freedom active seismic isolation system implemented at the Laser Interferometer Gravitational Wave Observatory (LIGO). Implementation was first completed at the LIGO Livingston Observatory (LLO) prior to LIGOʼs fifth science run, successfully cutting down the disturbance seen by LLOʼs suspended optics in the two most prominent seismic disturbance bands, the microseism (0.1–0.3 Hz) and the anthropogenic (1–3 Hz) bands, by a...

  20. Study on Knowledge -based Intelligent Fault Diagnosis of Hydraulic System

    Directory of Open Access Journals (Sweden)

    Xuexia Liu

    2012-12-01

    Full Text Available A general framework of hydraulic fault diagnosis system was studied. It consisted of equipment knowledge bases, real-time databases, fusion reasoning module, knowledge acquisition module and so on. A tree-structure model of fault knowledge was established. Fault nodes knowledge was encapsulated by object-oriented technique. Complete knowledge bases were made including fault bases and diagnosis bases. It could describe the fault positions, the structure of fault, cause-symptom relationships, diagnosis principles and other knowledge. Taking the fault of left and right lifting oil cylinder out of sync for example, the diagnostic results show that the methods were effective.

  1. Linear hydraulic drive system for a Stirling engine

    Science.gov (United States)

    Walsh, Michael M.

    1984-02-21

    A hydraulic drive system operating from the periodic pressure wave produced by a Stirling engine along a first axis thereof and effecting transfer of power from the Stirling engine to a load apparatus therefor and wherein the movable, or working member of the load apparatus is reciprocatingly driven along an axis substantially at right angles to the first axis to achieve an arrangement of a Stirling engine and load apparatus assembly which is much shorter and the components of the load apparatus more readily accessible.

  2. Dynamic characteristics of hydraulic power steering system with accumulator in load-haul-dump vehicle

    Institute of Scientific and Technical Information of China (English)

    杨忠炯; 何清华; 柳波

    2004-01-01

    Using hydraulic power steering system of model EIMCO 922 load-haul-dump vehicle as a simulation example, the dynamic characteristics of hydraulic power steering system in load-haul-dump vehicle were simulated and discussed with SIMULINK software and hydraulic control theory. The results show that the dynamic characteristics of hydraulic power steering system are improved obviously by using bladder accumulator, the hydraulic power steering system of model EIMCO 922 load-haul-dump vehicle generates vibration at the initial stage under the normal steering condition of pulse input, and its static response time is 0.25 s shorter than that without bladder accumulator. Under the normal steering working condition, the capacity of steering accumulator for absorbing pulse is directly proportional to the cross section area of connecting pipeline, and inversely proportional to the length of connecting pipeline. At the same time, the precharge pressure of nitrogen in steering accumulator should be 60%- 80% of the rated minimum working pressure of hydraulic power steering system. Under the abnormal steering working condition, the steering cylinder piston may obtain higher motion velocity, and the dynamic response velocity of hydraulic power steering system can be increased by reducing the pressure drop of hydraulic pipelines between the accumulator and steering cylinder and by increasing the rated pressure of hydraulic power steering system, but the dynamic characteristics of hydraulic power steering system in load-haul-dump vehicle have nothing to do with the precharge pressure of nitrogen in steering accumulator.

  3. Vacuum Pump System Optimization Saves Energy at a Dairy Farm

    Energy Technology Data Exchange (ETDEWEB)

    None

    2001-08-01

    In 1998, S&S Dairy optimized the vacuum pumping system at their dairy farm in Modesto, California. In an effort to reduce energy costs, S&S Dairy evaluated their vacuum pumping system to determine if efficiency gains and energy savings were possible.

  4. Design of a pictogram of the operator-hydraulic filler system

    Energy Technology Data Exchange (ETDEWEB)

    Bukhgol' ts, V.P.; Dinershtein, V.A.

    1985-09-01

    A modern hydraulic filling system is discussed which consists of two lines: the crusher and sorter preparing the filling material, and the hydraulic filling unit, which includes a mixer and a system of pulp conduits. The process chart of the hydraulic filling system without the crusher-sorter is illustrated. When the system is started, water is first flushed through the pulp conduit, gate valves with drives are opened, and the quantity of water discharged is measured by water output sensors. For effective and failure-free operation of the system, remote control and monitoring elements are introduced into the hydraulic filling system.

  5. The dynamic running law study on driving system of hydraulic winder

    Institute of Scientific and Technical Information of China (English)

    彭佑多; 刘德顺; 郭迎福; 张永忠; 文西芹

    2002-01-01

    Dynamic running law of the hydraulic driving system decides the hoisting cage velocity curve in a hoisting cycle and is decided by the characteristic of the hydraulic driving system and by the operating speed of hoist driver. The paper studies the dynamic running law of hydraulic driving system, analyses the influence of driver operating speed on the dynamic running characteristic, and points out the reasonable driver operating speed to control the dynamic stress in rope and to reduce the oscillation of rope system.

  6. Optimal Ground Source Heat Pump System Design

    Energy Technology Data Exchange (ETDEWEB)

    Ozbek, Metin [ENVIRON; Yavuzturk, Cy [University of Hartford; Pinder, George [University of Vermont

    2015-04-15

    Despite the facts that GSHPs first gained popularity as early as the 1940’s and they can achieve 30 to 60 percent in energy savings and carbon emission reductions relative to conventional HVAC systems, the use of geothermal energy in the U.S. has been less than 1 percent of the total energy consumption. The key barriers preventing this technically-mature technology from reaching its full commercial potential have been its high installation cost and limited consumer knowledge and trust in GSHP systems to deliver the technology in a cost-effective manner in the market place. Led by ENVIRON, with support from University Hartford and University of Vermont, the team developed and tested a software-based a decision making tool (‘OptGSHP’) for the least-cost design of ground-source heat pump (‘GSHP’) systems. OptGSHP combines state of the art optimization algorithms with GSHP-specific HVAC and groundwater flow and heat transport simulation. The particular strength of OptGSHP is in integrating heat transport due to groundwater flow into the design, which most of the GSHP designs do not get credit for and therefore are overdesigned.

  7. Optimal Ground Source Heat Pump System Design

    Energy Technology Data Exchange (ETDEWEB)

    Ozbek, Metin [Environ Holdings Inc., Princeton, NJ (United States); Yavuzturk, Cy [Univ. of Hartford, West Hartford, CT (United States); Pinder, George [Univ. of Vermont, Burlington, VT (United States)

    2015-04-01

    Despite the facts that GSHPs first gained popularity as early as the 1940’s and they can achieve 30 to 60 percent in energy savings and carbon emission reductions relative to conventional HVAC systems, the use of geothermal energy in the U.S. has been less than 1 percent of the total energy consumption. The key barriers preventing this technically-mature technology from reaching its full commercial potential have been its high installation cost and limited consumer knowledge and trust in GSHP systems to deliver the technology in a cost-effective manner in the market place. Led by ENVIRON, with support from University Hartford and University of Vermont, the team developed and tested a software-based a decision making tool (‘OptGSHP’) for the least-cost design of ground-source heat pump (‘GSHP’) systems. OptGSHP combines state of the art optimization algorithms with GSHP-specific HVAC and groundwater flow and heat transport simulation. The particular strength of OptGSHP is in integrating heat transport due to groundwater flow into the design, which most of the GSHP designs do not get credit for and therefore are overdesigned.

  8. Residential heat pumps in the future Danish energy system

    DEFF Research Database (Denmark)

    Petrovic, Stefan; Karlsson, Kenneth Bernard

    2016-01-01

    Denmark is striving towards 100% renewable energy system in 2050. Residential heat pumps are expected to be a part of that system.We propose two novel approaches to improve the representation of residential heat pumps: Coefficients of performance (COPs) are modelled as dependent on air and ground...... temperature while installation of ground-source heat pumps is constrained by available ground area. In this study, TIMES-DK model is utilised to test the effects of improved modelling of residential heat pumps on the Danish energy system until 2050.The analysis of the Danish energy system was done...... for politically agreed targets which include: at least 50% of electricity consumption from wind power starting from 2020, fossil fuel free heat and power sector from 2035 and 100% renewable energy system starting from 2050. Residential heat pumps supply around 25% of total residential heating demand after 2035...

  9. Evaluation of Bulk Modulus of Oil System with Hydraulic Line

    Directory of Open Access Journals (Sweden)

    Bureček A.

    2013-04-01

    Full Text Available The aim of the paper is to experimentally measure and ealuate bulk modulus of oil/steel pipe system and oil/hose system. The measurement was performed using experimental device on the basis of a measured pressure difference depending on time. Bulk modulus is evaluated from pressure change with known flow and volume of line. Pressure rise is caused by valve closure at the line end. Furthermore, a mathematical model of the experimental device is created using Matlab SimHydraulics software. Time dependencies of pressure for the oil/steel pipe system and the oil/hose system are simulated on this mathematical model. The simulations are verified by experiment.

  10. submitter Thermal, Hydraulic, and Electromagnetic Modeling of Superconducting Magnet Systems

    CERN Document Server

    Bottura, L

    2016-01-01

    Modeling techniques and tailored computational tools are becoming increasingly relevant to the design and analysis of large-scale superconducting magnet systems. Efficient and reliable tools are useful to provide an optimal forecast of the envelope of operating conditions and margins, which are difficult to test even when a prototype is available. This knowledge can be used to considerably reduce the design margins of the system, and thus the overall cost, or increase reliability during operation. An integrated analysis of a superconducting magnet system is, however, a complex matter, governed by very diverse physics. This paper reviews the wide spectrum of phenomena and provides an estimate of the time scales of thermal, hydraulic, and electromagnetic mechanisms affecting the performance of superconducting magnet systems. The analysis is useful to provide guidelines on how to divide the complex problem into building blocks that can be integrated in a design and analysis framework for a consistent multiphysic...

  11. Hydraulic calculation of gravity transportation pipeline system for backfill slurry

    Institute of Scientific and Technical Information of China (English)

    ZHANG Qin-li; HU Guan-yu; WANG Xin-min

    2008-01-01

    Taking cemented coal gangue pipeline transportation system in Suncun Coal Mine, Xinwen Mining Group, Shandong Province, China, as an example, the hydraulic calculation approaches and process about gravity pipeline transportation of backfill slurry were investigated. The results show that the backfill capability of the backfill system should be higher than 74.4m3/h according to the mining production and backfill times in the mine; the minimum velocity (critical velocity) and practical working velocity of the backfill slurry are 1.44 and 3.82m/s, respectively. Various formulae give the maximum ratio of total length to vertical height of pipeline (L/H ratio) of the backfill system of 5.4, and then the reliability and capability of the system can be evaluated.

  12. Nonlinear, Adaptive and Fault-tolerant Control for Electro-hydraulic Servo Systems

    DEFF Research Database (Denmark)

    Choux, Martin

    Fluid power systems have been in use since 1795 with the rst hydraulic press patented by Joseph Bramah and today form the basis of many industries. Electro hydraulic servo systems are uid power systems controlled in closed-loop. They transform reference input signals into a set of movements...... in hydraulic actuators (cylinders or motors) by the means of hydraulic uid under pressure. With the development of computing power and control techniques during the last few decades, they are used increasingly in many industrial elds which require high actuation forces within limited space. However, despite...... numerous attractive properties, hydraulic systems are always subject to potential leakages in their components, friction variation in their hydraulic actuators and deciency in their sensors. These violations of normal behaviour reduce the system performances and can lead to system failure...

  13. PRESSURE COMPENSATION METHOD OF UNDERWATER HYDRAULIC SYSTEM WITH HYDRAULIC POWER UNIT BEING UNDER ATMOSPHERIC CIRCUMSTANCE AND PRESSURE COMPENSATED VALVE

    Institute of Scientific and Technical Information of China (English)

    Wang Qingfeng; Li Yanmin; Zhong Tianyu; Xu Guohua

    2005-01-01

    Based on the analysis of the-state-of-the-art of pressure compensation of underwater hydraulic systems (UHSs), a new method of pressure compensation of UHSs, whose hydraulic power unit is in the atmospheric circumstance, is proposed. And a pilot-operated relief valve with pressure compensation is realized. The pressure compensation precision is guaranteed by direct detection. Its dynamic performance and stability are improved by a dynamic feedback. Theoretical study, simulation and experiment show that the pilot-operated relief valve with pressure compensation has a fine property of tracking underwater ambient pressure and meet the requirement of underwater ambient pressure compensation.

  14. Imaging hydraulic fractures by microseismic migration for downhole monitoring system

    Science.gov (United States)

    Lin, Ye; Zhang, Haijiang

    2016-12-01

    It has been a challenge to accurately characterize fracture zones created by hydraulic fracturing from microseismic event locations. This is because generally detected events are not complete due to the associated low signal to noise ratio and some fracturing stages may not produce microseismic events even if fractures are well developed. As a result, spatial distribution of microseismic events may not well represent fractured zones by hydraulic fracturing. Here, we propose a new way to characterize the fractured zones by reverse time migration (RTM) of microseismic waveforms from some events. This is based on the fact that fractures filled with proppants and other fluids can act as strong scatterers for seismic waves. Therefore, for multi-stage hydraulic fracturing, recorded waveforms from microseismic events induced in a more recent stage may be scattered by fractured zones from previous stages. Through RTM of microseismic waveforms in the current stage, we can determine fractured zones created in previous stages by imaging area of strong scattering. We test the feasibility of this method using synthetic models with different configurations of microseismic event locations and borehole sensor positions for a 2D downhole microseismic monitoring system. Synthetic tests show that with a few events fractured zones can be directly imaged and thus the stimulated reservoir volume (SRV) can be estimated. Compared to the conventional location-based SRV estimation method, the proposed new method does not depend on the completeness of detected events and only a limited number of detected and located events are necessary for characterizing fracture distribution. For simplicity, the 2D model is used for illustrating the concept of microseismic RTM for imaging the fracture zone but the method can be adapted to real cases in the future.

  15. Effects of shifting time on pressure impact in hydraulic systems

    Institute of Scientific and Technical Information of China (English)

    ZHU Zhen-cai; CHEN Guo-an

    2005-01-01

    The limitations in existing measures for absorbing pressure impact in hydraulic systems were summarized in this paper. Based on the forming principle of the oil in a hydrostatic closed pressure chamber, the underlying reasons of the pressure impact were analyzed theoretically, the intrinsic laws that the extent of the pressure impact in hydraulic oil lines are affected by some factors, such as oil elastic modulus, oil line's geometrical volume, and changing rate of oil volume versus time etc, were discussed. Experimental investigations into pressure impact in all pressure chambers because of shifting were conducted under different working conditions by employing a special experimental system. The effects of shifting time on pressure impact were studied. A new concept with universal meaning, i.e. optimal shifting time, and its characterizing parameter and the methods of shifting at optimal shifting time were also proposed. The results show that shifting time lag △t is of rationality and maneuverablility. The higher the working pressure, the shorter the shifting time.

  16. Investigation and Development of the Thermal Preparation System of the Trailbuilder Machinery Hydraulic Actuator

    Science.gov (United States)

    Konev, V.; Polovnikov, E.; Krut, O.; Merdanov, Sh; Zakirzakov, G.

    2017-07-01

    It’s determined that the main part of trailbuilders operated in the North is the technology equipped by the hydraulic actuator. Further development of the northern territories will demand using of various means and ways machinery thermal preparation, and also the machinery of the northern fulfillment. On this basis problems in equipment operation are defined. One of the main is efficiency supplying of a hydraulic actuator. On the basis of the operating conditions’ analysis of trailbuilder hydraulic actuator operation it is determined, that under low negative temperatures the means of thermal preparation are necessary. The existing systems warm up only a hydraulic tank or warming up of the hydro equipment before the machinery operation is carried out under loading with intensive wears. Thus, with the purpose to raise the efficiency of thermal hydraulic actuator, operated far from stationary bases autonomous, energy saving, not expensive in creation and operation systems are necessary. In accordance with the analysis of means and ways of the thermal preparation of the hydraulic actuator and the thermal balance calculations of the (internal) combustion engine the system of the hydraulic actuator heating is offered and is being investigated. It contains a local hydraulic actuator warming up and the system of internal combustion engine heat utilization. Within research operation conditions of the local hydraulic actuator heating are viewed and determined, taking into account constructive changes to the local hydraulic actuator heating. Mathematical modelling of the heat technical process in the modernized hydraulic actuator is considered. As a result temperature changes of the heat-transfer and the hydraulic cylinder in time are determined. To check the theoretical researches and to define dependences on hydraulic actuator warming up, the experimental installation is made. It contains the measuring equipment, a small tank with the heat exchanger of the burnt gases

  17. 7 CFR 2902.28 - Stationary equipment hydraulic fluids.

    Science.gov (United States)

    2010-01-01

    ... formulated for use in stationary hydraulic equipment systems that have various mechanical parts, such as cylinders, pumps, valves, pistons, and gears, that are used for the transmission of power (and also...

  18. "GRAY-BOX" MODELING METHOD AND PARAMETERS IDENTIFICATION FOR LARGE-SCALE HYDRAULIC SYSTEM

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    Modeling and digital simulation is an effective method to analyze the dynamic characteristics of hydraulic system. It is difficult to determine some performance parameters in the hydraulic system by means of currently used modeling methods. The "gray-box" modeling method for large-scale hydraulic system is introduced. The principle of the method, the submodels of some components and the parameters identification of components or subsystem are researched.

  19. Analysis of the Hydrologic Response Associated with Shutdown and Restart of the 200-ZP-1 Pump-and-Treat System

    Energy Technology Data Exchange (ETDEWEB)

    Spane, Frank A.; Thorne, Paul D.

    2000-09-08

    A number of programs have been implemented on the Hanford Site that utilize the pumping and treatment of contaminated groundwater as part of their remediation strategy. Often the treated water is reinjected into the aquifer at injection well sites. The implementation of remedial pump and treat systems, however, results in hydraulic pressure responses, both areally and vertically (i.e., with depth) within the pumped aquifer. The area within the aquifer affected by the pump and treat system (i.e., radius of influence) is commonly estimated based on detecting associated water-level responses within surrounding monitor wells. Natural external stresses, such as barometric pressure fluctuations, however, can have a discernible impact on well water-level measurements. These temporal barometric effects may significantly mask water-level responses within more distant wells that are only slightly affected (< 0.10 m) by the test system. External stress effects, therefore, can lead to erroneous indications of the radius of influence of the imposed pump and treat system remediation activities and can greatly diminish the ability to analyze the associated well responses for hydraulic property characterization. When these extraneous influences are significant, adjustments or removal of the barometric effects from the test-response record may be required for quantitative hydrologic assessment. This report examines possible hydrologic effects of pump and treat remediation actions and provides a detailed analysis of water-level measurements for selected 200-ZP-1 pump and treat system monitor wells during the recent Y2K shutdown (December 1999) and restart activity (January 2000). The general findings presented in this report have universal application for unconfined and confined aquifer systems.

  20. From the Kinetic Energy Recovery System to the Thermo-Hydraulic Hybrid Motor Vehicle

    Science.gov (United States)

    Cristescu, Corneliu; Drumea, Petrin; Guta, Dragos; Dumitrescu, Catalin

    2011-12-01

    The paper presents some theoretical and experimental results obtained by the Hydraulics and Pneumatics Research Institute INOE 2000-IHP with its partners, regarding the creating of one hydraulic system able to recovering the kinetic energy of the motor vehicles, in the braking phases, and use this recovered energy in the starting and accelerating phases. Also, in the article is presented a testing stand, which was especially designed for testing the hydraulic system for recovery the kinetic energy. Through mounting of the kinetic energy recovering hydraulic system, on one motor vehicle, this vehicle became a thermo-hydraulic hybrid vehicle. Therefore, the dynamic behavior was analyzed for the whole hybrid motor vehicle, which includes the energy recovery system. The theoretical and experimental results demonstrate the possible performances of the hybrid vehicle and that the kinetic energy recovery hydraulic systems are good means to increase energy efficiency of the road motor vehicles and to decrease of the fuel consumption.

  1. Design of a hydraulic analog of the circulatory system for evaluating artificial hearts.

    Science.gov (United States)

    Donovan, F M

    1975-01-01

    A major problem in improving artificial heart designs is the absence of methods for accurate in vitro testing of artificial heart systems. A mock circulatory system has been constructed which hydraulically simulates the systemic and pulmonary circulations of the normal human. The device is constructed of 1/2 in. acrylic sheet and has overall dimensions of 24 in. wide, 16 in. tall, and 8 in. deep. The artificial heart to be tested is attached to the front of the device, and pumps fluid from the systemic venous chamber into the pulmonary arterial chamber and from the pulmonary venous chamber into the systemic arterial chamber. Each of the four chambers is hermetically sealed. The compliance of each chamber is determined by the volume of air trapped above the fluid in that chamber. The pulmonary and systemic resistances are set automatically by bellows-operated valves to simulate the barroreceptor response in the systemic arteries and the passive pulmonary resistance response in the pulmonary arteries. Cardiac output is measured by a turbine flowmeter in the systemic circulation. Results using the Kwan-Gett artificial heart show a good comparison between the mock circulatory system response and the calf response.

  2. PUMPS

    Science.gov (United States)

    Thornton, J.D.

    1959-03-24

    A pump is described for conveving liquids, particure it is not advisable he apparatus. The to be submerged in the liquid to be pumped, a conduit extending from the high-velocity nozzle of the injector,and means for applying a pulsating prcesure to the surface of the liquid in the conduit, whereby the surface oscillates between positions in the conduit. During the positive half- cycle of an applied pulse liquid is forced through the high velocity nozzle or jet of the injector and operates in the manner of the well known water injector and pumps liquid from the main intake to the outlet of the injector. During the negative half-cycle of the pulse liquid flows in reverse through the jet but no reverse pumping action takes place.

  3. Economics of heat pump assisted drying systems

    Energy Technology Data Exchange (ETDEWEB)

    Pendyala, V.R.; Devotta, S.; Patwardhan, V.S.

    1986-01-01

    The sensitivity of the economics of heat pump assisted dryers to various factors such as design, operational and economic variables, when payback period is adopted as the criterion, has been assessed for Indian conditions. Results have been presented in graphical form to illustrate the optimum conditions for economic viability. For the specific typical conditions and the current costs of electricity and steam in India, a heat pump assisted dryer has a payback period in the range of two to three years.

  4. Elements for Effective Management of Operating Pump and Treat Systems

    Science.gov (United States)

    This fact sheet summarizes key aspects of effective management for operating pump and treat (P&T) systems based on lessons learned from conducting optimization evaluations at 20 Superfund-financed P&T systems.

  5. Thermal Hydraulic Analysis on Containment Filtered Venting System

    Energy Technology Data Exchange (ETDEWEB)

    Bang, Young Suk; Park, Tong Kyu; Lee, Doo Yong; Lee, Byung Chul [FNC Technology Co. Ltd., Yongin (Korea, Republic of); Lee, Sang Won; Kim, Hyeong Taek [KHNP-Central Research Institute, Daejeon (Korea, Republic of)

    2014-05-15

    In this study, the thermal hydraulic conditions (e. g. pressure and flow rate) at each component have been examined and the sensitivity analysis on CFVS design parameters (e. g. water inventory, volumetric flow rate). The purpose is to know the possible range of flow conditions at each component to determine the optimum size of filtration system. GOTHIC code has been used to simulate the thermal-hydraulic behavior inside of CFVS. The behavior of flows in the CFVS has been investigated. The vessel water level and the flow rates during the CFVS operation are examined. It was observed that the vessel water level would be changed significantly due to steam condensation/thermal expansion and steam evaporation. Therefore, the vessel size and the initial water inventory should be carefully determined to keep the minimum water level required for filtration components and not to flood the components in the upper side of the vessel. It has been also observed that the volumetric flow rate is maintained during the CFVS operation, which is beneficial for pool scrubbing units. However, regarding the significant variations at the orifice downstream, careful design would be necessary.

  6. Active control of multi-input hydraulic journal bearing system

    Science.gov (United States)

    Chuang, Jen-Chen; Chen, Chi-Yin; Tu, Jia-Ying

    2016-09-01

    Because of the advantages of high accuracy, high capacity, and low friction, the development of hydrostatic bearing for machine tool receives significant attention in the last decades. The mechanics and mechanical design of hydrostatic journal bearing with capillary restrictors has been discussed in literature. However, pragmatically, the undesired loading effects of cutting force tend to result in resonance and instability of the rotor and damage the shaft during operation. Therefore, multi-input, active flow control using state feedback design is proposed in this paper. To this purpose, the proportional pressure valves are added to the hydraulic system as active control devices, and the linearised models of the bearing and valve are discussed and identified. Simulation and experimental work is conducted to verify the proposed active control and parameter identification techniques. The results show that the unbalance responses of the rotor are reduced by the proposed state feedback controller, which is able to regulate the flow pressure effectively, thus enhancing the stability and accuracy of the hydraulic journal bearing.

  7. Contaminant monitoring of hydraulic systems. The need for reliable data

    Energy Technology Data Exchange (ETDEWEB)

    Day, M.J. [Pall Europe Ltd., Portsmouth (United Kingdom)] Rinkinen, J. [Tampere University of Technology, Tampere (Finland)

    1997-12-31

    The need for both reliable operation of hydraulic and lubrication systems and long component lives has focused users to the benefits of controlling the contamination in the hydraulic fluid. Maximum operating (target) levels are being implemented as part of a condition based maintenance regime. If these are exceeded, maintenance effort is directed to correcting the rise in consummation level, and so make optimum use of resources as maintenance effort is only affected when it is necessary to do so. Fundamental to ibis aspect of condition based monitoring is the provision of accurate and reliable data in the shortest possible time. This way, corrective actions can be implemented immediately so minimising the damage to components. On-line monitoring devices are a way of achieving this and are seeing increased use, but some are affected by the condition of the fluid. Hence, there is a potential for giving incorrect data which will waste time and effort by initiating unnecessary corrective actions. A more disturbing aspect is the effect on the user of continual errors. The most likely effect would be a loss of confidence in the technique or even complete rejection of it and hence the potential benefits will be lost. This presentation explains how contaminant monitoring techniques are applied to ensure that the potential benefits of operating with clean fluids is realised. It examines the sources of error and shows how the user can interrogate the data and satisfy himself of its authenticity. (orig.) 14 refs.

  8. District Heating System Using Heat Pump Installations and CHP

    Directory of Open Access Journals (Sweden)

    Sit M.L.

    2015-12-01

    Full Text Available The article describes the district heating system, in which part of the heat of return water thermal power is used to supply heat to the district heating puThe article describes the district heating system, in which part of the heat of return water thermal power is used to supply heat to the district heating pumps, evaporators heating and hot water. Heat pumps use carbon dioxide as refrigerant. During the transitional period of the year, and the summer heat pump for preparing hot-water supply system uses the heat of the surrounding air. The heat of the ambient air is used in the intermediate heat exchanger between the first and second stages of the heat pump to cool the gas after the first stage of the compressor of the heat pump.

  9. Overall control and monitoring systems for pumped storage plants

    Energy Technology Data Exchange (ETDEWEB)

    Stepinski, B.; Cvetko, H.

    1982-01-01

    Experience and technical innovations in power plant engineering have resulted in continuous improvements of operation control, availability and safety of pumped storage plants. Process control is constantly improved as new developments are made in equipment and systems engineering. Plant control concepts with increasingly complex automation hierarchy are described by which pumped storage processes can be controlled optimally, reliably, and automatically.

  10. Human Aorta Is a Passive Pump

    Science.gov (United States)

    Pahlevan, Niema; Gharib, Morteza

    2012-11-01

    Impedance pump is a simple valveless pumping mechanism that operates based on the principles of wave propagation and reflection. It has been shown in a zebrafish that a similar mechanism is responsible for the pumping action in the embryonic heart during early stages before valve formation. Recent studies suggest that the cardiovascular system is designed to take advantage of wave propagation and reflection phenomena in the arterial network. Our aim in this study was to examine if the human aorta is a passive pump working like an impedance pump. A hydraulic model with different compliant models of artificial aorta was used for series of in-vitro experiments. The hydraulic model includes a piston pump that generates the waves. Our result indicates that wave propagation and reflection can create pumping mechanism in a compliant aorta. Similar to an impedance pump, the net flow and the flow direction depends on the frequency of the waves, compliance of the aorta, and the piston stroke.

  11. A Target Tracking System for Applications in Hydraulic Engineering

    Institute of Scientific and Technical Information of China (English)

    SHEN Qiaonan; AN Xuehui

    2008-01-01

    A new type of digital video monitoring system (DVMS) named user defined target tracking system (UDTTS), was developed based on the digital image processing (DIP) technology and the practice demands of construction site management in hydraulic engineering. The position, speed, and track of moving targets such as humans and vehicles, which could be calculated by their locations at anytime in images basically, were required for management. The proposed algorithm, dependent on the context-sensitive moving infor- mation of image sequences which was much more than one or two images provided, compared the blobs' properties in current frame to the trajectories of targets in the previous frames and then corresponded them. The processing frame rate is about 10fps with the image 240-by-120 pixels. Experimental results show that position, direction, and speed measurements have an accuracy level compatible with the manual work. The user-define process makes the UDTTS available to the public whenever appropriate.

  12. Application of optical fiber sensing technology in the hydraulic decoking monitoring system

    Science.gov (United States)

    Fan, Yun-feng; Tong, Xing-lin; Ji, Tao; Gao, Xue-qing; Zhong, Dong

    2013-09-01

    On the basis of the analysis of the current hydraulic decoking monitoring system, it is proposed that use optical fiber Bragg grating (FBG) vibration sensor and fiber Fabry-Perot (FP) acoustic sensors to online monitor vibration signal and audio signal hydraulic of the coke drum in the running state progress, analysis the vibration sensor and acoustic sensor used in the system. Based on the actual monitoring results in Sinopec Wuhan Branch , the fiber optic acoustic emission sensors is more suitable for the hydraulic decoking online monitoring system than the FBG vibration sensor ,which can more accurate monitor of hydraulic decoking.

  13. Hydraulic design of a double suction blood pump%一种双吸式血液泵水力设计

    Institute of Scientific and Technical Information of China (English)

    田爱民; 庄保堂; 朱雷; 罗先武; 许洪元

    2011-01-01

    The flow in pumps for open-heart and artificial heart units must be carefully optimized for the blood flow.The steady state three-dimensional turbulent flow inside a double suction blood pump was analyzed by solving the RANS equations with the SST k-ω turbulence model.The flow features in the blood pump were analyzed to optimize the design of the hydraulic components including the impeller and volute casing and the effects of various designs on the pump operating.The flow passage near the casing tongue has larger local wall shear stresses that may damage the blood cells,damage in the pump.The pump hydraulic efficiency can be improved by increasing the volute casing section area and a larger impeller vane exit angle will increase the pump head.Flow separation and its effect on pump performance can be controlled by a radial bladed impeller with a vane exit angle of 90°.The wall shear stresses for all designs were 20~26 Pa,less than the critical value for blood cell damage.%为了更好地满足体外循环装置和人工心脏的运行要求,该文采用RANS方法和SSTk-ω湍流模型对一种双吸式血液泵进行了三维定常湍流计算;在详细分析血液泵内部流动特征的基础上,对泵的水力部件如叶轮及压水室进行了设计优化,并探讨了各种设计对血液泵主要运行参数的影响。结果表明:压水室隔舌附近的流道容易出现较大的局部壁面剪切应力,是泵内血细胞容易受到损伤的危险区域;适当增大压水室断面面积有利于提高泵的水力效率;选择较大的叶片出口安放角时血液泵可获得较高的扬程,但采用径向叶片叶轮(出口叶片安放角为90°)时须设法控制流

  14. System of Thermal Balance Maintenance in Modern Test Benches for Centrifugal Pumps

    Directory of Open Access Journals (Sweden)

    A. I. Petrov

    2015-01-01

    Full Text Available The article “Systems of the heat balance maintenance in modern test benches for centrifugal pumps” makes the case to include cooling systems of a working fluid (heat setting in test bench for impeller pumps. It briefly summarizes an experience of bench building to test centrifugal pumps, developed at the BMSTU Department E-10 over the last 10 years. The article gives the formulas and the algorithm to calculate the heat capacity of different types of impeller pumps when tested at the bench as ell as to determine the heating time of the liquid in the bench without external cooling. Based on analysis of the power balance of a centrifugal pump, it is shown that about 90% of the pump unit-consumed electric power in terminals is used for heating up the working fluid in the loop of the test bench. The article gives examples of elementary heat calculation of the pump operation within the test bench. It presents the main types of systems to maintain thermal balance, their advantages, disadvantages and possible applications. The cooling system schemes for open and closed version of the benches both with built-in and with an independent cooling circuit are analysed. The paper separately considers options of such systems for large benches using the cooling tower as a cooling device in the loop, and to test the pumps using the hydraulic fluids other than water, including those at high temperatures of working fluids; in the latter case a diagram of dual-circuit cooling system "liquid-liquid-air" is shown. The paper depicts a necessity to use ethylene glycol coolant in the two-loop cooling bench. It provides an example of combining the functions of cooling and filtration in a single cooling circuit. Criteria for effectiveness of these systems are stated. Possible ways for developing systems to maintain a thermal balance, modern methods of regulation and control are described. In particular, the paper shows the efficiency of frequency control of the

  15. AUTOMATION OF THE RESIDENTIAL BUILDING WATER SUPPLY SYSTEM PUMPING STATION

    Directory of Open Access Journals (Sweden)

    A. M. Kulia

    2016-08-01

    Full Text Available Essence of process of water-supply of apartment dwelling house is considered. The existent state over of automation of the pumping stations is brought. The task of development of the effective system of automatic control is put by them. Possibility of decision of task is shown by the use in the system of frequency transformer that feeds the electrodrives of pumps, and also due to perfection of algorithms of the pumps rotation frequency adjusting and logical management of their switching a sequence. The practical value of the use of the system is to increase dynamic.

  16. Applicability of sewage heat pump air-conditioning system

    Institute of Scientific and Technical Information of China (English)

    陈金华; 刘猛; 刘勇; 靳鸣; 陈洁

    2009-01-01

    A sewage heat pump system and its application based on a project in Chongqing,China,were discussed. Based on the sewage conditions,a feasibility analysis of the sewage heat pump air conditioning system was conducted. The theoretical and quantitative calculations indicate that sewage flux in the city sewage main pipe in the project can satisfy heat exchange requirements,and taking water from the pipes has relatively small influence on the pipe net in summer and winter. The sewage heat pump air-conditioning system can save 21.5% operating cost in one year,which is energy efficient and environmentally friendly.

  17. Hydraulic External Pre-Isolator System for LIGO

    CERN Document Server

    Wen, S; Mason, K; Giaime, J; Abbott, R; Kern, J; O'Reilly, B; Bork, R; Hammond, M; Hardham, C; Lantz, B; Hua, W; Coyne, D; Traylor, G; Overmier, H; Evans, T; Hanson, J; Spjeld, O; Macinnis, M; Mailand, K; Sellers, D; Carter, K; Sarin, P

    2013-01-01

    The Hydraulic External Pre-Isolator (HEPI) is the first 6 degrees of freedom active seismic isolation system implemented at the Laser Interferometer Gravitational Wave Observatory (LIGO). Implementation was first completed at the LIGO Livingston Observatory (LLO) prior to LIGO's 5th science run, successfully cutting down the disturbance seen by LLO's suspended optics in the two most prominent seismic disturbance bands, the microseism (0.1-0.3Hz) and the anthropogenic (1-3Hz) bands, by a factor of a few to tens. The improvement in seismic isolation contributed directly to LLO's much improved duty cycle of 66.7% and LIGO's triple coincident duty cycle of 53%. We report the design, control scheme, and isolation performance of HEPI at LLO in this paper. Aided with this success, funding for incorporating HEPI into the LIGO Hanford Observatory was approved and installation is currently underway.

  18. Hydraulic external pre-isolator system for LIGO

    Science.gov (United States)

    Wen, S.; Mittleman, R.; Mason, K.; Giaime, J.; Abbott, R.; Kern, J.; O'Reilly, B.; Bork, R.; Hammond, M.; Hardham, C.; Lantz, B.; Hua, W.; Coyne, D.; Traylor, G.; Overmier, H.; Evans, T.; Hanson, J.; Spjeld, O.; Macinnis, M.; Mailand, K.; Ottaway, D.; Sellers, D.; Carter, K.; Sarin, P.

    2014-12-01

    The hydraulic external pre-isolator (HEPI) is the first six degrees of freedom active seismic isolation system implemented at the Laser Interferometer Gravitational Wave Observatory (LIGO). Implementation was first completed at the LIGO Livingston Observatory (LLO) prior to LIGO's fifth science run7, successfully cutting down the disturbance seen by LLO's suspended optics in the two most prominent seismic disturbance bands, the microseism (0.1-0.3 Hz) and the anthropogenic (1-3 Hz) bands, by a factor of a few to tens. The improvement in seismic isolation contributed directly to LLO's much improved duty cycle of 66.7% and LIGO's triple coincident duty cycle of 53%. We report the design, control scheme, and isolation performance of HEPI at LLO in this paper. Aided by this success, funding for incorporating HEPI into the LIGO Hanford Observatory was approved and installation is currently underway.

  19. Design of PI Controllers for Hydraulic Control Systems

    Directory of Open Access Journals (Sweden)

    LJubiša Dubonjić

    2013-01-01

    Full Text Available The paper proposes a procedure for design of PI controllers for hydraulic systems with long transmission lines which are described by models of high order. Design is based on the combination of the IE criterion and engineering specifications (settling time and relative stability as well as on the application of D-decomposition. In comparison with some known results, the method is of graphical character, and it is very simple (solving nonlinear algebraic equations is eliminated. The paper presents the algorithm of software procedure for design of the controller. The method is compared with other methods at the level of simulation, and its superiority is shown. By applying the Nyquist criterion, it is shown that the method possesses robustness in relation to non modelled dynamics.

  20. A Review of the Security of Insulin Pump Infusion Systems

    Science.gov (United States)

    Paul, Nathanael; Kohno, Tadayoshi; Klonoff, David C

    2011-01-01

    Insulin therapy has enabled patients with diabetes to maintain blood glucose control to lead healthier lives. Today, rather than injecting insulin manually using syringes, a patient can use a device such as an insulin pump to deliver insulin programmatically. This allows for more granular insulin delivery while attaining blood glucose control. Insulin pump system features have increasingly benefited patients, but the complexity of the resulting system has grown in parallel. As a result, security breaches that can negatively affect patient health are now possible. Rather than focus on the security of a single device, we concentrate on protecting the security of the entire system. In this article, we describe the security issues as they pertain to an insulin pump system that includes an embedded system of components, which include the insulin pump, continuous glucose management system, blood glucose monitor, and other associated devices (e.g., a mobile phone or personal computer). We detail not only the growing wireless communication threat in each system component, but also describe additional threats to the system (e.g., availability and integrity). Our goal is to help create a trustworthy infusion pump system that will ultimately strengthen pump safety, and we describe mitigating solutions to address identified security issues. PMID:22226278

  1. A Review of the Security of Insulin Pump Infusion Systems

    Energy Technology Data Exchange (ETDEWEB)

    Klonoff, David C. [Mills-Peninsula Health Services; Paul, Nathanael R [ORNL; Kohno, Tadayoshi [University of Washington, Seattle

    2011-01-01

    Insulin therapy has enabled diabetic patients to maintain blood glucose control to lead healthier lives. Today, rather than manually injecting insulin using syringes, a patient can use a device, such as an insulin pump, to programmatically deliver insulin. This allows for more granular insulin delivery while attaining blood glucose control. The insulin pump system features have increasingly benefited patients, but the complexity of the resulting system has grown in parallel. As a result security breaches that can negatively affect patient health are now possible. Rather than focus on the security of a single device, we concentrate on protecting the security of the entire system. In this paper we describe the security issues as they pertain to an insulin pump system that includes an embedded system of components including the insulin pump, continuous glucose management system, blood glucose monitor, and other associated devices (e.g., a mobile phone or personal computer). We detail not only the growing wireless communication threat in each system component, but we also describe additional threats to the system (e.g., availability and integrity). Our goal is to help create a trustworthy infusion pump system that will ultimately strengthen pump safety, and we describe mitigating solutions to address identified security issues both for now and in the future.

  2. Hydraulic Press with LS System for Modelling of Plastic Working Operations

    Directory of Open Access Journals (Sweden)

    Janusz Pluta

    2008-03-01

    Full Text Available At first, the paper describes destination of the presented hydraulic press. Next, the substance of load sensing (LS systems’ operation was introduced, and electro-hydraulic system of this type, installed in laboratory hydraulic press, was described. The control and measurement circuit of the device was also described, and exemplary test results obtained during plastic working operations on soft non-ferrous alloys were presented.

  3. Hydraulic Systems with Tap Water versus Bio-oils

    DEFF Research Database (Denmark)

    Conrad, Finn

    1997-01-01

    Deals with the advantages of using pure tap water hydraulics versus bio-oils for suiteable applications. Focus is in particular on food processing industry.......Deals with the advantages of using pure tap water hydraulics versus bio-oils for suiteable applications. Focus is in particular on food processing industry....

  4. Tap Water Hydraulic Systems for Medium Power Applications

    DEFF Research Database (Denmark)

    Conrad, Finn; Adelstorp, Anders

    1998-01-01

    Presentation of new range of developed tap water hydraulic componets and applications for medium power up to 4 kW and 50 bar.......Presentation of new range of developed tap water hydraulic componets and applications for medium power up to 4 kW and 50 bar....

  5. Contamination Control and Monitoring of Tap Water as Fluid in Industrial Tap Water Hydraulic Systems

    DEFF Research Database (Denmark)

    Conrad, Finn; Adelstorp, Anders

    1998-01-01

    Presentation of results and methods addressed to contamination control and monitoring of tap water as fluid in tap water hydraulic systems.......Presentation of results and methods addressed to contamination control and monitoring of tap water as fluid in tap water hydraulic systems....

  6. Fault Diagnosis for Nonlinear Hydraulic-Mechanical Drilling Pipe Handling System

    DEFF Research Database (Denmark)

    Choux, Martin; Blanke, Mogens

    2011-01-01

    Leakage and increased friction are common faults in hydraulic cylinders that can have serious consequences if they are not detected at early stage. In this paper, the design of a fault detector for a nonlinear hydraulic mechanical system is presented. By considering the system in steady state, tw...

  7. Contamination Control and Monitoring of Tap Water as Fluid in Industrial Tap Water Hydraulic Systems

    DEFF Research Database (Denmark)

    Conrad, Finn; Adelstorp, Anders

    1998-01-01

    Presentation of results and methods addressed to contamination control and monitoring of tap water as fluid in tap water hydraulic systems.......Presentation of results and methods addressed to contamination control and monitoring of tap water as fluid in tap water hydraulic systems....

  8. 49 CFR 570.57 - Air brake system and air-over-hydraulic brake subsystem.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 6 2010-10-01 2010-10-01 false Air brake system and air-over-hydraulic brake... STANDARDS Vehicles With GVWR of More Than 10,000 Pounds § 570.57 Air brake system and air-over-hydraulic brake subsystem. The following requirements apply to vehicles with air brake and...

  9. Safety systems for the ESES 2002 wind pump

    Energy Technology Data Exchange (ETDEWEB)

    El Agamawy, H. [Engine Factory, Doki (Egypt)

    2001-07-01

    The ESES 2002 wind pump, a 4.6 m rotor diameter high-performance water pumping windmill, was tested at four different sites (Cairo, Giza, Wadi El Natroun and El-Tor city on the Red Sea coast) from September 1997 to July 1999. These machines utilize a 3:1 gearbox and a hydrodynamic sealing piston pump. These four ESES 2002 wind pumps were tested by pumping from a motionless water depth of 3 in up to an 84 m deep well. A variety of pump diameter sizes varying from 64 to 1400 mm were used. The water pumped was returned to the well after flowing through a settling storage tank having a capacity of 3 m{sup 3}. The instrumentation provided a 16 channel data acquisition system to accurately measure the machine performance, including rotor rpm, number of stroke, starting wind speed, flow rate, tail furl angle and other variables. The results verify that the ESES 2002 wind pump is a robust machine as two machines have been running for 2 years continuously without requiring any replacement parts or major or minor maintenance. (author)

  10. System and method for controlling hydraulic pressure in electro-hydraulic valve actuation systems

    Energy Technology Data Exchange (ETDEWEB)

    Brennan, Daniel G; Marriott, Craig D; Cowgill, Joel; Wiles, Matthew A; Patton, Kenneth James

    2014-09-23

    A control system for an engine includes a first lift control module and a second lift control module. The first lift control module increases lift of M valves of the engine to a predetermined valve lift during a period before disabling or re-enabling N valves of the engine. The second lift control module decreases the lift of the M valves to a desired valve lift during a period after enabling or re-enabling the N valves of the engine, wherein N and M are integers greater than or equal to one.

  11. 适用于动静压试验的综合液压源的设计%A Multifunctional Pump Station Designed for Dynamic and Static Pressure Hydraulic Tests

    Institute of Scientific and Technical Information of China (English)

    孔炫畅

    2015-01-01

    分析了液压元件动静压试验的测试需求,据此进行了液压泵站的设计。液压泵站液压能由电动泵和手动泵提供,满足不同性质的液压实验需求。实践证明,对于实验类型较多,特别是静压实验较多的场合,综合液压源与常规液压源相比,具有明显优势。%Based on the dynamic and static pressure test requirement of hydraulic components, the pump station is designed. The hydraulic power of the pump station is provided by its motor pump and hand pump in accordance with different hydraulic tests. It is proved in practice that the pump station is more adequate than normal hydraulic power source to tests which need the hydraulic pressure to be hold for a long time, such as a leak test.

  12. Control System for Solar-Assisted Heat Pump System.

    Science.gov (United States)

    heat pump , a water-to-air heat exchanger, a domestic water heater, and a cooling tower. The preferred embodiment of the controller of the present invention includes a first temperature sensing means for sensing the temperature of the collector fluid at the outlet of the solar collector system, a second temperature sensing means for sensing the temperature of the storage fluid at the thermal storage system, and a third temperature sensing means for sensing the temperature of the inlet water to the domestic water heater. The controller compares the temperature of the thermal

  13. Modelling contaminant transport for pumping wells in riverbank filtration systems.

    Science.gov (United States)

    Mustafa, Shaymaa; Bahar, Arifah; Aziz, Zainal Abdul; Suratman, Saim

    2016-01-01

    Analytical study of the influence of both the pumping well discharge rate and pumping time on contaminant transport and attenuation is significant for hydrological and environmental science applications. This article provides an analytical solution for investigating the influence of both pumping time and travelling time together for one-dimensional contaminant transport in riverbank filtration systems by using the Green's function approach. The basic aim of the model is to understand how the pumping time and pumping rate, which control the travelling time, can affect the contaminant concentration in riverbank filtration systems. Results of analytical solutions are compared with the results obtained using a MODFLOW numerical model. Graphically, it is found that both analytical and numerical solutions have almost the same behaviour. Additionally, the graphs indicate that any increase in the pumping rate or simulation pumping time should increase the contamination in groundwater. The results from the proposed analytical model are well matched with the data collected from a riverbank filtration site in France. After this validation, the model is then applied to the first pilot project of a riverbank filtration system conducted in Malaysia. Sensitivity analysis results highlight the importance of degradation rates of contaminants on groundwater quality, for which higher utilization rates lead to the faster consumption of pollutants. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. 基于电液比例控制的液压支架搬运技术研究%Research on hydraulic support handling technology based on electro-hydraulic proportional control system

    Institute of Scientific and Technical Information of China (English)

    周国力; 杨国宏

    2016-01-01

    Abstr act: According to the requirements of the working face of the coal mine hydraulic support installation and dismantle mechanization process, a novel kind of hydraulic support handling technology based on electro-hydraulic proportional control system is proposed. The hydrau lic drive system with proportional control technology uses the closed volume control circuit system of the electro-hydraulic proportional variable displacement pump control motor as the driving scheme of the hydraulic support transportation vehicle system. The Matlab software is used for the system simulation. In order to improve the stability and fast performance of the system, a genetic algorithm based PID correction control is presented and the simulation results show that the system has good stability and better control performance after correction.%根据煤矿井下工作面液压支架安装搬运的技术要求,提出了一种采用电液比例技术驱动控制的液压支架搬运系统。该系统采用电液控制技术,采用电液比例变量泵控马达闭式容积调速回路系统作为液压支架搬运系统的动力驱动方案。运用Matlab软件对系统进行了仿真。为了进一步改善系统的稳定性和快速性,提出了基于遗传算法的PID校正控制方案。仿真结果表明,校正后的系统具有较好的稳定性和控制效果。

  15. ROBUST CONTROL OF AN ELECTRO-HYDRAULIC PROPORTIONAL SPEED CONTROL SYSTEM WITH A SINGLE-ROD HYDRAULIC ACTUATOR

    Institute of Scientific and Technical Information of China (English)

    Yang Jian; Xu Bing; Yang Huayong

    2005-01-01

    A robust control algorithm is proposed to focus on the non-linearity and parameters'uncertainties of an electro-hydraulic proportional speed control system (EHPSCS) with a single-rod hydraulic actuator. The robust controller proposed does not need to design stable compensator in advance, is simple in design and has large scope of uncertainty applications. The feedback gains of the robust controller proposed are small, so it is easily implemented in engineering applications.Experimental research on the speed control under the different conditions is carried out for an EHPSCS. Experimental results show that the robust controller proposed has better robustness subject to parametric uncertainties, and adaptability of parameters' variation of control system itself and plant parameter variation.

  16. Water hammer in the pump-rising pipeline system with an air chamber

    Institute of Scientific and Technical Information of China (English)

    KIM Sang-Gyun; LEE Kye-Bock; KIM Kyung-Yup

    2014-01-01

    Water hammer following the tripping of pumps can lead to overpressure and negative pressure. Reduction in overpressure and negative pressure may be necessary to avoid failure, to improve the efficiency of operation and to avoid fatigue of system components. The field tests on the water hammer have been conducted on the pump rising pipeline system with an air chamber. The hydraulic transient was simulated using the method of characteristics. Minimizing the least squares problem representing the difference between the measured and predicted transient response in the system performs the calibration of the simulation program. Among the input variables used in the water hammer analysis, the polytropic exponent, the discharge coefficient and the wave speed were calibrated. The computer program developed in this study will be useful in designing the optimum parameters of an air chamber for the real pump pipeline system. The correct selection of air chamber size and the effect of the inner diameter of the orifice to minimize water hammer have been investigated by both field measurements and numerical modeling.

  17. Quantifying Pilot Contribution to Flight Safety during Hydraulic Systems Failure

    Science.gov (United States)

    Kramer, Lynda J.; Etherington, Timothy J.; Bailey, Randall E.; Kennedy, Kellie D.

    2017-01-01

    Accident statistics cite the flight crew as a causal factor in over 60% of large transport aircraft fatal accidents. Yet, a well-trained and well-qualified pilot is acknowledged as the critical center point of aircraft systems safety and an integral safety component of the entire commercial aviation system. The latter statement, while generally accepted, cannot be verified because little or no quantitative data exists on how and how many accidents/incidents are averted by crew actions. A joint NASA/FAA high-fidelity motion-base human-in-the-loop test was conducted using a Level D certified Boeing 737-800 simulator to evaluate the pilot's contribution to safety-of-flight during routine air carrier flight operations and in response to aircraft system failures. To quantify the human's contribution, crew complement (two-crew, reduced crew, single pilot) was used as the independent variable in a between-subjects design. This paper details the crew's actions, including decision-making, and responses while dealing with a hydraulic systems leak - one of 6 total non-normal events that were simulated in this experiment.

  18. Comparison Of The Powers Of Energy Losses In A Variable Capacity Displacement Pump Determined Without Or With Taking Into Account The Power Of Hydraulic Oil Compression

    Directory of Open Access Journals (Sweden)

    Paszota Zygmunt

    2015-04-01

    Full Text Available Powers of energy losses in a variable capacity displacement pump are compared with or without taking into account the power of hydraulic oil compression. Evaluation of power of liquid compression in the pump was made possible by the use of method, proposed by the Author, of determining the degree of liquid aeration in the pump. In the method of determining the liquid aeration in the pump and of powers of volumetric losses of liquid compression a simplified formula (qPvc × ΔpPi/2 was used describing the field of indicated work of volumetric losses qPvc of liquid compression during one shaft revolution at indicated increase ΔpPi of pressure in the chambers. Three methods were used for comparing the sum of powers of volumetric losses ΔPPvl due to leakage and ΔPPvc of compression and also ΔPPm|ΔpPi of mechanical losses resulting from increase ΔpPi of indicated pressure in the working chambers.

  19. Use of time-subsidence data during pumping to characterize specific storage and hydraulic conductivity of semi-confining units

    Science.gov (United States)

    Burbey, T. J.

    2003-09-01

    A new graphical technique is developed that takes advantage of time-subsidence data collected from either traditional extensometer installations or from newer technologies such as fixed-station global positioning systems or interferometric synthetic aperture radar imagery, to accurately estimate storage properties of the aquifer and vertical hydraulic conductivity of semi-confining units. Semi-log plots of time-compaction data are highly diagnostic with the straight-line portion of the plot reflecting the specific storage of the semi-confining unit. Calculation of compaction during one-log cycle of time from these plots can be used in a simple analytical expression based on the Cooper-Jacob technique to accurately calculate specific storage of the semi-confining units. In addition, these semi-log plots can be used to identify when the pressure transient has migrated through the confining layer into the unpumped aquifer, precluding the need for additional piezometers within the unpumped aquifer or within the semi-confining units as is necessary in the Neuman and Witherspoon method. Numerical simulations are used to evaluate the accuracy of the new technique. The technique was applied to time-drawdown and time-compaction data collected near Franklin Virginia, within the Potomac aquifers of the Coastal Plain, and shows that the method can be easily applied to estimate the inelastic skeletal specific storage of this aquifer system.

  20. Simulation Analysis of Slewing System for Hybrid Hydraulic Excavator%油液混合动力挖掘机回转系统仿真分析

    Institute of Scientific and Technical Information of China (English)

    郑辉; 吴文海; 邓斌; 刘桓龙; 柯坚

    2012-01-01

    In order to recover the braking energy from braking process of slewing platform of hydraulic excavator, a hybrid hydraulic excavator energy recovery system was proposed in which accumulator was used to recover the braking energy. The differences of the principle of the slewing hydraulic system between the hybrid hydraulic excavator and the ordinary excavator were elaborated. The simulation model was built based on AMESim. Simulation results show that using the hybrid hydraulic excavator, the power loss of the hydraulic pumps and the pressure fluctuations of the hydraulic motors are reduced. In the energy saving aspect, the energy recovery efficiency of the accumulator can reach 70% , and the reuse efficiency of the hydraulic energy can reach 72. 8%. So the system has high recovery efficiency and the energy saving purpose is achieved.%为了回收挖掘机回转平台制动过程中的制动能量,设计了油液混合动力挖掘机回转系统,利用蓄能器回收回转平台的制动能量.阐述油液混合动力回转系统和普通回转系统液压原理的不同,建立AMESim模型并进行仿真分析.仿真结果表明:油液混合动力挖掘机回转系统在一定程度上降低了液压泵的功率损耗和液压马达的压力波动;在节能方面,蓄能器的能量回收效率达到70.0%,再利用效率达到72.8%,利用率较高,达到节能的目的.

  1. Investigation of pump and pump switch failures in rainwater harvesting systems

    Science.gov (United States)

    Moglia, Magnus; Gan, Kein; Delbridge, Nathan; Sharma, Ashok K.; Tjandraatmadja, Grace

    2016-07-01

    Rainwater harvesting is an important technology in cities that can contribute to a number of functions, such as sustainable water management in the face of demand growth and drought as well as the detention of rainwater to increase flood protection and reduce damage to waterways. The objective of this article is to investigate the integrity of residential rainwater harvesting systems, drawing on the results of the field inspection of 417 rainwater systems across Melbourne that was combined with a survey of householders' situation, maintenance behaviour and attitudes. Specifically, the study moves beyond the assumption that rainwater systems are always operational and functional and draws on the collected data to explore the various reasons and rates of failure associated with pumps and pump switches, leaving for later further exploration of the failure in other components such as the collection area, gutters, tank, and overflows. To the best of the authors' knowledge, there is no data like this in academic literature or in the water sector. Straightforward Bayesian Network models were constructed in order to analyse the factors contributing to various types of failures, including system age, type of use, the reason for installation, installer, and maintenance behaviour. Results show that a number of issues commonly exist, such as failure of pumps (5% of systems), automatic pump switches that mediate between the tank and reticulated water (9% of systems), and systems with inadequate setups (i.e. no pump) limiting their use. In conclusion, there appears to be a lack of enforcement or quality controls in both installation practices by sometimes unskilled contractors and lack of ongoing maintenance checks. Mechanisms for quality control and asset management are required, but difficult to promote or enforce. Further work is needed into how privately owned assets that have public benefits could be better managed.

  2. Development of realistic thermal-hydraulic system analysis codes ; development of thermal hydraulic test requirements for multidimensional flow modeling

    Energy Technology Data Exchange (ETDEWEB)

    Suh, Kune Yull; Yoon, Sang Hyuk; Noh, Sang Woo; Lee, Il Suk [Seoul National University, Seoul (Korea)

    2002-03-01

    This study is concerned with developing a multidimensional flow model required for the system analysis code MARS to more mechanistically simulate a variety of thermal hydraulic phenomena in the nuclear stem supply system. The capability of the MARS code as a thermal hydraulic analysis tool for optimized system design can be expanded by improving the current calculational methods and adding new models. In this study the relevant literature was surveyed on the multidimensional flow models that may potentially be applied to the multidimensional analysis code. Research items were critically reviewed and suggested to better predict the multidimensional thermal hydraulic behavior and to identify test requirements. A small-scale preliminary test was performed in the downcomer formed by two vertical plates to analyze multidimensional flow pattern in a simple geometry. The experimental result may be applied to the code for analysis of the fluid impingement to the reactor downcomer wall. Also, data were collected to find out the controlling parameters for the one-dimensional and multidimensional flow behavior. 22 refs., 40 figs., 7 tabs. (Author)

  3. Development of an Advanced Hydraulic Fracture Mapping System

    Energy Technology Data Exchange (ETDEWEB)

    Norm Warpinski; Steve Wolhart; Larry Griffin; Eric Davis

    2007-01-31

    The project to develop an advanced hydraulic fracture mapping system consisted of both hardware and analysis components in an effort to build, field, and analyze combined data from tiltmeter and microseismic arrays. The hardware sections of the project included: (1) the building of new tiltmeter housings with feedthroughs for use in conjunction with a microseismic array, (2) the development of a means to use separate telemetry systems for the tilt and microseismic arrays, and (3) the selection and fabrication of an accelerometer sensor system to improve signal-to-noise ratios. The analysis sections of the project included a joint inversion for analysis and interpretation of combined tiltmeter and microseismic data and improved methods for extracting slippage planes and other reservoir information from the microseisms. In addition, testing was performed at various steps in the process to assess the data quality and problems/issues that arose during various parts of the project. A prototype array was successfully tested and a full array is now being fabricated for industrial use.

  4. A reactive transport model for the quantification of risks induced by groundwater heat pump systems in urban aquifers

    Science.gov (United States)

    García-Gil, Alejandro; Epting, Jannis; Ayora, Carlos; Garrido, Eduardo; Vázquez-Suñé, Enric; Huggenberger, Peter; Gimenez, Ana Cristina

    2016-11-01

    Shallow geothermal resource exploitation through the use of groundwater heat pump systems not only has hydraulic and thermal effects on the environment but also induces physicochemical changes that can compromise the operability of installations. This study focuses on chemical clogging and dissolution subsidence processes observed during the geothermal re-injection of pumped groundwater into an urban aquifer. To explain these phenomena, two transient reactive transport models of a groundwater heat pump installation in an alluvial aquifer were used to reproduce groundwater-solid matrix interactions occurring in a surrounding aquifer environment during system operation. The models couple groundwater flow, heat and solute transport together with chemical reactions. In these models, the permeability distribution in space changes with precipitation-dissolution reactions over time. The simulations allowed us to estimate the calcite precipitation rates and porosity variations over space and time as a function of existent hydraulic gradients in an aquifer as well as the intensity of CO2 exchanges with the atmosphere. The results obtained from the numerical model show how CO2 exolution processes that occur during groundwater reinjection into an aquifer and calcite precipitation are related to hydraulic efficiency losses in exploitation systems. Finally, the performance of reinjection wells was evaluated over time according to different scenarios until the systems were fully obstructed. Our simulations also show a reduction in hydraulic conductivity that forces re-injected water to flow downwards, thereby enhancing the dissolution of evaporitic bedrock and producing subsidence that can ultimately result in a dramatic collapse of the injection well infrastructure.

  5. Research on rigid–flexible coupling dynamic characteristics of boom system in concrete pump truck

    Directory of Open Access Journals (Sweden)

    Hongbin Tang

    2015-03-01

    Full Text Available Concrete pump truck plays an important role in infrastructure construction and national economic development. In recent years, its boom system becomes longer, and its dynamic and control become more complicated. In order to study the dynamic characteristics of boom system, three dynamic models such as multi-rigid-body model, rigid–flexible coupling model, and rigid–flexible coupling model with equivalent hydraulic cylinder were built in this work. Simulation analysis and experimental analysis were done, and they show that we should not only consider the large-range motion but also consider the small flexible deformation to study the dynamic characteristics of boom system precisely. It provides the theoretical basis to vibration control, trajectory prediction, and life assessment for boom system and such structures.

  6. Novel sucker rod pumping system based on linear motor technology

    Institute of Scientific and Technical Information of China (English)

    李立毅; 李立清; 吴红星; 胡余生; 邹积岩

    2004-01-01

    Obtaining petroleum at the cost of electrical energy is a common problem in almost all oil fields, and it is mainly caused by low duty radio of induction motor used in beam pumping units. Traditional beam-pumping units have many intrinsic disadvantages such as low efficiency, complex transmission devices, poor flexibility,tremendous volume and weight in long stroke, etc. Therefore, a novel direct driven linear electromagnetic pumping unit (EMPU) has been developed by combining oil extraction technology with linear motor technology. The thrust of EMPU matches the changing of suspension center load to improve the system efficiency and cut down the consumption of energy. Based on previous experience, a small-scale prototype was developed and a simulation was conducted with it. Both theoretical analyses and experimental study showed that the problems exiting in beam pumping units can be solved with EMPU system, and this is a new method which can be used to solve high energy waste in oil fields.

  7. Adaptive Control System of Hydraulic Pressure Based on The Mathematical Modeling

    Science.gov (United States)

    Pilipenko, A. V.; Pilipenko, A. P.; Kanatnikov, N. V.

    2016-04-01

    In this paper, the authors highlight the problem of replacing an old heavy industrial equipment, and offer the replacement of obsolete control systems on the modern adaptive control system, which takes into account changes in the hydraulic system of the press and compensates them with a corrective action. The proposed system can reduce a water hammer and thereby increase the durability of the hydraulic system and tools.

  8. Peristaltic pump-based low range pressure sensor calibration system.

    Science.gov (United States)

    Vinayakumar, K B; Naveen Kumar, G; Nayak, M M; Dinesh, N S; Rajanna, K

    2015-11-01

    Peristaltic pumps were normally used to pump liquids in several chemical and biological applications. In the present study, a peristaltic pump was used to pressurize the chamber (positive as well negative pressures) using atmospheric air. In the present paper, we discuss the development and performance study of an automatic pressurization system to calibrate low range (millibar) pressure sensors. The system includes a peristaltic pump, calibrated pressure sensor (master sensor), pressure chamber, and the control electronics. An in-house developed peristaltic pump was used to pressurize the chamber. A closed loop control system has been developed to detect and adjust the pressure leaks in the chamber. The complete system has been integrated into a portable product. The system performance has been studied for a step response and steady state errors. The system is portable, free from oil contaminants, and consumes less power compared to existing pressure calibration systems. The veracity of the system was verified by calibrating an unknown diaphragm based pressure sensor and the results obtained were satisfactory.

  9. Numerical simulation on a throttle governing system with hydraulic butterfly valves in a marine environment

    Science.gov (United States)

    Wan, Hui-Xiong; Fang, Jun; Huang, Hui

    2010-12-01

    Hydraulic butterfly valves have been widely applied in marine engineering because of their large switching torque, low pressure loss and suitability for large and medium diameter pipelines. Due to control problems resulting from switching angular speeds of the hydraulic butterfly valve, a throttle-governing control mode has been widely adopted, and detailed analysis has been carried out worldwide on the structural principle concerning speed-regulation and the load torque on the shaft while opening or closing a hydraulic butterfly valve. However relevant reports have yet been published on the change law, the error and the influencing factors of the rotational angular velocity of the hydraulic butterfly valve while opening and closing. In this article, research was based on some common specifications of a hydraulic butterfly valve with a symmetrical valve flap existing in a marine environment. The throttle governing system supplied by the accumulator to achieve the switching of the hydraulic control valve was adopted, and the mathematical models of the system were established in the actual conditions while the numerical simulations took place. The simulation results and analysis show that the rotational angular velocity and the error of the hydraulic butterfly valve while switching is influenced greatly by the drainage amount of the accumulator, resulting in pressure loss in the pipeline, the temperature of hydraulic medium and the load of the hydraulic butterfly valve. The simulation results and analysis provide a theoretical basis for the choice of the total capacity of the accumulator and pipeline diameters in a throttle governing system with a hydraulic butterfly valve. It also determines the type and specification of the hydraulic butterfly valve and the design of motion parameters of the transported fluid.

  10. Analysis of an controller design for an electro-hydraulic servo pressure regulator

    DEFF Research Database (Denmark)

    Pedersen, Henrik C.; Andersen, Torben Ole; Madsen, A. M.;

    2009-01-01

    of the existing hydraulic components there are, however, still a need for being able to generate a hydraulic pilot pressure, as e.g. almost all open-circuit pumps are hydraulically controlled. The focus of the current paper is therefore on the analysis and controller design an electro-hydraulic servo pressure...... regulator, which generates a hydraulic LS-pressure based on an electrical reference, hereby synergistically integrating knowledge from all parts of the mechatronics area. The servo pressure regulator is used to generate the LS-signal for a variable displacement pump, and the paper rst presents...... to generate a controlled leakage  ow that aids in stabilising the system. The robustness of the system is then discussed in relation to dierent pilot line volumes and pump dynamics. Finally experimental results are presented, where the performance is compared to that of a similar hydraulic reference system...

  11. Sliding mode controller for a photovoltaic pumping system

    Science.gov (United States)

    ElOugli, A.; Miqoi, S.; Boutouba, M.; Tidhaf, B.

    2017-03-01

    In this paper, a sliding mode control scheme (SMC) for maximum power point tracking controller for a photovoltaic pumping system, is proposed. The main goal is to maximize the flow rate for a water pump, by forcing the photovoltaic system to operate in its MPP, to obtain the maximum power that a PV system can deliver.And this, through the intermediary of a sliding mode controller to track and control the MPP by overcoming the power oscillation around the operating point, which appears in most implemented MPPT techniques. The sliding mode control approach is recognized as one of the efficient and powerful tools for nonlinear systems under uncertainty conditions.The proposed controller with photovoltaic pumping system is designed and simulated using MATLAB/SIMULINK environment. In addition, to evaluate its performances, a classical MPPT algorithm using perturb and observe (P&O) has been used for the same system to compare to our controller. Simulation results are shown.

  12. Heat-pump-centered integrated community energy systems. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1979-11-01

    Heat-pump-centered integrated community energy systems (HP-ICES) are energy systems for communities which provide heating, cooling and/or other thermal energy services through the use of heat pumps. Since heat pumps primarily transfer energy from existing and otherwise probably unused sources, rather than convert it from electrical or chemical to thermal form, HP-ICES offer significant potential for energy savings. Secondary benefits of HP-ICES include reduction of adverse environmental effects as compared to conventional systems, reliable production of services in contrast to the increasingly frequent utility curtailments and interruptions, and delivery of services to consumers at costs lower than those for conventional systems (including acquisition, operation, and maintenance costs). The objective of this multiphase project is development and demonstration of HP-ICES concepts leading to one or more operational systems by the end of 1984. The results of the system development phase of the HP-ICES Project are reported. Information is presented on: central heat pump and distributed heat pump ICES; potential applications; waste heat availability; system performance and economics; environmental impacts; site requirements; component testing requirements; mathematical analysis of heat balance and cost relations; and performance and economic analyses of HP-ICES located near Seattle, Washington and San Antonio, Texas. (LCL)

  13. Heat exchange and hydraulic resistance of compact laser mirror cooling systems

    Science.gov (United States)

    Shanin, Yu. I.; Shanin, O. I.

    2013-07-01

    The hydraulic resistance of cooling systems for laser mirrors and the heat exchange in them have been investigated experimentally. The data obtained have been generalized for several cooling systems with different porous elements.

  14. Parallel Control of Velocity Control and Energy-Saving Control for a Hydraulic Valve-Controlled Cylinder System Using Self-Organizing Fuzzy Sliding Mode Control

    Science.gov (United States)

    Chiang, Mao-Hsiung; Chien, Yu-Wei

    Conventional hydraulic valve-controlled systems that incorporate positive displacement pumps and relief valves have a problem of low energy efficiency. The objective of the research is to implement parallel control of energy-saving control in an electro-hydraulic load-sensing system and velocity control in a hydraulic valve-controlled cylinder system to achieve both high velocity control accuracy and low input power simultaneously. The overall control system is a two-input two-output system. For that, the control strategy of self-organizing fuzzy sliding mode control (SOFSMC) is developed in this study to reduce the fuzzy rule number and to self-organize on-line the fuzzy rules. To compare the energy-saving performance, the velocity control is implemented under three different energy-saving control systems, such as load-sensing control system, constant supply pressure control system and conventional hydraulic system. The parallel control of the velocity control and energy-saving control by the SOFSMC is implemented experimentally.

  15. HYDRAULIC ACTIVE GUIDE ROLLER SYSTEM FOR HIGH-SPEED ELEVATOR BASED ON FUZZY CONTROLLER

    Institute of Scientific and Technical Information of China (English)

    FENG Yonghui; ZHANG Jianwu

    2007-01-01

    Increase of elevator speed brings about amplified vibrations of high-speed elevator. In order to reduce the horizontal vibrations of high-speed elevator, a new type of hydraulic active guide roller system based on fuzzy logic controller is developed. First the working principle of the hydraulic guide system is introduced, then the dynamic model of the horizontal vibrations for elevator cage with active guide roller system and the mathematical model of the hydraulic system are given. A fuzzy logic controller for the hydraulic system is designed to control the hydraulic actuator. To improve the control performance, preview compensation for the controller is provided. Finally, simulation and experiments are executed to verify the hydraulic active guide roller system and the control strategy. Both the simulation and experimental results indicate that the hydraulic active guide roller system can reduce the horizontal vibrations of the elevator effectively and has better effects than the passive one, and the fuzzy logic controller with preview compensation can give superior control performance.

  16. A Review on Mechanical and Hydraulic System Modeling of Excavator Manipulator System

    Directory of Open Access Journals (Sweden)

    Jiaqi Xu

    2016-01-01

    Full Text Available A recent trend in the development of off-highway construction equipment, such as excavators, is to use a system model for model-based system design in a virtual environment. Also, control system design for advanced excavation systems, such as automatic excavators and hybrid excavators, requires system models in order to design and simulate the control systems. Therefore, modeling of an excavator is an important first step toward the development of advanced excavators. This paper reviews results of recent studies on the modeling of mechanical and hydraulic subsystems for the simulation, design, and control development of excavator systems. Kinematic and dynamic modeling efforts are reviewed first. Then, various approaches in the hydraulic system modeling are presented.

  17. Procurement specification high vacuum test chamber and pumping system

    Energy Technology Data Exchange (ETDEWEB)

    Cormick, J. E.

    1976-05-31

    The specification establishes requirements for a high-vacuum test chamber, associated vacuum pumps, valves, controls, and instrumentation that shall be designed and fabricated for use as a test chamber for testing a closed loop Brayton Isotope Power System (BIPS) Ground Demonstration System (GDS). The vacuum system shall include all instrumentation required for pressure measurement and control of the vacuum pumping system. A general outline of the BIPS-GDS in the vacuum chamber and the preliminary piping and instrumentation interface to the vacuum chamber are shown.

  18. Thermal hydraulics of accelerator driven system windowless targets

    Directory of Open Access Journals (Sweden)

    Bruno ePanella

    2015-07-01

    Full Text Available The study of the fluid dynamics of the windowless spallation target of an Accelerator Driven System (ADS is presented. Several target mockup configurations have been investigated: the first one was a symmetrical target, that was made by two concentric cylinders, the other configurations are not symmetrical. In the experiments water has been used as hydraulic equivalent to lead-bismuth eutectic fluid. The experiments have been carried out at room temperature and flow rate up to 24 kg/s. The fluid velocity components have been measured by an ultrasound technique. The velocity field of the liquid within the target region either for the approximately axial-symmetrical configuration or for the not symmetrical ones as a function of the flow rate and the initial liquid level is presented. A comparison of experimental data with the prediction of the finite volume FLUENT code is also presented. Moreover the results of a 2D-3D numerical analysis that investigates the effect on the steady state thermal and flow fields due to the insertion of guide vanes in the windowless target unit of the EFIT project ADS nuclear reactor are presented, by analysing both the cold flow case (absence of power generation and the hot flow case (nominal power generation inside the target unit.

  19. Engineered Barrier Systems Thermal-Hydraulic-Chemical Column Test Report

    Energy Technology Data Exchange (ETDEWEB)

    W.E. Lowry

    2001-12-13

    The Engineered Barrier System (EBS) Thermal-Hydraulic-Chemical (THC) Column Tests provide data needed for model validation. The EBS Degradation, Flow, and Transport Process Modeling Report (PMR) will be based on supporting models for in-drift THC coupled processes, and the in-drift physical and chemical environment. These models describe the complex chemical interaction of EBS materials, including granular materials, with the thermal and hydrologic conditions that will be present in the repository emplacement drifts. Of particular interest are the coupled processes that result in mineral and salt dissolution/precipitation in the EBS environment. Test data are needed for thermal, hydrologic, and geochemical model validation and to support selection of introduced materials (CRWMS M&O 1999c). These column tests evaluated granular crushed tuff as potential invert ballast or backfill material, under accelerated thermal and hydrologic environments. The objectives of the THC column testing are to: (1) Characterize THC coupled processes that could affect performance of EBS components, particularly the magnitude of permeability reduction (increases or decreases), the nature of minerals produced, and chemical fractionation (i.e., concentrative separation of salts and minerals due to boiling-point elevation). (2) Generate data for validating THC predictive models that will support the EBS Degradation, Flow, and Transport PMR, Rev. 01.

  20. Optimization of pumping schemes for 160-Gb/s single channel Raman amplified systems

    DEFF Research Database (Denmark)

    Xu, Lin; Rottwitt, Karsten; Peucheret, Christophe;

    2004-01-01

    Three different distributed Raman amplification schemes-backward pumping, bidirectional pumping, and second-order pumping-are evaluated numerically for 160-Gb/s single-channel transmission. The same longest transmission distance of 2500 km is achieved for all three pumping methods with a 105-km...... span composed of superlarge effective area fiber and inverse dispersion fiber. For longest system reach, second-order pumping and backward pumping have larger pump power tolerance than bidirectional pumping, while the optimal span input signal power margin of second-order pumping is the largest...

  1. Heat pumps in combined heat and power systems

    DEFF Research Database (Denmark)

    Ommen, Torben Schmidt; Markussen, Wiebke Brix; Elmegaard, Brian

    2014-01-01

    of the considered cases. When considering a case where the heat pump is located at a CHP (combined heat and power) plant, a configuration that increases the DH return temperature proposes the lowest operation cost, as low as 12 EUR MWh-1 for a 90 °C e 40 °C DH network. Considering the volumetric heating capacity......Heat pumps have previously been proposed as a way to integrate higher amounts of renewable energy in DH (district heating) networks by integrating, e.g., wind power. The paper identifies and compares five generic configurations of heat pumps in DH systems. The operational performance......, a third configuration is superior in all cases. Finally, the three most promising heat pump configurations are integrated in a modified PQ-diagram of the CHP plant. Each show individual advantages, and for two, also disadvantages in order to achieve flexible operation....

  2. The Vehicle Hydraulic Constant Speed Power Generation System%一种车载液压恒速发电系统

    Institute of Scientific and Technical Information of China (English)

    卢学渊; 杨红; 白清鹏

    2015-01-01

    The parking or driving in the car engine with constant or variable speed drive L10V constant pressure/flow variable pump, using the fixed throttle hole in the outlet of the variable pump and the throttle pressure feedback back to the control variable pump export, so that the output and load constant flow independent drive hydraulic motor constant speed, constant speed hydraulic motor to drive the permanent magnet generator to generate electricity. The vehicle constant speed hydraulic power generation system has the features of parking or driv-ing power generation, control, large unit weight, compact size and so on..%驻车或行驶中的汽车发动机以恒定或变化转速驱动L10V恒压/流量变量泵,在变量泵出口采用所需的固定节流孔,并把节流孔后压力反馈回变量泵控制口,使之输出与负载无关的恒定流量驱动液压马达恒速运转,恒速液压马达再驱动永磁发电机进行发电.该车载恒速液压发电系统具有驻车或行车发电功能、控制简单、单位重量功率大、体积小巧等特点.

  3. Comparison of solar powered water pumping systems which use diaphragm pumps

    Science.gov (United States)

    Four solar photovoltaic (PV) powered diaphragm pumps were tested at different simulated pumping depths at the USDA-ARS Conservation and Production Research Laboratory near Bushland, Texas. Two of the pumps were designed for intermediate pumping depths (30 to 70 meters), and the other two pumps were...

  4. Evaluation of Linear and Non-Linear Control Schemes Applied to a Hydraulic Servo System

    DEFF Research Database (Denmark)

    Andersen, Torben Ole; Hansen, Michael Rygaard; Pedersen, Henrik Clemmensen

    2005-01-01

    Due to the innovation of low-cost electronics such as sensors, microcontrollers etc., the focus on highperformance motion control is increasing. This work focuses on position control of single-input single-output hydraulic servo-systems in general. A hydraulically actuated robotic manipulator...... is used as test facility acting as load for the hydraulic servo system. An experimentally verified non-linear model of the complete system has been developed and used to design a series of both linear and non-linear control schemes. The controllers from each category are compared with respect to design...

  5. Specific features pertinent to modeling of hydraulic systems containing control members

    Science.gov (United States)

    Tverskoy, Yu. S.; Marshalov, E. D.

    2014-09-01

    The theoretical principles applied for modeling of hydraulic systems fitted with control members that allow a hydraulic line's specific features (topology) to be taken into account are considered. Such modeling opens the possibility to predict the actual flow (throttling) characteristics at early design stages and timely introduce the appropriate corrections in pipeline topology. The modeling problem is solved with the use of generalized thermodynamic analysis methods. The mathematical models of hydraulic systems containing control members are brought to the level of real-time simulation models, which can be used for setting up computation experiments for achieving better performance of automatic closed-loop control systems.

  6. RESEARCH ON STABILITY AND MINIMUM ORIFICE AREA OF HYDRAULIC SERVO POSITION CONTROL SYSTEM

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    This paper reports results of research on the stability of a hydraulic servo position system using generalization pulse code modulation (GPCM) and common on/off valves for hydraulic servo control. The de- scribing function was first used to analyze the system′s stability, and based on the nonlinear theory, an equation calculating the minimum orifice area of GPCM valves was derived by applying results of analysis on the stability of the GPCM control system. In the end, aimed at developing a hydraulic servo position system to be used in a paint robot, simulation and experiment were carried out. The results show that the theoretical conclusions accorded with practical results.

  7. Powered orthosis and attachable power-assist device with Hydraulic Bilateral Servo System.

    Science.gov (United States)

    Ohnishi, Kengo; Saito, Yukio; Oshima, Toru; Higashihara, Takanori

    2013-01-01

    This paper discusses the developments and control strategies of exoskeleton-type robot systems for the application of an upper limb powered orthosis and an attachable power-assist device for care-givers. Hydraulic Bilateral Servo System, which consist of a computer controlled motor, parallel connected hydraulic actuators, position sensors, and pressure sensors, are installed in the system to derive the joint motion of the exoskeleton arm. The types of hydraulic component structure and the control strategy are discussed in relation to the design philosophy and target joints motions.

  8. 闭式液压系统补油泵参数的设计%Design of Charge Pumps Parameter in Closed Hydraulic System

    Institute of Scientific and Technical Information of China (English)

    王佃武

    2013-01-01

    In closed hydraulic system,the function of the charge pump was to supplement the loss of volume efficiency of the pump and motor,and the leakage flow in flushing of cooling valves during operation. The design of charge pumps parameter was very important in design of the closed hydraulic system. By analyzing all kinds of factors synthetically,it is put forward that the displacement of charge pump is selected commonly as 20% ~25% of the main pump,and the pressure is set generally as 1.5~2.5 MPa.%  闭式液压系统中,补油泵的作用是补偿在工作中由于泵、马达容积效率损失以及由冲洗冷却阀组中泄漏的流量,补油泵的参数设计在闭式液压系统的设计中非常重要。通过综合分析多方因素,提出补油泵排量一般选取主泵排量的20%~25%,补油压力通常设定为1.5~2.5 MPa。

  9. Design and performance of main vacuum pumping system of SST-1 Tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Khan, Ziauddin, E-mail: ziauddin@ipr.res.in; Pathan, Firozkhan; George, Siju; Dhanani, Kalpesh; Paravastu, Yuvakiran; Semwal, Pratibha; Pradhan, Subrata

    2014-01-15

    Highlights: •SST-1 Tokamak was successfully commissioned. •Vacuum vessel and cryostat were pumped down to 6.3 × 10{sup −7} mbar and 1.3 × 10{sup −5} mbar. •Leaks developed during baking were detected in-situ by RGA and confirmed later on. •Cryo-pumping effect was observed when LN2 thermal shields reached below 273 K. •Non-standard aluminum wire-seals have shown leak tightness < 1.0 × 10{sup −9} mbar l/s. -- Abstract: Steady-state Superconducting Tokamak (SST-1) was installed and it is commissioning for overall vacuum integrity, magnet systems functionality in terms of successful cool down to 4.5 K and charging up to 10 kA current was started from August 2012. Plasma operation of 100 kA current for more than 100 ms was also envisaged. It is comprised of vacuum vessel (VV) and cryostat (CST). Vacuum vessel, an ultra-high (UHV) vacuum chamber with net volume of 23 m{sup 3} was maintained at the base pressure of 6.3 × 10{sup −7} mbar for plasma confinement. Cryostat, a high-vacuum (HV) chamber with empty volume 39 m{sup 3} housing superconducting magnet system, bubble thermal shields and hydraulics for these circuits, maintained at 1.3 × 10{sup −5} mbar in order to provide suitable environment for these components. In order to achieve these ultimate vacuums, two numbers of turbo-molecular pumps (TMP) are installed in vacuum vessel while three numbers of turbo-molecular pumps are installed in cryostat. Initial pumping of both the chambers was carried out by using suitable Roots pumps. PXI based real time controlled system is used for remote operation of the complete pumping operation. In order to achieve UHV inside the vacuum vessel, it was baked at 150 °C for longer duration. Aluminum wire-seals were used for all non-circular demountable ports and a leak tightness < 1.0 × 10{sup −9} mbar l/s were achieved.

  10. Development and industrial tests of the first LNG hydraulic turbine system in China

    Directory of Open Access Journals (Sweden)

    Jie Chen

    2016-10-01

    Full Text Available The cryogenic hydraulic turbine can be used to replace the conventional J–T valve for LNG or mixed refrigerant throttling and depressurization in a natural gas liquefaction plant. This advanced technology is not only to enhance the efficiency of the liquefaction plant, but to usher a new trend in the development of global liquefaction technologies. China has over 136 liquefaction plants, but the cryogenic hydraulic turbines have not been deployed in industrial utilization. In addition, these turbines cannot be manufactured domestically. In this circumstance, through working on the key technologies for LNG hydraulic turbine process & control system development, hydraulic model optimization design, structure design and manufacturing, the first domestic cryogenic hydraulic turbine with a flow rate of 40 m3/h was developed to recover the pressure energy from the LNG of cold box. The turbine was installed in the CNOOC Zhuhai Natural Gas Liquefaction Plant for industrial tests under multiple working conditions, including start-stop, variable flow rates and variable rotation speeds. Test results show that the domestic LNG cryogenic hydraulic turbine has satisfactory mechanical and operational performances at low temperatures as specified in design. In addition, the process & control system and frequency-conversion power-generation system of the turbine system are designed properly to automatically and smoothly replace the existing LNG J–T valve. As a result, the domestic LNG cryogenic hydraulic turbine system can improve LNG production by an average of 2% and generate power of 8.3 kW.

  11. Comparative analytics of infusion pump data across multiple hospital systems.

    Science.gov (United States)

    Catlin, Ann Christine; Malloy, William X; Arthur, Karen J; Gaston, Cindy; Young, James; Fernando, Sudheera; Fernando, Ruchith

    2015-02-15

    A Web-based analytics system for conducting inhouse evaluations and cross-facility comparisons of alert data generated by smart infusion pumps is described. The Infusion Pump Informatics (IPI) project, a collaborative effort led by research scientists at Purdue University, was launched in 2009 to provide advanced analytics and tools for workflow analyses to assist hospitals in determining the significance of smart-pump alerts and reducing nuisance alerts. The IPI system allows facility-specific analyses of alert patterns and trends, as well as cross-facility comparisons of alert data uploaded by more than 55 participating institutions using different types of smart pumps. Tools accessible through the IPI portal include (1) charts displaying aggregated or breakout data on the top drugs associated with alerts, numbers of alerts per device or care area, and override-to-alert ratios, (2) investigative reports that can be used to characterize and analyze pump-programming errors in a variety of ways (e.g., by drug, by infusion type, by time of day), and (3) "drill-down" workflow analytics enabling users to evaluate alert patterns—both internally and in relation to patterns at other hospitals—in a quick and efficient stepwise fashion. The formation of the IPI analytics system to support a community of hospitals has been successful in providing sophisticated tools for member facilities to review, investigate, and efficiently analyze smart-pump alert data, not only within a member facility but also across other member facilities, to further enhance smart pump drug library design. Copyright © 2015 by the American Society of Health-System Pharmacists, Inc. All rights reserved.

  12. Heat-pump-centered integrated community energy systems. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1979-11-01

    A Heat Pump Centered-Integrated Community Energy System (HP-ICES) concept was explored and developed that is based on use of privately owned ice-making heat pumps in each building or complex within a community. These heat pumps will provide all of the space heating, space cooling and domestic hot water needs. All of the community input energy required is provided by electrical power, thereby eliminating a community's dependence on gas or oil supplies. The heat pumps will operate in both air and water source modes, deriving performance advantages of both. The possible forms of an HP-ICES system, the technical and economic limitations, environmental impacts and other factors are discussed from a general viewpoint. The concept is applied to a specific planned community and its performance and economic features are examined in detail. It is concluded that the HP-ICES concept is technically viable, but that its economic desirability as compared with conventional heat pump systems is hampered by much higher initial costs, and that the economic feasibility of HP-ICES systems will depend on future fuel source costs and supply and on electric power rates. (LCL)

  13. Use of single chip microcomputer in hydraulic digital adaptive control system

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Presents a one-grade adaptive controller with one reference model which is built according to δ MRACS adaptive control theorv and used to control an actual high-order hydraulic system, and the whole hard ware system used, which includes a AT89C51 single chip microcomputer, 74Ls373 flip-latch, 6116 store, eight-bit ADC0809, and so on, and the satisfactory results obtained in study on hydraulic control system.

  14. Research on the improvement of nuclear safety -Thermal hydraulic tests for reactor safety system-

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Moon Kee; Park, Choon Kyung; Yang, Sun Kyoo; Chun, Se Yung; Song, Chul Hwa; Jun, Hyung Kil; Jung, Heung Joon; Won, Soon Yun; Cho, Yung Roh; Min, Kyung Hoh; Jung, Jang Hwan; Jang, Suk Kyoo; Kim, Bok Deuk; Kim, Wooi Kyung; Huh, Jin; Kim, Sook Kwan; Moon, Sang Kee; Lee, Sang Il [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1995-06-01

    The present research aims at the development of the thermal hydraulic verification test technology for the safety system of the conventional and advanced nuclear power plant and the development of the advanced thermal hydraulic measuring techniques. In this research, test facilities simulating the primary coolant system and safety system are being constructed for the design verification tests of the existing and advanced nuclear power plant. 97 figs, 14 tabs, 65 refs. (Author).

  15. Thermal-Hydraulic Experiments and Modelling for Advanced Nuclear Reactor Systems

    Energy Technology Data Exchange (ETDEWEB)

    Song, C. H.; Chung, M. K.; Park, C. K. and others

    2005-04-15

    The objectives of the project are to study thermal hydraulic characteristics of reactor primary system for the verification of the reactor safety and to evaluate new safety concepts of new safety design features. To meet the research goal, several thermal hydraulic experiments were performed and related thermal hydraulic models were developed with the experimental data which were produced through the thermal hydraulic experiments. Followings are main research topics; - Multi-dimensional Phenomena in a Reactor Vessel Downcomer - Condensation Load and Thermal Mixing in the IRWST - Development of Thermal-Hydraulic Models for Two-Phase Flow - Development of Measurement Techniques for Two-Phase Flow - Supercritical Reactor T/H Characteristics Analysis From the above experimental and analytical studies, new safety design features of the advanced power reactors were verified and lots of the safety issues were also resolved.

  16. Características construtivas de um carneiro hidraúlico com materiais alternativos Hydraulic ram pump manufacturer features using alternative materials

    Directory of Open Access Journals (Sweden)

    Denis C. Cararo

    2007-08-01

    Full Text Available O objetivo deste trabalho foi avaliar um carneiro hidráulico construído com conexões roscáveis de PVC roscáveis e metálicas e garrafa de polietileno tereftálico (PET. O estudo foi realizado no Laboratório de Hidráulica da Universidade Federal de Lavras, MG. Testaram-se tamanhos de câmaras de ar (0,6 e 2,5L, diâmetros de furos da tampa da garrafa (5, 15 e 25mm, tipos de garrafa plástica (descartável de guaraná e descartável e retornável de refrigerante de cola, e posições da válvula de escape (vertical e horizontal, a diferentes pressões de recalque (48,39 a 483,92kPa, a cada 48,39 kPa. O desnível do reservatório de alimentação ao carneiro hidráulico foi mantido constante a 4,36m. Os resultados indicaram que a combinação de características construtivas que possibilitam melhor rendimento, maior vazão recalcada, menor vazão de alimentação e menor desperdício, foi o uso de garrafa PET descartável ou retornável com capacidade de 0,6L, válvula de escape na horizontal e tamanho de furo de 25mm na tampa da garrafa.Tests were conducted at the Hydraulics Laboratory of Universidade Federal de Lavras - UFLA, Lavras, to evaluate a hydraulic ram pump built with PVC and metallic threadable connections, and a bottle made with polyethylene tereftalic, known as PET. The manufacturer features tested were: bottle size (0.6 and 2.5L, hole size of the bottle top (5, 15 and 25mm, bottle models (disposable and returnable and valve positions (horizontal and vertical. The operational hydraulic head was 4.36m and the simulated pump elevation pressures were 48.39 to 483.92kPa and 48.39 to 48.39kPa. The best efficiency, the highest pumped water flow, the lowest operational water flow and the lowest waste water flow were obtained using the 0.6L PET disposable or returnable bottle with horizontal valve position and top size of 25mm.

  17. Transient Flows in a Pipe System with Pump Shut-Down and the Simultaneous Closing of a Spherical Valve

    Science.gov (United States)

    Zhang, Zh.

    2016-11-01

    Because of the limited value of the wave propagation speed in water the propagation of a pressure surge in transient flows can be tracked in the time series. This enables both the pressure head and the flow velocity in pipe flows to be determined as a function of both the coordinate along the pipe and the time. The propagation of the pressure surge includes both wave transmission and reflection. The latter occurs where the flow section is changed. The wave tracking method has been demonstrated as highly accurate and subsequently was applied to much more complex hydraulic systems, in which the pump is shut off and the spherical valve is simultaneously progressively closed. A combined four-quadrant characteristic of the pump and a spherical valve has been worked out, with which the computational procedure for the transient flow in the complex system could be significantly simplified. It has been demonstrated that not only the pressure surge in the hydraulic system but also the rotational speed of the pump could be satisfactorily computed. The computational algorithm has been demonstrated as quite simple, so that all calculations could be performed simply by means of the Microsoft Excel module.

  18. Quantifying the Efficiency Advantages of High Viscosity Index Hydraulic Fluids

    Institute of Scientific and Technical Information of China (English)

    Christian D. Neveu; Michael D. Zink; Alex Tsay

    2006-01-01

    By providing higher in- use viscosity at elevated operating temperatures, hydraulic fluids with high viscosity index improve the efficiency of the hydraulic system. For mobile hydraulic equipment this efficiency can be quantified as an increase in fuel economy. This paper reviews the research that demonstrates these efficiency advantages in gear, vane and piston pumps and presents a method for predicting the overall fuel economy for a fleet of hydraulic equipment in opquipment operator to easily improve the performance of the system and reduce fuel consumption.

  19. Entropy, pricing and macroeconomics of pumped-storage systems

    Science.gov (United States)

    Karakatsanis, Georgios; Mamassis, Nikos; Koutsoyiannis, Demetris; Efstratiadis, Andreas

    2014-05-01

    We propose a pricing scheme for the enhancement of macroeconomic performance of pumped-storage systems, based on the statistical properties of both geophysical and economic variables. The main argument consists in the need of a context of economic values concerning the hub energy resource; defined as the resource that comprises the reference energy currency for all involved renewable energy sources (RES) and discounts all related uncertainty. In the case of pumped-storage systems the hub resource is the reservoir's water, as a benchmark for all connected intermittent RES. The uncertainty of all involved natural and economic processes is statistically quantifiable by entropy. It is the relation between the entropies of all involved RES that shapes the macroeconomic state of the integrated pumped-storage system. Consequently, there must be consideration on the entropy of wind, solar and precipitation patterns, as well as on the entropy of economic processes -such as demand preferences on either current energy use or storage for future availability. For pumped-storage macroeconomics, a price on the reservoir's capacity scarcity should also be imposed in order to shape a pricing field with upper and lower limits for the long-term stability of the pricing range and positive net energy benefits, which is the primary issue of the generalized deployment of pumped-storage technology. Keywords: Entropy, uncertainty, pricing, hub energy resource, RES, energy storage, capacity scarcity, macroeconomics

  20. DESIGN AND CONSTRUCTION OF A HYDRAULIC PISTON

    OpenAIRE

    Santos De La Cruz, Eulogio; Universidad Nacional Mayor de San Marcos; Rojas Lazo, Oswaldo; Universidad Nacional Mayor de San Marcos; Yenque Dedios, Julio; Universidad Nacional Mayor de San Marcos; Lavado Soto, Aurelio; Universidad Nacional Mayor de San Marcos

    2014-01-01

    A hydraulic system project includes the design, materials selection and construction of the hydraulic piston, hydraulic circuit and the joint with the pump and its accesories. This equiment will be driven by the force of moving fluid, whose application is in the devices of machines, tools, printing, perforation, packing and others. El proyecto de un sistema hidráulico, comprende el diseño, selección de materiales y construcción del pistón hidráulico, circuito hidráulico y el ensamble con l...

  1. Feasibility of a TinyPump system for pediatric CPB, ECMO, and circulatory assistance: hydrodynamic performances of the modified pump housing for implantable TinyPump.

    Science.gov (United States)

    Yokoyama, Naoyuki; Suzuki, Masaaki; Hoshi, Hideo; Ohuchi, Katsuhiro; Fujimoto, Tetsuo; Takatani, Setsuo

    2007-01-01

    The TinyPump is a miniature centrifugal blood pump with an extremely small priming volume of 5 ml, allowing blood transfusion free cardiopulmonary bypass as well as extracorporeal membrane oxygenation in pediatric patients. In this study, a new pump housing with the angled inlet port (25 degrees toward impeller center with respect to the flow axis) was designed to optimize the pump displaced volume and to extend the application of the TinyPump to implantable support The fluid dynamic performance analysis revealed that the head pressure losses increased from 3 to 17 mm Hg in comparison with straight port design as the pump rotational speed increased from 2,000 to 4,000 rpm. This was probably caused by perturbed flow patterns at the site of the inlet bent port area and streamline hitting the off-center of the impeller. No significant effect on pumping efficiency was observed because of modification in inlet port design. Modification in the inflow and outflow port designs together with the drive mechanism reduces the height of the pump system, including the motor, to 27 mm yielding the displaced volume of 68 ml in comparison with 40 mm of the paracorporeal system with the displaced volume of 105 ml. Further analysis in terms of hemolytic as well as antithrombogenic performance will be carried out to finalize the housing design for the implantable version of the TinyPump.

  2. Control characteristics for heating system circulation pumps; Regelkennlinien fuer Heizungsumwaelzpumpen

    Energy Technology Data Exchange (ETDEWEB)

    Kallesoe, C. S.; Bidstrup, N.; Bayer, M.

    2009-07-01

    This article takes a look at variable speed circulation pumps for space heating systems that are used in one and two-family housing. Although the control systems in most houses usually have just one characteristic, the need for several control characteristics in order to cope with varying needs is discussed. The basics of finding out what the control characteristic should look like in a particular case are discussed. Modern circulation pumps with integrated speed control and their interplay with thermostatic valves are examined and discussed. A new automatic adaptation algorithm is described and its way of working is explained. Experience gained in practice is examined.

  3. Numerical analysis of fracture propagation during hydraulic fracturing operations in shale gas systems

    Science.gov (United States)

    Researchers used the TOUGH+ geomechanics computational software and simulation system to examine the likelihood of hydraulic fracture propagation (the spread of fractures) traveling long distances to connect with drinking water aquifers.

  4. Super heat pump energy accumulation system

    Energy Technology Data Exchange (ETDEWEB)

    1989-08-20

    The SHP is a project for which NEDO is commissioned as a part of the Moonlight Project by MITI and has developed since 1985. This report introduced mainly the practical results(trial operation study of the 100kW class bench scale plant) in 1988 fiscal year and the present situation of SHP technical development. Further, this report introduced the estimation of the effects of carbon dioxide decrease and energy saving on the global warmimg up. On the bench scale experiment, the 100kW class compressive heat pump of super high performance and a 10Mcal class high density chemical energy storing technique between higher temperature(100{sup 0}C or more) and cooler temperature(10{sup 0}C or less) were established. The energy saving effect for business, industry and cooling energy in Japan by SHP is estimated to be 205kl(oil)/year in 2000 and CO{sub 2} reducing effect is estimated to be about 820,000tons/Year. 2 refs., 4figs.

  5. System and method of detecting cavitation in pumps

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Bin; Sharma, Santosh Kumar; Yan, Ting; Dimino, Steven A.

    2017-10-03

    A system and method for detecting cavitation in pumps for fixed and variable supply frequency applications is disclosed. The system includes a controller having a processor programmed to repeatedly receive real-time operating current data from a motor driving a pump, generate a current frequency spectrum from the current data, and analyze current data within a pair of signature frequency bands of the current frequency spectrum. The processor is further programmed to repeatedly determine fault signatures as a function of the current data within the pair of signature frequency bands, repeatedly determine fault indices based on the fault signatures and a dynamic reference signature, compare the fault indices to a reference index, and identify a cavitation condition in a pump based on a comparison between the reference index and a current fault index.

  6. NUMERICAL INVESTIGATION OF FLOW PATTERNS IN DIFFERENT PUMP INTAKE SYSTEMS

    Institute of Scientific and Technical Information of China (English)

    ZHAN Jie-min; WANG Ben-cheng; YU Ling-hui; LI Yok-sheung; TANG Ling

    2012-01-01

    A 3-D numerical model for pump intake is established based on the Navier-Stokes equations with the RNG k-εturbulence model and the VOF method to simulate the free surface.The applicability of the proposed model is validated by a test case of non-symmetric pump-intake bay.The predicted locations,structures and shapes of all vortices are in good agreement with those observed in experiments,though with some differences in vorticity strengths.The flow pattern and the efficiency of five types of pump intake systems are studied.The discharge and the velocity uniformity of the intake system are used as indices to evaluate its performance.

  7. Knowledge-based Adaptive Tracking Control of Electro-hydraulic Actuator Systems

    DEFF Research Database (Denmark)

    Hansen, Poul Erik

    1997-01-01

    The paper deal with intelligent motion control and electro-hydraulic actuator systems for multiaxis machynes and robots.The research results are from the IMCIA research Programme supported by the Danish Technical Research Council, STVF.......The paper deal with intelligent motion control and electro-hydraulic actuator systems for multiaxis machynes and robots.The research results are from the IMCIA research Programme supported by the Danish Technical Research Council, STVF....

  8. Simulation of heat-pump systems in Polysun 4 - Final report; Simulation von Waermepumpen-Systemen in Polysun 4 - Schlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Marti, J.; Witzig, A. [Vela Solaris AG, Winterthur (Switzerland); Huber, A.; Ochs, M. [Huber Energietechnik AG, Zuerich (Switzerland)

    2009-01-15

    Polysun 4 is a software program for the simulation of heating systems. The simulation kernel applies a time stepping algorithm and dynamically calculates all relevant system parameters over a one year period, based on statistical weather data. On the one hand, Polysun draws out by physics-based simulation scheme and its modularity, which allows any arrangement of the system components. On the other hand, Polysun offers a unique set of component catalogues which cover a large number of commercially available system components. In this project, three kinds of heat pumps have been integrated in Polysun, namely the air/water, water/water and brine/water heat pumps. Furthermore, the relevant heat sources have been implemented, namely ambient air, soil and groundwater. In consequence, Polysun now covers a large, and almost complete, range of renewable energy systems. Simulation parameters are the measured heat pump COP values (in accordance with EN 255 and EN 14511). A linear interpolation scheme has been developed in this project in order to simulate systems for arbitrary source and heat pump temperatures and to interpolate the power consumption. For the dynamic simulation of the ground source heat pump, the numerical algorithm from the Program EWS (calculation module developed in 1997) has been integrated into Polysun. Groundwater probes are calculated with respect to the soil temperatures. Heat pumps and probes were implemented as independent components in Polysun. In the graphical user interface, they can be arbitrarily placed and connected with other hydraulic components. The timestepping simulation calculates inlet temperature, electric power consumption and heat transfer in the entire system. The Polysun catalogs have been extended accordingly with total over 300 component entries and a number of relevant system templates. (authors)

  9. Co-Simulation Research of the Mechanical-Hydraulic-Control Coupling System of ITER Tractor

    Science.gov (United States)

    Yang, Xiuqing; Luo, Minzhou; Mei, Tao; Yao, Damao

    2009-06-01

    The virtual prototyping models of the mechanical, hydraulic and control system of the ITER tractor were built with CATIA, ADAMS and MATLAB/Simulink respectively according to its heavy load and high precision characteristics, and the data transfer between the different models was accomplished by the integration interface between different software. Consequently the virtual experimental platform for the multi-disciplinary co-simulation was established. A co-simulation study of the mechanical-hydraulic-control coupling system of the ITER tractor was carried out. The synchronization servo control of parallel hydraulic cylinders was implemented, and the tracking control of the preconcerted trajectory of the hydraulic cylinders was realized on the established experimental platform. This paper presents the optimization design and technology rebuilding for the complicated coupling system with its theoretic foundation and co-simulation virtual experimental platform.

  10. Co-Simulation Research of the Mechanical-Hydraulic-Control Coupling System of ITER Tractor

    Institute of Scientific and Technical Information of China (English)

    YANG Xiuqing; LUO Minzhou; MEI Tao; YAO Damao

    2009-01-01

    The virtual prototyping models of the mechanical, hydraulic and control system of the ITER tractor were built with CATIA, ADAMS and MATLAB/Simulink respectively according to its heavy load and high precision characteristics, and the data transfer between the different models was accomplished by the integration interface between different software. Consequently the virtual experimental platform for the multi-disciplinary co-simulation was established. A co-simulation study of the mechanical-hydraulic-control coupling system of the ITER tractor was carried out. The synchronization servo control of parallel hydraulic cylinders was implemented, and the tracking control of the preconcerted trajectory of the hydraulic cylinders was realized on the established experimental platform. This paper presents the optimization design and technology rebuilding for the complicated coupling system with its theoretic foundation and co-simulation virtual experimental platform.

  11. Continuous rotary motor electro-hydraulic servo system based on the improved repetitive controller

    Institute of Scientific and Technical Information of China (English)

    WANG Xiao-jing; JIANG ji-hai; LI Shang-yi

    2010-01-01

    In order to suppress the periodic interference of the continuous rotary electro-hydraulic servo motor,this paper makes the motor tracking the periodic signals with high accuracy,and improves the influence of friction interference to the performance of continuous rotary electro-hydraulic servo motor.The mathematic model of the electro-hydraulic position servo system of the continuous rotary motor was established,and the compound control method was adopted based on the repetitive control,feed forward and PID to suppress the friction interference.Through the simulation,the result confirms that the compound control method decreases the tracking error of the system,increases the robust performance of the system and improves the performance of the continuous rotary electro-hydraulic servo motor.

  12. 沿海电厂露天布置循环水泵出口液控蝶阀的可靠性优化%Circulating Pump Hydraulic Pressure Valve in Power Station Along the Coast Improve Reliability

    Institute of Scientific and Technical Information of China (English)

    王鹏

    2014-01-01

    Circulating water pump outlet Hydraulic Control Butterfly valve is related to the unit itself and even the safe operation of the entire. However compared with the traditional interior layout of the hydraulic control valve the open layout is facing worse operating environment, which brings many hidden dangers into the system's security. Aiming at my plant's problems, this article proposed some suggestions on the selection ,installation and maintenance, from the angle of thermal control.%循环水泵出口液控蝶阀关系到循环水泵自身乃至整台机组的安全运行。但露天布置的液控蝶阀跟传统室内布置的液控蝶阀比,其运行环境比较恶劣,对系统的安全投运带来许多隐患。针对浙江大唐乌沙山发电厂出现的问题,本文从热控角度提出选型、安装、维护等方面的几点建议。

  13. The Thermodynamics Simulation Analysis for the Lubricant Chamber of an Axial Piston Water Hydraulic Pump%轴向柱塞水液压泵润滑油腔的热力学仿真分析

    Institute of Scientific and Technical Information of China (English)

    唐辉; 吴德发; 汤振宇; 李东林; 刘银水

    2012-01-01

    针对油水分离轴向柱塞水液压泵,建立其润滑油腔内各主要运动部件的热力学方程.根据热力学分析的基本理论,创建润滑油腔系统的热平衡方程,并用Matlab软件对其进行数值仿真.根据仿真结果得到润滑油腔内油液的平衡温度,从而分析润滑油腔内的油液粘度变化情况以及润滑油腔内摩擦副的工作状况.研究结果对油水分离水液压泵的设计以及润滑油腔内润滑油的选择具有一定的指导意义和参考价值.%In this paper,a thermodynamic equation of the major moving parts in lubricant chamber of oil-water separation axial piston water hydraulic pump is established,and a heat balance equation of the lubricant chamber system is obtained.Through numerical simulation by using Matlab,the equilibrium temperature of oil in the lubricant chamber is obtained,and the change of viscosity for the oil and the working conditions of the friction pair in the lubricant chamber is analyzed.The research of this article has a guiding significance and reference value to design the oil-water separation water hydraulic pump and the choose lubricating oil of the lubricant chamber.

  14. Use of an Irrigation Pump System in Arthroscopic Procedures.

    Science.gov (United States)

    Hsiao, Mark S; Kusnezov, Nicholas; Sieg, Ryan N; Owens, Brett D; Herzog, Joshua P

    2016-05-01

    Since its inception, arthroscopic surgery has become widely adopted among orthopedic surgeons. It is therefore important to have an understanding of the basic principles of arthroscopy. Compared with open techniques, arthroscopic procedures are associated with smaller incisions, less structural damage, improved intra-articular visualization, less pain in the immediate postoperative period, and faster recovery for patients. Pump systems used for arthroscopic surgery have evolved over the years to provide improved intraoperative visualization. Gravity flow systems were described first and are still commonly used today. More recently, automated pump systems with pressure or dual pressure and volume control have been developed. The advantages of automated irrigation systems over gravity irrigation include a more consistent flow, a greater degree of joint distention, improved visualization especially with motorized instrumentation, decreased need for tourniquet use, a tamponade effect on bleeding, and decreased operative time. Disadvantages include the need for additional equipment with increased cost and maintenance, the initial learning curve for the surgical team, and increased risk of extra-articular fluid dissection and associated complications such as compartment syndrome. As image quality and pump systems improve, so does the list of indications including diagnostic and treatment modalities to address intra-articular pathology of the knee, shoulder, hip, wrist, elbow, and ankle joints. This article reviews the current literature and presents the history of arthroscopy, basic science of pressure and flow, types of irrigation pumps and their functions, settings, applications, and complications. [Orthopedics. 2016; 39(3):e474-e478.].

  15. A fast building and effective hydraulic pediatric mock circulatory system for the evaluation of a left ventricular assist device.

    Science.gov (United States)

    Huang, Feng; Ruan, Xiaodong; Zou, Jun; Qian, Wenwei; Fu, Xin

    2013-01-01

    A mock circulatory system (MCS) has been proven a useful tool in the development of a ventricular assist device. Nowadays a MCS aimed at the evaluation of pediatric blood pumps, which require many different considerations compared with that of adults, has become an urgent need. This article presents the details on how the dynamic process of the left ventricle, which is described in terms of the pressure-volume loop (P-V loop), and the properties of the circulation such as compliance and resistance are simulated by hydraulic elements. A simple control method is introduced to reproduce the physiological afterload and preload sensitivities of the mock ventricle for the first time. Hemodynamic performance of the system is obtained by medical sensors to validate the similarity of the device to the native cardiovascular system. The actual sensitivities of the mock ventricle are obtained intuitively from the changes of the P-V loops. The aortic input impedance of the MCS is also obtained and compared with the data from previous medical reports. At last a pediatric left ventricular assist device (LVAD) prototype is introduced for testing to further verify the effectiveness of the MCS. The experimental results indicate that this pediatric MCS is capable of reproducing basic hemodynamic characteristics of a child in both normal and pathological conditions and it is sufficient for testing a pediatric LVAD. Besides, most components constituting the main hydraulic part of this MCS are inexpensive off-the-shelf products, making the MCS easy and fast to build.

  16. Open-cycle vapor compression heat pump system

    Energy Technology Data Exchange (ETDEWEB)

    Becker, F.E.

    1983-06-01

    Waste energy in the form of low pressure waste steam and low grade waste heat can be efficiently recovered and upgraded to high pressure steam by means of an open-cycle steam heat pump system. Thermo Electron has developed a steam heat pump system. A description of the system highlights the rotary screw compressor, the gas engine prime mover, the speed increaser, and the control system. The amount of energy saved by the system is dependent on the performance of the prime mover as well as the compressor. Energy savings of 40 to 70 percent are predicted. A demonstration system was installed at Monsanto in Indian Orchard, Massachusetts. Energy savings of over 63% compared to current steam generation efficiency is expected.

  17. Proposition of Unique Pumping System with Counter-Rotating Mechanism

    Directory of Open Access Journals (Sweden)

    Toshiaki Kanemoto

    2004-01-01

    Full Text Available Turbo-pumps have weak points, such as when the pumping operation becomes unstable in the rising portion of the head characteristics and/or the cavitation occurs under the intolerably low suction head. To overcome both weak points simultaneously, this article proposes a unique pumping system with counter-rotating mechanism, which consists of two stage impellers and a peculiar motor with double rotors. The front and the rear impellers are driven by the inner and the outer rotors of the motor, respectively, keeping the relative rotational speed constant and counter-balancing the rotational torque. Such driving conditions not only smartly improve the unstable performance at lower discharge, but also suppress the cavitation at higher discharge, in the optimum cooperation with the impeller works and the rotor outputs.

  18. System control fuzzy neural sewage pumping stations using genetic algorithms

    Directory of Open Access Journals (Sweden)

    Владлен Николаевич Кузнецов

    2015-06-01

    Full Text Available It is considered the system of management of sewage pumping station with regulators based on a neuron network with fuzzy logic. Linguistic rules for the controller based on fuzzy logic, maintaining the level of effluent in the receiving tank within the prescribed limits are developed. The use of genetic algorithms for neuron network training is shown.

  19. Power management in hydraulically actuated mobile equipment

    DEFF Research Database (Denmark)

    Pedersen, Henrik Clemmensen; Andersen, Torben Ole; Hansen, Michael Rygaard

    2008-01-01

    The focus of the current paper is on the control of hydraulic systems when utilizing the advances that electronic control may bring with regard to power management, prioritized flow sharing and anti-stall, arising from being able to control both pump, valves and engine electronically. A simple mo...

  20. Hydraulic engine valve actuation system including independent feedback control

    Science.gov (United States)

    Marriott, Craig D

    2013-06-04

    A hydraulic valve actuation assembly may include a housing, a piston, a supply control valve, a closing control valve, and an opening control valve. The housing may define a first fluid chamber, a second fluid chamber, and a third fluid chamber. The piston may be axially secured to an engine valve and located within the first, second and third fluid chambers. The supply control valve may control a hydraulic fluid supply to the piston. The closing control valve may be located between the supply control valve and the second fluid chamber and may control fluid flow from the second fluid chamber to the supply control valve. The opening control valve may be located between the supply control valve and the second fluid chamber and may control fluid flow from the supply control valve to the second fluid chamber.

  1. Hourly simulation of a Ground-Coupled Heat Pump system

    Science.gov (United States)

    Naldi, C.; Zanchini, E.

    2017-01-01

    In this paper, we present a MATLAB code for the hourly simulation of a whole Ground-Coupled Heat Pump (GCHP) system, based on the g-functions previously obtained by Zanchini and Lazzari. The code applies both to on-off heat pumps and to inverter-driven ones. It is employed to analyse the effects of the inverter and of the total length of the Borehole Heat Exchanger (BHE) field on the mean seasonal COP (SCOP) and on the mean seasonal EER (SEER) of a GCHP system designed for a residential house with 6 apartments in Bologna, North-Center Italy, with dominant heating loads. A BHE field with 3 in line boreholes is considered, with length of each BHE either 75 m or 105 m. The results show that the increase of the BHE length yields a SCOP enhancement of about 7%, while the SEER remains nearly unchanged. The replacement of the on-off heat pump by an inverter-driven one yields a SCOP enhancement of about 30% and a SEER enhancement of about 50%. The results demonstrate the importance of employing inverter-driven heat pumps for GCHP systems.

  2. Vein-style air pumping tube and tire system and method of assembly

    Energy Technology Data Exchange (ETDEWEB)

    Benedict, Robert Leon; Gobinath, Thulasiram; Lin, Cheng-Hsiung; Lamgaday, Robin; Losey, Robert Allen; Griffoin, Jean-Claude Patrice Philippe

    2017-01-03

    An air pumping tube and tire system and method of assembling is provided in which a tire groove is formed to extend into a flexing region of a tire sidewall and a complementary air pumping tube inserts into the tire groove. In the green, uncured air pumping tube condition, one or more check valves are assembled into the air pumping tube through access shafts and align with an internal air passageway of the air pumping tube. Plug components of the system enclose the check valves in the air pumping tube and the check valve-containing green air pumping tube is then cured.

  3. Method study on fuzzy-PID adaptive control of electric-hydraulic hitch system

    Science.gov (United States)

    Li, Mingsheng; Wang, Liubu; Liu, Jian; Ye, Jin

    2017-03-01

    In this paper, fuzzy-PID adaptive control method is applied to the control of tractor electric-hydraulic hitch system. According to the characteristics of the system, a fuzzy-PID adaptive controller is designed and the electric-hydraulic hitch system model is established. Traction control and position control performance simulation are carried out with the common PID control method. A field test rig was set up to test the electric-hydraulic hitch system. The test results showed that, after the fuzzy-PID adaptive control is adopted, when the tillage depth steps from 0.1m to 0.3m, the system transition process time is 4s, without overshoot, and when the tractive force steps from 3000N to 7000N, the system transition process time is 5s, the system overshoot is 25%.

  4. Analysis on the Pressure Fluctuation Law of a Hydraulic Exciting System with a Wave-exciter

    Institute of Scientific and Technical Information of China (English)

    WEI Xiu-ye; KOU Zi-ming; LU Zi-rong

    2011-01-01

    A hydraulic exciting system with a wave exciter has been constructed in order to study the hydraulic vibra- tion law. The system consists of an oil source, wave-exciter and oil cylinder, and is controlled by a wave-exciter. The working principle of the hydraulic exciting system and wave exciter has been analyzed, and its excitation process has been illustrated. The law of every pipe's pressure fluctuation of the system is obtained by experiment. The theo- retical analysis and experimental data prove that the pipeline pressure periodically changes and the pipeline pressure fluctuation frequency is independently controlled by the excitation frequency of the wave-exciter. Every pipelinc's pressure wave is produced by system flow fluctuation and water hammer coupling. The pressure fluctuation rules of the system provide a theoretical basis for the study of the associated liberation system.

  5. Comparison between InfoWorks hydraulic results and a physical model of an urban drainage system.

    Science.gov (United States)

    Rubinato, Matteo; Shucksmith, James; Saul, Adrian J; Shepherd, Will

    2013-01-01

    Urban drainage systems are frequently analysed using hydraulic modelling software packages such as InfoWorks CS or MIKE-Urban. The use of such modelling tools allows the evaluation of sewer capacity and the likelihood and impact of pluvial flood events. Models can also be used to plan major investments such as increasing storage capacity or the implementation of sustainable urban drainage systems. In spite of their widespread use, when applied to flooding the results of hydraulic models are rarely compared with field or laboratory (i.e. physical modelling) data. This is largely due to the time and expense required to collect reliable empirical data sets. This paper describes a laboratory facility which will enable an urban flood model to be verified and generic approaches to be built. Results are presented from the first phase of testing, which compares the sub-surface hydraulic performance of a physical scale model of a sewer network in Yorkshire, UK, with downscaled results from a calibrated 1D InfoWorks hydraulic model of the site. A variety of real rainfall events measured in the catchment over a period of 15 months (April 2008-June 2009) have been both hydraulically modelled and reproduced in the physical model. In most cases a comparison of flow hydrographs generated in both hydraulic and physical models shows good agreement in terms of velocities which pass through the system.

  6. Flathead Electric Cooperative Facility Geothermal Heat Pump System Upgrade.

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Xiaobing [Oak Ridge National Lab

    2014-06-01

    High initial cost and lack of public awareness of ground source heat pump (GSHP) technology are the two major barriers preventing rapid deployment of this energy saving technology in the United States. Under the American Recovery and Reinvestment Act (ARRA), 26 GSHP projects have been competitively selected and carried out to demonstrate the benefits of GSHP systems and innovative technologies for cost reduction and/or performance improvement. This paper highlights findings of a case study of one of the ARRA-funded GSHP demonstration projects, which is a heating only central GSHP system using shallow aquifer as heat source and installed at a warehouse and truck bay at Kalispell, MT. This case study is based on the analysis of measured performance data, utility bills, and calculations of energy consumptions of conventional central heating systems for providing the same heat outputs as the central GSHP system did. The evaluated performance metrics include energy efficiency of the heat pump equipment and the overall GSHP system, pumping performance, energy savings, carbon emission reductions, and cost-effectiveness of GSHP system compared with conventional heating systems. This case study also identified areas for reducing uncertainties in performance evaluation, improving operational efficiency, and reducing installed cost of similar GSHP systems in the future. Publication of ASHRAE at the annual conference in Seattle June 2014.

  7. Flathead Electric Cooperative Facility Geothermal Heat Pump System Upgrade

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Xiaobing [Oak Ridge National Lab

    2014-06-01

    High initial cost and lack of public awareness of ground source heat pump (GSHP) technology are the two major barriers preventing rapid deployment of this energy saving technology in the United States. Under the American Recovery and Reinvestment Act (ARRA), 26 GSHP projects have been competitively selected and carried out to demonstrate the benefits of GSHP systems and innovative technologies for cost reduction and/or performance improvement. This paper highlights findings of a case study of one of the ARRA-funded GSHP demonstration projects, which is a heating only central GSHP system using shallow aquifer as heat source and installed at a warehouse and truck bay at Kalispell, MT. This case study is based on the analysis of measured performance data, utility bills, and calculations of energy consumptions of conventional central heating systems for providing the same heat outputs as the central GSHP system did. The evaluated performance metrics include energy efficiency of the heat pump equipment and the overall GSHP system, pumping performance, energy savings, carbon emission reductions, and cost-effectiveness of GSHP system compared with conventional heating systems. This case study also identified areas for reducing uncertainties in performance evaluation, improving operational efficiency, and reducing installed cost of similar GSHP systems in the future. Publication of ASHRAE at the annual conference in Seattle.

  8. Does reintroducing large wood influence the hydraulic landscape of a lowland river system?

    Science.gov (United States)

    Matheson, Adrian; Thoms, Martin; Reid, Michael

    2017-09-01

    Our understanding of the effectiveness of reintroduced large wood for restoration is largely based on studies from high energy river systems. By contrast, few studies of the effectiveness of reintroducing large wood have been undertaken on large, low energy, lowland river systems: river systems where large wood is a significant physical feature on the in-channel environment. This study investigated the effect of reintroduced large wood on the hydraulic landscape of the Barwon-Darling River, Australia, at low flows. To achieve this, the study compared three hydraulic landscapes of replicated reference (naturally wooded), control (unwooded,) and managed (wood reintroduced) treatments on three low flow periods. These time periods were prior to the reintroduction of large wood to managed reaches; several months after the reintroduction of large wood into the managed reaches; and then more than four years after wood reintroduction following several large flood events. Hydraulic landscapes of reaches were characterised using a range of spatial measures calculated from velocity measurements taken with a boat-mounted Acoustic Doppler Profiler. We hypothesised that reintroduced large wood would increase the diversity of the hydraulic landscape at low flows and that managed reaches would be more similar to the reference reaches. Our results suggest that the reintroduction of large wood did not significantly change the character of the hydraulic landscape at the reach scale after several months (p = 0.16) or several years (p = 0.29). Overall, the character of the hydraulic landscape in the managed reaches was more similar to the hydraulic landscape of the control reaches than the hydraulic landscape of the reference reaches, at low flows. Some variability in the hydraulic landscapes was detected over time, and this may reflect reworking of riverbed sediments and sensitivity to variation in discharge. The lack of a response in the low flow hydraulic landscape to the

  9. LOX/LH2 vane pump for auxiliary propulsion systems

    Science.gov (United States)

    Hemminger, J. A.; Ulbricht, T. E.

    1985-01-01

    Positive displacement pumps offer potential efficiency advantages over centrifugal pumps for future low thrust space missions. Low flow rate applications, such as space station auxiliary propulsion or dedicated low thrust orbiter transfer vehicles, are typical of missions where low flow and high head rise challenge centrifugal pumps. The positive displacement vane pump for pumping of LOX and LH2 is investigated. This effort has included: (1) a testing program in which pump performance was investigated for differing pump clearances and for differing pump materials while pumping LN2, LOX, and LH2; and (2) an analysis effort, in which a comprehensive pump performance analysis computer code was developed and exercised. An overview of the theoretical framework of the performance analysis computer code is presented, along with a summary of analysis results. Experimental results are presented for pump operating in liquid nitrogen. Included are data on the effects on pump performance of pump clearance, speed, and pressure rise. Pump suction performance is also presented.

  10. Variable flow controls of closed system pumps for energy savings in maritime power systems

    DEFF Research Database (Denmark)

    Su, Chun-Lien; Liao, Chi-Hsiang; Chou, Tso-Chu

    2016-01-01

    Pumps are extensively used in maritime industries as marine vessels utilize a wide range of pumps and pumping techniques to transfer and distribute all types of air and fluids. The electrical energy consumed by the various motors accounts for about 70% of a vessel’s total power consumption...... pumps on marine vessels. The existing problem of traditional control methods for closed system pumps is analyzed and a mathematical model for variable flow controls with the appropriate control settings is derived. The performance of the proposed method is demonstrated and verified through experimental...... and field tests of a practical auxiliary boiler feed water management system on a commercial vessel. It is proved that the proposed method can maintain constant water pressure for closed system pumps and provide an efficient way to measure energy savings and maintenance benefits. The results serve...

  11. Entropy, pumped-storage and energy system finance

    Science.gov (United States)

    Karakatsanis, Georgios

    2015-04-01

    Pumped-storage holds a key role for integrating renewable energy units with non-renewable fuel plants into large-scale energy systems of electricity output. An emerging issue is the development of financial engineering models with physical basis to systematically fund energy system efficiency improvements across its operation. A fundamental physically-based economic concept is the Scarcity Rent; which concerns the pricing of a natural resource's scarcity. Specifically, the scarcity rent comprises a fraction of a depleting resource's full price and accumulates to fund its more efficient future use. In an integrated energy system, scarcity rents derive from various resources and can be deposited to a pooled fund to finance the energy system's overall efficiency increase; allowing it to benefit from economies of scale. With pumped-storage incorporated to the system, water upgrades to a hub resource, in which the scarcity rents of all connected energy sources are denominated to. However, as available water for electricity generation or storage is also limited, a scarcity rent upon it is also imposed. It is suggested that scarcity rent generation is reducible to three (3) main factors, incorporating uncertainty: (1) water's natural renewability, (2) the energy system's intermittent components and (3) base-load prediction deviations from actual loads. For that purpose, the concept of entropy is used in order to measure the energy system's overall uncertainty; hence pumped-storage intensity requirements and generated water scarcity rents. Keywords: pumped-storage, integration, energy systems, financial engineering, physical basis, Scarcity Rent, pooled fund, economies of scale, hub resource, uncertainty, entropy Acknowledgement: This research was funded by the Greek General Secretariat for Research and Technology through the research project Combined REnewable Systems for Sustainable ENergy DevelOpment (CRESSENDO; grant number 5145)

  12. Modeling and Controlling Flow Transient in Pipeline Systems: Applied for Reservoir and Pump Systems Combined with Simple Surge Tank

    Directory of Open Access Journals (Sweden)

    Itissam ABUIZIAH

    2014-03-01

    Full Text Available When transient conditions (water hammer exist, the life expectancy of the system can be adversely impacted, resulting in pump and valve failures and catastrophic pipe rupture. Hence, transient control has become an essential requirement for ensuring safe operation of water pipeline systems. To protect the pipeline systems from transient effects, an accurate analysis and suitable protection devices should be used. This paper presents the problem of modeling and simulation of transient phenomena in hydraulic systems based on the characteristics method. Also, it provides the influence of using the protection devices to control the adverse effects due to excessive and low pressure occuring in the transient. We applied this model for two main pipeline systems: Valve and pump combined with a simple surge tank connected to reservoir. The results obtained by using this model indicate that the model is an efficient tool for water hammer analysis. Moreover, using a simple surge tank reduces the unfavorable effects of transients by reducing pressure fluctuations.

  13. Parameter Identification for the Valve Control Cylinder System of a Hydraulic Manipulator

    Institute of Scientific and Technical Information of China (English)

    XIE Qing-hua; PEI Wen-kai; JIANG Bin; ZHANG Qi

    2006-01-01

    In mechanical, hydraulic and electronic systems, the determination of system parameters is often challenging because liquid parameters often change significantly, due to variations in working and environmental conditions. Therefore, it is of significant practical importance to identify those parameters through experimental procedures. A systematic approach to identifying parameters in the valve controlling cylinder system of hydraulic manipulators is provided. It first derives the transfer function of the system, and then uses P control of PID control to predict system parameters. The predicted parameters are further validated using PID control. The prediction through simulation using MatLab language is utilized, which agrees well with experimental results.

  14. Research on Electro Hydraulic Proportional Control for Heavy Vehicle Blend Braking System

    Institute of Scientific and Technical Information of China (English)

    XU Ming

    2009-01-01

    A blend braking system of heavy vehicle was proposed. The main control part of the system is the electro hydraulic proportional servo valve. A nonlinear model of brake cylinder controlled by the valve was deduced through the analysis of its control property and system feature. The transfer function of the system was also proposed, and the hydraulic inherent frequency and the PID closed-loop system feature were calculated. The simulated result is consistent with those tested in the bench and on the site with 50t heavy vehicle. The experimental result shows that the control method has quick response and high precision.

  15. Underground pumped hydroelectric storage

    Science.gov (United States)

    Allen, R. D.; Doherty, T. J.; Kannberg, L. D.

    1984-07-01

    Underground pumped hydroelectric energy storage was conceived as a modification of surface pumped storage to eliminate dependence upon fortuitous topography, provide higher hydraulic heads, and reduce environmental concerns. A UPHS plant offers substantial savings in investment cost over coal-fired cycling plants and savings in system production costs over gas turbines. Potential location near load centers lowers transmission costs and line losses. Environmental impact is less than that for a coal-fired cycling plant. The inherent benefits include those of all pumped storage (i.e., rapid load response, emergency capacity, improvement in efficiency as pumps improve, and capacity for voltage regulation). A UPHS plant would be powered by either a coal-fired or nuclear baseload plant. The economic capacity of a UPHS plant would be in the range of 1000 to 3000 MW. This storage level is compatible with the load-velocity requirements of a greater metropolitan area with population of 1 million or more.

  16. Control method and system for hydraulic machines employing a dynamic joint motion model

    Science.gov (United States)

    Danko, George

    2011-11-22

    A control method and system for controlling a hydraulically actuated mechanical arm to perform a task, the mechanical arm optionally being a hydraulically actuated excavator arm. The method can include determining a dynamic model of the motion of the hydraulic arm for each hydraulic arm link by relating the input signal vector for each respective link to the output signal vector for the same link. Also the method can include determining an error signal for each link as the weighted sum of the differences between a measured position and a reference position and between the time derivatives of the measured position and the time derivatives of the reference position for each respective link. The weights used in the determination of the error signal can be determined from the constant coefficients of the dynamic model. The error signal can be applied in a closed negative feedback control loop to diminish or eliminate the error signal for each respective link.

  17. An electro-hydraulic servo control system research for CFETR blanket RH

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Changqi [Hefei University of Technology, Hefei 230009, Anhui (China); Tang, Hongjun, E-mail: taurustang@126.com [Hefei University of Technology, Hefei 230009, Anhui (China); Qi, Songsong [Hefei University of Technology, Hefei 230009, Anhui (China); Cheng, Yong; Feng, Hansheng; Peng, Xuebing; Song, Yuntao [Institute of Plasma Physics Chinese Academy of Sciences, Hefei 230031, Anhui (China)

    2014-11-15

    Highlights: • We discussed the conceptual design of CFETR blanket RH maintenance system. • The mathematical model of electro-hydraulic servo system was calculated. • A fuzzy adaptive PD controller was designed based on control theory and experience. • The co-simulation models of the system were established with AMESim/Simulink. • The fuzzy adaptive PD algorithm was designed as the core strategy of the system. - Abstract: Based on the technical design requirements of China Fusion Engineering Test Reactor (CFETR) blanket remote handling (RH) maintenance, this paper focus on the control method of achieving high synchronization accuracy of electro-hydraulic servo system. Based on fuzzy control theory and practical experience, a fuzzy adaptive proportional-derivative (PD) controller was designed. Then a more precise co-simulation model was established with AMESim/Simulink. Through the analysis of simulation results, a fuzzy adaptive PD control algorithm was designed as the core strategy of electro-hydraulic servo control system.

  18. Design, Optimization and Analysis of Hydraulic Soft Yaw System for 5 MW Wind Turbine

    DEFF Research Database (Denmark)

    Stubkier, Søren; Pedersen, Henrik C.

    2011-01-01

    presents work previous done on this subject with focus on hydraulic yaw systems. By utilizing the HAWC2 aeroelastic code and an extended model of the NREL 5MW turbine combined with a simplified linear model of the turbine, the parameters of the soft yaw system are optimized. Results show that a significant...... reduction in fatigue and extreme loads to the yaw system and rotor shaft are possible, when utilizing the soft yaw drive concept compared to the original stiff yaw system. The physical demands of the hydraulic yaw system are furthermore examined for a life time of 20 years. The duty cycles, based...... on the extrapolated loads, show that it is possible to construct a hydraulic soft yaw system, which is able to reduce the loads on the wind turbine significantly....

  19. Mathematical model for calculation of the heat-hydraulic modes of heating points of heat-supplying systems

    Science.gov (United States)

    Shalaginova, Z. I.

    2016-03-01

    The mathematical model and calculation method of the thermal-hydraulic modes of heat points, based on the theory of hydraulic circuits, being developed at the Melentiev Energy Systems Institute are presented. The redundant circuit of the heat point was developed, in which all possible connecting circuits (CC) of the heat engineering equipment and the places of possible installation of control valve were inserted. It allows simulating the operating modes both at central heat points (CHP) and individual heat points (IHP). The configuration of the desired circuit is carried out automatically by removing the unnecessary links. The following circuits connecting the heating systems (HS) are considered: the dependent circuit (direct and through mixing elevator) and independent one (through the heater). The following connecting circuits of the load of hot water supply (HWS) were considered: open CC (direct water pumping from pipelines of heat networks) and a closed CC with connecting the HWS heaters on single-level (serial and parallel) and two-level (sequential and combined) circuits. The following connecting circuits of the ventilation systems (VS) were also considered: dependent circuit and independent one through a common heat exchanger with HS load. In the heat points, water temperature regulators for the hot water supply and ventilation and flow regulators for the heating system, as well as to the inlet as a whole, are possible. According to the accepted decomposition, the model of the heat point is an integral part of the overall heat-hydraulic model of the heat-supplying system having intermediate control stages (CHP and IHP), which allows to consider the operating modes of the heat networks of different levels connected with each other through CHP as well as connected through IHP of consumers with various connecting circuits of local systems of heat consumption: heating, ventilation and hot water supply. The model is implemented in the Angara data

  20. Including Pressure Measurements in Supervision of Energy Efficiency of Wastewater Pump Systems

    DEFF Research Database (Denmark)

    Larsen, Torben; Arensman, Mareike; Nerup-Jensen, Ole

    2016-01-01

    Wastewater pump systems decompose relatively rapidly compared to other pump systems because of the demanding properties of the pump medium. Only a systematic maintenance of the systems can prevent a significant and continuous decrease of the energy consumption per unit volume pumped (the specific...... energy). This article presents a method for a continuous supervision of the performance of both the pump and the pipeline in order to maintain the initial specific energy consumption as close as possible to the original value from when the system was commissioned. The method is based on pressure...... measurements only. The flow is determined indirectly from pressure fluctuations during pump run-up....

  1. New Electronic-Transition Laser Systems. Part 1. Electron Pumped Systems. Part 2. Chemically Pumped Systems

    Science.gov (United States)

    1976-12-01

    laser development . There has not yet been a demonstration of gain in a visible chemical laser systems, and it appears unlikely that practical lasers of this type will be developed in the near future. Substantial progress has been made

  2. TEAMS Model for the HPGF LN2 Pump System Diagnostic Utility Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The engineering design group upgraded the liquid nitrogen pump system at the HPGF. The pump system supports the site-wide liquid nitrogen supply and its operation is...

  3. Determination and discussion hydraulic retention time in membrane bioreactor system

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Based on the microorganism kinetic model, the formulafor computing hydraulic retention time in a membrane bioreactorsystem (MBR) is derived. With considering HRT as an evaluationindex a combinational approach was used to discuss factors whichhave an effect on MBR. As a result, the influencing factors werelisted in order from strength to weakness as: maximum specificremoval rate K, saturation constant Ks, maintenance coefficient m,Moreover, the formula was simplified, whose parameters wereexperimentally determined in petrochemical wastewater treatment. The simplified formula is (=1.1((1/(-1)(Ks+S)/KX0, forpetrochemical wastewater treatment K and Ks equaled 0.185 and154.2, respectively.

  4. RELIABILITY-BASED DESIGN AND ANALYSIS ON HYDRAULIC SYSTEM FOR SYNTHETIC RUBBER PRESS

    Institute of Scientific and Technical Information of China (English)

    Yao Chengyu; Zhao Jingyi

    2005-01-01

    To overcome the design limitations of traditional hydraulic control system for synthetic rubber press and such faults as high fault rate, low reliability, high energy-consuming and which always led to shutting down of post-treatment product line for synthetic rubber, brand-new hydraulic system combining with PC control and two-way cartridge valves for the press is developed, whose reliability is analyzed, reliability model of the hydraulic system for the press is established by analyzing processing steps, and reliability simulation of each step and the whole system is carried out by software MATLAB, which is verified through reliability test. The fixed time test has proved not that theory analysis is sound, but the system has characteristics of reasonable design and high reliability,and can lower the required power supply and operational energy cost.

  5. Robust Adaptive Backstepping Control Design for a Nonlinear Hydraulic-Mechanical System

    DEFF Research Database (Denmark)

    Choux, Martin; Karimi, Hamid Reza; Hovland, Geir

    2009-01-01

    converge to zero despite the uncertainties in the system according to the Barbalat lemma. The resulting controllers are able to take into account the interval uncertainties in Coulomb friction parameters and in the internal leakage parameters in the cylinders. Two adaptation laws are obtained by using......The complex dynamics that characterize hydraulic systems make it difficult for the control design to achieve prescribed goals in an efficient manner. In this paper, we present the design and analysis of a robust nonlinear controller for a nonlinear hydraulic-mechanical (NHM) system. The system...... consists of an electrohydraulic servo valve and two hydraulic cylinders. Specifically, by considering a part of the dynamics of the NHM system as a norm-bounded uncertainty, two adaptive controllers are developed based on the backstepping technique that ensure the tracking error signals asymptotically...

  6. State of the art-hydraulic yaw systems for wind turbines

    DEFF Research Database (Denmark)

    Stubkier, Søren; Pedersen, Henrik C.; Andersen, Torben Ole;

    2011-01-01

    This paper addresses the yawing systems of Horizontal Axis Wind Turbines (HAWT’s). HAWT’s represents close to all of the commercial large wind turbines sold today and must be considered state-of-the art within wind turbine technology. Two choices exists when considering components for the active...... mounted with a reduction gear. This paper presents state-of-the art within; hydraulic yaw system design and control of yaw systems in general. Primary focus on the advantages and disadvantages of using a hydraulic system for controlling the yaw of a wind turbine with a soft yaw concept....

  7. Optimisation of Working Areas in Discrete Hydraulic Power Take off-system for Wave Energy Converters

    DEFF Research Database (Denmark)

    Hansen, Anders Hedegaard; Hansen, Rico Hjerm; Pedersen, Henrik C.

    2012-01-01

    Fluid power is the leading technology in Power Take Off(PTO) systems in Wave Energy Converters(WEC’s), due to the capability of generating high force at low velocity. However, as hydraulic force controlling system may suffer from large energy losses the efficiency of the hydraulic PTO systems may...... be a limiting factor for wave energy. Therefore, a secondary controlled force system has been proposed as PTO element for WEC’s. This paper investigates the configuration of a multi-chamber cylinder utilising two common pressure lines. By usage of model based optimisation an optimal number and size of working...

  8. Fuzzy Control System of Hydraulic Roll Bending Based on Genetic Neural Network

    Institute of Scientific and Technical Information of China (English)

    JIA Chun-yu; LIU Hong-min; ZHOU Hui-feng

    2005-01-01

    For nonlinear hydraulic roll bending control, a new fuzzy intelligent control method was proposed based on the genetic neural network. The method taking account of dynamic and static characteristics of control system has settled the problems of recognizing and controlling the unknown, uncertain and nonlinear system successfully,and has been applied to hydraulic roll bending control. The simulation results indicate that the system has good performance and strong robustness, and is better than traditional PID and neural-fuzzy control. The method is an effective tool to control roll bending force with increased dynamic response speed of control system and enhanced tracking accuracy.

  9. 匹配发动机的液压泵复合式控制特性研究%Study on Combined Control for Matching Hydraulic Pumps to Engine

    Institute of Scientific and Technical Information of China (English)

    黄新磊; 胡军科; 陈鹤梅; 罗宁

    2011-01-01

    研究液压系统优化控制问题,针对工程机械的复杂工况经常使得液压泵与发动机扭矩匹配不合理,造成发动机熄火或功率利用过低.为提高系统性能,提出了DA(排量转速控制)与EP(电比例控制)的复合式控制方案,调节泵排量使其扭矩与发动机外特性相适应.建立流量连续方程和力平衡方程复合式控制微分形式的数学模型,并导出其传递函数.在MATLAB/Simulink平台搭建模型,对控制特性进行了仿真研究.结果表明,复合式控制可使液压泵与发动机高效匹配,为发动机的液压系统优化控制提供了科学依据.%Complex working conditions in construction machinery result in the torque mismatch between hydraulic pumps and the engine, which probably leads to engine stalling or poor power utilizing. The control scheme combined EP with DA has been proposed against this, thus pumps' placement is regulated to cope with the engine' s external characteristic. After demonstrating principles of the displacement varying, this paper builds up the dynamic math-ematic model of the combined control in differential form, which deduces the system's block diagram in transfer function. Therefore, the control scheme's simulation is able to be carried out with MATLAB/Simulink. Results of the simulation manifest that the combined control can make hydraulic pumps and engines match well and has effect on pushing construction machinery forwards to high performance of energy saving and reliability.

  10. An Energy Saving System for a Beam Pumping Unit

    Directory of Open Access Journals (Sweden)

    Hongqiang Lv

    2016-05-01

    Full Text Available Beam pumping units are widely used in the oil production industry, but the energy efficiency of this artificial lift machinery is generally low, especially for the low-production well and high-production well in the later stage. There are a number of ways for energy savings in pumping units, with the periodic adjustment of stroke speed and rectification of balance deviation being two important methods. In the paper, an energy saving system for a beam pumping unit (ESS-BPU based on the Internet of Things (IoT was proposed. A total of four types of sensors, including load sensor, angle sensor, voltage sensor, and current sensor, were used to detect the operating conditions of the pumping unit. Data from these sensors was fed into a controller installed in an oilfield to adjust the stroke speed automatically and estimate the degree of balance in real-time. Additionally, remote supervision could be fulfilled using a browser on a computer or smartphone. Furthermore, the data from a practical application was recorded and analyzed, and it can be seen that ESS-BPU is helpful in reducing energy loss caused by unnecessarily high stroke speed and a poor degree of balance.

  11. An Energy Saving System for a Beam Pumping Unit.

    Science.gov (United States)

    Lv, Hongqiang; Liu, Jun; Han, Jiuqiang; Jiang, An

    2016-05-13

    Beam pumping units are widely used in the oil production industry, but the energy efficiency of this artificial lift machinery is generally low, especially for the low-production well and high-production well in the later stage. There are a number of ways for energy savings in pumping units, with the periodic adjustment of stroke speed and rectification of balance deviation being two important methods. In the paper, an energy saving system for a beam pumping unit (ESS-BPU) based on the Internet of Things (IoT) was proposed. A total of four types of sensors, including load sensor, angle sensor, voltage sensor, and current sensor, were used to detect the operating conditions of the pumping unit. Data from these sensors was fed into a controller installed in an oilfield to adjust the stroke speed automatically and estimate the degree of balance in real-time. Additionally, remote supervision could be fulfilled using a browser on a computer or smartphone. Furthermore, the data from a practical application was recorded and analyzed, and it can be seen that ESS-BPU is helpful in reducing energy loss caused by unnecessarily high stroke speed and a poor degree of balance.

  12. Thermal efficiency improvements : a chemical heat pump system application

    Energy Technology Data Exchange (ETDEWEB)

    Mert, M.S.; Salt, I.; Bolat, E. [Yildiz Technical Univ., Istanbul (Turkey). Dept. of Chemical Engineering; Karaca, F. [Marmara Univ., Istanbul (Turkey). Dept. of Chemical Engineering

    2006-07-01

    Chemical heat pumps are used to upgrade thermal energy and provide energy storage without losses. The feasibility of an n-hexane/1-hexane/hydrogen chemical heat pump system based on the dehydrogenation of n-hexane at low temperatures and 1-hexane at high temperatures was investigated. Theoretical analysis was carried out using related thermodynamic and equilibrium data to determine the thermal efficiency of the cycle. The latent heats of vaporization at normal boiling points for n-hexane and 1-hexane were calculated using a Riedel equation. Heat capacities as a function of temperature were calculated by Missenard group contribution and Rowlinson-Bondi methods. Estimated C{sub PL} values were presented. The effect of temperature on the Standart heat of reaction was calculated. Gibbs free energy was expressed as a function of temperature. Results indicated that a high 1-hexane concentration in the liquid mixture was required. The ratio of upgraded heat to supplied heat was the key parameter for estimating the thermal coefficient of performance (COP). It was observed that the efficiency of the pump increased with an increase in low level hydrogenation pressure. It was concluded that designing a chemical heat pump involves the consideration of a variety of interacting parameters. 17 refs., 5 tabs., 3 figs.

  13. Calculation methods for SPF for heat pump systems for comparison, system choice and dimensioning

    Energy Technology Data Exchange (ETDEWEB)

    Nordman, Roger; Andersson, Kajsa; Axell, Monica; Lindahl, Markus

    2010-09-15

    In this project, results from field measurements of heat pumps have been collected and summarised. Also existing calculation methods have been compared and summarised. Analyses have been made on how the field measurements compare to existing calculation models for heat pumps Seasonal Performance Factor (SPF), and what deviations may depend on. Recommendations for new calculation models are proposed, which include combined systems (e.g. solar - HP), capacity controlled heat pumps and combined DHW and heating operation

  14. Effects of hedgerow systems on soil moisture and unsaturated hydraulics conductivity measured by the Libardi method

    Directory of Open Access Journals (Sweden)

    S . Prijono

    2016-01-01

    Full Text Available The hedgerow systems are the agroforestry practices suggesting any positive impacts and negative impacts on soil characteristics. This study evaluated the effects of hedgerows on the unsaturated hydraulic conductivity of soil with the Libardi method approach. This study was conducted in North Lampung for 3 months on the hedgerow plots of Peltophorum dassyrachis (P, Gliricidia sepium (G, and without hedgerow plot (K, with four replications. Each plot was watered as much as 150 liters of water until saturated, then the soil surface were covered with the plastic film. Observation of soil moisture content was done to a depth of 70 cm by the 10 cm intervals. Soil moisture content was measured using the Neutron probe that was calibrated to get the value of volumetric water content. Unsaturated hydraulic conductivity of soil was calculated by using the Libardi Equation. Data were tested using the analysis of variance, the least significant different test (LSD, Duncan Multiple Range Test (DMRT, correlation and regression analysis. The results showed that the hedgerow significantly affected the soil moisture content and unsaturated hydraulic conductivity. Soil moisture content on the hedgerow plots was lower than the control plots. The value of unsaturated hydraulic conductivity in the hedgerow plots was higher than the control plots. Different types of hedgerows affected the soil moisture content and unsaturated hydraulic conductivity. The positive correlation was found between the volumetric soil moisture content and the unsaturated hydraulic conductivity of soil.

  15. Final design of a free-piston hydraulic advanced Stirling conversion system

    Science.gov (United States)

    Wallace, D. A.; Noble, J. E.; Emigh, S. G.; Ross, B. A.; Lehmann, G. A.

    1991-01-01

    Under the US Department of Energy's (DOEs) Solar Thermal Technology Program, Sandia National Laboratories is evaluating heat engines for solar distributed receiver systems. The final design is described of an engineering prototype advanced Stirling conversion system (ASCS) with a free-piston hydraulic engine output capable of delivering about 25 kW of electric power to a utility grid. The free-piston Stirling engine has the potential for a highly reliable engine with long life because it has only a few moving parts, has noncontacting bearings, and can be hermetically sealed. The ASCS is designed to deliver maximum power per year over a range of solar input with a design life of 30 years (60,000 h). The system includes a liquid Nak pool boiler heat transport system and a free-piston Stirling engine with high-pressure hydraulic output, coupled with a bent axis variable displacement hydraulic motor and a rotary induction generator.

  16. A microfluidic two-pump system inspired by liquid feeding in mosquitoes

    Science.gov (United States)

    Marino, Andrew; Goad, Angela; Stremler, Mark; Socha, John; Jung, Sunghwan

    Mosquitoes feed on nectar and blood using a two-pump system in the head-a smaller cibarial pump in line with a larger a pharyngeal pump, with a valve in between. To suck, mosquitoes transport the liquid (which may be a multi-component viscous fluid, blood) through a long micro-channel, the proboscis. In the engineering realm, microfluidic devices in biomedical applications, such as lab-on-a-chip technology, necessitate implementing a robust pump design to handle clogging and increase flow control compared to a single-pump system. In this talk, we introduce a microfluidic pump design inspired by the mosquito's two-pump system. The pumping performance (flow rate) in presence of impurities (air bubbles, soft clogs) is quantified as a function of phase difference and volume expansion of the pumps, and the elasticity of the valve.

  17. Performance analysis of multi-pump Raman+EDFA hybrid amplifiers for WDM systems

    Science.gov (United States)

    Jardim Martini, Márcia M.; Pontes, Maria José; Ribeiro, Moisés. R. N.; Kalinowski, Hypolito José

    2014-08-01

    An approximated technique to optimize the gain profile of multi-pump broadband hybrid amplifiers (Raman+EDFA) under residual pump recycling is applied to a WDM system. The Optimized hybrid amplifier configurations with multi-pumping were analyzed considering different number of input channels in order to check the global gain saturation and the changes in the global gain profile that occur due to signal-pump, signal-signal, and pump-pump interactions. This work extends the optimization of the gain profile from Raman+EDFA hybrid amplifiers and studies the signal-signal interactions, signal-pumping and pumping-pumping WDM systems. Multiple input channels allowed the gain characterization of the Raman+EDFA hybrid amplifier in terms of global gain, ripple, and noise figure considering applications for WDM systems.

  18. Experimental System Identification and Black Box Modeling of Hydraulic Directional Control Valve

    Directory of Open Access Journals (Sweden)

    Sondre Sanden Tørdal

    2015-10-01

    Full Text Available Directional control valves play a large role in most hydraulic systems. When modeling the hydraulic systems, it is important that both the steady state and dynamic characteristics of the valves are modeled correctly to reproduce the dynamic characteristics of the entire system. In this paper, a proportional valve (Brevini HPV 41 is investigated to identify its dynamic and steady state characteristics. The steady state characteristics are identified by experimental flow curves. The dynamics are determined through frequency response analysis and identified using several transfer functions. The paper also presents a simulation model of the valve describing both steady state and dynamic characteristics. The simulation results are verified through several experiments.

  19. Application of Solar Photovoltaic Water Pumping System in Hainan Agriculture

    Institute of Scientific and Technical Information of China (English)

    Xiangchun; YU; Qingqing; LIN; Xuedong; ZHOU; Zhibin; YANG

    2013-01-01

    With radical socio-economic development and strengthening of regulation of agricultural industrial structure in Hainan Province,fresh water resource becomes increasingly insufficient.Existing water-saving facilities and measures are unable to promote sustainable and stable development of local economy.This needs modern irrigation method.Solar photovoltaic water pumping system is necessary and feasible in Hainan agriculture,and will have directive significance for Hainan Province developing photovoltaic agriculture.

  20. Design of Reactor Coolant Pump Seal Online Monitoring System

    Energy Technology Data Exchange (ETDEWEB)

    Ah, Sang Ha; Chang, Soon Heung [KAIST, Daejeon (Korea, Republic of); Lee, Song Kyu [Korea Power Engineering Co., Yongin (Korea, Republic of)

    2008-05-15

    As a part of a Department of Korea Power Engineering Co., (KOPEC) Project, Statistical Quality Control techniques have been applied to many aspects of industrial engineering. An application to nuclear power plant maintenance and control is also presented that can greatly improve plant safety. As a demonstration of such an approach, a specific system is analyzed: the reactor coolant pumps (RCPs) and the fouling resistance of heat exchanger. This research uses Shewart X-bar, R charts, Cumulative Sum charts (CUSUM), and Sequential Probability Ratio Test (SPRT) to analyze the process for the state of statistical control. And the Control Chart Analyzer (CCA) has been made to support these analyses that can make a decision of error in process. The analysis shows that statistical process control methods can be applied as an early warning system capable of identifying significant equipment problems well in advance of traditional control room alarm indicators. Such a system would provide operators with enough time to respond to possible emergency situations and thus improve plant safety and reliability. RCP circulates reactor coolant to transfer heat from the reactor to the steam generators. RCP seals are in the pressure part of reactor coolant system, so if it breaks, it can cause small break LOCA. And they are running on high pressure, and high temperature, so they can be easily broken. Since the reactor coolant pumps operate within the containment building, physical access to the pumps occurs only during refueling outages. Engineers depend on process variables transmitted to the control room and through the station's data historian to assess the pumps' condition during normal operation.

  1. Stationary density matrix of a pumped polariton system.

    Science.gov (United States)

    Vera, Carlos Andrés; Cabo, Alejandro; González, Augusto

    2009-03-27

    The density matrix rho of a model polariton system is obtained numerically from a master equation which takes account of pumping and losses. In the stationary limit, the coherences between eigenstates of the Hamiltonian are 3 orders of magnitude smaller than the occupations, meaning that the stationary density matrix is approximately diagonal in the energy representation. A weakly distorted grand canonical Gibbs distribution fits well the occupations.

  2. Trend of hydraulic units

    Energy Technology Data Exchange (ETDEWEB)

    Deshimaru, Jun' ichi

    1988-11-01

    The gear, vane and piston pumps occupy a more then 90% share in the hydraulic pumps. Comparatively large pumps are mainly variable delivery piston pumps. The piston pumps are comparatively high in output density (output per unit weight), indicating the hydraulic pump in performance, and tend to become higher and higher in it. Though they are mainly 210 to 350kgf/cm/sup 2/ in rated pressure, some of them come to surpass 400kgf/cm/sup 3/ in it. While the progress in computation also requires the high speed operation, high accuracy and other severe conditions for the hydraulic units, which accordingly and increasingly intensify the requirement for hydraulic oil in abrasion resistibility, oxidation stability and response characteristics. While cavitation comes to easily occur, which considerably and disadvantageously influences hydraulic oil in life through degradation, noise level and respondingness. From now on, the development of high performance oil and study of mechanical structure are important. 19 references, 9 figures, 2 tables.

  3. Method and system for homogenizing diode laser pump arrays

    Energy Technology Data Exchange (ETDEWEB)

    Bayramian, Andrew James

    2016-05-03

    An optical amplifier system includes a diode pump array including a plurality of semiconductor diode laser bars disposed in an array configuration and characterized by a periodic distance between adjacent semiconductor diode laser bars. The periodic distance is measured in a first direction perpendicular to each of the plurality of semiconductor diode laser bars. The diode pump array provides a pump output propagating along an optical path and characterized by a first intensity profile measured as a function of the first direction and having a variation greater than 10%. The optical amplifier system also includes a diffractive optic disposed along the optical path. The diffractive optic includes a photo-thermo-refractive glass member. The optical amplifier system further includes an amplifier slab having an input face and position along the optical path and separated from the diffractive optic by a predetermined distance. A second intensity profile measured at the input face of the amplifier slab as a function of the first direction has a variation less than 10%.

  4. Improving the Hydraulic Performance of Stormwater Infiltration Systems in Clay Tills

    DEFF Research Database (Denmark)

    Bockhorn, Britta

    D study was initiated with the objective to test and evaluate if the hydraulic performance of stormwater infiltration systems can be significantly improved if the site-specific geological heterogeneity is incorporated into the design and siting of such systems. The assessment is based on different field...... infiltration systems. Models employing standard soil physical parameters should be used with care as they do not always realistically describe site-specific hydrologic properties. A fourth study showed that the hydraulic performance of infiltration trenches was increased by a factor of two, when spear auger......Many cities of the Northern Hemisphere are covered by low permeable clay tills, which pose a challenge for stormwater infiltration practices. However, clay tills are amongst the most heterogeneous types of sediments and hydraulic conductivities can vary by several orders of magnitude. This Ph...

  5. Custo de bombas centrífugas funcionando como turbinas em microcentrais hidrelétricas Cost of pumps as hydraulic turbines for micro-scale hydropower

    Directory of Open Access Journals (Sweden)

    Carlos R. Balarim

    2004-04-01

    places where they should be implanted. Pumps As Turbines (PAT have been studied. These equipment costs were obtained by consulting directly the manufacturers, and also the Ponta Grossa - PR city, Brazil, market. The results have shown that, concerning the micro hydroelectric power plants, whenever the costs constitute the major aspect and always considering units until 50 kW power, the option to PAT must be considered instead of hydraulic turbines.

  6. The 25 kWe solar thermal Stirling hydraulic engine system: Conceptual design

    Science.gov (United States)

    White, Maurice; Emigh, Grant; Noble, Jack; Riggle, Peter; Sorenson, Torvald

    1988-01-01

    The conceptual design and analysis of a solar thermal free-piston Stirling hydraulic engine system designed to deliver 25 kWe when coupled to a 11 meter test bed concentrator is documented. A manufacturing cost assessment for 10,000 units per year was made. The design meets all program objectives including a 60,000 hr design life, dynamic balancing, fully automated control, more than 33.3 percent overall system efficiency, properly conditioned power, maximum utilization of annualized insolation, and projected production costs. The system incorporates a simple, rugged, reliable pool boiler reflux heat pipe to transfer heat from the solar receiver to the Stirling engine. The free-piston engine produces high pressure hydraulic flow which powers a commercial hydraulic motor that, in turn, drives a commercial rotary induction generator. The Stirling hydraulic engine uses hermetic bellows seals to separate helium working gas from hydraulic fluid which provides hydrodynamic lubrication to all moving parts. Maximum utilization of highly refined, field proven commercial components for electric power generation minimizes development cost and risk.

  7. Experimental Comparison of Low-temperature Hydraulic Heating Floor and Heat Pump Air-conditioning%低温热水地板与热泵空调器采暖测试对比分析

    Institute of Scientific and Technical Information of China (English)

    王文; 何雪冰; 陈建苹; 张素云; 刘宪英

    2001-01-01

    通过对重庆地区一住宅内低温热水地板供暖系统的测试,分析对比了该系统与热泵空调器采暖方式对室内热舒适性的影响及运行费用的差别,同时对地板辐射和对流散热的综合效果进行分析,表明在长江流域等非采暖地区应用地板辐射采暖的可行性及优越性。%In this paper the low-temperature hydraulic floor heating system of a residence in Chongqing was tested. The influence of this system and the heat pump air conditioning system on indoor thermal comfort and operation cost was analyzed and compared. The effect of heat dissipation by radiation and convention of the floor was analyzed. It shows the feasibility and advantage of floor heating system in Yangtse River Region.

  8. Analysis of the steady state hydraulic behaviour of the ITER blanket cooling system

    Energy Technology Data Exchange (ETDEWEB)

    Di Maio, P.A., E-mail: pietroalessandro.dimaio@unipa.it [Dipartimento di Energia, Ingegneria dell’Informazione e Modelli Matematici, Università di Palermo, Viale delle Scienze, 90128 Palermo (Italy); Dell’Orco, G.; Furmanek, A. [ITER Organization, Route de Vinon-sur-Verdon, CS 90 046, 13067 St Paul Lez Durance Cedex (France); Garitta, S. [Dipartimento di Energia, Ingegneria dell’Informazione e Modelli Matematici, Università di Palermo, Viale delle Scienze, 90128 Palermo (Italy); Merola, M.; Mitteau, R.; Raffray, R. [ITER Organization, Route de Vinon-sur-Verdon, CS 90 046, 13067 St Paul Lez Durance Cedex (France); Spagnuolo, G.A.; Vallone, E. [Dipartimento di Energia, Ingegneria dell’Informazione e Modelli Matematici, Università di Palermo, Viale delle Scienze, 90128 Palermo (Italy)

    2015-10-15

    Highlights: • Nominal steady state hydraulic behaviour of ITER blanket standard sector cooling system has been investigated. • Numerical simulations have been run adopting a qualified thermal-hydraulic system code. • Hydraulic characteristic functions and coolant mass flow rates, velocities and pressure drops have been assessed. • Most of the considered circuits are able to effectively cool blanket modules, meeting ITER requirements. - Abstract: The blanket system is the ITER reactor component devoted to providing a physical boundary for plasma transients and contributing to thermal and nuclear shielding of vacuum vessel, magnets and external components. It is expected to be subjected to significant heat loads under nominal conditions and its cooling system has to ensure an adequate cooling, preventing any risk of critical heat flux occurrence while complying with pressure drop limits. At the University of Palermo a study has been performed, in cooperation with the ITER Organization, to investigate the steady state hydraulic behaviour of the ITER blanket standard sector cooling system. A theoretical–computational approach based on the finite volume method has been followed, adopting the RELAP5 system code. Finite volume models of the most critical blanket cooling circuits have been set-up, realistically simulating the coolant flow domain. The steady state hydraulic behaviour of each cooling circuit has been investigated, determining its hydraulic characteristic function and assessing the spatial distribution of coolant mass flow rates, velocities and pressure drops under reference nominal conditions. Results obtained have indicated that the investigated cooling circuits are able to provide an effective cooling to blanket modules, generally meeting ITER requirements in term of pressure drop and velocity distribution, except for a couple of circuits that are being revised.

  9. Permeability Enhancement in Enhanced Geothermal System as a result of Hydraulic Fracturing and Jacking

    Science.gov (United States)

    Jalali, Mohammadreza; Klepikova, Maria; Fisch, Hansruedi; Amann, Florian; Loew, Simon

    2016-04-01

    A decameter-scale in-situ hydraulic stimulation and circulation (ISC) experiment has been initiated by the newly-founded Swiss Competence Centre for Energy Research - Supply of Electricity (SCCER-SoE) at Nagra's Grimsel Test Site (GTS) as a part of the work-package WP1 of the Deep Underground Laboratory (DUG-Lab) initiative. The experiment area is situated in the southern part of the GTS in a low fracture density volume of the Grimsel granodiorite. The hydraulic properties of the granitic rock mass are supposed to be similar to those expected in the crystalline basement of the alpine foreland where deep enhanced geothermal systems might be developed in future. The main objectives of the multi-disciplinary experiment are to provide a high resolution pre- and post-stimulation characterization of fracture permeability and connectivity, to investigate patterns of preferential flow paths, to describe the pressure propagation during the stimulation phases and to evaluate the efficiency of the fracture-matrix heat exchanger. A comprehensive test & monitoring layout including a fair number of boreholes instrumented with a variety of sensors (e.g. pressure, strain, displacement, temperature, and seismic sensors) is designed to collect detailed data during multiple hydraulic stimulation runs. The diffusion of fluid pressure is expected to be governed mainly by the properties and geometry of the existent fracture network. The hydraulic transmissivity of fractures are in the range of 10-7 to 10-9 m2/s whereas the matrix rock has a very low hydraulic conductivity (K ˜ 10-12 m/s). As part of the stress measurement campaign during the pre-stimulation phase of the ISC experiment, a series of hydraulic fracturing (HF) and hydraulic tests in pre-existing fractures (HTPF) were conducted. The tests were accompanied by micro-seismic monitoring within several observation boreholes to investigate the initiation and propagation of the induced fractures. Together with results from over

  10. Efficiency improvement for wind energy pumped storage systems

    DEFF Research Database (Denmark)

    Forcos, A.; Marinescu, C.; Teodorescu, Remus

    2011-01-01

    Integrating wind energy into the grid may raise stability problems. Solutions for avoiding these situations are studied and energy storage methods are suitable for balancing the energy between the wind turbine and grid. In this paper, an autonomous wind turbine pumped storage system is presented....... The focus of this paper is to improve the efficiency of this system, which is small at low power levels. The driving motorpump group of the storage system is the key point presented in this paper for efficiency improving. Two control methods, experimentally implemented for induction machine are presented...

  11. Application of Fuzzy Clustering in Modeling of a Water Hydraulics System

    DEFF Research Database (Denmark)

    Zhou, Jianjun; Kroszynski, Uri

    2000-01-01

    This article presents a case study of applying fuzzy modeling techniques for a water hydraulics system. The obtained model is intended to provide a basis for model-based control of the system. Fuzzy clustering is used for classifying measured input-output data points into partitions. The fuzzy mo...

  12. Adaptive impedance control of a hydraulic suspension system using particle swarm optimisation

    Science.gov (United States)

    Fateh, Mohammad Mehdi; Moradi Zirkohi, Majid

    2011-12-01

    This paper presents a novel active control approach for a hydraulic suspension system subject to road disturbances. A novel impedance model is used as a model reference in a particular robust adaptive control which is applied for the first time to the hydraulic suspension system. A scheme is introduced for selecting the impedance parameters. The impedance model prescribes a desired behaviour of the active suspension system in a wide range of different road conditions. Moreover, performance of the control system is improved by applying a particle swarm optimisation algorithm for optimising control design parameters. Design of the control system consists of two interior loops. The inner loop is a force control of the hydraulic actuator, while the outer loop is a robust model reference adaptive control (MRAC). This type of MRAC has been applied for uncertain linear systems. As another novelty, despite nonlinearity of the hydraulic actuator, the suspension system and the force loop together are presented as an uncertain linear system to the MRAC. The proposed control method is simulated on a quarter-car model. Simulation results show effectiveness of the method.

  13. DETERMINATION OF OPERATING FIELDS OF TOLERANCES OF HYDRAULIC SYSTEMS PARAMETERS FOR AIRCRAFT BOARD COMPUTER COMPLEX

    Directory of Open Access Journals (Sweden)

    2016-01-01

    Full Text Available To determine the operating fields of the tolerances of hydraulic systems parameters for various conditions of work and phases of flight given mathematical relationships and the results obtained in Mathcad in analytical form for the board computer system.

  14. COMPARATIVE STUDY AMONG HYBRID GROUND SOURCE HEAT PUMP SYSTEM, COMPLETE GROUND SOURCE HEAT PUMP AND CONVENTIONAL HVAC SYSTEM

    Energy Technology Data Exchange (ETDEWEB)

    Jiang Zhu; Yong X. Tao

    2011-11-01

    In this paper, a hotel with hybrid geothermal heat pump system (HyGSHP) in the Pensacola is selected and simulated by the transient simulation software package TRNSYS [1]. To verify the simulation results, the validations are conducted by using the monthly average entering water temperature, monthly facility consumption data, and etc. And three types of HVAC systems are compared based on the same building model and HVAC system capacity. The results are presented to show the advantages and disadvantages of HyGSHP compared with the other two systems in terms of energy consumptions, life cycle cost analysis.

  15. FRF based position controller design through system identification for A hydraulic cylinder

    Energy Technology Data Exchange (ETDEWEB)

    Seo, Hyoung Kyu; Kim, Dong Hwan [Dept. of Mechanical Design and Robot Engineering, Seoul National University of Science and Technology, Seoul (Korea, Republic of); Park, Jong Won [Reliability Assessment Center, Korea Institute of Machinery and Materials, Daejeon (Korea, Republic of)

    2015-11-15

    In this study, we have focused on the design of a controller and an operating program for the operation of the hydraulic actuators used in a shaker. To control the motion of the shaker accurately, the position of each hydraulic cylinder should be controlled precisely even under an uncertain environment. For this purpose, we have suggested a control algorithm using an FRF (frequency response function) based control which senses the behavior of the actuator in advance, calculates a transfer function through the system identification method, and provides the final control input. The experimental results on the performance of this system were compared with that of a simple PID control algorithm.

  16. CONSTANT WORK-POINT CONTROL FOR PARALLEL HYBRID SYSTEM WITH CAPACITOR ACCUMULATOR IN HYDRAULIC EXCAVATOR

    Institute of Scientific and Technical Information of China (English)

    ZHANG Yanting; WANG Qingfeng; XIAO Qing; FU Qiang

    2006-01-01

    Limitations of various accumulators in hybrid hydraulic excavator are analyzed. A program using capacitor as the accumulator based on constant work-point control is put forward. A simulating experimental system of hybrid construction machinery is established, and experimental study on constant work-point control for parallel hybrid system with capacitor accumulator is carried out using the pressure and flow rate derived from boom cylinder of hydraulic excavator in actual work as the simulating loads. A program of double work-point control is proposed and proved by further experiments.

  17. Ultra high vacuum pumping system and high sensitivity helium leak detector

    Science.gov (United States)

    Myneni, Ganapati Rao

    1997-01-01

    An improved helium leak detection method and apparatus are disclosed which increase the leak detection sensitivity to 10.sup.-13 atm cc s.sup.-1. The leak detection sensitivity is improved over conventional leak detectors by completely eliminating the use of o-rings, equipping the system with oil-free pumping systems, and by introducing measured flows of nitrogen at the entrances of both the turbo pump and backing pump to keep the system free of helium background. The addition of dry nitrogen flows to the system reduces backstreaming of atmospheric helium through the pumping system as a result of the limited compression ratios of the pumps for helium.

  18. 46 CFR 28.255 - Bilge pumps, bilge piping, and dewatering systems.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 1 2010-10-01 2010-10-01 false Bilge pumps, bilge piping, and dewatering systems. 28... the Aleutian Trade § 28.255 Bilge pumps, bilge piping, and dewatering systems. (a) Each vessel must be equipped with a bilge pump and bilge piping capable of draining any watertight compartment, other...

  19. Application of a load-bearing passive and active vibration isolation system in hydraulic drives

    Science.gov (United States)

    Unruh, Oliver; Haase, Thomas; Pohl, Martin

    2016-09-01

    Hydraulic drives are widely used in many engineering applications due to their high power to weight ratio. The high power output of the hydraulic drives produces high static and dynamic reaction forces and moments which must be carried by the mounts and the surrounding structure. A drawback of hydraulic drives based on rotating pistons consists in multi-tonal disturbances which propagate through the mounts and the load bearing structure and produce structure borne sound at the surrounding structures and cavities. One possible approach to overcome this drawback is to use an optimised mounting, which combines vibration isolation in the main disturbance direction with the capability to carry the reaction forces and moments. This paper presents an experimental study, which addresses the vibration isolation performance of an optimised mounting. A dummy hydraulic drive is attached to a generic surrounding structure with optimised mounting and excited by multiple shakers. In order to improve the performance of the passive vibration isolation system, piezoelectric transducers are applied on the mounting and integrated into a feed-forward control loop. It is shown that the optimised mounting of the hydraulic drive decreases the vibration transmission to the surrounding structure by 8 dB. The presented study also reveals that the use of the active control system leads to a further decrease of vibration transmission of up to 14 dB and also allows an improvement of the vibration isolation in an additional degree of freedom and higher harmonic frequencies.

  20. The study on measures to improve the reliability of the hydraulic systems of shearers

    Institute of Scientific and Technical Information of China (English)

    袁辉; 徐龙江; 田大宝; 赵燕玲

    2001-01-01

    The authors indicate that the failure of hydraulic systems of shearers can drop greatly, its' reliability and service life can be increased by the use of a field oil contamination analyser and filter device to control the oil contamination of the hydraulic systems of shearers. Experimental provement of silting-theory contamination analyser are carried out. The filter effect of portable hydraulic driving oil-filter model YLJ-21 is examinationed in laboratory and field experiment. From January to August 1992, on-site experimental research using a silting-theory contamination analyser and oil-filter model YLJ-21 to control the oil contamination was carried out in the Datong Coat Mining Bureau.